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Preface

As genetic and evolutionary algorithms (GEAs) have been employed to han-
dle complex optimization problems in recent years, the demand for improving
the performance and applicability of GEAs has become a crucial and urgent
issue. The exploitation of linkage is one of many mechanisms that have been
integrated into GEAs. This concept draws an analogy between the genetic
linkage in biological systems and the variable relationships in optimization
problems. Most of the papers on the subjects of detecting, understanding,
and exploiting linkage in GEAs are scattered throughout various journals
and conference proceedings. This edited volume serves as an archive of the
theoretical viewpoints, insightful studies, and the state-of-art development of
linkage in GEAs.

This book consists of papers written by leading researchers who have in-
vestigated linkage in GEAs from different points of view. The 11 chapters in
this volume can be divided into 3 parts: (I) Linkage & Problem Structures;
(II) Model Building & Exploiting; and (III) Applications. Part I consists of
4 chapters that deal primarily with the nature and properties of linkage and
problem structures. Thorough understanding of linkage, which composes the
target problem, on the fundamental level is a must to devise GEAs better
than what are available today. The next 4 chapters in Part II discuss issues
regarding depicting linkage structures by establishing probabilistic models or
presenting insights into relationship networks. These chapters develop ade-
quate techniques for processing linkage, facilitating the analysis of problem
structures and optimization tasks. Part III consists of 3 chapters that present
applications that incorporate intermediate analysis solutions, allowing link-
age to be exploited by, and incorporated into, practical problem-solving. More
work on applying linkage to real-world problems should be encouraged, and
this edited volume represents a significant step in that direction.

I hope that this book will serve as a useful reference for researchers work-
ing in the areas of detecting, understanding, and exploiting linkage in GEAs.
This compilation is also suitable as a reference textbook for a graduate level
course focusing on linkage issues. The collection of chapters can quickly
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expose practitioners to most of the important issues pertaining to linkage.
For example, practitioners looking for advanced tools and frameworks will
find the chapters on applications a useful guide.

I am very fortunate and honored to have a group of distinguished contrib-
utors who are willing to share their findings, insights, and expertise in this
edited volume. For this, I am truly grateful.

Hsinchu City, Taiwan Ying-ping Chen
December 2009



Contents

Part I: Linkage and Problem Structures

Linkage Structure and Genetic Evolutionary
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Susan Khor

Fragment as a Small Evidence of the Building Blocks
Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Chalermsub Sangkavichitr, Prabhas Chongstitvatana

Structure Learning and Optimisation in a Markov Network
Based Estimation of Distribution Algorithm . . . . . . . . . . . . . . . . . 45
Alexander E.I. Brownlee, John A.W. McCall, Siddhartha K. Shakya,
Qingfu Zhang

DEUM – A Fully Multivariate EDA Based on Markov
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Siddhartha Shakya, Alexander Brownlee, John McCall,
François Fournier, Gilbert Owusu

Part II: Model Building and Exploiting

Pairwise Interactions Induced Probabilistic Model
Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
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Linkage Structure and Genetic Evolutionary 
Algorithms  

Susan Khor 

1 

Abstract. This chapter reviews and expands our work on the relationship between 
linkage structure, that is how decision variables of a problem are linked with  
(dependent on) one another, and the performance of three basic types of genetic 
evolutionary algorithms (GEAs): hill climbing, genetic algorithm and bottom-up 
self-assembly (compositional). It explores how concepts and quantitative methods 
from the field of social/complex networks can be used to characterize or explain 
problem difficulty for GEAs. It also re-introduces two novel concepts – inter-level 
conflict and specificity – which view linkage structure from a level perspective. In 
general, the basic GEAs performed well on our test problems with linkage struc-
tures resembling those empirically observed in many real-world networks. This is 
a positive indication that the structure of real-world networks which evolved with-
out any central organization such as biological networks is not only influenced by 
evolution and therefore exhibit non-random properties, but also influences its own 
evolution in the sense that certain structures are easier for evolutionary forces to 
adapt for survival. However, this necessarily implies the difficulty of certain other 
structures. Hence, the need to go beyond basic GEAs to what we call GEAs with 
“brains”, of which linkage-learning GEAs is one species. 

1   Introduction 

Research over the last two decades has uncovered evidence that evolved networks 
spanning across many domains, including social, technological and biological 
realms, share common structural properties [1, 28]. From this observation, one 
may ask the following question: What is the relationship between the structural 
properties of a network and the network’s evolution and ability to survive through 
self-organization and adaptation? A similar question arises in the field of genetic 
evolutionary algorithms (GEAs). It is intuitive to view a problem’s set of decision 
variables and their linkages or interactions as a network. What then is the relation-
ship between the structural properties of a problem’s interaction network and the 
ability of a GEA to evolve a solution for the problem? This chapter reports and 
expands on work we have done that addresses these twin questions in an abstract 
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manner within the model of three basic GEAs: hill climbing, genetic algorithm 
and bottom-up self-assembly. We define basic GEAs as those that do not go be-
yond the primary tenets of biological evolution, i.e. random variation, genetic  
inheritance and competitive survival. 

By examining the relationship between linkage structure of problems and basic 
GEA performance, we compiled a non-exhaustive list of structural characteristics 
and accompanying circumstances relevant to basic GEA performance. These in-
clude: modularity, degree distribution, clustering, path length, hub nodes, central-
ity, degree mixing pattern, inter-level conflict and specificity. Evidence of most, if 
not all, of these structural characteristics can be found in real-world networks. In-
terestingly, the basic GEAs performed well on our test problems with linkage 
structures resembling those empirically observed in many real-world networks, 
e.g. right-skewed heavy-tailed degree distribution, modularity and disassortativity. 
This is a positive indication that the structure of real-world networks which 
evolved without any central organization such as biological networks is not only 
influenced by evolution and therefore exhibit non-random properties, but also  
influences its own evolution in the sense that certain structures are easier for  
evolutionary forces to adapt for survival. 

On the other hand, the structural characteristics can also help identify challeng-
ing problem instances for basic GEAs, and simultaneously, build a case for going 
beyond basic GEAs, that is to GEAs that have memory and the explicit ability to 
learn, to understand itself (self-reflection), make inferences and long-term strate-
gies, in short “GEAs with brains”. 

The work presented here is distinct from those in [6, 7, 34 and 35] for example, 
which also investigate the relationship between problem structure and hardness, 
but not in the context of GEAs. Research has also been done on network topology 
and neural network behavior [30].  

This chapter is organized as follows: section 2 describes the four test problems 
that will be referred to throughout the chapter; section 3 defines two basic struc-
tural characteristics and compares the four test problems in these terms; section 4 
focuses on the hill climbing and genetic algorithm GEAs; section 5 focuses on the 
compositional (bottom-up self assembly) GEA; and section 6 concludes. 

2   Test Problems 

This section describes the four test problems directly referred to in this chapter. A 
test problem involves maximizing the number of satisfied if-and-only-if (iff) con-

straints defined on S = {0, 1}N where 
⎩
⎨
⎧ =

=
.0

;1
),(

otherwise

ji
jiiff . An iff constraint 

is a symmetric interaction or linkage between a unique pair of unique variables. A 
test problem can be viewed as a network (graph) of nodes and links (edges) where 
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each node represents a problem variable and each link denotes an iff constraint. 
We call such networks interaction networks.  

How the set of iff constraints or linkages are placed on the set of variables, and 
their weights differentiate the four test problems - C, II, M, and M1 - used in this 
chapter. The adjacency matrix A for each of the four test problems when N=8 is 
given in Fig. 1. Aij is the weight associated with the linkage between variables i 
and j. Fitness of a string can be calculated by summing up the weights of the satis-
fied iff constraints, although a more concise method is given at the end of this  
section.  

A test problem’s adjacency matrix represents its interaction network. For a 
given N, test problem C has the most and maximum number of links: N (N-1) / 2; 
while test problems M and M1, the least and the minimum number of links: N-1 
(for the set of variables to be connected). The M1 linkage pattern is similar to M’s 
except M’s linkages above level 1 are shifted to the right by ε = (level – 2)  
variables. There is no reason for choosing level 3 as the level to begin the  
displacement except that by doing so we get a different degree distribution  
(section 3.2). For problems with fewer than 3 levels, there is no distinction  
between M and M1. 

The problem size N is restricted to values of a power of 2 so that S can be 
recursively partitioned into levels and nested blocks of variables as shown in 
Fig. 2. A problem of size N = 2i where i ∈ Z+ has log2 N levels and N-1 blocks. 
The size of a block |b| is the number of variables encompassed by the block. A 
block at level λ encompasses 2λ variables. The set of linkages belonging to a 
block b includes all linkages between b’s variables, and excludes all linkages 
belonging to b’s direct and indirect sub-blocks. The linkages are weighted and 
placed such that the maximum (optimal) fitness of a block is 1.0. Hence the op-
timal fitness of a string is N-1, and the two optimal strings are the all-zeroes 
(000…000) and the all-ones (111…111) strings, making problem difficulty for 
pure random search the same for all four problems of the same size. 

Fitness of a string F(S) is the sum over all block fitness values f (b) as follows:  

⎩
⎨
⎧

>++
=

=
.1||)()()(

;1||0
)(

SSFSFbf

S
SF

RL

 

SL and SR are the left and right halves of S respectively, and block b comprises all 
variables in S in each recursion. The difference between the fitness functions of 
the four test problems lies in the calculation of block fitness. For C, f (b) = (p × q) 
+ (1 – p) × (1 – q) where p and q are the proportion of ones in the left and right 

halves of b respectively [36]. For II, f(b) = ( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
× ∑ +

i
ibi bbiff

b 2/||,
||

2
where 

0 ≤ i < |b| / 2 and |b| is the size of block b [12]. For M, f(b) = iff (b0, b |b|/2) [15]. For 
M1, f(b) = iff (b0+ε, b |b|/2+ε) where ε = (level – 2), level is level of b, and ε = 0 if 
level ≤ 2 [16]. 
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 0 1 2 3 4 5 6 7 
0 0 1/2 1/8 1/8 1/32 1/32 1/32 1/32 
1 1/2 0 1/8 1/8 1/32 1/32 1/32 1/32 
2 1/8 1/8 0 1/2 1/32 1/32 1/32 1/32 
3 1/8 1/8 1/2 0 1/32 1/32 1/32 1/32 
4 1/32 1/32 1/32 1/32 0 1/2 1/8 1/8 
5 1/32 1/32 1/32 1/32 1/2 0 1/8 1/8 
6 1/32 1/32 1/32 1/32 1/8 1/8 0 1/2 
7 1/32 1/32 1/32 1/32 1/8 1/8 1/2 0 

 0 1 2 3 4 5 6 7 
0 0 1/2 1/4 0 1/8 0 0 0 
1 1/2 0 0 1/4 0 1/8 0 0 
2 1/4 0 0 1/2 0 0 1/8 0 
3 0 1/4 1/2 0 0 0 0 1/8
4 1/8 0 0 0 0 1/2 1/4 0 
5 0 1/8 0 0 1/2 0 0 1/4
6 0 0 1/8 0 1/4 0 0 1/2
7 0 0 0 1/8 0 1/4 1/2 0 

 0 1 2 3 4 5 6 7 
0 0 1/2 1/2 0 1/2 0 0 0 
1 1/2 0 0 0 0 0 0 0 
2 1/2 0 0 1/2 0 0 0 0 
3 0 0 1/2 0 0 0 0 0 
4 1/2 0 0 0 0 1/2 1/2 0 
5 0 0 0 0 1/2 0 0 0 
6 0 0 0 0 1/2 0 0 1/2
7 0 0 0 0 0 0 1/2 0 

 0 1 2 3 4 5 6 7 
0 0 1/2 1/2 0 0 0 0 0 
1 1/2 0 0 0 0 1/2 0 0 
2 1/2 0 0 1/2 0 0 0 0 
3 0 0 1/2 0 0 0 0 0 
4 0 0 0 0 0 1/2 1/2 0 
5 0 1/2 0 0 1/2 0 0 0 
6 0 0 0 0 1/2 0 0 1/2
7 0 0 0 0 0 0 1/2 0  

Fig. 1 (top to bottom) Adjacency matrices for test problems C, II, M and M1, N=8 
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0 1 2 3 4 5 6 7

Level 3 (highest level) 

Level 2

Level 1 (lowest level) 

b1

b2 b3

b4 b5 b7b6  

Fig. 2 Decomposition of a string comprising 8 variables (0-7) into 7 blocks (b1-b7) and 3 
levels (1-3) 

3   Structure 

This section defines two concepts used to characterize the interaction network or 
linkage structure of the test problems. Link weights are considered in the modular-
ity quantification, but ignored in the degree distribution characterization. 

3.1   Modularity 

When a network has identifiable subsets of nodes with higher link density 
amongst themselves than with nodes of other subsets within the same network, the 
network is said to be modular. This chapter uses the method introduced in [29] to 
quantify modularity of an interaction network. This method produces a real value 
Q within [0.0, 1.0] where a larger value indicates greater modularity. An example 
of how to calculate Q for the test problems in section 2 can be found in [16]. For a 
given problem size, the Q values for the four test problems in section 2 are identi-
cal and close to 1.0, e.g. Q = 0.9843 when N=128, and Q = 0.9922 when N=256. 
Therefore, these test problems are highly modular.  

3.2   Degree Distribution 

The degree of a node is the number of links incident on the node. A network’s  
degree distribution gives the probability P(k) of a randomly selected node  
having degree k. Regular graphs like C’s and II’s interaction networks have  
single-point degree distributions since all nodes of a C or II interaction network 
have uniform degree. M1’s interaction network most resembles the degree distri-
bution of classical random graphs which are scaled and forms a bell-shape curve 
(Poisson distribution for large N). Scale-free networks are those whose degree dis-
tributions can be approximated by a power-law. The degree distribution of scale-
free networks is highly right-skewed with a heavy-tail denoting very many more 
nodes with small degree than nodes with large degree (hubs), and a wide degree 
value range. M’s interaction network is not scale-free, but compared to the other 
three test problems for a given N, it is most right-skewed and has the widest  
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M, 256

M1, 256

 

Fig. 3 Degree distribution for M and M1, N=256 

degree value range. For comparison, Fig. 3 gives the degree distributions of M and 
M1 when N=256. 

4   Hill Climbing and Genetic Algorithm 

This section reviews our published results and presents some new developments in 
our work related to linkage structure and problem difficulty for hill climbing and 
genetic algorithm GEAs. The long suspected connection between modularity and 
problem difficulty for hill climbers and accompanying problem easiness for ge-
netic algorithms [25] was clarified with the H-IFF problem [36]. The H-IFF prob-
lem demonstrated the importance of inter-module links as a factor in creating 
problem non-separability and frustration for two types of hill climbers: the Ran-
dom Mutation Hill Climber (RMHC) [5] and the Macro-mutation Hill Climber 
(MMHC) [10]. Nevertheless, the H-IFF problem is not a piece of cake either  
for genetic algorithms. The genetic algorithm that successfully solved H-IFF  
worked explicitly to maintain genetic diversity in its population with the aid of  
deterministic-crowding [22].  

In [16], several variations of the H-IFF problem were presented to investigate 
the relationship between linkage structure and problem difficulty for hill climbers 
and a genetic algorithm called upGA. One of the objectives of this investigation 
was to reduce the dependence of the genetic algorithm on explicit diversity main-
tenance and instead rely on mutation to produce genetic diversity in a population, 
as in the original design of genetic algorithms [8]. Additionally, as in biological 
evolution, both mutation and crossover play important roles in upGA success. 
Since upGA uses only one population, there is no teleological expectation, nor ex-
plicit manipulation to achieve an outcome such that different sub-populations 
evolve different parts of a solution for subsequent recombination into a whole  
solution. Details of the upGA algorithm can be found in [15].  
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The investigation reported in [16] found test problems amongst its test set 
which are easier for upGA than RMHC to solve, and that these test problems are 
modular like H-IFF, but unlike H-IFF which like C has single-point degree distri-
bution, have broad right-skewed degree distributions like M. The investigation 
also looked at two non-structural factors: the Fitness Distance Correlation [9] for 
both Hamming and crossover distance, and the fitness distribution of the C, II, M 
and M1 test problems, and found degree distribution to be a distinguishing factor 
in upGA performance. The most striking example is the test problem pair M and 
M1, which has identical Q values and identical fitness distributions, close FDC 
values, but upGA is more than twice more successful at solving M than M1 within 
the given parameters. This difference in upGA performance is attributed to prema-
ture convergence, more specifically the synchronization problem [33] due to weak 
mutation in M1 populations. Mutation success, as explained below, is related to 
the existence of hubs in a network. 

The test problems in [16] were all predefined by hand. In [17], a looser ap-
proach is taken and test problems with interaction networks randomly generated to 
fit certain criteria (of degree distribution and modularity) [18] were used. Two 
kinds of interaction networks were generated: random and “scale-free” (allowing 
for finite size of networks) and experiments similar to that in [16] were made with 
these interaction networks. This second study confirmed that problems with 
“scale-free” interaction networks were easier for both hill climbers and upGA to 
optimize than problems with random interaction networks, and this difference is 
more apparent when the networks are modular [17].  

To understand the role of linkage structure for the above result, [17] took a 
closer look at high degree nodes of the interaction networks (the degree of the 
high degree nodes in random interaction networks is expectedly, smaller than the 
degree of the hub nodes in “scale-free” interaction networks) and found significant 
differences in terms of path length or shortest distances between high degree 
nodes and the centrality of high degree nodes. Node (betweeness) centrality refers 
to the number of shortest paths that passes through the node. The average path 
length between nodes of high degree is significantly shorter in the modularized 
“scale-free” networks than in the modularized random networks. Hubs in the 
modularized “scale-free” networks also occupy a much more central position in 
inter-node communication on a network than in the modularized random net-
works. Further, in the “scale-free” networks, hubs mutate successfully less fre-
quently than non-hub nodes. This is understandable since changing the value of a 
hub node can cause large changes to fitness.  

We hypothesize that the aforementioned three factors combined help both hill 
climbers and upGA to be more successful (find a global optimum within the given 
parameters) on problems with the “scale-free” interaction networks. Shorter dis-
tances facilitate rapid inter-node transmission of information, and in turn synchro-
nization of hubs, which helps a GEA to avoid the synchronization problem  
(different modules optimize to different global optima and cannot be put together 
to create a global optimum because the inter-module constraints are unsatisfied). 
Being more robust to mutation and occupying a central position in the network 
enables the hubs nodes to transmit a consistent message to the other non-hub 
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nodes so that they all optimize towards the same global optimum. To summarize, 
hubs exert a coordinating, directing and stabilizing force over the adaptation of a 
genotype, which is helpful for conducting search in frustrating fitness landscapes. 
The preceding analysis is successfully applied (holds true) for M and M1 test 
problems (Table 1).  

Table 1 

Degree Path Length Links N=256 
Min Max Min Max Average Median

Degree
Centrality

RMHC
SUCC

upGA
SUCC

255 M1 1 3 1 39 17.85 18 0.5490 0/30 10/30 
255 M 1 8 1 15 7.03 7 0.7908 0/30 27/30 

 

Walsh [34] reports a number of real-world benchmark problems have non-
random interaction networks, and that graphs with right-skewed degree distribu-
tions are easier to color than random graphs [35]. This is good news for the  
practicality of GEAs in the light of the above discussion which suggests GEAs 
such as hill climbing and genetic algorithms are more suited for solving problems 
with non-random interaction networks.  

However, Walsh [34] also found that shorter path lengths, a side effect of high 
clustering, tend to increase difficulty for graph-coloring problems. This observa-
tion appears contrary to what we have proposed here so far. Nonetheless, it is ex-
pected since high clustering tend to create large cliques and the chromatic number 
of a graph is intimately related to the size of the largest clique. For the graph-
coloring problem, we also found that degree-degree correlation affects the number 
of colors used by a complete algorithm DSATUR [2] and by a stochastic algo-
rithm HC, which is similar to RMHC. Given similar conditions (i.e. number of 
nodes, number of links, degree distribution and clustering) and an unlimited color 
palette, fewer colors are needed to color disassortative than assortative networks 
[19]. We attribute this result to shorter path lengths amongst nodes of high degree 
in more assortative networks.  

By preferring to fix the color of high degree nodes, which DSATUR does ex-
plicitly in its algorithm and HC does implicitly (negative correlations are recorded 
between node degree and time of last successful mutation, and between node de-
gree and number of successful mutations), the number of colors used increases 
more slowly and less unnecessarily. However, if nodes of high degree have high 
probability of being directly linked with each other, a graph coloring algorithm 
would have little choice but to use more colors. Nodes of low degree have more 
color choices (are less constrained) and their exact color can be determined later 
within the existing color range. As such, a network would be colorable with fewer 
colors if nodes of high degree were separated from each other but still connected 
to one another via nodes of lower degree which are less constrained in their color 
choices. Longer path lengths amongst nodes of high degree reflect networks with 
such characteristics, as do negative degree-degree correlation or disassortative  
degree mixing pattern. 
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Section 4 has presented several cases where examining linkage structure of a 
problem has provided clues about the difficulty of a problem for a GEA, and have 
suggested several criteria borrowed from the field of complex networks to charac-
terize problem linkage structure, e.g. modularity, degree distribution, path length, 
centrality, hub nodes, clustering and degree mixing pattern. One possible chal-
lenge for the future is to design GEAs with different capabilities to address  
difficulties posed by problems with different linkage characteristics, or more am-
bitiously, one “super-GEA” to dynamically tailor itself to a problem’s linkage 
idiosyncrasies. Conversely, the challenge could be to design or evolve the interac-
tion networks of problems so that they are easily solved by GEAs. In either case, 
one must first know what characteristic(s) to watch out for in problems, and how 
to quantify it. We believe the approach we propose here paves a way towards this 
goal. 

5   Compositional Gea 

This section investigates how linkage structure influences bottom-up evolution 
modeled by a compositional GEA called J (after the Roman God Janus). Unlike 
the hill climbers and upGA discussed in the previous section, the J GEA simulta-
neously composes and evolves a solution through a bottom-up self-assembly  
process. SEAM [37] and ETA [21] are two examples of GEAs using bottom-up 
compositional evolutional. 

Starting with an initial pool of atomic entities with randomly generated geno-
types, J creates interaction opportunities, in the form of joins and exchanges, be-
tween randomly selected entities in a population. J follows the rationale that when 
two or more entities interact with one another, they either repel (nothing happens), 
are attracted to each other as wholes (a join is made) or there is partial attraction 
(an exchange of entity parts is made). Section 5.1 explains how J decides whether 
a join or an exchange succeeds. The total amount of genetic material in a J popu-
lation remains constant throughout a run, although the number of entities may 
fluctuate; typically number of entities decrease as entities assemble themselves 
into larger entities. Entities are also selected at random to undergo random bit-flip 
mutation. Section 5.2 explains how J determines if a mutation succeeds.  

The J algorithm used here (section 5.3) is, for the most part, the one described 
in [14] which is a significant revision of an earlier version published in [13]. The 
revisions were mainly made to clarify part-fitness calculations. The only differ-
ence between the J algorithm used in this chapter and that in [14] is the use of 
random selection instead of fitness-proportionate selection when choosing an en-
tity for mutation. We believe this second modification to be more realistic in terms 
of biological evolution where variations such as mutation (seemingly) occur at 
random. Detailed explanations and the reasoning behind the design of J are  
documented in [14]. 
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5.1   Joins and Exchanges  

This section illustrates how J decides whether a join or an exchange succeeds. The 
general rule is entities stay in their current context until there is clear incentive, in 
the form of increase to their own fitness, to change context. In addition, a join or 
an exchange must benefit all participant entities to succeed. Thus, successful joins 
and exchanges are instances of synergistic cooperation in J.  

To illustrate, consider two entities a and b with respective genotypes and fitness 
values as given in Table 2.  

Table 2 Fitness details for entities to illustrate joins and exchanges 

Entity Genotype C fitness II fitness M fitness

a 0001 1.5 1.5 2.0 

b 1000 1.5 1.5 1.0 

c 0001 1000 3.625 3.5 3.0 

d 1000 0001 3.625 3.5 3.0 

e 0001 1001 2.5 2.25 2.0 

f 1111 1000 4.75 4.75 5.0 

g 1001 0.5 0.0 0.0 

h 1111 3.0 3.0 3.0 

 
A join between a and b can yield either c (a + b) or d (b + a). For ease of dis-

cussion, let the join be a + b and the inter-entity relationship be C. This join cre-
ates a new context for both a and b in the form of entity c. We say that a and b are 
part-entities of composite entity c. In their original context, the fitness of both a 
and b is 1.5. In the new context of c, the fitness of both a and b is 1.5 + [3.625 – 
(1.5 + 1.5)] ÷ 2 = 1.8125. Since fitness of both a and b increases in the context of 
composite entity c, the join succeeds, i.e. c continues to exist because it is benefi-
cial for both a and b to remain in c. If the relationship was M, the join would fail 
because neither a nor b increases their fitness by remaining in c. 

Suppose an exchange is made between composite entities e and f and each of 
these two composite entities are decomposed for the purpose of the exchange into 
two equal halves: e into a and g, and f into h and b (J decides on the size of the 
part-entities participating in an exchange and the size of the resultant/new com-
posite entity). Further, let the composite entity created by the exchange be d = (b 
+ a). This new entity d will survive if both a and b have higher fitness by remain-
ing in d than in their respective original contexts, i.e. f and e. Table 3 summarizes 
the changes to a’s and b’s fitness values when their context is changed from e and 
f respectively to d. The exchange succeeds only under C where a’s fitness in-
creases from 1.75 to 1.8125 and b’s fitness increases from 1.625 to 1.8125. Under 
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II, the exchange fails because a’s fitness decreases from 1.875 to 1.75. The  
exchange also fails under M because b’s fitness decreases from 1.5 to 1.0. 

Table 3 Change in fitness for a and b as they move from composite entities e and f  
respectively to form composite entity d 

C II M 
e f d e f d e f d 

a 1.5 +0.25 - +0.3125 1.5 +0.375 - +0.25 2.0 0.0 - 0.0 
b 1.5 - +0.125 +0.3125 1.5 - +0.125 +0.25 1.0 - +0.5 0.0 

 

Even though entity d is fitter than e and less fit than f (Table 2), the exchange 
succeeds under C (i.e. both e and f are destroyed to create d) and fails under II and 
M (i.e. neither e nor f is destroyed to create c) because only part-fitness or fitness 
from the perspective of part-entities matters.  

5.2   Mutation and Inter-level Conflict 

Inter-level conflict occurs when changes which are good (immediately adaptive or 
fitness improving) for one level is not so for another level. In bottom-up inter-level 
conflict, changes which are adaptive for lower levels are maladaptive for higher 
levels. Top-down inter-level conflict occurs when changes which are adaptive for 
higher levels are maladaptive for lower levels. Michod [24] describes the resolu-
tion of inter-level conflict as a fitness transfer from one level to another in the 
sense that lower (higher) levels are able to increase their fitness because higher 
(lower) levels give up some of their fitness. Because there is some sacrifice  
for another’s good here, successful mutation is an occasion where altruistic 
 cooperation can occur in J. 

5.2.1   R1 Selection Scheme and Bottom-Up Inter-level Conflict 

Bottom-up inter-level conflict is present in all four relationships – C, II, M and 
M1. This is confirmed with RMHC’s low success rates on these relationships [16]. 
RMHC selects on the basis of total fitness of a genotype, and due to the modular 
linkage structure of C, II, M and M1, tends to favour optimization of sub-modules 
(part-entities) over optimization of the whole genotype (composite entity).  

For example, suppose J mutates entity e by flipping the rightmost bit and as a 
result, transforms part-entity g into b and produces the mutant entity c (Table 4). 
This mutation succeeds for all three relationships, i.e. RMHC selects mutant c to 
replace e, because c is at least as fit as e. In J, this selection scheme is named R1. 
Under II, the success of this mutation creates bottom-up inter-level conflict since 
the increase in fitness at lower levels is accompanied by a decrease in fitness at a 
higher level. Level 3 fitness drops from 0.75 to 0.5, while fitness at levels 1 and 2 
increase (Table 4).  
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Table 4 Fitness for composite entities e and c 

Entity Genotype C II M 
e = a + g 0001 1001 〈0.5, 1.0, 1.0 〉  2.5 〈0.75, 0.5, 1.0〉  2.25 〈0.0, 1.0, 1.0〉  2.0 
c = a + b 0001 1000 〈0.625, 1.0, 2.0〉  3.625 〈0.5, 1.0, 2.0〉  3.5 〈0.0, 1.0, 2.0〉  3.0 

〈, , ,…〉  notes fitness by level from the highest (left) to the lowest (right) level. 

 
Bottom-up inter-level conflict threatens the existence of a composite entity be-

cause it can transfer fitness at higher levels which is shared by all part-entities 
within a composite entity, to fitness at lower levels which benefits only some part-
entities, and thereby weaken the bonds that bind part-entities together in a com-
posite entity. The fitness-barrier, preventing part-entities from switching context 
when the opportunity arises is lowered. 

5.2.2   R2 Selection Scheme and Top-Down Inter-level Conflict 

An alternative to the selection scheme in section 5.2.1 is one that mediates conflict 
in favour of higher levels. RMHC2 [11] is one such a selection scheme. In 
RMHC2, fitness of an entity (genotype) is broken down into levels and compared 
level wise from the highest level down. A mutant entity is chosen by RMHC2 if it 
is fitter than its parent at level λ and as fit as its parent at any level higher than λ, 
even though it may be less fit than its parent in total. In J, this selection scheme is 
named R2. 

For example, suppose J mutates entity e by flipping the rightmost bit and as a 
result, transforms part-entity g into b and produces the mutant entity c (Table 4). 
This mutation succeeds for C and M only, even though c if fitter than e for all 
three relationships. The mutation fails for II because c is less fit than e at level 3. 
If instead, the mutation is from c to e, this mutation succeeds under II even though 
e is less fit than c overall because e is fitter than c at a higher level. This transfor-
mation is also an instance of top-down inter-level conflict since increase in fitness 
at a higher level has come with a (possibly larger) decrease in fitness at a lower 
level. 

Conflict mediation in favour of higher levels might seem like a good idea since 
it transfers fitness from lower to higher levels where it can be shared by all part-
entities thereby strengthening the bonds that bind part-entities of a composite en-
tity. Michod proposes it as one way biological aggregates maintain stability and 
develop their integrity [24]. However given the blind (without foresight) nature of 
evolution, there is no guarantee that fitness transfer from lower to higher levels 
will lead to optimal composite entities in the long term [27]. This is most evident 
when the relationship has top-down inter-level conflict. A test using RMHC2  
(Table 5) reveals that of the four relationships examined in this chapter, II and M1 
have propensity for top-down inter-level conflict. 
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Table 5 Number of runs out of the attempted 30 which found an optimal solution within the 
allocated number of function evaluations 

N=128 RMHC2 
Pm C II M M1 

0.25 - 0 - 0 
0.125 - 0 - 0 
0.0625 30 0 30 0 

5.3   The J Algorithm 

The J GEA attempts a join, an exchange or a mutation operation per iteration until 
either an optimal entity of the target size N is formed, or it reaches the maximum 
number of iterations specified. J’s parameters are listed in Table 6.  

Table 6 Parameters for J 

Parameter Symbol Value 
Atomic entity size  q 2 
Target entity size  N 256 
Number of entities per join or exchange p 2 
Maximum number of iterations MaxIters 1,000,000 
Initial population size  PS 512 
Mutation rate  Pm 0.03125 
Join rate  Pj 0.5 
Selection scheme R 1, 2 

 
Main algorithm for J 

Create PS atomic entities each with a random genotype. 
While number of iterations < MaxIters  

Increment number of iterations by 1 
If number of iterations is divisible by 50 

Record statistics. 
If fittest entity is optimal and of the target size, N  

Stop.   
With probability PJ    

Chose p distinct entities at random. 
  If the p entities are all the same size and  

their combined size is ≤ N, then with probability 0.5,  
attempt a join with the p entities. 

  Else  
Attempt an exchange with the p entities. 

Otherwise 
Select a random entity e. Attempt a mutation on e. 

End. 
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The join operation enables p randomly chosen distinct entities of the same size 
to form a new composite entity e not larger than N. A join succeeds if entities  
increase their fitness in the context of the new composite entity (section 5.1). 

 

Join p entities. 
Create a new entity e. 

e.genotype is the concatenation of the genotypes of all p entities. 
If e is fitter than the combined fitness of all p entities, the join succeeds. 

Remove the p entities from the population. 
Add e to population. 

Else the join fails 
Discard e (restore the p entities). 

 

The exchange operation enables entities belonging to p distinct entities chosen 
at random, to form a new composite entity e. At least one of the p distinct entities 
must be a composite entity, all entities exchanged are the same size (for simplic-
ity), and the size of the new composite entity is the size of the largest of the p en-
tities. The exchange succeeds if every entity that comprises e is fitter in e than in 
their respective original context (section 5.1). If an exchange succeeds, the new 
composite entity e, and the remaining entities not in e are added to the population.  

 

  Exchange between p entities 
Determine smallest, the size of the smallest entity in the p entities. 
Determine largest, the size of the largest entity in the p entities. 
If every one of the p entities is atomic, stop. 
 
Determine levels, the number of levels in the smallest entity.  

levels is logq smallest. 
Determine part size, the size of all part-entities, by chosing an integer n at 

random from within [1, levels]. Part size is qn. 
Use part size to split the p entities into part-entities.  
 
Determine fitness of each part-entity in their respective original context. Let 

this fitness be old-fitness. 
 
From the pool of part-entities, randomly select enough part-entities to create 

a new composite entity e of size largest. e.genotype is the concatenation of the 
genotypes of the selected part-entities.  

 
Determine fitness for each part-entity in e. Let this fitness be new-fitness. 
For each part-entity in e, compare new-fitness with old-fitness.  
If for every pair, new-fitness > old-fitness, the exchange succeeds. 

Remove the p entities from the population.  
Add e and the unused part-entities to population. 

Else the exchange fails.     
Discard e (restore the p entities). 
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The mutate operation flips at least 1 to k number of bits of an existing entity, 
chosen at random from the population, and replaces the original (parent) entity 
with the mutant (child) entity if the mutant is not less fit than its parent in the 
sense defined by either the R1 or the R2 selection scheme (section 5.2). 

 

Mutate entity e 
Create entity f whose genotype = e’s genotype. 
Flip k bits of f’s genotype chosen uniformly at random with replacement. 

k = maximum of (1, [1, Pm × f.size]) 
If selection scheme is R1 

 If f is fitter than or as fit as e, the mutation succeeds 
Replace e with f in the population. 

Else, the mutation fails 
Discard f. 

Else if selection scheme is R2 
For each levelλ, starting from the highest level down, compare e’s and 

f’s fitness at levelλ as follows: 
If f is fitter than e at level λ, the mutation succeeds 

Replace e with f in the population. Stop. 
Else if e is fitter than f at level λ, the mutation fails 

Discard f. Stop. 
If no decision has been made yet, the mutation succeeds (e and f have 

equal fitness for all levels) 
Replace e with f in the population. 

5.4   Results 

Fifty J runs using the parameter values listed in Table 6 and a different random 
number seed each time were made with both R1 and R2 selection schemes. The 
results are summarized in Table 7 and Figs. 4a and 4b.  

When the R1 selection scheme is used, J achieved close to 100% success for all 
four test problems (Table 7). In terms of number of iterations, J performed equally 
well for C, II and M, but took significantly longer (more iterations) for M1 (Fig. 
4a). The distribution of successful runs by iterations for M1 has a longer tail on the 
right than the others (Fig. 4b). This performance difference is noteworthy because 
the M and M1 relationships are very similar to each other (same number of links, 
identical Q values and fitness distribution – number of unique genotype configura-
tions by fitness value) with one exception, their degree distributions (section 3.2). 

When the R2 selection scheme which does multi-level selection in favour of 
higher levels is used, J achieved 100% success for both C and M, but performed 
poorly on II and M1 (Table 7). This is expected since both II and M1 have  
top-down inter-level conflict (section 5.2.2) while both C and M do not.  

In terms of number of iterations, there is no significant difference at the 99% 
confidence interval between C and M (Fig. 4a). However, 82% of M runs com-
pleted in less than 20,000 iterations compared with only 34% of C runs (Fig. 4b). 
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Table 7 Number of successful J runs out of 50 and their average iterations  

 R1 R2 
N=256 Succ Avg. iterations Succ Avg. iterations 

C 50 12,200 (1,003) 50 21,500 (4,094) 
II 50 12,490 (1,044) 3 483,300 (392,900) 
M 50 14,440 (6,381) 50 18,420 (14,660) 
M1 49 49,150 (10,420) 3 264,800 (438,000) 

One standard deviation is given in parentheses. 
 

Nonetheless, the remaining 66% of C runs completed in less than 30,000 iterations 
while the remaining 18% of M runs took up to 70,000 iterations to complete. 
Hence, J could evolve optimal M entities faster than C entities with the R2 selec-
tion scheme (but given enough time, there is no significant difference). This is  
another noteworthy difference. Both C and M do not have top-down inter-level 
conflict (section 5.2.2), but their interactions networks differ substantially not just 
in terms of number, weight and distribution of links, but also in what we term, 
specificity (section 5.4). 

If we now compare the R1 and R2 results, none of the test problems seem to 
benefit significantly from the R2 selection scheme. A different result was obtained 
in [14] where entities were randomly selected for mutation using a fitness-
proportionate scheme. [14] found using R2 significantly reduced the time (number 
of iterations) for J to evolve M entities, while significantly increased the time to 
evolve C entities. In [14], we concluded that conflict mediation in favour of higher 
levels can enhance (speed-up) bottom-up evolution, but that its usefulness is influ-
enced by how entities relate to or interact with one another. Blindly giving higher 
levels priority over lower levels to adapt need not enhance bottom-up evolution, 
even when the relationship has no top-down inter-level conflict (e.g. C). We will 
come back to this point in section 5.5. 
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Fig. 4a Number of iterations to evolve an optimum entity of target size N=256, averaged 
over successful runs. Error bars indicate the 99% confidence interval. The R2 averages for 
II and M1 are excluded 
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Fig. 4b Distribution of successful runs by number of iterations to evolve an optimum entity 
of target size 256 

5.5   Specificity 

Specificity is a property of inter-entity interactions. Inter-entity interactions are 
more specific when there are fewer (but still some) interactions between entities. 
Specificity for a given level λ is the number of unique genotype configurations 
whose fitness at level λ is 0.0. A relationship with more genotypes with zero level 
fitness is more specific.  

Table 8 illustrates for the four relationships discussed in this chapter. For λ > 1, 
C < II < M where ‘<’ means is less specific than. M and M1 are equally specific. 
Specificity can also be deduced from the adjacency matrices (section 2). Sparser 
matrices tend to produce more specific relationships. 

Table 8 Relationship specificity 

 C II M M1 
Number of genotypes 
with zero fitness at level 
λ. 

2N/2λ 2N/2 2N (1 – 1/2λ) 2N (1 – 1/2λ) 

Number of genotypes 
with zero fitness at the 
highest level, i.e. λ = 
log2N. 

2 2N/2 2N-1 2N-1 

Example of genotypes 
with zero λ =3 fitness.  

1111 0000 
0000 1111 

0001 1110 
1111 0000 

0111 1010 
0000 1111 

0111 0010 
1011 0100 

 



20 S. Khor 
 

Though related to linkage, specificity describes a different aspect of network 
structure than degree distribution. The degree distributions of M and M1 starkly 
differ (section 3.2), but they are equally specific. Specificity is also different from 
modularity since all four relationships in Table 8 are equally modular, i.e. have 
identical Q values (section 3.1). 

Relationships with high specificity make joins and exchanges amongst random 
entities more difficult to succeed since there are fewer ways to generate fitness 
above the sum of fitness of part-entities. But once a composite entity is formed, 
because of the specificity of the relationship, the composite entity is more difficult 
to destroy and hence is more stable (or less promiscuous). This line of analysis is 
carried further in [14]. Stability of intermediate aggregates is a corner stone of a 
bottom-up self-assembly process [32] and also of evolution [4]. “… The complex 
forms can arise from the simple ones by purely random processes. … Direction is 
provided to the scheme by the stability of the complex forms, once these come 
into existence. But this is nothing more than survival of the fittest – that is, of the 
stable.” [32, p.93] “Darwin’s ‘survival of the fittest’ is really a special case of a 
more general law of survival of the stable. The universe is populated by stable 
things. A stable thing is a collection of atoms that is permanent enough or com-
mon enough to deserve a name.” [4, p.12] 

Specificity has been defined as physical or structural isolation of parts [23] and 
this aspect of specificity is why when using R2 in [14], J significantly reduced the 
time (number of iterations) to evolve M entities, while significantly increased the 
time to evolve C entities. J performs well when the modular structure of a rela-
tionship is respected [14]. By giving preference to optimization of higher levels 
(essentially inter-module constraints), R2 can override the modular structure of a 
relationship, unless the structure of the relationship prevents it. By virtue of being 
more specific, the modular organization of the M relationship is more robust to 
such attacks than the C relationship.  

Section 5.4 reported that the absence of top-down inter-level conflict in a rela-
tionship is insufficient to ensure that conflict mediation will be useful for bottom-
up evolution, and that the efficacy of conflict mediation in favour of higher levels 
is also influenced by the structure of inter-entity interactions. Here, we give a 
characterization of such structure: high specificity. We propose that in the absence 
of top-down inter-level conflict, inter-entity interactions with high specificity 
stand to benefit more from conflict mediation in favour of higher levels than  
inter-entity interactions with low specificity.  

Section 5 has discussed the performance of a bottom-up GEA, J, and intro-
duced two concepts: inter-level conflict and specificity. It finds that problem struc-
ture, especially when viewed from a level perspective, affects the evolutionary 
performance of J. It might be interesting to see how the performance of J relates 
to upGA, and whether the two aforementioned concepts are applicable to genetic 
algorithms since genetic algorithms are also believed to work on the basis of com-
bining low-order partial solutions into higher-order solutions (the building-block 
hypothesis) [8]. 
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6   Conclusion 

This chapter began with two related questions: (i) What is the relationship  
between the structural properties of a network and the network’s evolution and 
ability to survive through self-organization and adaptation?; and (ii) What is the 
relationship between the structural properties of a problem’s interaction network 
and the ability of a GEA to evolve a solution for the problem? It then summarized 
our work on the second question in sections 4 and 5. In this final section, we  
discuss the work presented so far and relate it to the first question. 

Overall, structural properties of a problem’s interaction network influence the 
ability of a GEA to evolve a solution for the problem. This finding in itself is not 
surprising, given previous work on epistasis (essentially linkages or dependencies 
between problem variables) and problem hardness for GEAs [3, 26] for example. 
The most significant contribution of this chapter is a quantifiable way to character-
ize different kinds of epistasis via concepts such as degree distribution, modular-
ity, inter-level conflict and specificity. This is a shift from previous ways to look 
at problem difficulty for GEAs and to quantify epistasis. Naudts finds that when it 
comes to problem difficulty and GEAs “It is not the amount of interaction, but the 
kind of interaction that counts” [26, p.3]. The new way of seeing and characteriz-
ing linkage structure offered in this chapter could prompt new test problems par-
ticularly for linkage learning GEAs such as Estimation of Distribution Algorithms 
[20, 31]. 

This chapter also makes an observation with regards to the first question which 
is distinct from the question of network formation addressed in [1 and 28] for ex-
ample. Basic GEAs performed well on our test problems with linkage structures 
resembling those empirically observed in many real-world networks, e.g. right-
skewed heavy-tailed degree distribution with high modularity. This is a positive 
indication that the structure of real-world networks which evolved without any 
central organization such as biological networks is not only influenced by evolu-
tion and therefore exhibit non-random properties, but also influences its own evo-
lution in the sense that certain structures are easier for evolutionary forces to adapt 
for survival. Our plan is to work with dynamic networks to investigate this point 
further. 
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Fragment as a Small Evidence of the Building 
Blocks Existence 

Chalermsub Sangkavichitr and Prabhas Chongstitvatana 

1 

Abstract. Building Blocks (BBs) can be considered as a plausible explanation for 
the success of Genetic Algorithms. The schema theorem can be interpreted as a 
support for Building Block Hypothesis. However, due to the nature of BBs that 
are dependent on the problems and the encoding of the chromosome, their behav-
iors are difficult to analyze. The aim of this work is to show the behavior of BBs 
processing. Toward this goal, a simplified definition of BBs, called Fragments is 
proposed. Fragments are similar contiguous bits found in highly fit chromosomes. 
Using this concept, genetic operations are designed to avoid disruption of BBs. 
Two operators are proposed, Fragment identification and Fragment composition. 
Experiments are designed to illustrate two aspects. One is the behavior of BBs 
processing and the other is the performance of the proposed GA incorporating 
these operators. The results of the experiments give a clear view of BBs process-
ing. The performance of the proposed algorithm is shown to be superior to the 
competing algorithms for the Additively Decomposable Functions. 

1   Introduction 

In the early stage of the development of GAs, there are many works strive to find 
an answer how GA work. The schema theorem was proposed by Holland and was 
popularized by Goldberg [1]. It explains how GAs keep improving the population. 
It was interpreted that “Short, low-order, and highly fit schemata are sampled, re-
combined, and resampled to form strings of potential higher fitness” [2]. These 
short, low-order and highly fit schemata are called Building Blocks (BBs) and this 
interpretation is called the Building Block Hypothesis (BBH). This theorem be-
comes the fundamental of GAs. Later, there is an extended version of schema 
theorem that bases on a concept of the effective fitness. It shows that the chance of 
highly fit schema that is fitter than the average effective fitness will increase at the 
exponential rate and the length of the fit schema does not need to be short or  
low-order [3, 4].  

The schema theorem assumes a positive effect of the selection that can main-
tain the good schema, and shows the negative effect of the crossover and the  
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mutation that disrupt the good schema. However there is no guideline how to 
process the BBs and the analysis is limited to the progress made in one generation. 
In practice, the crossover operation is expected to play a major role in “mixing” 
BBs. To understand this process, the fitness landscape called Royal Road function 
was designed to capture the idealized BBs form and many experiments show that 
the crossover operator has the ability to recombine the schemata into the better so-
lutions [5, 6].  

The normal selection process relies on the fitness value of chromosomes. In 
hard problems [7], the fitness landscape allures the schema away from the desired 
solution. These problems are called the deceptive functions. In order to explain the 
behavior of GAs in solving these problems, the Static Building Block Hypothesis 
(SBBH) is proposed. It states that “Given any low-order, short-defining-length 
hyperplane [i.e., schema] partition, a GA is expected to converge to the hyper-
plane [in that partition] with the best static average fitness (the ‘expected win-
ner’)” [8]. This is proposed by Grefenstette and has not been proven. The SBBH 
shows the characteristic of GAs when deals with the deceptive problem. Moreover 
it also shows that the bias from the selection method in each generation should be 
considered carefully.  

For the real world problems, it is hard to use BBH as an explanation of GAs 
success. The real structure of BBs is unknown and is dependent on the encoding 
scheme and it is very much dependent on the problem. So it is difficult to design a 
crossover operator that works well from the BBH perspective. One way to achieve 
the desired solution is to ensure that the rate of BBs construction is higher than the 
rate of BBs destruction. There is an effort to measure quantity of the BBs [9]. 
Many problems are analyzed: OneMax, Trap, Parabola and TSP problem. Two 
encoding scheme are used: the binary encoding and the gray encoding. The results 
show that BBs exist in OneMax, Trap, Parabola (the gray coding) and TSP (with 
third encoding scheme: binary matrix). This can imply that the BBs existence also 
depends on the encoding scheme. There are many factors that affect BBs such as 
the selection method, the identification algorithm, the recombination procedure 
and the measurement criterion.  

If we hold the belief that the BBs existed, the rules to design a GA are avail-
able. Goldberg et al. proposed a principle for design competence GAs with six 
rules [10, 11, 12]. All of them concern with BBs but they are not easily realizable 
in practice due to lacking of information about the BBs. One obvious solution is 
finding a way to identify the BBs explicitly. This will help to manage the BBs ef-
fectively. The BBs can be regarded as the linkage between two or more alleles 
[13]. There are many ways to determine the linkage association such as loosely or 
tightly. A model of the linkage can be built in several manners and can be identi-
fied explicitly. In general, the meaning of the linkage model is equivalent to the 
BBs.  

There are many ways to identify the BBs. An approach that concerns with ex-
plicit BBs is the messy GA (mGA) [14]. The mGA allows schema redundancy, 
and uses cut and splice technique as recombination operators. The mGA’s mecha-
nism and its BBs outperform the simple GAs (sGA) in many problems. Later, the 
mGA is improved in various versions [15, 16]. Another concept is the linkage 



Fragment as a Small Evidence of the Building Blocks Existence 27
 

learning genetic algorithm (LLGA) [17, 18, 19]. For the LLGA, the chromosome 
is represented as a circular structure and the probabilistic expression mechanism is 
used for interpreting the chromosome. The recombination process uses the ex-
change crossover which performs linkage skew and linkage shift. Performance of 
the LLGA is superior to the simple GA on exponentially-scaled problems.  

Recently, the field has evolved and one of the popular paradigm is the estima-
tion of distribution algorithms (EDAs) that are claimed to solve the hard problem 
efficiently [20, 21]. The main concept of the EDA is sharing knowledge through a 
model. The model of distribution of population is created and is used to sample 
the next generation population. However most of them need some prior knowl-
edge to identify relationships between individuals in a population and to build a 
model. The BBs are extracted explicitly in term of a probabilistic model. The main 
advantage of the EDAs comes from knowledge sharing in both model building 
and model sampling process to create the new offspring.  

Typically, most of GAs operations such as crossover or mutation, are not de-
signed to beware of BBs. They are designed with inspiration from nature. Even 
though a number of algorithms mentioned previously can demonstrate the schema 
of potential BBs, they are too complicated to use for studying the behavior of BBs. 
There is no explicit evidence that the BBs follow the BBH. Fortunately, a hint ex-
ists in the BBH that the short and low-order schema represents the picture of BBs. 
This point inspires us to find a way to present the BBs and their operation in a 
simple form. 

This paper proposes a concept that simplifies the BBs identification and com-
position process. It can be applied in several ways. A simple algorithm is designed 
and demonstrated to validate the approach. The paper is organized as follows. The 
next section gives a definition of the simplified BBs. Section 3 demonstrates how 
to apply the proposed concept. Section 4 validates the algorithm with experimental 
results. Finally, Section 5 offers discussion and conclusion.  

