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Preface

We are pleased to present this collection of research and survey papers on
the subject of experimental algorithmics. In September 2000, we organized
the first Schloss Dagstuhl seminar on Experimental Algorithmics (seminar
no. 00371), with four featured speakers and over 40 participants. We invited
some of the participants to submit write-ups of their work; these were then
refereed in the usual manner and the result is now before you. We want to
thank the German states of Saarland and Rhineland-Palatinate, the Dagstuhl
Scientific Directorate, our distinguished speakers (Jon Bentley, David John-
son, Kurt Mehlhorn, and Bernard Moret), and all seminar participants for
making this seminar a success; most of all, we thank the authors for submit-
ting the papers that form this volume.
Experimental Algorithmics, as its name indicates, combines algorithmic

work and experimentation. Thus algorithms are not just designed, but also
implemented and tested on a variety of instances. In the process, much can
be learned about algorithms. Perhaps the first lesson is that designing an
algorithm is but the first step in the process of developing robust and effi-
cient software for applications: in the course of implementing and testing the
algorithm, many questions will invariably arise, some as challenging as those
originally faced by the algorithm designer. The second lesson is that algorithm
designers have an important role to play in all stages of this process, not just
the original design stage: many of the questions that arise during implemen-
tation and testing are algorithmic questions—efficiency questions related to
low-level algorithmic choices and cache sensitivity, accuracy questions aris-
ing from the difference between worst-case and real-world instances, as well
as other, more specialized questions related to convergence rate, numerical
accuracy, etc. A third lesson is the evident usefulness of implementation and
testing for even the most abstractly oriented algorithm designer: implemen-
tations yield new insights into algorithmic analysis, particularly for possible
extensions to current models of computation and current modes of analy-
sis, during testing, by occasionally producing counterintuitive results, and
opening the way for new conjectures and new theory.
How then do we relate “traditional” algorithm design and analysis with

experimental algorithmics? Much of the seminar was devoted to this ques-
tion, with presentations from nearly 30 researchers featuring work in a variety
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of algorithm areas, from pure analysis to specific applications. Certain com-
mon themes emerged: practical, as opposed to theoretical, efficiency; the need
to improve analytical tools so as to provide more accurate predictions of be-
havior in practice; the importance of algorithm engineering, an outgrowth of
experimental algorithmics devoted to the development of efficient, portable,
and reusable implementations of algorithms and data structures; and the use
of experimentation in algorithm design and theoretical discovery.
Experimental algorithmics has become the focus of several workshops:

WAE, the Workshop on Algorithm Engineering, started in 1997 and has now
merged with ESA, the European Symposium on Algorithms, as its applied
track; ALENEX, the Workshop on Algorithm Engineering and Experiments,
started in 1998 and has since paired with SODA, the ACM/SIAM Sympo-
sium on Discrete Algorithms; and WABI, the Workshop on Algorithms in
Bioinformatics, started in 2001. It is also the focus of the ACM Journal of
Experimental Algorithmics, which published its first issue in 1996. These var-
ious forums, along with special events, such as the DIMACS Experimental
Methodology Day in Fall 1996 (extended papers from that meeting will ap-
pear shortly in the DIMACS monograph series) and the School on Algorithm
Engineering organized at the University of Rome in Fall 2001 (lectures by
Kurt Mehlhorn, Michael Jünger, and Bernard Moret are available online at
www.info.uniroma2.it/ italiano/School/), have helped shape the field
in its formative years. A number of computer science departments now have
a research laboratory in experimental algorithmics, and courses in algorithms
and data structures are slowly including more experimental work in their
syllabi, aided in this respect by the availability of the LEDA library of algo-
rithms and data structures (and its associated text) and by more specialized
libraries such as the CGAL library of primitives for computational geometry.
Experimental algorithmics also offers the promise of more rapid and effective
transfer of knowledge from academic research to industrial applications.
The articles in this volume provide a fair sampling of the work done under

the broad heading of experimental algorithmics. Featured here are:

– a survey of algorithm engineering in parallel computation—an area in
which even simple measurements present surprising challenges;

– an overview of visualization tools—a crucial addition to the toolkit of al-
gorithm designers as well as a fundamental teaching tool;

– an introduction to the use of fixed-parameter formulations in the design of
approximation algorithms;

– an experimental study of cache-oblivious techniques for static search
trees—an awareness of the memory hierarchy has emerged over the last
10 years as a crucial element of algorithm engineering, and cache-oblivious
techniques appear capable of delivering the performance of cache-aware
designs without requiring a detailed knowledge of the specific architecture
used;
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– a novel presentation of terms, goals, and techniques for deriving asymptotic
characterizations of performance from experimental data;

– a review of algorithms in VLSI designs centered on the use of binary deci-
sion diagrams (BDDs)—a concept first introduced by Claude Shannon over
50 years ago that has now become one of the main tools of VLSI design,
along with a description of the BDD-Portal, a web portal designed to serve
as a platform for experimentation with BDD tools;

– a quick look at two problems in computational phylogenetics—the recon-
struction, from modern data, of the evolutionary tree of a group of or-
ganisms, a problem that presents special challenges in that the “correct”
solution is and will forever remain unknown;

– a tutorial on how to present experimental results in a research paper;
– a discussion of several approaches to algorithm engineering for problems
in distributed and mobile computing; and

– a detailed case study of algorithms for dynamic graph problems.

We hope that these articles will communicate to the reader the exciting
nature of the work and help recruit new researchers to work in this emerging
area.

September 2002
Rudolf Fleischer
Erik Meineche Schmidt
Bernard M.E. Moret
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Summary.

The emerging discipline of algorithm engineering has primarily focused
on transforming pencil-and-paper sequential algorithms into robust, effi-
cient, well tested, and easily used implementations. As parallel computing
becomes ubiquitous, we need to extend algorithm engineering techniques
to parallel computation. Such an extension adds significant complications.
After a short review of algorithm engineering achievements for sequential
computing, we review the various complications caused by parallel com-
puting, present some examples of successful efforts, and give a personal
view of possible future research.

1.1 Introduction

The term “algorithm engineering” was first used with specificity in 1997, with
the organization of the first Workshop on Algorithm Engineering (WAE97).
Since then, this workshop has taken place every summer in Europe. The 1998
Workshop on Algorithms and Experiments (ALEX98) was held in Italy and
provided a discussion forum for researchers and practitioners interested in the
design, analysis and experimental testing of exact and heuristic algorithms.
A sibling workshop was started in the Unites States in 1999, the Workshop
on Algorithm Engineering and Experiments (ALENEX99), which has taken
place every winter, colocated with the ACM/SIAM Symposium on Discrete
Algorithms (SODA). Algorithm engineering refers to the process required to
transform a pencil-and-paper algorithm into a robust, efficient, well tested,
and easily usable implementation. Thus it encompasses a number of topics,
from modeling cache behavior to the principles of good software engineering;
its main focus, however, is experimentation. In that sense, it may be viewed as
a recent outgrowth of Experimental Algorithmics [1.54], which is specifically
devoted to the development of methods, tools, and practices for assessing
and refining algorithms through experimentation. The ACM Journal of Ex-
perimental Algorithmics (JEA), at URL www.jea.acm.org, is devoted to this
area.

c© Springer-Verlag Berlin Heidelberg 2002
R. Fleischer et al. (Eds.): Experimental Algorithmics, LNCS 2547, pp. 1–23, 2002.
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High-performance algorithm engineering focuses on one of the many facets
of algorithm engineering: speed. The high-performance aspect does not im-
mediately imply parallelism; in fact, in any highly parallel task, most of the
impact of high-performance algorithm engineering tends to come from refin-
ing the serial part of the code. For instance, in a recent demonstration of
the power of high-performance algorithm engineering, a million-fold speed-
up was achieved through a combination of a 2,000-fold speedup in the serial
execution of the code and a 512-fold speedup due to parallelism (a speed-
up, however, that will scale to any number of processors) [1.53]. (In a further
demonstration of algorithm engineering, further refinements in the search and
bounding strategies have added another speedup to the serial part of about
1,000, for an overall speedup in excess of 2 billion [1.55].)
All of the tools and techniques developed over the last five years for al-

gorithm engineering are applicable to high-performance algorithm engineer-
ing. However, many of these tools need further refinement. For example,
cache-efficient programming is a key to performance but it is not yet well
understood, mainly because of complex machine-dependent issues like lim-
ited associativity [1.72, 1.75], virtual address translation [1.65], and increas-
ingly deep hierarchies of high-performance machines [1.31]. A key question
is whether we can find simple models as a basis for algorithm development.
For example, cache-oblivious algorithms [1.31] are efficient at all levels of the
memory hierarchy in theory, but so far only few work well in practice. As
another example, profiling a running program offers serious challenges in a
serial environment (any profiling tool affects the behavior of what is being
observed), but these challenges pale in comparison with those arising in a
parallel or distributed environment (for instance, measuring communication
bottlenecks may require hardware assistance from the network switches or at
least reprogramming them, which is sure to affect their behavior).
Ten years ago, David Bailey presented a catalog of ironic suggestions in

“Twelve ways to fool the masses when giving performance results on paral-
lel computers” [1.13], which drew from his unique experience managing the
NAS Parallel Benchmarks [1.12], a set of pencil-and-paper benchmarks used
to compare parallel computers on numerical kernels and applications. Bailey’s
“pet peeves,” particularly concerning abuses in the reporting of performance
results, are quite insightful. (While some items are technologically outdated,
they still prove useful for comparisons and reports on parallel performance.)
We rephrase several of his observations into guidelines in the framework of
the broader issues discussed here, such as accurately measuring and report-
ing the details of the performed experiments, providing fair and portable
comparisons, and presenting the empirical results in a meaningful fashion.
This paper is organized as follows. Section 1.2 introduces the important

issues in high-performance algorithm engineering. Section 1.3 defines terms
and concepts often used to describe and characterize the performance of par-
allel algorithms in the literature and discusses anomalies related to parallel
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speedup. Section 1.4 addresses the problems involved in fairly and reliably
measuring the execution time of a parallel program—a difficult task because
the processors operate asynchronously and thus communicate nondetermin-
istically (whether through shared-memory or interconnection networks), Sec-
tion 1.5 presents our thoughts on the choice of test instances: size, class,
and data layout in memory. Section 1.6 briefly reviews the presentation of
results from experiments in parallel computation. Section 1.7 looks at the
possibility of taking truly machine-independent measurements. Finally, Sec-
tion 1.8 discusses ongoing work in high-performance algorithm engineering
for symmetric multiprocessors that promises to bridge the gap between the
theory and practice of parallel computing. In an appendix, we briefly discuss
ten specific examples of published work in algorithm engineering for parallel
computation.

1.2 General Issues

Parallel computer architectures come in a wide range of designs. While any
given parallel machine can be classified in a broad taxonomy (for instance,
as distributed memory or shared memory), experience has shown that each
platform is unique, with its own artifacts, constraints, and enhancements.
For example, the Thinking Machines CM-5, a distributed-memory computer,
is interconnected by a fat-tree data network [1.48], but includes a separate
network that can be used for fast barrier synchronization. The SGI Origin
[1.47] provides a global address space to its shared memory; however, its non-
uniform memory access requires the programmer to handle data placement
for efficient performance. Distributed-memory cluster computers today range
from low-end Beowulf-class machines that interconnect PC computers using
commodity technologies like Ethernet [1.18, 1.76] to high-end clusters like
the NSF Terascale Computing System at Pittsburgh Supercomputing Cen-
ter, a system with 750 4-way AlphaServer nodes interconnected by Quadrics
switches.
Most modern parallel computers are programmed in single-program,

multiple-data (SPMD) style, meaning that the programmer writes one pro-
gram that runs concurrently on each processor. The execution is specialized
for each processor by using its processor identity (id or rank). Timing a par-
allel application requires capturing the elapsed wall-clock time of a program
(instead of measuring CPU time as is the common practice in performance
studies for sequential algorithms). Since each processor typically has its own
clock, timing suite, or hardware performance counters, each processor can
only measure its own view of the elapsed time or performance by starting
and stopping its own timers and counters.

High-throughput computing is an alternative use of parallel computers
whose objective is to maximize the number of independent jobs processed per
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unit of time. Condor [1.49], Portable Batch System (PBS) [1.56], and Load-
Sharing Facility (LSF) [1.62] are examples of available queuing and scheduling
packages that allow a user to easily broker tasks to compute farms and to vari-
ous extents balance the resource loads, handle heterogeneous systems, restart
failed jobs, and provide authentication and security. High-performance com-
puting, on the other hand, is primarily concerned with optimizing the speed
at which a single task executes on a parallel computer. For the remainder of
this paper, we focus entirely on high-performance computing that requires
non-trivial communication among the running processors.
Interprocessor communication often contributes significantly to the to-

tal running time. In a cluster, communication typically uses data networks
that may suffer from congestion, nondeterministic behavior, routing artifacts,
etc. In a shared-memory machine, communication through coordinated reads
from and writes to shared memory can also suffer from congestion, as well
as from memory coherency overheads, caching effects, and memory subsys-
tem policies. Guaranteeing that the repeated execution of a parallel (or even
sequential!) program will be identical to the prior execution is impossible in
modern machines, because the state of each cache cannot be determined a
priori—thus affecting relative memory access times—and because of nonde-
terministic ordering of instructions due to out-of-order execution and run-
time processor optimizations.
Parallel programs rely on communication layers and library implementa-

tions that often figure prominently in execution time. Interprocessor messag-
ing in scientific and technical computing predominantly uses the Message-
Passing Interface (MPI) standard [1.51], but the performance on a particular
platform may depend more on the implementation than on the use of such
a library. MPI has several implementations as open source and portable ver-
sions such as MPICH [1.33] and LAM [1.60], as well as native, vendor im-
plementations from Sun Microsystems and IBM. Shared-memory program-
ming may use POSIX threads [1.64] from a freely-available implementa-
tion (e.g., [1.57]) or from a commercial vendor’s platform. Much attention
has been devoted lately to OpenMP [1.61], a standard for compiler direc-
tives and runtime support to reveal algorithmic concurrency and thus take
advantage of shared-memory architectures; once again, implementations of
OpenMP are available both in open source and from commercial vendors.
There are also several higher-level parallel programming abstractions that
use MPI, OpenMP, or POSIX threads, such as implementations of the Bulk-
Synchronous Parallel (BSP) model [1.77, 1.43, 1.22] and data-parallel lan-
guages like High-Performance Fortran [1.42]. Higher-level application frame-
work such as KeLP [1.29] and POOMA [1.27] also abstract away the details
of the parallel communication layers. These frameworks enhance the expres-
siveness of data-parallel languages by providing the user with a high-level
programming abstraction for block-structured scientific calculations. Using
object-oriented techniques, KeLP and POOMA contain runtime support for
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non-uniform domain decomposition that takes into consideration the two
main levels (intra- and inter-node) of the memory hierarchy.

1.3 Speedup

1.3.1 Why Speed?

Parallel computing has two closely related main uses. First, with more mem-
ory and storage resources than available on a single workstation, a parallel
computer can solve correspondingly larger instances of the same problems.
This increase in size can translate into running higher-fidelity simulations,
handling higher volumes of information in data-intensive applications (such
as long-term global climate change using satellite image processing [1.83]),
and answering larger numbers of queries and datamining requests in corpo-
rate databases. Secondly, with more processors and larger aggregate memory
subsystems than available on a single workstation, a parallel computer can
often solve problems faster. This increase in speed can also translate into
all of the advantages listed above, but perhaps its crucial advantage is in
turnaround time. When the computation is part of a real-time system, such
as weather forecasting, financial investment decision-making, or tracking and
guidance systems, turnaround time is obviously the critical issue. A less ob-
vious benefit of shortened turnaround time is higher-quality work: when a
computational experiment takes less than an hour, the researcher can afford
the luxury of exploration—running several different scenarios in order to gain
a better understanding of the phenomena being studied.

