

Lecture Notes in Computer Science 3059
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

MosheY.Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo

Springer

Celso C. Ribeiro Simone L. Martins (Eds.)

Experimental
and Efficient
Algorithms

Third International Workshop, WEA 2004
Angra dos Reis, Brazil, May 25-28, 2004
Proceedings

Springer

http://www.springerlink.com

eBook ISBN: 3-540-24838-2

Print ISBN: 3-540-22067-4

©2005 Springer Science + Business Media, Inc.

Print ©2004 Springer-Verlag

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://ebooks.springerlink.com

and the Springer Global Website Online at: http://www.springeronline.com

Berlin Heidelberg

http://ebooks.springerlink.com
http://www.springeronline.com

Preface

The Third International Workshop on Experimental and Efficient Algorithms
(WEA 2004) was held in Angra dos Reis (Brazil), May 25–28, 2004.

The WEA workshops are sponsored by the European Association for Theore-
tical Computer Science (EATCS). They are intended to provide an international
forum for researchers in the areas of design, analysis, and experimental evalua-
tion of algorithms. The two preceding workshops in this series were held in Riga
(Latvia, 2001) and Ascona (Switzerland, 2003).

This proceedings volume comprises 40 contributed papers selected by the
Program Committee along with the extended abstracts of the invited lectures
presented by Richard Karp (University of California at Berkeley, USA), Giuseppe
Italiano (University of Rome “Tor Vergata”, Italy), and Christos Kaklamanis
(University of Patras, Greece).

As the organizer and chair of this wokshop, I would like to thank all the
authors who generously supported this project by submitting their papers for
publication in this volume. I am also grateful to the invited lecturers, who kindly
accepted our invitation.

For their dedication and collaboration in the refereeing procedure, I would
like also to express my gratitude to the members of the Program Committee:
E. Amaldi (Italy), J. Blazewicz (Poland), V.-D. Cung (France), U. Derigs (Ger-
many), J. Diaz (Spain), M. Gendreau (Canada), A. Goldberg (USA), P. Hansen
(Canada), T. Ibaraki (Japan), K. Jansen (Germany), S. Martello (Italy), C.C.
McGeoch (USA), L.S. Ochi (Brazil), M.G.C. Resende (USA), J. Rolim (Swit-
zerland), S. Skiena (USA), M. Sniedovich (Australia), C.C. Souza (Brazil), P.
Spirakis (Greece), D. Trystram (France), and S. Voss (Germany). I am also gra-
teful to the anonymous referees who assisted the Program Committee in the
selection of the papers to be included in this publication.

The idea of organizing WEA 2004 in Brazil grew out of a few meetings with
José Rolim (University of Geneva, Switzerland). His encouragement and close
collaboration at different stages of this project were fundamental for the success
of the workshop. The support of EATCS and Alfred Hofmann (Springer-Verlag)
were also appreciated.

I am thankful to the Department of Computer Science of Universidade Fe-
deral Fluminense (Niterói, Brazil) for fostering the environment in which this
workshop was organized. I am particularly indebted to Simone Martins for her
invaluable support and collaboration in the editorial work involved in the pre-
paration of the final camera-ready copy of this volume.

Angra dos Reis (Brazil), May 2004 Celso C. Ribeiro (Chair)

This page intentionally left blank

Table of Contents

A Hybrid Bin-Packing Heuristic to Multiprocessor Scheduling
Adriana C.F. Alvim, Celso C. Ribeiro

Efficient Edge-Swapping Heuristics for Finding Minimum
Fundamental Cycle Bases

Edoardo Amaldi, Leo Liberti, Nelson Maculan, Francesco Maffioli

Solving Chance-Constrained Programs Combining Tabu Search
and Simulation

Roberto Aringhieri

An Algorithm to Identify Clusters of Solutions
in Multimodal Optimisation

Pedro J. Ballester, Jonathan N. Carter

On an Experimental Algorithm for Revenue Management
for Cargo Airlines

Paul Bartodziej, Ulrich Derigs

Cooperation between Branch and Bound and Evolutionary Approaches
to Solve a Bi-objective Flow Shop Problem

Matthieu Basseur, Julien Lemesre, Clarisse Dhaenens,
El-Ghazali Talbi

Simple Max-Cut for Split-Indifference Graphs and Graphs
with Few

Hans L. Bodlaender, Celina M.H. de Figueiredo, Marisa Gutierrez,
Ton Kloks, Rolf Niedermeier

A Randomized Heuristic for Scene Recognition by Graph Matching
Maria C. Boeres, Celso C. Ribeiro, Isabelle Bloch

An Efficient Implementation of a Joint Generation Algorithm
Endre Boros, Khaled Elbassioni, Vladimir Gurvich, Leonid Khachiyan

Lempel, Even, and Cederbaum Planarity Method
John M. Boyer, Cristina G. Fernandes, Alexandre Noma,

José C. de Pina*

A Greedy Approximation Algorithm for the Uniform Labeling
Problem Analyzed by a Primal-Dual Technique

Evandro C. Bracht, Luis A.A. Meira, Flávio K. Miyazawa

Distributed Circle Formation for Anonymous Oblivious Robots
Ioannis Chatzigiannakis, Michael Markou, Sotiris Nikoletseas

14

30

42

57

72

87

100

114

129

145

159

1

VIII Table of Contents

Dynamic Programming and Column Generation Based Approaches for
Two-Dimensional Guillotine Cutting Problems

Glauber Cintra, Yoshiko Wakabayashi

Engineering Shortest Path Algorithms
Camil Demetrescu, Giuseppe F. Italiano

How to Tell a Good Neighborhood from a Bad One: Satisfiability
of Boolean Formulas

Tassos Dimitriou, Paul Spirakis

Implementing Approximation Algorithms for the Single-Source
Unsplittable Flow Problem

Jingde Du, Stavros G. Kolliopoulos

Fingered Multidimensional Search Trees
Amalia Duch, Conrado Martínez

Faster Deterministic and Randomized Algorithms on the Homogeneous
Set Sandwich Problem

Celina M.H. de Figueiredo, Guilherme D. da Fonseca,
Vinícius G.P. de Sá, Jeremy Spinrad

Efficient Implementation of the BSP/CGM Parallel Vertex Cover
FPT Algorithm

Erik J. Hanashiro, Henrique Mongelli, Siang W. Song

Combining Speed-Up Techniques for Shortest-Path
Computations

Martin Holzer, Frank Schulz, Thomas Willhalm

Increased Bit-Parallelism for Approximate String Matching
Heikki Hyyrö, Kimmo Fredriksson, Gonzalo Navarro

The Role of Experimental Algorithms in Genomics
Richard M. Karp

A Fast Algorithm for Constructing Suffix Arrays for Fixed-Size
Alphabets

Dong K. Kim, Junha Jo, Heejin Park

Pre-processing and Linear-Decomposition Algorithm to Solve the
k-Colorability Problem

Corinne Lucet, Florence Mendes, Aziz Moukrim

An Experimental Study of Unranking Algorithms
Conrado Martínez, Xavier Molinero

175

191

199

213

228

243

253

269

285

299

301

315

326

Table of Contents IX

An Improved Derandomized Approximation Algorithm for the
Max-Controlled Set Problem

Carlos A. Martinhon, Fábio Protti

GRASP with Path-Relinking for the Quadratic Assignment Problem
Carlos A.S. Oliveira, Panos M. Pardalos, Mauricio G.C. Resende

Finding Minimum Transmission Radii for Preserving Connectivity
and Constructing Minimal Spanning Trees in
Ad Hoc and Sensor Networks

Francisco Javier Ovalle-Martínez, Ivan Stojmenovic,
Fabián García-Nocetti, Julio Solano-González

A Dynamic Algorithm for Topologically Sorting Directed
Acyclic Graphs

David J. Pearce, Paul H.J. Kelly

Approximating Interval Coloring and Max-Coloring in
Chordal Graphs

Sriram V. Pemmaraju, Sriram Penumatcha, Rajiv Raman

A Statistical Approach for Algorithm Selection
Joaquín Pérez, Rodolfo A. Pazos, Juan Frausto,
Guillermo Rodríguez, David Romero, Laura Cruz

An Improved Time-Sensitive Metaheuristic Framework for
Combinatorial Optimization

Vinhthuy Phan, Steven Skiena

A Huffman-Based Error Detecting Code
Paulo E.D. Pinto, Fábio Protti, Jayme L. Szwarcfiter

Solving Diameter Constrained Minimum Spanning Tree Problems in
Dense Graphs

Andréa C. dos Santos, Abílio Lucena, Celso C. Ribeiro

An Efficient Tabu Search Heuristic for the School
Timetabling Problem

Haroldo G. Santos, Luiz S. Ochi, Marcone J.F. Souza

Experimental Studies of Symbolic Shortest-Path Algorithms
Daniel Sawitzki

Experimental Comparison of Greedy Randomized Adaptive Search
Procedures for the Maximum Diversity Problem

Geiza C. Silva, Luiz S. Ochi, Simone L. Martins

Using Compact Tries for Cache-Efficient Sorting of Integers
Ranjan Sinha

341

356

369

383

399

417

432

446

458

468

482

498

513

X Table of Contents

Using Random Sampling to Build Approximate Tries for Efficient
String Sorting

Ranjan Sinha, Justin Zobel

The Datapath Merging Problem in Reconfigurable Systems: Lower
Bounds and Heuristic Evaluation

Cid C. de Souza, André M. Lima, Nahri Moreano, Guido Araujo

An Analytical Model for Energy Minimization
Claude Tadonki, Jose Rolim

A Heuristic for Minimum-Width Graph Layering with Consideration
of Dummy Nodes

Alexandre Tarassov, Nikola S. Nikolov, Jürgen Branke

Author Index

529

545

559

570

585

A Hybrid Bin-Packing Heuristic to

Multiprocessor Scheduling

Adriana C.F. Alvim1 and Celso C. Ribeiro2

1 Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia de
Produção, PO Box 68507, Rio de Janeiro 21945-970, Brazil.

alvim@inf.puc-rio.br
2 Universidade Federal Fluminense, Department of Computer Science, Rua Passo da

Pátria 156, Niterói, RJ 24210-240, Brazil.
celso@inf.puc-rio.br

Abstract. The multiprocessor scheduling problem consists in schedul-
ing a set of tasks with known processing times into a set of identical
processors so as to minimize their makespan, i.e., the maximum process-
ing time over all processors. We propose a new heuristic for solving the
multiprocessor scheduling problem, based on a hybrid heuristic to the bin
packing problem. Computational results illustrating the effectiveness of
this approach are reported and compared with those obtained by other
heuristics.

1 Introduction

Let be a set of tasks with processing times
to be processed by a set of identical processors.
We assume the processing times are nonnegative integers satisfying

Each processor can handle at most one task at any given time and
preemption is not possible. We denote by the set formed by the indices of
the tasks assigned to processor and by its overall processing
time, A solution is represented by the lists of tasks assigned to each
processor. The makespan of a solution is given by

The multiprocessor scheduling problem consists in finding an opti-
mal assignment of tasks to processors, so as to minimize their makespan, see
e.g. [5,16,20]. is NP-hard [4,14]. We denote the optimal makespan by

Minimizing the schedule length is important since it leads to the maxi-
mization of the processor utilization factor [3].

There is a duality relation [5,17,18,24] between and the bin packing
problem (BP), which consists in finding the minimum number of bins of a given
capacity C which are necessary to accommodate items with weights

The worst case performance ratio of a given heuristic H for is
defined as the maximum value of the ratio over all instances I,
where is the optimal makespan of instance I and H(I) is the makespan
of the solution computed by heuristic H. The longest processing time (LPT)

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 1–13, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 A.C.F. Alvim and C.C. Ribeiro

heuristic of Graham [15] finds an approximate solution to in time
with The MULTIFIT heuristic

proposed by Coffman et al. [6] explores the duality relation with the bin packing
problem, searching by binary search the minimum processing time (or bin ca-
pacity) such that the solution obtained by the FFD heuristic [19,21] to pack the

tasks (or items) makes use of at most processors (or bins). It can be shown
that if MULTIFIT is applied times, then it runs in time
and Friesen [13] subsequently improved this ra-
tio to Yue [25] further improved it to 13/11, which is tight. Finn
and Horowitz [9] proposed the 0/1-INTERCHANGE heuristic running in time

with worst case performance ratio equal to 2. Variants and exten-
sions of the above heuristics can be found in the literature.

The duality relation between the bin packing problem and was also
used by Alvim and Ribeiro [1] to derive a hybrid improvement heuristic to the
former. This heuristic is explored in this paper in the context of Lower
and upper bounds used by the heuristic are described in Section 2. The main
steps of the hybrid improvement heuristic to multiprocessor scheduling are pre-
sented in Section 3. Numerical results illustrating the effectiveness of the pro-
posed algorithm are reported in Section 4. Concluding remarks are made in the
last section.

2 Lower and Upper Bounds

The lower bound proposed by Mc-
Naughton [22] establishes that the optimal makespan cannot be smaller than
the maximum between the average processing time over all processors and
the longest duration over all tasks. This bound can be further improved to

Construction heuristic H1: Originally proposed in [1,2], it is similar to the
Multi-Subset heuristic in [7]. It considers one processor at a time. The longest
yet unassigned task is assigned to the current processor. Next, assign to this
same processor a subset of the yet unassigned tasks such that the sum of their
processing times is as close as possible to a given limit to the makespan. The
polynomial-time approximation scheme MTSS(3) of Martello and Toth [21]
is used in this step. The remaining unassigned tasks are considered one by one
in non-increasing order of their processing times. Each of them is assigned
to the processor with the smallest load.

Dell’Amico and Martello [7] proposed the lower bound They also showed
that the combination of lower and upper bounds to the makespan makes it
possible to derive lower and upper bounds to the number of tasks assigned to
each processor, leading to a new lower bound Bounds and are
used in the heuristic described in the next section.

We used three construction procedures for building feasible solutions and
computing upper bounds to

A Hybrid Bin-Packing Heuristic to Multiprocessor Scheduling 3

Construction heuristic H2: Hochbaum and Shmoys [17] proposed a new ap-
proach to constructing approximation algorithms, called dual approximation
algorithms. The goal is to find superoptimal, but infeasible, solutions. They
showed that finding an to is equivalent to find-
ing an to BP. For the latter, an
algorithm constructs a solution in which the number of bins is at most the
optimal number of bins and each bin is filled with at most (bin capacity
C = 1 and item weights scaled by In particular, they proposed a
scheme for Given a lower bound L and an upper bound U to
we obtain by binary search the smallest value C such that and
the 1/5-dual-approximation solution to BP uses no more than bins. This
approach characterizes a algorithm to
where is the number of iterations of the search. At the end of the search,
the value of C gives the lower bound to the makespan.
Construction heuristic H3: This is the longest processing time heuristic
LPT [15]. Tasks are ordered in non-increasing order of their processing times.
Each task is assigned to the processor with the smallest total processing time.

França et al. [10] proposed algorithm 3-PHASE based on the idea of balanc-
ing the load between pair of processors. Hübscher and Glover [18] also explored
the relation between and BP, proposing a tabu search algorithm using 2-
exchanges and influential diversification. Dell’Amico and Martello [7] developed
a branch-and-bound algorithm to exactly solve They also obtained new
lower bounds. Scholl and Voss [24] considered two versions of the simple assembly
line balancing problem. If the precedence constraints are not taken into account,
these two versions correspond to BP and Fatemi-Ghomi and Jolai-
Ghazvini [8] proposed a local search algorithm using a neighborhood defined by
exchanges of pairs of tasks in different processors. Frangioni et al. [12] proposed
new local search algorithms for the minimum makespan processor scheduling
problem, which perform multiple exchanges of jobs among machines. The latter
are modelled as special disjoint cycles and paths in a suitably defined improve-
ment graph. Several algorithms for searching the neighborhood are suggested and
computational experiments are performed for the case of identical processors.

3 Hybrid Improvement Heuristic to

The hybrid improvement heuristic to is described in this section. The
core of this procedure is formed by the construction, redistribution, and improve-
ment phases, as illustrated by the pseudo-code of procedure C+R+I in Figure 1.
It depends on two parameters: the target makespan Target and the maximum
number of iterations MaxIterations performed by the tabu search procedure
used in the improvement phase. The loop in lines 1–8 makes three attempts to
build a feasible solution S to the bin packing problem defined by the processing
times with bin capacity Target, using exactly bins. Each of
the heuristics H1, H2, and H3 is used at each attempt in line 2. If S is feasible to
the associated bin packing problem, then it is returned in line 3. Otherwise, load

4 A.C.F. Alvim and C.C. Ribeiro

Fig. 1. Pseudo-code of the core C+R+I procedure.

redistribution is performed in line 4 to improve processor usability and the mod-
ified solution S is returned in line 5 if it is feasible to the bin packing problem.
Finally, a tabu search procedure is applied in line 6 as an attempt to knock down
the makespan of the current solution and the modified solution S is returned in
line 7 if it is feasible to the bin packing problem. Detailed descriptions of the
redistribution and improvement phases are reported in [1].

The pseudo-code of the complete hybrid improvement heuristic HI_PCmax
to is given in Figure 2. An initial solution S is built in line 1 using
heuristic H3. The lower bound is computed in line 2. If the current lower
and upper bounds coincide, then solution S is returned in line 3. The lower
bound is computed in line 4 and the current lower bound is updated. If the
current lower and upper bounds coincide, then solution S is returned in line
5. The lower bound is computed in line 6 and the current lower bound is
updated. If the current lower and upper bounds coincide, then solution S is
returned in line 7. A new solution is built in line 8 using heuristic H2. The
currently best solution and the current upper bound are updated in line 9, while
the current lower bound is updated in line 10. If the current lower and upper
bounds coincide, then the currently best solution S is returned in line 11. A new
solution is built in line 12 using heuristic H1. The currently best solution
and the current upper bound are updated in line 13. If the current lower and
upper bounds coincide, then the currently best solution S is returned in line 14.
At this point, UB is the upper bound associated with the currently best known
solution S to and LB is an unattained makespan. The core procedure
C+R+I makes an attempt to build a solution with makespan equal to the current
lower bound in line 15. The currently best solution and the current upper bound
are updated in line 16. If the current lower and upper bounds coincide, then
the currently best solution S is returned in line 17. The loop in lines 18–23
implements a binary search strategy seeking for progressively better solutions.
The target makespan is set in line 19. Let be the
solution obtained by the core procedure C+R+I applied in line 20 using as
the target makespan. If its makespan is at least as good as the target makespan

A Hybrid Bin-Packing Heuristic to Multiprocessor Scheduling 5

then the current upper bound UB and the currently best solution S are
updated in line 21. Otherwise, the unattained makespan LB is updated in line
22, since the core procedure C+R+I was not able to find a feasible solution with
the target makespan. The best solution found S is returned in line 24.

The core procedure C+R+I is applied at two different points: once in line
15 using the lower bound LB as the target makespan and in line 20 at each
iteration of the binary search strategy using as the target makespan. This
implementation follows the same EBS (binary search with prespecified entry
point) scheme suggested in [24]. Computational experiments have shown that it
is able to find better solutions in smaller computation times than other variants
which do not explore the binary search strategy or do not make a preliminary
attempt to build a solution using LB as the target makespan.

4 Computational Experiments

All computational experiments were performed on a 2.4 GHz AMD XP machine
with 512 MB of RAM memory.

Fig. 2. Pseudo-code of the hybrid improvement procedure to

6 A.C.F. Alvim and C.C. Ribeiro

Algorithms HI_PCmax and LPT were coded in C and compiled with ver-
sion 2.95.2 of the gcc compiler with the optimization flag -O3. The maxi-
mum number of iterations during the tabu search improvement phase is set
as MaxIterations = 1000. We compare the new heuristic HI_PCmax with the
3-PHASE heuristic of França et al. [10], the branch-and-bound algorithm B&B
of Dell’Amico and Martello [7], and the ME multi-exchange algorithms of Fran-
gioni et al. [12]. The code of algorithm B&B [7] was provided by Dell’Amico and
Martello.

4.1 Test Problems

We considered two families of test problems: uniform and non-uniform. In these
families, the number of processors takes values in {5,10,25} and the number of
tasks takes values in {50,100,500,1000} (the combination with
is also tested). The processing times are randomly generated in
the intervals [1, 100], [1, 1000], and [1, 10000]. Ten instances are generated for
each of the 39 classes defined by each combination of and processing time
interval.

The two families differ by the distribution of the processing times. The in-
stances in the first family were generated by França et al. [10] with processing
times uniformly distributed in each interval. The generator developed by Fran-
gioni et al. [11] for the second family was obtained from [23]. For a given interval

of processing times, with and their generator
selects 98% of the processing times from a uniform distribution in the interval

and the remaining 2% in the interval

4.2 Search Strategy

In the first computational experiment, we compare three different search meth-
ods that can be used with HI_PCmax.

In all three methods the core procedure C+R+I is used to check whether there
exists a solution with a certain target makespan in the interval [LB, UB]. In
the lower bound method (LBM), we start the search using LB as the target
makespan, which is progressively increased by one. In the binary search method
(BSM), the interval [LB, UB] is progressively bisected by setting
as the target makespan. The binary search with prespecified entry point method
(EBS) is that used in the pseudo-code in Figure 2. It follows the same general
strategy of BSM, but starts using LB as the first target makespan.

Table 1 presents the results observed with each search method. For each
family of test problems, we report the following statistics for the 130 instances
with the same interval for the processing times: the total computation time
in seconds, the maximum and the average number of executions of the core
procedure C+R+I. These results show that EBS is consistently better than the
other methods: the same solutions are always found by the three methods, with
significantly smaller total times and fewer executions of C+R+I in the case of
EBS.

A Hybrid Bin-Packing Heuristic to Multiprocessor Scheduling 7

4.3 Phases

In this experiment, we investigate the effect of the preprocessing, construction,
redistribution, and improvement phases. Four variants of the hybrid improve-
ment procedure HI_PCmax are created:

Variant P: only lines 1–4 corresponding to the preprocessing phase of the
pseudo-code in Figure 2 are executed.
Variant P+C: the core procedure C+R+I is implemented without the redistri-
bution and improvement phases.
Variant P+C+R: the core procedure C+R+I is implemented without the im-
provement phase.
Variant P+C+R+I: the core procedure C+R+I is fully implemented with all
phases, corresponding to the complete HI_PCmax procedure itself.

Table 2 shows the results obtained with each variant. The differences between
corresponding columns associated with consecutive variants give a picture of the
effect of each additional phase. For each family of test poblems and for each
interval of processing times, we report the number of optimal solutions found
and the total computation time in seconds over all 130 instances.

8 A.C.F. Alvim and C.C. Ribeiro

These results show that the uniform instances are relatively easy and the
construction, redistribution, and improvement phases do not bring significative
benefits in terms of solution quality or computation times. We notice that 90.5%
of the 390 uniform instances are already solved to optimality after the prepro-
cessing phase. The three additional phases allow solving only 13 other instances
to optimality, at the cost of multiplying the total computation time by a factor
of almost five. This picture is quite different for the non-uniform instances. In
this case, only 204 out of the 390 test problems (52.3%) are solved to optimality
after the preprocessing phase. The complete procedure with all phases made it
possible to solve 165 additional instances to optimality.

In consequence of the order in which the three heuristics are applied in the
preprocessing phase (lines 1, 8, and 12 of the pseudo-code in Figure 2), of the
557 optimal solutions found after this phase, 171 were obtained with the LPT
heuristic H3, one with the heuristic H2, and 385 with
the construction heuristic H1 proposed in Section 2. However, we note that if the
lower bound is used, then heuristic H1 alone is capable of
finding 556 out of the 557 optimal solutions obtained during the preprocessing
phase. This shows that H1 is indeed a very useful fast heuristic to

4.4 Comparison with Other Approaches

In this final set of experiments, we compare the hybrid improvement heuristic
HI_PCmax with the list scheduling algorithm LPT [15], the 3-PHASE heuristic
of França et al. [10], and the branch-and-bound algorithm B&B of Dell’Amico
and Martello [7] with the number of backtracks set at 4000 as suggested by the
authors, as well as with the best solution found by the multi-exchange (ME)
algorithms.

A Hybrid Bin-Packing Heuristic to Multiprocessor Scheduling

Tables 3 to 5 report the results obtained by heuristics LPT, B&B, HI_PCmax,
and 3-PHASE for the uniform instances. Tables 6 to 8 give the results obtained
by heuristics LPT, B&B, HI_PCmax, and ME for the non-uniform instances. The
following statistics over all ten test instances with the same combination of and

are reported: (a) average relative errors with respect to the best lower bound
for algorithms LPT, B&B, and HI_PCmax; (b) average relative errors reported
in [10] for algorithm 3-PHASE; (c) average relative errors reported in [12] for
the best among the solutions obtained by ME algorithms 1-SPT, 1-BPT, and
K-SPT; (d) number of optimal solutions found by LPT, B&B, and HI_PCmax;
(e) average computation times observed for LPT, B&B, and HI_PCmax on a
2.4 GHz AMD XP machine; and (f) average computation times reported in [12]

9

10 A.C.F. Alvim and C.C. Ribeiro

for the best ME algorithm on a 400 MHz Pentium II with 256 Mbytes of RAM
memory.

Most uniform instances are easy and can be solved in negligible computation
times. Tables 3 to 5 show that HI_PCmax found better solutions than LPT, B&B,
and 3-PHASE for all classes of test problems. Only four instances in Table 4
and 20 instances in Table 5 were not solved to optimality by HI_PCmax. B&B
outperformed LPT and 3-PHASE, but found slightly fewer optimal solutions and
consequently slightly larger relative errors than HI_PCmax. We also notice that
the uniform test instances get harder when the range of the processing times
increase.

The non-uniform test instances are clearly more difficult that the uniform.
Once again, HI_PCmax outperformed the other algorithms considered in Ta-
bles 6 to 8 in terms of solution quality and computation times. This conclusion

A Hybrid Bin-Packing Heuristic to Multiprocessor Scheduling 11

is particularly true if one compares the results observed for the largest test in-
stances with and

Table 9 summarizes the main results obtained by algorithms HI_PCmax and
B&B on the same computational environment. For each group of test problems
and for each algorithm, it indicates the number of optimal solutions found over
the 130 instances, the average and maximum absolute errors, the average and
maximum relative errors, and the average and maximum computation times.
The superiority of HI_PCmax is clear for the non-uniform instances. It not only
found better solutions, but also in smaller computation times.

12 A.C.F. Alvim and C.C. Ribeiro

5 Concluding Remarks

We proposed a new strategy for solving the multiprocessor scheduling problem,
based on the application of a hybrid improvement heuristic to the bin packing
problem. We also presented a new, quick construction heuristic, combining the
LPT rule with the solution of subset sum problems.

The construction heuristic revealed itself as a very effective approximate
algorithm and found optimal solutions for a large number of test problems.
The improvement heuristic outperformed the other approximate algorithms in
the literature, in terms of solution quality and computation times. The com-
putational results are particularly good in the case of non-uniform test instances.

Acknowledgments: The authors are grateful to M. Dell’Amico for having
kindly provided the code of B&B algorithm used in the computational experi-
ments. We are also thankful to P. França for making available the instances of
the uniform family.

References

A.C.F. Alvim, C.C. Ribeiro, F. Glover, and D.J. Aloise, “A hybrid improvement
heuristic for the one-dimensional bin packing problem”, Journal of Heuristics,

2004, to appear.
A.C.F. Alvim, Uma heurística híbrida de melhoria para problema de bin pack-

ing sua aplicação ao problema de escalonamento de tarefas, Doctorate thesis,
Catholic University of Rio de Janeiro, Department of Computer Science, Rio de
Janeiro, 2003.

“Selected topics in scheduling theory”, in Surveys in Combinatorial

Optimization (G. Laporte, S. Martello, M. Minoux, and C.C. Ribeiro, eds.), pages
1–60, North-Holland, 1987.
J.L. Bruno, E.G. Coffman Jr., and R. Sethi, “Scheduling independent tasks to
reduce mean finishing time”, Communications of the ACM 17 (1974), 382–387.
T. Cheng and C. Sin, “A state-of-the-art review of parallel-machine scheduling
research”, European Journal of Operational Research 47 (1990), 271–292.
E.G. Coffman Jr., M.R. Garey, and D.S. Johnson, “An application of bin-packing
to multiprocessor scheduling”, SIAM Journal on Computing 7 (1978), 1–17.
M. Dell’Amico and S. Martello, “Optimal scheduling of tasks on identical parallel
processors”, ORSA Journal on Computing 7 (1995), 191–200.
S.M. Fatemi-Ghomi and F. Jolai-Ghazvini, “A pairwise interchange algorithm for
parallel machine scheduling”, Production Planning and Control 9 (1998), 685–689.
G. Finn and E. Horowitz, “A linear time approximation algorithm for multipro-
cessor scheduling”, BIT 19 (1979), 312–320.
P.M. França, M. Gendreau, G. Laporte, and F.M. Müller, “A composite heuristic
for the identical parallel machine scheduling problem with minimum makespan
objective”, Computers Ops. Research 21 (1994), 205–210.
A. Frangioni, M. G. Scutellà, and E. Necciari, “Multi-exchange algorithms for
the minimum makespan machine scheduling problem”, Report TR-99-22, Dipar-
timento di Informatica, Università di Pisa, Pisa, 1999.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

A Hybrid Bin-Packing Heuristic to Multiprocessor Scheduling 13

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A. Frangioni, E. Necciari, and M. G. Scutellà, “A multi-exchange neighborhood
for minimum makespan machine scheduling problems”, Journal of Combinatorial

Optimization, to appear.
D.K. Friesen, “Tighter bounds for the MULTIFIT processor scheduling algo-
rithm”, SIAM Journal on Computing 13 (1984), 170–181.
M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W.H. Freeman and Company, 1979.
R.L. Graham, “Bounds on multiprocessing timing anomalies”, SI AM Journal of

Applied Mathematics 17 (1969),416–429.
R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, “Optimiza-
tion and approximation in deterministic sequencing and scheduling: A survey”,
Annals of Discrete Mathematics 5 (1979), 287–326.
D.S. Hochbaum and D. B. Shmoys, “Using dual approximation algorithms for
scheduling problems: Theoretical and practical results”, Journal of the ACM 34
(1987), 144–162.
R. Hübscher and F. Glover, “Applying tabu search with influential diversification
to multiprocessor scheduling”, Computers and Operations Research 21 (1994),
877–884.
D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey, and R.L. Graham, “Worst
case performance bounds for simple one-dimensional packing algorithms”, SI AM

Journal on Computing 3 (1974), 299–325.
E.L. Lawler, J. K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, “Sequenc-
ing and scheduling: Algorithms and complexity”, in Logistics of Production and

Inventory: Handbooks in Operations Research and Management Science (S.C.
Graves, P.H. Zipkin, and A.H.G. Rinnooy Kan, eds.), 445–522, North-Holland,
1993.
S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Imple-

mentations, Wiley, 1990.
McNaughton, “Scheduling with deadlines and loss functions”, Management Sci-

ence 6 (1959), 1–12.
E. Necciari, “Istances of machine scheduling problems”. Online document available
at http://www.di.unipi.it/di/groups/optimize/Data/MS.html, last visited on
November 21, 2001.
A. Scholl and S. Voss, “Simple assembly line balancing - Heuristic ap-
proaches”, Journal of Heuristics 2 (1996), 217–244.
M. Yue, “On the exact upper bound for the MULTIFIT processor scheduling
algorithm”, Annals of Operations Research 24 (1990), 233–259.

Efficient Edge-Swapping Heuristics for Finding

Minimum Fundamental Cycle Bases

Edoardo Amaldi, Leo Liberti, Nelson Maculan*, and Francesco Maffioli

DEI, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy,
{amaldi,liberti,maculan,maffioli}@elet.polimi.it

Abstract. The problem of finding a fundamental cycle basis with min-
imum total cost in a graph is NP-hard. Since fundamental cycle bases
correspond to spanning trees, we propose new heuristics (local search and
metaheuristics) in which edge swaps are iteratively applied to a current
spanning tree. Structural properties that make the heuristics efficient are
established. We also present a mixed integer programming formulation
of the problem whose linear relaxation yields tighter lower bounds than
known formulations. Computational results obtained with our algorithms
are compared with those from existing constructive heuristics on several
types of graphs.

1 Introduction

Let G = (V,E) be a simple, undirected graph with nodes and edges,
weighted by a non-negative cost function A cycle is a subset
C of E such that every node of V is incident with an even number of edges in
C. Since an elementary cycle is a connected cycle such that at most two edges
are incident to any node, cycles can be viewed as the (possibly empty) union of
edge-disjoint elementary cycles. If cycles are considered as edge-incidence binary
vectors in it is well-known that the cycles of a graph form a vector
space over GF(2). A set of cycles is a cycle basis if it is a basis in this cycle
vector space associated to G. The cost of a cycle is the sum of the costs of all
edges contained in the cycle. The cost of a set of cycles is the sum of the costs
of all cycles in the set. Given any spanning tree of G characterized by an edge
set the edges in T are called branches of the tree, and those in E\T
(the co-tree) are called the chords of G with respect to T. Any chord uniquely
identifies a cycle consisting of the chord itself and the unique path in T con-
necting the two nodes incident on the chord. These cycles are called
fundamental cycles and they form a Fundamental Cycle Basis (FCB) of G with
respect to T. It turns out [1] that a cycle basis is fundamental if and only if each
cycle in the basis contains at least one edge which is not contained in any other
cycle in the basis. In this paper we consider the problem of finding Minimum
Fundamental Cycle Bases (MIN FCB) in graphs, that is FCBs with minimum

On academic leave from COPPE, Universidade Federal do Rio de Janeiro, Brazil,
e-mail: maculan@cos.ufrj.br.

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 14–29, 2004.
© Springer-Verlag Berlin Heidelberg 2004

*

2.1 Initial Feasible Solutions

Initial solutions are obtained by applying a very fast “tree-growing” proce-
dure [12], where a spanning tree and its corresponding FCB are grown by adding
nodes to the tree according to predefined criteria. The adaptation of Paton’s pro-
cedure to the MIN FCB problem proceeds as follows. The node set of the initial
tree only contains a root node and the set X of nodes to be examined is
initialized at V. At each step a node (not yet examined) is selected

Efficient Edge-Swapping Heuristics 15

total cost. Since the cycle space of a graph is the direct sum of the cycle spaces
of its biconnected components, we assume that G is biconnected, i.e., G contains
at least two edge-disjoint paths between any pair of nodes.

Cycle bases have been used in the field of electrical networks since the time of
Kirchoff [2]. Fundamental cycle bases can be uniquely identified by their corre-
sponding spanning trees, and can therefore be represented in a highly compact
manner. Besides the above-mentioned characterization, established sev-
eral structural results concerning FCBs [3,1,4]. For example, two spanning trees
whose symmetric difference is a collection of 2-paths (paths where each node,
excluding the endpoints, has degree 2) give rise to the same FCB [1]. Although
the problem of finding a minimum cycle basis can be solved in polynomial time
(see [5] and the recent improvement [6]), requiring fundamentality makes the
problem NP-hard [7]. In fact, it does not admit a polynomial-time approxima-
tion scheme (PTAS) unless P=NP; that is, under the same assumption there
exists no polynomial-time algorithm that guarantees a solution within a factor
of for every instance and for any In the same work, a ap-
proximation algorithm is presented for complete graphs, and a
approximation algorithm for arbitrary graphs.

Interest in minimum FCBs arises in a variety of application fields, such as
electrical circuit testing [9], periodic timetable planning [10] and generating min-
imal perfect hash functions [11].

The paper is organized as follows. In Section 2 we describe a local search
algorithm in which the spanning tree associated to the current FCB is iteratively
modified by performing edge swaps, and we establish structural results that make
its implementation efficient. In Section 3 the same type of edge swaps is adopted
within two metaheuristic schemes, namely a variable neighbourhood search and
a tabu search. To provide lower bounds on the cost of optimal solutions, a new
mixed integer programming (MIP) formulation of the problem is presented in
Section 4. Computational results are reported and discussed in Section 5.

2 Edge-Swapping Local Search

In our local search algorithm for the MIN FCB problem, we start from the span-
ning tree associated to an initial FCB. At each iteration we swap a branch of
the current spanning tree with one of its chords until the cost cannot be further
decreased, i.e., a local minimum is found.

16 E. Amaldi et al.

according to a predefined ordering. For all nodes adjacent to if the
edge is included in T (the edge is selected), the node is added to
and the node is removed from X. Nodes to be examined are selected according
to non-increasing degree and, to break ties, to increasing edge star costs. The
resulting order tends to maximize the chances of finding very short fundamental
cycles early in the process. The performance of this tree-growing procedure is
comparable to other existing tree-growing techniques [7,11].

2.2 Edge Swap

Using edge swaps to search the solution space of the MIN FCB problem is a
good strategy, since all spanning trees of a graph can be obtained from any
initial spanning tree by the repeated application of edge swaps [13]. Consider
any given spanning tree T of G. For each branch of T, the removal of from T
induces the partition of the node set V into two subsets and Denote by

the fundamental cut of G induced by the branch of T, i.e.,
For any chord let be the

edge swap which consists in removing the branch from T while adding to T.
Denote by the resulting spanning tree.

Fig. 1. Local search algorithm for the MIN FCB problem.

For any spanning tree T, let be the set of cycles in the FCB associated
to T, and let denote the FCB total cost (the function is extended
to sets of edges in the obvious way: We

Efficient Edge-Swapping Heuristics 17

are interested in finding edge swaps where is a branch of the
current tree T and is a chord in the fundamental cut induced by such
that For each branch and chord the cost difference

must be computed. Let be the largest such
and be the corresponding edge swap. If we let be the identity
permutation.

The local search algorithm based on this edge-swapping operation is summa-
rized in Fig. 1.

2.3 Efficient Implementation

Given the high worst-case computational complexity of each iteration of the
basic local search procedure (see Section 2.4), an efficient implementation is of
foremost importance. Since applying an edge swap to a spanning tree may change
the fundamental cycles and cut structure considerably, efficient procedures are
needed to determine the cuts for all and to compute from the
data at the previous iteration, namely from T, and the cuts for

Edge swap effect on the cuts. In this subsection we prove that any edge
swap applied to a spanning tree T, where and changes
a cut if and only if is also in Furthermore, is the symmetric
difference This makes it easy to maintain data structures relative to the
cuts that can be updated efficiently when is applied to T.

For each pair of nodes let be the unique path in T from to
Let be an edge of the spanning tree and

be a chord, where the respective endpoints are nodes in V. Let
and

Note that exactly two paths in
do not contain Let denote the subset of composed of those two
paths not containing Let be whichever of the sets

has shortest total path length in T (see Fig. 2). In the sequel,
with a slight abuse of notation, we shall sometimes say that an edge belongs to a
set of nodes, meaning that its endpoints belong to that set of nodes. For a path

and a node set we say if the edges of are in the edge set
(i.e., the edges of the subgraph of G induced by N). Furthermore, we

shall say that a path connects two edges if it connects an endpoint of to
an endpoint of

Lemma 2.1. For any branch and chord we have if and
only if

Proof. First assume that Denoting by the endpoints of and
by those of we can assume w.l.o.g. that are labeled so
that and Since there is a unique shortest path in T
connecting to with then Thus, there are unique
shortest sub-paths of such that and

18 E. Amaldi et al.

Fig. 2. (A) If is in the fundamental cut induced by
Otherwise, up to symmetries, we have the situation depicted in (B) where

Hence Conversely, let
and assume that Since either and or vice

versa, the endpoints of are separated by the cut i.e.,

Let T be a spanning tree for G = (V, E) and an edge swap with
and First we note that the cut in G induced by of T is

the same as the cut induced by of

Proposition 2.2.

Proof. Since swapping with does not modify the partitions that
induce the cuts, i.e.,

Second, we show that the cuts that do not contain are not affected by

Proposition 2.3. For each such that and we have

Proof. Let By Lemma 2.1, the shortest paths from the endpoints
of to the endpoints of do not contain We shall consider three possibilities.
(1) In the case where and do not belong either to or we obtain
trivially that and hence the result.
(2) Assume now that and that both are in The permutation
changes so that whilst Now is shortest because it is
the unique path in connecting the endpoints of and since
because does not affect we obtain (3) Suppose that

and Since by Lemma 2.1 there are shortest
paths connecting the endpoints of and such that
Since and T is tree, there is an in {1, 2} such that (say,
w.l.o.g. that let where connects and and

connects and Let then is the unique path
in connecting and Since connects and in we must conclude
that which is a contradiction.

Efficient Edge-Swapping Heuristics 19

Third, we prove that any cut containing is mapped by the edge swap
to its symmetric difference with the cut induced by of T.

Theorem 2.4. For each such that and we have

Due to its length, the proof is given in the Appendix.

Edge swap effect on the cycles. In order to compute efficiently, we have
to determine how an edge swap affects the FCB corresponding to the
tree T. For each chord of G with respect to T, let be the unique fundamental
cycle induced by

Fact If then is unchanged by

The next result characterizes the way acts on the cycles that are changed
by the edge swap

Theorem 2.5. If then where is the funda-
mental cycle in T corresponding to the chord

Proof. We need the two following claims.

Claim 1. For all such that
Proof. Since is the simple cycle consisting of and the unique path in T

connecting the endpoints of through the only edges both in the cycle and
in the cut of are and

Claim 2. For all pairs of chords such that there exists a unique
simple cycle such that and
Proof. Let and assume w.l.o.g. are labeled
so that and Since there exist unique paths
connecting and connecting the edge subset
is a cycle with the required properties. Assume now that there is another cycle
with the required properties. Then defines paths connecting respectively

and in T. Since T is a spanning tree, and thus

2.4 Computational Complexity

We first evaluate the complexity of applying an edge swap to a given spanning
tree and of computing the fundamental cut and cycle structures in a basic im-
plementation. Computing the cost of a FCB given the associated spanning tree
T is O(mn), since there are chords of G relative to T and each one

Consider the cycle By definition,
Since by Claim and Thus
Consider now Since and Furthermore, since

fixes Hence, by Claim 2, we have that

20 E. Amaldi et al.

of the corresponding fundamental cycles contains at most edges. To select the
best edge swap available at any given iteration, one has to evaluate the FCB
cost for all the swaps involving one of the branches and one of the
(at most chords Since computing a fundamental cut requires

the total complexity for a single edge swap is
In the efficient implementation described in Section 2.3, fundamental cuts and

cycles are computed by using symmetric differences of edge sets, which require
linear time in the size of the sets. Since there are fundamental cycles of size at
most and fundamental cuts of size at most updating the fundamental cut
and cycle structures after the application of an edge swap requires O(mn).

Doing this for each branch of the tree and for each chord in the fundamental cut
induced by the branch, leads to an total complexity.

It is worth pointing out that computational experiments show larger speed-
ups in the average running times (with respect to the basic implementation)
than those suggested by the worst-case analysis.

2.5 Edge Sampling

The efficient implementation of the local search algorithm described in Fig. 1 is
still computationally intensive, since at each iteration all pairs of tree branches

and chords must be considered to select the best available edge swap.
Ideally, we would like to test the edge swap only for a small subset of pairs
while minimizing the chances of missing pairs which yield large cost decreases.

Fig. 3. All edge weights are equal to 1 and the numbers indicated on the chords corre-
spond to the costs of the corresponding fundamental cycles. The cut on the left has a
difference between the cheapest and the most expensive cycles of 10 – 4 = 6; after the
edge swap the difference amounts to 6 – 4 = 2.

A good strategy is to focus on branches inducing fundamental cuts whose
edges define fundamental cycles with “unbalanced” costs, i.e., with a large differ-
ence between the cheapest and the most expensive of those fundamental cycles.
See Fig. 3 for a simple example. This is formalized in terms of an order on
the tree branches. For branches we have if the difference be-
tween the maximum and minimum fundamental cycle costs deriving from edges
in is smaller than that deriving from edges in Computational experience
suggests that branches that appear to be larger according to the above order
tend to be involved in edge swaps leading to largest decreases in the FCB cost.

This strategy can be easily adapted to sampling by ordering the branches of
the current spanning tree as above and by testing the candidate edge swaps only

Efficient Edge-Swapping Heuristics 21

for the first fraction of the branches, where is an arbitrary sampling
constant.

3 Metaheuristics

To go beyond the scope of local search and try to escape from local minima,
we have implemented and tested two well-known metaheuristics: variable neigh-
bourhood search (VNS) [14] and tabu search (TS) [15].

3.1 Variable Neighbourhood Search

In VNS one attempts to escape from a local minimum by choosing another
random starting point in increasingly larger neighbourhoods of If the cost of
the local minimum obtained by applying the local search from is smaller
than the cost of then becomes the new best local minimum and the
neighbourhood size is reset to its minimal value. This procedure is repeated
until a given termination condition is met.

For the MIN FCB problem, given a locally optimal spanning tree (obtained
by applying the local search of Fig. 1), we consider a neighbourhood of size
consisting of all those spanning trees T that can be reached from by applying

consecutive edge swaps. A random solution in a neighbourhood of size is
then obtained by generating a sequence of random edge swaps and applying
it to

3.2 Tabu Search

Our implementation of tabu search includes diversification steps à la VNS (vTS).
In order to escape from local minima, an edge swap that worsens the FCB cost
is applied to the current solution and inserted in a tabu list. If all possible edge
swaps are tabu or a pre-determined number of successive non-improving moves
is exceeded, random edge swaps are applied to the current spanning tree. The
number increases until a pre-determined limit is reached, and is then re-set to
1. The procedure runs until a given termination condition is met.

Other TS variants were tested. In particular, we implemented a “pure” TS
(pTS) with no diversification, and a fine-grained TS (fTS) where, instead of
forbidding moves (edge swaps), feasible solutions are forbidden by exploiting
the fact that spanning trees can be stored in a very compact form. We also
implemented a TS variant with the above-mentioned diversification steps where
pTS tabu moves and fTS tabu solutions are alternatively considered. Although
the results are comparable on most test instances, vTS performs best on average.
Computational experiments indicate that diversification is more important than
intensification when searching the MIN FCB solution space with our type of edge
swaps.

22 E. Amaldi et al.

4 Lower Bounds

A standard way to derive a lower bound on the cost of the optimal solutions of
a combinatorial optimization problem (and thus to estimate heuristics perfor-
mance) is to solve a linear relaxation of a (mixed) integer programming formu-
lation. Three different integer programming formulations were discussed in [16].

We now describe an improved formulation that uses non-simultaneous flows
on arcs to ensure that the cycle basis is fundamental. Consider a biconnected
graph G = (V, E) with a non-negative cost assigned to each edge
For each node denotes the node star of i.e., the set of all edges
incident to Let be the directed graph associated with G, namely

We use two sets of decision variables. For each edge
the variable represents the flow through arc from

to Moreover, for each edge the variable is equal to 1 if edge
is in the spanning tree of G, and equal to 0 otherwise. For each pair of

arcs and we define
The following MIP formulation of the MIN FCB problem provides much

tighter bounds than those considered in [16]:

For each edge a path from to is represented by a unit
of flow through each arc in In other words, a unit of flow exists node

and enters node after going through all other (possible) nodes in For
each edge the flow balance constraints (2) and (3) account for a
directed path connecting nodes and Note that the flow balance constraint
for node is implied by constraints (2) and (3). Since constraints (4) and (5)
require that for every edge contained in some path (namely with a
strictly positive flow), the variables define a connected subgraph of G. Finally,
constraint (6) ensures that the connected subgraph defined by the variables is
a spanning tree. The objective function (1) adds the cost of the path associated
to every edge and the cost of all tree chords, and subtracts from it

Efficient Edge-Swapping Heuristics 23

the cost of the tree branches (which are counted when considering the path for
every edge

Besides the quality of the linear relaxation bounds, the main shortcoming of
this formulation is that it contains a large number of variables and constraints
and hence its solution becomes cumbersome for the largest instances.

5 Some Computational Results

Our edge-swapping local search algorithm and metaheuristics have been imple-
mented in C++ and tested on three types of unweighted and weighted graphs.
CPU times refer to a Pentium 4 2.66 GHz processor with 1 GB RAM running
Linux.

5.1 Unweighted Mesh Graphs

One of the most challenging testbeds for the MIN FCB problem is given by
the square mesh graphs with unit costs on the edges. This is due to the
large number of symmetries in these graphs, which bring about many different
spanning trees with identical associated FCB costs. Uniform cost square mesh
graphs have nodes and edges. Table 1 reports the FCB costs and
corresponding CPU times of the solutions found with: the local search algorithm
(LS) of Fig. 1, the variant with edge sampling (Section 2.5), the NT-heuristic
cited in [11], the VNS and tabu search versions described in Section 3. For
LS with edge sampling, computational experiments indicate that a sampling
constant of 0.1 leads to a good trade-off between solution quality and CPU time
for this type of graphs. The lower bounds in the last column correspond to the
cost of a non-fundamental minimal cycle basis, that is to four times the number
of cycles in a basis: For this particular type of graphs, the linear
relaxation of the MIP formulation provides exactly the same lower bounds.

5.2 Random Euclidean Graphs

To asses the performance of our edge-swapping heuristics on weighted graphs,
we have generated simple random biconnected graphs. The nodes are positioned
uniformly at random on a 20 × 20 square centered at the origin. Between each
pair of nodes an edge is generated with probability with The cost of
an edge is equal to the Euclidean distance between its adjacent nodes. For each

in {10, 20, 30, 40, 50} and in {0.2, 0.4, 0.6, 0.8}, we have generated a random
graph of size with edge probability

Table 2 reports the results obtained with the edge-swapping heuristics (pure
local search and metaheuristics) on these random graphs. The first two columns
indicate the performance of LS in terms of FCB cost and CPU time. The next
two columns correspond to the lower bounds obtained by partially solving the
MIP formulation of Section 4. The third and fourth two-column groups indicate
the performances of VNS and TS. There was enough available data to ascribe

24 E. Amaldi et al.

some statistical significance to the average percentage gap between heuristic and
lower bounding values (8.19%), and its reassuringly low standard deviation (±
5.15%). The maximum frequency value is also a rather low value (6%). It is worth
pointing out that the lower bounds obtained by solving the linear relaxation of
the formulation presented in Section 4 are generally much tighter than those
derived from the formulations considered in [16].

5.3 Weighted Graphs from Periodic Timetabling

An interesting application of MIN FCB arises in periodic timetabling for trans-
portation systems. To design the timetables of the Berlin underground, Liebchen
and Möhring [10] consider the mathematical programming model based on the
Periodic Event Scheduling Problem (PESP) [17] and the associated graph G in
which nodes correspond to events. Since the number of integer variables in the
model can be minimized by identifying an FCB of G and the number of discrete
values that each integer variable can take is proportional to the total FCB cost,
good models for the PESP problem can be obtained by looking for minimum
fundamental cycle bases of the corresponding graph G.

Due to the way the edge costs are determined, the MIN FCB instances aris-
ing from this application have a high degree of symmetry. Such instances are
difficult because, at any given heuristic iteration, a very large number of edge
swaps may lead to FCBs with the same cost. Notice that this is generally not
the case for weighted graphs with uniformly distributed edge costs. The re-
sults reported in Table 3 for instance timtab2, which is available from MIPLIB
(http://miplib.zib.de) and contains 88 nodes and 316 edges, are promising.
According to practical modeling requirements, certain edges are mandatory and
must belong to the spanning tree associated to the MIN FCB solution. The

Efficient Edge–Swapping Heuristics 25

above-mentioned instance contains 80 mandatory edges out of 87 tree branches,
and most of the these 80 fixed edges have very high costs. As shown in Table 3
(instance liebchen–fixed), this additional condition obviously leads to FCBs
with substantially larger costs.

6 Concluding Remarks

We described and investigated new heuristics, based on edge swaps, for tackling
the MIN FCB problem. Compared to existing tree-growing procedures, our lo-
cal search algorithm and simple implementation of the VNS and Tabu search
metaheuristics look very promising, even though computationally more inten-
sive. We established structural results that allow an efficient implementation of

26 E. Amaldi et al.

the proposed edge swaps. We also presented a new MIP formulation whose lin-
ear relaxation provides tighter lower bounds than known formulations on several
classes of graphs.

References

On some problems related to fundamental cycle sets of a graph. In
Chartrand, R., ed.: Theory of Applications of Graphs, New York, Wiley (1981)
577–588
Kirchhoff, G.: Über die auflösung der gleichungen, auf welche man bei der un-
tersuchungen der linearen verteilung galvanisher ströme geführt wird. Poggendorf
Annalen Physik 72 (1847) 497–508

On cycle bases of a graph. Networks 9 (1979) 123–132
On the fundamental cycle set graph. IEEE Transactions on Circuits

and Systems 29 (1982) 136–138
Horton, J.: A polynomial-time algorithm to find the shortest cycle basis of a graph.
SIAM Journal of Computing 16 (1987) 358–366
Amaldi, E., Rizzi, R.: Personal communication. (2003)
Deo, N., Prabhu, G., Krishnamoorthy, M.: Algorithms for generating fundamental
cycles in a graph. ACM Transactions on Mathematical Software 8 (1982) 26–42
Galbiati, G., Amaldi, E.: On the approximability of the minimum fundamental
cycle basis problem. In Jansen, K., Solis-Oba, R., eds.: Approximation and Online
Algorithms: First international workshop WAOA 2003, Lecture Notes in Computer
Science. Volume 1909., Springer-Verlag (2004) 151–164
Brambilla, A., Premoli, A.: Rigorous event-driven (RED) analysis of large-scale
nonlinear RC circuits. IEEE Transactions on Circuits and Systems–I: Fundamental
Theory and Applications 48 (2001) 938–946
Liebchen, C., Möhring, R.H.: A case study in periodic timetabling. In Wagner,
D., ed.: Electronic Notes in Theoretical Computer Science. Volume 66., Elsevier
(2002)
Deo, N., Kumar, N., Parsons, J.: Minimum-length fundamental-cycle set prob-
lem: New heuristics and an empirical investigation. Congressus Numerantium 107

(1995) 141–154
Paton, K.: An algorithm for finding a fundamental set of cycles of a graph. Com-
munications of the ACM 12 (1969) 514–518
Shioura, A., Tamura, A., Uno, T.: An optimal algorithm for scanning all spanning
trees of undirected graphs. SIAM Journal of Computing 26 (1997) 678–692

1.

2.

3.
4.

5.

6.
7.

10.

11.

12.

13.

8.

9.

Efficient Edge-Swapping Heuristics 27

Hansen, P., Variable neighbourhood search. In Glover, F., Kochen-
berger, G., eds.: Handbook of Metaheuristics, Dordrecht, Kluwer (2003)
Hertz, A., Taillard, E., de Werra, D.: Tabu search. In Aarts, E., Lenstra, J., eds.:
Local Search in Combinatorial Optimization, Chichester, Wiley (1997) 121–136
Liberti, L., Amaldi, E., Maculan, N., Maffioli, F.: Mathematical models and a
constructive heuristic for finding minimum fundamental cycle bases. Submitted to
Yugoslav Journal of Operations Research (2003)
Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems.
SIAM Journal of Discrete Mathematics 2 (1989) 550–581

14.

15.

16.

17.

Appendix: Proof of Theorem 2.4

To establish that, for each such that and we have
we proceed in four steps.

Claim 1:

Proof. Since there are shortest paths connecting and not

Fig. 4. Claim 1: If then

containing such that and Since either or
must contain but not both. Assume w.l.o.g. that (i.e.,

We prove that:
(3)

When there is no ambiguity, is written

Thus sends to a path containing whereas Thus
Since there exist shortest paths and

Becauseconnecting and not containing In
can be extended to a path By Proposition 2.2

Thus in there exist paths in and connecting
and not containing Notice that the path connects the endpoint

of in and and connects the same endpoint of with the opposite
endpoint of Thus which means that i.e.,

By Lemma 2.1, the claim is proved.

28 E. Amaldi et al.

Claim 2:
Proof. By hypothesis, Assume the former w.l.o.g. Let

Fig. 5. Claim 2: If then

be unique shortest paths from to and assume Thus
Since there are unique shortest paths from to such that is
in one of them, assume Since both there is a shortest path

between one of the endpoints of and one of the endpoints of while the
opposite endpoints are linked by the path Suppose Then
since both endpoints of are reachable from via and is reachable from

through it means that Conversely, if then Thus, we
consider two cases. If is not in the paths from to then fixes those paths,
i.e., and that is If is in the paths from to then
both the unique shortest paths and connecting and in contain

Since there are shortest paths connecting to one
of which, say
path

contains Moreover, since both there is a shortest
connecting one of the endpoints of to one of the endpoints of the

other shortest path between the opposite endpoints being Thus,
either or
and Either way, one of the paths contains By Lemma
2.1, the claim is proved.

Claim 3:
Proof. Since there are shortest paths connecting
and none of which contains Assume w.l.o.g. Suppose say

Consider and These are a pair
of shortest paths connecting and such that does not belong to either; i.e.,

which contradicts the hypothesis. Thus i.e., fixes paths
thus which proves the claim.

Claim 4:
Proof. First consider the case where Since the shortest paths

connecting are such that one of them contains say whilst
Since there are shortest paths entirely in connecting

such that neither contains Since both there is a shortest path

Efficient Edge-Swapping Heuristics 29

Fig. 6. Claim 3: If and then

Fig. 7. Claim 4: If and then

as Thus the endpoint of touched by also originates Since
Since joins contains

where is a shortest path from (which exists because by Proposition
2.2 which shows that Thus by Lemma 2.1, The
second possible case is that Since there are shortest paths

connecting such that neither includes Assume w.l.o.g. Since
whichare partitioned by exactly one of includes (say

implies Let be the sub-path of joining and and not including
and let be the sub-path of joining and and not including Let

We have that is a shortest path joining not including
Thus and by Lemma 2.1 which is a

contradiction.

connecting an endpoint of to an endpoint of the opposite endpoints
being joined by Thus w.l.o.g. Since the
path does not include and connects Thus and

On the other hand sends to a unique shortest path connecting
that includes Since there are shortest paths

that do not include Since may only touch the same endpoint of

and is shortest,
to

Solving Chance-Constrained Programs

Combining Tabu Search and Simulation

Roberto Aringhieri

DTI, University of Milan, via Bramante 65, I-26013 Crema, Italy.
roberto.aringhieri@unimi.it

Abstract. Real world problems usually have to deal with some un-
certainties. This is particularly true for the planning of services whose
requests are unknown a priori.

Several approaches for solving stochastic problems are reported in the
literature. Metaheuristics seem to be a powerful tool for computing good
and robust solutions. However, the efficiency of algorithms based on Lo-
cal Search, such as Tabu Search, suffers from the complexity of evaluating
the objective function after each move.
In this paper, we propose alternative methods of dealing with uncertain-
ties which are suitable to be implemented within a Tabu Search frame-
work.

1 Introduction

Consider the following deterministic linear program:

The cost coefficients the technological coefficients and the right-hand
side values are the problem parameters. In practical applications, any or all of
these parameters may not be precisely defined. When some of these parameters
are modelled as random variables, a stochastic problem arises.

When or are random variables having a known joint probability
distribution, is also a random variable. When only the coefficients are ran-
dom, the problem can be formulated as the minimization of the expected value

of Otherwise, a stochastic programming approach must be used. Two main
variants of stochastic programming (see e.g. [4]) are the stochastic programming

with recourse and the chance-constrained programming.

Charnes and Cooper [5] proposed to replace constraints (1a) with a number
of probabilistic constraints. Denoting with the probability of an event, we

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 30–41, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Solving Chance-Constrained Programs 31

consider the probability that constraint is satisfied, i.e. :

Let be the maximum allowable probability that constraint is violated, a
chance-constrained programming formulation of LP, say CCP, can be
obtained by replacing (1a) with the following chance constraints:

When all are known, this formulation minimizes while forbidding the
constraints to exceed certain threshold values

Moving constraints (2) to the objective function via Lagrangean multipliers,
we obtain the following stochastic program:

Using the Lagrangean multipliers, SPR directly considers the cost of recourse,
i.e. the cost of bringing a violated constraint to feasibility.

When the deterministic mathematical model involves also binary and/or in-
teger variables, as in many real applications, the complexity of the associated
stochastic program increases. To this purpose, several solution approaches are
reported in literature such as the Integer L-Shaped Method [12], heuristics (see
e.g. those for Stochastic Vehicle Routing Problem [7,8]), methods based on a
priori optimization [3] or sample-average approximation [13].

In this paper we propose a new algorithmic approach which combines Tabu
Search and simulation for Chance-Constrained Programming. Glover and Kelly
have described the benefits of applying Simulation to the solution of
problems [9]. Tabu Search [10] is a well-known metaheuristic algorithm which
has proved effective in a great number of applications.

The paper is organized as follows. The motivations and the basic idea of
combining Tabu Search and Simulation are presented and discussed in section 2.
In section 3 we introduce two optimization problems which are used to evaluate
the efficiency of the proposed algorithms. Section 4 describes the two problems.
Section 5 reports about the planning and the results of the computational ex-
periments. Finally, ongoing work is discussed in section 6.

2 Motivations and Basic Ideas

In the following, we refer to the general model IP derived from LP setting the
to be integer.

32 R. Aringhieri

Tabu Search (TS) explores the solution space by moving at each iteration to
the best neighbor of the current solution, even if the objective function is not
improved. In order to avoid cycling, each move is stored in a list of tabu moves
for a number of iterations: a tabu move is avoided until it is deleted from the
list. A basic scheme of TS algorithm, say BTS, is depicted in Algorithm 1.

Note that: is the set of tabu solutions generated by using tabu
moves at iteration is the set of tabu solution which are evaluated
since they respect some aspiration criteria (e.g. their objective function value
improves that of current best solution). The algorithm usually stops after a given
number of iterations or after a number of not improving iterations.

From a computational point of view, the computation of and its eval-
uation (the choice of the best move) are the most time consuming components.
For instance, a linear running time to evaluate the objective function of a single
move is usually considered acceptable for a deterministic problem.

Unfortunately, this is not always true for stochastic programs. If we consider
both SPR and CCP models, we observe that a move evaluation requires to
compute a quite complex probability function. For instance, in [8], the authors
proposed a SPR formulation for Vehicle Routing Problem with Stochastic De-
mands and Customers: the proposed TS algorithm, TABUSTOCH, requires at least

to evaluate a single move, where is the number of demand locations.
More generally, the evaluation of a new move involves probability and, at least,
two stages of computation [4].

Our main concern is to reduce the computational complexity required for
neighborhood exploration by introducing simulation methods within TS frame-
work for solving a CCP programs.

The idea is based on a different way of dealing with random parameters:
instead of computing directly the probability function, which is computationally
expensive, we use simulation to evaluate random parameters. Then, we use these
simulated random parameters, within the TS framework, in order to avoid moves
which lead to unfeasible solutions, i.e. moves which make unfeasible the chance-
constraints (2).

Solving Chance-Constrained Programs 33

For the sake of simplicity, we assume that only the are random. Clearly,
the following remarks can be extended straightforwardly to the other problem
parameters. In order to simulate random parameters, we introduce the following
notation:

the variable at iteration,

the simulated value of

Let be given as follows:

The value of counts the number of successes for the constraint (i.e.

Let be the set of probably tabu solutions generated by at iteration
Then, the corresponding TS algorithm, say SIMTS–CCP, can be obtained from

Algorithm 1 by modifying the computation of as

The SIMTS–CCP procedure is sketched in Algorithm 2.
Finally, TS offers to the researchers a great flexibility. For instance, a common

practice is to use a simple neighborhood structure and a penalized objective
function to take into account the unfeasibility when some constraints are violated
(see e.g. [6]). A general form of penalized function can be the following:

where is usually a self-adjusting penalty coefficient and is a
measure of how much the constraint is unfeasible.

Taking into account CCP models, we are interested in computing solutions
such that the chance-constraints (2) are satisfied for a given probability.

In this case, we can introduce a concept similar to that of a tabu move. The
idea is to avoid all the moves leading to solutions which make unfeasible the
respective chance-constraint. More formally, a move is probably tabu at iteration

if

the constraint is satisfied) The value estimates the probability of

constraint to be satisfied at iteration

34 R. Aringhieri

In the same way, we can adapt the function in (7) to take into account the
unfeasibility of chance-constraints. For instance, the function for the
constraint (2) can have the following general form:

3 Test Problems

In order to test the SIMTS–CCP algorithm,we will consider two opti-
mization problems arising in the design of telecommunication networks based
on SONET technology. For this class of problems, extensive computational ex-
periences have been made and efficient tabu search algorithms are available [1].

Fig. 1. A SONET network with DXC

Solving Chance-Constrained Programs 35

The SONET network is a collection of rings connecting a set of customer
sites. Each customer needs to transmit, receive and relay a given traffic with
a subset of the other customers. Add-Drop Multiplexers (ADM) and Digital
Cross Connectors (DXC) are the technologies allowing the connection between
customers and rings. Since they are very expensive, the main concern is to reduce
the number of DXCs used.

Two main topologies for the design of a SONET network are available. The
first topology consists in the assignment of each customer to exactly one ring
by using one ADM and allowing connection between different rings through a
unique federal ring composed by one DXC for each connected ring. The objective
of this problem, say SRAP and depicted in Figure 1, is to minimize the number
of DXCs.

Under some distance requirements, a second topology is possible: the use of
a federal ring is avoided assigning each traffic between two different customers
to only one ring. In this case, each customer can belong to different rings. The
objective of this problem, say IDP and depicted in Figure 2, is to minimize the
number of ADMs. For further details see e.g. [2,1,11].

Fig. 2. A SONET network without DXC

In order to formulate these problems, we consider the undirected graph G =
(V , E): the node set V contains one node for each customer; the edge
set E has an edge for each pair of customers such that the amount of
traffic between and is greater than 0 and
Given a subset of edges let be the subset of nodes induced
by i.e.

36 R. Aringhieri

SRAP Formulation

Given a partition of V into subsets the corresponding SRAP net-
work is obtained by defining local rings, connecting each customer of subset
to the local ring, and one federal ring, connecting the local rings by using

DXCs. The resulting network uses ADMs and DXCs.
Solving SRAP corresponds to finding the partition minimizing

and such that

Constraints (9a) and (9b) impose, respectively, that the capacity bound B is
satisfied for each local ring and for the federal ring.

IDP Formulation

Given a partition of E into subsets the corresponding IDP
network can be obtained by defining rings and connecting each customer
of to the ring by means of one ADM. The resulting network uses

ADMs and no DXC.
Solving IDP corresponds to finding the partition minimizing and

such that

Constraints (10) assure that the traffic capacity bound B for each ring is not
exceeded. we finally remark that IDP has always a feasible solution, e.g. the one
with rings composed by a single edge.

Stochastic Formulations

The stochastic version of SRAP and IDP considers the demand as random
parameters. The corresponding chance-constrained programs are obtained by
replacing constraints (9a) and (9b) with

Solving Chance-Constrained Programs 37

for SRAP, and constraints (10) with

for IDP.

4 The Algorithms for SRAP and IDP

In [1] the authors proposed a short-term memory TS guided by a variable objec-
tive function: the main idea of the variable objective function is to lead the
search within the solution space from unfeasible solutions to feasible ones, as in
Table 1.

A diversification strategy is implemented by varying multiple neighborhoods
during the search. More specifically, DMN uses mainly a neighborhood based on
moving one customer or demand at a time in such a way that the receiving ring
does not exceed the bound B. Otherwise, if B is exceeded, we consider also the
option of switching two customers or demands belonging to two different rings.
After consecutive non improving iterations, a second neighborhood is used for
few moves. During this phase, DMN empties a ring by moving its elements (cus-
tomers or demands respectively for SRAP and IDP) to the other rings disregarding
the capacity constraint while locally minimizing the objective function.

To turn the computation of each move efficient, some data structures, repre-
senting the traffic within and outside a ring, are maintained along the computa-
tion.

The whole algorithm is called Diversification by Multiple Neighborhoods,
say DMN. For a more detailed description of the whole algorithm, refer to the
description given in [1].

38 R. Aringhieri

The simts–ccp Algorithms

In order to devise the SIMTS–CCP algorithms for our problems, we need to im-
plement the evaluation of chance-constraints through the generation of random
parameters

As described in section 2, we need T observations of to evaluate the
value of defined in (4). Moreover, each needs the generation of all
traffic demands values according to their probability distribution function.

Algorithm 3 describes, with more details, the evaluation of Since the
number of traffic demands is the complexity of the computation of

values is Note that the complexity of can be reduced
employing the current traffic values available in the traffic data structures.

Here we propose two SIMTS–CCP algorithms derived from DMN. The basic
idea is to add the computation of to the original framework of DMN at
the end of neighborhood exploration: starting from solution the algorithms
generate each possible move as in DMN using the mean value of then, the
stochastic feasibility (respecting to the chance-constraints) is tested through the
computation of The algorithms differ in how the test is used to reject, or
not, solution

The first one, called DMN–STOCH–1, is the simplest one: each move not belong-
ing to defined in (6), is avoided. In other words, DMN–STOCH–1 allows
only moves which satisfy the chance-constraints. Note that the objective function
remains the one in Table 1.

On the contrary, the second one, say DMN–STOCH–2, allows moves in
but penalizes them using an objective function which also measures how unfea-

Solving Chance-Constrained Programs 39

sible the chance-constraints are. Referring to the general form reported in (7)
and (8), our penalized objective function is depicted in Table 2 where

5 Preliminary Computational Results

In this section, we report the planning of computational experiments and the
preliminary results.

In our computational experiments, we used the well-known Marsaglia-Zaman
generator [14,15], say RANMAR. This algorithm is the best known random number
generator available since it passes all of the tests for random number generators.
The algorithm is a combination of a Fibonacci sequence (with lags of 97 and 33,
and operation “subtraction plus one, modulo one”) and an “arithmetic sequence”

(using subtraction), which gives a period of It is completely portable and
gives an identical sequence on all machines having at least 24 bit mantissas in
the floating point representation.

Results of the Deterministic Version

Considering the set of 160 benchmark instances generated by Goldschmidt et

al. [11], DMN solves to optimality all the 118 instances, which are known to be
feasible for SRAP, with an average computing time of 60 mseconds. On the same
benchmark but considering IDP, for which the optimal solution value is known
only for 154 instances, DMN solves 129 instances to optimality, 23 instances with a
gap of 1 and the remaining two instances with a gap of 2. The average computing
time is 850 mseconds. The overall results are reported in Table 3.

Results of the Stochastic Version

We have tested our algorithms on the same benchmark varying the parameters in
the following ranges: and maintaining
unaltered those giving the best result for the deterministic version (see [1]).

and

40 R. Aringhieri

The comparisons are made with the optimal value of the deterministic ver-
sion, that is the values obtained using the mean value of traffic demands. Our
tests try to investigate how far the solution computed by the SIMTS–CCP is from
the one computed by its deterministic version.

The results, reported in Table 4 and 5, show the impact of computa-
tion: although the increase in the average computation time is quite remarkable
with respect the deterministic version, we observe that the quality of solutions
computed by both algorithms is acceptable.

6 Conclusions and Further Work

The paper addresses the problem of solving chance-constrained optimization
problems combining Tabu Search and Simulation. After a brief introduction to
stochastic programming, the class of SIMTS–CPP algorithms is proposed. The
reported computational results show that the solutions computed have a quality
comparable to those computed by the deterministic version. Also the increase in
the average running time is acceptable.

Further work will be mainly concerned with two topics. The first one is the
extension of computational experiments regarding SIMTS–CCP. The second one
concerns the study of a similar algorithm for SPR problems.

Solving Chance-Constrained Programs 41

Acknowledgments. The author wishes to thank Paola Valpreda and Roberto
Cordone for their help during the proofreading process.

References

R. Aringhieri and M. Dell’Amico. Comparing Intensification and Diversification
Strategies for the SONET Network Design Problem. Technical report, DISMI,
2003. submitted to Journal of Heuristics.
R. Aringhieri, M. Dell’Amico, and L. Grasselli. Solution of the SONET Ring
Assignment Problem with capacity constraints. Technical Report 12, DISMI, 2001.
To appear in “Adaptive Memory and Evolution: Tabu Search and Scatter Search”,
Eds. C. Rego and B. Alidaee.
D.J. Bertsimas, P. Jaillet, and A. R. Odoni. A Priori Optimization. Operations

Research, 38(6):1019–1033, 1990.
J.R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer,
1997.
A. Charnes and W. Cooper. Chance-constrained programming. Management Sci-

ence, 6:73–79, 1959.
J-F. Cordeau, M. Gendreau, G. Laporte, J-Y Potvin, and F. Semet. A guide to
vehicle routing heuristics. Journal of the Operational Research Society, 53:512–522,
2002.
M. Dror and P. Trudeau. Stochastic vehicle routing with modified savings algo-
rithm. European Journal of Operational Research, 23:228–235, 1986.
M. Gendreau, G. Laporte, and R. Seguin. A Tabu Search heuristic for the Vehicle
Routing Problem with Stochastic Demands and Customers. Operations Research,

44(3):469–447, 1996.
F. Glover and J. Kelly. New Advanced combining Optimization and Simulation.
In Airo 1999 Proceedings.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston,
1997.
O. Goldschmidt, A. Laugier, and E. V. Olinick. SONET/SDH Ring Assignment
with Capacity Constraints. Discrete Applied Mathematics, (129):99–128, 2003.
G. Laporte and F. V. Louveaux. The Integer L-Shaped Method for Stochastic
Integer Problems with Complete Recourse. Operations Research Letters, 13:133–
142, 1993.
J. Linderoth, A. Shapiro, and S. Wright. The Empirical Behavior of Sampling
Methods for Stochastic Programming. Technical report, Computer Science De-
partment, University of Wisconsin-Madison, 2001.
G. Marsaglia and A. Zaman. Toward a Universal Random Number Generator.
Technical Report FSU-SCRI-87-50, Florida State University, 1987.
G. Marsaglia and A. Zaman. A New Class of Random Number Generators. Annals

of Applied Probability, 3(3):462–480, 1991.

3.

4.

5.

6.

9.

10.

11.

12.

13.

14.

15.

1.

2.

7.

8.

An Algorithm to Identify Clusters of Solutions

in Multimodal Optimisation

Pedro J. Ballester and Jonathan N. Carter

Imperial College London, Department of Earth Science and Engineering, RSM
Building, Exhibition Road, London SW7 2AZ, UK.

{p.ballester,j.n.carter}@imperial.ac.uk

Abstract. Clustering can be used to identify groups of similar solutions
in Multimodal Optimisation. However, a poor clustering quality reduces
the benefit of this application. The vast majority of clustering methods
in literature operate by resorting to a priori assumptions about the data,
such as the number of cluster or cluster radius. Clusters are forced to
conform to these assumptions, which may not be valid for the considered
population. The latter can have a huge negative impact on the cluster-
ing quality. In this paper, we apply a clustering method that does not
require a priori knowledge. We demonstrate the effectiveness and effi-
ciency of the method on real and synthetic data sets emulating solutions
in Multimodal Optimisation problems.

1 Introduction

Many real-world optimisation problems, particularly in engineering design, have
a number of key features in common: the parameters are real numbers; there are
many of these parameters; and they interact in highly non-linear ways, which
leads to many local optima in the objective function. These optima represent
solutions of distinct quality to the presented problem. In Multimodal Optimisa-
tion, one is interested in finding the global optimum, but also alternative good
local optima (ie. diverse high quality solutions). There are two main reasons to
seek for more than one optimum. First, real-world functions do not come with-
out errors, which distort the fitness landscape. Therefore, global optima may not
correspond to the true best solution. This uncertainty is usually addressed by
considering multiple good optima. Also, the best solution represented by a global
optimum may be impossible to implement from the engineering point of view. In
this case, an alternative good solution could be considered for implementation.

Once a suitable search method is available, an ensemble of diverse, high
quality solutions are obtained. Within this ensemble, there are usually several
groups of solutions, each group representing a different optimum. In other words,
the ensemble of solutions is distributed into clusters. Clustering can be defined
as the partition of a data set (ensemble of solutions) into groups named clusters
(part of the ensemble associated with an optimum). Data points (individuals)
within each cluster are similar (or close) to each other while being dissimilar to
the remaining points in the set.

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 42–56, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Algorithm to Identify Clusters of Solutions 43

The identification of these clusters of solutions is useful for several reasons.
First, at the implementation stage, we may want to consider distinct solutions
instead of implementing similar solutions. This is specially convenient when the
implementation costs time and money. On the other hand, the uncertainty asso-
ciated with one solution can be estimated by studying all the similar solutions
(ie. those in the same cluster). Also, one may want to optimise the obtained
solutions further. This is done by using a faster (but less good at searching) op-
timiser on the region defined by all solutions. With the boundaries provided by
the clustering algorithm, you could do the same but for each cluster (ie. for each
different high performance region). Lastly, an understanding of the solutions is
needed. In real world engineering design, for instance, it is common to have
many variables and a number of objectives. Packham and Parmee [8] claim that
in this context it is extremely difficult to understand the possible interactions
between variables and between variables and objectives. These authors pointed
out the convenience of finding the location and distribution of different High
Performance regions (ie. regions containing high quality solutions).

There are many clustering algorithms proposed in the literature (a good
review has been written by Haldiki et al. [7]). The vast majority of clustering
algorithms operate by using some sort of a priori assumptions about the data,
such as the cluster densities, sizes or number of clusters. In these cases, clusters
are forced to conform to these assumptions, which may not be valid for the
data set. This can have a huge negative impact on the clustering quality. In
addition, there is a shortage in the literature of effective clustering methods for
high dimensional data. This problem is known as the Curse of Dimensionality [6]
in Clustering. This issue is discussed extensively in [1].

In this work, we apply a new algorithm [2] for clustering data sets obtained
by the application of a search and optimisation method. The method is known as
CHIDID (Clustering HIgh DImensional Data) and it is aimed at full dimensional
clustering (ie. all components have a clustering tendency). To use this algorithm
it is not necessary to provide a priori knowledge related to the expected clustering
behaviour (eg. cluster radius or number of clusters). The only input needed is
the data set to be analysed. The algorithm does contain two tuning parameters.
However, extensive experiments, not reported in this paper, lead us to believe
that the performance of the algorithm is largely independent of the values of
these two parameters, which we believe are suitable for most data sets and are
used for all our work. CHIDID scales linearly with the number of dimensions
and clusters. The output is the assigment of data points to clusters (the number
of clusters is automatically found).

The rest of this paper is organised as follows. We begin by describing the
clustering method in Sect. 2. Section 3 explains how the test data sets are gen-
erated. The analysis of the results is discussed in Sect. 4. Lastly, Sect. 5 presents
the conclusions.

44 P.J. Ballester and J.N. Carter

2 Clustering Method

We describe our clustering method in three stages. We start by introducing the
notation used. Next, the clustering criterion is presented as a procedure used to
find the cluster in which a given data point is included. Finally, the clustering
algorithm is introduced. The operation of this algorithm is based on the iterative
application of the clustering criterion until all clusters and outliers are found.

2.1 Notation

We regard the population as a collection of N distinct vectors, or data points in a
M-dimensional space, over which the clustering task is performed. We represent
this data set as

Clustering is the process by which a partition is performed on the data set.
Points belonging to the same cluster are similar to each other, but dissimilar
to those belonging to other clusters. This process results in C pairwise disjoint
clusters, whose union is the input data set. That is

where is the cluster, contains the indices for the data points included
in the cluster and with

An outlier is defined as a data point which is not similar to any other point
in the data set. Hence, an outlier can be regarded as a cluster formed by a single
point.

Proximity (also known as similarity) is the measure used to quantify the
degree of similarity between data points. A low value of the proximity between
two points means these points are similar. Conversely, a high value of their
proximity implies that the points are dissimilar. In this work, the Manhattan
distance is adopted as the proximity measure. Thus the proximity of with
respect to is calculated as

In practice, the value range of a given component can be very large. This
would dominate the contribution of the components with much smaller value
ranges. In this case, we would recommend scaling all components to the same
range so that every component contributes equally to the proximity measure.
However, in this paper the scaling will not be necessary since all components
will be in the same interval.

An Algorithm to Identify Clusters of Solutions 45

Based on the proximity measure, a criterion is needed to determine if two
points should be considered members of the same cluster. The quality of the
clustering directly depends on the choice of criterion. In this work, clusters are
regarded as regions, in the full dimensional space, which are densely populated
with data points, and which are surrounded by regions of lower density. The
clustering criterion must serve to identify these dense regions in the data space.

2.2 Clustering Criterion

As we previously described, points belonging to the same cluster have a low
proximity between them, and high proximity when compared with points be-
longing to other clusters. The proximity from an arbitrary point to
the rest of the data set (ie. with should split into two groups, one group
of similar low values and the other of significantly higher values. This first group
corresponds to the cluster to which belongs to. The goal of the clustering
criterion is to determine the cluster cutoff in an unsupervised manner. The cri-
terion is also expected to identify outliers as points which are not similar to any
other point in the data set.

Fig. 1. Example data set with N= 150, M= 3 and C= 5

In order to illustrate the operation of the clustering criterion, consider the
data set shown in Fig. 1. It contains 150 points unevenly distributed in 5 clusters
in a 3-dimensional space. Let us take a point from one of the clusters (say the

in the example, which will be referred to as the cluster representative and
denoted by We apply the following procedure to determine which are its
cluster members:

1. Calculate the sequence using (3), and sort it in increasing order
to get The sorting operation is represented as a correspondence
between sets of point indices, that is, The plot of can be found

46 P.J. Ballester and J.N. Carter

at the bottom part of Fig. 2. Note that corresponds to is
the nearest neighbour to and so on.
Define the relative linear density up to the data point as and
compute This expression is equivalent to the cumulative number of
points divided by an estimation of the cluster size relative to the same ratio
applied over all N points. is a parameter that will be discussed later (we
recommend that
Define the relative linear density increment for the point as

and calculate the sequence The plot of is
presented at the top part of Fig. 2. If is high then it will be unlikely
that the point forms part of the cluster.
Calculate (ie. the position
of the highest value of in Fig. 2). Define as the provisional
cluster cutoff, and it means that only the closer points to the cluster
representative would be admitted as members of the cluster.
Define the significant peaks in as those above the mean by times

the standard deviation, ie. is a
parameter that will be discussed later (we recommend
Identify the significant peak with the lowest value of that is, the most left

significant peak and take it as the definitive cluster cutoff In Fig. 2 (top),
the example shows two significant peaks, which are above the horizontal
dotted line given by If all the peaks are below
then take the highest as the cluster cutoff, ie.
Finally, the cluster is given by Invert the sorting oper-
ation to recover the original point indices which define the

cluster as

2.

3.

4.

5.

6.

7.

Under the representation pictured in Fig. 2 (top), the natural cluster to
which the cluster representative belongs becomes distinguishable as the
data points to the left of the most left significant peak. As has been previously
discussed, cluster members share a similar value of among themselves and
are dissimilar when compared to non-members. As a consequence, the sequence

contain low values, whereas is higher in comparison. Neverthe-
less, is not necessarily the highest in the sequence and therefore
Step 6 is required to localise as the most inner peak. A decrease in the
value of will result in clusters with a lower proximity between them, in other
words, more restrictive clusters. In the light of these considerations, can be
regarded as a threshold for the clustering resolution. Despite the fact that
plays a relevant role in data sets containing few points and dimensions, as the
number of points and dimensions increase the plot of tend to show a single
sharp peak corresponding to the cluster cutoff. It suffices to take any high value
of

Another issue is the role of in the definition of at Step 2. is a better
estimation of the cluster diameter than However, the latter is preferred
since with the former neither nor would be defined due to the zero value
of These quantities lack meaning in the sense that a density cannot be defined

An Algorithm to Identify Clusters of Solutions 47

Fig. 2. Characteristic (top) and (bottom, represented by ‘+’ signs)
plots for a given point in the example data set

for only one point. Without it would not be possible to find out whether
the cluster representative is an outlier or not. A suitable value of will vary
depending on the cluster and hence it is preferable to link it to an estimation
of the proximity between points in the cluster. We choose to fix with

(a high implies a higher tendency to include outliers in clusters).
In appendix A, is shown to be a threshold for outlier detection. Note that an
additional advantage of posing in this form is that it becomes negligible with
respect to high values of and hence ensures the density effect of We set

throughout this work.
Finally, the detection of outliers in very high dimensional spaces is a diffi-

cult task that requires a preliminary test in order to ensure the effectiveness of
the outlier detection for every value of If this additional test, placed before
Step 2, concludes that the cluster representative is an outlier, that is, then
Steps 2 to 6 are skipped. This test consists in checking whether the proximity
from the cluster representative to the nearest neighbour is the highest of all
consecutive differences in calculated as Note
that this constitutes a sufficient condition for the cluster representative to be
an outlier since it implies that the considered point is not similar to its nearest
neighbour. This issue is explained further in [1].

2.3 Clustering Algorithm

In the previous section we have presented a criterion to determine the cluster to
which a given data point belongs. We describe now an algorithm based on the
designed criterion to carry out the clustering of the whole data set, whose flow
diagram is presented in Fig. 3.

48 P.J. Ballester and J.N. Carter

Fig. 3. Flow diagram of CHIDID

Randomly choose a point, from the data set, that has not been allocated
to a cluster.
Apply the clustering criterion over the whole data set to determine the cluster
associated to
In case that the proposed cluster, contains any points already included
in any of the previous clusters, delete them from the proposed cluster.
The points form the definitive cluster given by the index vector
Form the non-allocated index vector If pass
to next cluster by randomly choosing a point from and go back to
Step 2. Otherwise stop the algorithm and return which constitutes
the solution described in (2).

1.

2.

3.

4.

Let us go back to the example in Fig. 1 to illustrate the algorithm. Step 1
picks at random a point to initiate the clustering process. Apply Step 2 to find
the associated cluster to the selected point. Step 3 deletes no points. In Step 4,

since contains points corresponding to the four clusters yet to be
discovered. Therefore another point is selected at random among those in
We repeat Steps 1, 2 and 3, but this time Step 3 checks whether the actual
cluster intersects with the previous one or not, after which the second cluster is
formed. The latter procedure is repeated until all points have been allocated to
their respective clusters.

An Algorithm to Identify Clusters of Solutions 49

As clusters can be arbitrarily close, it is possible to have points from different
clusters within a proximity from the cluster representative. In such cases,
the algorithm is likely to merge all these natural clusters together in a single
output cluster. The aim of Step 3 is to ensure that formed clusters are pairwise
disjoint. This is achieved by removing from the current cluster those points
already allocated in previously found clusters. However, it must be highlighted
that a merge is a very unlikely event. Firstly, a merge can only happen if the
representative is located in the cluster region closest to the neighbouring cluster.
Even in low dimensions, few points have this relative location within a cluster.
Therefore, the likelihood of selecting one of these problematic representatives
is also low. Secondly, if neighbouring clusters present a significant difference
in the value of just one component then a merge cannot occur. Thus, while it
is strictly possible, the likelihood of having a merge quickly diminishes as the
dimensionality increases.

CHIDID is a method aiming at full dimensional clustering (ie. all components
exhibit clustering tendency). It is expected to be able to handle data containing
a few components without clustering tendency. However, the contribution of
these irrelevant components to the proximity measure must be much smaller
than that of the components with clustering tendency. In this work, we restrict
the performance tests to data sets without irrelevant components. This issue will
be discussed further when generating the test data sets in Sect. 3.2.

Since and are just thresholds, the only input to the algorithm is the data
set containing the population. No a priori knowledge is required. The output
is the assignment of data points (solutions) to clusters (optima or high perfor-
mance regions), whose number is automatically found. The performance of the
algorithm does not rely on finding suitable values for the parameters. A wide
range of threshold values will provide the same clustering results if clusters and
outliers are clearly identificable. The algorithm naturally identifies outliers as
byproduct of its execution. Within this approach, an outlier is found whenever
the additional outlier test is positive or the criterion determines that the cluster
representative is actually the only member of the cluster.

CHIDID carries an inexpensive computational burden. It is expected to run
quickly, even with large high dimensional data sets. There are several reasons for
this behaviour. First, the algorithm only visits populated regions. This consti-
tutes a significant advantage in high dimensional spaces. Second, it scales linearly
with M, the dimensionality of the space. Finally, it only calculates C times N
distances between points, where C is the number of found clusters and outliers.

3 Generation of Test Data Sets

3.1 Synthetic Data Sets

These data sets emulate the output of an ideal search and optimisation method
on a multimodal optimisation problem. The assumed structure is most of data
points distributed into clusters, with a small subset points as outliers.

50 P.J. Ballester and J.N. Carter

The generation of these synthetic data sets is beneficial for two reasons.
First, emulated outputs can be designed with very diverse characteristics. This
is important because, in practice, there is not a unique form for these outputs.
Second, it allows us to test the clustering algorithm with data sets of higher
dimensionality than those achievable by current search methods.

It is reasonable to assume that each cluster of solutions is confined within the
basin of attraction of a different function minimum (we restrict to minimisation
without loss of generality). The Rastrigin function is suitable to generate such
synthetic outputs because the location and extent of its minima is known. It is
defined as

This function is highly multimodal. It has a local minimum at any point with
every component taking an integer value and a single global minimum, at

The function has a parabolic term and sinusoidal term. The parameter
A controls the relative importance between them (we set A = 10).

We generate the first synthetic data set (SD1) as follows. It contains
data points distributed into clusters, and outliers with each component
selected at random within [–2.5,2.5]. The total number of points is
and the number of variables is M = 20. Points are distributed among five clusters
in the following way: and
Each cluster is associated with a minimum, whose components are picked at
random among The basin of attraction of the minimum
is defined by the interval The size of the interval is given
by half the distance between consecutive function minima. Point components
in each cluster are generated at random within the basin of attraction of the
corresponding minimum.

In addition, we want to consider data sets with very diverse characteristics to
check the performance robustness of the clustering method. We start by describ-
ing an automatic way to construct data sets. This is based on the previous data
set, but with two variants. First, each point component is now generated within

where is a random number between (0,1/2). Second,
the number of points of each cluster is now determined as follows. We first
determine which controls the proportion of points in cluster is drawn
from a uniform distribution in the range (1, 5). Next, we determine the number
of points in cluster using the formula where C is the
number of generated clusters. Note that each of these data sets contain clusters
of different sizes, cardinalities, densities and relative distances between them.

Finally, we define eight groups of data sets from all possible combinations of
1000; M = 10, 100 and C = 3, 7. For all of them we add

randomly generated outliers within [–2.5,2.5]. For each group M,C), we
create ten realisations of the data set. We will refer to these data sets groups as
SD2 to SD9. All these data sets are summarised in Table 1.

An Algorithm to Identify Clusters of Solutions 51

3.2 Real Data Sets

We generate two real data sets (RD1 and RD2) by applying a search method on
a analytical function with four global minimum. This function is used in [5] and
defined as

with

where is the euclidean distance, (number of global minima), M

is the dimensionality, A = 5 and B = 1. As a search method, we use a Real-
parameter Genetic Algorithm (GA) [3] [4] that has been modified [5] to be
effective at finding multiple good minima. In brief the details are: a steady-state
population of size N, parents are selected randomly (without reference to their
fitness), crossover is performed using a self-adaptative parent-centric operator,
and culling is carried out using a form of probabilistic tournament replacement
involving NREP individuals.

The output of this GA is formed with all individuals that enter the population
during the run. Thus, many of them are not optimised. From the clustering
point of view, these points contain many irrelevant components which harm the
clustering. Inevitably, one cannot find clusters where there are not clusters to
find. Therefore, a preprocessing is needed to include most of the points with
clustering tendency. The preprocessing consists in defining a threshold value for
the objective function and include in the data set all points in the outputs below
that threshold. The chosen threshold is

The first data set, RD1, is obtained by applying the GA (N= 100 and
NREP= 30, using 40,000 function evaluations) on the 5-dimensional instance of
the function. RD2 comes from the application of GA (N= 150 and NREP= 40,
using 200,000 function evaluations) on the 7-dimensional instance of the func-
tion.

52 P.J. Ballester and J.N. Carter

4 Analysis of the Results

In the experiments performed in this study, we set the resolution of the clustering
as and the threshold for outlier detection as We required only
one algorithm run for each data set to provide the presented results. These
experiments were performed in an Intel Pentium IV 1.5GHz, with memory of
256MB.

Firstly, the clustering was performed on all the synthetic data sets described
in the previous section (SD1 to SD9). The correct clustering was achieved for
all of them, meaning that the correct assignment of individuals to clusters was
found. Outliers were also identified correctly. No merge, as defined in Sect. 2.3,
occurred. Also, due to their linkage to cluster properties, a single choice of pa-
rameters was valid for all experiments. The high variety of test data sets demon-
strates the robustness of the method. The highest CPU time used was 0.8 seconds
(with SD9).

Figure 4 provides a visualisation of the obtained clustering quality with SD1.
The five clusters in the data set are correctly revealed by CHIDID, which has
correctly assigned data points to clusters as well as discard the outliers.

Fig. 4. Results for SD1. The upper plot shows the input data set without outliers, with
colors corresponding to the component value. The bottom plot shows the five clusters
found with CHIDID (outliers were correctly identified and are not included)

Likewise, Fig. 5 shows equally good performance on SD5, a data set with
the same number of points as SD1 but a much higher dimensionality (M= 100
instead of M= 20).

An Algorithm to Identify Clusters of Solutions 53

Fig. 5. Results for SD5. The upper plot shows the input data set without outliers,
with colors corresponding to the component value. The bottom plot shows the seven
clusters found with CHIDID (outliers were correctly identified and are not included)

54 P.J. Ballester and J.N. Carter

Finally, we carry out clustering on the real data sets. Figures 6 and 7, respec-
tively. In both cases, four clusters were found, each of them associated with a
different global optimum. The quality of the clustering is clear from the figures.

Fig. 6. Results for RD1. The upper plot shows the input data set without outliers, with
colors corresponding to the component value. The bottom plot shows the four clusters
found with CHIDID (outliers were correctly discriminated and are not included). The
horizontal line underneath the plot marks the separation between clusters

5 Conclusions

This paper proposes a new algorithm (CHIDID) to identify clusters of solutions
in Multimodal Optimisation. To use this algorithm it is not necessary to provide
a priori knowledge related to the expected clustering behaviour (eg. cluster ra-
dius or number of clusters). The only input needed is the data set to be analysed.
The algorithm does contain two tuning parameters. However, extensive experi-
ments, not reported in this paper, lead us to believe that the performance of the
algorithm is largely independent of the values of these two parameters, which we
believe are suitable for most data sets and are used in this work. The output is
the assignment of data points to clusters, whose number is found automatically.
Outliers are identified as a byproduct of the algorithm execution.

CHIDID was tested with a variety of data sets. Synthetic data sets were used
to study the robustness of the algorithm to different number of points, variables
and clusters. Also, real data sets, obtained by applying a GA on an analytical
function, were considered. CHIDID has been shown to be efficient and effective
at clustering all these data sets.

An Algorithm to Identify Clusters of Solutions 55

Fig. 7. Results for RD2. The upper plot shows the input data set without outliers, with
colors corresponding to the component value. The bottom plot shows the four clusters
found with CHIDID (outliers were correctly discriminated and are not included). The
horizontal line underneath the plot marks the separation between clusters

References

1.

2.

3.

4.

5.

6.

7.

8.

P. J. Ballester. The use of Genetic Algorithms to Improve Reservoir Characterisa-

tion. PhD thesis, Department of Earth Science and Engineering, Imperial College
London, 2004.
P. J. Ballester and J. N. Carter. Method for managing a database, 2003. UK Patent
Application filed on 5th August 2003.
P. J. Ballester and J. N. Carter. Real-parameter genetic algorithms for finding mul-
tiple optimal solutions in multi-modal optimization. In Genetic and Evolutionary

Computation Conference, Lecture Notes in Computer Science 2723, July 2003.
P. J. Ballester and J. N. Carter. An effective real-parameter genetic algorithms for
multimodal optimization. In Ian C. Parmee, editor, Proceedings of the Adaptive

Computing in Design and Manufacture VI, April 2004. In Press.
P. J. Ballester and J. N. Carter. Tackling an inverse problem from the petroleum in-
dustry with a genetic algorithm for sampling. In the 2004 Genetic and Evolutionary

Computation COnference (GECCO-2004), Seatle, Washington, U.S.A., June 2004.
In Press.
R. Bellman. Adaptive control processes : a guided tour. Princeton University Press,
1961.
M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Clustering algorithms and validity
measures. In Proceedings Thirteenth International Conference on Scientific and

Statistical Database Management, pages 3–22. IEEE Computer Soc, Los Alamitos,
2001.
I. S. J. Packham and I. C. Parmee. Data analysis and visualisation of cluster-oriented
genetic algorithm output. In Proceedings of the 2000 IEEE International Conference

on Information Visualization, pages 173–178. IEEE Service Center, 2000.

56 P.J. Ballester and J.N. Carter

A Outlier Detection

In Sect. 2.2, we introduced the parameter as a threshold aimed at discriminat-
ing outliers. We chose to fix with In this section, we justify
these settings.

The relative linear density was defined as Note that in case
might be greater than and hence the density might be notably dis-

torted. Thus, is restricted to the interval (0,1) to ensure the accuracy of the
density measure.

Next, we develop the relative linear density increment as

and evaluate the resulting expression for its first value

From the latter equation, if (ie. then and thus
will be the highest of all This would make the representative to

appear always as an outlier. By contrast, if (ie. then
and thus will be the lowest of all This situation corresponds to
the representative being never an outlier.

We next substitute in (7) to give

Since it is clear that controls the tendency of regarding a
representative as an outlier. Figure 8 presents the plot of against The
figure shows that a higher value of implies a higher tendency to include outliers
in clusters.

Fig. 8. Plot of against

On an Experimental Algorithm for Revenue

Management for Cargo Airlines

Paul Bartodziej and Ulrich Derigs

Department of Information Systems and Operations Research, University of Cologne,
Pohligstr. 1, 50696 Cologne, Germany.

{bartodziej,derigs}@winfors.uni-koeln.de

Abstract. In this paper we present a set of algorithms which represent
different implementations of strategies for revenue management for air
cargo airlines. The problem is to decide on the acceptance of a booking
request given a set of fixed accepted requests and expected further de-
mand. The strategies are based on a planning model for air cargo routing
which determines the maximal contribution to profit for the capacities of
a given flight schedule. This planning model associates an optimal set of
so-called itineraries/paths to the set of possible origin-destination pairs
according to given yield values. In mathematical terms the model is the
path flow formulation of a special multi-commodity flow problem. This
model is solved by intelligently applying column generation.

1 Introduction

Revenue Management (RM) deals with the problem of effectively using perish-
able resources or products in businesses or markets with high fixed cost and low
margins which are price-segment able like airline, hotel, car rental, broadcasting
etc. (see Cross [1997] and Mc Gill et. al [1999]. Revenue management has to be
supported by forecasting systems and optimization systems. In this paper we
focus solely on the optimization aspect.

RM has its origin and has found broad application in the airline business and
here especially in passenger flight revenue management. Only recently the con-
cepts which have been developed for the passenger sector have been adequately
modified and transferred to the cargo sector. Here an immediate transfer is not
feasible since the two businesses although at first sight offering a similar kind
of transportation service face differences in product offering and in production
which have consequences for capacity planning and revenue management. While
the demand in the passenger sector is one-dimensional (seat) and kind of smooth,
the demand in the air cargo sector is multi-dimensional (weight, volume, classi-
fication) and lumpy. On the other side, capacity in the airline business is fixed
while in the cargo business we face stochastic capacity when using idle belly
capacities of passenger flights for instance.

Yet, the most subtle difference is as follows. In the passenger business the
service which customers are booking is a concrete itinerary i.e. a sequence of

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 57–71, 2004.
© Springer-Verlag Berlin Heidelberg 2004

58 P. Bartodziej and U. Derigs

flight connections, so-called legs leading the passenger from an origin to a des-
tination. Thus a passenger booking a flight from Cologne to Rio de Janeiro via
Frankfurt on a given date has to be given seat availability on two specific flights:
(CGN,FRA) and (FRA,GIG). In the cargo business the customers book a trans-
portation capacity from an origin to a destination, so-called O&D’s at a certain
service level i.e. within a certain time-window and the airline has some degree
of freedom to assign booked requests to concrete flights later. For the example
above the cargo client would book the connection (CGN,GIG) and he is not
especially interested in the actual path or routing for his package of goods. This
difference leads to different planning models.

Antes et. al. [1998] have developed a model and introduced a decision support
system for evaluating alternative schedules by optimally assigning demand to
flights. The model leads to a special kind of multi-commodity flow problem.

In this paper we show and analyze how this model can be adapted to aid
in solving the operational problems faced in revenue management. The paper
is organized as follows. In section 2 we introduce the problem and the model
for transportation planning in the air cargo business and in section 3 we show
how this model can be solved by column generation. In section 4 we describe
how this model can be extended to the problem of revenue management from a
conceptual point of view. In section 5 we propose several alternative strategies
for implementing the model into the revenue management process and in section
6 we present first computational results for realistic problem scenarios.

2 The Basic Planning Model for Air Cargo Routing

A cargo airline offers the conceptually simple service to transport a certain
amount of goods from an origin to a destination within a certain time inter-
val at a given price. For this purpose the airline keeps a fleet of aircrafts and/or
leases capacities from other companies, especially ground capacities for trans-
porting goods to, from, and between airports. The tactical planning problem of
such airlines is to design a (weekly) flight schedule which allows the most prof-
itable service of the unknown market demand for the next period. Then, on the
operational level the requests have to be assigned to concrete flights based on
the given flight schedule.

From the verbal description of an air-cargo service given in the introduction
we can identify three basic entity types in our world of discourse: AIRPORT,
PRODUCT the class of all conceptually different “product types”,and, TIME
being a tuple of three components: day of the week, hour and minute.

The flight schedule can be described as a set of so-called legs. Here a leg is
a direct flight between two airports offered at the same time every week during
the planning period. We model the object class LEG as a 4-ary (recursive)
relationship-type between AIRPORT playing the role of an origin (from) and
the destination (to), respectively, and TIME playing the role of a departure and
arrival time, respectively.

On an Experimental Algorithm for Revenue Management 59

Every flight schedule defines a so-called time-space network G = (V, E) with
V the set of nodes representing the airports at a certain point of time. E is
composed from two subsets, a set of flight arcs which represent the legs and
connect the associated airports at departure and arrival time, respectively, and
a set of ground arcs which connect two nodes representing the same airport at
two consecutive points in time. Associated with every leg/arc is the weight

capacity measured in kg, the volume capacity measured in cubic meter and
the operating cost measured in in $.

Market-demand can be described as a set of estimated or booked service
requests. Such a request has several attributes with the origin and destination
airport being the dominant characteristic. Therefore, these request objects are
commonly referred to as “O&D’s” or “O&D-pairs”. Conceptually the object class
OD can be modelled as a complex 5-ary (recursive) relationship-type between
AIRPORT playing the role of an origin and a destination, respectively, TIME
playing the role of an availability and due time, respectively, and PRODUCT.

Then within the concept of network flow, the different O&D’s define differ-
ent commodities which have to be routed through this network (see Ahuja et.
al. [1993]). For the following models we abstract in our notation and use the
symbol for representing an O&D-commodity and K is the set of all commodi-
ties/O&D’s. Associated with a commodity/O&D is a specific demand
measured in kg, a value giving the volume per kg and a freight rate or yield
value measured in $ per unit of commodity

The so-called path-flow model of the multi-commodity flow problem, i.e. the
problem to construct optimal assignments of O&D’s/commodities to legs/arcs
is based on the obvious fact that any unit transported from an origin to a
destination has taken a sequence of legs (possibly only one leg) a so-called path
or itinerary connecting the origin node with the destination node in the network.
A path or itinerary for an O&D/commodity k is a sequence of
legs with the following properties

A path is called if additional requirements are fulfilled which vary
with the problem definition. Here we consider several types of constraints which
concern due dates, transfer times and product compatibility. Note that feasibility
of paths is checked outside the decision model. For every O&D/commodity
we denote by the set of itineraries. A path may be feasible for
many different O&D’s. In our model we have to distinguish these roles and
consider multiple copies of the same path/the same legs assigned to different
commodities/O&D’s. The relation between arcs and itineraries is represented in
a binary indicator

60 P. Bartodziej and U. Derigs

Given an itinerary we can easily calculate

the operating cost as well as the yield per kg of commodity

which is transported over This calculation as well as the construction of the
set is done outside our model using a so-called “ connection builder” and then
fed as input data into the model. For the model we introduce for every
a decision-variable giving the amount (in kg) transported via

Now the planning problem is to select the optimal combination of paths
giving maximal contribution to profit which leads to a standard linear (multi-
commodity flow) program.
Planning model (P)

The advantage of the itinerary-based model over leg-based flow models is the
possibility to consider rather general and complicated constraints for feasibility
of transportation in the path-construction phase via the connection builder, i.e.
keeping this knowledge away from the optimization model, thereby reducing the
complexity of the optimization phase respectively, allowing the same standard
(LP-)solution procedure for a wider range of different planning situations.

Moreover, this approach allows for scaling, i.e. it is not necessary to construct
all possible paths beforehand. Working with a “promising subset” of profitable
paths only, reduces the size of the problem instance but may lead to solutions
which although not optimal in general, are highly acceptable in quality. Finally,
an approach called column generation allows to generate feasible paths on the
run during optimization and thus keeps problem size manageable throughout
the optimization process.

3 Solving the Planning Model via Column Generation

Column generation goes back to Dantzig and Wolfe [1960] as an approach for
solving large linear programs with decomposable structures. It has become the
leading optimization technique for solving huge constrained routing and schedul-
ing problems (see Desrochers et al. [1995]). Due to degeneracy problems column

On an Experimental Algorithm for Revenue Management 61

generation often shows unsatisfactory convergence. Recently, so-called stabiliza-
tion approaches have been introduced and studied which accelerate convergence
(see du Merle et. al. [1999]. We did not adapt these advanced techniques since
our objective is not to solve single static instances of a hard optimization prob-
lem to near-optimality in reasonable time, but to analyze whether and how the
concepts which have shown to be appropriate for solving air-cargo network de-
sign and analysis problems on a tactical level can be applied on the operative in
a dynamic and uncertain environment. The suitability and use of such a common
modelling concept is necessary with respect to consistency of network capacity
planing and revenue control.

In the following we will only outline the column generation approach for solv-
ing (P). Let us denote this problem by MP, which stands for master problem.
Now, instead of generating all feasible itineraries and thus initial-
izing MP only a promising subset of itineraries is constructed in the
initialization phase. Such a subset can be obtained for instance by construct-
ing and introducing for every O&D the m feasible itineraries with maximum
contribution to profit, where m is a relatively small number.

Since in the model every path or itinerary constitutes a decision variable and
a column in the LP we have generated with this initialisation for every O&D
a subset of columns associated with a subset of the set of all decision variables
defining a subproblem the so-called restricted master problem (RMP). RMP is
again of the (P)– type and thus can be solved by any standard LP-technique,
the simplex method for instance. Solving RMP will generate a feasible freight
flow, since every feasible solution to a restricted problem is also feasible for the
original master problem.

Now the question arises whether the optimal solution for RMP is optimal for
MP, too. Solving MP, by the simplex method for instance, we obtain for every
arc/leg a shadow price for the weight constraint and for the volume
constraint. The demand constraint associates with every commodity a shadow
price Based on these prices the so-called “reduced cost coefficient” for an
itinerary is defined as

LP-theory states that in the maximization case a feasible (basic) solution for an
LP is optimal if and only if every non-basic variable has non-positive reduced
cost. Thus, if in an optimal solution for RMP an itinerary has positive
reduced cost then transporting (one unit of) commodity k on p leads to a
solution for MP which is more profitable than the current optimal solution for
RMP.

Thus in the second phase we calculate the reduced cost values for (all)
and we check whether exists for a commodity with

a so-called promising path. This phase is called outpricing.

A common and efficient approach for the outpricing phase is by solving a
shortest path problem for each i.e. to determine the shortest path from

62 P. Bartodziej and U. Derigs

the origin of to the destination of with respect to the modified arc-costs
If the shortest path length exceeds then no promising

path exists. If this holds for all this indicates that the optimal solution
to RMP is optimal for MP. Otherwise we define additional variables for all or
some itineraries for which holds and generate the associated columns
to be introduced into RMP, which then has to be (re-) solved again.

The column generation concept which we have described above leaves a great
variety of strategies on how to implement the different phases. The basic philos-
ophy of column generation is to keep the restricted master problem RMP rather
small to speed up the LP-solution. Yet, keeping RMP small requires to test more
columns during the out pricing phase. Thus there is a trade-off which has to be
evaluated by testing several options.

Accordingly, two different algorithms T1 and T2 were implemented to ex-
amine the trade-off between calls to outpricing and calls LP-(re-)optimition. In
T1, RMP is re-solved and the dual prices are updated every time a new path is
found while in T2 RMP is re-solved and the dual prices are updated only after
the path search has been executed for all commodities.

Another important aspect of applying the path-flow formulation and column
generation concept to the problem of generating optimal freight flows is the
fact that all constraints on od-feasibility can be checked in the outpricing phase
and thus need not be represented in the LP-formulation and tested during LP-
solution. This does not only reduce the complexity of the LP, but enables the
consideration of arbitrary constraints on the feasibility of itineraries and allows
the application of one model to a variety of problem types characterised by dif-
ferent sets of constraints. Note that when the feasibility of itineraries is restricted
by constraints, so-called constrained-shortest path problems CSPP have to be
solved (see Nickel [2000]).

4 Operational Models for Air Cargo Booking and
Revenue Management

The planning model can be used to evaluate alternative schedules, to identify
capacity bottlenecks, to support static pricing etc. In an operational environ-
ment given a flight schedule and pricing information booking requests will occur
over time and decisions have to be made concerning the acception or rejection
of requests due to limited resources and/or (expected) opportunity costs and
appropriate capacity reservations have to be made. Yet, there is no need for
the airline to actually book a certain request to a specific itinerary i.e. set of
legs. The airline has to ensure only that at any time there exists a feasible rout-
ing for all booked requests. This aspect is represented in the following booking
model where we distinguish between a set B of booked O&D- requests with

the demand of a booked request and a forecasted demand for a
set K of O&D’s. W.l.o.g. we can assume that K is the set of all O&D’s. Then
the model determines the maximal contribution to profit subject to the set of
accepted/booked requests and the additional expected demand.

On an Experimental Algorithm for Revenue Management 63

Booking model

The next model represents the situation in revenue management where the
decision on the acceptance of a single booking request with demand for
a specific O&D subject to a set B of already booked requests and estimated
further demand for the commodities K has to be made.

Request model

Note that for both models we assume an (expected) yield associated with
every commodity This yield has been used to calculate the yield of
the paths and thus is contained in the model only implicitly.

The booking model can be used to evaluate the acceptability of a request at
a pre-specified yield as well as “dynamic pricing”, i.e. the determination of the

64 P. Bartodziej and U. Derigs

minimum acceptable yield. Conceptually, the first question can be answered by
comparing the value of the optimal solution of the booking model without the
actual request and the value of the optimal solution for the request model. We
will present several more efficient algorithmic ideas based on computing promis-
ing paths in the sequel. Dynamic Pricing can be supported by modifying the
procedure for solving the booking model. Here paths with increasing opportu-
nity costs are constructed sequentially until a set of paths with sufficient capacity
for fulfilling the additional demand is constructed. Then the opportunity costs
of these path give the minimum acceptable yield, a concept which is often called
“bid-price”. We do not address aspects of dynamic pricing in this paper.

5 Strategies for Applying the Request Model in Revenue
Management

When incorporating this modelling approach into a (real) revenue management
process the specification of expected demand is essential. For this purpose the
optimization module has to be integrated with a forecasting module where cali-
brated forecasting methods update the demand for O&D’s. Thus we assume for
the following that such a forecasting module triggers the update of and for

in the booking model which then is resolved by the optimization module.
This computation is done outside the revenue management process which we
describe in the following. Thus for our algorithms we assume that we always
work on the optimal solution for a given booking model.

Now, there is one problem with applying and simulating a procedure for
handling a series of booking requests. In a realistic environment the forecasted
demand would be updated over time through the forecasting module, thus chang-
ing the booking model, its optimal freight flow and its optimal dual prices. Yet,
there will always exist a feasible solution with respect to the booked requests.
Associated with a request is a commodity for which a certain forecast is
contained in the booking model, and thus is “contained” in the forecast
Thus, after processing request the expected demand for commodity has to
be adjusted especially if the demand of requests is kind of lumpy. In our exper-
iments we take this into account by reducing the demand by for the next
requests.

In the following we first discuss the basic applications of the request model
with one additional request only and we assume that this request has to be
evaluated in concurrency with booked requests and expected further demand.
Such a request is characterized by the following data (r , The basic
algorithmic idea for (on-line/real-time) processing is as follows: Start from an
optimal primal and dual solution of the booking model without the actual request

called the master model MP, and sequentially determine feasible paths of
maximal reduced cost until the demand of the request is fulfilled.

On an Experimental Algorithm for Revenue Management 65

This procedure does not always yield the correct answer. A request r which
improves the expected contribution to profit may be rejected since S1 tries to ship
the complete demand over itineraries with positive reduced costs only. Yet,
using some itineraries with negative reduced costs could lead to an improvement
with respect to total contribution.

In modification S2 we do not compute the path(s) for serving request
“ from scratch” based on the primal and dual solution of MP. Here we make use
of the fact, that we may serve already forecasted demand for the same O&D
in the optimal solution of MP and we use the associated itineraries for serving
request Only in the case that these path capacities are insufficient we would
compute additional shortest paths as in S1. Yet, there is one problem that has
to be handled appropriately. The itineraries in the optimal MP-solution which
are associated with a forecasted demand for a commodity have been selected
based on an expected revenue Thus, at this point of the decision process we
have to compare with the actual yield for request r.

In the algorithms formulated so far we perform each outpricing and path
determination for a single request on the basis of the “true” dual values and
opportunity costs. Thus the master problem has to be resolved after each “aug-
mentation” to update these cost values. In time-critical environments like on-line
booking such an exact optimization may be much too costly, and strategies have
to be applied which reduce the number of dual price determination, eventually
at the cost of not getting maximal contribution to profit. Thus, in algorithm S3
we “freeze” the dual prizes as long as we can find profitable paths and we set
the dual value/shadow price of arcs/legs which have become saturated to Big
M, a sufficiently large value, which prevents constructing itineraries which use
these arcs in the next steps.

Note that applying algorithm S3 we will not always obtain the solution with
maximal contribution to profit.

66 P. Bartodziej and U. Derigs

This algorithm makes use of the following subroutine

On an Experimental Algorithm for Revenue Management 67

A proper strategy to reduce the need for real-time computing is to accept book-
ings which are uncritical with respect to capacity and apparently profitable with-
out evaluation and optimization and to update the set of booked requests and
construct a feasible freight flow using the booking model in a batch-processing
kind of mode. In our fourth strategy (Algorithm S4) we give up the requirement
to decide on the acceptance of requests sequentially one by one and we accumu-
late requests to blocks and then decide on which requests are accepted in one
single optimization run per block.

68 P. Bartodziej and U. Derigs

6 Computational Results

The algorithms which we have described in section 4 have been implemented in
Microsoft Visual C++ and have been applied to several real-world problems on a
PC with Pentium III Processor with 600 MHz and 256 MB RAM under Windows
98. The LP’s were solved using the ILOG-CPLEX 6.5 solver. For solving the
constrained shortest path problems we have used a proprietary code (see Nickel
[2000]).

Our test problems were generated from 3 real world planning problems of a
cargo airline representing specific markets (see: Zils [2000]):

Problem P10 with 10 airports, 624 legs and 1338 O&D’s
Problem P64 with 64 airports, 1592 legs and 3459 O&Ds
Problem P79 with 79 airports. 1223 legs and 1170 O&D’s’

In our experiment we have used the demand of the planning situation and we
have generated a sequence of requests over time. First we have split the demand
randomly into lumpy requests each having a demand between 20% and 100% of
the total demand. Then we applied a random perturbation in the range of -10%
to +10% to the demand of every request. With this procedure, we obtained a
number of requests which was about twice the number of O&D’s (2533, 6521,
and 2206, respectively).

Fig. 1. Processing time of the different algorithms

For all runs we used the solution of the planning problem obtained by Al-
gorithm T1 as starting situation. For algorithm S1 and S2 we also performed
test runs based on planning solutions obtained by T2. For algorithm S4 we have
performed tests with different blocksizes of 5, 10, 100 and 1000 requests. More-
over we have generated a test run with a variable blocksize. Here, starting with
a blocksize of 1% of the number of O&D’s the size was doubled after the pro-
cessing of 10 blocks until after 40 blocks the blocksize was held constant. This

On an Experimental Algorithm for Revenue Management 69

experiment should represent the situation that closer to the deadline the number
of requests per time unit increases while the decision is made within constant
time intervals and thus the number of request per block is increasing. Finally we
performed a test (indicated by “a”) where all requests were put into one single
block.

Figure 1 gives the result on the average processing time per call to the al-
gorithms in ms. For all problem instances algorithm S3 and algorithm S4 with
small blocksize have the smallest processing time which indicates that the means
to reduce the effort materialize. Comparing algorithms S1 and S2 which focus
more on profitability, we can see that using the paths of the MP-solution pays
off.

Fig. 2. Contribution to profit of different solutions

In Figure 2 we compare the contribution to profit which is obtained, i.e. we
state the optimal values as fractions of the planning solution. Note that by our
modification of the demand we could have generated instances where the value of
the solution in the dynamic revenue management scenario could outperform the
solution for the planning problem. Therefore we have taken the value obtained
when applying algorithm S4/a before rejecting those requests which cannot be
served completely as reference value. This is indicated by “ref”. The results
show that the algorithms differ with respect to quality significantly. Algorithm
S2 which is comparable to S1 with respect to computation time is outperforming
S1 and thus preferable. Algorithm S4 even when using small blocksizes is inferior
to S3. Thus the assumption that one should postpone decisions is critical. Also,
comparing algorithm S3 with algorithms S1 and S2 we see that the quality of
S3 is only slightly inferior while on the other hand running time is significantly
smaller.

70 P. Bartodziej and U. Derigs

Fig. 3. Number of subproblems to be solved per request

Fig. 4. Number of master problems to be solved

To analyse the computational behaviour of the different algorithms we have
counted the number of sub-problems i.e. shortest path problems which have to
be solved. Figure 3 gives the average number per request. For each algorithm, the
numbers do not differ very much for the three test problems. It is significant that
algorithm S2 has to compute the smallest number of paths. Figure 4 displays
results on the number of master problems which have to be solved, Here we see
that algorithms S3 and S4 need to solve significantly less LP’s which accounts for
the smaller processing time of S3 and S4. Further analysis shows that algorithm
S3 (and S4) are more efficient than S2 only in those cases where the master-LP’s
are large enough, i.e. the number of O&D’s is large enough.

After all, algorithm S2 or algorithm S3 seem to be the choice among the
algorithms which we have proposed and tested. Here we can say, that with
respect to running time the relation between the effort to solve the master LP’s
and to solve the path problems is crucial. The advantage of S2 with respect
to quality becomes more significant if capacities become more scarce. There
is no general best algorithm. Especially the running time for solving the LP’s

On an Experimental Algorithm for Revenue Management 71

becomes unacceptable high for problem instances of larger size. Thus in these
realistic and time-critical environments additional means to reduce the size of
the master problems should be applied. Here one could reduce the number of
paths in the search by limiting the allowable number of legs per path. Another
option would be the decomposition of the network. Then the first step in the
revenue management decision would be to assign every request to a suitable
sub-network.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

Ahuja R.K.; Magnanti T.L. and J.B. Orlin, (1993): Network Flows: Theory, Algo-

rithms, and Applications, Prentice Hall, Englewood Cliffs.
Antes J., Campen L., Derigs U., Titze C. and G.-D. Wolle, (1998): SYNOPSE: a

model-based decision support system for the evaluation of flight schedules for cargo

airlines, Decision Support Systems 22, 307-323.
Cross R.G., (1997): Revenue Management: Hard Core Tactics for Market Domina-

tion, Broadway Books, New York.
Dantzig G.B. and P. Wolfe, (1960): Decomposition principles for linear programs,

Operations Research 8, 101-111.
Desrosiers J.; Dumas Y.; Solomon M.M. and F. Soumis, (1995):Time constrained

routing and scheduling in: M.O. Ball et al. /(eds) Network Routing, Handbook in
Operations Research and Management Science Vol. 8, North Holland, 35-139.
du Merle O.; Villeneuve D.; Desrosiers J. and P. Hansen (1999): Stabilized column

generation, Discrete Mathematics 194, 229-237.
Mc Gill J.I., and G.J. van Ryzin (1999): Revenue Management: Research Overview

and Prospects, Transportation Science 33, 233-256.
Nickel, N.-H.(2000): Algorithmen zum Constrained Shortest Path Problem, Technical
Report, WINFORS, University of Cologne, Germany.
Zils, M. (1999): AirCargo Scheduling Problem Benchmark Instanzen, Working Pa-
per, WINFORS, University of Cologne, Germany.

Cooperation between Branch and Bound and

Evolutionary Approaches to Solve a Bi-objective

Flow Shop Problem

Matthieu Basseur, Julien Lemesre, Clarisse Dhaenens, and El-Ghazali Talbi

Laboratoire d’Informatique Fondamentale de Lille (LIFL), UMR CNRS 8022,
University of Lille, 59655 Villeneuve d’Asq Cedex, France.

{basseur,lemesre,dhaenens,talbi}@lifl.fr

Abstract. Over the years, many techniques have been established to
solve NP-Hard Optimization Problems and in particular multiobjective
problems. Each of them are efficient on several types of problems or
instances. We can distinguish exact methods dedicated to solve small in-
stances, from heuristics - and particularly metaheuristics - that approx-
imate best solutions on large instances. In this article, we firstly present
an efficient exact method, called the two-phases method. We apply it to
a biobjective Flow Shop Problem to find the optimal set of solutions.
Exact methods are limited by the size of the instances, so we propose
an original cooperation between this exact method and a Genetic Al-
gorithm to obtain good results on large instances. Results obtained are
promising and show that cooperation between antagonist optimization
methods could be very efficient.

Introduction1

A large part of real-world optimization problems are of multiobjective nature.
In trying to solve Multiobjective Optimization Problems (MOPs), many meth-
ods scalarize the objective vector into a single objective. Since several years,
interest concerning MOPs area with Pareto approaches always grows. Many of
these studies use Evolutionary Algorithms to solve MOPs [4,5,23] and only few
approaches propose exact methods such as a classical branch and bound with
Pareto approach, an method and the two-phases method.

In this paper, we propose to combine the two types of approaches: a meta-
heuristic and an exact method. Therefore, we firstly present a two-phases method
developed to exactly solve a BiObjective Flow Shop Problem (BOFSP) [11]. In
order to optimize instances which are too large to be solved exactly, we propose
and present cooperation methods between Genetic Algorithms (GAs) and the
two-phases method.

In section II, we define MOPs and we present a BOFSP. In section III,
we present the two-phases method applied to the BOFSP, and computational
results. In section IV, we present cooperation schemes between GA and the two-
phases method. Section V presents results on non-solved instances. In the last

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 72–86, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Cooperation between Branch and Bound and Evolutionary Approaches 73

section, we discuss on effectiveness of this approach and perspectives of this
work.

2 A Bi-objective Flow Shop Problem (BOFSP)

2.1 Multiobjective Optimization Problems (MOPs)

Although single-objective optimization may have a unique optimal solution,
MOPs present a set of optimal solutions which are proposed to a decision maker.
So, before presenting BOFSP, we have to describe and define MOPs in a gen-
eral case. We assume that a solution to such a problem can be described
by a decision vector in the decision space X. A cost function

evaluates the quality of each solution by assigning it an objective
vector in the objective space Y (see Fig. 1). So, multiobjective
optimization consists in finding the solutions in the decision space optimizing
(minimizing or maximizing) objectives.

Fig. 1. Example of MOP

For the following definitions, we consider the minimization of objectives. In
the case of a single objective optimization, comparison between two solutions
and is immediate. For multiobjective optimization, comparing two solutions

and is more complex. Here, there exists only a partial order relation, known
as the Pareto dominance concept:

Definition 1. A solution dominates a solution if and only if:

In MOPs, we are looking for Pareto Optimal solutions:

Definition 2. A solution is Pareto optimal if it is not dominated by any other
solution of the feasible set.

The set of optimal solutions in the decision space X is denoted as the Pareto
set, and its image in the objective space is the Pareto front. Here we are interested
in a apriori approach where we want to find every Pareto solutions.