2   Fragment: A Simplified Definition of BBs 

The study of GAs operators leads to the Building Block Hypothesis which ex-
plains the mechanism behind their success. Basically, GAs try to search for the 
suitable BBs and compose them to produce better solutions. In order to understand 
the behavior of GAs from the point of view of BBs creation and composition, 
there is a need for a very simple and direct representation of BBs. In this paper, we 
propose a new way to look at BBs called “Fragments”. The structure of Fragments 
is simple. The proposed definition can be applied directly in several ways both in 
the identification and the composition process. A Fragment can be regarded as a 
subset of the BB structure. The Fragment is defined as follows. 

Given a sequence of chromosomes kC of length l 
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Given a set of reference index of a chromosome of length l from the position f to 
position t 
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A set of the non overlap subsequence in a chromosome 1kC  is defined as 
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We call the contiguous subsequence F as “Fragment”. 
Given a schema of a chromosome with the length l  
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The Fragment can be defined in term of the schema as 
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The definition above will be illustrated by an example in Fig.1. A schema H  
(Eq. 5) of 10-bit chromosome composes of 1*110***01 is shown. There are  
three Fragments (Eq. 6) in this schema as follows: 1, 110 and 01 (F1, F2 and F3 
respectively).  

There are many possible patterns of Fragments in a chromosome shown in  
Fig. 2. The minimum size of a Fragment is one allele and the maximum size 
equals to the chromosome length. 

 
Bit Position : 1 2 3 4 5 6 7 8 9 10

Schema : 1 * 1 1 0 * * * 0 1 

Fragment : F1 F2 F3 

Fig. 1 An example of Fragments in a schema 

Chromosome A1 A2 A3 A4 A5 A6 

      

C1 F1 F2 F3 

       

C2 (Max. Size) F1 

       

C3 (Min. Size) F1 F2 F3 F4 F5 F6 

Fig. 2 An example of possible patterns of Fragments in a chromosome 
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2.1   Fragments and BBs 

A schema can be separated into Fragments and Fragments can be combined into a 
schema. Fragments can be regarded as BBs under the interpretation of BBH be-
cause Fragments are short and low-order. There are many ways to compose a 
schema but most of them disrupt the structure of the schema. By defining Frag-
ment, it is easier to understand the schema disruption. These substructures are easy 
to assemble. They have more diversity and can be combined in many different 
ways. The proposed method is simple and it is consistent with the interpretation of 
the BBH. This is the key to comprehend BBs and their processing.  

2.2   Fragments and Linkage 

The smallest unit of a schema and a Fragment is one allele (one bit). This is the 
only case that there is no linkage. If there are two or more alleles, there may be a 
linkage among them. There may be a hierarchy of linkage. The clustering of al-
leles indicates that there is linkage (the closer they are, the tighter the linkage). If a 
common allele pattern occurs in many schemata, it implies that the linkage is ro-
bust. The clustering factor depends on the chromosome encoding. Generally it is 
not known what encoding is suitable for a problem. A Fragment is considered as a 
tight-linkage because it is a contiguous subsequence. Most recombination methods 
are based on crossover operators which have random cut points. Therefore the 
short, low-order and tight-linkage substructures have a higher potential to survive 
the crossover. This leads to an expectation that Fragments will survive and will 
become an important genetic material for producing the better chromosome. The 
problems where linkages are non-contiguous are considered as difficult problems 
for GAs [2, 22, 23]. 

3   Operations on Fragments 

There are many methods to identify and to compose Fragments. The canonical 
GAs pays no attention to BBs and imposes no restriction on the crossover point. 
For the BBs mixing process, the crossover operation alone is sufficient. A tradi-
tional crossover operator does not require any special knowledge. In this section, a 
simple method for the Fragment identification and composition based on the 
crossover operation is proposed. 

3.1   Fragment Identification 

The information theory supplies a tool to measure the information from data. In 
GAs, each chromosome holds some information about the solution. It is generally 
accepted that good solutions can guide a search method to the desired solution  
because they contain some useful information. The problem is how to extract  
such information. The common knowledge between good solutions (the mutual  
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information) can be observed. In the case of two chromosomes, the similarity of bits 
in the same position is their mutual information. Although there are many different 
chromosomes that have the same fitness value, there will be some repeat pattern 
(common knowledge) between them. If the size of population is large enough,  
this mutual information will be reliable. This increases the chance to find  
common subsequences and maintains diversity of common patterns. The Fragment  
identification process is described as follows: 

Given a common subsequence between two chromosomes 1kC and 2kC  
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where iz  is defined in Eq.2. Other subsequences between two chromosomes 
1kC and 2kC are 
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The contiguous subsequences between two chromosomes (Fragments) are defined 
as: 

                                     ⎭
⎬
⎫

⎩
⎨
⎧

⎥⎥
⎤

⎢⎢
⎡≤=
2

:),( 21
2,1 , l

iFfS kk
iii

kk

                         (10) 

                      ⎭
⎬
⎫

⎩
⎨
⎧

⎥⎥
⎤

⎢⎢
⎡≤=
2

2:),(),,( 2121
2,1 ,

2,
,

1,

l
jFfFfS kk

jj
kk

jjj

kk

            
(11) 

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎥
⎤

⎢⎢
⎡+⎥⎦

⎥
⎢⎣
⎢≤+∪=

2
2

2
:

2,12,12,12,12,1 ll
SSSSS

kkkkkkkkkk

jiji   (12) 

The definition above will be illustrated by an example in Fig. 3. Note that the 
string is indexed from left to right and starting from the position 1. Given two 10-

bit chromosome sequences (Eq. 1) 1C = (1,0,1,1,0,1,0,1,0,1) and 2C = 

(1,1,1,1,0,0,1,0,0,1), then the index ranges (Eq. 2) of substructures between 1C  

and 2C  are =),( 11 tf  (1,1), =),( 22 tf  (2,2), =),( 33 tf  (3,5), =),( 44 tf  (6,8), 

and =),( 55 tf  (9,10) and then the Fragments of 2,1S  are 2,1
1F = )( 1
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and F5 are the common Fragments (Eq. 7), and the F2 and F4 are the other  
Fragments (Eq. 8, 9). 

3.2   Fragment Composition 

The common Fragments are regarded as the high potential good substructure or 
the BBs because they appear identically in two selected chromosomes which are 
assumed to be good or highly fit. Therefore they will be retained in the original 
structures. On the other hand, the other Fragments are considered as ambiguous 
substructures that may be or may not be the good substructures; however they 
come from the good chromosomes. In this case, they should not be disrupted. 

The next problem is how to compose these Fragments. The traditional opera-
tion is the crossover operator. It performs well in various problems. There are 
many variations of the crossover operator. They differ in the number of cross-
point and the criterion to choose the cross-point. Traditionally the one-point cross-
over is widely-used with good results. The two-point crossover is claimed to have 
the least disruption but there is no reliable evidence to support this claim [24]. The 
uniform crossover is most disruptive and it has uncertain performance depending 
on particular encoding and problem [25, 26, 27, 28]. A suitable number of cross-
point is difficult to determine. Other special crossover methods are more elaborate 
and designed for special purpose.  

 

 
Fig. 3 An example of the Fragment identification and composition between two chromo-
somes. The Fragment F4 is crossed 

The main purpose of the crossover operator is the BBs recombination. But it of-
ten disrupts the BBs because it has not been designed with the knowledge about 
BBs. Thus if BBs can be identified explicitly, they should not be disrupted and 
they should be mixed properly to explore better solutions. Fragments will be ex-
change in the crossover process with no disruption as shown in Fig. 3-4. Each 
Fragment is crossed independently with the same crossover rate. The common 

Bit Position : 1 2 3 4 5 6 7 8 9 10 

Chromosome 1: 1 0 1 1 0 1 0 1 0 1 
Before Crossover            

Chromosome 2: 1 1 1 1 0 0 1 0 0 1 

        
Fragment : F1 F2 F3 F4 F5 

          
Chromosome 1: 1 0 1 1 0 0 1 0 0 1 

After Crossover          
Chromosome 2: 1 1 1 1 0 1 0 1 0 1 

no cross crossed   
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Fragments do not move. This method gains the recombination power at highest 
rate without the BBs disruption. The proposed method (Fragment identification 
and composition) is called Fragment Crossover (FC). In the Fig. 3, crossover  
occurs with the Fragment F4 only. 

 

 

Fig. 4 Pseudocode of the Fragment Crossover 

4   Experimental Settings and Results 

The experiment will be separate into two parts: the first part aims to study the be-
havior of GA in processing BBs, the second part studies performance of the pro-
posed algorithm using a set of benchmark problems. The proposed algorithm is 
based on Simple Genetic Algorithm (sGA). The difference lies in the use of Frag-
ment Crossover. This algorithm, named Simple GA with Fragment Crossover 
(sGA-FC), combines the BBs identification with the BBs composition. The first 
experiment is setup to show the processing of BBs. Two problems with known BB 
structures are used. They are Royal Road and Trap-5 functions. The results are 
compared with Simple Genetic Algorithm (with one-point crossover). The second 
experiment compares sGA-FC with many advanced algorithms. They are: Chi-
square matrix (CSM) [29], Bayesian optimization algorithm (BOA) [30] and hier-
archical Bayesian optimization algorithm (hBOA) [31]. The problem set consists 
of OneMax, Royal Road, Deceptive-3 (Dec3) [30], Exponential-Deceptive-3 
(Exp-Dec3) [32], Trap-5, Hierarchical-if-and-only-if (HIFF) [33], and hierarchical 
Trap-1 (hTrap-1) [34] functions. The mutation operator is not used in all the ex-
periments because the experiments are aimed to test capability of the schema proc-
essing (the BBs recombination) so it is better to avoid another source of genetic 
material. The details of experiments are described in the following sections. 

R denotes selected chromosome. 
F denotes common and uncommon subsequence (Fragments). 

Algorithm Fragment_Crossover 
{The comparison between individual R1 and R2} 

 21 ,RRF  ←  Compare R1 to R2 ; 
(Identify common and uncommon substructure) 

For i = 1 to k do (There are k uncommon Fragments) 

If Crossover do  

21 ,RR
iF  ←  swap( 21 ,

1,
RR

iF , 21 ,
2,

RR
iF ) ; 

(Exchange the uncommon Fragment) 
EndFor 

End. 
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4.1   Test Problems 

The BBs validation test problems can be separated into two classes: non deceptive 
problem and deceptive problem, both of them are additively decomposable func-
tions (ADFs). Generally the deceptive problem is harder to solve than the non de-
ceptive one; however this is also dependent on a particular algorithm. It is hard to 
claim what algorithm is suitable for a particular class of problem. Nevertheless the 
experimental results can be conducted to support the statement.  

There are two BBs validation test problems in this experiment.  
The Classical problem Royal Road function is designed for testing the ability 

of GAs to compose BBs [5]. The general k-bit Royal Road is define as 
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The m and k are varied to produce a number of test functions. The difficulty of this 
problem is that there is no hint about BBs. Its optimal solution is the solution that 
composed of all ones. This problem is a representative of problems that have a 
simple BB structure. 

The well-known Trap functions are designed for studying BBs and the linkage 
problems in the GAs [17]. The general k-bit trap functions are defined as: 
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 and fhigh > flow. Usually, fhigh is set at k and flow 

is set at k-1. The Trap problem is defined as Equation 14. 

The Trap functions fool the gradient-based optimizers to favor zeros, but the 
optimal solution is composed of all ones. 

For the performance test of sGA-FC, seven problems are used. These problems 
are also the problems which have known BB structures. The details of these prob-
lems can be found in the references. The last two problems, HIFF and hTrap-1 are 
the hierarchical decomposable functions (HDFs) that are generally harder than the 
ADFs problems. 
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4.2   Measurement 

All tested problems are performed with 30 independent runs in both success case 
and failure case, and all algorithms are required to find the optimal solution in all 
of 30 runs in the success case and conversely for the failure case. In the success 
case, the minimum population size is used to achieve the optimum in all runs. But 
in failure case, the maximum population size is reported. The number of function 
evaluations and the population size are limited to be not greater than one million 
and fifty thousand consecutively. The sGA and sGA-FC use the same tournament 
selection method (tournament-size is 4). In the failure case, behavior of sGA and 
sGA-FC are shown only for the first one hundred generations. The crossover rate 
of sGA is set to 1.00 for the best result and sGA-FC is set to 0.50 for no bias. 
There is no mutation in the both algorithms. These parameters setting are the same 
for all test problems. 

The BBs are classified into three classes to clarify behavior of the BBs process-
ing as follows: Pure BB, Mixed BB and Non BB. An example is shown in Fig. 5. 
The Pure BB means the pattern in a chromosome that is corresponded to the ideal 
BB in the problem. The Mixed BB means that there is at least one allele of the 
ideal BBs in its structure; therefore it can be regarded as substantial source of di-
versity or genetic material in the recombination process. The Non BB means that 
there is no allele of the ideal BBs in its structure, and can be considered as a bar-
rier for achieving the desired BBs. The number of the Pure BB depends on a par-
ticular problem and its encoding length, and is used to indicate the performance of 
algorithms directly. In this experiment, the binary encoding length of Royal Road 
and Trap-5 functions are 64 bits and 60 bits consecutively. The number of the 
Pure BB in each problem is 8 and 12 respectively. The number of classified BBs is 
measured in each generation with entire population. For example, if a population 
size is 100 for the Trap-5 60 bits problem, then there are 12 (BBs) × 100 (Chro-
mosomes) equals to 1,200 BBs (Pure + Mixed + Non BBs) in each generation. 

Fragments are independent contiguous subsequence in a chromosome so they 
are considered as parts of BBs. However they show the different point of view be-
cause Fragments are not exactly the BB. Fragments and BBs are different in size 
and structure. Fragments have two types: common and uncommon. The common 
Fragment is the similar and contiguous bits found in two good chromosomes. The 
uncommon Fragment is other contiguous bits found in good chromosomes. The 
numbers of common and uncommon Fragments are calculated from each cross-
over operation for example, there are three common Fragments and two uncom-
mon Fragments in Fig. 3. The change in the number of both types of Fragments is 
an indicator of the behavior of BBs processing. For example, when the size of the 
common Fragment is larger, it can be interpreted two ways: one is that BBs have 
been combined into larger BBs and the other is that the evolution has been con-
verged to a local optimum. The number of Fragments can be a good indicator of 
the diversity in the population. The ratio between the common and uncommon 
Fragment indicates the competition between alternate schemas. Therefore Frag-
ments can be used to illustrate the schema processing and BBs construction. 

Normally, the performance of GAs is compared through the number of fitness 
evaluations (#FE). So the results of all algorithms in the experiments are evaluated 
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by using the #FE. The competence Genetic Algorithms (CSM, BOA and hBOA) 
are used in the performance comparison. The parameters setting and results are 
found in the published works (CSM [30], BOA and hBOA [31]).  

 
Desired BB 1 1 1 1 1 1 1 1 

         

Pure BB 1 1 1 1 1 1 1 1 

         

Mixed BB 1 1 1 0 1 1 1 1 

         

Mixed BB 0 0 0 0 0 0 0 1 

         

Non BB 0 0 0 0 0 0 0 0 

Fig. 5 An example of the BBs classification 

4.3   Results 

All results are averaged from 30 runs with the same parameters setting. The pa-
rameters setting and results of the Royal Road and the Trap-5 are shown in  
Table 1. In terms of #FE in the Royal Road function, sGA-FC performs worse 
than sGA. But in the Trap-5 function, the sGA-FC performs better than sGA. The 
population size in the success case and the failure case can be interpreted as upper 
bound and lower bound of an initial source of the diversity because there is no 
mutation or other source of genetic material during the process. The success case 
requires minimum number of population size to achieve the optimal solution in all 
runs. This is interpreted as an upper bound of diversity for reliable results. On the 
other hand, the failure case needs a maximum number of populations that still 
cannot find the optimal in all runs. This implies that if there is more population, it 
can find the optimal solution in at least one run. The population size in the failure 
case can be interpreted as a lower bound of diversity. In the success case, the 
population size of sGA-FC equals to sGA in the Royal Road function and is less 
than sGA in the Trap-5 function. In the failure case, the population size of sGA-
FC is less than sGA in Royal Road function and is equal to the sGA in Trap-5 
function. These indicate that sGA-FC can maintain diversity better than sGA in 
both problems. 

Table 1. Experimental parameters setting and results 

Success 30 run Failure 30 run 
Parameters 

sGA sGA-FC sGA sGA-FC 

Problems Size (bit) #pop. #FEs. #pop. #FEs. #pop. #pop. 

Royal 
Road 64 

1,200 
11,900 

1,200 
13,500 

200 100 

Trap-5 60 2,300 28,400 1,600 20,850 300 300 

Note: #pop denotes the population size and #FEs denotes the number of function evaluations. 
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Now turn the attention to the behavior of BBs processing. For the Royal Road 
function, the behavior of sGA is shown in Fig. 6. There is only the competition be-
tween Pure BBs and Mixed BBs in Fig. 6(a-b) because the Royal Road is not the 
deceptive problem. In the success case, sGA can combine good substructures  
into BBs. But in the failure case, sGA cannot reach the optimal solution due to  
diversity limitation. 
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Fig. 6 The sGA result of the Royal Road 64-bit: (a)(b) the number of the BBs in each gen-
eration and (c)(d) the number of the ideal BBs (Pure BBs) in each generation 

For the sGA-FC, the results are shown in Fig. 7. The BBs processing behav-
ior is similar to the sGA; furthermore in Fig. 7(a), Pure BBs and Mixed BBs 
cross at the generation 10 compared to the sGA which cross at the generation 7 
(Fig. 6a). In the failure case (Fig. 7b), Pure BBs is close to Mixed BBs more 
than the sGA (Fig. 6b). These facts implied that the sGA-FC can maintain di-
versity better than the sGA. Fig. 7(e-f) show the average size of the common 
Fragments which increases continuously. In the success case, this growth of 
Fragments refers to the BBs combination but in the failure case, the common 
Fragments size continue to increase, this indicates that the diversity loss and 
the population will converge to a local optimum. Fig. 7(g-h) show the number 
of Fragments gradually decreases in the success case but it rapidly drops in the 
failure case due to the diversity loss. 
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Fig. 7 The sGA-FC result of the Royal Road 64-bit: (a)(b) the number of the BBs in each 
generation, (c)(d) the number of ideal BBs (Pure BBs) in each generation, (e)(f) the average 
size of Fragments in each generation and (g)(h) the number of Fragments in each genera-
tion. Note: acfs denotes the average common fragment size, adfs denotes the uncommon 
fragment size, nocf denotes the number of common fragment and nodf denotes the number 
of uncommon fragment 
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For the Trap-5 function, the overall behavior of the sGA (Fig. 8.) is still the 
same as the Royal Road function except there is an additional competition from 
the Non BBs due to the deceptive bias. The Non BBs grow at the lower rate com-
paring to the Pure BBs in both success case and failure case. The deceptive bias 
affects the BBs process slightly because the sGA has least bias and disruption 
from the one-point crossover. The Trap-5 60-bit is not too big for sGA thus the  
effect of the deceptive bias is not overwhelmed. 
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Fig. 8 The sGA results of the Trap-5 60-bit: (a)(b) the number of the BBs in each  
generation and (c)(d) the number of ideal BBs (Pure BBs) in each generation 

The results of sGA-FC are shown in Fig. 9. The BBs processing resembles to 
the sGA; moreover in Fig. 9(a), the Non BBs compete stronger than sGA in  
Fig 8(a). In the success case, the deceptive structures (the Non BBs) tend to be fa-
vor from the beginning to the cross point at generation 9 and after that sGA-FC 
can distinguish the ideal structure from the deceptive structure. The deception has 
more influence on sGA-FC than sGA because there is more BBs mixing in the 
sGA-FC and the deceptive structures are sensitive to the variation. The Fragments 
behavior (Fig. 9e-h) is similar to the Royal Road function in Fig. 7(e-h). In the 
success case (Fig. 9e), the uncommon Fragments size increases at the same rate as 
the common Fragments until the generation 11 and then level off. In case of the 
failure (Fig. 9f), the diversity of Fragments falls off sharply since the substructures 
are allured to the deceptive rapidly. 
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Fig. 9 The sGA-FC results of the Trap-5 60-bit: (a)(b) the number of the BBs in each gen-
eration, (c)(d) the number of ideal BBs (Pure BBs) in each generation, (e)(f) the average 
size of Fragments in each generation and (g)(h) the number of Fragments in each genera-
tion. Note: acfs denotes the average common fragment size, adfs denotes the uncommon 
fragment size, nocf denotes the number of common fragment and nodf denotes the number 
of uncommon fragment 
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In Table 2-3, the benchmark performance results show that the sGA-FC per-
forms better than most of the competing algorithms in the ADFs problems (ex-
cept Royal Road 64-bit). However in the HDFs problems, sGA-FC is better in 
HIFF function but is worse in the hTrap-1 function. This indicates that some  
extra knowledge about the linkage is required to solve the HDFs problems  
efficiently.  

5   Discussion and Conclusions  

Normally, we do not know the real BBs structure but in the experiment to study 
the BBs processing the BBs structure are assumed to exist and are known. The re-
sults from the experiments show the behavior of BBs processing clearly. These re-
sults give an insight into the process of GAs. However for a general problem, it is 
not clear how to show the existence of BBs or their development. From the 
schema theorem, the BBs are observed from generation to generation, so the sta-
tistics about their size and their structure are not reliable and are not exactly like 
the ideal BBs in the experiment. However the real BBs can be regarded as sub-
structures or subsequences of good chromosomes that have potential to be a part 
of the desired solution. Fragment is a drawing of a simple and basic substructure 
that composes of contiguous fixed bits of a schema. This can represent the  
real BBs as a part of the optimal solution. When there are large numbers of  
Fragments in the population, there is a good chance to compose them to form  
better solutions. 

In the experiment, Fragments are defined as common substructures between 
selected chromosomes. The common Fragments are considered as a part of the 
Pure BBs. The uncommon Fragments can be considered as the Mixed BBs and 
the Non BBs, which act as source of diversity. In both the Royal Road and the 
Trap-5 functions, the size of Fragments grows continuously but at the different 
rate. In the success case, the Fragment size gradually grows in the early genera-
tions and then dramatically increases. In early generations, BBs are ambiguous 
and difficult to identify because there is not enough information and there are 
too many Fragments in the recombination process. This can be noticed from the 
number of Mixed BBs that is maximum at beginning and then decreases con-
tinuously. Later, when there is more information and the variety of Fragments 
becomes lower, it is not difficult to distinguish BBs from useless or deceptive 
structures. This happens after the cross time of Pure BBs and Mixed BBs. In 
the Royal Road function, Mixed BBs turn into Pure BBs only but in the Trap-5 
function, Mixed BBs become Pure BBs and Non BBs due to deceptive bias. In 
case of the failure, both Royal Road and Trap-5 function indicate that if there is 
enough population or other source of diversity, it can reach the optimal solu-
tion. Although there is not enough diversity to find the solution, the both sGA 
and sGA-FC can distinguish the Pure BBs from the Mixed BBs and Non BBs. 
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This observation implies that if the best solution is not required, the genetic  
algorithms are capable of finding the better solutions. 

In Table 3, the performance of the proposed method is superior to the com-
peting algorithms in the ADFs problems. This indicates that Fragment Cross-
over is suitable for the ADFs problems which each BB is independent from the 
others. The performance of sGA-FC is lower than sGA only in Royal Road 64 
bits problems but not much. Overall, it is much better in both 128 bits and 256 
bits problems because sGA-FC can maintain diversity better than sGA. Gener-
ally in a low order or small size problem, more diversity maintenance means 
slower convergence due to more variation. But in a higher order or larger size 
problem, the search space will grow exponentially so the exploration power is 
needed to find better solutions and to prevent the deceptive biases. This re-
quires capability to maintain diversity. The Fragment Crossover can be re-
garded as a self adaptive multi-point crossover which the number of cross-point 
is varied in each crossover operation. This mechanism accelerates the BBs re-
combination process and simultaneously prevents BBs from the disruption. 
However in the HDFs problems, the performance of Fragment Crossover is 
good for non-deceptive problems and is poor for deceptive problems. The BBs 
relationship in HDFs is more complex than in ADFs problems. Information 
about linkage is required in order to identify the Fragments for solving HDFs 
problems effectively.  

Table 2 The population size of sGA and sGA-FC in the success case 

Parameters sGA sGA-FC Parameters sGA sGA-FC 

Problems Size (bits) #pop. #pop. Problems Size (bits) #pop. #pop. 

 100 1,300 300  100 4,500 2,500 

150 2,800 400 Trap-5 150 13,000 4,500 
OneMax 

200 4,500 500  200 28,000 7,000 

 250 8,500 500  250 N/A 10,500 

 64 1,200 1,200  32 900 500 

Royal Road 128 3,000 1,600 HIFF 64 4,000 1,000 

 256 12,000 2,500  128 40,000 2,800 

 60 1,500 1,000  256 N/A 8,500 

120 9,500 2,200  27 2,400 1,500 
Dec3 180 20,000 3,000 Htrap-1 81 N/A N/A 

 240 N/A 4,000  243 N/A N/A 

 60 7,500 2,700     

Exp-Dec3 90 18,000 3,500     

 120 N/A 5,500     

Note: #pop denotes the population size and N/A denotes that the data is not available because it 
cannot find the optimal solution under the limited population size (#pop ≤ 50,000). 
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Table 3 Experimental parameters setting and results of the benchmark problem set 

Parameters sGA CSM BOA hBOA sGA-FC 

Problems Size (bits) #FE #FE #FE #FE #FE 

 100 22,200 14,000 5,100 - 3,800 

150 64,300 32,500 8,300 - 6,600 
OneMax 

200 128,300 60,000 12,500 - 9,800 

 250 271,200 80,000 15,700 - 11,500 

 64 11,900 - - - 13,500 

Royal Road 128 49,500 - - - 29,900 

 256 304,400 - - - 75,200 

 60 25,600 - 27,000 - 14,100 
120 217,200 - 80,000 - 51,100 

Dec3 180 626,000 - 180,000 - 92,100 

 240 N/A - 235,000 - 147,000 

 60 181,500 - 165,000 - 55,300 

Exp-Dec3 90 732,000 - 480,000 - 112,600 

 120 N/A - 1,000,000 - 247,500 

 100 83,250 65,000 99,000 - 47,900 

Trap-5 150 305,500 165,000 220,000 - 114,000 

 200 784,900 310,000 320,000 - 215,600 

 250 N/A 750,000 490,000 - 375,900 

 32 4,800 3,300 - 2,100 2,600 

64 38,800 14,500 - 7,800 11,800 
HIFF 128 584,000 51,000 - 27,000 45,900 

 256 N/A 370,000 - 90,000 222,700 

 27 11,400 3,000 - 3,400 8,000 

Htrap-1 81 N/A 35,000 - 30,000 N/A 

 243 N/A 310,000 - 225,000 N/A 

Note: #FEs denotes the number of function evaluations and N/A denotes that the data is not 
available because it cannot find the optimal solution under the limited number of function 
evaluation (#FE ≤ 1,000,000). The bold face indicates the best value. 

 
In summary, the good substructures can be interpreted as common subse-

quences between two highly fit chromosomes called Fragments. These Fragments 
can be regarded as the BBs because they are short, low-order and come from the 
highly-fit chromosomes. Therefore the building block can be identified explicitly. 
The results from the experiments indicate that there are good substructures existed 
in good individuals and Fragment Crossover can identify and recombine them to 
create better solutions. This shows the existence of the BBs and supports the un-
derstanding of the mechanism in evolutionary process based on the BBH. The 
proposed idea is simple to implement and it is easy to tune as it introduces no new 
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parameter. It is also effective in solving ADFs problems. To apply this method to 
real world problems, any additional information can be integrated into the algo-
rithm. For example, the mutation operator is not used in the experiment but there 
is no reason to prohibit it. The Fragment identification and composition can also 
be modified to include extra knowledge in the problem domain.  
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Structure Learning and Optimisation in a 
Markov Network Based Estimation of 
Distribution Algorithm 

Alexander E.I. Brownlee, John A.W. McCall, Siddhartha K. Shakya, 
and Qingfu Zhang 

1 

Abstract. Linkage learning has been a focus of research interest since the early 
days of evolutionary computation. There is a strong connection between linkage 
learning and the concept of structure learning, which is a crucial component of a 
multivariate Estimation of Distribution Algorithm. Structure learning determines 
the interactions between variables in the probabilistic model of an EDA, based on 
analysis of the fitness function or a population. In this chapter we apply three dif-
ferent approaches to structure learning in an EDA based on Markov networks and 
use measures from the information retrieval community (precision, recall and the 
F-measure) to assess the quality of the structures learned. We present observations 
and analysis of the impact that structure learning has on optimisation performance 
and fitness modelling. 

1   Background 

The concept of linkage learning has been a focus of research interest since the 
early days of evolutionary computation. Linkage is defined in relation to the bio-
logical notion of epistasis: informally the effect on fitness of any one “gene” is 
related in a complex way to the values of other “genes”. A strongly-related con-
cept is that of fitness landscape: the geometric representation of the distribution 
of fitness over the solution space. So linkage can be thought of as a relationship 
between highly fit regions in the fitness landscape and the particular joint  
configurations of solution variables that locate those regions. 
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A broad strand of effort in evolutionary algorithms (EAs) is aimed at optimisa-
tion. EAs may be compared empirically in terms of their performance in optimising 
a variety of benchmark problems. An EA maintains a population of points which 
follow a trajectory over the fitness landscape as the evolution progresses. The tra-
jectory is a function of the operators used by the evolutionary algorithm. Optimisa-
tion performance may be generally measured in terms of the efficiency with which 
the trajectory of a population evolves from a random start to concentration in 
highly fit regions of the solution space.  

The relationship between linkage and optimisation performance has lain at the 
heart of much theoretical research in EAs over the years. Essentially this relation-
ship is determined by the interaction between the linkage and the particular selec-
tion and recombination operators used by the algorithm. If the operators of the 
evolutionary algorithm are well-suited to producing those variable value combina-
tions typical of highly fit solutions, the selection and recombination process will 
quickly move the population into highly fit regions and optimisation performance 
will be high. The algorithm can be said to have "detected" or "discovered" the 
linkage. Conversely if the operators are not so well-suited, the evolution will 
struggle or fail to concentrate the population in highly fit regions and performance 
will deteriorate. 

It is important to mention at this point that the choice of solution encoding and 
definition of the fitness function are also highly influential on the success or fail-
ure of a particular algorithm. Indeed representation theory is a whole strand of re-
search in itself [1]. We assume however for the purposes of this chapter that the 
substantial body of literature on this subject has been used to good effect and that 
we have sensible choices of solution representation and a fitness function that em-
bodies all knowledge of the problem in a meaningful way. Therefore we concen-
trate on the discovery of the linkage in the problem. 

An early and influential approach to understanding the relationship of linkage 
to Genetic Algorithm (GA) performance was the Schema Theorem [2]. In terms of 
linkage discovery, the Schema Theorem can be interpreted as a relationship be-
tween particular subsets of fixed solution variable values and high fitness. This 
view was encapsulated in the Building Block Hypothesis which theorised that GA 
performance could be understood in terms of the selection and recombination of 
high fitness schemata with small subsets of defined solution variables closely  
positioned in the solution encoding.  

In [3], the authors identified the phenomenon of hitchhiking in Royal Road GA. 
In hitchhiking, undesirable combinations of solution variables that were present in 
solutions containing building blocks became fixed in the population through being 
selected alongside the building blocks. This revealed some subtleties of the inter-
action between linkage and evolutionary operators that the schema approach can-
not adequately address because the fitness of any particular solution cannot be  
ascribed uniquely to any particular schema of which the solution is a member. 

Another approach to linkage detection is to explicitly model the effect that op-
erators have on the distribution of fitness. In [4], Greffenstette attempted to predict 
the performance of a GA given a representation, a fitness landscape and a set of 
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genetic operators. More precisely, performance was measured as the change in 
mean population fitness over the course of a GA run. 

A key element of Greffenstette's approach is to construct models that predict 
how a particular recombination operator will affect the distribution of fitness. 
Greffenstette was able to demonstrate that reasonable predictive models for popu-
lation fitness over the course of an evolution could be derived for some problem 
cases. 

In [5], Mühlenbein and Schlierkamp-Voosen presented the Breeder Genetic 
Algorithm (BGA). Here the focus was on designing an algorithm with known sta-
tistical properties. The key idea here was to analyse the specific effects on fitness 
of particular operators with a particular encoding and using this to predict GA per-
formance. This approach made no use of schemata or any other explicit reference 
to linkage. Instead, strong assumptions were made throughout about normal  
distribution of fitness under application of operators. 

In [6], Vose developed a Markov Chain approach to analysing the evolution of 
a GA. Essentially, the evolution step of a simple GA was analysed as a stochastic 
chain of transitions between the set of all possible populations (of a given size M 
or of infinite size). This work led to powerful insight into GA performance  
and convergence properties. However computing the transition matrix for any  
particular problem is impractical due to its combinatorially huge size.   

These developments set the stage for the emergence of Estimation of Distribu-
tion Algorithms (EDA). In an EDA, the traditional genetic operators of crossover 
and mutation are replaced by a probabilistic model that generates a successor 
population of solutions. Selection is used to provide a set of relatively high quality 
solutions from which to build a model. The aim then is to develop a model-based 
sampling operator which distributes solutions in a high fitness region of the  
solution space. 

Early EDAs such as PBIL [7] and UMDA [8] constructed probabilistic models 
based on the marginal distributions of solution variable values present in selected 
solutions. As the field developed, more complex models based on the joint distri-
bution of solution variable values were proposed. Much of this work uses the  
theory of probabilistic graphical models [9] which relates a joint probability dis-
tribution (JPD) to a graph of solution variables and their interactions. Inevitably 
within the EDA community, linkage learning has taken on the precise meaning of 
determining the structure of a probabilistic graphical model from a population of 
solutions. 

Therefore EDAs can be seen as inheriting from a number of key strands of GA 
theory: the concept of linkage and its relation to genetic operators; the idea of 
modelling operator fitness distribution and the abstraction of an EA as a sequence 
of stochastic evolutionary steps. 

The remaining sections of this chapter are arranged as follows. In Section 2, we 
introduce notation to describe the probabilistic models used in EDA with a particu-
lar focus on Markov Network Models. Section 3 describes the main approaches we 
will apply to structure learning in the Markov Network EDA, DEUM and intro-
duces measures of the quality of structure learning. Section 4 describes the Distri-
bution Estimation Using Markov networks (DEUM) framework and describes how 
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structure learning is applied in this approach. Section 5 describes the Ising problem 
and attempts to solve it using EDAs. Sections 6-8 describe experiments on the Ising 
problem with DEUM using three different structure learning approaches. Results 
are provided on the optimisation performance and the quality of structure learning 
for each approach. The chapter concludes in Section 9. 

2   EDAs and Approaches to Probabilistic Modelling 

We begin with some generalities on EDAs and probabilistic models. An EDA re-
gards a solution x = x1 … xn as composed of a set of values xi taken by a set of 
random variables, X = Xi. The aim of an EDA is to estimate a joint probability 
distribution (JPD), denoted P(X) = P(X1, … ,Xn), in such a way that high fitness 
solutions may be sampled from this distribution with high probability. An EDA 
has the following general structure: 

1. Initialise a population of N solutions 
2. While stopping criteria are not satisfied 
 2.1 Select a subset of M < N solutions from P 
 2.2 Build a probabilistic model P(X) from the selected solutions 
 2.3 Sample P(X) to generate N new solutions to replace P 
3. Return best solution found 

EDAs begin by initializing a population of solutions, P, usually with uniform 
probability. Then a subset of solutions is selected from P, typically by truncation 
or tournament selection. This subset is then used to estimate a probabilistic model 
of the JPD, P(X). P(X) is then sampled to generate the next population. It is an as-
sumption of EDA that, since P(X) was estimated from relatively high fitness solu-
tions, sampling P(X) will result in an improved distribution of solution fitness in 
succeeding populations. The process iterates until stopping criteria are satisfied 
and the best solution found is returned. 

The performance of an EDA heavily depends on how successfully it estimates 
P(X). In general, the computation of P(X) for a bitstring variable encoding, x ∈ 
{0,1} , involves the computation of probabilities for all 2n configurations of x. 
This is not computationally feasible in most problems of interest. However, in 
many cases, a good approximation to P(X) can be obtained by factorising the dis-
tribution in terms of marginal and conditional probabilities of variables, thus re-
ducing the costs of distribution estimation and sampling. An excellent review of 
this can be found in [10].  

The concept of a Probabilistic Graphical Model (PGM) provides an efficient 
and effective tool to represent the factorisation of the JPD, and therefore has an 
important role in EDAs. Any PGM has a graph component that represents the de-
pendency structure between variables and a parameter component that can be used 
to compute P(X). Full information on PGMs can be obtained from [11]. 

The most commonly used PGM in the EDA community is the Bayesian Net-
work (BN). Formally, a BN is a pair (D,Θ), where D is a Directed Acyclic Graph 
(DAG) and Θ is a set of conditional probabilities for each variable Xi conditioned 
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on its parents π(Xi) in D. The graph is realised algebraically as a factorisation of 
the JPD in terms of these conditional probabilities (1). 
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We now present an alternative PGM and describe how it can be used in an EDA. 
A Markov Network (MN) is a pair (G,Ψ), where G is the structure and Ψ is the 
parameter set of the network.  G is an undirected graph where each node corre-
sponds to a solution variable and each edge corresponds to a joint dependency  
between variables. We use N = {N1, … ,Nn} to denote the neighbourhood system 
derived from G , where each Ni  is the set of nodes adjacent to node Xi in G [12], 
[13]. The JPD, for a Markov Network must satisfy the following conditions for 
each solution x and for each random solution variable Xi: 
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Condition (2.3), known as the Markovianity property, states that the conditional 
probability distribution of any variable  is completely determined by the values of 
its neighbours. The Hammersley-Clifford Theorem ([14], [13]), states that the JPD 
of a Markov Network can always be factorised as a Gibbs Distribution. The  
general form of this JPD is: 
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This will be familiar to many readers as a Boltzmann distribution with temperature 
coefficient T. The function U(x) is called the energy function and has a particular 
form that is determined by the neighbourhood structure of the Markov Network. 
We now introduce some terminology that is useful in describing the JPD in a 
Markov Network. 

A clique { }
kk iiii XXK ,...,

11 ,..., =  is a set of nodes in G that are mutual 

neighbours. The order of a clique is the number of nodes that belong to it. For-
mally, we also regard each singleton {Xi} as a clique of order 1 and the empty set, 
∅, as the unique clique of order 0. 

We define a set of clique potential functions VK(x) for each clique K and each 
solution x as follows: 

                                                   xxV ∀=∅      1)(                                            (4.1) 
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It is a consequence of the Hammersley-Clifford Theorem that the energy function 
can be written as a sum of clique potential functions as follows: 
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where the αK are real-valued coefficients known as Markov Network parameters. 
We refer to (5) as the General Markov Network Model and make the following 

observations. Substitution of (5) into (3) gives a factorization of the JPD in terms 
of exponents of the individual summands of (5). The clique potential functions are 
determined by the structure, G, of the Markov Network. The summation in (5) is 
over all cliques K present in G. The set of real-valued parameters αK therefore 
completely determines the JPD for a given structure G. 

3   Structure Learning in the DEUM Markov Network EDA 

Markov networks have been proposed as the probabilistic model for a number of 
different EDAs [15], [16], [17], [18]. In [15],[16],[17] the variable interaction 
(independence) graph is learned from data using a statistical independence test. 
The structure is then refined to reduce its density and maximal cliques are found. 
Finally, a junction graph is learned in the case of MN-FDA [15],[16] or a Kiku-
chi Approximation is learned by MN-EDA [17] to approximate the distribution. 
In [19] an algorithm is proposed which uses the Linkage Detection Algorithm 
[20] to discover interactions when building a Boltzmann distribution of the  
fitness function.  

In this section we describe the main approaches we will apply to structure 
learning in the Markov Network EDA, DEUM and introduce measures of the 
quality of structure learning. The fitness modelling approach of DEUM allows us 
to make observations as to the quality of the structure learned and its effect on the 
fitness modelling capability of the resulting model which should be of interest to 
others using undirected graphical models and the wider EDA community. 

We investigate the impact of three structure learning approaches on the fitness 
modelling and optimisation capability of EDAs that use the DEUM framework 
[18]. This framework is fully described in Section 4 but a key feature is the ex-
pression of P(X) as a model of fitness. This will allow us to analyse the relation-
ship between the quality of the structure learned and its effect on the fitness  
modelling capability of the resulting model, thus explicitly relating structure  
learning to optimisation. 
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We achieve this by extending the DEUM framework to include a structure 
learning step rather than relying on the existing knowledge of the problem struc-
ture. We use measures borrowed from the information retrieval community to as-
sess the structures learned: specifically precision and recall combined in the  
F-measure [21]. We compare these with the fitness modelling and optimisation 
capabilities of the resulting models. This allows us to make observations on the 
structures learned by each algorithm which will be of relevance for other  
algorithms using an undirected structure. 

The three different versions of DEUM with structure learning are: 

• DEUM-LDA, a single-generation algorithm which incorporates the Linkage 
Detection Algorithm of Heckendorn and Wright [20] 

• DEUMχ2, a single-generation algorithm which incorporates an independence 
test structure learner using Pearson's Chi-Square statistics 

• evDEUMχ2, a multi-generation algorithm variant of DEUMχ2 

The results we present here relate to the algorithm's performance on optimising the 
Ising spin glass problem. This has previously been used as a benchmark problem 
for EDAs [22], [23],[24], [15], [16], [17], [18] due to interesting properties such as 
symmetry and a large number of plateaus. The problem exhibits an undirected 
network of interactions between variables and consequently EDAs using Markov 
networks are naturally suited to it and should perform well. In [18] it was shown 
that by supplying the underlying lattice structure to the algorithm DEUM was able 
to efficiently optimise the 2D Ising problem. 

The structure of the Markov Fitness Model in our previous work has always 
been fixed and supplied prior to running the algorithm. In earlier work it was uni-
variate - the model containing only one term for each variable in the problem. In 
[18], [25] the model was extended to incorporate terms representing bivariate  
and trivariate interactions among variables. The algorithm used in this work  
incorporates an additional step during which the structure is learned. 

3.1   How Good Is the Structure? 

Other work has been done to analyse structures learned in EDAs. The study of the 
Learning Factorized Distribution Algorithm (LFDA) carried out in [26] included 
an analysis of structure learning capability. A discussion of the importance of 
higher-order structure in EDAs is presented in [27]. It is known that not all inter-
actions which are present in a problem will necessarily be required in the model 
for the algorithm to rank individuals by fitness and find a global optimum. This 
concept is similar to the idea of benign and malign interactions [28] and is related 
to the concept of unnecessary interactions [29]. This is in addition to the idea of 
spurious correlations [30], [31] which are false relationships in the model resulting 
from selection. 

Here we build on these concepts by comparing the structure learned by the al-
gorithm to what we call the perfect model structure. The perfect model structure 
includes exactly those interactions which are present in the underlying fitness 
function. This does not include all possible interactions but does include those 
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which influence the absolute fitness value. In the example version of the Ising 
problem shown in Figure 1, these are: 

x1x2,  x2x3,  x3x4,  x1x4,  x5x6,  x6x7, x7x8,  x5x8, x9x10,  x10x11, x11x12, x9x12,  x13x14,  
x14x15,  x15x16,  x13x16, x1x5, x2x6, x3x7, x4x8, x5x9, x6x10, x7x11, x8x12, x9x13, x10x14, 
x11x15, x12x16,  x1x13,  x2x14,  x3x15,  x4x16. 

 

Fig. 1 16 bit 2D Ising Lattice 

These interactions are required to perfectly fit the model to the fitness function. 
In general of course it is only possible to identify the perfect structure in this way 
for predefined test problems where the interactions are explicitly known. In the 
case of onemax there are no interactions. For the 2D Ising problem, an interaction 
exists wherever there is a coupling between two spin variables. In the example 
above, for a 16 bit 2D Ising problem the model will have 49 parameters in total 
including the univariate parameters and the constant. 

In assessing the structures learned by the algorithm we use two measures from 
the information retrieval community: Precision (p) and Recall (r) [21]. These are 
defined in (6) and (7). 

                             
foundnsinteractioTotal

found nsinteractio True
precision =                             (6) 

                            
present nsinteractio  trueTotal

found nsinteractio True
recall =                          (7) 

That is, precision measures how much of the learned structure comprises correctly 
identified interactions and recall measures how many of the interactions present in 
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the problem have been found. Both are proportions ranging from 0 to 1, with 1 be-
ing the best (if both measures are 1 then the learned structure perfectly matches 
the true structure). These can be combined to form the F-measure (8) [21]. 
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This particular definition is sometimes referred to as the F1 measure in which p 
and r are equally weighted.  The F-measure ranges from 0 to 1, with 1 achieved if 
p and r are both 1. 

4   Distribution Estimation Using Markov Networks 

First we will describe the general framework of the DEUM algorithm, before go-
ing on to show the different approaches taken to incorporate a structure learning 
step. 

4.1   General Model 

Previous publications on DEUM [18], [25] have described how the Markov net-
work is used to model the distribution of energy across the set of variables in a 
problem. Energy follows a negative log relationship with fitness, so the Markov 
network can be used as a model of the fitness function which we call the Markov 
Fitness Model (MFM). From (5), this relationship may be written in general as (9). 
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For each individual in the population, x = x1 … xn, and given a particular 
neighbourhood structure on the random variables Xi, we can derive from (9) an 
equation linking the fitness, f(x) of x to the values of the xi. (10).  

                 ......)(ln 212,12211 +++++=− xxxxxxf nn αααα              (10) 

Here, in a slight abuse of notation, we will use (unordered) juxtapositions of the 
variable symbols xi in a clique K in place of the clique potential functions VK(x) 
for simplicity of presentation. The right-hand side of (10) can always be evaluated 
accurately by interpreting the 0 and 1 bit values as -1 and +1 respectively in ac-
cordance with (4.2) and (4.3). In (9) each term represents the energy contribution 
due to a clique on the Markov network. We have presented terms representing 1-
cliques such as α1x1 and 2-cliques such as α1,2x1x2. Additional terms relating to 
higher order cliques will in general also be present (for example see [25] where 3-
cliques form part of the structure for 3-CNF MAX-SAT problems). However, for 
this study we restrict the model to 2-cliques to match the level of complexity of 
the 2D Ising problem. As we vary the number of spins, n, of the Ising lattice, The 
number of correct structure elements grows as O(n2). With the restriction noted 
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above, the search space of possible structures has size 2|K| where |K| is the size of 
the set of all possible cliques of order 0 to 2. As we vary the number of spins, n, of 
the Ising lattice, |K| itself grows as O(n2).   

A system of equations can be formed by substituting into (10) the variable val-
ues and fitness for each individual within a population. Then, a least squares ap-
proach may be used to estimate values for the parameters α. The neighbourhood 
structure  and the set of parameters completely define the MFM. This can then be 
sampled to generate new individuals. Previously reported results for optimisation 
using DEUM have been found using the above techniques in the same broad 
workflow: 

1. Generate random population 
2. Repeat until termination criteria met: 

2.1 Compute model parameters 
2.2 Sample model to generate new population 

A number of different techniques have been used to sample the MFM. In [32] the 
MFM was used to update a probability vector similar to that used in PBIL [7]. [33] 
described a technique to directly sample the marginal probabilities from a univari-
ate MFM. [34], [18] employed a zero-temperature Metropolis method to sample 
the MFM and finally [18], [25] used variations of a Gibbs sampler. It was found 
empirically that the Gibbs sampler approach produced the best results for higher 
complexity problems and consequently it is only the Gibbs sampler which is used 
here - specifically the version used when optimising the Ising problem in [18]. 
Depending on the problem and algorithm parameters we found that this approach 
would often find a global optimum in the first generation. This leads us to the sin-
gle-step framework in Sections 6 and 7. 

4.2   Fitness Prediction Correlation 

In our results we also report the fitness prediction correlation Cr for each model. 
This measure is described in detail in [25] and [35]. In contrast to precision, recall 
and F measure, fitness prediction correlation is defined specifically in terms of the 
MFM approach so cannot be used to compare directly to other approaches. How-
ever fitness prediction correlation gives a helpful indication of the fitness informa-
tion being learned by the model. Section 4 showed that DEUM models the fitness 
function directly (9). Therefore, in addition to sampling the model to find an opti-
mum we can also use it to predict the fitness of individuals. This ability can be ex-
ploited to measure how closely the MFM models the fitness function. This in turn 
acts as a predictor for the optimisation capability of the algorithm.  

Fitness prediction correlation is defined as the statistical correlation between 
the true fitness and the model-predicted fitness of a population of randomly gen-
erated individuals. The experiments described here use Spearman's rank correla-
tion [36]. As Cr approaches +1 the model has an increasingly strong positive  
correlation with the fitness function. 
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5   The Ising Problem and EDAs 

The general Ising spin glass problem can be defined as an energy function H(X) 
over a set of spin variables X = {X1, … , Xn} and a set of coupling constants hi 
and Jij as 
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Each coupling constant hi and Jij relates to a single spin Xi and pair of spins 
{Xi,,Xj} respectively. Each spin variable can be either +1 or -1 and L represents a 
lattice of n spins. 

Given a particular pair of values of the coupling constants hi and Jij, the task is 
to find values for all Xi that minimise the energy H. For the purposes of this chap-
ter, we consider only instances of the problem where each Jij takes values in  
{-1, +1}, with the spins arranged in a two dimensional lattice of n spins. This is 
represented graphically in Figure 1. 

In [23], [22], [24], it was shown that the hierarchical Bayesian Optimization 
Algorithm (hBOA) was able to efficiently solve the Ising problem, outperforming 
other algorithms. In [15], [16] the Ising problem was used as a benchmark for the 
Markov Network Estimation of Distribution Algorithm (MN-EDA) and the 
Markov Network Factorized Distribution Algorithm (MN-FDA). The latter of 
these papers argued that the Kikuchi approximation used to estimate the distribu-
tion used by MN-EDA gave an advantage for the 2D Ising problem as it was able 
to represent the bivariate dependencies as an exact factorisation. Finally [18] dem-
onstrated that this also applied to the DEUM algorithm as it could represent the 
exact factorisation from the structure in the form of potential functions. DEUM 
was demonstrated to perform very well - solving the problem with only a single 
generation. In that case the structure was supplied to the algorithm. By adding a 
structure learning component, the work presented in this chapter will allow a fairer 
comparison with other EDAs on the Ising problem. In the experiments which fol-
low, we use the same four instances of Ising at each size as those used in [18], 
with the results aggregated into a mean for each size. 

6   DEUM LDA 

This approach adds the Linkage Detection Algorithm [20] to the DEUM  
framework, giving us the following workflow. 