1.3.2 What is Speed?

With sequential codes, the performance indicator is running time, measured
by CPU time as a function of input size. With parallel computing we focus
not just on running time, but also on how the additional resources (typically
processors) affect this running time. Questions such as “does using twice as
many processors cut the running time in half?” or “what is the maximum
number of processors that this computation can use efficiently?” can be an-
swered by plots of the performance speedup. The absolute speedup is the ratio
of the running time of the fastest known sequential implementation to that
of the parallel running time. The fastest parallel algorithm often bears little
resemblance to the fastest sequential algorithm and is typically much more
complex; thus running the parallel implementation on one processor often
takes much longer than running the sequential algorithm—hence the need
to compare to the sequential, rather than the parallel, version. Sometimes,
the parallel algorithm reverts to a good sequential algorithm if the num-
ber of processors is set to one. In this case it is acceptable to report relative
speedup, i.e., the speedup of the p-processor version relative to the 1-processor
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version of the same implementation. But even in that case, the 1-processor
version must make all of the obvious optimizations, such as eliminating un-
necessary data copies between steps, removing self communications, skipping
precomputing phases, removing collective communication broadcasts and re-
sult collection, and removing all locks and synchronizations. Otherwise, the
relative speedup may present an exaggeratedly rosy picture of the situation.
Efficiency, the ratio of the speedup to the number of processors, measures
the effective use of processors in the parallel algorithm and is useful when
determining how well an application scales on large numbers of processors. In
any study that presents speedup values, the methodology should be clearly
and unambiguously explained—which brings us to several common errors in
the measurement of speedup.

1.3.3 Speedup Anomalies

Occasionally so-called superlinear speedups, that is, speedups greater than
the number of processors,1 cause confusion because such should not be pos-
sible by Brent’s principle (a single processor can simulate a p-processor al-
gorithm with a uniform slowdown factor of p). Fortunately, the sources of
“superlinear” speedup are easy to understand and classify.
Genuine superlinear absolute speedup can be observed without violating

Brent’s principle if the space required to run the code on the instance exceeds
the memory of the single-processor machine, but not that of the parallel
machine. In such a case, the sequential code swaps to disk while the parallel
code does not, yielding an enormous and entirely artificial slowdown of the
sequential code. On a more modest scale, the same problem could occur one
level higher in the memory hierarchy, with the sequential code constantly
cache-faulting while the parallel code can keep all of the required data in its
cache subsystems.
A second reason is that the running time of the algorithm strongly de-

pends on the particular input instance and the number of processors. For
example, consider searching for a given element in an unordered array of
n � p elements. The sequential algorithm simply examines each element of
the array in turn until the given element is found. The parallel approach may
assume that the array is already partitioned evenly among the processors
and has each processor proceed as in the sequential version, but using only
its portion of the array, with the first processor to find the element halting
the execution. In an experiment in which the item of interest always lies in
position n − n/p + 1, the sequential algorithm always takes n − n/p steps,
while the parallel algorithm takes only one step, yielding a relative speedup
of n−n/p� p. Although strange, this speedup does not violate Brent’s prin-
ciple, which only makes claims on the absolute speedup. Furthermore, such
strange effects often disappear if one averages over all inputs. In the example
1 Strictly speaking, “efficiency larger than one” would be the better term.
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of array search, the sequential algorithm will take an expected n/2 steps and
the parallel algorithm n/(2p) steps, resulting in a speedup of p on average.
However, this strange type of speedup does not always disappear when

looking at all inputs. A striking example is random search for satisfying
assignments of a propositional logical formula in 3-CNF (conjunctive normal
form with three literals per clause): Start with a random assignment of truth
values to variables. In each step pick a random violated clause and make it
satisfied by flipping a bit of a random variable appearing in it. Concerning the
best upper bounds for its sequential execution time, little good can be said.
However, Schöning [1.74] shows that one gets exponentially better expected
execution time bounds if the algorithm is run in parallel for a huge number
of (simulated) processors. In fact, the algorithm remains the fastest known
algorithm for 3-SAT, exponentially faster than any other known algorithm.
Brent’s principle is not violated since the best sequential algorithm turns out
to be the emulation of the parallel algorithm. The lesson one can learn is that
parallel algorithms might be a source of good sequential algorithms too.
Finally, there are many cases were superlinear speedup is not genuine.

For example, the sequential and the parallel algorithms may not be applica-
ble to the same range of instances, with the sequential algorithm being the
more general one—it may fail to take advantage of certain properties that
could dramatically reduce the running time or it may run a lot of unneces-
sary checking that causes significant overhead. For example, consider sorting
an unordered array. A sequential implementation that works on every possi-
ble input instance cannot be fairly compared with a parallel implementation
that makes certain restrictive assumptions—such as assuming that input ele-
ments are drawn from a restricted range of values or from a given probability
distribution, etc.

1.4 Reliable Measurements

The performance of a parallel algorithm is characterized by its running time
as a function of the input data and machine size, as well as by derived mea-
sures such as speedup. However, measuring running time in a fair way is
considerably more difficult to achieve in parallel computation than in serial
computation.
In experiments with serial algorithms, the main variable is the choice of

input datasets; with parallel algorithms, another variable is the machine size.
On a single processor, capturing the execution time is simple and can be done
by measuring the time spent by the processor in executing instructions from
the user code—that is, by measuring CPU time. Since computation includes
memory access times, this measure captures the notion of “efficiency” of a
serial program—and is a much better measure than elapsed wall-clock time
(using a system clock like a stopwatch), since the latter is affected by all other
processes running on the system (user programs, but also system routines,
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interrupt handlers, daemons, etc.) While various structural measures help in
assessing the behavior of an implementation, the CPU time is the definitive
measure in a serial context [1.54].
In parallel computing, on the other hand, we want to measure how long

the entire parallel computer is kept busy with a task. A parallel execution is
characterized by the time elapsed from the time the first processor started
working to the time the last processor completed, so we cannot measure the
time spent by just one of the processors—such a measure would be unjustifi-
ably optimistic! In any case, because data communication between processors
is not captured by CPU time and yet is often a significant component of the
parallel running time, we need to measure not just the time spent executing
user instructions, but also waiting for barrier synchronizations, completing
message transfers, and any time spent in the operating system for message
handling and other ancillary support tasks. For these reasons, the use of
elapsed wall-clock time is mandatory when testing a parallel implementa-
tion. One way to measure this time is to synchronize all processors after
the program has been started. Then one processor starts a timer. When the
processors have finished, they synchronize again and the processor with the
timer reads its content.
Of course, because we are using elapsed wall-clock time, other running pro-

grams on the parallel machine will inflate our timing measurements. Hence,
the experiments must be performed on an otherwise unloaded machine, by
using dedicated job scheduling (a standard feature on parallel machines in
any case) and by turning off unnecessary daemons on the processing nodes.
Often, a parallel system has “lazy loading” of operating system facilities or
one-time initializations the first time a specific function is called; in order not
to add the cost of these operations to the running time of the program, sev-
eral warm-up runs of the program should be made (usually internally within
the executable rather than from an external script) before making the timing
runs.
In spite of these precautions, the average running time might remain

irreproducible. The problem is that, with a large number of processors, one
processor is often delayed by some operating system event and, in a typical
tightly synchronized parallel algorithm, the entire system will have to wait.
Thus, even rare events can dominate the execution time, since their frequency
is multiplied by the number of processors. Such problems can sometimes be
uncovered by producing many fine-grained timings in many repetitions of
the program run and then inspecting the histogram of execution times. A
standard technique to get more robust estimates for running times than the
average is to take the median. If the algorithm is randomized, one must first
make sure that the execution time deviations one is suppressing are really
caused by external reasons. Furthermore, if individual running times are not
at least two to three orders of magnitude larger than the clock resolution,
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one should not use the median but the average of a filtered set of execution
times where the largest and smallest measurements have been thrown out.
When reporting running times on parallel computers, all relevant infor-

mation on the platform, compilation, input generation, and testing method-
ology, must be provided to ensure repeatability (in a statistical sense) of
experiments and accuracy of results.

1.5 Test Instances

The most fundamental characteristic of a scientific experiment is reproducibil-
ity. Thus the instances used in a study must be made available to the commu-
nity. For this reason, a common format is crucial. Formats have been more or
less standardized in many areas of Operations Research and Numerical Com-
puting. The DIMACS Challenges have resulted in standardized formats for
many types of graphs and networks, while the library of Traveling Salesper-
son instances, TSPLIB, has also resulted in the spread of a common format
for TSP instances. The CATS project [1.32] aims at establishing a collection
of benchmark datasets for combinatorial problems and, incidentally, standard
formats for such problems.
A good collection of datasets must consist of a mix of real and generated

(artificial) instances. The former are of course the “gold standard,” but the
latter help the algorithm engineer in assessing the weak points of the imple-
mentation with a view to improving it. In order to provide a real test of the
implementation, it is essential that the test suite include sufficiently large
instances. This is particularly important in parallel computing, since parallel
machines often have very large memories and are almost always aimed at the
solution of large problems; indeed, so as to demonstrate the efficiency of the
implementation for a large number of processors, one sometimes has to use
instances of a size that exceeds the memory size of a uniprocessor. On the
other hand, abstract asymptotic demonstrations are not useful: there is no
reason to run artificially large instances that clearly exceed what might arise
in practice over the next several years. (Asymptotic analysis can give us fairly
accurate predictions for very large instances.) Hybrid problems, derived from
real datasets through carefully designed random permutations, can make up
for the dearth of real instances (a common drawback in many areas, where
commercial companies will not divulge the data they have painstakingly gath-
ered).
Scaling the datasets is more complex in parallel computing than in serial

computing, since the running time also depends on the number of processors.
A common approach is to scale up instances linearly with the number of
processors; a more elegant and instructive approach is to scale the instances
so as to keep the efficiency constant, with a view to obtain isoefficiency curves.
A vexing question in experimental algorithmics is the use of worst-case

instances. While the design of such instances may attract the theoretician
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(many are highly nontrivial and often elegant constructs), their usefulness
in characterizing the practical behavior of an implementation is dubious.
Nevertheless, they do have a place in the arsenal of test sets, as they can
test the robustness of the implementation or the entire system—for instance,
an MPI implementation can succumb to network congestion if the number
of messages grows too rapidly, a behavior that can often be triggered by a
suitably crafted instance.

1.6 Presenting Results

Presenting experimental results for high-performance algorithm engineering
should follow the principles used in presenting results for sequential comput-
ing. But there are additional difficulties. One gets an additional parameter
with the number of processors used and parallel execution times are more
platform dependent. McGeoch and Moret discuss the presentation of experi-
mental results in the article “How to Present a Paper on Experimental Work
with Algorithms” [1.50]. The key entries include

– describe and motivate the specifics of the experiments
– mention enough details of the experiments (but do not mention too many
details)

– draw conclusions and support them (but make sure that the support is
real)

– use graphs, not tables—a graph is worth a thousand table entries
– use suitably normalized scatter plots to show trends (and how well those
trends are followed)

– explain what the reader is supposed to see

This advice applies unchanged to the presentation of high-performance ex-
perimental results. A summary of more detailed rules for preparing graphs
and tables can also be found in this volume.
Since the main question in parallel computing is one of scaling (with the

size of the problem or with the size of the machine), a good presentation needs
to use suitable preprocessing of the data to demonstrate the key characteris-
tics of scaling in the problem at hand. Thus, while it is always advisable to
give some absolute running times, the more useful measure will be speedup
and, better, efficiency. As discussed under testing, providing an ad hoc scal-
ing of the instance size may reveal new properties: scaling the instance with
the number of processors is a simple approach, while scaling the instance
to maintain constant efficiency (which is best done after the fact through
sampling of the data space) is a more subtle approach.
If the application scales very well, efficiency is clearly preferable to

speedup, as it will magnify any deviation from the ideal linear speedup: one
can use a logarithmic scale on the horizontal scale without affecting the leg-
ibility of the graph—the ideal curve remains a horizontal at ordinate 1.0,
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whereas log-log plots tend to make everything appear linear and thus will
obscure any deviation. Similarly, an application that scales well will give
very monotonous results for very large input instances—the asymptotic be-
havior was reached early and there is no need to demonstrate it over most
of the graph; what does remain of interest is how well the application scales
with larger numbers of processors, hence the interest in efficiency. The focus
should be on characterizing efficiency and pinpointing any remaining areas
of possible improvement.
If the application scales only fairly, a scatter plot of speedup values as

a function of the sequential execution time can be very revealing, as poor
speedup is often data-dependent. Reaching asymptotic behavior may be dif-
ficult in such a case, so this is the right time to run larger and larger in-
stances; in contrast, isoefficiency curves are not very useful, as very little
data is available to define curves at high efficiency levels. The focus should
be on understanding the reasons why certain datasets yield poor speedup
and others good speedup, with the goal of designing a better algorithm or
implementation based on these findings.

1.7 Machine-Independent Measurements?

In algorithm engineering, the aim is to present repeatable results through ex-
periments that apply to a broader class of computers than the specific make
of computer system used during the experiment. For sequential computing,
empirical results are often fairly machine-independent. While machine char-
acteristics such as word size, cache and main memory sizes, and processor and
bus speeds differ, comparisons across different uniprocessor machines show
the same trends. In particular, the number of memory accesses and processor
operations remains fairly constant (or within a small constant factor).
In high-performance algorithm engineering with parallel computers, on

the other hand, this portability is usually absent: each machine and envi-
ronment is its own special case. One obvious reason is major differences in
hardware that affect the balance of communication and computation costs—
a true shared-memory machine exhibits very different behavior from that of
a cluster based on commodity networks.
Another reason is that the communication libraries and parallel program-

ming environments (e.g., MPI [1.51], OpenMP [1.61], and High-Performance
Fortran [1.42]), as well as the parallel algorithm packages (e.g., fast Fourier
transforms using FFTW [1.30] or parallelized linear algebra routines in
ScaLAPACK [1.24]), often exhibit differing performance on different types
of parallel platforms. When multiple library packages exist for the same task,
a user may observe different running times for each library version even on
the same platform. Thus a running-time analysis should clearly separate the
time spent in the user code from that spent in various library calls. Indeed,
if particular library calls contribute significantly to the running time, the
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number of such calls and running time for each call should be recorded and
used in the analysis, thereby helping library developers focus on the most
cost-effective improvements. For example, in a simple message-passing pro-
gram, one can characterize the work done by keeping track of sequential
work, communication volume, and number of communications. A more gen-
eral program using the collective communication routines of MPI could also
count the number of calls to these routines. Several packages are available to
instrument MPI codes in order to capture such data (e.g., MPICH’s nupshot
[1.33], Pablo [1.66], and Vampir [1.58]). The SKaMPI benchmark [1.69] allows
running-time predictions based on such measurements even if the target ma-
chine is not available for program development. For example, one can check
the page of results2 or ask a customer to run the benchmark on the target
platform. SKaMPI was designed for robustness, accuracy, portability, and ef-
ficiency. For example, SKaMPI adaptively controls how often measurements
are repeated, adaptively refines message-length and step-width at “interest-
ing” points, recovers from crashes, and automatically generates reports.