74 M. Basseur et al.

2.2 Flow Shop Problem (FSP)

The FSP is one of the numerous scheduling problems. Flow-shop problem has
been widely studied in the literature. Proposed methods for its resolution vary
between exact methods, as the branch & bound algorithm [16], specific heuris-
tics [15] and meta-heuristics [14]. However, the majority of works on flow-shop
problem studies the problem in its single criterion form and aims mainly to
minimize makespan, which is the total completion time. Several bi-objective
approaches exist in the literature. Sayin et al. proposed a branch and bound
strategy to solve the two-machine flow-shop scheduling problem, minimizing the
makespan and the sum of completion times [16]. Sivrikaya-Serifoglu et al. pro-
posed a comparison of branch & bound approaches for minimizing the makespan
and a weighted combination of the average flowtime, applied to the two-machine
flow-shop problem [17]. Rajendran proposed a specific heuristic to minimize the
makespan and the total flowtime [15]. Nagar et al. proposed a survey of the
existing multicriteria approaches of scheduling problems [14].

FSP can be presented as a set of N jobs to be scheduled on M
machines. Machines are critical resources: one machine cannot be assigned to two
jobs simultaneously. Each job is composed of M consecutive tasks
where represents the task of the job requiring the machine To each
task is associated a processing time Each job must be achieved before
its due date In our study, we are interested in permutation FSP where jobs
must be scheduled in the same order on all the machines (Fig. 2).

Fig. 2. Example of permutation Flow-Shop

In this work, we minimize two objectives: the makespan (Total com-
pletion time), and T, the total tardiness. Each task being scheduled at the
time the two objectives can be computed as follows:

In the Graham et. al. notation, this problem is denoted [7]:
F/perm, minimization has been proven to be NP-
hard for more than two machines, in [12]. The total tardiness objective T
has been studied only a few times for M machines [9], but total tardiness
minimization for one machine has been proven to be NP-hard [6]. The

Cooperation between Branch and Bound and Evolutionary Approaches 75

evaluation of the performances of our algorithm has been realized on some
Taillard benchmarks for the FSP [18], extended to the bi-objective case [20]
(bi-objective benchmarks and results obtained are available on the web at
http://www.lifl.fr/

~
basseur).

3 An Exact Approach to Solve BOFSP: The Two-Phases
Method (TPM)

On the Pareto front two types of solutions may be distinguished : the supported
solutions, that may be found thanks to linear combinations of criteria, and non
supported solutions [21]. As supported solutions are the vertices of the convex
hull, they are nearer to the ideal optimal solution, and we can ask why it is
important to look for non supported solutions. Figure 3, shows the importance
of non-supported solutions. It represents the Pareto front for one instance of the
bicriteria permutation flowshop with 20 jobs and 5 machines. This figure shows
that for this example, only two Pareto solutions are supported (the extremes)
and to get a good compromise between the two criteria, it is necessary to choose
one of the non-supported solutions.

Fig. 3. Importance of non supported solutions (Pb: ta_20_5_02)

A lot of heuristic methods exist to solve multicriteria (and bicriteria) prob-
lems. In this section we are interested in developing an exact method able to
enumerate all the Pareto solutions for a bicriteria flowshop problem.

A method, called the Two-Phases Method, has been proposed by Ulungu
and Teghem to initially solve a bicriteria assignment problem [21]. This method
is in fact a very general scheme that could be applied to other problems at
certain conditions. It has not yet been very often used for scheduling applications
where the most famous exact method for bicriteria scheduling problems is the

approach, proposed by Haimes et al. [8]. This section presents the
application of the scheme of the two-phases method to the bicriteria flow shop
problem under study.

76 M. Basseur et al.

3.1 The Two-Phases Method

Here we present the general scheme of the method. It proceeds in two phases. The
first phase finds all the supported solutions and the second all the non-supported
ones.

Fig. 4. Search direction. Fig. 5. New searches.
Fig. 6. Non supported so-
lutions.

The first phase consists in finding supported solutions with aggregations of
the two objectives and in the form It starts to find
the two extreme efficient solutions that are two supported solutions. Then it
looks recursively for the existence of supported solutions between two already
found supported solutions and (we suppose and
according to a direction perpendicular to the line (see figure 4), while
defining and as follows: Each new
supported solution generates two new searches (see figure 5).
The second phase consists in finding non-supported solutions. Graphically,
any non-supported solution between and belongs to the triangle repre-
sented in figure 6. This triangle is defined by and Y, which is the point

Hence, the second phase consists in exploiting all the triangles,
underlying each pair of adjacent supported solutions, in order to find the
non-supported solutions.

3.2 Applying the Two-Phases Method to a Bicriteria Flow Shop

Problem

The interesting point of the two-phases method, is that it solves exactly a bicri-
teria problem without studying the whole search space. Hence we want to apply
it to solve BOFSP for which the complete search space is too large to enable a
complete enumeration. But this method is only a general scheme and applying it
to a given problem requires a monocriterion exact method to solve aggregations.

As this scheduling problem (even in its monocriterion form) is NP-Hard, we
decided to develop a branch-and-bound method. A large part of the success of a
branch-and-bound is based on the quality of its lower bounds. As the makespan
minimization has been widely studied, we have adapted an existing bound for

Cooperation between Branch and Bound and Evolutionary Approaches 77

this criterion whereas for the total tardiness we propose a new bound. Details
about these bounds may be found in [11].

The search strategy used is “a depth first search” where at each step, the
node with the best bound is chosen. Moreover, a large part of the tardiness (T)
value is generated by the last scheduled jobs. So the construction of solutions
places jobs either at the beginning or at the end of the schedule, in order to have
a precise estimation of the final T value fastly.

3.3 Improvements of the Two-Phases Method

The two-phases method can be applied to any bicriteria problem. Applying it
to scheduling problems allows improvements:

Search of the extremes: The calculation of the extremes may be very long for
scheduling problems as there exists a lot of solutions with the same value for
one criterion. Hence, we propose to find extremes in a lexicographic order. A
criterion is first optimized and then the second, without degrading the first
one.
Search intervals: The objective of the first phase is to find all the supported
solutions in order to reduce the search space of the second phase. But when
supported solutions are very near to each other, it is not interesting to look
for all of them, as it will be very time consuming. Moreover, in the second
phase, the search is, in fact, not reduced to the triangle shown on figure 6
but to the whole rectangle Hence, during the second phase,
it is possible to find supported solutions that still exists. Then to avoid
uninteresting branch-and-bounds we propose to execute a first phase only
between solutions far from each other (a minimal distance is used).

3.4 Results

Table 1 presents results obtained with the two-phases method on the studied
problems. The first column describes the instances of the problem: ta_number
of jobs_number of machines_number of the instance. Then the three following
columns indicate computational time with three different versions : the original
two-phases method, the method with improvements proposed, and its parallel
version1. It shows that both, improvements and parallelization allow to solve
problems faster. Sequential runs have been executed on a 1.00Ghz machine. The
parallel version has been executed on eight 1.1 Ghz machines.

1 The parallel version is described in [11]

78 M. Basseur et al.

Using the Two-Phases Approach to Approximate the
Optimal Pareto Front

4

4.1 Motivations

Exact methods are always limited by the size of the problem. Moreover, when the
optimal Pareto front is not reached, these methods do not give good solutions. So,
for these problems, heuristics are usually proposed. In this section, we propose
to use the adaptation of the TPM to improve Pareto fronts obtained with a
heuristic. Firstly, we briefly present the hybrid GA which will cooperate with
TPM. Then we propose several cooperation mechanisms between TPM and the
hybrid GA.

4.2 An Adaptive Genetic/Memetic Algorithm (AGMA)

In order to optimize solutions of FSP, AGMA algorithm has been proposed
in [3]. AGMA is firstly a genetic algorithm (GA) which proposes an adaptive
selection between mutation operators. Crossover, selection and diversification
operators are described in [2]. Moreover, AGMA proposes an original hybrid
approach: the search alternates adaptively between a Genetic Algorithm and a
Memetic Algorithm (MA). The hybridization works as follows: Let be the
value of the modification rate done on the Pareto front computed on the
last generations of the GA. If this value goes below a threshold the MA is
launched on the current GA population. When the MA is over, the Pareto front
is updated, and the GA is re-run with the previous population (Algorithm 1).

Computational results presented in [3] show that we have a good approxi-
mation of the Pareto front. In order to improve these results, we propose some
cooperative schemes between AGMA and TPM.

4.3 Cooperation between AGMA and TPM

Recently, interest for cooperation methods grows. A large part of them are hy-
brid methods, in which a first heuristic gives solution(s) to a second one which
upgrades its (their) quality [19]. But different Optimization Methods (OMs) can

Cooperation between Branch and Bound and Evolutionary Approaches 79

cooperate in several ways as shown in figure 7. This cooperation can be sequen-
tial (a), often called hybridization. The search can also alternate between two
OMs (b). The alternativity may be decided thanks to thresholds (c). Finally a
cooperation can be established, with one method integrated in a mechanism of
the second one with or without threshold (d).

Fig. 7. Examples of cooperation scheme

Here we present three cooperation methods that combine the two-phases
method (TPM) and the Adaptive Genetic/Memetic Algorithm (AGMA) pre-
sented before. The first one is an exact method which uses the Pareto set ob-
tained with AGMA to speed up TPM. But the computational time of TPM still
grows exponentially with the size of the instances. So, for the next approaches
running on larger problems, we add constraints to TPM, to guide the algorithm
despite of the loss of the guaranty to obtain the optimal Pareto set.

80 M. Basseur et al.

These three methods use the cooperation scheme (a). But we can apply these
methods with the other cooperation schemes, which are more evolved.

Approach 1 - An improved exact approach: Using AGMA solutions

as initial values: In this approach, we run the whole two-phases method. For
every branch-and-bounds of the TPM, we consider the best solutions given by
the meta-heuristic as initial values. Therefore we can cut a lot of nodes of the
branch-and-bound and find all optimal solutions with this method.

The time required to solve a given problem is of course smaller if the distance
between the initial front (given by the meta-heuristic) and the optimal front is
small. If the distance between them is null, the TPM will be used to prove that
solutions produced by AGMA are optimal.

Even if this approach reduces the time needed to find the exact Pareto front,
it does not allow to increase a lot the size of the problems solved.

Approach 2 - Using TPM as a Very Large Neighborhood Search

(VLNS): Neighborhood search algorithms (also called local search algorithms)
are a wide class of improvement heuristics where at each iteration an improv-
ing solution is found by exploring the “neighborhood” of the current solution.
Ahuja et. al remark that a critical issue in the design of a neighborhood search
is the choice of the neighborhood structure [1]. In a general case, larger is the
neighborhood, more efficient is the neighborhood search. So, VLNS algorithms
consist in exploring exponential neighborhood in a practical time to get better
results. In [1], several exponential neighborhoods techniques are exposed. Here,
we propose to use TPM as a VLNS algorithm.

The idea is to reduce the space explored by the TPM by cutting branches
when the solution in construction is too far from the initial Pareto solution.
An efficient neighborhood operator for FSP is the insertion operator [3]. So, we
allow TPM to explore only the neighborhood of an initial Pareto solution which
consists of solutions that are distant from less than insertion operator
applications from it:

The following example represents an example of solution construction using
VLNS approach from the initial solution abcdefghij. In this example two sets
of jobs are used: The first one (initialized to {}) represents the current partially
constructed solution and the second one (initialized to {abcdefghij}) represents
jobs that have to be placed. During the solution construction, value (initially
set to 0) is incremented for each breaking order with the initial solution. If

then no more breaking order is allowed, so in this case, only one
schedule is explored:
Example (constraint:

Initialization: {},{abcdefghij} (represents: {jobs scheduled},{jobs to be
placed})
We firstly place the two first jobs: {ab}, {cdefghij}.
Then we place job so we apply insertion operator on the remaining jobs:
{abg}, {cdefhij}. For the moment, the distance between the initial solution
and the current solution is 1 (one breaking order).

Cooperation between Branch and Bound and Evolutionary Approaches 81

Then we place jobs and {abgcd}, {efhij}.
Then we place job {abgcdh}, {efij}.
Here, so the last jobs have to be scheduled without breaking order.
So, the single solution explored is the schedule {abgcdhefij}, {}, with
Others possible schedules are too far from the initial solution.

The size of the insertion neighborhood is in so the size of the space
explored by TPM may be approximated (for by Hence,
we have to limit value, especially on instances with many jobs.

Approach 3 - A local optimization with TPM: This third cooperation
limits the size of the explored space, while reducing it to a partition of Pareto
solutions proposed by AGMA. So TPM is applied on regions of Pareto solutions.

The main goal of this approach is to limit the size of the trees obtained by
the TPM, in order to apply this approach to large instances. In this section, we
will present a non-exact two-phases method in which we only explore a region of
the decisional space. So, we select partitions of each solution obtained by AGMA
algorithm. Then we explore all the solutions obtained with modifications of these
partitions using the two-phases method. After having explored a partition for
all the Pareto set, we extract the new Pareto set from the obtained solutions.

This Simple Partitionning Post Optimization Branch & Bound (SPPOBB)
works as follows:

The two-phases method explores the tree by placing jobs either at the be-
ginning or at the end of the schedule. So, if the partition is defined from job
to job it places, jobs at the beginning of the schedule and jobs

at the end. Then it explores the remaining solutions of the tree by
using the two-phases method technique.

Figure 8 shows an example of hybridization by the two-phases method - it
can be applied for other branch and bound methods. In this figure, we consider
an initial solution which is on the Pareto front obtained by AGMA
algorithm. In this example, N = 10, the partition size is 4, and is applied from
job number 4 to 7, i.e jobs in the schedule. The first phase consists in
placing the first three jobs at the beginning of the schedule. Then, it places the
last three jobs at the end of the schedule job placed in queue is symbolized
by Then, we apply the two-phases method on the remaining jobs. After
cutting several nodes, 5 complete schedules have been explored:

a,b,c,-j,-i,-h,d,-e,f,g which corresponds to the schedule abcdfgehij
a,b,c,-j,-i,-h,d,-g,e,f which corresponds to the schedule abcdefghij (the initial
solution)
a,b,c,-j,-i,-h,d,-g,f,e which corresponds to the schedule abcdfeghij
a,b,c,-j,-i,-h,g,-d,-e,f which corresponds to the schedule abcgfedhij
a,b,c,-j,-i,-h,g,-d,-f,e which corresponds to the schedule abcgefdhij

Parameters:

Different parameters have to be set to have an efficient search without having
a too large time expense.

82 M. Basseur et al.

Fig. 8. Example: one partition exploration

Size of the partitions: The cardinality of the Pareto set obtained with AGMA
algorithm varies between several tens and two hundred solutions. In order
to obtain solutions rapidly, we limit the size of partitions to 15 jobs for the
10-machines instances, and 12 jobs for the 20-machines instances. So each
two-phases execution can be solved in several seconds or minutes.
Number of partitions for each solution: Enough partitions of the complete
schedule have to be considered to treat each job at least once by TPM
approach. Moreover, it is interesting to superpose consecutive partitions to
authorize several moves of a same job during optimization. Then, a job which
is early scheduled could be translated at the end of the schedule by successive
moves. On the other side, the more partitions we have, the more processing
time is needed. So we take 8 partitions for the 50-jobs instances, 16 partitions
for the 100-jobs instances and 32 partitions for the 200-jobs instances.

5 Results

We test the first approach to prove optimality of Pareto fronts on small instances.
This approach reduces the time needed by the TPM to exactly solve these in-
stances. Then we test the last two approaches. Results are comparable on 50
machines instances, but the computational time of the VLNS approach is expo-
nential, so we present here only the results obtained with SPPOBB. However,
the other approaches give some perspectives about cooperation mechanisms.

In this part, we firstly present performance indicators to evaluate effectiveness
of this approach. Then we apply these indicators to compare the fronts obtained
before and after cooperation with SPPOBB.

5.1 Quality Assessment of Pareto Set Approximation

Solutions’ quality can be assessed in different ways. We can observe graphically
progress realized as in figures 9 and 10. Here, we use the contribution metric

Cooperation between Branch and Bound and Evolutionary Approaches 83

[13] to evaluate the proportion of Pareto solutions given by each front, and the
S metric, as suggested in [10], to evaluate the dominated area.

Fig. 9. SPPOBB results: instance with
100 jobs and 10 machines.

Fig. 10. SPPOBB results: instance with
200 jobs and 10 machines.

Contribution metric: The contribution of a set of solutions relatively to
a set of solutions is the ratio of non-dominated solutions produced by
in where is the set of Pareto solutions of

Let PO be the set of solutions in
Let (resp. be the set of solutions in (resp. that dominate
some solutions of (resp.
Let (resp. be the set of solutions in (resp. that are domi-
nated by some solutions of (resp.
Let (resp. be the other solutions of (resp. : \

S metric: A definition of the S metric is given in [22]. Let PO be a non-
dominated set of solutions. S metric calculates the hyper-volume of the multi-
dimensional region enclosed by PO and a reference point

Let and be two sets of solutions. To evaluate quality of against
we compute the ratio For the evaluation,

the reference point is the one with the worst value on each objective among all
the Pareto solutions found over the runs.

5.2 Computational Results

We use S and Contribution metrics to compute improvements realized on fronts.
Tests were realized for 10 runs per instance, on a 1.6Ghz machine. Tables 2 and
3 show the results obtained for these metrics.

84 M. Basseur et al.

Table 2 shows that improvements realized on 50*10 and 50*20 instances were
small in a general case. In fact we have an average improvement of 18.8 per cent
of the initial Pareto set for the 50*10 instance, and 4.8 per cent for the 50*20
instance. For the other problems, a large part of the new Pareto set dominates
the initial set of Pareto solutions. Table 3 shows a good progression of the Pareto
front for large problems, especially for the 200 jobs* 10 machines instance.

Table 4 shows that the time required to realize the set of two phases is almost
regular despite of the branch & bound approach.

Conclusion and Perspectives6

In this paper, we have first presented an exact approach and a metaheuristic
approach to solve MOPs. These approaches have been applied on a BOFSP.
Then we have proposed original approaches to upgrade metaheuristic results by
using an exact method i.e. the two-phases method. These approaches were tested,

Cooperation between Branch and Bound and Evolutionary Approaches 85

and their effectivenesses were shown by improvements realized on Pareto fronts
obtained with AGMA algorithm. These results show the interest of this type of
methods, which can be improved by adding other mechanisms to explore a large
region of the search space without exploring a great part of the solutions. In the
future, cooperation could be made in a hybrid way to combine the partitionning
and the VLNS approaches. Another way for cooperation between evolutionary
and exact approaches, without considering partitions of optimal solution, is to
extract information from these solutions to reduce sufficiently the size of the
search space.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Ravindra K. Ahuja, Ã-zlem Ergun, James B. Orlin, and Abraham P. Punnen. A
survey of very large-scale neighborhood search techniques. Discrete Appl. Math.,

123(1-3):75–102, 2002.
M. Basseur, F. Seynhaeve, and E-G. Talbi. Design of multi-objective evolution-
ary algorithms: Application to the flow-shop scheduling problem. In Congress on

Evolutionary Computation CEC’02, pages 1151–1156, Honolulu, USA, 2002.
M. Basseur, F. Seynhaeve, and E-G. Talbi. Adaptive mechanisms for multi-
objective evolutionary algorithms. In Congress on Engineering in System Ap-

plication CESA’03, Lille, France, 2003.
C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary

algorithms for solving Multi-Objective Problems. Kluwer, New York, 2002.
K. Deb. Multi-objective optimization using evolutionary algorithms. Wiley, Chich-
ester, UK, 2001.
J. Du and J. Y.-T. Leung. Minimizing total tardiness on one machine is np-hard.
Mathematics of operations research, 15:483–495, 1990.
R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimiza-
tion and approximation in deterministic sequencing and scheduling: a survey. In
Annals of Discrete Mathematics, volume 5, pages 287–326. 1979.
Y. Haimes, L. Ladson, and D. Wismer. On a bicriterion formulation of the problems
of integrated system identification and system optimization. IEEE Transaction on

system, Man and Cybernetics, pages 269–297, 1971.
Y-D. Kim. Minimizing total tardiness in permutation flowshops. European Journal

of Operational Research, 33:541–551, 1995.
J. D. Knowles and D. W. Corne. On metrics for comparing non-dominated sets. In
IEEE Service Center, editor, Congress on Evolutionary Computation (CEC’2002),

volume 1, pages 711–716, Piscataway, New Jersey, May 2002.
J. Lemesre. Algorithme parallèle exact pour l’optimisation multi-objectif: applica-
tion à l’ordonnancement. Master’s thesis, University of Lille, 2003.
J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity of machine
scheduling problems. Annals of Discrete Mathematics, 1:343–362, 1977.
H. Meunier, E. G. Talbi, and P. Reininger. A multiobjective genetic algorithm for
radio network optimisation. In CEC, volume 1, pages 317–324, Piscataway, New
Jersey, jul 2000. IEEE Service Center.
A. Nagar, J. Haddock, and S. Heragu. Multiple and bicriteria scheduling: A litter-
ature survey. European journal of operational research, (81):88–104, 1995.
C. Rajendran. Heuristics for scheduling in flowshop with multiple objectives. Eu-

ropean journal of operational research, (82):540–555, 1995.

86 M. Basseur et al.

16.

17.

18.

19.

20.

S. Sayin and S. Karabati. A bicriteria approach to the two-machine flow shop
scheduling problem. European journal of operational research, (113):435–449, 1999.
F. Sivrikaya and G. Ulusoy. A bicriteria two-machine permutation flowshop prob-
lem. European journal of operational research, (107):414–430, 1998.
E. Taillard. Benchmarks for basic scheduling problems. European Journal of Op-

erations Research, 64:278–285, 1993.
E-G. Talbi. A taxonomy of hybrid metaheuristics. Journal of Heuristics, 8:541–564,
2002.
E. G. Talbi, M. Rahoual, M. H. Mabed, and C. Dhaenens. A hybrid evolutionary
approach for multicriteria optimization problems : Application to the flow shop. In
E. Zitzler et al., editors, Evolutionary Multi-Criterion Optimization, volume 1993
of LNCS, pages 416–428. Springer-Verlag, 2001.
M. Visée, J. Teghem, M. Pirlot, and E.L. Ulungu. The two phases method and
branch and bound procedures to solve the bi-objective knapsack problem. Journal

of Global Optimization, Vol. 12:p. 139–155, 1998.
E. Zitzler. Evolutionary algorithms for multiobjective optimization: Methods and
applications. Master’s thesis, Swiss federal Institute of technology (ETH), Zurich,
Switzerland, november 1999.
E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne, editors. Proceed-

ings of the First International Conference on Evolutionary Multi-Criterion Opti-

mization (EMO 2001), volume 1993 of Lecture Notes in Computer Science, Berlin,
2001. Springer-Verlag.

21.

22.

23.

Simple Max-Cut for Split-Indifference Graphs

and Graphs with Few

Hans L. Bodlaender1, Celina M. H. de Figueiredo2, Marisa Gutierrez3, Ton
Kloks4, and Rolf Niedermeier5

1 Institute of Information and Computing Sciences, Utrecht University, Padualaan
14, 3584 CH Utrecht, The Netherlands.

hansb@cs.uu.nl
2 Instituto de Matemática and COPPE, Universidade Federal do Rio de Janeiro,

Caixa Postal 68530, 21945-970 Rio de Janeiro, Brazil.
celina@cos.ufrj.br

3 Departamento de Matemática, Universidad Nacional de La Plata, C. C. 172, (1900)
La Plata, Argentina.

marisa@mate.unlp.edu.ar
4
klokskloks@zonnet.nl

5 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Sand 13, D-72076
Tübingen, Germany.

niedermr@informatik.uni-tuebingen.de.

Abstract. The SIMPLE MAX-CUT problem is as follows: given a graph,
find a partition of its vertex set into two disjoint sets, such that the
number of edges having one endpoint in each set is as large as possible.
A split graph is a graph whose vertex set admits a partition into a stable
set and a clique. The SIMPLE MAX-CUT decision problem is known to be
NP-complete for split graphs. An indifference graph is the intersection
graph of a set of unit intervals of the real line. We show that the SIMPLE

MAX-CUT problem can be solved in linear time for a graph that is both
split and indifference. Moreover, we also show that for each constant

the SIMPLE MAX-CUT problem can be solved in polynomial time for
These are graphs for which no set of at most vertices

induces more than distinct

Introduction1

The MAXIMUM CUT problem (or the MAXIMUM BIPARTITE SUBGRAPH problem)
asks for a bipartition of the graph (with edge weights) with a total weight as large
as possible. In this paper we consider only the simple case, i.e., all edges in the
graph have weight one. Then the objective of this SIMPLE MAX-CUT problem is
to delete a minimum number of edges such that the resulting graph is bipartite.
Making a graph bipartite with few edge deletions has many applications [26]. A
very recent one is found in the emerging field of SNP (single nucleotide poly-
morphism) analysis in computational molecular biology, e.g., see [11,27]. Aiming
for efficient algorithms, we only consider the unweighted case since the classes of
graphs we consider in this paper contain all complete graphs and the (weighted)

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 87–99, 2004.
© Springer-Verlag Berlin Heidelberg 2004

88 H.L. Bodlaender et al.

MAXIMUM CUT problem is NP-complete for every class of graphs containing all
complete graphs [21,26].

As SIMPLE MAX-CUT is NP-complete in general, there are basically two lines
of research to cope with its computational hardness. First, one may study
polynomial-time approximation algorithms (it is known to be approximable
within 1.1383, see [13]) or try to develop exact (exponential-time) algorithms
(see [15] for an algorithm running in time where is the number
of edges in the graph). Approximation and exact algorithms both have their
drawbacks, i.e., non-optimality of the gained solution or poor running time even
for relatively small problem instance sizes. Hence, the second line of research—as
pursued in this paper—is to determine and analyze special graph structures that
make it possible to solve the problem efficiently and optimally. This leads to the
study of special graph classes. (Have a look at the classics [14,9] for general infor-
mation on numerous graph classes.) For example, it was shown that the SIMPLE
MAX-CUT problem remains NP-complete for cobipartite graphs, split graphs, and
graphs with chromatic number three [6]. On the positive side, the problem can
be efficiently solved for cographs [6], linegraphs [1], planar graphs [24,16], and
for graphs with bounded treewidth [29].

In this paper we consider two classes of graphs, both of which possess nice
decomposition properties which we make use of in the algorithms for SIMPLE
MAX-CUT to be described. Also, both graph classes we study are related to
split graphs. An indifference graph is the intersection graph of a set of unit
intervals of the real line. (See [23] for more information on intersection graphs
and their applications in biology and other fields.) A split graph is a graph whose
vertex set admits a partition into a stable set and a clique. Ortiz, Maculan,
and Szwarcfiter [25] characterized graphs that are both split and indifference
in terms of their maximal cliques, and used this characterization to edge-colour
those graphs in polynomial time. First, we show that this characterization also
leads to a linear-time solution for the SIMPLE MAX-CUT problem for graphs that
are both split and indifference.

Second, we study the class of (also known as graphs with
few [4] and introduced in [2]). These are graphs for which no set of at
most vertices induces more than distinct (A is a path with four
vertices.) In this terminology, the cographs are exactly the (4, 0)-graphs. The
class of (5, 1)-graphs are called graphs. Jamison and Olariu [20] showed
that allow a nice decomposition tree similar to cographs [20].
This decomposition can be used to find fast solutions for several in general NP-
complete problems (see, e.g., [3,22]). Also using this decomposition, we show that
the SIMPLE MAX-CUT problem can be solved in polynomial time for

for every constant

2 Preliminaries

In this paper, G denotes a simple, undirected, finite, connected graph, and V(G)
and E(G) are respectively the vertex and edge sets of G. The vertex-set size is

Simple Max-Cut for Split-Indifference Graphs and Graphs with Few 89

denoted by and denotes the complete graph on N vertices. A
stable set (or independent set) is a set of vertices pairwise non-adjacent in G.

A clique is a set of vertices pairwise adjacent in G. A maximal clique of G is a
clique not properly contained in any other clique. A subgraph of G is a graph
H with and For we denote by G[X]
the subgraph induced by X, that is, V(G[X]) = X and E(G[X]) consists of those
edges of E(G) having both ends in X.

Given nonempty subsets X and Y of V(G), the symbol (X, Y) denotes the
subset of E(G). A cut of a graph G is the set of
edges (S, V(G) \ S), defined by a subset We often write instead of
V(G) \ S. We also write for the set of edges with exactly one endpoint in S

(and the other endpoint in V(G)\S). By we denote the number of edges in the
cut and is the number of edges in i.e., the number of edges that
are lost by the cut A max-cut is a cut such that is as large as possible.
The (simple) max-cut problem considers the computation of two complementary
parameters of a graph is a cut of
the maximum number of edges in a cut of G; and
the minimum number of edges lost by a cut of G (making the remaining graph
bipartite). Instead of calculating directly it is sometimes more convenient
to calculate first, for the values

In the sequel, the following observations will be helpful.

Remark 1. For the complete graph on N vertices, we have:

If is a max-cut of then

We say that a max-cut in a complete graph is a balanced cut.

Remark 2. Let H be a subgraph of a graph G and let be a cut of G. If

then is a max-cut of G.

Proof. Since H is a subgraph of G, any cut of G satisfies
Hence is a cut of minimum loss in G, in other words, is a max-cut of G.

Remark 3. Let and let S be a subset of V(G) satisfying:

every vertex of S is adjacent to every vertex of

Then (S, is a max-cut of G.

Proof. Clearly the cut (S, has edges, the maximum possible size of
a cut in G.

The union of two graphs and denoted by is the graph such
that and By way
of contrast, denotes the subgraph of induced by The
(disjoint) sum of two graphs and makes every vertex of adjacent to
every vertex of

90 H.L. Bodlaender et al.

Linear-Time Solution for Split-Indifference Graphs3

Some Preliminaries

An interval graph is the intersection graph of a set of intervals of the real line
(cf. [9,23] for general expositions). In case of unit intervals the graph is called
unit interval, proper interval, or indifference graph. We shall adopt the latter
name, to be consistent with the terminology of indifference orders, defined next.
(For a recent proof that the class of unit interval graphs coincides with that of
the proper interval graphs, see [8].) Indifference graphs can be characterized as
those interval graphs without an induced claw, (i.e., a Indifference graphs
can also be characterized by a linear order: their vertices can be linearly ordered
so that the vertices contained in the same maximal cliques are consecutive [28].
We call such an order an indifference order.

A split graph is a graph whose vertex set can be partitioned into a stable set
and a clique. A split-indifference graph is a graph that is both split and indiffer-
ence. We shall use the following characterization of split-indifference graphs in
terms of their maximal cliques due to [25].

Theorem 1. Let G be a connected graph. Then G is a split-indifference graph
if and only if

or
where and or

where and

Moreover, or

This characterization was applied to obtain a polynomial-time algorithm to
edge colour split-indifference graphs [25]. In the sequel, we show how to apply this
characterization to obtain a linear-time algorithm to solve the max-cut problem
for split-indifference graphs.

The Balanced Cut Is not Always Maximal

A natural approach [7] for solving max-cut for indifference graphs is the fol-
lowing. Let be an indifference order for G and define
as follows: Place in S all vertices with odd labels and place in the remain-
ing vertices (i.e., those with even labels). By definition of and by Remark 1,

is a max-cut of for every graph induced by a maximal clique
of G. This natural approach defines a cut that is locally balanced, i.e., it gives
a cut that is a max-cut with respect to each maximal clique. The following ex-
ample shows that is not necessarily a max-cut of G. Consider the indifference
graph G with five (ordered) vertices where induce
a and induce a Note that the cut has
5 edges, whereas the cut has 6 edges. Therefore, this ap-
proach works only when the indifference graph G has only one maximal clique,
i.e., when G is a complete graph which covers the first point in Theorem 1.

Simple Max-Cut for Split-Indifference Graphs and Graphs with Few 91

Let where Call the graph induced
by the vertices of the intersection. We say that a cut of G is compatible if:

a) is a max-cut of and is a max-cut of
b) Among all cuts of G satisfying condition a), is minimal.

Clearly, the cut proposed by the natural approach satisfies condition a) but
not necessarily condition b) of the definition of compatible cut. Clearly, for the
example above the compatible cut gives the maximum cut. However, our subse-
quent study of the max-cut problem for graphs with two maximal cliques shows
that it is not always possible to define a max-cut which is a compatible cut for
the graph. We actually show that there are graphs for which the max-cut is not
balanced with respect to any maximal clique of the graph.

In the sequel, we show how to use this approach—considering cuts such
that locally is a max-cut of for every graph induced by a
maximal clique—to find first a max-cut in a graph with two maximal cliques
(which covers the second point in Theorem 1) and then to find a max-cut in a
split-indifference graph (by dealing with the third point in Theorem 1).

Graphs with Two Maximal Cliques

In this section we consider general graphs with precisely two maximal cliques.
Note that a graph with precisely two maximal cliques is necessarily an indiffer-
ence graph but not necessarily a split graph.

Lemma 1. Let with where

Call the graph induced by the vertices of the intersection. Let (S, be a cut
of G. Let Suppose Then, the maximum value of a cut

(S, having vertices in is obtained by placing the vertices outside

the intersection as follows:

Place in S the largest possible number that is less than or equal to

of vertices of
Place in S the largest possible number that is less than or equal to
of vertices of

Proof. Let be a cut of G. Since G contains two maximal cliques, i.e.,
with we may count the number of edges

in the cut as follows:

By using the notation of Lemma 1, let be the number of edges of a
maximum cut of G having vertices of in S. By Lemma 1, is well de-
fined as a function of in the interval We consider three cases according
to the relation between and and and In each case, our goal is to
find the values of in the interval which maximize

Now because we have Hence, by
placing the vertices outside the intersection as described, we get a cut as
close as possible to the balanced cut with respect to both and

92 H.L. Bodlaender et al.

Case 1: In this case, and Hence, vertices
outside the intersection can be placed accordingly to get balanced partitions for
both and Then is equal to which is defined as follows:

We want to maximize over the
interval [0, In this case, we have just one maximum, which occurs at

Case 2: In this case, we still have but not necessarily
If then the function is equal to above.

Otherwise, and it is not possible to get a balanced partition with
respect to By Lemma 1, the maximum cut in this case is obtained by placing
all vertices of in S. Therefore, the function is

It is easy to see that is a function that is continuous and decreasing
with maximum at

Case 3: In this case, we distinguish three intervals for
to be in:

If then vertices outside the intersection can be placed accordingly
to get balanced partitions for both and and

If then only gets a balanced partition and

Finally, if then a maximum cut is obtained by placing all vertices
outside the intersection in S and we get a new function

Therefore, a complete description of the function is

Observe that this function is also continuous but not always decreasing. The
function is a parabola with apex at where
is the total number of vertices of G. For this reason, we distinguish two cases,
according to the relation between and N, as follows: has maximum at

when and has maximum at when
Since takes values on the interval we have two possible values for in
this case: the maximum cut has either or vertices of in S.

In summary, we have shown:

Theorem 2. Let with where

Call the graph induced by the vertices of the intersection. Let

be an indifference order of G such that vertices induce a ver-

tices induce a containing the vertices of the intersection,

and induce a A maximum cut of G is obtained as

follows:

Simple Max-Cut for Split-Indifference Graphs and Graphs with Few 93

If then the compatible cut (S, that places in S the first

vertices, and the last vertices, contains zero edges of and is a
maximum cut of G.

If then the cut (S, that places in S the first vertices,

and the last vertices, contains zero edges of is not a compatible

cut, and is a maximum cut of G.

If then we distinguish two cases. If then the cut

(S, that places in S the first vertices, and the last vertices,

contains zero edges of is not a compatible cut, and is a maximum cut

of G. If then the cut (S, that places in vertices if the

intersection is not a compatible cut, and is a maximum cut of G.

Split-Indifference Graphs with Three Maximal Cliques

In this section we consider split-indifference graphs with precisely three maximal
cliques. By Theorem 1, any such graph with
satisfies i.e., the vertex set
In other words, we have In addition, there exists an
indifference order for G having vertex 1 first, vertex last, and the remaining
vertices between 1 and

To obtain a solution for the max-cut problem for a split-indifference graph
with precisely three maximal cliques, we shall consider three cases.

Case 1: vertex 1 is adjacent to at most vertices or vertex is

adjacent to at most vertices In the preceding subsection we studied
the case of two maximal cliques. In particular, we got the easy case that if a
graph with and such that then there
exists a max-cut of H that places on the same side the vertices that are
closer to vertex 1 with respect to the indifference order of H, and places vertex
1 and the remaining vertices on the opposite side.

Now suppose vertex is adjacent to at most vertices. Let (S, V(H)\S) be
a max-cut of H that places all neighbours of on the same side S. By Remark 2,

is a max-cut of the entire graph G, because
looses the same number of edges as the cut (S, V(H) \ S).

Case 2: both vertices 1 and are adjacent to at least vertices but

there are not vertices adjacent to both 1 and Note that every
vertex of is adjacent to 1 or to Let S contain vertex 1 and a set of
neighbours of that includes all nonneighbours of 1. The only “missing” edge in
the cut (S, is the edge an edge not present in G. Since there are not
vertices adjacent to both 1 and it is not possible to define a cut for G larger
than (S, by placing vertices 1 and on the same side.

94 H.L. Bodlaender et al.

Case 3: there exist vertices adjacent to both 1 and Let S be a

set of vertices adjacent to both 1 and Remark 3 justifies (S, to be a
max-cut of G.

Theorem 3. Let G be a split-indifference graph with three maximal cliques

and with and satisfying

Let be an indifference order of G having vertex 1 first, vertex

last. A maximum cut of G is obtained as follows:

If vertex is adjacent to at most vertices, then the cut (S, that places

in S vertex 1 and the vertices that are closer to with respect to the

indifference order is a maximum cut of G. An analogous result follows if

vertex 1 is adjacent to at most vertices.

If both vertices 1 and are adjacent to at least vertices but there are

not vertices adjacent to both 1 and then the cut (S, that places

in S vertex 1 and the vertices that are closer to with respect to the

indifference order is a maximum cut of G.

If there exist vertices adjacent to both 1 and then the cut (S, that

places in S a set of vertices adjacent to both 1 and is a maximum cut

of G.

Altogether, we obtain the following main result.

Corollary 1. SIMPLE MAX-CUT can be solved in linear time for split-

indifference graphs.

4 Polynomial-Time Solution for

Some preliminaries. A graph is a if no set of at most vertices
induces more than distinct The class of cographs are exactly the (4,0)-
graphs, i.e., cographs are graphs without induced The class of so-called

graphs coincides with the (5, l)-graphs. The class of graphs
was extensively studied in [17,18,19,12].

It was shown in [3] that many problems can be solved efficiently for
for each constant These results make use of a decomposition theorem

which we state below. In this section we show that this decomposition can also be
used to solve the SIMPLE MAX-CUT problem. In order to state the decomposition
theorem for we need some preliminaries.

Recall that a split graph is a graph of which the vertex set can be split into
two sets K and I such that K induces a clique and I induces an independent
set in G. A spider is a split graph consisting of a clique and an independent
set of equal size (at least two) such that each vertex of the independent set has

Proof. The result directly follows from combining Theorem 1 with Remark 1,
Theorem 2, and Theorem 3.

Simple Max-Cut for Split-Indifference Graphs and Graphs with Few 95

precisely one neighbor in the clique and each vertex of the clique has precisely
one neighbor in the independent set, or it is the complement of such a graph.
We call a spider thin if every vertex of the independent set has precisely one
neighbor in the clique. A spider is thick if every vertex of the independent set is
non-adjacent to precisely one vertex of the clique. The smallest spider is a path
with four vertices (i.e., a and this spider is at the same time both thick and
thin.

The SIMPLE MAX-CUT problem is easy to solve for spiders:

Remark 4. Let G be a thin spider with 2n vertices where Then

If G is a thick spider then

A graph G is if for every partition into two non-empty sets there
is a crossing that is a with vertices in both sets of the partition. The

components of a graph are the maximal induced subgraphs which
are A graph is separable if there is a partition
such that every crossing has its midpoints in and its endpoints in

Recall that a module is a non-trivial (i.e., not or V) set of vertices which
have equivalent neighborhoods outside the set. The characteristic of a graph is
obtained by shrinking the non-trivial modules to single vertices. It can be shown
(see [2,20]) that a graph is separable if and only if its characteristic
is a split graph.

Our main algorithmic tool is the following structural theorem due to [20].

Theorem 4. For an arbitrary graph G exactly one of the following holds:

G or is disconnected.
There is a unique proper separable component H of G with sep-

aration such that every vertex outside H is adjacent to all vertices
of and to none of
G is

Furthermore, the following characterization of for
was obtained in [2] (also see [4]).

Theorem 5. Let G = (V,E) be a which is Then
either or G is a spider.

Theorem 4 and Theorem 5 lead to a binary decomposition tree for
(also see [3] for more details). This decomposition tree can be found in

linear time [5]. The leaves of this tree correspond with spiders or graphs with
less than vertices (this reflects the last point of Theorem 4 and Theorem 5).
The internal nodes of this tree have one of three possible labels. If the label of
an internal node is 0 or 1, then the graph corresponding with this node is the
disjoint union or the sum of the graphs corresponding with the children of the
node (this reflects the first point of Theorem 4). If the label of the node is 2
(this reflects the second point of Theorem 4), one of the graphs, w.l.o.g.
has a separation and it is either a spider or a graph with less than

96 H.L. Bodlaender et al.

vertices of which the characteristic is a split graph (Theorems 4 and 5), and
is arbitrary. If is a spider, all vertices of are made adjacent exactly to
all vertices of the clique (induced by of If is a graph of which the
characteristic is a split graph, all vertices of are made adjacent exactly to all
vertices (i.e., of every clique module of

In the following subsections we briefly describe the method to compute the
simple max-cut for graphs with few The main idea of the algorithm is
that we compute for each node of the decomposition tree all relevant values of

being the graph corresponding with this node. The table of values
for such a node is computed, given the tables of the children of the node. In the
subsequent paragraphs, we discuss the methods to do this, for each of the types
of nodes in the decomposition tree. Once we have the table of the root node,
i.e., all values mc(G, we are done.

Cographs. We review the algorithm for the SIMPLE MAX-CUT problem for
cographs (i.e., (4,0)-graphs) which was published in [6]. A cograph which is not
a single vertex is either the sum or the union of two (smaller) cographs. In other
words: cographs have a decomposition tree with all internal nodes labelled 0 or
1.

Lemma 2. Let G = (V, E) be the union of and

Then

Let G = (V, E) be the sum of and Then

Corollary 2. There exists an time algorithm to compute the simple max-

cut of a cograph.

graphs. The decomposition tree (as defined above) for graphs that
are has nodes with label 0, 1, or 2 [17]. Note that in the case of
label 2 we can assume here that the graph is a spider (see the discussion
after Theorems 4 and 5, and [18]). In the lemma below, we assume G is obtained
from and as described above by the operation of a 2-labeled node. Let K
be the clique and S be the independent set of Let denote the number of
vertices of Note that every vertex of is adjacent to every vertex of K.

Lemma 3. Let G, S, and K be as above. Let be a thick spider.

Then

Simple Max-Cut for Split-Indifference Graphs and Graphs with Few 97

Let be a thin spider. Then

For graphs (i.e., (5, l)-graphs), Lemmas 2 and 3 are sufficient to
compute all the values for all graphs associated with nodes in the
decomposition tree. Thus, we obtain:

Corollary 3. There exists an time algorithm to compute the simple max-

cut for a graph.

and the characteristic of is a split graph. If we have a
decomposition tree of then there is one remaining case: G is
obtained from and by the operation corresponding to a 2-labeled node,
and has less than vertices. In this case the vertex set of acts as a module,
i.e., every vertex of has exactly the same set of neighbors in Let K be
the set of vertices of which are adjacent to all vertices of

Let be the maximum cut in with exactly vertices in K and
vertices in Since is constant size the numbers can

easily be computed in constant time.

Lemma 4. Let G, K be as above. Suppose that and the char-

acteristic of is a split graph. Then

Now, with Lemma 4, and Lemmas 2 and 3, we obtain:

Theorem 6. There exists an time algorithm for the SIMPLE MAX-CUT

problem on for each constant

Concluding Remarks5

This paper considers two classes of graphs: indifference graphs and
Both classes possess nice decomposition properties which we make use

of in the described algorithms for SIMPLE MAX-CUT. Also, both graph classes we
study are related to split graphs, a class of graphs for which SIMPLE MAX-CUT

is known to be hard.
A linear-time algorithm for the recognition of indifference graphs was pre-

sented by de Figueiredo et al. [10]. The algorithm partitions in linear time the
vertex set of an indifference graph into sets of twin vertices, i.e., vertices of the
graph that belong to the same set of maximal cliques.

Given a graph G with a bounded number of maximal cliques, the partition
of G into sets of twins contains a bounded number of sets. Hence, we can

98 H.L. Bodlaender et al.

compute mc(G) in polynomial time, by maximizing a function on variables
that assume integer values in a limited region of the space, i.e., on a finite

domain. This simple argument establishes the polynomial upper bound
for the max-cut problem for a class of graphs with a bounded number of maximal
cliques.

One goal of this paper was to establish a linear time upper bound for the
computation of mc(G) for a split-indifference graph G, by computing the value
of mc(G) in constant time, given that we can in linear time determine which
case of the computation we are in. We leave it as an open problem to extend the
proposed solution to the whole class of indifference graphs.

Another goal reached by this paper was to extend to the whole class of
the known solution of SIMPLE MAX-CUT for cographs. We leave

it as an open problem to find a more efficient polynomial-time algorithm for the
computation of mc(G) for a G.

Acknowledgments: We are grateful to J. Spinrad for pointing out that the
max-cut problem is solvable in polynomial time for any class of graphs with a
bounded number of maximal cliques. Parts of this research were done while
Celina M. H. de Figueiredo visited Universidad Nacional de La Plata sup-
ported by FAPERJ, and Marisa Gutierrez visited Universidade Federal do Rio de
Janeiro supported by FOMEC and FAPERJ. Rolf Niedermeier is supported by
the DFG, Emmy Noether research group “PIAF” (fixed-parameter algorithms),
NI 369/4.

References

1.

2.

3.

4.

5.

6.

7.

8.

C. Arbib. A polynomial characterization of some graph partitioning problem. In-

form. Process. Lett., 26:223–230, 1987/1988.
L. Babel. On the of graphs, Habilitationsschrift, Zentrum für Ma-
thematik, Technische Universität München, 1997.
L. Babel, T. Kloks, J. Kratochvíl, D. Kratsch, H. Müller, and S. Olariu. Efficient
algorithms for graphs with few Combinatorics (Prague, 1998). Discrete Math.,

235:29–51, 2001.
L. Babel and S. Olariu. On the structure of graphs with few Discrete Appl.

Math., 84:1–13, 1998.
S. Baumann. A linear algorithm for the homogeneous decomposition of graphs,
Report No. M-9615, Zentrum für Mathematik, Technische Universität München,
1996.
H. L. Bodlaender and K. Jansen. On the complexity of the maximum cut problem.
In STAGS 94, Lecture Notes in Computer Science 775, 769–780, Springer, Berlin,
1994. Also in Nordic J. Comput., 7(1):14–31, 2000.
H. L. Bodlaender, T. Kloks, and R. Niedermeier. Simple max-cut for unit interval
graphs and graphs with few In Extended abstracts of the 6th Twente Workshop

on Graphs and Combinatorial Optimization 12–19, 1999. Also in Electronic Notes

in Discrete Mathematics 3, 1999.
K. P. Bogart and D. B. West. A short proof that ‘proper = unit’, Discrete Math.,

201:21–23, 1999.

Simple Max-Cut for Split-Indifference Graphs and Graphs with Few 99

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes: a Survey. SIAM
Monographs on Discrete Mathematics and Applications. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1999.
C. M. H. de Figueiredo, J. Meidanis, and C. P. de Mello. A linear-time algorithm
for proper interval graph recognition. Inform. Process. Lett., 56:179–184, 1995.
E. Eskin, E. Halperin, and R. M. Karp. Large scale reconstruction of haplotypes
from genotype data. In RECOMB 2003, pp. 104–113, ACM Press, 2003.
V. Giakoumakis, F. Roussel, and H. Thuillier. On graphs. Discrete Math-
ematics and Theoretical Computer Science, 1:17–41, 1997.
M. X. Goemans and D. P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM,
42:1115–1145, 1995.
M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press,
New York, 1980.
J. Gramm, E. A. Hirsch, R. Niedermeier, and P. Rossmanith. Worst-case upper
bounds for MAX-2-SAT with application to MAX-CUT. Discrete Appl. Math.,
130(2):139–155, 2003.
F. O. Hadlock. Finding a maximum cut of a planar graph in polynomial time.
SIAM J. Comput., 4:221–225, 1975.
B. Jamison and S. Olariu. A tree representation for graphs. Discrete
Appl. Math., 35:115–129, 1992.
B. Jamison and S. Olariu. Recognizing graphs in linear time. SIAM J.
Comput., 21:381–406, 1992.
B. Jamison and S. Olariu. Linear time optimization algorithms for
graphs. Discrete Appl. Math., 61:155–175, 1995.
B. Jamison and S. Olariu. and the homogeneous decomposition of
graphs. SIAM J. Discrete Math., 8:448–463, 1995.
R. M. Karp. Reducibility among combinatorial problems. Complexity of computa-
tion (R. E. Miller and J. W. Thather eds.), pp. 85–103, 1972.
T. Kloks and R. B. Tan. Bandwidth and topological bandwidth of graphs with
few In 1st Japanese-Hungarian Symposium for Discrete Mathematics and its
Applications (Kyoto, 1999). Discrete Appl. Math., 115(1–3):117–133, 2001.
T. A. McKee and F. R. Morris. Topics in Intersection Graph Theory. SIAM
Monographs on Discrete Mathematics and Applications. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1999
G. I. Orlova and Y. G. Dorfman, Finding the maximal cut in a graph, Engrg.
Cybernetics, 10:502–504, 1972.
C. Ortiz Z., N. Maculan, and J. L. Szwarcfiter. Characterizing and edge-colouring
split-indifference graphs. Discrete Appl. Math., 82(1–3):209–217, 1998.
S. Poljak and Z. Tuza. Maximum cuts and large bipartite subgraphs. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science (W. Cook,
L. Lovász, and P. Seymour eds.), 20:181–244, Amer. Math. Soc., Providence, RI,
1995.
R. Rizzi, V. Bafna, S. Istrail, and G. Lancia. Practical algorithms and fixed-
parameter tractability for the single individual SNP haplotypying problem. In
WABI 2002, Lecture Notes in Computer Science 2452, pp. 29–43, Springer, Berlin,
2002.
F. S. Roberts. On the compatibility between a graph, and a simple order. J.
Combinatorial Theory Ser. B, 11:28–38, 1971.
T. V. Wimer. Linear algorithms on graphs, PhD Thesis, Department
of Computer Science, Clemson University, South Carolina, 1987.

A Randomized Heuristic for Scene Recognition

by Graph Matching

Maria C. Boeres1, Celso C. Ribeiro2, and Isabelle Bloch3

1 Universidade Federal do Espírito Santo, Department of Computer Science, R.
Fernando Ferrari, Campus de Goiabeiras, Vitória, ES 29060-970, Brazil.

boeres@inf.ufes.br
2 Universidade Federal Fluminense, Department of Computer Science, Rua Passo da

Pátria 156, Niterói, RJ 24210-240, Brazil.
celso@inf.puc-rio.br

3 Ecole Nationale Supérieure des Télécommunications, CNRS URA 820, 46 rue
Barrault, 75634 Paris Cedex 13, France.

Isabelle.Bloch@enst.fr

Abstract. We propose a new strategy for solving the non-bijective
graph matching problem in model-based pattern recognition. The search
for the best correspondence between a model and an over-segmented
image is formulated as a combinatorial optimization problem, defined
by the relational attributed graphs representing the model and the im-
age where recognition has to be performed, together with the node and
edge similarities between them. A randomized construction algorithm is
proposed to build feasible solutions to the problem. Two neighborhood
structures and a local search procedure for solution improvement are
also proposed. Computational results are presented and discussed, illus-
trating the effectiveness of the combined approach involving randomized
construction and local search.

1 Introduction

The recognition and the understanding of complex scenes require not only a
detailed description of the objects involved, but also of the spatial relationships
between them. Indeed, the diversity of the forms of the same object in different
instantiations of a scene, and also the similarities of different objects in the
same scene, make relationships between objects of prime importance in order to
disambiguate the recognition of objects with similar appearance. Graph based
representations are often used for scene representation in image processing [6,9,
11,20,21]. Vertices of the graphs usually represent the objects in the scenes, while
their edges represent the relationships between the objects. Relevant information
for the recognition is extracted from the scene and represented by relational
attributed graphs. In model-based recognition, both the model and the scene
are represented by graphs.

The assumption of a bijection between the elements in two instantiations
of the same scene is too strong for many problems. Usually, the model has a

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 100–113, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Randomized Heuristic for Scene Recognition by Graph Matching 101

schematic aspect. Moreover, the construction of the image graph often relies on
segmentation techniques that may fail in accurately segmenting the image into
meaningful entities. Therefore, no isomorphism can be expected between both
graphs and, in consequence, scene recognition may be better expressed as an
non-bijective graph matching problem.

Our motivation comes from an application in medical imaging, in which the
goal consists in recognizing brain structures from 3D magnetic resonance im-
ages, previously processed by a segmentation method. The model consists of an
anatomical atlas. A graph is built from the atlas, in which each node represents
exactly one anatomical structure of interest. Edges of this graph represent spatial
relationships between the anatomical structures. Inaccuracies constitute one of
the main characteristics of the problem. Objects in the image are segmented and
all difficulties with object segmentation will be reflected in the representation,
such as over-segmentation, unexpected objects found in the scene (pathologies
for instance), expected objects not found and deformations of objects [13]. Also,
the attributes computed for the image and the model may be imprecise. To il-
lustrate these difficulties, Figure 1 presents slices of three different volumes: (a)
a normal brain, (b) a pathological brain with a tumor, and (c) the representa-
tion of a brain atlas where each grey level corresponds to a unique connected
structure. Middle dark structures (lateral ventricles) are much bigger in (b) than
in (a). The white hyper-signal structure (tumor) does not appear in the atlas
(c) nor in the normal brain (a). Similar problems occur in other applications,
such as aerial or satellite image interpretation using a map, face recognition, and
character recognition.

Fig. 1. Examples of magnetic resonance images: (a) axial slice of a normal brain, (b)
axial slice of a pathological brain with a tumor, and (c) axial slice of a brain atlas.

This paper focuses on algorithms for the non-bijective graph matching prob-
lem [1,7,10,13,15,17,19], which is defined by the relational attributed graphs
representing the model and the over-segmented image, together with the node
and edge similarities between their nodes and edges. Section 2 describes our for-
mulation of the search for the best correspondence between the two graphs as
a non-bijective graph matching problem. We discuss the nature of the objective
function and of the constraints of the graph matching problem. A randomized

102 M.C. Boeres, C.C. Ribeiro, and I. Bloch

construction algorithm is proposed in Section 3 to build feasible solutions. Be-
sides the quality of the solutions found, this algorithm may also be used as a
robust generator of initial solutions for a GRASP metaheuristic [16] or for pop-
ulation methods such as the genetic algorithm described in [14]. A local search
algorithm is proposed in Section 4 to improve the solutions obtained by the
construction algorithm. Numerical results obtained with the randomized con-
struction and the local search algorithms are presented and discussed in Section
5. They illustrate the robustness of the construction algorithm and the improve-
ments attained by the local search algorithm in terms of solution quality and
object identification. Concluding remarks are presented in the last section.

2 Non-bijective Graph Matching

Attributed graphs are widely used in pattern recognition problems. The defini-
tion of the attributes and the computation of their values are specific to each
application and problem instance. Fuzzy attributed graphs are used for recog-
nition under imprecisions [2,3,4,5,12,13,14,15]. The construction of a fuzzy at-
tributed graph depends on the imperfections of the scene or of the reference
model, and on the attributes of the object relations. The common point is that
there is always a single vertex for each region of each image. Differences may
occur due to the strategy applied for the creation of the edge set, as a result
of the chosen attributes or of defects in scene segmentation. Once the graph is
built, the next step consists in computing the attributes of vertices and edges.
Finally, vertex-similarity and edge-similarity matrices are computed from the
values of the attributed graphs, relating each pair of vertices and each pair of
edges, one of them from the model and the other from the segmented image.

Two graphs are used to represent the problem: represents the
model, while represents the over-segmented image. In each case,

denotes the vertex set and denotes the edge set, We assume that
which is the case when the image is over-segmented with respect to

the model.
A solution to the non-bijective graph matching problem is defined by a set

of associations between the nodes of and Each node of is associated
with one node of These assignments are represented by binary variables:

if nodes and are associated, otherwise. The set
denotes the subset of vertices of associated with

vertex To ensure that the structure of appears within we favor
solutions where a correspondence between edges also implies a correspondence
between their extremities (edge association condition). Thus, edge associations
are derived from vertex associations, according to the following rule: edge

is associated with all edges such that (i) is associated
with and is associated with or (ii) is associated
with and is associated with

A good matching is a solution in which the associations correspond to high
similarity values. Similarity matrices are constructed from similarity values cal-

A Randomized Heuristic for Scene Recognition by Graph Matching 103

culated from graph attributes. The choice of these attributes depends on the im-
ages. Let (resp. denote an (resp. vertex-similarity
(resp. edge-similarity) matrix, where the elements (resp.

represent the similarity between vertices (resp. edges) and
and The value of any solution is expressed by an

objective function, defined for each solution as

with

and

where is a parameter used to weight each term of This function consists of
two terms which represent the vertex and edge contributions to the measure of
the solution quality associated with each correspondence. Vertex and edge asso-
ciations with high similarity values are privileged, while those with low similarity
values are penalized. The first term represents the average vertex contribution to
the correspondence. The second term represents the average edge contribution
to the correspondence and acts to enforce the edge association condition. For
instance, if is high and there are associations between the ex-
tremities of edges and then and the edge
contribution is high. On the contrary, if the extremities of edges and
are not associated, then and the edge contribution
is null. This function behaves appropriately when the image features are well
described by the graph attributes.

The search is restricted only to solutions in which each vertex of has to be
associated with exactly one vertex of The rationale for this condition is that
image segmentation is performed by an appropriate algorithm which preserves
the boundaries and, in consequence, avoids situations in which one region of the
segmented image is located in the frontier of two adjacent regions of the model:
Constraint (1): For every there exists exactly one node such that

The quality of the input data (vertex and edge similarity matrices) is primor-
dial for the identification of the best correspondence. However, as this quality is
not always easy to be achieved in real applications, we emphasize some aspects
that can be used as additional information to improve the search. Vertices of
associated with the same vertex of should be connected among themselves in
real situations, since an over-segmentation method can split an object in several
smaller pieces, but it does not change the piece positions. Regions of the seg-
mented image corresponding to the same region of the model should necessarily

104 M.C. Boeres, C.C. Ribeiro, and I. Bloch

be connected. A good strategy to avoid this type of solution is to restrain the
search to correspondences for which each set of vertices induces a connected
subgraph in for every model vertex (connectivity constraint):
Constraint (2): For every the subgraph induced in by
is connected.

Pairs of vertices with null similarity cannot be associated. Such associations
are discarded by the constraint below, which strengthens the penalization of
associations between vertices with low similarity values induced by the objective
function:
Constraint (3): For every and if then

Finally, to ensure that all objects of the model appear in the image graph,
one additional constraint is imposed:
Constraint (4): For every there exists at least one node such that

3 Randomized Construction Algorithm

The construction algorithm proposed in this section is based on progressively
associating a node of with each node of until a feasible solution is
built. The objective function does not have to be evaluated from scratch
at each iteration. Its value is initialized once for all and progressively updated
after each new association between a pair of vertices from and Since

then for any two solutions and that differ
only by one additional association between vertices and Similar
considerations are used in the evaluation of the term which is increased by

whenever a new pair of edges and
are associated.

The pseudo-code of the RandomizedConstruction randomized algorithm is
given in Figure 2. The algorithm takes as parameters the initial seed, the maxi-
mum number MaxTrials of attempts to build a feasible solution before stopping,
and the maximum number MaxSolutions of solutions built. We denote by
the nodes adjacent to vertex in a graph G. The number of attempts, the num-
ber of solutions built, and the indicator that a feasible solution has been found
are initialized in line 1. The optimal value is initialized in line 2. The loop in lines
3–35 performs at most MaxTrials attempts to build at most MaxSolutions so-
lutions. Lines 4–7 prepare and initialize the data for each attempt. The solution

the set of nodes associated with each node and the node
associated with each node are initialized in line 4. The terms and
are initialized respectively in lines 5 and 6. A temporary copy of the node set

(i.e.,

A Randomized Heuristic for Scene Recognition by Graph Matching 105

Fig. 2. Pseudo-code of the randomized construction algorithm.

is created in line 7. The loop in lines 8–26 performs one attempt to create a
feasible solution and stops after the associations to each node in have been
investigated. A node is randomly selected and eliminated from in line
9. A temporary copy of the node set is created in line 10. The loop in lines
11–25 searches for a node in to be associated with node It stops after
all possible associations to nodes in have been investigated without success

106 M.C. Boeres, C.C. Ribeiro, and I. Bloch

or if one possible association was found. A node is randomly selected and
eliminated from in line 12. The algorithm checks in line 13 if node can be
associated with node i.e., if their similarity is not null and if the graph induced
in by is connected. If this is the case, the current solution and
its objective function value are updated in lines 14–24. The current solution is
updated in lines 15–16. The term corresponding to the node similarities is
updated in line 17. The term corresponding to the edge similarities is updated
in lines 18–23. The algorithm checks in line 27 if the solution built in lines
8–26 is feasible, i.e., if there is at least one node of associated with every
node of and if there is exactly one node of associated with every node of

If this is the case, the indicator that a feasible solution was found is reset
in line 29 and the number of feasible solutions built is updated in line 30. The
value of the objective function for the new solution is computed in line 31. If the
new solution is better than the incumbent, then the latter is updated in line 32.
The number of attempts to build a feasible solution is updated in line 34 and a
new iteration resumes, until the maximum number of attempts is reached. The
best solution found and its objective function value are returned in line
36. In case no feasible solution was found, the returned value is The
complexity of each attempt to build a feasible solution is

Local Search4

The solutions generated by a randomized construction algorithm are not neces-
sarily optimal, even with respect to simple neighborhoods. Hence, it is almost
always beneficial to apply a local search to attempt to improve each constructed
solution. A local search algorithm works in an iterative fashion by successively
replacing the current solution by a better solution in the neighborhood of the
current solution. It terminates when a local optimum is found, i.e., when no
better solution can be found in the neighborhood of the current solution.

We define the neighborhood associated with any solution as formed
by all feasible solutions that can be obtained by the modification of
for some For each vertex the candidate set is formed
by all vertices in that can replace the node currently associated with
i.e. is a feasible solution, where if and

if and otherwise}. The number of solutions
within this neighborhood is bounded by

The pseudo-code of the local search algorithm LS using a first-improving
strategy based on the neighborhood structure defined above is given in Fig-
ure 3. The algorithm takes as inputs the solution built by the randomized
construction algorithm and its objective function value Initializations are
performed in lines 1-2. The loop in lines 3-32 performs the local search and
stops at the first local optimum of the objective function with respect to the
neighborhood defined by the sets The control variable is initialized at each
local search iteration in line 4. The loop in lines 5-31 considers each node of
graph The replacement of the node currently associated with

A Randomized Heuristic for Scene Recognition by Graph Matching 107

Fig. 3. Pseudo-code of the basic local search algorithm using neighborhood

(line 6) by each node belonging to the candidate set is investigated in the
loop in lines 7-30. The increase in the value of the objective function due to the
node similarity contributions is computed in line 8, while that due to the edge
similarity contributions is computed in lines 9-19. If the total increase in the
objective function value computed in line 20 is strictly positive (line 21), then
the current solution and the control variables are updated in lines 22-28. The
procedure returns in line 33 the local optimum found and the corresponding so-
lution value. Each local search iteration within neighborhood has complexity

108 M.C. Boeres, C.C. Ribeiro, and I. Bloch

We notice that if for some and (i.e.
then because in this case vertex would not be associated with any
other vertex. It can also be the case that a node cannot be associated
with any other node because induces a non-connected graph in
In consequence, in these situation the vertex associated with node cannot be
changed by local search within the neighborhood even if there are other
feasible associations. As an attempt to avoid this situation, we define a second
neighborhood structure associated with any feasible solution This is
a swap neighborhood, in which the associations of two vertices are
exchanged. A solution if there are two vertices and two
vertices such that and with
all other associations in solutions and being the same.

Local search within the swap neighborhood has a higher time complexity
than within neighborhood Also, for any

feasible solution Accordingly, we propose an extended local search procedure
LS+ which makes use of both neighborhoods. Whenever the basic local search
procedure LS identifies a local optimum with respect to neighborhood
the extended procedure starts a local search from the current solution within
neighborhood If this solution is also optimal with respect to neighborhood

then the extended procedure stops; otherwise algorithm LS resumes from
any improving neighbor of within

5 Computational Results

The algorithms described in the previous sections were implemented in C and
compiled with version 2.96 of the gcc compiler. We used an implementation in
C of the random number generator described in [18]. All computational exper-
iments were performed on a 450 MHz Pentium II computer with 128 Mbytes
of RAM memory, running under version 7.1 of the Red Hat Linux operating
system.

Unlike other problems in the literature, there are no benchmark instances
available for the problem studied in this paper. We describe below a subset of
seven test instances used in the evaluation of the model and the algorithms
proposed in Sections 3 and 4.

Instances GM-5, GM-8, and GM-9 were randomly generated [1], with node
and edge similarity values in the interval [0,1]. Instance GM-8 was also used
in the computational experiments reported in [1]. Instances GM-5 and GM-8
have isolated nodes: two in the image graph of GM-5 and three in the model
graph of GM-8. Instances GM-5a and GM-8a are derived from them, by the
introduction of additional edges to connect the isolated nodes.

Instances GM-6 and GM-7 were provided by Perchant and Bengoetxea [12,
14] and built from real images. Instance GM-6 was built from magnetic resonance
images of a human brain, as depicted in Figure 4. Instance GM-7 was created
for the computational experiments reported in [14] from the 2D images given in
Figure 5. The image (a) was over-segmented in 28 regions (c) and compared

A Randomized Heuristic for Scene Recognition by Graph Matching 109

with a model with only 14 well defined regions (b). The model graph has 14
vertices and 27 edges, while the over-segmented image graph has 28 vertices
and 63 edges. Grey levels were used in the computation of node similarities, while
distances and adjacencies were used for the computation of edge similarities.

Fig. 4. Instance GM-6: (a) original image, (b) model, and (c) over-segmented image.

Fig. 5. Cut of a muscle (instance GM-7): (a) original 2D image, (b) model, and (c)
over-segmented image.

We summarize the characteristics of instances GM-5 to GM-9 in Table 1.
For each instance, we first give the number of nodes and edges of the model
and image graphs. We also give the optimal value obtained by the exact
integer programming formulation proposed by Duarte [8] using the mixed integer
programming solver CPLEX 9.0 and the associated computation time in seconds
on a 2.0 GHz Pentium IV computer (whenever available), considering exclusively
the vertex contribution to the objective function. In the last two columns, we
give the value of the solution obtained by the randomized construction
algorithm followed by the application of the extended local search procedure
LS+ and the total computation time in seconds, with the maximum number of

110 M.C. Boeres, C.C. Ribeiro, and I. Bloch

attemps to find a feasible solution set at MaxTrials = 500 and the maximum
number of feasible solutions built set at MaxSolutions = 100.

The results in Table 1 illustrate the effectiveness of the heuristics proposed
in this work. The non-bijective graph matching problem can be exactly solved
only for small problems by a state-of-the-art solver such as CPLEX 9.0. Even
the medium size instances GM-8 and GM-8a cannot be exactly solved. Only the
linear programming bounds can be computed in resonable computation times for
both of them. On the other hand, the combination of the randomized construc-
tion algorithm with the local search procedure provides high quality solutions in
very small computation times. Good approximate solutions for the medium size
instances GM-8 and GM-8a (which were not exactly solved by CPLEX) within
2.3% of optimality can be easily computed in processing times as low as one
second.

Table 2 illustrates the results obtained by the randomized construction al-
gorithm and the extended local search procedure for instances GM-5 to GM-9
with The maximum number of attemps to find a feasible solution was
fixed at MaxTrials = 500 and the maximum number of feasible solutions built
was fixed at MaxSolutions = 100. For each instance, we give the number of
attempts necessary to find the first feasible solution, the value of the first
feasible solution found, the number of attempts necessary to find the best among
the first 100 feasible solutions built, the value of the best feasible solution
found, and the average computation time per attempt in seconds. The last three
columns report statistics for the extended local search algorithm: the number of
local search iterations until local optimality, the value of the best solution
found, and the average computation time per iteration in seconds.

The computation time taken by each attempt of the randomized construc-
tion algorithm to build a feasible solution is very small, even for the largest
instances. The algorithm is very fast and finds the first feasible solution in only
a few attempts, except in the cases of the difficult instances with isolated nodes.
However, even in the case of the hard instance GM-5, the algorithm managed
to find a feasible solution after 297 attempts. For the other instances, the con-

A Randomized Heuristic for Scene Recognition by Graph Matching 111

struction algorithm found a feasible solution in very few iterations. Even better
solutions can be obtained if additional attempts are performed.

The local search algorithm improved the solutions built by the construction
algorithm for all test instances. The average improvement with respect to the
value of the solution obtained by the construction algorithm was approximately
3%.

6 Concluding Remarks

We formulated the problem of finding the best correspondence between two
graphs representing a model and an over-segmented image as a combinatorial
optimization problem.

A robust randomized construction algorithm was proposed to build feasible
solutions for the graph matching problem. We also proposed a local search algo-
rithm based on two neighborhood structures to improve the solutions built by
the construction algorithm. Computational results were presented to different
test problems. Both algorithms are fast and easily found feasible solutions to
realistic problems with up to 250 nodes and 1681 edges in the graph represent-
ing the over-segmented image. The local search algorithm consistently improved
the solutions found by the construction heuristic. Both algorithms can be easily
adapted to handle more complex objective function formulations.

Besides the quality of the solutions found, the randomized algorithm may also
be used as a robust generator of initial solutions for population methods such as
the genetic algorithm described in [14], replacing the low quality randomly gener-
ated solutions originally proposed. The construction and local search algorithms
can also be put together into an implementation of the GRASP metaheuristic
[16].

112 M.C. Boeres, C.C. Ribeiro, and I. Bloch

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

E. Bengoetxea, P. Larranaga, I. Bloch, A. Perchant, and C. Boeres. Inexact graph
matching by means of estimation distribution algorithms. Pattern Recognition,

35:2867-2880, 2002.
I. Bloch. Fuzzy relative position between objects in image processing: a morpho-
logical approach. IEEE Transactions on Pattern Analysis Machine Intelligence,

21:657–664, 1999.
I. Bloch. On fuzzy distances and their use in image processing under imprecision.
Pattern Recognition, 32:1873–1895, 1999.
I. Bloch, H. Maître, and M. Anvari. Fuzzy adjacency between image objects. Inter-

national Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 5:615–
653, 1997.
K.P. Chan and Y.S. Cheung. Fuzzy-attribute graph with application to chi-
nese character recognition. IEEE Transactions on Systems, Man and Cybernetics,

22:402–410, 1992.
A.D.J. Cross and E.R. Hancock. Relational matching with stochastic optimization.
In International Conference on Computer Vision, pages 365–370, 1995.
A.D.J. Cross, R.C. Wilson, and E.R. Hancock. Inexact graph matching using ge-
netic search. Pattern Recognition, 30:953–970, 1997.
A.R. Duarte. New heuristics and an exact integer programming formulation for

an inexact graph matching problem (in Portuguese). M.Sc. Dissertation, Catholic
University of Rio de Janeiro, 2004.
Y. El-Sonbaty and M. A. Ismail. A new algorithm for subgraph optimal isomor-
phism. Pattern Recognition, 31:205–218, 1998.
A. W. Finch, R. C. Wilson, and E. R. Hancock. Symbolic Graph matching with
the EM algorithm. Pattern Recognition, 31:1777–1790, 1998.
H. Moissinac, H. Maître, and I. Bloch. Markov random fields and graphs for
uncertainty management and symbolic data fusion in a urban scene interpreta-
tion. EUROPTO Conference on Image and Signal Processing for Remote Sensing,

2579:298–309, 1995.
A. Perchant. Morphisme de graphes d’attributs flous pour la reconnais-

sance structurelle de scènes. Doctorate thesis, École Nationale Supérieure des
Télécommunications, 2000.
A. Perchant and I. Bloch. A new definition for fuzzy attributed graph homo-
morphism with application to structural shape recognition in brain imaging. In
Proceedings of the 16th IEEE Conference on Instrumentation and Measurement

Technology, pages 402–410, 1999.
A. Perchant, C. Boeres, I. Bloch, M. Roux, and C.C. Ribeiro. Model-based scene
recognition using graph fuzzy homomorphism solved by genetic algorithm. In 2nd

IAPR-TC-15 Workshop on Graph-based Representations, pages 61–70, 1999.
H.S. Ranganath and L.J. Chipman. Fuzzy relaxaton approach for inexact scene
matching. Image and Vision Computing, 10:631–640, 1992.
M.G.C. Resende and C.C. Ribeiro. “Greedy randomized adaptive search proce-
dures”. Handbook of Metaheuristics (F. Glover and G. Kochenberger, eds.), pages
219-249, Kluwer, 2002.
A. Rosenfeld, R. Hummel, and S. Zucker. Scene labeling by relaxation operations.
IEEE Transactions on Systems, Man and Cybernetics, 6:420–433, 1976.
L. Schrage. A more portable FORTRAN random number generator. ACM Trans-

actions on Mathematical Software, 5:132-138, 1979.

A Randomized Heuristic for Scene Recognition by Graph Matching 113

19.

20.

21.

M. Singh and A. C. S. Chaudhury. Matching structural shape descriptions using
genetic algorithms. Pattern Recognition, 30:1451–1462, 1997.
A.K.C. Wong, M. You, and S.C. Chan. An algorithm for graph optimal monomor-
phism. IEEE Transactions on Systems, Man and Cybernetics, 20:628–636, 1990.
E.K. Wong. Model matching in robot vision by subgraph isomorphism. Pattern

Recognition, 25:287–303, 1992.

An Efficient Implementation of a Joint

Generation Algorithm*

E. Boros1, K. Elbassioni1, V. Gurvich1, and L. Khachiyan2

1 RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway, NJ
08854-8003, USA.

{boros,elbassio,gurvich}@rutcor.rutgers.edu
2 Department of Computer Science, Rutgers University, 110 Frelinghuysen Road,

Piscataway, NJ 08854-8003, USA.
leonid@cs.rutgers.edu

Abstract. Let be an integral box, and be a mono-
tone property defined over the elements of We consider the problems
of incrementally generating jointly the families and of all mini-
mal subsets satisfying property and all maximal subsets not satisfying
property when is given by a polynomial-time satisfiability oracle.
Problems of this type arise in many practical applications. It is known
that the above joint generation problem can be solved in incremental
quasi-polynomial time. In this paper, we present an efficient implemen-
tation of this procedure. We present experimental results to evaluate our
implementation for a number of interesting monotone properties

Introduction1

Let be an integral box, where are finite sets of integers.
For a subset let us denote by for some and

for some the ideal and filter generated by Any
element in is called independent of and we let denote the set of
all maximal independent elements for Call a family of vectors Sperner if
is an antichain, i.e. if no two elements are comparable in If is the Boolean
cube we get the well-known definitions of a hypergraph and its family of
maximal independent sets

Let be a monotone property defined over the elements of
if satisfies property i.e. then any such that also
satisfies We assume that is described by a polynomial satisfiability oracle

i.e. an algorithm that can decide whether a given vector satisfies
in time polynomial in and the size of the input description of Denote

This research was supported by the National Science Foundation (Grant IIS-
0118635). The third author is also grateful for the partial support by DIMACS,
the National Science Foundation’s Center for Discrete Mathematics and Theoretical
Computer Science.

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 114–128, 2004.
© Springer-Verlag Berlin Heidelberg 2004

*

An Efficient Implementation of a Joint Generation Algorithm 115

respectively by and the families of minimal elements satisfying property
and maximal elements not satisfying property Then it is clear that
for any monotone property Given a monotone property we consider the
problem of jointly generating the families and

Given a monotone property represented by a satisfi-

ability oracle and two explicitly listed vector families and
either find a new element in or prove that

these families are complete:

It is clear that for a given monotone property described by a satisfiability
oracle we can generate both and simultaneously by starting with

and solving problem for a total of
times, incrementing in each iteration either or by the newly found vector

according to the answer of the oracle until we have

In most practical applications, the requirement is to generate either the fam-
ily or the family i.e. we consider the separate generation problems:

Given a monotone property and a subfam-
ily (respectively, either find a new minimal

satisfying vector (respectively, maximal non-satisfying vector
or prove that the given partial list is complete: (respec-

tively,

Problems and arise in many practical applica-
tions and in a variety of fields, including artificial intelligence [14], game theory
[18,19], reliability theory [8,12], database theory [9,14,17], integer programming
[4,6,20], learning theory [1], and data mining [2,6,9]. Even though these two
problems may be NP-hard in general (see e.g. [20]), it is known that the joint
generation problem can be solved in incremental quasi-
polynomial time for any monotone property
described by a satisfiability oracle, where and
see [4,15]. In particular, there is a polynomial-time reduction from the joint gen-
eration problem to the following problem, known as dualization on boxes, see [4,
10,16]:

Given a family of vectors and a subset of its

maximal independent vectors, either find a new maximal independent vector
or prove that no such vector exists, i.e.,

The currently best known algorithm for dualization runs in time
see [4,15]. Unfortunately, this joint generation may not be an effi-

cient algorithm for solving either of or separately
for the simple reason that we do not control which of the families and

contains each new vector produced by the algorithm. Suppose we want
to generate and the family is exponentially larger than Then, if we

116 E. Boros et al.

are unlucky, we may get elements of with exponential delay, while getting
large subfamilies of (which are not needed at all) in between. However, there
are two reasons that we are interested in solving the joint generation problem
efficiently. First, it is easy to see [17] that no satisfiability oracle based algorithm
can generate in fewer than steps, in general:

Proposition 1. Consider an arbitrary algorithm A, which generates the family

by using only a satisfiability oracle for the monotone property Then,
for the algorithm to generate the whole family it must call the oracle at least

times.

Proof. Clearly, any monotone property can be defined by its value on the
boundary For any let us thus define the boundary of the
monotone property as follows:

Then is a monotone property different from and algorithm A must be able
to distinguish the Sperner families described by and for every

Second, for a wide class of Sperner families (or equivalently, monotone prop-
erties), the so-called uniformly dual-bounded families, it was realized that the
size of the dual family is uniformly bounded by a (quasi-)polynomial in
the size of and the oracle description:

for any non-empty subfamily An inequality of the form (1) would imply
that joint generation is an incrementally efficient way for generating the family

(see Section 2 below and also [5] for several interesting examples).

In [7], we presented an efficient implementation of a quasi-polynomial dual-
ization algorithm on boxes. Direct application of this implementation to solve
the joint generation problem may not be very efficient since each call to the dual-
ization code requires the construction of a new recursion tree, wasting therefore
information that might have been collected from previous calls. A much more
efficient approach, which we implement in this paper, is to use the same recur-
sion tree for generating all elements of the families and The details of
this method will be described in Sections 3 and 4. In Section 2, we give three
examples of monotone properties, that will be used in our experimental study.
Finally, Section 5 presents our experimental findings, and Section 6 provides
some conclusions.

An Efficient Implementation of a Joint Generation Algorithm 117

2 Examples of Monotone Properties

We consider the following three monotone properties in this paper:

Monotone systems of linear inequalities. Let be a given non-negative
real matrix, be a given r-vector, be a given non-negative
and consider the system of linear inequalities:

For let be the property that satisfies (2). Then the families
and correspond respectively to the minimal feasible and maximal infeasible
vectors for (2). It is known [4] that the family is (uniformly) dual bounded:

Minimal infrequent and maximal frequent sets in binary databases. Let
be a given binary matrix representing a set R of transactions

over a set of attributes V. To each subset of columns let us associate
the subset of all those rows for which in
every column The cardinality of S(X) is called the support of X. Given
an integer a column set is called if and otherwise,

is said to be For each set let be the property
that X is Then is a monotone property and the families and

correspond respectively to minimal infrequent and maximal frequent sets for
It is known [9] that

Problems and appear in data mining applica-
tions, see e.g. [17].

Sparse boxes for multi-dimensional data. Let be a set of points in and
be a given integer. A maximal is a closed interval

which contains at most points of in its interior, and which is maximal with
respect to this property (i.e., cannot be extended in any direction without strictly
enclosing more points of Define for and
consider the family of boxes

For let and let be the
chain ordered in the direction opposite to Consider the box

and let us represent every interval
as the vector where

This gives a monotone injective mapping (not all elements of define a
box, since is possible for Let us now define the monotone
property to be satisfied by an if and only if does not define a box, or
the box defined by contains at most points of S in its interior. Then the sets

118 E. Boros et al.

and can be identified respectively with the set of maximal (plus
a polynomial number of non-boxes), and the set of minimal boxes of
which contain at least points of in their interior. It is known [6] that the
family of maximal is (uniformly) dual-bounded:

The problem of generating all elements of has been studied in the ma-
chine learning and computational geometry literatures (see [11,13,23]), and is
motivated by the discovery of missing associations or “holes” in data mining ap-
plications (see [3,21,22]). [13] gives an algorithm, for solving this problem, whose
worst-case time complexity is exponential in the dimension of the given point
set.

3 Terminology and Outline of the Algorithm

Throughout the paper, we assume that we are given an integer box
where and are integers, and a mono-

tone property described by a polynomial time satisfiability oracle, for which
it is required to generate the families and The generation algorithm,
considered in this paper, is based on a reduction to a dualization algorithm of
[4], for which an efficient implementation was given in [7]. For completeness, we
briefly outline this algorithm. The problem is solved by decomposing it into a
number of smaller subproblems and solving each of them recursively. The input
to each such subproblem is a sub-box of the original box and two subsets

and of integral vectors, where and denote
respectively the subfamilies of minimal satisfying and maximal non-satisfying
vectors that have been generated so far. Note that, by definition, the following
condition holds for the original problem and all subsequent subproblems:

Given an element we say that a coordinate
is essential for (respectively, in the box if

(respectively, if < Let us denote by the set of essential
coordinates of an element Finally, given a sub-box and two
subsets and we shall say that is dual to in if

A key lemma, on which the algorithm in [4] is based, is that either (i) there

is an element with at most essential coordinates, where

and or (ii) one can easily find a new element
by picking each element independently at random from

for see subroutine Random solution() in the next section. In
case (i), one can decompose the problem into two strictly smaller subproblems as
follows. Assume, without loss of generality, that has at most essential

An Efficient Implementation of a Joint Generation Algorithm 119

coordinates. Then, by (6), there is an such that
This allows us to decompose the original problem into two subproblems

and where

and This way, the algorithm is guaranteed to reduce the cardinality
of one of the sets or by a factor of at least at each recursive step.
For efficiency reasons, we do two modifications to this basic approach. First,
we use sampling to estimate the sizes of the sets (see subroutine Est()
below). Second, once we have determined the new sub-boxes above, we
do not compute the active families and at each recursion step (this is
called the Cleanup step in the next section). Instead, we perform the cleanup
step only when the number of vectors reduces by a certain factor say 1/2,
for two reasons: First, this improves the running time since the elimination of
vectors is done less frequently. Second, the expected total memory required by
all the nodes of the path from the root of the recursion tree to a leaf is at most

which is linear in for constant

4 The Algorithm

We use the following data structures in our implementation:

Two arrays of vectors, F and G containing the elements of and re-
spectively.
Two (dynamic) arrays of indices, and containing the
indices of vectors from and (i.e. containing pointers to elements of
the arrays F and G), that appear in the current subproblem. These arrays
are used to enable sampling from the sets and and also to keep track
of which vectors are currently active, i.e, intersect the current box.
Two balanced binary search trees and built on the elements of

and respectively using lexicographic ordering. Each node of the tree
contains an index of an element in the array F (G). This

way, checking whether a given vector belongs to or not, takes
only time.

Minimization It takes as input a vector and returns a min-
imal vector in Such a vector can, for instance, be
computed by coordinate descent:

In the sequel, we let and We use the
following subroutines in our implementation:

120 E. Boros et al.

Note that each of the coordinate steps in the above procedure can be reduced
via binary search to at most satisfiability oracle calls for the
monotone property

More efficient procedures can be obtained if we specialize this routine to the
specific monotone property under consideration. For instance, for property
this operation can be performed in O(nr) steps as follows. For
let be the jth inequality of the system. We initialize and

for For the ith step of the coordinate descend
operation, we let and for where

Now consider property Given a set the operation
can be done in O(nr) by initializing and
for all and repeating, for the following two steps: (i)

(ii) if then 1. 2.
and 3. for each such that

For the monotone property and the operation can be
done in as follows. For each point let be the point with
components for and for
Initialize is in the interior of and

for all Repeat, for the following steps: (i)
and

(ii) for each such that Note that (i) can
be performed in steps assuming that we know the sorted order for the
points along each coordinate.

Maximization It computes, for a given vector a maximal
vector Similar to this problem can be done, in general, by
coordinate descent. For and this operation can be done in O(nr),

O(nr), and respectively.

Below, we denote respectively by and the maximum time taken
by the routines and on any point

Exhaustive Assuming check if there are no
other vectors in as follows. First, if then find an

such that where and (Such a coordinate is
guaranteed to exist by (6))
1. If there is a such that then let

2. Otherwise, if there is a such that then let

3. If then let

An Efficient Implementation of a Joint Generation Algorithm 121

In cases 1, 2 and 3, return either or depending on whether
or respectively.

4. Otherwise return FALSE (meaning that and are dual in

Second, if then check satisfiability of If then return
Else, if then let and return either FALSE or

depending on whether or not (this check can be done in
using the search tree Finally, if then check satisfiability of
If then return Else, if then let and
return either FALSE or depending on whether or not. This step takes

time.

Repeat the following for times,
where is a constant (say 10): Find a random point by picking
each coordinate randomly from then
let and if then return
If then let and if then return

If then return FALSE. This
step takes time, and is used to
check whether covers a large portion of

Count estimation. For a subset (or use sampling to estimate
the number of elements of (or that are active with

respect to the current box i.e. the elements of the set

This can be done as follows. For
pick elements at random, and let the random

variable Repeat this step independently
for a total of times to obtain estimates
and let This step requires time.

Set (respectively,
and return (respectively, This step takes

(respectively,

Now, we describe the implementation of procedure which is
called initially using and At the return of this call, the
families and which are initially empty, are extended respectively by the
elements in and Below we assume that is a constant, say 1/2.
The families and represent respectively the subfamilies of and that
are generated at each recursion tree node.

122 E. Boros et al.

The following result, regarding the expected running time of the algorithm,
is inherent from [7].

Proposition 2. The expected number of recursive calls until a new element

in is output, or procedure terminates

is

An Efficient Implementation of a Joint Generation Algorithm 123

However, as we shall see from the experiments, the algorithm seems to prac-
tically behave much more efficiently than indicated by Proposition 2. In fact, in
most of the experiments we performed, we got an almost everage linear delay
(in for generating a new point in

5 Experimental Results

We performed a number of experiments to evaluate our implementation on ran-
dom instances of the three monotone properties described in Section 2. The
experiments were performed on a Pentium 4 processor with 2.2 GHz of speed
and 512M bytes of memory. For each monotone property we have limited the
corresponding parameters defining the property to reasonable values such that
the algorithm completes generation of the sets and in reasonable time.
Using larger values of the parameters increases the output size, resulting in large
total time, although the time per output remains almost constant. For each case,
the experiments were performed 5 times, and the numbers shown in the tables
below represent averages.

Tables 1 and 2 show our results for linear systems with variables and
inequalities. Each element of the constraint matrix A and the right-hand side
vector is generated at random from 1 to 15. In the tables we show the output
size, the total time taken to generate the output and the average time per each
output vector. The parameter denotes the maximum value that a variable can
take. The last row of the table gives the ratio of the size of to the size of

for comparison with the worst case bound of (3). Note that this ratio is
relatively close to 1, making joint generation an efficient method for generating
both families and

124 E. Boros et al.

Tables 3 and 4 show the results for minimal infrequent/maximal frequent sets.
In the tables, and denote respectively the number of columns, the number
of rows of the matrix, and the threshold. Each row of the matrix was generated
uniformly at random. As seen from Table 3, for the bias between the
numbers of maximal frequent sets and minimal infrequent sets, for the shown
random examples, seem to be large. This makes joint generation an efficient
method for generating minimal infrequent sets, but inefficient for generating
maximal frequent sets for these examples. However, we observed that this bias
in numbers decreases as the threshold becomes larger. Table 4 illustrates this
on a number of examples in which larger values of the threshold were used.

Figures 1 and 2 show how the output rate changes for minimal fea-
sible/maximal infeasible solutions of linear systems and for minimal infre-
quent/maximal frequent sets, respectively. For minimal feasible solutions, we
can see that the output rate changes almost linearly as the number of outputs
increases. This is not the case for the maximal infeasible solutions, where the
algorithm efficiecy decreases (the generation problem for maximal infeasible so-
lutions is NP-hard). For minimal infrequent and maximal frequent sets, Figure 2
shows that the output rate increases very slowly. This illustrates somehow that
the algorithm practically behaves much better than the quasi-polynomial bound
stated in Proposition 2.

Table 5 shows the results for maximal sparse/minimal non-sparse boxes with
dimension for a set of random points, threshold and upper bound on the
coordinate of each point. As in the case of frequent sets, the bias between the
numbers and is large for but seems to decrease with larger values
of the threshold. In fact, the table shows two examples in which the number of
minimal non-sparse boxes is larger than the number of maximal sparse boxes.

An Efficient Implementation of a Joint Generation Algorithm 125

Fig. 1. Average time per output, as a
function of the number of outputs for
minimal feasible/maximal infeasible so-
lutions of linear systems, with and

We are not aware of any implementation of an algorithm for generating maximal
sparse boxes except for [13] which presents some experiments for and
Experiments in [13] indicated that the algorithm suggested there is almost linear
in the the number of points Figure 3 illustrates a similar behaviour exhibited
by our algorithm. In the figure, we show the total time required to generate all
the 2-dimensional maximal empty boxes, as the number of points is increased
from 10,000 to 60,000, for two different values of the upper bound

As mentioned in Section 4, it is possible in general to implement the pro-
cedures and using the coordinate decent method, but more
efficient implementations can be obtained if we specialize these procedures to
the monotone property under consideration. Figure 4 compares the two different
implementations for the property Clearly, the gain in performance increases
as the upper bound increases.

Let us finally point out that we have observed that the algorithm tends to run
more efficiently when the sets and become closer in size. This observation

Fig. 2. Average time per output, as a
function of the number of outputs for
minimal infrequent/maximal frequent
sets, with and

126 E. Boros et al.

Fig. 3. Total generation time as a func-
tion of the number of points for max-
imal boxes with and

Fig. 4. Comparing general versus spe-
cialized minimization for property
Each plot shows the average CPU
time/maximal empty box generated ver-
sus the upper bound for and

is illustrated in Figure 5 which plots the average time per output (i.e. total
time to output all the elements of divided by versus the ratio

This indicates that, when the elements of the sets and are more
uniformly distributed along the space, it becomes easier for the joint generation
algorithm to find a new vector not in the already generated sets and

Fig. 5. Average generation time as a func-
tion of the ratio for properties
and

An Efficient Implementation of a Joint Generation Algorithm 127

6 Conclusion

We have presented an efficient implementation for a quasi-polynomial algorithm
for jointly generating the families and of minimal satisfying and maximal
non-satisfying vectors for a given monotone property We provided experi-
mental evaluation of the algorithm on three different monotone properties. Our
experiments indicate that the algorithm behaves much more efficiently than its
worst-case time complexity indicates. The algorithm seems to run faster on in-
stances where the families and are not very biased in size. Finally, our
experiments also indicate that such non-bias in size is not a rare situation (for
random instances), despite the fact that inequalities of the form (3)-(5) may hold
in general.

References

M. Anthony and N. Biggs, Computational Learning Theory, Cambridge Univ.
Press, 1992.
R. Agrawal, T. Imielinski and A. Swami, Mining associations between sets of items
in massive databases, Proc. 1993 ACM-SIGMOD Int. Conf., pp. 207-216.
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A. I. Verkamo, Fast discovery
of association rules, in Advances in Knowledge Discovery and Data Mining (U. M.
Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy, eds.), pp. 307-328,
AAAI Press, Menlo Park, California, 1996.
E. Boros, K. Elbassioni, V. Gurvich, L. Khachiyan and K.Makino, Dual-bounded
generating problems: All minimal integer solutions for a monotone system of linear
inequalities, SIAM Journal on Computing, 31 (5) (2002) pp. 1624-1643.
E. Boros, K. Elbassioni, V. Gurvich and L. Khachiyan, Generating Dual-Bounded
Hypergraphs, Optimization Methods and Software, (OMS) 17 (5), Part I (2002),
pp. 749–781.
E. Boros, K. Elbassioni, V. Gurvich, L. Khachiyan and K. Makino, An Intersec-
tion Inequality for Discrete Distributions and Related Generation Problems, in
Automata, Languages and Programming, 30-th International Colloquium, ICALP

2003, Lecture Notes in Computer Science (LNCS) 2719 (2003) pp. 543–555.
E. Boros, K. Elbassioni, V. Gurvich and L. Khachiyan, An Efficient Implementation
of a Quasi-Polynomial Algorithm for Generating Hypergraph Transversals, in the

Proceedings of the 11th Annual European Symposium on Algorithms (ESA 2003),

LNCS 2832, pp. 556–567, Budapest, Hungary, September, 2003.
E. Boros, K. Elbassioni, V. Gurvich and L. Khachiyan, On enumer-
ating minimal dicuts and strongly connected subgraphs, to appear in
the 10th Conference on Integer Programming and Combinatorial Optimiza-

tion (IPCO X), DIMACS Technical Report 2003-35, Rutgers University,
http://dimacs.rutgers.edu/TechnicalReports/2003.html.
E. Boros, V. Gurvich, L. Khachiyan and K. Makino, On the complexity of generat-
ing maximal frequent and minimal infrequent sets, in 19th Int. Symp. on Theoreti-

cal Aspects of Computer Science, (STACS), March 2002, LNCS 2285, pp. 133–141.
J. C. Bioch and T. Ibaraki (1995). Complexity of identification and dualization of
positive Boolean functions. Information and Computation, 123, pp. 50–63.
B. Chazelle, R. L. (Scot) Drysdale III and D. T. Lee, Computing the largest empty
rectangle, SIAM Journal on Computing, 15(1) (1986) 550-555.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

128 E. Boros et al.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

C. J. Colbourn, The combinatorics of network reliability, Oxford Univ. Press, 1987.
J. Edmonds, J. Gryz, D. Liang and R. J. Miller, Mining for empty rectangles in
large data sets, in Proc. 8th Int. Conf. on Database Theory (ICDT), Jan. 2001,
Lecture Notes in Computer Science 1973, pp. 174–188.
T. Eiter and G. Gottlob, Identifying the minimal transversals of a hypergraph and
related problems. SIAM Journal on Computing, 24 (1995) pp. 1278-1304.
M. L. Fredman and L. Khachiyan, On the complexity of dualization of monotone
disjunctive normal forms, Journal of Algorithms, 21 (1996) pp. 618–628.
V. Gurvich and L. Khachiyan, On generating the irredundant conjunctive and
disjunctive normal forms of monotone Boolean functions, Discrete Applied Math-

ematics, 96-97 (1999) pp. 363-373.
D. Gunopulos, R. Khardon, H. Mannila and H. Toivonen, Data mining, hypergraph
transversals and machine learning, in Proc. 16th ACM-PODS Conf., (1997) pp.
209–216.
V. Gurvich, To theory of multistep games, USSR Comput. Math, and Math Phys.

13-6 (1973), pp. 1485–1500.
V. Gurvich, Nash-solvability of games in pure strategies, USSR Comput. Math,

and Math. Phys., 15 (1975), pp. 357–371.
E. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, Generating all maximal
independent sets: NP-hardness and polynomial-time algorithms, SIAM Journal on

Computing, 9 (1980), pp. 558–565.
B. Liu, L.-P. Ku and W. Hsu, Discovering interesting holes in data, in Proc. IJCAI,

pp. 930–935, Nagoya, Japan, 1997.
B. Liu, K. Wang, L.-F. Mun and X.-Z. Qi, Using decision tree induction for discov-
ering holes in data, in Proc. 5th Pacific Rim Int. Conf. on Artificial Intelligence,

pp. 182-193, 1998.
M. Orlowski, A new algorithm for the large empty rectangle problem, Algorithmica

5(1) (1990) 65-73.

Lempel, Even, and Cederbaum Planarity

Method

John M. Boyer1, Cristina G. Fernandes2*, Alexandre Noma2**, and
José C. de Pina2*

1 PureEdge Solutions Inc., 4396 West Saanich Rd., Victoria, BC V8Z 3E9, Canada.
jboyer@acm.org

2 University of São Paulo, Brazil.
{cris,noma,coelho}@ime.usp.br

Abstract. We present a simple pedagogical graph theoretical descrip-
tion of Lempel, Even, and Cederbaum (LEC) planarity method based on
concepts due to Thomas. A linear-time implementation of LEC method
using the PC-tree data structure of Shih and Hsu is provided and de-
scribed in details. We report on an experimental study involving this
implementation and other available linear-time implementations of pla-
narity algorithms.

1 Introduction

The first linear-time planarity testing algorithm is due to Hopcroft and Tar-
jan [10]. Their algorithm is an ingenious implementation of the method of Aus-
lander and Parter [1] and Goldstein [9]. Some notes to the algorithm were made
by Deo [7], and significant additional details were presented by Williamson [20,
21] and Reingold, Nievergelt, and Deo [16].

The second method of planarity testing proven to achieve linear time is due
to Lempel, Even, and Cederbaum (LEC) [13]. This method was optimized to
linear time thanks to the st-numbering algorithm of Even and Tarjan [8] and
the PQ-tree data structure of Booth and Lueker (BL) [2]. Chiba, Nishizeki, Abe,
and Ozawa [6] augmented the PQ-tree operations so that a planar embedding is
also computed in linear time.

All these algorithms are widely regarded as being quite complex [6,12,18].
Recent research efforts have resulted in simpler linear-time algorithms proposed
by Shih and Hsu (SH) [11,18,17] and by Boyer and Myrvold (BM) [4,5]. These
algorithms implement LEC method and present similar and very interesting
ideas. Each algorithm uses its own data structure to efficiently maintain relevant
information on the (planar) already examined portion of the graph.

The description of SH algorithm made by Thomas [19] provided us with the
key concepts to give a simple graph theoretical description of LEC method. This

* Research partially supported by PRONEX/CNPQ 664107/1997-4.
** Supported by FAPESP 00/03969-2.

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 129–144, 2004.
© Springer-Verlag Berlin Heidelberg 2004

130 J.M. Boyer et al.

description increases the understanding of BL, SH, and BM algorithms, all based
on LEC method.

Section 2 contains definitions of the key ingredients used by LEC method.
In Section 3, an auxiliary algorithm is considered. LEC method is presented in
Section 4 and an implementation of SH algorithm is described in Section 5. This
implementation is available at http://www.ime.usp.br/~coelho/sh/ and, as
far as we know, is the unique available implementation of SH algorithm, even
though the algorithm was proposed about 10 years ago. Finally, Section 6 reports
on an experimental study.

Frames, XY-Paths, XY-Obstructions and Planarity2

This section contains the definitions of some concepts introduced by Thomas [19]
in his presentation of SH algorithm. We use these concepts in the coming sections
to present both LEC method and our implementation of SH algorithm.

Let H be a planar graph. A subgraph F of H is a frame of H if F is induced
by the edges incident to the external face of a planar embedding of H (Figs. 1(a)
and 1(b)).

Fig. 1. (a) A graph H. (b) A frame of H. (c) A path P in a frame, (d) The complement
of P.

If G is a connected graph, H is a planar induced subgraph of G and F is a
frame of H, then we say that F is a frame of H in G if it contains all vertices
of H that have a neighbor in Neither every planar induced subgraph
of a graph G has a frame in G (Fig. 2(a)) nor every induced subgraph of a
planar graph G has a frame in G (Fig. 2(b)). The connection between frames
and planarity is given by the following lemma.

Lemma 1 (Thomas [19]). If H is an induced subgraph of a planar graph G
such that is connected, then H has a frame in G.

Let F be a frame of H and P be a path in F. The basis of P is the sub-
graph of F formed by all blocks of F which contain at least one edge of P. Let

be the blocks in the basis of P. For let
and, if is a cycle, let otherwise let The complement
of P in F is the path which is denoted by If
then (Figs. 1(c) and 1(d)).

Lempel, Even, and Cederbaum Planarity Method 131

Fig. 2. (a) Subgraphs of and induced by the solid edges have no frames.
(b) Subgraph induced by the solid edges has no frame in the graph.

Let W be a set of vertices in H and Z be a set of edges in H. A vertex
in H sees W through Z if there is a path in H from to a vertex in W with all
edges in Z. Let X and Y be sets of vertices of a frame F of H. A path P in F
with basis S is an XY-path (Fig. 3) if

(p1) the endpoints of P are in X;

(p2) each vertex of S that sees X through is in P;
(p3) each vertex of S that sees Y through is in
(p4) no component of contains vertices both in X and in Y.

Fig. 3. In (a), (b), (c), and (d), let P denote the thick path; its basis is shadowed.
(a) P is not an XY-path since it violates (p3). (b) P is an XY-path. (c) P is not an
XY-path since it violates (p2). (d) P is not an XY-path since it violates (p4).

132 J.M. Boyer et al.

There are three types of objects that obstruct an XY-path to exist. They
are called XY-obstructions and are defined as

a 5-tuple (C, where C is a cycle of F and and are
distinct vertices in C that appear in this order in C, such that and
see X through and and see Y through
a 4-tuple (C, where C is a cycle of F and and are
distinct vertices in C that see X and Y through
a 4-tuple where and and are distinct
components of such that contains vertices in X and in Y.

The existence of an XY -obstruction is related to non-planarity as follows.

Lemma 2 (Thomas [19]). Let H be a planar connected subgraph of a graph G

and be a vertex in such that and is connected.

Let F be a frame of H in G, let X be the set of neighbors of in and let Y

be the set of neighbors of in If F has an XY-obstruction

then G has a subdivision of or

Sketch of the proof: An XY-obstruction of type (o1) or (o3) indicates a
An XY-obstruction of type (o2) indicates either a

or a (Fig. 4).

3 Finding XY-Paths or XY-Obstructions

Let F be a connected frame and let X and Y be subsets of If F is a tree,
then finding an XY-path or an XY-obstruction is an easy task. The following
algorithm finds either an XY-path or an XY-obstruction in F manipulating a
tree that represents F.

Let be the set of blocks of a connected graph H and let T be the tree
with vertex set and edges of the form where and We
call T the block tree of H (Fig. 5) (the leaves in make the definition slightly
different than the usual). Each node of T in is said a C-node and each node
of T in is said a P-node.

Algorithm Central(F,X,Y). Receives a connected frame F and sub-
sets X and Y of and returns either an XY-path or an XY-obstruction
in F.

Let be the block tree of F. The algorithm is iterative and each iteration
begins with a subtree T of subsets and of and subsets W and Z of

The sets and are formed by the nodes of T that see X and Y through
respectively. The sets W and Z contain the P-nodes of that see

X and Y through respectively. At the beginning of the first iteration,
W = X and Z = Y. Each iteration consists of the

following:

(o1)

(o2)

(o3)

Lempel, Even, and Cederbaum Planarity Method 133

Fig. 4. Some situations with an XY-obstruction (C, of type (o2). The dashed
lines indicate paths. In is the only vertex in for

(a) Subdivision of coming from an XY-obstruction. (b) Subdivisions
of coming from an XY-obstruction. (c) Concrete example of an XY-obstruction
leading to a

Fig. 5. A graph and its block tree.

Case 1: Each leaf of T is in and T is a path.
Let R be the set of P-nodes of T.

For each C-node C of T, let and

Case 1A: Each C-node C of T has a path containing and internally
disjoint from

134 J.M. Boyer et al.

Let be the path in F obtained by the concatenation of the paths in
is a C-node of T}.

Let P be a path in F with endpoints in X, containing and containing
for each block C in the basis of P.

Return P and stop.
Case 1B: There exists a C-node C of T such that no path containing

is internally disjoint from
Let and be distinct vertices of C appearing in this order
in C, such that and are in and and are in
Return (C, and stop.

Case 2: Each leaf of T is in and there exists a node of T with degree
greater than 2.

Case 2A: is a C-node.
Let C be the block of F corresponding to
Let and be distinct P-nodes adjacent to in T.

Return (C, and stop.
Case 2B: is a P-node.

Let and be distinct C-nodes adjacent to in T.

Let and be components of such that is a block of

Return and stop.

Case 3: There exists a leaf of T not in
Let be the node of T adjacent to
Let
Let if is in otherwise
Let if is in otherwise
Let if is in and is a P-node; otherwise
Let if is in and is a P-node; otherwise
Start a new iteration with and in the roles of
T, W, and Z, respectively.

The execution of the algorithm consists of a sequence of “reductions” made by
Case 3 followed by an occurrence of either Case 1 or Case 2. At the beginning of
the last iteration, the leaves of T are called terminals. The concept of a terminal
node is used in a fundamental way by SH algorithm. The following theorem
follows from the correctness of the algorithm.

Theorem 1 (Thomas [19]). If F is a frame of a connected graph and X and Y
are subsets of then either there exists an XY-path or an XY-obstruction

in F.

Lempel, Even, and Cederbaum Planarity Method 135

4 LEC Planarity Testing Method

One of the ingredients of LEC method is a certain ordering of the
vertices of the given graph G such that, for the induced subgraphs

and are connected. Equivalently, G is connected
and, for vertex is adjacent to and for some and
such that A numbering of the vertices according to such an
ordering is called a LEC-numbering of G. If the ordering is such that is an
edge of the graph, the numbering is called an st-numbering [13]. One can show
that every biconnected graph has a LEC-numbering.

LEC method examines the vertices of a given biconnected graph, one by one,
according to a LEC-numbering. In each iteration, the method tries to extend a
frame of the subgraph induced by the already examined vertices. If this is not
possible, the method declares the graph is non-planar and stops.

Fig. 6. (a) A frame F and an XY-path P in thick edges, (b) F after moving the
elements of X to one side and the elements of Y to the other side of P. Squares mark
vertices in that do not see through where is the complement
and S is the basis of P. (c) F together with the edges with one endpoint in F and the
other in (d) A frame of

136 J.M. Boyer et al.

Method LEC(G). Receives a biconnected graph G and returns YES if G
is planar, and NO otherwise.

Number the vertices of G according to a LEC-numbering. Each iteration
starts with an induced subgraph H of G and a frame F of H in G. At the
beginning of the first iteration, H and F are empty. Each iteration consists of
the following:

Case 1: H = G.

Return YES e stop.
Case 2:

Let be the smallest numbered vertex in

there exists such that

Case 2A: There exists an XY-obstruction in F.

Return NO and stop.
Case 2B: There exists an XY -path P in F.

be the complement of P and let S be the basis
of P.
Let R be the set of vertices in that do not see through

(Figs. 6(a) and 6(b)).
be the graph resulting from the addition of and the edges

and to the graph F–R (Fig. 6(c)).
(Fig. 6(d)).

Start a new iteration with and in the roles of H and F respectively.

The following invariants hold during the execution of the method.

(lec1) H and are connected graphs;
(lec2) F is a frame of H in G.

These invariants together with Lemmas 1 and 2 and Theorem 1 imply the cor-
rectness of the method and the following classical theorem.

Theorem 2 (Kuratowski). A graph is planar if and only if it has no subdivi-
sion of or

Three of the algorithms mentioned in the introduction are very clever linear-
time implementations of LEC method. BL use an st-numbering instead of an
arbitrary LEC-numbering of the vertices and use a PQ-tree to store F. SH use
a DFS-numbering and a PC-tree to store F. BM also use a DFS-numbering and
use still another data structure to store F. One can use the previous description
easily to design a quadratic implementation of LEC method.

Let
Let

Let

Let

Let

Lempel, Even, and Cederbaum Planarity Method 137

5 Implementation of SH Algorithm

SH algorithm, as all other linear-time planarity algorithms, is quite complex to
implement. The goal of this section is to share our experience in implementing it.

Let G be a connected graph. A DFS-numbering is a numbering of the vertices
of G obtained from searching a DFS-tree of G in post-order. SH algorithm uses
a DFS-numbering instead of a LEC-numbering. If the vertices of G are ordered
according to a DFS-numbering, then the graph is connected, for

As a DFS-numbering does not guarantee that
is connected, if there exists a frame F of H and H is not connected, then F is also
not connected. Besides, to compute (if it exists) a frame of it is necessary
to compute an XY-path for each component of F that contains a neighbor of

Let be a vertex of F and C be a block of F containing and, if possible,
a higher numbered vertex. We say is active if sees through

PC-Tree

The data structure proposed by SH to store F is called a PC-tree and is here
denoted by T. Conceptually, a PC-tree is an arborescence representing the rel-
evant information of the block forest of F. It consists of P-nodes and C-nodes.
There is a P-node for each active vertex of F and a C-node for each cycle of F.
We refer to a P-node by the corresponding vertex of F. There is an arc from a
P-node to a P-node in T if and only if uv is a block of F. Each C-node has
a circular list, denoted with all P-nodes in its corresponding cycle of F,
in the order they appear in this cycle. This list starts by the largest numbered
P-node in it, which is called its head. The head of the list has a pointer to Each
P-node appears in at most one RBC in a non-head cell. It might appear in the
head cell of several RBCs. Each P-node has a pointer
to the non-head cell in which it appears in an RBC. This pointer is NULL if
there is no such cell. The name RBC extends for representative bounding cycle

(Figs. 7(a)-(c)).
Let be the rooted forest whose node set coincides with the node set of T

and the arc set is defined as follows. Every arc of T is an arc of Besides these
arcs, there are some virtual arcs: for every C-node there is an arc in from

to the P-node which is the head of and there is an arc to from all
the other P-nodes in (Fig. 7(d)). In the exposition ahead, we use on
nodes of T concepts such as parent, child, leaf, ancestral, descendant and so on.
By these, we mean their counterparts in

Forest is not really kept by the implementation. However, during each
iteration, some of the virtual arcs are determined and temporarily stored to
avoid traversing parts of the PC-tree more than once. So, each non-head cell
in an RBC and each C-node has a pointer to keep its virtual arc, when it is
determined. The pointer is NULL while the virtual arc is not known.

Values and
For each vertex of G, denote by the largest numbered neighbor of in G.
This value can be computed together with a DFS-numbering, and can be stored
in an array at the beginning of the algorithm.

138 J.M. Boyer et al.

Fig. 7. (a) A graph G, a DFS-numbering of its vertices and, in thick edges, a frame
F of G[1.. 11] in G. (b) Black vertices in frame F are inactive, (c) The PC-tree T for
F, with RBCs indicated in dotted, (d) Rooted tree corresponding to T; virtual arcs
are dashed.

For each node of T, is a descendant of in T}. For a
C-node of T, this number does not change during the execution of the algorithm.
On the other hand, for a P-node of T, this number might decrease because its set
of descendants might shrink when T is modified. So, in the implementation, the
value of for a C-node is computed and stored when is created. It is the
maximum over for all in the path in T corresponding to the XY-path in
F that originated One way to keep for a P-node is, at the beginning of
the algorithm, to build an adjacency list for G sorted by the values of and to
keep, during the algorithm, for each P-node of T, a pointer to the last traversed
vertex in its sorted adjacency list. Each time the algorithm needs to access
for a P-node it moves this pointer ahead on the adjacency list (if necessary)
until (1) it reaches a vertex which has as its parent, in which case is the
maximum between and or (2) it reaches the end of the list, in which
case

Traversal of the PC-tree

The traversal of the PC-tree T, inspired by Boyer and Myrvold [4,5], is done
as follows. To go from a P-node to a node which is an ancestral of in T,
one starts with and repeats the following procedure until If is a
P-node and is NULL, move up to its parent. If is a P-
node and is non-NULL, either its virtual arc is NULL or not.
If it is non-NULL, move to the C-node pointed by the virtual arc. Otherwise,
starting at search the RBC in an arbitrary direction until

let

Lempel, Even, and Cederbaum Planarity Method 139

either (1) the head of the RBC is reached or (2) a cell in the RBC with its virtual
arc non-NULL is reached or (3) a P-node such that is reached. If (3)
happens before (1), search the RBC, restarting at but in
the other direction, until either (1) or (2) happens. If (1) happens, move to
the C-node pointed by the head. If (2) happens, move to the C-node pointed
by the virtual arc. In any case, search all visited cells in the RBC again, setting
their virtual arcs to Also, set the virtual arc from to the head of its RBC.

In a series of moments, the implementation traverses parts of T. For each
node of T, there is a mark to tell whether it was already visited in this iteration
or not. By visited, we mean a node which was assigned to in the traversal
process described above. Every time a new node is included in T, it is marked as
unvisited. Also, during each phase of the algorithm where nodes are marked as
visited, the algorithm stacks each visited node and, at the end of the phase, un-
stacks them all, undoing the marks. This way, at the beginning of each iteration,
all nodes of T are marked as unvisited.

The same trick with a stack is done to unset the virtual arcs. When a virtual
arc for a node is set in the traversal, is included in a second stack and, at
the end of the iteration, this stack is emptied and all corresponding virtual arcs
are set back to NULL.

Terminals
The next concept, introduced by SH, is the key on how to search efficiently for
an XY-obstruction. A node of T is a terminal if

Because of the orientation of the PC-tree, one of the terminals from Section 4
might not be a terminal here. This happens when one of the terminals from
Section 4 is an ancestor in the PC-tree of all others. An extra effort in the
implementation is necessary to detect and deal with this possible extra terminal.

The first phase of an iteration of the implementation is the search for the
terminals. This phase consists of, for each neighbor of such that
traversing T starting at until a visited node is met. (Mark all nodes visited
in the traversal; this will be left implicit from now on.) On the way, if a node

such that is seen, mark the first such node as a candidate-terminal

and, if is marked as such, unmark it. The result from this phase is the list of
terminals for each component of F.

Search for XY- Obstructions
The second phase is the search for an XY-obstruction. First, if there are three
or more terminals for some component of F, then there is an XY-obstruction of
type either (o2) or (o3) in F (Case 2 of Central algorithm). We omit the details
on how to effectively find it because this is a terminal case of the algorithm.
Second, if there are at most two terminals for each component of F, then, for
each component of F with at least one terminal, do the following. If it has two
terminals, call them and If it has only one terminal, call it and let

(t1)
(t2)
(t3)

has a descendant in T that is a neighbor of in G;
no proper descendant of satisfies properties (t1) and (t2) simultaneously.

140 J.M. Boyer et al.

be the highest numbered vertex in this component. Test each C-node on the
path in T between and for an XY-obstruction of type (o1) (Case 1B of
Central algorithm). The test decides if the cycle in F corresponding to plays
or not the role of C in (o1). Besides these tests, the implementation performs
one more test in the case of two terminals. The least common ancestor of
and in T is tested for an XY-obstruction of type (o2), if is a C-node, or an
XY-obstruction of type (o3), if is a P-node. This extra test arises from the
possible undetected terminal.

To perform each of these tests, the implementation keeps one more piece
of information for each C-node Namely, it computes, in each iteration, the
number of P-nodes in that see X through where C is the cycle
in F corresponding to This number is computed in the first phase. Each C-
node has a counter that, at the beginning of each iteration, values 1 (to account
for the head of its RBC). During the first phase, every time an RBC is entered
through a P-node which was unvisited, the counter of the corresponding C-node
is incremented by 1. As a result, at the end of the first phase, each (relevant)
C-node knows its number.

For the test of a C-node the implementation searches starting
at the head of It moves in an arbitrary direction, stopping only when
it finds a P-node (distinct from the head) such that On the way,
the implementation counts the number of P-nodes traversed. If only one step is
given, it starts again at the head of and moves to the other direction
until it finds a P-node such that counting the P-nodes, as before.
If the counter obtained matches the number computed for that C-node in the
first phase, it passed the test, otherwise, except for two cases, there in an XY-
obstruction of type (o1). The first of the two cases missing happens when there
are exactly two terminals and is the lower common ancestor of them. The
second of the two cases happens when there is exactly one terminal and is
(potentially) the upper block in which the XY-path ends. The test required
in these two cases is slightly different, but similar, and might give raise to an
XY-obstruction of type (o1) or (o2). We omit the details.

PC-Tree update

The last phase refers to Case 2B in LEC method. It consists of the modification
of T according to the new frame. First, one has to add to T a P-node for
Then, parts of T referring to a component with no neighbor of remain the
same. Parts of T referring to a component with exactly one neighbor of are
easily adjusted. So we concentrate on the parts of T referring to components
with two or more neighbors of Each of these originates a new C-node. For
each of them, the second phase determined the basis of an XY-path, which is
given by a path Q in T. Path Q consists basically of the nodes visited during
the second phase. Let us describe the process in the case where there is only one
terminal. The case of two terminals is basically a double application of this one.

Call the new C-node being created. Start with its head cell, which
refers to and points back to Traverse Q once again, going up in T. For
each P-node in Q such that is NULL, if (here

Lempel, Even, and Cederbaum Planaxity Method 141

we refer to the possibly new value of as might have lost a child in the
traversal), then an RBC cell is created, referring to It is included in
and is set to point to it. For each P-node such that

is non-NULL, let be its parent in T. Concatenate to
a part of namely, the part of that was not used to

get to in any traversal in the second phase. To be able to concatenate without
traversing this part, one can use a simple data structure proposed by Boyer and
Myrvold [5,4] to keep a doubled linked list. (The data structure consists of the
cells with two indistinct pointers, one for each direction. To move in a certain
direction, one starts making the first move in that direction, then, to keep moving
in the same direction, it is enough to choose always the pointer that does not
lead back to the previous cell.)

During the traversal of Q, one can compute the value of Its value is
simply the maximum of over all node traversed. This completes the de-
scription of the core of the implementation.

Certificate
To be able to produce a certificate for its answer, the implementation carries
still more information. Namely, it carries the DFS-tree that originated the DFS-
numbering of the vertices and, for each C-node, a combinatorial description
of a planar embedding of the corresponding biconnected component where the
P-nodes in its RBC appear all on the boundary of the same face. We omit the
details, but one can find at http://www.ime.usp.br/˜coelho/sh/ the complete
implementation, that also certificates its answer.

6 Experimental Study

The main purpose of this study was to confirm the linear-time behavior of our
implementation and to acquire a deeper understanding of SH algorithm. Boyer
et al. [3] made a similar experimental study that does not include SH algorithm.

The LEDA platform has a planarity library that includes implementations
of Hopcroft and Tarjan’s (HT) and BL algorithms and an experimental study
comparing them. The library includes the following planar graph generator rou-
tines: maximal_planar_map and random_planar_map. Neither of them generates
plane maps according to the uniform distribution [14], but they are well-known
and widely used. The following classes of graphs obtained through these routines
are used in the LEDA experimental study:

random planar graphs;
graphs with a six vertices from a random planar graph are randomly
chosen and edges among them are added to form a
graphs with a five random vertices from a random planar graph are
chosen and all edges among them are added to form a
random maximal planar graphs;
random maximal planar graphs plus a random edge connecting two non-
adjacent vertices.

(G1)
(G2)

(G3)

(G4)
(G5)

142 J.M. Boyer et al.

Our experimental study extends the one presented in LEDA including our
implementation of SH algorithm made on the LEDA platform and an imple-
mentation of BM algorithm developed in C. We performed all empirical tests
used in LEDA to compare HT and BL implementations [15]. The experimen-
tal environment was a PC running GNU/Linux (RedHat 7.1) on a Celeron
700MHz with 256MB of RAM. The compiler was the gcc 2.96 with options
–DLEDA_CHECKING_OFF –0.

In the experiments [15, p. 123], BL performs the planarity test 4 to 5 times
faster than our SH implementation in all five classes of graphs above. For the
planar classes (G1) and (G4), it runs 10 times faster than our SH to do the
planarity test and build the embedding. On (G2) and (G3), it is worse than our
SH, requiring 10% to 20% more time for testing and finding an obstruction. On
(G5), it runs within 65% of our SH time for testing and finding an obstruction.
For the planarity test only, HT runs within 70% of our SH time for the planar
classes (G1) and (G4), but performs slightly worse than our SH on (G2) and
(G3). On (G5), it outperforms our SH, running in 40% of its time. For the
planar classes (G1) and (G4), HT is around 4 times faster when testing and
building the embedding. (The HT implementation in question has no option to
produce an obstruction when the input graph is non-planar; indeed, there is no
linear-time implementation known for finding the obstruction for it [22].) BM
performs better than all, but, remember, it is the only one implemented in C

and not in the LEDA platform. It runs in around 4% of the time spent by our
SH for testing and building the embedding and, for the non-planar classes, when
building the obstruction, it runs in about 15% of our SH time on (G2) and (G3)
and in about 10% of our SH time on (G5). (There is no implementation of BM
available that only does the planarity testing.) The time execution used on these
comparisons is the average CPU time on a set of 10 graphs from each class.

Figure 8 shows the average CPU time of each implementation on (a) (G1) for
only testing planarity (against BM with testing and building an embedding, as
there is no testing only available), (b) (G2) for testing and finding an obstruction
(HT is not included in this table, by the reason mentioned above), (c) (G4) for
testing and building an embedding, and (d) for testing and finding an obstruction
(again, HT excluded).

We believe the results discussed above and shown in the table are initial and
still not conclusive because our implementation is yet a prototype. (Also, in our
opinion, it is not fair to compare LEDA implementations with C implementa-
tions.)

Our current understanding of SH algorithm makes us believe that we can
design a new implementation which would run considerably faster. Our belief
comes, first, from the fact that our current code was developed to solve the
planarity testing only, and was later on modified to also produce a certificate
for its answer to the planarity test. Building an implementation from the start
thinking about the test and the certificate would be the right way, we believe, to
have a more efficient code. Second, during the adaptation to build the certificate
(specially the embedding when the input is planar) made us notice several details

Lempel, Even, and Cederbaum Planarity Method 143

Fig. 8. Empirical results comparing SH, HT, BL, and BM implementations.

in the way the implementation of the test was done that could be improved.
Even though, we decide to go forward with the implementation of the complete
algorithm (test plus certificate) so that we could understand it completely before
rewriting it from scratch. The description made on Section 5 already incorporates
some of the simplifications we thought of for our new implementation. It is our
intention to reimplement SH algorithm from scratch.

References

L. Auslander and S.V. Parter. On imbedding graphs in the plane. Journal of

Mathematics and Mechanics, 10:517–523, 1961.
K.S. Booth and G.S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ–tree algorithms. Journal of Computer and

Systems Sciences, 13:335–379, 1976.

1.

2.

144 J.M. Boyer et al.

J.M. Boyer, P.F. Cortese, M. Patrignani, and G. Di Battista. Stop minding your
P’s and Q’s: Implementing a fast and simple DFS-based planarity testing and
embedding algorithm. In G. Liotta, editor, Graph Drawing (GD 2003), volume
2912 of Lecture Notes in Computer Science, pages 25–36. Springer, 2004.
J.M. Boyer and W. Myrvold. On the cutting edge: Simplified planarity by
edge addition. Preprint, 29pp.
J.M. Boyer and W. Myrvold. Stop minding your P’s and Q’s: A simplified
planar embedding algorithm. Proceedings of the Tenth Annual AGM-SIAM Sym-

posium on Discrete Algorithms, pages 140–146, 1999.
N. Chiba, T. Nishizeki, A. Abe, and T. Ozawa. A linear algorithm for embedding
planar graphs using PQ–trees. Journal of Computer and Systems Sciences, 30:54–
76, 1985.
N. Deo. Note on Hopcroft and Tarjan planarity algorithm. Journal of the Associ-

ation for Computing Machinery, 23:74–75, 1976.
S. Even and R.E. Tarjan. Computing an st-numbering. Theoretical Computer

Science, 2:339–344, 1976.
A.J. Goldstein. An efficient and constructive algorithm for testing whether a graph
can be embedded in a plane. In Graph and Combinatorics Conf. Contract No.
NONR 1858-(21), Office of Naval Research Logistics Proj., Dep. of Math., Prince-
ton U., 2 pp., 1963.
J. Hopcroft and R. Tarjan. Efficient planarity testing. Journal of the Association

for Computing Machinery, 21(4):549–568, 1974.
W.L. Hsu. An efficient implementation of the PC-tree algorithm of Shih & Hsu’s
planarity test. Technical report, Inst. of Information Science, Academia Sinica,
2003.
M. Jünger, S. Leipert, and P. Mutzel. Pitfalls of using PQ-trees in automatic graph
drawing. In G. Di Battista, editor, Proc. 5th International Symposium on Graph

Drawing ‘97, volume 1353 of Lecture Notes in Computer Science, pages 193–204.
Springer Verlag, Sept. 1997.
A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of
graphs. In P. Rosenstiehl, editor, Theory of Graphs, pages 215–232, New York,
1967. Gordon and Breach.
K. Mehlhorn and St. Näher. The LEDA Platform of Combinatorial and Geometric

Computing. Cambridge Press, 1997.
A. Noma. Análise experimental de algoritmos de planaridade (in Portuguese).
Master’s thesis, Universidade de São Paulo, 2003.
http://www.ime.usp.br/dcc/posgrad/teses/noma/dissertation.ps.gz.