1.  Run LDA using the fitness function 
2.  Generate random initial population P, of size 4.4N 
3.  Select a subset σ, the top 1.1N of P 
4.  Use σ to build the MFM 
5.  Calculate fitness prediction correlation, Cr 
6.  Sample new population from MFM using random walk Gibbs sampler 
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Step 5 is not an integral part of the algorithm. It is only included in the above 
workflow to show the point at which we calculate the value for Cr. 

The proportion of the population selected and population size used were deter-
mined by earlier experiments described in [35]. There we found that fitness mod-
elling capability of the MFM increases greatly when the number of individuals  
selected is more than the number of parameters in the model, denoted by N. Once 
the structure is known, we then set the number to be selected to 1.1N to ensure 
that this is the case (the system of equations generated from (10) is thus an over-
specified system). The population size |P| is then set to be large enough to achieve 
the desired selection pressure. The results in [35] revealed that fitness modelling 
capability improves as the selection pressure is increased. In this case we set the 
proportion of the population selected to 0.25 - that is, the population is 4.4N,  
four times the number of individuals required to build the MFM. This represents  
a good tradeoff between a useful selective pressure and an excessively large  
population. 

The cooling rate parameter for the Gibbs sampler was 0.0005, following [18]. 
The iteration cap of the sampler was increased from 500 to 2000 - this improved 
the success rate of the algorithm and decreased the total number of iterations  
required to find the global optimum. 

6.1   Fitness Model 

First we will look at the model generated by the algorithm for each problem size. 
In Table 1 we see the mean precision p and recall r for the structures found over 
30 runs, with corresponding standard deviations (p-SD and r-SD). This is followed 
by the F-measure F combining the mean precision and recall. This is shown along-
side the mean fitness prediction correlation Cr for each size of the problem with its 
corresponding standard deviation Cr -SD. 

With a precision and recall (and hence F) of 1.0, the structure discovered 
matches the perfect structure for the problem. As a consequence, we would expect 
similar optimisation results to those seen in [18]. 

Table 1 DEUM-LDA Fitness Model Statistics over 30 runs 

PS p p-SD r r-SD F Cr Cr -SD 

16 1.00 0.00 1.00 0.00 1.00 0.887 0.091 

25 1.00 0.00 1.00 0.00 1.00 0.924 0.049 

36 1.00 0.00 1.00 0.00 1.00 0.932 0.034 

49 1.00 0.00 1.00 0.00 1.00 0.939 0.037 

64 1.00 0.00 1.00 0.00 1.00 0.949 0.023 

100 1.00 0.00 1.00 0.00 1.00 0.942 0.027 

256 1.00 0.00 1.00 0.00 1.00 0.945 0.018 

324 1.00 0.00 1.00 0.00 1.00 0.943 0.015 

400 1.00 0.00 1.00 0.00 1.00 0.940 0.022 
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6.2   Optimisation 

Table 2 shows the results for optimising using the algorithm.  

Table 2 DEUM-LDA Optimisation Statistics over 30 runs  

PS Cr LDA-FE FE FE-SD IT IT-SD SR 

16 0.887 480 210 4 163 310 100 

25 0.920 1200 330 1 989 532 100 

36 0.932 2520 483 25 821 1995 100 

49 0.905 4704 647 3 1675 1234 100 

64 0.939 8064 846 1 902 688 100 

100 0.944 19800 1446 221 11989 21296 87 

256 0.950 130560 4342 862 130995 118419 67 

324 - - - - - - 0 

400 - - - - - - 0 

The Cr value is given to show the fitness prediction power of the model in the 
context of optimisation. The number of fitness evaluations needed by LDA (LDA-
FE) for each problem size is given next. Then the mean number of additional func-
tion evaluations (FE) and internal iterations of the Gibbs sampler (IT) are given 
along with their standard deviations (FE-SD and IT-SD). FE includes the evalua-
tions needed to estimate model parameters and the evaluations needed to confirm 
the fitness of individuals generated by the Gibbs sampler. All of these values only 
include the successful runs; the success rate (SR) is given as a percentage of times 
the algorithm found a known global optimum over 30 independent runs. 

The results were unexpectedly poor given the perfect structure learned by LDA. 
In [18], DEUM was able to optimise 2D Ising when supplied with the perfect 
structure. We increased the number of individuals selected from the population to 
estimate the model parameters to 2N (that is, twice the number of parameters in 
the model). Part of our work on the fitness information content in a population 
[35] indicated that Ising requires a larger number of individuals than other fitness 
functions we have looked at to obtain a good model of fitness. The results for 
population size 2N are given in Table 3. It can be seen that this resulted in a 
marked improvement of the optimisation capability, even for the largest instances 
of the problem that we used. 

Table 3 DEUM-LDA Optimisation Statistics with increased population size over 30 runs  

PS Cr LDA-FE FE FE-SD IT IT-SD SR 

100 0.993 19800 2409 7 8015 6825 100 

256 0.993 130560 6166 48 37705 82985 100 

324 0.993 209304 7786 7 18947 11962 80 

400 0.992 319200 9688 86 160237 154439 100 
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One problem with this approach is that the linkage detection algorithm requires 
a large number of fitness evaluations to learn the structure. This could be miti-
gated by recycling the solutions generated by the LDA run for estimating the 
model parameters but this would not make a large difference. The number of pos-
sible interactions for a particular problem size n is given in (12); given that LDA 
requires four evaluations for each possible interaction, the number of evaluations 
required by LDA at a particular problem size n is given in (13). This can be re-
duced by caching individuals but not by a large amount and this comes with a  
rapidly growing space complexity. 

                                                
2

)1( −= nn
Possible                                        (12) 

                                                 )1(2 −= nnEvals                                           (13) 

In addition to this, without some threshold it will include any interactions which 
are not useful for optimisation and this will lead to a large and overly complex 
model which will result in the algorithm being overloaded and potentially result-
ing in poor performance. An effect similar to this was seen with the noisy chemo-
therapy problem used for benchmarking hBOA in [37]. The 2D Ising problem is in 
comparison very “clean” - because of the nature of the problem any interactions 
which LDA discovers are important for optimisation with the result that the struc-
ture found is perfect. This allows DEUM to build a model which closely matches 
the fitness function. For other problems this may not be possible which provides 
motivation for the independence test approach. 

7   DEUM-χ2 

7.1   The Algorithm 

The workflow for this algorithm is very similar to that for DEUM incorporating 
LDA. The only additions are the extra selection step to choose individuals for the 
Chi-Square structure learning algorithm and the structure refinement step, both 
taken from [15], [16], [17]. 

1. Generate random initial population P 
2. Select a subset σ1, the top 25% of P 
3. Run Chi-Square edge detection algorithm to search for statistical dependencies 

apparent in σ1 
4. Refine structure 
5. Select a subset σ2, the top 1.1N of P 
6. Use σ2 to build MFM 
7. Calculate Cr 

Sample new population from MFM using random walk Gibbs sampler. 
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The structure is learned by performing a first-order Chi-Square independence 
test on each possible pairing of variables; an interaction is assumed where the test 
exceeds a threshold of 0.75. The number of individuals for the structure learning 
selection was set to the top 25%; the selection step for estimating the MFM pa-
rameters selected the top 1.1N individuals. These figures were found to represent a 
good balance between fitness modelling capability and function evaluations re-
quired by a series of experiments following the pattern described in [35]. The 
structure refinement step is the same as that used in [15], [16], [17]: in these works 
a limit is imposed on the number of edges (interactions) incident to a node (vari-
able) on the graph. For any node exceeding this limit, the edges with the lowest 
Chi-Square scores are removed until the limit is reached. For 2D Ising we set this 
limit to 4 - that is, each variable can have only four neighbours as is the case in the 
2D Ising lattice. The clique finding step from those papers is not applied here as 
we know that the 2D Ising problem has a bivariate structure and we wish to keep 
the structure at this level of complexity. The population size was set to be the 
problem size multiplied by 100. As in the previous section, the cooling rate for the 
Gibbs sampler was 0.0005 and the iteration cap was set to 2000. 

7.2   Fitness Model 

Again, before looking at optimisation results we will look at the model generated 
by the algorithm for each problem size. These are shown in Table 4; the column 
headings are the same is in Table 1. 

Table 4 DEUM-χ2 Fitness Model Statistics over 30 runs  

PS p p-SD r r-SD F Cr Cr -SD 

16 0.785 0.183 0.979 0.028 0.988 0.997 0.01 

25 0.749 0.213 0.968 0.029 0.980 0.992 0.015 

36 0.730 0.166 0.970 0.022 0.982 0.994 0.008 

49 0.754 0.101 0.963 0.019 0.976 0.990 0.012 

64 0.741 0.107 0.958 0.018 0.974 0.990 0.008 

100 0.695 0.116 0.948 0.018 0.966 0.985 0.010 

256 0.589 0.092 0.914 0.009 0.940 0.968 0.007 

324 0.584 0.083 0.908 0.011 0.935 0.964 0.008 

400 0.529 0.085 0.894 0.011 0.924 0.956 0.007 

We can see that increasing problem size results in a decrease in both p and r, re-
flected in a steadily decreasing F. This indicates that with increasing problem size 
the algorithm finds it more difficult to correctly identify all interactions and also 
begins to match some false positives. This also results in a corresponding decrease 
in the fitness prediction power of the model, revealed in the decreasing Cr values. 
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We can see that these fall off very quickly with a comparatively small decrease in 
r; this highlights the importance of finding a good model structure. The experi-
ment was rerun with population sizes equal to the number of fitness evaluations 
required by LDA at each step; the results for this are given in Table 5. 

We can see that the structures are considerably better at the larger sizes; for the 
smaller sizes the number of evaluations required by LDA was actually less than 
100 times the problem size as used in the previous experiment so the resulting 
structures are poorer. The increased Cr values for this algorithm on large problem 
sizes are a by-product of this algorithm's workflow. In DEUM-LDA the parameter 
estimation step selected individuals from a new population of size 4.4N rather 
than recycling that produced in the course of the LDA run. DEUM-χ2 uses the 
structure learning population, which is very large. The high selective pressure re-
sults in a slightly better model of fitness with the same model structure, in line 
with the results reported in [35]. 

Table 5 DEUM-χ2 Fitness Model Statistics with LDA-equivalent population size over 30 
runs 

PS p p-SD r r-SD F Cr Cr -SD 

16 0.800 0.037 0.703 0.052 0.854 0.573 0.163 

25 0.896 0.051 0.816 0.053 0.921 0.733 0.095 

36 0.954 0.020 0.890 0.027 0.976 0.869 0.050 

49 0.992 0.011 0.961 0.023 0.989 0.941 0.047 

64 0.995 0.007 0.984 0.009 1.000 0.974 0.014 

100 1.000 0.000 1.000 0.002 1.000 0.992 0.004 

256 1.000 0.000 1.000 0.000 1.000 0.993 0.002 

324 1.000 0.000 1.000 0.000 1.000 0.993 0.002 

400 1.000 0.000 1.000 0.000 1.000 0.993 0.001 

7.3   Optimisation Results 

We know from the results in section 6 that the algorithm can find the global opti-
mum when the learned structure has F equal to 1.0 relative to the true structure so 
the optimisation experiment was instead run on the structures learned by the Chi-
Square algorithm with the smaller population. Statistics for this were shown in 
Table 4. The motivation for this is that if the global optimum can be found using 
these imperfect structures then we have a significant saving in function evalua-
tions over the LDA based algorithm. 

Now we run the full optimisation algorithm incorporating the Chi-Square  
structure learner and report the results in Table 6. The headings are the same as 
Table 2. 

 
 
 



Structure Learning and Optimisation in a Markov Network 61
 

Table 6 DEUM-χ2 Optimisation Statistics over 30 runs 

PS Cr FE FE-SD IT IT-SD SR 

16 0.814 219 17 646 1074 90 

25 0.831 340 32 1278 2828 77 

36 0.830 479 21 887 1621 60 

49 0.807 722 88 6863 6948 50 

64 0.816 1005 256 17435 26404 43 

100 - - - - - 0 

256 - - - - - 0 

324 - - - - - 0 

400 - - - - - 0 

We can see that with the decrease in the fitness prediction capability of the 
model there is a marked decrease in the optimisation capability of the algorithm. 
Indeed, it is clear that the Cr values for the runs which proved successful  
(Table 4) were on average higher than those found across all runs (Table 6). To 
improve on these results, the population size was again increased to 2N for the 
larger instances of the problem and the experiment rerun. The results are  
presented in Table 7. 

Table 7 DEUM-χ2 Optimisation Statistics with increase population size over 30 runs 

PS Cr FE FE-SD IT IT-SD SR 

16 0.951 381 5 598 230 100 

25 0.971 599 5 2122 2142 100 

36 0.951 852 9 1425 543 100 

49 0.940 1166 13 8192 14735 100 

64 0.936 1505 16 1875 1941 100 

100 0.939 2799 744 316472 525816 70 

256 - - - - - 0 

324 - - - - - 0 

400 - - - - - 0 

In contrast to the previous section, we see that the results are still poor. This can 
be attributed to the imperfections in the structure learned by the independence test 
method. The recall values of around 0.9 indicate that up to 10% of the interactions 
present in the perfect structure are missing; precision values of around 0.96 indi-
cate that up to 4% of the interactions which were added to the model are not pre-
sent in the perfect structure. 
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8   EVDEUM 

Based on the poor results for the single-step algorithm it is worth determining 
whether an evolutionary approach would be able to overcome the issues with poor 
structure. 

One important change was a reduction in the run time for the Gibbs sampler. 
With this algorithm there is no longer an assumption that a model with a close fit 
to the fitness function will be found in the first generation. This means that areas 
of high probability within the model will not necessarily be areas of high fitness, 
and running the Gibbs sampler slowly to convergence is likely to result in an indi-
vidual of inferior fitness to the global optimum. The algorithm was initially run 
with a fixed value for cooling rate and maximum number of iterations. It was 
found that performance was improved by varying these parameters over the course 
of the evolution - reducing the cooling rate and increasing the maximum number 
of iterations with each generation. This allowed the algorithm to be balanced to-
wards exploration in early generations and exploitation in later ones as the model 
fits more closely to the fitness function. For each generation g, the cooling rate r 
was calculated according to equation (14) and the maximum number of iterations 
of the Gibbs sampler I was calculated according to equation (15). The parameters 
for these were determined empirically to yield the best results. 
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We also adopted a steady-state approach for the algorithm, replacing 5% of the 
population each generation. This allows us to use a large population for the  
structure learning component and maintain diversity for as long as possible. 

1. Generate random initial population P 
2. Select a subset σ1, the top 25% of P 
3. Run Chi-Square edge detection algorithm to search for statistical dependencies 

apparent in σ1 
4. Refine structure 
5. Select a subset σ2, the top 1.1N of P 
6. Use σ2 to build MFM 
7. Calculate Cr 
8. Sample R new individuals from MFM using random walk Gibbs sampler and 

replace poorest R individuals in P with these 

8.1   Fitness Model 

As there are now multiple models being created, there are multiple figures for p, r, 
F and Cr. For ease of interpretation, the values over the course of evolution  
for three instances of the problem (25 bit, 100 bit and 256 bit) are represented 
graphically in Figures 2, 3 and 4. 
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The four measures can be shown relative to the same y-axis as they all have a 
range of zero to one (Strictly speaking Cr has a range of -1 to +1 but in the exam-
ples here it is always positive). 25 bits was chosen for the first problem to look at 
rather than 16 bits because the algorithm was often able to solve the 16 bit in-
stances of the problem in a single or very small number of generations so the 
chance to observe an effect over many generations was reduced. 

 

Fig. 2 Fitness Model Statistics for EvDEUM-χ2 on 25bit 2D Ising lattice over 30 runs  

 

Fig. 3 Fitness Model Statistics for EvDEUM-χ2 on 100bit 2D Ising lattice over 30 runs  
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Fig. 4 Fitness Model Statistics for EvDEUM-χ2 on 256bit 2D Ising lattice over 30 runs  

We can see that the structure quality and consequently the fitness modelling 
capability of the model rise to begin with and then fall off as the population con-
verges and diversity decreases. Further work is needed to determine the factors 
which affect the point at which this occurs. With increasing problem size the 
maximum values reached for structure quality and fitness prediction capability be-
comes lower, never exceeding an F of 0.5 or a Cr of 0.3 as evolution proceeds. 
This means the model is unlikely to be good enough to allow the algorithm to find 
the global optimum. It is also notable that in the first generation the precision and 
recall of the structure and Cr for the model are all relatively high, this then drops 
off immediately in the second generation. 

8.2   Optimisation Results 

The results for the optimisation capability of the algorithm are shown in Table 8. 
As before, the mean number of function evaluations (FE) and internal iterations of 
the Gibbs sampler (IT) are given along with their standard deviations (FE-SD and 
IT-SD). All of these values only include the successful runs; the success rate (SR) 
is given as a percentage over 30 independent runs. No Cr values are present this 
time because that value varied over the course of the evolution. 
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Table 8 EVDEUM-χ2 Optimisation Statistics over 30 runs  

PS FE FE-SD IT IT-SD SR 

16 2465 3254 4292 10233 100 

25 21135 2861 2564001 2010019 83 

36 25913 911 3226402 1154861 100 

49 33321 1826 8193559 3778421 67 

64 - - - - 0 

100 - - - - 0 

256 - - - - 0 

324 - - - - 0 

400 - - - - 0 

The results in this section reflect the poor quality of the models learned. We can 
see that even for small instances of the problem, the success rate is below 100% 
and the total number of function evaluations used by the algorithm is higher than 
for the single step algorithms. As the problem size increases, the perfect structure 
is never found and the algorithm is unable to find the global optimum. In each 
generation, the model build time is reduced because the structure learned has 
fewer interactions, meaning fewer terms in the model. The sampling times are 
greatly reduced in comparison with the single step approach as we are deliberately 
lowering the iteration cap on the sampler to encourage diversity in the population. 
Both of these benefits are lost when repeated over many generations. While the 
number of function evaluations is reduced in each generation (compared to the 
number required by the single-step structure learning algorithms), the evolutionary 
approach does not allow the structure to be found with reduced data. 

9   Conclusion 

In this chapter we have shown how the general concept of linkage learning is real-
ised as structure learning in EDAs. In particular, we have extended the DEUM 
Markov EDA framework to incorporate a structure learning step, exploring three 
different approaches. using the measures precision, recall and the F-measure. We 
believe these are useful measures by which to compare structure learning algo-
rithms on known benchmark problems and our results bear this out in the case of 
2D Ising problems. 

Precision, recall and F Measure are well-known in machine learning but we be-
lieve have not been studied before in relation to structure learning in EDAs. They 
provide a different prespective from existing measures of structure learning such 
as benign/malign and unnecessary interactions - those terms describe the influence 
an interaction has on fitness and whether an interaction is required by the model 
for optimisation. Precision, recall and the F-measure refer specifically to the num-
ber of interactions that the structure learning algorithm has found relative to the 
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known structure and allow a precise measurement of the effectiveness of a struc-
ture learning algorithm. 

Our results show that the DEUM algorithms are able to optimise successfully, 
but the overhead (model build and sampling time) is expensive. The MFM re-
quires a near-perfect structure to be supplied and a large population for optimisa-
tion to be successful. An incremental approach to the model building step like that 
of iBOA [38] offers a potential improvement and suggests a direction for future 
work on Markov Network EDAs. Additionally, other ways of making use of the 
fitness model may give better results than the Gibbs sampler. These include 
guided operators in a hybrid algorithm incorporating guided operators [39] and 
surrogate fitness models [40], [41], [42], [43]. 

An interesting observation to come out of this work is the drop-off in fitness 
modelling capability as evolution proceeds. We attribute this to loss of diversity in 
the population. The problem was mitigated by the use of a steady-state approach 
but did still prove a hindrance over time. This relates to other work on diversity 
loss [44], [45], [46], [47], [48] and another avenue for future work is mutation of 
the probabilistic model, niching [49] or other technique to reduce the effect of  
diversity loss and improve optimisation performance. 

With the simple addition of a maximal clique finding algorithm it will also be 
possible to apply this approach to problems with higher order interactions such as 
SAT. Further work is needed to determine whether the effects described here hold 
true for other important problem classes. 
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DEUM – A Fully Multivariate EDA Based on
Markov Networks
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Abstract. Recent years have seen an increasing interest in Markov networks as
an alternative approach to probabilistic modelling in estimation of distribution al-
gorithms (EDAs). Distribution Estimation Using Markov network (DEUM) is one
of the early EDAs to use this approach. Over the years, several different versions
of DEUM have been proposed using different Markov network structures, and are
shown to work well in a number of different optimisation problems. One of the key
similarities between all of the DEUM algorithms proposed so far is that they all
assume the interaction between variables in the problem to be pre-given. In other
words, they do not learn the structure of Markov network, and assume that it is
known in advance. This work presents a recent development in DEUM framework
- a fully multivariate DEUM algorithm that can automatically learn the undirected
structure of the problem, automatically find the cliques from the structure and auto-
matically estimate a joint probability model of the Markov network. This model is
then sampled using Monte Carlo samplers. The chapter also reviews some of the key
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works on use of Markov networks in EDAs, and explains the fitness modelling con-
cept used by DEUM. The proposed DEUM algorithm can be applied to any general
optimisation problems even when the structure is not known.

1 Introduction

Estimation of Distribution Algorithm (EDA) [25][17] belongs to a class of popu-
lation based optimisation algorithm that iteratively evolves solution to a problem
by means of estimating a probabilistic model of good solutions, and sampling from
them to get new solutions. Much research in EDA focuses on different approach
to probabilistic modelling and sampling. Particularly, directed graphical models
(Bayesian networks) [31] have been widely studied and are well established as a
useful approach for modelling the distribution in EDAs. Some of the well known
instances of Bayesian network based EDA includes Bayesian Optimisation Algo-
rithm (BOA) [32], hierarchical Bayesian Optimisation Algorithm (hBOA) [33], Es-
timation of Bayesian Network Algorithm (EBNA) [9][16] and Learning Factorised
Distribution Algorithm (LFDA) [23]. Recent years have seen an increasing interest
in the use of undirected graphical models (Markov networks) [2][20][27] in EDAs
[37][43][44][38][41][39][42][6][7]. Some of the well known instances of Markov
network based EDA includes Distribution Estimation Using Markov Networks
(DEUM) algorithm [41], Markov Network EDA (MN-EDA) [38], Markov Net-
work Factorised Distribution Algorithm (MN-FDA) [37] and Markovianity based
Optimisation Algorithm (MOA) [46, 47].

In this chapter, our focus is on DEUM algorithms [43][41]. They are a family
of Markov network based EDA that builds a model of fitness function from the
undirected graphs, and use this model to estimate the parameters of the Gibbs distri-
bution. Markov chain Monte Carlo simulations, including Gibbs sampler [10] and
Metropolis sampler [22], are then used to sample new solutions from the Gibbs dis-
tribution. Several variants of DEUM have been proposed and are found to perform
well, in comparison to other EDAs of their class, in a range of different test prob-
lems, including Ising Spin Glass and SAT. [43][44][45][5]. However, there is one
key similarity between all of the DEUM algorithms proposed so far. That is they all
assume the interaction between variables in the problem to be pre-given. In other
words, they do not learn the structure of the problem and assume that it is known in
advance. Therefore, they may not be classified as full DEUM algorithms.

In this chapter, we present a fully multivariate DEUM algorithm that can au-
tomatically learn the undirected structure of the problem, automatically find the
cliques from the structure and automatically estimate the joint probability model
of the Markov network. This model is then sampled using Monte Carlo samplers.
The proposed DEUM algorithm can be applied to any general optimisation problem
even when the structure is not known.

The outline of the chapter is as follows. Section 2 describes Markov network
and its key properties. Section 3 reviews the use of Markov networks in EDAs.
Section 4 gives background on DEUM framework and also describes the fitness
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modelling approach to estimating the parameters of the Markov network within dif-
ferent instances of this framework. Section 5 presents a detailed workflow of the
proposed full DEUM algorithm, together with the structure learning and clique find-
ing algorithms used by it. Section 6 presents the experimental results on the perfor-
mance of the proposed algorithm on several instances of well known Ising Spin Glass
problems. Section 7 highlights some future work and concludes the chapter.

2 Probabilistic Graphical Models in EDA

An EDA regards a solution, x = {x1,x2, ..,xn}, as a set of values taken by a set of
variables, X = {X1,X2, ...,Xn}. A general EDA begins by initialising a population of
solutions, P. A set of promising solutions D is then selected from P, and is used to
estimate a probabilistic model of X . The model is then sampled to generate the next
population. Figure 1 shows the general EDA workflow.

Estimation of Distribution Algorithm

1. Generate initial (parent) population P of size M
2. Select set D from P consisting of N solutions, where N <= M
3. Estimate the probability distribution of variables in the solution from D
4. Sample distribution to generate offspring, and replace parents
5. Go to step 2 until termination criteria are met

Fig. 1 The workflow of the general Estimation of Distribution Algorithm

The estimation of probability distribution lies in the very heart of EDA, and its
effectiveness largely depends on how well it estimates and samples the distribu-
tion. This is where probabilistic graphical models [18] can be useful. Probabilistic
graphical models provide an efficient and effective tool to represent the probabil-
ity distribution of random variables. They can be seen as a merger of two disci-
plines, probability theory and graph theory [13]. They are mainly categorised into
two groups 1.

1. Directed models (Bayesian networks)
2. Undirected models (Markov networks / Markov Random Fields)

2.1 Bayesian Networks

A Bayesian network can be regarded as a pair (B,Θ), where B is the structure of the
model and the Θ is a set of parameters of the model. The structure B is a Directed

1 There are several other categories of probabilistic graphical model, such as factor graph
and mixture models. However, for the purpose of this chapter, we limit them to two
categories.
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Acyclic Graph (DAG)2, where each node corresponds to a variable in the modelled
data set and each edge corresponds to a conditional dependency. A set of nodes Πi

is said to be the parent of Xi if there are edges from each variable in Πi pointing to
Xi. The parameter Θ = {p(x1|Π1), p(x2|Π2), ..., p(xn|Πn)} of the model is the set of
conditional probabilities, where each p(xi|Πi) is the set of probabilities associated
with a variable Xi = xi given it’s parent variables Πi. A Bayesian network is charac-
terized in terms of the joint probability distribution of the variables in the modelled
dataset as

p(x) =
n

∏
i=1

p(xi|Πi) (1)

2.2 Markov Networks

A Markov network is a pair (G,Ψ), where G is the structure and the Ψ is the pa-
rameter set of the network. G is an undirected graph where each node corresponds
to a random variable in the modelled data set and each edge corresponds to a condi-
tional dependency between two variables. However, unlike Bayesian networks, the
edges in Markov networks are undirected. Here, the relationship between two nodes
should be seen as a neighbourhood relationship, rather than a parenthood relation-
ship. We use N = {N1,N2, ...,Nn} to define a neighbourhood system on G, where
each Ni is a set of nodes neighbouring to node Xi. Figure 2 shows an example of
a Markov network structure on 6 random variables. Here, variable X1 has 2 neigh-
bours, N1 = {X2,X3}. Similarly, variable X2 has 4 neighbours N2 = {X1,X3,X4,X5}.

 
 
 
 

X1 

X3 X2

X5 X6 X4 

Fig. 2 A Markov network structure on 6 random variables

2.2.1 Local Markov Property

A Markov network is characterised in terms of neighbourhood relationship between
variables by its local Markov property known as Markovianity [2][20], which states

2 A DAG is a graph where each edge joining two nodes is a directed edge, and also there is
no cycle in the graph, i.e. it is not possible to start from a node and, travelling towards the
correct direction, return back to the starting node.
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that the conditional probability of a node Xi given the rest of the variables can be
completely defined in terms of it’s conditional probability given only its neighboring
states Ni. Ni is sometimes referred to as Markov Blanket for Xi [26]. In terms of
probability, it can be written as

p(xi|x−{xi}) = p(xi|Ni) (2)

2.2.2 Global Markov Property

A Markov network is also characterised in terms of cliques3 in the undirected graph
by its global property, the joint probability distribution, and can be written as

p(x) =
1
Z

m

∏
i=1

ψi(ci) (3)

where, ψi(ci) (or more precisely ψi(Ci = ci)) is a potential function on clique Ci ∈X ,
m is the number of cliques in the structure G. Z = ∑x∈Ω ∏m

i=1 ψi(ci) is the normal-
ising constant known as the partition function which ensures that ∑x∈Ω p(x) = 1.
Here, Ω is the set of all possible combination of the variables in X .

Equivalently, using Hammersley-Clifford theorem [11], the global Markov
property can also be written in terms of Gibbs distribution as

p(x) =
e−U(x)/T

Z
(4)

where,
Z = ∑

y∈Ω
e−U(y)/T (5)

is a normalising constant, T is a parameter of the Gibbs distribution known as the
temperature and U(x) (or more precisely U(X = x)) is known as the energy of the
distribution.

Given an undirected graph, G, on X , energy,U(x), is defined as a sum of potential
functions over the cliques, Ci, in G.

U(x) =
m

∑
i=1

ui(ci) (6)

Here, ui(ci) (or more precisely ui(Ci = ci)) is a potential function defined over a
clique Ci ∈ X . Equation (4), in terms of clique potential function, can also be written
as

p(x) =
e−∑m

i=1 ui(ci)/T

Z
(7)

Note that the relationship between ψi(ci) in (3) and ui(ci) in (7) is defined as

3 Given an undirected graph G, a clique is a fully connected subset of the nodes. For
example, in Figure 2, variables {X1,X2,X3} define a clique.
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ψi(ci) = e−ui(ci)/T (8)

The clique potential function, ui(ci), captures the way variables interact in the clique
ci. It should be carefully defined in order to get a desired behaviour from a Markov
network.

3 Markov Network Based EDAs

Markov network based EDAs can be categorised into two groups depending upon
whether local (2) or global (3) Markov property is exploited in modelling and
sampling the distribution.

3.1 Global Markov Property Based EDAs

Most of the EDAs based on Markov network use its global property (3) in one form
or another. More precisely, they factorise the joint probability distribution in terms
of cliques in the undirected graph and sample it to generate new solutions.

Three main categories can be distinguished in this class of Markov network based
EDAs. They are:

1. Factorised distribution algorithm (FDA)
2. Markov Network Estimation of Distribution Algorithm (MN-EDA), Markov

network Factorised Distribution Algorithm (MN-FDA)
3. Distribution Estimation using Markov network algorithm (DEUM)

FDA is one of the early EDAs proposed by [24]. Based on running intersection
property [18] of an undirected graph, it first identifies residuals and separators from
the undirected structure and constructs a junction tree [19] that completely specifies
the joint probability distribution. Junction tree is then sampled using Probabilistic
logic sampling (PLS) [12] to generate new solution. An FDA able to learn a junction
tree from the data was introduced in [28].

MN-EDA [38] and MN-FDA [37] are based on the idea of making an approxima-
tion to the joint probability distribution in terms of cliques in the undirected graph.
MN-EDA does so by means of Kikuchi approximation [14] of the joint distribution
and uses a Gibbs sampler to sample the new solutions. Similarly, MN-FDA con-
structs a junction graph [37] from the undirected structure that approximates the
joint probability, which is then sampled using PLS to generate new solutions.

DEUM [43][41] is a family of Markov network based EDA that builds a model
of fitness function in terms of the cliques in the undirected graph and factorises joint
probability as a Gibbs distribution. The parameters of the fitness model is then esti-
mated from the population of solutions and Markov chain Monte Carlo simulations,
including Gibbs sampler [10] and Metropolis sampler [22], are used to sample new
solutions. Several variants of DEUM have been proposed and are found to perform
well in comparison to other EDAs of their class in range of different test problems,
including Ising Spin Glass and SAT. [43][44][45].
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3.2 Local Markov Property Based EDAs

Some recent works in EDA have focused on using local Markov property (2) for
modelling and sampling from Markov network. As opposed to global Markov prop-
erty based EDAs, they do not factorise joint probability distribution. Instead, they
directly sample from local conditional probabilities defined by undirected graph.

Two main categories can be distinguished in this class of Markov network based
EDAs. They are:

1. Markovianity based Optimisation Algorithm (MOA)
2. Markovian Learning Estimation of Distribution Algorithm (MARLEDA)

Both MOA[46, 47] and MARLEDA [1] estimate conditional probabilities defined
by neighbourhood relationship in the undirected graph and directly sample from
them to generate new solutions. The difference is, however, in the way they estimate
undirected structure and sample from it. MALDERIA use chi-square test to find the
undirected structure. MOA however use a mutual information based approach to do
the same. Also, MOA use Gibbs sampler algorithms to sample new solution, and use
a temperature based annealing schedule to balance the exploration and exploitation
of the search space.

4 Fitness Modelling and DEUM Algorithms

In this chapter, our focus is on global Markov property based EDAs, more precisely
on DEUM algorithms. As with other EDAs, a general DEUM starts by initialising a
population of parent solutions, P. It then selects a set of promising solutions D from
P, which is then used to estimate the Markov network structure. It then builds a
model of fitness function from the undirected relationship captured by the structure,
and fits the model to the selected set of solution to estimate the model parame-
ters. These parameters fully specify the joint probability of the Markov network.
The build Markov network is then sampled to generate new solutions. These new
solutions replace the parent solutions and this iteration continues.

The general workflow of DEUM algorithm is similar to that of other Markov
network based EDAs. However, there is one noticeable characteristic that is specific
to DEUM - it builds a model of fitness function and uses it to estimate the parameters
of the Markov network. Next, this concept is described.

4.1 Fitness Modelling

Assuming that the probability of a solution is proportional to its fitness, the jpd,
p(x), can be modelled in terms of fitness as

p(x) =
f (x)
Z

(9)
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where, Z = ∑y∈Ω f (y) is the partition function and Ω is the set of all possible
solutions.

Now, from (4) and (9), we can deduce following equivalence of jpd for Markov
netowrks in terms of fitness function.

p(x) =
e−U(x)/T

∑y∈Ω e−U(y)/T
≡ f (x)

∑y∈Ω f (y)
(10)

From which, following relationship between fitness and the energy can be deduced
[4].

− ln( f (x)) = U(x) (11)

For simplicity, here we assume T from (10) to be 1. In other words, (11) defines
the equivalence shown in (10). We refer to (11) as Markov network Fitness Model
(MFM). From (6), MFM can also be written in terms of potential functions as:

− ln( f (x)) =
m

∑
i=1

ui(ci) (12)

Energy, U(x), in MFM (11) gives the full specification of the jpd (4), so MFM
can be regarded as a probabilistic model of the fitness function. Also notice that,
minimising U(x) here is equivalent to maximising f (x).

At this point, it is important to notice that the log-linear form of MFM (12) is
the result of our assumption of jpd as a mass distribution of fitness over solution
space, as shown in (9). We could easily get different relationship between f (x) and
U(x) by making different assumption about mass distribution of fitness function.

For example, assuming p(x) = e− f (x)

∑y∈Ω e− f (y) , we would get a linear MFM as f (x) =

∑m
i=1 ui(ci).
In general, the form of energy, U(x) in MFM models the different order of

interaction between variables in X .

4.2 Univariate MFM in DEUMpv and DEUMd

The two initial univariate DEUM algorithms, DEUM with probability vector
(DEUMpv) [43] and DEUM with direct sampling from Gibbs distribution (DEUMd)
[44], used univariate MFM as their model, i.e. they assumed each variables Xi ∈ X
to be independent. The graph G for such structure will be an edge less graph.
Therefore, the set of maximal cliques, C, in G would consist of n singleton cliques
Ci = {Xi}. For each clique, {Xi}, a potential function is associated as follows:

ui(xi) = αixi (13)

From (11) and (12), the univariate MFM can then be written as:

− ln( f (x)) = U(x) = α1x1 + α2x2 + ...+ αnxn (14)
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Here, αi are the parameters associated with each cliques {Xi}. αi being the only
unknown parameters of the potential function (13), completely specifies U(x) and
therefore completely specifies the Gibbs distribution (4). Therefore, they are known
as Markov network (or Markov Random Field) parameters (MRF parameters) [20].
We use θ to refer to vector of all MRF parameters in the model. For univariate
case, the vector θ = α = {α1,α2, ...,αn}. In terms of MFM, (11), a MRF parameter
measures the effect that the interaction between variables in a clique have on the
fitness of the solution, f (x). Obviously, in univariate case (14), αi measures the
effect of a single variable, Xi, on fitness.

4.3 Multivariate MFM in Is-DEUM

An improved DEUM algorithm proposed in [45], known as Ising DEUM (Is-
DEUM), used more complex MFM, which considered higher order cliques with
two variables. Figure 3 shows the structure assumed by Is-DEUM where a variable
interacted with 4 of its immediate Neighbours.

 

X22 

X32 

X42 

X12 

X23 

X33 

x43 

X13 

X24 

X34

X44 

X14

X21 

X31 

X41 

X11 

A 

A 

B C D

E 

F 

G 

H 

E 

F 

G 

H 

B C D 

Fig. 3 A structure showing the interaction between variables in a two dimensional lattice

This structure can also be seen as an instance of Ising model on two dimensional
lattice [15]. The set of maximal cliques, C, in this case, contains 2× 42 bivariate
cliques Ci j,i′ j′ = {Xi j,Xi′ j′ }. This structure can be generalised to n = l× l variables,
where C will contain m = 2l2 bivariate cliques. For each clique {Xi j,Xi′ j′ }, a poten-
tial function can be assigned as βi j,i′ j′xi jxi′ j′ , where, each βi j,i′ j′ is the MRF param-
eter associated with bivariate clique {Xi j,Xi′ j′}. The energy, U(x) in MFM (11) for
such X will therefore be

− ln( f (x)) = U(x) =
l

∑
i=1

l

∑
j=1

(
βi j,(i+1) jxi jx(i+1) j + βi j,i( j+1)xi jxi( j+1)

)
(15)
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The vector θ = β is used to denote the set of all 2n bivariate MRF parameters βi j,i′ j′ .

[5] extended this idea further to include cliques with three variables for solving
3-SAT problems.

4.4 Estimating MRF Parameters

Once the MFM is built, next step in DEUM is to estimate the set of all MRF pa-
rameters, θ . In general, each solution in a given population provides an equation
satisfying the MFM ( eg. (14), or (15)), where θ are the unknows. Selecting a set of
solution D consisting of N promising solutions from a population P therefore allows
us to estimate these parameters by solving the system of equations 4:

F = Aθ T (16)

Here, F is the vector containing − ln( f (x)) of all solutions in D, θ , the unknown
part of the equation is the vector of all MRF parameters and A is the matrix of allele
values in D. In other words, DEUM fit the MFM to a dataset D and approximate the
parameter of the Markov networks, θ .

4.5 Sampling Markov Networks

Once the MRF parameters are estimated, the joint probability distribution is fully
specified. It is then sampled to generate new solution. By its definition, a Markov
network structure may contain cycles. Apart from some restricted set of undirected
structures, for example those that satisfy running intersection properties and can be
formulated as a directed acyclic graph, most of the Markov networks do not satisfy
the ancestral ordering of variables needed by Probabilistic logic sampling (PLS)
used by Bayesian network based EDAs. DEUM use Markov Chain Monte Carlo
(MCMC) [22] methods for sampling. MCMC are a iterative sampling approach that
does not require the ancestral ordering of variables. An instance of it is described
later in the chapter.

5 A Fully Multivariate General DEUM Algorithm

All instances of DEUM algorithm proposed so far (including those mentioned in
previous section) have one key similarity. They all assume the interaction between
variables in the problem to be pre given. In other words they do not learn the struc-
ture of the problem and assume that it is known in advance. For example, DEUMpv

and DEUMd both use univariate model of probability distribution, i.e., assume each
variables to be independent. Therefore, they do not need to learn the structure. Is-
DEUM, which was proposed as the enhancement to these univariate DEUMs use
a multivariate model of distribution, but still assume the structure of the Markov

4 The current implementation of DEUM use Singular Value Decomposition (SVD) [36] to
solve the system of equations.
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network to be fixed (as shown in Figure 3). Therefore, it still restricts itself to types
of problem that satisfies the structure assumed by it.

Next, we present a fully multivariate DEUM algorithm that can automatically
learn the undirected structure of the problem, automatically find the cliques from
the structure and automatically estimate a joint probability model of the Markov
network. The implemented workflow is shown in Figure 4. It starts by initialising a

Distribution Estimation using Markov networks (DEUM)

1. Generate parent population P
2. Select a set of solutions D from P
3. Estimate undirected structure G of the Markov network from D
4. Find all the cliques in structure G and build a model of fitness function (MFM)
5. Estimate parameters of the Markov network by fitting the build MFM to D
6. Sample Markov network to generate new solutions
7. Go to step 2 until termination criteria are meet

Fig. 4 The pseudo-code of the fully multivariate Distribution Estimation Using Markov
network (DEUM) algorithm

population of parent solution P. It then selects a set of promising solution D from
P. It then estimates an undirected graph G from D that defines the interaction be-
tween variables in the problem. It then finds a set of all cliques in G and assigns
potential function to them to build a MFM. MFM is again fitted to D (or its subset)
to find the parameters of the Markov networks. These parameters then specify the
joint probability distribution, which is then sampled using Monte Carlo sampling
techniques.

The estimation of undirected structure and building of a MFM (Step (3) and (4)
in Figure 4) is the additional part in proposed DEUM algorithm that has not been so
far implemented in other DEUM instances.

Let us describe these key features of the proposed algorithm in more detail.

5.1 Estimation of Undirected Structure

A number of different approaches can be used to estimate an undirected structure
from data. For the purpose of this chapter we implement a entropy based approach,
initially described in [46]. More precisely, we estimate mutual information of each
pairs of variable in the solution to create a matrix of mutual information. The pairs
with the mutual information higher than a certain threshold are then made neigh-
bours. Also, in order to avoid an overly complex network, we limit the number
of neighbours that a variable can have to a certain number. Figure 5 describes the
implemented Markov network structure learning algorithm. We note that other gen-
eral statistical tests, such as chi square (also use by [1]), could also be used as the
measurer for mutual information.
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Estimating structure in DEUM

1. Create a matrix of mutual information, MI, by estimating mutual information for each
pairs of variable in the solution. Mutual information between two random variables, A
and B, is given by

I(A,B) = ∑
a,b

p(a,b)log

(
p(a,b)

p(a) · p(b)

)

where sum is over all possible combinations of A and B, and p(a,b) is the joint
probability of A = a and B = b computed from D

2. Create an edge between two variables, if the mutual information between them is higher
than the given threshold. Here we compute the threshold, T R as T R = avg(MI) ∗ sig,
where avg(MI) is the average of the elements of the MI matrix and sig is the significance
parameter, which is set to 1.5.

3. If the number of neighbours to a variable is higher than the maximum number, MN, al-
lowed, only keep MN neighbours that have the highest mutual information.

Fig. 5 The workflow of an undirected structure learning algorithm

In our experiment, we also implement the structure learning algorithm that calcu-
lates difference in joint probability of two variables against the product of marginal
probabilities of individual variables as a measure for mutual information. We call it
Joint-Equals-Marginal-Product (JEMP) measure. JEMP for two random variables,
A and B, can be estimated as

JEMP(A,B) = ∑
a,b

|p(a,b)− (p(a) · p(b))| (17)

5.2 Finding Cliques and Assigning Potentials

Once the undirected structure is found, next step is to find all the cliques in the struc-
ture. In the proposed implementation of DEUM, we use Bron-Kerbosch algorithm
[3] to find the set of all the maximal cliques in the undirected graph. We do not go
into details of this algorithm. Interested readers are suggested to see [3]. Once the
set of maximal cliques are found, the potential functions are assigned to them. There
are three possibilities while defining clique potentials.

1. Define potentials to all the maximum cliques
2. Define potentials to all the maximum cliques and all the subcliques5.

5 Subcliques are defined as the smaller cliques within the maximal cliques. For example, in
Figure 2, variables {X1,X2} defines a sub-clique within clique {X1,X2,X3}. Furthermore,
variable {X1} also defines a singleton sub-clique within {X1,X2,X3}.
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3. Define potentials to all the maximum cliques and only some of the sub-cliques
within it

The first option is the simplest and most efficient one, which requires only one
potential function to be assigned per clique and, therefore require only one MRF
parameter to be defined per clique. The second option is the safest one since it
considers all possible sub interaction with the cliques. At the same time, it is the
most expensive way to define MFM, since the number of MRF parameter grows
significantly depending upon the order of the maximal cliques. The third option is
the compromise between first and second, however, it may not be obvious to choose
the sub-cliques required to build the model. Further research could be done in this
area. For the purpose of this work, we use the first option.

5.3 Sampling New Solution

Once the MFM is built, it is then fitted to the set of selected solution D (as de-
scribed earlier in section (4.4)) and the MRF parameters are estimated. These MRF
parameters fully specify the joint distribution (4), which is then sampled to generate
new solutions. Similar to other DEUM instances, here we use a MCMC approach
to sampling. Particularly, we implement a Gibbs sampler [10] to sample from the
Markov networks, which is described next.

Let us use x+ to denote a solution x having a particular xi = +1 and x− to denote
a solution x having xi =−1. The probability that the value of the variable in position
i is equal to 1 given its neighbours, p(xi = 1|Ni), can then be written as

p(xi = 1|Ni) =
p(x+)

p(x+)+ p(x−)
(18)

Substituting p(x) from (4) and cancelling the Z, we get

p(xi = 1|Ni) =
e−U(x+)/T

e−U(x+)/T + e−U(x−)/T
(19)

Since, U(x+) and U(x−) agree in all terms other than those containing xi, the com-
mon terms in both U(x+) and U(x−) drop out and we get much simpler expression
as the estimate of the marginal probability for xi = 1 conditional upon Ni:

p(xi = 1|Ni) =
1

1 + eWi/T
(20)

Here, Wi is the difference in two energies, U(x+) and U(x−), after substituting the
xi to 1 for all the remaining terms in U(x+) and to −1 for all remaining terms in
U(x−). For example, Wi for the univariate MFM (14) simplifies to

Wi = 2αi (21)

Similarly, Wi (or more precisely Wi j) for bivariate MFM (15) simplifies to
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Random Walk Gibbs Sampler (RWGS)

1. Generate a solution xo = {xo
1,x

o
2, ..,x

o
n}

2. Set the initial value for T .
3. Repeat IT times:

a. Randomly select a variable xo
i from xo and set xo

i = 1 with probability p(xo
i = 1|No

i )
b. Decrease T

4. Terminate with answer xo.

Fig. 6 The pseudo-code of the Random Walk Gibbs Sampler

Bit-Wise Gibbs Sampler (BWGS)

1. Generate a solution xo = {xo
1,x

o
2, ..,x

o
n} at random.

2. set r = 0 and also set the initial value for T .
3. Repeat:

a. Set xtmp = xo.
b. For i = 1 to n

i. Increase r by 1
ii. Decrease T

iii. Set xo
i = 1 with probability p(xo

i = 1|Ni)

:Until xtmp = xo.
4. Terminate with answer xo.

Fig. 7 The pseudo-code of the Bitwise Gibbs Sampler

Wi j = βi j,(i+1) jx(i+1) j + βi j,i( j+1)xi( j+1)+

β(i−1) j,i jx(i−1) j + βi( j−1),i jxi( j−1) (22)

As we said earlier, temperature, T , has a very important role in Gibbs distribution. It
controls the convergence of the distribution. In equation (20), as T → 0, the value of
p(xi = 1|Ni) tends to a limit depending on the Wi. If Wi > 0, then p(xi = 1|Ni)→ 0
as T → 0. Conversely, if Wi < 0, then p(xi = 1|Ni)→ 1 as T → 0. If Wi = 0, then
p(xi = 1|Ni) = 0.5 regardless of the value of T . Therefore, the Wi are indicators of
whether the xi at the position i should be 1 or−1. This indication becomes stronger
as the temperature is cooled towards zero. This forms the basis for the implemented
Gibbs sampler algorithm, which is shown in Figure 6. We call it Random Walk
Gibbs Sampler (RWGS).



DEUM – A Fully Multivariate EDA Based on Markov Networks 85

For our experiments, we also implement another version of the Gibbs sampler,
which systematically iterates through each variable in the solution, as oppose to
randomly selecting the variable in RWGS Figure 7. We call it the Bit-wise Gibbs
Sampler (BWGS).

Notice that each run of Gibbs sampler will sample a single solution. Running it
multiple times will give us a population of solution, which then replaces the parent
population and the next iteration of DEUM follows.

6 Experimental Results

We apply proposed DEUM algorithm to a well known instance of Ising spin glass
problem [15]. Due to their interesting properties, such as symmetry and a large
number of plateaus, Ising spin glass problem have been widely studied by the GA
(and EDA) community [34, 38].

Here, we consider spin glass system on a two dimensional lattice consist of
n = l× l sites, where each spin variable interacts only with its nearest neighbour-
ing variables on a toroidal lattice6. The Hamiltonian specifying the energy for this
system can be written as

H(σ) =−
l

∑
i=1

l

∑
j=1

(
Ji j,(i+1) jσi jσ(i+1) j + Ji j,i( j+1)σi jσi( j+1)

)
(23)

where, i+ 1 = 1 if i = l and j + 1 = 1 if j = l.
Here, each Ji j,i′ j′ is the coupling constant in two dimensional lattice relating to

spin σi j and σi′ j′ . The task in Ising spin glass problem is to find the value for each
σi that minimises the energy, H.

In the context of EDAs, spin glass systems on a two dimensional lattice have
been of particular interest to researchers. In particular, [34, 35] showed that hBOA
could efficiently solve these problems outperforming other algorithms. [37] used the
Ising spin glass problem as a test problem for MN-EDA and MN-FDA and showed
that their performance is better then that of other EDAs based on Bayesian net-
works. Also [24] stated that, although the two dimensional Ising spin glass problem
is in the class of Additively Decomposable Functions (ADF), it cannot be efficiently
represented as a junction tree. This is because, the junction tree based EDA has
a triangular structure of dependency and therefore requires cliques to be of order
3. However, the two dimensional Ising spin glass problem has maximum cliques
of order 2. [38] argues that the Kikuchi approximation approach to estimate the
distribution used by MN-EDA can accurately represent this dependency, and there-
fore has an advantage over junction tree based EDAs. Also, it has been shown that
Is-DEUM, the previous version of the DEUM algorithm, which although required
structure to be pre given, could also accurately represent the bivariate dependency,
performed very well in this problem, and compared well with the rest of the EDAs.

6 Figure 3 can be seen as the structure of the Ising spin glass on toroidal latttice.



86 S. Shakya et al.

6.1 Experimental Setup

We set up a series of experiments with two structure learning algorithm. One based
on mutual inforamtion, I, and another based on JEMP measure. Also, we set up
the experiment with two sampling algorithms described earlier, RBGS and RWGS.
A further experiment is performed to examine the effect of population size on the
algorithm.