1.8 High-Performance Algorithm Engineering
for Shared-Memory Processors

Symmetric multiprocessor (SMP) architectures, in which several (typically 2
to 8) processors operate in a true (hardware-based) shared-memory environ-
ment and are packaged as a single machine, are becoming commonplace. Most
high-end workstations are available with dual processors and some with four
processors, while many of the new high-performance computers are clusters
of SMP nodes, with from 2 to 64 processors per node. The ability to pro-
vide uniform shared-memory access to a significant number of processors
in a single SMP node brings us much closer to the ideal parallel computer
envisioned over 20 years ago by theoreticians, the Parallel Random Access
Machine (PRAM) (see, e.g., [1.44, 1.67]) and thus might enable us at long
last to take advantage of 20 years of research in PRAM algorithms for various
irregular computations. Moreover, as more and more supercomputers use the
SMP cluster architecture, SMP computations will play a significant role in
supercomputing as well.

1.8.1 Algorithms for SMPs

While an SMP is a shared-memory architecture, it is by no means the PRAM
used in theoretical work. The number of processors remains quite low com-
pared to the polynomial number of processors assumed by the PRAM model.
This difference by itself would not pose a great problem: we can easily ini-
tiate far more processes or threads than we have processors. But we need
2 http://liinwww.ira.uka.de/~skampi/cgi-bin/run_list.cgi.pl
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algorithms with efficiency close to one and parallelism needs to be sufficiently
coarse grained that thread scheduling overheads do not dominate the execu-
tion time. Another big difference is in synchronization and memory access:
an SMP cannot support concurrent read to the same location by a thousand
threads without significant slowdown and cannot support concurrent write
at all (not even in the arbitrary CRCW model) because the unsynchronized
writes could take place far too late to be used in the computation. In spite
of these problems, SMPs provide much faster access to their shared-memory
than an equivalent message-based architecture: even the largest SMP to date,
the 106-processor “Starcat” Sun Fire E15000, has a memory access time of
less than 300ns to its entire physical memory of 576GB, whereas the latency
for access to the memory of another processor in a message-based architec-
ture is measured in tens of microseconds—in other words, message-based
architectures are 20–100 times slower than the largest SMPs in terms of their
worst-case memory access times.
The Sun SMPs (the older “Starfire” [1.23] and the newer “Starcat”) use

a combination of large (16 × 16) data crossbar switches, multiple snooping
buses, and sophisticated handling of local caches to achieve uniform memory
access across the entire physical memory. However, there remains a large
difference between the access time for an element in the local processor cache
(below 5ns in a Starcat) and that for an element that must be obtained
from memory (around 300ns)—and that difference increases as the number
of processors increases.

1.8.2 Leveraging PRAM Algorithms for SMPs

Since current SMP architectures differ significantly from the PRAM model,
we need a methodology for mapping PRAM algorithms onto SMPs. In order
to accomplish this mapping we face four main issues: (i) change of program-
ming environment; (ii) move from synchronous to asynchronous execution
mode; (iii) sharp reduction in the number of processors; and (iv) need for
cache awareness. We now describe how each of these issues can be handled;
using these approaches, we have obtained linear speedups for a collection
of nontrivial combinatorial algorithms, demonstrating nearly perfect scaling
with the problem size and with the number of processors (from 2 to 32) [1.6].

Programming Environment. A PRAM algorithm is described by pseu-
docode parameterized by the index of the processor. An SMP program must
add to this explicit synchronization steps—software barriers must replace
the implicit lockstep execution of PRAM programs. A friendly environment,
however, should also provide primitives for memory management for shared-
buffer allocation and release, as well as for contextualization (executing a
statement on only a subset of processors) and for scheduling n independent
work statements implicitly to p < n processors as evenly as possible.
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Synchronization. The mismatch between the lockstep execution of the
PRAM and the asynchronous nature of parallel architecture mandates the
use of software barriers. In the extreme, a barrier can be inserted after each
PRAM step to guarantee a lock-step synchronization—at a high level, this is
what the BSP model does. However, many of these barriers are not necessary:
concurrent read operations can proceed asynchronously, as can expression
evaluation on local variables. What needs to be synchronized is the writing
to memory—so that the next read from memory will be consistent among the
processors. Moreover, a concurrent write must be serialized (simulated); stan-
dard techniques have been developed for this purpose in the PRAM model
and the same can be applied to the shared-memory environment, with the
same log p slowdown.

Number of Processors. Since a PRAM algorithm may assume as many
as nO(1) processors for an input of size n—or an arbitrary number of pro-
cessors for each parallel step, we need to schedule the work on an SMP,
which will always fall short of that resource goal. We can use the lower-level
scheduling principle of the work-time framework [1.44] to schedule the W (n)
operations of the PRAM algorithm onto the fixed number p of processors of
the SMP. In this way, for each parallel step k, 1 ≤ k ≤ T (n), the Wk(n)
operations are simulated in at most Wk(n)/p + 1 steps using p processors.
If the PRAM algorithm has T (n) parallel steps, our new schedule has com-
plexity of O (W (n)/p+ T (n)) for any number p of processors. The work-time
framework leaves much freedom as to the details of the scheduling, freedom
that should be used by the programmer to maximize cache locality.

Cache-Awareness. SMP architectures typically have a deep memory hier-
archy with multiple on-chip and off-chip caches, resulting currently in two
orders of magnitude of difference between the best-case (pipelined preloaded
cache read) and worst-case (non-cached shared-memory read) memory read
times. A cache-aware algorithm must efficiently use both spatial and tem-
poral locality in algorithms to optimize memory access time. While research
into cache-aware sequential algorithms has seen early successes (see [1.54]
for a review), the design for multiple processor SMPs has barely begun.
In an SMP, the issues are magnified in that not only does the algorithm
need to provide the best spatial and temporal locality to each processor, but
the algorithm must also handle the system of processors and cache proto-
cols. While some performance issues such as false sharing and granularity are
well-known, no complete methodology exists for practical SMP algorithmic
design. Optimistic preliminary results have been reported (e.g., [1.59, 1.63])
using OpenMP on an SGI Origin2000, cache-coherent non-uniform memory
access (ccNUMA) architecture, that good performance can be achieved for
several benchmark codes from NAS and SPEC through automatic data dis-
tribution.
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1.9 Conclusions

Parallel computing is slowly emerging from its niche of specialized, expensive
hardware and restricted applications to become part of everyday computing.
As we build support libraries for desktop parallel computing or for newer en-
vironments such as large-scale shared-memory computing, we need tools to
ensure that our library modules (or application programs built upon them)
are as efficient as possible. Producing efficient implementations is the goal of
algorithm engineering, which has demonstrated early successes in sequential
computing. In this article, we have reviewed the new challenges to algorithm
engineering posed by a parallel environment and indicated some of the ap-
proaches that may lead to solutions.
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1.11 D. A. Bader, J. JáJá, D. Harwood, and L. S. Davis. Parallel algorithms for
image enhancement and segmentation by region growing with an experimental
study. Journal on Supercomputing, 10(2):141–168, 1996.

1.12 D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fa-
toohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,
V. Venkatakrishnan, and S. Weeratunga. The NAS parallel benchmarks. Tech-
nical Report RNR-94-007, Numerical Aerodynamic Simulation Facility, NASA
Ames Research Center, Moffett Field, CA, March 1994.

1.13 D. H. Bailey. Twelve ways to fool the masses when giving performance results
on parallel computers. Supercomputer Review, 4(8):54–55, 1991.

1.14 R. D. Barve and J. S. Vitter. A simple and efficient parallel disk mergesort.
In Proceedings of the 11th Annual Symposium on Parallel Algorithms and
Architectures (SPAA’99), pages 232–241, 1999.
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1.A Examples of Algorithm Engineering
for Parallel Computation

Within the scope of this paper, it would be difficult to provide meaningful
and self-contained examples for each of the various points we made. In lieu of
such target examples, we offer here several references3 that exemplify the best
aspects of algorithm engineering studies for high-performance and parallel
3 We do not attempt to include all of the best work in the area: our selection is
perforce idiosyncratic.
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computing. For each paper or collection of papers, we describe those aspects
of the work that led to its inclusion in this section.

1. The authors’ prior publications [1.53, 1.6, 1.4, 1.46, 1.9, 1.71, 1.68,
1.37, 1.41, 1.73, 1.36, 1.5, 1.11, 1.8, 1.7, 1.10] contain many empirical
studies of parallel algorithms for combinatorial problems like sorting
[1.5, 1.35, 1.41, 1.73, 1.36], selection [1.4, 1.71, 1.8], and priority queues
[1.71], graph algorithms [1.53], backtrack search [1.70], and image pro-
cessing [1.46, 1.11, 1.7, 1.10].

2. JáJá and Helman conducted empirical studies for prefix computations
[1.40], sorting [1.38] and list-ranking [1.39] on symmetric multiproces-
sors. The sorting paper [1.38] extends Vitter’s external Parallel Disk
Model [1.1, 1.78, 1.79] to the internal memory hierarchy of SMPs and
uses this new computational model to analyze a general-purpose sample
sort that operates efficiently in shared-memory. The performance evalua-
tion uses 9 well-defined benchmarks. The benchmarks include input dis-
tributions commonly used for sorting benchmarks (such as keys selected
uniformly and at random), but also benchmarks designed to challenge the
implementation through load imbalance and memory contention and to
circumvent algorithmic design choices based on specific input properties
(such as data distribution, presence of duplicate keys, pre-sorted inputs,
etc.).

3. In [1.20, 1.21] Blelloch et al. compare through analysis and implementa-
tion three sorting algorithms on the Thinking Machines CM-2. Despite
the use of an outdated (and no longer available) platform, this paper is a
gem and should be required reading for every parallel algorithm designer.
In one of the first studies of its kind, the authors estimate running times
of four of the machine’s primitives, then analyze the steps of the three
sorting algorithms in terms of these parameters. The experimental stud-
ies of the performance are normalized to provide clear comparison of how
the algorithms scale with input size on a 32K-processor CM-2.

4. Vitter et al. provide the canonical theoretic foundation for I/O-intensive
experimental algorithmics using external parallel disks (e.g., see [1.1, 1.78,
1.79, 1.14]). Examples from sorting, FFT, permuting, and matrix trans-
position problems are used to demonstrate the parallel disk model. For
instance, using this model in [1.14], empirical results are given for external
sorting on a fixed number of disks with from 1 to 10 million items, and two
algorithms are compared with overall time, number of merge passes, I/O
streaming rates, using computers with different internal memory sizes.

5. Hambrusch and Khokhar present a model (C3) for parallel computa-
tion that, for a given algorithm and target architecture, provides the
complexity of computation, communication patterns, and potential com-
munication congestion [1.34]. This paper is one of the first efforts to
model collective communication both theoretically and through experi-
ments, and then validate the model with coarse-grained computational
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applications on an Intel supercomputer. Collective operations are thor-
oughly characterized by message size and higher-level patterns are then
analyzed for communication and computation complexities in terms of
these primitives.

6. While not itself an experimental paper, Meyer auf der Heide and Wanka
demonstrate in [1.52] the impact of features of parallel computation
models on the design of efficient parallel algorithms. The authors begin
with an optimal multisearch algorithm for the Bulk Synchronous Parallel
(BSP) model that is no longer optimal in realistic extensions of BSP that
take critical blocksize into account such as BSP* (e.g., [1.17, 1.16, 1.15]).
When blocksize is taken into account, the modified algorithm is optimal in
BSP*. The authors present a similar example with a broadcast algorithm
using a BSP model extension that measures locality of communication,
called D-BSP [1.28].

7. Juurlink and Wijshoff [1.81, 1.45] perform one of the first detailed ex-
perimental accounts on the preciseness of several parallel computation
models on five parallel platforms. The authors discuss the predictive ca-
pabilities of the models, compare the models to find out which allows
for the design of the most efficient parallel algorithms, and experimen-
tally compare the performance of algorithms designed with the model
versus those designed with machine-specific characteristics in mind. The
authors derive model parameters for each platform, analyses for a variety
of algorithms (matrix multiplication, bitonic sort, sample sort, all-pairs
shortest path), and detailed performance comparisons.

8. The LogP model of Culler et al. [1.26] (and its extensions such as logGP
[1.2] for long messages) provides a realistic model for designing parallel
algorithms for message-passing platforms. Its use is demonstrated for a
number of problems, including sorting [1.25]. Four parallel sorting algo-
rithms are analyzed for LogP and their performance on parallel platforms
with from 32 to 512 processors is predicted by LogP using parameter
values for the machine. The authors analyze both regular and irregular
communication and provide normalized predicted and measured running
times for the steps of each algorithm.

9. Yun and Zhang [1.82] describe an extensive performance evaluation of
lock bypassing for concurrent access to priority heaps. The empirical
study compares three algorithms by reporting the average number of
locks waited for in heaps of 255 and 512 nodes. The average hold oper-
ation times are given for the three algorithms for uniform, exponential,
and geometric, distributions, with inter-hold operation delays of 0, 160,
and 640µs.

10. Several research groups have performed extensive algorithm engineering
for high-performance numerical computing. One of the most prominent
efforts is that led by Dongarra for ScaLAPACK [1.24, 1.19], a scalable
linear algebra library for parallel computers. ScaLAPACK encapsulates



1. Algorithm Engineering for Parallel Computation 23

much of the high-performance algorithm engineering with significant im-
pact to its users who require efficient parallel versions of matrix-matrix
linear algebra routines. In [1.24], for instance, experimental results are
given for parallel LU factorization plotted in performance achieved (gi-
gaflops per second) for various matrix sizes, with a different series for each
machine configuration. Because ScaLAPACK relies on fast sequential lin-
ear algebra routines (e.g., LAPACK [1.3]), new approaches for automat-
ically tuning the sequential library (e.g., LAPACK) are now available as
the ATLAS package [1.80].
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Summary.

The process of implementing, debugging, testing, engineering and ex-
perimentally analyzing algorithmic codes is a complex and delicate task,
fraught with many difficulties and pitfalls. In this context, traditional low-
level textual debuggers or industrial-strength development environments
can be of little help for algorithm engineers, who are mainly interested
in high-level algorithmic ideas and not particularly in the language and
platform-dependent details of actual implementations. Algorithm visual-
ization environments provide tools for abstracting irrelevant program de-
tails and for conveying into still or animated images the high-level algo-
rithmic behavior of a piece of software.

In this paper we address the role of visualization in algorithm engi-
neering. We survey the main approaches and existing tools and we discuss
difficulties and relevant examples where visualization systems have helped
developers gain insight about algorithms, test implementation weaknesses,
and tune suitable heuristics for improving the practical performances of
algorithmic codes.