E.M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms: Theory and

Practice. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1977.
W.K. Shih and W.L. Hsu. A simple test for planar graphs. In Proceedings of

the International Workshop on Discrete Math, and Algorithms, pages 110–122.
University of Hong Kong, 1993.
W.K. Shih and W.L. Hsu. A new planarity test. Theoretical Computer Science,

223:179–191, 1999.
R. Thomas. Planarity in linear time, http://www.math.gatech.edu/~thomas/,
1997.
S.G. Williamson. Embedding graphs in the plane – algorithmic aspects. Ann.

Disc. Math., 6:349–384, 1980.
S.G. Williamson. Combinatorics for Computer Science. Computer Science Press,
Maryland, 1985.
S.G. Williamson. Personal Communication, August 2001.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A Greedy Approximation Algorithm for the

Uniform Labeling Problem Analyzed by a

Primal-Dual Technique*

Evandro C. Bracht, Luis A. A. Meira, and Flávio K. Miyazawa

Instituto de Computação, Universidade Estadual de Campinas, Caixa Postal 6176,
13084-971 Campinas, Brazil.

{evandro.bracht,meira,fkm}@ic.unicamp.br

Abstract. In this paper we present a new fast approximation algorithm
for the Uniform Metric Labeling Problem. This is an important classi-
fication problem that occur in many applications which consider the
assignment of objects into labels, in a way that is consistent with some
observed data that includes the relationship between the objects.
The known approximation algorithms are based on solutions of large
linear programs and are impractical for moderated and large size in-
stances. We present an algorithm analyzed by a
primal-dual technique which, although has factor greater than the pre-
vious algorithms, can be applied to large sized instances. We obtained
experimental results on computational generated and image processing
instances with the new algorithm and two others LP-based approxima-
tion algorithms. For these instances our algorithm present a considerable
gain of computational time and the error ratio, when possible to com-
pare, was less than 2% from the optimum.

1 Introduction

In a traditional classification problem, we wish to assign each of objects to one
of labels (or classes). This assignment must be consistent with some observed
data that includes pairwise relationships among the objects to be classified.
More precisely, the classification problem can be defined as follows: Let P be
a set of objects, L a set of labels, a weight function,

a distance function and an assignment cost
function. A labeling of P over L is a function The assignment cost

of a labeling is the sum and the separation cost of a labeling
is the sum The function indicates the strength

of the relation between two objects, and the function indicates the similarity
between two labels. The cost of a labeling is the sum of the assignment cost
and the separation cost. The Metric Labeling Problem (MLP) consists of finding

This work has been partially supported by MCT/CNPq Project ProNEx grant
664107/97-4, FAPESP grants 01/12166-3, 02/05715-3, and CNPq grants 300301/98-
7, 470608/01-3, 464114/00-4, and 478818/03-3.

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 145–158, 2004.
© Springer-Verlag Berlin Heidelberg 2004

*

146 E.C. Bracht, L.A.A. Meira, and F.K. Miyazawa

a labeling of the objects into labels with minimum total cost. Throughout this
paper, we denote the size of the sets P and L by and respectively.

In this paper we consider the Uniform Labeling Problem (ULP), a special
case of MLP, where the distance has a constant value if and 0
otherwise, for all

The MLP has several applications, many listed by Kleinberg and Tardos
[12]. Some applications occur in image processing [6,2,8], biometrics [1], text
categorization [3], etc. An example of application in image processing is the
restoration of images degenerated by noise. In this case, an image can be seen as
a grid of pixels, each pixel is an object that must be classified with a color. The
assignment cost is given by the similarity between the new and old coloring, and
the separation cost is given by the color of a pixel and the color of its neighbors.

The uniform and the metric labeling problems generalizes the Multiway Cut
Problem, a known NP-hard problem [7]. These labeling problems were first
introduced by Kleinberg and Tardos [12] that present an

algorithm for the MLP, and a 2-approximation algorithm for the
ULP using the probabilistic rounding technique over a solution of a linear pro-
gram. The associated LP has constraints and variables.

Chekuri et al. [4] developed a new linear programming formulation that is
better for the non-uniform case. However, for the uniform case it maintains a 2-
approximation factor and has bigger time complexity. This time complexity is a
consequence of solving a linear program with constraints and
variables.

Gupta and Tardos [10] present a formulation for the Truncated Labeling
Problem, a case of the MLP where the labels are positive integers and the
metric distance between labels and is given by the truncated linear norm,

where M is the maximum value allowed. They present
an algorithm that is a 4-approximation algorithm for the Truncated Labeling
Problem and a 2-approximation for the ULP. The algorithm generates a network
flow problem instance where the weights of edges come from the assignment and
separation costs of the original problem. The resulting graph has edges
where the Min Cut algorithm is applied times in or-
der to obtain where is the cost of the initial solution.

The LP-based and the Flow-based algorithms have a large time complexity,
which turns in impractical algorithms for moderate and large sized instances, as
in most applications cited above.

In this paper, we present a fast approximation algorithm for the Uniform
Metric Labeling Problem and prove that it is an algorithm.
We also compare the practical performance of this algorithm with the LP-based
algorithms of Chekuri et al. and Kleinberg and Tardos. Although this algorithm
has higher approximation factor, the solutions obtained have error ratio that
was less than 2% from the optimum solution, when it was possible to compare,
and the time improvement over the linear programming based algorithms is
considerable.

A Greedy Approximation Algorithm 147

In section 2, we present a proof for a greedy algorithm for the Set Cover
Problem via a primal dual analysis. Then we analyze the case when the greedy
choice is relaxed to an approximated one. In section 3, we present a general
algorithm for the Uniform Labeling Problem using an algorithm for the Set
Cover Problem. This last problem is solved approximately via an algorithm for
the Quotient Cut Problem[13]. In section 4, we compare the presented algorithm
with the LP-based algorithms. Finally, in section 5, we present the concluding
remarks.

2 A Primal-Dual Analysis for a Greedy Algorithm for
the Set Cover Problem

In this section, we present a primal-dual version for a greedy approximation
algorithm for the Set Cover Problem, including a proof of its approximation
factor. This proof is further generalized for the case when the greedy choice is
relaxed to an approximated one.

The Set Cover Problem is a well known optimization problem, that genera-
lizes many others. This problem consists of: Given a set of
elements, a family of subsets where each has a cost

The goal of the problem is to find a set
that minimizes and

In [5], Chvátal present a greedy algorithm for the
Set Cover Problem, where is the number of elements in the largest set in

and is the value of the harmonic function of degree This algorithm it-
eratively chooses the set with minimum amortized cost, that is the cost of the
set divided by the number of non-covered elements. Once a set is chosen to be
in the solution, all the elements in this set are considered as covered. In what
follows we describe this algorithm more precisely.

To show the primal dual algorithm for the Set Cover Problem, we first present
a formulation using binary variables for each set where if and only
if is chosen to enter in the solution. The formulation consists of finding that

148 E.C. Bracht, L.A.A. Meira, and F.K. Miyazawa

and the dual of the relaxed version consists of finding that

The greedy algorithm can be rewritten as a primal dual algorithm, with
similar set of events. The algorithm uses a set U containing the elements not
covered in each iteration, initially the set E, and a variable T with a notion of
time associated with each event. The algorithm also uses (dual) variables for
each element starting at zero, and increasing in each iteration for the elements
in U.

Lemma 1. The sequence of events executed by the Greedy algorithm and by the

Primal-Dual algorithm is the same.

Proof. Note that the value of when is equal to the amortized
cost. Since grows uniformly, it is clear that the algorithm, in each iteration,
choose a set with minimum amortized cost.

This lemma implies that all solutions obtained by the Greedy algorithm can
be analyzed by the primal dual techniques.

Lemma 2. and the time variable associated to the

item generated by the Primal-Dual algorithm. If then

Proof. In the moment just before the time all variables have the
same value, and they are all associated with uncovered elements. Suppose the
lemma is false. In this case, and, in an instant strictly before
the set would enter in the solution and all of its elements would have
that is a contradiction, since has at least one element greater or equal to
Therefore, the lemma is valid.

The Primal-Dual algorithm returns a primal solution Sol, with value
such that Note that the variable

may be dual infeasible. If there exists a value such that is dual feasible,
i.e. for each then, by the weak duality theo-
rem, The idea to prove the approximation factor is to find a
value for which is dual feasible.

Let

A Greedy Approximation Algorithm 149

Theorem 3. The Primal-Dual algorithm for the Set Cover Problem is an
algorithm, where is the size of the largest set in

Proof. Consider an arbitrary set with elements and cost
and let the time variable associated with element Without
loss of generality, assume that

If is a value such that is dual feasible then

thus a necessary condition is

Applying Lemma 2 for each value of we have

Adding the inequalities above we have

Therefore, when we obtain that is dual feasible.

Now, let us assume a small modification in the previous algorithm. Instead
of choosing, in step 3 of the greedy algorithm, the set with minimum amortized
cost, we choose a set with amortized cost at most times greater than the
minimum. That is, if is a set with minimum amortized cost then the following
inequality is valid

This modification can be understood, in the primal-dual version of the algorithm,
as a permission that the sum can pass the value of by at most
a factor of We denote by the algorithms with this modification.

Lemma 4. and the time variable associated with

the item generated by an algorithm. If then

Proof. Suppose the lemma is false. In this case, there exists an execution where
and, in an instant the set would enter in the solution,

which is a contradiction.

The following theorem can be proved analogously to Theorem 3.

Theorem 5. If is the size of the largest set in then any algorithm is an
algorithm.

Let

150 E.C. Bracht, L.A.A. Meira, and F.K. Miyazawa

A New Algorithm for the Uniform Labeling Problem

The algorithm for the ULP uses similar ideas presented by Jain et al. [11] for
a facility location problem. To present this idea, we use the notion of a star.
A star is a connected graph where only one vertex, denoted as center of the
star, can have degree greater than one. Jain et al. [11] present an algorithm that
iteratively select a star with minimum amortized cost, where the center of each
star is a facility.

In the Uniform Labeling Problem, we can consider a labeling as
a set of stars, each one with a label in the center. The algorithm for the ULP
iteratively select stars of reduced amortized cost, until all objects have been
covered.

Given a star for the ULP, where and we denote
by the cost of the star S, which is defined as

that is, the cost to assign each element of to plus the cost to separate each
element of with each element of We pay just the half of the separation
cost, because the other half will appear when we label the elements in

In the description of the main algorithm for the Uniform Labeling Problem,
we denote by the set of all possible stars of an instance, U the set of
unclassified objects, an instance for the Set Cover Problem, a
collection and a labeling. In the following, we describe the algorithm, called
GUL, using an approximation algorithm for the Set Cover Problem as parameter.

3

A Greedy Approximation Algorithm 151

3.1 Analysis of the Algorithm

To analyze the algorithm we use the following notation:

value, in the ULP, of the labeling
value, in the Set Cover Problem, of a collection

an optimum labeling for the ULP.
an optimum solution for the Set Cover Problem.

A collection related with a labeling
where is the star

Lemma 6. If is a solution returned by the algorithm GUL and the solution
returned by algorithm for the Set Cover Problem (at step 4) then

Proof.

The following inequalities are valid

and

The inequality (4) is valid, since the algorithm assign to if there exists
a set in such that and Thus, the cost also
appears in the right hand side of the inequality.

The argument for the inequality (5) is similar. If then, by the
execution of the algorithm, there must exist two sets and
such that and It is not allowed to occur bo th

and Therefore, if the cost and appears,
once or twice, in the left hand side of the inequality, it must appear, at least
once, in right hand side.

152 E.C. Bracht, L.A.A. Meira, and F.K. Miyazawa

Lemma 7.

Proof.

where inequality (6) is valid since is a solution for the Set Cover

3.2 Showing

In this section we show how to obtain a greedy algorithm for the Set Cover
Problem without the explicit generation of all possible sets. The algorithm basi-
cally generate a graph for each possible label and obtain a set with
reduced amortized cost.

Problem, but not necessarily with optimum value.

Theorem 8. If I is an instance for the ULP, is the labeling generated by the

algorithm GUL and is an optimum labeling for I then

where is the approximation factor of the algorithm given as a parameter.

Proof. Let be the solution returned by the algorithm (step 4 of the
algorithm GUL) and an optimal solution for the corresponding Set Cover
Instance. In this case, we have

where the inequality (7) is valid by Lemma 6, the inequality (8) is valid since
is found by a algorithm, and the inequality (9) is valid by

Lemma 7.
To obtain an algorithm for the ULP we need to present

an algorithm that is a for the Set Cover Problem. The
algorithm is based on an approximation algorithm for the Quotient Cut Problem,
which we describe in the following subsection.

A Greedy Approximation Algorithm 153

Consider a label We wish to find a set that minimize
where U is the set of unclassified objects in the iteration. Denote by the
complete graph with vertex set and edge costs defined as
follows:

In other words, the cost of an edge between the label and an object is the
assignment cost and the cost of an edge between two objects is the separation
cost.

Lemma 9. If is a cut of the cost of C,
is equal to the cost of the set to the Set

Cover Problem.

Proof. The lemma can be proved by counting. In the Set Cover Problem, is
equal to

that is equal to the cost of the cut C. See Figure 1.

Fig. 1. Example of a cut C that has the same cost for

The problem to find a set with smallest amortized cost in is a
specification of the Quotient Cut Problem, which can be defined as follows.

QUOTIENT CUT PROBLEM (QCP): Given a graph G, weights for each
edge and weights for each vertex find a cut
C that minimizes where and

154 E.C. Bracht, L.A.A. Meira, and F.K. Miyazawa

If we define a weight function for each vertex of as

then a cut returned by an al-
gorithm QC for the QCP, corresponds to a set that is at most

times bigger than the set with minimum amortized cost. An algorithm
can be implemented choosing this set. Thus, the following result follows from
Theorem 5.

Theorem 10. If there exists an algorithm for the Quotient
Cut Problem with time complexity then there exists a

algorithm for the ULP, with time complexity

The Quotient Cut Problem is NP-Hard and the best approximation algo-
rithm has an approximation factor of 4 due to Freivalds [9]. This algorithm has
experimental time complexity when the degree of each vertex is a small
constant and for dense graphs. Although this algorithm has polynomial
time complexity estimated experimentally, it is not proved to be of polynomial
time in the worst case.

Theorem 11. There is an 8 log-approximation algorithm for the ULP, with
time complexity estimated in

Note that the size of an instance I, size(I), is thus, the estimated
complexity of our algorithm is

4 Computational Experiments

We performed several tests with the algorithm GUL, the algorithm presented
by Kleinberg and Tardos [12], denoted by and the algorithm presented by
Chekuri et al. [4], denoted by The tests were performed over instances gener-
ated computationally and from image restoration problem. The implementation
of the algorithm, called at step 4 of the algorithm GUL, is such that it gener-
ates solutions for the Set Cover Problem without intersections between the sets.
We observe that the computational resources needed to solve an instance with
the presented algorithm are very small compared with the previous approxima-
tion algorithms cited above. All the implemented algorithms and the instances
are available under request. The tests were performed in an Athlon XP with 1.2
Ghz, 700 MB of RAM, and the linear programs were solved by the Xpress-MP
solver [14].

We started our tests setting for a series of values of
and creating random instances as follows:

where returns a random value between
0 and It must be clear that these are not necessary hard instances for the

A Greedy Approximation Algorithm 155

problem or for the algorithms. Unfortunately, we could not find hard instances
for the uniform labeling problem publically available.

The largest instance executed by the algorithm has 46 objects and 24
labels and the time required was about 16722 seconds. When applying the algo-
rithm GUL in the same instance, we obtained a result that is 0.25% worst in 7
seconds.

The largest instance solved by the algorithm has 80 objects and 40 labels
and the time required to solve it was about 15560 seconds. When applying the
GUL in the same instance, we obtained a result that is 1.01% worst in 73 seconds.

The major limitation to the use of the algorithm was the time complexity,
while the major limitation to the use of the algorithm was the memory and
time complexity. The times spent by the algorithms and are basically
the times to solve the corresponding linear programs. See Figure 2 to compare
the time of each algorithm.

Fig. 2. Comparing the experimental time of the implemented algorithms.

One can observe in Figure 2 that there is a strong reduction in the function
time associated with the GUL algorithm when achieves 290.

This behavior results from the following observation: when the separation
costs are relatively bigger than the assignment cost, there are better possibilities
that the size of the star become bigger, resulting in a less convergence time.
The expectation of the separation costs in our instances, for stars with a small
number of objects, is proportional to while the expectation of the connection
costs is kept constant. Thus, growing also grows the separation cost. The
average number of objects assigned by iteration just before the time reduction
is 1.2, that is near the worst case, while for the instant just after the decreasing,
the average number of objects assigned by interaction is 32.3.

156 E.C. Bracht, L.A.A. Meira, and F.K. Miyazawa

For all these instances, for which we could solve the linear program relaxation,
the maximum error ratio of the solutions obtained by the algorithm GUL and
the solution of the linear relaxation is 0.0127 (or 1.27% worse).

We also perform some tests with the algorithms GUL and for instances
generated by fixing or and varying the other. The results are presented
in Table 1. The maximum error ratio obtained is 1.3% and the time gained is
considerable. As expected, when the number of labels is fixed, the time gained
is more significant.

To illustrate the applicability of the primal dual algorithm in practical in-
stances, we have applied the algorithm for the image restoration problem with
an image degenerated by noise. The image has pixels in gray scale and dimension
60x60 with a total of 3600 pixels (objects) to be classified in black and white
colors. To define the assignment and separation cost, we consider that each color
is an integer between 0 and 255. The assignment cost of an object to a label
is given by where is the actual color of and
is the color assigned to the label The separation cost of an object and an
object is given by if is one of the nine direct
neighbors of in the other case.

The following images, presented in figures 3–6, present the results obtained
applying the primal dual algorithm. In each figure, the image in the left is ob-
tained inserting some noise and the image in the right is the image obtained
after the classification of the objects.

The time difference between images classification is because the separation
cost in images with less noise is bigger than in images with more noise. Thus

A Greedy Approximation Algorithm 157

Fig. 3. Image with 25% of noise. Time
needed is 288 seconds

Fig. 4. Image with 50% of noise. Time
needed is 319 seconds

Fig. 5. Image with 75% of noise. Time
needed is 511 seconds

Fig. 6. Image with 100% of noise. Time
need is 973 seconds

the average size of the stars chosen by the algorithm in images with less noise is
bigger, resulting in a minor convergence time.

Although these times are large for image processing applications, it illustrates
its performance and solution quality. In addiction, in real instances, it is possible
to define a small windows over greater images, and the processing time will
decrease. Clearly, the classification problem is more general and the primal dual
algorithm is appropriate for moderate and large size instances.

5 Concluding Remarks

We have presented a primal dual algorithm with approximation factor for
the Uniform Labeling Problem. We compared the primal dual algorithm with LP-
based approximation algorithms. The previous approximation algorithms for this
problem have high time complexity and are adequate only for small and moderate
size instances. The presented algorithm could obtain high quality solutions. The
average error ratio of the presented algorithm was less than 2% of the optimum
solution, when it was possible to compare, and it could obtain solutions for
moderate and large size instances.

We would like to thank K. Freivalds to made available his code for the Quo-
tient Cut Problem.

References

1.

2.

J. Besag. Spatial intteraction and the statistical analysis of lattice systems. J.

Royal Statistical Society B, 36, 1974.
J. Besag. On the statistical analysis of dirty pictures. J. Royal Statistical Society

B, 48, 1986.

158 E.C. Bracht, L.A.A. Meira, and F.K. Miyazawa

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categorization using
hyperlinks. In Proc. ACM SIGMOD, 1998.
C. Chekuri, S. Khanna, J.S. Naor, and L. Zosin. Approximation algorithms for
the metric labeling problem via a new linear programming formulation. In Proc.

of ACM-SIAM Symposium on Discrete Algorithms, pages 109–118, 2001.
V. Chvátal. A greedy heuristic for the set-covering problem. Math. of Oper. Res.,

4(3):233–235, 1979.
F.S. Cohen. Markov random fields for image modeling and analysis. Modeling and

Application of Stochastic Processes, 1986.
E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, and M. Yan-
nakakis. The complexity of multiterminal cuts. SIAM Journal on Computing,

23(4):864–894, 1994.
R. Dubes and A. Jain. Random field models in image analysis. J. Applied Statistics,

16, 1989.
K. Freivalds. A nondifferentiable optimization approach to ratio-cut partitioning.
In Proc. 2nd Workshop on Efficient and Experimental Algorithms, Lectures Notes
on Computer Science, LNCS 2647. Springer-Verlag, 2003.
A. Gupta and E. Tardos. Constant factor approximation algorithms for a class of
classification problems. In Proceedings of the 32nd Annual ACM Symposium on

the Theory of Computing, pages 125–131, 1998.
K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. Vazirani. Greedy facility
location algorithms analyzed using dual fitting with factor-revealing lp. Journal of

ACM, pages 795–824, 2003.
J. Kleinberg and E. Tardos. Approximation algorithms for classification problems
with pairwise relationships: Metric labeling and markov random fields. In Proceed-

ings of the 40th Annuall IEEE Symposium on Foundations of Computer Science,

pages 14–23, 1999.
T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. Journal of the ACM, 46 , No. 6:787–832,
Nov. 1999.
Dash Optimization. Xpress-MP Manual. Release 13. 2002.

Distributed Circle Formation for Anonymous

Oblivious Robots*

Ioannis Chatzigiannakis1, Michael Markou2, and Sotiris Nikoletseas1,2

1 Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece.
{ichatz,nikole}@cti.gr

2 Department of Computer Engineering and Informatics, University of Patras, 26500
Patras, Greece.

markou@ceid.upatras.gr

Abstract. This paper deals with systems of multiple mobile robots each
of which observes the positions of the other robots and moves to a new
position so that eventually the robots form a circle. In the model we
study, the robots are anonymous and oblivious, in the sense that they
cannot be distinguished by their appearance and do not have a common
x-y coordinate system, while they are unable to remember past actions.
We propose a new distributed algorithm for circle formation on the plane.
We prove that our algorithm is correct and provide an upper bound for
its performance. In addition, we conduct an extensive and detailed com-
parative simulation experimental study with the DK algorithm described
in [7]. The results show that our algorithm is very simple and takes con-
siderably less time to execute than algorithm DK.

1 Introduction, Our Results, and Related Work

Lately, the field of cooperative mobile robotics has received a lot of attention
from various research institutes and industries. A focus of these research and
development activities is that of distributed motion coordination, since it allows
the robots to form certain patterns and move in formation towards cooperating
for the achievement of certain tasks. Motion planning algorithms for robotic
systems made up from robots that change their position in order to form a given
pattern is very important and may become challenging in the case of severe
limitations, such as in communication between the robots, hardware constraints,
obstacles etc.

The significance of positioning the robots based on some given patterns may
be useful for various tasks, such as in bridge building, in forming adjustable but-
tresses to support collapsing buildings, satellite recovery, or tumor excision [12].

This work has been partially supported by the IST Programme of the European
Union under contract numbers IST-2001-33116 (FLAGS) and IST-2001-33135 (CRE-
SCCO).

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 159–174, 2004.
© Springer-Verlag Berlin Heidelberg 2004

*

160 I. Chatzigiannakis, M. Markou, and S. Nikoletseas

Also, distributed motion planning algorithms for robotic systems are potentially
useful in environments that are inhospitable to humans or are hard to directly
control and observe (e.g. space, undersea).

In this paper, we consider a system of multiple robots that move on the plane.
The robots are anonymous and oblivious, i.e. they cannot be distinguished by a
unique id or by their appearance, do not have a common x-y coordinate system
and are unable to remember past actions. Furthermore, the robots are unable
to communicate directly (i.e. via a wireless transmission interface) and can only
interact by observing each other’s position. Based on this model we study the
problem of the robots positioning themselves to form a circle.

Remark that the formation of a circle provides a way for robots to agree on a
common origin point and a common unit distance [15]. Such an agreement allows
a group of robots to move in formation [9]. In addition, formation of patterns and
flocking of a group of mobile robots is also useful for providing communication
in ad-hoc mobile networks [5,4,3].

Related Work. The problem of forming a circle having a given diameter by
identical mobile robots was first discussed by Sugihara and Suzuki [14]; they
proposed a simple heuristic distributed algorithm, which however forms an ap-
proximation of a circle (that reminds a Reuleaux triangle). In an attempt to
overcome this problem, Suzuki and Yamasihita [16] propose an algorithm under
which the robots eventually reach a configuration where they are arranged at
regular intervals on the boundary of a circle. However, to succeed in forming the
pattern, the robots must be able to remember all past actions. Lately, Défago
and Konogaya [7] designed an algorithm that manages to form a proper circle.

Under a similar model, in which robots have a limited vision, Ando et al. [1]
propose an algorithm under which the robots converge to a single point. Flochini
et al. [8] study the same problem by assuming that the robots have a common
sense of direction (i.e. through a compass) and without considering instantaneous
computation and movement.

We here note that there exist other models and problems for the development
of motion planning algorithms for robotic systems, e.g. [6,17]. In that model most
of the existing motion planning strategies rely on centralized algorithms to plan
and supervise the motion of the system components [6], while recently efficient
distributed algorithms have been proposed [17]. Our work is also inspired by
problems of coordinating pebble motion in a graph, introduced in [10].

Our Contribution. In this work we use and extend the system model stated
by Défago and Konogaya [7]. Under this model we present a new distributed
algorithm that moves a team of anonymous mobile robots in such a way that
a (non degenerate) circle is formed. The new algorithm presented here is based
on the observation that the Défago - Konogaya algorithm (DK algorithm) [7]
is using some very complex computational procedures. In particular, the use of
(computationally intensive) Voronoi diagrams in the DK algorithm is necessary
to avoid the very specific possibility in which at least two robots share at some

Distributed Circle Formation for Anonymous Oblivious Robots 161

time the same position and also have a common coordinate system. We remark
that in many cases (e.g. when the system is comprised of not too many robots
and/or it covers a large area) this possibility is not very probable. Based on
this remark, we provide a new algorithm, which avoids the expensive Voronoi
diagram calculations. Instead our algorithm just moves the robots towards the
closest point on the circumference of the smallest enclosing circle. We prove that
our algorithm is correct and that the robots travel shorter distance than when
executing the DK algorithm, i.e. the performance of the DK algorithm is an
upper bound for the performance our algorithm.

Furthermore we conduct a very detailed comparative simulation experimental
study of our algorithm and the DK algorithm, in order to validate the theoretical
results and further investigate the performance of the two algorithms. We remark
that this is the first work on implementing and simulating the DK algorithm.
The experiments show that the execution of our algorithm is very simple and
takes considerably less time to complete than the DK algorithm. Furthermore,
our algorithm seems to be more efficient (both with respect to number of moves
and distance travelled) in systems that are made up from a large number of
mobile robots.

We now provide some definitions that we will use in the following sections.

Smallest Enclosing Circle. The smallest enclosing circle of a set of points P

is denoted by SEC(P). It can be defined by either two opposite points, or by at
least three points. The smallest enclosing circle is unique and can be computed
in time [13].

Voronoi Diagram. The Voronoi diagram of a set of points
denoted by Voronoi(P), is a subdivision of the plane into cells, one for each
point in P. The cells have the property that a point in the plane belongs to
the Voronoi cell of point denoted if and only if, for any other
point where is the Euclidean distance
between two points and In particular, the strict inequality means that points
located on the boundary of the Voronoi diagram do not belong to any Voronoi
cell. More details on Voronoi diagrams can be found in [2].

2 The Model

Let be a set of extremely small robots, modelled as mobile pro-
cessors with infinite memory and a sensor to detect the instantaneous position
of all robots (i.e. a radar). Movement is accomplished with very high precision
in an unbounded two dimensional space devoid of any landmark. Each robot
uses its own local x-y coordinate system (origin, orientation, distance) and has
no particular knowledge of the local coordinate system of other robots, nor of a
global coordinate system. It is assumed that initially all robots occupy different
positions, although, due to their small size, two or more robots may occupy the

162 I. Chatzigiannakis, M. Markou, and S. Nikoletseas

same position at some time. We furthermore assume that no two robots are lo-
cated on the same radius of the Smallest Enclosing Circle, an assumption needed
to guarantee the correctness of our protocol. Note that due to the small size of
the robots, the probability of failure of our algorithm is very small (as can be
shown by a simple balls-and-bins argument).

Robots are anonymous in the sense that they are unable to uniquely identify
themselves. All robots execute the same deterministic algorithm, and thus have
no way to generate a unique identity for themselves; more generally, no random-
ization can be used and any two independent executions of the algorithm with
identical input values always yield the same output.

Time is represented as an infinite sequence of time instants and
at each time instant every robot is either active or inactive. Without loss of
generality we assume that at least one robot is active at every time instance. Each
time instant during which a robot becomes active, it computes a new position
using a given algorithm and moves towards that position. Conversely, when a
robot is inactive, it stays still and does not perform any local computation. We
use to denote the set of active robots at and call the sequence
an activation schedule. We assume that every robot becomes active at infinite
many time instants, but no additional assumptions are made on the timing with
which the robots become active. Thus needs satisfy only the condition that
every robot appears in infinitely many

Given a robot denotes its position at time according to some global
x-y coordinate system (which is not known to the robots) and is its initial
position. denotes the multiset of the position of all
robots at time

The algorithm that each robot uses is a function that is executed each
time becomes active and determines the new position of which must be
within one distance unit of the previous position, as measured by own co-
ordinate system. The arguments to consists of the current position of and
the multiset of points containing the observed positions of all robots at the cor-
responding time instant, expressed in terms of the local coordinate system of

It is assumed that obtaining the information about the system, computing
the new position and moving towards it is instantaneous. Remark that in this
paper we consider oblivious algorithms and thus is not capable of storing any
information on past actions or previous observations of the system. The model
we use is similar to that of by Défago and Konogaya [7], which in turn is based
on the model of Suzuki and Yamashita [16].

3 The Problem

In this paper we consider the problem of positioning a set of mobile robots in
such a way so that a circle is formed, with finite radius greater than zero. We

Distributed Circle Formation for Anonymous Oblivious Robots 163

call such a circle non degenerate. We also consider the more difficult problem in
which the robots are arranged at regular intervals on the boundary of the circle.

Problem 1 (Circle Formation). Given a group of robots with
distinct positions, located arbitrarily on the plane, arrange them to eventually
form a non degenerate circle.

Problem 2 (Uniform Circle Formation). Given a group of robots
with distinct positions, located arbitrarily on the plane, eventually arrange them
to eventually at regular intervals on the boundary of a non degenerate circle.

A possible way to solve the problem of forming a uniform circle is to form a
“simple” circle and then transform the robot configuration as follows.

Problem 3 (Uniform Transformation). Given a group of robots
with distinct positions, located on the boundaries of a non degenerate circle,
eventually arrange them at regular intervals on the boundary of the circle.

4 A New Circle Formation Algorithm

4.1 The Défago-Konogaya (DK) Algorithm

We first briefly describe the Défago-Konogaya circle formation algorithm (the
DK algorithm) that is described in [7]. The algorithm relies on two facts: (i)
the environment observed by all robots is the same, in spite of the difference
in local coordinate system and (ii) the smallest enclosing circle is unique and
depends only on the relative positions of the robots. Based on these two facts,
the algorithm makes sure that the smallest enclosing circle remains invariant
and uses it as a common reference.

Initially, given an arbitrary configuration in which all robots have distinct
positions, a sub-algorithm brings the system towards a configuration in
which all robots are located on the boundary of the circle (i.e. solves prob. 1).
Then, a second sub-algorithm converges towards a homogeneous dis-
tribution of the robots along that circumference, but it does not terminate
(i.e. solves prob. 3). Clearly, the combination of the above two sub-algorithms
solves the problem of Uniform Circle Formation (prob. 2).

Circle Formation Algorithm The main idea of the algorithm is very
simple: robots that are already on the boundary of the circle do not move and
robots that are in the interior of the circle are made to move towards the bound-
ary of the circle. When a robot that is located in the interior of the circle is
activated, it observes the positions of the other robots and computes the Voronoi
diagram. Given the boundaries of SEC(P) and the Voronoi cell where the robot

164 I. Chatzigiannakis, M. Markou, and S. Nikoletseas

Fig. 1. Illustration of algorithm executed by robot (in each case, moves
towards

is located, it can find itself in either one of three types of situations:
Case 1: When the circle intersects the Voronoi cell of the robot (see Fig. 1a),
the robot moves towards the intersection of the circle and the Voronoi cell.
Case 2: When the Voronoi cell of the robot does not intersect with the circle
(see Fig. 1b), the robot selects the point in its Voronoi cell which is nearest to
the boundary of the circle (or farthest from its center).
Case 3: Due to symmetry, there exist several points (see Fig. 1c). In this case,
all solutions being the same, one is selected arbitrarily. This is for instance done
by keeping the solution with the highest x-coordinate (and then y-coordinate)
according to the local coordinate system of the robot.

Uniform Transformation Algorithm Given that all robots are lo-
cated on the circumference of a circle, the algorithm converges toward
a homogeneous distribution of robots, but does not terminate deterministically.
The algorithm works as follows: when a robot becomes active, it con-
siders its two direct neighbors and and computes the midpoint
between them and moves halfway towards it.

The reason for moving halfway toward the midpoint rather than toward
the midpoint itself is to prevent situations where the system oscillates endlessly
between two different configurations when robots are perfectly synchronized. The
system would get stuck into an infinite cycle and hence be unable to progress
toward an acceptable solution.

The authors prove that algorithm is correct (Theorem 2, [7]) and solves
the problem of Circle Formation (prob. 1) and that algorithm converges
toward a configuration wherein all robots are arranged at regular intervals on
the boundary of a circle (Theorem 3, [7]) and thus solves the problem of Uniform
Transformation (prob. 3).

Distributed Circle Formation for Anonymous Oblivious Robots 165

4.2 Our Algorithm (“direct”)

We now present a new distributed algorithm (which we call direct) that moves
a set of oblivious mobile robots in such a way that a (non degenerate) circle is
formed . The new algorithm is motivated by the observation that the DK algo-
rithm is using some very complex (i.e. computationally intensive) procedures.
Indeed, computing the Voronoi diagram based on the locations of the robots
and then moving towards the smallest enclosing circle, involves computationally
complex procedures. Instead, our algorithm is much simple since it just moves
the robots towards the closest point on the circumference of the smallest en-
closing circle. In Fig. 2, we provide a pseudo-code description. In more details,
under algorithm direct a robot can find itself in either one of the following two
situations:
Case 1: Robot is located on the boundary of SEC(P); stays still.
Case 2: Robot is located inside SEC(P); selects the closest point of the
boundary of SEC(P) to its current position and moves towards this point.

Fig. 2. Formation of an (arbitrary) circle (code executed by robot

In order to prove the correctness of algorithm direct we work in a similar
way as in [7]. We first prove that when all robots are positioned on the bound-
ary of the smallest enclosing circle, the algorithm terminates (Lemma 1). We
then show that the robots that are not positioned on the boundary of SEC(P)
will always move towards the boundary (and not further away from SEC(P),
Lemma 2). Finally we show that a finite period of time is needed for those robots
that are positioned inside SEC(P) to move towards the boundary of SEC(P)
(Lemma 4).

Lemma 1. Under Algorithm direct, all configurations in which the smallest en-
closing circle passes through all robots are stable.

166 I. Chatzigiannakis, M. Markou, and S. Nikoletseas

Proof. In such configurations, it is Thus condi-
tion 2 in the pseudo-code description is satisfied for all robots, thus every robot
stays still (line 4) and the total configuration is stable.

Lemma 2. No robot moves to a position further away from SEC(P) (than its
current position).

Proof. Under algorithm direct, robots move only at lines 4 and 9. Let us consider
each case for some arbitrary robot

At line 4, stays still, so it obviously does not move towards the center.
At line 9, moves from the interior of the circle toward a point located on
the boundary of the circle. So, actually progresses away from the center.

Thus, the robot is unable to move further away (i.e. towards the circle center)
from the boundary of the smallest enclosing circle in any of the two cases.

Lemma 3. There exists at least one robot in the interior of SEC(P) that can
progress a non null distance towards SEC(P).

Proof. Under algorithm direct the motion of the robots that are located in the
interior of the smallest enclosing circle, is not blocked by other robots, since
each robot’s movement in our algorithm is independent of the positions of other
robots. Therefore, at any given time instance robot that is active and is
located in the interior of the smallest enclosing circle, will move towards the
boundary of the circle.

Thus, if a set of robots is located in the interior of SEC(P) and at least
one robot is active, there exists at least one robot (an active one) in the interior
of SEC(P) that can progress a non null distance towards SEC(P). This hence
proves the lemma.

Lemma 4. All robots located in the interior of SEC(P) reach its boundary
after a finite number of activation steps.

Proof. By Lemma 2 no robot ever moves backwards. Let us denote by the
set of all robots located in the interior of SEC(P). By Lemma 3, there is at least
one robot that can reach SEC(P) in a finite number of steps. Once
has reached SEC(P), it does not belong to anymore. So by Lemma 3, there
must be another robot in that can reach SEC(P) in a finite number of steps.
Since there is a finite number of robots in P, there exists some finite time after
which all robots are located on the boundary of the smallest enclosing circle
SEC(P).

1.
2.

Distributed Circle Formation for Anonymous Oblivious Robots 167

Theorem 1. Algorithm direct solves the problem of Circle Formation (prob. 1).

Proof. By Lemma 4, there is a finite time after which all robots are located
on the smallest enclosing circle, and this configuration is stable (by Lemma 1).
Consequently, algorithm direct solves the Circle Formation problem.

Corollary 1. The combination of functions and solves the
problem of Uniform Circle Formation (prob. 2).

Remark 1. Corollary 1 assumes that no two robots end-up at the same circle
position after executing This is in fact guaranteed in our model, since no
two robots are initially located exactly on the same radius. Note however that
this modelling assumption is not very restrictive. Indeed the probability of such
an event is upper bounded by

where is the number of “different” radiuses and is the number of robots.
Clearly, when tends to infinity (due to the small size and high precision of
robots) then this upper bound tends to 0.

We now provide a comparison of the performance of our algorithm to that
of the DK algorithm. More specifically, we show that the distance covered by
the robots when executing algorithm direct is at most the distance covered when
executing algorithm DK. This is the initial intuition that led us to the design of
the new algorithm.

Fig. 3. Distance comparison of next position under the two algorithms

168 I. Chatzigiannakis, M. Markou, and S. Nikoletseas

Theorem 2. A robot that executes algorithm direct covers distance less or
equal to the distance covered by when executing function of algorithm
DK, given that the initial conditions of the system are identical. In other words,
the distance covered by when executing is an upper bound for the dis-
tance covered by when executing algorithm direct.

Proof. Let be a robot positioned at point A in the plane which is inside the
boundaries of SEC(P) (see Fig. 3a) and is executing algorithm direct. When
is activated, it will move on the line that connects the center of SEC(P) (point
c) and A. Regardless of the number of steps that will be required in order to
reach the boundary of the circle, will keep moving along the line cA. Let B

the point where cA intersects SEC(P). Therefore the distance covered by is
equal to

Now let assume that is executing function of algorithm DK. When
is activated, it will start moving away from A towards a point located on

the boundary of SEC(P), i.e. not necessarily on the line AB.

Let C be a circle centered on A having radius equal to We observe that
any point (other than B) that lies on the boundary of SEC(P) is positioned
outside the boundary of C and thus, based on the definition of the circle, further
from the center of C (i.e. A). Therefore

In the case when is moving towards after first passing through a point
D outside the C circle, its route will clearly greater length than (by the
triangle inequality) and thus greater than AB. For instance, considering the
example of Fig. 3b, it holds that:

Thus, if follows any other path than AB in order to reach the boundary of
SEC(P), it will cover grater distance, which proves the theorem.

5 Experimental Evaluation

In order to evaluate the performance of the two protocols and further investigate
their behavior we carried a comparative experimental study. All of our imple-
mentations follow closely the protocols described above and the simulation en-
vironment that we developed is based on the model presented in section 2. They
have been implemented as C++ classes using several advanced two-dimensional
geometry data types and algorithms of LEDA [11]. The experiments were con-
ducted on a Linux box (Mandrake 8.2, Pentium III at 933Mhz, with 512MB
memory at 133Mhz) using g++ compiler ver.2.95.3 and LEDA library ver.4.1.

In order to evaluate the performance of the above protocols we define a set
of efficiency measures which we use to measure the efficiency of each protocol
considered, for each problem separately. We start by defining the average number
of steps performed by each robot, i.e. the total number of steps performed by
robot when executing function and then calculate the average number of
steps dividing by the number of robots. More formally this is defined as follows:

Distributed Circle Formation for Anonymous Oblivious Robots 169

Definition 1. Let be the total number of steps performed by robot when

executing function Let be the average number of steps

required for function to form a given pattern, where is the number of robots
in the system.

Although provides a way to compare the performance of the two pro-
tocols, we cannot use the total number of steps for measuring the time complexity
of a formation algorithm since a robot may remain inactive for an unpredictable
period of time. An alternative measure, also proposed in [16], is the total distance
that a robot must move to form a given pattern.

Definition 2. Let be the total distance covered by robot when executing

function Let be the average distance required for function
to form a given pattern, where is the number of robots in the system.

Finally, another important efficiency measure is the total time of execution
required by function to form a given pattern. The computational complexity is
a very important efficiency measure since formation algorithms are executed in
real time and the computational power of the mobile modules can be a limiting
factor. Although the function is executed by each robot in a distributed fashion,
we consider the overall time required by the robots until the given pattern is
formed. Remark that when calculating the execution of function we assume
that the motion of the robots takes negligible time (i.e. the motion of the robots
is instantaneous).

Definition 3. Let be the execution time required by robot to execute
function Let be the total execution time required for function

to form a given pattern, where is the number of robots in the system.

Based on the above, we start our experimentation by considering the effect
of the dimensions of the Euclidean space where the mobile robots move on the
performance of the two algorithms. More specifically we use a fixed number
of mobile robots (100) on an Euclidian plane of dimensions and
X = Y. The robots are positioned using a random uniform distribution. Each
experiment is repeated for at least 100 times in order to get good average results.

Figure 4 depicts the average number of steps and average distance travelled
under the two algorithms for the circle formation problem (i.e. the first phase).
We observe that the performance of the two algorithms is more or less linear in
the dimensions of the plane. Actually, it seems that the gradient of the lines is
similar for both algorithms. It is evident that algorithm direct manages to form
a circle requiring slightly fewer number of steps than the DK algorithm and the
robots move in a way such that less distance is covered. This result verifies the
theoretical upper bound of Theorem 2.

170 I. Chatzigiannakis, M. Markou, and S. Nikoletseas

Fig. 4. Circle Formation: Evaluating the performance for various Plane Dimensions

The results of the second phase of the algorithm, i.e. for the uniform trans-

formation problem, are shown in Fig. 5 for the same efficiency measures. In this
phase, the DK algorithm is performing substantially better regarding the average
number of steps while the robots cover slightly less distance than in algorithm
direct. Again we observe that the performance of the two algorithms is more or
less linear in the dimensions of the plane.

In Fig. 6 we get the combination of the results for the first and second phase,
i.e. when considering the uniform circle formation problem. First, we observe that
the average number of steps performed by the robots (see Fig. 6a) in the second
phase is dominating the overall performance of the two algorithms.
Thus, the DK algorithm manages to form a uniform circle with a much smaller
average number of steps per robot. However, regardless of the number of steps,
under both algorithms the robots seem to cover similar distances (see Fig. 6b).

Figure 10 depicts the total time required to execute each algorithm for both
phases. Clearly, algorithm direct executes in significantly less time and actually
the graph suggests that it takes about 60 times less than the DK algorithm. It is
evident that algorithm direct is very simple to execute making the total execution
time almost independent from the plane dimensions while the execution time of
the DK algorithm seems to be linear to the plane dimensions.

In the second set of experiments we investigate the performance of the two
algorithms as the number of mobile robots increases while
keeping the dimensions of the Euclidean plane fixed (X = Y = 20); that is,
we investigate the effect of the density of robots on the performance of the two
algorithms.

Figure 7a depicts the average number of steps as the density of robots in-
creases for the first phase of the two algorithms (i.e. the circle formation prob-
lem). The graph shows that the performance of the DK algorithm, in terms of
average number of steps, is linear in the total number of mobile robots. On the
other hand, algorithm direct seems to be unaffected by this system parameter,
especially when This threshold behavior of the two algorithms is also
observed in Fig. 7b. For low densities of robots, the average distance increases

Distributed Circle Formation for Anonymous Oblivious Robots 171

Fig. 5. Uniform Transformation: Evaluating the performance for various Plane Di-
mensions

Fig. 6. Uniform Circle Formation: Evaluating the performance for various Plane Di-
mensions

slowly with until a certain number of robots is reached when no
further increase is observed. Again, we observe that algorithm direct manages
to form a circle requiring the robots to move in a way such that less distance is
covered which verifies the theoretical upper bound of Theorem 2.

Regarding the second phase, in figure 8a we observe that both algorithms
require a high number of steps, which, interestingly, decreases as the density
of robots increases. However, for the DK algorithm, when the number of robots
crosses the value the average number of steps starts to increase linearly
to the number of robots that make up the system. On the other hand, when

the performance of algorithm direct seems to remain unaffected by the
density of the robots. As a result, when the two algorithms achieve
the same performance, while for algorithm direct outperforms the DK
algorithm.

The average distance covered by the robots under the two different algo-
rithms, as the density of the system increases is shown in figure 8b. In this
graph we observe that the two algorithms have a different behavior than that

172 I. Chatzigiannakis, M. Markou, and S. Nikoletseas

Fig. 7. Circle Formation: Evaluating the performance as the number of Mobile Robots
increases

in the first phase. More specifically, initially the performance of the algorithms
drops very fast as the density of the system increases until a certain value is
reached when the performance starts to increase linearly with
Furthermore, taking into account the statistical error of our experiments, Fig. 8b
suggests that when the robots execute algorithm direct they travel about 5% less
distance than when executing algorithm DK.

Fig. 8. Uniform Transformation: Evaluating the performance as the number of Mobile
Robots increases

When considering the uniform circle formation problem (i.e. for both phases
of the algorithms) it is clear that the overall behavior of the two algorithm is
dominated by the second phase (see Fig. 9a). It seems that algorithm direct

requires a constant number of steps when while the DK algorithm’s
performance is linear to the number of mobile robots that make up the system.
As for the average distance covered, again, the behavior of the algorithms is
dominated by the second phase. Fig. 9b follows the same pattern as in Fig. 8b.

Finally, Fig. 11 depicts the overall time required by the robots to execute
each algorithm. In this figure we clearly see that the DK algorithm has a very

Distributed Circle Formation for Anonymous Oblivious Robots 173

poor performance as the density of the robots in the system increases. On the
other hand, the performance of algorithm direct is independent from the number
of robots and is clearly more suitable for systems comprised of very large number
of robots.

Fig. 9. Uniform Circle Formation: Evaluating the performance as the number of Mobile
Robots increases

Fig. 10. Uniform Circle Formation: To-
tal Execution Time (avgT) vs. Plane Di-
mensions

Fig. 11. Uniform Circle Formation: To-
tal Execution Time (avgT) as the number
of Mobile Robots increases

6 Closing Remarks

We presented a new algorithm for the problem of circle formation for systems
made up from anonymous mobile robots that cannot remember past actions. We
provided a proof of correctness and provided an upper bound on its performance.
The experiments show that the execution our algorithm is very simple and takes
considerably less time to complete than the DK algorithm and in systems that
are made up from a large number of mobile robots, our algorithm is more efficient
than DK (with respect to number of moves and distance travelled by the robots).

174 I. Chatzigiannakis, M. Markou, and S. Nikoletseas

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

H. Ando, I. Suzuki, and M. Yamashita, Distributed memoryless point convergence

algorithm for mobile robots with limited visibility, IEEE Trans, on Robotics and
Automation 15 (1999), no. 5, 818–828.
F. Aurenhammer, Voronoi diagrams - a survey of a fundamental geometric data

structure, ACM Comput. Surv. 23 (1991), no. 3, 345–405.
I. Chatzigiannakis, Design and analysis of distributed algorithms for basic commu-

nication in ad-hoc mobile networks, Ph.D. dissertation, Dept. of Computer Engi-
neering and Informatics, University of Patras, Greece, May 2003.
I. Chatzigiannakis, S. Nikoletseas, and P. Spirakis, On the average and worst-case

efficiency of some new distributed communication and control algorithms for ad-

hoc mobile networks, 1st ACM International Annual Workshop on Principles of
Mobile Computing (POMC 2001), 2001, pp. 1–19.
I. Chatzigiannakis, S. Nikoletseas, and P. Spirakis, Distributed communication al-

gorithms for ad hoc mobile networks, ACM Journal of Parallel and Distributed
Computing (JPDC) 63 (2003), no. 1, 58–74, Special issue on Wireless and Mobile
Ad-hoc Networking and Computing, edited by A. Boukerche.
G. Chirikjian, Kinematics of a metamorphic robotic system, IEEE International
Conference on Robotics and Automation, 1994, pp. 449–455.
X. Défago and A. Konagaya, Circle formation for oblivious anonymous mobile

robots with no common sense of orientation, 2nd ACM International Annual Work-
shop on Principles of Mobile Computing (POMC 2002), 2002.
P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer, Gathering of asyn-

chronous oblivious robots with limited visibility, 10th International Symposium on
Algorithms and Computation (ISAAC 1999), Springer-Verlag, 1999, Lecture Notes
in Computer Science, LNCS 1741, pp. 93–102.
V. Gervasi and G. Prencipe, Flocking by a set of autonomous mobile robots, Tech.
report, Dipartmento di Informatica, Università di Pisa, October 2001, TR-01-24.
D. Kornhauser, G. Miller, and P. Spirakis, Coordinating pebble motion on graphs,

the diameter of permutation groups, and applications, 25th IEEE Annual Sympo-
sium of Foundations of Computer Science (FOCS 1984), 1984, pp. 241–250.
K. Mehlhorn and S. Näher, LEDA: A platform for combinatorial and geometric

computing, Cambridge University Press, 1999.
A. Pamacha, I. Ebert-Uphoff, and G. Chirikjian, Useful metrics for modular robot

motion planning, Transactions on Robotics and Automation 13 (1997), no. 4, 531–
545.
S. Skyum, A simple algorithm for computing the smallest enclosing circle, Infor-
mation Processing Letters 37 (1991), no. 3, 121–125.
K. Sugihara and I. Suzuki, Distributed motion coordination of multiple mobile

robots, IEEE International Symposium on Intelligence Control, 1990, pp. 138,143.
I. Suzuki and M. Yamashita, Agreement on a common coordinate system by a

group of mobile robots, Dagstuhl Seminar on Modeling and Planning for Sensor-
Based Intelligent Robots (Dagstuhl, Germany), September 1996.
I. Suzuki and M. Yamashita, Distributed anonymous mobile robots: Formation of

geometric patterns, SIAM Journal of Computer Science 28 (1999), no. 4, 1347–
1363.
J.E. Walter, J.L. Welch, and N.M. Amato, Distributed reconfiguration of meta-

morphic robot chains, 19th ACM Annual Symposium on Principles of Distributed
Computing (PODC 2000), 2000, pp. 171–180.

Dynamic Programming and Column Generation

Based Approaches for Two-Dimensional

Guillotine Cutting Problems

Glauber Cintra* and Yoshiko Wakabayashi**

Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão
1010, São Paulo 05508-090, Brazil.

{glauber, yw}@ime. usp. br

Abstract. We investigate two cutting problems and their variants in
which orthogonal rotations are allowed. We present a dynamic program-
ming based algorithm for the Two-dimensional Guillotine Cutting Prob-

lem with Value (GCV) that uses the recurrence formula proposed by
Beasley and the discretization points defined by Herz. We show that if
the items are not so small compared to the dimension of the bin, this
algorithm requires polynomial time. Using this algorithm we solved all
instances of GCV found at the OR–LIBRARY, including one for which
no optimal solution was known. We also investigate the Two-dimensional

Guillotine Cutting Problem with Demands (GCD). We present a column
generation based algorithm for GCD that uses the algorithm above men-
tioned to generate the columns. We propose two strategies to tackle the
residual instances. We report on some computational experiments with
the various algorithms we propose in this paper. The results indicate that
these algorithms seem to be suitable for solving real-world instances.

1 Introduction

Many industries face the challenge of finding solutions that are the most econom-
ical for the problem of cutting large objects to produce specified smaller objects.
Very often, the large objects (bins) and the small objects (items) have only two
relevant dimensions and have rectangular shape. Besides that, a usual restriction
for cutting problems is that in each object we may use only guillotine cuts, that
is, cuts that are parallel to one of the sides of the object and go from one side
to the opposite one; problems of this type are called two-dimensional guillotine
cutting problems. This paper focuses on algorithms for such problems. They are
classical optimization problems and are of great interest, both from
theoretical as well as practical point-of-view.

This paper is organized as follows. In Section 2, we present some definitions
and establish the notation. In Section 3, we focus on the Two-dimensional Guil-

* Supported by CNPq grant 141072/1999-7.
** Partially supported by MCT/CNPq Project ProNEx 664107/97-4 and CNPq grants

304527/89-0 and 470608/01-3.

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 175–190, 2004.
© Springer-Verlag Berlin Heidelberg 2004

176 G. Cintra and Y. Wakabayashi

lotine Cutting Problem with Value (GCV) and also a variant of it in which the
items are allowed to be rotated orthogonally.

Section 4 is devoted to the Two-dimensional Guillotine Cutting Problem with
Demands (GCD). We describe two algorithms for it, both based on the column
generation approach. One of them uses a perturbation strategy we propose to
deal with the residual instances. We also consider the variant of GCD in which
orthogonal rotations are allowed. Finally, in Section 5 we report on the com-
putational results we have obtained with the proposed algorithms. In the last
section we present some final remarks.

Owing to space limitations we do not prove some of the claims and we do
not describe one of the approximation algorithms we have designed. For more
details on these results we refer to [12].

2 Preliminaries

The Two-dimensional Guillotine Cutting Problem with Value (GCV) is the fol-
lowing: given a two-dimensional bin (a large rectangle), B = (W, H), with width
W and height H, and a list of items (small rectangles), each item with width

height and value determine how to cut the bin, using
only guillotine cuts, so as to maximize the sum of the value of the items that
are produced. We assume that many copies of the same item can be produced.

The Two-dimensional Guillotine Cutting Problem with Demands (GCD) is
defined as follows. Given an unlimited quantity of two-dimensional bins B =

(W, H), with width W and height H, and a list of items (small rectangles)
each item with dimensions and demand determine
how to produce unities of each item using the smallest number of bins B.

In both problems GCV and GCD we assume that the items are oriented
(that is, rotations of the items are not allowed); moreover, for

The variants of these problems in which the items may be rotated
orthogonally are denoted by and

Our main interest in the problem GCV lies in its use as a routine in the col-
umn generation based algorithm for the problem GCD. While the first problem
was first investigated in the sixties [18], we did not find in the literature results
on the problem GCD. We observe that any instance of GCD can be reduced to
an instance of the two-dimensional cutting stock problem (without demands),
by substituting each item for copies of this item; but this reduction is not
appropriate as the size of the new instance may become exponential in

We call each possible way of cutting a bin a cutting pattern (or simply pat-

tern.). To represent the patterns (and the cuts to be performed) we use the
following convention. We consider the Euclidean plane with the xy coor-
dinate system, and assume that the width of a rectangle is represented in the

and the height is represented in the We also assume that the po-
sition (0,0) of this coordinate system represents the bottom left corner of the
bin. Thus a bin of width W and height H corresponds to the region defined by
the rectangle whose bottom left corner is at the position (0,0) and the top right

Dynamic Programming and Column Generation Based Approaches 177

corner is at the position (W,H). To specify the position of an item in the bin,
we specify the coordinates of its bottom left corner. Using these conventions, it is
not difficult to define more formally what is a pattern and how we can represent
one.

A guillotine pattern is a pattern that can be obtained by a sequence of guil-
lotine cuts applied to the original bin and to the subsequent small rectangles
that are obtained after each cut (see Figure 1).

Fig. 1. (a) Non-guillotine pattern; (b) Guillotine pattern.

3 The Problem GCV

In this section we focus on the Two-dimensional Guillotine Cutting Problem with

Value (GCV). We present first some concepts and results needed to describe the
algorithm.

Let with and
be an instance of the problem GCV. We consider that W, H, and

the entries of and are all integer numbers. If this is not the case, we can
obtain an equivalent integral instance simply by multiplying the widths and/or
the heights of the bin and of the items by appropriate numbers.

The first dynamic programming based algorithm for GCV was proposed by
Gilmore and Gomory [18]. (It did not solve GCV in its general form.) We use here
a dynamic programming approach for GCV that was proposed by Beasley [4]
combined with the concept of discretization points defined by Herz [19]. A dis-
cretization point of the width (respectively of the height) is a value
(respectively that can be obtained by an integer conic combination of

(respectively We denote by P (respectively Q) the set
of all discretization points of the width (respectively height).

Following Herz, we say a canonical pattern is a pattern for which all cuts are
made at discretization points (e.g., the pattern indicated in Figure 1(b)).

It is immediate that it suffices to consider only canonical patterns (for every
pattern that is not canonical there is an equivalent one that is canonical). To refer
to them, the following functions will be useful. For a rational let

and for a rational let

178 G. Cintra and Y. Wakabayashi

Using these functions, it is not difficult to verify that the recurrence formula
below, proposed by Beasley [4], can be used to calculate the value of an
optimal canonical guillotine pattern of a rectangle of dimensions In this
formula, denotes the value of the most valuable item that can be cut in
a rectangle of dimensions or 0 if no item can be cut in the rectangle.

Thus, if we calculate V(W, H) we have the value of an optimal solution for
an instance

We can find the discretization points of the width (or height) by means of
explicit enumeration, as we show in the algorithm DEE (Discretization by Ex-
plicit Enumeration) described below. In this algorithm, D represents the width
(or height) of the bin and represent the widths (or heights) of the
items. The algorithm DEE can be implemented to run in time, where
represents the number of integer conic combinations of with value at
most D. This means that when we multiply D, by a constant, the
time required by DEE is not affected.

It is easy to construct instances such that Thus, an explicit enu-
meration may take exponential time. But if we can guarantee that

the sum of the coefficients of any integer conic combination
of with value at most D is not greater than Thus, is at most the
number of of objects with repetition. Therefore, for fixed

is polynomial in and consequently the algorithm DEE is polynomial in

We can also use dynamic programming to find the discretization points. The
basic idea is to solve a knapsack problem in which every item has weight and
value and the knapsack has capacity D. The well-known
dynamic programming technique for the knapsack problem (see [13]) gives the
optimal value of knapsacks with (integer) capacities taking values from 1 to D.

Dynamic Programming and Column Generation Based Approaches 179

It is easy to see that is a discretization point if and only if the knapsack
with capacity has optimal value We have then an algorithm, which we call
DDP (Discretization using Dynamical Programming), described in the sequel.

We note that the algorithm DDP requires time Thus, the scaling (if
needed) to obtain an integral instance may render the use of DDP unsuitable
in practice. On the other hand, the algorithm DDP is suited for instances in
which D is small. If D is large but the dimensions of the items are not so small
compared to the dimension of the bin, the algorithm DDP has a satisfactory
performance. In the computational tests, presented in Section 5, we used the
algorithm DDP.

We describe now the algorithm that solves the recurrence formula (1).
We have designed this algorithm in such a way that a pattern corresponding
to an optimal solution can be easily obtained. For that, the algorithm stores
in a matrix, for every rectangle of width and height which is
the direction and the position of the first guillotine cut that has to be made in
this rectangle. In case no cut should made in the rectangle, the algorithm stores
which is the item that corresponds to this rectangle.

When the algorithm halts, for each rectangle with dimensions
we have that contains the optimal value that can be obtained in this
rectangle, indicates the direction of the first guillotine cut, and

is the position (in the or in the where the first guil-
lotine cut has to be made. If then no cut has to be made
in this rectangle. In this case, (if nonzero) indicates which item corre-
sponds to this rectangle. The value of the optimal solution will be in

Note that each attribution of value to the variable can be done in
time by using binary search in the set of the discretization points. If we use

the algorithm DEE to calculate the discretization points, the algorithm can
be implemented to have time complexity where

and represent the number of integer conic combinations that produce the
discretization points of the width and of the height, respectively.

180 G. Cintra and Y. Wakabayashi

For the instances of GCV with and fixed and
we have that and are polynomial in For such instances

the algorithm requires time polynomial in

We can use a vector X (resp. Y), of size W (resp. H) , and let (resp.
contain (resp. Once the discretization points are calculated, it

requires time O(W + H) to determine the values in the vectors X and Y. Using
these vectors, each attribution to the variable can be done in constant time. In
this case, an implementation of the algorithm using DEE (resp. DDP) as a
subroutine, would have time complexity (resp.

In any case, the amount of memory required by the
algorithm is O(rs).

We can use the algorithm to solve the variant of GCV, denoted by
in which orthogonal rotations of the items are allowed. For that, given

an instance I of we construct another instance (for GCV) as follows. For
each item in I, of width height and value we add another item of
width height and value whenever and

Dynamic Programming and Column Generation Based Approaches 181

4 The Problem GCD and the Column Generation
Method

We focus now on the Two-dimensional Guillotine Cut Problem with Demands
(GCD). First, let us formulate GCD as an ILP (Integer Linear Program).

Let I = (W, H, be an instance of GCD. Represent each pattern of
the instance I as a vector whose entry indicates the number of times item

occurs in this pattern. The problem GCD consists then in deciding how many
times each pattern has to be used to meet the demands and minimize the total
number of bins that are used. Let be the number of all possible patterns for I,
and let P denote an matrix whose columns are the patterns
If we denote by the vector of the demands, then the following is an ILP
formulation for GCD: minimize subject to and and
integer for (The variable indicates how many times the pattern

is selected.)
Gilmore and Gomory [17] proposed a column generation method to solve

the relaxation of the above ILP, shown below. The idea is to start with a few
columns and then generate new columns of P, only when they are needed.

The algorithm given in Section 3 finds guillotine patterns. Moreover, if
each item has value and occurs times in a pattern produced by then

is maximum. This is exactly what we need to generate new columns.
We describe below the algorithm that solves (2).

The computational tests indicated that on the average the number of columns
generated by was This is in accordance with the theoretical
results that are known with respect to the average behavior of the Simplex
method [1,7].

We describe now a procedure to find an optimal integer solution from the
solutions obtained by The procedure is iterative. Each iteration
starts with an instance I of GCD and consists basically in solving (2) with

obtaining B and If is integral, we return B and and halt.
Otherwise, we calculate where
For this new solution, possibly part of the demand of the items is not fulfilled.
More precisely, the demand of each item that is not fulfilled is

Thus, if we take we have a residual instance
(we may eliminate from I* the items with no demand).

If some part of the demand is fulfilled by the solution
In this case, we return B and we let I=I* and start a new iteration. If

no part of the demand is fulfilled by We solve then
the instance I* with the algorithm Hybrid First Fit (HFF) [10]. We present in

182 G. Cintra and Y. Wakabayashi

what follows the algorithm that implements the iterative procedure we have
described.

Note that in each iteration either part of the demand is fulfilled or we go to
step 4. Thus, after a finite number of iterations the demand will be met (part
of it eventually in step 4). In fact, one can show that step 3.6 of the algorithm

is executed at most times. It should be noted however, that step 5 of the
algorithm may require exponential time. This step is necessary to transform
the representation of the last residual instance in an input for the algorithm
HFF, called in the next step. Moreover, HFF may also take exponential time to
solve this last instance.

We designed an approximation algorithm for GCD, called that makes
use of the concept of semi-homogeneous patterns and has absolute performance
bound 4 (see [12]). The reasons for not using instead of HFF, to solve the
last residual instance are the following: first, to generate a new column with the
algorithm requires time that can be exponential in Thus, is already
exponential, even on the average case. Besides that, the algorithm HFF has
asymptotic approximation bound 2.125. Thus, we may expect that using HFF
we may produce solutions of better quality.

On the other hand, if the items are not too small with respect to the bin1, the
algorithm can be implemented to require polynomial time (as we mentioned
in Section 3). In this case, we could eliminate steps 4 and 5 of and use
instead of HFF to solve the last residual instance. The solutions may have worse
quality, but at least, theoretically, the time required by such an algorithm would
be polynomial in on the average.

We note that the algorithm can be used to solve the variant of GCD,
called in which orthogonal rotations of the items are allowed. For that,

1 More precisely, for fixed and

Dynamic Programming and Column Generation Based Approaches 183

before we call the algorithm in step 3 of it suffices to make
the transformation explained at the end of Section 3. We will call
the variant of with this transformation. It should be noted however
that the algorithm HFF, called in step 6 of does not use the fact that the
items can be rotated.

We designed a simple algorithm for the variant of in which all items
have demand 1, called here This algorithm, called First Fit Decreasing

Height using Rotations (FFDHR), has asymptotic approximation bound at most
4, as we have shown in [12]. Substituting the call to HFF with a call to FFDHR,
we obtain the algorithm that is a specialized version of for the problem

We also tested another modification of the algorithm (and of
This is the following: when we solve an instance, and the solution returned
by rounded down is equal to zero, instead of submitting this in-
stance to HFF (or FFDHR), we use HFF (or FFDHR) to obtain a good pattern,
updating the demands, and if there is some item for which the demand is not
fulfilled, we go to step 1.

Note that, the basic idea is to perturb the residual instances whose relaxed LP
solution, rounded down, is equal to zero. With this procedure, it is expected that
the solution obtained by for the residual instance has more variables
with value greater than 1. The algorithm described below, incorporates this
modification.

It should be noted that with this modification we cannot guarantee anymore
that we have to make at most calls to It is however, easy

184 G. Cintra and Y. Wakabayashi

to see that the algorithm in fact halts, as each time step 1 is executed, the
demand decreases strictly. After a finite number of iterations the demand will
be fulfilled and the algorithm halts (in step 3.5 or step 7).

5 Computational Results

The algorithms described in sections 3 and 4 were implemented in C language,
using Xpress-MP [27] as the LP solver. The tests were run on a computer with
two processors AMD Athlon MP 1800+, clock of 1.5 Ghz, memory of 3.5 GB
and operating system Linux (distribution Debian GNU/Linux 3.0).

The performance of the algorithm was tested with the instances of GCV
available in the OR-LIBRARY2 (see Beasley [6] for a brief description of this
library). We considered the 13 instances of GCV, called gcut1,... ,gcut13 avail-
able in this library. For all these instances, with exception of instance gcut13,
optimal solutions had already been found [4]. We solved to optimality this in-
stance as well. In these instances the bins are squares, with dimensions between
250 and 3000, and number of items between 10 and 50. The value of each
item is precisely its area. We show in Figure 2 the optimal solution for gcut13
found by the algorithm

2
 http://mscmga.ms.ic.ac.uk/info.html

Dynamic Programming and Column Generation Based Approaches 185

Fig. 2. The optimal solution for gcut13 found by the algorithm

In Table 1 we show the characteristics of the instances solved and the com-
putational results. The column “Waste” gives —for each solution found— the
percentage of the area of the bin that does not correspond to any item. Each
instance was solved 100 times; the column “Time” shows the average CPU time
in seconds, considering all these 100 resolutions.

We have also tested the algorithm for the instances gcut1,... ,gcut13,
this time allowing rotations (we called these instances gcut1r,... , gcut13r). Ow-
ing to space limitations, we omit the table showing the computational results.
It can be found at http://www.ime.usp.br/\simglauber/gcut. We only re-
mark that for some instances the time increased (it did not doubled) but the
waste decreased, as one would expect.

We did not find instances for GCD in the OR-LIBRARY. We have then tested
the algorithms and with the instances gcut1,..., gcut12, associating with
each item a randomly generated demand between 1 and 100. We called these
instances gcut1d,... , gcut12d.

We show in Table 2 the computational results obtained with the algorithm
In this table, LB denotes the lower bound (given by the solution of (2))

for the value of an optimal integer solution. Each instance was solved 10 times;
the column “Average Time” shows the average time considering these 10 exper-
iments.

The algorithm found optimal or quasi-optimal solutions for all these in-
stances. On the average, the difference between the solution found by and
the lower bound (LB) was only 0,161%. We note also that the time spent to
solve these instances was satisfactory. Moreover, the gain of the solution of

186 G. Cintra and Y. Wakabayashi

compared to the solution of HFF was 8,779%, on the average, a very significant
improvement.

We have also used the algorithm to solve the instances gcut1d, ...,
gcut12d. The results are shown in Table 3. We note that the number of columns
generated increased approximately 40%, on the average, and the time spent
increased approximately 15%, on the average. On the other hand, an optimal
solution was found for the instance gcut4d.

We also considered the instances gcut1d,... , gcut12d as being for the prob-
lem (rotations are allowed), and called them gcut1dr,... ,gcut12dr. We
omit the table with the computational results we have obtained (the reader can
find it at the URL we mentioned before). We only remark that the algorithm

found optimal or quasi-optimal solutions for all instances. The difference
between the value found by and the lower bound (LB) was only 0,408%,
on the average.

Comparing the value of the solutions obtained by with the solutions
obtained by FFDHR, we note that there was an improvement of 12,147%, on the
average. This improvement would be of 16,168% if compared with the solution
obtained by HFF.

The instances gcut1dr,... ,gcut12dr were also tested with the algorithm
The computational results are shown in Table 4. We remark that the

performance of the algorithm was a little better than the performance
of with respect to the quality of the solutions. The difference between
the value of the solution obtained by and the lower bound decreased to
0,237%, on the average. The gain on the quality was obtained at the cost of
an increase of approximately 97% (on the average) of the number of columns
generated and of an increase of approximately 44% of time.

Dynamic Programming and Column Generation Based Approaches 187

6 Concluding Remarks

In this paper we presented algorithms for the problems GCV and GCD and
their variants and For the problem GCV we presented the (exact)
pseudo-polynomial algorithm This algorithm can either use the algorithm
DDE or DDP to generate the discretization points. Both of these algorithms
were described. We have also shown that these algorithms can be implemented
to run in polynomial time when the items are not so small compared to the size
of the bin. In this case the algorithm also runs in polynomial time. We have
also mentioned how to use to solve the problem

We presented two column generation based algorithms to solve and
Both use the algorithm to generate the columns: the first uses the algo-

rithm HFF to solve the last residual instance and the second uses a perturbation
strategy. The algorithm combines different techniques: Simplex method with
column generation, an exact algorithm for the discretization points, and an ap-
proximation algorithm (HFF) for the last residual instance. An approach of this
nature has shown to be promising, and has been used in the one-dimensional
cutting problem with demands [26,11].

The algorithm is a variant of in which we use an idea that consists
in perturbing the residual instances. We have also designed the algorithms
and for the problem a variation of GCD in which orthogonal
rotations are allowed. The algorithm uses as a subroutine the algorithm
FFDHR, we have designed.

We noted that the algorithm and are polynomial, on the average,
when the items are not so small compared to the size of the bin. The compu-
tational results with these algorithms were very satisfactory: optimal or quasi-
optimal solutions were found for the instances we have considered. As expected,

188 G. Cintra and Y. Wakabayashi

(respectively found solutions of a little better quality than (re-
spectively at the cost of a slight increase in the running time.

We exhibit in Table 5 the list of the algorithms we proposed in this paper.
A natural development of our work would be to adapt the approach used in

the algorithm to the Two-dimensional cutting stock problem with demands
(CSD), a variant of GCD in which the cuts need not be guillotine. One can find
an initial solution using homogeneous patterns; the columns can be generated
using any of the algorithms that have appeared in the literature for the two-
dimensional cutting stock problem with value [5,2]. To solve the last residual
instance one can use approximation algorithms [10,8,20].

One can also use column generation for the variant of CSD in which the
quantity of items in each bin is bounded. This variant, proposed by Christofides
and Whitlock [9], is called restricted two-dimensional cutting stock problem. Each
new column can be generated with any of the known algorithms for the restricted
two-dimensional cutting stock problem with value [9,24], and the last residual
instance can be solved with the algorithm HFF. This restricted version with guil-
lotine cut requirement can also be solved using the ideas we have just described:
the homogeneous patterns and the patterns produced by HFF can be obtained
with guillotine cuts, and the columns can be generated with the algorithm of
Cung, Hifi and Le Cun [16].

A more audacious step would be to adapt the column generation approach
for the three-dimensional cutting stock problem with demands. For the initial so-
lutions one can use homogeneous patterns. The last residual instances can be
dealt with some approximation algorithms for the three-dimensional bin pack-
ing problem [3,14,15,22,23,21,25]. We do no know however, exact algorithms to
generate columns. If we require the cuts to be guillotine, one can adapt the
algorithm to generate new columns.

Dynamic Programming and Column Generation Based Approaches 189

References

I1an Adler, Nimrod Megiddo, and Michael J. Todd. New results on the average
behavior of simplex algorithms. Bull. Amer. Math. Soc. (N.S.), 11(2):378–382,
1984.
M. Arenales and R. Morábito. An and/or-graph approach to the solution of two-
dimensional non-guillotine cutting problems. European Journal of Operations Re-

search, 84:599–617, 1995.
N. Bansal and M. Srividenko. New approximability and inapproximability results
for 2-dimensional bin packing. In Proceedings of 15th ACM-SIAM Symposium on

Discrete Algorithms, pages 189–196, New York, 2004. ACM.
J. E. Beasley. Algorithms for unconstrained two-dimensional guillotine cutting.
Journal of the Operational Research Society, 36(4):297–306, 1985.
J. E. Beasley. An exact two-dimensional nonguillotine cutting tree search proce-
dure. Oper. Res., 33(1):49–64, 1985.
J. E. Beasley. Or-library: distributing test problems by electronic mail. Journal of

the Operational Research Society, 41(11):1069–1072, 1990.
Karl-Heinz Borgwardt. Probabilistic analysis of the simplex method. In Math-

ematical developments arising from linear programming (Brunswick, ME, 1988),

volume 114 of Contemp. Math., pages 21–34. Amer. Math. Soc., Providence, RI,
1990.

1.

2.

3.

4.

5.

6.

7.

190 G. Cintra and Y. Wakabayashi

A. Caprara. Packing 2-dimensional bins in harmony. In Proceedings of the 43-rd

Annual IEEE Symposium on Foundations of Computer Science, pages 490–499.
IEEE Computer Society, 2002.
N. Christofides and C. Whitlock. An algorithm for two dimensional cutting prob-
lems. Operations Research, 25:30–44, 1977.
F. R. K. Chung, M. R. Garey, and D. S. Johnson. On packing two-dimensional
bins. SIAM J. Algebraic Discrete Methods, 3:66–76, 1982.
G. F. Cintra. Algoritmos híbridos para o problema de corte unidimensional. In
XXV Conferência Latinoamericana de Informática, Assunção, 1999.
G. F. Cintra. Algoritmos para problemas de corte de guilhotina bidimensional
(PhD thesis in preparation). Instituto de Matemática e Estatística, 2004.
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to algorithms. MIT Press, Cambridge, MA, second edition, 2001.
J.R. Correa and C. Kenyon. Approximation schemes for multidimensional packing.
In Proceedings of 15th ACM-SIAM Symposium on Discrete Algorithms, pages 179–
188, New York, 2004. ACM.
J. Csirik and A. Van Vliet. An on-line algorithm for multidimensional bin packing.
Operations Research Letters, 13:149–158, 1993.
Van-Dat Cung, Mhand Hifi, and Bertrand Le Cun. Constrained two-dimensional
cutting stock problems a best-first branch-and-bound algorithm. Int. Trans. Oper.

Res., 7(3):185–210, 2000.
P. Gilmore and R. Gomory. A linear programming approach to the cutting stock
problem. Operations Research, 9:849–859, 1961.
P. Gilmore and R. Gomory. Multistage cutting stock problems of two and more
dimensions. Operations Research, 13:94–120, 1965.
J. C. Herz. A recursive computational procedure for two-dimensional stock-cutting.
IBM Journal of Research Development, pages 462–469, 1972.
Claire Kenyon and Eric Rémila. A near-optimal solution to a two-dimensional
cutting stock problem. Math. Oper. Res., 25(4):645–656, 2000.
Y. Kohayakawa, F.K. Miyazawa, P. Raghavan, and Y. Wakabayashi. Multidi-
mensional cube packing. In Brazilian Symposium on Graphs and Combinatorics.

Electronic Notes of Discrete Mathematics (GRACO’2001). Elsevier Science, 2001.
(to appear in Algorithmica).
Keqin Li and Kam-Hoi Cheng. Generalized first-fit algorithms in two and three
dimensions. Internat. J. Found. Comput. Sci., 1(2):131–150, 1990.
F. K. Miyazawa and Y. Wakabayashi. Parametric on-line algorithms for packing
rectangles and boxes. European J. Oper. Res., 150(2):281–292, 2003.
J. F. Oliveira and J. S. Ferreira. An improved version of Wang’s algorithm for two-
dimensional cutting problems. European Journal of Operations Research, 44:256–
266, 1990.
S. Seiden and R. van Stee. New bounds for multidimensional packing. Algorithmica,

36:261–293, 2003.
G. Wäscher and T. Gau. Heuristics for the integer one-dimensional cutting stock
problem: a computational study. OR Spektrum, 18:131–144, 1996.
Xpress. Xpress Optimizer Reference Manual. DASH Optimization, Inc, 2002.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Engineering Shortest Path Algorithms*

Camil Demetrescu1 and Giuseppe F. Italiano2

1 Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, via
Salaria 113, 00198 Roma, Italy.
demetres@dis.uniroma1.it

2 Dipartimento di Informatica, Sistemi e Produzione, Università di Roma “Tor
Vergata”, via del Politecnico 1, 00133 Roma, Italy.

italiano@disp.uniroma2.it

Abstract. In this paper, we report on our own experience in studying
a fundamental problem on graphs: all pairs shortest paths. In particu-
lar, we discuss the interplay between theory and practice in engineering
a simple variant of Dijkstra’s shortest path algorithm. In this context,
we show that studying heuristics that are efficient in practice can yield
interesting clues to the combinatorial properties of the problem, and
eventually lead to new theoretically efficient algorithms.

1 Introduction

The quest for efficient computer programs for solving real world problems has led
in recent years to a growing interest in experimental studies of algorithms. Pro-
ducing efficient implementations requires taking into account issues such as mem-
ory hierarchy effects, hidden constant factors in the performance bounds, impli-
cations of communication complexity, numerical precision, and use of heuristics,
which are sometimes overlooked in classical analysis models. On the other hand,
developing and assessing heuristics and programming techniques for producing
codes that are efficient in practice is a difficult task that requires a deep un-
derstanding of the mathematical structure and the combinatorial properties of
the problem at hand. In this context, experiments can raise new conjectures and
theoretical questions, opening unexplored research directions that may lead to
further theoretical improvements and eventually to more practical algorithms.
The whole process of designing, analyzing, implementing, tuning, debugging and
experimentally evaluating algorithms is usually referred to as Algorithm Engi-
neering. As shown in Figure 1, algorithm engineering is a cyclic process: designing
algorithmic techniques and analyzing their performance according to theoretical
models provides a sound foundation to writing efficient computer programs. On
* Work partially supported by the Sixth Framework Programme of the EU under con-

tract number 507613 (Network of Excellence “EuroNGI: Designing and Engineering
of the Next Generation Internet”), by the IST Programme of the EU under contract
number IST-2001-33555 (“COSIN: COevolution and Self-organization In dynami-
cal Networks”), and by the Italian Ministry of University and Scientific Research
(Project “ALINWEB: Algorithmics for Internet and the Web”).

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 191–198, 2004.
© Springer-Verlag Berlin Heidelberg 2004

192 C. Demetrescu and G.F. Italiano

the other hand, analyzing the practical performance of a program can be helpful
in spotting bottlenecks in the code, designing heuristics, refining the theoretical
analysis, and even devising more realistic cost models in order to get a deeper
insight into the problem at hand. We refer the interested reader to [4] for a
broader survey of algorithm engineering issues.

Fig. 1. The algorithm engineering cycle.

In this paper, we report on our own experience in studying a fundamental
problem on graphs: the all pairs shortest paths problem. We discuss the interplay
between theory and practice in engineering a variant of Dijkstra’s shortest path
algorithm. In particular, we present a simple heuristic that can improve substan-
tially the practical performances of the algorithm on many typical instances. We
then show that a deeper study of this heuristic can reveal interesting combi-
natorial properties of paths in a graph. Surprisingly, exploiting such properties
can lead to new theoretically efficient methods for updating shortest paths in a
graph subject to dynamic edge weight changes.

2 From Theory to Experiments: Engineering Dijkstra’s
Algorithm

In 1959, Edsger Wybe Dijkstra devised a simple algorithm for computing short-
est paths in a graph [6]. Although more recent advances in data structures led
to faster implementations (see, e.g., the Fibonacci heaps of Fredman and Tar-
jan [7]), Dijkstra’s algorithmic invention is still in place after 45 years, providing
an ubiquitous standard framework for designing efficient shortest path algo-
rithms. If priority queues with constant amortized time per decrease are used,
the basic method computes the shortest paths from a given source vertex in

worst-case time in a graph with vertices and edges. To com-
pute all pairs shortest paths, we get an bound in the worst
case by simply repeating the single-source algorithm from each vertex.

In Figure 2, we show a simple variant of Dijkstra’s algorithm where all pairs
shortest paths are computed in an interleaved fashion, rather than one source

Engineering Shortest Path Algorithms 193

Fig. 2. All pairs variant of Dijkstra’s algorithm. denotes the weight of edge
in G.

at a time. The algorithm maintains a matrix that contains at any time an
upper bound to the distances in the graph. The upper bound for any pair
of vertices is initially equal to the edge weight if there is an edge
between and and otherwise. The algorithm also maintains in a priority
queue H each pair with priority The main loop of the algorithm
repeatedly extracts from H a pair with minimum priority, and tries to
extend at each iteration the corresponding shortest path by exactly one edge in
every possible direction. This requires scanning all edges leaving and entering

performing the classical relaxation step to decrease the distance upper bounds
It is not difficult to prove that at the end of the procedure, if edge weights

are non-negative, contains the exact distances. The time required for loading
and unloading the priority queue is in the worst case. Each edge
is scanned at most times and for each scanned edge we spend constant
amortized time if H is, e.g., a Fibonacci heap. This yields
worst-case time.

While faster algorithms exist for very sparse graphs [8,9,10], Dijkstra’s al-
gorithm appears to be still a good practical choice in many real world settings.
For this reason, the quest for fast implementations has motivated researchers to
study methods for speeding up Dijkstra’s basic method based on priority queues
and relaxation. For instance, it is now well understood that efficient data struc-
tures play a crucial role in the case of sparse graphs, while edge scanning is the
typical bottleneck in dense graphs [1]. In the rest of this section, we focus on
the algorithm of Figure 2, and we investigate heuristic methods for reducing the
number of scanned edges.

Consider line 7 of Figure 2 (or, similarly, line 11): the loop scans all edges
seeking for tentative shortest paths of the form with weight

194 C. Demetrescu and G.F. Italiano

Do we really need to scan all edges leaving More to
the point, is there any way to avoid scanning an edge if it cannot belong
to a shortest path from to Let be a shortest path from to and
let be the path obtained by going from to via and
then from to via edge (see Figure 3). Consider now the well-known
optimal-substructure property of shortest paths (see e.g., [2]):

Fig. 3. Extending the shortest path from to by one edge.

Lemma 1. Every subpath of a shortest path is a shortest path.

This property implies that, if is a shortest path and we remove either one
of its endpoints, we still get a shortest path. Thus, edge can be the last
edge of a shortest path only if both and are shortest
paths, where is the first edge in Let us now exploit this property in
our shortest path algorithm in order to avoid scanning “unnecessary” edges. In
the following, we assume without loss of generality that shortest paths in the
graph are unique. We can just maintain for each pair of vertices a list of
edges s.t. is a shortest path }, and a list of
edges s.t. is a shortest path }, where is the
shortest path from to Such lists can be easily constructed incrementally as
the algorithm runs at each pair extraction from the priority queue H. Suppose
now to modify line 7 and line 11 of Figure 2 to scan just edges in and
respectively, where is the first edge and is the last edge in It is
not difficult to see that in this way we consider in the relaxation step only paths
whose proper subpaths are shortest paths. We call such paths locally shortest [5]:

Definition 1. A path is locally shortest in G if either:

consists of a single vertex, or
every proper subpath of is a shortest path in G.

(i)
(ii)

With the modifications above, the algorithm requires worst-
case time, where is the number of locally shortest paths in the graph. A
natural question seems to be: how many locally shortest paths can we have in a
graph? The following lemma is from [5]:

Lemma 2. If shortest paths are unique in G, then there can be at most mn
locally shortest paths in G. This bound is tight.

Engineering Shortest Path Algorithms 195

Fig. 4. Average number of locally shortest paths connecting a pair of vertices in: (a)
a family of random graphs with increasing density; (b) a suite of US road networks
obtained from ftp://edcftp.cr.usgs.gov.

This implies that our modification of Dijkstra’s algorithm does not produce an
asymptotically faster method. But what about typical instances? In [3], we have
performed some counting experiments on both random and real-world graphs
(including road networks and Internet Autonomous Systems subgraphs), and we
have discovered that in these graphs tends to be surprisingly very close
to In Figure 4, we show the average number of locally shortest paths con-
necting a pair of vertices in a family of random graphs with 500 vertices and
increasing number of edges, and in a suite of US road networks. According to
these experiments, the computational savings that we might expect using lo-
cally shortest paths in Dijkstra’s algorithm increase as the edge density grows.
In Figure 5, we compare the actual running time of a C implementation the
algorithm given in Figure 2 (S–DIJ), and the same algorithm with the locally
shortest path heuristic described above (S–LSP). Our implementations are de-
scribed in [3] and are available at:http://www.dis.uniroma1.it/~demetres/
experim/dsp/. Notice that in a random graph with density 20% S–LSP can be
16 times faster than S–DIJ. This confirms our expectations based on the count-
ing results given in Figure 4. On very sparse graphs, however, S–LSP appears to
be slightly slower than S–DIJ due to the data structure overhead of maintaining
lists and for each pair of vertices and

3 Back from Engineering to Theory: A New Dynamic
Algorithm

Let us now consider a scenario in which the input graph changes over time,
subject to a sequence of edge weight updates. The goal of a dynamic shortest
paths algorithm is to update the distances in the graph more efficiently than
recomputing the whole solution from scratch after each change of the weight of
an edge. In this section, we show that the idea of using locally shortest paths,
which appears to be a useful heuristic for computing all pairs shortest paths as

196 C. Demetrescu and G.F. Italiano

Fig. 5. Comparison of the actual running time of a C implementation of Dijkstra’s
algorithm with (S–LSP) and without (S–DIJ) the locally shortest paths heuristic in a
family of random graphs with 500 vertices, increasing edge density, and integer edge
weights in [1,1000]. Experiments were performed on an Intel Xeon 500MHz, 512KB L2
cache, 512MB RAM.

we have seen in Section 2, can play a crucial role in designing asymptotically
fast update algorithms for the dynamic version of the problem. Let us consider
the case where edge weights can only be increased (the case where edge weights
can only be decreased in analogous). Notice that, after increasing the weight of
an edge, some of the shortest paths containing it may stop being shortest, while
other paths may become shortest, replacing the old ones. The goal of a dynamic
update algorithm is find efficiently such replacement paths. Intuitively, a locally
shortest path is either shortest itself, or it just falls short of being shortest.
Locally shortest paths are therefore natural candidates for being replacement
paths after an edge weight increase. A possible approach could be to keep in a
data structure all the locally shortest paths of a graph, so that a replacement
path can be found quickly after an edge update. On the other hand, keeping
such a data structure up to date should not be too expensive. To understand if
this is possible at all, we first need to answer the following question: how many
paths can start being locally shortest and how many paths can stop being locally
shortest after an edge weight increase? The following theorem from [5] answers
this question:

Theorem 1. Let G be a graph subject to a sequence of edge weight increases. If

shortest paths are unique in G, then during each update:

paths can stop being locally shortest;

paths can start being locally shortest, amortized over operations.

(1)

(2)

According to Theorem 1, we might hope to maintain explicitly the set of
locally shortest paths in a graph in quadratic amortized time per operation.
Since shortest paths in a graph are locally shortest, then maintaining such a
set would allow us to keep information also about shortest paths. As a matter
of fact, there exists a dynamic variant of the algorithm given in Figure 2 that
is able to update the locally shortest paths (and thus the shortest paths) of

Engineering Shortest Path Algorithms 197

a graph in amortized time per edge weight increase; details can
be found in [5]. For graphs with edges, this is asymptotically
faster than recomputing the solution from scratch using Dijkstra’s algorithm.
Furthermore, if the distance matrix has to be maintained explicitly, this is only
a polylogarithmic factor away from the best possible bound. Surprisingly, no
previous result was known for this problem until recently despite three decades
of research in this topic.

4 Conclusions

In this paper, we have discussed our own experience in engineering different
all pairs shortest paths algorithms based on Dijkstra’s method. The interplay
between theory and practice yielded significant results. We have shown that
the novel notion of locally shortest paths, which allowed us to design a useful
heuristic for improving the practical performances of Dijkstra’s algorithm on
dense graphs, led in turn to the first general efficient dynamic algorithms for
maintaining the all pairs shortest paths in a graph.

Despite decades of research, many aspects of the shortest paths problem are
still far from being fully understood. For instance, can we compute all pairs
shortest paths in o(mn) in dense graphs? As another interesting open problem,
can we update a shortest paths tree asymptotically faster than recomputing it
from scratch after an edge weight change?

References

B.V. Cherkassky, A.V. Goldberg, and T. Radzik. Shortest paths algorithms: The-
ory and experimental evaluation. Mathematical Programming, 73:129–174, 1996.
T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algo-

rithms. McGraw-Hill, 2001.
C. Demetrescu, S. Emiliozzi, and G.F. Italiano. Experimental analysis of dynamic
all pairs shortest path algorithms. In Proceedings of the 15th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA ’04), 2004.
C. Demetrescu, I. Finocchi, and G.F. Italiano. Algorithm engineering. The Algo-

rithmics Column (J. Diaz), Bulletin of the EATCS, 79:48–63, 2003.
C. Demetrescu and G.F. Italiano. A new approach to dynamic all pairs shortest
paths. In Proceedings of the 35th Annual A CM Symposium on Theory of Computing

(STOC’03), San Diego, CA, pages 159–166, 2003.

1.

2.

3.

4.

5.

To solve the dynamic all pairs shortest paths problem in its generality, where
the sequence of updates can contain both increases and decreases, locally short-
est paths can no longer be used directly: indeed, if increases and decreases can
be intermixed, we may have worst-case situations with changes in the
set of locally shortest paths during each update. However, using a generalization
of locally shortest paths, which encompasses the history of the update sequence
to cope with pathological instances, we devised a method for updating short-
est paths in amortized time per update [5]. This bound has been

by Thorup [11].recently improved to

198 C. Demetrescu and G.F. Italiano

E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269–271, 1959.
M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their use in improved network
optimization algorithms. Journal of the ACM, 34:596–615, 1987.
S. Pettie. A faster all-pairs shortest path algorithm for real-weighted sparse graphs.
In Proceedings of 29th International Colloquium on Automata, Languages, and

Programming (ICALP’02), LNCS Vol. 2380, pages 85–97, 2002.
S. Pettie and V. Ramachandran. Computing shortest paths with comparisons and
additions. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA’02), pages 267–276. SIAM, January 6–8 2002.
S. Pettie, V. Ramachandran, and S. Sridhar. Experimental evaluation of a new
shortest path algorithm. In 4th Workshop on Algorithm Engineering and Experi-

ments (ALENEX’02), LNCS Vol. 2409, pages 126–142, 2002.
M. Thorup. Tighter fully-dynamic all pairs shortest paths, 2003. Unpublished
manuscript.

6.

7.

10.

11.

9.

8.

Tassos Dimitriou1 and Paul Spirakis2

How to Tell a Good Neighborhood from a Bad

One: Satisfiability of Boolean Formulas

1 Athens Information Technology, Greece.
tassos@ait.gr

2 Computer Technology Institute, Greece.
spirakis@cti.gr

Abstract. One of the major problems algorithm designers usually face
is to know in advance whether a proposed optimization algorithm is
going to behave as planned, and if not, what changes are to be made
to the way new solutions are examined so that the algorithm performs
nicely. In this work we develop a methodology for differentiating good
neighborhoods from bad ones. As a case study we consider the structure
of the space of assignments for random 3-SAT formulas and we compare
two neighborhoods, a simple and a more refined one that we already know
the corresponding algorithm behaves extremely well. We give evidence
that it is possible to tell in advance what neighborhood structure will
give rise to a good search algorithm and we show how our methodology
could have been used to discover some recent results on the structure
of the SAT space of solutions. We use as a tool “Go with the winners”,
an optimization heuristic that uses many particles that independently
search the space of all possible solutions. By gathering statistics, we
compare the combinatorial characteristics of the different neighborhoods
and we show that there are certain features that make a neighborhood
better than another, thus giving rise to good search algorithms.

1 Introduction

Satisfiability (SAT) is the problem of determining, given a Boolean formula in
conjunctive normal form, whether there exists a truth assignment to the vari-
ables that makes the formula true. If all clauses consist of exactly literals
then the formula is said to be an instance of While 2-SAT is solvable
in polynomial time, is known to be NP-complete, so we cannot
expect to have good performance in the worst case. In practice, however, one
is willing to trade “completeness” for “soundness”. Incomplete algorithms may
fail to find a satisfying assignment even if one exists but they usually perform
very well in practice. A well studied algorithm of this sort is the WalkSat heuris-
tic [SKC93]. The distinguishing characteristic of this algorithm is the way new
assignments are examined. The algorithm chooses to flip only variables that ap-
pear in unsatisfied clauses as opposed to flipping any variable and testing the
new assignment. Moreover, flips are made even if occasionally they increase the
number of unsatisfied clauses.

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 199–212, 2004.
© Springer-Verlag Berlin Heidelberg 2004

200 T. Dimitriou and P. Spirakis

In this work we make an attempt to differentiate “good” neighborhoods from
“bad” ones by discovering the combinatorial characteristics a neighborhood must
have in order to produce a good algorithm. We study the WALKSAT neighbor-
hood mentioned above and a simpler one that we call GREEDY in which neigh-
boring assignments differ by flipping any variable. Our work was motivated by
a challenge reported by D. S. Johnson [J00] which we quote below:

Understanding Metaheuristics
“... Currently the only way to tell whether an algorithm of this
sort [optimization heuristic] will be effective for a given problem
is to implement and run it. We currently do not have an adequate
theoretical understanding of the design of search neighborhoods,
rules for selecting starting solutions, and the effectiveness of vari-
ous search strategies. Initial work has given insight in narrow spe-
cial cases, but no useful general theory has yet been developed.
We need one.”

Here, we compare the two neighborhoods by examining how the space of
neighboring assignments, the search graph as we call it, decomposes into smaller
regions of related solutions by imposing a quality threshold to them. Our main
tool is the “Go with the winners” (GWW) strategy which uses many particles
that independently search the search graph for a solution of large value. Dim-
itriou and Impagliazzo [DI98] were able to relate the performance of GWW with
the existence of a combinatorial property of the search graph, the so called “local
expansion”. Intuitively, if local expansion holds then particles remain uniformly
distributed and sampling can be used to deduce properties of the search space.

Although the process of collecting statistics using GWW may not be a cheap
one since many particles are used to search the space for good solutions, it is
a more accurate one than collecting statistics by actually running the heuristic
under investigation. The reason is that heuristic results may be biased towards
certain regions of the space and any conclusions we draw may not be true. This
cannot happen with GWW since when the local expansion property is true,
particles remain uniformly distributed inside the space of solutions and one may
use this information to unravel the combinatorial characteristics of the search
space. These properties can then help optimize heuristic performance and design
heuristics that take advantage of this information.

Our goal in this work is to provide algorithm designers with a method of test-
ing whether a proposed neighborhood structure will give rise to a good search
algorithm. We do this following a two-step approach. Initially, we verify ex-
perimentally that the search graph has good local expansion. Then by gathering
statistics, we compare the combinatorial characteristics of the neighborhood and
we show that there are certain features that make a neighborhood better than
another, thus giving rise to good search algorithms. Our results are in some sense
complementary to the work of Schuurmans and Southey [SS01] for SAT where
emphasis is given on the characteristics of successful search algorithms. Here,
instead, the emphasis is on the properties of the search space itself.

How to Tell a Good Neighborhood from a Bad One 201

2 Go with the Winners Strategy (GWW)

Most optimization heuristics (Simulated Annealing, Genetic algorithms, Greedy,
WalkSat, etc.) can be viewed as strategies, possibly probabilistic, of moving a
particle in a search graph, where the goal is to find a solution of optimal value.
The placement of the particle in a node of the search graph corresponds to
examining a potential solution.

An immediate generalization of this idea is to use many particles to explore
the space of solutions. This generalization together with the extra feature of
interaction between the particles is essentially “Go with the Winners” [DI96].
The algorithm uses many particles that independently search the space of all
solutions. The particles however interact with each other in the following way:
each “dead” particle (a particle that ended its search at a local optimum) is
moved to the position of a randomly chosen particle that is still “alive”. The goal
of course is to find a solution of optimal value. Progress is made by imposing
a quality threshold to the solutions found, thus improving at each stage the
average number of satisfied clauses.

In Figure 1, a “generic” version of GWW is presented without any reference
to the underlying neighborhood of solutions (see Section 3). Three conventions
are made throughout this work: i) creating a particle means placing the particle
in a (random or predefined) node of the search graph, ii) the value of a particle
is the value of the solution it represents and iii) more than one particle may be
in the same node of the search graph, thus examining the same solution.

The algorithm uses two parameters: the number of particles B and the length
S of each particle’s random walk. The intuition is that in the stage and
beyond we are eliminating from consideration assignments which satisfy less than

Fig. 1. Description of the algorithm

202 T. Dimitriou and P. Spirakis

clauses. This divides the search space into components of assignments. The
redistribution phase will make sure that particles in locally optimal solutions
will be distributed among non-local solutions, while the randomization phase
will ensure that particles remain uniformly distributed inside these emerging
components. This is shown abstractly in Figure 2 for a part of the search space
and two thresholds When the algorithm is in stage all solutions of
value larger than form a connected component and particles are uniformly
distributed inside this large component. However, when the threshold is increased
to the search graph decomposes into smaller components and the goal is to
have particles in all of them in proportion to their sizes.

Dimitriou and Impagliazzo [DI98] characterized the search spaces where
GWW works well in terms of a combinatorial parameter, the local expansion

of the search space. Intuitively this property suggests that if a particle starts a
random walk, then the resulting solution will be uncorrelated to its start and it
is unlikely that particles will be trapped into small regions of the search space.

Studying the behavior of the algorithm with respect to its two important
parameters will offer a tradeoff between using larger populations or longer walks.
This in turn may give rise to implementations of the algorithm which produce
high quality solutions, even when some of these parameters are kept small. In
particular, our goal will be to show that for certain neighborhoods only a few

particles suffice to search the space of solutions provided the space has good
expansion properties and the length of the random walk is sufficiently long.
When this is true, having a few particles is statistically the same as having one,
therefore this particle together with the underlying neighborhood can be thought

of as defining an optimization heuristic.

Fig. 2. Decomposition of the search graph.

3 Distribution of SAT Instances and Search Graphs

It is known that random 3-SAT formulas exhibit a threshold behavior. What this
means is that there is a constant so that formulas with more than rn clauses
are likely to be unsatisfiable, while formulas with less than rn clauses are likely
to be satisfiable. In all experiments we generated formulas with ratio of clauses
to variables since as was found experimentally [MSL92,GW94] the
hardest to solve instances occur at this ratio.

How to Tell a Good Neighborhood from a Bad One 203

We proceed now to define the neighborhood structure of solutions. GWW
is an optimization heuristic that tries to locate optimal solutions in a search
graph whose nodes represent all feasible solutions for the given problem. Two
nodes in the search graph are connected by an edge, if one solution results
from the other by making a local change. The set of neighbors of a given node
defines the neighborhood of solutions. Such a search graph is implicitly defined
by the problem at hand and doesn’t have to be computed explicitly. The only
operations required by the algorithm are i) generating a random node (solution)
in the search graph, ii) compute the value of a given node, and iii) list efficiently
all the neighboring solutions. The two search graphs we consider are:

GREEDY

Nodes correspond to assignments. Two such nodes are connected by an edge if
one results from the other by flipping the truth value of a single variable. Thus
any node in this search graph has exactly neighbors, where is the number
of variables in the formula. The value of a node is simply the number of clauses
satisfied by the corresponding assignment.

WALKSAT
Same as above except that two such nodes are considered neighboring if one
results from the other by flipping the truth value of a variable that belongs to
an unsatisfied clause.

Our motivation of studying these search graphs is to explain why the WALK-
SAT heuristic performs so well in practice as opposed to the simple GREEDY
heuristic (which essentially corresponds to GSAT). Does this second search graph
has some interesting combinatorial properties that explain the apparent success
of this heuristic? We will try to answer some of these questions in the sections
that follow.

4 Implementation Details

We used a highly optimized version of GWW in which we avoided the explicit
enumeration of neighboring solutions in order to perform the random walks for
each particle.

In particular we followed a “randomized approach” to picking the right neigh-
bor. To perform one step of the random walk, instead of just enumerating all
possible neighbors we simply pick one of the potential neighbors at random
and check its value. If it is larger than the current threshold we place the particle
there, otherwise we repeat the experiment. How many times do we have to do
this in order to perform one step of the random walk? It can be shown (see for
example Figure 4 illustrating the number of neighbors at each threshold) that
in the earlier stages of the algorithm we only need a few tries. At later stages,
when neighbors become scarce, we simply have to remember which flips we have
tried and in any case never perform more than flips.

The savings are great because as can be seen in the same figure it is only in
the last stages that the number of neighbors drops below thus requiring more

204 T. Dimitriou and P. Spirakis

than one try on average. In all other stages each random step takes constant
time.

5 Experiments

The two important parameters of GWW are population size B and random walk
length S. Large, interacting populations allow the algorithm to reach deeper
levels of the search space while long random walks allow GWW to escape from
local optima that are encountered when one is using only greedy moves. The use
of these two ingredients has the effect of maintaining a uniform distribution of
particles throughout the part of the search graph being explored.

The goal of the experiments is to understand the relative importance of these
parameters and the structure of the search graph. In the first type of experiments
(Section 5.1) we will try to reveal the expansion characteristics of the search
graph and validate the implementation choices of the algorithm. If the search
graph has good expansion, this can be shown by a series of tests that indicate
that sufficiently long random walks uniformly distribute the particles.

The purpose of the second type of experiments (Sections 5.2 and 5.3) is to
study the quality of the solutions found as a function of B and S. In particular,
we would like to know what is more beneficial to the algorithm: to invest in

more particles or longer random walks? Any variation in the quality of solutions
returned by the algorithm as a function of these two parameters will illustrate
different characteristics of the two neighborhoods. Then, hopefully, all these
observations can be used to tell what makes a neighborhood better than another
and how to design heuristics that take advantage of the structure of the search
space.

In the following experiments we tested formulas with 200 variables and 857
clauses and each sample point on the figures was based on averaging over 500
such random formulas. To support our findings we repeated the experiments with
formulas with many more variables and again the same patterns of behavior were
observed.

5.1 Optimal Random Walk Length

Before we proceed with the core of the experiments we need to know whether
our “randomized” version of GWW returns valid statistics. This can be tested
with a series of experiments that compare actual data collected by the algorithm
with data expected to be true for random formulas. For these comparisons to
be valid we need to be sure that particles remain well distributed in the space
of solutions. If particles are biased towards certain regions of the space this will
be reflected on the statistics and any conclusions we draw may not be true. So,
how can we measure the right walk length so that particles remain uniformly
distributed?

One nice such test is to compute for each particle the Hamming distance
of the assignments before and after the random walk, and compare with the

How to Tell a Good Neighborhood from a Bad One 205

Fig. 3. Choosing the right walk length that achieves uniformity for GREEDY (left)

and WALKSAT (right) neighborhoods: Average Hamming distance between start and
end of the random walk for S = 100, 200, 300, 500, 1000.

distance expected in the random formula model. If the length S of the walk is
sufficiently large, these quantities should match.

In Figure 3 we show the results of this experiment for a medium popula-
tion size of B = 100 particles and various walk lengths (S = 100, 200, 300, 500,
1000). For each stage (shown are stages where the number of satisfied formulas
is we computed the average Hamming distance between solutions (as-
signments) at start and end of the random walk, and we plotted the average
over all particles. As we can see the required length to achieve uniformity in
the GREEDY neighborhood is about 1000 steps. For this number of steps the
average Hamming distance matches the one expected when working with ran-
dom formulas, which is exactly It is only in the last stages of the algorithm
that the Hamming distance begins to drop below the value as not all flips
give rise to good neighbors (compare with Figure 4). The same is true for the
WALKSAT neighborhood. The required length is again about 1000 steps. Here
however, the Hamming distance is slightly smaller as flips are confined only to
variables found in unsatisfied clauses. Thus we conclude that 1000 steps seems
to be a sufficient walk length so that particles remain uniformly distributed in
the space of solutions.

A second test we performed to compute the appropriate walk length was to
calculate the average number of neighbors of each particle at each threshold and
compare it with the expected values in the random formulas model. The results
are shown in Figure 4(left) for a population size B = 100 and the optimal ran-
dom walk length (S = 1000). For the GREEDY neighborhood, at least in the
early stages of the algorithm, all the flips should lead to valid neighbors, so their
number should be equal to the number of variables. For the WALKSAT neigh-
borhood the number of neighbors should be smaller than as flips are confined
to variables in unsatisfied clauses. As it can be seen, the collected averages match
with the values expected to be true for random formulas, proving the validity of
the randomized implementation and the uniform distribution of particles.

Finally in Figure 4(right), we performed yet another test to examine the hy-
pothesis that 1000 steps are sufficient to uniformly distribute the particles. In
this test we examined the average number of satisfied clauses of the GWW pop-

206 T. Dimitriou and P. Spirakis

Fig. 4. Comparing the number of neighbors (left) and unsatisfied clauses (right) at
various thresholds with those expected for random formulas, for both neighborhoods.
The collected data matched the expectations.

ulation at each threshold and compared them with those expected for random
formulas. Again the two curves matched showing that particles remain well dis-
tributed. In this particular plot it is instructive to observe a qualitative difference
between the two neighborhoods. In the GREEDY one, the algorithm starts with
1/8 of the clauses unsatisfied and it is only in the last stages that this number
begins to drop. In the WALKSAT neighborhood however, this number is much
smaller. It seems that the algorithm already has an advantage over the GREEDY
implementation as it has to satisfy fewer unsatisfied clauses (approximately 5/64
of the clauses against 8/64 of the GREEDY neighborhood). Does this also mean
that the algorithm will need fewer “resources” to explore the space of solutions?
We will try to answer this next.

5.2 Characterizing the Two Neighborhoods

In this part we would like to study the quality of the solutions found by GWW
as a function of its two mechanisms, population size and random walk length.
Studying the question of whether to invest in more particles or longer random
walks will illustrate different characteristics of the two neighborhoods. In partic-
ular, correlation of the quality of the solutions with population size will provide
information about the connectedness of the search graphs, while correlation with
random walk length will tell us more about the expansion characteristics of these
search spaces.

We first studied the effect of varying the population size B while keeping the
number of random steps S constant, for various walk lengths (S = 4, 8, 16, 32).
The number of satisfied clauses increased as a function of B and the curves
looked asymptotic, like those of Figure 5. In general, the plots corresponding to
the two neighborhoods were similar with the exception that results were slightly
better for the WALKSAT neighborhood.

In Figure 5 we studied the effect of varying the number of steps while keeping
the population size constant, for various values of B (B = 2, 4, 8, 16, 32). As it

How to Tell a Good Neighborhood from a Bad One 207

Fig. 5. Average number of clauses satisfied vs random walk length for various pop-
ulation sizes. Results shown are for GREEDY (left) and WALKSAT neighborhoods
(right).

can be seen, increasing the population size resulted in better solutions found.
But there is a distinctive difference between the two neighborhoods. While in
the first increasing the particles had a clear impact on the quality of solutions
found, in the second, having 8 particles was essentially the same as having 32
particles. Furthermore, 2 particles searching the WALKSAT neighborhood ob-
tained far better results than 4 particles searching the GREEDY one, and in
general the GREEDY neighborhood required twice as many particles to achieve
results comparable to those obtained in the WALKSAT one. Thus we note im-
mediately that the second neighborhood is more suited for search with fewer

particles, reaching the same quality on the solutions found provided the walks
are kept sufficiently long. This agrees with results found by Hoos [Ho99] where
a convincing explanation is given for this phenomenon: Greedy (i.e. GSAT) is
essentially incomplete, so numerous restarts are necessary to remedy this situa-
tion. Since a restart is like introducing a new search particle, although without
the benefit of interaction between particles as in GWW, we see that our findings
come to verify this result.

It is evident from these experiments that increasing the computational re-
sources (particles or walk steps) improves the quality of the solutions. We also
have an indication that the number of particles is not so important in the WALK-
SAT neighborhood. So, to make this difference even more striking, we proceeded
to examine the effect on the solutions found when the product B × S, and hence
the running time, was kept constant

1
. The results are shown in Figure 6.

It is clear that as the number of particles increases the average value also
increases, but there is a point where this behavior stops and the value of solutions
starts to decline. This is well understood. As the population becomes large, the
number of random steps decreases (under the constant time constraint) and this
has the effect of not allowing the particles to escape from bad regions.

1 The running time of GWW is O(BSm), where is the maximum number of stages
(formula clauses)

208 T. Dimitriou and P. Spirakis

Fig. 6. Average solution value vs number of particles for different values of B × S.

Results shown are for GREEDY (left) and WALKSAT neighborhoods (right).

Perhaps what is more instructive to observe is the point in the two neighbor-
hoods when this happens. In the GREEDY neighborhood this behavior is more
balanced between particles and length of random walk, as one resource does not
seem more important than the other. In the WALKSAT neighborhood however,
things change drastically as the quality of the solutions found degrades when
fewer steps and more particles are used! Thus having longer random walks is
more beneficial to the algorithm than having larger populations. This comes to
validate the observation we made in the beginning of this section that the sec-
ond neighborhood is more suited for search with fewer particles. When taken to
the extreme this explains the apparent success of WALKSAT type of algorithms
in searching for satisfying assignments as they can be viewed as strategies for
moving just one particle around the WALKSAT neighborhood.

To illustrate the difference in the two neighborhoods we performed 300 runs
of GWW using B = 2 and S = 1000 and we presented the results in Figure 7 as a
histogram of solutions. The histograms of the two neighborhoods were displayed
on the same axis as the overlap of values was very small. There was such strong
separation between the two neighborhoods that even when we normalized for
running time the overlap was still very small. Indeed the best assignment found
in the GREEDY neighborhood satisfied only 827 clauses, which is essentially the
worst case for the WALKSAT neighborhood. One can thus conclude that the
second implementation is intrinsically more powerful and more suited for local
optimization than the first one, even when running time is taken into account.

5.3 Further Properties of the Search Graphs

The results of the previous section suggest that the WALKSAT neighborhood
is more suited for local search as only a few particles can locate the optimal
solutions. So, we may ask what is the reason behind this discrepancy between
the two neighborhoods?

We believe the answer must lie in the structure of the search graphs. As the
GREEDY space decomposes into components by imposing the quality threshold
to solutions, good solutions must reside in pits with high barriers that render

How to Tell a Good Neighborhood from a Bad One 209

Fig. 7. Histogram of satisfied clauses for 300 runs of GWW with B = 2 and S = 1000.
Results shown are for GREEDY and WALKSAT neighborhoods.

Fig. 8. Results of performing simple greedy optimization starting from particles at
various thresholds. The plots show the average number of downhill moves required
before getting trapped into a local optimum in both neighborhoods.

long random walks useless. So the algorithm requires more particles as smaller
populations usually get trapped. In the case of the WALKSAT neighborhood,
the search graph must be “smooth” in the sense that good solutions must not
be hidden in such deep pits. Thus the algorithm needs only a few particles to
hit these regions.

We tried to test this hypothesis with the following experiment: Once the
particles were uniformly distributed after the randomization phase, we performed
simple greedy optimization starting from that particle’s position and recorded
the number of downhill moves (we use this term even if this is a maximization
problem) required before the particle gets trapped into a local optimum. Then
we averaged over all particles and proceeded with the next stage. So, essentially

210 T. Dimitriou and P. Spirakis

we counted the average (downhill) distance a particle has to travel before gets
trapped. Since by assumption the particles are uniformly distributed, this reveals
the depth of the pits.

As it can be seen in Figure 8, particles in the WALKSAT implementation
had to overcome smaller barriers than those in the GREEDY one. (One may
object by saying that the average improvement per move may be larger in the
WALKSAT neighborhood. But this is not the case as we found that improvement
is 2 clauses/move in the GREEDY space against 1.6 clauses/move in the
WALKSAT one). Moreover, the same patterns were observed when we repeated
the experiment with formulas having 500 and 1000 variables. This is a remarkable
result. It simply says that the WALKSAT neighborhood is in general smoother
than the GREEDY one and easier to be searched with only a few particles, which
perhaps also explains why GSAT doesn’t meet the performance of WalkSat.
Again our findings come to verify some old results: Schuurmans and Southey
[SS01] identify three measures of local search effectiveness, one of which is depth
corresponding to number of unsatisfied clauses. Similarly, the depth of GSAT is
intensively studied by Gent and Walsh [GW93].

Finally we performed another experiment similar to the previous one (not
shown here due to space restrictions) in which we counted the average number of
neighbors of each greedily obtained solution. A number smaller than the number
of neighbors found by GWW (Figure 4) would be an indication that solutions
lied inside deep pits. The results again supported the “smoothness” conjecture;
the number of neighbors of greedily obtained solutions in the WALKSAT space
was much closer to the expected curve than those of the GREEDY one.

6 Conclusions and Future Research

Many optimizations algorithms can be viewed as strategies for searching a space
of potential solutions in order to find a solution of optimal value. The success of
these algorithms depends on the way the underlying search graph is implicitly
defined and in particular on the way a new potential solution is generated by
making local changes to the current one. As was mentioned in [J00], currently
the only way to tell whether an algorithm of this sort will be effective for a
given problem is simply to implement and run it. So, one of the challenges
algorithm designers face is to design the right search neighborhood so that the
corresponding optimization heuristic behaves as expected.

In this work we considered the problem of differentiating good neighborhoods
from bad ones. In particular, we studied two search neighborhoods for the 3-SAT
problem, a simple one which we called GREEDY and a more refined one that we
called WALKSAT. In the first one, neighboring assignments were generated by
flipping the value of any of the variables, while in the second one only variables
that belong to unsatisfied formulas were flipped. Our motivation for this work
was inspired by the challenge mentioned above and the need to explain the
apparent success of WALKSAT type of algorithms in finding good satisfying
assignments since all of them are based on the WALKSAT neighborhood.

How to Tell a Good Neighborhood from a Bad One 211

We gave evidence that it is possible to tell in advance what neighborhood
structure will give rise to a good search algorithm by comparing the combi-

natorial characteristics of the two neighborhoods. We used as a platform for
testing neighborhoods “Go with the winners”, an algorithm that uses many par-
ticles that independently search the space of solutions. By gathering statistics
we showed that there are certain features that make one neighborhood better
than another, thus giving rise to a good search algorithm.

In particular, we noticed that the WALKSAT neighborhood was more suited
for search with fewer particles, statistically the same as one. We expected this to
be true since we knew that the WalkSat heuristic performs extremely well, but
we were surprised by the extend to which this was true. We thought that hav-
ing a more balanced setting between particles and walk lengths would be more
beneficial to GWW but this was the case only for the GREEDY neighborhood.

Although we studied only one type of problem (SAT), we believe that search
spaces for which good heuristics exist must have similar “characteristics” as the
WALKSAT space and can be verified using our approach. Specifically, to test if

a neighborhood will give rise to a good search algorithm run GWW and study
the tradeoff between particles and random walk steps. If GWW can discover good
solutions with just a few particles and long enough walks, then this space is a

candidate for a good search heuristic. These observations lead to some interesting
research directions:

Provide more evidence for the previous conjecture by trying to analyze the
search spaces of other optimization problems for which good algorithms exist.
Do the corresponding search graphs have similar properties to the WALK-
SAT one? This line of research would further validate GWW as a tool for
collecting valid statistics.
What are the properties of search spaces for which no good algorithms exist?
Are in any sense complementary to those defined here?
Understand how the WALKSAT space decomposes into components by im-
posing the quality threshold to solutions. We believe that the WALKSAT
space decomposes into only a few components (which also explains why one
doesn’t need many particles) but this remains to be seen.
Can we find a simple neighborhood that behaves even better than WALK-
SAT? If this neighborhood has similar characteristics to WALKSAT’s (suf-
ficiency of a few particles to locate good solutions, small barriers, etc.) it
will probably give rise to even better satisfiability algorithms. (Introducing
weights [F97,WW97] smooths out the space but does not meet our definition
of a neighborhood.)
More ambitiously, try to analyze WalkSat and its variants and prove that
they work in polynomial time (for certain ratios of clauses to variables, of
course). This ambitious plan is supported by the fact that similar findings
for graph bisection [DI98,Ca01]) ultimately led to a polynomial time, local
search algorithm for finding good bisections [CI01].

212 T. Dimitriou and P. Spirakis

Acknowledgements: The authors wish to thank Christos Papadimitriou and
the reviewers for their useful comments.

References

[Ca01]

[CI01]

[DI96]

[DI98]

[F97]
[GJ79]

[GW93]

[GW94]

[Ho99]

[J00]

[MSL92]

[SKC93]

[SLM92]

[SS01]

[WW97]

T. Carson. Empirical and Analytic Approaches to understanding Local Search
Heuristics. PhD thesis, University of California, San Diego, 2001.
T. Carson and R. Impagliazzo. Hill climbing finds random planted bisections.
In Proc. 12th Annual ACM Symposium on Discrete Algorithms (SODA),
2001.
T. Dimitriou and R. Impagliazzo. Towards an analysis of local optimization
algorithms. In Proc. 28th Annual ACM Symposium on Theory of Computing
(STOC), 1996.
T. Dimitriou and R. Impagliazzo. Go with the Winners for Graph Bisection.
In Proc. 9th Annual ACM Symposium on Discrete Algorithms (SODA), 510–
520, 1998.
Frank, J. Learning weights for GSAT. In Proc. IJCAI-97, 384-391.
M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, San
Francisco, CA, 1979.
I. Gent and T. Walsh. An empirical analysis of search in GSAT. Journal of
Artificial Intelligence Research, 1:23-57, 1993.
I. Gent and T. Walsh. The SAT Phase Transition. In Proc. of ECAI-94,
105-109, 1994.
Hoos, H. On the run-time behavior of stochastic local search algorithms for
SAT. In Proc. AAAI-99, 661–666, 1999.
D. S. Johnson. Report on Challenges for Theoretical Computer Science.
Workshop on Challenges for Theoretical Computer Science, Portland, 2000,
http://www.research.att.com/~ds j/

Mitchell, D., Selman, B., and Levesque, H.J. Hard and easy distributions of
SAT problems. In Proc. AAAI-92, pp. 459–465, San Jose, CA, 1992.
B. Selman, H. A. Kautz and B. Cohen. Local search strategies for satis-
fiability testing. In Second DIMACS Challenge on Cliques, Coloring and
Satisfiability, October 1993.
Selman, B., Levesque, H.J. and Mitchell, D. A new method for solving hard
statisfiability problems. In Proc. AAAI-92, San Jose, CA, 1992.
D. Schuurmans, F. Southey. Local search characteristics of incomplete SAT
procedures. Artif. Intelligence, 132(2), 121-150, 2001.
Wu, Z. and Wah, W. Trap escaping strategies in discrete Langrangian meth-
ods for solving hard satisfiability and maximum satisfiability problems. In
Proc. AAAI-99, 673-678.

Implementing Approximation Algorithms for the

Single-Source Unsplittable Flow Problem

Jingde Du1* and Stavros G. Kolliopoulos2**

1 Department of Mathematical Sciences, University of New Brunswick, Saint John,
Canada.

jdu@unbsj.ca
2 Department of Computing and Software, McMaster University, Canada.

stavros@mcmaster.ca

Abstract. In the single-source unsplittable flow problem, commodities
must be routed simultaneously from a common source vertex to certain
sinks in a given graph with edge capacities. The demand of each com-
modity must be routed along a single path so that the total flow through
any edge is at most its capacity. This problem was introduced by Klein-
berg [12] and generalizes several NP-complete problems. A cost value per
unit of flow may also be defined for every edge. In this paper, we imple-
ment the 2-approximation algorithm of Dinitz, Garg, and Goemans [6]
for congestion, which is the best known, and the (3, 1)-approximation al-
gorithm of Skutella [19] for congestion and cost, which is the best known
bicriteria approximation. We study experimentally the quality of approx-
imation achieved by the algorithms and the effect of heuristics on their
performance. We also compare these algorithms against the previous best
ones by Kolliopoulos and Stein [15].

1 Introduction

In the single-source unsplittable flow problem (UFP), we are given a directed
graph G = (V, E) with edge capacities a designated source ver-
tex and commodities each with a terminal (sink) vertex and
associated demand For each we have to route units
of commodity along a single path from to so that the total flow through
an edge is at most its capacity As is standard in the relevant literature
we assume that no edge can be a bottleneck, i.e., the minimum edge capacity is
assumed to have value at least We will refer to instances which satisfy
this assumption as balanced, and ones which violate it as unbalanced. Instances
in which the maximum demand is times the minimum capacity, for are

A relaxation of UFP is obtained by allowing the demands of com-
modities to be split along more than one path; this yields a standard maximum

*

**

Part of this work was done while at the Department of Computing and Software,
McMaster University. Partially supported by NSERC Grant 227809-00.
Partially supported by NSERC Grant 227809-00.

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 213–227, 2004.
© Springer-Verlag Berlin Heidelberg 2004

214 J. Du and S.G. Kolliopoulos

flow problem. We will call a solution to this relaxation, a fractional or splittable
flow.

In this paper we use the following terminology. A flow is called feasible if it
satisfies all the demands and respects the capacity constraints, i.e.,
for all An unsplittable flow can be specified as a flow function on the
edges or equivalently by a set of paths where starts at the source

and ends at such that for all edges Hence in
the UFP a feasible solution means a feasible unsplittable flow. If a cost function

on the edges is given, then the cost of flow is given by
The cost of an path is defined as

so that the cost of an unsplittable flow given by paths can also be
written as In the version of the UFP with costs, apart
from the cost function we are also given a budget We seek a
feasible unsplittable flow whose total cost does not exceed the budget. Finally,
we set and For

we write and say that b is if and only if

The feasibility question for UFP (without costs) is strongly NP-complete
[12]. Various optimization versions can be defined for the problem. In this study
we focus on minimizing congestion: Find the smallest such that there
exists a feasible unsplittable flow if all capacities are multiplied by Among the
different optimization versions of UFP the congestion metric admits the currently
best approximation ratios. Moreover congestion has been studied extensively in
several settings for its connections to multicommodity flow and cuts.