Experiments were conducted with three different sizes of Ising Spin Glass prob-
lem: 10× 10 (n = 100), 16× 16 (n = 256) and 20× 20 (n = 400). Four ran-
dom instances of each problem size were used for the experiment. Each instance
was generated by randomly sampling the coupling constant Ji j ∈ {+1,−1}. The
optimum solution for each instance was verified by using Spin Glass Ground
server, provided by the group of Prof. Michael Juenger7. The parameters for each
algorithm were chosen empirically.

We made 100 independent runs of DEUM for each of the 12 instances of the
Ising spin glass problem and recorded the number of fitness evaluations needed to
find the optimum. The population size used was 30000, 75000 and 150000 for the
problem sizes 100, 256 and 400 respectively. We found that the DEUM was able to
find the accurate structure for the problem in the initial generation, and, as with Is-
DEUM, was able to find the solution in the single generation. It, however, required
a higher population size. To improve the speed of the algorithm, a smaller number
of best individuals was selected for the parameter estimation step (Step 5 in Figure
4) than for estimating the undirected structure. The number selected to estimate the
structure was 5000,7000 and 8000 for each of the problem sizes; the number selected
to estimate the parameters was 250, 700 and 1000. The maximum neighbour (MN)
parameter used by the structure learning algorithm was set to 4. The temperature T
for the Gibbs sampler was set to T = 1/0.0005r, where r is the current number of xo

i
samplings done in the sampler. (see Figure 6). As r increases, T decreases and the
solution xo will converge to a particular value for each xo

i . The maximum number
of allowed repetitions, R, for both RBGS and RWGS was set to 500. DEUM was
terminated if the optimum was found or R repetitions of the sampler were done. As, at
the end of each Gibbs sampler run, a fitness evaluation was done in order to calculate
f (xo), the number of fitness evaluations was calculated as the sum of population size
and the total repetitions of the Gibbs sampler needed before finding the optimum.

6.2 Results

In Tables 1,2,3 and 4, we show the performance results for the algorithms incor-
porating the different structure learning and sampling techniques. In each, PI is the
specific instance of the problem. The following three columns show the mean num-
ber of fitness evaluations FE (with standard deviation FE-SD) required by the al-
gorithm to find an optimum and the percentage of runs finding the global optimum
over 100 runs.

7 http://www.informatik.uni-koeln.de/lsjuenger/
research/sgs/sgs.html

http://www.informatik.uni-koeln.de/lsjuenger/
research/sgs/sgs.html
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Table 1 DEUM Ising Problem Optimisation, using structure learning based on mutual
information and Bit-wise Gibbs Sampler

PI FE FE-SD SR
Ising-100-1 30007.3 5.885266658 100
Ising-100-2 30001.84 1.134580419 100
Ising-100-3 30010.72 49.68955747 99
Ising-100-4 30001.77 1.246044246 100
Ising-256-1 75005.84 5.991104517 100
Ising-256-2 75002.77 14.78386713 100
Ising-256-3 75018.3 60.11764561 99
Ising-256-4 75001.85 1.24214705 100
Ising-400-1 150029.28 55.56869986 99
Ising-400-2 150012.32 50.55647507 99
Ising-400-3 150032.63 104.1892853 97
Ising-400-4 150013.21 53.68544655 99

Table 2 DEUM Ising Problem Optimisation, using structure learning based on mutual
information and Random Walk Gibbs Sampler

PI FE FE-SD SR
Ising-100-1 30007.74 8.094916724 100
Ising-100-2 30001 0 100
Ising-100-3 30004.64 4.482333447 100
Ising-100-4 30001.26 0.543464383 100
Ising-256-1 75007.66 13.61313982 100
Ising-256-2 75001.6 1.034749762 100
Ising-256-3 75037.08 98.38757415 97
Ising-256-4 75002.53 2.536421563 100
Ising-400-1 150055.57 107.586306 95
Ising-400-2 150016.28 51.34417044 99
Ising-400-3 150041.9 117.3730563 94
Ising-400-4 150015.58 54.44303482 99

6.3 Analysis

We can see that DEUM is able to learn the required Markov network structure and
therefore solve the problem with a high success rate. The performance, in terms of
success rate, was comparable to that reported for Is-DEUM in [45]. Also, we notice
that the DEUM with mutual information based structure learner was slightly better
than that with JEMP based structure learner. Similarly, we find that DEUM based
on BWGS is slightly better that that based on RWGS.

One point worth further investigation is that the population sizes required by
the algorithm are very large, in comparison to the results presented in [45]. As we
mentioned earlier, this is because the dependency tests require a large population
to learn useful structure in a single generation. To further illustrate the effect of the
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Table 3 DEUM Ising Problem Optimisation, using structure learning based on JEMP and
Bit-wise Gibbs Sampler

PI FE FE-SD SR
Ising-100-1 30008.57 7.521356798 100
Ising-100-2 30001.73 1.043062701 100
Ising-100-3 30006.36 5.424448955 100
Ising-100-4 30001.95 1.336171222 100
Ising-256-1 75013.56 57.38780358 99
Ising-256-2 75003.48 20.97496343 100
Ising-256-3 75023.67 75.84780814 98
Ising-256-4 75002.11 2.403259571 100
Ising-400-1 150041.16 80.25863747 98
Ising-400-2 150013.06 50.09341173 99
Ising-400-3 150021.44 74.11216179 98
Ising-400-4 150009.6 49.68974449 99

Table 4 DEUM Ising Problem Optimisation, using structure learning based on JEMP and
Random Walk Gibbs Sampler

PI FE FE-SD SR
Ising-100-1 30009.41 9.855619327 100
Ising-100-2 30006 49.89909009 99
Ising-100-3 30005.5 3.9376453 100
Ising-100-4 30001.22 0.612661028 100
Ising-256-1 75006.72 6.130038641 100
Ising-256-2 75004.12 24.07281882 100
Ising-256-3 75038.23 94.1580291 97
Ising-256-4 75002.44 2.011683048 100
Ising-400-1 150064.5 114.7484293 95
Ising-400-2 150022.97 69.90649671 98
Ising-400-3 150034.09 98.33575703 97
Ising-400-4 150022.31 76.1903113 98

population size on the algorithm, we ran similar experiment as above on the four
100 bit instances of the problem with different population sizes. The experiment
used DEUM with a Bit-wise Gibbs Sampler, with both the mutual information based
structure learner and JEMP based structure learner. Figure 8 shows the success rate
for the algorithm over varying population size for the two dependency tests. For this
experiment, the selection operator for the dependency test selected the top 1/4 of the
population. The selection operator for the parameter learning component selected
the top 250 individuals as in the previous experiments. The results show a clear
link between population size and whether the algorithm is able to find the global
optimum. We believe that the population size can be significantly reduced for the
proposed DEUM algorithm by incrementally learning the structure over multiple
generations.
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Fig. 8 Success rate vs population size for different 100 bit Ising instances

7 Conclusion

In this chapter, we have presented a fully multivariate DEUM algorithm that in-
corporates automatic structure learning and model building to the existing DEUM
framework. We have also tested the algorithm with a number of different instances
of the Ising spin glass problem, and shown that it can learn the Ising structure from
data. Also, we have shown that its performance is comparable to that of Is-DEUM
that required the structure of the problem to be pre-given.

We note that, although the experiments presented in this work were performed
with the Ising Problems, we believe that the algorithm will work at least as well
as other DEUM algorithms on the wide range of other problems previously tackled
using the DEUM framework [44, 45, 5, 49, 8].

The proposed DEUM algorithm fills the missing gap in the DEUM framework,
and finally makes it a fully multivariate EDA. It also opens a number of promis-
ing future research directions in this area. One of the immediate tasks is to apply
the full multivariate DEUM algorithm to other multivariate optimisation problems.
Also, research should be done to improve the performance of DEUM, in particular,
to incorporate better structure learning algorithms and better sampling techniques.
The former is crucial, since current implementation of structure learning algorithm
only looks at pair-wise dependency between variables. Extending it to higher order
dependency test could improve the quality of the learned structure.

The results we present must be read within the context that there is some over-
head associated with the fitness modelling approach as implemented in DEUM. In
particular, the time to estimate parameters with SVD [36] grows rapidly (O(n3)) as
the number of unknowns in the model grows. With this in mind it is important to
consider that the explicit model of fitness represented by the MFM brings additional
benefits. These include applications such as surrogate fitness models [21, 40, 29]
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and guided genetic operators [48, 50, 51, 30] as well as revealing the underlying
dynamics of the fitness function [8]. There is still much to be explored in this area.

To summarise, the work presented in this chapter is an important extension to
the general DEUM framework. We believe that the added automatic structure learn-
ing and model building process, together with the powerful fitness modelling and
sampling techniques, in an undirected modelling environment, gives DEUM an
increased versatility to tackle difficult real world optimisation problems.
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Pairwise Interactions Induced Probabilistic
Model Building

David Iclănzan, D. Dumitrescu, and Béat Hirsbrunner

Abstract. The intrinsic feature of Estimation of Distribution Algorithms lies in their
ability to learn and employ probabilistic models over the input spaces. Discovery of
the appropriate model usually implies a computationally expensive comprehensive
search, where many models are proposed and evaluated in order to find the best
value of some model discriminative scoring metric. This chapter presents how sim-
ple pairwise interaction variable data can be extended and used to efficiently guide
the model search, decreasing the number of model evaluations by several orders of
magnitude or even facilitate the finding of richer, qualitatively better models. As
case studies, first the O(n3) model building of the Extended Compact Genetic Algo-
rithm is successfully replaced by a correlation guided search of linear complexity,
which infers the perfect problem structures on the test suites. In a second study,
a search technique is proposed for finding Bayesian network structures, capable
of modeling complicated multivariate interactions, like the one exemplified by the
parity function.

1 Introduction

Estimation of Distribution Algorithms (EDAs) extend the classical framework of
Evolutionary Algorithms (EAs) by learning and using probabilistic models over the
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search variables, thus they are able to exploit dependencies and the modular struc-
ture of the search space. By replacing simple operators with a repeated selection–
model-building–sampling process, these methods can solve problems that are in-
tractable using fixed, problem independent operators and representations [15].

EDAs usually search for a model which fits an existing population according to
some criteria, like the Minimum Description Length Principle [21] or Bayesian-
Dirichlet metric [15]. The size of the population must be large enough to guarantee
proper initial-supply, decision-making and accurate model-building. The search for
an appropriate model in EDAs capable of modeling higher order dependencies, re-
quires many model evaluations with regard to the population. Given the implied
population sizes as the dimension of the problems increases, the computational cost
of model building may quickly exceed economical practicality. Recent benchmark-
ing and profiling results showed that easily more than 90% of EDAs running time
may be spent in the model building phase [5].

To cope up with large problem sizes many enhancements and modifications of the
original methods were proposed. To reduce the computational and/or memory cost
investigations had considered parallelization [22, 14] and hybridization with local
search methods [18], the usage of iterative [20] and sporadic model building [19] or
incorporation of initial knowledge [1, 10].

More direct approaches aim to reduce the complexity of model building by re-
stricting the search over a reduced set of variables in each epoch [5]. Heuristics of
this type work well for problems where all or most of the variables are engaged
in dependencies as randomly choosing and analyzing a partition will discover and
exploit dependencies with a high probability. Nevertheless, for problems with many
independent variables this heuristic may prove inefficient as many blindly chosen
partitions will not reveal dependencies and in these cases resources are spent but the
finding of a better model that could help focusing the search is postponed.

In the model building phase EDAs iteratively improve an initial model according
to the scoring metric. Usually candidates for new models are obtained by stochas-
tic or deterministic (pre-fixed order) alteration of the current model. In this way
many poor model extensions are proposed and analyzed. A question of great inter-
est relates to the possibility to build smarter search methods that could dynamically
choose and propose only the best potential extensions. Such intelligent bias could
greatly reduce the complexity of model building.

To achieve this desiderate one needs a method that can quickly predict which
model extensions maximize the multivariate mutual information, reduce entropy.
Only the most promising extensions are analyzed in detail with regard to the popu-
lation data by the scoring metric which will determine their exact contribution and
will also guard against over fitting.

In this chapter we propose and describe techniques for the use of pairwise in-
teraction measures as means of determining the best model extension choices for
binary EDAs. By computing the pairwise interaction between variables, one ob-
tains a matrix containing some normalized measure of the strength of relationship
between variables. We extend these pairwise relations to approximate the strength
of interaction between arbitrary groups of variables. This approach proves to be
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very efficient in guiding the model-building for binary problems. It can even detect
highly non-linear multivariate variable interplay by mapping the variables and their
interactions in a higher dimensional space, where dependencies are expressed in an
easily detectable manner.

The following section presents the mathematical principle and reasoning behind
the pairwise interaction guided model building and details it in a general setting.
Section 3 presents a first case study, where the model building in the classic Ex-
tended Compact Genetic Algorithm (eCGA) and its hybridized version is replaced
by a correlation guided search of linear complexity. The section also contains the
description of our experimental setup, the results and a discussion of our findings
related to the modified version of the eCGA. A Bayesian network model-building
search technique, based on an extension of pairwise interactions to groups of vari-
ables, thus able to detect and model synergic multivariate interactions is described
in section 4. Conclusion and outline of extension possibilities, future work is given
in section 5.

2 Predicting Information Gain from Pairwise Interactions

Some definitions and basic concepts that will aid the discussion are presented.
Covariance is a measure of how much two variables vary together.

C(X ,Y ) = E(X ·Y )− μν (1)

where E is the expected value operator and E(X) = μ , E(Y ) = ν .
In typical data analysis applications, one is usually interested in the degree of

relationship between variables. The Pearson correlation coefficient between two
variables represents the normalized measure of the strength of linear relationship.

R(X ,Y ) =
C(X ,Y )

√
C(X ,X) ·C(Y,Y )

(2)

This relation gives values between +1 and -1 inclusive. If there is perfect linear
relationship with: a) positive slope between the two variables, R(X ,Y ) = 1; b) nega-
tive slope R(X ,Y ) =−1. A correlation coefficient of 0 means that there is no linear
relationship between the variables.

The entropy is a measure of the average uncertainty in a random variable. It is the
number of bits on average required to describe the random variable. The entropy of
a random variable X with a probability mass function p(x) is defined by

H(X) =−∑
x∈X

p(x) log2(p(x)) (3)

Entropy is the uncertainty of a single random variable. Conditional entropy H(X |Y )
is the entropy of a random variable conditional on the knowledge of another random
variable. The reduction in uncertainty due to another random variable is called the
mutual information:
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I(X ;Y ) = H(X)−H(X |Y) = ∑
x∈X

∑
y∈Y

p(x,y) log

(
p(x,y)

p(x)p(y)

)
(4)

Another way to think about mutual information is that it is a measure of how close
the true joint distribution of X and Y is to the independent joint distribution. Thus
mutual information is closely related to the relative entropy or Kullback-Leibler
divergence which measures the “distance” between two distributions:

DKL(p||q) = ∑
x∈X

p(x) log(
p(x)
q(x)

) (5)

2.1 Information Gain on Binary Data

By incorporating and exploiting problem structure knowledge, a good model pro-
vides compression to the data, reduces entropy. The goal in linkage learning evo-
lutionary algorithms is to find the group of variables with the highest interactions
among them and exploit these linkages.

The relative entropy can be used as a measure of the information gain
by considering a group of variables linked: DKL from Eq. 5 is applied as
the expected discrimination information for the observed joint distribution of
some variables p(x1,x2, . . .xn) over the product of independent joint distribution
pX1(x1)pX2(x2) . . . pXn(xn). Because the DKL is zero if and only if p(x1,x2, . . .xn) =
pX1(x1)pX2(x2) . . . pXn(xn), it follows that this measure can capture all kind of
dependencies between random variables.

Unfortunately, considering and evaluating all possible cases of variable
combinations is impossible due to the combinatorial explosion.

In the following we consider the ways in which simple pairwise interaction in-
formation, like mutual information or various correlation coefficients can be used to
predict which variable groups may maximize the information gain, which may be
measured by relative entropy or other discriminative metric, for example ones based
on the Minimum Description Length principle.

As two binary variables can only be linearly dependent, the analysis can be safely
restricted to correlation coefficients, as in this case a correlation of zero implies
statistical independence.

Binary problems of real interest have many variables with complicated multivari-
ate interactions among them. The dependency of a binary variable Xe on a (noisy)
feature expressed by several other variables of the problem can be formalized as
follows:

if fb(Xv1,Xv2, . . . ,Xvl) [and noise(X)]
then Xe = b

[else Xe = b] (6)
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where fb is an arbitrary boolean function of l binary variables of equal marginal
distributions and b is the negation of the binary value b. As the relation must not be
fully specified, the else branch is optional. The optional boolean noise(X) function
can be used to introduce stochasticity to the relation, to model external influences or
factors which are not directly considered when evaluating the feature. This boolean
function may prevent the expression of the feature even if the conditions are present,
thus adding noise to the relation.

The boolean function fb analyzes if the input variables satisfy a certain feature
or not. This feature can be an arbitrarily complex computable relationship; the only
requirement is that the function must remain deterministic i.e for the same inputs
the answer must be always the same. For example one can apply the variables to
a binary polynomial and consider as feature, the value of the polynomial being a
prime number.

Given this general setting, we are interested, in what conditions can correlation
detect that there is a relation between some Xv and Xe?

If the samples are drawn according to a discrete uniform distribution and we
assume no noise, the exact probability Pfb of the realization of the feature can be
defined. If there are N samples the approximate number of times the feature will be
present and expressed in Xe is P≈ NPfb . On these P samples, K times Xe = Xv and
P−K times Xe = Xv.

Let us standardize Xe and Xv to zXe and zXv with mean 0 and standard deviation 1.
As we assumed equal marginal distributions this accounts to replacing 0’s with -1’s.
The correlation coefficient for z scores can be expressed as:

R(zXe ,zXv) =
N

∑
i=1

zXei
zXvi

N−1
(7)

Assume that the samples are reordered in such way that the first P samples are those
where the feature is present and the next N −P samples are unrelated (R=0). By
further reordering, the first K samples from P are those where zXe = zXv and the next
P−K samples are those where zXe = zXv . Now the expectation of R can be expressed
as

E(R) = 1
N−1 ·

[

E

(
K

∑
j=1

zXe j
zXv j

)

+ E

(
P

∑
j=K+1

zXe j
zXv j

)

+E

(
N

∑
j=P+1

zXe j
zXv j

)]

(8)

The first expectation is K as zXe = zXv , the second one is K−P as zXe zXv =−1 from
zXe = zXv and the last one is 0. Consequently it follows that

E(R)≈ 2K−P
N−1

(9)
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Simply stated, the absolute value of R conveys the probability that the binary paired
values are identical/complemental due to a common source, regardless of what this
source is. From the viewpoint of conditioning, the correlation coefficient measures
the effectiveness of predicting one binary variable with the other. A K close to 0 or
P maximizes the mutual information in the boundary of Pfb .

A zero value of the correlation coefficient means that considering just a single
variable alone, will not carry any information about the other one. Nevertheless, it
is not excluded that the preconditioning by two or more variables will present some
information.

Let us analyze the case when Xe is conditioned by a feature over several variables
XC = {Xv1,Xv2, . . . ,Xvl} but no dependency is indicated by the correlation coefficient
for any of the XC-s i.e R(zXe ,zXC ) = 0 in all cases. From eq. 9 E(R) is zero if and only
if K = P/2. In this way whenever fb(XC) = 1 the value of 0 and 1 for Xv-s is still
equiprobable. Thus the realization of the feature does not affect the probability mass
functions of Xv-s – the feature can be explained only at a synergic level. It follows
that Xe is conditioned by a count function over XC and without loss of generality, we
can assume that is conditioned by the number of 1’s from XC.

To show this, consider the cases when fb(XC) is true, the feature is realized. If Xe

is independent of the number of 1’s (implicitly independent of the number of 0’s)
from XC on these cases, as the probability mass functions for Xv-s are unperturbed,
every configuration of XC has the same probability. Hence, the data follows a dis-
crete uniform distribution and this contradicts the assumption that Xe is conditioned
by XC.

For large and complicated features the deviations in the probability mass func-
tions might be to small to safely detect with simple correlation analysis, or even
nonexistent like in the case of the parity relation, which is expressed only at a syn-
ergic level. To be able to detect all kind of relationship we propose a technique
where the variables and some simple statistics about the parity of 1’s are mapped
in a higher dimensional feature space and a new correlation analysis is performed
there. To build the statistics we use the generalized or n-ary exclusive “or” operator:

⊕n(XALL) = X1⊕X2⊕·· ·⊕Xl (10)

where Xi ∈ XALL and i goes from 1 to the number of variables l. ⊕n is true if and
only if it has an odd number of 1’s in the inputs, a property we exploit to detect
parity based dependencies.

The rationale behind this technique is that given a set of binary variables,
the probability mass function of the outcome obtained by XOR-ing them can be
predicted, provided that the variables are statistically independent.

Let X1 and X2 be two random variables with probability mass functions pX1(x1),
pX2(x2) and X3 = X1⊕X2. The probability mass function of X3 = 1 is given by:

p(X3 = 1) = pX1(X1 = 1)pX2(X2 = 0)+ pX1(X1 = 0)pX2(X2 = 1) (11)

This relation can be recursively applied to an arbitrary number of variables. For
multivariate interactions, the actual values will deviate from the expectations,
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enabling even the detection of parity relations: after all possible combinations B of
variables⊕n(B) is calculated and placed in the feature space, for the parity based re-
lations, whenever fb(XC) is true,⊕n(XC) will yield the same result (K = P or K = 0),
thus ⊕n(B) and Xe will be maximally correlated in the bounds of Pfb . The strength
of conditioning i.e the value of Pfb will be reflected in the pairwise interaction
coefficient.

2.2 General Measurement of Module-Wise Interactions

The processing of the XOR operations and the calculation of correlations can be
highly parallelized. Even so, for larger problem sizes the processing of all the
mappings can become problematic. For n variables, the dimension of the feature
space is

S = n +
n

∑
i=2

(
n
i

)
(12)

Therefore when searching for linkages, we can take into account second order in-
teractions among group of variables up to a bounded size k.

The interaction between a variable and any other group of variables is quantified
by:

dI(Xi,B) = I(Xi,⊕n(B)) (13)

where B is a set of variables of maximum k variables and not containing Xi, i.e
B∩Xi = /0.

In this definition we use mutual information, so that this relation can be applied
to higher order alphabets also, after appropriate replacement of the ⊕n operator.

For many problems, finding and exploiting all simple first order dependencies
with correlation analysis might suffice. All widely spread probabilistic model build-
ing genetic algorithms begin their model building by looking for pairwise dependen-
cies. Expressing the simpler interactions will hopefully heavily reduce the search
space and after no improvements can be detected cheaply, model building can con-
tinue with classical, more complex and expensive search methods.

Let MR contain the absolute values from the correlation coefficient matrix but
with self-correlations set to zero, i.e MR(x,x) = 0. The first module-wise metric
simply averages the different pairwise interactions:

d1(X ,Y ) =
∑x∈X ∑y∈Y MR(x,y)

(|X ⋃
Y |

2

) (14)

As it averages, d1 is influenced by outliers, penalizing the incorporation of non-
correlated components. For quantifying the strong interactions even in subsets of
the modules, we introduce a metric which just sums up interactions:

d2(X ,Y ) = ∑
x∈X

∑
y∈Y

σ(x,y) ·MR(x,y) (15)
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where

σ(x,y) =
{

1 , if MR(x,y) is statistically significant;
0 , otherwise.

(16)

In d2 non-correlated components can not heavily bias the outcome. This also
means that too complex module formation are not penalized. The two metrics
are complemental and can be used together. If d2 is high but d1 has a small
value, we should consider splitting the modules in multiple pieces: there are strong
interactions but not all (x,y) variable pairs are correlated.

In the next subsection we empirically depict how these metrics can guide the
model search.

2.3 Examples

We consider n = 8 binary variables X1 · · ·X8, with X5 conditioned by the first 4
variables XC = {X1 · · ·X4} in the following way: if ∑4

i=1 Xi = 3 then X5 = 1, i.e
whenever 3 out of the 4 variables are 1 X5 is also 1. The probability of realization
of the feature fb(XC) = 4/16 = 0.25. X5 = XC in a K = 3/4 = 0.75 proportions and
in a 1−K = 0.25 proportion X5 = X̄C. From equation 9 it results that the theoretical
expectancy for the conditioning is E = (2K−1)∗ fb = 0.125.

N = 2000 samples are generated randomly with uniform distribution followed
by the application of the above mentioned conditioning. The correlation coefficients
are computed and their absolute values are stored in MR. Self-correlation is set to
0. The hypothesis of no correlation is tested also, where the probability of getting
a correlation as large as the observed value by random chance is computed using a
t-test. The probabilities are stored in a matrix MT .

The results for MR and MT after averaging on 10 independent runs are presented
in table 1. The maximum values from MR clearly suggest that the strongest interac-
tions are between (X3,X5), (X2,X5), (X4,X5) and (X1,X5). Please remark how these
values are very close to the theoretical expectance of 0.125. These indications are
also statistically significant, as the corresponding values from MT are very close to
0. For many applications a p-value less than 0.05 is considered significant. After
(X3,X5) are joined in a module, the metrics d1 and d2 will successfully measure
that the joint model is most strongly connected to X2 X4 and X1. Following the
correlation guidance, the whole interdependence between XC and X5 can be
revealed.

In a second example we consider the conditioning:
if s = ∑6

i=1 Xi is an odd number then X7 = 1 for 10 variables. Computing MR on this
example does not reveal any pairwise interactions as expected. Also, all values from
MT are above the significance level of 0.05.

After extending the base 10 variables to the feature space by applying the ⊕n

on all possible combinations of the variables and computing the correlation coeffi-
cients here, the strongest interaction according to dI is identified as between modules
X7 and (X1 · · ·X6) with a significance level of 1.0750e− 022. Thus the underlying
conditioning is again revealed in one (extended) step with great accuracy.
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Table 1 The absolute correlation coefficients values (MR) and probabilities of no correlation
testing (MT ) resulting from the

(
∑4

i=1 Xi = 3
) �→ (X5 = 1) conditioning

MR =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

− 0.016 0.021 0.021 0.122 0.022 0.021 0.020
0.016 − 0.019 0.013 0.126 0.016 0.019 0.017
0.021 0.019 − 0.014 0.135 0.022 0.018 0.018
0.021 0.013 0.014 − 0.124 0.013 0.018 0.017
0.122 0.126 0.135 0.124 − 0.014 0.018 0.016
0.022 0.016 0.022 0.013 0.014 − 0.016 0.014
0.021 0.019 0.018 0.018 0.018 0.016 − 0.017
0.020 0.017 0.018 0.017 0.016 0.014 0.017 −

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

MT =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

− 0.531 0.425 0.427 0.000 0.412 0.428 0.441
0.531 − 0.457 0.602 0.000 0.511 0.476 0.512
0.425 0.457 − 0.573 0.000 0.461 0.511 0.473
0.427 0.602 0.573 − 0.000 0.605 0.506 0.516
0.000 0.000 0.000 0.000 − 0.587 0.485 0.552
0.412 0.511 0.461 0.605 0.587 − 0.562 0.574
0.428 0.476 0.511 0.506 0.485 0.562 − 0.503
0.441 0.512 0.473 0.516 0.552 0.574 0.503 −

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

Parity problems like the one presented are intractable for EDAs except if they
especially model b-wise dependencies where b is the block size with parity interac-
tion [4]. If the EDA fail to discover these higher order dependencies, then variables
will be modeled as independent and randomly distributed in consequent generations.
To avoid this, the presented technique can be used as a preprocessor for EDAs as
follows. Extending 14-16 variables to the feature space is still feasible and can be
quickly achieved using parallel matrices. Therefore, the preprocessing would repeat-
edly choose random groups of 10-16 variables and would analyze their relationship
in feature space. In this way the existence of first and second order interactions from
the groups can be detected and this information can facilitate the building of a more
adequate initial model.

The empirical preliminary testing confirms the pairwise interaction analysis can
detect complex conditioning. The computation of the coefficient correlation matrix
is a fast operation being faster then evaluating a single model fit on the population
data.

3 Case Study on eCGA

The eCGA [8] is a multivariate extension of the Compact Genetic Algorithm [9]
based on the key principle that learning a good probability distribution of the pop-
ulation is equivalent to the linkage learning process. The measure of a good dis-
tribution is quantified based on minimum description length (MDL) models. MDL
is pillared on the concept that any regularity in a given set of data can be used to
compress the data. The best hypothesis for a given set of data is the one that leads
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Table 2 MPM over 3 variables. X1 and X3 are linked together defining a joint distribution
where X1 having the same values as X3 has probability 0.0. This, together with the information
that X2 is three times more likely to be 1 than 0 helps focusing the search

[X1,X3] [X2]
P(X1 = 0 and X3 = 0) = 0.0 P(X2 = 0) = 0.25
P(X1 = 0 and X3 = 1) = 0.5 P(X2 = 1) = 0.75
P(X1 = 1 and X3 = 0) = 0.5
P(X1 = 1 and X3 = 1) = 0.0

to the largest compression. Consequently, a tradeoff between model accuracy and
complexity must be found.

MDL restriction reformulates the problem of finding a good distribution as mini-
mizing both population representation (population complexity – Cp) and the cost
of representing the model itself (model complexity – Cm). Hence the combined
complexity criterion Cc to be minimized is given by:

Cc = Cp +Cm (17)

The probability distribution used by the eCGA belongs to the Marginal Product
Model (MPM), a class of probability model. Subsets of variables can be modeled
jointly as partitions, providing a direct linkage map. Partitions together with the
products of marginal distributions over them they form the MPMs.

The MPM concept is illustrated in Table 2 over a 3 bit problem with [1,3], [2]
as partitions. The first and third bit are jointly distributed while variable [2] is inde-
pendent. The compound partition [1,3] can have four settings: {00, 01, 10, 11}. The
probability distribution for the partitions is given by the frequency of the individuals
in the population with those bit values.

Starting from a random population, the eCGA applies the process of evaluation,
selection, MPMs based model-building and sampling until a halting criterion is met.

Algorithm 1. Model-building in eCGA

Build initial model m where each variable is an independent partition;1

repeat2

mbest ← m;3

foreach [p,q] from the
(|m|

2

)
set of possible pair partitions of m do4

Form new model m′ based on m but with p and q merged into a joint partition;5

Evaluate combined complexity criterion Cc(m′);6

if m′ improves over mbest then7

mbest ← m′;8

m← mbest ;9

until No improvement was found ;10
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In its model-building phase, the eCGA greedily searches the space of possi-
ble partitions guided by the Cc, evaluating all pairwise partition merges and al-
ways retaining the best one until no more improvements can be made. Given a
partition configuration, their probability distribution are estimated by counting the
frequencies of each different partition setting in the population.

The model building process is outlined in Algorithm 1. It involves a very expen-
sive computational task as the determination of Cc for each tested model, requires
the model to be fitted against the (large) population. The method has O(n3) com-
plexity over the combined complexity criterion evaluations as line 5 iterates over
pairs of variables. This can be intuitively seen as

(n
2

)
has complexity O(n2).

3.1 Hybridization of eCGA

EDAs in general through model learning and sampling implement an ide-
alized crossover operator, being very efficient at combining high-quality
substructures/building-blocks. As they have no explicit variational (mutation) oper-
ators to discover new building-blocks on the go, EDAs must rely only on large pop-
ulation sizes that ensure building-block supply and accurate decision making [7].
With too small population sizes EDAs may not be able to efficiently discover
building-blocks.

To alleviate this issue, a commonly used efficiency enhancement mechanism is
the hybridization with local-search techniques. In the case of the eCGA, incorporat-
ing local-search in the subsolution search space leads to better results and greater
robustness [13].

Another study had shown that a simple bit-flipping hill-climber applied to all
individuals can reduce the population requirements by an order of magnitude even
on deceptive problems [5]. This kind of hybridization is easily parallelizable as in-
dependently improving each individual through local-search is an embarrassingly

Algorithm 2. Correlation guided model-building

Build initial model m where each variable is an independent partition;1

Compute MR and MT ;2

if this is the first generation and there are no significant values in MT then3

Request a bigger population and suggest using univariate EDAs or performing4

search for higher order interactions;
Halt the search;5

repeat6

[p,q]← StrongestInteraction(m,MR ,d);7

Form new model m′ based on m but with p and q merged into a joint partition;8

Evaluate combined complexity criterion Cc(m′);9

if m′ improves over m then10

m← m′;11

until No improvement was found ;12
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parallel task. Finally, as local-search moves all non-locally-optimal sub solutions to
local-optima, it also reduces entropy, easing the model building process. As it af-
fects variable correlation and entropy, we also study how local-search enhancement
assist correlation guided model-building. We use a simple greedy search that pro-
cesses the bp most probable partition configuration of each partition and retains the
one that maximizes the objective function value.

3.2 Guided Linear Model Building

When searching for a proper MPM, eCGA greedily searches the space of possible
models evaluating all pairwise partition merges. The model is extended sequentially
with the best possible improvement obtained by joining modules. The main idea
of the proposed search is to not process the list of possible extensions blindly and
exhaustively: the best extension(s) to be considered are based on correlation analysis
between the partitions. The search stops immediately when the model extension
does not improve the combined complexity criterion. The reasoning behind this is
that all other partition merges that are not analyzed would have (according to the
correlation based measurements) lower degree of interactions then the last proposed
extension. If that extension was rejected by the Cc then all the remaining ones would
be also discarded, there is no point to continue the analysis.

The correlation guided model-building is presented in Algorithm 2. MR contains
the absolute values of the correlation coefficient matrix and has self-correlations set
to zero ( MR(x,x) = 0). MT is a result of a a t-test that contains the probabilities of
getting the correlations observed in MR by random chance.

d is a module-wise metric which operates on MR and takes into account only
first order interactions like the ones described in subsection 2.2. The metric could
be extended to cover all interactions but with the cost of the complexity overhead
presented in Equation 12.

The method StrongestInteraction identifies the best possible interaction(s) ac-
cording to a module-wise metric d which in turn is based on the raw data provided
in MR. Please note that this matrix has to be computed only once in the beginning.
This computation has a complexity of O(n2) in terms of elementary operations1.
Computing MR is cheaper then evaluating once the combined complexity criterion:
as the Cc has to evaluate the model fit according to the population it has a complexity
of O(Nn) where N is the population size and n the problem size. From population
sizing theory [25] N > n, therefore O(Nn)≥ O(n2).

In terms of Cc evaluations, the proposed method is very efficient, being linear.
If on the first run of the model-building no statistically significant interactions

can be detected the method stops and request a bigger population/sample size for
safe detection of first interactions (line 3-5 of Algorithm 2). For the cases where it
may be possible to not have any useful interactions it also suggest applying other
techniques:

1 Not to be confused with the complexity in terms of Cc evaluations.
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• univariate models for simple problems like OneMax [6] where applying complex
methods are an overkill;

• for hard problems, applying other search techniques able to detect higher order,
multivariate interactions.

On noisy problems, line 7 can be changed to retrieve the best j suggested model ex-
tensions. When j is a constant, analyzing all j extensions and retaining the best one
does not change the complexity in terms of Cc evaluations of the model-building.

3.3 Test Suite

We test the eCGA with correlation guided model-building on two problems that
combine the core of two well known problem difficulty dimensions for building
blocks (BB):

• Intra-BB difficulty: deception due trap functions.
• Extra-BB difficulty: non-linear dependencies due to hierarchical structure, which

at a single hierarchical level can be interpreted as exogenous noise – generated
by interactions from higher levels.

3.3.1 Concatenated k-Trap Function

Deceptive functions are among the most challenging problems as they exhibit one
or more deceitful optima located far away from the global optimum. The basins of
attraction of the local-optima are much bigger than the attraction area of the optimal
solutions, thus following the objective function gradient will mislead the search
most of the time.

Order k deceptive trap function or simply k-Trap, is a function of unitation
(its value depends only on the numbers of 1’s in the input string), based on two
parameters fhigh and flow which define the degree of deception and the fitness
signal-to-noise ratio.

Let u be the unitary of the binary input string. Then the k-trap function is
defined as:

trapk(u) =
{

fhigh , if u = k;
flow× k−1−u

k−1 , otherwise.
(18)

Here we use a k-Trap function based on k = 4, fhigh = 1 and flow = 0.75.
Concatenating m copies of this trap function gives a global additively separable,

boundedly deceptive function over binary strings:

fd(x) =
m−1

∑
i=0

trapk

(
ki+k−1

∑
j=ki

x j

)

(19)

3.3.2 Hierarchical XOR

Hierarchical problems have a gross-scale building-block structure but they are not
additively separable. Higher level interactions may be only interpreted after solving
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all the subproblems from lower levels. Therefore, the correct partitions can only be
discovered sequentially, which is in contrast with the uniformly scaled case where
the problem structure can be captured immediately with a sufficiently large sample
size.

As building-blocks in hierarchical problems have multiple context-optimal set-
tings - allowing multiple solutions for each subproblem, the contribution of
building-blocks to the objective function is separated from their meaning. This
conceptual separation induces non-linear dependencies between building-blocks:
providing the same objective function contribution, a building-block might be com-
pletely suited for one context whilst completely wrong for another one. Therefore,
the fitness of a building-block can be misleading if it is incompatible with its con-
text. At particular hierarchical levels this fitness variance resulting from higher order
non-linear interactions resembles the effect of exogenous noise.

The hierarchical test problem under consideration is the hXOR [24] is defined on
binary strings of the form x ∈ {0,1}2p

, where p is the number of hierarchical lev-
els. This problem is based on the complemental relation between two sub-modules.
This relation is checked with the help of a Boolean function h which determines if
sub-blocks are valid in their current context, forming exclusive disjunction.

Let L = x1,x2, . . . ,x2p−1 be the first half of the binary string x and
R = x2p−1+1,x2p−1+2, . . . ,x2p the second one. Then h is defined as:

h(x) =

⎧
⎨

⎩

1 , if p = 0;
1 , if h(L) = h(R) = 1 and L = R̄;
0 , otherwise.

(20)

R̄ stands for the bitwise negation of R.
Based on h the hierarchical XOR is defined recursively:

hXOR(x) = hXOR(L)+ hXOR(R)+
{ |x|, if h(x) = 1;

0, otherwise.
(21)

where |x| denotes the length of x.
At each level p > 0 the hXOR(x) function rewards a block x if the two composing

sub-blocks are valid and complemental. Otherwise the contribution is zero.
The hXOR has two global optima, composed by half zeros and half ones. At the

lowest level the problem has 2n/2 local optima where n is the problem size.
In order to be able to control the complexity of the problem we introduce the not

fully hierarchical version of the hXOR denoted by lhXOR. Here pairwise hierarchi-
cal combinations of blocks are evaluated and valid combinations are rewarded up to
the level l.

The shuffled version of the problem is used, where the tight linkage is disrupted
by randomly reordering the bits.
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3.4 Performance of the Modified eCGA

The linear runtime of the correlation guided model-building in eCGA provides a
huge qualitative advantage over the O(n3) classic model-building complexity. A
heuristic based model-building with a O(n2) complexity had been shown to speed
up the eCGA up to more than 1000 times [5].

Therefore, instead of providing a quantitative run-time comparison between
eCGA with the proposed and the classical model-building, we concentrate the em-
pirical investigation on the scaling, model quality – number of generations until
convergence and the effect of hybridization.

3.4.1 Test Setup

We tested the correlation guided eCGA, henceforth denoted by eCGA∗ with and
without local-search hybridization (denoted as eCGA∗h) on concatenated 4-Trap and
lhXOR with l = 3 for problem sizes psize = {32,64,256}. Population sizes are
15psize for eCGA∗h and 55psize for eCGA∗. These values were not tuned. A number
of 10 runs were averaged for each test case. Results are presented in Figure 1 and
discussed in the followings.

3.4.2 Analysis

In all cases the algorithms have found a global optima and the correct structures.
Figure 1 shows the number of function evaluations needed per problem size.

0 32 64 256 300
0

5

10

15x 10
5 4-Trap

0 32 64 256 300
0

2

4

6

8x 10
5 lhXOR

eCGA*
h

eCGA*

eCGA*
h

eCGA*

Fig. 1 Scaling of the correlation guided eCGA∗ with an without local-search hybridiza-
tion (eCGA∗h) on concatenated 4-Trap and lhXOR with l = 3 for problem sizes psize =
{32,64,256}
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Local search reduces entropy thus as expected the eCGA∗h showed a very accu-
rate - noise free model-building, all problems being solved within 3 generations.
Nevertheless, local-search is expensive especially for big problem sizes.

eCGA showed somehow similar model-building qualities on hXOR solving the
problems in 4-8 generations. On 4-Trap with 256 bit the convergence took a long
time even if the correct linkages were detected. The reason for is that the optimal
blocks formed by all ones are much more unlikely in the beginning of the search
and there are also many noisy non-optimal configurations. In this cases it takes a
long time for the best configuration to takeover.

We think there is a possibility to safely speed up this takeover by accelerating
trends. Sub solutions whose probability diminishes over several epochs are replaced
by sub solutions that are continually expanding. This operator can have the same
effect as the local-search but without the computational burden of the local search.

4 Extended Bayesian Model Building

A Bayesian networks is a probabilistic graphical model that depicts a set of ran-
dom variables and their conditional independence via a directed acyclic graph. It
represents a factorization of a multivariate probability distribution that results from
an application of the product theorem of probability theory and a simplification of
the factors achieved by exploiting conditional independence statements of the form
P(A|B,X) = P(A|X), where A and B are attributes and X is a set of attributes.

The represented joint distribution is given by:

P(A1, . . . ,An) =
n

∏
i=1

P(Ai|par(Ai)) (22)

where par(Ai) denotes the set of parents of attribute Ai in the directed acyclic graph
that is used to represents the factorization.

Bayesian networks provide excellent means to structure complex domains and
to draw inferences. They can be acquired from data or be constructed manually by
domain experts (a tedious and time-consuming task).

One of the most challenging task in dealing with Bayesian networks is learning
their structures, which is an NP-hard problem [2, 3]. Most algorithms for the task of
automated network building from data, consist of two ingredients: a search method
that generates alternative structures and an evaluation measure or scoring function to
assess the quality of a given network by calculating the goodness-of-fit of a structure
to the data.

Due to the computational cost implications, most of the algorithms that learn
Bayesian network structures from data use a Greedy heuristic local search to find a
good model, trading accuracy for tractability and efficiency.

The greedy hill-climbing methods traverse the search space starting in an initial
solution and doing a finite number of steps. At each step the algorithm only con-
siders local changes, i.e. neighbor network structures, and chooses that resulting in
the greatest improvement of some discriminative metric. The algorithm stops when
there is no local change yielding an improvement.
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In Bayesian network learning, the search operators do arc addition, arc deletion
and arc reversal. Search operators have to take care of avoiding to introduce directed
cycles in the graph. There are O(n2) possible changes, n being the number of vari-
ables. With respect to the starting solution, the empty network is usually considered
although random starting points or perturbed local optima are also used, specially
in the case of iterated local search.

By adding, reversing, removing only one arc at the time, these network search
algorithms can not find and express multivariate interactions that only manifest at
a synergic level like the parity function. Here, adding edges between less than k
nodes, where k is the size of the block containing the multivariate interaction, will
not result in any improvement.

EDAs replace the evolutionary search operators by learning a probability distri-
bution from the population which encodes the relationships between the individual
components and sampling new individuals from that learned distribution. Among
multivariate models the usage of Bayesian networks for this task have been one of
the most successful approaches [12, 17, 16].

The probability network encoded, representing the interdependency of variables
is more complex than of other approaches, like the eCGA, which cluster variables
components in independent groups and learn a joint probability distribution for each
group. The rich modeling capabilities come at a cost, the computation time and com-
plexity to construct the best Bayesian network hugely increases, being impossible to
search through all possible models for larger problem sizes. A lots of current research
in EDAs is focused on developing heuristics capable to quickly find good models.

In the following we describe a method based on the extension of pairwise inter-
actions, that is able to select all relevant parents for an attribute in one step, thus en-
abling the finding and expression of relationships not manifesting at pairwise level.

4.1 Multi-parent Search
The goal is to construct a Bayesian network by detecting the set par(Ai) for each
attribute. Adding the edges between and attribute and its parents must not result in
a cycle.

In our proposed approach, we build a feature space as described in Section 2.1
by mapping interactions among group of variables up to a bounded size k, which
is a parameter of the method. For each attribute Ai, we sequentially assign the
potential parent set par∗j (Ai) to be the jth highest interacting subset of variables,
quantified by dI defined in Equation 13. In this way we process a prefixed top
Snr interacting subsets for each attribute. For every subset, we process each po-
tential parent p∗(Ai), p∗(Ai) ∈ par∗j (Ai), and if adding an edge between the at-
tribute and its potential parent does not result in a cycle, p∗(Ai) becomes a parent of
Ai: par j(Ai) = par j(Ai)∪ p∗(Ai). From all the obtained and tested parent subsets
for each attribute, we choose attribute and its parents that maximizes a given
discriminative scoring function, in our case the Bayesian Dirichlet metric [11].

The search stops when we determined the parents of each attribute, or when con-
sidering the extension of the network does not result in improvements. The outline
of this parent search procedure is outlined in Algorithm 3.
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Algorithm 3. Constructing a Bayesian network that is able to capture all kind
of interactions up to a prefixed order k

input : data, k
output: BN

BN← EmptyNetwork();1

foreach c from the possible combinations of variables up to size k do2

F ← [F,⊕(data(c))];3

foreach attribute A, iterating by i do4

foreach extended variable e from F, iterating by j do5

M(i, j) = I(Ai,e j);6

Sort by highest interactions first M← sort(M,2,′ descend′);7

repeat8

for i=1:n do9

if HasParents(i) then10

continue;11

for j=1:Snr do12

par∗(Ai)← DecodeParents(i, j);13

par(Ai)← EliminateCycles(par∗(Ai));14

BN∗ ← ExtendNetwork(BN,Ai, par(Ai));15

if Score(BN∗) > Score(BN) then16

BN← BN∗;17

until No improvement was found ;18

return BN;19

4.2 Test Samples

To assess the performance of the proposed search method, we build some artificially
generated test samples that contain various types of multivariate interactions. We
consider 10 variables X1, . . . ,X10, sampled 5000 times.

The first data set contains two highly noisy features:

1. A highly noisy
(
∑4

i=1 Xi = 3
) �→ (X5 = 1) conditioning, where whenever three

out of the four first variables are one, X5 is also set to 1 with a probability of 0.5.
2. A noisy feature based on a parity function conditioning

parity([X6,X7,X9,X10]) �→ (X8 = 0)

if variables X6,X7,X9,X10 have an even number of ones, X8 is set to 0 with a 0.8
probability.

In the second dataset we reduce the amount of explicit noise but introduce an overlap
between the two features, which are:
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1. We have the (

∑
i∈{1,2,3,4,9,10}

Xi = 3

)

�→ (X5 = 1)

noisy conditioning, where whenever half of the variables X1,X2,X3,X4,X9,X10

are 1, X5 is also set to 1 with a probability of 0.95.
2. Again a noisy feature based on a parity function conditioning

parity([X1,X2,X6,X7,X9,X10]) �→ (X8 = 0)

if variables X1,X2,X6,X7,X9,X10 have an even number of 1’s, X8 is set to 0 with
a 0.9 probability.

In the third dataset we introduce an interplay between the features, where the
realization of the first feature may inhibit the realization of the second one:

1. A noisy
(
∑4

i=1 Xi = 3
) �→ (X5 = 1) conditioning, where whenever three out of the

four first variables are one, X5 is also set to 1 with a probability of 0.5.
2. A feature based on a sum function conditioning alike of the first feature

(

∑
i∈{6,7,9,10}

Xi = 3

)

�→ (X8 = 0)

but which may be short circuited by the realization of the first feature: if X5 = 1,
X8 is not expressed.

The generation of these datasets is detailed in Listings 1-3.

Listing 1: MATLAB code for generating the first set of samples.

% generate uniformly distributed random samples
n = 10; N = 5000;
data = round(rand(N,n));

% for each sample
for i = 1:N
% define a noisy feature on the first 4 variables:
% if 3 out of the 4 bits are set to 1,
% set the 5th variable to 1 with a probability of 50%

if ((sum(data(i,1:4)) == 3) && (rand < 0.5))
data(i,5) = 1;

end

% define a parity feature on variables 6, 7, 9, 10
% afecting variable 8th with a probability of 80%

if ((mod(sum(data(i,[6 7 9 10])),2) == 0) && (rand < 0.8))
data(i,8) = 0;

end
end
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Listing 2: MATLAB code for generating the second set of samples.

% generate uniformly distributed random samples
n = 10; N = 5000;
data = round(rand(N,n));
% for each sample
for i = 1:N
% define a noisy feature on the first 4 and variables 9, 10:
% if 3 out of the 6 bits are set to 1,
% set the 5th variable to 1 with a probability of 95%

if ((sum(data(i,[1 2 3 4 9 10])) == 3) && (rand < 0.95))
data(i,5) = 1;

end
% define a parity feature on variables 1, 2, 6, 7, 9, 10
% afecting variable 8th with a probability of 90%

if ((mod(sum(data(i,[1 2 6 7 9 10])),2) == 0) && (rand <
0.9))
data(i,8) = 1;

end
end

Listing 3: MATLAB code for generating the third set of samples.

% generate uniformly distributed random samples
n = 10; N = 5000;
data = round(rand(N,n));
% for each sample
for i = 1:N
% define a noisy feature on the first 4 variables:
% if 3 out of the 4 bits are set to 1,
% set the 5th variable to 1 with a probability of 75%

if ((sum(data(i,1:4)) == 3) && (rand < 0.75))
data(i,5) = 1;

end
if 3 out of the bits from variables 6, 7, 9, 10 are 1
% and the value of the 5th variable is 0, then variable 8 is 0

if ((sum(data(i,[6 7 9 10])) == 2) && (t(i,5) == 0))
data(i,8) = 1;

end
end

4.3 Model Building Performance

For each test case, we generated 50 instances and tested the proposed method against
a classical Bayes network model building, which extends a current model by per-
forming one arc operation at the time, and using the Bayesian information criterion
[23] for scoring and protection against over fitting. The allowed in degree in the
classic search and the k parameter in the proposed method was set to 6, thus both
methods could consider up to 6 parents. The number of analyzed possible parent
sets Snr was set to 5.
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For each batch of 50 runs, we recorded the best network found, its score, the
worst and the average score. Because the data is stochastically generated and incor-
porates noise, the exact quantity of this values is of a little importance. The same
network structure will score differently when evaluated on different noisy samples.
Nevertheless, these values may be used to make qualitative assessments, in the cases
where the worst result of one method surpasses the best network score or the average
score found by the other method.

More important aspect regards the methods ability to extract the same structure
from different samples of noisy data. We measure this robustness by comparing the
best and worst scoring network out of each batch of 50 runs. If the adjacency matrix
of the two networks is not similar (one can not be transformed into the other one
by using only row and column swapping), implies that the search method may find
different network topologies on different runs.