2.1 Introduction

There has been an increasing attention in our community toward the experi-
mental evaluation of algorithms. Indeed, several tools whose target is to offer
a general-purpose workbench for the experimental validation and fine-tuning
of algorithms and data structures have been produced: software repositories
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and libraries, collections and generators of test sets, software systems for sup-
porting implementation and analysis are relevant examples of this effort. In
particular, in the last years there has been increasing attention toward the
design and implementation of interactive environments for developing and ex-
perimenting with algorithms, such as editors for test sets and development,
debugging, and visualization tools.
In this paper we address the role of algorithm visualization tools in algo-

rithm engineering. According to a standard definition [2.44], algorithm anima-
tion is a form of high-level dynamic software visualization that uses graphics
and animation techniques for portraying and monitoring the computational
steps of algorithms. Systems for algorithm animation have matured signifi-
cantly since, in the last decade, high-quality user interfaces have become a
standard in a large number of areas.
Nevertheless, the birth of algorithm visualization can be dated back to the

60’s, when Licklider did early experiments on the use of graphics for monitor-
ing the evolution of the content of a computer memory. Knowlton was the first
to address the visualization of dynamically changing data structures in his
films demonstrating the Bell Lab’s low-level list processing language [2.29].
During the 70’s, the potential of program animation in a pedagogical setting
was pointed out by several authors, and this research ended up with the re-
alization in 1981 of the videotape Sorting Out Sorting [2.3], which represents
a milestone in the history of algorithm animation and has been successfully
used to teach sorting methods to computer science students for more than
15 years. Sorting Out Sorting is a 30-minute color film that explains nine
internal sorting algorithms, illustrating both their substance and their dif-
ferences in efficiency. Different graphical representations are provided for the
data being sorted, and showing the programs while running on their input
makes it clear at any step how such data are partially reorganized by the
different algorithms. A new era began with the 80’s, when bit-mapped dis-
plays became available on workstations: researchers attempted to go beyond
films and started developing interactive software visualization systems and
exploring their utility not only for education, but also for software engineer-
ing and program debugging. Dozens of algorithm animation systems have
been developed since then.
Thanks to the capability of conveying a large amount of information in

a compact form and to the ability of human beings at processing visual in-
formation, algorithm animation systems are useful tools also in algorithm
engineering, in particular in several phases during the process of design, im-
plementation, analysis, tuning, experimental evaluation, and presentation of
algorithms. Actually, visual debugging techniques can help highlight hidden
programming or conceptual errors, i.e., discover both errors due to a wrong
implementation of an algorithm and, at a higher level of abstraction, errors
possibly due to an incorrect design of the algorithm itself. Sometimes, algo-
rithm animation tools can help in designing heuristics and local improvements
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in the code difficult to figure out theoretically, to test the correctness of al-
gorithms on specific test sets, to discover degeneracies, i.e., special cases for
which the algorithm may not produce a correct output. Their use can leverage
the task of monitoring complex systems or complex programs (e.g., concur-
rent programs), and makes it possible also to analyze problem instances not
limited in size and complexity, which even long and boring handiwork would
not be able to deal with. Not last, visualization could be an attractive medium
for algorithms researchers who want to share and disseminate their ideas.
In spite of the great research devoted in recent years to designing and

developing algorithm visualization facilities, the diffusion of the use of such
systems for algorithm engineering is still limited. We believe this is mostly due
to the lack of fast prototyping mechanisms, i.e., to the fact that realizing an
animation often requires heavy modifications of the source code at hand and
therefore a great effort. Instead, the power of an algorithm animation system
should be in the hands of the end-users, possibly unexperienced, rather than
of professional programmers or of the developers of the visualization tool.
In addition, it is very important for a software visualization tool to be able
to animate not just “toy programs”, but significantly complex algorithmic
codes, and to test their behavior on large data sets. Unfortunately, even
those systems well suited for large information spaces often lack advanced
navigation techniques and methods to alleviate the screen bottleneck, such
as changes of resolution and scale, selectivity, and elision of information.
Finding a solution to this kind of limitations is nowadays a challenge for
algorithm visualization systems.
In this paper we survey the main approaches and existing tools for the

realization of animations of algorithms. In particular, Section 2.2 is concerned
with the description of software visualization systems and libraries support-
ing visualization capabilities. Section 2.3 describes two main approaches used
by visualization tools: interesting events and state mapping. In Section 2.4 we
discuss difficulties and present relevant examples where visualization systems
helped developers gain insight about algorithms, test implementation weak-
nesses, and tune suitable heuristics for improving the practical performances
of algorithmic codes. Conclusions and challenges for algorithm visualization
research are finally listed in Section 2.5.

2.2 Tools for Algorithm Visualization

In this section we survey some algorithm visualization systems, discussing
their main features and the different approaches introduced by each of them.
We do not aim at being exhaustive, but rather we try to highlight the aspects
of these systems interesting from an algorithm engineering point of view.
We also describe some tools that will be used in Section 2.4 for illustrating
how to prepare algorithm animations for debugging or demonstrations. We
attempt to present visualization systems by their focus and innovation. For
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a more comprehensive description of software visualization systems we refer
the interested reader to [2.44] and to the references therein.
Balsa [2.8], followed a few years later by Balsa-II [2.9], was the first sys-

tem able to animate general-purpose algorithms and pioneered the interesting
events approach, later used by many other tools. In order to realize an an-
imation, the points of the source code that are strategically important are
annotated with procedure calls that generate visualization events. At run
time, events are collected by an event manager that forwards them to the
views so as to update the displayed images. Balsa-II supports a good level
of interactivity, allowing execution control by means of step-points and stop-
points. In order to provide a measure of an algorithm’s performance, it also
supports a way to associate different costs to different events and to count the
number of times each interesting event occurs, which may be interesting for
profiling algorithmic codes. Zeus [2.11] is an evolution of Balsa-II and adds
to the interesting events approach some object-oriented features: each view
is created by deriving a standard base View class and can be provided with
additional methods to handle each interesting event. Zeus also extensively
uses color and sound [2.12] and deals with three-dimensional objects [2.13],
thus making it possible to realize highly-customizable visualizations.
TANGO [2.42] (Transition-based ANimation GeneratiOn) introduced the

path-transition paradigm [2.41] for creating smooth continuous animations.
This paradigm relies on the use of four abstract data types (location, im-
age, path, and transition) and animations are realized by handling instances
of these data types by means of suitable operations defined on them. X-
TANGO [2.43] is the X-Windows based follow-up of TANGO. Polka [2.45]
introduces the support for the animation of concurrent programs: the pro-
grammer can assemble and present the whole animation using an explicit
global clock counter as a timing system. It also includes a graphical front-
end, called Samba, that is driven by a script produced as a trace of the
execution.
Debugging concurrent programs is more complicated than understanding

the behavior of sequential codes: not only concurrent computations may pro-
duce vast quantities of data, but also the presence of multiple threads that
communicate, compete for resources, and periodically synchronize may result
in unexpected interactions and non-deterministic executions. Many tools have
been realized to cope with these issues. The Gthreads library [2.50] builds
and displays a program graph as threads are forked and functions are called:
the vertices represent program entities and events and the arcs temporal or-
derings between them. The Hence system [2.6] offers animated views of the
program graph obtained from execution of PVM programs. Message passing
views are supported by the Conch system [2.49]: processes appear around
the outside of a ring and messages move from the sending process to the
receiving one by traversing the center of the ring. This is useful to detect
undelivered messages, as they remain in the center of the ring. Kiviat graphs
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for monitoring the CPU utilization of each processor are also supported by
other systems such as ParaGraph [2.25] and Tapestry [2.33].
One of the few examples of attempts to provide automatic visualization of

simple data structures is UWPI [2.26] (University of Washington Program Il-
lustrator). The visualization is automatically performed by the system thanks
to an “inferencer” that analyzes the data structures in the source code, both
at compile-time and at run-time, and suggests a number of possible displays
for each of them. Clearly, due to the lack of a deep knowledge of the logic of
the program, only the visualization of simple data structures, such as stacks
or queues, can be supported.
Pavane [2.38, 2.40] marks the first paradigm shift in algorithm visual-

ization since the introduction of interesting events. It features a declarative
approach to the visualization of concurrent programs. It conceives the visu-
alization as a mapping between the state of the computation and the image
space: the transformation between a fixed set of program variables and the
final image is declared by using suitable rules. This seems very important
for developing visual debugging tools for languages such as Prolog and Lisp.
Furthemore, the non-invasiveness of the declarative approach seems very im-
portant also in a concurrent framework, since the execution may be non-
deterministic and an invasive visualization code may change the outcome of
a computation.
TPM [2.21] (Transparent Prolog Machine) is a debugging tool for the

post-mortem visualization of computer programs written in the Prolog pro-
gramming language. In order to deal with the inherent complexity of Prolog
programs, TPM features two distinct views: a fine-grained view to repre-
sent the program’s locality and a coarse-grained view to show the full exe-
cution space via animated AND-OR trees. The overall trace structure also
captures the concept of backtracking to find alternative solutions to goals.
ZStep95 [2.32] is a reversible and animated source code stepper for LISP pro-
grams that provides a powerful mechanism for error localization. It maintains
a complete history of the execution and is equipped with a fully reversible
control structure: the user allows the program to run until an error is found
and then can go back to discover the exact point in which something went
wrong. Moreover, a simple and strict connection between the execution and
its graphical output is obtained by elementary clicking actions.
Leonardo [2.17] is an integrated environment for developing, animating,

and executing general-purpose C programs. Animations are realized accord-
ing to a declarative approach, i.e., by embedding in the source code dec-
larations that provide high-level graphical interpretations of the program’s
variables. As the system automatically reflects the modifications of the pro-
gram state into the displayed images, a high level of automation is reached.
Animations can be fully customized by means of a graphical vocabulary in-
cluding basic geometric shapes as well as primitives for visualizing graphs and
trees. Smoothly changing images are also supported by the system to help
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the viewer maintain context [2.19]. In addition, code written with Leonardo
is completely reversible: when running code backwards, variable assignments
are undone, output sent to the console disappears, graphics drawn are un-
drawn, and so on. The reversibility is extended to the full set of standard
ANSI functions. This feature, combined with the declarative approach, makes
the system well suited for visual debugging purposes. Differently from many
other visualization systems, Leonardo has been widely distributed over the
Internet and includes several animations of algorithms and data structures.
Computational geometry is an area where the visualization and anima-

tion of programs is a very important tool for the understanding, presentation,
and debugging of algorithms, and the animation of geometric algorithms is
mentioned among the strategic research directions in computational geom-
etry [2.47]. It is thus not surprising that increasing attention has been de-
voted to algorithm visualization tools for computational geometry (see, e.g.,
[2.2, 2.4, 2.20, 2.27, 2.46]). In this paper we particularly focus our attention
on GeoWin, a C++ data type that can be easily interfaced with algorith-
mic software libraries of great importance in algorithm engineering such as
CGAL [2.22] and LEDA [2.34]. The design and implementation of GeoWin
was influenced by LEDA’s graph editor GraphWin (see [2.34], Chapter 12).
Both data types support a number of programming styles that have proven
to be useful in demonstration and animation programs. Examples are the
use of result scenes and the event handling approach, which will be discussed
in Section 2.4.3. An instance gw of the data type GeoWin is an editor that
maintains a collection of so-called scenes. Each scene in this collection has
an associated container of geometric objects whose members are displayed
according to a set of visual attributes (color, line width, line style, etc.). One
of the scenes in the collection can be active. It receives the input of all editing
operations and can be manipulated through the interactive interface. Both
the container type and the object type have to provide a certain function-
ality. The container type must implement the STL list interface [2.35], in
particular, it has to provide STL-style iterators, and for all geometric objects
a small number of functions and operators (for stream input and output,
basic transformations, drawing and mouse input in a LEDA window) have to
be defined. Any combination of container and object type that fulfill these
requirements for containers and objects, respectively, can be associated with
a GeoWin scene in a gw.new scene() operation. More recent work on geo-
metric visualization include VEGA [2.27] and WAVE [2.20].
VEGA (Visualization Environment for Geometric Algorithms) is a client-

server visualization environment for geometric algorithms. It guarantees a
low usage of communication bandwidth resources, thus achieving good per-
formance even in slow networks. The end-user can interactively draw, load,
save, and modify graphical scenes, can animate algorithms on-line or show
saved runs off-line, and can customize the visualization by specifying a suit-
able set of view attributes. WAVE (Web Algorithm Visualization Engine) uses
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a publication-driven approach to algorithm visualization over the Web and
is especially well-suited for geometric algorithms. Algorithms run on a devel-
oper’s remote server and their data structures are published on blackboards
held by the clients. Animations are realized by writing suitable visualization
handlers and by attaching them to the public data structures.
More recent trends in algorithm animation include distributed systems

over the Web. JEliot [2.24, 2.31] is an automatic system for the animation
of simple Java programs. After the Java code has been parsed, the user can
choose the cast of variables to be visualized on the scene according to built-in
graphical interpretations. The user needs to write no additional code: in other
words, animation is embedded in the implementation of data type operations.
The graphical presentation is based on a “theater metaphor” where the script
is the algorithm, the stages are the views, the actors are the program’s data
structures depicted as graphical objects, and the director is the user.
CATAI [2.14] (Concurrent Algorithms and data Types Animation over the

Internet) tries to minimize the burden of the task of animating algorithms.
The main philosophy behind this system is that any algorithm implemented
in an object-oriented programming language (such as C++) should be easily
animated. This should make this system easy to use, and is based on the idea
that an average programmer or an algorithm developer should not invest too
much time in getting an animation of the algorithm up and running. This is
not always the case, and often animating an algorithm can be as difficult and
as time consuming as implementing the algorithm itself from scratch. CATAI
has an advantage over systems where the task of animating an algorithm can
be quite complex. Producing animations almost automatically, however, can
limit flexibility in creating custom graphic displays. If the user is willing to
invest more time on the development of an animation, he or she can produce
more sophisticated graphics capabilities, while still exploiting the features
offered by the system.
JDSL [2.5] (Java Data Structures Library) is a library of data structures

written in the Java programming language that supports the visualization
of the fundamental operations on abstract data types; it is well suited for
educational purposes, as students obtain a predefined visualization of their
own implementation by simply implementing JDSL Java interfaces with pre-
defined signatures.

2.3 Interesting Events versus State Mapping

In this section we focus on the main features of animation systems that are
appealing for their deployment in algorithm engineering. From the viewpoint
of the algorithmic developer, it would be highly desirable to rely on systems
that offer visualizations at a very high level of abstraction. Namely, one would
be more interested in visualizing the behavior of a complex data structure,
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such as a graph, than in obtaining a particular value of a given pointer. Fur-
thermore, algorithm designers could be very interested in visualizations that
are reusable and that can be created with little effort from the algorithmic
source code at hand: this could be of substantial help in speeding up the time
required to produce a running animation.
Achieving simultaneously high level of abstraction and fast prototyping

makes the task of developing algorithm animation systems highly nontrivial.
Indeed, it is possible to visualize automatically static or even running code,
but at a very low level of abstraction, i.e., when the entities to be displayed
and the way they change can be directly deduced from the code and the
program state. For instance, the program counter tells us the next instruc-
tion, from which the line of the code to be executed can be easily recovered
and highlighted in a suitable view. Also, primitive and composite data types
can be mapped into canonical representations, thus displaying for free the
data and the data flow. Conventional debuggers rely on this assumption but
they lack capability of abstraction: they are unable to convey information
about the algorithm’s fundamental operations and to produce high-level syn-
thesized views of data and of their manipulations. For example, if a graph is
represented by means of an adjacency matrix, a debugger can automatically
display only the matrix, but not the graph according to its usual representa-
tion with vertices and edges. Toward this aim, some extra knowledge, such as
the interpretation of matrix entries, should be provided to the visualization
system.
The considerations above are at the base of the distinction between pro-

gram and algorithm visualization. In particular, an algorithm visualization
system should be able to illustrate salient features of the algorithm, which
appears to be difficult, if not impossible, with a completely automatic mech-
anism. The opposition automation versus high-level and customization possi-
bilities makes it necessary to define a method for specifying the visualization,
i.e., a suitable mechanism for binding pictures to code. In the remainder
of this section, we discuss the two major solutions proposed in the litera-
ture: interesting events and state mapping. For a comprehensive discussion
of other techniques used in algorithm visualization we refer the interested
reader to [2.10, 2.36, 2.37, 2.39, 2.44].