Previous work. UFP was introduced by Kleinberg [12] and contains several well-
known NP-complete problems as special cases: Partition, Bin Packing, schedul-
ing on parallel machines to minimize makespan [12]. In addition UFP generalizes
single-source edge-disjoint paths and models aspects of virtual circuit routing.
The first constant-factor approximations were given in [13]. Kolliopoulos and
Stein [14,15] gave a 3-approximation algorithm for congestion with a simultane-
ous performance guarantee 2 for cost, which we denote as a (3, 2)-approximation.
Dinitz, Garg, and Goemans [6] improved the congestion bound to 2. To be more
precise, their basic result is: any splittable flow satisfying all demands can be
turned into an unsplittable flow while increasing the total flow through any edge
by less than the maximum demand and this is tight [6]. It is known that when the
congestion of the fractional flow is used as a lower bound the factor 2 increase
in congestion is unavoidable. Skutella [19] improved the (3, 2)-approximation
algorithm for congestion and cost [14] to a (3, 1)-approximation algorithm.

In terms of negative results, Lenstra, Shmoys, and Tardos [16] show that
the minimum congestion problem cannot be approximated within less than 3/2,
unless P = NP. Skutella [19] shows that, unless P = NP, congestion cannot be
approximated within less than for the case of

instances. Erlebach and Hall [7] prove that for arbitrary there

Implementing Approximation Algorithms 215

is no 1)-approximation algorithm for congestion and cost unless P = NP.

Matching this bicriteria lower bound is a major open question.

This work. As a continuation of the experimental study initiated by Kolliopoulos
and Stein [15], we present an evaluation of the current state-of-the-art algorithms
from the literature. We implement the two currently best approximation algo-
rithms for minimizing congestion: (i) the 2-approximation algorithm of Dinitz,
Garg, and Goemans [6] (denoted DGGA) and (ii) the (3, 1)-approximation algo-
rithm of Skutella [19] (denoted SA) which simultaneously mininimizes the cost.
We study experimentally the quality of approximation achieved by the algo-
rithms, and the effect of heuristics on approximation and running time. We also
compare these algorithms against two implementations of the Kolliopoulos and
Stein [14,15] 3-approximation algorithm (denoted KSA). Extensive experiments
on the latter algorithm and its variants were reported in [15].

The goal of our work is to examine primarily the quality of approximation. We
also consider the time efficiency of the approximation algorithms we implement.
Since our main focus is on the performance guarantee we have not extensively
optimized our codes for speed and we use a granularity of seconds to indicate the
running time. Our input data comes from four different generators introduced in
[15]. The performance guarantee is compared against the congestion achieved by
the fractional solution, which is always taken to be 1. This comparison between
the unsplittable and the fractional solution mirrors the analyses of the algo-
rithms we consider. Moreover it has the benefit of providing information on the
“integrality” gap between the two solutions. In general terms, our experimental
study shows that the approximation quality of the DGGA is typically better, by
a small absolute amount, than that of the KSA. Both algorithms behave consis-
tently better than the SA. However the latter remains competitive for minimum
congestion even though it is constrained by having to meet the budget require-
ment. All three algorithms achieve approximation ratios which are typically well
below the theoretical ones. After reviewing the algorithms and the experimental
setting we present the results in detail in Section 5.

2 The 2-Approximation Algorithm for Minimum
Congestion

In this section we briefly present the DGGA [6] and give a quick overview of the
analysis as given in [6]. The skeleton of the algorithm is given in Fig. 1.

We explain the steps of the main loop. Certain edges, labeled as singular,
play a special role. These are the edges such that and all the vertices
reachable from have out-degree at most 1. To construct an alternating cycle

C we begin from an arbitrary vertex From we follow outgoing edges as long
as possible, thereby constructing a forward path. Since the graph is acyclic, this
procedure stops, and we can only stop at a terminal, We then construct a
backward path by beginning from any edge entering distinct from the edge that
was used to reach and following singular incoming edges as far as possible. We
thus stop at the first vertex, say which has another edge leaving it. We now

216 J. Du and S.G. Kolliopoulos

continue by constructing a forward path from We proceed in this manner till
we reach a vertex, say that was already visited. This creates a cycle. If the
two paths containing in the cycle are of the same type then they both have
to be forward paths, and we glue them into one forward path. Thus the cycle
consists of alternating forward and backward paths.

Fig. 1. Algorithm DGGA.

We augment the flow along C by decreasing the flow along the forward paths
and increasing the flow along the backward paths by the same amount equal
to The quantity is the minimum flow along an edge on a
forward path of the cycle. The second quantity, is equal to
where the minimum is taken over all edges lying on backward paths
of the cycle and over all terminals at for which If the minimum is
achieved for an edge on a forward path then after the augmentation the flow on
this edge vanishes and so the edge disappears from the graph. If the minimum
is achieved for an edge on a backward path, then after the augmentation
the flow on is equal to

Analysis Overview. The correctness of the algorithm is based on the following
two facts: the first is that at the beginning of any iteration, the in-degree of

Implementing Approximation Algorithms 217

any vertex containing one or more terminals is at least 2; the second, which is
a consequence of the first fact, is that as long as all terminals have not reached
the source, the algorithm always finds an alternating cycle.

At each iteration, after augmentation either the flow on some forward edge
vanishes and so the edge disappears from the graph or the flow on a backward
edge is equal to and so the edge disappears from the graph after moving
the terminal to decreasing the flow on the edge to zero and removing
this edge from the graph. So, as a result of each iteration, at least one edge is
eliminated and the algorithm makes progress. Before an edge becomes a singular
edge, the flow on it does not increase. After the edge becomes a singular edge
we move at most one terminal along this edge and then this edge vanishes. Thus
the total unsplittable flow through this edge is less than the sum of its initial
flow and the maximum demand and the performance guarantee is at most 2. We
refer the reader to [6] for more details.

Running Time. Since every augmentation removes at least one edge, the number
of augmentations is at most where An augmenting cycle can be
found in time, where The time for moving terminals is O(kn),
where denotes the number of terminals. Since there are terminals, comput-
ing requires time in each iteration. Therefore the running time of the
algorithm is O(nm + km).

Heuristic Improvement. We have a second implementation with an added heuris-
tic. The purpose of the heuristic is to try to reduce the congestion. The heuristic
is designed so that it does not affect the theoretical performance guarantee of the
original algorithm, but as a sacrifice, the running time is increased. In our sec-
ond implementation, we use the heuristic only when we determine an alternating
cycle. We always pick an outgoing edge with the smallest flow to go forward and
choose an incoming edge with the largest flow to go backward. For most of the
cases we tested, as we show in the experimental results in Section 5, the conges-
tion is reduced somewhat. For some cases, it is reduced a lot. The running time
for the new implementation with the heuristic is O(dnm + km), where is the
maximum value of incoming and outgoing degrees among all vertices, since the
time for finding an alternating cycle is now O(dn).

3 The (3, 1)-Approximation Algorithm for Congestion
and Cost

The KSA [14,15] iteratively improves a solution by doubling the flow amount on
each path utilized by a commodity which has not yet been routed unsplittably.
This scheme can be implemented to give a (2, 1)-approximation if all demands are
powers of 2. Skutella’s algorithm [19] combines this idea with a clever initializa-
tion which rounds down the demands to powers of 2 by removing the most costly
paths from the solution. In Fig. 2 we give the algorithm for the case of powers of
2 [14,15] in the more efficient implementation of Skutella [19]. The main idea be-
hind the analysis of the congestion guarantee is that the total increase on an edge
capacity across all iterations is bounded by

218 J. Du and S.G. Kolliopoulos

Fig. 2. The SA after all demands have been rounded to powers of 2

Running time. The running time of the POWER-ALGORITHM is dominated by
the time to compute a flow in each while-loop-iteration Given the
flow this can be done in the following way [19]. We consider the subgraph
of the current graph G which is induced by all edges whose flow value
is not Starting at an arbitrary vertex of this subgraph and ignoring
directions of edges, we greedily determine a cycle C; this is possible since, due
to flow conservation, the degree of every vertex is at least two. Then, we choose
the orientation of the augmentation on C so that the cost of the flow is not
increased. We augment flow on the edges of C whose direction is identical to
the augmentation orientation and decrease flow by the same amount on the
other edges of C until the flow value on one of the edges becomes We
delete all edges and continue iteratively. This process terminates after
at most iterations and has thus running time O(nm). The number of while-
loop-iterations is The running time of the first iteration
is O(nm) as discussed above. However, since is in
each further iteration the amount of augmented flow along a cycle C is

and after the augmentation the flow on each edge of C is
and thus all edges of C will not be involved in the remaining cycle

augmentation steps of this iteration. So the computation of from takes
only time. Moreover the path can be determined in time for
each commodity and the total running time of the POWER-ALGORITHM is

Implementing Approximation Algorithms 219

We now present the GENERAL-ALGORITHM [19] which works for arbitrary
demand values. In the remainder of the paper when we refer to the SA we mean
the GENERAL-ALGORITHM. It constructs an unsplittable flow by rounding down
the demand values such that the rounded demands satisfy the condition for using
the POWER-ALGORITHM. Then, the latter algorithm is called to compute paths

Finally, the original demand of commodity is routed
across path In contrast the KSA rounds demands up to the closest power of
2 before invoking the analogue of the POWER-ALGORITHM.

We may assume that the graph is acyclic, which can be achieved by removing
all edges with flow value 0 and iteratively reducing flow along directed cycles.
This can be implemented in O(nm) time using standard methods.

In the first step of the GENERAL-ALGORITHM, we round down all demands
to

Then, in a second step, we modify the flow such that it only satisfies the
rounded demands The algorithm deals with the commodities
one after another and iteratively reduces the flow along the most expensive

within (ignoring or removing edges with flow value zero) until the
inflow in node has been decreased by So, when we reroute this amount
of reduced flow along any within the updated the cost of this part
of the flow will not increase. Since the underlying graph has no directed cycles,
a most expensive can be computed in polynomial time. Notice that the
resulting flow satisfies all rounded demands. Thus, the POWER-ALGORITHM

can be used to turn into an unsplittable flow for the rounded instance with
The GENERAL-ALGORITHM constructs an unsplittable flow for

the original instance by routing, for each commodity the total demand
(instead of only along the path returned by the POWER-ALGORITHM and
the cost of is bounded by

Skutella [19] shows that the GENERAL-ALGORITHM finds an unsplittable flow
whose cost is bounded by the cost of the initial flow and the flow value on
any edge is less than Therefore, if the instance is balanced, i.e.,
the assumption that is satisfied, an unsplittable flow whose cost is
bounded by the cost of the initial flow and whose congestion is less than 3 can be
obtained. Furthermore, if we use a minimum-cost flow algorithm to find a feasible
splittable flow of minimum cost for the initial flow, the cost of an unsplittable
flow obtained by the GENERAL-ALGORITHM is bounded by this minimum cost.

Running time. The procedure for obtaining from can be implemented to run
in time; in each iteration of the procedure, computing the most expensive
paths from to all vertices in the current acyclic network takes time, and
the number of iterations can be bounded by Thus, the running time
of the GENERAL-ALGORITHM is plus the running time of the POWER-
ALGORITHM, i.e., The first term can be usually
improved using a suitable min-cost flow algorithm [19]. We examine this further
in Section 5.

220 J. Du and S.G. Kolliopoulos

In our implementation, the variable adopts only the distinct rounded de-
mand values. We have two reasons for doing that. The first is that it is not
necessary for to adopt a value of the form when it is not a rounded
demand value and as a result of this we could have fewer iterations. The second
reason is because of the following heuristic we intend to use.

Heuristic improvement. We have a second implementation of the SA in which
we try to select augmenting cycles in a more sophisticated manner. When we
look for an augmenting cycle in iteration at the current vertex we always pick
an outgoing or incoming edge on which the flow value is not and the
difference between and the remainder of the flow value with respect to is
minimal. Unfortunately, the benefit of this heuristic seems to be very limited. We
give details in Section 5. As mentioned above, in our implementation the variable

adopts only the different rounded demand values. Since the time for finding
an augmenting cycle in the implementation with the heuristic is O(dn), where
is the maximum value of in- and outdegrees among all vertices, the worst-case
running time for the implementation with the heuristic is

4 Experimental Framework

Software and hardware resources. We conducted our experiments on a sun4u
sparc SUNW Ultra-5_10 workstation with 640 MB of RAM and 979 MB swap
space. The operating system was SunOS, release 5.8 Generic_108528-14. Our
programs were written in C and compiled using gcc, version 2.95, with the -03
optimization option.

Codes tested. The fastest maximum flow algorithm to date is due to Goldberg and
Rao [8] with a running time of where U

is an upper bound on the edge capacities which are assumed to be integral.
However in practice preflow-push [10] algorithms are the fastest. We use the
preflow-push Cherkassky-Goldberg code kit [5] to find a maximum flow as an
initial fractional flow. We assume integral capacities and demands in the unsplit-
table flow input. We implement and test the following codes:

2alg: this is the DGGA without any heuristic.
2alg_h: version of 2alg with the heuristic described in Section 2.
3skut: this is the SA without any heuristic.
3skut_h: version of 3skut with the heuristic described at the end of Section 3.

In addition we compare against the programs3al and 3al2 used in [15], where
3al is an implementation of the KSA. The program 3al2 is an implementation of
the same algorithm, where to improve the running time the edges carrying zero
flow in the initial fractional solution are discarded. Note that both the DGGA
and the SA discard these edges as well.

Input classes. We generated data from the same four input classes designed by
Kolliopoulos and Stein [15]. For each class we generated a variety of instances
varying different parameters. The generators use randomness to produce different

Implementing Approximation Algorithms 221

instances for the same parameter values. To make our experiments repeatable
the seed of the pseudorandom generator is an input parameter for all generators.
If no seed is given, a fixed default value is chosen. We used the default seed in
generating all inputs. The four classes used are defined next. Whenever the term
“randomly” is used in the following, we mean uniformly at random. For the
inputs to 3skut and 3skut_h, we also generate randomly a cost value on each
edge using the default seed.

genrmf. This is adapted from the GENRMF generator of Goldfarb and Grigo-
riadis [11,2]. The input parameters are a b c1 c2 k d. The generated network
has frames (grids) of size for a total of vertices. In each frame
each vertex is connected with its neighbors in all four directions. In addition,
the vertices of a frame are connected one-to-one with the vertices of the next
frame via a random permutation of those vertices. The source is the lower left
vertex of the first frame. Vertices become sinks with probability and their
demand is chosen uniformly at random from the interval The capacities
are randomly chosen integers from in the case of interframe edges, and

for the in-frame edges.

noigen. This is adapted from the noigen generator used in [3,17] for minimum
cut experimentation. The input parameters are n d t p k. The network has
nodes and edges. Vertices are randomly distributed among
components. Capacities are chosen uniformly from a prespecified range in
the case of intercomponent edges and from [pl, 2pl] for intracomponent edges,
being a positive integer. Only vertices belonging to one of the components
not containing the source can become sinks, each with probability The
desired effect of the construction is for commodities to contend for the light
intercomponent cuts. Demand for commodities is chosen uniformly form the
range

rangen. This generates a random graph with input parameters n p c1 c2
k d, where is the number of nodes, is the edge probability, capacities are
in the range is the number of commodities and demands are in the
range

222 J. Du and S.G. Kolliopoulos

satgen. It first generates a random graph as in rangen and then uses the
following procedure to designate commodities. Two vertices and are picked
from G and maximum flow is computed from to Let be the value of the
flow. New nodes corresponding to sinks are incrementally added each connected
only to and with a randomly chosen demand value. The process stops when the
total demand reaches the value of the minimum cut or when the number
of added commodities reaches the input parameter typically given as a crude
upper bound.

Implementing Approximation Algorithms 223

5 Experimental Results

In this section we give an overview of the experimental results. In all algorithms
we study, starting with a different fractional flow may give different unsplittable
solutions. Hence in order make a meaningful comparison of the experimental
results of the SA against the results of the DGGA and KSA, we use the same
initial fractional flow for all three. If the SA was used in isolation, one could use,
as mentioned in Section 3, a min-cost flow algorithm to find the initial fractional
flow and therefore obtain a best possible budget.

The implementations follow the algorithm descriptions as given earlier. In
the case of the SA, after finding the initial fractional flow one has to to iter-
atively reduce flow, for each commodity along the most expensive
used by until the inflow in terminal has been decreased by where

stands for the rounded demand. Instead of doing this explicitly, as Skutella
[19] suggests, we set the capacity of each edge to and use an arbitrary
min-cost flow algorithm to find a min-cost flow that satisfies the rounded de-
mands. Because of this, the term in the running time of Algorithm 3
in Section 3 can be replaced by the running time of an arbitrary min-cost flow
algorithm. The running times of the currently best known min-cost flow al-
gorithms are [9], [1], and

[18]. The code we use is again due to Cherkassky and
Goldberg [4]. The experimental results for all the implementations are given in
Tables 1–7. The wall-clock running time is given in seconds, with a running time
of 0 denoting a time less than a second. We gave earlier the theoretical running
times for the algorithms we implement but one should bear in mind that the
real running time depends also on other factors such as the data structures used.
Apart from standard linked and adjacency lists no other data structures were
used in our codes. As mentioned in the introduction, speeding up the codes was
not our primary focus. This aspect could be pursued further in future work.

The DGGA vs. the KSA. We first compare the results of the 2- and the 3-
approximation algorithms since they are both algorithms for congestion without
costs. On a balanced input (see Table 1), the congestion achieved by the DGGA,
with or without heuristics, was typically less than or equal to 1.75. The con-
gestion achieved by the KSA was almost in the same range. For each balanced
input, the difference in the congestion achieved by these two algorithms was not
obvious, but the DGGA’s congestion was typically somewhat better. The obvious
difference occurred in running time. Before starting measuring running time, we
use the Cherkassky-Goldberg code kit to find a feasible splittable flow (if neces-
sary we use other subroutines to scale up the capacities by the minimum amount
needed to achieve a fractional congestion of 1), and then we create an array of
nodes to represent this input graph (discarding all zero flow edges) and delete
all flow cycles. After that, we start measuring the running time and applying the
DGGA. The starting point for measuring the running time in the implementation
of the KSA is also set after the termination of the Cherkassky-Goldberg code.

224 J. Du and S.G. Kolliopoulos

To test the robustness of the approximation guarantee we relaxed, on several
instances, the balance assumption allowing the maximum demand to be twice
the minimum capacity or more, see Tables 2–6. The approximation guarantee
of each individual algorithm was not significantly affected. Even in the extreme
case when the balance assumption was violated by a factor of 16, as in Table 4,
the code 2alg achieved 8 and the code 2alg_h achieved 7.5. Relatively speaking
though the difference in the congestion achieved between 2alg, 2alg_h and 3al,
3al2 is much more pronounced compared to the inputs with small imbalance. See
the big differences in first two columns of Table 4 (in Column 2, 2alg: 3.75 and
3al2: 6.5). Hence the DGGA is more robust against highly unbalanced inputs.
This is consistent with the behavior of the KSA which keeps increasing the edge
capacities by a fixed amount in each iteration before routing any new flow. In
contrast, the DGGA increases congestion only when some flow is actually rerouted
through an edge. As shown in Table 4, the SA which behaves similarly to the
KSA exhibits the same lack of robustness for highly unbalanced inputs.

We also observed that the benefit of the heuristic used in our 2alg_h imple-
mentation showed up in our experimental results. For most of the inputs, the
congestion was improved, although rarely by more than 5%. Some significant
improvements were observed when the input was very unbalanced, see Table 4.
Theoretically, the running time for the program with the heuristic should in-
crease by a certain amount. But in our experiments, the running time stayed
virtually the same. This phenomenon was beyond what we expected.

In summary, the DGGA performs typically better than the KSA for conges-
tion. The average improvement for Tables 1–4 is 6.5%, 6.3%, 9.4%, and 53%
with the occasional exception where the KSA outperformed the DGGA. This
behavior is consistent with the fact that the DGGA is a theoretically better algo-
rithm. Moreover the theoretical advantage typically translates to a much smaller
advantage in practice.

The difference in the running time for these two approximation algorithms
was fairly significant in our experiments especially for dense graphs with a large
number of commodities. The DGGA runs much faster than the implementation of
the KSA we used. We proceed to give two possible reasons for this phenomenon.

The first reason is the difference in complexity for these two implementations.
Recall that the running time of the DGGA is O(mn + km) and the running time
of the implementation of the KSA that we used is [14,15].
We emphasize that a polynomial-time implementation is possible (see [14,15]).
In fact Skutella’s POWER-ALGORITHM can be seen as a much more efficient
implementation of essentially the same algorithm. A second reason is that the
DGGA processes the graph in a localized manner, i.e., finding an alternating
cycle locally and increasing a certain amount of flow on it, while the 3al, 3al2
codes repeatedly compute maximum flows on the full graph.

The Skutella algorithm. We now examine the congestion achieved by the SA. On
a balanced input (see Table 1), the congestion achieved by the SA was typically
greater than 1.64 and less than or equal to 2.33. This range of congestion is bigger
than the range [1.33, 1.75] achieved by the DGGA and the range [1.45, 1.78] by

Implementing Approximation Algorithms 225

the KSA. More precisely, the absolute difference in congestion between the SA
and the DGGA or KSA is on average around 0.4. We think that this nontrivial
difference in congestion is partially or mainly caused by the involvement of costs
on the edges and the simultaneous performance guarantee of 1 for cost of the
SA. The constraint that the flow found at each step should not increase the cost
limits the routing options.

In the implementation of the (3, 1)-approximation algorithm we start mea-
suring the running time just before applying a min-cost flow algorithm [4] to find
a min-cost flow for the rounded demands. Before that starting point of running
time, we use the Cherkassky-Goldberg code kit to find a feasible splittable flow
(if necessary, as we did before, we use other subroutines to scale up the capacities
by the minimum amount to get the optimal fractional congestion), and then we
create the input data for the min-cost flow subroutine, i.e., setting the capacity
of each edge to its flow value and the demand of each commodity to For
balanced input instances in Table 1, the running time of the SA is much better
than that of the KSA but slightly more than that of the DGGA. Actually, as we
observed in testing, most of the running time for the SA is spent in finding the
initial min-cost flow.

To test the robustness of the approximation guarantee achieved by the SA we
used the instances with the relaxed balanced assumption. Even in the extreme
case when the balance assumption was violated by a factor of 16, as in Table 4,
the code 3skut achieved 7.50. The absolute difference in congestion achieved by
the codes 2alg, 3al and 3skut is typically small. The only big difference occurred

226 J. Du and S.G. Kolliopoulos

in the second output column in Table 4 (2alg: 3.75, 3al: 8.00 and3skut: 7.00).
However, similar to the output in Table 1, the congestion achieved by the codes
2alg and3al for an unbalanced input was typically better, see Tables 2–6. Given
the similarities between the KSA and SA the reason is, as mentioned above, the
involvement of costs on the edges and a simultaneous performance guarantee of
1 for cost in the (3, 1)-approximation algorithm. For the running time, things
are different. We can see from Tables 3 and 6 that the code 3skut runs much
faster than 2alg and 3al when the size of the input is large. This is probably
because after the rounding stage the number of the distinct rounded demand
values, which is the number of iterations in our implementation, is small (equal
to 7 in Tables 3 and 6) and the number of augmenting cycles (to be chosen
iteratively) in most of the iterations is not very large. If this is the case, the
execution of these iterations could be finished in a very short period of time and
the total running time is thus short also.

Effect of the heuristic on the SA. No benefit of the heuristic used in our 3skut_h

implementation showed in Tables 1–6. This is because in each iteration (except
the stage of finding a min-cost flow) the non-zero remainder of flow value on
each edge with respect to the rounded demand value of the current iteration is
exactly the same in our input instances. More precisely, in our input instances,
the variable adopts all values between and and in this
case, in iteration the remainder of flow value on any edge with respect to

is either or 0. So the amount of augmented flow along
an augmenting cycle C is and after the augmentation the flow on
each edge of C is and thus all edges of C will not be involved in the
remaining augmentation procedure of this iteration. This is also probably the
reason why sometimes the SA runs faster than the DGGA. When the variable
would not adopt all values between and the heuristic proved
to be of some marginal usefulness. This can be seen from Table 7. The congestion
was improved in Columns 3 and 6 by 0.02 and 0.03, respectively, but in Columns
2 and 5 the congestion increased by 0.02 and 0.01, respectively.

In summary, in most of our experiments the DGGA and KSA achieved lower
congestion than the SA. Relative gains of the order of 35% or more are common
especially for Tables 1, 3 and 4. This is mainly because the SA has a simultaneous

Implementing Approximation Algorithms 227

performance guarantee for the cost. The SA remains competitive and typically
achieved approximation ratios well below the theoretical guarantee. The 3skut

code runs much faster than3al and occasionally faster than the 2alg code.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

R. K. Ahuja, A. V. Goldberg, J. B. Orlin, and R. E. Tarjan. Finding minimum-cost
flows by double scaling. Mathematical Programming 53, 243–266, 1992.
T. Badics. GENRMF. ftp://dimacs.rutgers.edu/pub/netflow/generators/net-
work/genrmf/, 1991.
C. Chekuri, A. V. Goldberg, D. Karger, M. Levine, and C. Stein. Experimental
study of minimum cut algorithms. In Proc. 8th ACM-SIAM SODA, 324–333, 1997.
B. V. Cherkassky and A. V. Goldberg. An efficient implementation of a minimum-
cost flow algorithm. J. Algorithms, 22:1-29, 1997.
B. V. Cherkassky and A. V. Goldberg. On implementing the push-relabel method
for the maximum flow problem. Algorithmica, 19:390–410, 1997.
Y. Dinitz, N. Garg, and M. X. Goemans. On the single-source unsplittable flow
problem. Combinatorica, 19:1–25, 1999.
T. Erlebach and A. Hall. NP-hardness of broadcast sheduling and inapproxima-
bility of single-source unsplittable min-cost flow. Proc. 13th ACM-SIAM SODA ,

2002, 194-202.
A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. J. ACM,

45:783–797, 1998.
A. V. Goldberg and R. E. Tarjan. Solving minimum cost flow problems by succes-
sive approximation. Mathematics of Operations Research 15, 430–466, 1990.
A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem.
J. ACM, Vol. 35, No. 4, pages 921–940, October 1988.
D. Goldfarb and M. Grigoriadis. A computational comparison of the Dinic and Net-
work Simplex methods for maximum flow. Annals of Operations Research, 13:83–
123, 1988.
J. M. Kleinberg. Approximation algorithms for disjoint paths problems. Ph.D. the-
sis, MIT, Cambridge, MA, May 1996.
J. M. Kleinberg. Single-source unsplittable flow. In Proceedings of the 37th Annual

Symposium on Foundations of Computer Science, pages 68–77, October 1996.
S. G. Kolliopoulos and C. Stein. Approximation algorithms for single-source un-
splittable flow. SI AM J. Computing, 31(3): 919–946, 2002.
S. G. Kolliopoulos and C. Stein. Experimental evaluation of approximation algo-
rithms for single-source unsplittable flow. Proc. 7th IPCO, Springer-Verlag LNCS

vol. 1610, 153–168, 1999.
J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation algorithms for schedul-
ing unrelated parallel machines. Mathematical Programming 46, 259–271, 1990.
Hiroshi Nagamochi, Tadashi Ono, and Toshihide Ibaraki. Implementing an efficient
minimum capacity cut algorithm. Mathematical Programming, 67:325–241, 1994.
J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations

Research 41, 338–350, 1993.
M. Skutella. Approximating the single source unsplittable min-cost flow problem.
Mathematical Programming, Ser. B 91(3), 493-514, 2002.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Fingered Multidimensional Search Trees*

Amalia Duch and Conrado Martínez

Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de
Catalunya, E-08034 Barcelona, Spain.

{duch,conrado}@lsi.upc.es

Abstract. In this work, we propose two variants of K-d trees where
fingers are used to improve the performance of orthogonal range search
and nearest neighbor queries when they exhibit locality of reference. The
experiments show that the second alternative yields significant savings.
Although it yields more modest improvements, the first variant does it
with much less memory requirements and great simplicity, which makes
it more attractive on practical grounds.

1 Introduction

The well-known, time-honored aphorism says that “80% of computer time in
spent on 20% of the data”. The actual percentages are unimportant but the
moral is that we can achieve significant improvements in performance if we
are able to exploit this fact. In on-line settings, where requests arrive one at
a time and they must be attended as soon as they arrive (or after some small
delay), we frequently encounter locality of reference, that is, for any time frame
only a small number of different requests among the possible ones are made or
consecutive requests are close to each other in some sense. Locality of reference is
systematically exploited in the design of memory hierarchies (disk and memory
caches) and it is the rationale for many other techniques like buffering and self-
adjustment [2,11].

The performance of searches and updates in data structures can be improved
by augmenting the data structure with fingers, pointers to the hot spots in the
data structure where most activity is going to be performed for a while (see for
instance [9,3]). Thus, successive searches and updates do not start from scratch
but use the clues provided by the finger(s), so that when the request affects some
item in the “vicinity” of the finger (s) the request can be attended very efficiently.

To the best of the authors’ knowledge, fingering techniques haven’t been
applied so far to multidimensional data structures. In this paper, we will specif-
ically concentrate in two variants of K-dimensional trees, namely standard
trees [1] and relaxed trees [6], but the techniques can easily be applied to
other multidimensional search trees and data structures. In general, multidimen-
sional data structures maintain a collection of items or records, each holding a
* This research was partially supported by the Future and Emergent Technologies

programme of the EU under contract IST-1999-14186 (ALCOM-FT) and the Spanish
Min. of Science and Technology project TIC2002-00190 (AEDRI II).

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 228–242, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Fingered Multidimensional Search Trees 229

distinct K-dimensional key (which we may assume w.l.o.g. is a point in
Also, we will identify each item with its key and use both terms interchangeably.
Besides usual insertions, deletions and (exact) search, we will be interested in
providing efficient answers to questions like which records do fall within a given
hyper-rectangle Q (orthogonal range search) or which is the closest record to
some given point (nearest neighbor search) [10,8]. After a brief summary of
basic concepts, definitions and previous results in Section 2, we propose two alter-
native designs that augment K-d trees1 with fingers to improve the efficiency of
orthogonal range and nearest neighbor searches (Section 3). We thereafter study
their performance under reasonable models which exhibit locality of reference
(Section 4). While it seems difficult to improve the performance of multidimen-
sional data structures using self-adjusting techniques (as reorganizations in this
type of data structures is too expensive), fingering yields significant savings and
it is easy to implement. Our experiments show that the second, more complex
scheme of K-d trees exploits better the locality of reference than the
simpler 1-finger K-d trees; however these gains probably do not compensate for
the amount memory that it needs, so that 1-finger K-d trees are more attractive
on a practical ground.

2 Preliminaries and Basic Definitions

A standard tree [1] for a set F of K-dimensional data points is a binary
tree in which: (a) each node contains a K-dimensional data point and has an
associated discriminant cyclically assigned starting with

Thus the root of the tree discriminates with respect to the first coordinate
its sons at level 1 discriminate w.r.t. the second coordinate and

in general, all nodes at level discriminate w.r.t. coordinate mod K; (b)
for each node with discriminant the following invariant
is true: any data point in the left subtree satisfies and any data point

in the right subtree satisfies (see Fig. 1).
Randomized relaxed trees [6] (relaxed K-d trees, for short) are K-d trees

where the sequence of discriminants in a path from the root to any leaf is random
instead of cyclic. Hence, discriminants must be explicitly stored in the nodes.
Other variants of K-d tree use different alternatives to assign discriminants (for
instance, the squarish trees of Devroye et al. [5]) or combine different meth-
ods to partition the space (not just axis-parallel hyper-planes passing through
data coordinates as standard and relaxed K-d trees do).

We say that a K-d tree of size is random if it is built by insertions where
the points are independently drawn from a continuous distribution in
In the case of random relaxed K-d trees, the discriminants associated to the
internal nodes are uniformly and independently drawn from {0,... , K – 1}.

1 They actually apply to any variant of K-d trees, not just the two mentioned; some
additional but minor modifications would be necessary to adapt them to quad trees,
K-d tries, etc.

230 A. Duch and C. Martínez

Fig. 1. A standard 2-d tree and the corresponding induced partition of

An (orthogonal) range query is a K-dimensional hyper-rectangle Q. We shall
write with for Alternatively,
a range query can be specified given its center and the length of its edges

with for We assume that
so that a range query Q may fall partially outside

Range searching in any variant of K-d trees is straightforward. When visiting
a node that discriminates w.r.t. the coordinate, we must compare
with the range of the query. If the query range is totally above
(or below) that value, we must search only the right subtree (respectively, left)
of that node. If, on the contrary, then both subtrees must be
searched; additionally, we must check whether falls or not inside the query
hyper-rectangle. This procedure continues recursively until empty subtrees are
reached.

One important concept related to orthogonal range searches is that of bound-

ing box or bounding hyper-rectangle of a data point. Given an item in a K-d tree
T, its bounding hyper-rectangle
is the region of corresponding to the leaf that replaced when it was
inserted into T. Formally, it is defined as follows: a) if is the root of T then

is the father of and it discrim-
inates w.r.t. the coordinate and then

is the fa-
ther of and it discriminates w.r.t. the coordinate and then

The relation
of bounding hyper-rectangles with range search is established by the following
lemma.

Lemma 1 ([4,5]). A point with bounding hyper-rectangle is visited by
a range search with query hyper-rectangle Q if and only if intersects Q.

The cost of orthogonal range queries is usually measured as the number of
nodes of the K-d tree visited during the search. It has two main parts: a term
corresponding to the unavoidable cost of reporting the result plus an overwork.

b) if

c) if

Fingered Multidimensional Search Trees 231

Theorem 1 ([7]). Given a random tree storing uniformly and inde-
pendently drawn data points in the expected overwork of an or-
thogonal range search with edge lengths such that as

and with center uniformly and independently drawn from
is given by

when and the depend on the particular type of trees.

In the case of standard K-d trees where is the
unique real solution of for any

we have For relaxed K-d trees,
where Of particular interest is the case where

corresponding to the situation where each orthogonal range
search reports a constant number of points on the average. Then the cost is
dominated by the overwork and we have

A nearest neighbor query is a multidimensional point
lying in The goal of the search is to find the point in the data structure
which is closest to under a predefined distance measure.

There are several variants for nearest neighbor searching in K-d trees. One
of the simplest, which we will use for the rest of this paper works as follows.
The initial closest point is the root of the tree. Then we traverse the tree as if
we were inserting When visiting a node that discriminates w.r.t. the
coordinate, we must compare with If is smaller than we follow the left
subtree, otherwise we follow the right one. At each step we must check whether

is closer or not to than the closest point seen so far and update the candidate
nearest neighbor accordingly. The procedure continues recursively until empty
subtrees are reached. If the hyper-sphere, say defined by the query and
the candidate closest point is totally enclosed within the bounding boxes of the
visited nodes then the search is finished. Otherwise, we must visit recursively
the subtrees corresponding to nodes whose bounding box intersects but does not
enclose

The performance of nearest neighbor search is similar to the overwork in
range search. Given a random K-d tree, the expected cost of a nearest
neighbor query uniformly drawn from is given by

where In the case of standard K-d trees
More precisely, for K = 2 we have

and for K = 3 we have which is minimal. For relaxed K-d trees
When K = 2 we have which is minimal,

whereas for K = 8 we have which is maximal.

232 A. Duch and C. Martínez

3 Finger K-d Trees

In this section we introduce two different schemes of fingered K-d trees. We call
the first and simpler scheme 1-finger K-d trees; we augment the data structure
with one finger pointer. The second scheme is called multiple finger K-d tree (or

K-d tree, for short). Each node of the new data structure is equipped
with two additional pointers or fingers, each pointing to descendent nodes in
the left and right subtrees, respectively. The search in this case proceeds by
recursively using the fingers whenever possible.

3.1 One-Finger K-d Trees

A one-finger tree (1-finger K-d tree) for a set F of K-dimensional data
points is a K-d tree in which: (a) each node contains its bounding box and
a pointer to its father; (b) there is a pointer called finger that points to an
arbitrary node of the tree.

The finger is initially pointing to the root but it is updated after each in-
dividual search. Consider first orthogonal range searches. The orthogonal range
search algorithm starts the search at some node pointed to by the finger
Let be the bounding box of node and Q the range query. If
then all the points to be reported must necessarily be in the subtree rooted
at Thus, the search algorithm proceeds from down following the classical
range search algorithm. Otherwise, some of the points that are inside the query
Q can be stored in nodes which are not descendants of Hence, in this situ-
ation the algorithm backtracks until it finds the first ancestor of such that

completely contains Q. Once has been found the search proceeds as in
the previous case. The finger is updated to point to the first node where the
range search must follow recursively into both subtrees (or to the last visited
node if no such node exists). In other terms, is updated to point to the node
whose bounding box completely contains Q and none of the bounding boxes of
its descendants does. The idea is that if consecutive queries Q and are close
in geometric terms then either the bounding box that contains Q does also
contain or only a limited amount of backtrack suffices to find the appropriate
ancestor to go on with the usual range searching procedure. Of course, the
finger is initialized to point to the tree’s root before the first search is made. Al-
gorithm 1 describes the orthogonal range search in 1-finger K-d trees. It invokes
the standard range_search algorithm once the appropriate starting point has
been found. We use the notation to refer to the field field in the node
pointed to by For simplicity, the algorithm assumes that each node stores its
bounding box; however, it is not difficult to modify the algorithm so that only
the nodes in the path from the root to contain this information or to use an
auxiliary stack to store the bounding boxes of the nodes in the path from the
root to the finger. Additionally, the explicit pointers to the father can be avoid
using pointer reversal plus a pointer to finger’s father.

The single finger is exploited for nearest neighbor searches much in the same
vein. Let be the query and let be the node pointed to by the finger Initially

Fingered Multidimensional Search Trees 233

will point to the root of the tree, but on successive searches it will point to the
last closest point reported. The first step of the algorithm is then to calculate the
distance between and and to determine the ball with center and radius
If this ball is completely included in the bounding box of then nearest neighbor
search algorithm proceeds down the tree exactly in the same way as the standard
nearest neighbor search algorithm. If, on the contrary, the ball is not included in

the algorithm backtracks until it finds the least ancestor whose bounding
box completely contains the ball. Then the algorithm continues as the standard
nearest neighbor search. Algorithm 2 describes the nearest neighbor algorithm
for 1-finger K-d trees; notice that it behaves just as the standard nearest neighbor
search once the appropriate node where to start has been found.

3.2 Multiple Finger K-d Trees

A multiple-finger tree K-d tree) for a set F of K-dimensional data
points is a K-d tree in which each node contains its bounding box, a pointer to
its father and two pointers, fleft and fright, pointing to two nodes in its left
and right subtrees, respectively.

Given a K-d tree T and an orthogonal range query Q the orthogonal
range search in T returns the points in T which fall inside Q as usual, but it
also modifies the finger pointers of the nodes in T to improve the response time
of future orthogonal range searches. The algorithm for search trees
follows by recursively applying the 1-finger K-d tree scheme at each stage of the
orthogonal range search trees. The fingers of visited nodes are updated as the
search proceeds; we have considered that if a search continues in just one subtree
of the current node the finger corresponding to the non-visited subtree should

234 A. Duch and C. Martínez

be reset, for it was not providing useful information. The pseudo-code for this
algorithm is given as Algorithm 3.

It is important to emphasize that while it is not too difficult to code 1-finger
search trees using additional memory2, the implementation of
search trees does require additional memory for the father pointer, finger
pointers and bounding boxes, that is, a total of additional pointers and
K-dimensional points. This could be a high price for the improvement in search
performance which, perhaps, might not be worth paying.

4 Locality Models and Experimental Results

Both 1-finger and try to exploit locality of reference in long sequences
of queries, so one of the main aspects of this work was to devise meaningful
models on which we could carry out the experiments. The programs used in the
experiments described in this section have been written in C, using the GNU
compiler gcc–2.95.4. The experiments themselves have been run in a computer
with Intel Pentium 4 CPU at 2.8 GHz with 1 Gb of RAM and 512 Kb of cache
memory.

2 Actually, the necessary additional space is proportional to the height of the K-d
tree, which on average is but can be as much in the worst-case.

Fingered Multidimensional Search Trees 235

4.1 The Models

In the case of orthogonal range search, given a size and a dimension K,

we generate T = 1000 sets of K-dimensional points drawn uniformly and
independently at random in Each point of each set is inserted into two
initially empty trees, so that we get a random standard K-d tree and a
random relaxed K-d tree of size which contain the same information. For
each pair we generate S = 300 sequences of Q = 100 orthogonal range
queries and make the corresponding search with the standard and the fingered
variants of the algorithm, collecting the basic statistics on the performance of
the search.

We have used in all experiments fixed size queries: the length of the K edges
of each query was Since we have run experiments with up to
elements per tree, the number of reported points by any range search is typically

236 A. Duch and C. Martínez

small (from 1 to 5 reported points). To modelize locality, we introduced the
notion of queries: given to queries Q and with identical edge lengths

we say that Q and are if their respective centers
and satisfy and for any

The sequences of queries were easily generated at random by choosing the
initial center at random and setting each successive center
for some randomly generated vector in particular, the coordinate of
is generated uniformly at random in

The real-valued parameter is a simple way to capture into a single number
the degree of locality of reference. If then queries must overlap at
least a fraction of their volume. When (in fact it suffices to set

we have no locality.

For nearest neighbor searches, the experimental setup was pretty much the
same as for orthogonal search; for each pair of randomly built K-d trees,
we perform nearest neighbor search on each of the Q = 100 queries of each of
the S = 300 generated sequences.

Successive queries and are said to be if
and for any It is interesting to note that the locality
of reference parameter now bounds the distance between queries in absolute
terms, whereas it is used in relative terms in the case of orthogonal range queries.
As such, only values in the range are meaningful, although we find
convenient to say to indicate that there is no locality of reference.

4.2 The Experiments

Range Queries. Due to the space limitations, we show here only the results
corresponding to relaxed K-d trees; the results for standard K-d trees are quali-
tatively identical. To facilitate the comparison between the standard algorithms
and their fingered counterparts we use the ratio of the respective overworks;
namely, if denotes the overwork of 1-finger search, denotes the over-
work of search and denotes the overwork of standard search (no
fingers), we will use the ratios and Recall
that the overwork is the number of visited nodes during a search minus the num-
ber of nodes (points) which satisfied the range query. The graphs of Figures 2,
3 and 4 depict and and respectively.

All the plots confirm that significant savings can be achieved thanks to the
use of fingers; in particular, K-d trees do much better than 1-finger K-
d trees for all values of K and As increases the savings w.r.t. non-fingered
search decrease, but even for the overwork of 1-finger search is only about
60% of the overwork of the standard search.

As we already expected, the performance of both 1-finger K-d trees and
K-d trees heavily depends on the locality parameter a fact that is well

illustrated by Figures 5 and 6. The first one shows the plot of the overwork
of standard K-d trees for various values of and dimensions. In

Fingered Multidimensional Search Trees 237

particular, when the dimension increases we shall expect big differences in the
savings that fingered search yield as varies; for lower dimensions, the variability
of with is not so “steep”. Similar phenomena can be observed for relaxed

K-d trees and standard and relaxed 1-finger K-d trees. On the other
hand, Figure 6 shows the variation of and as functions of for
relaxed 1-finger and K-d trees.

Fig. 2. Overwork ratios for relaxed 1-finger K-d trees (solid line) and K-d
trees (dashed line), for K = 2 (up left), K = 3 (up right), K = 4 (down left),

and K = 5 (down right)

Taking into account the way the algorithm works, we conjecture that 1-finger
search reduces by a constant factor the logarithmic term in the overwork. Thus,
if standard search has overwork then

with However, since the and are quite small it is rather difficult
to disprove this hypothesis on an experimental basis; besides it is fully consistent
with the results that we have obtained.

On the other hand, and again, following our intuitions on its modus operandi,

we conjecture that the overwork of search is equivalent to skipping
the initial logarithmic path and then performing a standard range search on a
random tree whose size is a fraction of the total size, say for some

238 A. Duch and C. Martínez

Fig. 3. Overwork ratios for relaxed 1-finger K-d trees (solid line) and K-d
trees (dashed line), for K = 2 (up left), K = 3 (up right), K = 4 (down left),

and K = 5 (down right)

Fig. 4. Overwork ratios for relaxed 1-finger K-d trees (solid line) and K-d
trees (dashed line), for K = 2 (up left), K = 3 (up right), K = 4 (down left),

and K = 5 (down right)

Fingered Multidimensional Search Trees 239

Fig. 5. Overwork in relaxed K-d trees for several values of the locality pa-
rameter

Fig. 6. Overwork ratios for for relaxed 1-finger K-d trees (solid line) and
K-d trees (dashed line), K = 2 (up left), K = 3 (up right), K = 4 (down left),

and K = 5 (down right)

240 A. Duch and C. Martínez

(basically, the search behaves as the standard search, but skips more or
long intermediate chains of nodes and their subtrees). In other words, we would
have

for some and which depend on (but here is not the same as for 1-finger
search). In this case we face the same problems in order to find experimental
evidence against the conjecture.

Table 1 summarizes the values of and that we obtain by finding
the best-fit curve for the experimental results of relaxed 2-d trees. It is worth to
recall here that the theoretical analysis in [7] predicts for the overwork of
standard search in relaxed 2-d trees the following values:

Nearest Neighbor Queries. The curves in Figure 7 show the performance
of relaxed 1-finger K-d trees. There, we plot the ratio of the cost using 1-finger
nearest neighbor search to the cost using no fingers. For each dimension K
(K = 2,3,4,5), the solid line curve corresponds to nearest neighbor search with

whereas the dashed line curve corresponds to
It is not a surprise that when we have better locality of reference (a smaller
the performance improves. It is more difficult to explain why the variability

on is smaller as the dimension increases. The qualitatively different behavior
for K = 2, K = 3 and K > 3 is also surprising. For K = 2 the ratio of the
costs increases as increases until it reaches some stable value (e.g., roughly
90% when For K = 3 we have rather different behavior when we
pass from to For K = 4, K = 5 and K = 6 we have the same
qualitative behavior in all cases3: a decrease of the ratio as grows until the

The plot for K = 6 is not shown in the figure.3

and

Fingered Multidimensional Search Trees 241

ratio reaches a limit value. A similar phenomenon occurs for K = 2 and K = 3
provided that is even smaller than 0.005.

We did not find significant improvements of 1-finger search with respect to
standard search in none of our experiments, in particular, the cost of 1-finger
nearest neighbor search was not below 90% of the standard cost even for large
dimensions and small (but not unrealistic)

A preliminary explanation for the observed behavior is that unless the locality
of reference is high then the NN search will have to backtrack a significant
fraction of the path that it had skipped thanks to the finger. On the other
hand, we define the locality parameter in an absolute manner, but the actual
degree of locality that it expresses depends on the dimension. For instance, take

and If K = 2 then we would expect to find one point in
a of radius but we would find only 0.01 points in a of
radius if K = 3, etc. Hence, many NN searches in a large dimension and with
some reasonably small value of will have the same result as the immediately
preceding query and 1-finger search does pretty well under that (easy) situation.

Fig. 7. Nearest neighbor queries in relaxed 1-finger K-d trees for (solid line)

and (dashed line), K = 2 (up left), K = 3 (up right), K = 4 (down left), and
K = 5 (down right)

242 A. Duch and C. Martínez

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

Bentley, J.L., Multidimensional binary search trees used for associative retrieval,
Communications of the ACM, 18(9):509-517, (1975).
Borodin, A. and El-Yaniv, R., Online Computation and Competitive Analysis,
Cambridge University Press, (1998).
Brown, M. R. and Tarjan, R. E., Design and Analysis of a Data Structure for
Representing Sorted Lists, SIAM Journal of Computing, 9(3):594-614, (1980).
Chanzy, P. and Devroye, L. and Zamora-Cura, C., Analysis of range search for
random trees, Acta Informatica, 37:355-383, (2001).
Devroye, L. and Jabbour, J. and Zamora-Cura, C., Squarish trees, SIAM Jour-
nal of Computing, 30:1678-1700, (2000).
Duch, A. and Estivill-Castro, V. and Martínez, C., Randomized K-dimensional
binary search trees, Int. Symposium on Algorithms and Computation (ISAAC’98),
Eds. K.-Y. Chwa and O. H. Ibarra, Lecture Notes of Computer Science Vol. 1533:
199-208, Springer-Verlag, (1998).
Duch, A. and Martínez, C., On the Average Performance of Orthogonal Range
Search in Multidimensional Data Structures, Journal of Algorithms, 44(1):226-245,
(2002).
Gaede, V. and Günther, O., Multidimensional Access Methods,ACM Computing
Surveys, 30(2):170-231, (1998).
Guibas, L. J., McCreight, E. M., Plass, M. F. and Roberts, J. R., A New Repre-
sentation for Linear Lists, Annual ACM Symposium on the Theory of Computing,
STOC, (1977).
Samet, H., The Design and Analysis of Spatial Data Structures, Addison-Wesley,
(1990).
Sleator, D. D., and Tarjan, R. E., Amortized efficiency of list update and paging
rules, Communications of the ACM, 28(2):2002-208, (1985).

10.

11.

Faster Deterministic and Randomized

Algorithms on the Homogeneous Set Sandwich

Problem

Celina M.H. de Figueiredo1, Guilherme D. da Fonseca1, Vinícius G.P. de Sá1,
and Jeremy Spinrad2

1 Instituto de Matemática and COPPE, Universidade Federal do Rio de Janeiro,
Brazil.

celina@cos.ufrj.br, fonseca@cs.umd.edu, vigusmao@uol.com.br
2 Computer Science Department, Vanderbilt University, USA.

spin@vuse.vanderbilt.edu

Abstract. A homogeneous set is a non-trivial, proper subset of a graph’s
vertices such that all its elements present exactly the same outer neigh-
borhood. Given two graphs, we consider the prob-
lem of finding a sandwich graph with which
contains a homogeneous set, in case such a graph exists. This is called
the Homogeneous Set Sandwich Problem (HSSP). We give an
deterministic algorithm, which updates the known upper bounds for this
problem, and an Monte Carlo algorithm as well. Both algorithms,
which share the same underlying idea, are quite easy to be implemented
on the computer.

1 Introduction

Given two graphs such that a sandwich problem
with input pair consists in finding a sandwich graph with

which has a desired property [6]. In this paper, the property
we are interested in is the ownership of a homogeneous set. A homogeneous set

H, in a graph G(V, E), is a subset of V such that (i) and (ii)

for all either is true for all or is true for
all In other words, a homogeneous set H is a subset of V such that the
outside-H neighborhood of all its vertices is the same and which also satisfies the
necessary, above mentioned size constraints. A sandwich homogeneous set of a
pair is a homogeneous set for at least one among all possible sandwich
graphs for

Graph sandwich problems have attracted much attention lately arising from
many applications and as a natural generalization of recognition problems [1,3,
5,6,7,8,9].

The importance of homogeneous sets in the conetxt of graph decomposition
has been well acknowledged, specially in the context of perfect graphs [10]. There
are many algorithms which find homogeneous sets quickly in a single graph. The

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 243–252, 2004.
© Springer-Verlag Berlin Heidelberg 2004

244 C.M.H. de Figueiredo

most efficient one is due to McConnell and Spinrad [11] and has time
complexity.

On the other hand, the known algorithms for the homogeneous set sandwich
problem are far less efficient. The first polynomial time algorithm was presented
by Cerioli et al. [1] and has time complexity (where as throughout
the whole text). We refer to it as the Exhaustive Bias Envelopment algorithm

(EBE algorithm, for short), as in [2]. An algorithm (where stands for
the maximum vertex degree in has been found by Tang et al. [12], but in [4,
2] it is proved incorrect. Although all efforts to correct Tang et al.’s algorithm
(referred to as the Bias Graph Components algorithm, in [2]) have been in vain,
some of its ideas were used, in [4,2], to build a hybrid algorithm, inspired by both
[1] and [12]. This one has been called the Two-Phase algorithm (2-P algorithm,
for short) and currently sets the HSSP’s upper bounds at its time
complexity, where and respectively refer to the number of edges in
and the number of edges not in

After defining some concepts and auxiliary procedures in Section 2, we
present, in Section 3, a new deterministic algorithm for the HSSP. It
offers a good alternative to the 2-P algorithm (whose time complexity is not
better than if we express it only as a function of when dealing with
dense input graphs, whereas the 2-P would remain the best choice when sparse
graphs are dealt with. Besides, Section 4 is devoted to a fast, randomized Monte
Carlo algorithm, which solves this problem in time with whatever desired
error ratio.

2 Bias Envelopment

We define the bias set B(H) of a vertex subset H as the set of vertices such
that and for some Such vertices are called
bias vertices of the set H [12]. It is easy to see that H, with is
a sandwich homogeneous set if and only if B(H) = Ø.

It is proved in [1] that any sandwich homogeneous set containing the set of
vertices H should also contain B(H). This result, along with the fact that no
homogeneous sets are allowed with less than two vertices, gave birth in that same
paper to a procedure which we call Bias Envelopment [2]. The Bias Envelopment
procedure answers whether a given pair of vertices is contained in any sandwich
homogeneous sets of the input instance. The procedure starts from an initial
sandwich homogeneous set candidate and successively computes

until either (i) whereby is a sandwich
homogeneous set and it answers yes; or (ii) when it answers
no, meaning that there is no sandwich homogeneous set containing The
Bias Envelopment procedure runs in time, granted some appropriate data
structures are used, as described in [1],

The EBE algorithm, presented in [1], tries to find a sandwich homogeneous
set exhaustively, running the Bias Envelopment procedure on all pairs

Faster Deterministic and Randomized Algorithm 245

Fig. 1. The Incomplete Bias Envelopment procedure.

of the input graphs’ vertices, in the worst case. Thus, the time complexity of the
EBE algorithm is

Both algorithms we introduce in this paper are based on a variation of the
Bias Envelopment procedure, which we call the Incomplete Bias Envelopment.
The input of the Incomplete Bias Envelopment is a pair of vertices and
a stop parameter The only change in this incomplete version is that,
whenever the envelopment stops prematurely, answering no and re-
jecting Notice that a no answer from the Incomplete Bias Envelopment
with parameter means that is not contained in any homogeneous sets
of size at most Using the same data structures as in [1], the Incomplete Bias
Envelopment runs in O(nk) time.

The Incomplete Bias Envelopment generalizes its complete version, as a nor-
mal Bias Envelopment is equivalent to an Incomplete Bias Envelopment with
parameter

The pseudo-code for the Incomplete Bias Envelopment is in Figure 1.

3 The Balanced Subsets Algorithm

The algorithm we propose in this section is quite similar to the EBE algorithm,
in the sense that it submits each of the input vertices’ pairs to the process of Bias
Envelopment. The only difference is that this algorithm establishes a particular
order in which the vertex pairs are chosen, in such a way that it can benefit, at
a certain point, from unsuccessful envelopments that have already taken place.
After some unsuccessful envelopments, a number of vertex pairs have been found
not to be contained in any sandwich homogeneous sets. This knowledge is then
made useful by the algorithm, which will stop further envelopments earlier by
means of calling Incomplete Bias Envelopments instead of complete ones, saving
relevant time without loss of completeness.

When the algorithm starts, it partitions all vertices of the input graphs into
disjoint subsets of size each. Then all pairs of vertices will

be submitted to Bias Envelopment in two distinct phases: in the first phase, all

246 C.M.H. de Figueiredo

Fig. 2. The Balanced Subsets algorithm for the HSSP.

pairs consisting of vertices from the same subset are bias enveloped (and only
those); in the second phase, all remaining pairs (i.e. those comprising vertices
that are not from the same subset are then bias-enveloped. In the end, all
possible vertex pairs will have been checked out as to belong or not to some sand-
wich homogeneous set from the input instance, just like in the EBE algorithm.
The point is: if all Bias Envelopments in the first phase fail to find a sandwich
homogeneous set, then the input instance does not admit any sandwich homo-
geneous sets which contain two vertices from the same subset Thence, the
maximum size of any possibly existing homogeneous set is (the number
of subsets into which the vertices had been dispersed), which grants that all Bias
Envelopments of the second phase need not search for large homogeneous sets!
That is why an Incomplete Bias Envelopment with stop parameter
can be used instead.

Figure 2 illustrates the pseudo-code for the Balanced Subsets algorithm.

Theorem 1 The Balanced Subsets algorithm correctly answers whether there

exists a sandwich homogeneous set in the input graphs.

Proof. If the algorithm returns yes, then it has successfully found a set
with such that the bias set of H is empty. Thus, H is indeed
a valid sandwich homogeneous set.

Now, suppose the input has a sandwich homogeneous set H. If
then there are more vertices in H than subsets into which all input vertices
were spread, in the beginning of the algorithm (line 3). Thus, by the pigeon hole
principle, there must be two vertices which were assigned to the same
subset So, whenever is submitted to Bias Envelopment (line 4), the
algorithm is doomed to find a sandwich homogeneous set. On the other hand,
if then it is possible that H does not contain any two vertices
from the same subset which would cause all Bias Envelopments of the first
phase (line 4.1) to fail. In this case, however, when a pair happens

Faster Deterministic and Randomized Algorithm 247

to be bias enveloped in line 5, the Incomplete Bias Envelopment is meant to
be successful, for the size of H is, by hypothesis, less than or equal its stop
parameter

3.1 Complexity Analysis

As each subset has pairs of vertices and there are such subsets,
the number of pairs that are bias enveloped in the first phase of the algorithm
(line 4) is All Bias Envelopments, in this phase, are complete and take

time to be executed, which yields a subtotal of time in the whole
first phase.

The number of pairs that are only submitted to Bias Envelopment in the sec-
ond phase (line 5) is pairs. Each Bias Envelopment is,
now, an incomplete one with parameter Because the time
complexity of each Incomplete Bias Envelopment with parameter is O(nk)
then the total time complexity of the whole second phase of the algorithm is

Thus, the overall time complexity of the Balanced Subsets algorithm is

4 The Monte Carlo Algorithm

An yes-biased Monte Carlo algorithm for a decision problem is one which always
answers no when the correct answer is no and which answers yes with probability

whenever the correct answer is yes.

In order to gather some intuition, let us suppose the input has a sandwich
homogeneous set H with vertices or more.

What would be, in this case, the probability that a random pair of vertices
is not contained in H? Clearly,

What about the probability that random pairs of vertices fail to be
contained in H? It is easy to see that

Now, what is the probability that, after Bias Envelopment procedures
have been run (starting from randomly chosen pairs of vertices), a sandwich
homogeneous set have been found? Again, it is quite simple to reach the following
expression, which will be vital to the forthcoming reasoning.

248 C.M.H. de Figueiredo

If, instead of obtaining the probability from the expression above, we fix
at some desired value we will be able to calculate the minimum integer
value of (which will denote as a function of that satisfies the inequality 1.
This value is such that the execution of independent Bias Envelopment
procedures (on random pairs) is sufficient to find a sandwich homogeneous set

of the input instance with probability at least in case there exists any with
vertices or more (see equation 2):

However, we want an algorithm that finds a sandwich homogeneous set with
some fixed probability in case there exists any, no matter its size. But as
decreases with the growth of the following question arises: how many random
pairs do we need to submit to Bias Envelopment in order to achieve that? The
answer is rather simple: the minimum integer such that for 2 is the
shortest possible size of a sandwich homogeneous set!

Determining comes straightforwardly from equation 2 (please refer to Sec-
tion 4.1 for the detailed calculations):

Once the number of Bias Envelopment procedures that need to be under-
taken on randomly chosen pairs of vertices is and the time complexity of
each Bias Envelopment is so far we seem to have been lead to an
randomized algorithm, which is totally undesirable, for we could already solve
the problem deterministically with less asymptotical effort (see Section 3)!

Now we have come to a point where the incomplete version of the Bias
Envelopment procedure will play an essential role as far as time saving goes. We
show that, by the time the Bias Envelopment is run, its incomplete version
with stop parameter serves exactly the same purpose as its complete
version would do.

Lemma 2 In order to find a sandwich homogeneous set, with probability in
case there exists any with vertices or more, the Bias Envelopment need

not go further when the size of the candidate set has exceeded

Proof. Two are the possibilities regarding the input: (i) there is a sandwich
homogeneous set with more than vertices; or (ii) there are no sandwich
homogeneous sets with more than vertices.

If (i) is true, then no more than Bias Envelopments would even be
required to achieve that. Hence the Bias Envelopment can stop as early as
it pleases.

If (ii) is the case, then an Incomplete Bias Envelopment with stop parameter
is meant to give the exact same answer as the complete Bias Envelop-

Faster Deterministic and Randomized Algorithm 249

Fig. 3. The Monte Carlo algorithm for the HSSP.

ment would, for there are no sandwich homogeneous sets with more than
vertices to be found.

Whichever the case, thus, such an Incomplete Bias Envelopment is perfectly
sufficient.

Now we can describe an efficient Monte Carlo algorithm which gives the
correct answer to the HSSP with probability at least

The algorithm’s idea is to run several Incomplete Bias Envelopment pro-
cedures on randomly chosen initial candidate sets (pairs of vertices). At each
iteration of the algorithm we run an Incomplete Bias Envelopment with stop
parameter and either it succeeds in finding a sandwich homogeneous
set (and the algorithm stops with an yes answer) or else it aborts the current
envelopment whenever the number of vertices in the sandwich homogeneous set
candidate exceeds the threshold. (In this case, Lemma 2 grants its appli-
cability.) For the first iteration, the stop parameter is set to as the
first iteration corresponds to a complete Bias Envelopment. At the end of each
iteration, the value of is then updated (see equation 2), which makes it pro-
gressively decrease throughout the iterations until it reaches 2 (the minimum size
allowed for a homogeneous set), which necessarily happens after iterations
(see equation 3).

The pseudo-code for this algorithm is in Figure 3.

Theorem 3 The Monte Carlo HSSP algorithm correctly answers whether there

exists a sandwich homogeneous set in the input graphs with probability at least

Proof. If the algorithm returns yes, then it is the consequence of having found a
set with such that the bias set of H is empty, which
makes a valid sandwich homogeneous set out of H. In other words, if the correct
answer is no then the algorithm gives a correct no answer with probability 1.

If the correct answer is yes, we want to show that it gives a correct yes answer
with probability Let be the size of the largest sandwich homogeneous set

250 C.M.H. de Figueiredo

of the input instance. As and the algorithm only answers no after
has lowered down to 2, there must exist an index such that
From the definition of we know that, on the hypothesis that the input has
a sandwich homogeneous set with vertices or more, Bias Envelopments
are sufficient to find one, with probability at least As, by hypothesis, there
is a sandwich homogeneous set with vertices, then independent Bias
Envelopments are sufficient to find a sandwich homogeneous set with probability

So, it is enough to show that this quota of Bias Envelopments is achieved.
It is true that Incomplete Bias Envelopments that stop before the candidate
set has reached the size of cannot find a sandwich homogeneous set with
vertices. Nevertheless, the first iterations alone perform this minimum quota of
Bias Envelopments. Because is the size of the largest sandwich homogeneous
set, the fact of being incomplete simply does not matter for these first Bias
Envelopments, none among which being allowed to stop before the size of the
candidate set has become larger than

4.1 Complexity Analysis

The first iteration of the algorithm runs the complete Bias Envelopment in
time [1]. (Actually, a more precise bound is given by but, as the
complexities of the Incomplete Bias Envelopment procedures do not benefit at
all from having edge quantities in their analysis, we prefer to write time bounds
only as functions of however.) The remaining iterations take time
each. To analyze the time complexity of the algorithm, we have to calculate

where is the number of iterations in the worst case.
The value of obtained at the end of iteration is defined by equation 2.

To calculate we replace for 2 and have

Consequently,

For it is known that

Faster Deterministic and Randomized Algorithm 251

Now, we will show that This result is useful
to simplify some calculations. We have

To calculate the total time complexity, we replace for
and for the fixed value in equation 1, and have

It is well known that

Consequently, for

Using this approximation, we have

The total time complexity of the algorithm is

Using elementary calculus, we have

Consequently, the total time complexity of the algorithm is

Since

252 C.M.H. de Figueiredo

5 Conclusion

In this article, we presented two efficient algorithms for the Homogeneous Set
Sandwich Problem: the first was an deterministic algorithm and the
other, an Monte Carlo one. The best results so far had been if
only functions of are used to express time complexities.

A natural step, after having developed such a Monte Carlo algorithm, is often
the development of a related Las Vegas algorithm, i.e. an algorithm which always

gives the right answer in some expected polynomial time. Unfortunately, we do
not know of any short certificate for the non-existence of sandwich homogeneous
sets in some given HSSP instance, which surely complicates matters and suggests
a little more research on this issue.

References

M. R. Cerioli, H. Everett, C. M. H. de Figueiredo, and S. Klein. The homogeneous
set sandwich problem. Information Processing Letters, 67:31–35, 1998.
C. M. H. de Figueiredo and V. G. P. de Sá. A new upper bound for the homogeneous
set sandwich problem. Technical report, COPPE/Sistemas, Universidade Federal
do Rio de Janeiro, 2004.
C. M. H. de Figueiredo, S. Klein, and The graph sandwich problem
for 1-join composition is NP-complete. Discrete Appl. Math., 121:73–82, 2002.
V. G. P. de Sá. The sandwich problem for homogeneous sets in graphs. Master’s
thesis, COPPE / Universidade Federal do Rio de Janeiro, May 2003. In Portuguese.
M. C. Golumbic. Matrix sandwich problems. Linear Algebra Appl., 277:239–251,
1998.
M. C. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich problems. Journal

of Algorithms, 19:449–473, 1995.
M. C. Golumbic and A. Wassermann. Complexity and algorithms for graph and
hypergraph sandwich problems. Graphs Combin., 14:223–239, 1998.
H. Kaplan and R. Shamir. Pathwidth, bandwidth, and completion problems to
proper interval graphs with small cliques. SIAM J. Comput., 25:540–561, 1996.
H. Kaplan and R. Shamir. Bounded degree interval sandwich problems. Algorith-

mica, 24:96–104, 1999.
L. Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete Math.,

2:253–267, 1972.
R. M. McConnell and J. Spinrad. Modular decomposition and transitive orienta-
tions. Discrete Math., 201:189–241, 1999.
S. Tang, F. Yeh, and Y. Wang. An efficient algorithm for solving the homogeneous
set sandwich problem. Information Processing Letters, 77:17–22, 2001.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Efficient Implementation of the BSP/CGM

Parallel Vertex Cover FPT Algorithm*

Erik J. Hanashiro1, Henrique Mongelli1, and Siang W. Song2

1 Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil.
{erik,mongelli}@dct.ufms.br

2 Universidade de São Paulo, São Paulo, Brazil.
song@ime.usp.br

Abstract. In many applications NP-complete problems need to be
solved exactly. One promising method to treat some intractable prob-
lems is by considering the so-called Parameterized Complexity that di-
vides the problem input into a main part and a parameter. The main
part of the input contributes polynomially on the total complexity of the
problem, while the parameter is responsible for the combinatorial explo-
sion. We consider the parallel FPT algorithm of Cheetham et al. to solve
the Cover problem, using the CGM model. Our contribution is
to present a refined and improved implementation. In our parallel exper-
iments, we obtained better results and obtained smaller cover sizes for
some input data. The key idea for these results was the choice of good
data structures and use of the backtracking technique. We used 5 graphs
that represent conflict graphs of amino acids, the same graphs used also
by Cheetham et al. in their experiments. For two of these graphs, the
times we obtained were approximately 115 times better, for one of them
16 times better, and, for the remaining graphs, the obtained times were
slightly better. We must also emphasize that we used a computational en-
vironment that is inferior than that used in the experiments of Cheetham
et al.. Furthermore, for three graphs, we obtained smaller sizes for the
cover.

1 Introduction

In many applications, we need to solve NP-complete problems exactly. This
means we need a new approach in addition to solutions such as approximating
algorithms, randomization or heuristics.

One promising method to treat some intractable problems is by considering
the so-called Parameterized Complexity [1]. The input problem is divided into
two parts: the main part containing the data set and a parameter. For example,
in the parameterized version of the Vertex Cover problem for a graph G = (V, E),
also known as the Cover, we want to determine if there is a subset in V
of size smaller than whose edges are incident with the vertices of this subset.

Partially supported by FAPESP grant 1997/10982-0, CNPq grants 30.5218/03-4,
30.0482/02-7, 55.2028/02-9 and DS-CAPES.

*

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 253–268, 2004.
© Springer-Verlag Berlin Heidelberg 2004

254 E.J. Hanashiro, H. Mongelli, and S.W. Song

In this problem, the input is a graph G (the main part) and a non-negative
integer (the parameter). For simplicity, a problem whose input can be divided
like this is said to be parameterized.

A parameterized problem is said to be fixed-parameter tractable, or FPT

for short, if there is an algorithm that solves the problem in time,
where is a constant and is an arbitrary function [1]. If we exchange the
multiplicative connective between these two contributions by an additive con-
nective the definition of FPT problems remains unchanged. The
main part of the input contributes polynomially on the total complexity of the
problem, while the parameter is responsible for the combinatorial explosion. This
approach is feasible if the constant is small and the parameter is within a
tight interval. The Cover problem is one of the first problems proved to
be FPT and is the focus of this work. One of the well-known FPT algorithms for
this problem is the algorithm of Balasubramanian et al. [2], of time complexity

where is the size of the graph and is the maximum
size of the cover. This problem is very important from the practical point of
view. For example, in Bioinformatics we can use it in the analysis of multiple
sequences alignment.

Two techniques are usually applied in the FPT algorithms design: the reduc-
tion to problem kernel and the bounded search tree. These techniques can be
combined to solve the problem.

FPT algorithms have been implemented and they constitute a promising ap-
proach to solve problems to get the exact solution. Nevertheless, the exponential
complexity on the parameter can still result in a prohibitive cost. In this article,
we show how we can solve larger instances of the Cover, using the CGM
parallel model.

A CGM (Coarse-Grained Multicomputer) [3] consists of processors con-
nected by some interconnection network. Each processor has local memory of
size where N is the problem size. A CGM algorithm alternates be-
tween computation and communication rounds. In a communication round each
processor can send and receive a total of data.

The CGM algorithm presented in this paper has been designed by Cheetham
et al. [4] and requires communication rounds. It has two phases: in the
first phase a reduction to problem kernel is applied; the second phase consists
of building a bounded search tree that is distributed among the processors.

Cheetham et al. implemented the algorithm and the results are presented
in [4]. Our contribution is to present a refined and improved implementation. In
our parallel experiments, we obtained better results and obtained better cover
sizes for some input data. The key idea for these results was the choice of good
data structures and use of the backtracking technique. We used 5 graphs that
represent conflict graphs of amino acids, and these same graphs were used also
by Cheetham et al. [4] in their experiments. For two of these graphs, the times we
obtained were approximately 115 times better, for one of them 16 times better,
and, for the remaining graphs, the obtained times were slightly better. We must
also emphasize that we used a computational environment that is inferior than

Efficient Implementation of the BSP/CGM Parallel Vertex Cover 255

that used in the experiments of Cheetham et al. [4]. Furthermore, for three
graphs, we obtained smaller sizes for the cover.

In the next section we introduce some important concepts. In Section 3 we
present the main FPT sequential algorithms for the problem and the CGM ver-
sion. In Section 4 we present the data structures and discuss the implementation
and in Section 5 we show the experimental results. In Section 6 we present some
conclusions.

Parameterized Complexity and Cover
Problem

2

We present some fundamental concepts for sequential and CGM versions of the
FPT algorithm for the Cover problem.

Parameterized complexity [1,5,6,7,8] is another way of dealing with the in-
tractability of some problems. This method has been successfully used to solve
problems of instance sizes that otherwise cannot be solved by other means [7].

The input of the problem is divided into two parts: the main part and the
parameter. There exist some computational problems that can be naturally spec-
ified in this manner [5].

In classical computational complexity, the entire input of the problems is
considered to be responsible for the combinatorial explosion of the intractable
problem. In parameterized complexity, we try to understand how the different
parts of the input contribute in the total complexity of the problem, and we
wish to identify those input parts that cause the apparently inevitable combi-
natorial explosion. The main input part contributes in a polynomial way in the
total complexity of the problem, while the parameter part probably contributes
exponentially in the total complexity. Thus, in cases where we manage to do
this, NP-complete problems can be solved by algorithms of exponential time
with respect to the parameter and polynomial time with respect to the main
input part. Even then we need to confine the parameter to a small, but useful,
interval. In many applications, the parameter can be considered “very small”
when compared to the main input part.

A parameterizable problem is a set where is a fixed alphabet.
If the pair we call the main input part (or instance) and the
parameter.

According to Downey and Fellows [1], a parameterizable problem
is fixed parameter tractable if there exists an algorithm that, given an input

solves it in time, where is the size of the main input
part is the size of parameter is a constant independent
of and is an arbitrary function.

The arbitrary function of the definition is the contribution of the pa-
rameter to the total complexity of the problem. Probably this contribution
is exponential. However, the main input part contributes polynomially to the
total complexity of the problem. The basic assumption is that The
polynomial contribution is acceptable if the constant is small. However, the

256 E.J. Hanashiro, H. Mongelli, and S.W. Song

definition of fixed parameter tractable problem remains unchanged if we ex-
change the multiplicative connective between the two contributions, by
an additive connective

The fixed parameter tractable problems form a class of problems called FPT
(Fixed-Parameter Tractability). There are NP-complete problems that has been
proven not to be in FPT class.

An important issue to compare the performance of FPT algorithms is the
maximum size for the parameter without affecting the desired efficiency of
the algorithm. This value is called klam and is defined as the largest value
of such that where U is some absolute limit on the number of
computational steps, Downey and Fellows [1] suggest A challenge in
the fixed parameter tractable problems is the design of FPT algorithms with
increasingly larger values of klam.

Two elementary methods are used to design algorithms for fixed parameter
tractable problems: reduction to problem kernel and bounded search tree. The
application of these methods, in this order, as an algorithm of two phases, is
the basis of several FPT algorithms. In spite of being simple algorithmic strate-
gies, these techniques do not come into mind immediately, since they involve
exponential costs relative to the parameter [6].

Reduction to problem kernel: The goal is to reduce, in polynomial time,
an instance I of the parameterizable problem into another equivalent in-
stance whose size is limited by a function of the parameter If a solu-
tion of is found, probably after an exhaustive analysis of the generated
instance, this solution can be transformed into a solution of I. The use of this
technique always results in an additive connective between the contributions

and on the total complexity.
Bounded search tree: This technique attempts to solve the problem
through an exhaustive tree search, whose size is to be bounded by a function
of the parameter Therefore, we use the instance generated by the reduc-
tion to problem kernel method in the search tree, which must be traversed
until we find a node with the solution of the instance. In the worst case,
we have to traverse all the tree. However, it is important to emphasize that
the tree size depends only on the parameter, limiting the search space by a
function of

In the parameterized version of the Vertex Cover problem, also known as
Cover problem, we must have a graph G = (V, E) (the instance) and a

non-negative integer (the parameter). We want to answer the following ques-
tion: “Is there a set of vertices, whose maximum size is so that for
every edge or Many other graph problems can be
parameterized similarly.

The set is not unique. An application of the vertex cover problem is the
analysis of multiple sequences alignment [4]. A solution to resolve the conflicts
among sequences is to exclude some of them from the sample. A conflict exists
when two sequences have a score below a certain threshold. We can construct

Efficient Implementation of the BSP/CGM Parallel Vertex Cover 257

a graph, called the conflict graph, where each sequence is a vertex and an edge
links two conflict sequences. Our goal is to remove the least number of sequences
so that the conflict will be deleted. We thus want to find a minimum vertex cover
for the conflict graph.

A trivial exact algorithm for this problem is to use brute force. In this case
all the possible subsets whose size is smaller or equal to are verified to be a
cover [1], where is the maximum size desired for the cover and is the number
of vertices in the graph The number of subsets with elements is
so the algorithm to find all these subsets has time complexity of The
costly brute force approach is usually not feasible in practice.

3 FPT Algorithms for the Cover Problem

In this section we present FPT algorithms that solve the vertex cover problem
and are used in our implementation. Initially we show the algorithm of Buss [9],
responsible for the phase of reduction to problem kernel. Then we show two
algorithms of Balasubramanian et al. [2] that present two forms to construct
the bounded search tree. Finally we present the CGM algorithm of Cheetham
et al. [4]. In all these algorithms, the input is formed by a graph G and the size
of the vertex cover desired (parameter

3.1 Algorithm of Buss

The algorithm of Buss [9] is based on the idea that all the vertices of degree
greater than belong to any vertex cover for graph G of size smaller or equal
to Therefore, such vertices must be added to the partial cover and removed
from the graph. If there are more than vertices in this situation, there is no
vertex cover of size smaller or equal to for the graph G.

The edges incident with the vertices of degree greater than can also be
removed since they are joined to at least one vertex of the cover, and the isolated
vertices are removed once there are no vertices to cover. The graph produced is
denominated

From now on, our goal is to find a vertex cover of size smaller or equal to
for the graph where is the difference between and the number of elements
of the partial vertex cover. This is only possible if there do no exist more than

edges in This is because vertices can cover at most edges in the
graph, since the vertices of have degree bounded by Furthermore, if we do
not have more than edges in nor isolated vertices, we can conclude that
there are at most vertices in As is at most the size of the graph

is
Given the adjacency list of the graph, the steps described until here spend

O(kn) time and form the basis for the reduction to problem kernel phase. Observe
that graph G is reduced, in polynomial time, to an equivalent graph whose
size is bounded by a function of the parameter The kernellization phase as
described is used in the algorithms presented in the next subsection.

258 E.J. Hanashiro, H. Mongelli, and S.W. Song

To determine finally if there exists or not a vertex cover for of size smaller
or equal to the algorithm of Buss [9] executes a brute force algorithm. If a
vertex cover for of size smaller or equal to exists, these vertices and the
vertices of degree greater than form a vertex cover for G of size smaller or
equal to The algorithm of Buss [9] spends a total time of

3.2 Algorithms of Balasubramanian et al.

The algorithms of Balasubramanian et al. [2] execute initially the phase of reduc-
tion to problem kernel based on the algorithm of Buss [9]. In the second phase,
a bounded search tree is generated. The two options to generate the bounded
search tree are shown in Balasubramanian et al. [2] and described below as Algo-
rithm B1 and Algorithm B2. In both cases, we search the tree nodes exhaustively
for a solution of the vertex cover problem, by depth first tree traversal. The dif-
ference between the two algorithms is the form we choose the vertices to be
added to the partial cover and, consequently, the format of such a tree.

Each node of the search tree stores a partial vertex cover and a reduced
instance of the graph. This partial cover is composed of the vertices that belong
to the cover. The reduced instance is formed by the graph resulting from the
removal of the vertices of G that are in the partial cover, as well as the edges
incident with them and any isolated vertex. We call this graph and an integer

that is the maximum desired size for the vertex cover of The root of the
search tree, for example, represents the situation after the method of reduction
to problem kernel. In other words, in the partial cover we have the vertices of
degree greater than and the instance

The edges of the search tree represents the several possibilities of adding
vertices to the existing partial cover. Notice that the son of a tree node has more
elements in the partial vertex cover and a graph with less nodes and edges than
its parent, since every time a vertex is added to the partial cover, we remove it
from the graph, together with the incident edges and any isolated vertices. We
actually do not generate all the nodes before the depth first tree traversal. We
only generate a node of the bounded search tree when this node is visited.

The search tree has the following property: for each existing vertex cover for
graph G of size smaller or equal to there exists a corresponding tree node with
a resulting empty graph and a vertex cover (not necessarily the same) of size
smaller or equal to However, if there is no vertex cover of size smaller or equal
to for graph G, then no tree node possesses a resulting empty graph. Actually
the growth of the search tree is interrupted when the node has a partial vertex
cover of size smaller or equal to or a resulting empty graph (case in which
we find a valid vertex cover for graph G). Notice that this bounds the size of
the tree in terms of the parameter Therefore, in the worst case, we have to
traverse all the search tree to determine if there exists or not a vertex cover of
size smaller or equal to for graph G.

Given the adjacency list of the graph, we spend time in each node,
where is the number of vertices of the current graph. Therefore, if is the
number of nodes of the search tree, then the time spent to traverse all the tree is

Efficient Implementation of the BSP/CGM Parallel Vertex Cover 259

Recall that the root node of the search tree, whose size is bounded
by stores the resulting graph of the phase of reduction to problem kernel.

Algorithm B1. In this algorithm, the choice of the vertices of to be added
to the partial cover in any tree node is done according to a path generated from
any vertex of that passes through at least three edges.

If this path has size one or two, then we add the neighbor of the node of
degree one to the partial cover, remove their incident edges and any isolated
vertices. This new graph instance with the new partial cover is kept in the same
node of the bounded search tree and the Algorithm B1 is applied again in this
node.

If this path is a simple path of size three, passing by vertices and
any vertex cover must contain or or If the path is a

simple cycle of size three, passing by vertices and any vertex cover
must contain or or In both cases, the tree node is ramified
into three three sons to add one of the three pairs of suggested vertices. We can
then go to the next node of the tree, recalling the depth first traversal.

Notice that this algorithm generates a tertiary search tree and that at each
tree level the partial cover increases by at least two vertices. The Algorithm B1
spends time to solve the Cover problem.

Algorithm B2. In this algorithm, the choice of vertices of to be added
to the partial cover in any node of the tree is done according to five cases by
considering the degree of the vertices of the resulting graph. We deal first with
the vertices of degree 1 (Case 1), then with vertices of degree 2 (Case 2), then
with vertices of degree 5 or more (Case 3), then with vertices of degree 3 (Case
4) and, finally, with vertices of degree 4 (Case 5).

We use the following notation. represents the set of vertices that are
neighbors of vertices and N(S) represents the set

In Case 1, if there exists a vertex of degree 1 in the graph, then we create
a new son to add to the partial cover.

In Case 2, if there exists a vertex of degree 2 in the graph, then we can have
three subcases, to be tested in the following order. Let and be the neighbors
of In Subcase 1, if there exists an edge between and then we create a new
son to add to the partial cover. In Subcase 2, if and have at least two
neighbors different from then we ramify the node of the tree into two sons to
add and to the partial cover. In Subcase 3,. if and share an

ramify the node of the tree into two sons to add and to the partial cover.
If none of the three previous cases occurs, then we have a 3 or 4-regular

graph. In case 4, if there exists a vertex of degree 3, then we can have four
subcases, to be treated in the following order. Let and be the neighbors
of In Subcase 1, if there exists an edge between two neighbors of say and

the we ramify the node of the tree into two sons to add and to

only neighbor different from then we create a new son to add
In Case 3, if there exists a vertex of degree 5 or more in the graph, then we

260 E.J. Hanashiro, H. Mongelli, and S.W. Song

the partial cover. In Subcase 2, if a pair of neighbors of say and share
another common neighbor (but different from then we ramify the node of
the tree into two sons to add and to the partial cover. In Subcase 3,
if a neighbor of say has at least three neighbors different from then we
ramify the node of the tree into three sons to add and
to the partial cover. In Subcase 4, the neighbors of have exactly two private
neighbors, not considering vertex proper. Let be a neighbor of and let
and be the neighbors of then we ramify the node of the tree into three sons
to add and to the partial cover.

In Case 5, we have a 4-regular graph and we can have three subcases, to be
tested in the following order. Let be a vertex of the graph and and its
neighbor vertices. In Subcase 1, if there exists an edge between two neighbors of

say and then we ramify the node of the tree into three sons to add
to the partial cover. In Subcase 2, if three neighbors of

say and share common neighbor then we ramify the node of the tree
into two sons to add and to the partial cover. In Subcase 3, if each of
the neighbors of has three neighbors different from then we ramify the node
of the tree into four sons to add and
to the partial cover.

Contrary to Algorithm B1 a node in the search tree can be ramified into two,
three or four sons, and the partial cover can increase up to 8 vertices, depending
on the selected case. Algorithm B2 spends time to solve
the Cover problem.

3.3 Algorithm of Cheetham et al.

The CGM algorithm proposed by Cheetham et al. [4] to solve the Cover
problem parallelizes both phases of an FPT algorithm, reduction to problem
kernel and bounded search tree. Previous works designed for the PRAM model
parallelize only the method of reduction to problem kernel [4]. However, as the
implementations of FPT algorithms usually spends minutes in the reduction to
problem kernel and hours, or maybe even days in the bounded search tree, the
parallelization of the bounded search tree designed in the CGM algorithm is an
important contribution.

The CGM algorithm of Cheetham et al. [4] solves even larger instances of
the Cover problem than those solved by sequential FPT algorithms.
The implementation of this algorithm can solve instances with in less
than 75 minutes of processing time. It is important to emphasize that the

Cover is considered well solved for instances of (sequential FPT
algorithms) [7]. Not only there is a considerable increase in the parameter it
is important to recall that the time of a FPT algorithm grows exponentially in
relation to

The phase of reduction to problem kernel is parallelized through a parallel
integer sorting. The processors that participate in the parallel sort are identified
as To identify vertices of the graph with degree larger than

the edges are sorted by the label of the vertex they are incident with through

Efficient Implementation 261

The phase of reduction to problem kernel is parallelized through a parallel
integer sorting. The processors that participate in the parallel sort are identified
as To identify vertices of the graph with degree larger than

the edges are sorted by the label of the vertex they are incident with through
deterministic sample sort [10], that require O(1) parallel integer sorts, i.e. in
constant time. The partial vertex cover (vertices with degree larger than and
the instance is sent to all the processors.

The basic idea of the parallelization of the phase of bounded search tree
is to generate a complete tertiary tree T with tree levels and leaf
nodes Each one of these leaf nodes is then assigned to one of the

processors, that search locally for a solution in the subtree generated from the
leaf node as shown in Fig. 1. A detailed description of this phase is presented
in the following.

Fig. 1. A processor computes the unique path in T from the root to leaf using
the Algorithm B1. Then, computes the entire subtree below using the Algorithm
B2.

Consider the tertiary search tree T. Each processor starts this
phase with the instance obtained at the previous phase and uses
Algorithm B1 to compute the unique path in T from the tree root to the
leaf node Let be the instance computed at the leaf node
Each processor searches locally for a solution in the subtree
generated from based on Algorithm B2. Processor chooses a son
of the node at random and expands it until a solution is found or the partial
cover is larger than If a solution is not found, return to the subtree to
get a still not explored son, until all the subtree is traversed. If a solution is
encountered, the other processors are notified to interrupt.

In the algorithm of Cheetham et al. [4], the major part of the computational
work occurs when each processor computes locally the search tree

262 E.J. Hanashiro, H. Mongelli, and S.W. Song

4 Implementation Details

In this section we present some implementation details of the parallel FPT al-
gorithm and discuss the data structures utilized in our implementation. We use
C/C++ and the MPI communication library.

The program receives as input a text file describing a graph G by its adjacency
list and an integer that determines the maximum size for the vertex cover
desired. Let be the number of vertices and the number of edges of graph G
and the number of processors to run the program.

At the beginning of the reduction to problem kernel phase, the input ad-
jacency list of graph G is transformed into a list of corresponding edges and
distributed among the processors. Each processor receives
edges and is responsible for controlling the degrees of vertices.

Each processor sorts the edges received by the identifier of the first vertex
they are incident with, and obtains the degree of such vertices. Notice it is possi-
ble for a processor to compute the degree of the vertices that are of responsibility
for another processor. In this case, the results are sent to the corresponding pro-
cessor.

After this communication, the processors can identify the local vertices
with degree larger than and send this information to the others, so that each
processor can remove the local edges incident with these vertices. All the re-
maining edges after the removal, that form the new graph are sent to all the
processors. In this way, at the end of this phase, each processor has the instance
generated by the method of reduction to problem kernel and the partial cover
(vertices of degree smaller than that is, the root of the bounded search tree.
The processors transform the list of edges corresponding to graph again
into an adjacency list, that will be used in the next phase.

The resulting adjacency list from the reduction to problem kernel is imple-
mented as a doubly linked list of vertices. Each node of this list of vertices
contains a pointer to a doubly linked list of pointers, whose elements represent
all the edges incident with that we denote, for simplicity, by the list of edges
of Each node of the list of edges of points to the node of the list of vertices
that contains the other extreme of the edge. In spite of the fact that graph is not
a directed graph, each edge is represented twice in distinct lists of edges. Thus
each node of the list of edges contains also a pointer to its other representation.
In Fig. 2 we present an example of a graph and the data structure to store it.

The insertion of a new element in the list of vertices takes time, since
it is necessary to check if such elements already exist. In the list of edges, the
insertion of a new element, in case it does not yet exist, results in the insertion
of elements in the two lists of edges incident with its two extremes and also takes

time.
The removal of a vertex or an edge is a rearrangement of the pointers of

previous and next elements of the list. They are not effectively deallocated from
memory, they are only removed from the list. Notice that the edges incident with
it are removed automatically with the vertex. However, we still have to remove
the other representation. As each edge has a pointer to its other representation,

Efficient Implementation of the BSP/CGM Parallel Vertex Cover 263

Fig. 2. The data structure used to store the graph G.

we spend O(1) time to remove it from the list of edges of the other vertex.
Therefore, we spend time to remove a vertex from the list, since the vertices
of the graph have degree bounded by In our implementation, we store in
memory only the data relative to the node of the bounded search tree being
worked on.

Since we use depth first traversal in the bounded search tree, we need to
store some information that enables us to go up the tree and recover a previous
instance of the graph. Thus our program uses the backtracking technique. Such
information is stored in a stack of pointers to removed vertices and edges. Adding
an element in the stack takes O(1) time. Removing an element from the stack
and put it back in the graph also takes O(1) time, since the removed vertex or
edge has pointers to the previous and next elements in the list.

The partial vertex cover is also a stack of pointers to vertices known to be
part of the cover. To add or remove an element from the cover takes O(1) time.

At the beginning of the bounded search tree phase, all the processors con-
tain the instance and the partial vertex cover resulting from the phase
of reduction to problem kernel. As seen in Section 3.3, there exists a bounded
tertiary complete search tree T with leaf nodes. Each processor
uses Algorithm B1, generates the unique path in tree T from the root to the leaf
node of tree T. Then, each processor applies Algorithm B2 in the subtree
whose root is the leaf node until finding a solution or finishing the traversal.

In Algorithm B1, we search a path that starts at a vertex and passes through
at most three edges. In our implementation, this initial vertex is always the first
vertex of the list and, therefore, the same tree T is generated in all the executions
of the program.

In the implementation of Algorithm B2, to obtain constant time for the
selection of a vertex for the cases of this algorithm, we use 6 auxiliary lists of
pointers to organize the vertices of the graph according to its degree (0, 1, 2, 3,
4 and 5 or more). Furthermore, each vertex of the graph also has a pointer to
its representative in the list of degrees, therefore in any change of degree of a
vertex implies O(1) time to change it in the list of degrees.

264 E.J. Hanashiro, H. Mongelli, and S.W. Song

5 Experimental Results

We present the experimental results by implementing the CGM algorithm of
Cheetham et al. [4], using the data structures and the description of the previous
section. Our parallel implementation will be called Par-Impl. Furthermore, we
also implemented Algorithm B2 in C/C++, to be called Seq-Impl.

The computational environment is a Beowulf cluster of 64 Pentium III pro-
cessors, with 500 MHz and 256 MB RAM memory each processor. All the nodes
are interconnected by a Gigabit Ethernet switch. We used Linux Red Hat 7.3
with g++ 2.96 and MPI/LAM 6.5.6.

The sequential times were measured as wall clock times in seconds, including
reading input data, data structures deallocation and writing output data. The
parallel times were also measured as wall clock time between the start of the
first processor and termination of the last process, including I/O operations and
data structures deallocation.

In our experiments we used conflict graphs that were kindly provided by
Professor Frank Dehne (Carleton University). These graphs represent sequences
of amino acid collected from the NCBI database. They are Somatostatin, WW,
Kinase, SH2 (src-homology domain 2) and PHD (pleckstrin homology domain).
The Table 1 shows a summary of the characteristics of these graphs (name,
number of vertices, number of edges, size of desired cover and size of the cover
to search for after the reduction to problem kernel).

In Fig. 3 we compare the times obtained by executing Seq-Impl and Par-
Impl in a single processor (3 virtual processors) and Par-Impl in 27 processors.
To run Par-Impl in a single processor we used MPI/LAM simulation mode, that
simulates virtual processors as independent processes on the same physical
processor. The time obtained by Par-Impl in a single processor is the sum of the
wall clock times of the individual processes plus the overhead created by their
communication. The tests were carried out for the graphs PHD, Somatostatin
and WW. These input data were chosen because their sequential times are rea-
sonable. To obtain the averages, we ran Seq-Impl 10 times for each data set and
Par-Impl 30 times for each data set. In spite of the fact we are using a single
processor to run the parallel implementation, the time was significantly much
smaller. This is justified by the fact of having more initial distinct points in the

Efficient Implementation of the BSP/CGM Parallel Vertex Cover 265

Fig. 3. Comparison of sequential and parallel times.

bounded search tree, such that from one of them we can find a path that takes
to the cover more quickly.

In Fig. 4 we show the average of the parallel times obtained in 27 processors.
Our parallel implementation can solve problem instances of size in
less than 3 minutes. For example, graph PHD can be solved in less
than 1 minute. Notice that Cover problem is considered well solved
for instances of by sequential FPT algorithms [7]. It is important to
emphasize that the time of FPT algorithm grows exponentially in relation to

Again we use 30 time samples to get the average time. Observe the times
obtained and the Table 1. We see that the parallel wall clock times do not
strictly increase with either or This makes us conclude that the graph
structure is the responsible for the running time.

Fig. 4. Average wall clock times for the data sets on 27 real processors.

266 E.J. Hanashiro, H. Mongelli, and S.W. Song

The parallel times, using 3, 9 and 27 processors for the graphs PHD, So-
matostatin and WW are shown in Fig. 5. Notice the increase in the number
of processors does not necessarily imply a greater improvement on the aver-
age time, in spite of the always observed time reduction. Nevertheless, the use
of more processors increases the chance of determining the cover more quickly,
since we start the tree search in more points. Furthermore, it seems that the
number of tree nodes with a solution also has some influence on the running
times. As we do the depth first traversal in the bounded search tree, a wrong
choice of a son to visit means that we have to traverse all the subtree of the son
before choosing another son to visit.

Fig. 5. Average wall clock times on 3, 9 and 27 processors for PHD, Somatostatin and
WW.

For the graphs PHD, SH2, Somatostatin and WW we could guarantee, in
less than 75 minutes, the non existence of covers smaller than that determined
by the parallel algorithm, confirming the minimality of the values obtained. For
this, all the possible nodes of the bounded search tree were generated. For the
graph Kinase this was not possible in an acceptable time.

Our results were compared with those presented in Cheetham et al. [4], who
used a Beowulf Cluster of 32 Xeon nodes of 1.8 GHz and 512 MB of RAM. All
the nodes were interconnected by a Gigabit Ethernet switch. Every node was
running Linux Red Hat 7.2 with gcc 2.95.3 and MPI/LAM 6.5.6.

Our experiments are very relevant, since we used a computational platform
that is much inferior than that used in Cheetham et al. [4]. The parallel times
obtained in our experiments were better. We considered that the choice of good
data structures and use of the backtracking technique were essential to obtain
our relevant results. For the graphs Kinase and SH2 we obtained parallel times
that are much better, a reduction by a factor of approximately 115. The time
for the graph PHD was around 16 times better. For the graphs Somatostatin
and WW the times are slightly better. As we did not have access to the im-
plementation of Cheetham et al. [4], we tested several data structures in our
implementation. In the final version we used that implementation that gave the

Efficient Implementation of the BSP/CGM Parallel Vertex Cover 267

best performance, together with the backtracking technique. More details can
be found in Hanashiro [11].

Furthermore, the size of the covers obtained were smaller for the following
graphs: Kinase (from 497 to 495), PHD (from 603 to 601) and Somatostatin
(from 273 to 272). It is important to emphasize that the reduction in the size
of the cover implies the reduction on the universe of existing solutions in the
bounded search tree, which in turn gives rise to an increase in the running time.

6 Conclusion

FPT algorithms constitute an alternative approach to solve NP-complete prob-
lems for which it is possible to fix a parameter that is responsible for the combi-
natorial explosion. The use of parallelism improve significantly the running time
of the FPT algorithms, as in the case of the Cover problem.

In the implementation of the presented CGM algorithm, the choice of the
data structures and the use of the backtracking technique were essential to ob-
tain the relevant experimental results. During the program design, we utilized
several alternative data structures and their results were compared with those
of Cheetham et al. [4]. Then we chose the design that obtained the best perfor-
mance. Unfortunately we did not have access to the implementation of Cheetham
et al. to compare it with our code.

We obtained great improvements on the running times as compared to those
of Cheetham et al. [4]. This is more significant if we take into account the fact
that we used an inferior computational environment. Furthermore, we improved
the values for the minimum cover and guaranteed the minimality for some of
the graphs.

The speedups of our implementation with that of Cheetham et al. [4] vary
very much. The probable cause of this may lie in the structures of the input
graphs, and also in the number of solutions and how these solutions are dis-
tributed among the nodes of the bounded search tree.

For the input used, only for the Thrombin graph we did not obtain better
average times, as compared to those of Cheetham et al. [4]. To improve the
results, we experimented two other implementations, by introducing randomness
in some of the choices. With these modifications, in more experiments we get
lower times for the Thrombin graph, though we did not improve the average.
For some of the graphs, the modification increases the times obtained, and does
not justify its usage.

Acknowledgments. The authors would like to thank Prof. Frank Dehne (Car-
leton University) who kindly provided us the conflict graphs, Prof. Edson N.
Cáceres (UFMS) for his assistance, the Institute of Computing/UNICAMP for
giving the permission to use the machines, and finally the referees for their help-
ful comments.

268 E.J. Hanashiro, H. Mongelli, and S.W. Song

References

Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer-Verlag (1998)
Balasubramanian, R., Fellows, M.R., Raman, V.: An improved fixed-parameter
algorithm for vertex cover. Information Processing Letters 65 (1998) 163–168
Dehne, F., Fabri, A., Rau-Chaplin, A.: Scalable parallel computational geome-
try for coarse grained multicomputers. In: Proceedings of the ACM 9th Annual
Computational Geometry. (1993) 298–307
Cheetham, J., Dehne, F., Rau-Chaplin, A., Stege, U., Taillon, P.: Solving large
FPT problems on coarse grained parallel machines. Journal of Computer and
System Sciences 4 (2003) 691–706
Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I:
Basic results. SIAM J. Comput. 24 (1995) 873–921
Downey, R.G., Fellows, M.R.: Parameterized complexity after (almost) 10 years:
Review and open questions. In: Combinatorics, Computation & Logic, DMTCS’99
and CATS’99. Volume 21, número 3., Australian Comput. Sc. Comm., Springer-
Verlag (1999) 1–33
Downey, R.G., Fellows, M.R., Stege, U.: Parameterized complexity: A framework
for systematically confronting computational intractability. In: Contemporary
Trends in Discrete Mathematics: From DIMACS and DIMATIA to the Future.
Volume 49 of AMS-DIMACS Proceedings Series. (1999) 49–99
Niedermeier, R.: Some prospects for efficient fixed parameter algorithms. In: Conf.
on Current Trends in Theory and Practice of Informatics. (1998) 168–185
Buss, J.F., Goldsmith, J.: Nondeterminism within P. SIAM J. Comput. 22 (1993)
560–572
Chan, A., Dehne, F.: A note on course grained parallel integer sorting. In: 13th
Annual Int. Symposium on High Performance Computers. (1999) 261–267
Hanashiro, E.J.: O problema da por Vértices: uma implementação
FPT no modelo CGM. Master’s thesis, Universidade Federal de Mato Grosso do
Sul (2004)

1.
2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Combining Speed-Up Techniques for

Shortest-Path Computations*

Martin Holzer, Frank Schulz, and Thomas Willhalm

Universität Karlsruhe, Fakultät für Informatik, Postfach 6980, 76128 Karlsruhe,
Germany.

{mholzer,fschulz,willhalm}@ira.uka.de

Abstract. Computing a shortest path from one node to another in a
directed graph is a very common task in practice. This problem is classi-
cally solved by Dijkstra’s algorithm. Many techniques are known to speed
up this algorithm heuristically, while optimality of the solution can still
be guaranteed. In most studies, such techniques are considered individ-
ually. The focus of our work is the combination of speed-up techniques
for Dijkstra’s algorithm. We consider all possible combinations of four
known techniques, namely goal-directed search, bi-directed search, multi-

level approach, and shortest-path bounding boxes, and show how these
can be implemented. In an extensive experimental study we compare
the performance of different combinations and analyze how the tech-
niques harmonize when applied jointly. Several real-world graphs from
road maps and public transport and two types of generated random
graphs are taken into account.

1 Introduction

We consider the problem of (repetitively) finding single-source single-target
shortest paths in large, sparse graphs. Typical applications of this problem in-
clude route planning systems for cars, bikes, and hikers [1,2] or scheduled ve-
hicles like trains and buses [3,4], spatial databases [5], and web searching [6].
Besides the classical algorithm by Dijkstra [7], with a worst-case running time of

using Fibonacci heaps [8], there are many recent algorithms that
solve variants and special cases of the shortest-path problem with better running
time (worst-case or average-case; see [9] for an experimental comparison, [10] for
a survey and some more recent work [11,12,13]).

It is common practice to improve the running time of Dijkstra’s algorithm
heuristically while correctness of the solution is still provable, i.e., it is guaranteed
that a shortest path is returned but not that the modified algorithm is faster.
In particular, we consider the following four speed-up techniques:

* This work was partially supported by the Human Potential Programme of the Euro-
pean Union under contract no. HPRN-CT-1999-00104 (AMORE) and by the DFG
under grant WA 654/12-1.

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 269–284, 2004.
© Springer-Verlag Berlin Heidelberg 2004

270 M. Holzer, F. Schulz, and T. Willhalm

Goal-Directed Search modifies the given edge weights to favor edges leading
towards the target node [14,15]. With graphs from timetable information, a
speed-up in running time of a factor of roughly 1.5 is reported in [16].

Bi-Directed Search starts a second search backwards, from the target to the
source (see [17], Section 4.5). Both searches stop when their search horizons
meet. Experiments in [18] showed that the search space can be reduced by a
factor of 2, and in [19] it was shown that combinations with the goal-directed
search can be beneficial.

Multi-Level Approach takes advantage of hierarchical coarsenings of the giv-
en graph, where additional edges have to be computed. They can be regarded
as distributed to multiple levels. Depending on the given query, only a small
fraction of these edges has to be considered to find a shortest path. Using
this technique, speed-up factors of more than 3.5 have been observed for road
map and public transport graphs [20]. Timetable information queries could
be improved by a factor of 11 (see [21]), and also in [22] good improvements
for road maps are reported.

Shortest-Path Bounding Boxes provide a necessary condition for each edge,
if it has to be respected in the search. More precisely, the bounding box of
all nodes that can be reached on a shortest path using this edge is given.
Speed-up factors in the range between 10 and 20 can be achieved [23].

Goal-directed search and shortest-path bounding boxes are only applicable if a
layout of the graph is provided. Multi-level approach and shortest-path bounding
boxes both require a preprocessing, calculating additional edges and bounding
boxes, respectively. All these four techniques are tailored to Dijkstra’s algorithm.
They crucially depend on the fact that Dijkstra’s algorithm is label-setting and
that it can be terminated when the destination node is settled.

The focus of this paper is the combination of the four speed-up techniques.
We first show that, with more or less effort, all combinations can be
implemented. Then, an extensive experimental study of their performance is
provided. Benchmarks were run on several real-world and generated graphs,
where operation counts as well as CPU time were measured.

The next section contains, after some definitions, a description of the speed-
up techniques and shows how to combine them. Section 3 presents the experi-
mental setup and data sets for our statistics, and the belonging results are given
in Section 4. Section 5, finally, gives some conclusions.

2 Definitions and Problem Description

2.1 Definitions

A directed simple graph G is a pair (V, E), where V is the set of nodes and
the set of edges in G. Throughout this paper, the number of nodes,

is denoted by and the number of edges, by
A path in G is a sequence of nodes such that for all

Given non-negative edge lengths the length of a path

Combining Speed-Up Techniques for Shortest-Path Computations 271

is the sum of weights of its edges, The (single-source
single-target) shortest-path problem consists of finding a path of minimum length
from a given source to a target

A graph layout is a mapping of the graph’s nodes to the
Euclidean plane. For ease of notation, we will identify a node with its
location in the plane. The Euclidean distance between two nodes
is then denoted by

2.2 Speed-Up Techniques

Our base algorithm is Dijkstra’s algorithm using Fibonacci heaps as priority
queue. In this section, we provide a short description of the four speed-up tech-
niques, whose combinations are discussed in the next section.

Goal-Directed Search. This technique uses a potential function on the node
set. The edge lengths are modified in order to direct the graph search towards
the target. Let be such a potential function and be the length of The
new length of an edge is defined to be
The potential must fulfill the condition that for each edge its new edge length

is non-negative, in order to guarantee optimal solutions.
In case edge lengths are Euclidean distances, the Euclidean distance

of a node to the target is a valid potential, due to the triangular inequality.
Otherwise, a potential function can be defined as follows: let denote the
maximum “edge-speed” over all edges The potential of
a node can now be defined as

Bi-Directed Search. The bi-directed search simultaneously applies the “nor-
mal”, or forward, variant of the algorithm, starting at the source node, and a
so-called reverse, or backward, variant of Dijkstra’s algorithm, starting at the
destination node. With the reverse variant, the algorithm is applied to the re-
verse graph, i.e., a graph with the same node set V as that of the original graph,
and the reverse edge set Let be the distance
labels of the forward search and the labels of the backward search, respec-
tively. The algorithm can be terminated when one node has been designated to
be permanent by both the forward and the reverse algorithm. Then the shortest
path is determined by the node with minimum value and can
be composed of the one from the start node to found by the forward search,
and the edges reverted again on the path from the destination to found by
the reverse search.

Multi-Level Approach. This speed-up technique requires a preprocessing step
at which the input graph G = (V,E) is decomposed into levels
and enriched with additional edges representing shortest paths between certain
nodes. This decomposition depends on subsets of the graph’s node set for

272 M. Holzer, F. Schulz, and T. Willhalm

each level, called selected nodes at level These
node sets can be determined on diverse criteria; with our implementation, they
consist of the desired numbers of nodes with highest degree in the graph, which
has turned out to be an appropriate criterion [20].

There are three different types of edges being added to the graph: upward
edges, going from a node that is not selected at one level to a node selected at
that level, downward edges, going from selected to non-selected nodes, and level

edges, passing between selected nodes at one level. The weight of such an edge
is assigned the length of a shortest path between the end-nodes.

To find a shortest path between two nodes, then, it suffices for Dijkstra’s
algorithm to consider a relatively small subgraph of the “multi-level graph” (a
certain set of upward and of downward edges and a set of level edges passing
at a maximal level that has to be taken into account for the given source and
target nodes).

Shortest-Path Bounding Boxes. This speed-up technique requires a prepro-
cessing computing all shortest path trees. For each edge we compute the
set of those nodes to which a shortest path starts with edge Using a
given layout, we then store for each edge the bounding box of in an
associative array BB with index set E.

It is then sufficient to perform Dijkstra’s algorithm on the subgraph induced
by the edges with the target node included in This subgraph can
be determined on the fly, by excluding all other edges in the search. (One can
think of bounding boxes as traffic signs which characterize the region that they
lead to.)

A variation of this technique has been introduced in [16], where as geometric
objects angular sectors instead of bounding boxes were used, for application to a
timetable information system. An extensive study in [23] showed that bounding
boxes are the fastest geometric objects in terms of running time, and competitive
with much more complex geometric objects in terms of visited nodes.

2.3 Combining the Speed-Up Techniques

In this section, we enlist for every pair of speed-up techniques how we combined
them. The extension to a combination of three or four techniques is straight
forward, once the problem of combining two of them is solved.

Goal-Directed Search and Bi-Directed Search. Combining goal-directed
and bi-directed search is not as obvious as it may seem at first glance. [18]
provides a counter-example for the fact that simple application of a goal-directed
search forward and backward yields a wrong termination condition. However, the
alternative condition proposed there has been shown in [19] to be quite inefficient,
as the search in each direction almost reaches the source of the other direction.
This often results in a slower algorithm.

Combining Speed-Up Techniques for Shortest-Path Computations 273

To overcome these deficiencies, we simply use the very same edge weights
for both the forward and the backward search.

With these weights, the forward search is directed to the target and the back-
ward search has no preferred direction, but favors edges that are directed to-
wards This should be (and indeed is) faster than each of the two speed-up
techniques. This combination computes a shortest path, because a shortest

is the same for given edge weights and edge weights modified according
to goal-directed search,

Goal-Directed Search and Multi-Level Approach. As described in Sec-
tion 2.2, the multi-level approach basically determines for each query a subgraph
of the multi-level graph, on which Dijkstra’s algorithm is run to compute a short-
est path. The computation of this subgraph does not involve edge lengths and
thus goal-directed search can be simply performed on it.

Goal-Directed Search and Shortest-Path Bounding Boxes. Similar to
the multi-level approach, the shortest-path bounding boxes approach determines
for a given query a subgraph of the original graph. Again, edge lengths are
irrelevant for the computation of the subgraph and goal-directed search can be
applied offhand.

Bi-Directed Search and Multi-Level Approach. Basically, bi-directed
search can be applied to the subgraph defined by the multi-level approach. In
our implementation, that subgraph is computed on the fly during Dijkstra’s al-
gorithm: for each node considered, the set of necessary outgoing edges is deter-
mined. If applying bi-directed search to the multi-level subgraph, a symmetric,
backward version of the subgraph computation has to be implemented: for each
node considered in the backward search, the incoming edges that are part of the
subgraph have to be determined.

Bi-Directed Search and Shortest-Path Bounding Boxes. In order to take
advantage of shortest-path bounding boxes in both directions of a bi-directional
search, a second set of bounding boxes is needed. For each edge we
compute the set of those nodes from which a shortest path ending with
exists. We store for each edge the bounding box of in an associative
array with index set E. The forward search checks whether the target is
contained the backward search, whether the source is in

Multi-Level Approach and Shortest-Path Bounding Boxes. The multi-
level approach enriches a given graph with additional edges. Each new edge

represents a shortest path in G. We annotate such a
new edge with the associated bounding box of the first
edge on this path.

274 M. Holzer, F. Schulz, and T. Willhalm

3 Experimental Setup

In this section, we provide details on the input data used, consisting of real-world
and randomly generated graphs, and on the execution of the experiments.

3.1 Data

Real-World Graphs. In our experiments we included a set of graphs that stem
from real applications. As in other experimental work, it turned out that using
realistic data is quite important as the performance of the algorithms strongly
depends on the characteristics of the data.

Street Graphs. Our street graphs are street networks of US cities and their
surroundings. These graphs are bi-directed, and edge lengths are Euclidean
distances. The graphs are fairly large and very sparse because bends are rep-
resented by polygonal lines. (With such a representation of a street network,
it is possible to efficiently find the nearest point in a street by a point-to-point
search.)

Public Transport Graphs. A public transport graph represents a network
of trains, buses, and other scheduled vehicles. The nodes of such a graph
correspond to stations or stops, and there exists an edge between two nodes
if there is a non-stop connection between the respective stations. The weight
of an edge is the average travel time of all vehicles that contribute to this
edge. In particular, the edge lengths are not Euclidean distances in this set
of graphs.

Random Graphs. We generated two sets of random graphs that have an
estimated average out-degree of 2.5 (which corresponds to the average degree
in the real-world graphs). Each set consists of ten connected, bi-directed graphs
with (approximately) nodes

Combining Speed-Up Techniques for Shortest-Path Computations 275

Random Planar Graphs. For the construction of random planar graphs, we
used a generator provided by LEDA [24]. A given number of nodes are uni-
formly distributed in a square with a lateral length of 1, and a triangulation
of the nodes is computed. This yields a complete undirected planar graph.
Finally, edges are deleted at random until the graph contains edges,
and each of these is replaced by two directed edges, one in either direction.

Random Waxman Graphs. The construction of these graphs is based on a
random graph model introduced by Waxman [25]. Input parameters are the
number of nodes and two positive rational numbers and The nodes
are again uniformly distributed in a square of a lateral length of 1, and the
probability that an edge exists is Higher
values increase the edge density, while smaller values increase the den-
sity of short edges in relation to long edges. To ensure connectedness and
bi-directedness of the graphs, all nodes that do not belong to the largest
connected component are deleted (thus, slightly less than nodes remain)
and the graph is bi-directed by insertion of missing reverse edges. We set

and empirically determined that setting yields an
average degree of 2.5, as wished.

3.2 Experiments

We have implemented all combinations of speed-up techniques as described in
Sections 2.2 and 2.3 in C++, using the graph and Fibonacci heap data structures
of the LEDA library [24] (version 4.4). The code was compiled with the GNU
compiler (version 3.3), and experiments were run on an Intel Xeon machine with
2.6 GHz and 2 GB of memory, running Linux (kernel version 2.4).

For each graph and combination, we computed for a set of queries shortest
paths, measuring two types of performance: the mean values of the running times
(CPU time in seconds) and the number of nodes inserted in the priority queue.
The queries were chosen at random and the amount of them was determined
such that statistical relevance can be guaranteed (see also [23]).

4 Experimental Results

The outcome of the experimental study is shown in Figures 1–4. Further dia-
grams that we used for our analysis are depicted in Figures 5–10. Each combina-
tion is referred to by a 4-tuple of shortcuts: go (goal-directed), bi (bi-directed),
ml (multi-level), bb (bounding box), and xx if the respective technique is not
used (e.g., go-bi-xx-bb). In all figures, the graphs are ordered by size, as listed
in Table 1.

We calculated two different values denoting relative speed-up: on the one
hand, Figures 1–4 show the speed-up that we achieved compared to plain Di-
jkstra, i.e., for each combination of techniques the ratio of the performance of
plain Dijkstra and the performance of Dijkstra with the specific combination of

276 M. Holzer, F. Schulz, and T. Willhalm

Fig. 1. Speed-up relative to Dijkstra’s algorithm in terms of visited nodes for real-world
graphs (in this order: street graphs in red and public transport graphs in blue)

Fig. 2. Speed-up relative to Dijkstra’s algorithm in terms of visited nodes for generated
graphs (in this order: random planar graphs in yellow and random Waxman graphs in
green)

Combining Speed-Up Techniques for Shortest-Path Computations 277

Fig. 3. Speed-up relative to Dijkstra’s algorithm in terms of running time for real-world
graphs (in this order: street graphs in red and public transport graphs in blue)

Fig. 4. Speed-up relative to Dijkstra’s algorithm in terms of running time for generated
graphs (in this order: random planar graphs in yellow and random Waxman graphs in
green)

278 M. Holzer, F. Schulz, and T. Willhalm

techniques applied. There are separate figures for real-world and random graphs,
for the number of nodes and running time, respectively.

On the other hand, for each of the Figures 5–8, we focus on one technique
and show for each combination containing the speed-up that can be achieved
compared to the combination without (Because of lack of space only figures
dealing with the number of visited nodes are depicted.) For example, when focus-
ing on bi-directed search and considering the combination go–bi–xx–bb, say, we
investigate by which factor the performance gets better when the combination
go–bi–xx–bb is used instead of go–xx–xx–bb only.

In the following, we discuss, for each technique separately, how combinations
with the specific technique behave, and then turn to the relation of the two
performance parameters measured, the number of visited nodes and running
time: we define the overhead of a combination of techniques to be the ratio of
running time and the number of visited nodes. In other words, the overhead
reflects the time spent per node.

4.1 Speed-Up of the Combinations

Goal-Directed Search. Individually comparing goal-directed search with plain
Dijkstra (Figure 5), speed-up varies a lot between the different types of graphs:
Considering the random graphs, we get a speed-up of about 2 for planar graphs
but of up to 5 for the Waxman graphs, which is quite surprising. Only little
speed-up, of less than 2, can be observed for the real-world graphs.

Concerning the number of visited nodes, adding goal-directed search to the
multi-level approach is slightly worse than adding it to plain Dijkstra and with
bi-directed search, we get another slight deterioration. Adding it to bounding
boxes (and combinations including bounding boxes) is hardly beneficial.

For real-world graphs, adding goal-directed search to any combination does
not improve the running time. For generated graphs, however, running time
decreases. In particular, it is advantageous to add it to a combination containing
multi-level approach. We conclude that combining goal-directed search with the
multi-level approach generally seems to be a good idea.

Bi-Directed Search. Bi-directed search individually gives a speed-up of about
1.5 for the number of visited nodes (see Figure 6) and for the running time,
for all types of graphs. For combinations of bi-directed search with other speed-
up techniques, the situation is different: For the generated graphs, neither the
number of visited nodes nor the running time improves when bi-directed search
is applied additionally to goal-directed search. However, running time improves
with the combination containing the multi-level approach, and also combining
bi-directed search with bounding boxes works very well. In the latter case, the
speed-up is about 1.5 (as good as the speed-up of individual bi-directed search)
for all types of graphs.

Combining Speed-Up Techniques for Shortest-Path Computations 279

Fig. 5. Speed-up relative to the combination without goal-directed search in terms
of visited nodes (in this order: street graphs in red, public transport graphs in blue,
random planar graphs in yellow, and random Waxman graphs in green)

Fig. 6. Speed-up relative to the combination without bi-directed search in terms of
visited nodes (in this order: street graphs in red, public transport graphs in blue,
random planar graphs in yellow, and random Waxman graphs in green)

280 M. Holzer, F. Schulz, and T. Willhalm

Fig. 7. Speed-up relative to the combination without multi-level approach in terms
of visited nodes (in this order: street graphs in red, public transport graphs in blue,
random planar graphs in yellow, and random Waxman graphs in green)

Fig. 8. Speed-up relative to the combination without shortest-path bounding boxes in
terms of visited nodes (in this order: street graphs in red, public transport graphs in
blue, random planar graphs in yellow, and random Waxman graphs in green)

Combining Speed-Up Techniques for Shortest-Path Computations 281

Multi-Level Approach. The multi-level approach crucially depends on the
decomposition of the graph. The Waxman graphs could not be decomposed
properly by the multi-level approach, and therefore all combinations containing
the latter yield speed-up factors of less than 1, which means a slowing down.
Thus we consider only the remaining graph classes.

Adding multi-levels to goal-directed and bi-directed search and their combi-
nation gives a good improvement in the range between 5 and 12 for the number
of nodes (see Figure 7). Caused by the big overhead of the multi-level approach,
however, we get a considerable improvement in running time only for the real-
world graphs. In combination with bounding boxes, the multi-level approach is
beneficial only for the number of visited nodes in the case of street graphs.

The multi-level approach allows tuning of several parameters, such as the
number of levels and the choice of the selected nodes. The tuning crucially de-
pends on the input graph [20]. Hence, we believe that considerable improvements
of the presented results are possible if specific parameters are chosen for every
single graph.

Shortest-Path Bounding Boxes. Shortest-path bounding boxes work espe-
cially well when applied to planar graphs, actually speed-up even increases with
the size of the graph (see Figure 8). For Waxman graphs, the situation is com-
pletely different: with the graph size the speed-up gets smaller. This can be ex-
plained by the fact that large Waxman graphs have, due to construction, more
long-distance edges than small ones. Because of this, shortest paths become more
tortuous and the bounding boxes contain more “wrong” nodes.

Throughout the different types of graphs, bounding boxes individually as well
as in combination with goal-directed and bi-directed search yield exceptionally
high speed-ups. Only the combinations that include the multi-level approach
cannot be improved that much.

4.2 Overhead

For goal-directed and bi-directed search, the overhead (time per visited node)
is quite small, while for bounding boxes it is a factor of about 2 compared to
plain Dijkstra (see Figures 9 and 10). The overhead caused by the multi-level
approach is generally high and quite different, depending on the type of graph.
As Waxman graphs do not decompose well, the overhead for the multi-level ap-
proach is large and becomes even larger when the size of the graph increases.
For very large street graphs, the multi-level approach overhead increases dra-
matically. We assume that it would be necessary to add a third level for graphs
of this size.

It is also interesting to note that the relative overhead of the combina-
tion goal-directed, bi-directed, and multi-level is smaller than just multi-level
—especially for the generated graphs.

282 M. Holzer, F. Schulz, and T. Willhalm

Fig. 9. Average running time per visited node in for real-world graphs (in this order:
street graphs in red and public transport graphs in blue)

Fig. 10. Average running time per visited node in for generated graphs (in this
order: random planar graphs in yellow and random Waxman graphs in green)

Combining Speed-Up Techniques for Shortest-Path Computations 283

5 Conclusion and Outlook

To summarize, we conclude that there are speed-up techniques that combine
well and others where speed-up does not scale. Our result is that goal-directed
search and multi-level approach is a good combination and bi-directed search
with shortest-path bounding boxes complement each other.

For real-world graphs, a combination including bi-directed search, multi-level,
and bounding boxes is the best choice as to the number of visited nodes. In terms
of running time, the winner is bi-directed search in combination with bounding
boxes. For generated graphs, the best combination is goal-directed, bi-directed,
and bounding boxes for both the number of nodes and running time.

Without an expensive preprocessing, the combination of goal-directed and
bi-directed search is generally the fastest algorithm with smallest search space—
except for Waxman graphs. For these graphs, pure goal-directed is better than
the combination with bi-directed search. Actually, goal-directed search is the
only speed-up technique that works comparatively well for Waxman graphs.
Because of this different behaviour, we conclude that planar graphs are a bet-
ter approximation of the real-world graphs than Waxman graphs (although the
public transport graphs are not planar).

Except bi-directed search, the speed-up techniques define a modified graph
in which a shortest path is searched. From this shortest path one can easily
determine a shortest path in the original graph. It is an interesting question
whether the techniques can be applied directly, or modified, to improve also the
running time of other shortest-path algorithms.

Furthermore, specialized priority queues used in Dijkstra’s algorithm have
been shown to be fast in practice [26,27]. Using such queues would provide the
same results for the number of visited nodes. Running times, however, would be
different and therefore interesting to evaluate.

References

1.

2.

3.

4.

5.

6.

Zhan, F.B., Noon, C.E.: A comparison between label-setting and label-correcting
algorithms for computing one-to-one shortest paths. Journal of Geographic Infor-
mation and Decision Analysis 4 (2000)
Barrett, C., Bisset, K., Jacob, R., Konjevod, G., Marathe, M.: Classical and con-
temporary shortest path problems in road networks: Implementation and experi-
mental analysis of the TRANSIMS router. In: Proc. 10th European Symposium
on Algorithms (ESA). Volume 2461 of LNCS., Springer (2002) 126–138
Nachtigall, K.: Time depending shortest-path problems with applications to rail-
way networks. European Journal of Operational Research 83 (1995) 154–166
Preuss, T., Syrbe, J.H.: An integrated traffic information system. In: Proc. 6th
Int. Conf. Appl. Computer Networking in Architecture, Construction, Design, Civil
Eng., and Urban Planning (europIA ’97). (1997)
Shekhar, S., Fetterer, A., Goyal, B.: Materialization trade-offs in hierarchical short-
est path algorithms. In: Proc. Symp. on Large Spatial Databases. (1997) 94–111
Barrett, C., Jacob, R., Marathe, M.: Formal-language-constrained path problems.
SIAM Journal on Computing 30 (2000) 809–837

284 M. Holzer, F. Schulz, and T. Willhalm

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1 (1959) 269–271
Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM 34 (1987) 596–615
Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest paths algorithms: Theory
and experimental evaluation. Mathematical Programming 73 (1996) 129–174
Zwick, U.: Exact and approximate distances in graphs - a survey. In: Proc. 9th
European Symposium on Algorithms (ESA). LNCS, Springer (2001) 33–48
Goldberg, A.V.: A simple shortest path algorithm with linear average time. In:
Proc. 9th European Symposium on Algorithms (ESA). Volume 2161 of LNCS.,
Springer (2001) 230–241
Meyer, U.: Single-source shortest-paths on arbitrary directed graphs in linear
average-case time. In: Proc. 12th Symp. on Discrete Algorithms. (2001) 797–806
Pettie, S., Ramachandran, V., Sridhar, S.: Experimental evaluation of a new short-
est path algorithm. In: Proc. Algorithm Engineering and Experiments (ALENEX).
Volume 2409 of LNCS., Springer (2002) 126–142
Hart, P., Nilsson, N.J., Raphael, B.A.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Sys. Sci. Cybernet. 2 (1968)
Shekhar, S., Kohli, A., Coyle, M.: Path computation algorithms for advanced
traveler information system (ATIS). In: Proc. 9th IEEE Int. Conf. Data Eng.
(1993) 31–39
Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: An empirical case
study from public railroad transport. ACM Journal of Exp. Algorithmics 5 (2000)
Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice–Hall (1993)
Pohl, I.: Bi-directional and heuristic search in path problems. Technical Report
104, Stanford Linear Accelerator Center, Stanford, California (1969)
Kaindl, H., Kainz, G.: Bidirectional heuristic search reconsidered. Journal of
Artificial Intelligence Research 7 (1997) 283–317
Holzer, M.: Hierarchical speed-up techniques for shortest-path algorithms. Tech-
nical report, Dept. of Informatics, University of Konstanz, Germany (2003)
http://www.ub.uni-konstanz.de/kops/volltexte/2003/1038/.
Schulz, F., Wagner, D., Zaroliagis, C.: Using multi-level graphs for timetable in-
formation in railway systems. In: Proc. 4th Workshop on Algorithm Engineering
and Experiments (ALENEX). Volume 2409 of LNCS., Springer (2002) 43–59
Jung, S., Pramanik, S.: An efficient path computation model for hierarchically
structured topographical road maps. IEEE Transactions on Knowledge and Data
Engineering 14 (2002) 1029–1046
Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest
paths in large sparse graphs. In: Proc. 11th European Symposium on Algorithms
(ESA). Volume 2832 of LNCS., Springer (2003) 776–787
Näher, S., Mehlhorn, K.: The LEDA Platform of Combinatorial and Geomet-
ric Computing. Cambridge University Press (1999) (http://www.algorithmic-
solutions.com).
Waxman, B.M.: Routing of multipoint connections. IEEE Journal on Selected
Areas in Communications 6 (1988)
Dial, R.: Algorithm 360: Shortest path forest with topological ordering. Commu-
nications of ACM 12 (1969) 632–633
Goldberg, A.V.: Shortest path algorithms: Engineering aspects. In: Proc. Inter-
national Symposium on Algorithms and Computation (ISAAC). Volume 2223 of
LNCS, Springer (2001) 502–513

Increased Bit-Parallelism for Approximate

String Matching

Heikki Hyyrö1,2*, Kimmo Fredriksson3**, and Gonzalo Navarro4***

1 PRESTO, Japan Science and Technology Agency, Japan.
2 Department of Computer Sciences, University of Tampere, Finland.

Heikki.Hyyro@cs.uta.fi
3 Department of Computer Science, University of Joensuu, Finland.