The numerical scores are presented in Table 3. The plot of the best networks
found for each of the three cases are presented in Figures 2, 3, 4.

In the first case, where there is a high amount of noise, the classical approach can
not detect the real structure, the network is filled with spurious connections where
often an attribute is accounted as the parent of all other attributes following after.
Observe for example in Figure 2, that Node 1 is attributed as parent for all other
nodes. On the other hand, even with such a high amount of noise, the extended
multi-parent search is able to detect the correct topology of the network.

For the second dataset it is expected that the classical approach is not able to
detect the parity, multivariate interaction as it would need to add at least six arcs at
once to reveal this interaction. Furthermore, as this feature overlaps with the other
feature which also spans across six variables, the method is unable to account for
useful relations and returns the empty network, without edges, in all cases. Please
note by looking at the best and worst score in Table 3 for test suite 2, how the
same empty network may score differently when presented with different test data.
The proposed method is again able to find the correct structure, as we allowed the
feature space exploration up to six combined variables, which is also the length of
the highest multivariate relation.

On the third case, the classical method is able detect the interactions influenc-
ing attribute 5 and its relation to attribute 8, while failing to model the synergic
interaction of the other variables. Sometimes, as depicted in Figure 4 A, it reports
attribute 5 as linked to other variable different from attribute 8, but this result is
rarely achieved. By modeling all interactions up to size six in the feature space,
the multi-parent search is able to correctly decipher the interplay between the two
features.

For all cases, as shown above, the extended search found qualitatively better net-
works; the worst scoring results of the proposed method were always better than the
best results returned by the classical method. As it does not contain stochastic com-
ponents, the proposed showed robustness, finding the same topology on different
runs.

Model building in EDAs starts by finding and modeling pairwise dependen-
cies. When no such relations are available a successful approach must do k-wise
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Table 3 The performance of the proposed and classical methods on the three test suites. The
multi-parent extended search worse results are better than the best scores obtained by the
classical search method in all cases

Best Worst Average Std. Robust
Test suite 1
Classic -34128.06 -34269.11 -34204.73 32.89 No
Extended -33662.24 -33826.25431 -33748.88 37.67 Yes
Test suite 2
Classic -33876.23 -34040.17 -33950.13 36.63 Yes
Extended -33063.69 -33308.58 -33192.06 52.87 Yes
Test suite 3
Classic -34172.68 -34298.18 -34228.73 27.03 No
Extended -33915.10 -34065.95 -33982.97 29.87 Yes
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Fig. 2 Best networks found by the classical method (A) and the multi-parent extended search
(B) on the first test suite

multivariate interaction search. The proposed method has demonstrated a great abil-
ity to identify simpler and synergic multivariate interactions even in the case of
noisy feature interplay, where considering one edge addition at the time is fruitless.
While it uses a small number of model evaluations and it is much more effective
than doing greedy search using a k-wise stochastic edge search operator, the ex-
tended multi-parent search is still very costly in terms of building and evaluating
the feature space. Due to the combinatorial explosion of the multivariate interaction
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Fig. 3 Best networks found by the classical method (A) and the multi-parent extended search
(B) on the second test suite
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Fig. 4 Best networks found by the classical method (A) and the multi-parent extended search
(B) on the third test suite

possibilities as problem sizes increase, its scalability is not sustainable, but nor is
the scalability of other approaches.

For limited problem sizes it can be used successfully as it is computationally
more efficient than other methods, not requiring model evaluations against the data
once the feature space has been built. Furthermore, the feature space building is
highly parallelizable.

Future experiments may regard the analysis of methods that build only a small
part of the feature space.
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5 Conclusions

EDAs infer and exploit structure from the problems under consideration by build-
ing a probabilistic model and sample it. A good model induces an efficient search
bias that can render hard problems feasible but such a model does not come cheap.
Model-building in competent EDAs often require the consideration and evaluation
of a very large number of potential models.

This chapter had proposed the usage of pairwise interactions measures like mu-
tual information or various correlation coefficients to assist model-building. When
branching from the current model in search for a better one, pairwise interaction
analysis is employed to quickly identify the most promising extension, avoiding the
need for testing all the other extension possibilities. This can alleviate the model
search cost by orders of magnitudes and even facilitate the finding of qualitatively
better models. As we had shown, the usage of potential model selection by means of
pairwise interaction analysis, reduces the model-building complexity of the eCGA
from O(n3) to linear, while still inferring the correct problem structures.

In another case study, this technique was used for efficient k-wise multivariate
interaction search. Namely, a search algorithm for constructing Bayesian networks
from data was developed, which showed remarkable ability to infer the difficult
relationships between variables.

For extension to richer alphabets one must use mutual information for quanti-
fying the pairwise interactions between attributes, as zero correlation between two
variables implies statistical independence only in the dichotomous case.

Future work will consider applying pairwise interaction guidance to enhance and
qualitatively improve model-building in other competent EDAs.
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122 D. Iclănzan, D. Dumitrescu, and B. Hirsbrunner

22. Sastry, K., Goldberg, D.E., Llora, X.: Towards billion-bit optimization via a parallel es-
timation of distribution algorithm. In: GECCO 2007: Proceedings of the 9th annual con-
ference on Genetic and evolutionary computation, pp. 577–584. ACM, New York (2007),
http://doi.acm.org/10.1145/1276958.1277077

23. Schwarz, G.: Estimating the dimension of a model. The annals of statistics 6(2), 461–464
(1978)

24. Watson, R.A., Pollack, J.B.: Hierarchically consistent test problems for genetic algo-
rithms: Summary and additional results. In: Brave, S. (ed.) GECCO 1999: Late Breaking
Papers, Orlando, Florida, USA, pp. 292–297 (1999)

25. Yu, T.L., Sastry, K., Goldberg, D.E., Pelikan, M.: Population sizing for entropy-based
model building in discrete estimation of distribution algorithms. In: Lipson, H. (ed.)
GECCO, pp. 601–608. ACM, New York (2007),
http://doi.acm.org/10.1145/1276958.1277080

http://doi.acm.org/10.1145/1276958.1277077
http://doi.acm.org/10.1145/1276958.1277080


ClusterMI: Building Probabilistic Models Using
Hierarchical Clustering and Mutual Information

Thyago S.P.C. Duque and David E. Goldberg

Abstract. Genetic Algorithms are a class of metaheuristics with applications in
several fields including biology, engineering and even arts. However, simple Genetic
Algorithms may suffer from exponential scalability on hard problems. Estimation of
Distribution Algorithms, a special class of Genetic Algorithms, can build complex
models of the iterations among variables in the problem, solving several intractable
problems in tractable polynomial time. However, the model building process can
be computationally expensive and efficiency enhancements are oftentimes neces-
sary to make tractable problems practical. This paper presents a new model building
approach, called ClusterMI, inspired both by the Extended Compact Genetic Algo-
rithm and the Dependency Structure Matrix Genetic Algorithm. The new approach
has a more efficient model building process, resulting in speed ups of 10 times for
moderate size problems and potentially hundreds of times for large problems. More-
over, the new approach may be easily extended to perform incremental evolution,
eliminating the burden of representing the population explicitly.

1 Introduction

Evolutionary Algorithms (EA) [4] [9] have been successfully used in several dif-
ferent applications involving search, optimization and machine learning problems.
Goldberg [5] presents a design-decomposition methodology for successfully de-
signing scalable Genetic Algorithms (GAs). A GA that can solve hard problems
accurately, efficiently and reliably is called a competent GA. These GAs can solve
problems that are intractable for traditional methods in a tractable polynomial time.
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Estimation of Distribution Algorithms (EDA) [10] have been particularly suc-
cessful on solving hard problems competently. These algorithms build probabilistic
models that summarize the information of the current population, and then sample
these models to generate a new population. By using complex models like Bayesian
Networks or Marginal Product Models (MPM), these algorithms can learn the
structure of the problem and use this information to guide the search.

The Extended Compact Genetic Algorithm (ECGA) [7] is one of such EDAs,
and it uses the MPM to model non-overlapping iteration among variables that form
a Building Block (BB) [4] [9].

Although EDAs scale polynomially, they are still computationally expensive.
Therefore, in order to solve large problems it is oftentimes necessary to enhance the
efficiency [16] of the algorithm using techniques like parallelization [1], hybridiza-
tion [6] [19] [18], time continuation [15], evaluation relaxation [14] and incremental
evolution [8], [13].

Particularly, the model building process of the ECGA is time consuming. This
issue can be partially addressed using a cache structure [11], relaxing the model
building process [2] or performing sporadic model building [12]. In this paper we
propose a new model building algorithm, called ClusterMI, that aims on reducing
the computational complexity of the model building process. Moreover, the new
model building mechanism may be used to perform incremental model building,
which can further improve the performance of the algorithm and will be explored
on future work.

This paper is organized as follows: Section 2 presents a introduction to the
ECGA and the Dependency Structure Matrix Genetic Algorithm (DSMGA),
section 3 presents ClusterMI, a new approach for model building in EDAs that com-
bine ideas from both ECGA and DSMGA. Section 4 presents the results of the new
approach and compares it with the ECGA. Section 5 discusses future work, includ-
ing initial ideas for incremental evolution. Section 6 presents final considerations
and concludes the paper.

2 Background

This section briefly reviews the ECGA and the DSMGA, discussing computational
aspects of the model building process on these algorithms.

As an EDA, the ECGA [7] follows the template presented on algorithm 1. Par-
ticularly, the ECGA uses the MPM as a model of the current population. The MPM
has two components: (I) a partition over the variables, defining which variables are
independent and which variables are linked, and (II) a probability distribution over
each partition. Table 1 presents one example of a MPM that defines the partition
[x0], [x1, x3], [x2] over a string of four bits ([x1,x2,x3,x4]).

The model building process of the ECGA finds a partition that appropriately rep-
resents the population by greedily optimizing the Combined Complexity Criterion
(CCC) [7] using algorithm 2. The CCC reflects the minimum description length
(MDL) bias of the ECGA and it is presented in equation (1), where n represents
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Algorithm 1. A template for EDAs
1. Start with random population.
4. Do:
5. Evaluate the population
6. Select a group of good individuals
7. Build a model to summarize the population
8. Sample the built model
5. while (stop criteria not met)

Table 1 A Marginal Product Model defines a joint distribution over a set of four variables
[x1,x2,x3,x4]. In this example, x1 and x3 are linked together and x0 and x2 are independent

[x0] [x1, x3] [x2]
P(x0 = 0)=0.3 P(x1 = 0, x3 = 0) = 0.5 P(x2 = 0) = 0.5
P(x0 = 1)=0.7 P(x1 = 0, x3 = 1) = 0.0 P(x2 = 1) = 0.5

P(x1 = 1, x3 = 0) = 0.0
P(x1 = 1, x3 = 1) = 0.5

Algorithm 2. Greedy search for an appropriated model in the ECGA
1. Start with all independent variables.
2. improvement = IMPOSSIBLE
3. best = CCC(current model)
4. Do:
5. For each partition [i]
6. For each partition [j], j not equals i
7. i+j = Merge i and j
8. ccc = CCC(i+j)
9. if (ccc < best)

10. (bi, bj) = save(i, j)
11. best = ccc
12. improvement = POSSIBLE
13. if (improvement = POSSIBLE)
14. Merge the saved (bi, bj)
15. Update current model
16. while (improvement = POSSIBLE)

the population size, m the number of partitions, Mi the i-th partition and E(Mi) the
entropy of the partition Mi. Observe that calculating the entropy involves estimating
the probability distribution over the partition, an O(n) step.

CCC = n · log(n) ·
m

∑
I=0

E(Mi) ·2Size[Mi] (1)
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Algorithm 3. The use of a cache structure in the model building for ECGA
1. Start with all independent variables.
2. For each partition [i]
3. For each partition [j], j not equals i
4. i+j = Merge i and j
5. ccc = CCC(i+j)
6. cache.store(i, j, ccc)
7. improvement = IMPOSSIBLE
8. Do:
9. best = CCC(current model)

10. For every entry (i, j, ccc) in the cache
11. if (ccc < best)
12. improvement = POSSIBLE
13. best = ccc
14. (bi, bj) = save (i, j)
15. if (improvement = POSSIBLE)
16. Merge the saved (bi, bj)
17. Update the current model
19. For every entry (i, j, ccc) in the cache
10. if (i = bi or i = bj or j = bi or j = bj)
20. cache.remove(i, j, ccc)
21. For each partition [k]
22. bi+bj+k = Merge bi+bj and k
23. ccc = CCC(bi+bj+k)
24. cache.store(bi+bj, k, ccc)
25. while (improvement = POSSIBLE)

The greedy search for the best partition requires O(�3) evaluations of the CCC
criterion (� indicates the problem size, see figure 3 for empirical evidence or [2]
for a complexity analysis). For deceptive functions [5] the algorithm can be relaxed
to require O(�2) [2] without losing accuracy, but it is unknown whether this result
holds for other problems.

Another common way to speed-up the model building is the use of a cache struc-
ture (as implemented in [11]). Algorithm 3 implements the greedy search using a
cache structure. This algorithm is guaranteed to produce the same results as the
algorithm 2, since it only replaces the calculation of the CCC by a cache lookup.

Algorithm 3 requires O(�2) evaluations of the CCC criterion (see figure 3). These
come from line 5, which is executed O(�2) times and line 23, also executed O(�2)
times. However, there is the extra cost of managing the cache. Assuming a problem
with size � and building blocks of size k, when the search for the best partition
begins at line 8, the cache will have �∗(�−1)/2 entries. When the algorithm finishes
its execution at line 25, the cache will have �/k ∗ (�/k− 1)/2 entries of size O(k).
Consequently, the size of the cache ranges from O(�2) to O(�2/k). That implies an
additional memory requirement almost the size of the population itself.
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This work also draws inspiration from the DSMGA [20] [21], a competent GA
that uses a Dependency Structure Matrix (DSM) to model the relationship among
variables. A clustering method is used to determine groups of variables that strongly
interact among each other, forming a BB. To do so, the DSMGA uses a search
method and a MDL bias: minimizing the cost of describing a given DSM. After-
wards, the information from the clustering is used to perform BB-Wise crossover.

In the DSMGA, a binary string with length Mmax ·nc is used to represent a clus-
tering arrangement, with nc as the number of variables and Mmax as the maximum
number of modules. In this representation, the (x + ync)-th bit indicates whether or
not the x-th bit belongs to the y-th cluster. Initially a simple GA was used to learn
the BB structure, using the described representation as chromosome and the MDL
metric as objective function. Later on a binary hillclimber was used to speed up the
BB discovery process.

Finally, it is important to notice that both the ECGA and the DSMGA build the
models using the Shannon’s entropy [17]. As shown by [22] these methods require
a population of size O(2k�log(�)) to accurately build the model. Also, it is known
that the DSMGA requires larger populations than the ECGA.

3 ClusterMI: A New Approach to Model Building in EDAs

This section describes our approach for model building in EDAs and how it relates
with ECGA and DSMGA. We also discuss computational aspects of the new algo-
rithm, showing how it can be superior or inferior to its competitors.

This paper proposes the use of hierarchical clustering and Mutual Information
(MI) to perform model building in the ECGA. The new model building algorithm,
called ClusterMI (from clustering over mutual information) can be divided in two
steps.

First, a matrix is created to store the degree of dependency between every two
pairs of variables. The MI between two variables is used for this purpose and it is
defined in equation (2). When two variables are completely unrelated (independent),
the MI assumes its minimal value of 0. On the other extreme, the MI between a
variable and itself is the entropy of that variable.

MI(X ,Y ) = ∑
y∈Y

∑
x∈X

p(x,y)log

(
p(x,y)

p(x)p(y)

)
(2)

After the MI between every pair of variables is calculated, a clustering method (pre-
sented on algorithm 4) is used to determine the best partition of variables. Algorithm
4 is a modified hierarchical clustering algorithm that uses the CCC from ECGA to
decide the optimal number of clusters. This algorithm uses the MI (as opposed to
the CCC in the ECGA) as a metric to decide which pair of partitions/clusters to
merge, and relies on the CCC only to determine whether or not the chosen pair will
actually be merged.

We already defined the MI between a pair of variables (equation (2)), however, to
properly perform clustering we need to define a similarity measure between groups
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Algorithm 4. ClusterMI: a simple clustering algorithm to search for the best parti-
tion of variables in the ECGA

1. Start with all independent variables.
2. improvement = IMPOSSIBLE
3. Do:
4. best_mi = -1
5. For each cluster [i]
6. For each cluster [j], j not equals i
7. mi = MI_Cluster(i, j)
8. if (mi > best_mi)
9. best_i = i

10. best_j = j
11. best_mi = mi
12. if (best_mi not equals -1)
13. bi+bj = Merge best_i and best_j
14. cccM = CCC(model with bi+bj merged)
15. cccC = CCC(current model)
16. if (cccM < cccC)
17. Update the model accepting bi+bj merge
18. improvement = POSSIBLE
19. while (improvement = POSSIBLE)

of variables. Line 7 of algorithm 4 extrapolates the notion of MI to represent the
similarity for clusters of variables. The “MI” between two clusters is defined as
the average of the MI between every variable of one cluster and every variable of
the other, as presented in equation (3).

MI Cluster(I,J) =
1
|I||J|∑i∈J

∑
j∈J

MI(i, j) (3)

The model building approach defined by algorithm 4 can be used in step 7 of al-
gorithm 1. The clustering of variables resulting from algorithm 4 is equivalent to
a partition of variables in the MPM. The same procedure used to estimate the dis-
tribution over partitions can be used to estimate the distribution over the clusters,
and the same sampling procedure used for ECGA can be used for ClusterMI. In this
sense, ClusterMI can be viewed as an ECGA with a modified greedy search for the
best partition.

As for the relation between DSMGA and ClusterMI, both of them use a matrix
storing the MI between variables to perform linkage learning. The main difference
is that the DSMGA converts the MI matrix into a binary relation (dependent or
non-dependent) and uses an MDL metric based on how well the model represents
the binary matrix. On the other hand, ClusterMI uses the MI matrix to establish
the order in which variables and clusters should be merged, using ECGA’s MDL
bias (CCC) to decide when to stop the process. Also, in DSMGA clustering is a
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blind optimization problem over a binary string while ClusterMI uses an explicit
hierarchical clustering algorithm to perform the model building.

Concerning computational complexity of algorithm 4, three aspects will be taken
into account. First, algorithm 4 has complexity of O(�3) with respect to the number
of evaluations of the similarity among clusters (operation performed on line 7). Ob-
serve that lines 1 through 12 of algorithm 4 implement a functionality similar to the
one of lines 1 through 13 of algorithm 2 and the same cache structure can be used
to reduce it to O(�2)1.

Second, algorithm 4 has complexity O(�) with respect to the number of evalua-
tions of the CCC (empirical evidence provided on figure 3). It is clear that concern-
ing evaluations of CCC, ClusterMI is superior to both ECGA and ECGA with cache
(O(�) v.s. O(�3) and O(�2)).

Finally, the memory complexity of algorithm 4 is O(�2), a result from the need
to store the MI among every pair of variables (the MI could be calculated inside
the algorithm, but that would render it inefficient). A cache structure to speed up
the search for the most similar pair of clusters would require additional memory of
order O(�2), still resulting in an overall memory complexity of O(�2).

To show that the complexity of ClusterMI is smaller than the complexity of the
model building in ECGA (with cache) we still need to show that O(�2) evaluations
of the similarity among clusters is better than O(�2) evaluations of the CCC. As
mentioned earlier, calculating the CCC involves calculating the entropy of a parti-
tion. Assuming a problem of size �, composed of m BBs of size k and a population
size n = O(2k · � · log(�)), this step has complexity O(k ·2k · � · log(�)). On the other
hand, evaluating the similarity among clusters involves averaging over the pairwise
distance for every pair of variables. Since the MI between the variables is stored,
this step has complexity O(k2) (assuming BBs of size k and population properly
sized, allowing ClusterMI to build the correct model).

In conclusion, ClusterMI has computational complexity of O(k · 2k · �2 · log(�))
and memory complexity of O(�2). The model building in the ECGA (with cache)
has computational complexity of O(k · 2k · �3 · log(�)) and memory complexity of
O(�2). Overall, ClusterMI is one order of complexity faster while holding the same
memory complexity of ECGA.

We still need to determine how ClusterMI scales in relation to population size and
number of generations. DSMGA is known to have the same scalability of ECGA,
requiring larger population (by a constant factor). In the next section we present em-
pirical evidence that indicates that ClusterMI also scales as well as ECGA, requiring
larger population. This is an expected phenomenon, since ClusterMI uses the same
information as DSMGA: the MI between variables.

4 Results

In this section we present the results obtained using ClusterMI. In all results pre-
sented in this paper the benchmark function used is the mk-trap [15] with or without

1 The algorithm will be very similar to algorithm 3, and was omitted.
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Gaussian noise. The mk-trap is an additively separable deceptive function [3] com-
posed of m trap functions of k variables. Equation (4) presents the used trap function,
where u is the number of bits with value 1 in the BB. For noisy objective functions,
a Gaussian noise with mean 0 and variance equals 5% of the maximun fitness was
randomly sampled and added to the fitness of each individual.

trap(u) =

{
1, i f u = k

0.8 ∗ (k−1−u)
(k−1) , otherwise,

(4)

The proposed method will be evaluated for scalability using four performance mea-
sures: population size, number of function evaluations, number of evaluations of
the CCC and overall computational time required for convergence. We compare the
ClusterMI with the ECGA with and without cache. In the experiments reported, we
used the implementation of the ECGA by Fernando Lobo [11] as the ECGA with
cache. This implementation was modified to incorporate a version of the ECGA
without cache and a version of ClusterMI. Since the three codes are built over the
same framework, code optimization issues can be ignored in comparative results.
All three methods used tournament selection with tournament size of 16.

In the experiments, the bisection method [14] was used to determine the minimal
population size required to correctly solve at least m− 1 subproblems 29 out of
30 times. The bisection method is an empirical method for population sizing, and
usually produces a good approximation to the theory.

In order to provide a clear presentation on the results, ECGAwc will refer to the
ECGA with cache, ECGAwo will refer to the ECGA without cache. ECGA will be
used to represent both ECGAwc and ECGAwo when no distinction is necessary.

Three sets of experiments will be reported in this section. The first set of ex-
periments compares the performance of ECGAwc, ECGAwo and ClusterMI on a 4
bit trap problems (k = 4) of varying number of BBs. Fifteen runs of the bisection
method were used to determine the minimum population size necessary to solve
problems of sizes up to 160 with ECGAwo, 256 with ECGAwc and 512 with Clus-
terMI. These results were used to predict the population size used on the remaining
of this set of experiments.

Figure 1 compares the population sizes required by ECGA and ClusterMI, show-
ing the scalability of both methods, figure 2 compares the number of function evalu-
ations required by ECGA and ClusterMI, figure 3 shows the cost of model building
in ECGA with cache, ECGA without cache and ClusterMI and figure 4 compares
the overall running time in seconds for all three methods.

As can be observed, both ClusterMI and ECGA have the same scalability con-
cerning population size (Figure 1). ClusterMI, however, requires slightly larger
populations, an expected phenomenon due to its relation with DSMGA. The pop-
ulation size reflects directly in the number of function evaluations and once again
both ECGA and ClusterMI have the same scalability (Figure 2). When the model
building is considered ClusterMI strongly outperform ECGA both with and without
cache (Figure 3).
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Fig. 1 A comparison between the ECGA and ClusterMI shows that both algorithms have the
same scalability, with ClusterMI using slightly larger population
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Fig. 2 The comparison between the number of function evaluations required by the ECGA
and ClusterMI shows that both methods have the same scalability
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Fig. 3 Considering the number of evaluations of the CCC necessary to accurately build the
model ClusterMI outperforms its competitors both in absolute values and in scalability. Clus-
terMI scales one order of complexity faster than ECGAwc and two orders of complexity faster
than ECGAwo
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Fig. 4 When absolute running time is used as the performance measure, ClusterMI clearly
outperforms both ECGAwc and ECGAwo. ClusterMI is not only faster in absolute values,
but also scales better by almost one order of complexity when compared ECGAwc and more
than one order of complexity when compared to ECGAwo

The relatively small difference in population size is counterbalanced with the
large difference in model building efficiency, resulting in a significantly better per-
formance for ClusterMI when compared with ECGA (Figure 4). The improvement
is dependent on the relative computational cost of the function evaluation. For com-
putationally expensive function evaluations the ECGA is expected to outperform
ClusterMI in relatively small problems. However, the extra population size reflects
a constant disadvantage while the model building efficiency reflects a complexity re-
duction. Consequently, for any function evaluation there is always a problem large
enough so that ClusterMI’s speedup in model building will surpass the overhead
caused by the larger population size.

The second set of experiments uses 5 bits trap to compare ECGA and ClusterMI
on a harder problem. On this experiment we only used ECGA with cache since it is
the most efficient implementation. Fifteen runs of the bisection method were used to
determine the minimum population size required to solve problems of size up to 150.
Figure 5 presents a comparison between the minimum population size required by
the ECGA and ClusterMI and figure 6 presents the running time for each method.
A comparison of the number of function evaluations was omitted since it can be
derived from figure 5. The number of evaluations of CCC was also omitted since it
is equivalent of what was presented on figure 3.

The third set of experiments is based on 4 bits trap functions with additive Gaus-
sian noise of 5% of the maximum fitness. Fifteen runs of the bisection method were
used to determine the minimum population size required by ECGA and ClusterMI
to solve problems of size up to 160. Figure 7 compares both methods concerning
population size and figure 8 compares them using running time as the performance
measure. The number of function evaluations and evaluations of CCC were omitted
for the same reasons as in the second set of experiments.

The results observed on the second and the third sets of experiments are similar
to those presented on the first experiment. ECGA and ClusterMI still present the
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Fig. 5 The scalability of ECGA and ClusterMI concerning population size is held con-
stant when the size of the trap function is increased. Once again ClusterMI requires a larger
population size than ECGA
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Fig. 6 When absolute running time is considered, ClusterMI still outperforms ECGA both in
absolute values and in scalability
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Fig. 7 The scalability of ECGA and ClusterMI also remains constant for functions with ad-
ditive Gaussian noise. Once again ClusterMI requires a larger population size than ECGA
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Fig. 8 When absolute running time is considered, ClusterMI still outperforms ECGA both in
absolute values and in scalability

same scalability concerning population size, with ClusterMI requiring larger popu-
lation size. However, ClusterMI is still more efficient in the model building process
resulting in faster running times. Once again there is a trade-off between the use of
ECGA and ClusterMI, and once again ECGA will only outperform ClusterMI for
relatively small problems with computationally expensive function evaluations.

This section showed that ClusterMI has the same scalability of ECGA concern-
ing population size and number of function evaluations. However, ClusterMI is one
order of complexity more efficient in the model building process resulting in an im-
provement of at least half an order of complexity for overall running time. The next
section presents perspectives of future work, including possible extensions to allow
for incremental evolution.

5 Future Work

This paper presents ClusterMI, a new approach to perform model building on EDAs.
ClusterMI uses the MI between pairs of variables to choose which partitions to
merge, based on a greedy hierarchical clustering. Although ClusterMI may produce
speed ups of thousands of times, the perspective of future work is even more promis-
ing. Particularly, ClusterMI can be used to perform incremental evolution, excluding
the need to explicitly represent the population and thereby reducing memory usage
or even communication cost for parallel implementations. This section presents ini-
tial ideas for incremental evolution. Other topics that will be addressed in future
works are also outlined.

To build a model of the population we need the MI between every pair of vari-
ables, which requires the knowledge of the marginal probability distribution for each
variable, as well as the joint probability distribution for every pair of variables. It is
easy to update both distributions incrementally, using a procedure similar to the one
used on [8] or [13].
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P(x1, ..,xn,y) =
P(x1, ..,xn)∗ J(y)

∑y∈Y J(y)
(5)

where,

J(y) =
n

∏
i=1

P(Xi = xi,Y = y)

We also need to calculate joint probability distributions of sets of variables that rep-
resent a partition or cluster. These distributions are used for sampling and on the
calculation of the CCC. Estimating multivariate distributions is a common problem
for incremental EDAs. iBoa solves this problem by adding one variable at a time
to the distribution and by assuming the variables are independent [13]. Similarly,
we propose the use of induction to construct multivariate probability distributions
by adding one variable at a time to an already estimated distribution. The induc-
tion starts with a pairwise distribution and incrementally adds variables until the
desired distribution is estimated. Instead of assuming independence among vari-
ables, given a joint distribution P(X1, ...,Xn), we can estimate the joint distribution
P(X1, ...,Xn,Y ) using equation (5).

Other topics worth of investigation include:

• The hybridization of ClusterMI with a preprocessing local search to reduce the
required population size [2];

• Development of a parallel model building algorithm;
• Development of an incremental model building algorithm, which would consist

of small incremental changes on previous models reducing the model building
cost even further.

• Application of ClusterMI to real world problems and to large scale problems.

6 Conclusion

Some EDAs are among the most versatile problem solvers available, being able to
solve problems that are intractable for traditional methods in a tractable polynomial
time. However, EDAs may still be too time consuming to be practical. Several effi-
ciency enhancement techniques have been proposed in the literature to turn EDAs
from tractable to practical. This work focus on the model building, a time consum-
ing but necessary process for EDAs. We propose the use of hierarchical clustering
to build an MPM representing the current population.

The proposed algorithm is called ClusterMI and it is related both to the ECGA
and to the DSMGA. Consequently, ClusterMI have advantages and disadvantages
drawn from both algorithms. Specifically, ClusterMI produces a comprehensive and
human interpretable model that can be used to identify BBs on additively separable
functions. The scalability of ClusterMI is equivalent to the scalability of ECGA and
DSMGA, however, both ClusterMI and DSMGA require larger population sizes,
mostly due to the use of MI to guide the model building decisions.
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The advantage of ClusterMI relies on the efficient model building process, which
is one order of complexity faster than the ECGA with cache, resulting in faster
overall running times. The ECGA is expected to outperform ClusterMI on rela-
tively small problems with computationally expensive function evaluations due to
the smaller population size. However, the difference in population size is constant,
while the improvement in the model building reduces the complexity of the algo-
rithm. Consequently, for any function evaluation there is a problem large enough
so that the improvement in model building compensates the extra evaluations and
ClusterMI outperforms ECGA.

ClusterMI can produce speed ups of 10 times in moderate size problems and
potentially hundreds of times for large scale problems (projected speed up for a
problem with 220 variables is≈ 1500). Moreover, ClusterMI may be used to perform
incremental model building or even incremental evolution, eliminating the need to
explicitly represent the population and possibly improving the performance even
further.
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Estimation of Distribution Algorithm Based  
on Copula Theory 

Li-Fang Wang and Jian-Chao Zeng   
1 

Abstract. Estimation of Distribution Algorithms (EDAs) is the hot topic of evolu-
tionary computation currently. EDAs model the selected population using a distribu-
tion model, which is latter sampled to generate the population for the next generation. 
This chapter introduces a new way to estimate the distribution model and sample 
from it according to copula theory. The multivariate joint is decomposed into the uni-
variate margins and a function called copula. In the EDAs based on copula theory 
(copula-EDAs), only the margins are estimated, and the next generation is sampled 
from the copula and the inverse function of the margins. The framework of the  
copula-EDAs is discussed in the chapter. Two 2-dimensional copula-EDAs and a 
high-dimensional copula-EDA are described in detail as the examples. 

1   Introduction 

Estimation of Distribution Algorithms (EDAs) are originated from Genetic Algo-
rithms (GAs) [1]. While GAs generate a new population using crossover and mu-
tation operators, EDAs estimate a distribution model of the selected population 
and sample from the estimated model. The comparison of the two algorithms is 
shown as Fig. 1. 

As an example, the integer minimization problem f(x)=x2, x∈[0,15] is opti-
mized with a kind of EDA. The value of x is denoted as 4-bit binary number, i.e. 5 
is denoted as 0101, 8 is denoted as 1000. According to the flow chat of EDAs, the 
first step is to generate some random integers in [0,15]. Supposing, the following 5 
binary numbers are generated. Their fitness are listed followed the numbers.  

 
No.        x            fitness 
1        1 0 1 0         100 
2        1 1 0 0         144 
3        0 1 0 0           16 
4        0 0 1 1             9 
5        0 1 0 1           25 
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Complex System and Computational Intelligence Laboratory,  
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Secondly, a promising population is selected according to the individual’s fit-
ness. If the truncation selection is used and the selection rate is 0.6, then the 3rd-5th 
individuals are selected as the promising population.  

Thirdly, the distribution model of the selected population is estimated. Denote 
pi as the probability of the ith bit being 1. Thus the probability of each bit is the  
following:  p1=0, p2=2/3, p3=1/3, p4=2/3.  

Fourthly, the next generation is sampled according to the estimated model. The 
following individuals are generated supposing. 

No.        x            fitness 
1        0 0 1 0             4 
2        0 1 0 1           25 
3        0 1 0 0           16 
4        0 0 0 1             1 
5        0 1 0 1           25 

The loop is continued by going to the second step until the termination  
condition is met.  

 

 

Fig. 1 The different flowchart of EDAs and GAs 

Different kinds of EDAs have been developed since the idea of EDA is intro-
duced in 1994 [1,2].  

The early EDAs regard the relationship of the random variables as independent. 
PBIL(Population Based Incremental Learning) [2-5], UMDA(Unirvariate Mar-
ginal Distribution Algorithm) [6-8] and cGA(compact Genetic Algorithm) [9] are 
all the classical algorithms.  
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However, in practical problems variables of the optimization problems are not 
independent. Some algorithms consider the linear relationship of variables. The 
random variables are numbered according to a certain rule, and the random vari-
able depends only on the previous random variable. The classical algorithms of 
this type include MIMIC(Mutual Information Maximization of Input Clustering) 
[10], COMIT(Combining Optimizers with Mutual Information Trees) [11] and 
BMDA(Binary Marginal Distribution Algorithm) [12,13]. 

Many EDAs considering the multivariate dependence are proposed in the  
last decade. For example, ECGA(Extended Compact Genetic Algorithm)  
[14], FDA(Factorized Distribution Algorithms) [15-19] and BOA(Bayesian  
Optimization Algorithm) [20-25]. 

Continuous EDAs were developed later than discrete EDAs. The classical algo-
rithms include PBILc [26], UMDAc [27], SHCLVND(Stochastic Hill Climbing 
with Learning by Vectors of Normal Distributions) [28], EMNA(Estimation of 
Multivariate Normal Algorithm)[29], ENGA(Estimation of Gaussian Networks 
Algorithm) [30], IDEA [31], etc. The Gaussian distribution is used in most of 
these algorithms. 

PBILc and UMDAc are extended from PBIL and UMDA respectively to the 
continuous form, and the Gaussian distributions are used in both of the two algo-
rithms. The Gaussian distribution is also used in SHCLVND and the parameter 
mean is adjusted by Hebbian Learning. 

The multivariate Gaussian distribution is used to estimate the distribution of the 
population in EMNA. The parameters mean and the covariance matrix are esti-
mated by EML. The next generation is sampled from the joint distribution. It is a 
problem in EMNA that the runtime to estimate the covariance matrix increased 
exponentially if the number of random variables has increased.  

EGNA is an algorithm based on the Gaussian network. The directed edges rep-
resent the relationship of the random variables and the distribution of each random 
variable is described with the Gaussian distribution. The Gaussian network is ad-
justed according to the current selected population. 

IDEA is a kind of EDA based on the hybrid Gaussian distribution and the 
Gaussian kernel function. The shortage of EMNA and EGNA is conquered in 
IDEA. But the relationship of random variables is not reflected thoroughly in 
IDEA.  

The chapter describes how copula theory can be used in an Estimation of Dis-
tribution Algorithm. The benefit of the copula approach is that only marginal dis-
tributions need to be estimated from the population of solutions, thus promising 
efficiency savings. 

The remaining sections are organized as follows. Section 2 talks about the basic 
theorem and properties in copula theory. Section 3 explains why copula theory 
could be used in EDA and then gives the framework of copula-EDAs. Section 4 
and section 5 illustrate the copula EDAs with two 2-dimensional algorithms and 
one high-dimensional algorithm respectively. Finally, section 6 concludes the  
paper, summarizing the main results and pointing further directions.  
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2   A Brief Introduction to Copula Theory 

Copula theory [32] is one of the hot topics in statistics. Its main idea is how to de-
compose the multivariate joint distribution into the univariate marginal distribu-
tions. A kind of function called copula ties the joint and the margins together. Thus 
the difficult work to estimate the joint distribution could be replaced by estimating 
the margins and constructing a copula. It also draws many scholars’ attention to 
sample from copula. These are the two key steps in EDAs, i.e., to construct a dis-
tribution model to represent the selected population and to sample the constructed 
model, creating the next generation. The distribution of the population is reflected 
precisely and the runtime is shortened if the copula theory is introduced into the 
framework of EDAs. Copula theory is briefly introduced in the following section. 

2.1   Definitions and Basic Properties 

The definition of copula and the basic theorem are listed in this section. The sym-
bol I denotes the domain [0, 1] in this chapter. The definitions and theorems are 
quoted from [32]. 

Definition 1. A two-dimensional subcopula (or 2-subcopula, or briefly, a  
subcopula) is a function C’ with the following properties: 

1) DomC’=S1×S2, where S1 and S2 are subsets of I containing 0 and 1; 
2) C’ is grounded and 2-increasing; 
3) For every u in S1 and every v in S2, 

                                                 C’(u,1)=u and  C’(1,v)=v.                                    (1) 

Definition 2. A two-dimensional copula( or 2-copula, or briefly, a copula) is a  
2-subcopula C whose domain is I2. 

Equivalently, a copula is function C from I2 to I with the following properties: 
1) For every u,v in I, 

                                                    C(u,0)=0=C(0,v)                                           (2) 

and  

                                                   C(u,1)=u and C(1,v)=v;                                      (3) 

2) For every u1,u2,v1,v2 in I such that u1≤u2 and v1≤v2, 

                                   C(u2,v2)-C(u2,v1)-C(u1,v2)+C(u1,v1)≥0.                              (4) 

The definition of n-copula is extended from the above definitions.  

Definition 3. An n-copula is a function C from In to I with the following 
properties: 

1) For every u in In,  

                                C(u)=0 if at least one coordinate of u is 0,                           (5) 

and  
                      if all coordinates of u are 1 except uk, then C(u)= uk ;                    (6) 
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2) For every u and v in In such that u≤v, denote 

[ ]( ) ( )
{ }
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, 1 (( (1 ) ) ( (1 ) ))
n

C n n n n
n

V C u v u v
ε ε

ε ε
ε ε ε ε+…+

… ∈

= − + − +…+ + −∑u v  

then  

                                                           VC([u,v]) ≥0.                                                (7) 

It can be derived from the definition of copula that the condition of copula is very 
easy to be satisfied. So many functions can be used as copulas. The copulas are di-
vided into two classes that are elliptical copulas and Archimedean copulas. For ex-
ample, normal copula and t-copula are all elliptical copulas. Archimedean copulas are 
generated from different generators such as Clayton copula, Gumbel copula and  
others. Each Archimedean copula has one or more parameters. More details see [32].  

Sklar’s theorem plays an important role in copula theory. It gives the theory basis 
to connect the multivariate distribution with one-dimensional marginal distribution. 

Sklar’s Theorem in n-dimensions: Let H be an n-dimensional distribution func-
tion with margins F1,F2,…,Fn. Then there exists an n-copula C such that for all x 
in Rn, 

                                            H(x1,…,xn)=C(F1(x1),…,Fn(xn)).                                 (8) 

If F1,F2,…,Fn are all continuous, then C is unique; otherwise, C is uniquely deter-
mined on RanF1×…×RanFn. Conversely, if C is an n-copula and F1,F2,…,Fn are 
distribution functions, then the function H defined by (8) is an n-dimensional  
distribution function with margins F1,F2,…,Fn.  

According to Sklar’s theorem, the joint distribution of a random vector could be 
constructed by the one-dimensional distribution of each random variable through a 
copula. Therefore, the hard work to estimate the joint distribution is simplified to 
estimate the margins and to produce a copula.  

2.2   Random Variable Generation 

As it will be demonstrated in section 4 and section 5, it is easy in EDAs to esti-
mate the distribution model based on Sklar’s theorem. And the next work is to 
sample from the distribution model that is composed by a copula and some mar-
gins. An example of sampling from 2- copula is shown. Let F (x) and G (y) be the 
margins of the random vector (X,Y), and the joint is C(F (x),G (y)), i.e. C is the 
copula. Denote U=F(x), V=G(y), then U∈[0,1], V∈[0,1]. According to Sklar’s 
theorem, the sample of (X,Y) can be generated by the following two steps. First, a 
sample value (u,v) of the random vector (U,V)∈[0,1]2 that obeys the joint C is 
generated.  Second, the sample value (x,y)  is generated according to the inverse of 
margins and (u,v), i.e. x =F-1(u)  and y =G-1(v).  

Obviously, the first step need to be studied and it is actually one of the  
current hot topics for research. A method based on the conditional distribution of 
C(u,v) is introduced as an example. The condition distribution cu(v) when  
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U=u is 
0

( , ) ( , ) ( , )
( ) [ | ] limu

u

C u u v C u v C u v
c v P V vU u

u u→

+ − ∂= ≤ = = =
∂

. So the steps are the 

following. 

1) Generate two independent random numbers u~U(0,1) and t~U(0,1); 
2) Let v=cu

(-1)(t), where, cu
(-1)(t) is the restricted inverse function of cu(v) in [0,1]; 

3) (u,v) is the sample that obeys C. 

This is a way to sample from the 2-copula based on the conditional distribution 
and it can be extended to n-copula. Furthermore, many ways to sample from the  
n-copula are studied by the scholars [33,34]. 

3   Motivation 

The main idea of EDAs is to analyze the distribution model of the promising popu-
lation and to affect the next generation by use of the distribution model. Selection, 
modeling and sampling are the three main steps of EDAs. Selection is used to in-
crease the average fitness of the population by eliminating low fitness individuals 
while increasing the number of copies of high fitness ones. Modeling is used to 
quantify the distribution of the selected population, i.e. by probability density func-
tion (pdf), cumulative distribution function (cdf) or some other ways. Sampling is 
used to generate the next generation according to the modeled distribution.   

To reflect the entire relation of the random variables and the distribution model 
of selected population, the joint of all random variables is the best way. However, 
the computation cost to model the joint is very large when the problem involves a 
large number of variables. For instance, EMNA supposes that the joint is multi-
variate normal distribution, and the parameters (i.e. mathematical expectation and 
covariance matrix) are estimated by EML. Obviously, the size of covariance ma-
trix is the square of the number of variables in the problem. The larger the prob-
lem we are trying to solve, the higher is the computational cost to estimate the 
necessary parameters. 

current generation selected populationselect
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construct
a copula 
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{u1
(1),u2

(1),…,uN
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Fig. 2 The schema of copula-EDA 
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On the grounds of Sklar’s theorem, the joint of random variables could be rep-
resented by a copula and the margins of each random variable. Thus the relation of 
random variables could be denoted by a selected copula and the margins are also 
estimated as a certain distribution, and then the joint is obtained according to 
equation (8). Actually, the joint H does not need to be calculated in copula-EDAs. 
The only two works are to select or to construct a copula C and to estimate each 
one-dimensional margins Fi, i=1,..,N. 

Sampling from the estimated distribution model is the next work after the dis-
tribution model of selected population is estimated, that is the new individuals 
generated should obey the estimated distribution. To generate an individual, the 
first work is to generate a vector {u1,u2,…,uN}∈[0,1]N who obeys the joint C ac-
cording to copula theory. Subsequently, the values xi= Fi

-1(ui) are calculated ac-
cording to the inverse function of each margins, and the vector {x1,x2,…,xN} is the 
sample who obeys the joint H, i.e. {x1,x2,…,xN} is one generated individual. To 
sum up the above arguments, the schema of EDAs based on copula theory (cop-
ula-EDA) is shown in Fig. 2. Copula-EDA generates random initial population 
firstly, then repeat the following 4 steps until certain terminate condition is met. 

1. Select m individuals from the current population as the promising population. 
2. Estimate the margins. The m individuals are the m samples of the N-

dimensional random vector. Each one-dimensional margin Fi(i=1,..,N) is esti-
mated according to the m samples. The margins could be empirical distribution, 
normal distribution or others. 

3. Sample from the copula C. Generate l vectors {u1
(j),u2

(j),…,uN
(j)}( j=1,…,l) who 

obey the joint C. 
4. Compose the next generation by the following 3 parts. 1) Reserve the best k in-

dividuals of the current generation to the next generation. 2) Get the new l indi-
viduals by calculate xi

(j)= Fi
-1(ui

(j)) (i=1,..,N, j=1,…,l). 3) to generate some  
random individuals in the search space depending on certain mutation rate.     

4   Two-Dimensional Copula-EDAs 

Suppose that the optimization problem is 

min f(X) = f (x1,x2,…,xn), xi∈[ai,bi]  (i=1,2,…,n) 

Let s denote the population size. Let 1 2{ ( , ,..., ), 1, 2,..., }i i i i
nx x x x i s= = =x  denote 

the population. Then the population x is composed of s observed samples from a 
random vector (X1,X2,…,Xn). The marginal distribution of each random variable 
Xi(i=1,2,…,n) can be Gaussian distribution, t-distribution or some other distribu-
tion. On the ground of Sklar’s theorem, the joint distribution function can be con-
structed with a selected copula and the marginal distributions. The modeling for 
the distribution of the selected population is finished. Next step is to generate new 
population by the way introduced in Sect. 2.2. 
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4.1   Gaussion Copula-EDAs 

A two-dimensional optimization problem is considered. According to copula the-
ory, the marginal distribution of each random variable and a copula are required. 
The marginal distributions of (X1,X2) is easy to estimate because the observed val-
ues are given. The only thing is to evaluate sample mean and sample variance. 2-D 
Gauss-copula is selected which is 

                                 
1 1( , ; ) ( ( ), ( )), , [0,1]C u v u v u vρρ φ φ φ− −= ∈ ,                            (9) 

where, ρφ is a binary standard Gaussian distribution with correlation coefficient ρ. 
Determining ρ is the key to construct copula. 

If the Maximum Likelihood Estimation is used, then the log-likelihood function is 

 

2 2
2 1 2 1 2

1 22
1 1

21
( ) { ln 2 ln(1 ) } [ln ( ) ln ( )]

2 2(1 )

s s
i ii i i i

i i

z z z z
l f x g x

ρρ π ρ
ρ= =

+ −
= − − − − + +

−∑ ∑
  

(10) 

where,  

                                        
1 1

1 1 2 2( ( )), ( ( ))i i
i iz F x z G xφ φ− −= = .                               (11) 

If Moment Estimation is used, then 

                                                   1 2
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Next, sampling from the distribution function is discussed. Since 

           

1 1

1 2 1 2 1 1
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Therefore, 

               

1 2[ ( )]
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u
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φ

ρ φ ω ρφ ρ φ ω ρφ
−
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So randomly generate vector
2( , ') ~ [0,1]u Uω , and then the other random number 

v  is calculated by using equation (16). The vector 1 2( , )x x  can be calculated by 
using equation (17). 

                                     
1

1 1 1( )x uσ φ μ−= + , 1
2 2 2( )x uσ φ μ−= +                             (17) 

where,  

                                            
*, , ( 1,2)

k
kk k XX S kμ σ

−
= = = .                                   (18) 

Conclusively, the algorithm for implementing 2-D copula-EDA is as follows [35]: 

1. Initialize (pop, N). Randomly generate initial population pop with size N. set 
generation count g←0. 

2. Selection (pop, spop, select-rate). Select the best select-rate×N agents from pop 
to spop according to the agents’ fitness. 

3. copula-generator (pop, spop, mutate-rate).  
– 3.1. Construct the distribution model of spop: 

1) calculate the sample average and the sample variance for each random 
variable according to (13), then the marginal distributions are 

1

*
1( , )XF N X S

−

=  and 
2

*
2( , )XG N X S

−

= ; 

2) calculate the estimation value of parameter ρ according to  
equation (11) or (12), then the copula C  is the same as (14); 

– 3.2. Generate a new population by iterative using procedure generation(C, 
F, G), where 

–  ( 1) 2 1 1( ) 1 ( ) ( )uv C uω ρ φ ω ρφ− − −= = − + . 

– 3.3. Randomly generate some agents by the mutate-rate. 

4. Stop if the termination criterion is met. 
5. Set g←g+1and go to Step 2. 

The following 9 test functions are used to show the behavior of the proposed algo-
rithm cEDA and to compare the cEDA with PBILc and other EDAs. The test 
functions F1~F3 and F6~F8 are also used in [26].  

• 1 5

100
( )

10 | |ii

F x
y−= −

+∑
, where y1=x1, yi=xi+yi-1(i≥2), [ 3,3]ix ∈ − , the optimal 

result is * 7
1 (0,0,...,0) 10F = − . 

• 2 5

100
( )

10 | |ii

F x
y−= −

+∑
, where y1=x1, yi=xi+sinyi-1(i≥2), [ 3,3]ix ∈ − , the  

optimal result is * 7
2 (0,0,...,0) 10F = − . 

• 3 5

100
( )

10 | |ii

F x
y−= −

+∑
, where 0.024 ( 1)i iy i x= × − − , [ 3,3]ix ∈ − , the optimal 

result is * 7
3 (0.024 2,0.024 3,...,0.024 ( 1)) 10F n× × × + = − . 



148 L.-F. Wang and J.-C. Zeng
 

• 2
4 ( ) ii

F x x=∑ , where [ 500,500]ix ∈ − , the optimal result is *
4 (0,0,...,0) 0F = . 

• 2 2
5 ( ) 1 (sin ) 0.1exp( )i ii i

F x x x= + − −∑ ∑ , where [ 10,10]ix ∈ − , the optimal 

result is *
5 (0,0,...,0) 0.9F = . 

• 2
6 ( ) ( cos(2 ) )i ii

F x x A x Aπ= − +∑ , where [ 5,5]ix ∈ − , the optimal result is 
*

6 (0,0,...,0) 0F = . 

• 7 ( ) (418.9829 sin | |)i ii
F x x x= +∑ , where [ 500,500]ix ∈ − , the optimal result 

is *
7 ( 420.9687, 420.9687,..., 420.9687) 0F − − − = . 

• 2
8 ( ) cos( )

1
i

ii i

x
F x x

i
= −

+
∑ ∏ , where [ 100,100]ix ∈ − , the optimal result is 

*
8 (0,0,...,0) 1F = − . 