Interesting Events. A natural approach to algorithm animation consists
of annotating the algorithmic code with calls to visualization routines. The
first step consists of identifying the relevant actions performed by the algo-
rithm that are interesting for visualization purposes. Such relevant actions
are usually referred to as Interesting Events. As an example, in a sorting
algorithm the swap of two items can be considered an interesting event. The
second step consists of associating each interesting event with a modification
of a graphical scene. In our example, if we depict the values to be sorted as
a sequence of sticks of different heights, the animation of a swap event might
be realized by exchanging the positions of the two sticks corresponding to
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the values being swapped. Animation scenes can be specified by setting up
suitable visualization procedures that drive the graphic system according to
the actual parameters generated by the particular event. Alternatively, these
visualization procedures may simply log the events in a file for a post-mortem
visualization. The calls to the visualization routines are usually obtained by
annotating the original algorithmic code at the points where the interesting
events take place. This can be done either by hand or by means of specialized
editors.
In addition to being simple to implement, the main benefit of the event-

driven approach is that interesting events are not necessarily low-level opera-
tions (such as comparisons or memory assignments), but can be more abstract
and complex operations designed by the programmer and strictly related to
the algorithm being visualized (e.g., the swap in the previous example, as well
as a rotate operation in the management of an AVL tree). Major drawbacks
include the following: realizing an animation may require the programmer to
write several lines of additional code; the event-driven approach is invasive
(even if the code is not transformed, it is augmented); the person who is in
charge of realizing the animation has to know the source code quite well in
order to identify all the interesting points.

State Mapping. Algorithm visualization systems based on state mapping
rely on the assumption that observing how the variables change provides clues
to the actions performed by the algorithm. The focus is on capturing and
monitoring the data modifications rather than on processing the interesting
events issued by the annotated algorithmic code. For this reason they are also
referred to as “data driven” visualization systems. Conventional debuggers
can be viewed as data driven systems, since they provide direct feedback of
variable modifications.
Specifying an animation in a data driven system consists of providing a

graphical interpretation of the interesting data structures of the algorithmic
code. It is up to the system to ensure that the graphical interpretation at all
times reflects the state of the computation of the program being animated.
In the case of conventional debuggers, the interpretation is fixed and can-
not be changed by the user: usually, a direct representation of the content
of variables is provided. The debugger just updates the display after each
change, sometimes highlighting the latest variable that has been modified by
the program to help the user maintain context. In a more general scenario, an
adjacency matrix used by the code may be visualized as a graph with vertices
and edges, an array of numbers as a sequence of sticks of different heights,
and a heap vector as a balanced tree. As the focus is only on data structures,
the same graphical interpretation, and thus the same visualization code, may
be reused for any algorithm that uses the same data structure. For instance,
any sorting algorithm that manages to reorganize a given array of numbers
may be animated with the same visualization code that displays the array as
a sequence of sticks.
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The main advantage of this approach over the event driven technique
is that a much greater ignorance of the code is allowed: indeed, only the
interpretation of the variables has to be known to animate a program. In
Section 2.4.2 we will describe how we realized the animation of an algorithm
in the system Leonardo with very little knowledge of the code to be visualized.
On the other hand, focusing only on data modification may sometimes limit
customization possibilities making it difficult to realize animations that would
be natural to express with interesting events.
We believe that a combination of the two approaches described in this

section would be most effective in algorithm animation as the two approaches
capture different aspects of the problem. In our own experience, each of the
two approaches has cases in which it is much preferable to the other. In
some cases, we even found it useful to use both approaches simultaneously
for realizing the same animation.

2.4 Visualization in Algorithm Engineering

In this section we present relevant examples where visualization systems have
helped developers gain insight about algorithms, test implementation weak-
nesses, and tune suitable heuristics for improving the practical performances
of algorithmic codes. In particular, we will consider examples where visual-
ization can provide some insight into the design of algorithms at the level
of profiling and experimental evaluation (Section 2.4.1) and where anima-
tion has greatly simplified the task of debugging complex algorithmic code
(Section 2.4.2). One of the most important aspects of algorithm engineering
is the development of libraries. It is thus quite natural to try to interface
visualization tools to algorithmic software libraries. Two examples of such an
effort are considered in Sections 2.4.3 and 2.4.4. In particular, we will show
how demonstrations of geometric algorithms can be easily realized and inter-
faced with libraries (Section 2.4.3), and how fast animation prototyping can
be achieved by reusing existing visualization code (Section 2.4.4).

2.4.1 Animation Systems and Heuristics: Max Flow

The maximum flow problem, first introduced by Berge and Ghouila-Houri
in [2.7], is a fundamental problem in combinatorial optimization that arises
in many practical applications. Examples of the maximum flow problem in-
clude determining the maximum steady-state flow of petroleum products in
a pipeline network, cars in a road network, messages in a telecommunication
network, and electricity in an electrical network. Given a capacitated net-
work G = (V,E, c) where V is the set of nodes, E is the set of edges and
cxy is the capacity of edge (x, y) ∈ E, the maximum flow problem consists
of computing the maximum amount of flow that can be sent from a given
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source node s to a given sink node t without exceeding the edge capacities.
A flow assignment is a function f on edges such that fxy ≤ cxy, i.e., edge
capacities are not exceeded, and for each node v (except the source s and
the sink t),

∑
(u,v)∈E fuv =

∑
(v,w)∈E fvw, i.e., the assigned incoming flows

and the outgoing flows are equal. Usually, one needs to compute not only the
maximum amount of flow that can be sent from the source to the sink in a
given network, but also a flow assignment that achieves that amount.
Several methods for computing a maximum flow have been proposed in

the literature. In particular, we mention the network simplex method pro-
posed by Dantzig [2.18], the augmenting path method of Ford and Fulkerson,
the blocking flow of Dinitz, and the push-relabel technique of Goldberg and
Tarjan [2.1].
The push-relabel method, which made it possible to design the fastest

algorithms for the maximum flow problem, sends flows locally on individual
edges (push operation), possibly creating flow excesses at nodes, i.e., a pre-
flow. A preflow is just a relaxed flow assignment such that for some nodes,
called active nodes, the incoming flow may exceed the outgoing flow. The
push-relabel algorithms work by progressively transforming the preflow into
a maximum flow by dissipating excesses of flow held by active nodes that
either reach the sink or return back to the source. This is done by repeatedly
selecting a current active node according to some selection strategy, pushing
as much excess flow as possible towards adjacent nodes that have a lower
estimated distance from the sink paying attention not to exceed the edge
capacities, and then, if the current node is still active, updating its estimated
distance from the sink (relabel operation). Whenever an active node cannot
reach the sink anymore as no path to the sink remains with some residual
unused capacity, its distance progressively increases due to relabel operations
until it gets greater than n: when this happens, it starts sending flow back
towards the source, whose estimated distance is initially forced to n. This
elegant solution makes it possible to deal with both sending flows to the sink
and draining undeliverable excesses back to the source through exactly the
same push/relabel operations. However, as we will see later, if taken “as is”
this solution is not so good in practice.
Two aspects of the push-relabel technique seem to be relevant with respect

to the running time: (1) the selection strategy of the current active node, and
(2) the way estimated distances from the sink are updated by the algorithm.
The selection strategy of the current active node has been proved to sig-

nificantly affect the asymptotic worst-case running time of push-relabel al-
gorithms [2.1]: as a matter of fact, if active nodes are stored in a queue,
the algorithm, usually referred to as the FIFO preflow-push algorithm, takes
O(n3) in the worst case; if active nodes are kept in a priority queue where
each extracted node has the maximum estimated distance from the sink, the
worst-case running time decreases to O(

√
mn2), which is much better for
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sparse graphs. The last algorithm is known as the highest-level preflow-push
algorithm.
Unfortunately, regardless of the selection strategy, the push-relabel

method in practice yields very slow codes if taken literally. Indeed, the way
estimated distances from the sink are maintained has been proved to affect
dramatically the practical performance of the push-relabel algorithms. For
this reason, several additional heuristics for the problem have been proposed.
Though these heuristics are irrelevant from an asymptotic point of view, the
experimental study presented in [2.16] proves that two of them, i.e., the global
relabeling and the gap heuristics, could be extremely useful in practice.

Global Relabeling Heuristic. Each relabel operation increases the esti-
mated distance of the current active node from the sink to be equal to the
lowest estimated distance of any adjacent node, plus one. This is done by
considering only adjacent nodes joined by edges with some non-zero residual
capacity, i.e., edges that can still carry some additional flows. As relabel op-
erations are indeed local operations, the estimated distances from the sink
may progressively deviate from the exact distances by losing the “big pic-
ture” of the distances: for this reason, flow excesses might not be correctly
pushed right ahead towards the sink, and may follow longer paths slowing
down the computation. The global relabeling heuristic consists of recomput-
ing, say every n push/relabel operations, the exact distances from the sink,
and the asymptotic cost of doing so can be amortized against the previous
operations. This heuristic drastically improves the practical running time of
algorithms based on the push-relabel method [2.16].

Gap Heuristic. Cherkassky [2.15] has observed that, at any time during
the execution of the algorithm, if there are nodes with estimated distances
from the sink that are strictly greater than some distance d and no other
node has estimated distance d, then a gap in the distances has been formed
and all active nodes above the gap will eventually send their flow excesses
back to the source as they no longer can reach the sink. This can be achieved
by repeatedly increasing the estimated distances via relabel operations. The
process stops when distances get greater than n. The problem is that a huge
number of such relabeling operations may be required. To avoid this, it is
possible to keep track of gaps in the distances efficiently: whenever a gap
occurs, the estimated distances of all nodes above the gap are immediately
increased to n. This is usually referred to as the gap heuristic and, according
to the study in [2.16], it is a very useful addition to the global relabeling
heuristic if the highest-level active node selection strategy is applied. How-
ever, the gap heuristic does not seem to yield the same improvements under
FIFO selection strategy.

The 5 snapshots a, b, c, d and e shown in Fig. 2.1 and in Fig. 2.2 have
been produced by the algorithm animation system Leonardo [2.17] and depict
the behavior of the highest-level preflow push algorithm implemented with
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(a) 

Network status and 
distances after the 
initialization phase.

(b) 

After 92 operations a 
gap has been formed. 
Nodes with distance 
greater than the gap 
no longer can reach 
the sink. Their 
distance should be 
directly increased to 
n through the gap 
heuristic.

(c) 

Nodes with distance 
greater than the gap 
are being slowly 
relabeled step after 
step if the gap 
heuristic is not 
implemented.

Fig. 2.1. Highest-level preflow push maxflow algorithm animation in Leonardo.
Snapshots a, b, c
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(d) 

After 443 operations 
the distances of all 
nodes above the gap 
have been increased 
to n and their flow 
excesses are being 
drained back to the 
source. The gap 
heuristic could have  
saved  the last 351 
operations on this 
instance, i.e., about 
80% of the total 
time spent by the 
algorithm to solve 
the problem.

(e) 

After 446 operations  
the maximum flow 
has been determined 
by the algorithm 
and no more active 
nodes remain.

Fig. 2.2. Highest-level preflow push maxflow algorithm animation in Leonardo.
Snapshots d, e

no additional heuristics on a small network with 19 nodes and 39 edges.
The animation aims at giving an empirical explanation about the utility of
the gap heuristic under the highest-level selection. The example shows that
this heuristic, if added to the code, could have saved about 80% of the total
time spent by the algorithm to solve the problem on that instance. Both the
network and a histogram of the estimated distances of nodes are shown in
the snapshots: active nodes are highlighted both in the network and in the
histogram and flow excesses are reported as node labels. Moreover, the edge
currently selected for a push operation is highlighted as well. Notice that
the source is initially assigned distance n and all nodes that eventually send
flows back to the source get distance greater than n. We believe that this is
an example where a visualization system may be of great help in providing a
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meaningful interpretation of data and statistics that can be of large size and
intrinsically complex and heterogeneous.

To conclude this section, we briefly describe how this particular visual-
ization was achieved with Leonardo. The source code used the following data
type for representing the network:

struct network {
int n,s,t; // Number of nodes, source and sink
int d[MAX]; // Estimated distances
int e[MAX]; // Flow excesses
int r[MAX][MAX]; // Residual capacity
char adj[MAX][MAX]; // Boolean adjacency matrix

} G; // Instance of network data type

where G is an instance of the input network, with G.n nodes, source G.s,
sink G.t, and Boolean adjacency matrix G.adj[][]. The algorithm main-
tains the estimated distances in G.d[], the excess flow in G.e[], and the
residual capacities in G.r[][]. In order to produce the network visualization
we embedded into the source code the following lines:
/**

Graph(Out 1);
Directed(1);
Node(Out N,1) For N:InRange(N,0,G.n-1);
Arc(X,Y,1) If G.adj[X][Y]!=0;

NodeColor(N,Out LightGreen,1) If G.d[N]>=G.n;
NodeFrame(N,Out Red,Out 2,1) If G.e[N]>0;
NodeLabel(N,Out Int,Out L,1) If G.e[N]>0 Assign L=G.e[N];

ArcThickness(X,Y,Out Thick,1) If G.d[Y]==G.d[X]-1 && G.r[X][Y]>0;
ArcStyle(X,Y,Out Dashed,1) If G.d[Y]!=G.d[X]-1 || !G.r[X][Y];

**/

The goal of this visualization code is to declare a directed graph window
displaying a graph with id number 1. The nodes of the visualized graph are in
the range [0, G.n− 1] and there is an edge (X, Y) if and only if the correspond-
ing entry in the adjacency matrix is non-zero. Declarations of NodeColor,
NodeFrame, NodeLabel, NodeLabel, ArcStyle and ArcThickness specify the
graphical attributes of nodes and edges in the visualization. In particular, a
node is colored light green if its estimated distance fron the sink is at least
n; active nodes, i.e., nodes with positive excess flow, are highlighted with a
red frame and the amount of integer (Int) excess flow is shown as a node
label. Finally, edges are solid and thick if they might be selected for a push
operation, i.e., they enter nodes with lower estimated distance from the sink
and have positive residual capacity. The remaining edges are dashed. The
animation hinges upon the fact that, when the original algorithmic code is
executed, any change in the fields of variable G is automatically reflected in
the displayed images. The visualization code for the window showing the es-
timated distances of nodes from the sink is based on similar ideas and not
reported here.
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2.4.2 Animation Systems and Debugging: Spring Embedding

In this section we address an important application of animation systems:
debugging complex algorithmic codes. In particular, we describe our own
experience with a graph layout algorithm and show how its animation was
crucial for debugging an available implementation, and for discovering con-
vergence problems due to numerical errors. The algorithm, due to Kamada
and Kawai [2.28], is based on a force-directed paradigm, which uses a phys-
ical analogy to draw graphs: graph vertices and edges define a force system
and the algorithm seeks a configuration with locally minimal energy. The
embedding produced by the algorithm is also known as spring embedding:
indeed, Kamada and Kawai’s algorithm finds an embedding by introducing
a force system where vertices are mutually connected by springs. In more
detail, the algorithm attempts to find an embedding of the graph in which
Euclidean distances between vertices are as close as possible to the lengths
of their shortest paths. The energy of this system is thus:

E =
n∑
i=1

n∑
j=i+1

ki,j
2
(dist(i, j)− L · #(i, j))2 ,

where dist(i, j) is the Euclidean distance between vertices i and j, #(i, j) is
the length of a shortest path between i and j in the embedded graph, L is
the desirable length of a single edge in the drawing, and ki,j is the strength
of the spring between vertices i and j.
In order to find a local minimum of the energy, Kamada and Kawai make

use of a two-dimensional Newton-Raphson method to look where partial
derivatives are zero (or close to zero). In particular, at each step all vertices
are frozen, except for one vertex that is moved to a stable point by means of
an iterated process. In more detail, the vertex with largest first-order partial
derivatives is selected, and it is repeatedly moved towards a local minimum
(based on the value of second-order partial derivatives). Those iterations ter-
minate when the first-order partial derivatives become small enough. This is
a very high-level description of the algorithm, which should suffice for our
goals: the interested reader is referred to [2.28] for the full details of the
method.
We received a C implementation of this algorithm that was implemented

straight from the paper. The implementation seemed flawed with convergence
problems on some graph instances: however, despite many efforts, the authors
of the code were unable to track down the bug. We were thus asked to try
to animate their implementation, in order to gain better understanding and
help debug this piece of algorithmic code. At that time, we did not know
much about Kamada and Kawai’s algorithm, and did not know much about
the implementation either: furthermore, we did not want to invest too much
time in studying in depth either the paper or the implementation.
We set up an animation in Leonardo [2.17]: the only information we had

to retrieve from the implementation concerned the data structures used to
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store the graph and the positions of the vertices as progressively refined and
returned by the algorithm. In particular, we had to look only at the following
lines from the implementation code:

int n;
int G[ MAXNODES ][ MAXNODES ];
struct { double x,y; } pos[ MAXNODES ];

where G is the adjacency matrix of the graph, n is the number of vertices,
and pos contains the x and y coordinates of each vertex in the drawing. Our
animation was set up so as to show how vertices were changing their posi-
tion as the pos array was being updated by the algorithm, thus illustrating
the intermediate drawings produced in different steps of the algorithm. We
emphasize that it was very difficult to figure out this process using only the
numerical information displayed by a conventional textual debugger.
In order to produce the animation of this algorithm with Leonardo, we

embedded into the source code the following lines:

/**
Graph( Out 1 );
Node( Out N, 1) For N: InRange( N, 0, n-1 );
Arc( U, V, 1 ) If G[ U ][ V ] != 0;
NodePos( N, Out X, Out Y, 1 )

Assign X = pos[ N ].x * 100
Y = pos[ N ].y * 100;

**/

The goal of this visualization code is to declare a window displaying a
graph with id number 1. The vertices of the visualized graph are labeled
with integers in the range [0, n− 1], and there is an edge (U,V) if and only if
the corresponding entry in the adjacency matrix is non-zero. The coordinates
(x,y) of vertex N of graph 1 are proportional to pos[ N ].x and pos[ N ].y
respectively. The animation hinges upon the fact that, when the original
algorithmic code is executed, any change in the variables n, G, and pos is
automatically reflected in the displayed images.
Figure 2.3 illustrates different snapshots of the animation throughout the

execution. Together with the window displaying the graph, there is another
window showing the potential energy of each vertex (the visualization code
for this window is not reported). As can easily be seen from the right col-
umn in Figure 2.3, the implementation seems to be looping among different
energy configurations while trying to position vertex 0: in particular, the
animation shows that vertex 0 is oscillating between two different positions.
This was more difficult to discover without visualizing the running code, since
the relevant values of pos[ 0 ].x and pos[ 0 ].y were never identical in
the sequence of cycling steps. We also found examples where the oscillation
was much more complicated, i.e., it involved more than one vertex and its
periodicity was ranging over dozens of iterations. A simple analysis of the
implementation code pointed out that the oscillating behavior was caused by
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Fig. 2.3. Storyboard of Kamada and Kawai’s algorithm animated with Leonardo

numerical errors: a more careful tuning of the convergence parameters was
able to fix the problem.

2.4.3 Animation Systems and Demos: Geometric Algorithms

The visual nature of geometric applications makes them a natural area for
designing systems that describe relevant aspects of the algorithm behavior by
using animation. Indeed, the animation of geometric algorithms is mentioned
among the strategic research directions in computational geometry [2.47] and
increasing attention has been put towards designing algorithm visualization
tools for computational geometry (see, e.g., [2.2, 2.4, 2.27, 2.46]).
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In this section we show how to use the GeoWin data type introduced
in Section 2.2, which was designed to be easily interfaced with algorithmic
software libraries such as CGAL [2.22] and LEDA [2.34]. In particular, we
discuss two of the basic features of GeoWin.

Result Scenes. A result scene is a GeoWin scene that depends on one or
more input scenes. The dependence is defined by a function to be called for
the objects of the input scenes. The contents of the result scene are just
the output of this function. Whenever the input scene is modified the output
scene is recomputed. In this way, it is very easy to write programs for showing
the result of an algorithm on-line while the user is modifying the input of the
algorithm, for example, by moving objects around, or by inserting or deleting
objects of the input scenes.
The following piece of code shows an example program using this ap-

proach. We assume that there is a function INTERSECT computing the inter-
section points (of some type point t) of a given set of straight line segments
(of some type segment t). Then we can create a the result scene that depends
on an input scene sc input of points by calling gw.new scene(INTERSECT,
sc input). Many demonstration programs in LEDA and CGAL are written
in this way. In particular, all algorithms working on an input set of points
(e.g., all kinds of Voronoi and Delaunay diagrams) can be visualized in a
single elegant program.

void INTERSECT(const list<segment_t>&, list<point_t>&);

int main() {
GeoWin gw("Segment Intersection");
list<segment_t> L;
geo_scene sc_input = gw.new_scene(L);
geo_scene sc_ouput = gw.new_scene(INTERSECT,sc_input);
gw.set_color(sc_output,red );
gw.set_visible(sc_ouput,true );
gw.edit(sc_input);
return 0;

}

Event Handling. Every edit operation of the interactive interface of Geo-
Win has an associated event. For instance, creating a new object triggers a
new object event, deleting an object causes a del object event, and moving an
object around creates a move object event. Application programs can handle
these events by specifying corresponding call-back functions that are to be
called whenever a certain event occurs. We show how to use event handling
in the animation of a sweep line algorithm.
The program creates a special scene sc sweep that contains a single verti-

cal line, the sweep line, and it associates a call-back function sweep handler
with the move object events of this scene (by calling gw.set move handler
(sc sweep,sweep handler)). Now, during the interactive mode, the user can
grab and move the sweep line with the mouse, and for each motion event the
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sweep handler function is called, with the relative distance vector of the mo-
tion. Note that the call-back function associated with move object events has
a boolean return type. The result of this function is evaluated by GeoWin and
controls whether the actual motion is really executed. In the sweep example
we use this fact to prevent any backward motion of the sweep line.

void sweep_handler(GeoWin& gw, const line& sl,
double dx, double dy) {

// move sweep line horizontally by dx"
// do not allow backward motions
if (dx > 0) {

sweep_x += dx;
"process all events left of sweep_x"

}
}

int main() {
GeoWin gw("Sweep Demo");

list<line> sweep_line;
sweep_line.append(line(point(0,-100), point(0,100)));

geo_scene sc_sweep = gw.new_scene(sweep_line);
gw.set_move_handler(sc_sweep, sweep_handler);
gw.edit(sc_sweep);

return 0;
}

The screenshot of Figure 2.4 shows the window of an animation that uses
this technique for the animation of Fortune’s sweep algorithm (see [2.23]) for
computing the Voronoi Diagram of a set of points in the plane. This animation
allows the user to drag the sweep line across the plane while watching several
different structures: the constructed Delaunay triangulation, the shore line of
parabolic arcs, and the circle events of the sweep.

2.4.4 Animation Systems and Fast Prototyping

Many animation systems require heavy modifications to the source code at
hand and, in some instances, even require writing the entire animation code
in order to produce a desired algorithm visualization. Thus, a user of these
systems is supposed to invest a considerable amount of time writing code for
the animation but also needs to have a significant algorithmic background to
understand the details of the program to be visualized. This is not desirable,
especially when algorithm animation is to be used in program development
and debugging. Indeed, our own experience supports the same conclusions
drawn in reference [2.37], namely that the effort required to animate an algo-
rithm is one of the main factors limiting the diffusion of animation techniques
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Fig. 2.4. Animation of Fortune’s sweep algorithm with GeoWin

as a successful tool for debugging, testing and understanding computer algo-
rithms.
In this section we address the issue of fast prototyping in algorithm ani-

mation and we show how this can be achieved by a deep use of reusability: in
many cases, in the area of algorithm animation reusability is not considered
at all, and very often the animation is so heavily embedded in the algorithm
itself that not much of it can be reused in other animations. To achieve this,
we need to enforce reusability in a strong sense: if the user produces a given
animated data type (e.g., a stack, a tree, or a graph), then all its instances in
any context (local scope, global scope, different programs) must show some
standard graphical behavior with no additional effort at all. Of course, when
multiple instances of different data types are animated for different goals, a
basic graphical result may be poor without an additional, application-specific
coordination effort that by its own nature seems not (and perhaps could never
be) reusable. A successful approach is to offer different levels of sophistica-
tion: non-sophisticated animations should be basically obtained for free. If
one wants a more sophisticated animation, for instance by exploiting some
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coordination among different data types for the algorithm at hand, then some
additional effort should be required.
We now exemplify how fast prototyping and reusability can be addressed

in an animation system by taking the example of CATAI [2.14]. In partic-
ular, we describe the general steps that must be followed for preparing an
animation in CATAI and at the same time illustrate them through a work-
ing example: the animation of Kruskal’s algorithm for computing a minimum
spanning tree (MST) of a graph [2.30].
Kruskal’s algorithm first sorts all the edges by increasing cost, and then

grows a forest that will finally converge to a minimum spanning tree. Initially,
the forest consists of n singleton nodes (i.e., the vertices in the graph). At each
step, the algorithm analyzes one edge at the time, in increasing order of their
cost. If the endpoints of the edge under examination are already connected in
the current forest, this edge is discarded. Otherwise, the endpoints are in two
different trees: the edge is inserted into the forest (i.e., it will be a minimum
spanning tree edge), and the two trees are merged into one. For efficiency
issues, the trees are maintained as set union data types [2.48]. We refer to
LEDA’s implementation of Kruskal’s algorithm [2.34], which makes use of
the class partition to implement set union data types.
While building an algorithm animation, the first decision to be taken is

which data types are to be animated. In the example at hand, for instance,
it seems natural to visualize the graph being explored; additionally, we could
also choose to animate the underlying partition given by the set union data
types. Once this has been decided, the process of developing an animation
can be broken into three different steps.

Animation Libraries. A crucial module that provides the basic tools for
animation in CATAI, e.g., the graphical vocabulary, is given by the animation
libraries. CATAI supplies animation libraries for most textbook algorithms:
these libraries are totally independent from the data structures being ani-
mated and can be easily reused. In our example of minimum spanning trees,
CATAI already contains animation libraries to represent graph objects, and
thus this task is trivial.

Animated Data Types. Once animation libraries are available, we need to
revise the implementation of the original data types to support some anima-
tion capabilities. We call animated classes the classes that implement data
types with support for animation: CATAI offers a specialized C++ library to
assist in the development of animated classes. The principal component of
this library is the Animator class, which provides animation server commu-
nication primitives and binding mechanisms between a data type and the
related animation library. An animated class can be derived from the origi-
nal non-animated class and from the Animator class. These primitives map
data type operators to their animated counterparts.
In our minimum spanning tree example, the non-animated algorithm uses

the LEDA graph and partition data types. The LEDA graph class uses a
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single object that acts as a container to hold nodes and edges. To obtain
the animated class, we derive the class animgraph from the LEDA graph
class and from the Animator class. The methods that we wish to animate
are those that change the graph: adding, removing and modifying edges or
vertices. Apart from these methods, we could also add some extra methods
for animation purposes.

Animated Algorithm. We are now ready to show how to animate the
implementation of Kruskal’s algorithm at hand. Starting from the original
code, we replace the standard graph and partition with their animated coun-
terparts. Next, we add some animation-specific code to highlight the behavior
of the algorithm.

Original algorithm
...
G = new graph();
...
list<edge> MST::KRUSKAL(graph &G){

node_partition P(G);
list<edge> L = G.all_edges();
list<edge> T;

L.sort(CMP_EDGES);
edge e;
forall(e,L) {
node v = source(e);
node w = target(e);
if (! P->same_block(v,w)) {

T.append(e);
P->union_blocks(v,w);

}
}
return T;

}

Animated algorithm
...
G = new animgraph(sockd);
...
list<edge> MST::KRUSKAL(animgraph &G){

anim_node_partition P(G);
list<edge> L = G.all_edges();
list<edge> T;

L.sort(CMP_EDGES);
edge e;
forall(e,L) {
color_edge(e, GREEN);
node v = source(e);
node w = target(e);
if (! P->same_block(v,w)) {

T.append(e);
color_edge(e, BLUE);
color_node(v, BLUE);
color_node(w, BLUE);
P->union_blocks(v,w);

}
else color_edge(e, RED);

}
return T;

}

For instance, we can choose to color green the edge that we are currently
considering. If this edge will be included in the minimum spanning tree, then
we will color it blue, and otherwise we will color it red . Endpoints of blue
edges are colored blue, so that a forest of blue trees is visualized throughout
the execution of the algorithm. This blue forest will converge to a minimum
spanning tree. The resulting algorithm is proposed as a method of a container
object, i.e., an MST class, and the public interface of this object will report
the services (methods) that can be requested by the end-user. One snapshot
of the animation is contained in Figure 2.5.
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Fig. 2.5. Snapshot of the animation of Kruskal with CATAI: edges (2,5), (0,5),
(4,0), (6,7), (4,3) and (1,7) have been examined and colored blue together with
their endpoints, edge (5,3) has been colored red, and the edge (3,8) is currently
being examined and colored green. The state of the partition is shown to the right:
we have grown two blue trees (one containing vertices 0,2,3,4,5 and the other
containing vertices 1,6,7 ). Vertices 8 and 9 are still in singleton trees

2.5 Conclusions and Further Directions

In this paper we have addressed the role of visualization in algorithm en-
gineering, and we have surveyed the main approaches and existing tools.
Furthermore, we have discussed difficulties and relevant examples where vi-
sualization systems have helped developers gain insight about algorithms,
test implementation weaknesses, and tune suitable heuristics for improving
the practical performance of algorithmic codes.
We believe that this can have a high impact in the way we design, debug,

engineer, and teach algorithms. Yet, it seems that its potential has not been
fully delivered. Citing verbatim from the foreword of [2.44] by Jim Foley:
“My only disappointment with the field is that software visualization has not
yet had a major impact on the way we teach algorithms and programming
or the way in which we debug our programs and systems. While I continue
to believe in the promise and potential of software visualization, it is at the
same time the case that software visualization has not yet had the impact
that many have predicted and hoped for.”
There are many challenges that the area of algorithm animation is cur-

rently facing. First of all, the real power of an algorithm animation system
should be in the hands of the final user, possibly inexperienced, rather than
of a professional programmer or of the developer of the tool. For instance,
instructors may greatly benefit from fast and easy methods for tailoring ani-
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mations to their specific educational needs, while they might be discouraged
from using systems that are difficult to install or heavily dependent on partic-
ular software/hardware platforms. In addition to being easy to use, a software
visualization tool should be able to animate significantly complex algorith-
mic codes without requiring a lot of effort. This seems particularly important
for future development of visual debuggers. Finally, visualizing the execution
of algorithms on large data sets seems worthy of further investigation. Cur-
rently, even systems designed for large information spaces often lack advanced
navigation techniques and methods to alleviate the screen bottleneck, such
as changes of resolution and scale, selectivity, and elision of information.
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ninen. Animation of user algorithms on the web. In Proceedings of the 13th
IEEE International Symposium on Visual Languages (VL’97), pages 360–367,
1997.