Kimmo.Fredriksson@cs.joensuu.fi
4 Department of Computer Science, University of Chile, Chile.

gnavarro@dcc.uchile.cl

Abstract. Bit-parallelism permits executing several operations simul-
taneously over a set of bits or numbers stored in a single computer word.
This technique permits searching for the approximate occurrences of a
pattern of length in a text of length in time where is
the number of bits in the computer word. Although this is asymptotically
the optimal speedup over the basic O(mn) time algorithm, it wastes bit-
parallelism’s power in the common case where is much smaller than

since bits in the computer words get unused.
In this paper we explore different ways to increase the bit-parallelism
when the search pattern is short. First, we show how multiple patterns
can be packed in a single computer word so as to search for multiple
patterns simultaneously. Instead of paying O(rn) time to search for
patterns of length we obtain time. Second, we
show how the mechanism permits boosting the search for a single pattern
of length which can be searched for in time instead
of Finally, we show how to extend these algorithms so that the time
bounds essentially depend on instead of where is the maximum
number of differences permitted.
Our experimental results show that that the algorithms work well in
practice, and are the fastest alternatives for a wide range of search pa-
rameters.

1 Introduction

Approximate string matching is an old problem, with applications for example in
spelling correction, bioinformatics and signal processing [7]. It refers in general
to searching for substrings of a text that are within a predefined edit distance

*

**

* * *

Supported by the Academy of Finland and Tampere Graduate School in Information
Science and Engineering.
Supported by the Academy of Finland.
Supported in part by Fondecyt grant 1-020831.

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 285–298, 2004.
© Springer-Verlag Berlin Heidelberg 2004

286 H. Hyyr, K. Fredriksson, and G. Navarro

threshold from a given pattern. Let be a text of length and
a pattern of length Here denotes the substring of A that begins

at its ath character and ends at its bth character, for Let ed(A, B) denote
the edit distance between the strings A and B, and be the maximum allowed
distance. Then the task of approximate string matching is to find all text indices

for which for some
The most common form of edit distance is Levenshtein distance [5]. It is

defined as the minimum number of single-character insertions, deletions and
substitutions needed in order to make A and B equal. In this paper ed(A, B)

will denote Levenshtein distance. We also use to denote the computer word
size in bits, to denote the size of the alphabet and to denote the length
of the string A.

Bit-parallelism is the technique of packing several values in a single com-
puter word and updating them all in a single operation. This technique has
yielded the fastest approximate string matching algorithms if we exclude filtra-
tion algorithms (which need anyway to be coupled with a non-filtration one). In
particular, the algorithm of Wu and Manber [13], the
algorithm of Baeza-Yates and Navarro [1], and the algorithm of My-
ers [6] dominate for almost every value of and

In complexity terms, Myers’ algorithm is superior to the others. In practice,
however, Wu & Manber’s algorithm is faster for and Baeza-Yates and
Navarro’s is faster when or is low. The reason is that,
despite that Myers’ algorithm packs better the state of the search (needing to
update less computer words), it needs slightly more operations than its competi-
tors. Except when and are small, the need to update less computer words
makes Myers’ algorithm faster than the others. However, when is much smaller
than Myers’ advantage disappears because all the three algorithms need to
update just one (or very few) computer words. In this case, Myers’ representa-
tion wastes many bits of the computer word and is unable to take advantage of
its more compact representation.

The case where is much smaller than is very common in several ap-
plications. Typically is 32 or 64 in a modern computer, and for example the
Pentium 4 processor allows one to use even words of size 128. Myers’ representa-
tion uses bits out of those In spelling, for example, it is usual to search for
words, whose average length is 6. In computational biology one can search for
short DNA or amino acid sequences, of length as small as 4. In signal processing
applications one can search for sequences composed of a few audio, MIDI or
video samples.

In this paper we concentrate on reducing the number of wasted bits in Myers’
algorithm, so as to take advantage of its better packing of the search state even
when This has been attempted previously [2], where time
was obtained. Our technique is different. We first show how to search for several
patterns simultaneously by packing them all in the same computer word. We can
search for patterns of length in rather than O(rn)

time, where is the total number of occurrences of all the patterns. We

Increased Bit-Parallelism for Approximate String Matching 287

then show how this idea can be pushed further to boost the search for a single
pattern, so as to obtain time instead of for

Our experimental results show that the presented schemes work well in prac-
tice.

2 Dynamic Programming

In the following denotes the empty string. To compute Levenshtein distance
ed(A, B), the dynamic programming algorithm fills an table D,
in which each cell will eventually hold the value Initially
the trivially known boundary values and

are filled. Then the cells are computed for
and until the desired solution

is known. When the values and
are known, the value can be computed by using the following well-known
recurrence.

This distance computation algorithm is easily modified to find approximate
occurrences of A somewhere inside B [9]. This is done simply by changing
the boundary condition into In this case

which corresponds to the earlier definition of ap-
proximate string matching if we replace A with P and B with T.

The values of D are usually computed by filling it in a column-wise manner
for increasing This corresponds to scanning the string B (or the text T) one
character at a time from left to right. At each character the corresponding column
is completely filled in order of increasing This order makes it possible to save
space by storing only one column at a time, since then the values in column
depend only on already computed values in it or values in column

Some properties of matrix D are relevant to our paper [11]:

3 Myers’ Bit-Parallel Algorithm

In what follows we will use the following notation in describing bit-operations:
‘&’ denotes bitwise “and”, denotes bitwise “or”, denotes bitwise “xor”,
‘~’ denotes bit complementation, and ‘<<’ and ‘>>’ denote shifting the bit-
vector left and right, respectively, using zero filling in both directions. The ith
bit of the bit vector V is referred to as and bit positions are assumed to
grow from right to left. In addition we use superscripts to denote repetition. As

288 H. Hyyr, K. Fredriksson, and G. Navarro

an example let V = 1011010 be a bit vector. Then V[1] = V[3] = V[6] = 0,
V[2] = V[4] = V[5] = V[7] = 1, and we could also write or

We describe here a version of the algorithm [3,8] that is slightly simpler than
the original by Myers [6]. The algorithm is based on representing the dynamic
programming table D with vertical, horizontal and diagonal differences and pre-
computing the matching positions of the pattern into an array of size This is
done by using the following bit-vectors:

-Vertical positive delta: at text position if and only if –

Initially and to enforce the boundary condition
At text position the algorithm first computes vector D0 by using the old values
VP and VN and the pattern match vector Then the new HP and HN
are computed by using D0 and the old VP and VN. Finally, vectors VP and
VN are updated by using the new D0, HN and HP. Fig. 1 shows the complete
formula for updating the vectors, and Fig. 2 shows the preprocessing of table
PM and the higher-level search scheme. We refer the reader to [3,6] for a more
detailed explanation of the formula in Fig. 1.

Fig. 1. Updating the delta vectors at column

The algorithm in Fig. 2 computes the value explicitly in the currDist
variable by using the horizontal delta vectors (the initial value of currDist is

A pattern occurrence with at most errors is found at text
position whenever

We point out that the boundary condition is enforced on lines
4 and 5 in Fig. 1. After the horizontal delta vectors HP and HN are shifted

-Vertical negative delta: at text position if and only if –

-Horizontal positive delta: at text position if and only if –

-Horizontal negative delta: at text position if and only if –

-Diagonal zero delta: at text position if and only if

-Pattern match vector for each if and only if

Increased Bit-Parallelism for Approximate String Matching 289

Fig. 2. Preprocessing the PM-table and conducting the search.

left, their first bits correspond to the difference This is the
only phase in the algorithm where the values from row 0 are relevant. And as
we assume zero filling, the left shifts correctly set HP[1] = HN[1] = 0 to encode
the difference

The running time of the algorithm is when as there are only a
constant number of operations per text character. The general running time is

as a vector of length may be simulated in time using
bit-vectors of length

4 Searching for Several Patterns Simultaneously

We show how Myers’ algorithm can be used to search for patterns of length
simultaneously. For simplicity we will assume otherwise the search

patterns must be split into groups of at most patterns each, and each
group searched for separately. Hence our search time will be

as opposed to the O(rn) time that would be achieved by searching for each
pattern separately. Here stands for the total number of occurrences of
all the patterns. When our complexity can be written as

Consider the situation where and Myers’ algorithm is used. Fig. 3a
shows how the algorithm fails to take full advantage of bit-parallelism in that
situation as at least one half of the bits in the bit vectors is not used. Fig. 3b
depicts our proposal: encode several patterns into the bit vectors and search
for them in parallel. There are several obstacles in achieving this goal correctly,
which will be discussed next.

290 H. Hyyr, K. Fredriksson, and G. Navarro

Fig. 3. For short patterns Myers’ algorithm (a) wastes bits. Our
proposal (b) packs several pattern into the same computer word, and wastes only

bits.

4.1 Updating the Delta Vectors

A natural starting point is the problem of encoding and updating several patterns
in the delta vectors. Let us denote a parallel version of a delta vector with
the superscript We encode the patterns repeatedly into the vectors without
leaving any space between them. For example corresponds to the bit

in the D0-vector of the pattern. The pattern
match vectors PM are computed in normal fashion for the concatenation of
the patterns. This correctly aligns the patterns with their positions in the bit
vectors.

When the parallel vectors are updated, we need to ensure that the values for
different patterns do not interfere with each other and that the boundary values

are used correctly. From the update formula in Fig. 1 it is obvious
that only the addition (“+”) on line 2 and the left shifts on lines 4 and 5 can
cause incorrect interference.

The addition operation may be handled by temporarily setting off the bits in
that correspond to the last characters of the patterns. When this is done

before the addition, there cannot be an incorrect overflow, and on the other hand
the correct behaviour of the algorithm is not affected: The value can affect
only the values for some It turns out that a similar modification
works also with the left shifts. If the bits that correspond to the last characters
of the patterns are temporarily set off in and then, after shifting left,
the positions in and that correspond to the first characters of the
patterns will correctly have a zero bit. The first pattern gets the zero bits from
zero filling of the shift. Therefore, this second modification both removes possible
interference and enforces the boundary condition

Both modifications are implemented by anding the corresponding vectors
with the bit mask Figure 4 gives the code for a step.

4.2 Keeping the Scores

A second problem is computing the value explicitly for each of the
patterns. We handle this by using bit-parallel counters in a somewhat similar

Increased Bit-Parallelism for Approximate String Matching 291

Fig. 4. Updating the delta vectors at column when searching for multiple patterns.

fashion to [4]. Let MC be a bit-parallel counter vector. We set up into
MC an counter for each pattern. Let be the value of the ith counter.
The counters are aligned with the patterns so that MC(1) occupies the first
bits, MC(2) the next bits, and so on. We will represent value zero in each
counter as and the value will be translated to actually mean

This gives each counter the following properties: (1)
(2) (3) The mth bit of is set if and only if
(4) In terms of updating the translated value of the roles of adding and
subtracting from it are reversed.

The significance of properties (1) and (2) is that they ensure that the values
of the counters will not overflow outside their regions. Their correctness depends
on the assumption This is not a true restriction as it excludes only the
case of trivial matching

We use a bit-mask to update MC. The bits set
in & EM and & EM correspond to the last bits of the counters
that need to be incremented and decremented, respectively. Thus, remembering
to reverse addition and subtraction, MC may be updated by setting

Property (3) means that the last bit of signals whether the ith pattern
matches at the current position. Hence, whenever MC & we have
an occurrence of some of the patterns in T. At this point we can examine the
bit positions of EM one by one to determine which patterns have matched and
report their occurrences. This, however, adds time in the worst
case to report the occ occurrences of all the patterns. We show next how to
reduce this to O(occ).

Fig. 5 gives the code to search for the patterns

4.3 Reporting the Occurrences

Let us assume that we want to identify which bits in mask OM = MC & EM
are set, in time proportional to the number of bits set. If we achieve this, the
total time to report all the occ occurrences of all the patterns will be O(occ). One
choice is to precompute a table F that, for any value of OM, gives the position
of the first bit set in OM. That is, if then we report an occurrence

292 H. Hyyr, K. Fredriksson, and G. Navarro

Fig. 5. Preprocessing the PM-table and conducting the search for multiple patterns.

of the pattern at the current text position clear the sth bit in OM
by doing & and repeat until OM becomes zero.

The only problem of this approach is that table F has entries, which is
too much. Fortunately, we can compute the values efficiently without resorting
to look-up tables. The key observation is that the position of the highest bit set
in OM is effectively the function (we number the bits from 1 to

i.e. it holds that

The function for an integer can be computed in O(1) time in mod-
ern computer architectures by converting into a floating point number, and
extracting the exponent, which requires only two additions and a shift. This
assumes that the floating point number is represented in a certain way, in par-
ticular that the radix is 2, and that the number is normalized. The “industry
standard” IEEE floating point representation meets these requirements. For the
details and other solutions for the integer logarithm of base 2, refer e.g. to [12].
ISO C99 standard conforming C compilers also provide a function to extract the
exponent directly, and many CPUs even have a dedicated machine instruction
for function. Fig. 6 gives the code.

For architectures where is hard to compute, we can still manage
to obtain time as follows. To detect the bits set in OM, we
check its two halves. If some half is zero, we can finish there. Otherwise, we
recursively check its two halves. We continue the process until we have isolated
each individual bit set in OM. In the worst case, each such bit has cost us

halving steps.

Increased Bit-Parallelism for Approximate String Matching 293

Fig. 6. Reporting occurrences at current text position.

4.4 Handling Different Lengths and Thresholds

For simplicity we have assumed that all the patterns are of the same length and
are all searched with the same The method, however, can be adapted with
little problems to different and for each pattern.

If the lengths are and the thresholds are we have to and

the vertical and horizontal vectors with and
this fixes the problem of updating the delta vectors. With respect to the counters,
the ith counter must be represented as where

One delicacy is the update of MC, since the formula we gave to align all
the bits at the beginning of the counters involved and this
works only when all the patterns are of the same length. If they are not, we could
align the counters so that they start at the end of their areas, hence removing
the need for the shift at all. To avoid overflows, we should sort the patterns in
increasing length order prior to packing them in the computer word. The price
is that we will need extra bits at the end of the bit mask to hold the largest
counter. An alternative solution would be to handle the last counter separately.
This would avoid the shifts, and effectively adds only a few operations.

Finally, reporting the occurrences works just as before, except that the pat-
tern number we report is no longer (Fig. 6). The correct pattern
number can be computed efficiently e.g. using a look-up table indexed with
The size of the table is only as

5 Boosting the Search for One Pattern

Up to now we have shown how to take advantage of wasted bits by searching
for several patterns simultaneously. Yet, if we only want to search for a single
pattern, we still waste the bits. In this section we show how the technique de-
veloped for multiple patterns can be adapted to boost the search for a single
pattern.

The main idea is to search for multiple copies of the same pattern P and
parallelize the access to the text. Say that Then we search for
copies of P using a single computer word, with the same technique developed
for multiple patterns.

Of course this is of little interest in principle, as all the copies of the pattern
will report the same occurrences. However, the key idea here will be to search a

294 H. Hyyr, K. Fredriksson, and G. Navarro

different text segment for each pattern copy. We divide the text T into equal-
sized subtexts Text of length will be searched
for the sth copy of P, and therefore all the occurrences of P in T will be found.

Our search will perform steps, where step will access text characters
With those characters we should build

the corresponding PM mask to execute a single step. This is easily done by
using

We must exercise some care at the boundaries between consecutive text seg-
ments. On the one hand, processing of text segment should
continue up to characters in in order to provide the adequate
context for the possible occurrences in the beginning of On the other hand,
the processing of must avoid reporting occurrences at the first
positions to avoid reporting them twice. Finally, occurrences may be reported
out of order if printed immediately, so it is necessary to store them in buffer
arrays in order to report them ordered at the end.

Adding up the bit-parallel steps required plus the
character accesses to compute PM, we obtain complexity for

6 Long Patterns and Problem

We have shown how to utilize the bits in computer word economically, but our
methods assume that We now sketch a method that can handle longer
patterns, and can pack more patterns in the same computer word. The basic
assumption here is that we are only interested in pattern occurrences that have
at most differences. This is the situation that is most interesting in practice,
and usually we can assume that is much smaller than Our goal is to obtain
similar time bounds as above, but replace with in the complexities. The
difference will be that these become average case complexities now.

The method is similar to our basic algorithms, but now we use an adaptation
of Ukkonen’s well-known “cut-off” algorithm [10]. That algorithm fills the table
D in column-wise order, and computes the values in column for only

where

The cut-off heuristic is based on the fact that the search result does not depend
on cells whose value is larger than From the diagonal property it follows that
once then for all (within the bounds of D).
And a consequence of this is that for

After evaluating the current column of the matrix up to the row the value
is computed, and the algorithm continues with the next column The

evaluation of takes O(1) amortized time, and its expected value is
and hence the whole algorithm takes only O(nk) time.

Increased Bit-Parallelism for Approximate String Matching 295

Myers adapted his algorithm to use the cut-off heuristic as well.
In principle the idea is very simple; since on average the search ends at row
it is enough to use only bits of the computer word on average (actually he
used bits), and only in some text positions (e.g. when the pattern
matches) one has to use more bits. Only two modifications to the basic method
are needed. We must be able to decide which is the last active row in order to
compute the number of bits required for each text position, and we must be
able to handle the communication between the boundaries of the consecutive
computer words. Both problems are easy to solve, for details refer to [6]. With
these modifications Myers was able to obtain his average time
algorithm.

We can do exactly the same here. We use only
bits for each pattern and pack them into the same computer word just like in our
basic method. We need bits as is the row number where the search
is expected to end, and at least bits to avoid overflowing the
counters. Therefore we are going to search for patterns in parallel.

If for some text positions bits are not enough, we use as many computer
words as needed, each having bits allocated for each pattern. Therefore, the

blocks in the first computer word correspond to the first characters of
the corresponding patterns, and the blocks in the second word correspond
to the next characters of the patterns, and so on. In total we need
computer words, but on average use only one for each text position.

The counters for each pattern have only bits now, which means that the
maximum pattern length is limited to The previous counters limited
the pattern length to but at the same time assumed that the pattern
length was Using the cut-off method, we have less bits for the counters,
but in effect we can use longer patterns, the upper bound being

The tools we have developed for the basic method can be applied to modify
Myers’ cut-off algorithm to search for patterns simultaneously. The only
additional modification we need is that we must add a new computer word
whenever any of the pattern counters has accumulated differences, and this is
trivial to detect with our counters model. On the other hand, this modification
means that must grow as the function of It has been shown in [7] that

for For reasonably small this bound should
not be affected much, as the probability of a match is exponentially decreasing
for

The result is that we can search for patterns with at most differences in
expected time. Finally, it is possible to apply the same scheme

for single pattern search as well, resulting in expected time. The
method is useful even for short patterns (where we could apply our basic method
also), because we can use tighter packing when

296 H. Hyyr, K. Fredriksson, and G. Navarro

7 Experimental Results

We have implemented all the algorithms in C and compiled them using GCC
3.3.1 with full optimizations. The experiments were run on a Sparc Ultra 2 with
128 MB RAM that was dedicated solely for our tests. The word size of the machine
is 64 bits.

In the experiments we used DNA from baker’s yeast and natural language
English text from the TREC collection. Each text was cut into 4 million charac-
ters for testing. The patterns were selected randomly from the texts. We com-
pared the performance of our algorithms against previous work. The algorithms
included in the experiments were:

Parallel BPM: Our parallelized single-pattern search algorithm (Section 5).
We used for and for and and
cut-off (Section 6) for

Our multi-pattern algorithm: The basic multipattern algorithm (Section 4)
or its cut-off version (Section 6). We determined which version to use by
using experimentally computed estimates for

BPM: Myers’ original algorithm [6], whose complexity is We used
our implementation, which was roughly 20 % faster than the original code
of Myers on the test computer.

BPD: Non-deterministic finite state automaton bit-parallelized by diagonals
[1]. The complexity is Implemented by its original authors.

BPR: Non-deterministic finite state automaton bit-parallelized by rows [13].
The complexity is We used our implementation, with hand
optimized special code for

For each tested combination of and we measured the average time per
pattern when searching for 50 patterns. The set of patterns was the same for
each algorithm. The results are shown in Fig. 7. Our algorithms are clear winners
in most of the cases.

Our single-pattern parallel search algorithm is beaten only when as
BPR needs to do very little work in that case, or when the probability of finding
occurrences becomes so high that our more complicated scheme for occurrence
checking becomes very costly. At this point we would like to note, that the
occurrence checking part of our single-pattern algorithm has not yet been fully
optimized in practice.

Our multi-pattern algorithm is also shown to be very fast: in these tests it is
worse than a single-pattern algorithm only when and is moderately
high with relation to the alphabet size.

8 Conclusions

Bit-parallel algorithms are currently the fastest approximate string matching
algorithms when Levenshtein distance is used. In particular, the algorithm of
Myers [6] dominates the field when the pattern is long enough, thanks to its

Increased Bit-Parallelism for Approximate String Matching 297

Fig. 7. The plots show the average time for searching a single pattern.

better packing of the search state in the bits of the computer word. In this
paper we showed how this algorithm can be modified to take advantage of the
wasted bits when the pattern is short. We have shown two ways to do this.
The first one permits searching for several patterns simultaneously. The second
one boosts the search for a single pattern by processing several text positions
simultaneously.

298 H. Hyyr, K. Fredriksson, and G. Navarro

We have shown, both analytically and experimentally, that our algorithms
are significantly faster than all the other bit-parallel algorithms when the pattern
is short or if is moderate with respect to the alphabet size.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.
13.

R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica,

23(2):127–158, 1999.
K. Fredriksson. Row-wise tiling for the Myers’ bit-parallel dynamic programming
algorithm. In Proc. 10th International Symposium on String Processing and Infor-

mation Retrieval (SPIRE’03), LNCS 2857, pages 66–79, 2003.
H. Hyyrö. Explaining and extending the bit-parallel approximate string matching
algorithm of Myers. Technical Report A-2001-10, Department of Computer and
Information Sciences, University of Tampere, Tampere, Finland, 2001.
H. Hyyrö and G. Navarro. Faster bit-parallel approximate string matching. In
Proc. 13th Combinatorial Pattern Matching (CPM’2002), LNCS 2373, pages 203–
224, 2002.
V. Levenshtein. Binary codes capable of correcting deletions, insertions and rever-
sals. Soviet Physics Doklady, 10(8):707–710, 1966. Original in Russian in Doklady

Akademii Nauk SSSR, 163(4):845–848, 1965.

G. Myers. A fast bit-vector algorithm for approximate string matching based on
dynamic progamming. Journal of the ACM, 46(3):395–415, 1999.
G. Navarro. A guided tour to approximate string matching. ACM Computing

Surveys, 33(1):31–88, 2001.
G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings – Practical

on-line search algorithms for texts and biological sequences. Cambridge University
Press, 2002. ISBN 0-521-81307-7.
P. Sellers. The theory and computation of evolutionary distances: pattern recog-
nition. Journal of Algorithms, 1:359–373, 1980.
E. Ukkonen. Algorithms for approximate string matching. Information and Con-

trol, 64(1–3):100–118, 1985.
Esko Ukkonen. Finding approximate patterns in strings. Journal of Algorithms,

6:132–137, 1985.
H. S. Warren Jr. Hacker’s Delight. Addison Wesley, 2003. ISBN 0-201-91465-4.
S. Wu and U. Manber. Fast text searching allowing errors. Communications of the

ACM, 35(10):83–91, 1992.

The Role of Experimental Algorithms in

Genomics

Richard M. Karp

Department of Electrical Engineering and Computer Sciences, University of
California, 378 Soda Hall, Berkeley, CA 94720, USA.

karp@icsi.berkeley.edu

Biology has become a computational science. In their efforts to understand the
functioning of cells at a molecular level, biologists make use of a growing array
of databases that codify knowledge about genomes, the genes within them, the
structure and function of the proteins encoded by the genes, and the interactions
among genes, RNA molecules, proteins, molecular machines and other chemical
components of the cell. Biologists have access to high-throughput measurement
technologies such as DNA microarrays, which can measure the expression levels
of tens of thousands of genes in a single experiment.

Most computational problems in genomics do not fit the standard computer
science paradigms in which a well-defined function is to be computed exactly or
approximately. Rather, the goal is to determine nature’s ground truth. The ob-
ject to be determined may be well-defined - a genomic sequence, an evolutionary
tree, or a classification of biological samples, for example - but the criterion used
to evaluate the result of the computation may be ill-defined and subjective. In
such cases several different computational methods may be tried, in the hope
that a consensus solution will emerge. Often, the goal may be simply to explore
a body of data for significant patterns, with no predefined objective. Often great
effort goes into understanding the particular characteristics of a single impor-
tant data set, such as the human genome, rather than devising an algorithm
that works for all possible data sets. Sometimes there is an iterative process of
computation and data acquisition, in which the computation suggests patterns
in data and experimentation generates further data to confirm or disconfirm the
suggested patterns. Sometimes the computational method used to extract pat-
terns from data is less important than the statistical method used to evaluate
the validity of the discovered patterns.

All of these characteristics hold not only in genomics but throughout the nat-
ural sciences, but they have not received sufficient consideration within computer
science.

Many problems in genomics are attacked by devising a stochastic model of
the generation of the data. The model includes both observed variables, which
are available as experimental data, and hidden variables, which illuminate the
structure of the data and need to be inferred from the observed variables. For
example, the observed variables may be genomic sequences, and the hidden vari-
ables may be the positions of genes within those sequences. Machine learning
theory provides general methods based on maximum likelihood or maximum a

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 299–300, 2004.
© Springer-Verlag Berlin Heidelberg 2004

300 R.M. Karp

posteriori probability for estimating the hidden variables. A useful goal for exper-
imental algorithmics would be to characterize the performance of these general
methods.

Often a genomics problem can be viewed as piecing together a puzzle using
diverse types of evidence. Commitments are made to those features of the solu-
tion that are supported by the largest weight of evidence. Those commitments
provide a kind of scaffold for the solution, and commitments are successively
made to further features that are supported by less direct evidence but are con-
sistent with the commitments already made. This was the approach used by
the Celera group in sequencing the human genome and other large, complex
genomes.

The speaker will illustrate these themes in connection with three specific
problems: finding the sites at which proteins bind to the genome to regulate
the transcription of genes, finding large-scale patterns of protein-protein inter-
action that are conserved in several species, and determinining the variations
among individuals that occur at so-called polymorphic sites in their genomes.
No knowledge of molecular biology will be assumed.

A Fast Algorithm for Constructing Suffix Arrays

for Fixed-Size Alphabets*

Dong K. Kim1, Junha Jo1, and Heejin Park2

1 School of Electrical and Computer Engineering, Pusan National University, Busan
609-735, South Korea.

dkkim1@pusan.ac.kr, jhjo@islab.ce.pusan.ac.kr
2 College of Information and Communications, Hanyang University, South Korea.

hjpark@hanyang.ac.kr

Abstract. The suffix array of a string T is basically a sorted list of all
the suffixes of T. Suffix arrays have been fundamental index data struc-
tures in computational biology. If we are to search a DNA sequence in a
genome sequence, we construct the suffix array for the genome sequence
and then search the DNA sequence in the suffix array. In this paper,
we consider the construction of the suffix array of T of length where
the size of the alphabet is fixed. It has been well-known that one can
construct the suffix array of T in time by constructing suffix tree
of T and traversing the suffix tree. Although this approach takes
time, it is not appropriate for practical use because it uses a lot of spaces
and it is complicated to implement. Recently, almost at the same time,
several algorithms have been developed to directly construct suffix ar-
rays in time. However, these algorithms are developed for integer
alphabets and thus do not exploit the properties given when the size of
the alphabet is fixed. We present a fast algorithm for constructing suffix
arrays for the fixed-size alphabet. Our algorithm constructs suffix arrays
faster than any other algorithms developed for integer or general alpha-
bets when the size of the alphabet is fixed. For example, we reduced the
time required for constructing suffix arrays for DNA sequences by 25%-
38%. In addition, we do not sacrifice the space to improve the running
time. The space required by our algorithm is almost equal to or even less
than those required by previous fast algorithms.

1 Introduction

The string searching problem is finding a pattern string P of length in a
text string T of length It occurs in many practical applications and has long
been studied [7]. Recently, searching DNA sequences in full genome sequences
is becoming one of the primary operations in bioinformatics areas. The studies
for efficient pattern search are divided into two approaches: One approach is to
preprocess the pattern. Preprocessing takes time and then searching takes

time. The other is to build a full-text index data structure for the text.

This work is supported by Korea Research Foundation grant KRF-2003-03-D00343.

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 301–314, 2004.
© Springer-Verlag Berlin Heidelberg 2004

*

302 D.K. Kim, J. Jo, and H. Park

Building the index data structure takes time and searching takes
time. The latter approach is more appropriate than the former when we are to
search DNA sequences in full genome sequences because the text is much longer
than the pattern and we have to search many patterns in the text.

Two well-known such index data structures are suffix trees and suffix arrays.
The suffix tree due to McCreight [17] is a compacted trie of all suffixes of the
text. It was designed as a simplified version of Weiner’s position tree [22]. The
suffix array due to Manber and Myers [16] and independently due to Gonnet et
al. [6] is basically a sorted list of all the suffixes of the text. Since suffix arrays
consume less space than suffix trees, suffix arrays are preferred to suffix trees.

When we consider the complexity of index data structures, there are three
types of alphabets from which text T of length is drawn: (i) a fixed-size alpha-
bet, (ii) an integer alphabet where symbols are integers in the range [0, for
a constant and (iii) a general alphabet in which the only operations on string
T are symbol comparisons.

We only consider fixed-size alphabets in this paper. The suffix tree of T can
be constructed in time due to McCreight [17], Ukkonen [21], Farach et
al. [2,3] and so on. The suffix array of T can be constructed in time by
constructing the suffix tree of T and then traversing it. Although this algorithm
constructs the suffix array in time, it is not appropriate for practical use
because it uses a lot of spaces and is complicated to implement.

Manber and Myers [16] and Gusfield [8] proposed algorithms
for constructing suffix arrays without using suffix trees. Recently, almost at the
same time, several algorithms have been developed to directly construct suffix
arrays in time. They are Kim et al.’s [14] algorithm, Ko and Aluru’s [15]
algorithm, Kärkkäinen and Sanders’ [13] algorithm, and Hon et al.’s [11] algo-
rithm. They are are based on similar recursive divide-and-conquer scheme. The
recursive divide-and-conquer scheme is as follows.

Partition the suffixes of T into two groups A and B, and generate a string
such that the suffixes in corresponds to the suffixes in A. This step

requires encoding several symbols in T into a new symbol in
Construct the suffix array of recursively.
Construct the suffix array for A directly from the suffix array of
Construct the suffix array for B using the suffix array for A.
Merge the two suffix arrays for A and B to get the suffix array of T.

Kim et al. [14] followed Farach et al.’s [3] odd-even scheme, that is, divided the
suffixes of T into odd suffixes and even suffixes to get an algorithm running in

time. Kärkkäinen and Sanders [13] used skew scheme, that is, divided the
suffixes of T into suffixes beginning at positions (group A) and the
other suffixes beginning at positions (group B). Ko and Aluru [15]
divided the suffixes of T into S-type and L-type suffixes. This algorithm does
not require a string and performs steps 3-5 in somewhat different way. Hon et
al. [11] followed the odd-even scheme. They seems to have focused on reducing
space rather than enhancing the running time. They used the backward search
to merge the succinctly represented odd and even arrays.

1.

2.
3.
4.
5.

A Fast Algorithm for Constructing Suffix Arrays 303

In practice, Ko and Aluru’s algorithm and Kärkkäinen and Sanders’ skew
algorithm run fast but Kim et al.’s odd-even algorithm runs slower than the
two algorithms above. It is quite counter-intuitive that an algorithm based on
the odd-even scheme is slower than an algorithm based on the skew scheme be-
cause the odd-even scheme has some advantages over the skew scheme such as
less recursive calls and fast encoding. Although the odd-even scheme has some
advantages, the merging step presented in Kim et al.’s algorithm is quite com-
plicated and too slow and thus Kim et al.’s algorithm is slow overall. Therefore,
it is natural to ask if there is a faster algorithm using the odd-even scheme by
adopting a fast odd-even merging algorithm.

We got an affirmative answer to this question when the size of the alphabet
is fixed. We present a fast odd-even algorithm constructing suffix arrays for
the fixed-size alphabet by developing a fast merging algorithm. Our merging
algorithm uses the backward search and thus requires a data structure for the
backward search in suffix arrays. The data structure for the backward search in
suffix arrays is quite different from the backward search in succinctly represented
suffix arrays suggested by Hon et al. [11]. Our algorithm runs in
time asymptotically. However, the experiments show that our algorithm is faster
than any other previous algorithms running in time. The reason for this is
that is a small number if in practical situation
and thus can be considered to be a constant.

We describe the construction algorithm in Section 2. In Section 3, we measure
the running time of this algorithm and compare it with those of previous algo-
rithms. In Section 4, we further analyze our construction algorithm to explain
why our algorithm runs so fast. In Section 5, we conclude with some remarks.

2 Construction Algorithm

We first introduce some notations and then we describe our construction algo-
rithm. In describing our construction algorithm, we first describe the odd-even
scheme, then describe the merging algorithm, and finally analyze the time com-
plexity.

Consider a string T of length over an alphabet Let for
denote the ith symbol of string T. We assume that is a special symbol #
which is lexicographically smaller than any other symbol in The suffix array

of T is basically a sorted list of all the suffixes of T. However, suffixes
themselves are too heavy to be stored and thus only the starting positions of
the suffixes are stored in Figure 1 shows an example of a suffix array of
aaaabbbbaaabbbaabbb#. An odd suffix of T is a suffix of T starting at an odd
position and an even suffix is a suffix starting at an even position. The odd array

and the even array of T are sorted lists of all odd suffixes and all even
suffixes, respectively.

304 D.K. Kim, J. Jo, and H. Park

Fig. 1. The suffix array of aaaabbbbaaabbbaabbb#. We depicted corresponding suffix
to each entry of the suffix array. If the corresponding suffix is too long, we depicted a
prefix of it rather than the whole suffix.

2.1 Odd-Even Scheme

We describe the odd-even scheme by elaborating the recursive divide-and-
conquer scheme presented in the previous section.

1 Encode the given string T into a half-sized string We encode T into
by replacing each pair of adjacent symbols
with a new symbol. How to encode T into is as follows.

Sort the pairs of adjacent symbols lexicographically
and then remove duplicates: We use radix-sort to sort the pairs and
we perform a scan on the sorted pairs to remove duplicates. Both the
radix-sort and the scan take time.
Map the ith lexicographically smallest pair of adjacent symbols into
integer The integer is in the range because the number of
pairs is at most
Replace with the integer it is mapped into.

Fig. 2 shows how to encode T = aaaabbbbaaabbbaabbb# of length 20. Af-
ter we sort the pairs and remove
duplicates, we are left with 4 distinct pairs which are aa, ab, b#, and bb.
We map aa, ab, b#, and bb into 1, 2, 3, and 4, respectively. Then, we get

of length 10.
Construct the suffix array of recursively.
Construct the odd array of T from Since the ith suffix of corre-
sponds to the suffix of T, we get by computing
for all For example, in Fig. 2.
Construct the even array of T from the odd array An even suffix
is one symbol followed by an odd suffix. For example, the 8th suffix of T is

2.
3.

4.

A Fast Algorithm for Constructing Suffix Arrays 305

Fig. 2. An example of constructing the suffix array for aaaabbbbaaabbbaabbb#.

T[8] followed by the 9th suffix of T. We make tuples for even suffixes: the
first element of a tuple is and the second element is the suffix
of T. First, we sort the tuples by the second elements (this result is given in

Then we stably sort the tuples by the first elements and we get
Merge the odd array and even array

The odd-even scheme takes time except the merging step [14].

2.2 Merging

We first describe the backward search on which our merging algorithm based
and then describe our merging algorithm.

The backward search is finding the location of a pattern in
the suffix array by scanning P by one symbol in reverse order: We first
find the location of in then the location of the location of

and etc. We repeat this procedure until we find the location
of One advantage of the backward search is that the locations of all
suffixes of P are found while we are finding the location of P.

The backward search was introduced by Ferragina and Manzini [4,5]. They
used it to develop an opportunistic data structures that uses Burrow-Wheeler
transformation [1]. The backward search has been used to search patterns in the
succinctly represented suffix arrays [9,18,19] which is suggested by Grossi and
Vitter [10]. Hon et al. [11] used the backward search to merge two succinctly

5.

306 D.K. Kim, J. Jo, and H. Park

represented suffix arrays. When it comes to suffix arrays (not succinctly rep-
resented), Sim et al. [20] developed a data structure that makes the backward
search of P in be performed in time with preprocessing
in time. We use this data structure to merge the odd and even arrays
because this data structure is appropriate for constructing suffix arrays fast.

Now, we describe how to merge the odd array and the even array
Merging and consists of two steps and requires an additional array

Step 1. We count the number of even suffixes that are larger than the odd suffix
and smaller than the odd suffix for all and store

the number in We store in C[1] the number of even suffixes smaller than
and in the number of even suffixes larger than To

compute we use the backward search as follows.

Generate a data structure supporting the backward search in
Generate where each symbol is an encoding of

(Note that the number of even suffixes larger than
and smaller than is the same as the number of suffixes of larger
than and smaller than
Initialize all the entries of array to zero.
Perform the backward search of in During the backward search,
we increment if a suffix of is larger than and smaller
than

Step 2. We store the suffixes in and into using array C. Let
denote prefix sum We should store the odd

suffix into because even suffixes are smaller than
We should store the even suffixes into
because odd suffixes are smaller than the even suffix
To store the odd and even suffixes into in time, we do as follows: We
store the suffixes into from the smallest to the largest. We first store C[1]
smallest even suffixes into and then we store the odd suffix into

Then, we store next C[2] smallest even suffixes then store the odd suffix
We repeat this procedure until all the odd and even suffixes are stored in

Consider the example in Fig 2. Since C[1] = 1, we store the smallest even
suffix into and store the odd suffix into Since
C[2] = 0, we store no even suffixes and then store the odd suffix into

We consider the time complexity of this merging algorithm. Since the back-
ward search in step 1 takes time where is the set of the alphabet
of and the other parts of the merging step take time, we get the following
lemma.

Lemma 1. This merging algorithm takes time.

1.
2.

3.
4.

A Fast Algorithm for Constructing Suffix Arrays 307

2.3 Time Complexity

We consider the time complexity of our algorithm. Since the odd-even scheme
takes time except the merging [14], we only consider the time required for
merging in all recursive calls. We first compute the time required for merging in
each recursive call. Let denote the text and denote the set of the alphabet
in the ith recursive call. We generalize Lemma 1 as follows.

Corollary 1. The merging step in the ith recursive call takes
time.

Now, we compute and the upper bound of Since the length of text
in the ith recursive call is the half length of text in the recursive call,

Since the size of the alphabet in the ith call is at most the square of the alphabet
size in the call,

Since is cannot be larger than and by equation (1),

We first compute the time required for merging in the first recursive
calls and then the time required in the other recursive calls.

Lemma 2. The merging steps in the first recursive calls take
time.

Proof. We first show that the merging step in each recursive call takes time.

Lemma 3. The merging steps in all the ith, recursive calls take

time.

Proof. In the ith, recursive call, it takes

By Lemma 2 and 3, we get the following theorem.

Theorem 1. Our construction algorithm runs in time.

The time required for the merging step in the ith, recursive
call is by Corollary 1. Since and
by equations 1 and 2, log log
Since we only consider the case that is fixed, it is Thus, the total time
required for merging in the first recursive calls is

Since
time by Corollary 1 and equations 1 and 3. If we replace by for

Thus, the total time required for the merging steps in all the ith,
recursive calls is

308 D.K. Kim, J. Jo, and H. Park

3 Experimental Results

We measure the running time of our construction algorithm and compare it with
those of previous algorithms due to Manber and Myers’ (MM), Ko and Aluru’s
(KA), and Kärkkäinen and Sanders’ (KS).

We made experiments on both random strings and DNA sequences. We gen-
erated different kinds of random strings which are differ in lengths (1 million,
5 million, 10 million, 30 million, and 50 million) and in the sizes of alphabets
(2, 4, 64, and 128) from which they are drawn. For each pair of text length
and alphabet size, we generated 100 random strings and made experiments on
them. We also selected six DNA sequences of lengths 3.2M, 3.6M, 4,7M, 12.2M,
16.9M, and 31.0M, respectively. The data obtained from experiments on random
strings are given in Table 1 and those on DNA sequences are given in Table 2.
We measured the running time in mili-second on the 2.8Ghz Pentium VI with
2GB main memory.

Table 1 shows that our algorithm runs faster than the other algorithms we’ve
tested in most cases of random strings. Our algorithm is slower than the other
algorithms when and and when and
when the size of the alphabet is large and the length of text is rather small.
Thus, our algorithm runs faster than the other algorithms when the size of the
alphabet is small or the length of text is large. This implies that our algorithm

A Fast Algorithm for Constructing Suffix Arrays 309

Fig. 3. A graphic representation of the data in Table 2.

is appropriate for constructing the suffix arrays of DNA sequences. Table 2 and
Fig. 3 show the results of experiments made on DNA sequences. On average, our
algorithm requires less time than algorithm KS by 38% and algorithm KA by
25%.

We consider the space required by the algorithms. Our algorithm, algorithm
KA, and algorithm KS require space asymptotically. To compare the hidden
constants in asymptotic notations, we estimate the constant of each algorithm
by increasing the length of text until the algorithm uses the virtual memory in
the secondary storage. Our algorithm and algorithm KS start to use the virtual
memory when is about 70M and algorithm KA start to use when is about
40M. (Thus, we got no data for algorithm KA when in Table 1.) Hence,
the space required by our algorithm is almost equal to or even less than those
required by previous fast algorithms. This implies we do not sacrifice the space
for the running time.

310 D.K. Kim, J. Jo, and H. Park

4 Discussion

We explain why our algorithm runs so fast. First, the odd-even scheme on which
our algorithm is based is quite efficient. We show this by comparing the odd-
even scheme with the skew scheme. Second, the part of our algorithm whose
time complexity is the backward search in the merging step,
does not dominate the total running time of our algorithm.

4.1 Odd-Even Scheme vs. Skew Scheme

We compare the odd-even scheme with the skew scheme. The two essential dif-
ferences of the odd-even scheme and the skew scheme are that the skew scheme
encodes T into of length and that each symbol of is an encoding of
three symbols in T. These two differences make the skew scheme be slower than
the odd-even scheme. The major two reasons are as follows.

The sum of the lengths of the strings to be encoded in all recursive calls
in the skew scheme is 1.5 times longer than that in the odd-even scheme.
In the skew scheme, the size of the text is reduced to 2/3 of it per each
recursive call and thus the sum of the lengths of the encoded strings is

The skew scheme performs 3-round radix sort to sort triples while the odd-
even scheme performs 2-round radix sort to sort pairs.

With these two things combined, it is expected that the encoding in the odd-
even scheme is quite faster than that in the skew scheme. We implemented the
encoding step in the odd-even scheme and the encoding step in the skew scheme
and measured the running time of them. We summarized the results in Table 3.

Table 3 shows that the encoding in the odd-even scheme is about 2 times
faster than that in the skew scheme. We carefully implemented the two schemes

while in the odd-even scheme, it is

A Fast Algorithm for Constructing Suffix Arrays 311

such that anything that is not inherent to the schemes such as code tuning,
cannot affect the running time. We attached the C codes used to implement
these two schemes in the appendix. (The code for encoding in the skew scheme
is the same as that presented by Kärkkäinen and Sanders [15].)

4.2 The Ratio of Backward Search

We compute the ratio of the running time of the backward search which runs
in time to the total running time of our algorithm. Table 4 shows
that the backward search consumes 34% of the total running time when
and 27% when Hence, the running time of the backward search is not
crucial to the total running time.

5 Concluding Remarks

We presented a fast algorithm for constructing suffix arrays for the fixed-size
alphabet. Our algorithm constructs suffix arrays faster than any other algorithms
developed for integer or general alphabets when the alphabet is fixed-size. Our
algorithm runs 1.33 - 1.6 times faster than the previous fast algorithms without
sacrificing the space in constructing suffix arrays of DNA sequences.

In this paper, we considered the suffix array of T as the lexicographically
sorted list of the suffixes of T. Sometimes, the suffix array is defined as a pair of
two arrays, which are the sorted array and the lcp array. The sorted array stores
the sorted list of the suffixes and the lcp array stores the lcp(longest common
prefix)’s of the suffixes. If the lcp array is needed, it can be computed from the
sorted array in time due to Kasai et al. [12].

Besides, there’s another line of research related to reducing the space of suffix
arrays. They use only space representing a suffix array. Since we only

312 D.K. Kim, J. Jo, and H. Park

focused on fast construction of suffix arrays in this paper, we used
space. It will be interesting to develop a practically fast construction algorithm
that uses only space.

References

M. Burrows and D. Wheeler, A block sorting lossless data compression algorithm,
Technical Report 124 (1994), Digital Equipment Corporation, 1994.
M. Farach, Optimal suffix tree construction with large alphabets, IEEE Symp.

Found. Computer Science (1997), 137–143.
M. Farach-Colton, P. Ferragina and S. Muthukrishnan, On the sorting-complexity
of suffix tree construction, J. Assoc. Comput. Mach. 47 (2000), 987-1011.
P. Ferragina and G. Manzini, Opportunistic data structures with applications,
IEEE Symp. Found. Computer Science (2001), 390–398.
P. Ferragina and G. Manzini, An experimental study of an opportunistic index,
ACM-SIAM Symp. on Discrete Algorithms (2001), 269–278.
G. Gonnet, R. Baeza-Yates, and T. Snider, New indices for text: Pat trees and
pat arrays. In W. B. Frakes and R. A. Baeza-Yates, editors, Information Retrieval:
Data Structures & Algorithms, Prentice Hall (1992), 66–82.
D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge Univ. Press

1997.
D. Gusfield, An “Increment-by-one” approach to suffix arrays and trees, manuscript

(1990).
R. Grossi, A. Gupta and J.S. Vitter, When indexing equals compression: Exper-
iments with compressing suffix arrays and applications, ACM-SIAM Symp. on

Discrete Algorithms (2004).
R. Grossi and J.S. Vitter, Compressed suffix arrays and suffix trees with appli-
cations to text indexing and string matching, ACM Symp. Theory of Computing

(2000), 397–406.
W.K. Hon, K. Sadakane and W.K. Sung, Breaking a time-and-space barrier in
constructing full-text indices, IEEE Symp. Found. Computer Science (2003), 251–
260.
T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, Linear-time longest-
common-prefix computation in suffix arrays and its applications, Symp. Combina-

torial Pattern Matching (2001), 181–192.
J. Kärkkäinen and P. Sanders, Simpler linear work suffix array construction, Int.

Colloq. Automata Languages and Programming (2003), 943–955.
D.K. Kim, J.S. Sim, H. Park and K. Park, Linear-time construction of suffix arrays,
Symp. Combinatorial Pattern Matching (2003), 186–199.
P. Ko and S. Aluru, Space-efficient linear time construction of suffix arrays, Symp.

Combinatorial Pattern Matching (2003), 200–210.
U. Manber and G. Myers, Suffix arrays: A new method for on-line string searches,
SIAM J. Comput. 22 (1993), 935–938.
E.M. McCreight, A space-economical suffix tree construction algorithm, J. Assoc.

Comput. Mach. 23 (1976), 262–272.
K. Sadakane, Compressed text databases with efficient query algorithms based
on the compressed suffix array, Int. Symp. Algorithms and Computation (2000),
410–421.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

A Fast Algorithm for Constructing Suffix Arrays 313

K. Sadakane, Succinct representations of lcp Information and improvements in
the compressed suffix arrays, ACM-SIAM Symp. on Discrete Algorithms (2002),
225–232.
J.S. Sim, D.K. Kim, H. Park and K. Park, Linear-time search in suffix arrays,
Australasian Workshop on Combinatorial Algorithms (2003), 139–146.
E. Ukkonen, On-line construction of suffix trees, Algorithmica 14 (1995), 249–260.
P. Weiner, Linear pattern matching algorithms, Proc. 14th IEEE Symp. Switching

and Automata Theory (1973), 1–11.

19.

20.

21.
22.

Appendix

314 D.K. Kim, J. Jo, and H. Park

Pre-processing and Linear-Decomposition

Algorithm to Solve the k-Colorability Problem*

Corinne Lucet1, Florence Mendes1, and Aziz Moukrim2

1 LaRIA EA 2083, 5 rue du Moulin Neuf 80000 Amiens, France.
{Corinne.Lucet,Florence.Mendes}@laria.u-picardie. f r

2 HeuDiaSyC UMR CNRS 6599 UTC, BP 20529 60205 Compiègne, France.
Aziz.Moukrim@hds.utc.fr

Abstract. We are interested in the graph coloring problem. We stud-
ied the effectiveness of some pre-processings that are specific to the k-
colorability problem and that promise to reduce the size or the difficulty
of the instances. We propose to apply on the reduced graph an exact
method based on a linear-decomposition of the graph. We present some
experiments performed on literature instances, among which DIMACS
library instances.

1 Introduction

The Graph Coloring Problem constitutes a central problem in a lot of applica-
tions such as school timetabling, scheduling, or frequency assignment [5,6]. This
problem belongs to the class of NP-hard problems [10]. Various heuristics ap-
proaches have been proposed to solve it (see for instance [2,8,9,11,13,17,19,21]).
Efficient exact methods are less numerous: implicit enumeration strategies [14,
20,22], column generation and linear programming [18], branch-and-bound [3],
branch-and-cut [7], without forgetting the well-known exact version of Brelaz’s
DSATUR [2].

A coloring of a graph G = (V, E) is an assignment of a color to each
vertex such that for all edges If the number of colors
used is the coloring of G is called a The minimum value of for
which a k-coloring is possible is called the chromatic number of G and is denoted

The graph coloring problem consists in finding the chromatic number of
a graph. Our approach to solve this problem is to solve for different values of
the problem: “does there exist a k-coloring of G ?”.

We propose to experiment the effectiveness of some pre-processings that are
directly related to the k-colorability problem. The aim of these processings is to
reduce the size of the graph by deleting vertices and to constrain it by adding
edges. Then we apply a linear-decomposition algorithm on the reduced graph
in order to solve the graph coloring problem. This method is strongly related
to notions of tree-decomposition and path-decomposition, well studied by Bod-
laender [1]. Linear-decomposition has been implemented efficiently by Carlier,

With the support of Conseil Régional de Picardie and FSE.

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 315–325, 2004.
© Springer-Verlag Berlin Heidelberg 2004

*

316 C. Lucet, F. Mendes, and A. Moukrim

Lucet and Manouvrier to solve various NP-hard problems [4,15,16] and has for
main advantage that the exponential factor of its complexity depends on the
linearwidth of the graph but not on its size.

Our paper is organized as follows. We present in Sect. 2 some pre-proces-
sings related to the k-colorability problem and test their effectiveness on various
benchmark instances. In Sect. 3, we describe our linear-decomposition algorithm.
We report the results of our experiments in Sect. 4. Finally, we conclude and
discuss about the perspectives of this work.

2 Pre-processings

In this section, we present several pre-processings to reduce the difficulty of a k-
colorability problem. These pre-processings are iterated until the graph remains
unchanged or the whole graph is reduced.

2.1 Definitions

An undirected graph G is a pair (V, E) made up of a vertex set V and an edge
set Let and A graph G is connected if for
all vertices there exists a path from to Without loss of
generality, the graphs we will consider in the following of this paper will be only
undirected and connected graphs. Given a graph G = (V, E) and a vertex
let represents the neighborhood of in G. The
subgraph of G = (V,E) induced by is the graph such that

A clique of G = (V, E) is a subset such that every
two vertices in C are joined by an edge in E. Let be the set
made up of all pairs of vertices that are not neighbors in G = (V, E). Let be
the degree of G, i.e. the maximal vertex degree among all vertices of G.

2.2 Reduction 1

A vertex reduction using the following property of the neighborhood of the
vertices can be applied to the representative graph before any other computation
with time complexity upper bounded by Given a graph G,
for each pair of vertices such that then

and its adjacent edges can be erased from the graph. Indeed, suppose that
colors are needed to color the neighbors of The vertex can take the

color. Vertices and are not neighbors. Moreover, the neighbors of are
already colored with at most colors. So, if is k-colorable then G
is k-colorable as well and we can delete from the graph. This principle can be
applied recursively as long as vertices are removed from the graph.

2.3 Reduction 2

Suppose that we are searching for a k-coloring of a graph G = (V, E). Then we
can use the following property: for each vertex if the degree of is strictly

Pre-processing and Linear-Decomposition Algorithm 317

lower than and its edges can be erased from the graph [11]. Assume
has neighbors. In the worst case, those neighbors must have different
colors. Then the vertex can take the color. It does not interfere in the
coloring of the remaining vertices because all its neighbors have already been
colored. Therefore we can consider from the beginning that it will take a color
unused by its neighbors and delete it from the graph before the coloring. The
time complexity of this reduction is O(N). We apply this principle recursively
by examining the remaining vertices until having totally reduced the graph or
being enable to delete any other vertex.

2.4 Vertex Fusion

Suppose that we are searching for a k-coloring of G = (V, E) and that a clique
C of size has been previously determined. For each couple of non-adjacent
vertices such that and if is adjacent to all vertices
of then and can be merged by the following way: each neighbor of

becomes a neighbor of then and its adjacent edges are erased from the
graph. Indeed, since we are searching for a k-coloring, and must have the
same color. Then and the edge can be added to G.
Then and can be erased from the graph (cf Sect. 2.2). The time
complexity of this pre-processing is

2.5 Edge Addition

Suppose that we are searching for a k-coloring of G = (V, E) and that a clique C

of size has been previously determined. For each couple of non-adjacent vertices
if we have or then the edge can be

added to the graph. Necessarly, must take a color from the colors of
Since This constraint can be represented by an
edge between and The time complexity of this pre-processing is
upper bounded by

318 C. Lucet, F. Mendes, and A. Moukrim

2.6 Pre-processing Experiments

Our algorithms have been implemented on a PC AMD Athlon Xp 2000+ in C
language. The method used is as follows. To start with, we apply on the entry
graph G a fast clique search algorithm: as long as the graph is not triangulated,
we remove a vertex of smallest degree, and then we color the remaining triangu-
lated graph by determining a perfect elimination order [12] on the vertices of G.
The size of the clique provided by this algorithm, denoted LB, constitutes a lower
bound of the chromatic number of G. Then we apply on G the pre-processings
described in Algorithm 1, supposing that we are searching for a k-coloring of the
graph with We performed tests on benchmark instances used at the
computational symposium COLOR02, including well-known DIMACS instances
(see description of the instances at http://mat.gsia.cmu.edu/COLOR02). Re-
sults are reported in Table 1. For each graph, we indicate the initial number
of vertices N and the number of edges M. The column LB contains the size
of the maximal clique found. The percentage of vertices deleted by the pre-
processings is reported in column Del. The number of remaining vertices after
the pre-processing step is reported in column new_N. Remark that some of the
instances are totally reduced by the pre-processings when and that
some of them are not reduced at all.

Pre-processing and Linear-Decomposition Algorithm 319

3 Linear-Decomposition Applied to the k-Colorability
Problem

In this section, we propose a method which uses linear-decomposition mixed
with Dsatur heuristic in order to solve the k-colorability problem.

3.1 Definitions

We will consider a graph G = (V, E). Let and A vertex linear
ordering of G is a bijection For more clarity, we denote the
vertex Let be subset of V made of the vertices numbered from 1 to
Let be the subgraph of G induced by Let

is the boundary set of Let
be the subgraph of G such that and The
boundary set corresponds to the set of vertices joining to (see Fig. 1).

The linearwidth of a vertex linear ordering is
We use a vertex linear ordering of the graph to resolve the k-colorability problem
with a linear-decomposition. The resolution method is based on a sequential
insertion of the vertices, using a vertex linear ordering previously determined.
This will be developed in the following section.

Fig. 1. A subgraph of G and its boundary set

320 C. Lucet, F. Mendes, and A. Moukrim

3.2 Linear-Decomposition Algorithm

The details of the implementation of the linear-decomposition method are re-
ported in Algorithm 2. The vertices of G are numbered according to a linear
ordering Then, during the coloring, we will consider N
subgraphs and the N corresponding boundary sets as
defined in Sect. 3.1.

The complexity of the linear-decomposition is exponential with respect to
so it is necessary to make a good choice when numbering the vertices

of the graph. Unfortunately, finding an optimal vertex linear ordering in order
to obtain the smallest linearwidth is a NP-complete problem [1]. After some
experiments on various heuristics of vertex numbering, we choose to begin the
numbering from the biggest clique provided by our clique search heuristic (cf

Pre-processing and Linear-Decomposition Algorithm 321

Sect. 2.6). Then we order the vertices by decreasing number of already numbered
neighbors.

Starting from a vertex linear ordering, we build at first iteration a subgraph
which contains only the vertex 1, then at each step the next vertex and its

corresponding edges are added, until To each subgraph corresponds a
boundary set containing the vertices of which have at least one neighbor in

The boundary set is built from by adding the vertex and removing
the vertices whose neighbors have all been numbered with at most Several
colorings of may correspond to the same coloring of Moreover, the colors
used by the vertices do not interfere with the coloring of the vertices which
have an ordering number greater than since no edge exists between them. So,
only the partial solutions corresponding to different colorings of have to be
stored in memory. This way, several partial solutions on may be summarized
by a unique partial solution on called configuration of

At step fortunately we do not examine all the possible configurations of the
step but only those which have been created at precedent step, it means
those for which there is no edge between two vertices of the same block. For
each configuration of we introduce the vertex in each block successively.
Each time the introduction is possible without breaking the coloring rules, the
corresponding configuration of is generated. Moreover, for each configuration
of with value strictly lower than we generate also the configuration
obtained by adding a new block containing the vertex

In order to improve the linear-decomposition, we apply the Dsatur heuristic
evenly on the remaining graph for different configurations of If Dsatur
finds a k-coloring then the process ends and the result of the k-coloring is yes.
Otherwise the linear-decomposition continues until a configuration is generated
at step N, in this case the graph is k-colorable, or no configuration can be
generated from the precedent step, in this case the graph is not k-colorable. The

A configuration of the boundary set is a given coloring of the vertices of
This can be represented by a partition of denoted such that

two vertices of are in the same block if they have the same color.
The number of configurations of depends obviously on the number of edges
between the vertices of The minimum number of configurations is 1. If the
vertices of form a clique, only one configuration is possible:
with exactly one vertex in each block. The maximal number of configurations
of equals the number of possible partitions of a set with elements. When
no edge exists between the boundary set vertices, all the partitions are to be
considered. Their number grows exponentially according to the size of

Their ordering number included between 1 and is computed by an
algorithm according to their number of blocks and their number of elements. This
algorithm uses the recursive principle of Stirling numbers of the second kind.
The partitions of sets with at most four elements and their ordering number
are reported in Table 2. Let be the configuration of for the
subgraph Its value, denoted equals the minimum number of
colors necessary to color for this configuration.

322 C. Lucet, F. Mendes, and A. Moukrim

complexity of the linear-decomposition algorithm, upper bounded by
is exponential according to the linearwidth of the graph, but linear according to
its number of vertices.

3.3 Example of Configuration Computing

Assume that we are searching for a 3-coloring of the graph G of Fig. 2. Sup-
pose that at step we had The configurations of were

of value and of value The value of
is 2 or 3, since the corresponding configuration has 2 blocks and

Fig. 2. Construction of

Suppose that at step vertex is deleted from the boundary set (we sup-
pose that it has no neighbor in so We want to generate the
configurations of from the configurations of The insertion of in the
unique block of is impossible, since and are neighbors. It is possi-
ble to add a new block, it provides the partition [uv][i] of 2 blocks, corresponding

Pre-processing and Linear-Decomposition Algorithm 323

to the configuration with Vertex
can be introduced in the second block of It provides the partition
[u][vi] corresponding to the configuration with value It is also
possible to add a new block to it provides the partition [u][v][i] of
3 blocks corresponding to the configuration This configuration
already exists, so Thus two con-
figurations are provided at step they are used to determine the configurations
of the following step, and so on until the whole graph is colored.

4 k-Color ability Experiments

We performed experiments on the reduced instances of Table 1. Obviously, we
did not test instances that were already solved by pre-processings. Results of
these experiments are reported in Table 3. For each instance, we tested succes-
sive k-colorings, starting from LB and increasing by step 1 until a coloring
exists. We report the result and computing time of our linear-decomposition al-
gorithm kColor, for one or two relevant values of We give also in column
the linearwidth of the vertex linear ordering chosen Most of these in-
stances are easily solved. Configurations generated by instance 2-FullIns5 for a
6-coloring exceeded the memory capacity of our computer, so we give for this
instance the results for a 5-coloring and for a 7-coloring. Instances 2-FullIns4, 3-
FullIns4, 4-FullIns4, 5-FullIns4 and 4-Inser3 are solved exactly, whereas no exact
method had been able to solve them at the COLOR02 computational symposium
(see http://mat.gsia.cmu.edu/COLOR02/ summary.htm for all results).

324 C. Lucet, F. Mendes, and A. Moukrim

5 Conclusions

In this paper, we have presented some pre-processings that are effective to re-
duce the size of some of difficult coloring instances. We presented also an original
method to solve the graph coloring problem by an exact way. This method has
the advantage of solving easily large instances which have a bounded linearwidth.
The computational results obtained on literature instances are very satisfactory.
We consider using the linear-decomposition mixed with heuristics approach to
deal with unbounded linearwidth instances. We are also looking for more reduc-
tion techniques to reduce the size or the difficulty of these instances.

References

H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–21,
1993.
D. Brelaz. New methods to color the vertices of a graph. Communications of the

ACM, 22(4):251–256, april 1979.
M. Caramia and P. Dell’Olmo. Vertex coloring by multistage branch-and-bound.
In Computational Symposium on Graph Coloring and its Generalizations, Corneil
University, September 2002.

1.

2.

3.

Pre-processing and Linear-Decomposition Algorithm 325

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

J. Carlier and C. Lucet. A decomposition algorithm for network reliability evalu-
ation. Discrete Appl. Math., 65:141–156, 1996.
D. de Werra. An introduction to timetabling. European Journal of Operation

Research, 19:151–162, 1985.
D. de Werra. On a multiconstrained model for chromatic scheduling. Discrete

Appl. Math., 94:171–180, 1999.
I. Mendez Diaz and P. Zabala. A branch-and-cut algorithm for graph coloring.
In Computational Symposium on Graph Coloring and its Generalizations, Corneil
University, September 2002.
N. Funabiki and T. Higashino. A minimal-state processing search algorithm for
graph coloring problems. IEICE Transactions on Fundamentals, E83-A(7):1420–
1430, 2000.
P. Galinier and J.K. Hao. Hybrid evolutionary algorithms for graph coloring.
Journal of Combinatorial Optimization, 3(4):379–397, 1999.
M. R. Garey and D. S. Johnson. Computers and Intractability – A Guide to the

Theory of NP-Completeness. Freeman, San Francisco, 1979.
F. Glover, M. Parker, and J. Ryan. Coloring by tabu branch and bound. In Trick
and Johnson [23], pages 285–308.
M. C. Golumbic Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, 1980.
A. Hertz and D. De Werra. Using tabu search techniques for graph coloring.
Computing, 39:345–351, 1987.
M. Kubale and B. Jackowski. A generalized implicit enumeration algorithm for
graph coloring. Communications of the ACM, 28(4):412–418, 1985.
C. Lucet. Méthode de décomposition pour l’évaluation de la fiabilité des réseaux.

PhD thesis, Université de Technologic de Compiègne, 1993.
J.F. Manouvrier. Méthode de décomposition pour résoudre des problèmes combi-

natoires sur les graphes. PhD thesis, Université de Technologie de Compiègne,
1998.
B. Manvel. Extremely greedy coloring algorithms. In F. Harary and J.S. Maybee,
editors, Graphs and applications: Proceedings of the First Colorado Symposium on

Graph Theory, pages 257–270, New York, 1985. John Wiley & Sons.
A. Mehrotra and M. A. Trick. A column generation approach for graph coloring.
INFORMS Journal on Computing, 8(4):344–354, 1996.
C. A. Morgenstern. Distributed coloration neighborhood search. In Trick and
Johnson [23], pages 335–357.
T. J. Sager and S. Lin. A pruning procedure for exact graph coloring. ORSA

Journal on Computing, 3:226–230, 1991.
S. Sen Sarma and S. K. Bandyopadhyay. Some sequential graph colouring algo-
rithms. International Journal of Electronic, 67(2):187–199, 1989.
E. Sewell. An improved algorithm for exact graph coloring. In Trick and Johnson
[23], pages 359–373.
Michael A. Trick and David S. Johnson, editors. Cliques, Coloring, and Satisfi-

ability: Proceedings of the Second DIMACS Implementation Challenge. American
Mathematical Society, 1993.

An Experimental Study of Unranking

Algorithms*

Conrado Martínez and Xavier Molinero

Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de
Catalunya, E-08034 Barcelona, Spain.
{conrado,molinero}@lsi.upc.es

Abstract. We describe in this extended abstract the experiments that
we have conducted in order to fullfil the following goals: a) to obtain
a working implementation of the unranking algorithms that we have
presented in previous works; b) to assess the validity and range of appli-
cation of our theoretical analysis of the performance of these algorithms;
c) to provide preliminary figures on the practical performance of these
algorithms under a reasonable environment; and finally, d) to compare
these algorithms with the algorithms for random generation. Addition-
ally, the experiments support our conjecture that the average complex-
ity of boustrophedonic unranking is for many combinatorial
classes (namely, those whose specification requires recursion) and that it
performs only slightly worse than lexicographic unranking for iterative
classes (those which do not require recursion to be specified).

1 Introduction

The problem of unranking asks for the generation of the ith combinatorial object
of size in some combinatorial class according to some well defined order
among the objects of size of the class. Efficient unranking algorithms have been
devised for many different combinatorial classes, like binary and Cayley trees,
Dyck paths, permutations, strings or integer partitions, but most of the work in
this area concentrates in efficient algorithms for particular classes, whereas we
aim at generic algorithms that apply to a broad family of combinatorial classes.
The problem of unranking is intimately related with its converse, the ranking
problem, as well as with the problems of random generation and exhaustive
generation of all combinatorial objects of a given size. The interest of this whole
subject is witnessed by the vast number of research papers and books that has
appeared in over four decades (see for instance [1,2,7,8,9,13,14,15]).

In [10,11] we have designed generic unranking algorithms for a large family of
combinatorial classes, namely, those which can be inductively built from the basic

(a class which contains only one object of size 0), atomic classes (classes

* This research was supported by the Future and Emergent Technologies programme
of the EU under contract IST-1999-14186 (ALCOM-FT) and the Spanish “Ministerio
de Ciencia y Tecnología” programme TIC2002-00190 (AEDRI II).

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 326–340, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Experimental Study of Unranking Algorithms 327

that contain only one object of size 1 or atom) and a collection of admissible com-
binatorial operators: disjoint unions, labelled and unlabelled products, sequence,
set, etc. We say our algorithms are generic in the sense that they receive a finite
description of the combinatorial class to which the sought object belongs, be-
sides the rank and size of the object to be generated. Our approach provides
a considerable flexibility, thus making these algorithms attractive for their inclu-
sion in general purpose combinatorial libraries such as combstruct for MAPLE [3]
and MuPAD-combinat for MUPAD (see mupad–combinat.sourceforge.net), as
well as for rapid prototyping.

Besides designing the unranking algorithms, we tackled in [10,11] the analysis
of their performance. We were able to prove that for classes whose specification
does not involve recursion (the so-called iterative classes) unranking can be per-
formed in linear time on the size of the object. On the other hand, for those
classes whose specification requires the use of recursion—for instance, binary
trees—the worst case complexity of unranking is whereas the average
case complexity is typically

The results just mentioned on the average and worst-case complexity of un-
ranking apply when we generate objects according to the lexicographic order;
the use of the somewhat “extravagant” boustrophedonic order substantially im-
proves the complexity, namely to in the worst-case. Later on we will
precisely define the lexicographic and boustrophedonic orders.

Our analysis showed that the performance of unranking algorithms coincides
with that of the random generation algorithms devised by Flajolet et al. [6],
where the same generic approach for the random generation of combinatorial ob-
jects was firstly proposed.Thus if the random generation algorithm has average-
case (worst-case) complexity to generate objects of size in some class

so does the unranking algorithm for that class.
However, the analysis of the performance of the unranking algorithms—the

same applies to the analysis of random generation algorithms—introduced sev-
eral simplifications, so two important questions were left unanswered:

1.

2.

Which is the constant factor in the average-case complexity of the unranking
algorithm for a given class In particular, for objects unranked using the
boustrophedonic order the analysis didn’t provide even a rough estimation
of such constant.
How does unranking compare random generation? Both unranking and ran-
dom generation have complexities with identical order of magnitude, but the
analysis did not settled how the respective constant factors compare to each
other.

In order to provide an answer (even if partial) to these questions we have de-
veloped working implementations of our unranking algorithms in MAPLE and
conducted a series experiments to measure their practical performance. We have
instrumented our programs to collect data about the number of arithmetical
operations that they perform. In this context this is the usual choice to measure
implementation-independent performance, much in the same manner that key

328 C. Martínez and X. Molinero

comparisons axe used to measure the performance of sorting and searching algo-
rithms. On the other hand, we have also collected data on their actual execution
times. While these last measurements should have been done in several plat-
forms and for several different implementations in order to extract well-grounded
conclusions, they confirm the main trends that the implementation-independent
measurements showed up when we compared unranking and random generation.
In spite of the theoretical equivalence of the complexity of unranking and ran-
dom generation, the comparison on practical terms is interesting if we want to
produce samples without repetition. We can use the rejection method, generat-
ing objects of size at random until we have collected distinct objects, or we
can generate distinct ranks at random in time using Floyd’s algorithm
and then make the corresponding calls to the unrank function. While the
second is theoretically better, the answer could be different on practical grounds
(especially if is not very big and random generation were more efficient than
unranking by a large factor).

Our experiments also show that the unranking algorithms have acceptable
running times —there is some penalty that we have to pay for the generality
and flexibility— in a relatively common and modest platform when For
larger we face the problem of storing and manipulating huge counters (the
number of combinatorial structures typically grows exponentially in or even
as

Last but not least, the experiments have been useful to show that our asymp-
totic analyses provide good estimations for already small values of

The paper is organized as follows. In Section 2 we briefly review basic def-
initions and concepts, the unranking algorithms and the theoretical analysis of
their performance. Then, in sections 3 and 4 we describe the experimental setup
and the results of our experiments.

2 Preliminaries

As it will become apparent, all the unranking algorithms in this paper require
an efficient algorithm for counting, that is, given a specification of a class and
a size, they need to compute the number of objects with the given size. Hence,
we will only deal with so-called admissible combinatorial classes [4,5]. Those are
constructed from admissible operators, operations over classes that yield new
classes, and such that the number of objects of a given size in the new class
can be computed from the number of objects of that size or smaller sizes in
the constituent classes. In this paper we consider labelled and unlabelled objects
built from these admissible combinatorial operators. Unlabelled objects are those
whose atoms are indistinguishable. On the contrary, each of the atoms of a
labelled object of size bears a distinct label drawn from the numbers 1 to

For labelled classes, the finite specifications are built from the (with a
single object of size 0 and no labels), labelled atomic classes, and the following
combinatorial operators: union (‘+’), partitional product sequence (‘Seq’),
set (‘Set’), cycle (‘Cycle’), substitution (‘Subst’), and sequence, set and cycle

An Experimental Study of Unranking Algorithms 329

with restricted cardinality. For unlabelled classes, the finite specifications are
generated from the atomic classes, and combinatorial operators includ-
ing union (‘+’), Cartesian product (‘×’), sequence (‘Seq’), powerset, (‘PowerSet’),
set1 (‘Set’), substitution (‘Subst’), and sequence, set and powerset with restricted
cardinality. Figure 2 gives a few examples of both labelled and unlabelled ad-
missible classes.

For the rest of this paper, we will use calligraphic uppercase letters to denote
classes: Given a class and a size will denote the subset of
objects of size in and the number of such objects. Furthermore, given a
class we denote the cumulated cost of unranking all the elements of size

in The average cost of unranking will be then given by if
we assume all objects of size to be equally likely.

The unranking algorithms themselves are not too difficult, except perhaps
those for unlabelled powersets, multisets, cycles and their variants. Actually, we
have not found any efficient algorithm for the unranking of unlabelled cycles, and
they will not be considered any further in this paper. One important observation
is that any unranking algorithm depends, by definition, on the order that we have
imposed on the combinatorial class, and that the order itself will depend on a
few basic rules plus the given specification of the class.

For instance, the order among the objects of size for a class
is naturally defined by if both and belong to the same class (either

or and within their class, or if and It is then clear
that although and are isomorphic (“the same class”), these two
specifications induce quite different orders. The unranking algorithm for disjoint
unions compares the given rank with the cardinality of to decide if the sought
object belongs to or to and then solves the problem by recursively calling
the unranking on whatever class or is appropriate.

For Cartesian products the order in depends on whether
and have first components of the same size. If

then we have if or and But when
we must provide a criterion to order and The lexicographic order

stems from the specification

in other words, the smaller object is that with smaller first component. On the
other hand, the boustrophedonic order is induced by the specification

in other words, we consider that the smaller pairs of total size are those whose
has size 0, then those with of size then those with
of size 1, and so on. Figure 1 shows the lists of unlabelled binary

trees of size 4 in lexicographic (a) and boustrophedonic order (b).
1 We shall sometimes use the term ‘multisets’ to refer to these, to emphasize that

repetition is allowed.

330 C. Martínez and X. Molinero

Fig. 1. Binary trees of size 4.

Other orders axe of course possible, but they either do not help improving
the performance of unranking or they are too complex to be useful or of general
applicability. The unranking algorithm for products is also simple: find the least

such the given rank satisfies

with the provision that all ranks begin at 0 (thus the rank of is the
number of objects in which are strictly smaller than

For labelled products we use the same orders (lexicographic, boustrophedo-
nic), but we must also take the labels of the atoms into account. An object in
the labelled product is actually a 3-tuple where is a partition
of the labels into the set of labels attached to atoms and the set
of labels attached to atoms. We will assume that if and then

whenever according to the natural
lexicographical criterion. The rest of combinatorial constructs work much in the
same way as Cartesian products and we will not describe them here; the distinc-
tion between lexicographic and boustrophedonic ordering makes sense for the
other combinatorial constructs, and so we shall speak, for instance, of unrank-
ing labelled sets in lexicographic order or of unranking unlabelled sequences in
boustrophedonic order.

The theoretical performance of the unranking algorithms is given by the
following results (see [11], also [6]).

An Experimental Study of Unranking Algorithms 331

Fig. 2. Examples of labelled and unlabelled classes and their specifications

Theorem 1. The worst-case time complexity of unranking for objects of size
in any admissible labelled class using lexicographic ordering is of

arithmetic operations.

Theorem 2. The worst-case time complexity of unranking for objects of size
in any admissible labelled class using boustrophedonic ordering is of

arithmetic operations.

A particular important case which deserves explicit treatment is that of it-

erative combinatorial class. A class is iterative if it is specified without using
recursion (in technical terms, if the dependency graph of the specification is
acyclic). Examples of iterative classes include surjections
and permutations (Set(Cycle(Z))).

Theorem 3. The cost of unranking any object of size using either lexico-

graphic or boustrophedonic order, in any iterative class is

Last but least, the average-case cost of unranking and random genera-
tion under the lexicographic order can be obtained by means of a cost al-
gebra that we describe very briefly here (for more details see [6,11]). Let

be the object of and the cost of unranking this object
then the cumulated cost of unranking all the objects in is defined by

Now, if we introduce exponential and ordinary gener-
ating functions for the cumulated costs in labelled and unlabelled classes re-
spectively, and

then the average cost of unranking all objects
in is given by where denotes the generat-
ing function of the class (exponential GF if is labelled, ordinary GF is is
unlabelled), and denotes the coefficient of the generating function

The computation of for labelled classes is then possible thanks to the
application of the rules stated in the following theorem.

332 C. Martínez and X. Molinero

Theorem 4. Let be a labelled combinatorial class such that (equiva-

lently, A(0) = 0). Then

1.

2.
3.

4.
5.
6.
7.
8.
9.

where the operator for generating functions is

and

Similar rules exist for other variants of restricted cardinality, e.g.
and for the unlabelled combinatorial constructs, although these are somewhat

more complex.
Thanks to Theorem 4 we can compute very precise estimates of how-

ever, they are based upon a few simplification which are worth recalling here.
First of all, we do not count the preprocessing cost of parsing and converting
specifications to the so-called standard form. We also disregard the cost of call-
ing the count function, as we assume that this is performed as a preprocessing
step and that the values are stored into tables. Finally, we also neglect the cost
of converting the object produced by the unranking algorithm back to the non-
standard form in which the original specification were given. Last but not least,
we assume that the cost of the non-recursive part of the unranking algorithms
is exactly the number of iterations made to determine the size of the first com-
ponent in a product or sequence, the leading component in a cycle or set, etc.
For example, if the size of in the object of size which we want to
produce is then we assume that the cost of unranking is
While this simplification does not invalidate the computation from the point of
view of the order of growth of the average-complexity, a more accurate compu-
tation is necessary to determine the constant factors and lower order terms in
the average-case complexity of unranking.

3 Experiments on the Performance of Unranking

We have implemented all the unranking algorithms for the combinatorial con-
structions described in the previous section, except for unlabelled cycles (this is
a difficult open problem, see for instance [12]). Our programs2 have been writ-
ten for MAPLE (Maple V Release 8) and run under Linux in a Pentium 4 at 1.7
GHz with 512 Mb of RAM. The unranking algorithms use the basic facilities
2 They are available on request from the second author; send email to
molinero@lsi.upc.es.

An Experimental Study of Unranking Algorithms 333

for counting and parsing of specifications already provided by the combstruct

package. We have also used the function draw in the combstruct package for
random generation in order to compare its performance with that of our unrank
function, but that is the subject of the next section. The interface to unrank is
similar to that of the draw; for instance, we might write

bintree:= B = Union(Z, Prod(B, B)) ;

unrank([B, bintree, labelled], size = 10,rank = 3982254681);

to obtain the following labelled binary tree of size 10:

The function unrank also accepts several optional parameters, in particu-
lar we can specify which order we want to use: lexicographic (default) or
boustrophedonic.

The first piece of our experimental setup was the choice of the combinatorial
classes to be used. Our aim was to find a representative collection. It was
specially interesting to find cases where both the unlabelled and labelled ver-
sions made sense. As a counterexample, the labelled class Seq(Z) is interesting
(permutations), but the unlabelled class Seq(Z) is not, since there is only one
element of each size. The selected collection was3:

1.
2.
3.

4.

5.

Binary trees:
Unary-binary trees or Motzkin trees:
Integer partitions (unlabelled):

Integer compositions (unlabelled) / Surjections (labelled):

Non-ordered rooted trees (unlabelled) / Cayley trees (labelled):

3 For labelled versions of the class we have to use labelled products instead of
standard Cartesian product ×.

334 C. Martínez and X. Molinero

6. Functional graphs (labelled):

One goal of the first set of experiments that we have conducted was to em-
pirically measure when using lexicographic ordering and to compare it
with the theoretical asymptotic estimate, so that we could determine the range
of practical validity of that asymptotic estimate. A second goal was to mea-
sure which is similar to but it accurately counts all the arithmetical
operations used by the unranking algorithms; recall that the theorical analy-
sis briefly sketched in the previous section was based upon several simplifying
assumptions which disregarded some of the necessary arithmetical operations.
Nevertheless as does not take into account the arithmetic operations
needed to parse specifications and to fill counting tables, since once this has
been done as a preprocessing phase, all subsequent unrank or draw calls on the
corresponding class do not need to recompute the tables or to parse the speci-
fication. The inspection of the actual code of the unranking programs suggests
that an hypothesis which is consistent with the data that we
have collected.

We have also measured the average CPU time to unrank objects of size

The theoretical cost of unranking binary trees (unlabelled or labelled) in
lexicographic order is

The best fit for the measured data is
 The collected data shows that the theoretical asymptotic estimate is very

accurate even for the relative error being less than 1.1% (see Figure 3).
Looking at the plot itself the difference is almost unnoticeable.

All the samples used in this experiments had N = 10000 random ranks.
The average CPU times (in seconds) also grow as in the considered range
of sizes; for much larger sizes, it is not reasonable to assume that the cost of
each single arithmetic operation is constant. The experimental data in the case
of unlabelled binary trees does not substantially differ and the conclusions are

We have also performed the same experiments using the unranking algo-
rithms with boustrophedonic order. The theoretical analysis establishes that the
worst-case for unranking any class using this order is however, there
are no specific results for its average-case complexity. The experiments support
our conjecture that the average complexity is whenever the class is
not iterative.

Due to the huge size of the numbers involved in the arithmetical computations
performed by unranking we have considered in our experiments objects of size
up to 800. For instance, initializing the tables of counts to unrank objects of size
300 can take up to 30 seconds of CPU! In each experiment we use N random
ranks to gather the statistics; for sizes of the objects up to 300 we have used
samples of N = 10000 ranks, whereas for large objects we have used smaller
samples, with N = 100 ranks.

An Experimental Study of Unranking Algorithms 335

basically identical, except that average CPU times are noticeably smaller, as
the magnitude of the involved counts is very small compared with that of the
labelled case.

On the other hand, the experimental data for supports the hypothesis
a best fit gives

Fig. 3. Unranking binary trees of size in lexicographic order.

Figure 4 gives the experimental data for the unranking of labelled binary
trees using boustrophedonic order. The data is consistent with the hypothesis
that on average this cost is and in particular the best fit curve is

If we compute the best fit for the data corresponding to the boustrophedonic
unranking of unlabelled binary trees we get

which suggests that the performance of the labelled and unlabelled versions of
the boustrophedonic unranking for products is essentially the same. We will
see later that this is no longer true when we compare the performance of the
unranking (either lexicographic or boustrophedonic) of labelled and unlabelled
sets.

The collected data for boustrophedonic unranking involves objects of sizes
from to with samples of N = 10000 random ranks. Side by side,
we give the corresponding values for lexicographic order to ease the comparison.
The graph to the right also plots for boustrophedonic order (solid line) and
lexicographic order (dashed line); the behavior of the first versus the
of the second is made quite evident in the plot.

336 C. Martínez and X. Molinero

Functional graphs are sets of cycles of Cayley trees. For instance, the
graph for the function with

is

which is the 5000000-th element of size 10 in The theoretical analysis of the
cost of unranking such objects gives

Now, the best fit for the measured data is in good
accordance with the asymptotic estimate; the relative error is less than %1 in
the range of sizes we have considered (see Figure 5). Again the plots of and

show almost no difference.
When comparing to we again find further evidence for the relation

the comparison of the performance of the boustrophedonic order
with that of the lexicographic order is qualitatively similar to what we found in
the case of binary trees.

Also, we find that the average cost of unranking in boustrophedonic seems
to be the best fit for the experimental data (see Table 1) is

Together with the other examples of non-iterative classes (binary trees,
Motzkin trees, Cayley trees, …) the data for the boustrophedonic unrank-
ing of functional graphs is consistent with our conjecture that the average cost

Fig. 4. Unranking binary trees of size in boustrophedonic order.

An Experimental Study of Unranking Algorithms 337

Fig. 5. Unranking functional graphs of size in lexicographic order.

of boustrophedonic unranking is for non-iterative class (it is linear for
iterative classes).

The results for the remaining considered classes are very similar. We sum-
marize here our main findings.

For the lexicographic unranking of Motzkin trees we have
while the best fit for the experimental data gives

us with relative errors less than 1% be-
tween the asymptotic estimate and the empirical values already for For
boustrophedonic unranking the best fit is
If we repeat the experiments for labelled Motzkin trees (which have the same
theoretical performance as in the unlabelled case) we find that the best fit for
lexicographic unranking is and for boustrophdonic it is

again supporting the equivalence of labelled and
unlabelled unranking when only unions, products and sequences are involved,
even for boustrophedonic unranking.

For the unlabelled class of integer partitions, the best fit for lexicographic
unranking is while the best fit for boustrophedonic
unranking is The theoretical analysis gives
for lexicographic unranking.

338 C. Martínez and X. Molinero

If we consider the unlabelled class of integer com-
positions then the best fit curves are for lexicographic
unranking and for boustrophedonic unranking. Here,
the lexicographic unranking has theorical average cost Interest-
ingly enough, for the labelled class of surjections
the corresponding best fits are and This
confirms that while the labelled and unlabelled versions of the unranking algo-
rithms for unions, products and sequences behave identically, it is not the case for
labelled and unlabelled sets. Also, these experiments indicate that boustrophe-
donic unranking could be slightly more inefficient than lexicographic unranking
for iterative classes, contrary to what happens with the non-iterative classes,
where boustrophedonic unranking clearly outperforms lexicographic unranking,
even for small

4 An Empirical Comparison of Unranking and Random
Generation

From a theoretical point of view this question has a clear cut answer: they have
identical complexity. However, the hidden constant factor and lower order terms
may markedly differ; the goal of the experiments described in this short section is
to provide evidence about this particular aspect. We have chosen the implemen-
tation of random generation already present in the combstruct package for a fair
comparison, since the platform, programming language, etc. are identical then.
From the point of view of users, the underlying ordering of the class is irrelevant
when generating objects at random, hence the default order used by the function
draw is the boustrophedonic order, which is never significantly worse than the
lexicographic order and it is frequently much faster (see Section 3). Hence, to
get a meningful comparison we will also use boustrophedonic unranking in all
the experiments of this section.

As in the previous section we will not take into account all the preprocess
needed by both unranking and random generation, therefore we will “start the
chrono” once the initialization of counting tables and the parsing of specifications
have already been finished. Also, in the previous section we have given the data
concerning the average CPU time for unranking; for the largest objects
this time is around 1.2 seconds; for moderately sized objects the
average time is typically around 0.3 secons. Since we want here to compare
unranking and random generation we will systematically work with the ratio

between the average time of unrank and the average time of draw.
Table 2 summarizes this comparative analysis. Here denotes unlabelled bi-

nary trees, are the (labelled) functional graphs, denotes unlabelled Motzkin
trees and the (unlabelled) class of integer partitions. The data varies widely
from one case to other, so that no firm conclusions can be drawn. Some pre-
liminary results (with small samples for large sizes) confirm the theoretical pre-
diction that must tend to a constant as but there seems that
no easy rule to describe/compute these constants. For instance, the first three

An Experimental Study of Unranking Algorithms 339

classes are non-iterative and the fourth is iterative, but there is no “commonal-
ity” in the behavior of the three first classes. Neither there is such commonality
between the arborescent classes and or the unlabelled classes. From the
small collection we have worked with, however, it seems that will be typically
between 1.0 and 3.0. Further tests and analytical work is necessary to confirm
this hypothesis, but if it were so, then sampling based on unranking plus Floyd’s
algorithm should be the alternative of choice as long as the number of elements
to be sampled were 1000.

References

1.

2.
3.

4.

5.

6.

7.

8.

9.

J. Nievergelt E.M. Reingold and N. Deo. Combinatorial Algorithms: Theory and

Practice. Prentice-Hall, Englewood Cliffs, NJ, 1977.
S. Even. Combinatorial Algorithms. MacMillan, New York, 1973.
P. Flajolet and B. Salvy. Computer algebra libraries for combinatorial structures.
J. Symbolic Comp. (also INRIA, num. 2497), 20:653–671, 1995.
P. Flajolet and R. Sedgewick. The average case analysis of algorithms: Counting
and generating functions. Technical Report 1888, INRIA, Apr 1993.
P. Flajolet and J.S. Vitter. Average-case Analysis of Algorithms and Data Struc-
tures. In J. Van Leeuwen, editor, Handbook of Theoretical Computer Science,

chapter 9. North-Holland, 1990.
P. Flajolet, P. Zimmermann, and B. Van Cutsem. A calculus for the random
generation of combinatorial structures. Theor. Comp. Sci., 132(1):1–35, 1994.
D.L. Kreher and D.R. Stinson. Combinatorial Algorithms: Generation, Enumera-

tion and Search. CRC Press LLC, 1999.
J. Liebehenschel. Ranking and unranking of lexicographically ordered words:
An average-case analysis. Journal of Automata, Languages and Combinatorics,

2(4):227–268, 1997.
J. Liebehenschel. Ranking and unranking of a generalized dyck language and the
application to the generation of random trees. In The Fifth International Seminar

on the Mathematical Analysis of Algorithms, Bellaterra (Spain), Jun 1999.
C. Martínez and X. Molinero. Unranking of labelled combinatorial structures. In
D. Krob, A. A. Mikhalev, and A. V. Mikhalev, editors, Formal Power Series and

Algebraic Combinatorics : 12th International Conference ; Procedings / FPSAC

’00, pages 288–299. Springer-Verlag, Jun 2000.

10.

340 C. Martínez and X. Molinero

11.

12.

13.

14.

15.

C. Martínez and X. Molinero. A generic approach for the unranking of labeled
combinatorial classes. Random Structures & Algorithms, 19(3-4) :472–497, Oct-Dic
2001.
C. Martínez and X. Molinero. Generic algorithms for the generation of combi-
natorial objects. In Branislav Rovan and editors, Mathematical

Foundations of Computer Science 2003 (28th International Symposium, MFCS

2003; Bratislava, Slovakia, August 2003; Proceedings), volume 2747, pages 572–
581. Springer, Aug 2003.
A. Nijenhuis and H.S. Wilf. Combinatorial Algorithms: For Computers and Cal-

culators. Academic Press, Inc., 1978.
J.M. Pallo. Enumerating, ranking and unranking binary trees. The Computer

Journal, 29(2):171–175, 1986.
H.S. Wilf. East side, west side ... an introduction to combinatorial families-with
MAPLE programming, Feb 1999.

An Improved Derandomized Approximation

Algorithm for the Max-Controlled Set Problem

Carlos A. Martinhon1 and Fábio Protti2

1 Institute de Computação, Universidade Federal Fluminense, Rua Passo da Pátria
156, Bloco E, Sala 303, 24210-230, Niterói, Brazil.

mart@dcc.ic.uff.br
2 IM and NCE, Universidade Federal do Rio de Janeiro, Caixa Postal 2324,

20001-970, Rio de Janeiro, Brazil.
fabiop@nce.ufrj.br

Abstract. A vertex of a graph G = (V, E) is said to be controlled

by if the majority of the elements of the neighborhood of
(including itself) belong to M. The set M is a monopoly in G if

every vertex is controlled by M. Given a set and two
graphs and where the MONOPOLY

VERIFICATION PROBLEM (MVP) consists of deciding whether there exists
a sandwich graph G = (V,E) (i.e., a graph where
such that M is a monopoly in G = (V, E). If the answer to the MVP

is No, we then consider the MAX-CONTROLLED SET PROBLEM (MCSP),
whose objective is to find a sandwich graph G = (V, E) such that
the number of vertices of G controlled by M is maximized. The MVP

can be solved in polynomial time; the MCSP, however, is NP-hard. In
this work, we present a deterministic polynomial time approximation
algorithm for the MCSP with ratio where
(The case is solved exactly by considering the parameterized
version of the MCSP.) The algoritm is obtained through the use of
randomized rounding and derandomization techniques, namely the
method of conditional expectations. Additionally, we show how to im-
prove this ratio if good estimates of expectation are obtained in advance.

1 Preliminaries

Given two graphs and such that we say
that G = (V,E), where is a sandwich graph for some property

if G = (V, E) satisfies A sandwich problem consists of deciding whether
there exists some sandwich graph satisfying Many different properties may
be considered in this context. In general, the property is non-hereditary by
(not induced) subgraphs (otherwise would trivially be a solution, if any) and
non-ancestral by supergraphs (otherwise would trivially be a solution, if any.)
As discussed by Golumbic et al. [7], sandwich problems generalize recognition
problems arising in various situations (when the sandwich problem
becomes simply a recognition problem.)

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 341–355, 2004.
© Springer-Verlag Berlin Heidelberg 2004

342 C.A. Martinhon and F. Protti

One of the most known sandwich problems is the CHORDAL SANDWICH PROB-
LEM, where we require G to be a chordal graph (a graph where every cycle of
length at least four possesses a chord - an edge linking two non-consecutive ver-
tices in the cycle). The CHORDAL SANDWICH PROBLEM is closely related to the
MINIMUM FILL-IN PROBLEM [19]: given a graph G, find the minimum number
of edges to be added to G so that the resulting graph is chordal. The MINIMUM

FILL-IN POBLEM has applications to areas such as solution of sparse systems
of linear equations [15]. Another important sandwich problem is the INTERVAL
SANDWICH PROBLEM, where we require the sandwich graph G to be an interval
graph (a graph whose vertices are in a one-to-one correspondence with intervals
on the real line in such a way that there exists an edge between two vertices if and
only if the corresponding intervals intersect.) Kaplan and Shamir [8] describe ap-
plications to DNA physical mapping via the INTERVAL SANDWICH PROBLEM. In
this work we consider a special kind of sandwich problem, the MAX-CONTROLLED

SET PROBLEM (MCSP) [11], which is described in the sequel.
Given an undirected graph G = (V,E) and a set of vertices a

vertex is said to be controlled by M if where
The set M defines a monopoly in G if every

vertex is controlled by M. Following the notation of [11], if cont(G,M)
denotes the set of vertices controlled by M in G, M will be a monopoly in G if
and only if cont(G, M) = V.

In order to defined formally the MCSP, we first define the MONOPOLY VERI-
FICATION PROBLEM (MVP) : given a set and two graphs
and where the question is to decide whether there exists
a set E such that and M is a monopoly in G = (V,E). If the
answer of the MVP applied to M, and is No, we then consider the MCSP,
whose goal is to find a set E such that and the number of vertices
controlled by M in G = (V, E) is maximized.

The MVP can be solved in polynomial time by formulating it as a network
flow problem [11]. If the answer to the MVP is No, then a natural alternative is
to solve the MCSP. Unfortunately, the MCSP is NP-hard, even for those instances
where is an empty graph and is a complete graph. In [11] a reduction from
INDEPENDENT SET to the MCSP is given. In the same work, an approximation
algorithm for the MCSP with ratio is presented.

The notion of monopoly has applications to local majority voting in dis-
tributed environments and agreement in agent systems [1,6,10,13,16,17]. For in-
stance, suppose that the agents must agree on one industrial standard between
two proposed candidate standards. Suppose also that the candidate standard
supported by the majority of the agents is to be selected. When every agent
knows the opinion of his neighbors, a natural heuristic to obtain a reasonable
agreement is: every agent takes the majority opinions in This is known as
the deterministic local majority polling system. In such a system, securing the
support by the members of a monopoly M implies securing unanimous agree-
ment. In this context, the motivation for the MCSP is to find an efficient way of
controlling the maximum number of objects by modifying the system’s topology.

An Improved Derandomized Approximation Algorithm 343

In this work, we present a linear integer programming formulation and a
randomized rounding procedure for the MCSP. As far as we know, our procedure
achieves the best polynomial time approximation ratio for the MCSP. If de-
notes the optimum value of the linear relaxation and (for some fixed

and some function the approximation ratio
improves the algorithm presented in [11]. As described later,
the case may be solved exactly by considering a polynomial time
algorithm for the parameterized version of the MCSP. This procedure is based
on the ideas presented in [11] for the MVP.

This paper is organized as follows. In Section 2 some basic notation and
results from [11] are presented. These are fundamental for the development of
our algorithm. In Section 3, we introduce the PARAMETERIZED MCSP. For a given
parameter we solve exactly the PARAMETERIZED MCSP in time
Section 4 gives a detailed description of our MCSP formulation and outlines our
randomized rounding procedure. In randomized rounding techniques, we first
solve the linear relaxation and “round” the resulting solution to produce feasible
solutions. In Section 5 we present an approximation analysis via the probabilistic
method (introduced by Erdös and Spencer [5]). In this case, the main objective
is to construct probabilistic existence proofs of some particular combinatorial
structure for actually exhibiting this structure. This is performed through the
use of derandomization techniques. In Section 6 we describe a derandomized
procedure via the method of conditional expectations, achieving an improved
deterministic approximation algorithm for the MCSP with performance ratio

Finally, in Section 7, we present some conclusions and suggestions for
future work.

2 The Algorithm for the MCSP by
Makino et al.

Consider a maximization optimization problem P and an arbitrary input in-
stance I of P. Denote by the optimal objective function value for I, and by

the value of the objective function delivered by an algorithm H. Without
loss of generality, it is assumed that each feasible solution for I has a non-negative
objective function value. Recall that H is a algorithm for P if
and only if a feasible solution of value is delivered for all instances
I and some satisfying

From now on, we suppose that the answer for the MVP when applied to
M, and is No. Let us briefly describe the deterministic
algorithm for the MCSP presented in [11]. For define the edge set

Let U = V\M. Two reduction
rules are used: a new edge set is obtained by the union of and D(M, M),
and a new edge set is obtained by removing D(U, U) from Since we
are maximizing the total number of vertices controlled by M, these reduction
rules do not modify the optimal solution. In other words, the edge set E in the
sandwich graph G satisfies

344 C.A. Martinhon and F. Protti

For simplicity, assume from now on (Reduction Rule 1) and
(Reduction Rule 2). In the MYK algorithm, denote the sets of
vertices controlled by M in G = (V, E) for and respectively.

Formally, they proved the following result:

Theorem 1. The value returned by Algorithm 1 satisfies
for all instances I of the MCSP.

3 Parameterizing the MCSP

In this Section we introduce the PARAMETERIZED MCSP. Let A be a fixed non-
negative integer. The objective is to find, in polynomial time, a solution for the
MCSP with value at least A. In other words, we require the parameter A to be a
lower bound for the maximum number of vertices that can be controlled by M
in a sandwich graph G = (V, E) with

Let us describe an algorithm for the PARAMETERIZED MCSP. We first
consider a partition of V into six special subsets (some of them are implicitly
described in [11]):

and consisting of the vertices in M and U, respectively, which
are controlled by M in any sandwich graph (vertices which are “always
controlled”);

and consisting of the vertices in M and U, respectively, which
are not controlled by M in any sandwich graph (vertices which are “never
controlled”);

and defined as and

Define the binary variables for and assume that
Define binary constants such that if and only if

or Consider now the following auxiliary equations:

In these equations, assume that: for every for every
and for every This means that the remaining

binary variables are associated to edges in (set of optional edges). It is
clear that for some 0-1 assignment (to variables associated to optional
edges) if and only if vertex can be controlled by M in some sandwich graph.
Observe that the subsets can be thus characterized by the
following properties:

An Improved Derandomized Approximation Algorithm 345

if and only if for every 0-1 assignment;
if and only if for every 0-1 assignment.

In fact, it is easy to construct these four sets, since it is sufficient to look
at “worst-case” assignments. For instance, if then if and only if

for a 0-1 assignment which sets for every
Use now the following new reduction rules:

set for every (Reduction Rule 3);
set for every (Reduction Rule 4);
set arbitrary values to variables for
(Reduction Rule 5).

It is clear that if then the algorithm for the PARAMETERIZED

MCSP answers Yes. Hence, from now on, assume that
Clearly, if and only if Thus, if or the

algorithm must answer No. Add then the assumption
We fix an arbitrary subset of cardinality

and check whether it is possible to control S. Similarly to the reduction rules
described above, set for every edge and

for every edge Finally, set for every
edge and calculate the corresponding according
to equations (1).

Following the ideas in [11], we construct a network whose vertex set con-
sists of S together with two additional vertices Create an edge with
capacity for every an edge with capacity
for every and an edge with capacity 1 for every

Notice that can be constructed in constant time, since
its edge set contains at most elements. Now, if the maximum flow in
is equal to then S can be controlled by selecting the edges of the
form with unitary flow value. This maximum flow
problem can be solved in constant time, depending on A.

By repeating this procedure for every such that
we obtain an algorithm with complexity

4 An Improved Randomized Rounding Procedure for the
MCSP

The definition of performance ratio in randomized approximation algorithms is
the same as in the deterministic ones. In this case, however, is replaced by

where the expectation is taken over the random choices made by the
algorithm. Then, an algorithm H for a maximization problem is a randomized

algorithm if and only if is delivered for all
instances I and some

In randomized rounding techniques (introduced by Raghavan and Thomp-
son [14]), one usually solves a relaxation of a combinatorial optimization problem

346 C.A. Martinhon and F. Protti

(by using linear or semidefinite programming), and uses randomization to return
from the relaxation to the original optimization problem. The main idea is to
use fractional solutions to define tuned probabilities in the randomized round-
ing procedure. Additional executions of this randomized procedure arbitrarily
reduce the failure probability (Monte Carlo method).

In order to introduce a new integer programming formulation for the MCSP,
we define the binary variables for which determine whether vertex is
controlled or not by M. Binary variables are used to decide whether optional
edges belonging to will be included or not in the sandwich graph. The
objective function (2) computes the maximum number of controlled vertices. As
defined before, binary constants are associated to edges
with if and only if or (Assume that
Inequalities (3) guarantee that every time a vertex is controlled by M, the left
hand side will be greater than or equal to 1. On the other hand, if the left hand
side is less than 1, vertex will not be controlled by M and will be set to 0. The
divisions by are used to maintain the difference between the two summations
always greater than –1. Equalities (4) define the set of fixed edges. The linear
programming relaxation is obtained by replacing integrality constraints (5) and
(6) by and respectively.

It is assumed from now on that and will denote, respectively,
an optimal solution of the relaxed integer programming formulation and its
associated objective function value. The value of the original integer problem
will be denoted by

The value of linear programming relaxation may be improved if the reduction
rules for the MCSP are used. As will be observed in Section 5, the performance
ratio of our randomized algorithm is based on the value of the linear relaxation
and an improvement of this ratio is attained if good upper bounds are obtained.
Thus, assume without loss of generality that MCSP instances satisfy Reduction
Rules 1 to 5.

Algorithm 2, based on randomized rounding techniques, is a Monte Carlo
procedure and delivers, in polynomial time and with high probability, a value
within a prescribed approximation ratio. In Step 3 of the algorithm we define

subject to:

An Improved Derandomized Approximation Algorithm 347

a function for a given parameter conveniently chosen. The con-
struction of will be detailed in the next section. For the time being, an
“oracle” is used.

We can use, for example, an interior point method in Step 2 (introduced
by Karmarkar [9]) to compute the fractional solution yielding in this way a
polynomial time execution for Algorithm 2. Observe that Algorithm 2 always
produce a feasible solution, and additional executions of Step 4 (for
arbitrarily reduce the failure probability, provided that a prescribed approxima-
tion ratio is given. Moreover, it is obviously a algorithm since
Algorithm 1 was used in Step 1. As will be pointed out in the next section, this
will directly help us to build an improved approximation algorithm with ratio

for some conveniently chosen. It is straightforward to ob-
serve that, even for this ratio is strictly greater than thus improving the
previous result of [11]. In addition, recall that all those instances with
(for some parameter are polinomially solved by the algorithm for the
PARAMETERIZED MCSP given in Section 3.

5 Approximation Analysis

Before to proceed to the approximation analysis, consider the following auxiliary
definitions and lemmas. We first present the notion of negative association.

Definition 1. (Negative Association) Let be a vec-
tor of random variables. The random variables X are negatively associated if for

andfor all functions

every two disjoint index sets I,

that are both non-decreasing and both non-increasing.

348 C.A. Martinhon and F. Protti

For a more detailed study concerning negative dependence see Dubhashi and
Ranjan [4].

The next lemma ensures that the lower Chernoff-Hoeffding bound (lower CH
bound) may be applied to not necessarily independent random variables. See
Motwani and Raghavan [12] and Dubhashi and Ranjan [4] for the proof. An
analogous result may be established for the upper CH bound.

Lemma 2. Let X,Y be arbitrary random variables. Then

Now, in order to describe the approximation analysis of Algorithm 2, we
define random variables for every These variables denote the
set of vertices controlled by M. We also define random variables for
every Assume for every and for every
Observe that variables for are associated to the set of optional
edges. Additionally, let be the sum of not necessarily independent random
variables for Thus, we have the following preliminary result:

Lemma 3. The random variables for all are negatively associated.

Proof: Consider two arbitrary disjoint index sets I, Then we
want to show that:

In particular, it is easy to observe (from the definition of the MCSP) that
and (for are independent random variables if they simultaneously

belong to M (or U). However, and are negatively associated if they are
not in the same set. Generally, for arbitrary index sets I and J, we can establish
that or, equivalently,

Thus, for every pair and we have that

which proves the lemma.

Now, consider our relaxed integer programming formulation. For
assume if or Assume also we assign, as described in
Algorithm 2, arbitrarily values for every If is the sum of
random variables denoting the value of the randomized solution, it follows from
constraints (3)-(6) that:

Lemma 1. (Lower Chernoff-Hoeffding Bound and Negative Associa-
tion) Let be negatively associated Poisson trials such that, for

where Then, for
and any we have that

Finally, consider the following auxiliary lemma:

An Improved Derandomized Approximation Algorithm 349

From Lemma 2 and the linearity of expectation one obtains:

where Therefore:

Recall that Step 1 Algorithm 2 guarantees a performance ratio equal to
Therefore, each iteration of Algorithm 2 returns a solution with
(where denotes the value of the optimal integer solution). Now, as the optimal
solution itself may be generated at random, one may concludes, without loss
of generality, that is strictly greater than (otherwise, the solution
generated by Algorithm 1 would be optimal). Thus, we assume from (8) that

where for some
Now, for some to be considered later, define a bad event

Equivalently to the definition of a randomized approximation algorithm
(described in the preceding Section), defines an solution
for the MCSP if holds (complementary event).

How small a value for can we achieve while guaranteeing good events
Since we expect to obtain an approximation algorithm with a superior

performance ratio (greater than it suffices to consider for some
The parameter will be fixed later. This give us an improved

with nonzero probability. As discussed later, this solution
will be made deterministic through derandomization techniques, namely, the
method of conditional expectations.

Therefore, a bad event B occurs if Then:

where
In order to apply the lower CH bound, in addition to the negative association

(Lemma 3), all random variables must assume values in the interval (0,1). In our
case, however, as observed in Section 3, for every
(set of vertices which are always controlled by M) and for every

(set of vertices which are never controlled by M). Despite of that,
CH bounds may be applied, since the linear programming relaxation is being
solved by some interior point method (see Wright [18].)

Therefore, from the lower CH bound and assuming it follows that:

This implies:

350 C.A. Martinhon and F. Protti

We expect that Pr(B) < 1 (probability of bad event). Thus, if we impose
this last condition, it follows from (10) that:

Additional executions of Step 4 in Algorithm 2 for arbitrarily
reduce the failure probability (Monte Carlo method). Therefore, without loss of
generality, if Pr(B) = C < 1 is the probability of a bad event, and is a given
error, iterations are sufficient to ensure a
algorithm with probability

Then, we need to determine if there is some value (where
and for which inequality (11) makes sense. Equivalently, we expect to
obtain for some By solving the quadratic
equation, we obtain the roots:

Since it is easy to observe that inequality holds
only for with In addition, we expect that for some
Thus, since it follows that:

Therefore:

Now, inequality (13) holds only for with:

Notice that constraint above is immediately verified since we have
for every Finally, from expression (12), since

and it follows that:

Moreover, observe from the above expression that:

An Improved Derandomized Approximation Algorithm 351

Thus, inequality (14) gives us a randomized algo-
rithm for every and Therefore, with high probability and
for a large class of instances, this ratio improves the algorithm
in [11]. The case may be solved exactly in time through the
algorithm for the PARAMETERIZED MCSP in Section 3. Observe for instance that

for every with In other words, despite
the increase in the computational time of the algorithm for the PARAMETERIZED
MCSP, small values of guarantee improved approximation ratios
for every Formally, we proved the following result:

Theorem 2. Consider and as above. Then, for a given parameter

with Algorithm 2 defines a randomized

algorithm for the MCSP.

Unfortunately, we do not know explicitly the value of since the
expectation is unknown and hard to compute. Moreover, we cannot guarantee
a parameter strictly less than 2. This problem is minimized if some good
estimations of and thus of are obtained. By running independent
experiments with respect to the recent work of Dagum et al. [2] ensures,
for given and an estimator of within a factor and probability at
least Therefore, if this approximation is performed in advance, and if we
assume an improved randomized approximation algorithm
(for every instance of the MCSP) may be achieved if Notice for instance
that, given an interval the proof of Theorem 2 guarantees the existence
of thus improving the performance ratio.

6 A Derandomized Algorithm

Derandomization techniques convert a randomized algorithm into a deterministic
one. Here, this is performed through the probabilistic method (introduced by
Erdös and Spencer [5]). The main idea is to use the existence proof of some
combinatorial structure for actually exhibiting this structure.

The purpose of this section is to derandomize Algorithm 2 by using the
method of conditional expectations. In this case, the goal is to convert the ex-
pected approximation ratio into a guaranteed approximation ratio while increas-
ing the running time by a factor that is polynomial on the input size. Basically,
the method of conditional expectations analyzes the behavior of a randomized
approximation algorithm as a computation tree, in a such way that each path
from the root to a leaf of this tree corresponds to a possible computation gener-
ated by the algorithm.

In order to describe our derandomized procedure for the MCSP, consider
inequality (7). Then, it follows that:

352 C.A. Martinhon and F. Protti

Recall that for every and In addition,
suppose that all optional edges in are arbitrarily ordered and indexed
by In this section, the notation has the following
meaning: the edge of with endpoints and belongs to the sandwich
graph G = (V, E). Otherwise, means that For simplicity, we
will suppress indexes and and simply write Capital letters mean
that a value 0 or 1 was assigned to variable for some
Furthermore, the notation or 1) denotes the average value
produced by the randomized algorithm by computations that set or 1.

Thus, from de definition of conditional expectation and from its linearity
property one concludes that:

By repeating this process for every edge in one obtains:

Therefore, within this framework, a guaranteed performance ratio is poly-
nomially attained through an expected approximation ratio, gathering, in this
way, an improved deterministic approximation solution.

Now, from the definition of conditional expectation,

for every and Unfortunately, for the MCSP, these
probabilities are hard to compute. Lemma 4 will give us an alternate way to deal
with these expectations without explicitly consider conditional probabilities.

Lemma 4. Suppose that and for some are random variables as

described above. Then:

Proof: We will prove item (a), the proof of (b) follows analogously. Consider
without loss of generality that

Thus, since for some it
follows from inequalities (7)-(8) and from the definition of conditional expecta-
tions that:

An Improved Derandomized Approximation Algorithm 353

Thus:

By multiplying both sides by we get the desired inequality

The converse is obtained in the same way by first multiplying this last in-
equality by

Now, from Lemma 4, it follows that is less than or equal to

We repeat the process above for every optional edge in Therefore, the
sequence is obtained deterministically in polynomial time
while improving the approximation ratio.

From the preceding section, we have described a randomized algorithm whose
expectation is greater than or equal to for some
conveniently chosen. Since we expect to obtain a deterministic procedure, it
suffices to consider (in the worst case) and Observe, from
the preceding section, that by setting one obtains A(2) = 4. This will
give us (for an arbitrary instance) an improved deterministic polynomial time
approximation algorithm with performance ratio equal to

Observe above that expectations or 1)
are easily obtained. This may be accomplished in polynomial time by solv-
ing a linear programming problem for every optional edge (settled 0 or 1).

for

354 C.A. Martinhon and F. Protti

If L denotes the length of the input, the linear relaxation has complexity
[18], and thus the total complexity of Algorithm 3 will be equal to

Moreover, from Theorem 2, it is straightforward to
observe that an improvement of the approximation ratio may be attained if
good upper bounds are obtained via the linear relaxation. This may be accom-
plished, for example, through the use of new reduction rules and/or through the
use of additional cutting planes. Notice for instance that, even in the worst case,
when one obtains an improved approximation ratio. Formally, we can
establish the following result:

Theorem 3. Algorithm 3 guarantees in polynomial time an approximation ratio

equal to for

7 Conclusions

We presented an improved deterministic polynomial time approximation al-
gorithm for the Max-Controlled Set Problem through the use of randomized
rounding and derandomization techniques. As far as we know, this is the best
approximation result for the MCSP. This improves the proce-
dure presented by Makino, Yamashita and Kameda [11]. A new linear integer
programming formulation was presented to define tuned probabilities in our ran-
domized procedure. Through the use of the probabilistic method, we converted
a probabilistic proof of existence of an approximated solution into an efficient
deterministic algorithm for actually constructing this solution. Additionally, we
show that if some good estimations of expectation are obtained in advance, some
improved approximation ratios may be attained.

As future work, an interesting question is to decide whether the PARAMETER-
IZED MCSP is Fixed Parameter Tractable - FPT. (A problem with parameter A
is FPT if it admits an time algorithm, for some function and some
constant independent of A. For details, see [3].) Obtaining non-approximability
results for the MCSP and using semidefinite programming relaxation in the ran-
domized rounding procedure are also interesting attempts of research.

Acknowledgments. We thank Marcos Kiwi and Prabhakar Raghavan for their
valuable comments and pointers to the literature.

References

J.-C. Bermond and D. Peleg, The power of small coalitions in graphs, Proc. 2nd

Structural Information and Communication Complexity, Olympia, Carleton Uni-
versity Press, Ottawa, pp. 173–184, 1995.
P. Dagum, R. Karp, M. Luby, and S. Ross, An optimal algorithm for Monte Carlo
estimation, SIAM Journal on Computing, 29(5) (2000) 1484–1496.
R. G. Downey and M. R. Fellows, Fixed parameter tractability and completeness
I: Basic results, 21st Manitoba Conference on Numerical Mathematics and Com-

puting, Winnipeg, Canada, 1991.

1.

2.

3.

An Improved Derandomized Approximation Algorithm 355

D. Dubashi and D. Ranjan, Balls and bins: A study of negative dependence, Ran-

dom Structures and Algorithms 13(2) (1998) 99–124.
P. Erdös and J. Spencer, “The Probabilistic Method in Combinatorics” , Academic
Press, San Diego, 1974.
D. Fitoussi and M. Tennenholtz, Minimal social laws, Proc. AAAI’98, pp. 26–31,
1998.
M. C. Golumbic, H. Kaplan, and R. Shamir, Graph sandwich problems, Journal

of Algorithms, 19 (1994), 449–473.
H. Kaplan and R. Shamir, Physical maps and interval sandwich problems: Bounded
degrees help, Proceedings of the 5th Israeli Symposium on Theory of Computing

and Systems - ISTCS, 1996, pp. 195–201. To appear in Algorithmica under the
title “Bounded degree interval sandwich problems”.
N. Karmarkar, A new polynomial time algorithm for linear programming, Combi-

natorica, 4 (1984), 375–395.
N. Linial, D. Peleg, Y. Rabinovich, and N. Saks, Sphere packing and local ma-
jorities in graphs, Proc. 2nd Israel Symposium on Theoretical Computer Science,

IEEE Computer Society Press, Rockville, MD, pp. 141–149, 1993.
K. Makino, M. Yamashita, and T. Kameda, Max-and min-neighborhood monopo-
lies, Algorithmica, 34 (2002), 240–260.
R. Motwani and P. Raghavan, “Randomized Algorithms”, Cambridge University
Press, London, 1995.
D. Peleg, Local majority voting, small coalitions and controlling monopolies in
graphs: A review, Technical Report CS96-12, Weizmann Institute, Rehovot, 1996.
P. Raghavan and C. D. Thompson, Randomized rounding: A technique for provably
good algorithms and algorithmic proofs, Combinatorica, 7(4) (1987), 365–374.
J. D. Rose, A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations, in Graph Theory and Computing (R. C. Reed,
ed.), Academic Press, New York, 1972, pp. 183–217.
Y. Shoham and M. Tennenholtz, Emergent conventions in multi-agent systems:
Initial experimental results and observations, Proc. International Conference on

Principles of Knowledge Representation and Reasoning, pp. 225–231, 1992.
Y. Shoham and M. Tennenholtz, On the systhesis of useful social laws for artificial
agent societies, Proc. AAAI’92, pp. 276–281, 1992.
S. J. Wright, “Primal-Dual Interior-Point Methods”, SIAM, 1997.
M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM Journal on

Algebraic and Discrete Methods 2 (1981), 77–79.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

GRASP with Path-Relinking for the Quadratic

Assignment Problem

Carlos A.S. Oliveira1, Panos M. Pardalos1, and Mauricio G.C. Resende2

1 Department of Industrial and Systems Engineering, University of Florida, 303 Weil
Hall, Gainesville, FL 32611, USA.
{oliveira,pardalos}@ufl.edu

2 Algorithms and Optimization Research Department, AT&T Labs Research, Room
C241, 180 Park Avenue, Florham Park, NJ 07932, USA.

mgcr@research.att.com

Abstract. This paper describes a GRASP with path-relinking heuris-
tic for the quadratic assignment problem. GRASP is a multi-start pro-
cedure, where different points in the search space are probed with local
search for high-quality solutions. Each iteration of GRASP consists of the
construction of a randomized greedy solution, followed by local search,
starting from the constructed solution. Path-relinking is an approach to
integrate intensification and diversification in search. It consists in ex-
ploring trajectories that connect high-quality solutions. The trajectory is
generated by introducing in the initial solution, attributes of the guiding
solution. Experimental results illustrate the effectiveness of GRASP with
path-relinking over pure GRASP on the quadratic assignment problem.

1 Introduction

The quadratic assignment problem (QAP) was first proposed by Koopmans and
Beckman [10] in the context of the plant location problem. Given facilities,
represented by the set and locations represented by the
set one must determine to which location each facility must
be assigned. Let be a matrix where represents the flow
between facilities and Let be a matrix where entry
represents the distance between locations and Let
be an assignment and define the cost of this assignment to be

In the QAP, we want to find a permutation vector that minimizes
the assignment cost, i.e. subject to where is the set of all
permutations of The QAP is well known to be strongly NP-hard [18].

GRASP, or greedy randomized adaptive search procedures [5,6,8,17], have
been previously applied to the QAP [12,14,15]. For a survey on heuristics and
metaheuristics applied to the QAP, see Voß[19]. In this paper, we present a new

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 356–368, 2004.
© Springer-Verlag Berlin Heidelberg 2004

GRASP with Path-Relinking for the Quadratic Assignment Problem 357

GRASP for the QAP, which makes use of path-relinking as an intensification
mechanism. In Section 2, we briefly review GRASP and path-relinking, and give
a description of how both are combined to find approximate solutions to the
QAP. Experimental results with benchmark instances are presented in Section 3.
Finally, in Section 4 we draw some concluding remarks.

2 GRASP and Path-Relinking

GRASP is a multi-start procedure, where different points in the search space are
probed with local search for high-quality solutions. Each iteration of GRASP
consists of the construction of a randomized greedy solution, followed by lo-
cal search, starting from the constructed solution. A high-level description of
GRASP for QAP, i.e. solving min for is given in Algorithm 1.

The greedy randomized construction and the local search used in the new al-
gorithm are similar to the ones described in [12]. The construction phase consists
of two stages.

In stage 1, two initial assignments are made: facility is assigned to location
and facility is assigned to location To make the assignment, elements

of the distance matrix are sorted in increasing order:

while the elements of the flow matrix are sorted in increasing order:

The product elements

are sorted and the term is selected at random from among the
smallest elements. This product corresponds to the initial assignments: facility

is assigned to location and facility is assigned to location

358 C.A.S. Oliveira, P.M. Pardalos, and M.G.C. Resende

In stage 2, the remaining assignments of facilities to locations are made,
one facility/location pair at a time. Let denote
the first assignments made. Then, the cost assigning facility to location
is To make the assignment, select at random an
assignment from among the feasible assignments with smallest costs and add the
assignment to

Once a solution is constructed, local search is applied to it to try to improve
its cost. For each pair of assignments in the current solution,
check if the swap improves the cost of the assignment. If so,
make the swap, and repeat. A solution is locally optimal, when no swap improves
the cost of the solution.

Path-relinking [9] is an approach to integrate intensification and diversifi-
cation in search. It consists in exploring trajectories that connect high-quality
solutions. The trajectory is generated by introducing in the initial solution, at-
tributes of the guiding solution. It was first used in connection with GRASP
by Laguna and Martí [11]. A recent survey of GRASP with path-relinking is
given in Resende and Ribeiro [16]. The objective of path-relinking is to integrate
features of good solutions, found during the iterations of GRASP, into new solu-
tions generated in subsequent iterations. In pure GRASP (i.e. GRASP without
path-relinking), all iterations are independent and therefore most good solutions
are simply “forgotten.” Path-relinking tries to change this, by retaining previous
solutions and using them as “guides” to speed up convergence to a good-quality
solution.

Path-relinking uses an elite set P, in which good solutions found by the
GRASP are saved to be later combined with other solutions produced by the
GRASP. The maximum size of the elite set is an input parameter. During path-
relinking, one of the solutions is selected to be combined with the current
GRASP solution The elements of are incrementally incorporated into This
relinking process can result in an improved solution, since it explores distinct
neighborhoods of high-quality solutions.

Algorithm 2 shows the steps of GRASP with path-relinking. Initially, the elite
set P is empty, and solutions are added if they are different from the solutions
already in the set. Once the elite set is full, path-relinking is done after each
GRASP construction and local search.

A solution is selected, at random, to be combined, through path-
relinking, with the GRASP solution Since we want to favor long paths, which
have a better change of producing good solutions, we would like to choose an elite
solution with a high degree of differentiation with respect to Each element

let denote the number of facilities in and that have different
assignments, and let A solution is selected from the elite set
with probability The selected solution is called the guiding solution.
The output of path-relinking, is at least as good as solutions and that
were combined by path-relinking.

If the combined solution is not already in the elite set and its cost is not
greater than cost of the highest-cost elite set solution, then it is inserted into

GRASP with Path-Relinking for the Quadratic Assignment Problem 359

the elite set. Among the elite set solutions having cost not smaller than the
one most similar to is deleted from the set. This scheme keeps the size of the
elite set constant and attempts to maintain the set diversified.

We next give details on our implementation of path-relinking for the QAP,
shown in Algorithm 3. Let be the mapping implied by the current solution and
the mapping implied by the guiding solution. For each location path-
relinking attempts to exchange facility assigned to location in the current
solution with facility assigned to in the guiding solution. To maintain the
mapping feasible, it exchanges with where

The change in objective function caused by this swap is found using the
function evalij, which is limited to the part of the objective function affected
by these elements. If the change is positive, then the algorithm applies local
search to the resulting solution. This is done only for positive changes in the
objective value function to reduce the total computational time spent in local
search. The algorithm also checks if the generated solution is better than the
best known solution and, if so, saves it.