• 
2 2 2

9 1 2 1 1 2 1 2 2

2 2 2
1 2 1 1 2 1 2 2

( ) [1 ( 1) (19 14 3 14 6 3 )]

[30 (2 3 ) (18 32 12 48 36 27 )]

F x x x x x x x x x

x x x x x x x x

= + + + × − + − + +

× + − × − + + − +
, where 

1 2, [ 2,2]x x ∈ − , the optimal result is *
9 (0, 1) 3F − = . 

All test functions are optimized in 2-dimensional spaces, the maximal generation g 
is set to 1000. The search terminates if the distance between the best solution 
found so far and the optimum is less than the predefined precision. Table 1 and 
Table 2 display the experimental results.  

Table 1 The convergence of copula-EDA and PBILc, the maximal generation is 1000 
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F1 cEDA 500 0.2 0.05 10-5 50/50 50.700 
 PBILc 500 0.2 0 10-5 50/50 405.660 
F2 cEDA 500 0.2 0.05 10-5 46/50 43.369 
 PBILc 500 0.2 0 10-5 50/50 421.120 
F3 cEDA 500 0.2 0.05 10-5 50/50 17.600 
 PBILc 500 0.2 0 10-5 50/50 396.420 
F4 cEDA 100 0.2 0.05 10-5 50/50 28.791 
 PBILc 100 0.2 0 10-5 50/50 841.400 
F5 cEDA 100 0.2 0.05 10-5 50/50 222.760 
 PBILc 100 0.2 0 10-5 50/50 560.860 
F6 cEDA 100 0.2 0.05 10-5 50/50 76.800 
 PBILc 100 0.2 0 10-5 50/50 493.600 
F7 cEDA 100 0.2 0.05 10-3 44/50 69.386 
 PBILc 100 0.2 0 10-3 32/50 905.593 
F8 cEDA 100 0.2 0.05 10-5 50/50 25.250 
 PBILc 100 0.2 0 10-5 50/50 664.300 
F9 cEDA 100 0.2 0.05 10-5 50/50 21.306 
 PBILc 100 0.2 0 10-5 41/50 644.195 
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Table 2 The state of different algorithm after 50 runs 

 copula_EDA PBILc PBILcM 
 Mean±Std Mean±Std Mean±Std 

F1 -9.7229e+6±1.5966e+4 -9.9473e+6±3.1487e+4 -4.4996e+5±4.4091e+5 

F2 -9.4549e+6±1.3826e+3 -9.9403e+6±3.1134e+4 -3.8927e+5±3.7505e+5 

F3 -9.8119e+6±1.1698e+3 -9.9519e+6±2.0524e+4 -9.4466e+4±6.6105e+4 

F4 3.6721e-12 ±2.6923e-12 7.8393e-12  ±8.4951e-12  0.2069          ± 0.8377 

F5    0.9000±3.0600e-11     0.9000       ±3.3826e-14    0.9000        ±2.0910e-5 

F6 8.3590e-14±5.7045e-14 2.2464e-12  ±2.6022e-12 5.8463e-4  ±6.0017e-4 

F7   0.1596±0.7787 35.1368         ±58.5155  0.3105          ± 0.2903 

F8 -1.0000±4.4546e-14 -1.0000          ±3.6992e-13 -0.9907          ± 0.0388 

F9 3.0000±9.9700e-9  7.8600          ±10.4784  3.0116          ± 0.0206 

 

        

  Fig. 3 The performance on test function F1       Fig. 4 The performance on test function F2 

       

   Fig. 5 The performance on test function F3     Fig. 6 The performance on test function F4 
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   Fig. 7 The performance on test function F5     Fig. 8 The performance on test function F6 

       

    Fig. 9 The performance on test function F7   Fig. 10 The performance on test function F8 

 

Fig. 11 The performance on test function F9 

Copula-EDA is abbreviated to cEDA in Table 1 and Fig.3-11. PBILcM is per-
formed based on PBILc with the mutation rate as 0.05 for the sake of comparing 
the performance of copula-EDA and PBILc with the same parameters. But the ex-
perimental results show that the convergence rate of PBILcM is 0 in each function 
with the parameters in Table 1. The convergence rate and the convergence  
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generations are the average results of 50 runs. The experimental results show that 
copula-EDA converges to the global optimum quickly in the test functions. 

The mean fitness and the standard variance of each algorithm after 50 runs are 
showed in Table 2. Obviously, copula-EDA performs better than the other two al-
gorithms. It is found through further experiments that Copula-EDA converges 
faster than PBILc, but it needs more agents in the population than PBILc.  

The evolution processes of the above three algorithms is compared with the 
same population in Fig.3-11. The population in the first generation is same for 
each algorithm. Error in Fig.3-11 is the fitness difference. Copula-EDA converges 
to the best solution quickly in almost all tested functions especially for the func-
tion F1-F3 whose random variables are strongly correlative with each other. It is 
also can be seen from Fig.7-9 that copula-EDA is premature in some cases. 

4.2   Archimedean Copula-EDAs 

According to Sklar’s theorem, two steps are performed in order to construct the 
joint probability distribution function of a random vector. The first step is con-
structing the margins of each random variable separately. The second step is  
selecting a proper copula to construct the joint distribution. Therefore, the distri-
bution character of each random variable and their relationship can be studied by 
themselves. This way can be used in EDAs to model the joint probability distribu-
tion function. And then samples are generated from the specified joint distribution 
by use of the copula. 

The optimization problem is 

                                      1 2min ( ) ( , ) [ , ] ( 1, 2)i i if X f x x x a b i= ∈ =， .                           (19) 

Denote the selected population with size s as 

                                            
1 2{ ( , ), 1,2,..., )}i i ix x x i sx= = =                                       (20) 

In other words, x  are the s observations of the random vector (X1, X2). The mar-
ginal distribution function of each random variable Xi can be estimated by normal 
distribution, t-distribution or empirical distribution, etc. Denote the marginal dis-
tribution function of Xi as u=F(x1) and v=G(x2). The joint probability distribution 
function is constructed with a selected copula C and the estimated margins in the 
light of Sklar’s theorem.  

The next step is to generate samples from the joint distribution using the copula 
as a tool. By virtue of Sklar’s theorem, it is necessary only to generate a pair (u,v) 
of observations of uniform (0,1) random variables (U,V) whose joint distribution 
function is C, and then transform those uniform random variables via the quasi-
inverse of the marginal distribution functions. One procedure for generating such 
of a pair (u,v) of uniform (0,1) random variables is the conditional distribution 
method. For this method, the conditional distribution function for V given U = u is 
need, which is denoted as Cu(v): 
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              0

( , ) ( , ) ( , )
( ) ( | ) limu

u

C u u v C u v C u v
C v P V v U u

u uΔ →

+ Δ − ∂= ≤ = = =
Δ ∂ .       (21) 

Cu(v) exists and is non-decreasing almost everywhere in I. 
Conclusively, the generation of sample is performed as the following steps: 

1. Generate two independent uniform (0, 1) random variables u and t; 
2. Set v = Cu

(-1)(t), where Cu
(-1)(t) denotes a quasi-inverse of Cu(v). 

3. The desired pair is (u,v). 
4. Set x1=F(-1)(u), x2=G(-1)(v), then (x1,x2) is a sample of the specified joint  

distribution. 

To sum up, the process for implementing 2-D Copula-EDA is as follows [36]: 

1. Initialize (pop, N). Randomly generate initial population pop with size N. set 
generation count g←0. 

2. Selection (pop, spop, select-rate). Select the best select-rate×N agents from pop 
to spop according to the agents’ fitness. 

3. Copula-generator (pop, spop, mutate-rate).  

– 3.1. Construct the distribution model of spop; 
– 3.2. Generate a new population based on the specified joint distribution, 

and randomly generate some agents by the rate mutate-rate. 

4. Stop if the termination criterion is met. 
5. Set g←g+1, and then go to step 2. 
 

The functions in Sect. 4.1 are used to test the effectiveness of the proposed  
algorithm.The following two Archimedean copulas are chosen. 

• Clayton: 
1/

1( , ) ( 1)C u v u vθ θ θ− − −= + − , 1, 0θ θ≥ − ≠   

• Ali-Mikhail-Haq: 
2 ( , )

1 (1 )(1 )

uv
C u v

u vθ
=

− − − , 1 1θ− ≤ <  

All the one-dimensional marginal distributions are normal distributions. Table 3 
displays the experimental results. 

All test functions are optimized in 2-dimensional spaces, the maximal genera-
tion g is set to 1000. The search terminates if the distance between the best solu-
tion found so far and the optimum is less than the predefined precision (10-5 for 
other test functions in spite of 10-3 for F7). Parameters are set to (select-rate=0.2, 
mutate-rate=0.05, population size N=100) for all experiments. The convergence 
rate and the convergence generations are the average results of 50 runs. The ex-
perimental results show that Copula-EDA converges to the global optimum 
quickly in the test functions. There is not much difference in performance between 
two copulas for other test functions despite F3 and F6. Both the algorithms pro-
posed in this section perform better than the copula-EDA based on Gaussian  
copula (see Sect. 4.1) and PBILc [26]. 
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Table 3 Experimental results of Archimedean copula-EDAs 

Test 
Function 

Copula 
Convergence 

Rate 
Convergence 
Generation 

C1 50/50 13.7400 
F1 

C2 50/50 13.0600 

C1 50/50 13.6800 
F2 

C2 50/50 13.1400 

C1 50/50 4.8000 
F3 

C2 50/50 11.7200 

C1 50/50 16.2800 
F4 

C2 50/50 16.7000 

C1 50/50 75.7800 
F5 

C2 50/50 76.7800 

C1 50/50 43.6800 
F6 

C2 50/50 28.7400 

C1 47/50 55.5957 
F7 

C2 50/50 32.8600 

C1 50/50 14.9600 
F8 

C2 50/50 15.1200 

C1 48/50 12.2083 
F9 

C2 50/50 12.2600 

5   High-Dimensional Copula-EDAs 

In fact, many optimization problems are high-dimensional. The 2-dimensional 
copula-EDAs only show the feasibility to apply copula theory to EDAs. The  
copula-EDA based on the empirical copula is discussed in this section. 

5.1   High-Dimensional Copula Constructions 

Let F(x) be the joint of the D-dimensional random vector x, the margins of each 
random variable are Fi(x)(i=1,2,…,D), and the copula, then the equation 
C(u1,u2,…,uD)=F(F1

-1(u1), F2
-1(u2)…, FD

-1(uD)) is gotten according to Sklar’s theo-
rem. A random vector (u1,u2,…,uD) obeying C(u) is generated firstly in order to 
generate a random vector obeying F(x). Subsequently, the vector (x1,x2,…,xD) is 
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calculated according to the inverse function of the margins Fi(x)(i=1,2,…,D), i.e. 
xi= Fi

-1(x)(i=1,2,…,D). 
If the density of the copula C(u) is c(u), then the marginal probability density 

functions are  

        1

1 1

1 2 10 0
( ) ( , ,..., ) ... ( ) ... , 1, 2,..., 1

d D
d d d d Du u

c u c u u u c u du du d D
+

+= =
= = = −∫ ∫      (22) 

Obviously, c(u)=cD(u). The condition distribution functions are 

   

1 10
1 1 1 1 1 1

1 1 1

( ,..., , )
( | ,..., ) { | ,..., }

( ,..., )

du

d du
d d d d d d d

d d

c u u u du
C u u u P U u U u U u

c u u

−=
− − −

− −

= ≤ = = = ∫ , d=1,2,…D  (23) 

A method to construct a copula based on the empirical distribution and to sample 
from the empirical copula is proposed in [34] and it is briefly introduced in the 
following paragraphs. 

Let the samples of the D-dimensional random vector z be 
zi=(zi1,zi2,…ziD)(i=1,2,…,n). The empirical distribution function of each dimension 
is constructed firstly according to the samples and then each sample zi is mapped 
to a value ui belonging to ID. The values ui (i=1,2,…,n) are actually the samples of 
the random vector u obeying cdf C(u). In order to sample from the estimated cdf 
C(u), the conditional distribution functions cd(u) are necessary to be estimated ac-
cording to the samples ui (i=1,2,…,n). the details are shown as follows. 

The samples zi=(zi1,zi2,…ziD)(i=1,2,…,n) are sorted in each dimension. For ex-
ample, the sorted sequence of the dth dimension is z(1)d, z(2)d,…, z(n)d, then the  
empirical distribution of the dth dimension is 

                            

(1)

( ) ( 1)

( )

0

( ) / , 1,2,..., 1

1

d

d i d i d

n d

z z

F z i n z z z i n

z z
+

⎧ <
⎪= ≤ ≤ = −⎨
⎪ ≤⎩

                      (24) 

According to equation (24), the samples zi=(zi1,zi2,…ziD)(i=1,2,…,n) are mapped to 
the vectors ui=(ui1,ui2,…uiD)∈{1/n,2/n,…,1}D  (i=1,2,…,n). 

Denote S1,S2,…,SK as the partition of the interval I=[0,1], where Si=((i-1)δ,iδ] 
(i=1,2,…,K), δ=1/K, K is a positive integer. Thus the D-cube ID is divided into KD 
subcubes Δi= Si1×Si2 ×…×SiD, i=(i1,i2,…,iD)∈{1,2,…,K}D. denote Ni as the number 
of points in ,i.e. Ni=|{uj| uj∈Δi }|. The density of the copula is  

                                          
( ) / / Dc f N ni iu δ= =                                     (25) 

Let max{1, }u uK↑ = ⎡ ⎤⎢ ⎥ , then 1 2( , ,..., ) {1, 2,..., }D
Du u u K= ↑ ↑ ↑ ∈i , and  

                          1

( )
1 ,...,( ,..., ) , 1,..., 1

d

D d d
d d u uc u u f d Dδ −

↑ ↑= = −                   (26) 

where, 
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1

1

( ,..., )
( )
,..., 1

( ,..., ) (1,...,1)

, ( ,..., ) {1,2,..., }
d

d D

K K
d d

i i d
i i

f f i i K
+ =

= =∑ i                   (27) 

The conditional distribution is  

                           

2

1 2 1 2

2

1 (2) 2 (2)
2 2 1 2 2, ,

1

( | ) ( )
u

D D
u i u u

i

C u u f u u fδ δ δ
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where, 1u u↓ =↑ − . 
The following algorithm (Algorithm 1) can be applied to calculate the arrays f(d) 

which we use for the calculation of the conditional distribution functions of the 
copula. 

1. Calculate the empirical distribution functions of the marginal distributions of 
the sample with equation (24) and the image points ui of the sample points 
zi(i=1,2,…,n). 

2. Set all elements of the arrays f(d) to 0. 
3. for i:=1 to n do  

         for d:=1 to D do 
     jd:=↑ud,i; 
         end 
         for d:=2 to D do 

     
1 1

( ) ( )
,..., ,...,: 1/ /

d d

d d D
j j j jf f n δ= +  

end 
end 

Let f={fi
d},( i=(i1,i2,…,iD)∈{1,2,…,K}D, d=1,2,…,D-1).The procedure genera-

tion(f) can be used to generate random numbers u1,u2,…,uD obeying the empirical 
copula. 

1. Generate two independent random numbers u1 and u; 

2. Calculate

2

1 2

2

1 2

1 (2)
,

1

2 2 2 (2)
,

u
D

u i
i

D
u u

u f

u u
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, where ↓u2 is the minimal number in 

{0,1,…,K-1} satisfied with the condition
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3. for d:=3 to D 

– 3.1. Generate a random number u in I; 

– 3.2. Calculate 
1 1 1 1

1

( 1) ( )
,..., ,..., ,

1

( )
,...,

d

d d d

d

d

u
d d
u u u u i

i

d d d
u u

uf f

u u
f

δ δ
− −

↓
−

↑ ↑ ↑ ↑
=

↑ ↑

−
=↓ +

∑
, 

where ↓ud is the 

minimal number in {0,1,…,K-1} satisfied with the condition 

1 1 1 1

1
( 1) ( )

,..., ,..., ,
1

d

d d d

d

u
d d
u u u u i

i

uf f
− −

↓ +
−

↑ ↑ ↑ ↑
=

≤ ∑  

end 

5.2   Copula-EDA Based on Empirical Copula 

For the optimization problem min f(x1,x2,…,xD), xi∈ [ai,bi],(i=1,2,…,D), the  
copula-EDA based on the above empirical copula is in the following [37]. 

1. Generate N individuals in the search space randomly. Decide the selection rate 
s and the mutation rate t; 

2. Select n=s×N individuals {z1,z2,…,zn} among the N individuals as the  
promising population, and reserve them in the next generation; 

3. Calculate f=F(z1,z2,…,zn) by doing Algorithm 1 
4. Repeat the following steps m=(1-s-t) ×N times, add the new m individuals into 

the population. 

– 4.1 (u1,u2,…,uD)=generation(f); 
– 4.2 for i:=1 to D 
               xi=Fi

-1(ui), where Fi is the empirical distribution (24) or the normal 
distribution 
       end 
(x1,x2,…,xD) is the new individual. 

5. Generate t×N individuals in the search space randomly as the new individuals; 
6. Stop if the terminate condition is met, and the best individual of the population 

is the optimal result. 

The following 3 functions are used to test the proposed algorithm. 

• Sumcan function: 5 1
1

1

10( ) { | |}
D

i
i

f x y− −

=

= − +∑ , where, y1=x1, yi=yi-1+xi, 

i=2,…,d, -0.16 ≤ xi ≤ 0.16 

• Schwefel function: 2 2 2
2 1

1

( ) [( ) ( 1) ]
D

i i
i

f x x x x
=

= − + −∑ , where, -10 ≤ xi ≤ 10 
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• Griewank function: 
2

3
1 14000

( ) 1 cos( )
DD

i i

i i

x x
f x

i= =

= + −∑ ∏ , where, -600≤xi≤ 600 

The above three functions are all minimal optimization problem. The empirical 
copula and the normal margins are used in the tested copula-EDA, and is denoted 
as cEDAPG. The parameters are the same as in [30], i.e. the dimension of the prob-
lem is D=10, the population size of the three problem are 2000, 2000 and 750 re-
spectively. The maximal fitness evaluation is 300,000. The truncation selection is 
used. The mutation is used and the mutation rate is 0.05. The search space is not 
divided when the empirical copula is constructed, i.e. K=1. The variance for  
sampling is one of the following three strategies. 

A. The variance is fixed. 

B. The variance  is set to the sample variance, i.e. 

2

1

( )

1

S

ij i
j

i

x x

S
σ =

−
=

−

∑
, 

where, 
1

1 S

i ij
j

x x
S =

= ∑ . 

C. The variance is linearly changed, i.e.  

       

2

11

( )

(1 )
1

S

ij i
jt t

i i

x x

S
σ α σ α =+

−
= − +

−

∑
, α=0.2 

Table 4 The comparison among cEDA and other algorithms on Sumcan function 

F1 
Algorithm Selection rate σ 

mean StdVar min max 

UMDAc
G 

MIMICc
G 

EGNAee 

EGNABGe 

ES 

  

-53460 
-58775 

-100000 
-100000 

-5910 

   

0.5 A:0.02 -30.2775 3.4345 -37.9727 -26.2.83 
0.5 A:0.05 -12.5174 1.4837 -15.7628 -11.0210 

0.2B B -60770 27564 -99866 -6390.9 
0.2 B -1074.6 482.2301 -2168.2 -513.8331 
0.5 C -184.0976 52.9640 -235.0931 -46.0561 
1/3 C -561.7312 178.8254 -764.9960 -114.3033 

0.2B C -9910.3 2692.9 -12511 -2786.9 

cEDAPG 

0.2 C -2089.4 587.4801 -2784.2 -547.5289 
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Table 5 The comparison among cEDA and other algorithms on Schwefel function 

F2 
Algorithm Selection rate σ 

mean StdVar min max 

UMDAc
G 

MIMICc
G 

EGNAee 

EGNABGe 

ES 

  

0.13754 
0.13397 
0.09914 
0.0250 

0 

   

0.5 A:.02 4.0743 0.8572 2.8008 5.3325 
0.5 A:.05 0.0097 0.0032 0.0061 0.0167 

0.2B B 2.3833×10-4 
5.2429×

10-5 
1.2190×

10-4 
3.6281×10-4 

0.2 B 0.1478 0.0259 0.1066 0.1954 

0.5 C 8.2443×10-4 0.0019 
1.0471×

10-4 
0.0063 

1/3 C 1.8707×0-5 
4.6817×

10-5 
2.8442×

10-6 
1.5194× 

10-4 

cEDAPG 

0.2 C 3.0034×10-7 
7.3179×

10-7 
4.0579×

10-8 
2.3825× 

10-6 

Table 6 The comparison among cEDA and other algorithms on Griewank function 

F3 
Algorithm 

Selection 
rate 

σ 
mean StdVar min max 

UMDAc
G 

MIMICc
G 

EGNAee 

EGNABGe 

ES 

  

0.011076 
0.007794 
0.008175 
0.012605 
0.034477 

   

0.5 A:.02 1.0796 0.1977 0.6106 1.2775 
0.5 A:.05 0.5489 0.3694 0.2215 1.4507 

0.2B B 0.0046 0.0151 0 0.0857 
0.2 B 0 0 0 0 

0.5 C 1.3192×10-9 
3.1529×

10-9 
1.2085×

10-10 
1.0288× 

10-8 

1/3 C 4.2966×10-14 
1.0565×

10-13 
7.2164×

10-15 
3.4361× 

10-13 

cEDAPG 

0.2 C 0 0 0 0 

The experimental results in Table 4-6 indicate that the performance of cEDAPG 
is affected by the parameters. cEDA finds the better results than other compared 
algorithms in certain parameters. Especially for Griewank function, cEDAPG finds 
the optimal result after 68.7 generations when selection rate is 0.2 and the variance 
is changed in strategy B. It can be indicated from Fig. 12-13 that cEDAPG is good 
at exploration and is not good at exploitation.  
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Fig. 12 The performance of cEDAPG in Sumcan function 
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Fig. 13 The performance of cEDAPG in Schwefel function 

6   Conclusion  

Estimation of Distribution Algorithms utilize the distribution characters of the se-
lected population to guide the creation of the next generation. Therefore, the popu-
lation evolves towards the optimal direction and finds the optimal solution 
quickly. Two key steps in EDAs are to estimate the distribution of the selected 
population and to sample from the distribution model.  

Copula theory contributes to the estimation of the distribution model and sam-
pling from the estimated model because copula theory provides a way to present 
the multivariate joint distribution with the univariate marginal distributions and a 
function called copula. How to construct copula and to sample from the copula are 
also the research topics of copula theory.  

Copula theory is applied into the research of EDAs and three EDAs based on 
different copulas are introduced in this chapter. They are respectively copula-EDA 
based on Gaussian copula, copula-EDA based on Archimedean copula and cop-
ula-EDA based on empirical copula. All of them can find the optimal results quick 
than the other algorithms used for comparison. But there are also shortages in 
them. For example, the copula-EDA based on empirical copula is not good at ex-
ploitation and the convergence speed in last generations is slow and the algorithm 
is affected by the selection of parameters.  

Different copula is corresponded to different relationship of the random vari-
ables. So the performance of copula-EDAs based on different copula is different 
on optimization problems. The following questions need to be studied further. 

• The expansion of copula-EDA based on Gaussian copula and Archimedean 
copula on high-dimensional optimization problems. 

• How to select and construct copula. 
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• The comparison among the copula-EDAs based on different copulas. 
• The relationship between the characters of the optimization problem and the 

optimal copula. 

References 

[1] Larranaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. A New Tool for 
Evolutionary Computation. Kluwer Academic Publishers, Boston (2002) 

[2] Baluja, S.: Population-Based Incremental Learning: A Method for Integrating Genetic 
Search Based Function Optimization and Competitive Learning. Citeseer (1994), doi: 
10.1.1.9.8084 

[3] Baluja, S.: An Empirical Comparison of Seven Iterative and Evolutionary Function 
Optimization Heuristics. Technical Report CMU-CS-95-193, Computer Science De-
partment, Carnegie Mellon University (1995) 

[4] Hohfeld, M., Rudolph, G.: Towards a Theory of Population Based Incremental Learn-
ing. In: Proc. of the 4th International Conference on Evolutionary Computation, pp. 
1–5 (1997) 

[5] Cristina, G., Lozano, J.A., Larranaga, P.: Analyzing the PBIL Algorithm by means of 
Discrete Dynamical Systems. Complex Syst. 12(4), 465–479 (2001) 

[6] Muhlenbein, H., Paaβ, G.: From recombination of genes to the estimation of distribu-
tions I. Binary Parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, 
H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996) 

[7] Muhlenbein, H.: The Equation for Response to Selection and its use for Prediction. 
Evol. Comput. 5(3), 303–346 (1997) 

[8] Shapiro, J.L.: Drift and Scaling in Estimation of Distribution Algorithms. Evol. Com-
put. 13(1), 99–123 (2005) 

[9] Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. In: Proc. 
IEEE Conf. Evol Computation, Indianapolis, USA, pp. 523–528 (1998) 

[10] De Bonet, J.S., Isbell, C.L., Viola, P.: MIMIC: Finding optima by estimation prob-
ability densities. In: Becker, S. (ed.) Advances in Neural Information Processing Sys-
tems, pp. 424–430. MIT Press, Cambridge (1997) 

[11] Baluja, S., Davies, S.: Using optimal dependency-trees for combinatorial optimiza-
tion: learning the structure of the search space. In: Proc. of the 14th international con-
ference on machine learning, pp. 30–38. Morgan Kaufmann, San Francisco (1977) 

[12] Pelican, M., Muhlenbein, H.: The birandom variable marginal distribution algorithm. 
In: Furuhashi, T. (ed.) Advances in Soft Computing-Engineering Design and Manu-
facturing, pp. 521–535. Springer, London (1999) 

[13] Pelikan, M., Muhlenbein, H.: Marginal Distributions in Evolutionary Algorithms. In: 
Proc. of the International Conference on Genetic Algorithms, pp. 90–95. Technical 
University of Brno, Brno (1998) 

[14] Harik, G.: Linkage Learning via Probabilistic Modeling in the ECGA, Illigal Rep. 
No.99010, Illinois Genetic Algorithms Lab., University of Illinois, Urbana-
Champaign, Illinois (1999) 

[15] Muhlenbein, H., Mahnig, T.: FDA- a scalable evolutionary algorithm for the optimi-
zation of additively decomposed functions. Evolu. Comput. 7(4), 353–376 (1999) 



Estimation of Distribution Algorithm Based on Copula Theory 161
 

[16] Muhlenbein, H., Mahnig, T.: Convergence Theory and Applications of the Factorized 
Distribution Algorithm. Journal of Comput and Information Technology 7(1), 19–32 
(1999) 

[17] Muhlenbein, H., Mahnig, T.: The Factorized Distribution Algorithm for Additively 
Decomposable Functions. In: Second Symposium on Artificial Intelligence. Adaptive 
Systems. CIMAF 1999, La Habana, pp. 301–313 (1999) 

[18] Muhlenbein, H., Mahnig, T.: Evolutionary algorithms: From recombination to search 
distributions. In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evo-
lutionary Computating., pp. 137–176. Springer, London (2001) 

[19] Muhlenbein, H., Mahnig, T., Ochoa, A. R.: Distributions and Graphical Models in 
Evolutionary Optimization. J. Heuristics 5, 215–247 (1999) 

[20] Pelikan, M., Goldberg, D.E., Cantu-Paz, E.: BOA: the Bayesian optimization algo-
rithm. In: Proc. Genetic and Evolutionary Computation Conference (GECCO 1999), 
Orlando, FL, pp. 525–532 (1999) 

[21] Pelikan M.: A Simple Implementation of Bayesian Optimization Algorithms in 
C++(Version 1.0). Illegal Report No. 99011, Illinois Genetic Algorithms Laboratory, 
University of Illinois at Urbana-Champaign, Urbana, Illinois (1999) 

[22] Pelikan, M., Goldberg, D.E., Cantu-Paz, E.: Bayesian Optimization Algorithm, Popu-
lation Sizing, and Time to Convergence. IlleGAL Report No. 2000001, Illinois Ge-
netic Algorithms Laboratory, University of Illinois at Urbana Champaign, Urbanan, 
Illinois (2000) 

[23] Pelikan, M.: Hierarchical Bayesian Optimization Algorithm: Toward a New Genera-
tion of Evolutionary Algorithms. Springer, New York (2005) 

[24] Gao, Y., Culberson, J.: Space Complexity of Estimation of Distribution Algorithms. 
Evol. Comput. 13(1), 125–143 (2005) 

[25] Pelikan, M., Sastry, K., Goldberg, D. E.: Scalability of the Bayesian Optimization 
Algorithm. International Journal of Approximate Reasoning 31(3), 221–258 (2002) 

[26] Sebag, M., Ducoulombier, A.: Extending population-based incremental learning to 
continuous search spaces. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. 
(eds.) PPSN 1998. LNCS, vol. 1498, pp. 418–427. Springer, Heidelberg (1998) 

[27] Larranaga, P., Etxeberria, R., Lozano, J.A., Pena, J.M.: Optimization in continuous 
domains by learning and simulation of Gaussian networks. In: Proc. 2000 Genetic and 
Evolutionary Computation Conf. Workshop Program, Las Vegas, Nevada, pp. 201–
204 (2000) 

[28] Rudlof, S., Koppen, M.: Stochastic Hill Climbing by Vectors of Normal Distribu-
tions. In: Proc. of the first online workshop on soft computing(WSC1), Nagoya, Ja-
pan (1996) 

[29] Larrañaga, P., Lozano, J.A., Bengoetxea, E.: Estimation of Distribution Algorithms 
based on multivariate normal and Gaussian networks. Technical Report KZZA-IK-1-
01 of the Department of Computer Science and Artificial Intelligence, University of 
the Basque Country, Spain (2001) 

[30] Larranaga, P., Etxeberria, R., Lozano, J.A., Pena, J.M.: Optimization in continuous 
domains by learning and simulation of Gaussian networks. In: Proc. of the Genetic 
and Evolutionary Computation Conference, GECCO 2000, Las Vegas, Nevada, USA, 
July 8-12, pp. 201–204. Morgan Kaufmann, San Francisco (2000) 

[31] Bosman, P.A.N., Thierena, D.: Expanding from Discrete to Continuous Estimation of 
Distribution Algorithms: the IDEA. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., 
Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 
767–776. Springer, Heidelberg (2000) 



162 L.-F. Wang and J.-C. Zeng
 

[32] Nelsen, R.B.: An introduction to copulas, 2nd edn. Springer, New York (2006) 
[33] Whelan, N.: Sampling from Archimedean Copulas (2004), 

http://home.golden.net/~annaw/Niall/papers/Archimedean.pdf 
(Accessed January 1, 2009) 

[34] Strelen, J.C., Nassaj, F.: Analysis and generation of random vectors with copulas. In: 
Henderson, S.G., Biller, B., Hsieh, M.H., Shortle, J., Tew, J.D., Barton, R.R. (eds.) 
Proc. of the 2007 Winter Simulation Conference (WSC 2007), Washington, DC, 
USA, pp. 488–496 (2007) 

[35] Wang, L.F., Zeng, J.C., Hong, Y.: Estimation of Distribution Based on Copula The-
ory. In: IEEE CEC 2009, Trondheim, Norway, May 18-21, pp. 1057–1063 (2009) 

[36] Wang, L.F., Zeng, J.C., Hong, Y.: Estimation of Distribution Based on Archimedean 
Copulas. In: ACM SIGEVO GEC 2009, Shaihai, China, June 12-14, pp. 993–996 
(2009) 

[37] Wang, L.F., Zeng, J.C., Hong, Y.: Estimation of Distribution Algorithm Modeling 
and Sampling by means of Copula. Submitted to: Chinese journal of computers (in 
Chinese) (2009) 



Analyzing the k Most Probable Solutions in
EDAs Based on Bayesian Networks

Carlos Echegoyen, Alexander Mendiburu, Roberto Santana, and Jose A. Lozano

Abstract. Estimation of distribution algorithms (EDAs) have been successfully ap-
plied to a wide variety of problems but, for the most complex approaches, there is no
clear understanding of the way these algorithms complete the search. For that rea-
son, in this work we exploit the probabilistic models that EDAs based on Bayesian
networks are able to learn in order to provide new information about their behavior.
Particularly, we analyze the k solutions with the highest probability in the distri-
butions estimated during the search. In order to study the relationship between the
probabilistic model and the fitness function, we focus on calculating, for the k most
probable solutions (MPSs), the probability values, the function values and the cor-
relation between both sets of values at each step of the algorithm. Furthermore, the
objective functions of the k MPSs are contrasted with the k best individuals in the
population. We complete the analysis by calculating the position of the optimum
in the k MPSs during the search and the genotypic diversity of these solutions. We
carry out the analysis by optimizing functions of different natures such as Trap5,
two variants of Ising spin glass and Max-SAT. The results not only show informa-
tion about the relationship between the probabilistic model and the fitness function,
but also allow us to observe characteristics of the search space, the quality of the
setup of the parameters and even distinguish between successful and unsuccessful
runs.
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1 Introduction

Estimation of distribution algorithms (EDAs) [23, 32] are an evolutionary computa-
tion branch which have been successfully applied in problems of different domains
[2, 27, 40]. However, despite their successful results there are a wide variety of
open questions [43] regarding the behavior of this type of algorithms. Therefore, it
is necessary to continue studying EDAs in order to better understand how they solve
problems and advance their development.

The main characteristic of EDAs is the use of probabilistic models instead of
the typical crossover and mutation operators employed by genetic algorithms [17].
Thus, linkage learning, understood as the ability to capture the relationships between
the variables of the optimization problem, is accomplished in EDAs by detecting
and representing probabilistic dependencies using probability models. This type of
algorithms uses machine learning methods to extract relevant features of the search
space through the selected individuals of the population. The collected information
is represented using a probabilistic model which is later employed to generate new
solutions. In this way, a learning and sampling iterative process is used to lead the
search to promising areas of the search space.

The models employed to encode the probability distributions are a key point in
the performance of EDAs. In this regard, probabilistic graphical models [7] are a
powerful tool, and in particular, Bayesian networks have been extensively applied
in this field [15, 29, 38]. One of the benefits of EDAs that use these kind of mod-
els is that the complexity of the learned structure depends on the characteristics
of the selected individuals. Additionally, the Bayesian networks learned during the
search are suitable for human interpretation, helping to discover unknown informa-
tion about the problem structure. In fact, a straightforward form of analyzing EDAs
based on Bayesian networks is through the explicit interactions among the variables
they provide. In this sense, it has been shown how different parameters of the al-
gorithm influence the structural model accuracy [25], how the dependencies of the
probabilistic models change during the search [19] and how the networks learned
can provide information about the problem structure [11, 14, 19].

In previous works [12, 13], we took a different path in the study of EDAs by
recording probabilities and function values of distinguished solutions of the search
space during the run. In this chapter, we extend that work focusing on the k most
probable solutions in the probability distribution encoded by the probabilistic mod-
els at each generation of an estimation of Bayesian network algorithm (EBNA) [15].
By collecting different measurements, we analyze these solutions using four classes
of test problems which have been widely used in EDAs: Trap5, two-dimensional
Gaussian Ising spin glasses, two-dimensional ±J Ising spin glasses and Max-SAT.
We argue that the analysis proposed supports a different perspective that is able to
reveal patterns of behavior inside this type of algorithms. Furthermore, we show
that the probabilistic models, besides structural information about the problem, can
contain useful information about the function landscape and also about the qual-
ity of the search. Thus, the results provided in this work promote the exploitation
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of linkage learning in order to learn more about the algorithms and advance their
development.

The rest of the chapter is organized as follows. Section 2 introduces Bayesian
networks, the calculation of the k most probable solutions and presents estima-
tion of Bayesian network algorithms. Section 3 explains the experimental design.
Sections 4, 5, 6 and 7 discuss Trap5, Gaussian Ising, ±J Ising and Max-SAT prob-
lems respectively, analyzing the behavior of the k most probable solutions during the
optimization process of each function. Section 8 discusses relevant previous works
and finally, Section 9 draws the conclusions obtained during the study.

2 Background

2.1 Bayesian Networks

Formally, a Bayesian network [7] is a pair (S,θ) representing a graphical factoriza-
tion of a probability distribution. The structure S is a directed acyclic graph which
reflects the set of conditional (in)dependencies among n random variables X =
(X1, . . . ,Xn). On the other hand, θ is a set of parameters for the local probability
distributions associated with each variable.

The factorization of the probability distribution is codified by S:

p(x) =
n

∏
i=1

p(xi|pai) (1)

where pai denotes a value of the variables Pai, the parent set of Xi in the graph S.
With reference to the set of parameters θ , if the variable Xi has ri possible values,

the local distribution p(xi|pa j
i ,θ i) is an unrestricted discrete distribution:

p(xk
i |pa j

i ,θ i)≡ θi jk (2)

where pa1
i , . . . ,paqi

i denote the qi possible values of the parent set Pai. In other
words, the parameter θi jk represents the probability of variable Xi being in its k-th
value, knowing that the set of its parents’ variables is in its j-th value. Therefore,
the local parameters are given by θ i = ((θi jk)

ri
k=1)

qi
j=1.

2.2 Learning Bayesian Networks from Data

In order to complete the Bayesian network learning, it is necessary to obtain a struc-
ture S and a set of parameters θ from a data set. Firstly, although there are different
strategies to learn the structure, we focus on a method called “score + search” which
is the one used in the experiments presented in this paper. This approach is based
on a procedure to search high quality structures according to a determined metric
or score. This score tries to measure how well a given structure S represents the
underlying probability distribution of a dataset D. Particularly, in this work we use
the Bayesian Information Criterion score (BIC) [44] based on penalized maximum
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likelihood. In order to make the search in a space of structures, we use Algorithm
B [6] because it is able to return good results efficiently. Algorithm B is a greedy
search procedure which starts with an arcless structure and, at each step, adds the
arc with the maximum improvement in the score. The algorithm finishes when there
is no arc whose addition improves the score.

Once the structure has been learned, the parameters of the Bayesian network are
calculated using the Laplace correction:

θ̂i jk =
Ni jk + 1

Ni j + ri
(3)

where Ni jk denotes the number of cases in D in which the variable Xi has the value
xk

i and Pai has its jth value, and Ni j = ∑ri
k=1 Ni jk.

2.3 Estimation of Distribution Algorithms Based on Bayesian
Networks

Following the main scheme of EDAs, EBNA [15] works with populations of N indi-
viduals that constitute sets of N candidate solutions. The initial population is gener-
ated according to a uniform distribution, and hence, all the solutions have the same
probability to be sampled. Each iteration starts by selecting a subset of promising
individuals from the population. Although there are different selection methods, in
this case we use truncation selection with threshold 50%. Thus, the N/2 individuals
with the best fitness value are selected. The next step is to learn a Bayesian network
from the subset of selected individuals. Once the Bayesian network is built, the new

Algorithm 1. EBNA

1 BN0 ← (S0,θ 0) where S0 is an arc-less structure, and θ 0 is uniform

2 D0 ← Sample N individuals from BN0

3 t ← 1
4 do {

5 Dt−1 ← Evaluate individuals

6 DSe
t−1 ← Select N/2 individuals from Dt−1

7 S∗t ← Obtain a network structure

8 θ t← Calculate θ t
i jk using DSe

t−1 as the data set

9 BNt ← (S∗t ,θ t)
10 Dt ← Sample N −1 individuals from BNt and create the new popula-

tion
11 } until Stop criterion is met
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population can be generated. At this point there are different possibilities. We use
an elitist criterion. From the Bayesian network, N − 1 new solutions are sampled
and then mixed with the N individuals of the current population. The N best indi-
viduals, among the 2N−1 available, constitute the new population. The procedure
of selection, learning and sampling is repeated until a stop condition is fulfilled. A
pseudocode of EBNA is shown in Algorithm 1.

2.4 Abductive Inference and Most Probable Configurations

Given a probabilistic graphical model, the problem of finding the most probable con-
figuration (MPC), consists of finding a complete assignment with maximum prob-
ability that is consistent with the evidence. Similarly, the problem of finding the k
most probable configurations consists of finding the k configurations with maximum
probability in the distribution encoded by the graphical model. The name given to
the most probable configurations changes between the different domains of appli-
cation and according to the type of graphical models used. It is also known as the
most probable explanation problem, and the n-best list [35] or n-best hypothesis
problem [1]. In Bayesian networks, the process of generating the MPC is usually
called abductive inference. In our context of EDAs, these points will be called the
most probable solutions (MPSs).

Computing the MPC can be easily done on a junction tree by a simple message-
passing algorithm [9]. However, the computation of the k MPCs requires the appli-
cation of more complex schemes [34, 45]. In any case, when the inference is done
by using junction trees the results are exact.

In this work we use the algorithm presented in [34]. It has been conceived for
finding the most probable configurations in a junction tree and therefore gives us
exact solutions. It is based on the use of a simple message-passing scheme and a
dynamic programming procedure to partition the space of solutions. The algorithm
starts by finding the most probable configuration, and from this configuration, the
space of solutions is partitioned in disjunct sets for which the respective MPC is
found. The second MPC is the one with the highest probabilities among all of the
partitions. More details about the algorithm can be found in [34].

The algorithm used in this work has been implemented using the Bayes Net
Toolbox [33] and can be found in [42].

3 Experimental Framework

In order to analyze the k most probable solutions at each step of an EBNA, we deal
with four test problems and take different measurements. Next, we explain in detail
the components of the experiments. In [42], the necessary tools to reproduce the
experiments or to carry out a similar analysis are implemented.
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3.1 Problems

The whole set of problems is based on additively decomposable functions (ADFs)
defined as,

f (x) =
m

∑
i=1

fi(si) (4)

where Si ⊆ X. Trying to cover a wide spectrum of applications and observe the be-
havior of EDAs in different scenarios, we chose these four test problems: Trap5,
Gaussian Ising, ±J Ising and Max-SAT. The details of each one are introduced in
the following sections. These problems are selected for several reasons. Firstly, in
order to investigate the influence of multimodality in the behavior of EDAs, we
deal with problems that have different number of optimal solutions. The first two
problems have a unique optimum and the last two problems have several optima.
Secondly, all of them are optimization problems which have been widely used to
analyze EDAs [4, 19, 37]. And finally, all the problems have a different nature.
Trap5 [10] is a deceptive function designed in the context of genetic algorithms [17]
aimed at finding their limitations. It is a separable function and in practice can be
easily optimized if the structure is known. Gaussian Ising and ±J Ising come from
statistical physics domains and are instances of the Ising model proposed to analyze
ferromagnetism [22]. The variables are disposed on a grid and the interactions do
not allow dividing the problem into independent subproblems of bounded order ef-
ficiently [31]. The Ising problem is a challenge in optimization [19, 37] and in its
general form is NP-complete [3]. Max-SAT is a variation for optimization of a clas-
sic benchmark problem in computational complexity, the propositional satisfiability
or SAT. In fact, SAT was the first problem proven to be NP-complete in its general
form [8]. An instance of this problem can contain a very high number of interactions
among variables and, in general, it can not be efficiently divided into subproblems
of bounded size in order to reach the optimum. Except for the function Trap5, we
have dealt with two instances for each type of problem. We only show the results
for the instance with the most relevant information.

3.2 Measurements

Our first goal is to study the relationship between the probabilistic model and the
function during the search. To that end, we obtain the probabilities and function
values for the k MPSs at each step of EBNA and then, we calculate the Pearson
correlation coefficient ρ for each pair of samples (functions and probabilities). The
correlation coefficient ρ can be expressed as,

ρX ,Y =
cov(X ,Y )

σX σY
(5)

where X and Y are random variables, cov means covariance and σ is the standard
deviation.
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We also calculate, at each step of the algorithm, the average function values for
the k MPSs and the k best individuals of the population. Moreover, we are interested
in knowing the position of the optimum in the ordered set of the k MPSs at each
generation. Finally, trying to observe, from a genotypic point of view, how different
the k MPSs are, we calculate at each EBNA step the entropy of the k MPSs by means
of adding the entropy of each variable belonging to the function,

H(X) =−
n

∑
i=1

ri

∑
j=1

p(x j
i ) · log2 p(x j

i ) (6)

where n is the number of variables and ri is the number of states of each variable.

3.3 Parameter Configuration

Sample size is very important in order to learn Bayesian networks [16] and, hence,
an important parameter in EDAs based on this type of models. Thus, we use two dif-
ferent population sizes in order to analyze their influence in the algorithm. Firstly,
we have used the bisection method [36] to determine an adequate population size
to reach the optimum (with high probability). This size is denoted by m. The stop-
ping criterion for bisection is to obtain the optimum in 5 out of 5 independent runs.
The final population size is the average over 20 successful bisection runs. The sec-
ond population size is half of the bisection, m/2. With this size we try to create a
more realistic scenario in which achieving the optimum is less likely. Thus, we can
analyze the algorithm when the optimum is not reached.

The calculation of the k most probable solutions has a high computational cost.
Therefore, it is necessary to limit both k and the number of function variables. In
this work we deal with k = 50 and with two different problem sizes: dimension
n = 50 for Trap5 and Max-SAT and dimension n = 64 (grid 8×8) for Gaussian Ising
and ±J Ising. The stopping criterion for EBNA is a fixed number of iterations, in
particular 30. It it is independent of obtaining the optimum. This number is enough
to observe the convergence of the algorithm.

Finally, for each experiment type i.e. EBNA solving a problem with a given pop-
ulation size, 20 independent runs have been carried out. Each set of 20 executions
is divided into successful (the optimum is reached) and unsuccessful (the optimum
is not reached) runs which will be analyzed separately.

4 Analyzing the k MPSs in Trap5

4.1 Trap5 Description

Our first function, Trap5 [10], is an additively separable (non overlapping) function
with a unique optimum. It divides the set X of n variables, into disjoint subsets XI

of 5 variables. It can be defined using a unitation function u(y) = ∑p
i=1 yi where

y ∈ {0,1}p as,
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Trap5(x) =

n
5

∑
I=1

trap5(xI) (7)

where trap5 is defined as,

trap5(xI) =
{

5 if u(xI) = 5
4−u(xI) otherwise

(8)

and xI = (x5I−4,x5I−3,x5I−2,x5I−1,x5I) is an assignment to each trap partition XI .
This function has one global optimum in the assignment of all ones for X and a large
number of local optima, 2n/5−1.

Trap5 function has been used in previous works [19] to study the structure of the
probabilistic models in EDAs based on Bayesian networks as well as the influence
of different parameters [25]. It is important to note that this function is difficult
to optimize if the probabilistic model is not able to identify interactions between
variables [12].

4.2 Experimental Results

In this section, we present and discuss the results obtained when EBNA tries to op-
timize the Trap5 function. Firstly, in Fig. 1 and Fig. 2 we show the probabilities and
function values for the k MPSs during the search and also their Pearson correlation
using different population sizes respectively. We can observe that the probability
distribution tends to concentrate on a unique solution at the end of the run assign-
ing the same probability to the remainder k− 1 MPSs. This behavior is analogous
for the function values, where the MPS has the highest function value and the rest
of k− 1 MPSs have lower values. In general, the correlation rapidly increases and
decreases in the first generations and grows during the rest of the search.

Particularly, a very interesting observation from these results is the difference not
only between population sizes but also between successful and unsuccessful runs.
Firstly, with population size m/2 (Fig. 2), the correlation suffers a clearer decrease
in the middle of the run than with population size m. The function values for the
k MPSs also reflect a difference between population sizes. Thus, with size m/2
(Fig. 2) the function values grow more slowly during the search. Secondly, we have
different behaviors depending on the success of the search. When EBNA reaches
the optimum with both population sizes, we can see that the correlation tends to 1
at the end of the run. This is independent of the number of k MPSs that we take
into account. However, in unsuccessful runs the correlation at the end of the run
is lower with higher values of k. Moreover, in unsuccessful runs, the correlation
reaches lower values with population size m/2 than with m.

The charts of probability values in logarithmic scale have a constant pattern in
all cases (Figs. 1 and 2). However, there are clear differences in the behavior of the
function values between successful and unsuccessful runs in both scenarios (popula-
tion sizes m and m/2). This difference is particularly notable in the last generations
when EBNA converges to a unique solution [12]. This indicates that these function
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Fig. 1 Probability values, function values and Pearson correlation of the 50 most probable
solutions at each generation of EBNA when it is applied to Trap5 with population size m. In
(a), (c), (e) we provide the results for 17 successful runs out of 20. In (b), (d), (f) we provide
the results for 3 unsuccessful runs

values are mainly responsible for the different behavior in the correlation between
successful and unsuccessful runs. The function values for the k MPSs and therefore
the correlation, are an important source of information to distinguish both types of
runs in Trap5.
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Fig. 2 Probability values, function values and Pearson correlation of the 50 most probable
solutions at each generation of EBNA when it is applied to Trap5 with population size m. In
(a), (c), (e) we provide the results for 3 successful runs out of 20. In (b), (d), (f) we provide
the results for 17 unsuccessful runs

In Fig. 3 we report the average function values for the 50 MPSs and the 50 best
individuals in the population. The results agree with [12] where the function value
for the MPS and the best individual of the population are analyzed. The function
values for the k MPSs are better than the k best values in the population at the
beginning of the run. This difference is higher with population size m. At the end of
the run, the MPSs have lower values because the EBNA population converges to a
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Fig. 3 Function values average for the 50 most probable solutions and the 50 best individuals
of the population at each generation of EBNA when it is applied to Trap5 and the optimum is
reached
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Fig. 4 EBNA is applied to Trap5. (a) Position of the optimum in the k most probable solu-
tions at each generation with population size m. (b) Accumulated entropy of the whole set of
variables in the k most probable solutions

solution, while in the MPSs there are different solutions. For this type of analysis,
the results are similar in both successful and unsuccessful runs as was shown in
[12, 13].

The charts in Fig. 4 correspond to two different analysis. Firstly, Fig. 4(a) reports
the position of the optimum in the ordered set of k MPSs for each run (different
curves in the chart) during the search. We only show the results for successful runs
because when the optimum is not reached it does not enter the k MPSs. We can see
that the optimum quickly goes up in the ranking before reaching the first position.
Secondly, Fig. 4(b) reports the entropy accumulated for the whole set of variables
in the k MPSs at each generation. We can observe a constant pattern in the four
cases reported. The entropy increases at the beginning of the search and decreases
in the last generations when EBNA converges to a solution. In the first and last
generations, when the Bayesian networks have the lowest complexity, the k MPSs
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have very similar genotypes. Nevertheless, in the middle of the run the entropy
increases with the complexity of the Bayesian network. It is also important to note
that it is possible to distinguish between successful and unsuccessful runs in these
results. The k MPSs are more entropic in the middle of the run when the optimum
is not reached. This occurs for both population sizes m and m/2.