2.25 M. Heath and J. Etheridge. Visualizing the performance of parallel programs.
IEEE Software, 8(5):23–39, 1991.

2.26 R. R. Henry, K. M. Whaley, and B. Forstall. The University of Washington
Program Illustrator. In Proceedings of the ACM SIGPLAN’90 Conference on
Programming Language Design and Implementation, pages 223–233, 1990.

2.27 C. A. Hipke and S. Schuierer. VEGA: a user centered approach to the dis-
tributed visualization of geometric algorithms. In Proceedings of the 7th Inter-
national Conference in Central Europe on Computer Graphics, Visualization
and Interactive Digital Media (WSCG’99), pages 110–117, 1999.

2.28 T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Information Processing Letters, 31(1):7–15, April 1989.

2.29 K. Knowlton. Bell Telephone Laboratories Low-Level Linked List Language.
16-minute black and white film, Murray Hill, N.J., 1966.

2.30 J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the Amererican Mathematical Society, 7:48–
50, 1956.



50 Camil Demetrescu et al.

2.31 S. P. Lahtinen, E. Sutinen, and J. Tarhio. Automated animation of algorithms
with Eliot. Journal of Visual Languages and Computing, 9:337–349, 1998.

2.32 H. Lieberman and C. Fry. ZStep95: a reversible, animated source code stepper.
In [2.44], pages 277–292.

2.33 A. Malony and D. Reed. Visualizing parallel computer system performance. In
M. Simmons, R. Koskela, and I. Bucher, editors, Instrumentation for Future
Parallel Computing Systems, pages 59–90. ACM Press, New York, 1989.
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Summary.

The purposes of this paper are two:
(1) to give an exposition of the main ideas of parameterized complexity,
and
(2) to discuss the connections of parameterized complexity to the system-
atic design of heuristics and approximation algorithms.

3.1 Introduction

Research in the parameterized framework of complexity analysis, and on
the corresponding toolkit of algorithm design methods has been expanding
rapidly in recent years. This has led to a flurry of recent surveys, all of which
are good sources of introductory material [3.46, 3.42, 3.22, 3.24, 3.3, 3.32,
3.33]. One could also turn to the monograph [3.21]. Experience with im-
plementations of FPT algorithms is described in [3.34, 3.49, 3.3]. In several
cases, these implementations now provide the best available “heuristic” al-
gorithms for general well-known NP-hard problems. More importantly, the
theory seems to provide some useful mathematical systematization of much
existing practice in heuristics and practical computing. Computing practi-
tioners have naturally exploited limited structural parameter ranges of the
problem inputs they have been faced with, or limited parameter ranges of
the solutions they have sought.
The first part of this survey summarizes the main ideas of parameterized

complexity and presents a broad perspective on the program. The second part
is concerned with connections to heuristics and practical computing strate-
gies, and to approximation algorithms. Thus Section 3.2 gives the overview
and main definitions. Section 3.3 explores the natural relationship of fixed-
parameter tractability to the design of practical algorithms and gives several
examples showing the apparently widespread situation that many industrial
strength heuristics currently in use are in fact FPT algorithms for natural
parameters, previously uncharted as such. Section 3.4 describes how param-
eterization according to the goodness of approximation (k = 1/ε for approx-
imations to within a factor of 1 + ε of optimal) provides a vital critical tool
for evaluating the practical significance of recent work on polynomial-time
approximation schemes. Section 3.5 explores how FPT algorithm design is

c© Springer-Verlag Berlin Heidelberg 2002
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naturally intertwined with polynomial-time approximation algorithms and
pre-processing based heuristics.

3.2 Parameterized Complexity in a Nutshell

The main ideas of parameterized complexity are organized here into two
discussions:
• The basic empirical motivation.
• The perspective provided by forms of the Halting Problem.

3.2.1 Empirical Motivation:
Two Forms of Fixed-Parameter Complexity

Most natural computational problems are defined on input consisting of var-
ious information, for example, many graph problems are defined as having
input consisting of a graph G = (V,E) and a positive integer k. Consider the
following well-known problems:
Vertex Cover

Input: A graph G = (V,E) and a positive integer k.
Question: Does G have a vertex cover of size at most k? (A vertex cover is a
set of vertices V ′ ⊆ V such that for every edge uv ∈ E, u ∈ V ′ or v ∈ V ′ (or
both).)
Dominating Set

Input: A graph G = (V,E) and a positive integer k.
Question: Does G have a dominating set of size at most k? (A dominating
set is a set of vertices V ′ ⊆ V such that ∀u ∈ V : u ∈ N [v] for some v ∈ V ′.)
Although both problems are NP-complete, the input parameter k con-

tributes to the complexity of these two problems in two qualitatively different
ways.

1. After many rounds of improvement involving a variety of ideas, starting
from a simple O(2kn) algorithm, the best known algorithm for Vertex

Cover now runs in time O(1.271k+kn) [3.17]. This is implemented and
practical for n of unlimited size and k up to around 400 [3.34, 3.49, 3.19].

2. The best known algorithm for Dominating Set is still just the brute
force algorithm of trying all k-subsets. For a graph on n vertices this
approach has a running time of O(nk+1).

Table 3.2.1 shows the contrast between these two kinds of complexity.
In order to formalize the difference between Vertex Cover and Domi-

nating Set we make the following basic definitions.

Definition 3.2.1. A parameterized language L is a subset L ⊆ Σ∗ ×Σ∗. If
L is a parameterized language and (x, k) ∈ L then we will refer to x as the
main part, and refer to k as the parameter.
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Table 3.1. The ratio nk+1

2kn
for various values of n and k

n = 50 n = 100 n = 150
k = 2 625 2,500 5,625
k = 3 15,625 125,000 421,875
k = 5 390,625 6,250,000 31,640,625
k = 10 1.9× 1012 9.8× 1014 3.7 × 1016

k = 20 1.8× 1026 9.5× 1031 2.1 × 1035

A parameter may be non-numerical, and it can also represent an aggregate
of various parts or structural properties of the input.

Definition 3.2.2. A parameterized language L is multiplicatively fixed-
parameter tractable if it can be determined in time f(k)q(n) whether (x, k) ∈
L, where |x| = n, q(n) is a polynomial in n, and f is a function (unrestricted).

Definition 3.2.3. A parameterized language L is additively fixed-parameter
tractable if it can be determined in time f(k)+q(n) whether (x, k) ∈ L, where
|x| = n, q(n) is a polynomial in n, and f is a function (unrestricted).

As an exercise, the reader might wish to show that a parameterized
language is additively fixed-parameter tractable if and only if it is mul-
tiplicatively fixed-parameter tractable. This emphasizes how cleanly fixed-
parameter tractability isolates the computational difficulty in the complexity
contribution of the parameter.
There are many ways that parameters arise naturally, for example:

• The size of a database query. Normally the size of the database is huge,
but frequently queries are small. If n is the size of a relational database, and
k is the size of the query, then answering the query (Model Checking)
can be solved trivially in time O(nk). It is known that this problem is un-
likely to be FPT [3.23, 3.44] because it is hard for W [1] (a form of negative
evidence explained in Section 3.2.2). However, if the parameter is the size
of the query and the treewidth of the database, then the problem is fixed-
parameter tractable. It appears that many databases encountered in practice
do have bounded treewidth, so this quite nontrivial FPT result has significant
potential to be useful [3.33].
• The nesting depth of a logical expression. ML compilers work reasonably
well. One of the problems the compiler must solve is the checking of the
compatibility of type declarations. This problem is complete for deterministic
exponential time [3.35], so the situation appears dire from the standpoint
of complexity theory. The implementations work well in practice, using an
algorithm that previously would have been called a heuristic because — we
can now say — the ML Type Checking problem is solved by an FPT
algorithm with a running time of O(2kn), where n is the size of the program



54 Michael R. Fellows

and k is the maximum nesting depth of the type declarations [3.39]. Since
normally k ≤ 6, the algorithm is clearly practical.
• The number of species in an evolutionary tree. Frequently this parameter is
in a range of k ≤ 50. The PHYLIP computational biology server includes an
algorithm which solves the Steiner Problem in Hypercubes in order to
compute possible evolutionary trees based on (binary) character information.
The exponential heuristic algorithm that is used is in fact an FPT algorithm
when the parameter is the number of species [3.24].
• The number of processors in a practical parallel processing system. This
is frequently in the range of k ≤ 64. Is there a practical and interesting
theory of parallel FPT? For a recent paper that explores practical parallel
implementations of FPT algorithms see [3.19]. (Coarse-grained parallel im-
plementations of FPT algorithms for Vertex Cover are accessible on an
algorithmic server at the University of Carleton website.)
• The number of variables or clauses in a logical formula, or the number of
steps in a deductive procedure. Some initial studies of applications of param-
eterized complexity to logic programming and artificial intelligence have re-
cently appeared [3.50, 3.30]. Much remains unexplored. Determining whether
at least k clauses of a CNF formula F are satisfiable is FPT with a run-
ning time of O(|F | + 1.381kk2) [3.8]. Since at least half of the m clauses of
F can always be satisfied, a more natural parameterization is to ask if at
least m/2 + k clauses can be satisfied — this is FPT with a running time
of O(|F | + 6.92kk2) [3.8]. Implementations indicate that these algorithms
are quite practical [3.31], with the kernelization transformations of the FPT
algorithms having particular practical value in decreasing the size of the sub-
sequent exponential search trees.
• The number of steps for a motion planning problem. Where the description
of the terrain has size n (which therefore bounds the number of movement
options at each step), we can solve this problem in time O(nk+1) trivially. Are
there significant classes of motion planning problems that are fixed-parameter
tractable? Exploration of this topic has hardly begun [3.14].
• The number of moves in a game, or the number of steps in a planning
problem. While most game problems are PSPACE-complete classically, it is
known that some are FPT and others are likely not to be FPT (because they
are hard forW [1]), when parameterized by the number of moves of a winning
strategy [3.1]. The size n of the input game description usually governs the
number of possible moves at any step, so there is a trivial O(nk) algorithm
that just examines the k-step game trees exhaustively. This is potentially
a very fruitful area, since games are used to model many different kinds of
situations.
• The number of facilities to be located. Determining whether a planar graph
has a dominating set of size at most k is fixed-parameter tractable by an
algorithm with a running time of O(8kn) based on kernelization and search
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trees. By different methods, an FPT running time of O(336
√
k)n can also be

proved. This does not appear to be practical on the basis of this parameter
function f(k), but the algorithm has been implemented and appears to be
practical for k up to 500 for classes of randomly generated tests. This seems
to be the best available algorithm for Planar Dominating Set.
• A “dual” parameter. A graph has an independent set of size k if and only
if it has a vertex cover of size n−k. Many problems have such a natural dual
form and it is “almost” a general rule, first noted by Raman, that parametric
duals of NP-hard problems have complementary parameterized complexity
(one is FPT, and the other is W [1]-hard) [3.38, 3.6]. For example, n − k
Dominating Set is FPT, as is n − k Graph Coloring. Solving a hard
problem by parameterizing from “the other end” appears to be an important
and general algorithmic strategy. The best available algorithm forMaximum

Independent Set is to compute a Vertex Cover by the very good FPT
algorithms for this problem, and take the complement.
• An unrelated parameter. The input to a problem might come with “extra
information” because of the way the input arises. For example, we might be
presented with an input graph G together with a k-vertex dominating set in
G, and be required to compute an optimal bandwidth layout. Whether this
problem is FPT is open. Problems of this sort have recently begun to receive
attention [3.11].
• The amount of “dirt” in the input or output for a problem. In theMaximum

Agreement Subtree (MAST) problem we are presented with a collection
of evolutionary trees trees for a set X of species. These might be obtained by
studying different gene families, for example. Because of errors in the data,
the trees might not be isomorphic, and the problem is to compute the largest
possible subtree on which they do agree. Parameterized by the number of
species that need to be deleted to achieve agreement, the MAST problem is
FPT by an algorithm having a running time of O(2.27k+ rn3) where r is the
number of trees and n is the number of species [3.43].
• The “robustness” of a solution to a problem, or the distance to a solution.
For example, given a solution of the Minimum Spanning Tree problem in
an edge-weighted graph, we can ask if the cost of the solution is robust under
all increases in the edge costs, where the parameter is the total amount of
cost increases.
• The distance to an improved solution. Local search is a mainstay of heuristic
algorithm design. The basic idea is that one maintains a current solution, and
iterates the process of moving to a neighboring “better” solution. A neighbor-
ing solution is usually defined as one that is a single step away according to
some small edit operation between solutions. The following problem is com-
pletely general for these situations, and could potentially provide a valuable
subroutine for “speeding up” local search:
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k-Speed Up for Local Search

Input: A solution S, k.
Parameter: k
Output: The best solution S′ that is within k edit operations of S.
Is it FPT to explore the k-change neighborhood for TSP?

• The goodness of an approximation. If we consider the problem of producing
solutions whose value is within a factor of (1 + ε) of optimal, then we are
immediately confronted with a natural parameter k = 1/ε. Many of the
recent PTAS results for various problems have running times with 1/ε in the
exponent of the polynomial. Since polynomial exponents larger than 3 are
not practical, this is a crucial parameter to consider. The reader will find
more about this in Section 3.4.
It is obvious that the practical world is full of concrete problems governed

by parameters of all kinds that are bounded in small or moderate ranges.
If we can design algorithms with running times like 2kn for these problems,
then we may have something really useful.
The following definition provides us with a place to put all those problems

that are “solvable in polynomial time for fixed k” without making our central
distinction about whether this “fixed k” is ending up in the exponent or not.

Definition 3.2.4. A parameterized language L belongs to the class XP
(slicewise P ) if it can be determined in time f(k)ng(k) whether (x, k) ∈ L,
where |x| = n, with f and g being unrestricted functions.

Is it possible that FPT = XP? This is one of the few structural questions
concerning parameterized complexity that currently has an answer [3.21].

Theorem 3.2.1. FPT is a proper subset of XP.

3.2.2 The Halting Problem: A Central Reference Point

The main investigations of computability and efficient computability are tied
to three basic forms of the Halting Problem.

1. The Halting Problem

Input: A Turing machine M .
Question: If M is started on an empty input tape, will it ever halt?

2. The Polynomial-Time Halting Problem for Nondeterministic

Turing Machines

Input: A nondeterministic Turing machine M .
Question: Is it possible for M to reach a halting state in n steps, where
n is the length of the description of M?