The path-relinking procedure described above can be further generalized, by
observing that path-relinking can also be done in the reverse direction, from
the solution in the elite set to the current solution. This modification of the
path-relinking procedure is called reverse path-relinking. In our implementation,
a reverse path-relinking is also applied at each iteration. As a last step, we use a
post-optimization procedure where path-relinking is applied among all solutions

360 C.A.S. Oliveira, P.M. Pardalos, and M.G.C. Resende

of the elite set. This procedure, which can be viewed as an extended local search,
is repeated while an improvement in the best solution is possible.

One of the computational burdens associated with path-relinking is the lo-
cal search done on all new solutions found during path-relinking. To ameliorate
this, we modified the local search phase proposed in GRASP [12] by using a
non-exhaustive improvement phase. In the local search in [12], each pair of as-
signments was exchanged until the best one was found. In our implementation,
only one of the assignments is verified and exchanged with the one that brings
the best improvement. This reduces the complexity of local search by a factor of

leading to a procedure. This scheme is used after the greedy randomized
construction and at each iteration during path-relinking.

To enhance the quality of local search outside path-relinking, after the mod-
ified local search discussed above is done, the algorithm performs a random
3-exchange step, equivalent to changing, at random, two pair of elements in the
solution. The algorithm then continues with the local search, until a local opti-
mum is found. This type of random shaking is similar to what is done in variable
neighborhood search [13].

3 Computational Experiments

Before we present the results, we first describe a plot used in several of our
papers to experimentally compare different randomized algorithms or different
versions of the same randomized algorithm [1,3,7]. This plot shows empirical
distributions of the random variable time to target solution value. To plot the
empirical distribution, we fix a solution target value and run each algorithm T

GRASP with Path-Relinking for the Quadratic Assignment Problem 361

Fig. 1. Probability distribution of time-to-target-value on instance tho30 from
QAPLIB for GRASP and GRASP with path-relinking.

independent times, recording the running time when a solution with cost at least
as good as the target value is found. For each algorithm, we associate with the

sorted running time a probability and plot the points
for Figure 1 shows one such plot comparing the pure

GRASP with the GRASP with path-relinking for QAPLIB instancetho3O with
target (optimal) solution value of 149936. The figure shows clearly that GRASP
with path-relinking (GRASP+PR) is much faster than pure GRASP to find a
solution with cost 149936. For instance, the probability of finding such a solution
in less than 100 seconds is about 55% with GRASP with path-relinking, while it
is about 10% with pure GRASP. Similarly, with probability 50% GRASP with
path-relinking finds such a target solution in less than 76 seconds, while for pure
GRASP, with probability 50% a solution is found in less than 416 seconds.

In [3], Aiex, Resende, and Ribeiro showed experimentally that the distri-
bution of the random variable time to target solution value for a GRASP is a
shifted exponential. The same result holds for GRASP with path-relinking [2].
Figure 2 illustrates this result, depicting the superimposed empirical and theo-
retical distributions observed for one of the cases studied in [3].

In this paper, we present extensive experimental results, showing that path-
relinking substantially improves the performance of GRASP. We compare an
implementation of GRASP with and without path-relinking. The instances are
taken from QAPLIB [4], a library of quadratic assignment test problems.

362 C.A.S. Oliveira, P.M. Pardalos, and M.G.C. Resende

Fig. 2. Superimposed empirical and theoretical distributions (times to target values
measured in seconds on an SGI Challenge computer with 196 MHz R10000 processors).

For each instance considered in our experiments, we make T = 100 inde-
pendent runs with GRASP with and without path-relinking, recording the time
taken for each algorithm to find the best known solution for each instance. (Due
to the length of the runs on a few of the instances, fewer than 100 runs were
done.) The probability distributions of time-to-target-value for each algorithm
are plotted for each instance considered. We consider 91 instances from QAPLIB.
Since it is impractical to fit 91 plots in this paper, we show the entire collection
of plots at the URL http://www.research.att.com/~mgcr/exp/gqapspr. In
this paper, we show only a representative set of plots.

Table 3 summarizes the runs in the representative set. The numbers appear-
ing in the names of the instances indicate the dimension of the problem.
For each instance, the table lists for each algorithm the number of runs, and the
times in seconds for 25%, 50%, and 75% of the runs to find a solution having
the target value.

The distributions are depicted in Figures 1 and 3 to 9.
The table and figures illustrate the effect of path-relinking on GRASP. On

all instances, path-relinking improved the performance of GRASP. The improve-
ment went from about a factor of two speedup to over a factor of 60.

GRASP with Path-Relinking for the Quadratic Assignment Problem 363

Fig. 3. Probability distribution of time-to-target-value on instance esc32h from
QAPLIB for GRASP and GRASP with path-relinking.

364 C.A.S. Oliveira, P.M. Pardalos, and M.G.C. Resende

Fig. 4. Probability distribution of time-to-target-value on instance bur26h from
QAPLIB for GRASP and GRASP with path-relinking.

Fig. 5. Probability distribution of time-to-target-value on instance kra30a from
QAPLIB for GRASP and GRASP with path-relinking.

GRASP with Path-Relinking for the Quadratic Assignment Problem 365

Fig. 6. Probability distribution of time-to-target-value on instance nug30, from
QAPLIB for GRASP and GRASP with path-relinking.

Fig. 7. Probability distribution of time-to-target-value on instance chr22a from
QAPLIB for GRASP and GRASP with path-relinking.

366 C.A.S. Oliveira, P.M. Pardalos, and M.G.C. Resende

Fig. 8. Probability distribution of time-to-target-value on instance lipa40a from
QAPLIB for GRASP and GRASP with path-relinking.

Fig. 9. Probability distribution of time-to-target-value on instance ste36a from
QAPLIB for GRASP and GRASP with path-relinking.

GRASP with Path-Relinking for the Quadratic Assignment Problem 367

4 Concluding Remarks

In this paper, we propose a GRASP with path-relinking for the quadratic as-
signment problem. The algorithm was implemented in the ANSI-C language
and was extensively tested. Computational results show that path-relinking
speeds up convergence, sometimes by up to two orders of magnitude. The
source code for both GRASP and GRASP with path-relinking, as well as
the plots for the extended experiment, can be downloaded from the URL
http://www.research.att.com/~mgcr/exp/gqapspr.

References

R.M. Aiex. Uma investigação experimental da distribuição de probabilidade de

tempo de solução em heurísticas GRASP sua aplicação na análise de imple-

mentações paralelas. PhD thesis, Department of Computer Science, Catholic Uni-
versity of Rio de Janeiro, Rio de Janeiro, Brazil, 2002.
R.M. Aiex, S. Binato, and M.G.C. Resende. Parallel GRASP with path-relinking
for job shop scheduling. Parallel Computing, 29:393–430, 2003.
R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. Probability distribution of solution
time in GRASP: An experimental investigation. Journal of Heuristics, 8:343–373,
2002.
R. Burkhard, S. Karisch, and F. Rendl. QAPLIB – A quadratic assignment
problem library. Eur. J. Oper. Res., 55:115–119, 1991. Online version on
http://www.opt.math.tu-graz.ac.at/qaplib.

T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6:109–133, 1995.
T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally
difficult set covering problem. Operations Research Letters, 8:67–71, 1989.
P. Festa, P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro. Randomized heuristics
for the max-cut problem. Optimization Methods and Software, 7:1033–1058, 2002.
P. Festa and M. G. C. Resende. GRASP: An annotated bibliography. In C.C.
Ribeiro and P. Hansen, editors, Essays and Surveys on Metaheuristics, pages 325–
368. Kluwer Academic Publishers, 2002.
F. Glover. Tabu search and adaptive memory programing – Advances, applications
and challenges. In R.S. Barr, R.V. Helgason, and J.L. Kennington, editors, Inter-

faces in Computer Science and Operations Research, pages 1–75. Kluwer, 1996.
T. C. Koopmans and M. J. Berkmann. Assignment problems and the location of
economic activities. Econometrica, 25:53–76, 1957.
M. Laguna and R. Martí. GRASP and path relinking for 2-layer straight line
crossing minimization. INFORMS Journal on Computing, 11:44–52, 1999.
Y. Li, P.M. Pardalos, and M.G.C. Resende. A greedy randomized adaptive search
procedure for the quadratic assignment problem. In P.M. Pardalos and H. Wolkow-
icz, editors, Quadratic assignment and related problems, volume 16 of DIMACS Se-

ries on Discrete Mathematics and Theoretical Computer Science, pages 237–261.
American Mathematical Society, 1994.

and P. Hansen. Variable neighborhood search. Computers and

Operations Research, 24:1097–1100, 1997.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

368 C.A.S. Oliveira, P.M. Pardalos, and M.G.C. Resende

P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. Algorithm 769: FORTRAN
subroutines for approximate solution of sparse quadratic assignment problems us-
ing GRASP. ACM Trans. Math. Software, 23(2):196–208, 1997.
M.G.C. Resende, P.M. Pardalos, and Y. Li. Algorithm 754: FORTRAN subroutines
for approximate solution of dense quadratic assignment problems using GRASP.
ACM Transactions on Mathematical Software, 22:104–118, March 1996.
M.G.C. Resende and C.C. Ribeiro. GRASP and path-relinking: Recent advances
and applications. Technical Report TD-5TU726, AT&T Labs Research, 2003.
M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures.
In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, pages 219–
249. Kluwer Academic Publishers, 2003.
S. Sahni and T. Gonzalez. P-complete approximation problems. Journal of the

Association of Computing Machinery, 23:555–565, 1976.
S. Voß. Heuristics for nonlinear assignment problems. In P.M. Pardalos and L. Pit-
soulis, editors, Nonlinear Assignment Problems, pages 175–215. Kluwer, Boston,
2000.

14.

15.

16.

17.

18.

19.

Finding Minimum Transmission Radii for Preserving

Connectivity and Constructing Minimal Spanning Trees

in Ad Hoc and Sensor Networks

Francisco Javier Ovalle-Martínez1, 1, Fabián García-Nocetti2, and
Julio Solano-González2

1 SITE, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
{fovalle,ivan}@site.uottawa.ca

2 DISCA, IIMAS, UNAM, Ciudad Universitaria, México D.F. 04510, Mexico.
{fabian,julio)@uxdea4.iimas.unam.mx

Abstract. The minimum transmission radius R that preserves ad hoc network
connectivity is equal to the longest edge in the minimum spanning tree. This
article proposes to use the longest LMST (local MST, recently proposed mes-
sage free approximation of MST) edge to approximate R using a wave propaga-
tion quazi-localized algorithm. Despite small number of additional edges in
LMST with respect to MST, they can extend R by about 33% its range on net-
works with up to 500 nodes. We then prove that MST is a subset of LMST and
describe a quazi-localized scheme for constructing MST from LMST. The algo-
rithm eliminates LMST edges which are not in MST by a loop breakage proce-
dure, which iteratively follows dangling edges from leaves to LMST loops, and
breaks loops by eliminating their longest edges, until the procedure finishes at a
single leader node, which then broadcasts R to other nodes.

1 Introduction

Due to its potential applications in various situations such as battlefield, emergency
relief, environment monitoring, etc., wireless ad hoc networks have recently emerged
as a prime research topic. Wireless networks consist of a set of wireless nodes which
are spread over a geographical area. These nodes are able to perform processing and
are capable communicating with each other by means of a wireless ad hoc network.
Wireless nodes cooperate to perform data communication tasks, and the network may
function in both urban and remote environments.

Energy conservation is a critical issue in wireless networks for the node and the
network life, as the nodes are powered by batteries only. Each wireless node typically
has transmission and reception processing capabilities. To transmit a signal from a
node A to other node B, the consumed power (in the most common power-attenuation
model) is proportional to where is the Euclidean distance between A

and B; is a real constant between 2 and 5 which depends on the transmission envi-
ronment, and constant c represents the minimal power to receive a signal, and power
to store and then process that signal. For simplicity, this overhead cost can be inte

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 369–382, 2004.
© Springer-Verlag Berlin Heidelberg 2004

370 F.J. Ovalle-Martínez et al.

grated into one cost, which is almost the same for all nodes. The expression represents
merely the minimal power, assuming that the transmission radius is adjusted to the
distance between nodes. While adjusting transmission radius is technologically feasi-
ble, medium access layer (e.g. the standard IEEE 802.11) works properly only when
all nodes use the same transmission radius. Otherwise hidden terminal problem is
more difficult to control and magnifies its already negative impact on the network
performance.

Ad hoc networks are normally modeled by unit graphs, where two nodes are con-
nected if and only if their distance is at most R, where R is the transmission radius,
equal for all nodes. Finding the minimum R that preserves connectivity is an impor-
tant problem for network functionality. Larger than necessary values of R cause
communication interference and consumption of increased energy, while smaller val-
ues of R may disable data communication tasks such as routing and broadcasting.

The two objectives that have been mainly considered in literature are: minimizing
the maximum power at each node (as in this paper) and minimizing the total power
assigned if transmission ranges can be adjusted (for example, [11] shows that MST
used as nonuniform power assignment yields a factor of 2 approximation. Instead of
transmitting using the maximum possible power, nodes in an ad hoc network may
collaboratively determine the optimal common transmission power. It corresponds to
the minimal necessary transmission radius to preserve network connectivity. It was
recognized [7,8,10] that the minimum value of R that preserves the network connec-
tivity is equal to the longest edge in the minimum spanning tree (MST). However, all
existing solutions for finding R rely on algorithms that require global network knowl-
edge or inefficient straightforward distributed adaptations of centralized algorithms.
Therefore almost all existing solutions for energy-efficient broadcast communications
are globalized, meaning that each node needs global network information.

Global network information requires huge communication overhead for its mainte-
nance when nodes are mobile or have frequent changes between active and sleeping
periods. Localized solutions are therefore preferred. In a localized solution to any
problem, the node makes (forwarding or structure) decisions solely based on the posi-
tion of itself and its neighboring nodes. In addition, it may require constant amount of
additional information, such as position of destination in case of routing. In case of
LMST, both construction and maintenance are fully localized. In some cases (such as
MST), however, local changes to a structure may trigger changes in a different part of
the network, and therefore could have global impact to a structure. We refer to such
protocols are being quazi-localized, if any node in the update process still makes deci-
sion based on local information, but a ‘wave’ of propagation messages may occur.

Nodes in ad hoc network are assumed to either know their geographic position
(using, for example, GPS), or are able to determine mutual distances based on signal
strength or time delays. This assumption is in accordance with literature.

Li, Hou and Sha [4] recently proposed a localized algorithm to approximate MST.
The algorithms constructs local minimal spanning tree, where each node finds MST
of the subgraph of its neighbors, and an edge is kept in LMST (localized minimal
spanning tree) if and only if both endpoints have it in their respective local trees. In
this article, we propose to use the longest edge in LMST edge to approximate R using
a wave propagation quazi-localized algorithm. The wave propagation algorithm is
adapted from [9], where it was used for leader election. We simply propagate the
longest LMST edge instead of propagating the winning leader information.

Finding Minimum Transmission Radii for Preserving Connectivity 371

In order to determine whether the longest LMST edge is a reasonably good ap-
proximation of desired R, we study some characteristics of LMST in two dimensions
(2D) and three dimensions (3D). We observed that, although the number of additional
edges in LMST respect to MST is very small (under 5% of additional edges), they tend
to be relatively large edges, and can extend R by about 33% of its range on networks
with up to 500 nodes.

In some applications, such as mesh networks for wireless Internet access, or sensor
networks for monitoring environment, the nodes are mostly static and network does
not change too frequently (which is the case if mobility is involved). The increased
transmisison range by 33% may easily double the energy expenditure, depending on
constants and c in the energy consumption model, and increases interference with
other traffic. On the other hand, the increased, the larger value for R provides redun-
dancy in routing, which is useful especially in a dynamic setting. These observations
about the structure of LMST and increased power consumption motivated us to design
an algorithm for constructing MST topology from LMST topology, without the aid of
any central entity. The proposed algorithm needs less than 7 messages per node on
average (on networks up to 500 nodes). It eliminates LMST edges which are not in
MST by a loop breakage procedure, which iteratively follows dangling edges from
leaves to LMST loops, and breaks loops by eliminating their longest edges, until the
procedure finishes at a single node (as a byproduct, this single node can also be con-
sidered as an elected leader of the network). This so elected leader also learns longest
MST edge in the process, and may broadcast it to other nodes.

We made two sets of experiments (using Matlab environment) for the MST con-
struction from the LMST. In one scenario, nodes are static and begin constructing
MST from LMST more or less simultaneously. In the second set of experiments, we
study the maintenance of already constructed MST when a new node is added to the
network.

This paper is organized as follows: Section 2 presents the related work for the
stated problem. In section 3 we present some characteristics of MST and LMST ob-
tained by experiments, for 2D and 3D. The main characteristics of interest to this
study are the lengths of the longest MST and LMST edges. In section 4, we describe
the adaptation of wave propagation protocol [3] for disseminating R throughout the
network. The algorithm for constructing MST from the LMST is explained in detail in
section 5. Section 6 gives performance evaluation of the algorithm for constructing
MST from LMST. Section 7 describes an algorithm for updating MST when a single
node is added to the network, and gives results of its performance evaluation. Section
8 concludes this paper and discusses relevant future work.

2 Related Work

In [2], Dai and Wu proposed three different algorithms to compute the minimal uni-
form transmission power of the nodes, using Area-based binary search, Prim’s Mini-
mum Spanning Tree, and it’s extension with Fibonacci heap implementation. How-
ever, all solutions are globalized, where each node is assumed to have full network
information (or centralized, assuming a specific station has this information and in-
forms network nodes about MST). We are interested in quazi-localized algorithm,

372 F.J. Ovalle-Martínez et al.

where each node uses only local knowledge of its 1-hop neighbors, and the communi-
cation propagates throughout the network until MST is constructed.

In [6], Narayanaswamy et al. presented a distributed protocol that attempts to de-
termine the minimum common transmitting range needed to ensure network connec-
tivity. Their algorithm runs multiple routing daemons (RDs), one at each power level
available. Each RD maintains a separate routing table where the number of entries in
the routing table gives the number of reachable nodes at that power level. The node
power level is set to be the smallest power level at which the number of reachable
nodes is the same as that of the max power level. The kernel routing table is set to be
the routing table corresponding to this power level. The protocol apparently requires
more messages per each node, and at higher power levels, than the protocol presented
here.

Penrose [7] [8] investigated the longest edge of the minimal spanning tree. The
critical transmission range for preserving network connectivity is the length of the
longest edge of the Euclidean MST [7] [8] [10]. The only algorithm these articles offer
is to find MST and then its longest edge, without even discussing the distributed im-
plementation of the algorithm.

Santi and Blough [10] show that, in two and three dimensions, the transmitting
range can be reduced significantly if weaker requirements on connectivity are accept-
able. Halving the critical transmission range, the longest connected component con-
tains 90% of nodes, approximately. This means that a considerable amount of energy
is spent to connect relatively few nodes.

A localized MST based topology control algorithm for ad hoc networks was pro-
posed in [4] by Li, Hou and Sha. Each node u first collects the positions of its one-hop
neighbours N1(u). Node u then computes the minimum spanning tree MST(N1(u)) of
N1(u). Node u keeps a directed edge uv in LMST if and only if uv is also an edge in
MST(N1(v)). If each node already has 2-hop neighbouring information, the construc-
tion does not involve any message exchange between neighboring nodes. Otherwise
each node contacts neighbors along its LMST link candidates, to verify the status at
other node. The variant with the union of edge candidates rather than their common
intersection is also considered in [4], possibly leading to a directed graph (no message
exchange is then needed even with 1-hop neighbour information). In [5], Li et al.
showed that LMST is a planar graph (no two edges intersect). Then they extended the
LMST definition to k-hop neighbours, that is, the same construction but with each
node having more local knowledge. They also prove that MST is subset of 2-hop
based LMST, but not that MST a subset of 1-hop based LMST considered in this ar-
ticle. We observed, however, on their diagrams that LMST with 2-hop and higher lo-
cal knowledge was mostly identical to the one constructed with merely 1-hop knowl-
edge, and decided to use only that limited knowledge, therefore conserving the
communication overhead needed to maintain k-hop knowledge.

In [3], Dulman et al. proposed a wave leader election protocol. Each node is as-
signed an unique ID from an ordered set. Their algorithm selects as leader the node
with minimum ID. In the wave propagation algorithm [3], each node maintains a rec-
ord of the minimum ID it has seen so far (initially its own). Each node receiving a
smaller ID than the one it kept as currently smallest updates it before the next round.
In each round, each node that received smaller ID in the previous round will propa-
gate this minimum on all of its outgoing edges. After a number of rounds, a node
elects itself as leader if the minimum value seen in this node is the node’s own ID;
otherwise it is a non-leader.

Finding Minimum Transmission Radii for Preserving Connectivity 373

We will apply FACE routing algorithm [1] in our protocol for converting LMST
into an MST. FACE routing guarantees delivery and needs a planar graph to be ap-
plied. Starting from source node, faces that intersect imaginary line from source to
destination are traversed. The traversal of each face is made from the first intersecting
edge (with mentioned imaginary line) to the second one. Reader is referred to [1] for
more details.

3 Comparing Longest Edges of MST and LMST

Theorem 1. MST is a subset of LMST.

Proof. The well known Kruskal’s algorithm for constructing MST sorts all edges in
the increasing order, and considers these edges one by one for inclusion in MST. MST
initially has all vertices but no edges. An edge is included into already constructed
MST if and only if its addition does not create a cycle in the already constructed MST.
Let LMST(A) be the minimal spanning trees constructed from n(A), which is set con-
taining A and its 1-hop neighbors. We will show that if an edge from MST has end-
points in n(A) then it belongs to LMST(A). Suppose that this is not correct, and let e be
the shortest such edge. LMST(A) may also be constructed by following the same
Kruskal’s algorithm. Thus edges from A to its neighbors and between neighbors of A
are sorted in the increasing order. They are then considered for inclusion in LMST(A).
Thus, when e is considered, since it is not included in LMST(A), it creates a cycle in
LMST(A). All other edges in the cycle are shorter than e. Since e is in MST, at least
one of edges from the cycle cannot be in MST, but is in LMST(A) since it was already
added to it. However, this contradicts the choice of e being the shortest edge of MST
not being included in LMST(A). Therefore each edge AB from MST belongs to both
LMST(A) and LMST(B), and therefore to LMST.

We are interested in the viability of using the LMST topology for approximating
the minimal transmission radius R. Matlab was used to derive some characteristics of
the LMST topology in 2D and in 3D. We generate unit graph of n nodes (n = 10, 20,
50, 100, 200 and 500), each randomly distributed over an area of 1 x 1 for the 2D case
and over a volume of 1 x 1 x 1 for the 3D case. The following characteristics (some of
them are presented for possible other applications) of LMST and MST were compared:

Average degree (average number of neighbors for each node)
Average maximal number of neighbors
Percentage of nodes which have degrees 1, 2, 3, 4, 5, degree > 5
Highest degree of a node ever found in any of tests
Average Maximal radius
Standard deviation of average maximal radius

For each n we ran 200 tests in order to have more confident results. The following
tables show the obtained results. It is well known that the average degree (average
number of neighbors per node) of an MST with n nodes is always 2-2/n, since it has n-
1 edges and n nodes. This value is entered in tables bellow. Table 1 shows the results
for 500 nodes (similar data are obtained for other values of n). Note that LMST has
<5% more edges than MST.

374 F.J. Ovalle-Martínez et al.

Table 2 presents the ratios of the longest MST and LMST edges, for various num-
bers of nodes. The ratio is always >0.75. This means that, on average, longest LMST
edge may have about 1/3 longer length than the longest MST edge. It may lead to
about twice as much additional energy for using the longest transmission radius from
LMST instead of MST. Such discovery motivated us to design a procedure for con-
verting LMST into an MST.

As we can see from table 1, the maximum degree of any node obtained for LMST
in all the tests was 5. This means that LMST maintains a relatively low degree inde-
pendently on the size of the network and its density (our study is based on maximal
density, or complete graphs). Since the area where nodes were placed remained fixed,
and more nodes were placed, the maximal transmission radius was decreasing when
number of nodes was increasing.

Tables 3-6 show the percentages of nodes which have degree 1, degree 2, degree 3,
degree 4, degree 5, and degree > 5, for the MST and the LMST. It can be observed that
about half nodes have degree two, and <2% of nodes in 2D have degree >3 and <5%
of nodes in 3D have degree >3.

Finding Minimum Transmission Radii for Preserving Connectivity 375

4 Wave Propagation Quasi-localized Algorithm for Finding
Transmission Radius from the Longest LMST Edge

We adapt the wave propagation leader election algorithm [3] for the use in finding the
longest LMST edge. Our basic idea is to substitute the node ID with the longest edge
adjacent to each node in its LMST topology. Each node maintains a record of the
longest edge it has seen so far (initially its own longest edge in its LMST). In each
round, each node receiving larger edge in the previous round will broadcasts its new
longest edge. At end, all nodes will receive the same longest edge, which will be used
as transmission radius. One of drawbacks, or perhaps advantages, of given protocol is
that a node does not know when the wave propagation process is finished. It is draw-
back in the sense that it may not use the proper transmission radius, same for all
nodes, but a smaller one. However, this smaller transmission radius will still preserve
network connectivity, since it is not equal to all nodes. It is advantage in the sense that
it is a very simple protocol, and can be an ongoing process with dynamic ad hoc net-
works. It is straightforward to apply it when an LMST edge has increased over current
transmission radius R, in which case this new value can be propagated. However,
when an edge that was equal to R has decreased, the process of reducing R in the net-
work is not straightforward, since the length of the second longest edge was not pre-

376 F.J. Ovalle-Martínez et al.

served with wave propagation algorithm. To address this issue, k longest LMST edges
may be maintained, and the message to use the next smaller value is broadcast from
the neighbourhood of the event. The alternative is to initiate new wave propagation
from a node detecting the problem with edge that decided currently recognized R.
We did not implement this protocol, since it does not significantly differ from one in
[3]. The reader can see that article about its performance. Most importantly, the num-
ber of messages per node was <7 in all measurements, done in somewhat different
settings, with denser graphs than LMSTs. Therefore we can expect much lower mes-
sage count per node in our application.

Fig. 1. MST and LMST comparison for 200 nodes

Figure 1 illustrate MST and LMST graphs for n= 200 nodes, in 2D and 3D. These fig-
ures helped us in gaining an insight on how to construct efficiently MST from LMST.

5 Constructing MST from LMST in Ad Hoc Networks

We can observe (see Fig. 1) that the only differences between the LMST and the MST
are the loops that appear in the LMST but not in MST, created by edges present in
LMST but not in MST. Our main idea is to somehow ‘break’ the LMST loops in order
to obtain the MST.

Finding Minimum Transmission Radii for Preserving Connectivity 377

We are now ready to describe our proposed scheme for converting LMST into
MST. It consists of several iterations. Each iteration consists of two steps: traversing
or eliminating dangling (tree) edges, and breaking some loops. These two steps repeat
until the process ends in a node. That node is, as a byproduct, network leader, and
learns longest MST edge in the process (it also may learn the longest LMST edge).
The value of the longest MST edge can then be broadcast to other network nodes.
Details of this process are as follows.

Tree step. Each leaf of LMST initiates a broadcast up the tree. Each node receiving
such upward messages from all but one neighbor declares itself as dangling node and
continues with upward messages. All edges traversed in this way belong to MST.
Each such traversed subtree at end decides what is its candidate for R (maximal ra-
dius of MST). This tree advance will stop at an LMST loop, at a node that will be
called the breaking node, because of its role in the sequel. Figure 2 illustrates this tree
step. Traversed dangling nodes and edges are shown by arrows. More precisely,
breaking node is a node that receives at least one message from dangling node/edge
and, after some predefined timeout, remains with two or more neighbors left. Break-
ing nodes are exactly nodes that initiate the loop step, the second of the two steps that
are repeating. Note that, an alternate choice is that all nodes on any loop become
breaking nodes. We did not select this option since, on average, it would generate
more messages, and our goal is to reduce message count. However, in some special
cases, LMST may not have any leaf (e.g. LMST being a ring). In this case, node(s) that
decided to create MST may declare themselves as breaking nodes after certain time-
out, if no related message is received in the meanwhile. In some special cases, such
as sensor network trained from the air or a monitoring station, signals to create MST
may arrive externally as part of training.

Loop step. Each of the breaking nodes from the previous step initiates the loop tra-
versal to find and break the longest edge in the loop. Consider breaking node A on one
such loop. It has, in general, two neighbors on the loop, and edges AB and AC. Note
that in some special cases breaking node may also be branching node, that is, it could
have more than two neighbors; in that case consider clockwise and counterclockwise
neighbors with respect to incoming dangling edge. Also, in general, breaking node A
belongs to two loops (that is, two faces of considered planar graph). Let
Node A will select direction AC to traverse the cycle, that is, the direction of shorter
edge. The message that started at A will advance using FACE routing algorithm [1].
Dangling edges from previous tree steps are ignored in the loop steps. If a branching
node is encountered, the traversal splits into two traversals, one of each face of edges
traversed so far. The advance will stop at a node D whose following neighbor E is
such that This means that a longer edge in the cycle is detected, and AB
is not eliminated. Node D is then declared as the new breaking node, and starts the
same longest edge verification algorithm. If the message returns to A then the longest
edge DE from the loop is eliminated. Endpoints D and E of each such broken LMST
edges follow then step 1, upward tree climbing, until they reach another LMST cycle.
This process continues until all upward tree messages meet at a single node, which
means that MST is constructed.

The described algorithm has several byproducts, in addition to constructing MST.
The last node in the construction can be selected as the leader in the network, espe-
cially because it is expected to be somehow centrally positioned. Next, this leader

378 F.J. Ovalle-Martínez et al.

node may, in the process, learn the longest LMST and longest MST edges, and may
initiate simple broadcasting algorithm about these obtained values, which will be used
as transmission radius for the whole network. This is especially needed for MST, as
part of algorithm to find minimum transmission radius, and inform nodes about it. In
case of LMST, we already observed that wave propagation algorithm can be used in-
stead immediately.

Fig. 2. Tree step in MST construction from LMST (BUT=Broadcast Up the Tree, BN=Breaking
Node)

Theorem 2. The tree obtained from LMST by applying the described loop breakage
algorithm correctly is MST.

Proof. Planarity of LMST [5] shows that it consists of well defined faces and therefore
loop breakage process does create tree at end, by ‘opening’ up all closed faces. Theo-
rem 1 proves that MST is a subset of LMST. The algorithm described above clearly
breaks every loop, by eliminating its longest edge. Suppose that the tree obtained at
the end of the process is not MST. Since both trees have equal number of edges, let e
be the shortest MST edge that was not included in the tree. Edge e was eliminated at
some point, since it was the longest edge in a loop of LMST. Subsequently, more
edges from that loop may be eliminated, thus increasing the length of loop that would
have been created if e was returned to the graph. However, in all these subsequent
loops, including one at the very end of process, e remains the longest edge, since sub-
sequent edges, from loops that would contain e, are originally shorter than e, but al-
ways longest among new edges that appears in the loop when they are eliminated.
Since e is in MST, at least one other edge f from that final loop is not in MST. This

Finding Minimum Transmission Radii for Preserving Connectivity 379

edge f is shorter than e as explained. However, if e is replaced by f, the graph remains
connected and remains a tree, with overall smaller weight than MST. This is a contra-
diction. Therefore the tree that remains at end is indeed an MST.

6 Performance Evaluation of the Algorithm for Constructing
Minimal Spanning Trees

We consider a network of n nodes, with randomly distributed nodes over an area of 1
x 1. We constructed the LMST for several values of n (n = 10, 20, 60, 100, 200, 300
and 500), with 200 generated networks for each n. The described algorithm was
simulated, and we measured the following characteristics:

Average number of messages in the network, for constructing MST from LMST

Maximal number of messages in any of generated networks
Minimal number of messages in any of generated networks
Average number of messages per node
Standard deviation of message counts per node
Average number of iterations (that is, how many times loop step was applied)

It appears that the average number of messages per node is approximately
Therefore it increases with the network size, but does it very slowly. It is not surpris-
ing since MST is a global structure, where change in one part of the network has im-
pact on the decision made in other part of the network, and this happens at various
levels of hierarchy.

7 Updating MST after Adding One Node

Mobility of nodes, or changes in node activity status, will cause changes in MST to-
pology. We will now design a simple algorithm for updating MST when a new node is
added to the network. The added node first constructs its own LMST, that is, MST of
itself and its 1-hop neighbors. There are two cases to consider. Simpler case is when
such LMST contains only one edge. In this case, the edge is added to MST, and no
further updates are needed.

380 F.J. Ovalle-Martínez et al.

The case when the LMST at given node contains more than one edge is non-
trivial, and requires a procedure for loop breaking to find and eliminate longest
edges in newly created cycles. For example, in Fig. 3, LMST of new node has three
edges. The update procedure assumes that MST is organized as a tree, rooted at the
leader found in the construction process. This tree can be constructed during MST
construction algorithm, or leader can additionally construct or complete the tree
while informing about the length of longest edge in MST. All edges in MST are ori-
ented toward the leader. In this way, branching is completely avoided in the tra-
versal. The decision to use leader in the update process is made in order to avoid
traversing long open LMST face (in MST, this open face contains all nodes and
edges of MST; in fact each edge is found twice on that open face) unnecessarily and
with each non-trivial node addition.

Fig. 3. Added node, traversal, and eliminated edges when MST is updated

Thus, if LMST at added node contains k>1 neighbors, k traversals toward the
leader are initiated. Each of traversals records the longest edge along the path trav-
ersed. Each of the traversals stops at the leader node. However, some branching nodes
may receive two copies of such traversal messages. These nodes recognize comple-
tion of a loop, and can make decision about longest loop edge to be eliminated. In
example in Fig. 3, the traversal that starts to the left of new node will end at the leader
node, with each intermediate node being visited once only. The other two will ‘meet’
at indicated branching node B. Such node B may forward only one of traversals to-
ward the leader, and may stop the second incoming traversal. Starting with k travers-

Finding Minimum Transmission Radii for Preserving Connectivity 381

als, k-1 loops will be recognized, each at leader node or an interim branching node.
These nodes may learn the longest edge in the process, and may send backward mes-
sages toward it to ask for breaking the edge.

The described algorithm is implemented. After 100 tests we measured that the av-
erage number of messages in the network with 200 nodes for updating MST when one
node is added was 34.8. Therefore it appears that the MST construction with synchro-
nous start from LMST, requiring less than 7 messages per node, leads to significant
communication savings.

8 Conclusions and Future Work

LMST is a message free localized structure in ad hoc networks, which contains MST

as a subset and which has less that 5% additional edges not already contained in MST.
We proposed to use the longest LMST edge to approximate the minimal transmission
radius R, whose exact value is the longest edge in the MST. We compared some char-
acteristics of LMST and MST. The average degree of the MST is compared to
the obtained with the LMST in the 2D case. In the 3D case the degree for the
MST is and the degree for the LMST is Also we noted that most of the
nodes had degree two or three. The longest LMST edge can be spread throughout the
network by applying a wave propagation algorithm, previously proposed to be used as
an leader election algorithm.

Existing MST construction algorithms were based on global knowledge of the net-
work, or on some operations that, in distributed implementations, were not performed
between neighboring nodes. The main novelty of our proposed scheme is that all the
communication was restricted between neighboring nodes; therefore the message
count is realistic one. To design the new MST construction algorithm, we observed
that the difference between LMST and MST is in some loops present in LMST, and
that the number of these loops was not large. The construction was based on ‘break-
ing’ these loops in iterations, with MST edges being recognized between iterations.
The proposed algorithm appears to have logarithmic (in number of nodes in the net-
work) number of messages per node.

Constructing MST from LMST, following the procedure, is beneficial when the
network considered is not very dynamic. Such scenarios include mesh networks for
wireless Internet access, with antennas placed on the roofs of buildings. Sensor net-
works normally are static, but the usefulness of the construction depends on the fre-
quency of sleep period operations. We assume that sensors are divided into groups,
and that changing between active and passive states in sensors occurs inside groups,
while at the same time MST is constructed between groups, not between individual
sensors. This treatment of sensor networks justifies the application of our MST con-
struction, with certain limitations regarding accuracies involved coming from changes
in active participating sensors from each group. In particular, reduced transmission
range in sensor networks leads toward energy savings and prolonged network life.
Reduced energy expenditure may also allow less frequent topological changes.

We described also a very simple algorithm for updating MST when a new node is
added to the network. If an existing node is deleted from the network, its neighbors

382 F.J. Ovalle-Martínez et al.

may similarly construct their new LMSTs, and similar procedure (with somewhat
more details) can be applied.

Our proposed construction of MST from LMST works only for 2D case. It cannot
be applied in 3D since the FACE algorithm [1] does not work in 3D. It is therefore an
open problem to design an algorithm for constructing MST from LMST in 3D. Simi-
larly, generalizing FACE routing with guaranteed delivery to 3D [1] remains an out-
standing open problem.

Acknowledgments. This research is supported by CONACYT project 37017-A, CO-
NACYT Scholarship for the first author, and NSERC grant of the second author.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Prosenjit Bose, Pat Morin, Ivan Stojmenovic and Jorge Urrutia, Routing with guaranteed
delivery in ad hoc wireless networks, ACM Wireless Networks, 7, 6, November 2001,
609-616.
Qing Dai and Jie Wu, Computation of Minimal Uniform Transmission Power in Ad Hoc
Wireless Networks, 23 International Conference on Distributed Computing Systems
Worksshops (ICDCSW’03), May 19–22, 2003, Providence, Rhode Island.
Stefan Dulman, Paul Havinga, and Johann Jurink, Wave Leader Election Protocol for
Wireless Sensor Networks, MMSA Workshop Delft The Netherlands, December 2002.
Ning Li, Jennifer C. Hou, and Lui Sha, Design and Analysis of an MST-Based Topology
Control Algorithm, Proc. INFOCOM 2003, San Francisco, USA, 2003.
Xiang-Yang Li, Yu Wang, Peng-Jun Wan, and Ophir Frieder, Localized low weight graph
and its applications in wireless ad hoc networks, INFOCOM, 2004.
S. Narayanaswamy, S. Kawadia, V. Sreenivas, P. Kumar, Power control in ad hoc net-
works: Theory, architecture, algorithm and implementation of compow protocol, Proc.
European Wireless, 2002,156-162.
M. Penrose, The longest edge of the random minimal spanning tree, The Annals of Ap-
plied Probability, 7,2,340-361,1997.
M. Penrose, A strong law for the longest edge of the minimal spanning tree, The Annals of
Probability, 27,1,246-260,1999.
M. Sanchez, P. Manzoni, Z. Haas, Determination of critical transmission range in ad hoc
networks, Proc. IEEE Multiaccess, Mobility and Teletraffic for Wireless Communication
Conf., Venice, Italy, Oct. 1999.
P. Sand and D. Blough, The critical transmitting range for connectivity in sparse wireless
ad hoc networks, IEEE Transactions on Mobile Computing, 2,1,1-15, 2003.
E. Althaus, G. Calinescu, I. Mandoiu, S. Prasad, N. Tchervenski, and A. Zelikovsky,
Power Efficient Range Assignment in Ad-hoc Wireless Networks, submitted for publica-
tion.

A Dynamic Algorithm for Topologically Sorting

Directed Acyclic Graphs

David J. Pearce and Paul H.J. Kelly

Department of Computing, Imperial College, London SW7 2BZ, UK.
{djp1,phjk}@doc.ic.ac.uk

Abstract. We consider how to maintain the topological order of a di-
rected acyclic graph (DAG) in the presence of edge insertions and dele-
tions. We present a new algorithm and, although this has marginally
inferior time complexity compared with the best previously known re-
sult, we find that its simplicity leads to better performance in practice. In
addition, we provide an empirical comparison against three alternatives
over a large number of random DAG’s. The results show our algorithm
is the best for sparse graphs and, surprisingly, that an alternative with
poor theoretical complexity performs marginally better on dense graphs.

1 Introduction

A topological ordering, ord, of a directed acyclic graph G = (V, E) maps each
vertex to a priority value such that, for all edges it is the case that

There exist well known linear time algorithms for comput-
ing the topological order of a DAG (see e.g. [4]). However, these solutions are
considered offline as they compute the solution from scratch.

In this paper we examine online algorithms, which only perform work neces-
sary to update the solution after a graph change. We say that an online algorithm
is fully dynamic if it supports both edge insertions and deletions. The main con-
tributions of this paper are as follows:

1.

2.

A new fully dynamic algorithm for maintaining the topological order of a
directed acyclic graph.

The first experimental study of algorithms for this problem. We compare
against two online algorithms [15,1] and a simple offline solution.

We show that, compared with [1], our algorithm has marginally inferior time
complexity, but its simplicity leads to better overall performance in practice.
This is mainly because our algorithm does not need the Dietz and Sleator
ordered list structure [7]. We also find that, although [15] has the worst the-
oretical complexity overall, it outperforms the others when the graphs are dense.

Organisation: Section 2 covers related work; Section 3 begins with the
presentation of our new algorithm, followed by a detailed discussion of the two

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 383–398, 2004.
© Springer-Verlag Berlin Heidelberg 2004

384 D.J. Pearce and P.H.J. Kelly

previous solutions [1,15]. Section 4 details our experimental work. This includes
a comparison of the three algorithms and the standard offline topological sort;
finally, we summarise our findings and discuss future work in Section 5.

2 Related Work

At this point, it is necessary to clarify some notation used throughout the re-
mainder. Note, in the following we assume G = (V, E) is a digraph:

Definition 1. The path relation, holds if
where is the transitive closure of G. If we say that reaches

and that is reachable from

Definition 2. The set of edges involving vertices from a set,

Definition 3. The extended size of a set of vertices, is denoted
This definition originates from [1].

The offline topologicreferences.bibal sorting problem has been widely studied
and optimal algorithms with (i.e. time are known (see e.g.
[4]). However, the problem of maintaining a topological ordering online appears
to have received little attention. Indeed, there are only two existing algorithms
which, henceforth, we refer to as AHRSZ [1] and MNR [15]. We have implemented
both and will detail their working in Section 3. For now, we wish merely to
examine their theoretical complexity. We begin with results previously obtained:

AHRSZ - Achieves time complexity per edge insertion, where
is the minimal number of nodes that must be reprioritised [1,19].

MNR - Here, an amortised time complexity of over insertions
has been shown [15].

There is some difficulty in relating these results as they are expressed differently.
However, they both suggest that each algorithm has something of a difference
between best and worst cases. This, in turn, indicates that a standard worse-case
comparison would be of limited value. Determining average-case performance
might be better, but is a difficult undertaking.

In an effort to find a simple way of comparing online algorithms the notion
of bounded complexity analysis has been proposed [20,1,3,19,18]. Here, cost is
measured in terms of a parameter which captures in some way the minimal
amount of work needed to update the solution after some incremental change. For
example, an algorithm for the online topological order problem will update ord,

after some edge insertion, to produce a valid ordering Here, is viewed as
the smallest set of nodes whose priority must change between ord and Under
this system, an algorithm is described as bounded if its worse-case complexity
can be expressed purely in terms of

is

A Dynamic Algorithm for Topologically Sorting Directed Acyclic Graphs 385

Ramalingam and Reps have also shown that any solution to the online topo-
logical ordering problem cannot have a constant competitive ratio [19]. This sug-
gests that competitive analysis may be unsatisfactory in comparing algorithms
for this problem.

In general, online algorithms for directed graphs have received scant atten-
tion, of which the majority has focused on shortest paths and transitive closure
(see e.g. [14,6,8,5,9,2]). For undirected graphs, there has been substantially more
work and a survey of this area can be found in [11].

3 Online Topological Order

We now examine the three algorithms for the online topological order prob-
lem: PK, MNR and AHRSZ. The first being our contribution. Before doing this
however, we must first present and discuss our complexity parameter

Definition 4. Let G = (V, E) be a directed acyclic graph and ord a valid topo-

logical order. For an edge insertion the affected region is denoted
and defined as

Definition 5. Let G = (V, E) be a directed acyclic graph and ord a valid topo-
logical order. For an edge insertion the complexity parameter is defined

as

Notice that will be empty when and are already prioritised correctly
(i.e. when We say that invalidating edge insertions are those
which cause To understand how compares with and the idea of
minimal work, we must consider the minimal cover (from [1]):

Definition 6. For a directed acyclic graph G = (V, E) and an invalidated topo-
logical order ord, the set K of vertices is a cover if

This states that, for any connected and which are incorrectly prioritised,
a cover K must include or or both. We say that K is minimal, written

if it is not larger than any valid cover. Furthermore, we now show that

Lemma 1. Let G = (V, E) be a directed acyclic graph and ord a valid topological
order. For an edge insertion it holds that

Proof. Suppose this were nreferences.bibot the case. Then a node
where must be possible. By Definition 6, is incorrectly prioritised
with respect to some node Let us assume (for now) that and, hence,

Since ord is valid except any path from to
must cross Therefore, and and we have as

A contradiction follows as, by Definition 5,
The case when is similar.

386 D.J. Pearce and P.H.J. Kelly

In fact, only when they are both empty. Now, the complexity of
AHRSZ is defined in terms only and, thus, we know that is not strictly
a measure of minimal work for this problem. Nevertheless, we choose as it
facilitates a meaningful comparison between the algorithms being studied.

3.1 The PK Algorithm

We now present our algorithm for maintaining the topological order of a graph
online. As we will see in the coming Sections, it is similar in design to MNR,
but achieves a much tighter complexity bound on execution time. For a DAG G,

the algorithm implements the topological ordering, ord, using an array of size
called the node-to-index map or for short. This maps each vertex to a

unique integer in such that, for any edge in G,

Thus, when an invalidating edge insertion is made, the algorithm must
update to preserve the topological order properreferences.bibty. The key
insight is that we can do this by simply reorganising nodes in That is, in
the new ordering, nodes in are repositioned to ensure a valid ordering,
using only positions previously held by members of All other nodes remain
unaffected. Consider the following caused by invalidating edge

Here, nodes are laid out in topological order (i.e. increasing in value
from left to right) with members of shown. As is a total and contiguous
ordering, the gaps must contain nodes, omitted to simplify the discussion. The
affected region contains all nodes (including those not shown) between and
Now, let us partition the nodes of into two sets:

Definition 7. Assume G = (V,E) is a DAG and ord a valid topological order.

Let be an invalidating edge insertion, which does not introduce a cycle.

The sets and are defined as and

Note, there can be no edge from a member of to any in otherwise
would a introduce a cycle. Thus, for the above graph, we have

and Now, we can obtain a correct ordering by repositioning nodes
to ensure all of are left of giving:

A Dynamic Algorithm for Topologically Sorting Directed Acyclic Graphs 387

Fig. 1. The PK algorithm. The “sort” function sorts an array such that comes
before iff “merge” combines two arrays into one whilst maintaining
sortedness. “dfs-b” is similar to “dfs-f” except it traverses in the reverse direction, loads
into and compares against lb. Note, L is a temporary.

In doing this, the original order of nodes in must be preserved and likewise
for The reason is that a subtle invariant is being maintained:

This states that members of cannot be given lower priorities than they
already have, whilst those in cannot get higher ones. This is because, for any
node in we have identified all in the affected region which must be higher
(i.e. right) than it. However, we have not determined all those which must come
lower and, hence, cannot safely move them in this direction. A similar argument
holds for Thus, we begin to see how the algorithm works: it first identifies

and Then, it pools the indices occupied by their nodes and, starting
with the lowest, allocates increasing indices first to members of and then

So, in the above example, the algorithm proceeds by allocating the lowest
available index, like so:

after this, it will allocate the next lowest index, then and so on. The
algorithm is presented in Figure 1 and the following summarises the two stages:

Discovery: The set is identified using a forward depth-first search
from and a backward depth-first search from Nodes outside the affected

388 D.J. Pearce and P.H.J. Kelly

region are not explored. Those visited by the forward and backward search are
placed into and respectively. The total time required for this stage is

Reassignment: The two sets are now sorted separately into increasing
topological order (i.e. according to which we assume takes
time. We then load into array L followed by In addition, the pool of
available indices, R, is constructed by merging indices used by elements of
and together. Finally, we allocate by giving index to node This
whole procedure takes time.

Therefore, algorithm PK has time complexity
As we will see, this is a good improvement over MNR, but remains marginally
inferior to that for AHRSZ and we return to consider this in Section 3.3. Finally,
we provide the correctness proof:

Lemma 2. Assume D = (V,E) is a DAG and an array, mapping vertices
to unique values in which is a valid topological order. If an edge

insertion does not introduce a cycle, then algorithm PK obtains a correct
topological ordering.

Proof. Let be the new ordering found by the algorithm. To show this is a
correct topological order we must show, for any two vertices where
that holds. An important fact to remember is that the algorithm
only uses indices of those in for allocation. Therefore,

There are six cases to consider:
Case 1: Here neither or have been moved as they lie outside

affected region. Thus, and which (by defn of
implies

case 2: When
we know If then Otherwise,

A similar argument holds when
Case 3: Similar to case 1 as neither or have been

moved.
Case 4: Here, reachable from only along

which means Thus, and their relative order is preserved
in by sorting.

Case 5: Here, reaches along
and Therefore, and their relative order is preserved in by
sorting.

Case 6: Here, we have and
follows because all elements of are allocated lower indices than those of

3.2 The MNR Algorithm

The algorithm of Marchetti-Spaccamela et al. operates in a similar way to PK
by using a total ordering of vertices. This time two arrays, and of size

A Dynamic Algorithm for Topologically Sorting Directed Acyclic Graphs 389

are used with as before. The second array is the reverse mapping
of such that holds and its purpose is to bound the cost of
updating The difference between PK is that only the set is identified,
using a forward depth-first search. Thus, for the example we used previously
only would be visited:

To obtain a correct ordering the algorithm shifts nodes in up the order
so that they hold the highest positions within the affected region, like so:

Notice that these nodes always end up alongside and that, unlike PK, each
node in the affected region receives a new position. We can see that this has
achieved a similar effect to PK as every node in now has a lower index than
any in For completeness, the algorithm is presented in Figure 2 and the
two stages are summarised in the following, assuming an invalidating edge

Discovery: A depth-first search starting from and limited to
marks those visited. This requires time.

Reassignment: Marked nodes are shifted up into the positions immedi-
ately after in with being updated accordingly. This requires

time as each node between and in is visited.

Thus we obtain, for the first time, the following complexity result for al-
gorithm MNR: This highlights an important difference in
the expected behaviour between PK and MNR as the affected region
can contain many more nodes than Thus, we would expect MNR to perform
badly when this is so.

3.3 The AHRSZ Algorithm

The algorithm of Alpern et al. employs a special data structure, due to Dietz
and Sleator [7], to implement a priority space which permits new priorities to
be created between existing ones in O(1) worse-case time. This is a significant
departure from the other two algorithms. Like PK, the algorithm employs a

390 D.J. Pearce and P.H.J. Kelly

Fig. 2. The MNR algorithm.

forward and backward search: We now examine each stage in detail, assuming
an invalidating edge insertion

Discovery: The set of nodes, K, to be reprioritised is determined by si-
multaneously searching forward from and backward from During this,
nodes queued for visitation by the forward (backward) search are said to be
on the forward (backward) frontier. At each step the algorithm extends the
frontiers toward each other. The forward (backward) frontier is extending by
visiting a member with the lowest (largest) priority. Consider the following:

Initially, the frontiers consists of a single starting node, determined by the in-
validating edge and the algorithm proceeds by extending each:

Here, members of each frontier are marked with a dot. We see the forward
frontier has been extended by visiting and this results in being added and

A Dynamic Algorithm for Topologically Sorting Directed Acyclic Graphs 391

removed. In the next step, will be visited as it has the lowest priority of any
on the frontier. Likewise, the backward frontier will be extended next time by
visiting as it has the largest priority. Thus, we see that the two frontiers are
moving toward each other and the search stops either when one frontier is empty
or they “meet” — when each node on the forward frontier has a priority greater
than any on the backward frontier. An interesting point here is that the frontiers
may meet before and have been fully identified. Thus, the discovery stage
may identify fewer nodes than that of algorithm PK. In fact, it can be shown
that at most nodes are visited [1], giving an
bound on discovery. The log factor arises from the use of priority queues to
implement the frontiers, which we assume are heaps.

The algorithm also uses another strategy to further minimise work. Consider

where node has high outdegree (which can be imagined as much larger).
Thus, visiting node is expensive as its outedges must be iterated. Instead, we
could visit in potentially much less time. Therefore, AHRSZ maintains a
counter, for each node initialised by outdegree. Now, let and be
the nodes to be chosen next on the forward and backward frontiers respectively.
Then, the algorithm subtracts from and extending
the forward frontier if and the backward if

Reassignment: The reassignment process also operates in two stages.
The first is a depth-first search of K, those visited during discovery, and
computes a ceiling on the new priority for each node, where:

In a similar fashion, the second stage of reassignment computes the floor:

Note that, is the topological ordering being generated. Once the floor
has been computed the algorithm assigns a new priority, such that

An bound
on the time for reassignment is obtained. Again, the log factor arises from the
use of a priority queue. The bound is slightly better than for discovery as only
nodes in K are placed onto this queue.

Therefore, we arrive at a time bound on AHRSZ
[1,19]. Finally, there has been a minor improvement on the storage requirements
of AHRSZ [21], although this does not affect our discussion.

392 D.J. Pearce and P.H.J. Kelly

Fig. 3. Algorithm DFS. Note that ord is implemented as an array of size

3.4 Comparing PK and AHRSZ

We can now see the difference between PK and AHRSZ is that the latter has
a tighter complexity bound. However, there are some intriguing differences be-
tween them which may offset this. In particular, AHRSZ relies on the Dietz and
Sleator ordered list structure [7] and this does not come for free: firstly, it is
difficult to implement and suffers high overheads in practice (both in time and
space); secondly, only a certain number of priorities can be created for a given
word size, thus limiting the maximum number of nodes. For example, only 32768
priorities (hence nodes) can be created if 32bit integers are being used, although
with 64bit integers the limit is a more useful nodes.

4 Experimental Study

To experimentally compare the three algorithms, we measured their performance
over a large number of randomly generated DAGs. Specifically, we investigated
how insertion cost varies with and batch size. The latter relates to
the processing of multiple edges and, although none of the algorithms discussed
offer an advantage from this, the standard offline topological sort does. Thus,
it is interesting to consider when it becomes economical to use and we have
implemented a simple algorithm for this purpose, shown in Figure 3.

To generate a random DAG, we select uniformly from the probability space
a variation on [12], first suggested in [10]:

Definition 8. The model is a probability space containing all graphs

having a vertex set and an edge set Each

edge of such a graph exists with a probability independently of the others.

For a DAG in we know that there are at most possible edges.
Thus, we can select uniformly from by enumerating each possible
edge and inserting with probability In our experiments, we used to
generate a DAG with nodes and expected average outdegree

Our procedure for generating a data point was to construct a random DAG
and measure the time taken to insert 5000 edges. We present the exact method
in Figure 4 and, for each data point, this was repeated 25 times with the average
taken. Note that, we wanted the number of insertions measured over to increase
proportionally with but this was too expensive in practice. Also, for the
batch experiments, we always measured over a multiple of the batch size and
chose the least value over 5000. We also recorded the values of our complex-
ity parameters and in an effort to correlate our theoretical

A Dynamic Algorithm for Topologically Sorting Directed Acyclic Graphs 393

Fig. 4. Our procedure for measuring insertion cost over a random DAG. The algorithm
maintains a constant number of edges in G in an effort to eliminate interference caused
by varying V, whilst keeping O fixed. Note that, through careful implementation, we
have minimised the cost of the other operations in the loop, which might have otherwise
interfered. In particular, erasing edges is fast (unlike adding them) and independent of
the algorithm being investigated.

Fig. 5. Experimental data on random graphs with varying

394 D.J. Pearce and P.H.J. Kelly

Fig. 6. Experimental data for fixed sized graphs with varying outdegree.

Fig. 7. Experimental data for varying batch sizes comparing the three algorithms
against a DFS based offline topological sort

A Dynamic Algorithm for Topologically Sorting Directed Acyclic Graphs 395

analysis. This was done using the same procedure as before, but instead of mea-
suring time, we traversed the graph on each insertion to determine their values.
These were averaged over the total number of edges inserted for 25 runs of the
procedure from Figure 4.

Non-invalidating edges were included in all measurements and this dilutes the
execution time and parameter counts, since all three algorithms do no work for
these cases. Our purpose, however, was to determine what performance can be
expected in practice, where it is unlikely all edge insertions will be invalidating.

The data, presented in Figures 5, 6 and 7, was generated on a 900Mhz Athlon
based machine with 1GB of main memory. Note, we have used some (clearly
marked) scaling factors to help bring out features of the data. The implemen-
tation itself was in C++ and took the form of an extension to the Boost Graph
Library. The executables were compiled using gcc 3.2, with optimisation level
“-O2” and timing was performed using the gettimeofday function. Our imple-
mentation of AHRSZ employs the O(1) amortised (not O(1) worse-case) time
structure of Dietz and Sleator [7]. This seems reasonable as they themselves state
it likely to be more efficient in practice.

4.1 Discussion

The clearest observation from Figures 5 and 6 is that PK and AHRSZ have
similar behaviour, while MNR is quite different. This seems surprising as we
expected the theoretical differences between PK and AHRSZ to be measured.
One plausible explanation is that the uniform nature of our random graphs
makes the work saved by AHRSZ (over PK) reasonably constant. Thus, it is
outweighed by the gains from simplicity and efficiency offered by PK.

Figure 5: These graphs confirm our theoretical evaluation of MNR, whose
observed behaviour strongly relates to that of Furthermore, we expected
the average size of to increase linearly with as Likewise,
the graphs for PK and AHRSZ correspond with those of The curve for

is perhaps the most interesting here. With outdegree 1, it appears to
level off and we suspect this would be true at outdegree 10, if larger values of

were shown. We know the graphs become sparser when gets larger as,
by maintaining constant outdegree, is increasing linearly (not quadratically)
with This means, for a fixed sized affected region, goes down as
goes up. However, the average size of the affected region is also going up and,
we believe, these two factors cancel each other out after a certain point.

Figure 6: From these graphs, we see that MNR is worst (best) overall
for sparse (dense) graphs. Furthermore, the graphs for MNR are interesting
as they level off where does not appear to. This is particularly evident
from the log plot, where is always decreasing. This makes sense as
the complexity of MNR is dependent on both and So, for
low outdegree MNR is dominated by but soon becomes more
significant at which point the behaviour of MNR follows this instead. This is

396 D.J. Pearce and P.H.J. Kelly

demonstrated most clearly in the graph with high outdegree. Note, when its
behaviour matches PK, MNR is always a constant factor faster as it performs
one depth-first search and not two. Moving on to if we consider that
the probability of a path existing between any two nodes must increase with
outdegree, then the chance of inserting an invalidating edge must decrease
accordingly. Furthermore, as each non-invalidating edge corresponds to a
zero value of in our average, we can see why goes down with
outdegree. Another interesting feature of the data is that we observe both a
positive and negative gradient for Again, this is highlighted in the log
graph, although it can be observed in the other. Certainly, we expect to
increase with outdegree, as the average size of the subgraph reachable from
(the head of an invalidating edge) must get larger. Again, this is because the
probability of two nodes being connected by some path increases. However,

is also governed by the size of the affected region. Thus, as has a
negative gradient we must eventually expect to do so as well. Certainly,
when this must be the case. In fact, the data suggests the
downturn happens some way before this. Note that, although decreases,
the increasing outdegree appears to counterbalance this, as we observe that

does not exhibit a negative gradient. In general, we would have liked
to examine even higher outdegrees, but the time required for this has been a
prohibitive factor.

Figure 7: These graphs compare the simple algorithm from Figure 3,
with the offline topological sort implemented using depth-first search, to those
we are studying. They show a significant advantage is to be gained from using
the online algorithms when the batch size is small. Indeed, the data suggests
that they compare favourably even for sizeable batch sizes. It is important
to realise here that, as the online algorithms can only process one edge at a
time, their graphs are flat since they obtain no advantage from seeing the edge
insertions in batches.

5 Conclusion

We have presented a new algorithm for maintaining the topological order of a
graph online, provided a complexity analysis, correctness proof and shown it
performs better, for sparse graphs, than any previously known. Furthermore, we
have provided the first empirical comparison of algorithms for this problem over
a large number of randomly generated acyclic digraphs.

For the future, we would like to investigate performance over different classes
of random graphs (e.g. using the locality factor from. [10]). We are also aware that
random graphs may not reflect real life structures and, thus, experimentation on
physically occurring structures would be useful. Another area of interest is the
related problem of dynamically identifying strongly connected components and
we have shown elsewhere how MNR can be modified for this purpose [17]. We
refer the reader to [16], where a more thorough examination of the work in this

A Dynamic Algorithm for Topologically Sorting Directed Acyclic Graphs 397

paper and a number of related issues can be found. Finally, Irit Katriel has since
shown that algorithm PK is worse-case optimal, with respect to the number of
nodes reordered over a series of edge insertions [13].

Acknowledgements. Special thanks must go to Irit Katriel for her excellent
comments and observations on this work. We also thank Umberto Nanni and
some anonymous referees for their helpful comments on earlier versions of this
paper.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

B. Alpern, R. Hoover, B. K. Rosen, P. F. Sweeney, and F. K. Zadeck. Incremental
evaluation of computational circuits. In Proc. 1st Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 32–42, 1990.
S. Baswana, R. Hariharan, and S. Sen. Improved algorithms for maintaining tran-
sitive closure and all-pairs shortest paths in digraphs under edge deletions. In Proc.

ACM Symposium on Theory of Computing, 2002.
A. M. Berman. Lower And Upper Bounds For Incremental Algorithms. PhD thesis,
New Brunswick, New Jersey, 1992.
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms. MIT Press, 2001.
C. Demetrescu, D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Maintaining
shortest paths in digraphs with arbitrary arc weights: An experimental study. In
Proc. Workshop on Algorithm Engineering, pages 218–229. LNCS, 2000.
C. Demetrescu and G. F. Italiano. Fully dynamic transitive closure: breaking
through the barrier. In Proc. IEEE Symposium on Foundations of Computer

Science, pages 381–389, 2000.
P. Dietz and D. Sleator. Two algorithms for maintaining order in a list. In Proc.

ACM Symposium on Theory of Computing, pages 365–372, 1987.
H. Djidjev, G. E. Pantziou, and C. D. Zaroliagis. Improved algorithms for dynamic
shortest paths. Algorithmica, 28(4):367–389, 2000.
D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic shortest paths
and negative cycle detection on digraphs with arbitrary arc weights. In Proc.

European Symposium on Algorithms, pages 320–331, 1998.
Y. Ioannidis, R. Ramakrishnan, and L. Winger. Transitive closure algorithms based
on graph traversal. ACM Transactions on Database Systems, 18(3):512–576, 1993.
G. F. Italiano, D. Eppstein, and Z. Galil. Dynamic graph algorithms. In Algorithms

and Theory of Computation Handbook, CRC Press. 1999.
R. M. Karp. The transitive closure of a random digraph. Random Structures &
Algorithms, 1(1):73–94, 1990.
I. Katriel. On algorithms for online topological ordering and sorting. Research
Report MPI-I-2004-1-003, Max-Planck-Institut für Informatik, 2004.
V. King and G. Sagert. A fully dynamic algorithm for maintaining the transitive
closure. In Proc. ACM Symposium on Theory of Computing, pages 492–498, 1999.
A. Marchetti-Spaccamela, U. Nanni, and H. Rohnert. Maintaining a topological
order under edge insertions. Information Processing Letters, 59(1):53–58, 1996.
D. J. Pearce. Some directed graph algorithms and their application to pointer

analysis (work in progress). PhD thesis, Imperial College, London, 2004.

398 D.J. Pearce and P.H.J. Kelly

17.

18.

19.

20.

21.

D. J. Pearce, P. H. J. Kelly, and C. Hankin. Online cycle detection and difference
propagation for pointer analysis. In Proc. IEEE workshop on Source Code Analysis

and Manipulation, 2003.
G. Ramalingam. Bounded incremental computation, volume 1089 of Lecture Notes

in Computer Science. Springer-Verlag, 1996.
G. Ramalingam and T. Reps. On competitive on-line algorithms for the dynamic
priority-ordering problem. Information Processing Letters, 51(3):155–161, 1994.
T. Reps. Optimal-time incremental semantic analysis for syntax-directed editors.
In Proc. Symp. on Principles of Programming Languages, pages 169–176, 1982.
J. Zhou and M. Müller. Depth-first discovery algorithm for incremental topological
sorting of directed acyclic graphs. Information Processing Letters, 88(4): 195–200,
2003.

Approximating Interval Coloring and

Max-Coloring in Chordal Graphs*

Sriram V. Pemmaraju, Sriram Penumatcha, and Rajiv Raman

The Department of Computer Science, The University of Iowa, Iowa City, IA
52240-1419, USA.

{sriram,spenumat,rraman}@cs.uiowa.edu

Abstract. We consider two coloring problems: interval coloring and
max-coloring for chordal graphs. Given a graph G = (V, E) and positive
integral vertex weights the interval coloring problem seeks to
find an assignment of a real interval to each vertex such that
two constraints are satisfied: (i) for every vertex and
(ii) for every pair of adjacent vertices and The goal is
to minimize the span The max-coloring problem seeks to find
a proper vertex coloring of G whose color classes mini-
mize the sum of the weights of the heaviest vertices in the color classes,
that is, Both problems arise in efficient memory
allocation for programs. Both problems are NP-complete even for inter-
val graphs, though both admit constant-factor approximation algorithms
on interval graphs. In this paper we consider these problems for chordal

graphs. There are no known constant-factor approximation algorithms for
either interval coloring or for max-coloring on chordal graphs. However,
we point out in this paper that there are several simple
approximation algorithms for both problems. We experimentally evalu-
ate and compare three simple heuristics: first-fit, best-fit, and a heuristic
based on partitioning the graph into vertex sets of similar weight. Our
experiments show that in general first-fit performs better than the other
two heuristics and is typically very close to OPT, deviating from OPT
by about 6% in the worst case for both problems. Best-fit provides some
competition to first-fit, but the graph partitioning heuristic performs
significantly worse than either. Our basic data comes from about 10000
runs of the each of the three heuristics for each of the two problems on
randomly generated chordal graphs of various sizes and sparsity.

1 Introduction

Interval coloring. Given a graph G = (V, E) and positive integral vertex weights
the interval coloring problem seeks to find an assignment of an

interval to each vertex such that two constraints are satisfied: (i)
for every vertex and (ii) for every pair of adjacent vertices

* The first and the third author have been partially supported by National Science
Foundation Grant DMS-0213305.

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 399–416, 2004.
© Springer-Verlag Berlin Heidelberg 2004

400 S.V. Pemmaraju, S. Penumatcha, and R. Raman

and The goal is to minimize the span The
interval coloring problem has a fairly long history dating back, at least to the
70’s. For example, Stockmeyer showed in 1976 that the interval coloring problem
is NP-complete even when restricted to interval graphs and vertex weights in
{1,2} (see problem SR2 in Garey and Johnson [1]). The main application of
the interval coloring problem is in the compile-time memory allocation problem.

Fabri [2] made this connection in 1979. In order to reduce the total memory
consumption of source-code objects (simple variables, arrays, structures), the
compiler can make use of the fact that the memory regions of two objects are
allowed to overlap provided that the objects do not “interfere” at run-time.
This problem can be abstracted as the interval coloring problem, as follows. The
source-code objects correspond to vertices of our graph, run-time interference
between pairs of source code objects is represented by edges of the graph, the
amount of memory needed for each source-code object is represented by the
weight of the corresponding vertex, and the assignment of memory regions to
source code objects is represented by the assignment of intervals to vertices of the
graph. Minimizing the size of the union of intervals corresponds to minimizing
the amount of memory allocation.

If we restrict our attention to straight-line programs, that is, programs with-
out loops or conditional statements, then the compile-time memory allocation
problem can be modeled as the interval coloring problem for interval graphs.
Since the interval coloring problem is NP-complete for interval graphs research
has focused approximation algorithms. The current best approximation factor is
due to Buchsbaum et.al. [3], who give a for the problem.

Max-coloring. Like interval coloring, the max-coloring problem takes as input
a vertex-weighted graph G = (V, E) with weight function The
problem requires that we find a proper vertex coloring of G whose color classes

minimize the sum of the weights of the heaviest vertices in the
color classes, that is, The max-coloring problem models the
problem of minimizing the total buffer size needed for memory management in
different applications. For example, [4] uses max-coloring to minimize buffer size
in digital signal processing applications. In [5], max-coloring models the problem
of minimizing buffer size needed by memory managers for wireless protocol stacks
like GPRS or 3G. In general, programs that run with stringent memory or timing
constraints use a dedicated memory manager that provides better performance
than the general purpose memory management of the operating system. The
most commonly used memory manager design for this purpose is the segregated
buffer pool. This consists of a fixed set of buffers of various sizes with buffers of
the same size linked together in a linked list. As each memory request arrives, it
is satisfied by a buffer whose size is at least as large as the size of the memory
request. The assignment of buffers to memory requests can be viewed as an
assignment of colors to the requests – all requests that are assigned a buffer
are colored identically. Requests that do not interfere with each other can be
assigned the same color/buffer. Thus the problem of minimizing the total size
of the buffer pool corresponds to the max-coloring problem.

Approximating Interval Coloring and Max-Coloring in Chordal Graphs 401

[5] shows that the max-coloring problem is NP-complete for interval graphs
and presents the first constant-factor approximation algorithm for the max-
coloring problem for interval graphs. The paper makes a connection between
max-coloring and on-line graph coloring and using a known result of Kierstead
and Trotter [6] on on-line coloring interval graphs, they obtain a 2-approximation
algorithm for interval graphs and a 3-approximation algorithm for circular arc
graphs.

Connections between interval coloring and max-coloring. Given a coloring of
a vertex weighted graph G = (V, E) with color classes we can
construct an assignment of intervals to vertices as follows. For each
let be the vertex with maximum weight in Let H(1) = 0, and for
each let For each vertex we set

Clearly, no two vertices in distinct color classes have
overlapping intervals and therefore this is a valid interval coloring of G. We say
that this is the interval coloring induced by the coloring The
span of this interval coloring is which is the same as the weight of
the coloring viewed as a max-coloring. In other words, if there
is a max-coloring of weight W for a vertex weighted graph G, then there is an
interval coloring of G of the same weight.

However, in [5] we show an instance of a vertex weighted interval graph on
vertices for which the weight of an optimal max-coloring is times the

weight of the heaviest clique. This translates into an gap between the
weight of an optimal max-coloring and the span of an optimal interval coloring
because an optimal interval coloring of an interval graph has span that is within
O(1) of the weight of a heaviest clique [3].

In general, algorithms for max-coloring can be used for interval coloring with
minor modifications to make the interval assignment more “compact.” These
connections motivate us to study interval coloring and max-coloring in the same
framework.

Chordal graphs. For both the interval coloring and max-coloring problems, the
assumption that the underlying graph is an interval graph is somewhat restrictive
since most programs contain conditional statements and loops. In this paper
we consider a natural generalization of interval graphs called chordal graphs.
A graph is a chordal graph if it has no induced cycles of length 4 or more.
Alternately, every cycle of length 4 or more in a chordal graph has a chord.

The approximability of interval coloring and max-coloring on chordal graphs
is not very well understood yet. As we point out in this paper, there are sev-
eral approximation algorithms for both problems on chordal
graphs, however the existence of constant-factor approximation algorithms for
these problems is open.

There are many alternate characterizations of chordal graphs. One that will
be useful in this paper is the existence of a perfect elimination ordering of the
vertices of any chordal graph. An ordering of the vertex set of
a graph is said to be a perfect elimination ordering if when vertices are deleted

402 S.V. Pemmaraju, S. Penumatcha, and R. Raman

in this order, for each the neighbors of vertex in the remaining graph,
form a clique. A graph is a chordal graph iff it has a perfect

elimination ordering. Tarjan and Yannakakis [7] describe a simple linear-time
algorithm called maximum cardinality search that can be used to determine if a
given graph has a perfect elimination ordering and to construct such an ordering
if it exists. Given a perfect elimination ordering of a graph G, the graph can be
colored by considering vertices in reverse perfect elimination order and assigning
to each vertex the minimum available color. It is easy to see that this greedy
coloring algorithm uses exactly as many colors as the size of the largest clique
in the graph and therefore produces an optimal vertex coloring.

Every interval graph is also a chordal graph (but not vice versa). To see this,
take an interval representation of an interval graph and order the intervals in
left-to-right order of their left endpoints. It is easy to verify that this gives a
perfect elimination ordering of the interval graph.

The rest of the paper. In this paper, we consider three simple heuristics for the
interval coloring and max-coloring problems and experimentally evaluate their
performance. These heuristics are:

First fit. Vertices are considered in decreasing order of weight and each
vertex is assigned the first available color or interval.
Best fit. Vertices are considered in reverse perfect elimination order and
each vertex is assigned the color class or interval it “fits” in best.
Graph partitioning. Vertices are partitioned into groups with similar
weight and we use the greedy coloring algorithm to color each subgraph with
optimal number of colors. The interval assignment induced by this coloring
is returned as the solution to the interval coloring problem.

First fit and best-fit are fairly standard heuristics for many resource allocation
problems and have been analyzed extensively for problems such as the bin pack-
ing problem. Using old results and a few new observations, we point out that
the first fit heuristic and the graph partitioning heuristic provide an
approximation guarantee. The best-fit heuristic provides no such guarantee and
it is not hard to construct an example of a vertex weighted interval graph for
which the best-fit heuristic returns a solution to the max-coloring problem whose
weight is times the weight of the optimal solution.

Our experiments show that in general first-fit performs better than the other
two heuristics and is typically very close to OPT, deviating from OPT by about
6% in the worst case for both problems. Best-fit provides some competition to
first-fit, but the graph partitioning heuristic performs significantly worse than
either. Our basic data comes from about 10000 runs of the each of the three
heuristics for each of the two problems on randomly generated chordal graphs
of various sizes and sparsity.

Our experiments also reveal that best-fit performs better on chordal graphs
that are “irregular”, while the performance of first-fit deteriorates slightly. In
all other cases, first-fit is the best algorithm. Here, “regularity” refers to the

Approximating Interval Coloring and Max-Coloring in Chordal Graphs 403

variance in the sizes of maximal cliques – greater this variance, more irregular
the graph.

2 The Algorithms

In this section we describe three simple algorithms for the interval coloring and
max-coloring problems.

2.1 Algorithm 1: First-Fit in Weight Order

For the interval coloring problem, we preprocess the vertices and “round up”
their weights to the nearest power of 2. Then, for both problems we order the
vertices of the graph in non-increasing order of weights. Let be this
ordering. We process vertices in this order and use a “first-fit heuristic” to assign
intervals and colors to vertices to solve the interval coloring and max-coloring
problem respectively.

The algorithm for interval coloring is as follows. To each vertex we assign
a real interval with non-negative endpoints. To vertex we assign
When we get to vertex each vertex has been assigned an
interval Let be the union of the intervals already assigned to neighbors
of Then is a non-empty collection of disjoint intervals. Because
the weights are powers of 2 and vertices are considered in non-increasing order
of weights, every interval in has length at least Of these,
pick an interval with smallest right endpoint and assign the interval

to This is
For a solution to the max-coloring problem, we assume that the colors to be

assigned to vertices are natural numbers, and assign to each vertex the smallest
color not already assigned to a neighbor of We denote the two algorithms
described above by FFI (short for first-fit by weight order for interval coloring)
and FFM (short for first-fit by weight order for max-coloring) respectively.

We now observe that both algorithms provide an
guarantee. The following result is a generalization of the result from [8].

Theorem 1. Let C be a class of graphs and suppose there is a function

such that the first-fit on-line graph coloring algorithm colors any graph

G in C with at most colors. Then, for any graph G in C

the FFI algorithm produces a solution with span at most where

is the optimal span of any feasible assignment of intervals to vertices.

The following is a generalization of the result from [5].

Theorem 2. Let C be a class of graphs and suppose there is a function
such that the first-fit on-line graph coloring algorithm colors any graph

G in C with at most colors. Then, for any graph G in C the
FFM algorithm produces a solution with weight at most where

is the optimal weight of any proper of vertex coloring of G.

404 S.V. Pemmaraju, S. Penumatcha, and R. Raman

Irani [9] has shown that the first-fit graph coloring algorithm uses at most
colors for any chordal graph G. This fact together with

the above theorems implies that FFI and FFM provide
guarantees.

An example that is tight for both algorithms is easy to construct. Let
be a sequence of trees where is a single vertex and is

constructed from as follows. Let To construct
start with and add vertices and edges for all

Thus the leaves of are and every other vertex
in has a neighbor for some Now consider a tree in this sequence.
Clearly, Assign to each vertex in a unit weight. To construct
an ordering on the vertices of first delete the leaves of This leaves the
tree Recursively construct the ordering on vertices of and prepend
to this the leaves of in some order. It is easy to see that first-fit coloring al-
gorithm that considers the vertices of in this order uses colors. As a result,
both FFI and FFM have cost whereas OPT in both cases is 2. See Figure 1 for

and

Fig. 1. The family of tight examples for FFI and FFM.

2.2 Algorithm 2: Best-Fit in Reverse Perfect Elimination Order

A second pair of algorithms that we experiment with are obtained by considering
vertices in reverse perfect elimination order and using a “best-fit” heuristic to
assign intervals or colors. Let be the reverse of a perfect elimination
ordering of the vertices of G. Recall that if vertices are considered in reverse
perfect elimination order and colored, using the smallest color at each step, we
get an optimal coloring of the given chordal graph. This essentially implies that
the example of a tree with unit weights that forced FFI and FFM into worst case
behavior will not be an obstacle for this pair of algorithms.

The algorithm for interval coloring is as follows. As before, to each vertex we
assign a real interval with non-negative endpoints and to vertex we assign

When we get to vertex each vertex has
been assigned an interval and let be the union ofLet

Approximating Interval Coloring and Max-Coloring in Chordal Graphs 405

the intervals where and is a neighbor of If
then is assigned the interval Otherwise, if then

is a non-empty collection of disjoint intervals. However, since the
vertices were not processed in weight order, we are no longer guaranteed that
there is any interval in with length at least There are two
cases.

Case 1. If there is an interval in of length at least then pick
an interval of smallest length such that Suppose

Then assign the interval
Case 2. Otherwise, if all intervals in (0, M) – have length less than

pick the largest interval in (0, M) – (breaking ties arbitrarily)
and assign to Note that this assignment of an interval to
causes the interval assignment to become infeasible. This is because there is
some neighbor of that has been assigned an interval with left endpoint
and intersects this interval. To restore feasibility, we increase
the endpoints of all intervals “above” by In other
words, for every vertex if where then
is reset to the interval

Consider the chordal graph shown in Figure 2. The numbers next to vertices
are vertex weights and the letters are vertex labels. The ordering of vertices
A, B, C, D, E is a reverse perfect elimination ordering. By the time we get to
processing vertex E, the assignment of intervals to vertices is as shown in the
middle in Figure 2. When E is processed, we look for “space” to fit it in and find
the interval (10,15), which is not large enough for E. So we move the interval
I(D) up by 5 units to make space for I(E) and obtain the assignment shown on
the right.

A similar “best-fit” solution to the max-coloring problem is obtained as fol-
lows. Let be the size of a maximum clique in G. Start with a pallete of colors

and an assignment of color 1 to vertex Let be
the colors available for For each color let denote the maximum weight

Fig. 2. The best-fit heuristic in action for interval coloring.

406 S.V. Pemmaraju, S. Penumatcha, and R. Raman

among all vertices colored for an empty color class From the subset
of of available colors whose weights are atleast as large as pick the
color class for whose weight is the smallest. If no such color exists, color
vertex with a color for which is maximum, with ties broken
arbitrarily. This ensures that the color we assign to minimizes the increase in
the weight of the coloring.

We will call these “best-fit” algorithms for interval coloring and max-coloring,
BFI and BFM respectively. It is not hard to construct an example of a vertex
weighted interval graph for which the BFM returns a solution whose weight is

times OPT. This example does not appear in this paper due to lack of
space.

2.3 Algorithm 3: Via Graph Partitioning

Another pair of algorithms for interval coloring and max-coloring can be obtained
by partitioning the vertices of the given graph into groups with similar weight.
Let W be the maximum vertex weight. Fix an integer and
partition the range [1, W] into subranges:

For let and let Partition the
vertex set V into subsets defined as
For each let be the induced subgraph We ignore
the weights and color each subgraph with the fewest number of colors, using
a fresh pallette of colors for each subgraph For the max-coloring problem,
we simply use this coloring as the solution. The solution to the interval coloring
problem is simply the interval assignment induced by the coloring.

We will call these graph partitioning based algorithms for interval coloring
and max-coloring, GPI and GPM respectively.

Theorem 3. If we set then GPI and GPM produce
approximations to both the interval coloring as well as the max-coloring problems.

Proof. For let be the weight of the heaviest clique in
Let Clearly, Let OPT refer to the weight of an
optimal max-coloring and let refer to the weight of an optimal max-coloring
restricted to vertices in Note that Since GPM colors each with
exactly colors and since the weight of each vertex in is at most
the weight of the coloring that GPM assigns to is at most

Since GPM uses a fresh pallette of colors for each the weight of the
coloring of is at most

Approximating Interval Coloring and Max-Coloring in Chordal Graphs 407

Since Therefore, any coloring of adds a
weight of atmost to the coloring of the rest of the graph. Since
GPM colors the entire graph with weight atmost

The lower bound on that was used in the above proof for max-coloring
also applies to interval coloring and we get the same approximation factor for
interval coloring.

3 Overview of the Experiments

3.1 How Chordal Graphs Are Generated

We have implemented an algorithm that takes in parameters (a positive inte-
ger) and (a real number in [0,1]) and generates a random chordal graph with

vertices, whose sparsity is characterized by The smaller the value of the
more sparse the graph. In addition, the algorithm can run in two modes; in mode
1 it generates somewhat “regular” chordal graphs and in mode 2 it generates
somewhat “irregular” chordal graphs.

The algorithm generates chordal graphs with as a perfect
elimination ordering. In the ith iteration of the algorithm vertex is connected to
some subset of the vertices in Let be the graph containing
vertices generated after iteration Let
be the set of maximal cliques in It is well known that any chordal graph
on vertices has at most maximal cliques. So we explicitly maintain the list
of maximal cliques in We pick a maximal clique and a random subset

and connect to the vertices in S. This ensures that the neighbors of
in form a clique, thereby ensuring that is a

perfect elimination ordering.
We use the parameter in order to pick the random subset S. For each

we independently add to set S with probability This makes the
expected size of S equal The algorithm also has a choice to make on
how to pick One approach is to choose uniformly at random from the
set This is mode 1 and it leads to “regular” random chordal
graphs, that is, random chordal graphs in which the sizes of maximal cliques show
small variance. Another aproach is to choose a maximal clique with largest size
from among This is mode 2 and it leads to more “irregular”
random chordal graphs, that is, random chordal graphs in which there are a
small number of very large maximal cliques and many small maximal cliques.
Graphs generated in the two modes seem to be structurally quite different. This
is illustrated in Table 1, where we show information associated with 10 instances
of graphs with and generated in mode 1 and in mode 2. Each
column corresponds to one of the 10 instances and comparing corresponding
mode 1 and mode 2 rows easily reveals the the fairly dramatic difference in
these graphs. For example, the mean clique size in mode 1 is about 8.5, while it
is about 22 in mode 2. Even more dramatic is the large difference in the variance
of the clique sizes and this justifies our earlier observation that mode 2 chordal

408 S.V. Pemmaraju, S. Penumatcha, and R. Raman

graphs tend to have a few large cliques and many small cliques, relative to mode
1 chordal graphs.

3.2 How Weights Are Assigned

Once we have generated a chordal graph G we assign weights to the vertices
as follows. This process is paramaterized by W, the maximum possible weight
of a vertex. Let be the chromatic number of G and let be
a of G. Since G is a chordal graph, it contains a clique of size
Let be a clique in G with For each pick
uniformly at random from the set of integers {1,2,..., W}. Thus the weight of
Q is For each vertex pick uniformly at random
from This ensures that is a solution to max-
coloring with weight and the interval assignment induced by this
coloring is an interval coloring of span Since is also
the weight of the clique Q, which is a lower bound on OPT in both cases, we
have that in both cases. The advantage of this method of
assigning weights is that it is simple and gives us the value of OPT for both
problems. The disadvantage is that, in general OPT for both problems can be
strictly larger than the weight of the heaviest clique and thus by generating only
those instances for which OPT equals the weight of the heaviest clique, we might
be missing a rich class of problem instances.

We also tested our algorithms on instances of chordal graphs for which the
weights were assigned uniformly at random. For these algorithms, we use the
maximum weighted clique as a lower bound for OPT.

Approximating Interval Coloring and Max-Coloring in Chordal Graphs 409

3.3 Main Observations

For our main experiment we generated instances of random chordal graphs with
number of vertices For each value of we used values
of For each of the 55 × 9 pairs, we generated 10
random vertex weighted chordal graphs. We ran each of the three heuristics for
the two problems and averaged the weight and span of the solutions over the
10 instances for each pairs. Thus each heuristic was evaluated on 4950
instances, for each problem. The vertex weights are assigned as described above,
with the maximum weight W fixed at 1000. We first conducted this experiment
for the max-coloring problem on mode 1 and mode 2 chordal graphs and and
then repeated them for the interval coloring problem.

We then generated the same number of instances, but this time assigning to
each vertex, a weight chosen uniformly from [0,1000]. We repeated each of the
three heuristics for the two problems on these randomly generated instances. For
these instances, we used the maximum weight clique as a lower bound to OPT.
The initial prototyping was done in the discrete mathematics system Combina-
torica. However, the final version of the algorithms were written in C++, and
run on on a desktop running linux release 9. The running time of the programs
is approximately 106.5 seconds of user time (measured using the Linux time
command), for all six algorithms on 4950 instances for mode-1 graphs, including
time to generate random instances.

Our data is presented in the following tables.1 First we have two tables for
our experiments for the max-coloring problem. The first two tables (Table 2 and

1 In each table, we only show representative values due to lack of space. The complete
data is available at
http://www.cs.uiowa.edu/~rraman/chordalGraphExperiments.html.

410 S.V. Pemmaraju, S. Penumatcha, and R. Raman

3) for mode 1 and mode 2 chordal graphs respectively. This is followed by table
4 that summarizes the performance of the three heuristics for the max-coloring
problem for both mode 1 and mode 2 chordal graphs over all the runs. After
this we present three tables (Table 5, 6, and 7) that contains corresponding
information for the interval coloring problem. The data for the experiments on
graphs with randomly assigned vertex weights is presented in the appendix.
Based on all this data, we make 4 observations.

Approximating Interval Coloring and Max-Coloring in Chordal Graphs 411

First fit in decreasing order of weights is clearly a heuristic that returns
solutions very close to OPT for both problems. Overall percentage deviations
from OPT, each being over 4950 runs are 1.93, 4.47, 2.29 and 9.52 - the first
two are for max-coloring on mode 1 and mode 2 chordal graphs respectively,
and the next two are for interval coloring on mode 1 and mode 2 graphs. Even
in the experiments on graphs with randomly assigned vertex weights, first-fit
performs better than the other algorithms overall. The average deviations
being less than 26% from the maximum weight clique for both problems
(Tables 4, 7 and Tables 8 and 9 in the appendix). Note that in these cases,

1.

412 S.V. Pemmaraju, S. Penumatcha, and R. Raman

Fig. 3. Graphs showing values for max-coloring mode 1 and mode 2 chordal graphs. The
x-axis corresponds to the number of vertices in the graph, and the y-axis corresponds
to the max-color value. The solid line shows the value of OPT for the different sizes of
the graph, and the dashed line corresponds to the value of the coloring produced by
first-fit; the dotted line, the performance of best-fit; and the dashed-dotted line, the
performance of the graph partitioning heuristic.

the percentage deviations are an exaggeration of the actual amount, since
the maximum weight clique can be quite small compared to OPT.
The graph partitioning heuristic is not competitive at all, relative to first-fit
or best-fit, in any of the cases, despite the approximation
guarantee it provides.
Between the first-fit heuristic and the best-fit in reverse perfect elimination
order heuristic, first-fit seems to do better in an overall sense. However, they
exhibit opposite trends in going from mode 1 to mode 2 graphs. Specifically,
first-fit’s performance worsens with the percentage deviation changing as
1.93 4.47 for max-coloring, while best-fit’s performance improves with
the percentage deviation going from 10.70 0.20. Table 4 and the graphs
in Figure 3, show the performance of the three algorithms on mode 1 and

2.

3.

Approximating Interval Coloring and Max-Coloring in Chordal Graphs 413

Fig. 4. Graph showing values for interval coloring mode 1 and mode 2 chordal graphs.
The x-axis corresponds to the number of nodes in the graph, and the y-axis corresponds
to the interval color value. The solid line corresponds to OPT; the dotted line, to the
performance of best-fit; the dashed line to the performance of first-fit; and the dashed-
dotted line, to that of the graph partitioning heuristic.

mode 2 graphs. We see the same trend for interval coloring as well. The
performance of first-fit worsens as we go from mode 1 to mode 2 graphs,
while best-fit’s performance improves. Table 7 and the graphs in Figure 4
show the deviations from OPT for interval coloring. In order to verify this
trend, we tested the algorithms on mode 1 and mode 2 graphs, with randomly
assigned vertex weights. First-fit’s performance continues to show this trend
of deteriorating performance in going from mode 1 to mode 2 graphs for
both max-coloring and interval coloring. However the performance of best-
fit is quite different. It’s performance on max-coloring worsens as we go from
mode 1 to mode 2 graphs, while it improves slightly for interval coloring.
Best-fit heuristic seems to be at a disadvantage because it is constrained to
use as many colors as the chromatic number. First-fit uses more colors than
the chromatic number a fair number of times. Examining Table 4 we note
that for max-coloring, first-fit uses more colors than OPT about 31.45% and
66.16% of the time for mode 1 and mode 2 graphs respectively.

4.

4 Conclusion

Our goal was to evaluate the performance of three simple heuristics for the max-
coloring problem and for the interval coloring problem. These heuristics were
first-fit, best-fit, and a heuristic based on graph partitioning. First-fit outper-
formed the other algorithms in general, and our recommendation is that this
be the default heuristic for both problems. Despite the logarithmic approxi-
mation guarantee it provides, the heuristic based on graph partitioning is not
competitive in comparison to first-fit or best-fit. Best-fit seems to perform bet-
ter on graphs that are more “irregular” and offers first-fit competition for such
graphs. We have also experimented with other classes of chordal graphs such as
trees and sets of disjoint cliques. Results from these experiments are available
at http://www.cs.uiowa.edu/~rraman/chordalGraphExperiments.html

414 S.V. Pemmaraju, S. Penumatcha, and R. Raman

References

Garey, M., Johnson, D.: Computers and Intractability: A Guide to the theory of
NP-completeness. W.H. Freeman and Company, San Fransisco (1979)
Fabri, J.: Automatic storage optimization. ACM SIGPLAN Notices: Proceedings
of the ACM SIGPLAN ’79 on Compiler Construction 14 (1979) 83–91
Buchsbaum, A., Karloff, H., Kenyon, C., Reingold, N., Thorup, M.: OPT versus
LOAD in dynamic storage allocation. In: Proceedings of the 35th Annual ACM
Symposium on Theory of Computing (STOC). (2003)
Govindarajan, R., Rengarajan, S.: Buffer allocation in regular dataflow networks:
An approach based on coloring circular-arc graphs. In: Proceedings of the 2nd
International Conference on High Performance Computing. (1996)
Pemmaraju, S., Raman, R., Varadarajan, K.: Buffer minimization using max-
coloring. In: Proceedings of 15th ACM-SIAM Symposium on Discrete Algorithms
(SODA). (2004) 555–564
Kierstead, H., Trotter, W.: An extremal problem in recursive combinatorics. Con-
gressus Numerantium 33 (1981) 143–153
Tarjan, R., Yannakakis, M.: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, amd selectively reduce acyclic hypergraphs.
SIAM Journal on Computing 13 (1984) 566–579
Chrobak, M., On some packing problems related to dynamic stor-
age allocation. Informatique théorique et Applications/Theoretical Informatics and
Applications 22 (1988) 487–499
Irani, S.: Coloring inductive graphs on-line. Algorithmica 11 (1994) 53–72

1.

2.

3.

4.

5.

6.

7.

8.

9.

Approximating Interval Coloring and Max-Coloring in Chordal Graphs 415

Appendix

Max-Coloring Mode-1 and Mode-2 Graphs with Random Weights

416 S.V. Pemmaraju, S. Penumatcha, and R. Raman

Interval Coloring Mode-1 and Mode-2 Graphs with Random Weights

A Statistical Approach for Algorithm Selection*

Joaquín Pérez1, Rodolfo A. Pazos1, Juan Frausto2, Guillermo Rodríguez3,
David Romero4, and Laura Cruz5

1 Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), AP 5-164,
Cuernavaca, 62490, Mexico.

{jperez,pazos}@sd-cenidet.com.mx
2 ITESM, Campus Cuernavaca, AP C-99 Cuernavaca, 62589, Mexico.

juan.frausto@itesm.mx
3 Instituto de Investigaciones Eléctricas, Mexico.

gro@iie.org.mx
4 Instituto de Matemáticas, UN AM, Mexico.

david@matcuer.unam.mx
5 Instituto Tecnológico de Ciudad Madero, Mexico.

lcruzreyes@prodigy.net.mx

Abstract. This paper deals with heuristic algorithm characterization,
which is applied to the solution of an NP-hard problem, in order to select
the best algorithm for solving a given problem instance. The traditional
approach for selecting algorithms compares their performance using an
instance set, and concludes that one outperforms the other. Another
common approach consists of developing mathematical models to relate
performance to problem size. Recent approaches try to incorporate more
characteristics. However, they do not identify the characteristics that af-
fect performance in a critical way, and do not incorporate them explicitly
in their performance model. In contrast, we propose a systematic proce-
dure to create models that incorporate critical characteristics, aiming at
the selection of the best algorithm for solving a given instance. To vali-
date our approach we carried out experiments using an extensive test set.
In particular, for the classical bin packing problem, we developed models
that incorporate the interrelation among five critical characteristics and
the performance of seven heuristic algorithms. As a result of applying
our procedure, we obtained a 76% accuracy in the selection of the best
algorithm.

1 Introduction

For the solution of NP-hard combinatorial optimization problems, non-
deterministic algorithms have been proposed as a good alternative for very large
instances [1]. On the other hand, deterministic algorithms are considered ade-
quate for small instances of these problems [2]. As a result, many deterministic
and non-deterministic algorithms have been devised for NP-hard optimization

* This research was supported in part by CONACYT and COSNET.

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 417–431, 2004.
© Springer-Verlag Berlin Heidelberg 2004

418 J. Pérez et al.

problems. However, no adequate method is known nowadays for selecting the
most appropriate algorithm to solve them.

The problem of choosing the best algorithm for a particular instance is far
away from being easily solved due to many issues. Particularly, it is known that
in real-life situations no algorithm outperforms the other in all circumstances [3].
But until now theoretical research has suggested that problem instances can be
grouped in classes and there exists an algorithm for each class that solves the
problems of that class most efficiently [4]. Consequently, few researches have tried
to identify the algorithm dominance regions considering more than one problem
characteristic. However, they do not identify systematically the characteristics
that affect performance in a critical way and do not incorporate them explicitly
in a performance model.

For several years we have been working on the problem of data-object dis-
tribution on the Internet [5], which can be seen as a generalization of the bin
packing problem. We have designed solution algorithms and carried out a large
number of experiments with them. As expected, no algorithm showed absolute
superiority; hence our interest in developing an automatic method for algorithm
selection. For this purpose, we propose a procedure for the systematic charac-
terization of algorithm performance.

The proposed procedure in this paper consists of four main phases: modeling
problem characteristics, grouping instance classes dominated by an algorithm,
modeling the relationship between the characteristics of the grouped instances
and the algorithm performance, and applying the relationship model to algo-
rithm selection for a given instance.

This paper is organized as follows. An overview of the main works on algo-
rithm selection is presented in Section 2. Then, Section 3 describes a general
mechanism to characterize algorithm performance and select the algorithm with
the best expected performance. An application problem and its solution algo-
rithms are described in Section 4, in particular we use the bin packing (BP)
problem and seven heuristic algorithms (deterministic and non-deterministic).
Details of the application of our characterization mechanism to the solution of
BP instances are described in Section 5.

2 Related Work

Recent approach for modeling algorithm performance tries to incorporate more
than one problem characteristic in order to obtain a better problem representa-
tion. The objective of this is to increase the precision of the algorithm selection
process. The works described below follow this approach.

Borghetti developed a method to correlate each instance characteristic to al-
gorithm performance [6]. The problem dealt with was reasoning over a Bayesian
Knowledge Base (BKB), which was solved with a genetic algorithm (GA) and
a best first search algorithm (BFS). For the BKB problem, two kinds of criti-
cal characteristics were identified: topological and probabilistic. In this case the
countable topological characteristics are number of nodes, number of arcs and

A Statistical Approach for Algorithm Selection 419

number of random variables. An important shortcoming of this method is that
it does not consider the combined effect of all the characteristics.

Minton proposed a method that allows specializing generic algorithms for
particular applications [7]. The input consists of a description of the problem
and a training instance set, which guides the search through the design space,
constituted by heuristics that contend for their incorporation into the generic
algorithm. The output is a program adjusted to the problem and the distribution
of the instances.

Fink developed an algorithm selection technique for decision problems, which
is based on the estimation of the algorithm gain, obtained from the statistical
analysis of their previous performance [8]. Although the estimation can be en-
riched with new experiences, its efficiency depends on the user’s ability to define
groups of similar problem instances and to provide an appropriate metric of the
problem size. The relationship among the problem characteristics given by the
user and the algorithm performance is not defined formally.

The METAL group proposed a method to select the most appropriate clas-
sification algorithm for a set of similar instances [9]. They identify groups of old
instances that exhibit similar characteristics to those of a new instance group.
The algorithm performance of old instances is known and is used to predict
the best algorithms for the new instance group. The similarity among instance
groups is obtained considering three types of problem characteristics: general,
statistics and derived from information theory. Since they do not propose a model
for relating the problem characteristics to performance, the identification process
of similar instances is repeated with each new group of data, so the processing
time for algorithm selection can be high.

Rice introduced the poly-algorithms concept [10]. This paper refers to the
use of a function that allows selecting, from an algorithms set, the best one
for solving a given situation. After this work, other researchers have formulated
different functions, for example those presented in [11,12]. In contrast with these
works, in our solution approach we integrate three aspects: 1) self-adaptation of
functions to incorporate new knowledge; 2) systematic method with statistical
foundation to obtain the most appropriate functions; and 3) modeling of the
interrelation of critical variables for algorithmic performance.

Table 1 presents the most important works that consider several problem
characteristics. Column 2 indicates if problem characteristics are modeled. Col-
umn 3 is used to indicate if problem characteristics are incorporated explicitly
into a performance model. Column 4 shows the granularity of the prediction,
i.e., if the prediction can be applied for selecting the best algorithm for only one
instance. Finally, column 5 indicates if the prediction model has been applied to
algorithm selection.

Notice from Table 1, that no work includes all aspects required to charac-
terize algorithm performance aiming at selecting the best algorithm for a given
instance. The use of instance characterization to integrate groups of similar in-
stances is an emerging and promising area for identifying dominance regions of
algorithms. The works of Borghetti and the METAL group have made impor-

420 J. Pérez et al.

tant advances in this area. However, the first one does not combine the identified
characteristics, hindering the selection of algorithms; and the second is not ap-
plicable to the solution of only one instance. In contrast, our method is the only
one that considers the four main aspects of algorithm characterization. Next
section describes the method in detail.

3 Automation of Algorithm Selection

In this section a statistical method is presented for characterizing algorithm
performance. This characterization is used to select the best algorithm for a
specific instance. Section 3.1 describes the general software architecture, which
is based on the procedure described in Section 3.2.

3.1 Architecture of the Characterization and Selection Process

The software architecture proposed for performance characterization and its ap-
plication to algorithm selection is shown in Figure 1 and consists of five basic
modules: 1) Statistical Sampling, 2) Instance Solution, 3) Characteristics Mod-
eling, 4) Clustering Method, and 5) Classification Method.

Initially, the Statistical Sampling module generates a set of representative
instances of the optimization problem. This set grows each time a new instance
is solved.

The problem instances generated by the Statistical Sampling module are
solved by the Instance Solution module, which has a configurable set of heuristic
algorithms. For each instance, the performance statistics of each algorithm are
obtained. The usual metrics for quantifying the final performance are the fol-
lowing: the percentage of deviation of the optimal solution value, the processing
time and their corresponding standard deviations.

In the Characteristics Modeling module, the parameters values of each in-
stance are transformed into indicators of the problem critical characteristics; i.e.,
those that impact the algorithms performance.

A Statistical Approach for Algorithm Selection 421

The Clustering module integrates groups constituted by the instances for
which an algorithm had a performance similar or better than the others. Each
group defines a region dominated by an algorithm. The similarity among the
members of each group is determined through the instance characteristics and
the algorithms performance.

The Classification module relates a new instance to one of the previously
created groups. It is expected that the heuristic algorithm associated to the
group obtains the best performance when solving the given instance. The new
solved instances are incorporated to the characterization process for increasing
the selection quality.

Fig. 1. Architecture of the characterization and selection process

3.2 Procedure to Systematize Algorithm Selection

We propose a procedure for systematizing the creation of mathematical models
that incorporate problem characteristics aiming at selecting the best algorithm
for a given instance. This procedure includes the steps needed to develop the
architecture of the characterization and selection process, described before (see
Figure 1). In Figure 2 the steps of the proposed procedure are associated to the
architecture.

422 J. Pérez et al.

Step 1. Representative Sampling. Develop a sampling method to generate
representative problem instances. This instances base will be used to determine
the relationship between instance characteristics and algorithm performance.

Step 2. Instance Sample Solution. Provide a set of solution algorithms. Each
instance of the sample must be solved with each available algorithm. The average
performance of each algorithm for each instance must be calculated carrying out
30 experiments. Examples of performance measures are: the ratio of the best
solution value with respect to a lower bound of the optimal solution value, and
processing time.

Fig. 2. Procedure to systematize algorithm selection

Step 3. Performance Evaluation. Develop a method to evaluate the perfor-
mance of the solution algorithms, and determine the best algorithm for each
sample instance. An alternative for considering all the different performance
metrics is using their weighted average. Another is choosing the algorithm with
the best quality and, in case of tie, choosing the fastest algorithm.

Step 4. Exploratory Problem Analysis. Establish hypothesis about the possi-
ble critical variables. These variables represent the instance characteristics that
can be used as good indicators of algorithm performance on these instances.

Step 5. Indicators Formulation and Measurement. Develop indicator func-
tions. These metrics are established to measure the values of the critical charac-
teristics of the instances. The indicators are obtained using the instance parame-
ter values in the indicator functions. Both, specific features of the instances and

A Statistical Approach for Algorithm Selection 423

algorithm performance information, affect the algorithm selection strategy. In
this step, a way to extract relevant features from the problem parameters must
be found.

Step 6. Creation of Dominance Groups. Develop a method to create instance
groups dominated, each one, by an algorithm or an algorithm set. The similarity
among members of each group is determined through: indicators of instance
characteristics and the algorithm with the best performance for each one. The
output of this method is a group set, where each group is associated with an
instance set and the algorithm with the best performance for the set.

Step 7. Performance Modeling. Develop a method to model the relationship
between problem characteristics and algorithm performance. The relationship is
learned from the groups created in Step 6.

Step 8. Algorithm Selection. Develop a method to use the performance model.
For each new instance, its characteristic indicators must be calculated in order
to determine which group it belongs to, using the relationship learned. The
algorithm associated to this group is the expected best algorithm for the new
instance.

Step 9. Feedback. The results of the new instance, solved with all algorithms,
are used to feedback the procedure. If the prediction is right, the corresponding
group is reinforced, otherwise a classifying adjustment is needed.

4 Application Problem

The bin packing problem is used for exemplifying our algorithm selection
methodology. In this section a brief description of the one-dimensional bin pack-
ing problem and its solution algorithms is made.

4.1 Problem Description

The Bin Packing problem is an NP-hard combinatorial optimization problem, in
which there is a given sequence of items each one with a
given size and an unlimited number of bins each of capacity The
question is to determine the smallest number of bins into which the objects
can be packed. In formal words, determine an L minimal partition
such that in each bin the aggregate size of all the items in Bi does not exceed

This constraint is expressed in (1).

In this work, we consider the discrete version of the one-dimensional bin
packing problem, in which the bin capacity is an integer the number of items is

and for simplicity, each item size is which is chosen from the set

424 J. Pérez et al.

4.2 Heuristic Solution Algorithms

An optimal solution can be found by considering all the ways to partition a
set of items into or fewer subsets, unfortunately the number of possible
partitions is larger than [13]. The heuristic algorithms presented in
this section use deterministic and non-deterministic strategies for obtaining
suboptimal solutions with less computational effort.

Deterministic Algorithms. These algorithms always follow the same
path to arrive at the solution. For this reason, they obtain the same solution
in different executions. The approximation deterministic algorithms for bin
packing are very simple and run fast. A theoretical analysis of approximation
algorithms is presented in [14,15,16]. In these surveys, the most important
results for the one-dimensional bin packing problem and variants are discussed.

First Fit Decreasing (FFD). With this algorithm the items are first placed
in a list sorted in non-increasing weight order. Then each item is picked orderly
from the list and placed into the first bin that has enough unused capacity to
hold it. If no partially filled bin has enough unused capacity, the item is placed
in empty bin.

Best Fit Decreasing (BFD). The only difference with FFD is that the items
are not placed in the first bin that can hold them, but in the best-filled bin that
can hold them.

Match to First Fit (MFF). It is a variation of FFD. It asks the user to type
the number of complementary bins. Each of these auxiliary bins is intended for
holding items in a unique range of sizes. As the list is processed, each item is
examined to check if it can be packed in a new bin, with items of a proper
complementary bin; or packed in a partially-filled bin; or packed alone in a
complementary bin. Finally, the items that are in the complementary bins are
packed according to the basic algorithm.

Match to Best Fit (MBF). It is a variation of BFD and similar to MFF,
except for the basic algorithm used.

Modified Best Fit Decreasing (MBFD). The algorithm asks for a percentage
value. This is the amount of bin capacity that can be left empty and qualify as
a “good fit”. All the items over 50% of the bin capacity are placed definitely
in their own bin. With each partially filled bin, a special procedure to find a
“good fit” item combination is followed. Finally, all remaining items are packed
according to BFD.

Non-Deterministic Algorithms. These algorithms generally do not ob-
tain the same solution in different executions. Approximation non-deterministic
algorithms are considered general purpose algorithms.

Ant Colony Optimization (ACO). It is inspired on the ability of real ants to
find the shortest path between their nest and a food source using a pheromone
trail. For every ant build an items list partition starting with an empty bin.
Each new bin is filled with “selected items” until no remaining item fits in
it. A “selected item” is chosen stochastically using mainly a pheromone trail,

A Statistical Approach for Algorithm Selection 425

which indicates the advantage of having a new item of size j with the item sizes
already packed. The pheromone trail evaporates a little after each iteration and
is reinforced by good solutions [17].

Threshold Accepting (TA). In this algorithm, to each (where X rep-
resents the set of all feasible solutions) a neighborhood is asso-
ciated. Thus, given a current feasible solution and a control parameter T

(called temperature), a neighboring feasible solution is generated; if
then is accepted as the new current solution, otherwise

the current solution remains unchanged. The value of T is decreased each time
thermal equilibrium is reached. This condition is verified when a set S of feasible
solution is formed. The value of T is reduced, by repeatedly multiplying it by a
cooling factor until the system is frozen [18].

5 Implementation

This section shows the application of our procedure for algorithm characteriza-
tion and selection. The procedure was applied to the one-dimensional bin packing
problem (BP) and seven heuristic algorithms to solve it.

5.1 Statistical Sampling

In order to ensure that all problem characteristics were represented in the in-
stances sample, stratified sampling and a sample size derived from survey sam-
pling were used. The formation of strata is a technique that allows reducing the
variability of the results, increasing the representativeness of the sample, and
can help ensure consistency especially in handling clustered data [19].

Specifically, the following procedure was used: calculation of the sample size,
creation of strata, calculation of the number of instances for each stratum, and
random generation of the instances for each stratum. With this method 2,430
random instances were generated.

The task of solving 2,430 random instances requires a great amount of time:
actually it took five days with four workstations. However, it is important to
point out that this investment of time is only necessary once, at the beginning
of the process of algorithms characterization, to create a sample of minimum
size. We consider that this is a reasonable time for generating an initial sample
whose size, validated statistically, increases the confidence level in the results.
Besides, the initial quality of the prediction of the best algorithm for a particular
instance can be increased through feedback.

5.2 Instance Solution

In order to learn the relationship between algorithm performance and problem
characteristics, the random instances (which were used for training purpose)
were solved. For testing the learned performance model, standard instances that
are accepted by the research community were solved. For most of them, the

426 J. Pérez et al.

optimal solution is known; otherwise the best-known solution is available. The
experimental performances obtained for standard instances were used to validate
the performances predicted by our model. Additionally, we confirmed the quality
of our heuristic algorithm with the known solution.

2,430 random instances were generated using the method described in Section
5.1, and 1369 standard instances were considered. These instances were solved
with the seven heuristic algorithms described in Section 4. The performance
results obtained were: execution time, theoretical ratio and their corresponding
standard deviation. Theoretical ratio is one of the usual performance metrics for
bin packing and it is the ratio between the obtained solution and the theoretical
optimum (it is a lower bound of the optimal value and equals the sum of all the
item sizes divided by the bin capacity).

For each sample instance, all the algorithms were evaluated in order to deter-
mine the best algorithm. For a given instance, the algorithm with the smallest
performance value was chosen, assigning the largest priority to the theoretical
ratio.

5.3 Characteristics Modeling

In this step relevant features of the problem parameters were identified. After-
wards, expressions to measure the values of identified critical characteristics were
derived.

In particular, four critical characteristics that affect algorithm performance
were identified. The critical characteristics identified using the most common
recommendation were instance size and item size dispersion. The critical char-
acteristics identified using parametric analysis were capacity constraint and bin
usage.

Once the critical characteristics were identified, expressions to measure their
influence on algorithm performance were derived. Expressions (2) through (6)
show five indicators derived from the analysis of the critical variables.

Instance size. The indicator in (2) expresses a relationship between instance
size and the maximum size solved. The instance size is the number of items
and the maximum size solved is maxn. The value of maxn was set to 1000,
which corresponds to the number of items of the largest instance solved in the
specialized literature that we identified.

Capacity constraint. The indicator in (3) expresses a relationship between
the average item size and the bin size. The size of item i is and the bin size is

This metric quantifies the proportion of the bin c that is occupied by an item
of average size.

Item size dispersion. Two indicators were derived for this variable. The
indicator in (4) expresses the dispersion degree of the item size values. It is
measured using the standard deviation of The indicator in (5) expresses the
proportion of items whose sizes are factors of the bin capacity. In other words,
an item is a factor when the bin capacity is multiple of its corresponding item
size Instances with many factors are considered easy to solve.

A Statistical Approach for Algorithm Selection 427

Bin usage. The objective function has only one term, from which the in-
dicator was derived. The indicator is shown in expression (6). This indicator
expresses the proportion of the total size that can fit in a bin of capacity The
inverse of this metric is used to calculate the theoretical optimum.

The factor analysis technique was used to confirm if derived indicators were
critical too. Table 2 shows the characteristic indicators and the best algorithm
for a small instance set, which were selected from a sample with 2,430 random
instances.

5.4 Clustering

K-means was used as a clustering method to create instance groups dominated,
each one, by an algorithm. The cluster analysis was carried out using the com-
mercial software SPSS version 11.5 for Windows. The similarity among members
of each group was determined through: characteristics indicators of the instances
and the algorithm with the best performance for each one (see Table 2). Five
groups were obtained; each group was associated with an instance set and an
algorithm with the best performance for it. Two algorithms had poor perfor-
mance and were outperformed by the other five algorithms. This dominance
result applies only to the instance space explored in this work.

5.5 Classification

In this investigation discriminant analysis was used as a machine learning method
to find out the relationship between the problem characteristics and algorithm
performance.

The discriminant analysis extracts from data of group members, a group
classification criterion named discriminant functions, which will be used later
for classifying each new observation in the corresponding group. The percentage
of new correctly classified observations is an indicator of the effectiveness of the
discriminant functions. If these functions are effective on the training sample, it

428 J. Pérez et al.

is expected that with new observations whose corresponding group is unknown,
they will classify well.

The analysis was made using the commercial software SAS version 4.10 for
Windows. For obtaining the classification criterion, five indicators (see section
5.3) were used as independent variable, and the number of the best algorithm as
dependent variable (or class variable). The discriminant classifier was trained
with 2,430 bin packing instances generated with the procedure described in
section 5.1, and validated with a resubstitution method, which uses the same
training instances.

Table 3 presents the validation results of the obtained classifier, which are
similar to those generated by SPSS. This table shows the relationship between
two groups: number of instances than belong to the origin group and were classi-
fied into the target group, the corresponding percentage is included. In this case,
each algorithm defines a group. On column 7, the total number of instances that

A Statistical Approach for Algorithm Selection 429

belong to the origin group is shown. The final row shows the error rate for each
target group, which is the proportion of misclassified instances. The average
error was 24%.

5.6 Selection

To validate the effectiveness of the discriminant classifier mentioned in Section
5.5, we considered four types of standard bin packing instances with known so-
lution (optimal or the best know). The Beasley’s OR-Library contains two types
of bin packing problems: u instances, t instances. The Operational Research Li-
brary contains problems of two kinds: N instances and hard instances. All of
these instances are thoroughly described in [20].

Table 4 presents a fraction of the 1,369 instances collected. For each instance,
the indicators and best algorithm are shown, and they were obtained as explained
in Sections 5.2 and 5.3. These results were used for testing the classifier trained
with random instances. The classifier predicted the right algorithm for 76% of
the standard instances. Notice the consistency of this result with the error shown
in Table 3.

6 Conclusions and Future Work

In this article, we propose a new approach to solve the selection algorithm prob-
lem in an innovative way. The main contribution is a systematic procedure to
create mathematical models that relate algorithm performance to problem char-
acteristics, aiming at selecting the best algorithm to solve a specific instance.
With this approach it is possible to incorporate more than one characteristic
into the models of algorithm performance, and get a better problem representa-
tion than other approaches.

For test purposes 2,430 random instances of the bin packing problem were
generated. They were solved using seven different algorithms and were used for

430 J. Pérez et al.

training the algorithm selection system. Afterwards, for validating the system,
1,369 standard instances were collected, which have been used by the research
community. The experimental results showed an accuracy of 76% in the selection
of the best algorithm for all standard instances. Since a direct comparison can
not be made versus the methods mentioned in Section 2.2, this accuracy has to
be compared with that of a random selection from the seven algorithms: 14.2%.
For the instances of the remaining percentage, the selected algorithms generate
a solution close to the optimal.

An additional contribution is the systematic identification of five character-
istics that most influence algorithm performance. The detection of these critical
characteristics for the bin packing problem was crucial for obtaining the results
accuracy. We consider that the principles followed in this research can be applied
for identifying critical characteristics of other NP-hard problems.

Currently, the proposed procedure is being tested for solving a design model
of Distributed Data-objects (DD) on the Internet, which can be seen as a gener-
alization of bin packing (BP). Our previous work shows that DD is much heavier
than BP.

For future work we are planning to consolidate the software system based on
our procedure and incorporate an adaptive module that includes new knowledge
generated from the exploitation of the system with new instances. The objective
is to keep the system in continuous self-training. In particular, we are interested
in working with real-life instances of the design model of Distributed Data-
objects (DD) on the Internet and incorporate new problems as they are being
solved.

References

1.

2.

3.

4.

5.

6.

7.

8.

Garey, M. R., Johnson, D. S.: Computers and Intractability, a Guide to the Theory
of NP-completeness. W. H. Freeman and Company, New York (1979)
Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization, Algorithms and
Complexity. Prentice-Hall, New Jersey (1982)
Bertsekas: Linear Network Optimization, Algorithms and Codes. MIT Press, Cam-
bridge, MA (1991)
Wolpert, D. H., Macready, W. G.: No Free Lunch Theorems for Optimizations.
IEEE Transactions on Evolutionary Computation, Vol. 1 (1997) 67-82
Pérez, J., Pazos, R.A., Fraire, H., Cruz, L., Pecero, J.: Adaptive Allocation of
Data-Objects in the Web Using Neural Networks. Lectures Notes in Computer
Science, Vol. 2829. Springer-Verlag, Berlin Heidelberg New York (2003) 154-164
Borghetti, B. J.: Inference Algorithm Performance and Selection under Constrained
Resources. MS Thesis. AFIT/GCS/ENG/96D-05 (1996)
Minton, S.: Automatically Configuring Constraint Satisfaction Programs: A Case
Study. Journal of Constraints, Vol. 1, No. 1 (1996) 7-43
Fink, E.: How to Solve it Automatically, Selection among Problem-solving Meth-
ods. Proceedings of the Fourth International Conference on AI Planning Systems
AIPS’98 (1998) 128-136

A Statistical Approach for Algorithm Selection 431

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Soares, C., Brazdil, P.: Zoomed Ranking, Selection of Classification Algorithms
Based on Relevant Performance Information. In: Zighed D.A., Komorowski J., and
Zytkow J. (Eds.): Principles of Data Mining in Knowledge Discovery 4th European
Conference (PKDD 2000), LNAI 1910. Springer Verlag, Berlin Heidelberg New
York (2000) 126-135
Rice, J.R.,: On the Construction of Poly-algorithms for Automatic Numerical Anal-
ysis. In: Klerer, M., Reinfelds, J. (Eds.): Interactive Systems for Experimental
Applied Mathematics. Academic Press (1968) 301-313
Li, J., Skjellum, A., Falgout, R.D.: A Poly-Algorithm for Parallel Dense Matrix
Multiplication on Two-Dimensional Process Grid Topologies. Concurrency, Prac-
tice and Experience, Vol. 9, No. 5. (1997) 345-389
Brewer, E.A.: High-Level Optimization Via Automated Statistical Modeling. Pro-
ceedings of Principles and Practice of Parallel Programming (1995) 80-91
Basse S.: Computer Algortihms, Introduction to Design and Analysis. Editorial
Addison-Wesley Publishing Compañy (1998)
Coffman, E.G. Jr., Garey, M.R., Johnson, D.S.: Approximation Algorithms for
Bin-Packing, a Survey. In Approximation Algorithms for NP-hard Problems. PWS,
Boston (1997) 46-93
Coffman, J.E.G., Galambos, G., Martello, S., Vigo, D.: Bin Packing Approximation
Algorithms; Combinatorial Analysis. In: Du, D.-Z, Pardalos, P.M. (eds.): Hand-
book of Combinatorial Optimization. Kluwer Academic Publishers, Boston, MA
(1998)
Lodi, A., Martello, S., Vigo, D.: Recent Advances on Two-dimensional Bin Packing
Problems. Discrete Applied Mathematics, Vol. 123, No. 1-3. Elsevier Science B.V.,
Amsterdam (2002)
Ducatelle, F., Levine, J.: Ant Colony Optimisation for Bin Packing and Cutting
Stock Problems. Proceedings of the UK Workshop on Computational Intelligence.
Edinburgh (2001)
Pérez, J., Pazos, R.A., Vélez, L. Automatic Generation of Control
Parameters for the Threshold Accepting Algorithm. Lectures Notes in Computer
Science, Vol. 2313. Springer-Verlag, Berlin Heidelberg New York (2002) 119-127.
Micheals, R.J., Boult, T.E.: A Stratified Methodology for Classifier and Recognizer
Evaluation. IEEE Workshop on Empirical Evaluation Methods in Computer Vision
(2001)
Ross P., Schulenburg, S., Marin-Blázquez J.G., Hart E.: Hyper-heuristics, Learning
to Combine Simple Heuristics in Bin-packing Problems. Proceedings of the Genetic
and Evolutionary Computation Conference. Morgan Kaufmann (2002) 942-948

An Improved Time-Sensitive Metaheuristic

Framework for Combinatorial Optimization

Vinhthuy Phan1 and Steven Skiena2

1 University of Memphis, Memphis, TN 38152, USA.
vphan@memphis.edu

2 SUNY Stony Brook, Stony Brook, NY 11794, USA.
skiena@cs.sunysb.edu

Abstract. We introduce a metaheuristic framework for combinatorial
optimization. Our framework is similar to many existing frameworks (e.g.
[27]) in that it is modular enough that important components can be
independently developed to create optimizers for a wide range of prob-
lems. Ours is different in many aspects. Among them are its combinato-
rial emphasis and the use of simulated annealing and incremental greedy
heuristics. We describe several annealing schedules and a hybrid strategy
combining incremental greedy and simulated annealing heuristics. Our
experiments show that (1) a particular annealing schedule is best on av-
erage and (2) the hybrid strategy on average outperforms each individual
search strategy. Additionally, our framework guarantees the feasibility of
returned solutions for combinatorial problems that permit infeasible so-
lutions. We, further, discuss a generic method of optimizing efficiently
bottle-neck problems under the local-search framework.

1 Introduction

Combinatorial optimization is important in many practical applications. Un-
fortunately, most combinatorial optimization problems are usually found to be
NP-hard and thus impractical to solve optimally when their sizes get large. Fur-
ther, provable approximation algorithms for them and especially their variants
need to be designed and implemented carefully and specifically for each applica-
tion. This approach is sometime not affordable and consequently metaheuristics
such as simulated annealing, genetic algorithms, tabu search, etc. become more
attractive due to the relative ease with which they can be adapted to problems
with complicated and application-specific constraints. Systems and methodolo-
gies [8,9,27] based on local-search heuristics have been developed to provide
flexible frameworks for creating optimizers.

In this paper, we report an improved version of Discropt (first proposed
in [23]), a general-purpose metaheuristic optimizer. It is designed based on the
local-search model, implemented using C++ in such a way that optimizers can be
constructed with a minimal user-effort by putting built-in components together
and/or modifying them appropriately. Discropt is different from other local-
search frameworks [8,27] in a number of aspects in terms of built-in features,

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 432–445, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Improved Time-Sensitive Metaheuristic Framework 433

choice and implementation of search strategies. First, it supports as built-ins
(1) three important solution types, namely permutation, subset, and set parti-
tion, which can be used to model many combinatorial problems, and (2) two
fundamentally different search approaches, simulated annealing and incremen-
tal greedy construction. Second, for problems which permit infeasible solutions
(e.g. vertex coloring, vertex cover, TSP on incomplete graphs), Discropt guaran-
tees the feasibility of returned solutions in a non-trivial manner. Third, Discropt

is aware of running times given as inputs by requiring search heuristics adapt
themselves efficiently to different running times. Running-time awareness may
be essential many cases; consider the problem vertex coloring, in which the time
alloted to solve an instance can depend greatly on the intended application: in
register allocation for compiler optimization [2,3], solutions are expected within
a few seconds or less, whereas in frequency channel assignment [26], the eco-
nomic significance of having a good solution may make it desirable to spend
more time on optimizing. This is similar to real-time optimizers [4,15,16], which
are formulated in the form of intelligent search strategies.

This paper is organized as follows. Discropt’s architecture is briefly discussed
and compared to similar frameworks such as HotFrame, EasyLocal++, and iOpt
[27] in Section 2. Recent improvements and an experimental comparison between
the current and previous versions, together an experimental constrast between
Discropt and iOpt [28] are discussed in Section 3. Discropt’s important features
are discussed next. They are: (1) time-sensitive search heuristics in Section 4,
(2) the evaluation of the cost of moving between solutions and minimization of
bottleneck functions in Section 5, and (3) systematic combination of cost and
feasibility in Section 6.