5 Analyzing the k MPSs in Gaussian Ising

5.1 2D Ising Spin Glass Description

Ising spin glass model [22] is often used as optimization problem in benchmarking
EDAs [19, 37, 39]. A classic 2D Ising spin glass can be formulated in a simple way.
The set of variables X is seen as a set of n spins disposed on a regular 2D grid L
with n = l× l sites and periodic boundaries (see Fig. 5). Each node of L corresponds
to a spin Xi and each edge (i, j) corresponds to a coupling between Xi and Xj. Thus,
each spin variable interacts with its four nearest neighbors in the toroidal structure
L. Moreover, each edge of L has an associated coupling strength Ji j between the
related spins. For the classical Ising model each spin takes the value 1 or −1. The
target is, given couplings Ji j, to find the spin configuration that minimizes the energy
of the system computed as,

E(x) =− ∑
(i, j)∈L

xiJi jx j−∑
i∈L

hixi (9)

where the sum runs over all coupled spins. In our experiments we take hi = 0 ∀i∈ L.
The states with minimum energy are called ground states.

Fig. 5 A 3× 3 grid structure L showing the interactions between spins for a 2D Ising spin
glass with periodic boundaries. Each edge has an associated strength Ji j

Depending on the range chosen for the couplings Ji j we have different versions of
the problem. Thus, the problem is called Gaussian Ising when the couplings Ji j are
real numbers generated following a Gaussian distribution. For this type of couplings,
the problem has only one optimal solution. A specified set Ji j of coupling defines a
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spin glass instance. We generated the Gaussian Ising instances using the Spin Glass
Ground State server1 for the experiments. The minimum energy of the system is
also provided in this server.

5.2 Experimental Results

In this section, we present and discuss the results obtained when EBNA tries to
solve the Gaussian Ising problem. In Fig. 6, we report the probabilities, function
values and correlations for the k MPSs with the population size given by bisection.
In Gaussian Ising, the results for population size m/2 are not shown because they
do not provide new relevant information. In contrast with Trap5, the first type of
analysis for this problem does not show a clear difference between either population
sizes or between successful and unsuccessful runs. Nonetheless, for this last matter
we can observe little differences in the correlations (Fig. 6(c) and 6(f)) where the
curves for all k reach very close values in unsuccessful runs. Moreover, in the charts
of function values (Fig. 6(b) and 6(e)), when EBNA does not reach the optimum,
the MPSs with the lowest probability (they are always ordered from 1 to 50) have
worse function values in the last generations.

In any case, the different behavior of the k MPSs between these two problems
is evident. Firstly, in Gaussian Ising, although the probability distribution has an
analogous behavior, it concentrates on a unique solution more slowly than in Trap5
in the last generations. Secondly, there is a clear difference in the behavior of the
function values for the k MPSs. In Trap5, the MPS always has a better function value
than the rest of k−1 solutions at the end of the run. In Gaussian Ising, however, there
is a clear diversity in the function values for the k MPSs and their form is barely
related with the probability values. Lastly, these facts are reflected in the charts of
correlation. In Gaussian Ising, the curve of the correlation has a lower slope and
reaches lower values than in Trap5 at the end of the run.

Although both problems have a unique optimum, we believe that the difference
in the behavior of the k MPSs is due to the properties of the landscape for each
problem. In Gaussian Ising few solutions share the same function value, while in
Trap5 there are different sets of solutions with the same function value.

In Fig. 7 we report the average function value for the 50 MPSs and the 50 best
individuals in the population. Once again, the results agree with [12]. In this prob-
lem, there is a shorter distance than in Trap5 between both curves during the search.
Moreover, there is a lower difference between both population sizes. Nevertheless,
the average function value for the k MPSs is better than for the k best individuals in
the population during the first generations.

As in the previous section, Fig. 8(a) reports the position of the optimum in the k
MPSs during the search. In general, this analysis shows a behavior similar to Trap5.
However, in this case, the optimum can decrease in position from one generation to
the next. This can be seen because some curves have upward lines. Regarding the
entropies of the k MPSs, we present Fig. 8(b). In this problem the behavior of the

1 http://www.informatik.uni-koeln.de/ls_juenger/index.html

http://www.informatik.uni-koeln.de/ls_juenger/index.html
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Fig. 6 Probability values, function values and Pearson correlation of the 50 most probable
solutions at each generation of EBNA when it is applied to Gaussian Ising with population
size m. In (a), (c), (e) we provide the results for 15 successful runs out of 20. In (b), (d), (f)
we provide the results for 5 unsuccessful runs

different curves is more variable and the pattern in general is less clear than in Trap5.
Nevertheless, this chart allows us to distinguish between different scenarios. First of
all, with population size m we can distinguish between successful and unsuccessful
runs. This is because the entropy of the k MPSs in unsuccessful runs reaches higher
values. This behavior was also observed for Trap5. Secondly, we can observe a
different behavior with population size m and m/2. The curves for m clearly increase
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Fig. 7 Function values average for the 50 most probable solutions and the 50 best individuals
of the population at each generation of EBNA when it is applied to Gaussian Ising and the
optimum is reached
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Fig. 8 EBNA is applied to Gaussian Ising. (a) Position of the optimum in the k most probable
solutions at each generation with population size m. (b) Accumulated entropies of the whole
set of variables in the k most probable solutions

from the beginning of the run to the middle and decrease in the last generations,
while for population size m/2 the curves have a lower growth.

6 Analyzing k MPSs in ±J Ising

6.1 ± J Ising Description

As explained in Section 5, the main difference between both versions of 2D Ising
spin glass is the range of values chosen for the couplings Ji j. In this second Ising
problem, the couplings Ji j are set randomly to either +1 or −1 with equal proba-
bility. This version, that will be called ±J Ising, could have different configurations
of the spins that reach the ground state (lowest energy) and therefore many optimal



178 C. Echegoyen et al.

solutions may arise. As for the previous case, the±J Ising instances were generated
using the Spin Glass Ground State server. This server also provided the value of the
minimum energy of the system.

6.2 Experimental Results

In this section, we present and discuss the results obtained when EBNA tries to
solve the ±J Ising problem. The analyisis of the probabilities, function values and
correlation for the k MPSs are shown in Fig. 9. In this problem the results with
different population sizes are very similar. We only report those with population
size m/2 in order to have a wider variety of successful and unsuccessful runs. As
we previously explained, ±J Ising problem has several optimal solutions and this
fact is reflected in these results.

First for all, we must explain a particular behavior which can arise in the prob-
lems with several optima. If we look at Fig. 9(f), we can see that there is only one
curve (k = 50) in the last generations and it is not continuous. The reason for such
behavior is that in certain generations of some runs, all the function values for the
k MPSs are equal. In this case, the standard deviation is 0 and therefore Equation 5
makes no sense. This situation will be more evident in the Max-SAT problem which
is analyzed in the following section. Although we do not directly analyze this mat-
ter, it occurs more frequently in unsuccessful runs. This can also be intuited through
the charts of function values. Thus, if we compare Figs. 9(b) and 9(e), we can see
that in unsuccessful runs the function values have very little diversity in the last gen-
erations. However, for successful runs we can appreciate different function values
from the first k MPSs to the last. This is reflected in the correlation charts where
all curves are complete for successful runs. In this case, we have a low correlation
during the search and it just increases in the last generations when the algorithm
converges.

In this problem with several optima, we can observe, for the first time, differ-
ences between successful and unsuccesful runs by looking at the probability values
of the k MPSs. Depending on the type of run, the probability is distributed in a
different manner in the last generations. Thus, in successful runs the probability is
more concentrated in the first MPSs.

For this problem, Fig. 10 shows a similar behavior than for Gaussian Ising. Once
again the function values for the k MPSs outperform the k best individuals in the
population at the beginning of the run. We can also see a difference between popu-
lation sizes. The curves have a greater distance in the first generations with a popu-
lation size m.

Finally, in Fig. 11 we report the position of the optimum in the k MPSs and
their entropy during the search. In Fig. 11(a), where EBNA solves ±J Ising with
population size m, the behavior is similar to that in Gaussian Ising. The curves have
similar slopes and the optimum can decrease in the ranking from one generation to
the next. We have selected this population size in order to have more successful runs
(more curves) and therefore more variety. In Fig. 11(b), the entropy curves are also
similar to those for Gaussian Ising. We can only distinguish between successful and
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Fig. 9 Probability values, function values and Pearson correlation of the 50 most probable
solutions at each generation of EBNA when it is applied to ±J Ising with population size
m/2. In (a), (c), (e) we provide the results for 8 successful runs out of 20. In (b), (d), (f) we
provide the results for 12 unsuccessful runs

unsuccessful runs when the population size given by bisection is used. In this case,
the k MPSs are clearly more entropic in unsuccessful runs at the end of the run.
Regarding the population size, we can see that with size m, there is more genotypic
diversity during the search.
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Fig. 10 Function values average for the 50 most probable solutions and the 50 best individ-
uals of the population at each generation of EBNA when it is applied to ±J Ising and the
optimum is reached
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Fig. 11 EBNA is applied to ±J Ising. (a) Position of the optimum in the k most probable
solutions at each generation with population size m. (b) Accumulated entropies of the whole
set of variables in the k most probable solutions

7 Analyzing k MPSs in Max-SAT

7.1 Max-SAT Description

The last problem in our analysis is the maximum satisfiability or Max-SAT problem,
which has often been used in different works about EDAs [4, 37]. Without going
into details, given a set of Boolean variables X and a Boolean expression φ , SAT
problem asks if there is an assignment x of the variables such that the expression
φ is satisfied. In a Boolean expression we can combine the variables using Boolean
connectives such as ∧ (logical and), ∨ (logical or) and ¬ (negation). An expression
of the form xi or ¬xi is called a literal.
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Every Boolean expression can be rewritten into an equivalent expression in a
convenient specialized style. In particular, we use the conjunctive normal form
(CNF) φ =

∧q
i=1 Ci. Each of the q Cis is the disjunction of two or more literals

which are called clauses of the expression φ . We work with clauses of length k = 3.
When k ≥ 3, the SAT problem becomes NP-Complete [8]. An example of a CNF
expression with 5 Boolean variables X1, X2, X3, X4, X5 and 3 clauses could be,
φ = (x1∨¬x3∨ x5)∧ (¬x1∨ x3∨ x4)∧ (x1∨¬x4∨¬x2).

The Max-SAT problem has the same structure as SAT, but the result, for an as-
signment x, is the number of satisfied clauses instead of a truth value. In order to
solve Max-SAT, the assignment for X that maximizes the number of satisfied clauses
must be found. Thus, the function can be written as,

fMax−SAT (x) =
q

∑
i=1

φ(Ci) (10)

where each clause Ci of three literals is evaluated as a Boolean expression that re-
turns 1 if the expression is true and 0 if it is f alse. Since Ci is a disjunction, it is
satisfied if at least one of its literals is true. The variables of X can overlap arbitrarily
in the clauses.

Particularly, we work with 3-CNF SAT problems obtained from the SATLIB [21]
repository which provides a large number of SAT instances. The instances used are
satisfiable. They have 50 variables and 218 clauses. It is important to note that there
could be several assignments for X that satisfy all clauses and therefore this problem
could have different optimal solutions.

7.2 Experimental Results

In this section, we present and discuss the results obtained when EBNA tries to
solve the Max-SAT problem. As with ±J Ising, this problem has several optimal
solutions and it is reflected in the analysis. In Fig. 12 we present the probabilities
in logarithmic scale, the function values and their correlation when population size
m/2 is used. Max-SAT has a similar behavior for both population sizes in this type
of analysis. So only results for the most representative size (m/2) are shown.

We can find clear differences between successful and unsuccessful runs in all the
charts of Fig. 12. Firstly, regarding the probability values, at the end of the run it is
evident that the probability is concentrated on the first MPSs when EBNA reaches
the optimum. By contrast, the probability is distributed more equitably among the
k MPSs in unsuccessful runs. Secondly, if we look at the charts of function values,
we can see that almost all k MPSs have the same value in the last generations for
unsuccessful runs. On the contrary, when the optimum is reached, there is diversity
in the function values for this set of solutions. Lastly, in the charts of correlation we
have the same problem as in ±J Ising because in some generations the calculation
of the correlation is not possible. This problem is more evident in unsuccessful runs
where we can see that the function values reach equal values in most of the cases.
Once again, there is a low correlation between probabilities and functions during the
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Fig. 12 Probability values, function values and Pearson correlation of the 50 most probable
solutions at each generation of EBNA when it is applied to Max-SAT with population size
m/2. In (a), (c), (e) we provide the results for 12 successful runs out of 20. In (b), (d), (f) we
provide the results for 8 unsuccessful runs

search. Only at the end of the run, when the optimum is reached, does the correlation
increase (see Fig. 12(c)).

In Fig. 13 we show the rest of the analysis. A little difference between population
sizes in the analysis of the average function value can be seen. Therefore, we only
show Fig. 13(a) as an example of the behavior. We can see that the k MPSs are only
better than the k best individuals of the population in few generations at the begin-
ning of the run. In the rest of the run there are better individuals in the population. It
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is possible that Bayesian networks do not manage to accurately represent the struc-
ture of the problem. Fig. 13 shows the position of the optimum in the k MPSs during
the search and the behavior is the same as in the rest of the problems. Finally, the
entropies of the k MPSs in Fig. 13(c) reveal a clear difference between successful
and unsuccessful runs. Thus, when the optimum is not reached by EBNA our ana-
lyzed solutions are more entropic at the end of the run. However, in this chart it is
difficult to distinguish between population sizes.
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Fig. 13 EBNA is applied to Max-SAT. (a) Function values average for the 50 MPSs and the
50 best individuals of the population for successful runs with population size m. (b) Position
of the optimum into the 50 MPSs at each generation with population size m/2. (c) Accumu-
lated entropy of the whole set of variables in the 50 MPSs

8 Related Works

Most of the research done in the scope of the models learned by EDAs that use
Bayesian networks [15, 30, 38] has focused on structural descriptors of the net-
works, in particular on the type (i.e. correct or spurious) and number of the network
edges [11, 14, 18, 19, 24, 25]. The analysis of the Bayesian network edges learned
by EDAs has allowed to study the effect of the selection and replacement [19, 25]
as well as the learning method [11, 14, 24] in the accuracy of the models learned by
EDAs and the efficiency of these algorithms. A more recent work [24] considers the
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likelihood given to the selected set during the model learning step as another source
of information about the algorithm’s behavior.

We are in the line of works which analyze EDAs from a quantitative point of
view. For EDAs that use Markov models, in [5] the product moment correlation
coefficient between the Markov model learned by DEUM and the fitness function is
used to measure the quality of the model as a fitness function predictor. For a given
solution, the prediction is the value given by the Markov model to the solution. The
quality of the model is measured using the correlation computed from samples of
the search space.

For EDAs based on Bayesian networks, in [12, 13] the probability of the opti-
mum is analyzed. By using the most probable solution given by the probabilistic
model, the optimum of the function and the best individual of the population, basic
issues about the behavior of EDAs are studied. In this chapter, we extend this type
of quantitative analysis, taking into consideration the k MPSs as descriptors of the
probabilistic models. The computation of the MPS and the k MPSs has also been
used as a way to improve the sampling step in EDAs [20, 28]. In this context, differ-
ent questions arise such as which is a good value for k, at which time of the evolution
it is more convenient to introduce the k best MPSs, how to avoid premature conver-
gence, etc. The kind of analysis we present may be useful to answer these questions
and advance in this line of research.

9 Conclusions

In this work, we have exploited the quantitative component of the probabilistic mod-
els learned by EDAs during the search in order to better understand their behavior
and aid in their development. Particularly, we have analyzed the k solutions with the
highest probability in the distributions estimated at each step of an EBNA. We have
conducted systematic experiments for several functions.

Firstly, we have studied the relation between the probabilistic model and the func-
tion. For the k MPSs, we have recorded the probabilities, the function values and the
correlation between both at each step of the algorithm. We have observed that the
results change markedly depending on the problem. This allows us to discover some
properties of the search space. Firstly, it is possible to distinguish multimodal func-
tions such as ±J Ising and Max-SAT. The main source to identify this characteristic
in the function are the probability values. Thus, when the function has a unique op-
timum, the probability is concentrated in the MPS at the end of the run. However,
when the function is multimodal, the probability is shared among several k MPSs
in the last generations. This supports the conclusions drawn in [13]. Secondly, the
function values for the k MPSs are a rich source of information in the problems with
a unique optimum (Trap5 and Gaussian Ising). Although the probability values have
a similar behavior in both problems, the function values provide information about
the properties of the search space. Thus, we have seen that Trap5 has many local
optima with the same function value. However, in Gaussian Ising, the function val-
ues for the k MPSs suffer important variations even at the end of the run. Therefore,
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we can deduce that this function assigns more different function values than Trap5
to the search space. The correlation between probabilities and function values has a
different curve depending on the problem. Only in Trap5 does it reach the value of
1 in the last generations.

It is very important to note that this analysis reveals a different behavior between
successful and unsuccessful runs in most of the cases. For this goal, the function val-
ues and the correlations are the main source of information in the problems with a
unique optimum. When the optimum is not reached, the function values suffer vari-
ations and the correlation is lower at the end of the run. Although in Gaussian Ising
there is only a little difference between both types of runs, in Trap5 the successful
runs are easily identifiable. In problems with several optima, both the probability
and function values, and hence the correlations, allow us to identify the success of
the search. Firstly, the probability values are more spread among the k MPSs when
the optimum is not reached. This fact is more evident in Max-SAT. Secondly, the
function values for these solutions are more variable in successful runs. By contrast,
when the optimum is not reached, it is more frequent that all k MPSs have equal
function values in a given generation. Therefore, this affects the calculation of the
correlation. Thus, in unsuccessful runs, there are more generations for which the
correlation has no solution. The distinction between types of runs is a very impor-
tant matter. It could open a line of work in order to create methods to predict or
estimate the success of a particular run in real problems where the optimum is not
known.

Regarding the analysis of the average function value for the k MPSs and the k
best individuals of the population, we have observed that they agree with the results
obtained in [12]. Thus, the function values for the k MPSs always have a higher
quality than the best individuals of the population at the beginning of the run. In
general, this difference is greater when a population size given by bisection is used
in EBNA. However, in the middle and at the end of the run the behavior depends on
the problem. In general, the behavior observed in this type of analysis confirms the
benefit of exploiting the information that the Bayesian network contains about the
function by using inference techniques [28], at least at the beginning of the run.

The position of the optimum inside the k MPSs during the search has a similar
behavior in different problems. Thus, the optimum usually reaches the first posi-
tion in few generations when it is reached. Except for Trap5, it is possible for the
optimum to go down in the ranking from one generation to the next. Moreover, al-
though these results have not been presented, it is also possible for the optimum to
enter the k MPSs and to leave in the next generation. Once again, this supports the
idea of using approximate inference techniques of the MPSs in the sampling step of
an EDA.

Finally, the analysis of the entropies for the k MPSs allows us to make important
distinctions not only between problems but also between successful and unsuccess-
ful runs and population sizes. A common pattern in all problems is that the entropy
of the k MPSs is lower in successful runs, especially in the middle of the run. It
indicates that the probability distribution assigns the highest probabilities to more
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homogeneous solutions and it is beneficial for the search. Regarding the difference
between population sizes, the entropy tends to be lower with a reduced size.

We can assert that the k MPSs are a rich source of information about the behavior
of an EDA. However, their computation requires a high computational cost. We be-
lieve that carrying out an approximate calculation of the k MPSs could be useful to
obtain relevant information about the optimization process. This type of measure-
ments could be taken on-line during the search allowing certain automatic decision
making in the algorithm which could be really useful to develop adaptive EDAs.

It is important to highlight that our method may be extended to EDAs that use
other classes of probabilistic models by modifying the class of message passing al-
gorithm used in the computation of the MPSs (e.g. using loopy belief propagation).
Furthermore, it is also possible to use information about the fitness function (struc-
ture and fitness values) [20, 26, 41] to conveniently modify the definition of the
abductive inference step and the computation of the MPSs.
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Protein Structure Prediction Based on HP
Model Using an Improved Hybrid EDA

Benhui Chen and Jinglu Hu

Abstract. Protein structure prediction (PSP) is one of the most important problems
in computational biology. This chapter introduces a novel hybrid Estimation of Dis-
tribution Algorithm (EDA) to solve the PSP problem on HP model. Firstly, a com-
posite fitness function containing the information of folding structure core (H-Core)
is introduced to replace the traditional fitness function of HP model. The new fitness
function is expected to select better individuals for probabilistic model of EDA.
Secondly, local search with guided operators is utilized to refine found solutions
for improving efficiency of EDA. Thirdly, an improved backtracking-based repair-
ing method is introduced to repair invalid individuals sampled by the probabilistic
model of EDA. It can significantly reduce the number of backtracking searching op-
eration and the computational cost for long sequence protein. Experimental results
demonstrate that the new method outperforms the basic EDAs method. At the same
time, it is very competitive with other existing algorithms for the PSP problem on
lattice HP models.

1 Introduction

Protein structure prediction (PSP) is one of the most important problems in compu-
tational biology. A protein is a chain of amino acids (also called as residues) that
folds into a specific native tertiary structure under certain physiological conditions.
Understanding protein structures is vital to determining the function of a protein
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and its interaction with DNA, RNA and enzyme. The information about its confor-
mation can provide essential information for drug design and protein engineering.
While there are over a million known protein sequences, only a limited number
of protein structures are experimentally determined. Hence, prediction of protein
structures from protein sequences using computer programs is an important step to
unveil proteins’ three dimensional conformation and functions.

Because of the complexity of the PSP problem, simplified models like Dill’s HP-
lattice [17] model have become the major tools for investigating general properties
of protein folding. In HP model, 20-letter alphabet of residues is simplified to a
two-letter alphabet, namely H (hydrophobic) and P (polar). Experiments on small
protein suggest that the native state of a protein corresponds to a free energy min-
imum. This hypothesis is widely accepted, and forms the basis for computational
prediction of a protein’s conformation from its residue sequence. The problem of
finding such a minimum energy configuration has been proved to be NP-complete
for the bi-dimensional (2-D) [8] and tri-dimensional (3-D) lattices [4]. Therefore, a
deterministic approaches is always not practical for this problem.

Many genetic algorithm (GA) based methods have been proposed to solve the
PSP problem in the HP model in recent years [27, 11, 26, 7]. However, it has been
acknowledged that the crossover operators, particularly one-point crossover and uni-
form crossover, in a conventional GA do not perform well for this problem [15, 9]. On
the other hand, R. Santana et al. (2008) pointed out that the evolutionary algorithms
able to learn and use the relevant interactions that may arise between the variables of
the problem can perform well for this kind of problems. Estimation of distribution
algorithm (EDA) is known as one of such kind of evolutionary algorithms.

In the EDAs [16, 18], instead of using conventional crossover and mutation op-
erations, probabilistic models are used to sample the genetic information in the next
population. The use of probabilistic models, especially, models taking into account
bivariate or multivariate dependencies between variables, allows EDAs to capture
genetic tendencies in the current population effectively. In brief, these algorithms
construct, in each generation, a probabilistic model that estimates the probability
distribution of the selected solutions. Dependency regulars are then used to generate
next generation solutions during a simulation step. It is expected that the generated
solutions share a number of characteristics with the selected ones. In this way, the
search leads to promising areas of the search space.

In Ref. [24], the EDAs that use Markov probabilistic model or other probabilis-
tic models outperform other population-based methods when solving the HP model
folding problem, especially for the long sequence protein instances. But those meth-
ods have three obvious disadvantages as follow. 1) For most long sequence protein
instances, the chance of finding the global optimum is very low, and the algorithm
often need be set by very large generation number and population size for finding
the global optimum. 2) For some deceptive sequences, those methods can only find
the suboptimum solutions. 3) In those methods, a backtracking method is used to
repair invalid individuals sampled by the probabilistic model of EDAs. For a tradi-
tional backtracking algorithm, the computational cost of repairing procedure is very
heavy for those long sequence instances.
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This chapter introduces a hybrid method to solve above problems of the EDAs
based method for HP model protein folding. Firstly, a composite fitness function
containing the information of folding structure core (H-Core) is introduced to re-
place the traditional fitness function of HP model. The new fitness function is ex-
pected to select better individuals for probabilistic model of EDAs algorithm. It can
help to increase the chance of finding the global optimum and reduce the complex-
ity of EDA (population size and the number of generation needed). Secondly, local
search with guided operators is utilized to refine the found solutions for improving
efficiency of EDA. The local information of solutions found so far can be helpful
for exploitation, while the global information can guide the search for exploring
promising areas. Local search with guided operators generates offspring through
combination of global statistical information and the location information of so-
lutions found so far. Thirdly, an improved backtracking-based repairing method is
introduced to repair invalid individuals sampled by the probabilistic model of EDAs
for the long sequence protein instances. The traditional backtracking repairing pro-
cedure will produce heavy computational cost for searching invalid closed-areas of
folding structure. In the improved method, to avoid entering invalid closed-areas,
a detection procedure for feasibility is introduced when selecting directions for the
residues in backtracking searching procedure. It can significantly reduce the number
of backtracking searching operation and the computational cost for the long protein
sequences. The presented work extends the previous papers [6, 5] including fur-
ther empirical investigation and extending explanations about critical aspects of the
algorithm’s behavior.

The rest of the chapter is organized as follows. In Section 2 we give a brief
overview of protein HP model and the EDAs. In Section 3 we describe the new
hybrid EDA for HP model protein folding. It includes the proposed composite fit-
ness function and local search with guided operators. In Section 4 we formulate the
improved backtracking repairing algorithm for invalid solutions. Section 5 presents
the experiment results of the introduced method. Finally, the conclusions and further
work directions are given.

2 Protein HP Model and EDAs

2.1 Protein Folding and HP Model

Proteins are macromolecules made out of 20 different residues. A residue has a pep-
tide backbone and a distinctive side chain group. The peptide bond is defined by an
amino group and a carboxyl group connected to an alpha carbon to which a hy-
drogen and side chain group is attached. Residues are combined to form sequences
which are considered as the primary structure of proteins. The secondary structure
is the locally ordered structure brought about via hydrogen bounding mainly within
the peptide backbone. The most common secondary structure elements in proteins
are the alpha helix and the beta sheet. The tertiary structure is the global folding of
a single polypeptide chain.
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 Start 

Fig. 1 One possible configuration of the sequence HPHPPHHPPHPHPH in 2-D HP model.
There are six HH topological neighbors (represented by broken lines)

Under specific conditions, a protein sequence folds into a unique native 3-D struc-
ture. Each possible protein fold has an associated energy. The thermodynamic hy-
pothesis states that the native structure of a protein is the one for which the free
energy achieves the minimum. Based on this hypothesis, many methods are pro-
posed to search for the protein native structure by defining an approximation of the
protein energy and utilizing the optimization methods. These approaches mainly
differ in the type of energy approximation employed and in the characteristics of
the protein modeling.

In this chapter, we focus on lattice models, in particular, we use the well-known
Dills HP model. The HP model takes into account the hydrophobic interaction as the
main driving force in protein folding. In HP model, each amino acid is represented
as a bead, and connecting bonds are represented as lines. In this approach, a protein
is considered as a sequence S∈ {H,P}+ , where H represents a hydrophobic residue
and P represents a hydrophilic or polar residue. The HP model restricts the space
of conformations to self-avoiding paths on a lattice in which vertices are labeled by
the residues.

Given a pair of residues, they are considered neighbors if they are adjacent either
in the chain (connected neighbors) or in the lattice but not connected in the chain
(topological neighbors). Let εHH denote the interaction energy between topological
neighbor of two H residues, εPP for two P residues, εHP for a H residue and a P
residue. An energy function is defined as the total energy of topological neighbors
with εHH = −1 and εPP = εHP = 0. The HP problem is to find the folding confor-
mation that minimizes the total energy E(x). Figure 1 shows the graphical represen-
tation of a possible configuration for sequence HPHPPHHPPHPHPH in 2-D HP
model, hydrophobic residuals are represented by black beads and polar residuals by
white beads. The energy that the HP model associates with this configuration is -6.

Although more complex models have been proposed, the HP model remains a
focus of research in computational biology, chemical and statistical physics. By
varying the energy function and the bead sequence of the chain (the primary struc-
ture), effects on the native state structure and the kinetics (rate) of folding can be
explored, and this may provide insights into the folding of real proteins. In par-
ticular, the HP model has been used to investigate the energy landscapes of pro-
teins, i.e. the variation of their internal free energy as a function of conformation. In
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Fig. 2 The flowchart of Estimation of Distribution Algorithms (EDAs)

evolutionary computation, the model is still employed because of its simplicity and
its usefulness as a test-bed for new evolutionary optimization approaches [24].

2.2 Estimation of Distribution Algorithms

In EDAs [16], there are neither crossover nor mutation operators. Instead, the new
population is sampled from a probability distribution, which is estimated from a
database that contains the selected individuals from the previous generation. Thus,
the interrelations between the different variables that represent the individuals are
explicitly expressed through the joint probability distribution associated with the
individuals selected at each generation.

Figure 2 illustrates the flow chart for an EDA approach. Initially, a random so-
lutions is generated. These solutions are evaluated using an objective function. An
objective function evaluates how accurate each solution is for the problem. Based on
this evaluation, a subset of solutions is selected. Hence, solutions with better func-
tion values have a bigger chance of being selected. Then, a probabilistic model of
the selected solutions is built, and a new set of solutions is sampled from the model.
The process is iterated until the optimum has been found or another termination
criterion is fulfilled [1].

In order to explain the behavior of this heuristic, a common outline for EDAs is
listed as follow.
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1) Generate the first population of M individuals and evaluate each of them. Usually,
this generation is made assuming a uniform distribution on each variable.

2) N individuals are selected from the set of M, following a given selection method.
3) An l (size of the individual) dimensional probabilistic model that shows the in-

terdependencies among the variables is induced from the N selected individuals.
4) Finally, a new population of individuals is generated based on the sampling of

the probability distribution learnt in the previous step.
5) Steps of 2 to 4 are repeated until some stop criterion is met (e.g. a maximum

number of generations, a homogeneous population, or no improvement after a
certain number of generations).

Essentially EDAs assume that it is possible to build a model of the promising areas of
the search space, and use this model to guide the search for the optimum. In EDAs,
modeling is achieved by building a probabilistic graphical model that represents a
condensed representation of the features shared by the selected solutions. Such a
model can capture different patterns of interactions between subsets of the problem
variables, and can conveniently use this knowledge to sample new solutions.

Probabilistic modeling gives EDAs an advantage over other evolutionary algo-
rithms that do not employ models, such as GAs. These algorithms are generally
unable to deal with problems where there are important interactions among the
problems’ components. This, together with EDAs’ capacity to solve different types
of problems in a robust and scalable manner, has led to EDAs sometimes also being
referred to as competent GAs [10, 22]. EDAs can be seen as a development of GAs.
By recombining a subset of selected solutions, GAs are able to process the informa-
tion learned during the search, and to orient the exploration to promising areas of
the search space. Nevertheless, it has been proved that GAs experience limitations in
their capacity to deal with problems where there are complex interactions between
different components of the solutions. In these scenarios, EDAs can exhibit a better
performance [9, 19].

EDAs can be broadly divided according to the complexity of the probabilis-
tic models used to capture the interdependencies between the variables: univari-
ate, bivariate and multivariate approaches [1]. Univariate EDAs, such as PBIL [2],
cGA [12] and UMDA [21], assume that all variables are independent and factorize
the joint probability of the selected solutions as a product of univariate marginal
probabilities. Consequently, these algorithms are the simplest EDAs and have also
been applied to problems with continuous representation.

The bivariate models can represent low order dependencies between the variables
and be learnt using fast algorithms. MIMIC [14], the bivariate marginal distribution
algorithm BMDA [23], dependency tree-based EDAs [3] and the tree-based esti-
mation of distribution algorithm (Tree-EDA) [25] are all members of this subclass.
The latter two use tree and forest-based factorizations, respectively. They are recom-
mended for problems with a high cardinality of the variables and where interactions
are known to play an important role. Trees and forests can also be combined to
represent higher-order interactions using models based on mixtures of distributions.

Multivariate EDAs factorize the joint probability distribution using statistics of
order greater than two. As the number of dependencies among the variables is higher
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than in the above categories, the complexity of the probabilistic structure, as well
as the computational effort required to find the structure that best suits the selected
solutions, is greater. Therefore, these approaches require a more complex learning
process. Some of the popular Multivariate EDAs are the Factorized Distribution
Algorithm (FDA) [20], the Bayesian optimization algorithm (BOA) [23] and the
extended compact Genetic Algorithm (EcGA) [12].

Since several EDAs have been proposed with a variety of models and learning
algorithms, the selection of the best EDA to deal with a given optimization problem
is not always straightforward. One criterion that could be followed in this choice
is to trade off the complexity of the probabilistic model against the computational
cost of storing and learning the selected model. Both issues are also related to the
problem dimensionality (i.e. number of variables) and to the type of representation
(e.g. discrete, continuous, mixed).

The simple models generally have minimal storage requirements, and are easy
to learn. However, they have a limited capacity to represent higher order interac-
tions. On the other hand, more complex models, which are able to represent more
involved relationships, may require sophisticated data structures and costly learning
algorithms. The impact that the choice between simple and more complex mod-
els has in the search efficiency will depend on the addressed optimization problem.
In some cases, a simple model can help to reach non-optimal but acceptable so-
lutions in a short time. In other situations, e.g. deceptive problems, an EDA that
uses a simple model could move the search away from the area of promising solu-
tions. Another criterion that should be taken into consideration to choose an EDA
is whether there is any previous knowledge about the problem structure, and which
kind of probabilistic model is best suited to represent this knowledge [1].

3 New Hybrid EDA for Protein Folding Based on HP Model

3.1 Problem Representation for EDA

In the algorithm of protein folding optimum, one of the important problems is how
to present a specific conformation. To embed a hydrophobic pattern S ∈ {H,P}+
into a lattice, we have three methods: Cartesian Coordinate, Internal Coordinate and
Distance Matrix [15].

1) Cartesian Coordinate: The position of residues is specified independently from
other residues.

2) Internal Coordinate: The position of each residue depends upon its predecessor
residues in the sequence. There are two types of internal coordinate: absolute
directions where the residue directions are relative to the axes defined by the
lattice, and relative directions where the residue directions are relative to the
direction of the previous move.

3) Distance Matrix: The location of a given residue is computed by means of its
distance matrix.
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Krasnogor et al. (1999) [15] performed an exhaustive comparative study using evo-
lutionary algorithms (EAs) with relative and absolute directions. The experimental
results show that relative directions almost always outperform absolute directions
over square and cubic lattice, while absolute directions have better performances
when facing triangular lattices. Experimental evidence suggests internal coordinates
with relative directions should be used. However, in general, it is difficult to assess
the effectiveness of direction encoding on an EAs performance.

In this chapter, we use the representation of internal coordinates with relative
direction, the position of each residue depends upon the previous move. Relative
direction representation presents the direction of each residue relative to the main
chain next turn direction. This representation can reduce the direction number of
each position. For 2-D HP model, the set of direction is left, right and forward (L,
R, F). And it is left, right, forward, up and down, (L, R, F, U, D) for the 3-D HP
model. For example, by relative direction representation, the representation of the
protein structure shown in Fig.1 is s = (RFRRLLRRFRLR).

It can be noted that the backward direction is not used, because the backward di-
rection will cause overlap in this representation. Thus, this representation can reduce
the position collision in a certain degree to guarantee the self-avoiding walk folding
procedure. There are other advantages of the relative direction representation. One
is that the sequence conformation can be presented as one dimension array. The
most important is that the change of a start direction will not influence the structure
of other part in sequence.

3.2 The Probabilistic Model of EDA

It is very important for EDAs to select an appropriate probabilistic model accord-
ing to a given application problem. The probabilistic model is represented by con-
ditional probability distributions for each variable and estimated from the genetic
information of selected individuals in the current generation. Therefore, the type
of probabilistic model also influences the number and strength of the interactions
learned by the model.

In Ref. [24], three probabilistic models for EDAs are proposed to solve the HP
model problem: k-order Markov model, tree model and mixtures of trees model. In
our practice, we find that the k-order Markov model is an appropriate probabilistic
model for the HP model problem, where k≥ 0 is a parameter of the model. It can ef-
fectively embody the self-avoiding folding characteristics of the HP model problem,
because it is assumed that positions of adjacent residues are related in the protein
folding procedure.

The k-order Markov model can encode the dependencies between the move of
a residue and the moves of the previous residues in the sequence, and this in-
formation can be used in the generation of solutions. It is described as follow.
The joint probability mass function of X is denoted as p(X = X) or p(X). And
use p(Xi = xi

∣
∣X j = x j ) or the simplified form p(xi

∣
∣x j ) to denote the conditional

probability distribution of Xi = xi given X j = x j .
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Fig. 3 The H-Core of protein folding structure in 2-D HP model

In the k-order Markov model, the value of variable Xi depends on the values
of the previous k variables. The joint probability distribution can be factorized as
follows:

pMK(X) = p(x1, · · · ,xk+1)
n

∏
i=k+2

p(xi|xi−1, · · · ,xi−k) (1)

Since the structure of the Markov model is given, it can be used to construct the
probabilistic model through computing the marginal and conditional probabilities
of the set of selected individuals and to sample the new generation. To sample
a new solution, first variables in the factor (x1, · · · ,xk+1) are generated and the
rest of variables are sampled according to the order specified by the Markov
factorization.

3.3 The Composite Fitness Function

In order to increase the chance of finding the global optimum and reduce the com-
plexity of EDA (population size and the number of generation needed), a composite
fitness function containing the information of folding structure core is introduced to
replace the traditional fitness function of HP model.

It is well known that the energy potential in the HP model reflects the fact that
hydrophobic residues have a propensity to form a hydrophobic core. The Hs (hy-
drophobic residues) form the protein core and the Ps (hydrophilic or polar residues)
tend to remain in the outer surface. As shown in Fig.3, the inner kernel, called the
H-Core [13], is compact and mainly formed of Hs while the outer kernel consists
mostly of Ps. The H-Core Center is called HCC. The H-Core is a rectangle-like area
in 2-D lattice and cube-like space in 3-D lattice. The coordinates of HCC can be
calculated by follows equations.

xHCC =
1

nH

nH

∑
i=1

xi, yHCC =
1

nH

nH

∑
i=1

yi

zHCC =
1

nH

nH

∑
i=1

zi (2)
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Fig. 4 Two example solutions with same energy (Instance S8 in Tab.1, length: 64, energy:
-25)
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Fig. 5 The guided operators for local search

where nH is the sum of hydrophobic residues in solution, xi, yi and zi (for 3-D
HP model) are the coordinates of hydrophobic residues position in lattice. We can
calculate the number of Hs in inner kernel H-Core (denoted as NHC(x)) through
search surrounding rectangle area (cube space for 3-D HP model) of HCC.

The number of Hs in inner kernel H-Core is an important characteristic for the
folding solution. It also reflects the optimum degree of solution. In the practice we
find that, as showed in Fig.4, for two solutions with same basic HP model energy
E(x) (defined by the number of topological neighbor residues in lattice), the solu-
tion with bigger H-Core has more similar to the optimum solution, and it also has
more biology significance. The two possible solutions of the Instance S8 (length is
64) have same basic HP model energy (-25), but they have different NHC(x) values
(9 and 15 respectively). Obviously, the solution Fig.4(b) has more similar to the
optimum solution.

In the new method, we introduce a novel composite fitness function containing
the information of H-Core for the k-order Markov EDA:
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Fitcp = ω(−E(x))+ (1−ω)NHC(x) (3)

where, E(x) is the total energy of the interaction between topological neighbor
residues of HP model (εHH = −1, εPP = εHP = 0). NHC(x) is the number of Hs in
inner kernel H-Core. ω is weight parameter of the fitness function, and we always
take the ω > 0.5, because the interaction energy E(x) is the dominant characteristic
of protein folding solution.

3.4 Local Search with Guided Operators

An efficient evolutionary algorithm should make use of both the local information
of solutions found so far and the global information about the search space. The
local information of solutions found so far can be helpful for exploitation, while
the global information can guide the search for exploring promising areas. The
search in EDAs is mainly based on the global information, but local search is an
exploitation method based on local information. Therefore, it is worthwhile inves-
tigating whether combining local search with EDA could improve the performance
of the EDA.

Local search with a set of guided operators is implemented in the new hybrid
EDA. Some of these operations have been utilized as mutations in the previous GA
and ant colony optimizations studies of protein folding [26]. But in this chapter, we
call them as “guided operators” meaning that those operations are implemented only
under some special conditions.

Take 2-D HP model as example, the special conditions defined as follow. 1)
Guided operation should guarantee the validity of individual, i.e. it can not produce
position collision in lattice. If we want to change some residues to other positions
in lattice, the object positions must be empty. 2) Guided operation should follow a
basic principle that make Hs as near as possible to the HCC and Ps far away from
the HCC according to the relative position in lattice, as shown in Fig.5.

The way of choosing individuals to implement local search is described as follow.
In each iteration procedure of EDAs, use the composite fitness function (described
by Eq.(3)) to sort the selection individuals. According to the distribution of individ-
uals’ fitness, randomly select some individuals (the number is a certain percentage
of the population) in each fitness domain to implement the local search with guided
operators.

EDAs extract globally statistical information from the previous search and then
build a probabilistic model for modeling the distribution of best solutions visited
in the search space. However, the information of the locations of best individual
solutions found so far is not directly used for guiding the further search. Local search
with guided operator generates offspring through combination of global statistical
information and the location information of solutions found so far. The resultant
solution can (hopefully) fall in or close to a promising area which is characterized
by the probabilistic model.
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4 Improved Backtracking-Based Repairing Method

4.1 Backtracking Method

In HP model, A collision is the embedding of two different peptides onto the same
vertex of the lattice. As each member of the initial population of EA based method is
randomly generated, it may represent an illegal conformation resulting one or more
collisions when embedded. Similarly, crossover and mutation operations of GAs,
sampling from probabilistic model operation of EDAs and other genetic operations
may produce additional collisions.

In Ref. [7], a backtracking algorithm was introduced to repair the positional col-
lisions. It utilizes backtracking strategy to search feasible positions for collision
residues in folding procedure. This particular algorithm constitutes a simple yet
efficient approach for the purposed task. Its pseudocode is showed in Fig.6.

The algorithm receives three parameters. The first one is λ , a table containing the
allowed moves for each residue in the protein; thus, λk is a list of allowed moves
for (k+1)-th residue and λk,r is the r-th move. Although λ may contain in principle
the full set of moves, in general |λ | will not be the same for every k. The second
parameter s is a partial conformation involving |s| residues. As to the third param-
eter, it is a Boolean flag used to finalize the execution of the algorithm as soon as
a feasible conformation is found. Notice finally that the operator :: represents the
sequence concatenation operator.

4.2 Disadvantage of Traditional Backtracking-Based Method

The basic backtracking method mentioned in the previous section has been shown to
be a simple and efficient means of positional collision repairing for protein folding.
But in our practice, we found that the repairing computational cost is very heavy for
long sequence instances of more than 50 residues.

In the generic search procedure of protein folding, especially for the long protein
sequences, the EAs based algorithm will produce a lots of valid and invalid indi-
viduals that contain closed-areas (or closed-spaces in 3-D circumstance). The Fig.7
shows a valid 2-D individual’s conformation contains two closed-areas. When the
basic backtracking method is used to repair invalid individuals contain closed-areas,
some invalid closed-areas made by backtracking searching folding procedure will
produce computational cost wastes.

Take the 2-D circumstance as example, as showed in Fig.8(a), we assume that
there is a closed-area formed by residues from 1 to n. If the folding procedure
select right (R) as the next direction for n + 1 residue, it will enter the closed-
area. Thus, even if the size of this closed-area can not satisfy the length of remain
residues (called it as invalid closed-area), the traditional backtracking method will
still search all empty position in closed-area by backtracking operation. This will
produce a large number of computational cost wastes. According to our experiment,
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1. R-Backtracking (↓ λ :MOVE[], ↓↑ s:MOVE[],
↑ SolutionFound:bool).

2. if Feasible(s) then
3. if |s|= n−1 then
4. SolutionFound← T RUE
5. else
6. SolutionFound← FALSE
7. i← 1
8. while ¬SolutionFound∧ (i≤

∣∣
∣λ|s|

∣∣
∣) do

9. if Detect− f ea (
〈

λ|s|,i
〉

, s) then

10. s′ ← s ::
〈

λ|s|,i
〉

11. R-Backtracking (λ ,s′,SolutionFound)
12. endif
13. i← i+1
14. if SolutionFound then
15. s← s′
16. endif
17. endwhile
18. endif
19. else
20. SolutionFound← FALSE
21. endif

Fig. 6 The pseudocode of the backtracking repairing algorithm
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Fig. 7 Illustration of the closed-areas in 2-D HP model

this phenomenon takes place with a high probability in repairing procedures for long
sequence proteins.
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Fig. 8 (a) Illustration of closed-area detection. (b) The situation that need to implement back-
tracking

4.3 The Improved Method

To solve the above problem, in the improved method, a detection for feasibility is
introduced. The detection procedure is implemented before selecting direction for
next residue to avoid entering an invalid closed-area (The procedure Detect− f ea
in Line 9 of Fig.6).

The pseudocode of the introduced detection algorithm is shown in Fig.9. The
main idea of the detection procedure is described as follow.

1) The current boundaries in lattice is defined as shown in Fig.8(a), the scale
of boundary coordinates is larger one position than current filled area and will be
changed with current folding procedure. For example, four current boundaries of
the 2-D solution shown in Fig.7 are x = −11 (left), x = 4 (right), y = 13 (up) and
y = −4 (down). They can be used to check the folding procedure whether enter a
closed-area. If the detection meet the current boundaries, the folding procedure will
not enter a closed-area.

2) A search approach, similar to Floodfill strategy, is utilized to count possi-
ble empty positions connected to the detected direction

〈
λ|s|,i

〉
, i.e. those empty

positions which could be arrived through this direction. The Floodfill-like search
approach count and label the possible empty positions based on a queue Q. If the
queue Q becomes empty, it means that all possible empty positions are labeled.

3) In the operation of detection procedure, if the current boundaries are met or
the number of counted empty positions is larger than the length of remain residues,
it means that the folding will not enter a closed-area or entered closed-area is not
invalid. Under such circumstance, the detected direction

〈
λ|s|,i

〉
could be chosen for

the next residue.
For long length protein sequences, there are many invalid closed-area in folding

procedure. The improved method can significantly reduce the computational cost.
Although the detection procedure has some computational cost, it is far less than the
cost of backtracking searching operations for invalid closed-areas.

The main reason of the improvement is that the improved method can sig-
nificantly reduce the number of backtracking operation. The folding procedure
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1. ↑ Detect-fea (↓ 〈λ 〉, ↓ s:MOVE[]):bool.
2. Calculate current boundaries according to s
3. Set label for every positions in s (i.e. not empty).
4. if Feasible(s :: 〈λ 〉) then
5. counter = 0 and set an empty queue Q
6. Add 〈λ 〉 to the end of Q
7. while Q is not empty do
8. x=first element of Q
9. if position x is unlabeled

10. Set label for position x
11. counter = counter +1
12. endif
13. if (position x meet the current boundaries) or (counter is larger than the length of

remain residues)
14. Return TRUE
15. endif
16. Remove the first element of Q
17. if west neighbor of x is unlabeled
18. Set label for west−x
19. Add west−x to the end of Q
20. endif
21. Check and process other three (five for 3D) neighbor positions of x using similar

strategies Step (17)-(20)
22. endwhile
23. endif
24. Return FALSE

Fig. 9 The pseudocode of the detection procedure

implements backtracking operation only under few special circumstances. As shown
in Fig.8(b), if the folding procedure has selected the right (R) direction for the n+1
residues. But at n + i position, the folding procedure produce two sub-closed-areas
and all of two are invalid closed-area for remain residues. The folding procedure
should implement a backtracking operation under this situation. It will back to the
n + i−1 residue and search other possible directions.

5 Experiments

5.1 Problem Benchmark

For our experiments, we use the first nine instances of the Tortilla 2-D HP Bench-
marks1, and the last two instances are taken from Ref. [24] to test the searching
capability of the new method. In Tab.1, E∗ is the optimal or best-known energy

1 http://www.cs.sandia.gov/tech-reports/compbio/
tortilla-hp-benchmarks.html

http://www.cs.sandia.gov/tech-reports/compbio/
tortilla-hp-benchmarks.html
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Table 1 HP instances used in the experiments

No. Size E∗ Sequence

s1 20 -9 HPHP2H2PHP2HPH2P2HPH
s2 24 -9 H2P2(HP2)6H2
s3 25 -8 P2HP2(H2P4)3H2
s4 36 -14 P3H2P2H2P5H7P2H2P4H2P2HP2
s5 48 -23 P2H(P2H2)2P5H10P6(H2P2)2HP2H5
s6 50 -21 H2(PH)3PH4P(HP3)2HPH4(PH)4H
s7 60 -36 P2H3PH8P3H10PHP3H12P4H6PH2PHP
s8 64 -42 H12(PH)2(P2H2)2P2H(P2H2)2P2H(P2H2)2P2(HP)2H12
s9 85 -53 H4P4H12P6(H12P3)3H(P2H2)2P2HPH

s10 100 -48 P6HPH2P5H3PH5PH2P4H2P2H2PH5PH10PH2PH7P11H7
P2HPH3P6HPHH

s11 100 -50 P3H2P2H4P2H3(PH2)3H2P8H6P2H6P9HPH2PH11P2H3P
H2PHP2HPH3P6H3

value, Hi, Pi and (· · ·)i indicate i repetitions of the relative symbol or subsequence.
It is important to highlight that most randomly generated amino acid sequences do
not behave like natural proteins, because the latter are products of natural selection.
Likewise, most randomly generated sequences of H and P residues in the HP model
do not fold to a single conformation [24].

5.2 Results of the Hybrid EDA for HP Model

In order to test the effects of the composite fitness function and the local search
with guided mutation, we implemented different experiments by using one of them
independently. The composite fitness function can help to reduce the complexity
of EDA, it can obtain same results with basic k-order Markov EDA (MK-EDA)
by using less population size and generation number. The local search with guided
mutation can help to obtain the global optimum for some instances. But it seems
that combination of two strategies can get much better results in practice. We in-
vestigated the performance of MK-EDA for k ∈ {2,3,4} and find that the algorithm
perform very well when k = 3.

In the experiments of the hybrid EDA, all algorithms use a population size of
2000 individuals. Truncation selection is used as selection strategy. In this strategy,
individuals are ordered by fitness, and the best T ∗PopSize are selected where T is
the truncation coefficient. The parameter T = 0.15 is used in our algorithms. The
best elitism scheme is also implemented in algorithms, the set of selected solutions
in the current generation are passed to the next generation. The stop criteria consid-
ered are a maximum number of generation G = 1000 or that the number of different
individuals in the population falls below 5. For the protein instances of s6 to s11,
we use the improved backtracking-based method to repair the invalid solutions.