2 Overview of Discropt

Discropt is a framework based on the local search paradigm, in which the process
of minimizing an optimization problem is modeled as the search for the best
solution in a solution space. This process selects an initial solution arbitrarily,
and iterates the following procedure: from any solution, a neighboring solution is
generated and evaluated. If its objective cost is acceptable, it replaces the older
solution, and the search proceeds until a stopping criterion is met. This abstract
process can completely constructed by four components:

Solution type. Discropt supports three primitive types permutation, subset,
and set partition. Take the traveling saleman problem as an example. The
solution type is most appropriately a permutation (of vertices). On the other
hand, in the vertex cover problem the solution type should be represented as
a subset (of vertices), and in vertex coloring problem it should be a partition
(of vertices into colors).
Neighborhood operator. This component generates randomly neighboring
solutions of a given solution. Such generation is needed in order to traverse
the solution space. Each solution type must have at least one operator defined
specifically for it. In Discropt, the neighborhood operator for a permutation

434 V. Phan and S. Skiena

generates a random permutation that differs from in exactly two indices;
the operator for a subset (viewing as a bit-vector of 0’s and 1’s) generates
a random subset that differs from in exactly one bit; and the operator for
a partition generates a random partition that differs from in terms of
part-membership in exactly one element.
Search. The search component decides whether or not to replace a solution
with its randomly generated neighboring solution. It also needs to decide
when to stop searching based on the current progress and the amount of
running time left. Discropt supports two main search methods and a hybrid
strategy combing the two methods. The two main methods include variants
of the simulated annealing heuristic and an incremental greedy construction.
Objective function. This component evaluates the cost of each solution and
the cost of moving from one solution to another.

Although Discropt is designed in such a way users can modify each com-
ponent in ways they see best for their applications, it also provides built-in
primitives for each of these components to minimize users’ effort in creating
an operational system for many combinatorial problems. Many existing local-
search frameworks [27] share Discropt ’s objective of providing a flexible and
broadly-applicable platform by realizing the local-search model in an object ori-
ented setting. Discropt interprets the polymorphic characters of the local-search
paradigm by implementing dynamically-bound search algorithms (through C++
virtual functions) and statictally-bound solution types and neighborhood oper-
ators (through C++ templates). This design choice is similar to that of Easy-
Local++ [11] and different from that of HotFrame [7]. It allows both efficiency
by defining a solution type statically using templates and flexibility of dynami-
cally choosing and mixing search methods by invoking appropriate virtual search
functions. In addition to the general local-search architecture, Discropt is simi-
lar to Hotframe in having an explicit evaluation of the cost of moving from one

solution to another. This function in many cases improves the efficiency of cost
evaluation by a linear factor (see Section 5).

While these systems are all applicable to a wide range of problems, their
effectiveness lies in how much effort each user puts in tailoring the components
suitably to his or her problem. Thus, their differences in terms of built-in features
may make one framework more appropriate for certain needs than the others. In
this aspect, Discropt is different from EasyLocal and HotFrame in our empha-
sis on the combinatorial structure of intended problems; we support primitive
combinatorial solution types (permutation, subset, and set partition) and specif-
ically designed neighborhood operators for each type. Although Iopt [28] does
support two solution types, vector of variables and set of sequences, we think
that many combinatorial problems are more suitably represented as one of the
three primitive types supported by Discropt . Another different aspect is that
Discropt uses two fundamentally different search methods: simulated annealing
and incremental greedy construction, together with a hybrid strategy combin-
ing these two heuristics. Early experimental data [23] showed that there were
problems for which simulated annealing clearly outperformed incremental greedy

An Improved Time-Sensitive Metaheuristic Framework 435

construction, and vice versa. This suggests an inclusion of these two as primitive
search methods and a development of a hybrid strategy to take advantage of
them both. Further, Discropt fully realizes incremental greedy construction as a
local search method and incorporates the evaluation of the cost of moving from
one solution to a neighboring solution. This architectural aspect has a signifi-
cant impact on the efficiency of the incremental greedy construction in the local
search framework. Finally, Discropt is designed to be senstive to running time
inputs. This means that both of these search methods must adjust their own
parameters to do their best within a given amount of running time.

3 Recent Improvements and Experimental Results

Since the preliminary version [23], we have made the following improvements:

Improved Annealing Schedules – We compared several cooling schedules for
the simulated annealing heuristic to identify one that works well over all
implemented problems. We found that our new annealing schedule, where
the positive/negative acceptance rate is explicitly fitted to a time schedule,
performed more robustly on the problems we studied.

When to Go Greedy – We generalized the greedy heuristic to work efficiently
in a time-sensitive local-search environment, by treating the extensions

of each partially constructed solution as its neighbors in the local-search
context. We developed an improved combined search strategy heuristic that
provides a more sophisticated composition of the simulated annealing and
greedy heuristics. The idea of combining different search strategies cannot
be employed in systems based on a single search strategy.

Bottleneck Optimization through Norms – We provide a general optimiza-
tion scheme for bottleneck optimization problems (such as graph bandwidth
optimization) that improves the efficiency of local search heuristics for this
class of problems. We show that optimizing under an appropriate norm
can provide better bottleneck solutions than optimizing under the actual
bottleneck metric, due to faster objective function evaluation.

Guaranteed Feasibility through Local Improvement – Infeasible solutions (e.g
vertex cover and graph coloring) give rise to another issue in using local
search. Even though it is essential that a feasible solution be reported at
the end, restricting the search exclusively to feasible solutions results in
inefficient optimization. We present a systematic method which combines
user-defined objective cost and feasibility functions in such a way as to
guarantee that only feasible solutions are returned for any feasibilizable

problem.

Feasibility can be enforced specifically for each problem by specifying ap-
propriate constraints [9,22]. Our method, however, is more universal; it can

436 V. Phan and S. Skiena

be applied to any problem that fit the local-search framework, although fine
tuning for each may be needed to achieve better performance.

To illustrate the ease to construct an operational system, we implemented opti-
mizers for the following popular combinatorial problems:

Permutation problems: Shortest Common Superstring, Traveling Salesman,
and Minimum Bandwidth.
Subset problems: Max Cut, Max Satisfiability and Min Vertex Cover.
Set partition problems: Vertex Coloring and Clustering. These are imple-
mented recently.

Table 1 presents the historical performance of our optimizer on permutation
and subset problems (partition problems were not yet implemented in the early
version) over different running time inputs. Shown in Table 1 are the costs of the
returned solutions at each running time input, on a 1GHz machine with 768MB
of RAM; lower costs are better since all problems are formulated to be minimized.
They qualitatively show that Discropt now performs substantially better than
the February 2002 version reported in [23], across almost all problems and time
scales. The lone exception is on vertex cover, where direct comparison is invalid
because the previous system potentially returned infeasible solutions; our current
version provably guarantees the feasibility of returned solutions.

Table 2 shows the average performance of five heuristics, which are incre-
mental greedy construction and variants of simulated annealing based on the

An Improved Time-Sensitive Metaheuristic Framework 437

constant-decay schedule (sa1), the variation of cost at each annealing trial (sa2),
the fit of acceptance rate to a decreasing curve (sa3), and the combined heuristic.
The results (each is a ratio of the smallest cost known to the cost found for each
instance) are averaged across 2 instances of all of the permutation and subset
problems mentioned above and the Vertex Coloring problem. Our measure of
performance is the ratio of the smallest cost known for each instance to the cost
of the returned solution for each search heuristic and each running time. This
number is a value between 0 and 1 for each heuristic/problem instance pair. We
conclude that among the annealing schedules, sa3 performs the best on aver-
age. This agrees with our hypothesis (Section 4.2) that direct manipulation of
acceptance rate would be more effective in time-sensitive applications. More in-
terestingly, on average the combined heuristic (which attempts to select the most
appropriate strategy for a given problem) outperforms all individual heuristics
of which it is composed.

Tables 3 and 4 show a qualitative comparison between iOpt’s [28] and Dis-

cropt ’s performance on the Vertex Coloring problem. In Table 4, each tripple
shows the number of colors of returned solutions for each heuristic Hill Climb-
ing, Simulated Annealing (SA1), and Simulated Annealing with an annealing
schedule in which the acceptance rate is fit to a curve (SA3). For example, the
solutions produced by Hill Climbing on instance dsjc125.1.col have costs 9,8,8,8
at 2,4,8,16 second running times respectively. It should be noted that in iOpt
the solution type is implemented in as a vector of variables, and in Discropt it is
implemented as a partition (of vertices into different colors). Further, the results
are produced on different machines, compilers, and possibly different objective
functions. They, however, show a qualitative comparison and constrast between
the two systems and another look of how Discropt behaves at varying running
times. We observe that Discropt’s usage of memory is more frugal.

438 V. Phan and S. Skiena

4 Time-Sensitive Search Heuristics

Real-time search strategies have been studied in the field of Artificial Intelli-
gence [15,16], and non-local-search combinatorial optimization [4]. Existing local-
search time-sensitive heuristics in the literature have generally been qualitative
in the sense that there is a set of parameters whose chosen values translate into a
qualitative longer or shorter running time. Lam and Delosme [17,18,19] proposed
an annealing schedule for the simulated annealing heuristic in which how long
a search runs depends qualitatively on the upper-bound of expected fitness
of adjacent annealing trials. Hu, Kahng, and Tsao [13] suggested a variant of
the threshold accepting heuristic based on the so-called old bachelor acceptance
criteria, in which the trial length and hence running time is qualitatively con-
trolled by users. A general theoretical model for evaluating time-sensitive search
heuristics is discussed in [24].

Discropt ’s search heuristics are based on the three main methods: (1) a gen-
eral incremental greedy construction heuristic (2) a global simulated annealing
heuristic, and (3) a combined hybrid-strategy that appropriately allocates time
among different heuristics. The generic view of our metaheuristics is abstractly
an iteration of the following process: start with an initial solution, generate a
random neighboring solution, decide whether or not to move to that neighbor
or stop according to the strategy defined by the metaheuristic.

Discropt employes a time-sensitive policy, suggesting that each heuristic
should adjust its parameters so that the search performs as well as possible
within a given running time. Greedy and simulated annealing implement this
policy by varying the size of the selection pool (greedy) and the rate of converg-

An Improved Time-Sensitive Metaheuristic Framework 439

ing to a final temperature (simulated annealing) in order to converge to local
minima when the given running time expires. Converging to local minima in a
non-trivial manner is arguably performing the best within a given running time.
Further, by varying the parameters as described, better minima are achieved at
longer running times. In other words, performance is expectedly increasing with
running times.

4.1 Time-Sensitive Incremental Greedy Construction

The incremental greedy construction heuristic (see Algorithm 1) starts from
an empty solution and at each step selects the best element among a pool of
candidates according to some problem-specific criteria. The size of each pool
of candidate is determined by how much time remains and how much time was
spent on average per item in the last selection. Discropt treats incremental greedy
construction as a local-search technique by supporting random generation of ex-
tensions of partial solutions. Thus, the process of incrementally extending partial
solutions to larger ones is analogous to the process of moving from one solution
to another. Since incremental greedy construction is viewed as a local-search
heuristic, we can take advantage of strategies applied to local-search heuristics,
including combining it with other local-search heuristics (see Section 4.3), and
optimizing bottle-neck problems efficiently (see Section 5).

Our notion of incremental construction is similar to but more general than
the Brelaz [1] graph coloring heuristic, and is related to the generalized greedy
heuristic of Feo and Resende [6]. Greedy techniques have also been studied in
intelligent search strategies [15].

4.2 Time-Sensitive Simulated Annealing

In simulated annealing, moving from a solution to a neighboring solution is de-
termined with probability where is the difference in cost between

440 V. Phan and S. Skiena

the two solutions and is the current temperature. A final temperature, is
derived by statistical sampling in such a way that it is the temperature at which
neighborhood movement is strictly descendant; at its behavior is identical
to hill climbing. An annealing schedule is characterized by the manner in which
temperature is reduced. This reduction must be carried out so that is the
temperature at which time is about to expire, and each manner of reducing
temperature periodically yields a different annealing schedule. We explore three
classes of schedule in an attempt to identify which works best in a time-sensitive
setting:

Traditional Annealing Schedules – These simple schedules reduce the
temperature by a constant fraction at regular intervals so that the final
temperature is reached as time expires.

Variance-Based Schedules – These schedules reduce temperature by taking
into account the variance of cost at each annealing trial (i.e. the period
during which is kept constant). The idea is that if the costs during
each trial varies substantially (high variance), then is reduced slowly,
and vice versa. This schedule is similar to that of Huang, Romeo, and
Sangiovanni-Vincetelli [14], with an additional effort to make sure is
reached at the end.

Forced-Trajectory Schedules – This class of schedules appears to be novel.
Schedules that are not aware of running times indirectly control the rate of
accepting solutions by manipulating temperature. In a time-sensitive con-
text, we suspect that this indirect mechanism may not be robust enough.
These schedules forcefully fit the acceptance rate (i.e. the ratio of upward to
downward movements) to a monotonically decreasing curve. The rate of ac-
cepting solutions is high initially, say 0.75, but decreases to 0 as time expires.
Figure 1 shows examples of such curves with different rates.

Experimentally, we found that our forced-trajectory schedule outperformed
the other two classes of schedule, averaging over instances of Vertex Coloring and
all of the permutation and subset problems mentioned before; see experimental
results in Section 3.

4.3 Combination of Time-Sensitive Heuristics

Greedy and local search strategies have been previously combined together for
specific applications [20,21,25]. We found experimentally in [23] that simulated
annealing outperformed incremental greedy construction on a number of prob-
lems, and vice versa, which seemed to be in accordance with the no-free-luch
theorems [29,30]. Specifically, the greedy heuristic was found to be superior min-
imizing the shortest common superstring problem, whereas simulated annealing
excelled in minimizing the bandwidth reduction problem. These results empiri-
cally agree with the Wolpert and Macready no-free-lunch theorems [29,30]. When

An Improved Time-Sensitive Metaheuristic Framework 441

Fig. 1. Three different forced-trajectory annealing schedules.

no search strategy dominates the rest or when it is unknown if one strategy is
should be selected, it makes sense to take advantage of them both by combining
them strategically. Our hybrid strategy can be outlined as follows:

Predict longer-run performance based on short-run performance. Given short
running times to each heuristic, we pick the seemingly dominant heuristic
at the given running time. Which search heuristic is dominant is roughly
estimated as follows:

Hill-climb dominates if its short-run result is better than those of both
greedy and simulated annealing.
Otherwise, greedy dominates if its short-run performance is best.
Otherwise, simulated annealing dominates.

Combine greedy and simulated annealing by running simulated annealing
on a local optimum obtained by greedy whenever no heuristic dominates the
others.

As expected, we found empirically this hybrid metaheuristic outperformed
each individual one, averaging over all studied problems. See Section 3.

5 Optimization of Bottleneck Problems

Discropt requires a function to evaluate the cost of moving from one solu-
tion to a neighbor be implemented in addition to an objective function. This
implementation allows the evaluation of a solution’s cost by evaluating the
cost of moving to it from a neighbor with known cost. In many cases when
the neighborhood structure is refined enough so that evaluating the difference

in cost between solution is actually simpler than evaluating the cost of each
solution, this indirect evaluation of cost improves efficiency by a linear fac-
tor. An example is the TSP problem, whose objective function is defined as:

1.

2.

442 V. Phan and S. Skiena

If two neighboring solutions
(which are permutations) differ in only a constant number of positions (e.g.
2), the difference in cost can be evaluated in O(1) steps, instead of steps
required to evaluate directly the cost of each solution.

Unfortunately, for bottleneck problems (which have the form max{· · ·}),
evaluating the difference in cost among neighboring solutions can be as ex-
pensive as evaluating the cost of each solution; there is no gain! An example
is the minimum bandwidth reduction problem, which is defined as

where is a permutation of the vertices. Changing
a permutation a little can result in a drastic change in the value of the maxi-
mum span, thus essentially forcing total re-evaluation of the solution cost. This
inefficiency is a result of the function max being not-so-continuous over the so-
lution space. As a remedy to this inefficiency, we propose a generic method that
is applicable to any bottleneck problem: instead of optimizing the bottleneck
problem, optimizing a more continuous approximated function. Since we have

instead of optimizing a max{· · ·}, we optimize a It can be shown, simi-
larly to the case of TSP, that evaluating the difference in cost of two neighboring
solutions when the objective function is a is much more efficient than
evaluating directly the cost of each solution. In case of minimum bandwidth re-
duction, the new function to be minimized is Table 5
shows a comparison of minimizing the bottleneck function to minimizing
for various As shown, minimizing any yields much better results due to
efficient cost evaluation.

Other non-local-search algorithms have benefited from optimizing an func-
tion instead of the originally stated These include Csirik, et. al. [5], who
obtained several approximation results by optimizing an function for bin
packing, an NP-hard problem [10]. Similarly, Gonzalez [12] obtained a 2-
approximation to the NP-hard clustering problem by optimizing a reformu-
lated version.

An Improved Time-Sensitive Metaheuristic Framework 443

6 Separation of Cost and Feasibility

Discropt uses a systematic strategy to combine cost and feasibility, given that
they have been defined separately as two different functions to be simultaneously
optimized. Problems such as the graph coloring contain infeasible solutions (in-
valid colorings), which are unacceptable as returned solutions. One resolution to
this issue would be an incorporation of a penalty mechanism in the definition of
the objective funtion. For example, penalize an invalid coloring proportionally
to the number of violated edges. Any such method must ensure that returned
solutions are feasible. In Discropt, cost and feasibility can optionally be defined
as two separate functions, and the objective function to be minimized is de-
fined in terms of these two functions. This approach guarantees two things: (1)
returned solutions are local optima with respect to the new objective function
and (2) local optima are provably feasible. To accomplish this, we keep track of
the current maximum rate of change of cost with respect to feasibility, and a
function that allows a qualitative emphasis be placed on cost initially and
feasibility eventually, by maintaining the rate of

A problem with cost function and feasibilityfunction is called feasibilizable
if any infeasible solution has a “more” feasible neighboring solution, i.e. one with
a lower For example, graph coloring under the swap neighborhood is
feasibilizable, because we can always assign an offending vertex a new color, thus
guaranteeing the existence of a more feasible neighbor of an infeasible solution.

Proposition 1. Let P be a feasibilizable problem with cost function and fea-

sibility function Define the linear objective function

that evaluates the objective function of a solution A by combining the given
cost and feasibility functions, using the dynamically updated and which are

functions of time and defined as

for all solutions A and B which are neighbors encountered during the search.

Then, any solution U that is locally optimal with respect to is feasible.

Proof. If U is not feasible, there is a neighbor V of U such that
and
since U is locally optimal with respect to This implies

which implies as (i.e. after a number of

steps). This means contradicting the definition of

444 V. Phan and S. Skiena

Acknowledgements. We would like to thank the referees for their helpful
comments.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.
17.

18.

D. Brelaz. New methods to color the vertices of a graph. Communications of the

ACM, 22(4):251–256, 1979.
P. Briggs, K. Cooper, K. Kennedy, and L. Torczon. Coloring heuristics for register
allocation. ASCM Conference on Program Language Design and Implementation,

pages 275–284, 1989.
F. Chow and J. Hennessy. The priority-based coloring approach to register alloca-
tion. ACM Transactions on Programming Languages and Systems, 12(4):501–536,
1990.
Lon-Chan Chu and Benjamin W. Wah. Optimization in real time. In IEEE Real-

Time Systems Symposium, pages 150–159, 1991.
Janos Csirik, David S. Johnson, Claire Kenyon, James B. Orlin, Peter W. Shor,
and Richard R. Weber. On the sum-of-squares algorithm for bin packing. In In

Proceedings of the 32nd Annual ACM Symposium on the Theory of Computing,

pages 208–217, 2000.
T. Feo and M. Resende. Greedy randomized adaptive search procedures. Journal

of Global Optimization, 6:109–133, 1995.
A. Fink and S. Voss. in [27], chapter HotFrame: A Heuristic Optimization Frame-
work. Kluwer, 2002.
M. Fontoura, C. Lucena, A. Andreatta, S.E. Carvalho, and C. Ribeiro. Using uml-
f to enhance framework development: a case study in the local search heuristics
domain. J. Syst. Softw., 57(3):201–206, 2001.
P. Galinier and J. Hao. A general approach for constraint solving by local search.
In Proceedings of the Second International Workshop on Integration of AI and OR

Techniques in Constraint Programming for Combinatorial Optimization Problems

(CP-AI-OR’00), Paderborn, Germany, March 2000.
M. Garey and D. Johnson. Computers and Intractability, A Guide to the Theory

of NP-Completeness. W.H. Freedman and Company, 1979.
L. Di Gaspero and A. Schaerf. in [27], chapter Writing Local Search Algorithms
Using EasyLocal++. Kluwer, 2002.
T. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoret-

ical Computer Science, 38(2-3) :293–306, 1985.
T. Hu, A. Kahng, and C. Tsao. Old bachelor acceptance: A new class of nonmono-
tone threshold accepting methods. ORSA Journal on Computing, 7(4):417–425,
1995.
M. Huang, F. Romeo, and Sangiovanni-Vincentelli. An efficient general cooling
schedule for simulated annealing. In ICCAD, pages 381–384, 1986.
S. Koenig. Agent-centered search. Artificial Intelligence Magazine, 22(4):109–131,
2001.
R. E. Korf. Real-time heuristic search. Artificial Intelligence, 42(3):189–211, 1990.
J. Lam and J.-M. Delosme. An efficient simulated annealing schedule: derivation.
Technical Report 8816, Yale University, 1988.
J. Lam and J.-M. Delosme. An efficient simulated annealing schedule: implemen-
tation and evaluation. Technical Report 8817, Yale University, 1988.

An Improved Time-Sensitive Metaheuristic Framework 445

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

J. Lam and J.-M. Delosme. Performance of a new annealing schedule. In
1EEE/ACM Proc. of 25th. Design Automation Conference (DAC), pages 306–311,
1988.
P. Merz and B. Freisleben. A genetic local search approach to the quadratic assign-
ment problem. In Thomas Bäck, editor, Proceedings of the Seventh International

Conference on Genetic Algorithms (ICGA97). Morgan Kaufmann, 1997.
P. Merz and B. Freisleben. Greedy and local search heuristics for the unconstrained
binary quadratic programming problem. Technical Report 99-01, University of
Siegen, Germany, 1999.
Laurent Michel and Pascal Van Hentenryck. A constraint-based architecture for
local search. In Proceedings of the 17th ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and applications, pages 83–100. ACM
Press, 2002.
V. Phan, S. Skiena, and P. Sumazin. A time-sensitive system for black-box op-
timization. In 4th Workshop on Algorithm Engineering and Experiments, volume
2409 of Lecture Notes in Computer Science, pages 16–28, 2002.
V. Phan, S. Skiena, and P. Sumazin. A model for analyzing black box optimization.
In Workshop on Algorithms and Data Structures, to be published in Lecture Notes
in Computer Science, 2003.
Bart Selman and Henry A. Kautz. An empirical study of greedy local search
for satisfiability testing. In Proceedings of the Eleventh National Conference on

Artificial Intelligence(AAAI-93), Washington DC, 1993.
K. Smith and M. Palaniswami. Static and dynamic channel assignment using
neural networks. IEEE Journal on Selected Areas in Communications, 15(2) :238–
249, 1997.
S. Voss and D. Woodruff, editors. Optimization Software Class Libraries. Kluwer,
2002.
C. Voudouris and R. Dorne, in [27], chapter Integrating Heuristic Search and
One-Way Constraints in the iOpt Toolkit. Kluwer, 2002.
D. Wolpert and W. Macready. No free lunch theorems for search. Technical Report
SFI-TR-95-02-010, Santa Fe, 1995.
D. Wolpert and W. Macready. No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation, 1(1):67–82, April 1997.

A Huffman-Based Error Detecting Code

Paulo E.D. Pinto1, Fábio Protti2, and Jayme L. Szwarcfiter3*

1 Instituto de Matemática e Estatistica, Universidade Estadual do Rio de Janeiro,
Rio de Janeiro, Brazil.
pauloedp@ime.uerj.br

2 Instituto de Matemática and Núcleo de Computação Eletrônica, Universidade
Federal do Rio de Janeiro, Caixa Postal 2324, 20001-970, Rio de Janeiro, Brazil.

fabiop@nce.ufrj.br
3 Instituto de Matemática, Núcleo de Computação Eletrônica and COPPE-Sistemas,

Universidade Federal do Rio de Janeiro, Caixa Postal 68511, 21945-970, Rio de
Janeiro, Brazil.

jayme@nce.ufrj.br

Abstract. Even codes are Huffman based prefix codes with the addi-
tional property of being able to detect the occurrence of an odd number
of 1-bit errors in the message. They have been defined motivated by a
problem posed by Hamming in 1980. Even codes have been studied for
the case in which the symbols have uniform probabilities. In the present
work, we consider the general situation of arbitrary probabilities. We
describe an exact algorithm for constructing an optimal even code. The
algorithm has complexity where is the number of sym-
bols. Further we describe an heuristics for constructing a nearly optimal
even code, which requires time. The cost of an even code
constructed by the heuristics is at most 50% higher than the cost of a
Huffman code, for the same probabilities. That is, less than 50% higher
than the cost of the corresponding optimal even code. However, com-
puter experiments have shown that, for practical purposes, this value
seems to be much less: at most 5%, for large enough. This corresponds
to the overhead in the size of the encoded message, for having the ability
to detect an odd number of 1-bit errors.

1 Introduction

Huffman codes [4] form one of the most traditional methods of coding. One of the
important aspects of these codes is the possibility of handling encodings of vari-
able sizes. A great number of extensions an variations of the classical Huffman
codes have been described throught the time. For instance, Faller [1], Gallager
[2], Knuth [6] and Milidiú, Laber and Pessoa [10] adressed adaptative methods
for the construction of Huffman trees. Huffman trees with minimum height were
described by Schwartz [12]. The consctruction of Huffman type trees with length
constraints was considered by Turpin and Moffat [13], Larmore and Hirschberg

* Partially supported by Conselho Nacional de Desenvolvimento Científico e Tec-
nológico and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro.

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 446–457, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Huffman-Based Error Detecting Code 447

[7] and Milidiú and Laber [8,9]. On the other hand, Hamming formulated algo-
rithms for the construction of error detecting codes [3]. Further, Hamming [3]
posed the problem of describing an algorithm that would combine advantages
of Huffman codes with the noise protection of Hamming codes. The idea is to
define a prefix code in which the encoding would contain redundancies that
would allow the detection of certain kinds of errors. This is equivalent to forbid
some encodings which, when present in the reception, would signal an error.
Such a code is a Hamming-Huffman code and its representing binary tree, a
Hamming-Huffman tree. In a Huffman tree, all leaves correspond to encodings.
In a Hamming-Huffman tree, there are encoding leaves and error leaves. Hit-
ting an error leaf in the decoding process indicates the existence of an error.
The problem posed by Hamming is to detect the occurrence of an error of one
bit, as ilustrated in the following example given by Hamming [3], p.76. Table 1
shows the symbols and their corresponding encodings. Figure 1 depicts the cor-
responding Hamming-Huffman tree. Error leaves are represented by black nodes.
An error of one bit in the above encodings would lead to an error leaf.

Motivated by the above problem, we have recently proposed [11] a special
prefix code, called even code, which has the property of detecting the occur-
rence of any odd number of 1-bit errors in the message. In [11], the study was
restricted to codes corresponding to symbols having uniform probabilities. In
the present paper, we consider the general situation of arbitrary probabilities.

Fig. 1. A Hamming-Huffman tree

448 P.E.D. Pinto, F. Protti, and J.L. Szwarcfiter

First, we describe an exact algorithm for constructing an optimal even code, for
a given set of symbols, each one with a given probability. The algorithm employs
dynamic programming and its complexity is where is the number
of symbols. Next, we propose a simple heuristics for approximating an optimal
code, based on Huffman’s algorithm. The time required for computing an even
code using the heuristics is We show that the cost of an even code
constructed by the heuristics is at most 50% higher than the cost of a Huffman
code for the same probabilities. That is, less than 50% higher than the corre-
sponding optimal even code. However, for practical purposes, this value seems
to be much less. In fact, we have performed several computer experiments, ob-
taining values always less than 5%, except for small This corresponds to the
overhead in the size of the encoded message, for having the ability to detect an
odd number of 1-bit errors.

The plan of the paper is as follows. In Section 2 we describe the Exact
Algorithm for constructing an optimal even code. The heuristics is formulated
in Section 3. In Section 4 we present comparisons between the code obtained by
the heuristics and a corresponding Huffman code for the same probabilities. The
comparisons are both analytical and experimental.

The following definitions are of interest.

Let be a set of elements, called symbols. Each has an
associated probability Throught the paper, we assume An encoding

for a symbol is a finite sequence of 0’s and 1’s, associated to Each 0
and 1 is a bit of The parity of is the parity of the quantity of 1’s contained
in A subsequence of starting from its first bit is a prefix of The set of
encodings for all symbols of S is a code C for S. A code in wich every encoding
does not coincide with a prefix of any other encoding is a prefix code.

A message M is a sequence of symbols. The encoded message of M is the
corresponding sequence of encodings. The parity of an encoded message is the
number of 1’s contained in it.

A binary tree is a rooted tree T in which every node other than the root, is
labelled left or right in such a way that any two siblings have different labels. Say
that T is trivial when it consists of a single node. A binary forest is a set of binary
trees. A path of T is a sequence of nodes such that is the parent of

The value is the size of the path, whereas all are descendants of
If is the root then is a root path and, in addition, if is a leaf,

then is a root-leaf path of T. The depth of a node is the size of the root
path to it. For a node of T, denotes the subtree of T rooted at that is,
the binary tree whose root is and containing all descendants of in T. The left

subtree of is the subtree where is the left child of Similarly, define
the right subtree of The left and right subtrees of the root of T are denoted
by and respectively. A strictly binary tree is one in which every node is
a leaf or has two children. A full binary tree is a strictly binary tree in which all
root-leaf paths have the same size. The edges of T leading to left children are
labelled 0, whereas those leading to right children are labelled 1. The parity of

A Huffman-Based Error Detecting Code 449

a node is the parity of the quantity of 1’s among the edges forming the root
path to A node is even or odd, according to its parity, respectively.

A (binary tree) representation of a code C is a binary tree T such that there
exists a one-to-one correspondence between encodings and root-leaf paths

of T in such a way that is precisely the sequence of labels, 0 or 1, of the
edges forming A code admits a binary tree representation if and only if it is
a prefix code. Let be the depth of the leaf of T associated to the symbol
Define the cost as the sum Hence, the cost of a trivial tree is
0. An optimal code (tree) is one with the least cost. A full representation tree of
C is a binary tree obtained from the representation tree T of C, by adding a
new leaf as the second child of every node having exactly one child. The original
leaves of T are the encoding leaves, whereas the newly introduced leaves, are the
error leaves. Clearly, in case of Huffman trees, there are no error leaves.

An even (odd) code is a prefix code in which all encodings are even (odd).
Similarly, an even (odd) tree is a tree representation of an even (odd) code.
Examples of even trees for up to three symbols appear in Figure 2, while Figure
3 depicts an optimal even tree for 11 symbols of uniform probabilities.

It is simple to conclude that even codes detect the occurrence of an odd
number of 1-bit errors in a message as follows. We know that all encodings are
even, so the encoded message is also even. By introducing an odd number of
errors, the encoded message becomes odd. Since the encodings are even, the
latter implies that in the full tree representation of the code, an error leaf would
be hit during the decodification process, or otherwise the process terminates at
some odd node of the tree. It should be noted that odd codes do not have this
property. For example, if we have a code C = {1, 01} and a message 01, if the
first bit is changed, resulting 11, the message would be wrongly decoded without
signaling error.

Fig. 2. Examples of even trees

450 P.E.D. Pinto, F. Protti, and J.L. Szwarcfiter

Fig. 3. Optimal even tree for 11 symbols

2 Exact Algorithm

In this section, we describe an exact algorithm for constructing an optimal even
tree for symbols with arbitrary probabilities.

Let be a set of symbols, each having probability
satisfying For denote
Our aim is to find an even code C for S, having minimum cost. In fact, we
propose a solution for a slightly more general problem.

A parity forest F for is a set of even trees and odd trees, and such
that their leaves correspond to the symbols of for with
or Define the cost of F as the sum of the costs of its trees. Say that F

is when its cost is the least among all forests for having
even trees and odd trees. Denote by the cost of an
forest. In terms of this notation, the solution of our problem is

First, define the funtion

The following theorem describes the computation of

Theorem 1. Let be integers such that and
Let Then:

if then

if and then

if and then is equal to

(1)

(2)

(3)

A Huffman-Based Error Detecting Code 451

Proof: By induction, we show that cases (1)-(3) correctly compute
for and When case (1) implies that

which is correct since there are no symbols. For let F be
an forest for Consider the alternatives.

(1) In this case, the even trees of F contain the symbols of
highest probabilities, respectively. In addition, when the remaining
symbols are assigned to the leaves of odd trees, respectively, each of these
trees consisting of exactly one edge. Then

(2) and Then F consists of odd trees, all of them empty
and non trivial. We know that the left subtrees of the trees of F are odd trees,
while the right subtrees are even trees. Furthermore, the children of the roots
of F are roots of an forest. Hence

(3) and Apply the following decomposition. Let be the
minimum depth of a leaf of F. Clearly, the subset of nodes of depth induces a
full binary forest in F. Because F is optimal, the leaf containing has depth
If is assigned to a trivial tree of F. In this situation, the forest formed
by the remaining even trees and odd trees contain the remaining
symbols, and it must be optimal. Consequently,
Consider Let be the forest obtained from F by removing all nodes in
levels less than Clearly, contains trees, equally divided into even
and odd trees. We know that has been assigned to a trivial tree of
Clearly, the forest F–T contains even trees and odd trees.
Since F is – T must be
optimal. Regarding F, all nodes of have been shifted levels. Therefore

Next, we determine the interval of possible variation of
Clearly, when the forest contains a trivial tree. Next, we find
The maximum depth in a forest F, such that no leaf of F has
depth less than corresponds to a forest in which the even trees are trivial
and the odd ones are formed by one edge each, with possible empty trees. There
are nodes with depth half even and half odd. Consequently,

That is
implying

Considering that the situations and have been handled separately
and that is we obtain that is the minimum between

and

Theorem 1 leads to a dynamic programming algorithm for determining
for all and

Start by evaluating the function for The first cost to be
computed is which is 0, since by (1). The parameter
varies increasingly, For each such vary and decreasingly,

and For each such triple compute applying
(1), (2) or (3), according to their values. The computation stops when
is calculated, as it is equal to our target Observe that

452 P.E.D. Pinto, F. Protti, and J.L. Szwarcfiter

in general. There are subproblems. The evaluation of each one
is performed in constant time, if by equations (1) or (2), or in time
when the evaluation is by (3). Consequently, the time complexity is
The space requirements are since for each it suffices to maintain the
subproblems corresponding to and

3 Heuristics

In this section we describe two heuristics to obtain even codes. Heuristics 1 is
very simple and is based on a slight modification of the classical Huffman algo-
rithm [4]. Heuristics 2 simply adds some possible improvements to the previous
one. As we shall see, those improvements allow to yield even codes very close to
the optimal ones.

3.1 Heuristics 1

Given symbols with probabilities Heuristics 1 consists of two
steps:

Step 1. Run Huffman’s algorithm in order to obtain a Huffman tree for

the symbols.

Step 2. Convert into an even tree in the following way: for each
odd leaf corresponding to a symbol create two children and such that:

the left child is an error leaf;

the right child is the new encoding leaf corresponding to We call an
augmented leaf.

Observe that the overall running time of Heuristics 1 is since it
is dominated by Step 1. Step 2 can be easily done in time.

3.2 Heuristics 2

Now we present three possible ways to improve the heuristics previously de-
scribed. As we shall see, these improvements do not increase the running time
in practice, while producing a qualitative jump in performance with respect to
the cost of the generated code.

Improvement I. During Step 1 (execution of Huffman’s algorithm), add
the following test:

Among the candidate pairs of the partial trees to be merged at the beginning

of a new iteration, give preference to a pair of trees and such that is
trivial and is not.

In other words, the idea is to avoid merging trivial trees as much as possible.
The reason why this strategy is employed is explained in the sequel.

In there exist two sibling leaves for each merge operation of trivial trees
ocurring along the algorithm. Of course, one of the siblings is guaranteedly an
odd leaf. When we force a trivial tree to be merged with a not trivial one, we min-
imize the number of pairs of sibling leaves in and thus the number of those

A Huffman-Based Error Detecting Code 453

“guaranteedly odd” leaves. In many cases, this strategy lowers the additional
cost needed to produce the even tree in Step 2.

Let us denote by the Huffman tree obtained by Improvement I. It is
worth remarking that this improvement does not affect the essence of Huffman’s
algorithm, since is a plausible tree.

Moreover, it is possible to implement Improvement I in constant time by
keeping during the execution of Huffman’s algorithm two heaps and
where the nodes of contain trivial trees and the nodes of the remaining
ones. At the beginning of the algoritm, contains nodes and is empty.
When starting a new iteration, simply test whether the roots of and form
a candidate pair of partial trees to be merged; if so, merge them.

Improvement II. Change by repeatedly applying the following oper-
ation in increasing depth order:

If there exist two nodes at the same depth of such that is an odd
leaf and is an even internal node, exchange the positions of and

Observe each single application of the above operation decreases the number
of odd leaves in by one unit. Each time we find odd leaves and even
internal nodes at some depth we perform changes and proceed to
depth

It is clear that the number of changes is bounded by the number of leaves
of Since a single change can be done by modifying a constant number of
pointers, the overall complexity of Improvement II is

Denote by the Huffman tree obtained by Improvement II. Again, the
essence of Huffman’s algorithm is not affected, since is still plausible.

Improvement III. Apply Step 2 on Let T be the even tree obtained.
Then redistribute the symbols among the leaves of T as follows:

Whenever there exist two leaves (of any parities) in T with depths

representing symbols with probabilities respectively, then

exchange the symbols assigned to and

Observe that each single re-assignment performed above reduces the cost of
the resulting even tree by

The entire process can be implemented in the following way: after applying
Step 2, let be the leaf of the tree representing the symbol with probability

for Assume that the depth of is Run first a bucket sort on
the values and then assign the leaf with depth to the symbol with
probability (Recall that The time required for this
operation is therefore Consequently, the overall time bound for Heuristics
II is with space.

4 Comparisons

In this section, we first present an analytical upper bound for the cost of the
even tree generated by Heuristics 2 with respect to the cost of the corresponding
Huffman tree. Then we will exhibit some experimental results.

454 P.E.D. Pinto, F. Protti, and J.L. Szwarcfiter

The terminology employed in this section is the following: given symbols
with probabilities is the Huffman tree for these symbols;
is the corresponding optimal even tree for these symbols; is the even
tree obtained by applying Heuristics 1; and is the even tree obtained by
applying Heuristics 2. Observe that

4.1 An Analytical Bound

Theorem 2.

Proof:
This bound is due to Improvements II and III. Let
be the number of odd leaves, odd internal nodes, even leaves and even internal
nodes at depth of Then either or Moreover, it
is clear that

We claim that Otherwise, if then
which implies from (1). But in this case from
(2), that is, a contradiction.

By summing up and for all values of we conclude that the
number of odd leaves is less than or equal to the number of even leaves in
That is, the number of odd leaves is at most and is less than or equal to the
number of merge operations between two trivial trees in Huffman’s algorithm.
Next, Step 2 puts odd leaves one level deeper, in order to convert into an
even tree.

Now, when applying Improvement III, the probabilities are redistributed in
the tree, in such a way that two leaves with depths and probabilities

satisfy the condition Consequently, there exists a one-
to-one correspondence between the set of augmented leaves and a subset of the
even leaves such that if is an augmented leaf and is its corresponding even
leaf then Thus:

4.2 Experimental Results

The experimental results are summarized in Tables 2 to 4. The tables present the
costs of the trees obtained by the algorithms, for several values of They were
obtained from a program written in Pascal, running on a Pentium IV computer
with 1.8 GHz and 256M RAM.

In Tables 2 and 3 we compare and for in
the range 64 to 1024. In the first case (Table 2) we use uniform probabilities, and
in the second one (Table 3), arbitrary probabilities, obtained from the standard

A Huffman-Based Error Detecting Code 455

Pascal generation routine for random numbers in the range 1 to 10000 (we found
no significant variations changing this range). All the probabilities were further
normalized so that the total sum is 1. In Table 4 we compare the heuristics with
Huffman’s algorithm for in the range 1000 to 100000.

456 P.E.D. Pinto, F. Protti, and J.L. Szwarcfiter

The main result observed in Table 2 is that, for uniform probabilities, Heuris-
tics 2 equals the Exact Algorithm, while Heuristics 1 does not. The main expla-
nation for this fact is that, when the Huffman tree is a complete binary tree, the
improvements of Heuristics 2 apply very well. It can also be observed the small
difference between all methods and Huffman’s algorithm, and the decrease of
the relative costs when increases. It can still be confirmed a theoretical result
stated in [11]: the cost difference between the optimal even tree and the Huffman
tree lays in the interval [1/3, 1/2], being maximum (1/2) when the number of
symbols is for some integer and minimum (1/3) when

Now, examine the results presented in Table 3, for arbitrary probabilities.
First, compare data from Tables 2 and 3. We can see that all data in columns
2 to 5 in Table 3 are smaller than the corresponding ones in Table 2, fact that
is more related to the situation of arbitrary probabilities than to the methods.
The relative difference between and decreases considerably as
increases. The same facts happened for Heuristics 2, suggesting that it is also
well applied for this situation, although it does not equal the optimal solution.

A Huffman-Based Error Detecting Code 457

However, for Heuristics 1, the behavior is quite different. Both the absolute value
of the difference to and the relative value increased. So, we have a great
advantage for Heuristics 2, in this situation.

Table 4 illustrates the costs obtained for large values of and arbitrary
probabilities. The costs compared are and The main
results obtained from Table 3 are confirmed, that is, Heuristics 2 is far better than
Heuristics 1. Moreover, the relative differences of costs from the two heuristics
to Huffman’s algorithm again decrease. Those differences become negligible for
large values of

Finally, from the three tables, we can confirm how loose was the upper the-
oretical bound presented in Subsection 4.1, since all the relative differences be-
tween the costs of the even trees obtained by Heuristics 2 and the Huffman trees
were at most 5%, for large enough. It seems to be interesting to search for
tighter bounds for this situation.

References

1.

2.

3.
4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

N. Faller. An adaptative Method for Data Compression . Record of the 7th Asilo-
mar Conference on Circuits, Systems and Computers, Naval Postgraduate School,
Monterrey, Ca., pp. 593-597, 1973.
R. G. Gallager. Variations on a Theme by Huffman . IEEE Transactions on Infor-
mation Theory, 24(1978), pp. 668-674.
R. W. Hamming. Coding And Information Theory. Prentice Hall, 1980.
D. A. Huffman. A Method for the Construction of Minimum Redundancy Codes.

Proceedings of the IRE, 40:1098-1101, 1951.
D. E. Knuth. The Art of Computer Programming, V.1: Fundamental Algorithms,

Addison Wesley, 2nd Edition, 1973.
D. E. Knuth. Dynamic Huffman Coding. Journal of Algorithms, 6(1985), pp. 163-
180.
L. L. Larmore and D. S. Hirshberg. A fast algorithm for optimal length-limited

Huffman codes. JACM, Vol. 37 No 3, pp. 464-473, Jul. 1990.
R. L. Milidiú and E. S. Laber. The Warm-up Algorithm: A Lagrangean Construc-

tion of Length Restricted Huffman Codes. Siam Journal on Computing, Vol. 30 No
5, pp. 1405-1426, 2000.
R. L. Milidiú and E. S. Laber. Improved Bounds on the Ineficiency of Length

Restricted Codes. Algorithmica, Vol. 31 No 4, pp. 513-529, 2001.
R. L. Milidiú, E. S. Laber and A. A. Pessoa. Improved Analysis of the FGK Algo-

rithm. Journal of Algorithms, Vol. 28, pp. 195-211, 1999.
P. E. D. Pinto, F. Protti and J. L. Szwarcfiter. Parity codes. Technical Report NCE
01/04, Universidade Federal do Rio de Janeiro. Rio de Janeiro, 2004. Submitted.
E. S. Schwartz. An Optimum Encoding with Minimal Longest Code and Total Num-

ber of Digits. Information and Control, 7(1964), pp. 37-44.
A. Turpin and A. Moffat. Practical length-limited coding for large alphabeths. Com-
puter J., Vol. 38, No 5, pp. 339-347, 1995.

Solving Diameter Constrained Minimum

Spanning Tree Problems in Dense Graphs

Andréa C. dos Santos1, Abílio Lucena2, and Celso C. Ribeiro3

1 Department of Computer Science, Catholic University of Rio de Janeiro, Rua
Marquês de São Vicente 225, Rio de Janeiro, RJ 22453-900, Brazil.

cynthia@inf.puc-rio.br
2 Federal University of Rio de Janeiro, Departamento de Administração, Av. Pasteur

250, Rio de Janeiro, RJ 22290-240, Brazil.
lucena@facc.ufrj.br

3 Department of Computer Science, Universidade Federal Fluminense, Rua Passo da
Pátria 156, Niterói, RJ 24210-240, Brazil.

celso@inf.puc-rio.br

Abstract. In this study, a lifting procedure is applied to some exist-
ing formulations of the Diameter Constrained Minimum Spanning Tree
Problem. This problem typically models network design applications
where all vertices must communicate with each other at minimum cost,
while meeting or surpassing a given quality requirement. An alternative
formulation is also proposed for instances of the problem where the di-
ameter of feasible spanning trees can not exceed given odd numbers. This
formulation dominated their counterparts in this study, in terms of the
computation time required to obtain proven optimal solutions. First ever
computational results are presented here for complete graph instances of
the problem. Sparse graph instances as large as those found in the liter-
ature were solved to proven optimality for the case where diameters can
not exceed given odd numbers. For these applications, the corresponding
computation times are competitive with those found in the literature.

1 Introduction

Let G = (V, E) be a finite undirected connected graph with a set V of vertices
and a set E of edges. Assume that a cost is associated with every edge

with Denote by a spanning tree of G, with
For every pair of distinct vertices there exists a unique path in T
linking and Denote by the number of edges in and by

the diameter of T. Given a positive integer the
Diameter Constrained Minimum Spanning Tree Problem (DCMST) is to find a
minimum cost spanning tree T with

DCMST has been shown to be NP-hard when The problem typ-
ically models network design applications where all vertices must communicate
with each other at minimum cost, while meeting or surpassing a given quality
requirement [7]. Additional applications are found in data compression [3] and
distributed mutual exclusion in parallel computing [4,11].

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 458–467, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Solving Diameter Constrained Minimum Spanning Tree Problems 459

DCMST formulations in the literature implicitly use a property of feasible
diameter constrained spanning trees, pointed out by Handler [8]. Consider first
the case where D is even. Handler noted that a central vertex must exist
in a feasible tree T, such that no other vertex of T is more than D/2 edges
away from Conversely, if D is odd, a central edge must exist
in T, such that no vertex of T is more than (D – 1)/2 edges away from the
closest extremity of Another feature shared by these formulations is that,
in addition to the use of natural space variables (i.e. variables associated with
the edges of G, for this application), the central vertex (resp. edge) property of
T is enforced through the use of an auxiliary network flow structure. In doing
so, connectivity of T is naturally enforced by these structures.

The formulation proposed in [1,2] for even D relies on an artificial vertex
to model central spanning tree vertices. For odd D, however, the corresponding
formulation in [1,2] do not use either artificial vertices or edges. Similarly, for-
mulations in [7], irrespective of D being odd or even, do not rely on artificial
vertices or edges. Another distinction between formulations in [1,2] and those in
[7] is that the former contains multicommodity network flow structures, while
the latter contains single commodity network flow ones. As a result, tighter linear
programming relaxations are obtained in [7], albeit at a much larger computer
memory requirement.

Achuthan et al. [1,2] do not present computational results for their DCMST
formulation. Gouvea and Magnanti [7] used the Mixed Integer Programming
(MIP) solver CPLEX 5.0 to test their formulation uniquely on fairly sparse
graphs.

In this paper, we introduce an alternative form of enforcing the central edge
property for the odd D case of DCMST. The proposed model is based on the
use of an artificial vertex. We also apply a lifting procedure to strengthen the
formulations in [1,2]. Original formulations and lifted versions of them were
tested, under the MIP solver CPLEX 9.0, on complete graph instances as well
as on sparse graph ones. For the computational results obtained, lifted versions of
the formulations invariably required significantly less computation time to prove
optimality than their unlifted counterparts. That feature was further enhanced
for the odd D case, with the use of the artificial vertex model.

In Section 2, a summary of the main results for formulations in [1,2] is
presented. In Section 3, the artificial vertex DCMST formulation for odd D
is described. Strengthened (i.e. lifted) versions of the formulations in [1,2] are
presented in Section 4. Computational experiments for dense and sparse graph
instances are reported in Section 5. In these experiments, denser instances than
previously attempted in the literature were solved to proven optimality. Con-
cluding remarks are made in Section 6.

2 Formulations

Formulations in this study make use of a directed graph Graph
is obtained from the original undirected graph G = (V, E), as follows. For every

460 A.C. dos Santos, A. Lucena, and C.C. Ribeiro

edge with there exist two arcs and with
costs Let L = D/2 if D is even and L = (D – 1)/2, otherwise.

The very first formulations for DCMST were proposed by Achuttan et al. [1,
2]. Distinct formulations are presented by the authors for even D and odd D

cases of the problem. Consider first the case where D is even and introduce an
artificial vertex, denoted by into Let be the resulting graph
with and Associate a binary variable

with every arc and a non-negative variable with every vertex
Binary variables are used to identify a spanning tree, while variable

denotes the number of arcs in a path from to For even D, DCMST
is formulated as follows:

Equation (2) ensures that the artificial vertex is connected to exactly one
vertex in V, i.e. the central spanning tree vertex. Constraints (3) establish that
exactly one arc must be incident to each vertex of V. Constraints (4) and (6)
ensure that paths from the artificial vertex to each vertex have at most
L +1 arcs. Constraints (5) are the integrality requirements. Edges such
that or in a feasible solution to (2)-(6) define a spanning tree T
of G with diameter less than or equal to D.

We now consider the odd D case of DCMST. Let be a binary variable
associated with each edge with Whenever edge
is selected as the central spanning tree edge. Otherwise, For D odd,
DCMST is formulated as follows:

Solving Diameter Constrained Minimum Spanning Tree Problems 461

Equation (8) ensures that there must be exactly one central edge. Constraints
(9) establish that for any vertex either there is an arc incident to it
or else vertex must be one of the extremities of the central spanning tree
edge. Constraints (10) and (13) ensure that spanning tree paths from the closest
extremity of the central edge to every other vertex have at most L arcs.
Constraints (11) and (12) are the integrality requirements. In a feasible solution
to (8)–(13), the central edge together with those edges such that
or define a spanning tree T of G with diameter less than or equal to D.

3 An Alternative Formulation for the Odd D Case

The formulation in [1,2] for D odd selects one edge in E to be central and si-
multaneously builds an auxiliary network flow problem around that edge. Flow
emanating from the central edge is then controlled to enforce the diameter con-
straint. Figure 1 (a) illustrates a solution obtained for D = 3. Notice that edge

plays the central edge role and that any spanning tree leaf is no more than
L = (D – 1)/2 = 1 edges away from edge

An alternative formulation which uses an artificial vertex as for the even
D case, is also possible here. Recall that, for D even, the artificial vertex is
connected to exactly one vertex of V, i.e. the central spanning tree vertex. Now,
the artificial vertex will be connected to exactly two vertices. Namely those
two vertices incident on the central edge. This situation is modeled by implicitly
enforcing selection of a central edge by explicitly forcing artificial edges

and to appear in the solution. An illustration of this scheme appears
in Figure 1 (b). A feasible spanning tree T of G is obtained by eliminating the
two edges incident on and connecting their extremities through the central
edge

The motivation behind our formulation for D odd is to highlight a structure
that has already been well studied from a polyhedral viewpoint. In doing so, we
expect to strengthen the overall DCMST formulation through the use of facet
defining inequalities for that structure.

462 A.C. dos Santos, A. Lucena, and C.C. Ribeiro

Fig. 1. Solutions to DCMST in the odd case with D = 3.

Consider the same notation and variables introduced in Section 2 for D odd.
Additional variables for every are introduced to represent the edges
associated with artificial vertex An edge is selected as the central
spanning tree edge if and only if edges and are also selected. This
condition is enforced through the nonlinear equation or convenient
linearizations of it. A valid formulation for DCMST when D is odd is given by:

Solving Diameter Constrained Minimum Spanning Tree Problems 463

Equation (15) establishes that the artificial central vertex is connected to
exactly two vertices of V. Constraints (16) establish that there is exactly one
arc incident to each vertex of V. Constraints (17) to (20) give a linearization of

for every edge Finally, constraints (21) and (22) ensure
that the paths from the artificial vertex to each vertex have at most
L + 1 arcs. Constraints (23) and (24) are the integrality requirements.

We now derive valid inequalities for the formulation (14)-(24). If constraint
(15) is multiplied by variable for

results. Bearing in mind that all variables in (25) are binary 0-1 and consequently
holds, it is valid to write

However, since for every edge and and cannot
simultaneously be equal to 1 if an edge does not exist in E, valid constraints
for (14)–(24) are

Constraints (27) are redundant for formulation (14)–(24) but are not necessarily
so for its linear programming relaxation.

Additional valid inequalities for (14)–(24) can be found if one concentrates
on inequalities (18)–(20) and the underlying Boolean quadric polytope [10].

4 Lifting

In this section, following the work of Desrochers and Laporte [5], we lift the
Miller-Tucker-Zemlin [9] inequalities In
doing so, strengthened versions of DCMST formulations presented in previous
sections are obtained. The idea of lifting consists in adding a valid nonnegative
term to the above inequalities, transforming them into

The larger is the value of the larger will be the reduction in the original
solution space. If then may take any value. Suppose now

464 A.C. dos Santos, A. Lucena, and C.C. Ribeiro

Then, since the path from the central vertex in the even case (resp.
from the closest extremity of the central edge in the odd case) to vertex
visits before visiting Moreover, implies due to constraints
(3) or (9). By substitution in (28), we obtain

To maximize the value of we
take Then,

is a valid inequality for all (resp. for all for D > 2 in the
even case (resp. for D > 3 in the odd case).

We now derive improved generalized upper bounds for the variables for
In the even case, there is an artificial vertex such that The

central vertex connected to will necessarily be the first vertex to be visited in
any path emanating from Then,

Moreover, for any vertex which is not a leaf of the spanning tree.
Then,

holds.
We now consider the odd case. If an edge is the central one, then

and In consequence,

Analogously to the odd case, for any vertex which is not a leaf of
the spanning tree. Then,

Inequalities (30) and (31) define improved generalized upper bounds for the
even D case, while inequalities (32) and (33) correspond to new generalized
upper bounds for the odd S case.

We now derive improved generalized lower bounds for the variables for
In the even case, for any vertex If is not directly

connected to the central vertex, then and If these two conditions
are taken into account simultaneously, we have the first improvement in the
lower bounds:

The above condition is simpler in the odd case, where no central vertex exists:

Solving Diameter Constrained Minimum Spanning Tree Problems 465

5 Computational Results

Computational experiments were performed on a Pentium IV machine with a 2.0
GHz clock and 512 MB of RAM memory, using MIP solver CPLEX 9.0 under
default parameters. In these experiments, the alternative formulation proposed
for the odd D case of DCMST was reinforced with valid inequalities (27).

Test instances were generated as follows. For a graph with a number
of vertices, the uniform distribution was used to draw points with integer coor-
dinates in a square of sides 100 on the Euclidean plane. Vertices were associated
to points and edge costs were taken as the truncated Euclidean distance between
corresponding pairs of points. Sparse graph instances with edges were
generated as in [7]. The minimum cost spanning star is computed first and all
of its edges are selected. The remaining edges are taken as the
least cost edges not already contained in the minimum cost star. In all 19 odd D

instances and 18 even D instances were generated. For each of the two cases, 12
complete graph instances (with up to 25 vertices) were generated. Test instance
details are summarized in Tables 1 and 2.

Table 1 gives numerical results for odd D instances. For each instance, the
number of vertices, the number of edges, and the value of the diameter D are
given. These entries are followed by the results obtained with the original formu-
lation in [1,2] (A), the original formulation with lifting (B), and the new artificial
central vertex formulation with lifting (C). For each formulation, the CPU time
required to prove optimality is given in seconds together with the number of

466 A.C. dos Santos, A. Lucena, and C.C. Ribeiro

nodes visited in the branch-and-bound tree. Table 2 gives the same results for
the even D case, except for the central vertex formulation which does not apply
in this case.

In spite of the considerable duality gaps associated with the formulations
tested here, the lifted formulations we suggest are capable of solving, to proven
optimality, sparse instances as large as those found in the literature in competi-
tive CPU times.

No results appear in the literature for complete graph DCMST instances. A
possible explanation for that is the large computer memory demands required
by the other existing DCMST formulations [1,2]. The very first computational
results for complete graph DCMST instances are thus introduced in this study.

From the computational results presented, it should also be noticed that our
alternative odd D case formulation dominates their counterparts in this study
in terms of the CPU time required to prove optimality.

6 Conclusions

In this study, DCMST formulations proposed in [1,2] were strengthened through
the use of a lifting procedure. In doing so, substantial duality gap reductions
were attained for the computational experiments carried out. Additionally, we
also propose an artificial central vertex strategy for modeling the odd D case
of the problem. For the computational tests carried out, the new formulation
dominated its odd D counterparts in in terms of total CPU time required to prove

Solving Diameter Constrained Minimum Spanning Tree Problems 467

optimality. The same idea could also be extended to other existing formulations
such as those presented in [7].

For sparse graphs instances, the strongest model proposed in this study was
capable of solving, to proven optimality, instances as large as those previously
solved in the literature [7]. It is worth mentioning here that the models suggested
by Gouvea and Magnanti typically produce very small duality gaps. However,
they are quite demanding in terms of computer memory requirements (particu-
larly the model involving variables with four indices). In consequence, they do
not appear adequate to directly tackling dense graph instances of the problem.

In spite of the considerable duality gaps observed in our computational ex-
periments, our approach was capable of solving, to proven optimality, complete
graph instances with up to 25 vertices. These are the first results ever presented
for dense graph DCMST instances.

We conclude by pointing out that the alternative odd D formulation intro-
duced here can be further strengthened with valid inequalities associated with
the Boolean quadric polytope.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

N.R. Achuthan, L. Caccetta, P.A. Caccetta, and J.F. Geelen. Algorithms for the
minimum weight spanning tree with bounded diameter problem. In K.H. Phua,
C.M. Wand, W.Y. Yeong, T.Y. Leong, H.T. Loh, K.C. Tan, and F.S. Chou, edi-
tors, Optimisation Techniques and Applications, volume 1, pages 297–304. World
Scientific, 1992.
N.R. Achuthan, L.Caccetta, P.A. Caccetta, and J.F. Geelen. Computational meth-
ods for the diameter restricted minimum weight spanning tree problem. Aus-

tralasian Journal of Combinatorics, 10:51–71, 1994.
A. Bookstein and S.T. Klein. Compression of correlated bitvectors. Information

Systems, 16:110–118, 2001.
N. Deo and A. Abdalla. Computing a diameter-constrained minimum spanning tree
in parallel. In G. Bongiovanni, G. Gambosi, and R. Petreschi, editors, Algorithms

and Complexity, volume 1767, pages 17–31. 2000.
M. Desrochers and G. Laporte. Improvements and extensions to the Miller-Tucker-
Zemlin subtour elimination constraints. Operations Research Letters, 10:27–36,
1991.
M.R. Garey and D.S. Johnson. Computers and intractability: A guide to the theory

of NP-Completeness. W.H. Freeman, New York, 1979.
L. Gouveia and T.L. Magnanti. Modelling and solving the diameter-constrained
minimum spanning tree problem. Technical report, DEIO-CIO, Faculdade de
Ciências, 2000.
G.Y. Handler. Minimax location of a facility in an undirected graph. Transporta-

tion Science, 7:287–293, 1978.
C.E. Miller, A.W. Tucker, and R.A. Zemlin. Integer programming formulations
and traveling salesman problems. Journal of the ACM, 7:326 – 329, 1960.
M. Padberg. The boolean quadric polytope: Some characteristics and facets. Math-

ematical Programming, 45:139–172, 1988.
K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM

Transactions on Computers, 7:61–77, 1989.

An Efficient Tabu Search Heuristic for the

School Timetabling Problem

Haroldo G. Santos1, Luiz S. Ochi1, and Marcone J.F. Souza2

1 Computing Institute, Fluminense Federal University, Niterói, Brazil.
{hsantos,satoru}@ic.uff.br

2 Computing Department, Ouro Preto Federal University, Ouro Preto, Brazil.
marcone@iceb.ufop.br

Abstract. The School Timetabling Problem (STP) regards the weekly
scheduling of encounters between teachers and classes. Since this schedul-
ing must satisfy organizational, pedagogical and personal costs, this
problem is recognized as a very difficult combinatorial optimization prob-
lem. This work presents a new Tabu Search (TS) heuristic for STP. Two
different memory-based diversification strategies are presented. Compu-
tational experiments with real world instances, in comparison with a pre-
viously proposed TS found in literature, show that the proposed method
produces better solutions for all instances, as well as observed increased
speed in the production of good quality solutions.

1 Introduction

The School Timetabling Problem (STP) embraces the scheduling of sequential
encounters between teachers and students so as to insure that requirements and
constraints are satisfied. Typically, the manual solution of this problem extends
for various days or weeks and normally produces unsatisfactory results due to the
fact that lesson periods could be generated which are inconsistent with pedagog-
ical needs or could even serve as impediments for certain teachers or students.
STP is considered a NP-hard problem [5] for nearly all of its variants, justifying
the usage of heuristic methods for its resolution. In this manner, various heuris-
tic and metaheuristic approaches have been applied with success in the solution
of this problem, such as: Tabu Search (TS) [12,4,10], Genetic Algorithms [13]
and Simulated Annealing (SA) [2].

The application of TS to the STP is specially interesting, since this method
is, as local search methods generally are, very well suited for the interactive
building of timetables, a much recognized quality in timetable building systems.
Furthermore, TS based methods often offer the best known solutions to many
timetabling problems, when compared to other metaheuristics [3,11]. The diver-
sification strategy is an important aspect in the design of a TS algorithm. Since
the use of a tabu list is not enough to prevent the search process from becom-
ing trapped in certain regions of the search space, other mechanisms have been
proposed. In particular, for the STP, two main approaches have been used: adap-
tive relaxation [10,4] and random restart [12]. In adaptive relaxation the costs

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 468–481, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Efficient Tabu Search Heuristic for the School Timetabling Problem 469

involved in the objective function are dynamically changed to bias the search
process to newly, unvisited, regions of the search space. In random restart a new
solution is generated and no previous information is utilized.

This work employs a TS algorithm that uses an informed diversification strat-
egy, which takes into account the history of the search process to bias the se-
lection of diversification movements. Although it uses only standard TS compo-
nents, it provides better results than more complex previous proposals [12].

The article is organized as follows: section 2 presents related works; section 3
introduces the problem to be treated; section 4 presents the proposed algorithm;
section 5 describes the computational experiments and their results; and finally,
section 6 formulates conclusions and future research proposals.

2 Related Works

Although the STP is a classical combinatorial optimization problem, no widely
accepted model is used in the literature. The reason is that the characteristics
of the problem are highly dependent on the educational system of the country
and the type of institution involved. As such, although the basic search problem
is the same, variations are introduced in different works [3,4,10,12]. Described
afterwards, the problem considered in this paper derives from [12] and consid-
ers the timetabling problem encountered in typical Brazilian high schools. In
[12], a GRASP-Tabu Search (GTS–II) metaheuristic was developed to tackle
this problem. The GTS–II method incorporates a specialized improvement pro-
cedure named “Intraclasses-Interclasses”, which uses a shortest-path graph al-
gorithm. At first, the procedure is activated aiming to attain the feasibility
of the constructed solution, after which, it then aims to improve the feasible
solution. The movements made in the “Intraclasses-Interclasses” also remain
with the tabu status for a given number of iterations. Diversification is imple-
mented through the generation of new solutions, in the GRASP constructive
phase. In [11] three different metaheuristics that incorporate the “Intraclasses-
Interclasses” were proposed: Simulated Annealing, Microcanonical Optimization
(MO) and Tabu Search. The TS proposal significantly outperformed both SA
and MO.

3 The Problem Considered

The problem considered deals with the scheduling of encounters with teachers
and classes over a weekly period. The schedule is made up of days of the week
with daily periods, defining distinct periods. There is a set T with

teachers that teach a set S of subjects to a set C of classes, which are
disjoint sets of students with the same curriculum. The association of teachers
to subjects in certain classes is previously fixed and the workload is informed in
a matrix of requirements where indicates the number of lessons that
teacher shall teach for class Classes are always available, and must have
their time schedules, of size completely filled out, while teachers indicate a

470 H.G. Santos, L.S. Ochi, and M.J. Souza

set of available periods. Also, teachers may request a number of double lessons
per class. These lessons are lessons which must be allocated in two consecutive
periods on the same day. This way a solution to the STP problem must satisfy
the following constraints:

1.
2.
3.
4.

no class or teacher can be allocated for two lessons in the same period;
teachers can only be allocated respecting their availabilities;
each teacher must fulfill his/her weekly number of lessons;
for pedagogical reasons no class can have more than two lesson periods with
the same teacher per day.

Also, there are the following desirable features that a timetable should
present:

1.

2.
3.

the time schedule for each teacher should include the least number possible
of days;
double lessons requests must be satisfied whenever possible;
“gaps” in the time schedule of teachers should be avoided, that is: periods
of no activity between two lesson periods.

3.1 Solution Representation

A timetable is represented as a matrix in a such way that each row rep-
resents the complete weekly timetable for a given teacher. As such, the value

indicates the class for which the teacher is teaching during
period or if the teacher is available for allocation
The advantage of this representation is that it eliminates the possibility for the
occurrence of conflicts in the timetable for teachers. The occurrence of conflicts
in classes happens when in a given period more than one teacher is allocated
to that class. Allocations are only allowed in periods with teacher availability.
A partial sample of a timetable with 5 teachers can be found in Figure 1, with
value “X” indicating teacher unavailability.

Fig. 1. Fragment of generated timetable

An Efficient Tabu Search Heuristic for the School Timetabling Problem 471

3.2 Objective Function

In order to treat STP as an optimization problem, it is necessary to define an
objective function that determines the degree of infeasibility and satisfaction
of requirements; that is, pretends to generate feasible solutions with a mini-
mal number of unsatisfied requisites. Thus, a timetable Q is evaluated with the
following objective function, which should be minimized:

where counts, for each period the number of times that more than one
teacher teaches the same class in period and the number of times that a class
has no activity in The portion measures the number of allocations that dis-
regard the daily limits of lessons of teachers in classes (constraint 4). As such, a
timetable can only be considered feasible if The importance
of the costs involved defines a hierarchy so that: The component in
the objective function measures the satisfaction of personal requests from teach-
ers, namely: double lessons, non-existence of “gaps” and timetable compactness,
as follows:

where and are weights that reflect, respectively, the relative importance
of the number of “gaps” the number of week days each teacher is involved
in any teaching activity during the same shift, and the non-negative difference

between the minimum required number of double lessons and the effective
number of double lessons in the current agenda of teacher

4 Tabu Search for the School Timetabling Problem

Tabu Search (TS) is an iterative method for solving combinatorial optimization
problems. It explicitly makes use of memory structures to guide a hill-descending
heuristic to continue exploration without being confounded by the absence of
improvement movements. This technique was independently proposed by Glover
[6] and Hansen [8]. For a detailed description of TS, the reader is referred to [7].
This section presents a brief explanation of TS principles. They are followed by
specifications of the customized TS implementation proposed in this paper.

Starting from an initial solution the method systematically explores the
neighborhood and selects the best admissible movement such that the
application of in the current solution (denoted by produces the
new current solution When no improvement movements are found,
movements that deteriorate the cost function are also permitted. Thus, to try
to avoid cycling, a mechanism called short-term memory is employed. The ob-
jective of short-term memory is try to forbid movements toward already visited
solutions, which is usually achieved by the prohibition of the last reversal move-
ments. These movements are stored in a tabu list and remains forbidden (with

472 H.G. Santos, L.S. Ochi, and M.J. Souza

tabu status), for a given number of iterations, called tabu tenure. Since this strat-
egy can be too restrictive, and in order to not disregard high quality solutions,
movements with tabu status can be accepted if the cost of the new solution
produced satisfy an aspiration criterion. Also, intensification and diversification
procedures can be used. These procedures, respectively, aim to deeply investi-
gate promising regions of the search space and to ensure that no region of the
search space remains neglected. Following is a description of the constructive
algorithm and the customized TS implementation proposed in this paper.

4.1 Constructive Algorithm

The constructive algorithm basically consists of a greedy randomized construc-
tive procedure [9]. While in other works the option for a randomized construction
is to allow diversification, through multiple initializations, in this case the only
purpose is to have control of the randomization degree of initial solution. To build
a solution, step-by-step, the principle of allocating first the most urgent lessons
in the most appropriate periods is used. In this case, the urgency degree of al-
locating a lesson from teacher for class is computed considering the available
periods from teacher the available periods from class and the number
of unscheduled lessons of teacher for class as follows:
Also, let L be the set of required lessons, such that The
algorithm then builds a restricted candidate list (RCL) with the most urgent
lessons, in a such a way that where

and At each iteration,
a lesson for allocation is randomly selected from RCL. The lecture is allo-
cate in a free period of its corresponding teacher, attempting to maintain the
timetable free of conflicts in classes. Allocations are made first in periods with
the least teacher availability. The parameter allows tuning the randomization
degree of the algorithm, varying from the pure greedy algorithm to
a completely random selection of the teacher and class to allocation.
At each step, the number of unscheduled lessons and the urgency degrees are
recomputed. The process continues till no more unscheduled lessons are found
(i.e.,

4.2 Tabu Search Components

The TS procedure (Figure 2) starts from the initial timetable Q provided by the
constructive algorithm and, at each iteration, fully explores the neighborhood

to select the next movement The movement definition used here is the
same as in [10], and involves the swap of two values in the timetable of a teacher

which can be defined as the triple such that
and Clearly, any timetable can be reached through a sequence
of these movements that is at most, the number of lessons in the requirement
matrix. Once a movement is selected, its reversal movement will be kept in the
tabu list during the next iterations, which is randomly selected

An Efficient Tabu Search Heuristic for the School Timetabling Problem 473

Fig. 2. Pseudo-code for TSDS algorithm

(line 17) within the interval [minTT, maxTT]. Insertions and removals in tabu
list can be made at every iteration (line 18). The aspiration criterion defined is
that the movement will loose its tabu status if its application produces the best
solution found so far (line 11).

Since short-term memory is not enough to prevent the search process from
becoming entrenched in certain regions of the search space, some diversification
strategy is needed. In the proposed method, long-term memory is used to guide
the diversification procedure as follows: frequency of movements involving each
teacher and class are computed. While the diversification procedure is active, the
selection of movements emphasizes the execution of few explored movements,
through the incorporation of penalties (line 9) in the evaluation of movements.
Each time a movement is done, movement frequencies will be updated (line
19). These frequencies are zeroed each time that the best solution found so
far is updated (line 22). Following is an explanation of how the penalties in

474 H.G. Santos, L.S. Ochi, and M.J. Souza

function computePenalty (line 9) are computed. Considering that the counts
of movements made with each teacher and class are stored in a matrix
the penalty for a given movement takes into account the transition ratio of
teacher and class which can be computed as follows:

where Since a movement can involve two lesson
periods, or a lesson period and a free period, the penalty associated with
a movement in the timetable of teacher in periods and with allocations

and respectively, considering the cost of the best solution
found so far Q* is:

Another penalty function proposed in this paper also considers the teacher
workload to promote diversification. In this case, the objective is to favor move-
ments involving teachers whose timetable changes would probably produce big-
ger modifications in the solution structure. The value of the penalty function

for allocations and of teacher is:

The diversification strategy is applied whenever signals that regional en-
trenchment may be in action are detected. In this case, the number of non-
improvement iterations is evaluated before starting the diversification strategy
(line 8). The number of non-improvement iterations necessary to start the diver-
sification process (divActivation) and the number of iterations that the process
will remain active (iterationsDiv) are input parameters. Movements performed
in this phase can be viewed as influential movements [7], since these movements
try to modify the solution structure in a influential (non-random) manner. The
function computePenalty (line 9) can use one of the penalty functions previ-
ously presented. In the following sections, the implementation that considers the
penalty function which only takes into account the frequency ratio of transitions
will be referred as TSDS, while the implementation that uses the penalty func-
tion which also takes into account the workload of teachers will be referred as
TSDSTL. For comparison purposes, an implementation without the diversification
strategy (TS), also will be considered in the next section.

5 Computational Experiments and Discussion

Experiments were done in the set of instances originated from [12], and the
data referred to Brazilian high schools, with 25 lesson periods per week for each
class, in different shifts. In Table 1 some of the characteristics of the instances

An Efficient Tabu Search Heuristic for the School Timetabling Problem 475

can be verified, such as dimension and sparseness ratio (sr), which can be com-
puted considering the total number of lessons (#lessons) and the total number
of unavailable periods Lower sparseness values
indicate more restrictive problems and likewise, more difficult resolution.

The algorithms were coded in C++. The implementation of GTS–II was the
same presented in [12], and was implemented in C. The compiler used was GCC
3.2.3 using flag –02. The experiments were performed in a micro-computer with
an AMD Athlon XP 1533 MHz processor, 512 megabytes of RAM running the
Linux operating system.

The weights in the objective function were defined as in [12]:
and

In the first set of experiments, the objective was to verify the average so-
lution cost produced by each algorithm, within some time limits. The results
(Table 2) consider the average best solution found in 20 independent executions,
with the following time limits to instances 1, · · · , 7, respectively: {90, 280, 380,
870, 1930, 1650, 2650}. The parameters for GTS–II and the time limits are the
same proposed in [12]. The parameters for TSDS and its variations are:
(constructive algorithm), minTT = 20, maxTT = 25, divActivation = 500 and
iterationsDiv = 10. Best results are shown in bold.

476 H.G. Santos, L.S. Ochi, and M.J. Souza

Fig. 3. Empirical probability distribution of finding target value in function of time
for instance 1

As can be seen in Table 2, although only minor differences can be observed
among the two implementations that use different penalty functions in the diver-
sification strategy, results show that versions using the informed diversification

An Efficient Tabu Search Heuristic for the School Timetabling Problem 477

Fig. 4. Empirical probability distribution of finding target value in function of time
for instance 2

strategy perform significantly better than GTS–II and TS. In order to evaluate
the quality of the solutions obtained by the proposed method, and to verify how
significant is the improvement of TSDS over the solution received from the con-
structive algorithm, Table 3 presents the average costs involved in each objective
function component, for the solution provided by the constructive algorithm and
for the improved solution from TSDS. Columns and cr are
related to the component of the objective function, in the following way:

indicates the unsatisfied double lessons (and the percentage of unsatisfied
double lessons, considering the number of double lesson requests), in-
dicates the number of “gaps” in the timetable of teachers (and the percentage
considering the total number of lessons) and cr measures the compactness ratio
of timetable of teachers. To compute cr, the summation of the actual number of
days ad that each teacher must attend to some lesson in the school and the lower
bound for this value ad are used. The ad value considers the minimum number

of days that each teacher must attend some lecture in the
school, such that This way, cr = ad/ad. Values close to one
indicate that the timetable is as compact as it can be. As can be seen in Table
3, the solution provided by the constructive algorithm usually contains some
type of infeasibility. These problems were always solved by the TSDS algorithm,
in a way that no infeasible timetable was produced. Regarding the preferences
of teachers, the timetable compactness, which has the highest weight in the
component of the objective function, it can be seen that in most cases the op-
timal value was reached (cr = 1). Also, small percentage values of “gaps” and
unsatisfied double lessons were obtained.

In another set of experiments, the objective was to verify the empirical proba-
bility distribution of reaching a given sub-optimal target value (i.e. find a solution
with cost at least as good as the target value) in function of time in different

478 H.G. Santos, L.S. Ochi, and M.J. Souza

Fig. 5. Empirical probability distribution of finding target values in function of time
for instances 3 and 4

instances. The sub-optimal values were chosen in a way that the slowest algo-
rithm could terminate in a reasonable amount of time. In these experiments,
TSDS and GTS–II were evaluated and the execution times of 150 independent
runs for each instance were computed. The experiment design follows the pro-
posal of [1]. The results of each algorithm were plotted associating with the
smallest running time a probability which generates points

for As can be be seen in Figures 3 to 6 the TSDS

heuristic achieves high probability values of reaching the target values
in significantly smaller times than GTS–II. This difference is enhanced mainly
in instance 4, which presents a very low sparseness ratio. This result may be re-
lated to the fact that the “Intraclasses-Interclasses” procedure of GTS–II works
with movements that use free periods, which are hard to find in this instance.
Another analysis, taking into account all test instances, shows that at the time

An Efficient Tabu Search Heuristic for the School Timetabling Problem 479

Fig. 6. Empirical probability distribution of finding target values in function of time
for instances 5, 6 and 7

480 H.G. Santos, L.S. Ochi, and M.J. Souza

when 95% of TSDS runs have achieved the target value, in average, only 64% of
GTS–II runs have achieved the target value. Considering the time when 50% of
TSDS runs have achieved the target value, only 11%, in average, of GTS–II runs
have achieved the target value. Table 4 presents the execution times needed by
GTS–II and TSDS to achieve different probabilities of reaching the target values.

6 Concluding Remarks

This paper presented a new tabu search heuristic to solve the school timetabling
problem. Experiments in real world instances showed that the proposed method
outperforms significantly a previously developed hybrid tabu search algorithm,
and it has the advantage of a simpler design.

Contributions of this paper include the empirical verification that although
informed diversification strategies are not commonly employed in tabu search
implementations for the school timetabling problem, its incorporation can sig-
nificantly improve the method robustness. The proposed method not only pro-
duced better solutions for all test instances but also performed faster than a
hybrid tabu search approach.

Although the proposed method offers quite an improvement, future re-
searches may combine the “Intraclasses-Interclasses” procedure with an informed
diversification strategy, which could lend to even better results .

Acknowledgements. This work was partially supported by CAPES and
CNPq. The authors would like thank Olinto C. B. Araújo, from DENSIS-FEE-
UNICAMP, Brazil for their valuable comments on the preparation of this paper.

References

1.

2.

3.

4.

5.

6.

7.

8.

Aiex, R. M., Resende, M. G. C., Ribeiro, C. C.: Probability distribuition of solution
time in GRASP: an experimental investigation, Journal of Heuristics, 8 (2002),
343–373
Abramson, D.: Constructing school timetables using simulated annealing: sequen-
tial and parallel algorithms. Management Science. 37 (1991) 98–113.
Colorni, A., Dorigo, M., Maniezzo, V.: Metaheuristics for High-School Timetabling.
Computational Optimization and Applications. 9 (1998) 277–298.
Costa, D.: A Tabu Search algorithm for computing an operational timetable. Eu-
ropean Journal of Operational Research Society. 76 (1994) 98–110.
Even, S., Itai, A., Shamir, A.: On the complexity of timetabling and multicom-
modity flow problems. SIAM Journal of Computation. 5 (1976) 691–703.
Glover, F.: Future paths for integer programming and artificial intelligence. Com-
puters & Operations Research. 13 (1986) 533–549.
Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston Dor-
drecht London (1997)
Hansen, P.: The steepest ascent mildest descent heuristic for combinatorial pro-
gramming. Congress on Numerical Methods in Combinatorial Optimization. Capri
(1986)

An Efficient Tabu Search Heuristic for the School Timetabling Problem 481

10.

11.

12.

13.

Resende, M.G.C., Ribeiro. C.C.: Greedy randomized adaptive search procedures.
Handbook of Metaheuristics. Kluwer. (2003) 219–249
Schaerf, A.: Tabu search techniques for large high-school timetabling problems.
Report CS-R9611. Centrum voor Wiskunde en Informatica, Amsterdam (1996)
Souza, M.J.F.: Programação de Horários em Escolas: Uma Aproximação por Meta-
heurísticas, D.Sc. Thesis (in Portuguese), Universidade Federal do Rio de Janeiro
- Rio de Janeiro (2000)
Souza, M.J.F., Ochi, L.S., Maculan, N.: A GRASP-Tabu search algorithm for
solving school timetabling problems. In: Resende, M.G.C., Souza, J.P. (eds.):
Metaheuristics: Computer Decision-Making. Kluwer Academic Publishers, Boston
(2003) 659–672
Wilke, P, Gröbner, M., Oster, N.: A hybrid genetic algorithm for school
timetabling. In: AI 2002: McKay B. and Slaney J. (eds.): Advances in Artificial In-
telligence. Springer Lecture Notes in Computer Science, Vol. 2557. Springer-Verlag,
New York (2002) 455–464

9.

Experimental Studies of Symbolic Shortest-Path

Algorithms

Daniel Sawitzki*

University of Dortmund, Computer Science 2, D-44221 Dortmund, Germany,
daniel.sawitzki@cs.uni-dortmund.de

Abstract. Graphs can be represented symbolically by the Ordered Bi-
nary Decision Diagram (OBDD) of their characteristic function. To solve
problems in such implicitly given graphs, specialized symbolic algorithms
are needed which are restricted to the use of functional operations offered
by the OBDD data structure. In this paper, two symbolic algorithms
for the single-source shortest-path problem with nonnegative positive
integral edge weights are presented which represent symbolic versions
of Dijkstra’s algorithm and the Bellman-Ford algorithm. They execute

resp. OBDD-operations to obtain the
shortest paths in a graph with N nodes, M edges, and maximum edge
weight B. Despite the larger worst-case bound, the symbolic Bellman-
Ford-approach is expected to behave much better on structured graphs
because it is able to handle updates of node distances effectively in paral-
lel. Hence, both algorithms have been studied in experiments on random,
grid, and threshold graphs with different weight functions. These stud-
ies support the assumption that the Dijkstra-approach behaves efficient
w. r. t. space usage, while the Bellman-Ford-approach is dominant w. r. t.
runtime.

1 Introduction

Algorithms on graphs G with node set V and edge set typically work
on adjacency lists of size or on adjacency matrices of size
These representations are called explicit. However, there are application areas in
which problems on graphs of such large size have to be solved that an explicit
representation on today’s computers is not possible. In the area of logic syn-
thesis and verification, state-transition graphs with for example nodes and

edges occur. Other applications produce graphs which are representable in
explicit form, but for which even runtimes of efficient polynomial algorithms are
not practicable anymore. Modeling of the WWW, street, or social networks are
examples of this problem scenario.

However, we expect the large graphs occurring in application areas to contain
regularities. If we consider graphs as Boolean functions, we can represent them

* Supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Research
Cluster “Algorithms on Large and Complex Networks” (1126).

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 482–497, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Experimental Studies of Symbolic Shortest-Path Algorithms 483

by Ordered Binary Decision Diagrams (OBDDs) [4,5,19]. This data structure
is well established in verification and synthesis of sequential circuits [9,11,19]
due to its good compression of regular structures. In order to represent a graph
G = (V, E) by an OBDD, its edge set E is considered as a characteristic Boolean

function which maps binary encodings of E’s elements to 1 and all others to
0. This representation is called implicit or symbolic, and is not essentially larger
than explicit ones. Nevertheless, we hope that advantageous properties of G lead
to small, that is sublinear OBDD-sizes.

Having such an OBDD-representation of a graph, we are interested in solv-
ing problems on it without extracting too much explicit information from it.
Algorithms that are mainly restricted to the use of functional operations are
called implicit or symbolic algorithms [19]. They are considered as heuristics to
save time and/or space when large structured input graphs do not fit into the
internal memory anymore. Then, we hope that each OBDD-operation processes
many edges in parallel. The runtime of such methods depends on the number of
executed operations as well as on the efficiency of each single one. The latter in
turn depends on the size of the operand OBDDs.

In general, we want heuristics to perform well on special input subsets, while
their worst-case runtime is typically worse than for optimal algorithms. Sym-
bolic algorithms often have proved to behave better than explicit methods on
interesting graphs and are well established in the area of logic design and veri-
fication. Most papers on OBDD-based algorithms prove their usability just by
experiments on benchmark inputs from a special application area [10,11,13]. In
less application-oriented works considering more general graph problems, mostly
the number of OBDD-operations is bounded as a hint on the real over-all run-
time [3,8,7,14]. Only a few of them contain analyses of the over-all runtime and
space usage for special cases like grids [15,16,20].

Until now, symbolic shortest-path algorithms only existed for graph rep-
resentations by algebraic decision diagrams (ADDs) [1], which are difficult to
analyze and are useful only for a small number of different weight values. A
new OBDD-based approach to the all-pairs shortest-paths problem [18] aims at
polylogarithmic over-all runtime on graphs with very special properties. In con-
trast to these results, the motivation of this paper’s research was to transform
popular methods for the single-source shortest-path problem into symbolic algo-
rithms, and to compare their performance in experiments. This has been done
for Dijkstra’s algorithm as well as for the Bellman-Ford algorithm.

This paper is organized as follows: Section 2 introduces the principles of sym-
bolic graph representation by OBDDs. Section 3 presents the symbolic shortest-
path algorithms studied in this paper. Section 4 discusses experimental results
of the algorithms on random, grid, and threshold graphs. Finally, Sect. 5 gives
conclusions on the work.

484 D. Sawitzki

2 Symbolic Graph Representation

We denote the class of Boolean functions by The ith
character of a binary number is denoted by and
identifies its value.

Consider a directed graph G = (V, E) with node set and
edge set G can be represented by a characteristic Boolean function

which maps pairs of binary node numbers of length to 1 iff
We can capture more complex graph properties by adding further

arguments to characteristic functions. An additional weight function
is modeled by which maps triples to 1 iff

and
A Boolean function defined on variables can be repre-

sented by an OBDD [4,5,19]. An OBDD is a directed acyclic graph consisting
of internal nodes and sink nodes. Each internal node is labeled with a Boolean
variable while each sink node is labeled with a Boolean constant. Each in-
ternal node is left by two edges one labeled by 0 and the other by 1. A func-
tion pointer marks a special node that represents Moreover, a permutation

called variable order must be respected by the internal nodes’ labels on
every path in the OBDD.

For a given variable assignment we compute the corresponding
function value by traversing from to a sink labeled with while
leaving a node via its The size of is measured by the
number of its nodes. An OBDD is called complete, if every path from to a
sink has length This has not to be the case in general, because OBDDs may
skip a variable test. We adopt the usual assumption that all OBDDs occurring in
symbolic algorithms are minimal, since all OBDD-operations exclusively produce
minimized diagrams, which are known to be canonical. There is an upper bound
of for the OBDD-size of every hence, a graph’s edge set

has an OBDD of worst-case size

OBDD-operations. The satisfiability of can be decided in time The
negation as well as the replacement of a function variable by a constant
(i.e., is computable in time Whether two functions and
are equivalent (i. e., can be decided in time These
operations are called cheap. Further essential operations are the binary synthesis

for (e.g., and and the quantification for
a quantifier In general, the result has size
which is also the general runtime of this operation. The computation of
can be realized by two cheap operations and one binary synthesis in time and
space

Notation. The characteristic functions used for symbolic representation are
typically defined on several subsets of Boolean variables, each representing a
different argument. For example, a weighted graph’s function is defined on

Experimental Studies of Symbolic Shortest-Path Algorithms 485

two binary node numbers and and a binary
weight value We assume w. l. o. g. that all arguments consist of
the same number of variables. Moreover, both a function defined on

arguments as well as its OBDD-representation will
be denoted by in this paper. We use an interleaved variable order

which enables to swap [19] arguments in
time (e.g.,

The symbolic algorithms will be described in terms of functional assignments
like The quantification over the

bits of an argument will be denoted by Although this seems
to be one OBDD-operation, this corresponds to quantification operations.
Identifiers with braced superscripts mark additional arguments of characteristic
functions occurring only temporarily in quantified formulas (e. g., Further-
more, the functional assignments will contain tool functions for comparisons of
weighted sums like These can be composed from
multivariate threshold functions.

Definition 1. Let be defined on variables

Moreover, let and is called

threshold function iff it is

is called the maximum absolute weight of

Besides the greater or equal comparison, the relations >, <, and = can
be realized by binary syntheses of multivariate threshold functions, too. For a
constant number of arguments and a constant maximum absolute weight
such a comparison function has a compact OBDD of size [20].

3 Symbolic Shortest-Path Algorithms

In this section, symbolic versions of two popular shortest-path algorithms are
presented: Dijkstra’s algorithm [6] and the Bellman-Ford algorithm [2]. We as-
sume that the reader is familiar with these two methods, and describe their
symbolic versions in separate sections. Both solve the single-source shortest-
path problem in symbolically represented directed graphs with
node set edge set of cardinality M, source node

edge weight function and
The maximum path length from to any node is B(N – 1) =: L. Let

be the number of bits necessary to encode
one node number or distance value. The algorithms receive the input graph in
form of two OBDDs for the characteristic functions and with

486 D. Sawitzki

The output is the distance function dist: which maps a node
to the length of a shortest path from to given as an OBDD

with

Both algorithms maintain a temporary distance function
represented by an OBDD which is updated until it equals dist.

3.1 The Dijkstra- Approach

Dijkstra’s algorithm [6] stores a node set of nodes for which the shortest-
path length is already known. At the beginning, it is and

for all nodes In each iteration, we add one node to A. Let
be the last node added to A. For each edge it is checked whether

If this is the case, we update to After this
relaxation step, we add a node to A whose value is minimal.
If the actual distances correspond to dist and we
terminate. If the nodes are stored in a priority heap with access time
this explicit algorithm needs time

This approach is now transformed into a symbolic algorithm that works with
corresponding OBDDs and for the characteristic functions of A
and At the beginning, they are initialized to the source node:

and are bit strings representing the node lastly added
to A with Initially, represents and it is and

Now all edges leaving have to be relaxed. We introduce three helping
functions which will be used to update Function repre-
sents pairs such that and

and represent the two possibilities for nodes 1. It
is iff distance is the relaxed distance of not being larger
than the actual distance 2. It is iff distance is the
actual distance not being larger than the relaxed distance of Case
1 represents the update of while Case 2 represents its retention. Fi-
nally, the new equals the actual for nodes while for
nodes Case 1 or Case 2 applies. This leads to the
following symbolic formulation:

Experimental Studies of Symbolic Shortest-Path Algorithms 487

At next, we select the new minimal node If there are several nodes with
minimal value we select the node with the smallest node number
Hence, we need a comparison function for two node–distance-pairs denoted by

The facts on multivariate threshold functions in Sect. 2 imply that comparisons
like and have OBDD-size Now we
define the selection function

The interpretation of this functional assignment is that the node–distance-pair
is selected iff and there is no other node-distance

pair with these properties and
If all nodes reachable from have been added to A and we may
terminate with output Otherwise, contains
exactly one satisfying assignment for and This can be extracted in linear
time w. r. t. size(SEL) [19]. Finally, we just need to add to

Afterwards, we jump to the relaxation step. The correctness of this symbolic
procedure follows from the correctness of Dijkstra’s algorithm, while we now
consider the number of executed OBDD-operations.

Theorem 1. The symbolic Dijkstra-approach computes the output OBDD

by OBDD-operations.

Proof. All nodes reachable from are added to That is, at most N re-
laxation and selection iterations are executed. In each iteration, the algorithm
performs a constant number of cheap operations, argument swaps, binary syn-
theses, and quantifications over node or distance arguments. Each of the latter
corresponds to quantifications over single Boolean vari-
ables. Altogether, OBDD-operations are executed.

We have also studied a parallelized symbolic version of Dijkstra’s algorithm,
which selects not only one distance-minimal node to be handled in each iteration,
but a maximal set of independent nodes not interfering by adjacency. Experi-
ments showed that the parallelization could compensate the overhead caused by
the more complex symbolic formulation only for graphs of very special structure,
why this approach is not discussed in this work.

488 D. Sawitzki

3.2 The Bellman-Ford-Approach

In contrast to Dijkstra’s algorithm, the Bellman-Ford algorithm [2] does not
select special edges to relax, but performs N iterations over all edges
to check the condition and to update eventually.
Therefore, its explicit runtime is In contrast to Dijkstra’s algorithm,
Bellman-Ford is able to handle graphs with negative edge weights if they do not
contain negative cycles. Furthermore, it is easy to parallelize, which motivated
the development of a symbolic version: Few OBDD-operations hopefully perform
many edge relaxations at once.

Again, the actual distance function is only known for the source at
the beginning:

We again need a function representing the candidates for edge
relaxation. Let iff and is not
larger than the actual

If no relaxations are applicable and
represents the correct output—we may terminate. Otherwise, we use the com-
parison function to choose the subset that is minimal w. r. t.
distance and, secondly, the node number

Finally, we compute the symbolic set of node-distance pairs that have
to be updated in because they were part of a selected relaxation:

In this way, the new distances of are taken over into while the
other nodes keep their distance value. The new iteration starts with comput-
ing Again, the correctness follows from the correctness of the
explicit Bellman-Ford algorithm.

Theorem 2. The symbolic Bellman-Ford-approach computes the output OBDD

OBDD-operations.

Proof. Every implementation of the Bellman-Ford-algorithm performs at most
edge relaxations. In each iteration, the symbolic method relaxes at least

one edge, and executes a constant number of cheap operations, argument swaps,
binary syntheses, and quantifications over node and distance arguments. Each
of the latter corresponds to quantifications over single
Boolean variables. Altogether, OBDD-operations are exe-
cuted.

by

Experimental Studies of Symbolic Shortest-Path Algorithms 489

3.3 Computing the Predecessor Nodes

Besides dist, explicit shortest-path algorithms return for each node a
predecessor node such that there is a shortest path from to
which uses the edge Analogue, the symbolic approaches can be modified
such that they also compute the predecessor nodes on shortest paths.

The following method computes these just from the final and is
independent of the considered symbolic algorithm. It uses the helping function

which is satisfied iff
and By existential quantification over

the distances and we obtain the function which
represents exactly all edges being part of some shortest path (i. e., for which
is a predecessor of

If we are only interested in an arbitrary predecessor of a concrete node we
may omit the computation of by replacing argument of P by
and extracting an arbitrary satisfying variable assignment of P. Therefore,
computing is the essential part of symbolic shortest-path algorithms,
which has been analyzed by means of the experiments documented in Sect. 4.

Remark 1. The worst-case behavior of a particular OBDD-operation executed
by a symbolic algorithm can be obtained from the general bound
for the OBDD-size of any function together with the worst-case bounds
for runtime and space in Sect. 2.

Analogue to Theorem 2 in [18], it can be shown that constant width bounds of
input OBDD and output OBDD imply a polylogarithmic
upper bound on time and space for each operation. However, we did not want to
restrict ourselves to such special cases and applied the Dijkstra-approach as well
as the Bellman-Ford-approach in experiments to obtain more general results.

4 Experimental Results

Although the symbolic Bellman-Ford-approach has a higher worst-case bound for
the number of OBDD-operations than the Dijkstra-approach, we hope that each
of its iterations relaxes many edges in parallel leading to a sublinear operation
number. On the other hand, representing symbolic sets like may
involve many little structured information causing larger OBDDs than Dijkstra.
That is, we expect the Bellman-Ford method to need more space, while hoping
that the smaller operation count results in less over-all runtime.

In order to check these hypotheses, the symbolic shortest-path algorithms
have been applied in experiments on random, grid, and threshold graphs. Be-
cause the OBDD-size of a symbolic algorithm’s input graph G is a natural

490 D. Sawitzki

lower bound for its resource usage, we investigate experimental behaviors also
w. r. t. these input sizes. This allows to measure performances independently of
how well an input G is suited for OBDD-representation.

Experiment setting. Both symbolic algorithms have been implemented1 in
C++ using the OBDD package CUDD 2.3.1 by Fabio Somenzi2. An interleaved
variable order with increasing bit significance has been used for the Boolean
variables of each function argument. The experiments took place on a PC with
Pentium 4 2GHz processor and 512 MB of main memory. The runtime has been
measured by seconds of process time, while the space usage is given as the maxi-
mum number of OBDD-nodes present at any time during an algorithm execution.
The latter is of same magnitude as the over-all space usage and independent of
the used computer system.

4.1 Random Graphs

Random graphs possess no regular structure and, therefore, are patho-
logical cases for symbolic representations—they have expected OBDD-size

Just for dense graphs some compression is achieved because, in-
tuitively spoken, the OBDD stores the smaller number of missing edges instead
of all existing ones. However, we cannot hope symbolic methods to beat explicit
algorithms on random graphs. But even in such worst cases their runtime and
space usage may be only linear w. r. t. the (correspondingly large) input OBDD-
sizes, which is the best we can expect from symbolic methods in general.

Both presented symbolic shortest-path algorithms have been tested on ran-
dom graphs with 100, 200, 300, and 400 nodes and edge probabilities from 0.05
to 1 in steps of 0.05 influencing the observed edge density. Node 0 served as
source. Moreover, three edge weight functions of different regularity have been
considered. The documented experimental results are the averages of results of
10 independent experiments for each parameter setting. The particular results
merely deviated from their averages.

Constant edge weights. At first, the constant edge weight function
has been considered. This structural assumption causes a slightly sublinear

growth of the symbolic representation’s OBDD-size w. r. t. the edge probability
(see Fig. 1(a)). Figures 1(b) to 1(e) show the observed runtimes and space usage
of both algorithms w. r. t. the edge probabilities, where “ParBF” identifies the
symbolic (parallelized) Bellman-Ford-approach.

As expected, the Dijkstra method uses less space, while Bellman-Ford has
lower runtimes. Figures 1(f) and 2(a) integrate all runtimes resp. space usage into
one plot w. r. t. the input graphs’ OBDD-sizes, which constitutes the Dijkstra–
space resp. Bellman-Ford–time connection: The space usage of the Dijkstra-
approach grows linearly with the input graph’s OBDD-size with same offset and

1 Implementation and experiments available at http://thefigaro.sourceforge.net/.
2 CUDD is available at http://vlsi.colorado.edu/.

Experimental Studies of Symbolic Shortest-Path Algorithms 491

gradient for all considered numbers of nodes N, while this is not the case for the
Bellman-Ford-approach. For the runtime, the situation is vice versa: Only the
Bellman-Ford approach shows unique linear runtime-growth.

Difference edge weights. In order to proceed to a less simple weight function
than constant weights, difference edge weights have been considered:

The modulo-operation was used to bound the gap between maximum weights
for the different numbers of nodes N = 100 to 400.

This weight function can be composed of multivariate threshold functions,
and has OBDD-size Accordingly, the OBDD-sizes of random graphs
with difference weights are not essentially larger than for constant weights (see
Fig. 2(b)). Again, Dijkstra dominates w. r. t. space usage and Bellman-Ford dom-
inates w. r. t. runtime, while the general resource usage is higher than for con-
stant weights (see Tables 2(c) and 2(d)). The dependence of time and space on
the input OBDD-sizes is given by Figs. 2(f) and 3(a): While Dijkstra’s space
still grows linearly with the same offset and gradient for all node numbers, the
Bellman-Ford’s runtime behavior now differs for different N.

Random edge weights. Finally, random graphs with random edge weights
between 1 and 200 have been considered in experiments. Figure 2(e) shows
that their OBDD-sizes grow linearly with the edge density, because the random
weights prohibit the space savings observed for the two other weight functions.
The runtimes w.r.t. edge probabilities and numbers of nodes N are given by
Tables 2(c) and 2(d), while the dependence of time and space on the input
OBDD-sizes is given by Figs. 2(f) and 3(a). The general resource usage further
increased in comparison to difference weights. The missing structure of the in-
puts leads to nearly the same runtime for Dijkstra and Bellman-Ford—the latter
is not able to compensate the larger space requirements by less operations any-
more. In contrast, the advantage of the Dijkstra-approach still remains: Its space
usage grows linearly with the same offset and gradient for all considered edge
probabilities and numbers of nodes N.

4.2 Grid and Threshold Graphs

In contrast to random graphs, the grid and threshold graphs considered in
this section are examples of structured inputs with logarithmic OBDD-size

[16,20], whose OBDDs can be constructed efficiently. Hence, we hope
a useful symbolic algorithm to use only polylogarithmic resources in these cases.

Grid graphs. Both algorithms have been applied to graphs,
which are quadratic node matrices of nodes with
vertical edges and horizontal edges Grids of

492 D. Sawitzki

Fig. 1. Experimental results on random graphs.

Experimental Studies of Symbolic Shortest-Path Algorithms 493

Fig. 2. Experimental results on random graphs.

494 D. Sawitzki

Fig. 3. Experimental results on random, grid, and threshold graphs.

size to with source node (0,0) and constant edge weight 1 have been
considered. Because these should be examples for graphs of optimal symbolic
representation, no random weights were used in the experiments.

Threshold graphs. Threshold graphs [12] have compact OBDDs of size
if their degree sequence or construction sequence has a compact sym-

bolic representation [17]. In particular, this is the case for graphs with nodes
and edges

Both symbolic shortest-path algorithms have been applied on such threshold
graphs for and As edge weight, the difference
of Sect. 4.1 without modulo-operation has been chosen.

Results. For both algorithms on grid and threshold graphs, Fig. 3(b) shows the
dependency of space usage on the node number exponent where the Dijkstra-
approach is again dominating. Nevertheless, the linear growth of all four plots
implies logarithmic growth w. r. t. N, which is the best case for symbolic algo-
rithms’ behavior. In general, this convenient property cannot be deduced just
from logarithmic input OBDD-size.

Because Dijkstra’s runtime is at least linear in the number of reachable nodes
and the Bellman-Ford’s runtime is at least linear in the minimum number of
edges on any no polylogarithmic runtime can be obtained on grid
graphs. Despite this theoretical fact, Bellman-Ford performed very efficiently on
grids, while Dijkstra’s runtime got very inefficient for the exponentially growing
grid sizes (see Table 3(a)). Moreover, in experiments on grids with a number

Experimental Studies of Symbolic Shortest-Path Algorithms 495

of 20 log N randomly added edges, both algorithms’ runtime did not change
essentially in comparison to unmodified grids.

Table 3(b) shows the observed runtimes on the considered threshold graphs.
Due to the very small runtimes of the Bellman-Ford-approach, we cannot deduce
any assumptions about its behavior besides that its again performing much more
efficient than the Dijkstra-approach. Both on grids and threshold graphs with

it was even able to beat an explicit shortest-path algorithm implemented
in LEDA3 version 4.3.

3 Available at http://www.algorithmic-solutions.com/.

496 D. Sawitzki

5 Conclusions

Two symbolic algorithms for the single-source shortest-path problem on OBDD-
represented graphs with nonnegative integral edge weights have been presented
which execute resp. OBDD-operations. Al-
though Bellman-Ford’s worst-case bound is the larger one, this symbolically
parallelized approach was expected to have better runtime but higher space us-
age than the Dijkstra-approach. This was confirmed by experiments on random
graphs with constant and difference weights as well as on grid and threshold
graphs. Dijkstra’s space usage was always of linear magnitude w. r. t. the size of
its input OBDDs with a relative error of less than 0.06. For the Bellman-Ford-
approach, this property was only observed on grid and threshold graphs as well
as for the runtime on random graphs with constant edge weights.

Altogether, experiments both on pathological instances (random graphs) and
structured graphs well-suited for symbolic representation (grid and threshold
graphs) show that for each of the resources time resp. space at least one
algorithm performs well or even asymptotically optimal w. r. t. the input
OBDD-size. Hence, both shortest-path algorithms can be considered as useful
symbolic methods with individual strengths.

Acknowledgment. Thanks to Ingo Wegener for proofreading and helpful dis-
cussions.

Experimental Studies of Symbolic Shortest-Path Algorithms 497

References

R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Algebraic decision diagrams and their applications. In ICCAD’93,

pages 188–191. IEEE Press, 1993.
R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87–90,
1958.
R. Bloem, H.N. Gabow, and F. Somenzi. An algorithm for strongly connected
component analysis in symbolic steps. In FMCAS’00, volume 1954 of
LNCS, pages 37–54. Springer, 2000.
R.E. Bryant. Symbolic manipulation of Boolean functions using a graphical rep-
resentation. In DAC’85, pages 688–694. ACM Press, 1985.
R.E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE

Transactions on Computers, 35:677–691, 1986.
E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269–271, 1959.
R. Gentilini, C. Piazza, and A. Policriti. Computing strongly connected compo-
nents in a linear number of symbolic steps. In SODA’03, pages 573–582. ACM
Press, 2003.
R. Gentilini and A. Policriti. Biconnectivity on symbolically represented graphs:
A linear solution. In ISAAC’03, volume 2906 of LNCS, pages 554–564. Springer,
2003.
G.D. Hachtel and F. Somenzi. Logic Synthesis and Verification Algorithms.

Kluwer Academic Publishers, Boston, 1996.
G.D. Hachtel and F. Somenzi. A symbolic algorithm for maximum flow in 0–1
networks. Formal Methods in System Design, 10:207–219, 1997.
R. Hojati, H. Touati, R.P. Kurshan, and R.K. Brayton. Efficient lan-
guage containment. In CAV’93, volume 663 of LNCS, pages 396–409. Springer,
1993.
N.V.R. Mahadev and U.N. Peled. Threshold Graphs and Related Topics. Elsevier
Science, Amsterdam, 1995.
I. Moon, J.H. Kukula, K. Ravi, and F. Somenzi. To split or to conjoin: The
question in image computation. In DAC’00, pages 23–28. ACM Press, 2000.
K. Ravi, R. Bloem, and F. Somenzi. A comparative study of symbolic algorithms
for the computation of fair cycles. In FMCAD’00, volume 1954 of LNCS, pages
143–160. Springer, 2000.
D. Sawitzki. Implicit flow maximization by iterative squaring. In SOFSEM’04,

volume 2932 of LNCS, pages 301–313. Springer, 2004.
D. Sawitzki. Implicit flow maximization on grid networks. Technical report,
Universität Dortmund, 2004.
D. Sawitzki. On graphs with characteristic bounded-width functions. Technical
report, Universität Dortmund, 2004.
D. Sawitzki. A symbolic approach to the all-pairs shortest-paths problem. Sub-
mitted, 2004.
I. Wegener. Branching Programs and Binary Decision Diagrams. SIAM, Philadel-
phia, 2000.
P. Woelfel. Symbolic topological sorting with OBDDs. In MFCS’03, volume 2747
of LNCS, pages 671–680. Springer, 2003.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Experimental Comparison of Greedy

Randomized Adaptive Search Procedures for the

Maximum Diversity Problem

Geiza C. Silva, Luiz S. Ochi, and Simone L. Martins

Universidade Federal Fluminense, Departamento de Ciência da Computação, Rua
Passo da Pátria 156, Bloco E, Niterói, RJ 24210-240, Brazil.

{gsilva,satoru,simone}@ic.uff.br

Abstract. The maximum diversity problem (MDP) consists of identi-
fying optimally diverse subsets of elements from some larger collection.
The selection of elements is based on the diversity of their characteristics,
calculated by a function applied on their attributes. This problem be-
longs to the class of NP-hard problems. This paper presents new GRASP
heuristics for this problem, using different construction and local search
procedures. Computational experiments and performance comparisons
between GRASP heuristics from literature and the proposed heuristics
are provided and the results are analyzed. The tests show that the new
GRASP heuristics are quite robust and find good solutions to this prob-
lem.

1 Introduction

The maximum diversity problem (MDP) [5,6,7] consists of identifying optimally
diverse subsets of elements from some larger collection. The selection of elements
is based on the diversity of their characteristics, calculated by a function applied
on their attributes. The goal is to find the subset that presents the maximum
possible diversity. There are many applications [10] that can be solved using
the resolution of this problem, such as medical treatment, selecting jury panel,
scheduling final exams, and VLSI design. This problem belongs to the class of
NP-hard problems [6].

Glover et al. [6] presented mixed integer zero-one formulation for this prob-
lem, that can be solved for small instances by exact methods. Bhadury et al. [3]
developed an exact algorithm using a network flow approach for the diversity
problem of working groups for a graduate course.

Some heuristics are available to obtain approximate solutions. Weitz and
Lakshminarayanan [12] developed five heuristics to find groups of students with
the most possible diverse characteristics, such as nationality, age and gradua-
tion level. They tested the heuristics using instances based on real data and
implemented an exact algorithm for solving them and the heuristic LCW (Lofti-
Cerveny-Weitz method) was considered the best for solving these instances.

Constructive and destructive heuristics were presented by Glover et al. [7],
who created instances with different size of population (maximum value was 30)

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 498–512, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Experimental Comparison of Greedy Randomized Adaptive 499

and showed that the proposed heuristics obtained results close (2 %) to the ones
obtained by the exact algorithm, but much faster.

Kochenberger and Glover [10] showed results obtained using a tabu search
and Katayama and Naribisa [9] developed a memetic algorithm. Both report
that computational experiments were carried out, but they did not compare the
performance of their algorithms with exact or other heuristics procedures.

Ghosh [5] proposed a GRASP (Greedy Randomized Adaptive Search Pro-
cedure) that obtained good results for small instances of the problem. Andrade
et al. [2] developed a new GRASP and showed results for instances randomly
created with a maximum population of 250 individuals. This algorithm was able
to find some solutions better than the ones found by the Ghosh algorithm.

GRASP [4] is an iterative process, where each iteration consists of two phases:
construction and local search. In the construction phase a feasible solution is
built, and its neighborhood is explored by a local search. The result is the best
solution found over all iterations. In Section 2 we describe three construction pro-
cedures developed using the concept of reactive GRASP introduced by Prais and
Ribeiro [11], and two local search strategies. In Section 3 we show computational
results for different versions of GRASP heuristics created by the combination of
a constructive algorithm and a local search strategy described in Section 2. Con-
cluding remarks are presented in Section 4.

2 GRASP Heuristics

The construction phase of GRASP is an iterative process where, at each iteration,
the elements that do not belong to the solution are evaluated by a greedy
function that estimates the gain of including it in the partial
solution. They are ordered by their estimated value in a list called restricted
candidate list (RCL) and one of them is randomly chosen and included in the
solution. The size of the RCL is limited by a parameter For a maximization
problem, only the elements whose values are in the range
are placed in RCL. This process stops when a feasible solution is obtained.

Prais and Ribeiro [11] proposed a new procedure called Reactive GRASP, for
which the parameter used in the construction phase is self adjusted for each
iteration. For the first construction iteration, an value is randomly selected
from a discrete set Each element has a probability
associated and, initially, a uniform distribution is applied, thus we have

Periodically the probability distribution is
updated using information collected during the former iterations. The aim is to
associate higher probabilities to values of that lead to better solutions and
lower ones to values of that guide to worse solutions.

The solutions generated by the construction phase are not guaranteed to be
locally optimal. Usually a local search is performed to attempt to improve each
constructed solution. It works by successively replacing the current solution by a
better one from its neighborhood, until no more better solutions are found. Nor-
mally, this phase demands great computational effort and execution time, so the

500 G.C. Silva, L.S. Ochi, and S.L. Martins

construction phase plays an important role to diminish this effort by supplying
good starting solutions for the local search. We implemented a technique widely
used to accomplish this task, that leads to a more greedy construction. For each
GRASP iteration, the construction algorithm is executed X times generating X
solutions and only the best solution is selected to be used as the initial solution
for the local search phase.

In the next subsections, we describe the construction and local search algo-
rithms developed for the GRASP heuristics, using the concepts discussed in this
section.

2.1 Construction Phase

Let be a population of elements and
the values of the attributes of each element. In this paper,

we measure the diversity between any two elements and by the Euclidean

distance calculated as Let M be a subset of N and
the overall diversity be The MDP problem consists of
maximizing the cost function subject to

We describe three construction algorithms developed to be used in GRASP
heuristics where all of them use the techniques described before: Reactive
GRASP and filtering of constructed solutions.

K larger distances heuristic (KLD). This algorithm constructs an initial
solution by randomly selecting an element from a RCL of size K at each con-
struction iteration. The RCL is created by selecting for each element the
K elements that exhibit larger values of and sum these K values
of obtaining Then, we create a list of all elements sorted in descending
order by their values and select the K first elements to compose the RCL list.

The procedure developed to implement the reactive GRASP starts consider-
ing to be the total number of GRASP iterations. In the first block of iter-
ations we evaluate four different values for
and the evaluation is done by dividing the block into four equal intervals

We use the value for all iterations belonging to interval The
values of are shown in Tab. 1, where After the execution of
the last iteration of block we evaluate the quality of the solutions obtained
for each We calculate the mean diversity value

Experimental Comparison of Greedy Randomized Adaptive 501

for the solutions obtained using each
The values are stored in a list LK ordered by their values.

Then for the next block of iterations we divide it into four
intervals each one with different number of iterations, and use the values
as shown in Tab. 2. In this way, the values that provide better solutions are
used in a larger number of iterations.

At each GRASP iteration, we apply the filter technique for this heuristic by
constructing 400 solutions and only the best solution is sent to the local search
procedure.

The pseudo-code, including the description of the procedure for the construc-
tion phase using K larger Distances heuristic, is given in Fig. 1.

Fig. 1. Construction procedure used to implement the KLD heuristic

502 G.C. Silva, L.S. Ochi, and S.L. Martins

In line 1, we initialize the cost of the best solution found in the execution of
max_sol_ filter iterations. The value K to be used to build the Restricted Can-
didate List (RCL) is calculated by the procedure det_K in line 2. This procedure
defines the value for K implementing the reactive GRASP described before. In
line 3, the number of solutions found for a specific K is updated and, in line 4,
the RCL is built. From line 5 to line 16, the construction procedure is executed
max_sol_filter times and only the best solution is returned to be used as an
initial solution by the local search procedure. From line 7 to line 11, a solution is
constructed by the random selection of an element from RCL. In lines 12 to 15,
we update the best solution found by the construction procedure and the cost
of the solution found using the selected K is stored in line 17. When the first
block of iterations ends, the values are evaluated and put in the list LK

sorted in descending order, in line 19.

K larger distances heuristic-v2 (KLD-v2). This algorithm is similar to the
previously described algorithm, the difference between them is the way that the
Restricted Candidate List is built. In the former algorithm, the RCL is computed
before the execution of the construction iterations and, for each iteration, the
only modification made in the RCL is the removal of the element that is inserted
in the solution.

In this algorithm, the RCL is built using an adaptive procedure, where the
process to select the first element of the constructed solution is the same as of
the KLD heuristic, which means that an element is randomly selected from the
RCL built as described in line 4 of Fig. 1.

Let be a partial solution with elements and a
candidate to be inserted in the next partial solution For each we select
the elements that present larger values of and
calculate the sum of the values of obtaining To select the
next element to be inserted, an initial candidate list is created based on the
greedy function shown in (1), where the first term corresponds to the sum
of distances from the candidate to the elements and the second term
stands for the sum of distances from element to the elements that
are not in the solution and present larger distances to The initial candidate
list is formed by the elements sorted in descending order with respect to
and the first K elements are selected from this list to build the RCL.

The Reactive GRASP and the construction filter are implemented in the same
way as in KLD. Once this construction algorithm demands much more execution
time than KLD algorithm, only 2 solutions, instead of 400, are generated to be
filtered.

Experimental Comparison of Greedy Randomized Adaptive 503

Most distant insertion heuristic (MDI). Let be a partial solution with
elements, the partial solution is obtained by randomly select-

ing an element from all elements
The second element is the element which presents the larger distance

To obtain from the element to be
inserted in the solution is randomly selected from a RCL. The RCL is built
based on the function showed in (2), where the first term of this function
corresponds to the sum of distances between all elements The second
term is the sum between all elements to a candidate that is not in
the partial solution

An initial candidate list (ICL) is created containing the elements
sorted in descending order by their values. The first

elements of ICL are selected to form the RCL.
For this algorithm, the reactive GRASP is implemented in the same way

done for the K larger distances heuristic. The first block is di-
vided into four intervals of the same size and four values for
are evaluated. Table 3 shows the values of used for each interval. The values

are evaluated by calculating the mean diversity value
for the solutions ob-

tained using each The values are stored in a list ordered by their
values.

The next block of iterations is also divided into four intervals
each one with distinct number of iterations and, for each one, a value of is

associated, as shown in Tab. 4.
We have also implemented the same procedure described above for filtering

the constructed solutions. In this case, the number of solutions generated is
so it depends on the population size of each instance.

Figure 2 shows the construction phase procedure using the MDI heuristic.
In line 1, we initialize the value of the best solution found. The value to
be used to build the RCL is calculated by the procedure in line 2. This
procedure selects based on the reactive GRASP discussed before. In line 3, the

504 G.C. Silva, L.S. Ochi, and S.L. Martins

number of solutions found for a specific is updated and in line 4, the set that
contains the candidates to be inserted in the solution is initialized to contain
all elements belonging to N. From line 5 to line 24, the construction procedure
is executed max_sol_filter times and only the best solution is returned to be
used as an initial solution by the local search procedure. In line 7, the first

Fig. 2. Construction procedure used to implement the MDI heuristic

Experimental Comparison of Greedy Randomized Adaptive 505

element is selected and from line 8 to line 12, we determine the second element
of the solution. From line 14 to line 19, the insertion of the other elements is
performed. For each iteration, in line 15, a RCL is built and, in line 16, an
element is randomly selected from it. In line 18, we update the candidates to
be inserted in the next iteration. In lines 20 to 23, we update the best solution
found by the construction procedure. The cost of the best solution found using
the selected is stored in line 25. When the first block of iterations finishes,
the values are evaluated and put in the list in line 27.

2.2 Local Search Phase

After a solution is constructed, a local search phase should be executed to at-
tempt to improve the initial solution. In this paper, we use two different local
search algorithms. The first one was developed by Ghosh [5] and the second one
by us using the Variable Neighborhood Search (VNS) [8] heuristic.

Ghosh Algorithm (GhA). The neighborhood of a solution defined by
Ghosh [5] is the set of all solutions obtained by replacing an element in the
solution by other that does not belong to the set associated with the solution.
The incumbent solution M is initialized with the solution obtained by the con-
struction phase. For each and the improvement due to ex-
changing by is computed. If for all and

the local search is terminated, as no exchange will lead to a better
solution. Otherwise, the elements of the pair that provides the maximum

are interchanged creating a new incumbent solution M and the local
search is performed again.

SOM Algorithm (SOMA). We have also implemented a local search
using a VNS heuristic. In this case, we use the GhA algorithm until there is
no more improvement in the solution. After that, we execute a local search
based on a new neighborhood, which is defined as the set of all solutions
obtained by replacing two elements in the solution by another two that
are not in the solution. The incumbent solution M is initialized with the
solution obtained by the first phase of the local search. For each
and the improvement due to exchanging by

is computed. If for all
pairs and as no exchange will improve the
solution, the local search is terminated. Otherwise, the pairs and
that provides the maximum are interchanged, a new incumbent
solution M is created and the local search is performed again.

We developed several GRASP heuristics combining the construction proce-
dures with the local search strategies described above and the computational
experiments implemented to evaluate the performance of these heuristics are
presented in next section.

506 G.C. Silva, L.S. Ochi, and S.L. Martins

3 Computational Results

We tested nine GRASP procedures that are shown in Tab. 5.
The first GRASP procedure G1 is an implementation of the GRASP heuristic

developed by Ghosh and the second one is a procedure that implements Ghosh
construction heuristic but uses the new local search SOMA. G9 is the GRASP
heuristic implemented by Andrade et al. [2]. Except for G9, which code was
kindly provided to us by the authors, all other algorithms were implemented by
us.

The algorithms were implemented in C++, compiled with g++ compiler
version 3.2.2 and were tested on a PC AMD Athlon 1.3GHz with 256 Mbytes
of RAM. Twenty instances for the problem were created with populations of
sizes and and subsets of sizes

and The diversities in the set
for each set of instances that have the same population size

were randomly selected from a uniform distribution over [0.. . 9].
In Tab. 6, we show the results of computing 500 iterations for each GRASP

heuristic. The first and second columns identify two parameters of each instance:
the size of the population and the number of elements to be selected. Each
procedure was executed three times and for each one we show the average value
of the solution cost and the best value found.

We can see that the proposed GRASP heuristics found better solutions than
GRASP algorithms found in literature [2,5]. Algorithm G7, which implements
the KLD-v2 for construction phase and GhA for local search, was the one that
found better solutions for larger number of instances.

Table 7 reports the CPU times observed for the execution of the same in-
stances. The first and second columns identify the two parameters of each in-
stance. For each GRASP heuristic, the average time for three executions and
the time obtained when the best solution was found are reported. Among the
proposed heuristics, algorithm G5 is the most efficient related to execution time.
Heuristic G7, for which we have the best quality solutions, demands more time

Experimental Comparison of Greedy Randomized Adaptive 507

508 G.C. Silva, L.S. Ochi, and S.L. Martins

Experimental Comparison of Greedy Randomized Adaptive 509

than G5 but is not the worst one, showing that this algorithm works very well
for this problem.

We performed a deeper analysis for the results obtained for the GRASP
heuristics G1, G5, G6, G7 and G8, which present better solutions and/or shorter
execution times. We selected two instances: the first one has parameters
and and the second one, and We executed each GRASP
heuristic until a solution was found with a greater or equal cost compared to
a target value. Two target values were used for each instance: the worst value
obtained by these heuristics and an average of the values generated by them.
Empirical probability distributions for the time to achieve a target value are
plotted in Fig(s). 3 and 4. To plot the empirical distribution for each variant,
we executed each GRASP heuristic 100 times using 100 different random seeds.
In each execution, we measured the time to achieve a solution whose cost was

Fig. 3. Comparison of GRASP heuristics for the instance with targets
values 4442 and 4443

510 G.C. Silva, L.S. Ochi, and S.L. Martins

Fig. 4. Comparison of GRASP heuristics for the instance with targets
values 20640 and 20693

greater or equal to the target cost. The execution times were sorted in ascending
order and a probability was associated for each time and
the points were plotted for

We compared the proposed GRASP algorithms with Ghosh algorithm (G1)
by evaluating the average probability that G1 presents when we have the proba-
bility values equal to 0.9 and 1.0 for the proposed GRASP heuristics. We obtain
these values from Fig(s). 3 and 4. For example, we can obtain the probability
values for Gl, when we have a probability value equal to 0.9 for G5. In this
case, we have a value of 0.12 for both target values 4442 and 4443, 0.83 for tar-
get 20640, and 0.7 for target 20693. The average of these values is 0.44. So we
have evaluated these average values for G5, G6, G7 and G8 and the results are
presented in Tab. 8.

Experimental Comparison of Greedy Randomized Adaptive 511

We can see that although the algorithm G1 presents a good convergence to
the target values, the proposed algorithms G5, G6, G7 and G8 were able to
improve this convergence.

4 Concluding Remarks

This paper presented some versions of GRASP heuristic to solve the maximum
diversity problem (MDP). The main goal of this work was to analyse the influence
of the construction and local search heuristics on the performance of GRASP
techniques.

Experimental results show that the versions that use KLD or KLD-v2 con-
struction algorithms and Gha or SOMA local search algorithms (G5, G6, G7
and G8) significantly improve the average performance of the best GRASP ap-
proaches proposed in the literature (G1 and G9).

Our experiments also show that if the execution time is restricted (limited
to smaller value), version G5 is a good choice since it obtains reasonable results
faster (see Fig(s). 3 and 4). On the other hand, if the execution time is not an
issue, versions G7 and G8 tend to produce the best solutions (see Tabs. 6 and
7).

Acknowledgments. The authors acknowledge LabPar of PUC-RIO (Rio de
Janeiro, Brazil) for making available their computational facilities on which some
computational experiments were performed. We thank Paulo Andrade for allow-
ing us to use the code developed by him for algorithm G9. We also acknowledge
the Coordination of Improvement of Personnel of Superior Level (CAPES) sup-
port for providing a master scholarship to Geiza C. Silva.

References

l.

2.

3.

4.

Aiex, R. M., Resende, M. G. C., Ribeiro, C. C.: Probability distribuition of solution
time in GRASP: an experimental investigation, Journal of Heuristics, 8 (2002),
343–373
Andrade, P. M. F., Plastino, A., Ochi, L. S., Martins, S. L.: GRASP for the Max-
imum Diversity Problem, Proceedings of MIC 2003, (2003)
Bhadury J., Joy Mighty E., Damar, H.: Maximing workforce diversity in project
teams: a network flow approach, Omega, 28 (2000), 143–153
Feo T. A., Resende, M. G. C.: Greedy randomized adaptive search procedures,
Journal of Global Optimization 6 (1995), 109–133

512 G.C. Silva, L.S. Ochi, and S.L. Martins

5.

6.

7.

8.

9.

10.

11.

12.

Ghosh, J. B.: Computational aspects of maximum diversity problem, Operations
Research Letters 19 (1996), 175–181
Glover, F., Hersh, G., McMillan C.: Selecting subsets of maximum diversity, MS/IS
Report No. 77-9, University of Colorado at Boulder, (1977)
Glover, F., Kuo, C-C., Dhir,K. S.: Integer programming and heuristic approaches
to the minimum diversity problem, Journal of Business and Management 4(1),
(1996), 93–111
Hansen, P., An introduction to variable neighborhood search,
Metaheuristics, Advances and Trends in Local Search, Paradigms for Optimiza-
tion, S. Voss et al. editors, (1999) 433–458
Katayama, K., Naribisa, H.: An evolutionary approach for the maximum diversity
problem, Working Paper, Department of Information and Computer Engineering,
Okayama University of Science, (2003)
Kochenberger, G., Glover, F.: Diversity data mining, Working Paper, The Univer-
sity of Mississipi, (1999)
Prais, M., Ribeiro, C. C.: Reactive GRASP: an aplication to a matrix decomposi-
tion problem in TDMA traffic assignment, INFORMS Journal on Computing 12

(2000), 164–176
Weitz, R., Lakshminarayanan, S.: An empirical comparison of heuristic methods
for creating maximally diverse group, Journal of the operational Research Society
49 (1998), 635–646

Using Compact Tries for Cache-Efficient Sorting

of Integers

Ranjan Sinha

School of Computer Science and Information Technology, RMIT University,
Melbourne 3001, Australia.
rsinha@cs.rmit.edu.au

Abstract. The increasing latency between memory and processor
speeds has made it imperative for algorithms to reduce expensive ac-
cesses to main memory. In earlier work, we presented cache-conscious
algorithms for sorting strings, that have been shown to be almost two
times faster than the previous algorithms, mainly due to better usage of
the cache. In this paper, we propose two new algorithms, Burstsort and
MEBurstsort, for sorting large sets of integer keys. Our algorithms use a
novel approach for sorting integers, by dynamically constructing a com-
pact trie which is used to allocate the keys to containers. These keys are
then sorted within the cache. The new algorithms are simple, fast and
efficient. We compare them against the best existing algorithms using
several collections and data sizes. Our results show that MEBurstsort is
up to 3.5 times faster than memory-tuned quicksort for 64-bit keys and
up to 2.5 times faster for 32-bit keys. For 32-bit keys, on 10 of the 11
collections used, MEBurstsort was the fastest, whereas for 64-bit keys,
it was the fastest for all collections.

1 Introduction

Sorting is one of the fundamental problems of computer science. Many appli-
cations are dependent on sorting, mainly for reasons of efficiency. It is also of
great theoretical importance: several advances in data structures and algorithmic
analysis have come from the study of sorting algorithms [6].

In recent years, the speed of CPU has increased by about 60% per year,
but the speed of access to main-memory has decreased by only 7% per year [3].
Thus, there is an increasing latency gap between the processor speeds and access
to main-memory and it appears that this trend is likely to continue. To reduce
this problem, hardware developers have introduced hierarchies of memories –
caches – between the processor and main-memory. The closer caches are to the
processor, the smaller, faster and more expensive they get. Caches utilise the
locality, temporal and spatial, inherent in most programs. As programs do not
access all code or data uniformly, having those frequently accessed items closer
to the processor is an advantage.

The prevalent approach to developing algorithms assumes the RAM model [1,
3,8], where all accesses to memory are given a unit cost. The focus is mainly on

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 513–528, 2004.
© Springer-Verlag Berlin Heidelberg 2004

514 R. Sinha

Fig. 1. Burstsort, with five trie nodes, five containers and ten keys. The keys are

and

reducing the number of instructions used. As a result, many algorithms are tuned
towards lowering the instruction count. They may not be particularly efficient
for memory hierarchies, however.

Recently, there has been much work done on cache-conscious sorting [5,9,10,
12,14,15]. In 1996, LaMarca and Ladner [7] analyzed algorithms such as merge-
sort, heapsort, quicksort and LSB radixsort in terms of cache misses and instruc-
tions and reported that it was practical to make them more efficient by improving
the locality even at the cost of using more instructions. Their memory tuned al-
gorithms are often used as a reference for comparing sorting algorithms. Since
then, several cache-tuned implementations for well known algorithms have been
developed, such as, Tiled-mergesort, Multi-mergesort, Memory-tuned quicksort,
PLSB, EPLSB, EBT and CC-Radix. The most efficient of these algorithms are
used in our experiments and considered in further detail later.

Tries are a much used data structure for algorithms on string keys and
have been widely used for searching applications. But recently, Burstsort [12,
13], based on Burst-Tries [2] has shown excellent performance for sorting string
keys, primarily by using the CPU-cache more effectively. A burst trie is a col-
lection of small data structures, called containers, that are accessed by a normal

Using Compact Tries for Cache-Efficient Sorting of Integers 515

Fig. 2. MEBurstsort, with five trie nodes, three containers and ten keys. The keys
are

and

trie. The keys are stored in the containers and the first few bytes of the keys are
used to construct the access trie.

In this paper, we propose two new algorithms, Burstsort and MEBurstsort,
both based on a similar approach of using compact tries, but for integer keys. We
believe this is the first case of using tries for the purpose of sorting integers. They
reduce the number of times that keys need to be accessed from main-memory.
This approach yields better dividends when key size is increased from 32 to
64 bits. We use several collections and data sizes to measure the performance of
the sorting algorithms. Both artificially generated and real-world web collections
are used in the experiments. Experiments include, measuring the running time
of the algorithms and performing cache simulations to measure the number of
instructions and cache misses.

Our results show that both Burstsort and MEBurstsort make excellent use
of the cache while using low number of instructions. Indeed, they incur only
20% cache misses compared to MTQsort while the number of instructions is
similar to the efficient radixsorts. For 32-bit keys, MEBurstsort is the fastest
for 10 of 11 collections used and shows much the best performance for skewed
data distributions. For 64-bit keys, Burstsort is comparable in performance to
Sequential Counting Split radix sort (we believe, it is the fastest algorithm for
64-bit keys), whereas, MEBurstsort is the fastest for all collections. These results
show that our approach of using a compact trie is practical, effective and adapts
well to varied distributions and key sizes.

2 Background

Much of the effort on developing cache-efficient sorting algorithms has focused
on restructuring existing techniques to take advantage of internal memory hi-
erarchies. As observed from preliminary experiments on 32-bit keys, only the

516 R. Sinha

most efficient of the integer sorting algorithms have been included in this paper.
Memory-Tuned Quicksort has been included for reference purposes. The algo-
rithms discussed below can be classified into two main groups: Quicksort and
Radixsort. Radixsort approaches can be further grouped into Least-Significant-
Bit, Most-Significant-Bit and Hybrid.

Quicksort

Quicksort is a dominant sorting routine based on the divide-and-conquer ap-
proach. It is an in-place algorithm and there are several variants on the basic
scheme. LaMarca and Ladner [7] analyzed quicksort for cache-efficiency and
suggested using insertion sort on small partitions when they are resident in the
cache, instead of a final single pass over the entire data. This memory-tuned
implementation of quicksort has become a standard reference for comparing
cache-conscious sorting algorithms. For our experiments, we have used the im-
plementation of LaMarca and Ladner [7] and labelled it as MTQsort. We have
also used an implementation by Xiao et al. [15] and labelled it as Qsort.

Radix Sort

Least Significant Bit (LSB). Sedgewick [11] reports that the LSB approach
is widely used due to its suitability for machine-language implementation as it
is based on very simple data structures.

In LSB, the keys are sorted digit-by-digit starting from the least significant
digits. The digits are usually sorted using counting sort, which has three phases
in each pass: a count phase, a prefix sum phase, and a permute phase. Two
arrays, source and destination (both the size of the dataset), and an auxiliary
count array (dependent on the size of the alphabet) are used for this purpose.
The count phase involves counting the number of keys that have identical digits
at the position under consideration. The prefix sum phase is used to count the
number of keys falling in a class and calculating the starting position for each
class in the destination array. The permute phase involves moving the keys from
the source array to the destination array using the count array as an index to
the new location. Each pass requires that the source array is traversed twice,
once each during the count phase and permute phase. The destination array is
traversed once during the permute phase.

A simple modification to improve the locality of each pass is by pre-sorting
small segments to group together keys with equal values. This approach was
implemented by Rahman and Raman [10] and named Pre-sorting LSB radix
sort. Each pass involves two sorts: pre-sort and global sort. Counting sort is
used for both sorts. Though, it does improve the locality by pre-sorting, but the
basic problem of it being a multi-pass algorithm would mean that the number
of passes increases with the size of the key. For our experiments, we have used
the implementation of Rahman and Raman [10] and labelled it as PLSB.

The permute phase is not cache efficient due to the random accesses to the
destination array. To reduce these misses, Rahman and Raman [10] used a buffer

Using Compact Tries for Cache-Efficient Sorting of Integers 517

to store keys in the same class and copy it in a block to the destination array. For
our experiments, we have used the implementation of Rahman and Raman [10]
and labelled it as EBT.

Extended-radix PLSB was developed to exploit the increase in locality offered
by pre-sorting. This helps to reduce the number of passes without incurring
many cache and TLB misses. We have used the implementation of Rahman and
Raman [10] and labelled it as EPLSB.

For all the above variants of LSB radix sorts, we have used a radix size of 11
as it was found to be the most efficient for 32-bit keys and has also been used in
previous such studies [10,5]. For some algorithms, a radix of 13 for 64-bit keys
was found to be up to 10% faster due to the reduced number of passes.

Most Significant Bit. This is a type of distribution sorting where the classes
are formed based on the value of the most significant bit. Depending upon the
number of keys in each class, it proceeds recursively or uses a simple algorithm,
such as insertion sort, to sort very small classes [6]. We have used the implemen-
tation of Rahman and Raman [9] and labelled it as MSBRadix. It is a multi-pass
algorithm and unstable for equal keys. Based on the number of keys in a class,
the radix is varied from a maximum of 16 to a minimum of 2 [9].

Hybrid. A hybrid approach uses both LSB and MSB methods. In Cache-
Conscious radix sort (CCRadix), the data sets that do not fit within the cache
(or the memory mapped by the TLB) is sorted on the most-significant-digit to
dynamically divide the data set into smaller partitions that fit within the cache.
Data sets of sizes less than the cache are sorted using LSB radix sort. Based
upon data skew and size of the digit, there could be several reverse sorting calls.
As noted by Jimenez-Gonzalez et al. [4], CCRadix does not scale to 64-bit keys.

518 R. Sinha

The parameters which showed the best performance for the uniform random dis-
tribution collection (Random31) was chosen for our experiments. We have used
the implementation of Jimenez-Gonzalez et al. [5] and labelled it as CCRadix.

SCSRadix is used to sort 64-bit integer keys. It dynamically detects if a
subset of the data has skew and skips the sorting of the subset. Based on the
number of keys and the number of bits that remain to be sorted it chooses
between insertion sort, CCRadix, LSB and Counting Split. Counting split is used
for partitioning the dataset into smaller sub-buckets of similar size, whereupon
depending upon and the other three algorithms are used. We believe, this
is the fastest sorting routine for 64-bit keys. We have used the implementation
of Jimenez-Gonzalez et al. [4] and labelled it as SCSRadix.

3 Sorting Integers with Compact Tries

Traditionally, trie data structures have been used for managing variable-length
string keys and found applications in dictionary management, text compression
and pattern matching [2]. In our earlier work, we investigated the practicality of
using burst tries [2], a compact and efficient variant of tries, for sorting strings.
In this section, we describe a similar approach for the purpose of sorting integer
keys in a cache-efficient manner.

Using Compact Tries for Cache-Efficient Sorting of Integers 519

Burstsort

The main principle behind Burstsort is to minimize the number of times that the
keys need to be accessed from main-memory. This is achieved by dynamically
constructing a compact trie that rapidly places the keys into containers. It divides
the dataset based on both the data distribution and size of cache. Burstsort is
a variant of most-significant-bit radixsort and needs to read the distinguishing
bits in each key at most once. Our earlier work on string keys [12,13] have shown
that such an approach has excellent performance.

There are two phases in the construction of a burst trie: insertion and traver-
sal. The insertion phase inserts the keys into the trie. It is a single-pass traversal
through the source array. The trie can grow in three ways: creation of a new
trie node, increasing the size of the existing containers and the creation of new
containers. When a container becomes too large, it is burst, resulting in the cre-
ation of a new trie node and new child containers. Once all the keys have been
inserted, an in-order traversal of the trie is performed. The containers having
more than one key are sorted on those bits that have not yet been read. We

520 R. Sinha

have used MSBRadix for sorting containers due to its lower instruction count
as compared to MTQsort. MSBRadix operates in-place thus making full-use of
the L2 cache. The usage of other algorithms for sorting containers needs to be
explored further; it would depend upon the depth of the memory hierarchy and
their inherent latencies.

The data structures used for the trie nodes and the containers are arrays. The
trie node structure is composed of four elements: pointer to a trie or container,
counter of keys in container, level counter for growing container size, and a tail-
pointer for the lowest level in the trie hierarchy. The tail-pointer is used to insert
the keys at the end of the containers in order to maintain stability, though the
current version is unstable due to using an unstable MSB Radix for sorting the
containers.

For our experiments, the size of the container is restricted by the size of the
L2 cache and is determined by the ratio of cache size to size of the key. Instead
of allocating the space for the containers all at once, the container grows (using
the realloc function call) from 16 to 262,144 for 32-bit keys and 16 to 131,072
for 64-bit keys. They are grown by a factor of 4, for example, 16, 64, 256, 1,024,
4,096, 16,384, 65,536 and 262,144 for 32-bit keys. Containers used in the lowest
level are a linked list of arrays of size 128; the keys in these containers are not
sorted as they are identical. A radix size of 8 bits has been used for the trie
nodes.

An example of Burstsort for 32-bit keys is shown in Figure 1, the node is com-
posed of 256 characters. The 32-bit integer keys are represented by hexadecimal
numbers and stored in their entirety in the containers. The keys are

and The threshold value is assumed to be
three, implying that the container bursts when there are three keys. The lowest
level is a linked list of arrays of size three.

Using Compact Tries for Cache-Efficient Sorting of Integers 521

MEBurstsort (Memory Efficient Burstsort)

In Burstsort, the keys are stored in full. This may lead to redundancy as some of
the information pertaining to each key is implicitly stored in the trie. Thus,
MEBurstsort was developed for the purpose of eliminating this redundancy.
Only that portion of the key is stored in the containers which has not already
been read and thus cannot be gathered from a traversal of the trie. Once all
the keys have been inserted, the trie is traversed depth-first, the keys in each
container are reproduced in full and written back to the source array, where it
is then sorted using the container sorting algorithm. A container at level has

bytes of the key, it is assumed that the root node is at
0th level. The linked list of arrays present at the lowest level in Burstsort have
been eliminated, only the counters are required to keep track of the keys. As
a result, it is not a stable algorithm, but stability is of significance only when
sorting pointers to records.

This compressed storage, saves space in the containers, and it uses much less
memory than Burstsort. Smaller containers makes it more cache-friendly. But
as the keys are treated as variable-length bytes, bursting requires copying a key
byte-by-byte, thus requiring more instructions. MEBurstsort has been observed
to perform better than Burstsort for all collections.

An example of MEBurstsort is shown in Figure 2. The integer keys are repre-
sented by hexadecimal numbers. They are

and The threshold value is assumed to be three. As can be seen from
the figure, the bytes of each key that have already been read are not stored in
the containers.

4 Experiments

Several collections with a wide range of characteristics and sizes have been used
in our experiments. Many of these collections have been used in previous such
studies [15]. The collections are briefly described below.

Random63. uniformly distributed integers in the range 0 to and gen-
erated using the random number generator random () from the C library.

Random31. uniformly distributed integers in the range 0 to and gen-
erated using the random number generator random() from the C library.

Random20. uniformly distributed integers in the range 0 to and gen-
erated using the random number generator random() from the C library.

522 R. Sinha

Fig. 3. Time/Key, 64-bit keys. Upper: Pascal, Lower: Sorted.

Equilikely. composed of integers in a specified range.
Bernoulli. a discrete probability distribution composed of integers 0 or 1
Geometric. a discrete probability distribution composed of integers 0, 1, 2, ...
Pascal. a discrete probability distribution composed of integers 0, 1, 2, ...
Binomial. a discrete probability distribution composed of integers 0, 1, 2, ...,

N
Poisson. a discrete probability distribution composed of integers 0, 1, 2, ...
Zero. composed entirely of 0s.
Sorted. distinct integers sorted in ascending order
Web. integers in order of occurrence and drawn from a large web collection

For 32-bit keys, there are seven sets, designated as SET 1, SET 2, SET 3,
SET 4, SET 5, SET 6 and SET 7. They represent data sizes from 1x1024x1024
to 64x1024x1024 keys. For 64-bit keys, there are six sets of sizes ranging from
1x1024x1024 to 32x1024x1024 keys. The set sizes are grown in multiples of two.

Using Compact Tries for Cache-Efficient Sorting of Integers 523

The goal of the experiments is to compare the performance of our algorithms
with some of the best known algorithms in terms of running time, number of
instructions and L2 cache misses. The implementation of the algorithms used in
our experiments were assembled from the best sources we could identify and are
confident that these are of high quality. All the algorithms were written in C.

The task is to sort an array of integers, the array is returned as output. The
CPU time is measured by using the unix function gettimeofday(). The cost of
generating the data collections in terms of time, number of instructions and L2
cache misses are not included in the results reported here. The configurations of
the machine used for the experiments are presented in Table 1; calibrator 1

was used to measure some of the machine configurations. An open-source cache
simulator, valgrind 2, has been used for simulating the cache, the configurations
of our machine were used. The experiments were performed on a Linux operating
system using the GNU gcc compiler with the highest compiler optimization 03.
The experiments were performed under light load, that is, no other significant
processes were running.

5 Results

All the graphs showing times, instructions and cache misses have been nor-
malized by dividing by the number of keys. The timings in the tables are in
milliseconds and are shown unnormalized.

In agreement with Jimenez-Gonzalez et al. [5], we found CCRadix to be the
fastest sorting algorithm for 32-bit keys on the Random31 collection shown in
Table 2. However, the performance of CCRadix is seen to deteriorate with the
increase in the number of duplicates as shown in Table 3 for Random20 and
even more so for small key values in skewed distributions such as the binomial
collection in Table 4.

Table 3 shows Burstsort and MEBurstsort to be 1.68 and 1.87 times faster
than MTQsort for the Random20 collection. The timings for the binomial col-
lection (composed of only 11 distinct integers of small values) in Table 4, shows
MEBurstsort to be 2.45 times faster than MTQsort. In the binomial collection,
the first three bytes are identical for all keys. After the insertion of the threshold
number of keys (a small fraction of the entire collection) into one container, the
container is burst. For 32-bit keys, this bursting occurs three times in a loop
until the threshold number of keys end up in the lowest level. The rest of the
keys traverse the same path, and since the nodes along that path have already
been created, much of the information pertaining to these keys can be read in
just one access. Only the counters in the lowest level need to be incremented,
so MEBurstsort effectively becomes an in-place algorithm. Both Burstsort and
MEBurstsort are particularly efficient for this kind of skewed data. Since the
main reason for the efficiency of our algorithms is the reduced number of times
that the keys need to be accessed, we expected it to show even better relative

1

2
http://homepages.cwi.nl/~manegold/Calibrator
http://developer.kde.org/~sewardj

524 R. Sinha

Fig. 4. Instructions/Key, 64-bit keys, 1 Mb cache, 8-way associativity, 32 bytes block
size. Upper: Pascal, Lower: Random3l.

performance for 64-bit keys, compared to the multi-pass LSB variants. Much of
the focus below is on sorting 64-bit integer keys.

Table 5 shows the times for the Pascal collection on 64-bit keys, the re-
sults are stunning. Burstsort and MEBurstsort are 2.37 and 3.33 times faster
than MTQsort and the LSB sorting routines such as EPLSB and EBT respec-
tively. As Figure 3 shows, MEBurstsort and Burstsort is much the fastest and is
competitive with SCSRadix (which is the fastest 64-bit algorithm to our knowl-
edge). Even for the Random63 collection as shown in Table 6, both Burstsort
and MEBurstsort shows the best timings though not as dramatic as for Pascal.
Similar results have been reported for the real-world web collection. Interest-
ingly, as shown in Figure 3, the time/key for the sorted collection improves with
the increase in the datasize. The performance of our algorithms for most of the

Using Compact Tries for Cache-Efficient Sorting of Integers 525

Fig. 5. Cache misses/Key, 64-bit keys, 1 Mb cache, 8-way associativity, 32 bytes block
size. Upper: Random20, Lower: Pascal.

other collections such as Bernoulli, Geometric, Binomial, Poisson and Zero are
similar to that of Pascal.

The normalized instructions per key are shown in Figure 4. SCSRadix uses
the least number of instructions for the Pascal collection as it detects the skew.
MTQsort due to its high complexity cost has the highest number of instruc-
tions. For the Pascal collection, MEBurstsort and Burstsort is second and third
respectively. As discussed earlier, for skewed collections, MEBurstsort requires
lesser number of instructions than Burstsort whereas Burstsort is more efficient
for uniform distributions as seen from the lower graph in Figure 4.

Figure 5 shows the number of cache misses per key for 64-bit keys incurred
by each algorithm for the collections Random20 and Pascal. Both Burstsort and
MEBurstsort have the least number of cache misses and shows the effective-
ness of our approach. MEBurstsort has less than one cache miss per key while

526 R. Sinha

Burstsort incurs one to two cache misses per key. This is significant and the rel-
ative performance of our algorithms will continue to improve with more modern
processors.

We have also investigated the use of memory by our algorithms. The amount
of memory used for the largest set size of all collections and for 64-bit keys
are shown in Table 8. Based on similar memory usage, the algorithms have been
classified into four groups : in-place such as MTQsort and MSBRadix; LSB radix-
sorts such as EBT, LSB, PLSB and EPLSB; CCRadix and SCSRadix; Burstsort
and MEBurstsort. The memory usages for collections such as Geometric, Pas-
cal, Binomial, Poisson and Zero are similar to Bernoulli. Burstsort uses as much
memory as the LSBs for all collections except for the uniform distributions where
it requires about 1.2 times more memory than the LSBs. Keep in mind that the
buckets are grown by multiples of 4, smaller values will result in lesser memory
usage. MEBurstsort uses up to 1.5 times less memory than Burstsort and for
skewed data, it is effectively an in-place algorithm.

These results show that Burstsort and MEBurstsort are two of the best
algorithms and have shown excellent performance on collections with varied
characteristics for both 32-bit and 64-bit keys.

6 Conclusions

In this paper, we have proposed two new algorithms, Burstsort and MEBurstsort,
for sorting large collections of integer keys. They are based on a novel approach of
using a compact trie for storing the keys. For the evaluation of these algorithms,
we have compared them against some of the best known algorithms using several
collections, both artificially generated and from the real-world.

Our experiments have shown Burstsort and MEBurstsort to be two of the
fastest sorting algorithms for 64-bit keys, because they have a significantly lower
number of cache misses, as well as a low instruction count. Even for 32-bit keys,
they are the fastest for all collections except for Random31. They have a similar
theoretical cost as the most-significant-digit radix sorts. They both adapt well
to varying distributions such as skew, no skew, sorted, small and large values of

Using Compact Tries for Cache-Efficient Sorting of Integers 527

keys. The experiments also confirm our expectations that the larger the size of
keys, the better the relative performance of our algorithms. Thus, while Burstsort
and MEBurstsort are up to 1.7 and 2.5 times faster than MTQsort for 32-bit
keys, they are up to 2.37 and 3.5 times faster than MTQsort for 64-bit keys,
respectively.

There is much scope to further improve these algorithms. They are expected
to show better relative performance when applied to sorting pointers to keys.
In preliminary work on sorting pointers to integer keys, Burstsort was found to
be up to 3.72 times faster than MTQsort. In parallel work on strings, we have
observed that randomization techniques are useful in lowering both instructions
and cache misses even further; these techniques should be readily applicable for
sorting integers. The effect of TLB on our algorithms needs to be investigated.
Preliminary work on using different radix sizes in the trie nodes have shown
promising results, such as, a radix of 11 shows better performance than a radix of
8 for 32-bit keys. Even without these improvements, Burstsort and MEBurstsort
represent a novel and important advance for efficient sorting of integer keys.

Acknowledgment. I thank my supervisor Prof. Justin Zobel and colleague
Vaughan Shanks for their assistance.

References

A. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, Reading, Massachusetts, 1974.
S. Heinz, J. Zobel, and H. E. Williams. Burst tries: A fast, efficient data structure
for string keys. ACM Transactions on Information Systems, 20(2):192–223, 2002.
J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-

proach. Morgan Kaufmann, San Mateo, CA, 2002.
D. Jimenez-Gonzalez, J. Navarro, and J. L. Larriba-Pey. The effect of local sort on
parallel sorting algorithms. In Proceedings of Parallel and Distributed Processing

Workshop, Las Palmas de Gran Canaria, Spain, January 2002.
D. Jimenez-Gonzalez, J. Navarro, and J. L. Larriba-Pey. Cc-radix: a cache con-
scious sorting based on radix sort. In Proceedings of the 11th Euromicro Workshop

on Parallel, Distributed and Network-based processing, 2003.
D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Search-

ing, Second Edition. Addison-Wesley, Massachusetts, 1997.
A. LaMarca and R. E. Ladner. The influence of caches on the performance of
sorting. Jour. of Algorithms, 31(1):66–104, 1999.
U. Meyer, P. Sanders, and J. F. Sibeyn, editors. Algorithms for Memory Hierar-

chies, Advanced Lectures [Dagstuhl Research Seminar, March 10-14, 2002], volume
2625 of Lecture Notes in Computer Science. Springer, 2003.
N. Rahman and R. Raman. Analysing cache effects in distribution sorting. ACM

Jour. of Experimental Algorithmics, 5:14, 2000.
N. Rahman and R. Raman. Adapting radix sort to the memory hierarchy. ACM

Jour. of Experimental Algorithmics, 6(7), 2001.
R. Sedgewick. Algorithms in C, third edition. Addison-Wesley Longman, Reading,
Massachusetts, 1998.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

528 R. Sinha

R. Sinha and J. Zobel. Cache-conscious sorting of large sets of strings with dynamic
tries. In R. Ladner, editor, 5th ALENEX Workshop on Algorithm Engineering and

Experiments, pages 93–105, Baltimore, Maryland, January 2003.
R. Sinha and J. Zobel. Efficient trie-based sorting of large sets of strings. In
M. Oudshoorn, editor, Proceedings of the Australasian Computer Science Confer-

ence, pages 11–18, Adelaide, Australia, February 2003.
R. Wickremesinghe, L. Arge, J. Chase, and J. S. Vitter. Efficient sorting using
registers and caches. ACM Jour. of Experimental Algorithmics, 7(9), 2002.
L. Xiao, X. Zhang, and S. A. Kubricht. Improving memory performance of sorting
algorithms. ACM Jour. of Experimental Algorithmics, 5:3, 2000.

12.

13.

14.

15.

Using Random Sampling to Build Approximate

Tries for Efficient String Sorting

Ranjan Sinha and Justin Zobel

School of Computer Science and Information Technology, RMIT University,
Melbourne 3001, Australia.

{rsinha,jz}@cs.rmit.edu.au

Abstract. Algorithms for sorting large datasets can be made more effi-
cient with careful use of memory hierarchies and reduction in the number
of costly memory accesses. In earlier work, we introduced burstsort, a new
string sorting algorithm that on large sets of strings is almost twice as
fast as previous algorithms, primarily because it is more cache-efficient.
The approach in burstsort is to dynamically build a small trie that is
used to rapidly allocate each string to a bucket. In this paper, we in-
troduce new variants of our algorithm: SR-burstsort, DR-burstsort, and
DRL-burstsort. These algorithms use a random sample of the strings to
construct an approximation to the trie prior to sorting. Our experimen-
tal results with sets of over 30 million strings show that the new vari-
ants reduce cache misses further than did the original burstsort, by up
to 37%, while simultaneously reducing instruction counts by up to 24%.
In pathological cases, even further savings can be obtained.

1 Introduction

In-memory sorting is a basic problem in computer science. However, sorting
algorithms face new challenges due to changes in computer architecture. Proces-
sor speeds have been increasing at 60% per year, while speed of access to main
memory has been increasing at only 7% per year, a growing processor-memory
performance gap that appears likely to continue. An architectural solution has
been to introduce one or more levels of fast memory, or cache, between the
main memory and the processor. Small volumes of data can be sorted entirely
within cache—typically a few megabytes of memory in current machines—but,
for larger volumes, each random access involves a delay of up to hundreds of
clock cycles.

Much of the research on algorithms has focused on complexity and efficiency
assuming a non-hierarchical RAM model, but these assumptions are not realistic
on modern computer architectures, where the levels of memory have different
latencies. While algorithms can be made more efficient by reducing the number
of instructions, current research [8,15,17] shows that an algorithm can afford to
increase the number of instructions if doing so improves the locality of mem-
ory accesses and thus reduces the number of cache misses. In particular, recent

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 529–544, 2004.
© Springer-Verlag Berlin Heidelberg 2004

530 R. Sinha and J. Zobel

work [8,13,17] has successfully adapted algorithms for sorting integers to memory
hierarchies.

According to Arge et al. [2] “string sorting is the most general formulation of
sorting because it comprises integer sorting (i.e., strings of length one), multikey
sorting (i.e., equal-length strings) and variable-length key sorting (i.e., arbitrar-
ily long strings)”. String sets are typically represented by an array of pointers
to locations where the variable-length strings are stored. Each string reference
incurs at least two cache misses, one for the pointer and one or more for the
string itself depending on its length and how much of it needs to be read.

In our previous work [15,16], we introduced burstsort, a new cache-efficient
string sorting algorithm. It is based on the burst trie data structure [7], where a
set of strings is organised as a collection of buckets indexed by a small access trie.

In burstsort, the trie is built dynamically as the strings are processed. During
the first phase, at most the distinguishing prefix—but usually much less—is read
from each string to construct the access trie and place the string in a bucket,
which is a simple array of pointers. The strings in each bucket are then sorted
using an algorithm that is efficient both in terms of the space and the number
of instructions for small sets of strings. There have been several recent advances
made in the area of string sorting, but our experiments [15,16] showed burstsort
to be much more efficient than previous methods for large string sets. (In this
paper, for reference we compare against three of the best previous string sorting
algorithms: MBM radixsort [9], multikey quicksort [3], and adaptive radixsort [1,
11].) However, burstsort is not perfect. A key shortcoming is that individual
strings must be re-accessed as the trie grows, to redistribute them into sub-
buckets. If the trie could be constructed ahead of time, this cost could be largely
avoided, but the shape and size of the trie strongly depends on the characteristics
of the data to be sorted.

Here, we propose new variants of burstsort: SR-burstsort, DR-burstsort, and
DRL-burstsort. These use random sampling of the string set to construct an
approximation to the trie that is built by the original burstsort. Prefixes that
are repeated in the random sample are likely to be common in the data; thus it
intuitively makes sense to have these prefixes as paths in the trie. As an efficiency
heuristic, rather than thoroughly process the sample we simply process them in
order, using each string to add one more node to the trie. In SR-burstsort, the
trie is then fixed. In DR-burstsort, the trie can if necessary continue to grow as in
burstsort, necessitating additional tests but avoiding inefficiency in pathological
cases. In DRL-burstsort, total cache size is used to limit initial trie size.

We have used several small and large sets of strings, as described in our
earlier work [15,16], for our experiments. SR-burstsort is in some cases slightly
more efficient than burstsort, but in other cases is much slower. DR-burstsort
and DRL-burstsort are more efficient than burstsort in almost all cases, though
with larger collections the amount of improvement decreases. In addition, we
have used a cache simulator to examine individual aspects of the performance,
and have found that in the best cases both the number of cache misses and

Using Random Sampling to Build Approximate Tries 531

the number of instructions falls dramatically compared to burstsort. These new
algorithms are the fastest known way to sort a large set of strings.

2 Background

In our earlier work [15,16] we examined previous algorithms for sorting strings.
The most efficient of these were adaptive radixsort, multikey quicksort, and
MBM radixsort. Adaptive radixsort was introduced by Andersson and Nilsson
in 1996 [1,11]; it is an adaptation of the distributive partitioning developed by
Dobosiewicz to standard most-significant-digit-first radixsort. The alphabet size
is chosen based on the number of elements to be sorted, switching between 8 bits
and 16 bits. In our experiments, we used the implementation of Nilsson [11].

Multikey quicksort was introduced by Sedgewick and Bentley in 1997 [3]. It
is a hybrid of ternary quicksort and MSD radixsort. It proceeds character-wise
and partitions the strings into buckets based upon the value of the character at
the position under consideration. The partitioning stage proceeds by selecting
a random pivot and comparing the first character of the strings with the first
character of the pivot. As in ternary quicksort, the strings are then partitioned
into three sets—less than, equal to, and greater than—which are then sorted
recursively. In our experiments, we used an implementation by Sedgewick [3].

MBM radixsort (our nomenclature) is one of several high-performance MSD
radixsort variants tuned for strings that were introduced by McIlroy, Bostic,
and McIlroy [9] in the early 1990s. We used programC, which we found exper-
imentally to be most efficient of these variants; we found it to be the fastest
array-based, in-place sorting algorithm for strings.

Burstsort. Any data structure that maintains the data in order can be used as
the basis of a sorting method. Burstsort is based on this principle. A trie structure
is used to place the strings in buckets by reading at most the distinguishing
prefix; this structure is built incrementally as the strings are processed. There
are two phases; first is insertion of the strings into the burst trie structure, second
is an in-order traversal, during which the buckets are sorted.

The trie is built by bursting a bucket once it becomes too large; a new node
is created and the strings in the bucket are inserted into the node, creating
new child buckets. A fixed threshold—the maximum number of strings that can
be held in a bucket—is used to determine whether to burst. Strings that are
completely consumed are managed in a special “end of string” structure.

During the second, traversal phase, if the number of strings in the bucket is
more than one, then a sorting algorithm that takes the depth of the character of
the strings into account is used to sort the strings in the bucket. We have used
multikey quicksort [3] in our experiments.

The set of strings is recursively partitioned on their lead characters, then
when a partition is sufficiently small it is sorted by a simple in-place method.
However, there is a key difference between radixsorts and burstsort. In the first,
trie-construction phase the standard radixsorts proceed character-wise, process-
ing the first character of each string, then re-accessing each string to process the

532 R. Sinha and J. Zobel

Fig. 1. A burst trie of four nodes and five buckets.

next character, and so on. Each trie node is handled once only, but strings are
handled many times. In contrast, burstsort proceeds string-wise, accessing each
string once only to allocate it to a bucket. Each node is handled many times,
but the trie is much smaller than the data set, and thus the nodes can remain
resident in cache.

Figure 1 shows an example of a burst trie containing eleven records whose
keys are “backup”, “balm”, “base”, “by”, “by”, “by”, “by”, “bypass”, “wake”,
“walk”, and “went” respectively. In this example, the alphabet is the set of letters
from A to Z, and in addition an empty string symbol is shown; the bucket
structure used is an array. The access trie has four trie nodes and five buckets
in all. The leftmost bucket has three strings, “backup”, “balm” and “base”, the
second bucket has four identical strings “by”, the fourth bucket has two strings
“wake” and “walk”, the rightmost bucket has only one string “went”.

Experimental results comparing burstsort to previous algorithms are shown
later. As can be seen, for sets of strings that are significantly larger than the
available cache, burstsort is up to twice as fast. The gain is largely due to dra-
matically reduced numbers of cache misses compared to previous techniques.

Randomised algorithms. A randomised algorithm is one that makes random
choices during its execution. According to Motwani and Raghavan [10], “two
benefits of randomised algorithms have made them popular: simplicity and effi-
ciency. For many applications, a randomised algorithm is the simplest available,
or the fastest, or both.”

One application of randomisation for sorting is to rearrange the input in
order to remove any existing patterns, to ensure that the expected running time
matches the average running time [4]. The best-known example of this is in

Using Random Sampling to Build Approximate Tries 533

quicksort, where randomisation of the input lessens the chance of quadratic
running time. Input randomisation can also be used in cases such as binary
search trees to eliminate the worst case when the input sequence is sorted.

Another application of randomisation is to process a small sample from a
larger collection. In simple random sampling, each individual key in a collection
has an equal chance of being selected. According to Olkem and Roten [12],

Random sampling is used on those occasions when processing the entire
dataset is unnecessary and too expensive ... The savings generated by
sampling may arise either from reductions in the cost of retrieving the
data ... or from subsequent postprocessing of the sample. Sampling is
useful for applications which are attempting to estimate some aggregate
property of a set of records.

3 Burstsort with Random Sampling

In earlier work [15], we showed that burstsort is efficient in sorting strings because
of the low rate of cache miss compared to other string sorting methods. Cache
misses occur when the string is fetched for the first time, during a burst, and

534 R. Sinha and J. Zobel

during the traversal phase when the bucket is sorted. Our results indicated that
the threshold size should be selected such that the average number of cache
misses per key during the traversal phase is close to 1.

Most cache misses occur while the strings are being inserted into the trie.
One way in which cache misses could be reduced during the insertion phase is
if the trie could be built beforehand, avoiding bursts and allowing strings to be
placed in the trie with just one access, giving—if everything has gone well—a
maximum of two accesses to a string overall, once during insertion and once
during traversal. This is an upper bound, as some strings need not be referenced
in the traversal phase and, as the insertion is a sequential scan, more than one
string may fit into a cache line.

We propose building the trie beforehand using a random sample of the strings,
which can be used to construct an approximation to the trie. The goal of the
sampling is to get as close as possible to the shape of the tree constructed by
burstsort, so the strings evenly distribute in the buckets, which can then be
efficiently sorted in the cache. However, the cost of processing the sample should
not be too great, or it can outweigh the gains. As a heuristic, we make just one
pass through the sample, and use each string to suggest one additional trie node.

Sampling process.

Create an empty trie root node where a trie node is an array of pointers
(to either trie nodes or buckets).
Choose a sample size R, and create a stack of R empty trie nodes.
A random sample of R strings is drawn from the input data.

1.

2.
3.

Using Random Sampling to Build Approximate Tries 535

4.
a) Use the string to traverse the trie until the current character corresponds

to a null pointer. That is, set and and, until is
null, continue by setting and incrementing For example, on
insertion of “michael”, if “mic” was already a path in the trie, a node is
added for “h”.

b) If the string is not exhausted, that is, take a new node from the
stack and set

The sampled strings are not stored in the buckets; to maintain stability, they
are inserted when encountered during the main sorting process. The minimum
number of trie nodes created is 1 if all the strings in the collection are identical
and of length 1. The maximum number of trie nodes created is equal to the size
of the sample and is more likely in collections such as the random collection.

The intuition behind this approach is that, if a prefix is common in the data
then there will be several strings in the sample with that prefix. The sampling
algorithm will then construct a branch of trie nodes corresponding to that prefix.

For example, in an English dictionary (from the utility ispell) of 127,001
strings, seven begin with “throu”, 75 with “thro”, 178 with “thr”, 959 with “th”,
and 6713 with “t”. Suppose we sample 127 times with replacement, correspond-
ing to an expected bucket size of 1000. Then the probability of sampling “throu”
is only 0.01, of “thro” is 0.07, of “thr” is 0.16, of “th” is 0.62, and of “t” is 0.999.
With a bucket size of 1000, a burst trie would allocate a node corresponding to
the path “t” and would come close to allocating a node for “th”. Under sam-
pling, it is almost certain that a node will be allocated for “t”—there is an even

For each string in the sample,

536 R. Sinha and J. Zobel

Fig. 2. L2 cache misses for the most efficient sorting algorithms, burstsort has a thresh-
old of 8192.

chance that it would be one of the first 13 nodes allocated—and likely that a
node would be allocated for “th”. Nodes for the deeper paths are unlikely.

SR-burstsort. In burstsort, the number of trie nodes created is roughly linear in
the size of the set to be sorted. It is therefore attractive that the number of nodes
allocated through sampling be a fixed percentage of the number of elements in
the set; by the informal statistical argument above, the trie created in the initial
phase should approximate the trie created by applying standard burstsort to the
same data. In static randomised burstsort, or SR-burstsort, the trie structure
created by sampling is then static. The structure grows only through addition of
strings to buckets. The use of random sampling means that common prefixes will
in the great majority of runs be represented in the trie and strings will distribute
well amongst the buckets.

Using Random Sampling to Build Approximate Tries 537

For a set of N strings, we need to choose a sample size. We use a relative trie
size parameter S. For our experiments we used S = 8192, because this value
was an effective bucket-size threshold in our earlier work. Then the sample size,
and the maximum number of trie nodes that can be created, is R = N/S.

SR-burstsort proceeds as follows: use the sampling procedure above to build
an access trie; insert the strings in turn into buckets; then traverse the trie
and buckets to give the sorted result. No bursts occur. Buckets are a linked list
of arrays of a fixed size (an implementation decision derived from preliminary
experiments). The last element in each array is a pointer to the next array. In
our experiments we have used an array size of 32.

SR-burstsort has several advantages compared to the original algorithm. The
code is simpler, with no thresholds or bursting, thus requiring far fewer instruc-
tions during the insertion phase. Insertion also requires fewer string accesses.
The nodes are allocated as a block, simplifying dynamic memory management.

However, bucket size is not capped, and some buckets may not fit entirely
within the cache. The bucket sorting routine is selected mainly for its instruc-

538 R. Sinha and J. Zobel

Fig. 3. Instructions per element on each data set, for each variant of burstsort for a
threshold of 32768.

Fig. 4. L2 cache misses per element on each data set, for each variant of burstsort for
a threshold of 32768.

tion and space efficiency for small sets of strings and not for cache efficiency.
Moreover, small changes in the trie shape can lead to large variations in bucket
size: omitting a single crucial trie node due to sampling error may mean that a
very large bucket is created.

DR-burstsort. An obvious next step is to eliminate the cases in SR-burstsort
when the buckets become larger than cache and bucket sorting is not entirely
cache-resident. This suggests dynamic randomised burstsort, or DR-burstsort. In
this approach, an initial trie is created through sampling as before, but as in the
original burstsort a limit is imposed on bucket size and buckets are burst if this
limit is exceeded. DR-burstsort avoids the bad cases that arise in SR-burstsort
due to sampling errors. The number of bursts should be small, but, compared
to SR-burstsort, additional statistics must be maintained.

Thus DR-burstsort is as follows: using a relative trie size S, select a sample of
R = N/S strings and create an initial trie; insert the strings into the trie as for
burstsort; then traverse as for burstsort or SR-burstsort. Buckets are represented
as arrays of 16, 128, 1024, or 8192 pointers, growing from one size to the next

Using Random Sampling to Build Approximate Tries 539

as the number of strings to be stored increases, as we have described elsewhere
for burstsort [16].

DRL-burstsort. For the largest sets of strings, the trie is much too large to be
cache resident. That is, there is a trade-off between whether the largest bucket
can fit in cache and whether the trie can fit in cache. One approach is to stop
bursts at some point, especially as bursts late in the process are not as helpful.
We have not explored this approach, as it would be unsuccessful with sorted
data.

Another approach is to limit the size of the initial trie to fit in cache, to
avoid the disadvantages of extraneous nodes being created. This variant, DR-
burstsort with limit or DRL-burstsort, is tested below. The limit used in our
experiments depends on the size of the cache and the size of the trie nodes. In
our experiments, we chose R so that R times node size is equal to the cache size.

4 Experiments

For realistic experiments with large sets of strings, we are limited to sources
for which we have sufficient volumes of data. We have drawn on web data and
genomic data. For the latter, we have parsed nucleotide strings into overlapping
9-grams. For the former, derived from the TREC project [5,6], we extracted both
words—alphabetic strings delimited by non-alphabetic characters—and URLs.
For the words, we considered sets with and without duplicates, in both cases in
order of occurrence in the original data.

For the word data and genomic data, we created six subsets, of approximately
and strings each. We call

these SET 1, SET 2, SET 3, SET 4, SET 5, and SET 6 respectively. For the URL
data, we created SET 1 to SET 5. In each case, only SET 1 fits in cache. In
detail, the data sets are as follows.

Duplicates. Words in order of occurrence, including duplicates. The statistical
characteristics are those of natural language text; a small number of words
are frequent, while many occur once only.

No duplicates. Unique strings based on word pairs in order of first occurrence
in the TREC web data.

Genome. Strings extracted from a collection of genomic strings, each typically
thousands of nucleotides long. The strings are parsed into shorter strings of
length 9. The alphabet is comprised of four characters, “a”, “t”, “g”, and
“c”. There is a large number of duplicates and the data shows little locality.

Random. An artificially generated collection of strings whose characters are
uniformly distributed over the entire ASCII range. The length of each string
is random in the range 1–20.

URL. Complete URLs, in order of occurrence and with duplicates, from the
TREC web data. Average length is high compared to the other sets of strings.

540 R. Sinha and J. Zobel

Artificial A. A collection of identical strings on an alphabet of one character.
Each string is one hundred characters long and the size of the collection is
one million.

Artificial B. A collection of strings with an alphabet of nine characters. The
length of strings are varied randomly from one to hundred and the size of
the collection is ten million.

Artificial C. A collection of strings whose length ranges from one to hundred.
The alphabet size is one and the strings are ordered in increasing length
arranged cyclically. The size of the collection is one million.

The cost of bursting increases with the size of the container as more strings
need to be fetched from memory, leading to increases in the number of cache
misses and of instructions. Each correct prediction of a trie node removes the
need to burst a container. Another situation where bursting could be expensive
is use of inefficient data structures such as binary search trees or linked lists as
containers. Traversing a linked list could result in two memory accesses for each
container element, one access to the string and one access to the list node. To
show how sampling can be beneficial as bursting becomes more expensive, we
have measured the running time, instruction count and cache misses as the size
of the container is increased from 1024 to 131,072, or, for the artificial collections,
up to 262,144.

The aim of the experiments is to compare the performance of our algorithms,
in terms of the running time, number of instructions, and number of L2 cache
misses. The time measured is to sort an array of pointers to strings; the array is
returned as the output. We therefore report the CPU times, not elapsed times,
and exclude the time taken to parse the collections into strings.

The experiments were run on a Pentium III Xeon 700 MHz computer with
2 Gb of internal memory, 1 Mb L2 cache with block size of 32 bytes, 8-way as-
sociativity and a memory latency of about 100 cycles. We have used the highest
compiler optimization O3 in all our experiments. The total number of millisec-
onds of CPU time has been measured; the time taken for I/O or to parse the
collection are not included as these are in common for all algorithms. For the
cache simulations, we have used valgrind [14].

5 Results

We present results in three forms: time to sort each data set, instruction counts,
and L2 cache misses. Times for sorting are shown in Tables 2 to 6. Instruction
counts are shown in Figures 3 and 5. L2 cache misses are shown in Figures 3, 3
and 5; the trends for the other data sets are similar.

On duplicates, the sorting times for the burstsort methods are, for all cases
but SET 1, faster than for the previous methods. These results are as observed in
our previous work. The performance gap steadily grows with data set size, and
the indications from all the results—instructions, cache misses, and timings—are
that the improvements yielded by burstsort will continue to increase with both

Using Random Sampling to Build Approximate Tries 541

Fig. 5. Instructions per element for the largest data set, for each variant of burstsort.

changes in computer architecture and growing data volumes. Figure 3 shows the
L2 cache misses in comparison to the best algorithms found in our earlier work.

Figures 3 and 3 show the number of instructions and L2 cache misses for a
container size of 32768. Several overall trends can be observed. The number of
instructions per string does not vary dramatically for any of the methods, though
it does have perturbations due to characteristics of the individual data sets. SR-
burstsort consistently uses fewer instructions than the other methods, while the
original burstsort requires the most. Amongst the burstsorts, SR-burstsort is
consistently the slowest for the larger sets due to more L2 cache misses than
burstsort, despite requiring fewer instructions.

For most collections, either DR-burstsort or DRL-burstsort is the fastest
sorting technique, and they usually yield similar results. Compared to burstsort,
DR-burstsort uses up to 24% fewer instructions and incurs up to 37% fewer
cache misses. However, there are exceptions, in particular DRL-burstsort has
done much better than DR-burstsort on the random data; on this data, burstsort
is by a small margin the fastest method tested. The heuristic in DRL-burstsort
of limiting the initial trie to the cache size has led to clear gains in this case, in
which the sampling process is error-prone.

Some of the data sets have individual characteristics that affect the trends.
In particular, with the fixed length of the strings in the genome data, increasing
the number of strings does not increase the number of distinct strings, thus the
relative costs of sorting under the different methods changes with increasing data
set size. In contrast, with duplicates the number of distinct strings continues to
steadily grow.

542 R. Sinha and J. Zobel

Fig. 6. L2 cache misses per element for the largest data set, for each variant of burstsort.

The sorting times shown in Tables 2 to 6 shows that as the size of the
container increases, burstsort becomes more expensive. On the other hand, the
cost of DR-burstsort does not vary much with increasing container size. Table 5
shows DR-burstsort can be as much as 3.5 times faster than burstsort. As shown
in Figure 5, the number of instructions incurred by DR-burstsort can be up
to 30% less than burstsort. Also, interestingly the number of instructions do not
appear to vary much as the size of the container increases. Figure 5 similarly
shows that the number of misses incurred by DR-burstsort can be up to 90%
less than burstsort.

All of the new methods require fewer instructions than the original burstsort.
More importantly, in most cases DR-burstsort and DRL-burstsort require fewer
cache misses. This trend means that, as the hardware performance gap grows,
the relative performance of our new methods will continue to improve.

6 Conclusions

We have proposed new algorithms—SR-burstsort, DR-burstsort, and DRL-
burstsort—for fast sorting of strings in large data collections. They are a variant
of our burstsort algorithm and are based on construction of a small trie that
rapidly allocates strings to buckets. In the original burstsort, the trie was con-
structed dynamically; the new algorithms are based on taking a random sample
of the strings and using them to construct an initial trie structure before any
strings are inserted.

Using Random Sampling to Build Approximate Tries 543

SR-burstsort, where the trie is static, reduces the need for dynamic memory
management and simplifies the insertion process, leading to code with a lower
instruction count than the other alternatives. Despite promising performance in
preliminary experiments and the low instruction count, however, it is generally
slower than burstsort, as there can easily be bad cases where a random sample
does not correctly predict the trie structure, which leads to some buckets being
larger than expected.

DR-burstsort and DRL-burstsort improve on the worst case of SR-burstsort
by allowing the trie to be modified dynamically, at the cost of additional checks
during insertion. They are faster than burstsort in all experiments with real
data, due to elimination of the need for most of the bursts. The use of a limit in
DRL-burstsort avoids poor cases that could arise in data with a flat distribution.

Our experimental results show that the new variants reduce cache misses even
further than does the original burstsort, by up to 37%, while simultaneously
reducing instruction counts by up to 24%. As the cost of bursting grows, the
new variants reduce cache misses by up to 90%, while simultaneously reducing
instruction counts by up to 30% and the time to sort is reduced by up to 72%
as compared to burstsort.

There is scope to further improve these algorithms. Pre-analysis of collec-
tions to see whether the alphabet is restricted showed an improvement of 16%
for genomic collections. Pre-analysis would be of value for customised sorting
applications. Another variation is to choose the sample size based on analysis of
collection characteristics. A further variation is to recursively apply SR-burstsort
to large buckets. We are testing these options in current work.

Even without these improvements, however burstsort and its variants are
a significant advance, dramatically reducing the costs of sorting a large set of
strings. Cache misses and running time are as low as half that required by any
previous method. With the current trends in computer architecture, the relative
performance of our methods will continue to improve.

References

A. Andersson and S. Nilsson. Implementing radixsort. ACM Jour. of Experimental

Algorithmics, 3(7), 1998.
Lars Arge, Paolo Ferragina, Roberto Grossi, and Jeffrey Scott Vitter. On sorting
strings in external memory. In Proceedings of the 29th Annual ACM Symposium

on Theory of Computing, pages 540–548, El Paso, 1997. ACM Press.
J. Bentley and R. Sedgewick. Fast algorithms for sorting and searching strings.
In Proc. Annual ACM-SIAM Symp. on Discrete Algorithms, pages 360–369, New
Orleans, Louisiana, 1997. ACM/SIAM.
Rajiv Gupta, Scott A. Smolka, and Shaji Bhaskar. On randomization in sequential
and distributed algorithms. ACM Computing Surveys, 26(1):7–86, 1994.
D. Harman. Overview of the second text retrieval conference (TREC-2). Informa-

tion Processing & Management, 31(3):271–289, 1995.
D. Hawking, N. Craswell, P. Thistlewaite, and D. Harman. Results and challenges
in web search evaluation. In Proc. World-Wide Web Conference, 1999.

1.

2.

3.

4.

5.

6.

544 R. Sinha and J. Zobel

S. Heinz, J. Zobel, and H. E. Williams. Burst tries: A fast, efficient data structure
for string keys. ACM Transactions on Information Systems, 20(2):192–223, 2002.
A. LaMarca and R. E. Ladner. The influence of caches on the performance of
sorting. In Proc. Annual ACM-SIAM Symp. on Discrete Algorithms, pages 370–
379. ACM Press, 1997.
P. M. McIlroy, K. Bostic, and M. D. McIlroy. Engineering radix sort. Computing

Systems, 6(1):5–27, 1993.
R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.
S. Nilsson. Radix Sorting & Searching. PhD thesis, Department of Computer
Science, Lund, Sweden, 1996.
F. Olken and D. Rotem. Random sampling from databases - a survey. Statistics

and Computing, 5(1):25–42, March 1995.
N. Rahman and R. Raman. Adapting radix sort to the memory hierarchy. ACM

Jour. of Experimental Algorithmics, 6(7), 2001.
J. Seward. Valgrind—memory and cache profiler, 2001.
http://developer.kde.org/

~
sewardj/docs-1.9.5/cg_techdocs.html.

R. Sinha and J. Zobel. Cache-conscious sorting of large sets of strings with dynamic
tries. In R. Ladner, editor, 5th ALENEX Workshop on Algorithm Engineering and

Experiments, pages 93–105, Baltimore, Maryland, January 2003.
R. Sinha and J. Zobel. Efficient trie-based sorting of large sets of strings. In
M. Oudshoorn, editor, Proceedings of the Australasian Computer Science Confer-

ence, pages 11–18, Adelaide, Australia, February 2003.
L. Xiao, X. Zhang, and S. A. Kubricht. Improving memory performance of sorting
algorithms. ACM Jour. of Experimental Algorithmics, 5:3, 2000.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

The Datapath Merging Problem in

Reconfigurable Systems: Lower Bounds and

Heuristic Evaluation

Cid C. de Souza1, André M. Lima1, Nahri Moreano2, and Guido Araujo1

1 Institute of Computing, State University of Campinas,
C.P. 6176, 13084-970 Campinas, Brazil.

{cid,andre.lima,guido}@ic.unicamp.br
2 Department of Computing and Statistics, Federal University of Mato Grosso do Sul,

79070-900 Campo Grande, Brazil.
moreano@dct.ufms.br

Abstract. In this paper we investigate the datapath merging problem
(DPM) in reconfigurable systems. DPM is in and it is described
here in terms of a graph optimization problem. We present an Integer
Programming (IP) formulation of DPM and introduce some valid in-
equalities for the convex hull of integer solutions. These inequalities form
the basis of a branch-and-cut algorithm that we implemented. This al-
gorithm was used to compute lower bounds for a set of DPM instances,
allowing us to assess the performance of the heuristic proposed by More-
ano et al. [1] which is among the best ones available for the problem.
Our computational experiments confirmed the efficiency of Moreano’s
heuristic. Moreover, the branch-and-cut algorithm also was proved to be
a valuable tool to solve small-sized DPM instances to optimality.

1 Introduction

It is well known that embedded systems must meet strict constraints of high-
throughput, low power consumption and low cost, specially when designed for
signal processing and multimedia applications [2]. These requirements lead to
the design of application specific components, ranging from specialized functional
units and coprocessors to entire application specific processors. Such components
are designed to exploit the peculiarities of the application domain in order to
achieve the necessary performance and to meet the design constraints.

With the advent of reconfigurable systems, the availability of large/cheap ar-
rays of programmable logic has created a new set of architectural alternatives for
the design of complex digital systems [3,4]. Reconfigurable logic brings together
the flexibility of software and the performance of hardware [5,6]. As a result, it
became possible to design application specific components, like specialized dat-
apaths, that can be reconfigured to perform a different computation, according
to the specific part of the application that is running. At run-time, as each por-
tion of the application starts to execute, the system reconfigures the datapath

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 545–558, 2004.
© Springer-Verlag Berlin Heidelberg 2004

546 C.C. de Souza et al.

so as to perform the corresponding computation. Recent work in reconfigurable
computing research has shown that a significant performance speedup can be
achieved through architectures that map the most time-consuming application
kernel modules or inner-loops to a reconfigurable datapath [7,8,9].

The reconfigurable datapath should have as few and simple hardware blocks
(functional units and registers) and interconnections (multiplexors and wires)
as possible, in order to reduce its cost, area, and power consumption. Thus
hardware blocks and interconnections should be reused across the application
as much as possible. Resource sharing has also crucial impact in reducing the
system reconfiguration overhead, both in time and space.

To design such a reconfigurable datapath, one must represent each selected
piece of the application as a control/data-flow graph (CDFG) and merge them
together, synthesizing a single reconfigurable datapath. The control/data-flow
graph merging process enables the reuse of hardware blocks and interconnec-
tions by identifying similarities among the CDFGs, and produces a single data-
path that can be dynamically reconfigured to work for each CDFG. Ideally, the
resulting datapath should have the minimum area cost. Ultimately, this corre-
sponds to minimize the amount of hardware blocks and interconnections in the
reconfigurable datapath. The datapath merging problem (DPM) seeks such an
optimal merging and is known to be in [10].

To minimize the area cost one has to minimize the total area required by both
hardware blocks and interconnections in the reconfigurable datapath. However,
since the area occupied by hardware blocks is typically much larger than that
occupied by the interconnections, the engineers are only interested in solutions
that use as few hardware blocks as possible. Clearly, the minimum quantity of
blocks required for each type of hardware block is given by the maximum number
of such block that is needed among all CDFGs passed at the input. The minimum
amount of hardware blocks in the reconfigurable datapath can be computed
as the sum of these individual minima. As a consequence, DPM reduces to
the problem of finding the minimum number of interconnections necessary to
implement the reconfigurable datapath.

Fig. 1 illustrates the concept of control/data-flow graph merging and the
problem we are tackling. For simplicity, the multiplexors, who select the inputs
for certain functional blocks, are not represented. The graphs and G repre-
sent two mappings of the CDFGs and In both these mappings, vertices

and from are mapped onto vertices and from respectively,
while vertex of has no counterpart in The difference between the two
mappings is that, in vertex of is mapped onto vertex of while
it is mapped onto in G. The mappings and G are both feasible since they
only match hardware blocks that are logically equivalent. Though their recon-
figurable datapaths have the same amount of hardware blocks, in no arcs are
overlapped while in G the arcs and coincide (see the highlighted
arc in Fig. 1). In practical terms, this means that one less multiplexor is needed
and, therefore, G is a better solution for DPM than

The Datapath Merging Problem in Reconfigurable Systems 547

Fig. 1. Example of a DPM instance.

In this paper we present an Integer Programming (IP) formulation for DPM
and introduce some valid inequalities for the convex hull of integer solutions.
These inequalities form the basis of a branch-and-cut (B&C) algorithm that
we implemented. The contributions of our work are twofold. First the B&C
algorithm was able to compute lower bounds for a set of DPM instances, allowing
us to assess the performance of the heuristic proposed by Moreano et al. [1], one
of the best suboptimal algorithms available for DPM. Secondly, the B&C also
proved to be a valuable tool to solve small-sized DPM instances to optimality.

The paper is organized as follows. The next section gives a formal descrip-
tion of DPM in terms of Graph Theory. Section 3 briefly discusses Moreano’s
heuristic. Section 4 presents an IP formulation for DPM, together with some
classes of valid inequalities that can be used to tighten the original model. In
Sect. 5 we report our computational experiments with the B&C algorithm and
analyze the performance of Moreano’s heuristic. Finally, in Sect. 6 we draw some
conclusions and point out to future investigations.

2 A Graph Model for DPM

In this section we formulate DPM as a graph optimization problem. The input
is assumed to be composed of datapaths corresponding to application loops
of a computer program. The goal is to find a merging of those datapaths into a
reconfigurable one that is able to work as each individual loop datapath alone and
has as least hardware blocks (functional units and registers) and interconnections
as possible. That is, the reconfigurable datapath must be capable of performing
the computation of each loop, multiplexed in time.

The datapath is modeled as a directed graph where the
vertices in represent the hardware blocks in the datapath, and the arcs in
are associated to the interconnections between the hardware blocks. The types of
hardware blocks (e.g. adders, multipliers, registers, etc) are modeled through a
labeling function where is the set of labels representing hardware
block types. For each vertex is the type of the hardware block
associated to A reconfigurable datapath representing a solution of DPM can

548 C.C. de Souza et al.

also be modeled as a directed graph G = (V, E) together with a labeling function
In the final graph G, given there exists a mapping

which associates every vertex of to a distinct vertex in V. This mapping is
such that, if and then Moreover, whenever
the arc is in the arc must be in E. If G is an optimal
solution for DPM it satisfies two conditions: (a) for all the number of
vertices of G with label T is equal to the maximum number of vertices with that
label encountered across all datapaths and (b) is minimum. Condition
(a) forces the usage of as few hardware blocks as possible in the reconfigurable
datapath. As cited before, this is a requirement of the practitioners.

3 Moreano’s Heuristic for DPM

Since DPM is it is natural to devise suboptimal algorithms that can
solve it fast, preferably in polynomial time. In Moreano et al. [1], the authors
proposed a heuristic for DPM and give comparative results showing that it out-
performs other heuristics presented in the literature. Moreano’s heuristic (MH)
is briefly described in this section. In Sect. 5, rather than assess the efficiency of
MH using upper bounds generated with other methods, we compare its solutions
with strong lower bounds computed via the IP model discussed in Sect. 4.

For an integer define as the DPM problem whose input is
made of loop datapaths. Thus, the original DPM problem would be denoted
by but the former notation is kept for simplicity. MH is based on an
algorithm for 2-DPM, here denoted by 2DPMalg, that is presented below.

Let and be the input graphs and and their
respective labeling functions. A pair of arcs in is said to
form a feasible mapping if and The first step of
2DPMalg constructs the compatibility graph H = (W, F) of and The graph
H is undirected. The vertices in W are in one-to-one correspondence with the
pairs of arcs in which form feasible mappings. Given two vertices and
in W represented by the corresponding feasible mappings, say
and the edge is in F except if one of the following
conditions hold: (i) and or (ii) and or (iii) and

or (iv) and If the edge is in F, the feasible mappings
that they represent are compatible, explaining why H is called the compatibility
graph. Now, as explained in [1], an optimal solution for 2-DPM can be computed
by solving the maximum clique problem on H. The solution of DPM is easily
derived from an optimal clique of H since the feasible mappings associated to
the vertices of this graph provide the proper matchings of the vertices of and

However, it is well-known that the clique problem is Thus, the
approach used in MH is to apply a good heuristic available for cliques to solve
2-DPM. Later in Sect. 5, we discuss how this is done in practice.

Before we continue, let us give an example of the ideas discussed in the
preceding paragraph. To this end, consider the graphs and in Fig. 2 rep-
resenting an instance of 2-DPM. According to the notation used in this figure,

The Datapath Merging Problem in Reconfigurable Systems 549

Fig. 2. Example of a 2-DPM instance.

each vertex in a graph is identified with a label which denotes that is
the vertex of and For instance, is the second vertex of
which have type A. This notation is used to other figures representing DPM in-
stances and solutions throughout. Figure 3 depicts the compatibility graph H of

and Consider, for example, the feasible mappings
(vertex in H) and (vertex in H). For those map-
pings, no vertex from maps onto two distinct vertices in and vice-versa.
As a result, these two mapping are compatible, and an edge is required
in H. On the other hand, no edge exists in H between vertices and The
reason is that the mappings represented by these vertices are incompatible, since
otherwise vertex in would map onto both and in

A maximum clique of the compatibility graph H in Fig. 2 is given by vertices
and An optimal solution G for 2-DPM can be easily built from this

clique. The resulting graph G is shown in Fig. 3 and is obtained as follows. First,
we consider the vertices of the clique. For instance, for vertex represents the
feasible mapping we add to G two vertices and
corresponding respectively to the mapped vertices and
Moreover, we also include in G the arc to represent the feasible mapping
associated to Analogous operations are now executed for vertices and
The former vertex is responsible for the addition of vertices and and of arc

in G while the latter gives rise to the addition of arc Finally,
we add to G the vertex corresponding to the non-mapped vertex from

Fig. 3. Compatibility graph and an optimal solution for the 2-DPM instance of Fig. 2.

550 C.C. de Souza et al.

and the arcs and corresponding respectively to arcs
from and arcs and from

Back to MH, we now show how it uses algorithm 2DPMalg as a building-block
for getting suboptimal solutions for DPM. MH starts by applying 2DPMalg to
graphs and with labeling functions and respectively. The output
is a graph G and a labeling function At each iteration MH
applies 2DPMalg to graphs G and and their functions and After all these
pairwise matchings have been completed, the graph G is returned.

4 Integer Linear Programming Exact Solution

A natural question that arises when one solves a hard problem heuristically
is how far the solutions are from the true optimum. For 2-DPM, algorithm
2DPMalg from Sect. 3 can be turned into an exact method, provided that an exact
algorithm is used to find maximum cliques. However, this approach only works
when merging two datapaths. A naive extension of the method to encompass the
general case requires the solution of hard combinatorial problems on large-sized
instances which cannot be handled in practice. As an alternative, in this section
we derive an IP model for DPM. The aim is to compute that model to optimality
via IP techniques whenever the computational resources available permit. When
this is not the case, we would like at least to generate good lower bounds that
allow us to assess the quality of the solutions produced by MH.

Let us denote by the type of hardware block and assume that has
elements, i.e., Moreover, for every and

every let us define as the number of vertices in associated
with a hardware block of type and let Then,
the solutions of DPM are graphs with vertices, where In the
remainder of the text, we denote by K and N the sets and
respectively. Besides, we assume that for every hardware block of type in
there exists and such that

When V is given by we can assume without loss of generality
that and so
on. In other words, V is such that the first vertices are assigned to label

the next vertices are assigned to label and so on. This assumption
reduces considerably the symmetry of the IP model increasing its computability.
Below we use the notation to denote the subset of indices in K for which

and
We are now ready to define the binary variables of our model. For every triple

with and let be one if and only if the
vertex of is mapped onto the vertex of V. Moreover, for any pair
of distinct elements in K, let be one if and only if there exists and an
arc in such that one of its end-vertices is mapped onto vertex of V while

The Datapath Merging Problem in Reconfigurable Systems 551

the other end-vertex is mapped onto The IP model is then the following.

Equation (1) expresses the fact that an optimal solution to DPM is a graph
with as few arcs as possible. Constraints (2) force the existence of arcs in the
output graph. Constraints (3) avoid multiple vertices in one input graph to be
mapped to a single vertex of the output graph. Finally, (4) guarantees that any
vertex in any input graph is mapped to exactly one vertex of V.

Notice that (5) can be replaced by inequalities of the form for
all with This is so because the objective function together
with (2) force the variables to assume values in the limits of the interval [0,1]
and, therefore, to be integer-valued. This remark is important for computational
purposes. The most successful algorithms implemented in commercial solvers for
IP are based on branch-and-bound (B&B) algorithms. The size of the solution
space increases exponentially with the number of integer variables in the model.
Thus, relaxing the integrality constraints on the variables in our model, we
reduce the search space and increase the chances of success of the algorithm.

The solution of hard combinatorial problems through IP algorithms relies
largely on the quality of the dual bounds produced by the linear relaxation of
the model at hand. To improve the dual bounds, the relaxation can be amended
with additional constraints that are valid for integer solutions of the relaxation
but not for all the continuous ones. This addition of valid inequalities tightens
the relaxation for its feasibility set strictly decreases. The new constraints, typ-
ically chosen from a particular class of valid inequalities, can be either included
a priori in the model, which is then solved by a standard B&B algorithm, or
generated on the fly during the enumeration procedure whenever they are vio-
lated by the solution of the current relaxation. The latter method gives rise to
B&C algorithms for IP. Quite often the use of B&C is justified by the num-
ber of potential inequalities that can be added to the model which, even for
limited classes of valid inequalities, is exponentially large. On the other hand,
when inequalities are generated on the fly, algorithms that search for violated
inequalities are needed. These algorithms solve the so-called separation problem
for classes of valid inequalities and are named separation routines. For a thor-
ough presentation of the Theory of Valid Inequalities and IP in general, we refer
to the book by Nemhauser and Wolsey [11]. In the sequel we present two classes
of valid inequalities that we use to tighten the formulation given in (1)-(6).

552 C.C. de Souza et al.

4.1 The Complete Bipartite Subgraph (CBS) Inequalities

The idea is to strengthen (2) using (3). This is done through special subgraphs of
the input graphs. Given a directed graph D, we call a subgraph
a CBS of D if, for every pair of vertices in is in F.

labels Let be a CBS of such that all
vertices in have label Suppose that is maximal with
respect to vertex inclusion. Assume that and are two vertices in V, the
vertex set of the resulting graph G, with labels and respectively. The
CBS inequality associated to and is

Theorem 1. (7) is valid for all integer solutions of the system (2)-(6).

Proof. Due to (3), the first summation in the left-hand side (LHS) of (7) cannot
exceed one. A similar result holds for the second summation. Thus, if an integer
solution exists violating (7), both summations in the LHS have to be one. But

Clearly, if is not a maximal CBS of then (2) is dominated by some
inequality in (7) and, therefore, superfluous. Our belief is that the number of
CBS inequalities is exponentially large which, in principle, would not recommend
to add them all to the initial IP model. However, the DPM instances we tested
reveal that, in practical situations, this amount is actually not too large and the
CBS inequalities can all be generated via a backtracking algorithm. This allows
us to test B&B algorithms on models with all these inequalities present.

4.2. The Partition(PART) Inequalities

The next inequalities generalize (2). Consider the input graph
Let and be two vertices in with labels and respec-

tively, with and Again assume that G = (V, E) is the output
graph and that is a vertex of V with label Finally, suppose that A and
B form a partition of the set (see definition in Sect. 4). The PART

inequality corresponding to A and B is

Theorem 2. (8) is valid for all integer solutions of the system (2)-(6).

then, there would be a pair of vertices in such that is mapped
onto vertex and onto vertex However, as is a CBS of
must be an arc of E, the arc set of the output graph G, i.e., is one.

Now, consider an input graph of a DPM instance and two distinct

The Datapath Merging Problem in Reconfigurable Systems 553

Proof. If is mapped onto a vertex of the resulting graph G and is in

Fig. 4. Separation routine for PART inequalities.

B, (8) reduces to which is obviously true since
and for all On the other hand, if is mapped onto a vertex
of G with in A, the last summation in (8) is null and the inequality becomes

If vertex is not mapped onto vertex the latter
inequality is trivially satisfied. If not, then necessarily there must be an arc in
G joining vertex to some vertex of G with in A. This implies that the
second summation in (8) is at least one and, therefore, the inequality holds.

Notice that using (4) we can rewrite (8) as
which, for is nothing but (2). Moreover, since the size of in
the worst case, is linear in the total number of vertices of all input graphs, there
can be exponentially many PART inequalities. However, the separation problem
for these inequalities can be solved in polynomial time. This is the ideal situation
for, according to the celebrated Grötschel-Lovász-Schrijver theorem [12], the dual
bound of the relaxation of (2)-(4) and all inequalities in (8) is computable in
polynomial time using the latter inequalities as cutting-planes. A pseudo-code
for the separation routine of (8) is shown in Fig. 4 and is now explained.

Given an input graph consider two vertices and such that
is in and a vertex of G whose label is identical to that of Now, let

be an optimal solution of a linear relaxation during the B&C algorithm.
The goal is to find the partition of the set that maximizes the LHS of
(8). It can be easily verified that, with respect to the point and the input
parameters and the choice made in line 4 ensures that the LHS of (8) is
maximized. Thus, if the value of LHS computed for the partition returned in line
7 is non positive, no constraint of the form (8) is violated, otherwise, (A, B) is
the partition that produces the most violated PART inequality for This
routine is executed for all possible sets of input parameters. The number of such
sets can be easily shown to be polynomial in the size of the input. Moreover, since
the complexity of the routine is which, in turn, is the
identification of all violated PART inequalities can be done in polynomial time.

554 C.C. de Souza et al.

5 Computational Experiments

We now report on our computational tests with a set of benchmark instances
generated from real applications from the MediaBench suite [13]. All programs
were implemented in C++ and executed on a DEC machine equipped with an
ALPHA processor of 675 MHz, 4 GB of RAM and running under a native Unix
operating system. The linear programming solver used was CPLEX 7.0 and sepa-
ration routines were coded as callback functions from the solver’s callable library.

The program implementing heuristic MH resorts to the algorithm of Battiti
and Protasi [14] to find solutions to the clique problem. The author’s code,
that was used in our implementation, can be downloaded from [15] and allows
the setting of some parameters. Among them, the most relevant to us is the
maximum computation time. Our tests reveal that running the code with this
parameter set to one second produce the same results as if we had fixed it to 10
or 15 seconds. Unless otherwise specified, all results exhibited here were obtained
for a maximum of computation time of one second. This means that, the MH
heuristic as a whole had just a couple of seconds to seek a good solution.

The B&B and B&C codes that compute the IP models also had their com-
putation times limited. In this case, the upper bound was set to 3600 seconds.
B&B refers to the basic algorithm implemented in CPLEX having the system
(1)-(6) as input. The results of B&B are identified by the“P” extension in the
instance names. The B&C algorithms are based on a naive implementation. The
only inequalities we generated on the fly are the PART inequalities. The separa-
tion routine from Fig. 4 is ran until it is unable to encounter an inequality that
is violated by the solution of the current relaxation. So, new PART constraints
are generated exhaustively, i.e., no attempt is done to prevent the well-known
stalling effects observed in cutting plane algorithms. A simple rounding heuris-
tic is also used to look for good primal bounds. The heuristic is executed at
every node of the enumeration tree. The two versions of B&C differ only in
the input model which may or may not include the set of CBS inequalities. As
mentioned earlier, when used, the CBS inequalities are all generated a priori by a
simple backtracking algorithm. The first (second) version B&C algorithm uses
the system (1)-(6) (amended with CBS inequalities) as input and its results are
identified by the “HC” (“HCS”) extension in the instance names. It should be
noticed that, both in B&B and in B&C algorithms, the generation of standard
valid inequalities provided by the solver is allowed. If fact, Gomory cuts were
added by CPLEX in all cases but had almost no impact on the dual bounds.

Table 1 summarizes the characteristics of the instances in our data set.
Columns and refer respectively to the number of vertices and labels
of the output graph G. Columns display the features of
each input graph of the instance. For each input graph, the columns
and denote the number of vertices, arcs and different labels respectively.

Table 2 exhibits the results we obtained. The first column contains the in-
stance name followed by the extension specifying the algorithm to which the
data in the row correspond. The second column reports the CPU time in seconds.
We do not report on the specific time spent on generating cuts since it is negli-

The Datapath Merging Problem in Reconfigurable Systems 555

gible compared to that of the enumeration procedure. Third and fourth columns
contain respectively the dual and primal bounds when the algorithm stopped.
Column “MH” displays the value of the solution obtained by Moreano’s heuris-
tic. To calculate these solutions, MH spent no more than 15 seconds in each
problem and mpeg2_encode was the only instance in which the clique procedure
was allowed to run for more than 10 seconds. Column “gap” gives the percent-
age gap between the value in column “MH” and that of column “DB” rounded
up. Finally, the last two columns show respectively the total numbers of nodes
explored in the enumeration tree and of PART inequalities added to the model.
For each instance, the largest dual bound and the smallest gap is indicated in
bold. Ties are broken by the smallest CPU time.

By inspecting Tab. 2, one can see that MH produces very good solutions. It
solved 4 out of the 11 instances optimally. We took into account here that further
testing with the IP codes proved that 60 is indeed the optimal value of instance
pegwit. When a gap existed between MH’s solution and the best dual bound,
it always remained below 10%. Additional runs with larger instances showed
that the gaps tend to increase, though they never exceeded 30%. However, this
is more likely due to the steep decrease in performance of the IP codes than
to MH. Instance epic_decode was the only case where an optimal solution was
found that did not coincided with that generated by MH. Nevertheless, the gap
observed in this problem can be considered quite small: 3.39%.

Comparing the gaps computed by the alternative IP codes, we see that the
two B&C codes outperform the pure B&B code. Only in two instances the
pure B&B code beat both code generation codes. The strength of inequalities
PART and CBS can be assessed by checking the number of nodes explored during
the enumeration. This number is drastically reduced when cuts are added as
it can be observed, for instance, for problems adpcm and epic_decode where
the use of cuts allowed the computation of the optimum at the root node while
B&B explored thousands or hundreds of nodes. Instance g721 was also solved

556 C.C. de Souza et al.

to optimality by the B&C codes with much fewer nodes than B&B, however,
when the CBS inequalities were not added a priori, this gain did not translate
into an equivalent reduction in computation time. In the remaining cases, where
optimality could not be proved, again we observed that B&C codes computed
better dual bounds whereas the number of nodes visited were orders of magnitude
smaller than that of B&B.

The Datapath Merging Problem in Reconfigurable Systems 557

6 Conclusions and Future Research

In this paper we presented an IP formulation for DPM and introduced valid
inequalities to tighten this model. Based on this study, we implemented B&C
and B&B algorithms to assess the performance of Moreano’s heuristic (MH) for
DPM, which is reported as being one of the best available for the problem. Our
computational results showed that MH is indeed very effective since it obtains
high-quality solutions in a matter of just a few seconds of computation.

The cut generation codes also proved to be a valuable tool to solve some
instances to optimality. However, better and less naive implementations are pos-
sible that may turn them more attractive. These improvements are likely to
be achieved, at least in part, by adding tuning mechanisms that allow for a
better trade off between cut generation and branching. For instance, in prob-
lems gsm_decode, jpeg_decode and jpeg_encode (see Tab. 2), the B&C codes
seemed to get stuck in cut generation since they spent the whole computation
time and were still at the root node. Other evidences of the need of such tun-
ing mechanisms are given by instances pegwit and g721 were the pure B&B
algorithm was faster than at least one of the B&C codes.

Of course, a possible direction of research would be to perform further poly-
hedral investigations since they could give rise to new strong valid inequalities
for the IP model possibly resulting into better B&C codes. Another interest-
ing investigation would be to find what actually makes a DPM instance into a
hard one. To this end, we tried to evaluate which of the parameters displayed in
Tab. 1 seemed to affect most the computation time of the IP codes. However,
our studies were inconclusive. Probably, the structures of the input graphs play
a more important role than the statistics that we considered here.

Acknowledgments. This work was supported by the Brazilian agencies
FAPESP (grants 02/03584-9, 1997/10982–0 and 00/15083–9), CAPES (grants
Bex04444/02–2 and 0073/01–6) and (grants 302588/02–7, 664107/97–4,
552117/02–1, 301731/03–9 and 170710/99–8).

References

1.

2.

3.

4.

Moreano, N., Araujo, G., Huang, Z., Malik, S.: Datapath merging and inter-
connection sharing for reconfigurable architectures. In: Proceedings of the 15th
International Symposium on System Synthesis. (2002) 38–43
Wolf, W.: Computers as Components – Principles of Embedded Computing System
Design. Morgan Kaufmann Publishers (2001)
DeHon, A., Wawrzynek, J.: Reconfigurable computing: What, why, and implica-
tions for design automation. In: Proceedings of the Design Automation Conference
(DAC). (1999) 610–615
Schaumont, P., Verbauwhede, I., Keutzer, K., Sarrafzadeh, M.: A quick safari
through the reconfiguration jungle. In: Proceedings of the Design Automation
Conference (DAC). (2001) 172–177

558 C.C. de Souza et al.

5.

6.

7.

8.

9.

10.

11.

12.

13.
14.

15.

Compton, K., Hauck, S.: Reconfigurable computing: A survey of systems and
software. ACM Computing Surveys 34 (2002) 171–210
Bondalapati, K., Prasanna, V.: Reconfigurable computing systems. Proceedings
of the IEEE (2002)
Callahan, T., Hauser, J., Wawrzynek, J.: The Garp architecture and C compiler.
IEEE Computer (2000) 62–69
Singh, H., Lee, M., Lu, G., Kurdahi, F., Bagherzadeh, N., Filho, E.: MorphoSys:
An integrated reconfigurable system for data-parallel and computation-intensive
applications. IEEE Transactions on Computers 49 (2000) 465–481
Schmit, H., et al.: PipeRench: A virtualized programmable datapath in 0.18 micron
technology. In: Proceedings of the IEEE Custom Integrated Circuits Conference
(CICC). (2002) 63–66
Moreano, N., Araujo, G., de Souza, C.C.: CDFG merging for reconfigurable archi-
tectures. Technical Report IC-03-18, Institute of Computing, University of Camp-
inas SP, Brazil (2003)
Nemhauser, G.L., Wolsey, L.: Integer and Combinatorial Optimization. Wiley &
Sons (1988)
Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1 (1981) 169–197
MediaBench benchmark http: //cares. icsl. ucla. edu/MediaBench/.
Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem.
Algorithmica 29 (2001) 610–637
Clique code. http://rtm.science.unitn.it/intertools/clique/.

An Analytical Model for Energy Minimization

Claude Tadonki and Jose Rolim

Centre Universitaire d’Informatique, University of Geneva, Department of Theoretical
Computer Science, Avenue du Géneral Dufour 24, 1211 Geneva 4, Switzerland.

{claude. tadonki, jose.rolim}@cui.unige.ch

Abstract. Energy has emerged as a critical constraint in mobile com-
puting because the power availability in most of these systems is limited
by the battery power of the device. In this paper, we focus on the memory
energy dissipation. This is motivated by the fact that, for data intensive
applications, a significant amount of energy is dissipated in the mem-
ory. Advanced memory architectures like the Mobile SDRAM and the
RDRAM support multiple power states of memory banks, which can be
exploited to reduce energy dissipation in the system. Therefore, it is im-
portant to design efficient controller policies that transition among power
states. Since the addressed memory chip must be in the active state in
order to perform a read/write operation, the key point is the tradeoff
between the energy reduction due to the use of low power modes and
the energy overheads of the resulting activations. The lack of rigorous
models for energy analysis is the main motivation of this work. Assuming
regular transitions, we derive a formal model that captures the relation
between the energy complexity and the memory activities. Given a prede-
termined number of activations, we approximate the optimal repartition
among available power modes. We evaluate our model on the RDRAM
and analyze the behavior of each parameter together with the energy
that can be saved or lost.

1 Introduction

Due to the growing popularity of embedded systems [13,14,15], energy has
emerged as a new optimization metric for system design. As the power avail-
ability in most of these systems is limited by the battery power of the device,
it is critical to reduce energy dissipation in these systems to maximize their op-
eration cycle. Power limitation is also motivated by heat or noise limitations,
depending on the target application.

The topic of energy reduction has been intensively studied in the literature
and is being investigated at all levels of system abstraction, from the physi-
cal layout to software design. There have been several contributions on energy
saving focused on scheduling/processors [6,7,8], data organizations [9,1], com-
pilation [17,18,19,24], and the algorithmic level [21,22,24]. The research at the
architecture level has led to new and advanced low energy architectures, like
the Mobile SDRAM and the RDRAM, that support several low power features
such as multiple power states of memory banks with dynamic transitions [11,

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 559–569, 2004.
© Springer-Verlag Berlin Heidelberg 2004

560 C. Tadonki and J. Rolim

12], row/column specific activation, partial array refresh, and dynamic volt-
age/frequency scaling [20].

It is well known that the most important part of energy dissipation comes
from memory activities [1,2], sometimes more that 90% [12]. Consequently, the
topic of memory energy reduction is now into the spotlight. For the purpose
of reducing the energy dissipation, contributions on cache memory optimization
can be considered because of the resulting reduction of memory accesses [3,4,
5,22]. In order to benefit from the availability of different memory operating
modes, effective memory controller policies should suit the tradeoff between the
energy reduction obtained from the use of low power modes and the energy
overhead of the consequent activations (exit latency and synchronization time)

[25]. A combinatorial scheduling technique is proposed by Tadonki et al [23].
A threshold approach is considered by Fan et al. [25] in order to detect the
appropriate instant for transitions into low power modes. A hardware-assisted
approach for the detection and estimatation of idleness in order to perform power
mode transitions is studied by Delaluz et al [12].

The goal of this paper is to design and evaluate a formal model for the energy
minimization problem. This is important as a first step toward a design of an
efficient power management policy. Our model clearly shows the relative impact
of the storage cost and the activation overheads. The optimization problem de-
rived from our model is a quadratic programming problem, that is well solved
by standard routines. We consider only the transitions from low power modes
to the active mode, thus in the paper, we say activation instead of transition.

Given a predetermined amount of activations to be performed, our model gives
the optimal assignment among power modes and the corresponding fraction of
time that should be spent in each mode. It is clear that there is a correlation
between the number of activations and the time we are allowed to spent in each
mode. It is important to assume that the time we spend in a low power mode af-
ter a transition is bounded. Otherwise, we should transition to the lowest power
mode and stay in that mode until the end of the computation. This is unrealistic
in general because memory accesses will occur, very often at an unpredictable
time. To capture this aspect, we consider a time slot for each power mode. Each
transition to a given power mode implies that we will spent a period of time
that is in a fix range (parameterizable). Once the parameters have been fixed,
the resulting optimal energy becomes a function of the number of activations,
which should be in a certain range in order to impact an energy reduction.

The rest of the paper is organized as follows. Section II presents our model
for energy evaluation. In Section III, we formulate the optimization problem
behind the energy minimization. An evaluation with the RDRAM is presented
in section IV. We conclude in Section V.

2 A Model of Energy Evaluation

We assume that the energy spent for running an algorithm depends on three
major types of operation:

An Analytical Model for Energy Minimization 561

the operations performed by the processor (arithmetic and logical operations,
comparisons, etc.);
the operations performed on the memory (read/write operations, storage,
and state transition);
the data transfers at all levels of hardware system.

In this paper, we will focus only on the energy consumed by memory operations.
We consider the memory energy model defined in [21], which we restate here.
The memory energy for problem size is defined as the sum of the memory
access energy, the data storage energy, and state transition overheads. This yields
the formula

where

is the access energy cost per unit of data, and represents the total
number of memory accesses

is the storage energy cost per unit of data per unit time, is the
space complexity, and is the total time for which the memory is active

is the energy overheads for each power transition, and represents
the total number of state transition.

As we can see, the model consider two memory state (active and inactive),
and a single memory bank. Moreover, the storage cost in intermediate modes
is neglected, otherwise we should have considered (the total computation
time) instead of (the total active time). In our paper, we consider the
general case with any given number of memory states, and several memory banks
with an independent power control.

The main memory is composed of banks, and each bank has possible
inactive states. We denote the whole set of states by where 0
stands for the active state. For state transition, we consider only the activations
(transition from a low power mode to the active node). This is justified by the
fact that transitions to low power modes impact a negligible energy dissipation.
The activation energy overheads is given by the vector

During the execution of an algorithm, a given bank spends a fraction
of the whole time in state thus we have

About the storage cost, let denotes the vector of
storage cost, means is the storage cost per unit data and per unit time when
the memory is in power state

Concerning the activation complexity, note that since activations occur in a
sequential processing, and the transition cost does not depend on the memory
bank, we only need to consider the number of activations from each state we
denote We then define the activation vector

562 C. Tadonki and J. Rolim

If we assume that memory banks are of same volume we obtain the fol-
lowing memory energy formula for problem size

We define the vector by

For a given state is the accumulation of the fractions of time each memory
bank has spent in mode In case of a single memory bank, it is the fraction of
the total execution time spent in the considered mode. The reader can easily see
that

We shall consider the following straightforward equality

We define the vector as the vector of activation delays,
is the time overhead induced by an activation from state

The total time is composed of

the cpu time
the memory accesses time is the single memory access delay)
the activations overhead

We can write

We make the following considerations

the power management energy overhead is negligible [21].
the the additive part can be dropped since it doesn’t depend on
the power state management.

Thus, the objective to be minimized is (proportional to) the following

An Analytical Model for Energy Minimization 563

3 Optimization

3.1 Problem Formulation

Our goal is to study the energy reduction through the minimization of the
objective (7). In order to be consistent and also avoid useless (or trivial)
solutions, a number of constraints should be considered:

Domain specification. The variables and belong to and respectively,
i.e.

Time consistency. As previously explained, we have

where is the total memory access time, and R the total running time
(without the power management overhead) which can be estimated from the
time complexity of the program or from a profiling.

Activations bounds. It is reasonable to assume that each time a memory bank
is activated, it will earlier or later be accessed. Thus, we have

However, except the ideal case of a highly regular and predictable memory ac-
cess, several activations should be performed for a better use of power modes
availability. This is well captured by a lower bound the number of activations.
Thus, we have a lower bound and an upper bound in the number of activation.
In our model we consider a fix amount of activations instead of a range. This
gives,

where is a scaling factor such that

Another constraint that should be considered here is related to the fraction of
time spent in the active mode Indeed, the time spent in the active mode
is greater than the total memory access time, which can be estimated from the
number of memory accesses C, and the time of a single access Since, we
consider fraction of time, we have

564 C. Tadonki and J. Rolim

Compatibility between time and activation. Recall that a memory bank is
activated if and only if it will be accessed. Moreover, when a memory bank is put
in a given low power mode, a minimum (resp. maximum) period of time is spent
in that mode before transitioning to the active mode. This can be the fraction
of time taken by the smallest job (or instruction depending on the granularity).
We consider the set of time intervals low power modes. Then, we have

In addition, since any of every activation implies a minimum period of time, we
denote in the active mode, we also have

Using relation (14), relation (16) becomes

We shall consider define by

The inequalities (12) and (17) can be combined to

We now analyze the model.

3.2 Model Analysis

We first note that transitioning from the active state to state for a period of
time is advantageous (based of storage cost) if and only if we have

which gives the following threshold relation

The time threshold vector D defined by

provides the minimum period of time that should be spent in each low power
modes, and is also a good indicator to appreciate their relative impact. We
propose to select the time intervals (15) for low power modes as follows

An Analytical Model for Energy Minimization 565

where
Lastly, the active time threshold as defined in (17) should be greater than the
memory accesses time. Then we should have

We now solve the optimization problem provides by our model as described
above.

3.3 Solving the Optimization Problem

According to our model, the optimization problem behind the energy reduction
is the following

Fig. 1. Energy minimization problem

There are mainly two ways for solving the optimization problem formulated
in figure 3.3. The first approach is to consider the problem as a mixed inte-
ger programming problem (MIP). For a given value of the resulting model
becomes a linear programming (LP) problem. Thus, appropriate techniques like
the standard LP based Branch and Bound can be considered. However, we think
that this is an unnecessarily challenging computation. Indeed, a single transition
does not have a significant impact on the overall energy dissipation as quantified
by our model. Thus, we may consider a pragmatic approach where the variable
is first assumed to be continuous, and next rounded down in order to obtain the
required solution. This second approach yields a simple quadratic programming
model that is easily solved by standard routines.

4 Experiments

We evaluate our model with the values provided in [25] for the RDRAM. Table 2
summarizes the corresponding values (vector D is calculated using the formula
(22)).

566 C. Tadonki and J. Rolim

Fig. 2. DRAM parameters

Our optimization is performed using MATLAB with the following code

An Analytical Model for Energy Minimization 567

We consider a problem (abstracted) where 75% of the total time is spent in
memory accesses. We used R = 80000 and C = 1000. Note that our objective
function is proportional to the time vector and the vector of storage coefficient
Q. Thus, the measuring unit can be scaled as desired without changing the
optimal argument. Figure 3 displays a selection of optimal activation repartition
and the percentage of energy that is saved or lost. Figure 4 shows how the energy
varies in relation with the number of activations.

Fig. 3. Experiments with our model on a RDRAM

Fig. 4. Energy vs the number of activations

568 C. Tadonki and J. Rolim

As we can see from Table 3, the best number of activation is 125 (12.5% of the
number of memory accesses), with an energy reduction of 48% (taken the always
active case as baseline). We also see that there is a critical value for the number
of activations (200 in this case) under which we begin loosing energy. In addition,
the optimal distribution of activations among low power modes depends on the
total number of activations and the time we are allowed to stay in each mode.

Conclusion5

We have formulated the problem of energy optimization in the context of several
low power modes. We have shown that, in order to make a rewarding transition
to a given low power mode, there is a minimum period of time that should
be spent in that mode. From our experiments with a RDRAM, it follows that a
reduction of 48% can be obtained by performing regular transitions. The optimal
number of activations is determined experimentally. We think that our model
can be used for a first evaluation of potential energy reduction before moving
forward to any power management policy.

References

l.

2.

3.

4.

5.

6.

7.

8.

9.

10.
11.

F. Catthoor, S.Wuytack, E.D. Greef, F. Balasa, L. Nachtergaele, and A. Vande-
cappelle, Custom memory management methodology - exploration of memory or-

ganization for embedded multimedia system design, Kluwer Academic Pub., June
1998.
A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis, Power aware page allocation, Int.
Conf. Arch. Support Prog. Lang. Ope. Syst., November 2000.
M. B. Kamble and K. Ghose, Analytical energy dissipation models for low power

caches, Int. Symp. Low Power Electronics and Design, 1997.
W-T. Shiue and C. Chakrabarti, Memory exploration for low power embedded sys-

tems, Proc. DAC’99, New Orleans, Louisina, 1999.
C. Su and A. Despain, Cache design trade-offs for power and performance opti-

mization: a case study, In Proc. Int. Symp. on Low Power Design, pp. 63-68, 1995.
D. Brooks and M. Martonosi, Dynamically exploiting narrow width operands to

improve processor power and performance, In Proc. Fifth Intl. Symp. High-Perf.
Computer Architecture, Orlando, January 1999.
V. Tiwari, S. Malik, A. Wolfe, and T. C. Lee, Instruction Level Power Analysis

and Optimization of Software, Journal of VLSI Signal Processing Systems, Vol 13,
No 2, August 1996.
M. C. Toburen, T. M. Conte, and M. Reilly, Instruction scheduling for low power

dissipation in high performance processors, In Proc. the Power Driven Micro-
Architecture Workshop in conjunction with ISCA’98, Barcelona, June 1998.
W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, The design and use of

SimplePower: a cycle-accurate energy estimation tool, In Proc. Design. Automation
Conference (DAC), Los Angeles, June 5-9, 2000.
Todd Austin, Simplescalar, Master’s thesis, University of Wisconsin, 1998.
128/144-MBit Direct RDRAM Data Sheet, Rambus Inc., May 1999.

An Analytical Model for Energy Minimization 569

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

V. Delaluz and M. Kandemir and N. Vijaykrishnan and A. Sivasubramaniam and
M. Irwin. Memory energy management using software and hardware directed power
mode control. Tech. Report CSE-00-004, The Pennsylvania State University, April
2000.
W. Wolf. Software-Hardware Codesign of Embedded Systems. In , Proceedings of

the IEEE , volume 82 , 1998.
R. Ernst. Codesign of Embedded Systems: Status and Trends . In , IEEE Design

and Test of Computers , volume 15 , 1998.
Manfred Schlett. Trends in Embedded Microprocessors Design. In , IEEE Com-

puter, 1998.
“Mobile SDRAM Power Saving Features,” Technical Note TN-48-10, MICRON,
http://www.micron.com
W. Tang, A. V. Veidenbaum, and R. Gupta. Architectural Adaptation for Power
and Performance. In , International Conference on ASIC, 2001 .
L. Bebini and G. De Micheli. Sytem-Level Optimization: Techniques and Tools.
In , ACM Transaction on Design Automation of Electronic Systems, 2000.
T. Okuma, T. Ishihara, H. Yasuura . Software Energy Reduction Techniques for
Variable-Voltage Processors. In , IEEE Design and Test of Computers , 2001 .
J. Pouwelse, K. Langendoen, and H. Sips, “Dynamic Voltage Scaling on a Low-
Power Microprocessor,” UbiCom-Tech. Report, 2000.
M. Singh and V. K. Prasanna . Algorithmic Techniques for Memory Energy Reduc-
tion. In , Worshop on Experimental Algorithms, Ascona, Switzerland, May 26-28,
2003.
S. Sen and S. Chatterjee . Towards a Theory of Cache-Efficient Algorithms . In
SODA, 2000 .
C. Tadonki, J. Rolim, M. Singh, and V. Prasanna. Combinatorial Techniques for

Memory Power State Scheduling in Energy Constrained Systems, Workshop on
Approximation and Online Algorithms (WAOA), WAOA2003, Budapest, Hungary,
September 2003 .
D.F. Bacon, S.L. Graham, and O.J. sharp . Compiler Transformations for High-
Performance Computing . Hermes, 1994 .
X. Fan, C. S. Ellis, and A. R. Lebeck. Memory Controller Policies for DRAM
Power Management. ISLPED’01, August 6-7, Huntington Beach, California, 2001.

A Heuristic for Minimum-Width Graph

Layering with Consideration of Dummy Nodes

Alexandre Tarassov1, Nikola S. Nikolov1, and Jürgen Branke2

1 CSIS Department, University of Limerick, Limerick, Ireland.
{alexandre.tarassov,nikola.nikolov}@ul.ie

2 Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany.
branke@aifb.uni-karlsruhe.de

Abstract. We propose a new graph layering heuristic which can be used
for hierarchical graph drawing with the minimum width. Our heuristic
takes into account the space occupied by both the nodes and the edges of
a directed acyclic graph and constructs layerings which are narrower that
layerings constructed by the known layering algorithms. It can be used
as a part of the Sugiyama method for hierarchical graph drawing. We
present an extensive parameter study which we performed for designing
our heuristic as well as for comparing it to other layering algorithms.

1 Introduction

The rapid development of Software Engineering in the last few decades has made
Graph Drawing an important area of research. The Graph Drawing techniques
find application in visualizing various diagrams, such as call graphs, precedence
graphs, data-flow diagrams, ER diagrams, etc. In many of those applications it
is required to draw a set of objects in a hierarchical relationship. Such sets are
modeled by directed acyclic graphs (DAGs), i.e. directed graphs without directed
cycles, and usually drawn by placing the graph nodes on parallel horizontal,
concentric or radial levels with all edges pointing in the same direction.

There have been recognized a few different methods for hierarchical graph
drawing. The more recent two are the evolutionary algorithm of Utech et al. [13]
and the magnetic field model introduced by Sugiyama and Misue [11]. While they
are an area of fruitful future research, an earlier method, widely known as the
Sugiyama (or STT) method, has received most of the research attention and has
become a standard method for hierarchical graph drawing. The STT method is
a three phase algorithmic framework, originally proposed by Sugiyama, Tagawa,
and Toda [12], and also based on work by Warfield [14] and Carpano [3]. At its
first phase the nodes of a DAG are placed on horizontal levels; at the second
phase the nodes are ordered within each level; and at the final third phase the

and coordinates of all nodes and the eventual edge bends are assigned.
The STT method can be employed for drawing any directed graph by reversing
the direction of some edges in advance to ensure that there are no directed cycles
in the graph and restoring the original direction at the end [6].

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 570–583, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Heuristic for Minimum-Width Graph Layering 571

In order to assign DAG nodes to horizontal levels at the first phase of the
STT method it is necessary to partition the node set into subsets such that nodes
connected by a directed path belong to different subsets. In addition, it must be
possible to assign integer ranks to the subsets such that for each edge the rank
of the subset that contains the target of the edge is less than the rank of the
subset that contains its source. Such an ordered partition of the node set of a
DAG is known as a layering and the corresponding subsets are called layers. A
DAG with a layering is called a layered DAG. Figure 1 gives an example of two
alternative layerings of the same DAG. Algorithms which partition the node set
of a DAG into layers are known as layering algorithms.

Fig. 1. Two alternative layerings of the same DAG. Each layer occupies a horizontal
level marked by a dashed line. All edges point downwards.

In this paper we propose a new polynomial-time layering algorithm which
approximately solves the problem of hierarchical graph drawing with the mini-
mum width. It finds application in the cases when it is necessary to draw a DAG
in a narrow drawing area and it is the first successful polynomial-time algorithm
that solves this particular problem. We also present the extensive parameter
study we performed to design our algorithm. In the next section we formally in-
troduce the terminology related to DAG layering. Then, in Section 3 we present
the minimum-width DAG layering problem and the initial rough version of our
layering heuristic. In Section 4 we specify further our heuristic trough extensive
parameter study and compare it to other well-known layering algorithms. We
draw conclusions from this work in Section 5.

2 Mathematical Preliminaries

A directed graph G = (V, E) is an ordered pair of a set of nodes V and a set of
edges E. Each edge is associated with an ordered pair of nodes is the
source of and is the target of We denote this by We consider only
directed graphs where different edges are associated with different node pairs.

572 A. Tarassov, N.S. Nikolov, and J. Branke

The in-degree of node is the number of edges with a target , and the
out-degree of is the number of edges with a source We denote the set
of all immediate predecessors of node by , and the set of all immediate
successors of node by That is, and

The of edges is
called a directed path from node to node with length If
then is a directed cycle. In the rest of this work we consider only directed acyclic
graphs (DAGs), i.e. directed graphs without directed cycles.

Let G be a DAG and let be a partition of the node set of G
into subsets such that if with and then
is called a layering of G and the sets are called layers. A DAG with
a layering is called a layered DAG. We assume that in a visual representation of
a layered DAG all nodes in layer are placed on the horizontal level with an

Thus, we say that is above and is below if
Let denotes the number of a layer which contains node i.e.

if and only if Then the span of edge in layering
is defined as Clearly, for each

edges with a span greater than 1 are long edges. A layering of G is proper if
for each i.e. if there are no long edges. The layering found by

a layering algorithm might not be proper because only a small fraction of DAGs
can be layered properly and also because a proper layering may not satisfy other
layering requirements.

In the STT method for drawing DAGs the node ordering algorithms applied
after the layering phase assume that their input is a DAG with a proper layering.
Thus, if the layering found at the layering phase is not proper then it must be
transformed into a proper one. Normally, this is done by introducing so-called
dummy nodes which subdivide long edges (see Figure 2).

It is desirable that the number of dummy nodes is as small as possible because
a large number of dummy nodes significantly slows down the node ordering phase
of the STT method. There are also aesthetic reasons for keeping the dummy node
count small. A layered DAG with a small dummy node count would also have a
small number of undesirable long edges and edge bends.

A layering algorithm may also be expected to produce a layering with spec-
ified either width and height, or aspect ratio. The height of a layering is the
number of layers. Normally the nodes of DAGs from real-life applications have
text labels and sometimes prespecified shape. We define the width of a node to
be the width of the rectangle that encloses the node. If the node has no text label
and no information about its shape or size is available we assume that its width
is one unit. The width of a layer is usually defined as the sum of the widths of
all nodes in that layer (including the dummy nodes) and the width of a layering

is the maximum width of a layer. Usually the width and the height of a layering
are used to approximate the dimensions of the final drawing.

The edge density between horizontal levels and with is defined as the
number of edges with and The
edge density of a layered DAG is the maximum edge density between adjacent

A Heuristic for Minimum-Width Graph Layering 573

layers (horizontal levels). Naturally, drawings with low edge density are clear
and easier to comprehend.

3 Minimum-Width DAG Layering

Clearly, it is trivial to find a layering of a DAG with the minimum width if the
width of a layer is considered equal to the sum of the widths of the original DAG
nodes in that layer. In this case any layering with a single node per layer has
the minimum width. However, such a definition of width does not approximate
the width of the final drawing because the space occupied by long edges is not
insignificant (see Figure 2). The contribution of the long edges to the layering
width can be taken into account by assigning positive width to the dummy
nodes and taking them into when computing the layering width. It is sensible
to assume that the dummy nodes occupy smaller space than the original DAG
nodes especially in DAGs which come from practical applications and may have
large node labels.

Fig. 2. A hierarchical drawing of a DAG. The black circles are the original DAG nodes
and the smaller white squares are the dummy nodes along long edges. All edges point
downwards.

It is NP-hard to find a layering with the minimum width when the contribu-
tion of the dummy nodes is taken into account [2]. The first attempt to solve this
problem by a heuristic algorithm belongs to Branke et al. [1]. They proposed a
polynomial-time heuristic which did not meet their expectations about quality
when tested with relatively small graphs. To the best of our knowledge the only
method that can be used for minimum-width DAG layering is the branch-and-
cut algorithm of Healy and Nikolov which takes as an input an upper bound
on the width and produces a layering subject to it (if feasible) [8]. Although
exact, the algorithm of Healy and Nikolov is very complex to implement and its
running time is exponential in the worst case.

In this work we design a simple polynomial-time algorithm which finds nar-
row layerings. We call it MinWidth. Similar to the algorithm of Branke et al.
it is a heuristic and it does not guarantee the minimum width. Nevertheless it
produces layerings which are narrower than the layerings produced by any of the

574 A. Tarassov, N.S. Nikolov, and J. Branke

known polynomial-time layering algorithms. In the remainder of this section we
introduce the initial rough version of MinWidth which we tune and extensively
test in Section 4.

3.1 The Longest-Path Algorithm

We base MinWidth on the longest-path algorithm displayed in Algorithm 1. The
longest-path algorithm constructs layerings with the minimum height equal to
the number of nodes in the longest directed path. It builds a layering layer by
layer starting from the bottom layer labeled as layer 1. This is done with the help
of two node sets U and Z which are empty at start. The value of the variable
current_layer is the label of the layer currently being built. As soon as a node
gets assigned to a layer it is also added to the set U. Thus, U is the set of all
nodes already assigned to a layer. Z is the set of all nodes assigned to a layer
below the current layer. A new node to be assigned to the current layer is
picked among the nodes which have not been already assigned to a layer, i.e.

and which have all their immediate successors assigned to the layers
below the current one, i.e.

3.2 A Rough Version of MinWidth

In the following, we will assume that all dummy nodes have the same width,
although our considerations can be easily generalized to variable dummy

node widths. We will also assume that is the width of node We start
with an initial rough version of MinWidth , displayed in Algorithm 2, which

A Heuristic for Minimum-Width Graph Layering 575

contains a number of unspecified parameters. We specify them later in Section 4
by extensive parameter study.

We employ two variableswidthCurrent and widthUp which are used to store
the width of the current layer and the width of the layers above it respectively.
The width of the current layer, widthCurrent, is calculated as the sum of the
widths of the nodes already placed in that layer plus the sum of the widths of
the potential dummy nodes along edges with a source in V \ U and a target in
Z (one dummy node per edge). The variable widthUp provides an estimation of
the width of any layer above the current one. It is the sum of the widths of the
potential dummy nodes along edges with a source in V \ U and a target in U

(one dummy node per edge).
When we select a node to be placed in a layer we employ an additional

condition ConditionSelect. Our intention is to specify ConditionSelect so
that the choice of node (among alternative candidates) will lead to as narrow
a layering as possible. We propose to explore the following three alternatives as
ConditionSelect:

is the candidate with the maximum outdegree
is the candidate with the maximum
or any immediate predecessor of has the maximum

among all candidates and their immediate predecessors.

In we select the candidate with the maximum indegree because that choice
will lead to the maximum possible improvement of widthCurrent. and
are less greedy alternatives which do not make the best choice in terms of
widthCurrent but look also at the effect to the upper layers. By choosing the

576 A. Tarassov, N.S. Nikolov, and J. Branke

candidate with the maximum makes the choice that will bring
the best improvement to widthUp. The idea behind is to allow nodes which
can bring big improvement to the width of some upper layer to do it without
being blocked by their successors with low Thus, represents
an alternative that tries to choose a node by looking ahead at the impact of that
choice to the layering width.

In order to control the width of the layering we introduce a second modifica-
tion to the longest-path algorithm. That is, we introduce an additional condition
for moving up to a new layer, ConditionGoUp. The idea is to move to a new
layer if the width of the current layer or of the layer above it becomes too large.
In order to be able to check this we introduce the parameter UBW against
which we would like to compare the width of the current layer. Since widthUp
represents only an approximation of the width of the layers above the current
layer we propose to compare its width to where i.e. gives
freedom to widthUp to be larger thanwidthCurrent becausewidthUp is just an
estimation of the width of the upper layers. We do not consider UBW and as
input parameters, we would like to have their values (or narrow value ranges)
hard-coded in MinWidth instead. We set up ConditionGoUp to be satisfied if
either:

widthCurrent UBW and or
widthUp

We require for widthCurrent UBW to be taken into account
because the initial value of widthCurrent is determined by the dummy nodes in
the current layer and it gets smaller (or at least it does not change) when a regular
node with a positive outdegree gets placed in the current layer. In that case the
dummy nodes along edges with a source are removed from the current layer
and get replaced by If then the condition widthCurrent UBW
on its own is not a reason for moving to the upper layer because there is still
a chance to add nodes to the current layer which will reduce widthCurrent. If

then the assignment of to the current layer increases widthCurrent
because it does not replace any dummy nodes. This is an indication that no
further improvement of widthCurrent can be done.

In relation to the three alternatives, and we consider two alter-
native modes of updating the value of widthUp:

Set widthUp at 0 when move to the upper layer; add to widthUp
each time a node is assigned to the current layer;
Do not change widthUp when move to the upper layer; add

to widthUp each time a node is assigned to the current layer .

The first of the two modes builds up widthUp starting from zero 0 and taking
into account only dummy nodes along edges between V\U and the current layer.
We employ this update mode with The second mode approximates the width
of the upper layers more precisely by keeping track of as many dummy nodes
as possible. We employ it with and where the width of the upper layers

A Heuristic for Minimum-Width Graph Layering 577

plays more important role. We consider the three alternatives and
with the corresponding widthUp update modes as parallel branches in the rough
version of MinWidth and we choose one of them as a result of our experimental
work.

In order to specify ConditionGoUp we need to set UBW and To specify
ConditionSelect we need to select one of and We propose to run
MinWidth for 5911 test DAGs and various sets of values of UBW and as well
as for each of the alternatives or with the corresponding widthUp
update mode. We expect that the extensive experiments will suggest the most
appropriate values or ranges of values for UBW and as well as the winner among
the alternatives

4 Parameter Study

In our experimental work we used 5911 DAGs from the well-known Rome graph
dataset [5]. The Rome graphs come from practical applications. They are graphs
with node count between 10 and 100 nodes and typically each of them has twice
as many edges as nodes. We run MinWidth with each of the three alternatives

and for each of the 5911 DAGs and for each pair (UBW, with UBW = 1..50,
and In total, we had about 9 million tasks. We executed the tasks in
a computational grid environment with two computational nodes. One of the
computational nodes was a PC with a Pentium III/800 MHz processor, and the
other was a PC with a Pentium 4/2.4 GHz processor.

and Compared4.1

For each of the 5911 input DAGs and each alternative - and - we chose
the layering with the smallest width (taking into account the dummy nodes) and
stored the pair of parameters (UBW, for which it was achieved. As we stated
above, we explored any combination of UBW with = 1..50, and

Figures 3-8 compare various properties of the stored layerings. The in
all pictures represents the number of original nodes in a graph. Since the Rome
graphs have no node labels we assume that the width of all original and all
dummy nodes is 1 unit if not specified otherwise. Thus, the layering width is the
maximum number of nodes (original and dummy) per layer. We have partitioned
all DAGs into groups by node count. Each group covers an interval of size 5 on
the We display the average result for each group.

Figures 3 (a) and (b) compare the width of the layerings taking into account
the dummy nodes (i.e. each dummy node has width equal to one unit) and
neglecting them (i.e. each dummy node has width equal to zero) respectively.
In both cases gives the narrowest layerings which suggests that might be
the best option if the width of the dummy nodes is considered less than or equal
to one unit (which is a reasonable assumption). The height of the layerings
(see Figure 4) is larger than the height of the other layerings. The height is the
number of layers. It was expected that the narrower a layering, the larger is the

578 A. Tarassov, N.S. Nikolov, and J. Branke

Fig. 3. and compared: layering width (a) taking into account and (b)
neglecting the contribution of the dummy nodes.

Fig. 4. and compared: layering height (number of layers).

number layers. Figure 5(a) shows the dummy node count divided by the total
node count in a DAG. Figure 5(b) shows the edge density divided by the total
edge count in a DAG. We can observe that the layerings have fewer dummy
nodes and in general better edge density than the and the layerings.

Similarly, Figures 6(a) and (b) show the values of UBW and which lead
to narrowest layerings. The simplest alternative finds narrowest layerings for
considerably lower values of UBW and than and Moreover, those values of
UBW and do not depend on the DAG size when is employed. The conclusion
that we can make from these experiments is that the simplest alternative,
is superior to the other two. It is enough to run MinWidth with UBW = 1..4
and in order to achieve the narrowest possible layerings.

In any case MinWidth leads to layerings with a very high dummy node count.
There is a simple heuristic that can be applied to a layering in order to reduce
the dummy node count. It is the Promotion heuristic which works by itera-
tively moving (or promoting) nodes to upper layers if that movement decreases

A Heuristic for Minimum-Width Graph Layering 579

Fig. 5. and compared: normalized values of (a) the dummy node count and
(b) the edge density.

Fig. 6. and compared: values of (a) UBW and (b) for which a narrowest
layering was found.

the dummy node count [9]. The Promotion heuristic leads to close to the mini-
mum dummy node count when applied to longest-path layerings. Since MinWidth
is based on the longest-path algorithm we expected that the same Promotion
heuristic might be successfully applied to MinWidth layerings as well. In the next
section we compare MinWidth with followed by the Promotion heuristic to
some well-known layering algorithms.

4.2 Effect of Promotion

Figures 6(a) and (b) suggest that when is employed it is enough to consider
UBW = 1..4 and Since MinWidth is very fast with fixed UBW and we
can afford running it for relatively narrow ranges of UBW and values for better
quality results. Thus, in a new series of experiments we run MinWidth with

580 A. Tarassov, N.S. Nikolov, and J. Branke

for UBW = 1..4 and and choose the combination (UBW, that leads
to the narrowest layering. For convenience, we call the layering achieved by this
method simply MinWidth layering in the remainder of this section.

We post-processed MinWidth layerings by applying to them the Promotion
heuristic modified to perform a node promotion only if it does not increase the
width of the layering.

We also run the longest-path algorithm and the Coffman-Graham algorithm
followed by the same width-preserving node promotion. The Coffman-Graham
algorithm takes an upper bound on the number of nodes in a layer as an
input parameter [4]. Thus, we run it for where is the number of
nodes in the DAG, and chose the narrowest layering. We also run the network
simplex algorithm of Gansner et al. [7] and compared the aesthetic properties of
the four layering types: MinWidth, longest-path, Coffman-Graham and Gansner’s
network simplex. The results of the comparison are presented in Figures 7-10.

Fig. 7. Effect of promotion: layering width (a) taking into account and (b) neglecting
the contribution of the dummy nodes.

It can be observed that the promotion heuristic is very efficient when applied
after MinWidth. MinWidth leads to considerably narrower but taller layerings
than the other three algorithms (see Figures 7(a) and (b)). It was expected that
the narrower a layering, the larger is the number of layers. This can be confirmed
in Figure 10(a).

The number of dummy nodes in the MinWidth layerings is close to the number
of dummy nodes in the Coffman-Graham layerings and slightly higher than the
number of dummy nodes in the longest-path and Gansner’s layerings as it can
be seen in Figure 8(a). However, Figure 8(b) shows that the MinWidth layerings
have considerably lower edge density than the other layerings which means that
they could possibly lead to clean drawings with small number of edge crossings.
The number of edge crossings is widely accepted as one of the most important
graph drawing aesthetic criteria [10].

A Heuristic for Minimum-Width Graph Layering 581

Fig. 8. Effect of promotion: normalized values of (a) the dummy node count and (b)
the edge density.

Fig. 9. Two layerings of the same DAG. The MinWidth layering is narrower than the
Gansner’s layering (assuming all DAG nodes and all dummy nodes have width one
unit). All edges point downwards.

Figure 9 shows an example of the MinWidth layering of a DAG compared to
the Gansner’s layering of the same DAG. The DAG is taken from the Rome’s
graph dataset.

We run the second group of experiments on a single Pentium 4/2.4 GHz
processor. The running times are presented in Figure 10(b). We observed that
the average running time for MinWidth followed by promotion is up to 2 seconds
for DAGs having no more than 75 nodes and it grows up to 6.2 seconds for
DAGs with more than 75 and less than 100 nodes. The total running time

582 A. Tarassov, N.S. Nikolov, and J. Branke

for the Coffman-Graham algorithm was within 3 seconds and the longest-path
algorithms was the fastest of the three with running time within 2 seconds. The
Gansner’s layerings (which we computed with ILOG CPLEX) are the fastest to
be computed.

Fig. 10. Effect of promotion: (a) layering height and (b) running times in seconds.

5 Conclusions

Our parameter study shows that MinWidth with UBW = 1..4, and
followed by width-preserving node promotion can be successfully employed as
a heuristic for layering with the minimum width taking into account the con-
tribution of the dummy nodes. This is the first successful attempt to design a
heuristic for the NP-hard problem of minimum-width DAG layering with consid-
eration of dummy nodes. It does not guarantee the minimum width but performs
significantly faster than the only other alternative which is the exponential-time
branch-and-cut algorithm of Healy and Nikolov.

The aesthetic properties of the MinWidth layerings compare well to the prop-
erties of the layerings constructed by the well-known layering algorithms. The
MinWidth layerings have the lowest edge density which suggests that they could
lead to clear and easy to comprehend drawings in the context of the STT method
for hierarchical graph drawing. It has to be noted that the promotion heuris-
tic slows down the computation significantly but the running time is still very
acceptable for DAGs with up to 100 nodes.

The work we present can be continued by exploring other possibilities for
the conditions we set up in MinWidth. However, we believe that MinWidth finds
layerings which are narrow enough for practical applications. Further research
could be related to the optimization of the running time of MinWidth and to
experiments with larger DAGs and with DAGs with variable node widths.

A Heuristic for Minimum-Width Graph Layering 583

References

J. Branke, P. Eades, S. Leppert, and M. Middendorf. Width restricted layering of
acyclic digraphs with consideration of dummy nodes. Technical Report No. 403,
Intitute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany, 2001.
J. Branke, S. Leppert, M. Middendorf, and P. Eades. Width-restriced layering
of acyclic digraphs with consideration of dummy nodes. Information Processing

Letters, 81(2):59–63, January 2002.
M. J. Carpano. Automatic display of hierarchized graphs for computer aided deci-
sion analysis. IEEE Transactions on Systems, Man and Cybernetics, 10(11):705–
715, 1980.
E. G. Coffman and R. L. Graham. Optimal scheduling for two processor systems.
Acta Informatica, 1:200–213, 1972.
G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu.
An experimental comparison of four graph drawing algorithms. Computational

Geometry: Theory and Applications, 7:303–316, 1997.
P. Eades, X. Lin, and W. F. Smyth. A fast and effective heuristic for the feedback
arc set problem. Information Processing Letters, 47:319–323, 1993.
E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique for draw-
ing directed graphs. IEEE Transactions on Software Engineering, 19(3):214–230,
March 1993.
P. Healy and N. S. Nikolov. A branch-and-cut approach to the directed acyclic
graph layering problem. In M. Goodrich and S. Koburov, editors, Graph Drawing:

Proceedings of 10th International Symposium, GD 2002, volume 2528 of Lecture

Notes in Computer Science, pages 98–109. Springer-Verlag, 2002.
N.S. Nikolov and A. Tarassov. Graph layering by promotion of nodes. Special issue

of Discrete Applied Mathematics associated with the IV ALIO/EURO Workshop

on Applied Combinatorial Optimization, to appear.
H. C. Purchase, R. F. Cohen, and M. James. Validating graph drawing aesthetics.
In F. J. Brandenburg, editor, Graph Drawing: Symposium on Graph Drawing, GD

‘95, volume 1027 of Lecture Notes in Computer Science, pages 435–446. Springer-
Verlag, 1996.
K. Sugiyama and K. Misue. Graph drawing by the magneting spring model. Jour-

nal of Visual Languages and Computing, 6(3):217–231, 1995.
K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hier-
archical system structures. IEEE Transaction on Systems, Man, and Cybernetics,

11(2):109–125, February 1981.
J. Utech, J. Branke, H. Schmeck, and P. Eades. An evolutionary algorithm for
drawing directed graphs. In Proceedings of the 1998 International Conference on

Imaging Science, Systems, and Technology (CISST’98), pages 154–160, 1998.
J. N. Warfield. Crossing theory and hierarchy mapping. IEEE Transactions on

Systems, Man and Cybernetics, 7(7):502–523, 1977.

1.

4.

5.

6.

7.

9.

10.

11.

12.

13.

14.

8.

2.

3.

This page intentionally left blank

Author Index

Alvim, Adriana C.F. 1
Amaldi, Edoardo 14
Araujo, Guido 545
Aringhieri, Roberto 30

Ballester, Pedro J. 42
Bartodziej, Paul 57
Basseur, Matthieu 72
Bloch, Isabelle 100
Bodlaender, Hans L. 87
Boeres, Maria C. 100
Boros, Endre 114
Boyer, John M. 129
Bracht, Evandro C. 145
Branke, Jürgen 570

Carter, Jonathan N. 42
Chatzigiannakis, Ioannis 159
Cintra, Glauber 175
Cruz, Laura 417

Demetrescu, Camil 191
Derigs, Ulrich 57
Dhaenens, Clarisse 72
Dimitriou, Tassos 199
Du, Jingde 213
Duch, Amalia 228

Elbassioni, Khaled 114

Fernandes, Cristina G. 129
Figueiredo, Celina M.H. de 87, 243
Fonseca, Guilherme D. da 243
Frausto, Juan 417
Fredriksson, Kimmo 285

García-Nocetti, Fabián 369
Gurvich, Vladimir 114
Gutierrez, Marisa 87

Hanashiro, Erik J. 253
Holzer, Martin 269
Hyyrö, Heikki 285

Italiano, Giuseppe F. 191

Jo, Junha 301

Karp, Richard M. 299
Kelly, Paul H.J. 383
Khachiyan, Leonid 114
Kim, Dong K. 301
Kloks, Ton 87
Kolliopoulos, Stavros G. 213

Lemesre, Julien 72
Liberti, Leo 14
Lima, André M. 545
Lucena, Abílio 458
Lucet, Corinne 315

Maculan, Nelson 14
Maffioli, Francesco 14
Markou, Michael 159
Martínez, Conrado 228, 326
Martinhon, Carlos A. 341
Martins, Simone L. 498
Meira, Luis A.A. 145
Mendes, Florence 315
Miyazawa, Flávio K. 145
Molinero, Xavier 326
Mongelli, Henrique 253
Moreano, Nahri 545
Moukrim, Aziz 315

Navarro, Gonzalo 285
Niedermeier, Rolf 87
Nikoletseas, Sotiris 159
Nikolov, Nikola S. 570
Noma, Alexandre 129

Ochi, Luiz S. 468, 498
Oliveira, Carlos A.S. 356
Ovalle-Martínez, Francisco Javier 369

Pardalos, Panos M. 356
Park, Heejin 301
Pazos, Rodolfo A. 417
Pearce, David J. 383
Pemmaraju, Sriram V. 399
Penumatcha, Sriram 399
Pérez, Joaquín 417
Phan, Vinhthuy 432

586 Author Index

Pina, José C. de 129
Pinto, Paulo E.D. 446
Protti, Fábio 341,446

Raman, Rajiv 399
Resende, Mauricio G.C. 356
Ribeiro, Celso C. 1,100, 458
Rodríguez, Guillermo 417
Rolim, Jose 559
Romero, David 417

Sá, Vinícius G.P. de 243
Santos, Andréa C. dos 458
Santos, Haroldo G. 468
Sawitzki, Daniel 482
Schulz, Frank 269
Silva, Geiza C. 498
Sinha, Ranjan 513, 529

Skiena, Steven 432
Solano-González, Julio 369
Song, Siang W. 253
Souza, Cid C. 545
Souza, Marcone J.F. 468
Spinrad, Jeremy 243
Spirakis, Paul 199
Stojmenovic, Ivan 369
Szwarcfiter, Jayme L. 446

Tadonki, Claude 559
Talbi, El-Ghazali 72
Tarassov, Alexandre 570

Wakabayashi, Yoshiko 175
Willhalm, Thomas 269

Zobel, Justin 529