The results of the new method comparing with the MK-EDA for the 2-D HP
Model shown in Tab.2. It includes the best solution and the percentage of times the
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Table 2 Results of comparing with MK-EDA for 2-D HP model

New Method MK-EDA
No. E∗ H(X) Percentage H(X) Percentage

s1 -9 -9 100 -9 100
s2 -9 -9 100 -9 100
s3 -8 -8 100 -8 100
s4 -14 -14 16 -14 5
s5 -23 -23 22 -23 7
s6 -21 -21 92 -21 57
s7 -36 -36 24 -35 12
s8 -42 -42 16 -42 4
s9 -53 -53 8 -52 3

s10 -48 -48 12 -47 4
s11 -50 -49 6 -48 2
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Fig. 10 The best fitness for one representative run of instance S7

best solution has been found in 100 experiments. The results of MK-EDA are also
obtained by our experiments with same EDA parameters (Pop = 2000, G = 1000
and T = 0.15) as the new method. From the experiment results we can find that
the new method has more chance to find global optimum or suboptimum solution
for long sequences. The MK-EDA cannot find the global optimum of the deceptive
sequences and long sequences s7, s9, s10 and s11, but the new method can find
the global optimum of the sequences s7, s9 and s10, and can find the second best
solution for sequence s11. Figure 10 shows the best fitness for one representative
run of the instance S7.

The performance of the new method comparing with the best results achieved
with other evolutionary and Monte Carlo optimization algorithms is shown in Tab.3
(2-D HP model) and Tab.4 (3-D HP model). The results of other method are cited
from Ref. [24, 13].From the experiment results we can find that none of the algo-
rithms are able to outperform the rest of algorithms for all the instances. The PERM
is one of the best contenders in all cases except s8 in which its result is very poor.
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Table 3 Results achieved by different search methods for 2-D HP model

New Method MK-EDA GA NewACO PERM
No. H(X) H(X) H(X) H(X) H(X)

s1 -9 -9 -9 -9 -9
s2 -9 -9 -9 -9 -9
s3 -8 -8 -8 -8 -8
s4 -14 -14 -14 -14 -14
s5 -23 -23 -22 -23 -23
s6 -21 -21 -21 -21 -21
s7 -36 -35 -34 -36 -36
s8 -42 -42 -37 -42 -38
s9 -53 -52 -51 -53

s10 -48 -47 -47 -48
s11 -49 -48 -47 -50

Table 4 Results achieved by different search methods for 3-D HP model

New Method MK-EDA Hybrid GA IA
No. H(X) H(X) H(X) H(X)

s1 -11 -11 -11 -11
s2 -13 -13 -11 -13
s3 -9 -9 -9 -9
s4 -18 -18 -18 -18
s5 -29 -29 -28 -28
s6 -30 -29 -22 -23
s7 -49 -48 -48 -41
s8 -51 -50 -46 -42

It shows that the new method is very competitive with the other existing algorithms
for the PSP on lattice HP models. It should be noted that all fitness values of the new
method in the comparing results are calculated by basic HP-model fitness definition.
The composite fitness function is only used in optimization procedure of EDA.

5.3 Results of Comparing Computational Cost

The hybrid EDA is an improved method based on the MK-EDA. The detailed com-
putational cost analysis of the MK-EDA method can be found in the Ref. [24].
Comparing with the MK-EDA, there are three modifications in the new method: 1)
the composite fitness function; 2) the local search with guided operations; 3) the
improved backtracking-based repairing method for the long protein instances. As
far as the computational cost is concerned, modifications of 1) and 2) will produce
some additional computational cost. The modification 3) can significantly reduce
the repairing costs for EDA invalid individuals.
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Table 5 Comparing Results of Improved Backtracking Repairing Method in 2-D HP model

AVG-Backtracking operation AVG-CPUTime (Hour)
No. Size MK-EDA New Method MK-EDA New Method

s1 20 2.1492E+4 2.1496E+4 0.2181 0.2309
s2 24 2.5715E+4 2.5715E+4 0.2659 0.2761
s3 25 2.6834E+4 2.7044E+4 0.2774 0.2805
s4 36 3.8898E+4 3.8797E+4 0.3059 0.3203
s5 48 5.2577E+5 5.2617E+5 0.4341 0.4659
s6 50 5.7842E+6 *5.4887E+6 0.6249 0.5768
s7 60 7.4545E+6 *6.7478E+6 0.9276 0.7516
s8 64 9.6731E+6 *7.2236E+6 1.1276 0.8661
s9 85 2.0829E+8 *1.1196E+7 12.3077 1.6086

s10 100 2.6531E+8 *1.9765E+7 15.7125 2.0007

To demonstrate the computational cost of the hybrid EDA comparing with MK-
EDA, some practical experiments in 2-D are implemented. Two comparing meth-
ods are implemented with same parameters (population:1000, generation:100, the
truncation selection of parameter T = 0.15) and same computational environment2.
Because there are few closed-areas existing in short protein folding, the improved
backtracking-based repairing method can not improve the EDA efficiency for short
instances. In the comparing experiments for the short instances of s1 to s5, same
basic backtracking repairing methods are used in two comparing methods. For the
long instances of s6 to s10, the improved backtracking-based repairing method is
used in the hybrid EDA.

The number of backtracking searching operation and computer CPU-Time are
recorded. The average backtracking searching operations and the CPU-Times of 10
runs are shown in Tab.5. According to the results of the short instances of s1 to s5,
we can find that the local search operations and the composite fitness calculation in
the hybrid EDA produce some additional computational costs. But it is not very se-
rious. The results of the long instances of s6 to s10 show that the proposed repairing
method can significantly reduce the repairing costs. It not only covers the additional
computational costs caused by local search and composite fitness calculation, but
also improves the algorithm efficiency remarkably.

The backtracking searching operations of each generation for sequence s8 (the
length is 64), s9 (the length is 85) and s10 (the length is 100) are also be counted
and shown in Fig.11, Fig.12 and Fig.13. We can find that the improved backtracking-
based repairing method can significantly reduce the number of backtracking search-
ing operation. And the longer the protein sequence length is, the more remarkable
the improvement achieves.

2 All experiments are performed on the computers with Intel Xeon 2.20 GHz processor, and
1 GB of RAM.
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Fig. 11 The number of backtracking searching operations for instance s8
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Fig. 12 The number of backtracking searching operations for instance s9
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Fig. 13 The number of backtracking searching operations for instance s10
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6 Conclusions and Further Work

In this chapter, we introduce a novel hybrid EDA method to solve the HP model
problem. For the basic k-order Markov EDA, it has very low chance to find the gen-
eral optimum for those long sequence and deceptive protein instances. A composite
fitness function containing information of folding structure core is introduced to re-
place the traditional fitness function of HP model. It can help to select better individ-
uals for probabilistic model of EDA algorithm. In addition, local search with guided
operators is utilized to refine found solutions for improving efficiency of EDA.

For the disadvantage of heavy computational cost of the traditional backtracking
method which used to repair the invalid individuals in population. It will produce
heavy computational cost for searching invalid closed-areas of folding structure.
An improved method is introduced to reduce the repairing computational cost for
the long protein sequences. A detection procedure for feasibility is added to avoid
entering invalid closed-areas when selecting directions for the residues. Thus, it
can significantly reduce the number of backtracking searching operation and the
computational cost for long sequence protein. It can be noted that the improved
backtracking repairing method can be used in all EA based PSP methods that need
to repair invalid individuals. And the underlying mutations are implemented for
individuals in repairing procedure.

Experimental results demonstrate that the new method outperform the basic EDA
method. At the same time, the new method is very competitive with other existing
algorithms for the PSP on lattice HP models. Further research is needed to determine
more efficient local search strategies and probabilistic models of EDA for protein
HP model problem.
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Sensible Initialization of a Computational
Evolution System Using Expert Knowledge for
Epistasis Analysis in Human Genetics

Joshua L. Payne, Casey S. Greene, Douglas P. Hill, and Jason H. Moore

Abstract. High throughput sequencing technologies now routinely measure over
one million DNA sequence variations on the human genome. Analyses of these
data have demonstrated that single sequence variants predictive of common human
disease are rare. Instead, disease risk is thought to be the result of a confluence
of many genes acting in concert, often with no statistically significant individual
effects. The detection and characterization of such gene-gene interactions that pre-
dispose for human disease is a computationally daunting task, since the search space
grows exponentially with the number of measured genetic variations. Traditional ar-
tificial evolution methods have offered some promise in this problem domain, but
they are plagued by the lack of marginal effects of individual sequence variants.
To address this problem, we have developed a computational evolution system that
allows for the evolution of solutions and solution operators of arbitrary complex-
ity. In this study, we incorporate a linkage learning technique into the population
initialization method of the computational evolution system and investigate its in-
fluence on the ability to detect and characterize gene-gene interactions in synthetic
data sets. These data sets are generated to exhibit characteristics of real genome-
wide association studies for purely epistatic diseases with various heritabilities. Our
results demonstrate that incorporating linkage learning in population initialization
via expert knowledge sources improves classification accuracy, enhancing our abil-
ity to automate the discovery and characterization of the genetic causes of common
human diseases.

1 Introduction

Recent technological advances have allowed for inexpensive and dense mappings
of the human genome, making genome-wide association studies (GWAS) a standard
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form of analysis in the detection of common human disease. The goal of GWAS is to
identify genetic markers that differ significantly between diseased and healthy indi-
viduals, through a comparison of allele frequencies at specific loci. One commonly
employed genetic marker is the single nucleotide polymorphism (SNP), which is a
single location in the genome that varies between people. To provide sufficient cov-
erage of the human genome for GWAS, it is estimated that over one million SNPs
have to be considered [8], and samples of this size are now readily provided by
high-throughput technologies. However, analyses of these data have rarely identi-
fied single sequence variants that are predictive of common human disease. Given
the robustness and complex structure of metabolic and proteomic networks [18], it is
reasonable to assume that such monogenic diseases are the exception, not the rule,
and that many diseases are caused by two or more interacting genes. Such gene-
gene interactions, or epistasis, dramatically increase the difficulty of using GWAS
to uncover the genetic basis of disease [13]. For one million candidate SNPs, there
are 5× 1011 pairwise combinations and 1.7× 1017 three-way combinations. For
higher order interactions, the number of possible combinations is enormous. A ma-
jor charge for bioinformatics is to develop efficient algorithms to navigate through
these astronomical search spaces, in order to detect and characterize the genetic
causes of common human disease.

Due to the combinatorial nature of this problem, algorithms designed to discover
gene-gene interactions in GWAS will need to rely on heuristics. Methods that em-
ploy exhaustive search will not be feasible. Statistical and machine learning tech-
niques, such as neural networks [10], have been applied in this problem domain,
but have only proven successful for cases with a small number of SNPs. Alternative
approaches, such as multifactor dimensionality reduction [17] and random chem-
istry [3], have also shown promise, though they are similarly limited to data sets
with only a small number of SNPs. Artificial evolution techniques, such as genetic
programming, have been investigated in this problem domain, but they have had
limited success because individual SNPs often show little or no marginal effects,
and as such, there are no building blocks for evolution to piece together. However,
recent results have demonstrated that the inclusion of expert knowledge, such as
information gained from feature selection methods, can be used to bias such nature-
inspired classification algorithms toward SNPs that are suspected to play a role in
disease predisposition [6, 7, 14, 11, 15].

One source of expert knowledge that has proven useful in this domain is a family
of machine learning techniques referred to as Relief [5, 9, 16]. These algorithms
are able to detect SNPs that are associated with disease via independent or main
effects, although they cannot provide a model of the genetic architecture of disease.
However, the information provided by Relief can be used to supply artificial evolu-
tion with the building blocks needed to successfully generate such an architectural
model. For example, improvements in classification power have been obtained by
using Relief variants to bias mutation operators [6] and population initialization [7]
in genetic programming. Such feature selection techniques are a form of linkage
learning, where potential interactions between SNPs are inferred and subsequently
exploited to bias evolutionary search.
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Though classical artificial evolution methods, such as genetic programming, have
shown promise in this problem domain if guided by expert knowledge [6, 7, 14,
11, 15], it has been suggested that the inclusion of a greater degree of biological
realism may improve algorithm performance. Specifically, Banzhaf et al. [1] have
called for the development of computational evolution systems (CES) that embrace,
and attempt to emulate, the complexity of natural systems. To this end, we have
developed a hierarchical, spatially-extended CES that includes evolvable solution
operators of arbitrary complexity, population memory via archives, feedback loops
between archives and solutions, hierarchical organization, and environmental sens-
ing. In a series of recent investigations [4, 7, 11], this system has been successfully
applied to epistasis analysis in GWAS for human genetics.

Here, we investigate the inclusion of linkage learning via sensible initialization
in CES for the detection of epistatic interactions in GWAS. Specifically, we de-
velop an expert-knowledge-aware initialization method that uses the feature weights
provided by a machine learning technique to bias the selection of attributes for
the initial population. We compare this initialization method to both random and
enumerative initialization on synthetic data sets generated to exhibit representative
characteristics of GWAS.

2 Computational Evolution System

In order to directly infer the influence of the initialization strategy on algorithm
performance in the absence of other confounding effects, we use a simplified version
of the computational evolution system (CES) discussed in [11]. In this section, we
describe the CES as it is employed in this study.

In Fig. 1, we provide a schematic diagram of the system. Solutions are orga-
nized on a lattice at the bottom layer of the hierarchy, where competition between
solutions occurs locally among adjacent lattice sites (Fig. 1D). At the second layer
of the hierarchy is a lattice of solution operators of arbitrary size and complexity,
which are used to modify the solutions (Fig. 1C). At the third layer, is a lattice of
mutation operators that modify the solution operators (Fig. 1B). At the fourth layer
is the mutation frequency, which governs the rate at which the mutation operators
are modified (Fig. 1A).

2.1 Solution Representation, Evaluation, and Selection

Solutions are represented using stacks, where each element in the stack con-
sists of a function and two input arguments (Fig. 1D). The function set contains
+,−,∗,/,%,<,≤,>,≥,==, �=, where % is a protected modulus operator. The
input arguments are SNPs.

Each solution produces a real valued output Si when applied to an individual i
in a SNP data set. These outputs are used to classify individuals as healthy or dis-
eased using symbolic discriminant analysis (SDA) [12], as follows. The solution is
applied to all healthy individuals in the data set and a distribution of outputs Shealthy
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Fig. 1 Schematic diagram of the simplified computational evolution system considered in
this study. The hierarchical lattice structure is shown on the left and specific details of each
layer are provided on the right. At the lowest level (D) is a two-dimensional toroidal lattice of
solutions, where each lattice cell contains a single solution. Solutions are represented using
stacks. In the above example, the Boolean output of x0 > x1 will be tested for inequality with
x7 via the stack (denoted by st) and this Boolean result will be an operand of the modulus
operator (again, via st). At the second level (C) is a grid of solution operators that each consist
of some combination of the building blocks ADD, ALTER, COPY, DELETE, and REPLACE.
The top two levels of the hierarchy (A and B) generate variability in the solution operators.
The experiments considered herein used a solution lattice of 32×32 cells. A 12×12 lattice
is shown here for visual clarity

is recorded. Similarly, the solution is applied to all diseased individuals in the data
set and a distribution of outputs Sdiseased is recorded. A classification threshold S0

is then calculated as the arithmetic mean of the medians of the Shealthy and Sdiseased

distributions. The classification rule then assigns an individual i healthy status if
Si > S0 and diseased status if Si ≤ S0.

The classification rule of a given solution can be used to calculate the number
of true positives (TP), false positives (FP), true negatives (TN), and false negatives
(FN), through a comparison of the predicted and actual clinical endpoints. This
information can then be used to calculate a measure of solution accuracy

A =
1
2

(
T P

T P+ FN
+

T N
T N + FP

)
. (1)

The fitness f of a solution is given by its accuracy, weighted by solution length to
encourage parsimony

f = A +
α
L

, (2)
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where L is the number of elements in the solution stack and α is a tunable parameter
(for all experiments considered here, α = 0.001).

The population is organized on a toroidal, two-dimensional lattice where each so-
lution resides in its own cell. Selection is synchronous and occurs within spatially-
localized, overlapping neighborhoods. Specifically, each solution competes with
those solutions residing in the eight surrounding cells (Moore neighborhood) and
the solution with the highest fitness is selected to repopulate that cell for the next
generation. Reproduction occurs using the evolvable solution operators described in
the next section.

2.2 Solution Operators

One of the simplifying assumptions of traditional artificial evolution methods is that
genetic variation is introduced via point mutations and linear recombination events.
However, the variation operators of biological systems are myriad, with insertions,
deletions, inversions, transpositions, and point mutations all occurring in concert.
In order to better mimic these salient features of natural systems, our CES allows
for the evolution of variation operators of arbitrary complexity. This is achieved by
initializing the solution operator lattice (Fig. 1C) with five basic building blocks,
ADD, ALTER, COPY, DELETE, and REPLACE, which can be recombined in any
way to form new operators.

These operators work as follows. ADD places a new function and its arguments
into the focal solution stack. ALTER randomly chooses an element of the focal so-
lution stack, and mutates either the function or one of its input arguments. COPY
inserts a random element of the focal solution stack into the stack of a randomly
chosen neighboring solution. DELETE removes an element from the focal solution
stack and REPLACE extracts a sequence of random length from a neighboring so-
lution stack and overwrites a randomly chosen sequence of the focal solution stack
with that information.

In the extended version of CES [11], each solution operator also has an associ-
ated vector of probabilities that determine the frequency with which functions and
attributes are modified at random, via expert knowledge sources, or archives. In the
simplified CES considered here, all modifications occur at random.

Similar to the solutions, the solution operators reside on a two-dimensional lattice
(Fig. 1C). However, the granularity of the solution operator lattice is more coarse
than the solution lattice, such that each solution operator is assigned to operate on
a 3× 3 sub-grid of solutions. The solution operators are also under selective pres-
sure, and are assigned a fitness score based on how much change they evoke in the
solutions they control [11]. Competition among solution operators occurs locally in
a manner similar to the competition among solutions.

2.3 Mutation Operators

The solution operators are modified by mutation operators that reside in the third
layer of the hierarchy (Fig. 1B). The granularity of this lattice is further coarsened,
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with each cell controlling one quarter of the solution operator lattice below. We
consider four mutation operators. The first (DeleteOp) deletes an element of a so-
lution operator. The second (AddOp) adds an element to a solution operator. The
third (ChangeOp) mutates an existing element in a solution operator. The fourth
(ChangeOpArg) alters the probability vectors associated with a solution operator.
(In the simplified CES considered herein, this is a null operation.)

A four-element vector is used to store the probabilities with which each muta-
tion operator is employed (Fig. 1B). These probabilities undergo mutation at a rate
specified by the highest level in the hierarchy (Fig. 1A). The probability vectors of
the four lattice cells are in competition with one another, with fitness assessment
analogous to the solution operators.

3 Population Initialization

We consider three forms of population initialization. In each case, all initial solu-
tions begin as a single, randomly chosen function with two input arguments, which
can subsequently evolve into arbitrarily complex functional forms. The selection
of the initial input arguments varies between the three methods. The first form
of initialization is the approach taken in most artificial evolution systems, where
the population is initialized at random. In CES, this entails choosing the attributes
for each initial function with uniform probability from all available attributes, with
replacement.

The second initialization method attempts to maximize diversity in the popula-
tion, by ensuring that all attributes are represented at least once. This enumerative
initializer works by selecting attributes at random from the pool of all attributes,
without replacement, until all attributes have been selected. The attribute pool is
then refreshed and the process continues until all initial solutions possess their
required input arguments.

The third initialization method capitalizes on the expert knowledge gained from
a member of the Relief family of machine learning algorithms. This algorithm is
referred to as Spatially Uniform ReliefF (SURF) [5], an extension of Tuned ReliefF
[16] that has proven effective in detecting interacting SNPs in GWAS with noisy
data sets and small interaction effects. In brief, SURF provides weights to each SNP
based on how likely that SNP is to be predictive of disease. Weights are adjusted
by iteratively selecting individuals that are within a specified similarity threshold,
and then increasing the weights of common SNPs if these individuals have different
disease status or decreasing their weights by the same amount if the individuals
have the same disease status. These SNP weights are then used to bias the selection
of attributes in the expert-knowledge-aware initialization function. Each attribute is
selected with probability proportional to its weight, with the caveat that the same
attribute cannot be included twice in the same function.
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4 Data Simulation

The artificial data sets considered in this study were generated to exhibit pure epista-
sis (i.e., no marginal effects) and specific heritabilities, where heritability is defined
as the proportion of disease cases attributable to genetic effects. We consider heri-
tabilities of 0.025, 0.05, 0.1, 0.2, 0.3, and 0.4. For each heritability, we created five
two-locus penetrance functions according to the method described in [2], and from
each penetrance function we generated 100 data sets. Each data set consists of an
equal number of diseased (800 cases) and healthy (800 controls) individuals and
possesses 1000 SNPs. Of the 1000 SNPs, only two are predictive of disease and the
other 998 are generated at random to exhibit no correlation with clinical endpoint,
other than by chance alone.

5 Experimental Design

To facilitate a fair comparison between the three initialization methods, we ensure
that for each replicate the same functions are used to seed all three initial popula-
tions. Specifically, for each cell in the solution lattice we choose a random initial
function to place in that cell. These initial functions are held constant across the
three initialization methods; only the selected attributes differ.

To assess the performance of CES using each initialization method, we report (i)
the evolutionary dynamics of the best training accuracy and (ii) the testing accuracy
obtained using the best model found by CES. The latter is calculated by applying
the best model found during training to another data set generated for that particular
penetrance table. Thus, for each heritability, we have 500 independent training and
testing pairs. Both training and testing accuracy are calculated using Eq. 1.

6 Results and Discussion

In Fig. 2 we depict the evolutionary dynamics of the best training accuracy for the
CES using random, enumerative, and expert-knowledge-aware initializers, for the
six heritabilities considered in this study. For all heritabilities, the best training ac-
curacy found in the initial population was highest when expert-knowledge-aware
initialization was used (in each panel of Fig. 2, compare the height of the symbol
types at generation zero). The random and enumerative initializers produced initial
populations with nearly identical best training accuracies.

In most cases, the CES improved the training accuracy of the models supplied in
the initial population by each of the initialization methods. For example, the insets
of Fig. 2 depict the distributions of improvements in training accuracy obtained by
the CES using the expert-knowledge aware initializer. The distributions are always
bimodal, with one peak at zero and another centered between 0.05 and 0.15. The
lower mode indicates that in some cases, the CES is unable to improve upon the
best solution provided in the initial population. However, the higher mode indicates
that in the majority of cases, some improvement in training accuracy is observed
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Fig. 2 Evolutionary dynamics of best training accuracy for CES using random (black
squares), enumerative (gray triangles), and expert-knowledge-aware (open circles) initializers
for the six heritabilities considered in this study. The data presented in each panel correspond
to a single replicate. The insets depict the distributions of improvements in training accuracy
for CES with expert-knowledge-aware initialization, measured as the difference between the
training accuracy at generation 0 and 400
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Fig. 3 Testing accuracy of the best models found by CES using the random (Rand), enumer-
ative (Enum), and expert-knowledge-aware (EK) initialization methods, for the six heritabil-
ities considered in this study. The insets depict the testing accuracy (y-axis) as a function of
the training accuracy (x-axis) for CES with expert-knowledge-aware initialization, across the
500 data sets considered for each heritability
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using the CES. This indicates that SURF is able to correctly identify SNP linkage
and that CES can exploit this information to build an architectural model of genetic
predisposition to disease.

Using the expert-knowledge-aware initializer, the best training accuracy found in
the initial population generally increased with increasing heritability. In contrast, us-
ing the random and enumerative initialization methods, the best training accuracy of
the initial population remained approximately constant across heritabilities. These
observations stem from the frequency with which the three methods supplied the
two target SNPs to the initial population. Of the 500 replicates considered for each
heritability, the percentage of trials in which the two interacting SNPs were cor-
rectly identified within a single solution by the expert-knowledge-aware initializer
increased linearly from 41% at a heritability of 0.025 to 100% at a heritability of 0.2
(r2 = 0.99). For heritabilities greater than or equal to 0.2, the two target SNPs were
always identified within a single solution. Using the random and enumerative ini-
tializers, less than 1% of all trials contained the two target SNPs in a single solution,
a figure that remained consistent across heritabilities.

In Fig. 3, we depict the testing accuracies of the best solutions obtained by the
CES, using random, enumerative, and expert-knowledge-aware initialization. For
all heritabilities, the testing accuracies of the best solutions found using the expert-
knowledge-aware initializer were significantly higher than those obtained using ei-
ther random or enumerative initialization. Following the trends of the training data
(Fig. 2), the testing accuracies obtained with expert-knowledge-aware initialization
increased as heritability increased, whereas the testing accuracy of the random and
enumerative methods remained consistently low. The insets of Fig. 3 depict the test-
ing accuracy of the best solution found by CES with expert-knowledge-aware ini-
tialization, as a function of its training accuracy. For low heritabilities, the data is
clustered into two distinct groups, one in which testing accuracy is not correlated
with training accuracy and another in which testing accuracy is positively correlated
with training accuracy. As heritability increases, the data begin to migrate toward
the cluster that exhibits positive correlation between testing and training accuracy,
indicating a reduction in overfitting.

7 Concluding Remarks

We have investigated the influence of population initialization on the ability of a
computational evolution system (CES) to detect epistatically interacting single nu-
cleotide polymorphisms (SNP) in genome-wide association studies (GWAS). Our
results demonstrate that the CES finds solutions of higher quality, both in terms
of training and testing accuracy, when the population is initialized using an expert
knowledge source than when it is not. Specifically, we found that biasing the selec-
tion of attributes in the initial population using a machine learning algorithm called
Spatially Uniform ReliefF (SURF) [5] is superior to both random and enumerative
initialization schemes.
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These results complement those presented in [7], where it was shown that expert-
knowledge-aware population initialization can improve the classification power of
genetic programming for detecting gene-gene interactions in GWAS. Taken to-
gether, these results further highlight the critical need for expert knowledge sources
in this problem domain [15]. Alternative approaches to incorporating expert knowl-
edge sources, such as their inclusion in fitness assessment, selection, and mutation
have also proven valuable [6, 14, 15]. Future work will investigate the combina-
tion of these expert-knowledge guided operators with expert-knowledge-aware ini-
tialization. Of particular interest is the utilization of alternative sources of expert
knowledge, such as the causal information provided by metabolic and proteomic
interaction networks. The incorporation of the many available sources of expert
knowledge into artificial and computational evolution systems offers the poten-
tial to improve our ability to detect and characterize the genetic causes of human
disease.
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Estimating Optimal Stopping Rules in the
Multiple Best Choice Problem with Minimal
Summarized Rank via the Cross-Entropy
Method

T.V. Polushina

Abstract. The best choice problem is an important class of the theory of optimal
stopping rules. In this article, we present the Cross-Entropy method for solving the
multiple best choice problem with the minimal expected ranks of selected objects.
We also compare computation results by Cross-Entropy method with results by the
genetic algorithm. Computational results showed that the Cross-Entropy method is
producing high-quality solution.

1 Introduction

The best choice problem is an important class of the theory of optimal stopping
rules. It has been studied by many authors: Chow, Robbins, and Siegmund [2],
Dynkin and Yushkevich [4], Gilbert and Mosteller [6], Shiryaev [13].

In this chapter we consider the multiple best choice problem [9], [10]. We have a
known number N of objects numbered 1,2, . . . ,N, so that, say, an object numbered
1 is classified as ”the best”, . . . , and an object numbered N is classified as ”the
worst”. It is assumed that the objects arrive one by one in random order, i.e all N!
permutations are equiprobable. It is clear from comparing any two of these objects
which one is better, although their actual number still remain unknown. After having
known each sequential object, we either accept this object (and then a choice of one
object is made), or reject it and continue observation (it is impossible to return to the
rejected object). The object is to find a stopping rule which minimizes the expected
absolute rank of the individual selected.

We can use this model to analyse some behavioral ecology problems such as se-
quential mate choice or optimal choice of the place of foraging. Indeed, in some
species, active individuals (generally, females) sequentially mate with different pas-
sive individuals (usually males) within a single mating period (see, e.g., Gabor and
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Halliday [5], Pitcher et al. [11]). Note also that an individual can sequentially choose
more than one place to forage. So we can consider the random variable as quality of
item (potential mate or place of foraging) which appears at time t.

For one choice problem the minimal expected rank for the rank minimization

problem tends to the value ∏∞
j=1(1 + 2

j )
1

1+ j ≈ 3.8695 [3]. The model considered in
[7] is similar to the one choice problem. But instead of being a fixed integer N, the
total number of individuals is a strictly positive, integer-valued, bounded random
variable. The author studied the asymptotic behavior of the minimal expected rank.
Bruss and Ferguson [1] considered this problem in full information setting where
the decision is based on the actual values associated with the applicants, assumed
to be independent and identically distributed from a known distribution. Tamaki
considered the best choice problem which allows the applicant to refuse an offer of
acceptance with probability 1− p,0 < p < 1 [15].

The rest of the chapter is organized as follows. Section 2 introduces the mul-
tiple best problem with minimal summarized rank. In Section 3 we describe the
cross-entropy method. Section 4 discusses cross-entropy method for the multiple
best problem with minimal summarized rank. Section 5 presents the experiment
results of the cross-entropy method for the problem. In Section 6 we explain the
genetic algorithm. Section 7 discusses numeric results of the genetic algorithm for
the problem. Finally, the conclusions are given.

2 The Multiple Best Choice Problem with Minimal
Summarized Rank

Let we have N objects, which are ordered on quality. At time n we can compare cur-
rent object with all previous objects, but we nothing know about quality remaining
N − n objects. After getting acquainted with an we can it or accept (and then the
choice of one object is made), or reject and continue observation (we can’t return to
rejected object).

Let xi be an absolute rank of selected object, i.e. xi = 1+ number of objects
from (a1,a2, . . . ,aN) < ai. The objective is to find optimal procedure such that the
expected gain E(xτ1 + . . .+ xτk), k ≥ 2 is minimal.

Denote by (a1,a2, . . . ,aN) any permutation of numbers (1,2, . . . ,N), 1 corre-
sponds to the best object, N corresponds to the worst one. All N! permutations
being equally likely. For any i = 1,2, . . . ,N let yi = number of terms a1,a2, . . . ,ai

which are ≤ ai, and yi is called the relative rank of the ith object. As y1,y2, . . . ,yN

are independent, and

P(yi = j) = 1/i ( j = 1,2, . . . , i),
P(xi = k | y1 = l1, . . . ,yi−1 = li−1,yi = j) = P(xi = k | yi = j)

=
C j−1

k−1 ·Ci− j
N−k

Ci
N

.
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Then

E(xi | yi = j) =
N

∑
k=1

kP(xi = k | yi = j) =
N + 1
i+ 1

j.

By definition, put v = infτ E(xτ1 + . . .+ xτk), τ = (τ1, . . . ,τk). We want to find the
optimal procedure τ∗ = (τ∗1 , . . . ,τ∗k ) and the value of the game v.

Let F(m)i
be the σ -algebra, generated by (y1,y2, . . . ,ymi). If we suppose

Z(m)k
= E(xτ1 + . . .+ xτk |F(m)k

),

then
v = inf

τ
EZτ , τ = (τ1, . . . ,τk).

So we reduce our problem to the problem of multiple stopping of the sequence Z(m)k
.

As was shown in [9], [10], the solution of this problem is the following optimal
strategy: there exist integer vectors

δ (k) = (δ (k)
1 , . . . ,δ (k)

N−k+1),

0≤ δ (k)
1 ≤ . . .≤ δ (k)

N−k < δ (k)
N−k+1 = N,

...

δ (2) = (δ (2)
k−1, . . . ,δ

(2)
N−1),

0≤ δ (2)
k−1 ≤ . . .≤ δ (2)

N−2 < δ (2)
N−1 = N,

δ (1) = (δ (1)
k , . . . ,δ (1)

N ),

0≤ δ (1)
k ≤ . . .≤ δ (1)

n−1 < δ (1)
N = N,

δ (i1)
j ≤ δ (i2)

j , 1≤ i1 < i2 ≤ k,

k− i1 + 1≤ j ≤ N− i2 + 1 (1)

such that

τ∗1 = min{m1 : ym1 ≤ δ (k)
m1 },

τ∗i = min{mi > mi−1 : ymi ≤ δ (k−i+1)
mi },

on the set Fi−1 = {ω : τ∗1 = m1, . . . ,τ∗i−1 = mi−1}, i = 2, . . . ,k, F0 = Ω .
For small N we can obtain exact values. Table 1 displays the vectors δ (k), . . . ,δ (1),

and the values v, where (l5, l6), (l7, l8) ∈ {(1,2),(1,3),(2,2),(2,3)} [14].
If N = 5, k = 2 then the value of the game v = 4.600. We can select any optimal

rule indicated in the proper cell of Table 1. Specifically, δ (2) = (0,1,2,5),δ (1) =
(0,1,2,5). We have the following optimal rule:

τ∗1 = min{m1 ≥ 1 : ym1 ≤ δ (2)
m1 },
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Table 1 The vectors δ (k), . . . ,δ (1), and the values v

N\k 2 3 4

3 δ (2) = (1,3)
δ (1) = (1,3)
v = 3.6667

4 δ (2) = (0,1,4) δ (3) = (1,4)
δ (1) = (0, l1,4) δ (2) = (1,4)

or δ (1) = (l4,4)
δ (2) = (1, l2,4) l4 ∈ {1,2}
δ (1) = (1, l3,4) v = 6.8750
l1, l2, l3 ∈ {1,2}

v = 4.3750
5 δ (2) = (0,1,2,5) δ (3) = (1,2,5) δ (4) = (1,5)

δ (1) = (0,1,2,5) δ (2) = (1,2,5) δ (3) = (1,5)
v = 4.6000 δ (1) = (1,2,5) δ (2) = (2,5)

v = 7.6000 δ (1) = (2,5)
v = 11.0500

6 δ (2) = (0,1, l5, l6,6) δ (3) = (0,1,2,6) δ (4) = (1,2,6)
δ (1) = (0,1, l7, l8,6) δ (2) = (0, l5, l6,6) δ (3) = (1,2,6)

v = 4.9583 δ (1) = (0, l7, l8,6) δ (2) = (l5, l6,6)
or δ (1) = (l7, l8,6)

δ (3) = (1,2,3,6) v = 11.9583
δ (2) = (1, l5, l6,6)
δ (1) = (1, l7, l8,6)

v = 8.4583

τ∗2 = min{m2 > m1 : ym2 ≤ δ (1)
m2 }

If we observe the following sequence x1, . . . ,x5: 3, 2, 5, 1, 4; then y1, . . . ,y5: 1, 1, 3,

1, 4. So we get m1 = 2 (y2 = 1, δ (2)
2 = 1), m2 = 4 (y4 = 1, δ (1)

4 = 2). Consequently
we obtain two best objects with summarized rank 2 + 1 = 3.

3 Cross-Entropy Method

It is difficult to obtain the set δ (1), . . . ,δ (k) and the value v with backward induction,
but we can get them by simulation. So we consider the following maximization
problem

max
x∈X

EŜ(x,R), (2)

where X = {x = (x(1), . . . ,x(k)) : conditions (1) are hold}, R = (R1, . . . ,RN) is a ran-
dom permutation of numbers 1,2, . . . ,N, Ŝ(x) is an unbiased estimator of EŜ(x,R)
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Ŝ(x) =
1

N1

N1

∑
n=1

(Rnτ1 + . . .+ Rnτk),

where (Rn1, . . . ,RnN) is the nth copy of random permutation R, N1 is simulation
parameter, integer number.

Therefore we can apply the cross-entropy (CE) algorithm for noisy optimization
[12]. The starting point in the methodology of the CE method is to associate an
estimation problem with optimization problem. To this end we define a collection
of indicator function {I{S(x)≥γ}} on X for various levels γ ∈ R. Let { f (·,u)} be a
family of pdfs on X , parameterized by a real-valued parameter u. For a certain u
we associate with (2) the problem of estimating the number

l(γ) = Pu(S(X)≥ γ) =

∑
x

I{S(x)≥γ} f (x,u) = EuI{S(X)≥γ},

where Pu is the probability measure under which the random state X has pdf f (·;u)
and γ is a known or unknown parameter. Typically estimation of l is a non-trivial
problem. The CE method solves this efficiently by making adaptive changes to the
probability density function according to the Kullback-Leibler CE, thus creating a
sequence f (·,u0), f (·,u1), f (·,u2),..., f (·,u∗) corresponding to the degenerate den-
sity at an optimal point. In fact the CE method generates a sequence of tuples
{(γt ,ut)}, which converges quickly to a small neighborhood of the optimal tuple
(γ∗,u∗). More specifically, we initialize by setting u0, choosing a not very small
quantity ρ , and than we proceed as follows:

1. Adaptive updating of γt . For a fixed ut−1, let γt be a (1−ρ)-quantile of Ŝ(X)
under ut−1. A simple estimator γ̂t of γt is

γ̂t = Ŝ(�(1−ρ)N2�),

where, for a random sample X1, . . . ,XN2 from f (·;ut−1), Ŝ(i) is the ith order

statistic of the performances Ŝ(X1), . . . , Ŝ(XN2).
2. Adaptive updating of ut . For fixed γt and ut−1, derive ut from the solution of the

CE program
max

u
D(u) = max

u
Eut−1I{Ŝ(X)≥γt} ln f (X ;u). (3)

The stochastic counterpart of (3) is the following: for fixed γ̂t and ût−1, derive ût

from the program

max
u

D̂(u) = max
u

1
N2

N2

∑
n=1

I{Ŝ(Xn)≥γ̂t} ln f (Xn;u). (4)

Instead of updating the parameter vector v we use the following smoothed version

ût = α ût +(1−α)ût−1, i = 1, . . . ,n,
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where α is called the smoothing parameter, with 0.7 < α ≤ 1. Clearly, for α = 1 we
have our original updating rule.

To complete specification of the algorithm, one must supply values for N2 and ρ ,
initial parameters u0, and a stopping criterion.

We use stopping criterion from [12]. To identify T , we consider the following
moving average-process

Bt(K) =
1
K

t

∑
s=t−K+1

γ̂s,t = s,s = 1, . . . ,s≥ K,

where K is fixed;

Ct(K) =
1

K−1{∑t
s=t−K+1(γ̂s−Bt(K))2}

Bt(K)2 .

Next define
C−t (K,R) = min

j=1,...,R
Ct+ j(K)

and
C+

t (K,R) = max
j=1,...,R

Ct+ j(K),

respectively, where R is fixed.
We define stopping criterion as

T = min{t :
C+

t (K,R)−C−t (K,R)
C−t (K,R)

≤ ε}, (5)

where K and R are fixed and ε is a small number, say ε ≤ 0.01.

4 The Cross-Entropy Method for the Problem

We solve maximization problem

max
x∈X

EŜ(x,R), (6)

where X = {x = (x(1), . . . ,x(k)) : conditions (1) are hold}, R = (R1, . . . ,RN) is a ran-
dom permutation of numbers 1,2, . . . ,N, Ŝ(x) is an unbiased estimator of EŜ(x,R)

Ŝ(x) =
1

N1

N1

∑
n=1

(Rnτ1 + . . .+ Rnτk). (7)

As in [14] we consider a 3-dimensional matrix of parameters u = {ui jl}

ui jl = P{X (i)
j = l}, i = 1, . . . ,k;

j = k− i+ 1, . . . ,N− i+ 1; l = 0, . . . ,N−1.
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It follows easily that

f (x(i)
j ;u) =

N−1

∑
l=0

ui jlI{x(i)
j =l}.

We can see that

û(t)
i jl =

∑N2
n=1 I{Ŝ(Xn)≥γ̂t}W

(t−1)
ni j I{Xni j=l}

∑N2
n=1 I{Ŝ(Xn)≥γ̂t}W

(t−1)
ni j

,

W (t−1)
ni j =

û(0)
i jXni j

û(t−1)
i jXni j

, (8)

where Xn = {Xni j}, Xni j is a random variable from f (x(i)
j ; ût−1). Formula (4)

becomes (8).

5 Numeric Results

In this section we present numerical results for N = 10 and k = 2. For different set
of (δ (1),δ (2)) we calculate v, which is decreased from 11 to 6 (figure 1). A Monte
Carlo technique (N1 = 50000) is applied for finding the gain v for 5000 different sets
(δ (1),δ (2)). Then we show that the CE algorithm allows to find v = 5.8638, and the
optimal sets (δ (1),δ (2)). While the minimal v by Monte Carlo technique is about 6.

We use the CE method with simulation parameters ρ = 0.1, α = 0.7, N2 = 200,
N1 = 100, Nlast = 5000, K = 6, R = 3, ε = 0.01. We run the algorithm 100 times.
Figure 2 shows the histogram of solutions that were obtained by the CE method.
Note that the alogithm finds the optimal sets (δ (1),δ (2)) and neighbouring optimal
sets.

Figures 3, 4 show how the CE method works. Initially we have uniform distribu-

tion, that is, û(0)
i jl = 0.1 for i = 1,2; j = 3− i, . . . ,11− i; l = 0, . . . ,9. For example,

û(t)
120 is considered. It is situated in the first subdiagram in position 0 (figure 3). En-

larged diagram û(t)
120 is showed on figure 5. At first û(0)

120 = 0.1. Then with iterations

t û(t)
120 increases and amounts to 1. This implies that P{X (1)

2 = 0} = 1. Thus in set
δ (1) in the first position 0 is situated. Similarly, zeros are the second and the third
elements of set δ (1).

Simulation parameters are ρ = 0.1, α = 0.7, N2 = 200, N1 = 100, Nlast = 500,
K = 6, R = 3, ε = 0.01, repeat 5 times. By simulation we obtained δ (1) =
(0,0,0,1, 1,2,3,4,10), δ (2) = (0,0,1,1,2,2,3,5,10). Nikolaev M.L. [10] shows
that for N = 10 theoretical optimal are δ (2) = (0,0,1,2,2,3,4,5,10), δ (1) =
(0,0,1,1,2,2,3,5,10).

We also compare v with theoretical (δ (1),δ (2)) and v with modelling (δ (1),δ (2))
(table 2). For this table N1 = 50000. We can see that v with theoretical (δ (1),δ (2))
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Fig. 1 Gain v for different (δ (1),δ (2))
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Fig. 2 Bar graph for N = 10

is differ from v with modelling (δ (1),δ (2)) slightly. Difference connects that N1 and
Nlast are not big.

Then we use the CE method for different N, using the following parameters N1 =
100, N2 = 200, Nlast = 500, ρ = 0.1, α = 0.7, ε = 0.1, K = 6, R = 3. This method



Estimating Optimal Stopping Rules in the Multiple Best Choice Problem 235

0 1 2 3 4 5 6 7 8 9
0

0.5

1

0 1 2 3 4 5 6 7 8 9
0

0.5

1

0 1 2 3 4 5 6 7 8 9
0

0.5

1

0 1 2 3 4 5 6 7 8 9
0

0.5

1

0 1 2 3 4 5 6 7 8 9
0

0.5

1

0 1 2 3 4 5 6 7 8 9
0

0.5

1

0 1 2 3 4 5 6 7 8 9
0

0.5

1

0 1 2 3 4 5 6 7 8 9
0

0.5

1

Fig. 3 Values û(t)
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Table 2 v with theoretical (δ (1),δ (2)) and with modelling (δ (1),δ (2))

δ (1) δ (2) v

theoretical (0,0,1,1,2,2,3,5,10) (0,0,1,2,2,3,4,5,10) 5.9124
modelling (0,0,0,1,1,2,3,4,10) (0,0,1,1,2,2,3,5,10) 5.8638

Table 3 Value mean, maximum and minimum v for different N

N mean v maxv minv standard error CPU time

5 4.5908 4.6060 4.5800 0.0074 10.7470
10 5.8698 5.7880 5.6760 0.0458 15.6188
15 6.6448 6.7620 6.5320 0.0927 26.2562
20 7.5668 7.8260 7.3580 0.2793 35.1936

has been implemented in MatLab on a PC (AMD Athlon 64 2.01 GHz). Using
this algorithm parameters after 5 repetitions, we obtain the results summarized in
table 3.

Figure 6 shows values v with standard error and for different N, N = 3, . . . ,20.
Modelling parameters are ρ = 0.1, α = 0.7, N2 = 100, N1 = 100, Nlast = 500. ε =
0.1, K = 6, R = 3. Method was repeated 5 times for each N. Nikolaev M.L. shows
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that asymptotic v is 7.739 [10]. We can see that v is bigger than the expected value
for big N. It arises from N! >> N1,N2,Nlast , which are used for simulation.

Notwithstanding N1, N2, Nlast are much smaller than N! the cross-entropy method
finds optimal stopping rules that are nearly optimal.
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Fig. 6 Gain v with standard error for N = 3, . . . ,20

6 Genetic Algorithm

In this section, the Genetic Algorithm (GA) is considered. The GA is a stochastic
search technique. Choosing an appropriate genotype or representation to encode the
important features of the problem to be solved is the first step in applying the GA
to any problem. The fitness function is defined over the genetic representation and
measures the quality of the represented solution.

The GA can develop a population of potential good solution by applying the
genetic operators, and finally find a good solution of the problem. The individuals
of the population are called ”chromosomes”. In genetic operators, crossover and
mutation are important operators which influence the behavior of GA. The purpose
of crossover consists in the combination of useful string segments from different
chromosomes to form new, hopefully better performing offspring. Crossover is the
process in which the chromosomes are mixed and matched in a random fashion to
produce a pair of new chromosomes (offspring). The purpose of mutation is give
population diversity to the offspring to selecting a gene at random with a mutation
rate and perturbing its value. Mutation operator is the process used to rearrange the
structure of the chromosomes to produce a new one.

Following Wang, Okazaki [16], we propose an improved GA by modifying the
crossover and mutation behavior. Let Np is the population size and Nc is the current
number of children generated. First Nc is set to zero. Then (Np−Nc)/2 pairs of
parent chromosomes are randomly selected, and the difference-degree for every pair
of parent chromosomes are calculated. The difference-degree di of i parent pair is
defined as follow: di = Nd

Ng
, where Ng is the size of chromosome, and Nd is the

number of different genes between the two parent chromosomes. A new parameter
called setting difference-degree Ds is introduced. If di is larger than the Ds, then
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the crossover is applied with 100% certainty on the parent pair to generate two
children. After crossover, the total number of children generated is calculated. If the
total number Nc is found to be smaller than the population size Np, than mutation is
performed with 100% certainty on parent pairs chromosomes with di less than the
Ds. The above procedure is performed in a loop until the total number of children is
equal to the population size.

The genetic search process is described as follows:

1. GA stars with an initial set of random solutions for the problem under
consideration. This set of solutions is known as the population

2. Evaluate the fitness of each individual in the population
3. Repeat until termination:

a. Select best-ranking individuals to reproduce
b. Breed new generation through crossover and mutation and give birth to

offspring
c. Evaluate the individual fitnesses of the offspring
d. Replace worst ranked part of population with offspring [8].

The technique of GAs requires a string representation scheme (chromosomes). In
this chapter we put that each element of sets (δ (1), . . . ,δ (k)) correspond to a locus of
chromosome. Than we solve a combinatorial optimization problem by the GA. So
we consider the problem (2). The fitness function is calculated from (7). For popu-
lation creation we use vector of parameters u = {ui jl}, same as in the CE method.

Than for initial population GA is applied, and we find the first approximation to
problem (2). The same as the CE method instead of updating the parameter vector
we use the following smoothed version

ut = αut +(1−α)ut−1, i = 1, . . . ,n.

The selection operator is applied to select parent chromosomes from the popula-
tion. A Monte Carlo selection technique is applied. A parent selection procedure
functions as:

1. Calculate the fitness of all population members using (7)
2. Return the first population member whose fitness is among the best f it ·N1%

members of population
3. Repeat step 2 for the second population member and check that the new selected

member is not the same as the first member; and so on.

Fitness value f it is a given arbitrary constant.
The selected chromosomes to crossover will be crossed to produce two offspring

chromosomes by using crossover operator. Crossover operator is described as fol-
lows. Let a pair of parent chromosomes (P1,P2). Select two random number to be
aligned to the parents. The genes are exchanged so that portion of genetic codes
from P1 is transferred to P2, and conversely. If the chromosome has large size genes,
the cutting section is differing from small to large, which reflects the flexibility of
the approach.
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The mutation operator is used to rearrange the structure of a chromosome. The
swap mutation is used, which is simply selecting two genes at random and swapping
their contents. Mutation helps to increase the searching power. In order to explain
the need of mutation. Consider the case where reproduction or crossover may not
produce a good solution to a problem. During the creation of a generation it is
possible that the entire population of strings is missing a vital gene of information
that is important for determining the correct or the most nearly optimum solution.
In that case mutation becomes very important.

This generational process is repeated until a termination condition has been
reached. We use stopping criterion (5).

7 Numeric Results of GA Process

We also use the GA for different N and parameters for simulation are N2 = 100,
N1 = 500, f it = 0.25, α = 0.95, ε = 0.01. K = 6, R = 3. Using this algorithm
parameters after 5 repetitions, we obtain the results summarized in Table 4.

Table 4 Minimum, maximum, mean value v and standard error for different N by GA method

N mean v maxv minv standard error CPU time

5 4.5023 4.8470 4.3900 0.0702 1.0318
10 5.7726 5.8910 5.5130 0.1096 8.2614
15 6.6572 6.9820 6.1140 0.2084 12.6725
20 7.8912 8.0160 7.1370 0.7264 17.9326
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Fig. 7 Gain v with standard error for N = 3, . . . ,20 by GA method
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Figure 7 shows value v with standard error for different N, N = 3, . . . ,20. Mod-
elling parameters are α = 0.95, f it = 0.25, N2 = 100, N1 = 500, ε = 0.1, K = 6,
R = 3. Method was repeated 5 times for each N.

The simulation results show that the genetic algorithm can generate solutions
with bigger dispersion compared with the cross-entropy method. Solutions by cross-
entropy method are more closely optimum but this method need a lot more compu-
tational resource. Besides, if k, N and simulation parameters are sufficiently great,
the genetic algorithm will generate better solutions.

8 Conclusions

In this chapter we have proposed how CE method can be used to solve the multiple
best choice problem. The CE method is better than the GA algorithm for solution
this problem. But for N tends to infinity, the CE method gives heavy error, and it
should be modified. If N1, N2, Nlast increase, the cross-entropy method finds optimal
stopping rules that are nearly optimal. The methodology can also be extended to
more general models.

Acknowledgements. T.V. Polushina would like to thank G. Yu. Sofronov for his invaluable
advices and helpful discussion.
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