3. The k-Step Halting Problem for Nondeterministic Turing

Machines

Input: A nondeterministic Turing machine M and a positive integer k.
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(The number of transitions that might be made at any step of the com-
putation is unbounded, and the alphabet size is also unrestricted.)
Parameter: k
Question: Is it possible for M to reach a halting state in at most k steps?

The first form of the Halting Problem is useful for studying the ques-
tion:

“Is there ANY algorithm for my problem?”

The second form of the Halting Problem has proved useful for nearly
30 years in addressing the question:

“Is there an algorithm for my problem ... like the ones for
Sorting and Matrix Multiplication?”

The second form of the Halting Problem is trivially NP-complete, and
essentially defines the complexity class NP. For a concrete example of why it
is trivially NP-complete, consider the 3-Coloring problem for graphs, and
notice how easily it reduces to the P -Time NDTM Halting Problem.
Given a graph G for which 3-colorability is to be determined, we just create
the following nondeterministic algorithm:
Phase 1. (There are n lines of code here if G has n vertices.)
(1.1) Color vertex 1 one of the three colors nondeterministically.
(1.2) Color vertex 2 one of the three colors nondeterministically.
...
(1.n) Color vertex n one of the three colors nondeterministically.
Phase 2. Check to see if the coloring is proper and if so halt. Otherwise go
into an infinite loop.
It is easy to see that the above nondeterministic algorithm has the possi-

bility of halting in m steps (for a suitably padded Turing machine description
of size m) if and only if the graph G admits a 3-coloring. Reducing any other
problem Π ∈ NP to the P -Time NDTM Halting Problem is no more
difficult than taking an argument that the problem Π belongs to NP and
modifying it slightly to be a reduction to this form of theHalting Problem.
It is in this sense that the P -Time NDTM Halting Problem is essentially
the defining problem for NP .
The conjecture that P �= NP is intuitively well-founded. The second form

of the Halting Problem would seem to require exponential time because
there is little we can do to analyze unstructured nondeterminism other than
to exhaustively explore the possible computation paths. Apart from accu-
mulated habit, this concrete intuition is the fundamental reference point for
classical complexity theory.
When the question is:

“Is there an algorithm for my problem ... like the one for
Vertex Cover?”
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the third form of the Halting Problem anchors the discussion. This ques-
tion will increasingly and inevitably be asked for any NP-hard problem for
which small parameter ranges of input or output aspects or structure are
important in applications. It is reasonable to assert that there are few appli-
cations of computing where this will not be true.
The third natural form of the Halting Problem is trivially solvable in

time O(nk) by exploring the n-branching, depth-k tree of possible compu-
tation paths exhaustively. Our intuition here is essentially the same as for
the second form of the Halting Problem — that this cannot be improved.
The third form of the Halting Problem defines the parameterized complexity
class W [1]. Thus W [1] is strongly analogous to NP, and the conjecture that
FPT �= W [1] stands on much the same intuitive grounds as the conjecture
that P �= NP . The appropriate notion of problem reduction is as follows.

Definition 3.2.5. A parametric transformation from a parameterized lan-
guage L to a parameterized language L′ is an algorithm that computes from
input consisting of a pair (x, k), a pair (x′, k′) such that:

1. (x, k) ∈ L if and only if (x′, k′) ∈ L′,
2. k′ = g(k) is a function only of k, and
3. the computation is accomplished in time f(k)nα, where n = |x|, α is a

constant independent of both n and k, and f is an arbitrary function.

Hardness for W [1] is the working criterion that a parameterized problem
is unlikely to be FPT. The k-Clique problem is W [1]-complete [3.21], and
often provides a convenient starting point for W [1]-hardness demonstrations.

3.3 Connections to Practical Computing and Heuristics

What is the working context of practical computing? A thought-provoking
account of this subject has been given by Weihe [3.52].
A crucial question is:What are the actual inputs that practical computing

implementations have to deal with?
In considering “war stories” of practical computing, such as reported by

Weihe, we are quickly forced to give up the idea that real inputs (for most
problems) fill up the definitional spaces of our mathematical modeling. The
general rule also is that real inputs are not random, but rather have lots of
hidden structure that may not have a familiar name or conceptualization.
Example 1: Weihe’s Train Problem
Weihe describes a problem concerning the train systems of Europe [3.51].

Consider a bipartite graph G = (V,E) where V is bipartitioned into two sets
S (stations) and T (trains), and where an edge represents that a train t stops
at a station s. The relevant graphs are huge, on the order of 10,000 vertices.
The problem is to compute a minimum number of stations S′ ⊆ S such that
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every train stops at a station in S′. It is easy to see that this is a special case
of the Hitting Set problem, and is therefore NP-complete. Moreover, it is
alsoW [1]-hard [3.21], so the straightforward application of the parameterized
complexity program seems to fail as well.
However, the following two reduction rules can be applied to simplify

(pre-process) the input to the problem. In describing these rules, let N(s)
denote the set of trains that stop at station s, and let N(t) denote the set of
stations at which the train t stops.

1. If N(s) ⊆ N(s′) then delete s.
2. If N(t) ⊆ N(t′) then delete t′.

Applications of these reduction rules cascade, preserving at each step enough
information to obtain an optimal solution. Weihe found that, remarkably,
these two simple reduction rules were strong enough to “digest” the original,
huge input graph into a problem kernel consisting of disjoint components of
size at most 50 — small enough to allow the problem to be solved optimally
by brute force.
Note that in the same breath, we have here a polynomial-time constant

factor approximation algorithm, getting us a solution within a factor of 50
of optimal in, say, O(n2) time, just by taking all the vertices in the kernel
components.
Weihe’s example displays a universally applicable coping strategy for

hard problems: smart pre-processing. It would be silly not to undertake pre-
processing for an NP-hard problem, even if the next phase is simulated an-
nealing, neural nets, roaming ants, genetic, memetic or the kitchen sink. In
a precise sense, this is exactly what fixed-parameter tractability is all about.
The following is an equivalent definition of FPT [3.24].

Definition 3.3.1. A parameterized language L is kernelizable if there is a
parametric transformation of L to itself, and a function h (unrestricted) that
satisfies:

1. the running time of the transformation of (x, k) into (x′, k′), where |x| =
n, is bounded by a polynomial q(n, k) (so that in fact this is a polynomial-
time transformation of L to itself, considered classically, although with
the additional structure of a parametric reduction),

2. k′ ≤ k, and
3. |x′| ≤ h(k), where h is an arbitrary function.

Lemma 3.3.1. A parameterized language L is fixed-parameter tractable if
and only if it is kernelizable.

Weihe’s example looks like an FPT kernelization, but what is the param-
eter? As a thought experiment, let us define K(G) for a bipartite graph G to
be the maximum size of a component of G when G is reduced according to
the two simple reduction rules above. Then it is clear, although it might seem
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artificial, that Hitting Set can be solved optimally in FPT time for the pa-
rameter K(G). We can add this new tractable parameterization of Hitting

Set to the already known fact that Hitting Set can be solved optimally in
FPT-time for the parameter treewidth. (It is not hard to show that treewidth
and K(G) are unrelated.)
As an illustration of the power of pre-processing, the reader will easily

discover a reduction rule for Vertex Cover that eliminates all vertices of
degree 1. Not so easy is to show that all vertices of degree at most 3 can be
eliminated, leaving as a kernel a graph of minimum degree four. This pre-
processing routine yields the best known heuristic algorithm for the general
Vertex Cover problem (i.e., no assumption that k is small), and also plays
a central role in the best known FPT algorithm for Vertex Cover [3.17].
We see in Weihe’s train problem an example of a problem where the natu-

ral input distribution (graphs of train systems) occupies a limited parameter
range, but the relevant parameter is not at all obvious. The inputs to one
computational process (e.g., Weihe’s train problem) are often the outputs
of another process (the building and operating of train systems) that also
are governed by computational and other feasibility constraints. We might
reasonably adopt the view that the real world of computing involves a vast
commerce in hidden structural parameters.
Weihe’s algorithm is a beautiful example of an FPT algorithm that ex-

ploits a significant hidden structural parameter of the graphs that arise in
analyzing train systems, and follows a “classic” pattern in FPT algorithm
design: (1) a P -time kernelization, pre-processing phase, followed by (2) an
exponential search phase (exponential in the size of the kernel).
Example 2: Heuristics for Breakpoint Phylogeny
It is assumed that there is a fixed set G of genes shared by all the species

for which an evolutionary tree is to be constructed. With each species S
is associated a circular ordering of G where each gene occurs signed, either
positively or negatively, according to the transcription direction for the gene
(and each gene occurs in the circular ordering for the species exactly once).
Given two such circular orderings for species S and S′, a breakpoint is an
ordered pair of genes (g, g′) such that g and g′ occur consecutively in S
in that order, but neither (g, g′) nor (−g′,−g) occur consecutively in that
order in S′. The breakpoint distance d(S, S′) between S and S′ is the number
of breakpoints between S and S′. The breakpoint score of a tree labeled at
each node with a signed circular ordering of G is the sum of the breakpoint
distances along the edges of the tree.
The Breakpoint Phylogeny problem takes as input a set of signed

circular orderings S1, ..., Sn and seeks to find a tree T with n leaves such
that:

1. The leaves are labeled 1:1 with the Si.
2. The internal vertices are labeled with signed circular orderings of G that
represent hypothesized ancestral species.

3. The breakpoint score of T is minimized.
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The problem is apparently quite difficult; it is NP-complete, even for the
seemingly severe restriction to n = 3 — only three species! — known as the
Beakpoint Median Problem [3.45]. A substantial speedup is reported by
Moret, et al. [3.40], for a heuristic based on the following kernelization rule.

– If two genes always occur consecutively (either as (g, g′) or as (−g′,−g))
in the circular ordering of each of the species under consideration, then
“fuse” g and g′ into a single replacement metagene. (Thus the size of G,
and the length of the circular orderings, is effectively decreased by one.)

The authors of [3.40] report that this single reduction rule yields a speedup
by a factor of 6 over the implementation of Blanchette, Bourque and Sankoff
[3.10].
This first phase of kernelization on a Campanulaceae data set of 13 species

with an initial set of genes G of size |G| = 150 was found to simplify the input
to a set G′ of metagenes of size |G′| = 35. Following this initial kernelization,
the second phase considers a sampling of all (2n− 5)!! leaf-labelled trees on
n leaves, and for each of these uses a separate heuristic to explore possible
internal labellings.
This heuristic was not developed as an FPT algorithm, yet it is one, for

a realistic natural parameter — the total cost of the tree.

Theorem 3.3.1. The Breakpoint Median Problem is fixed-parameter
tractable for the parameter k taken to be the total cost of the tree.

Proof. If the tree has total cost k then it has at most k internal edges (since
each contributes some cost to the total) and therefore at most k − 1 leaves
and at most k − 2 internal vertices. It is also not hard to see that after
kernelization, the number of genes in each sequence is at most k. Thus, the
cost of exhaustively checking each of the (2k−7)!! leaf-labelled trees on k−1
leaves, and exhaustively trying all possible assignments of the k! possible gene
orderings (of the kernelized instance) to the internal vertices of the trees —
all of this can be accomplished in time bounded by a function of k. ��
The running time of the kernelization + brute force FPT algorithm de-

scribed above would not seem conducive to practical implementation, since
the implicit parameter function f(k) is around (k!)k, which exceeds 1020

when k = 4. What Moret et al. have implemented is essentially a heuristic
adaptation of this FPT algorithm, based on a sampling of the possible trees
and a sampling of the possible internal vertex assignments.
General heuristic design strategies that correspond to some of the main

FPT methods are displayed in Table 3.3. The essential theme is to obtain
heuristic methods from FPT algorithms by strategies for deflating the para-
metric costs by truncating or sampling the search trees or obstruction sets,
etc.
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Table 3.2. Some FPT methods and heuristic strategies

FPT Technique Heuristic Design Strategy
Reduction to a Problem Kernel A useful pre-processing subroutine

for any heuristic.
Search Tree Explore only an affordable, heuristically

chosen subtree.
Well-Quasiordering Use a sample of the obstruction set.

Color-Coding Use a sample of the hash functions.

The following problem is also fixed-parameter tractable.

The Steiner Problem for Generalized Hypercubes

Instance: The input the problem consists of the following pieces of informa-
tion:

1. A set of complete weighted digraphs Di for i = 1, ..., n, each described
by a set of vertices Vi and a function

ti : Vi × Vi → IN

(We refer to the vertices of Di as character states, to Di as the character
state digraph, and to ti as the state transition cost function for the ith
character.)

2. A positive integer k1 such that |Vi| ≤ k1 for i = 1, ..., n.
3. A set X of k2 length n vectors xj for j = 1, ..., k2, where the ith compo-
nent xj [i] ∈ Vi. That is, for j = 1, ..., k2,

xj ∈ Ω =
n∏
i=1

Vi

4. A positive integer M .

Parameter: (k1, k2)
Question: Is there a rooted tree T = (V,E) and an assignment to each vertex
v ∈ V of T of an element yv ∈ Ω, such that:

– X is assigned one-to-one to the set of leaves of T ,
– The sum over all parent-child edges uv of T , of the total transition cost for
the edge, defined to be

n∑
i=1

ti(yu[i], yv[i])

is bounded by M?

Theorem 3.3.2. The Steiner Problem for Generalized Hypercubes

is fixed-parameter tractable.
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Proof. We define an equivalence relation i ∼ j on the index space {1, ..., n}
that allows us to combine Di and Dj and obtain an equivalent smaller in-
stance. In order to define ∼ we first define some other equivalences.
Fix m ≤ k1 and let l be an integer edge labeling of the complete digraph

Km onm vertices. Let v1, ..., vm denote the vertices of Km. Let T be a rooted
tree with k2 leaves labeled from v1, ..., vm. Define the cost of T with respect
to l to be the minimum, over all possible labelings s of the internal vertices of
T with labels taken from {v1, ..., vm}, of the sum over the parent-child edges
of T of the transition costs given by l on the labels, and write this as

cost(T, l) = mins{cost(T, s, l)}

If l and l′ are integer edge labelings of Km and T is as above, then define
l ∼T l′ if and only if ∃s such that

cost(T, l) = cost(T, s, l) = cost(T, s, l′) = cost(T, l′)

and define l ∼ l′ if and only l ∼T l′ for all such trees T .
For i, i′ ∈ {1, ..., n} define i ∼ i′ if and only if:

1. |Vi| = |Vi′ | = m so that the only difference between Di and Di′ is in their
arc-labelings l and l′, and

2. l ∼ l′ .

The kernelization algorithm can now be described quite simply. Let I be
an instance of the problem. If there are indices i �= i′ for which i ∼ i′, then
modify I by combining these into one character state digraph with the state
transition cost function given by the arc-labeling given l+ l′, where these are
the cost functions for Di and Di′ , respectively. Let I ′ denote the modified
instance.
The correctness of the reduction to the smaller instance is obvious. We

need only to note that the equivalence i ∼ i′ can be determined in time
bounded by a function of the parameter and that number of equivalence
classes is similarly bounded by a function of the parameter. ��
The parameter function for this simple kernelization-based FPT algorithm

is nearly as discouraging as the one for Breakpoint Phylogeny. We re-
mark that most of the expense is in determining when two transition digraph
indices i and i′ are equivalent by testing them on all possible trees with k2

leaves. This suggests a heuristic algorithm that combines indices when they
fail to be distinguished by a (much smaller) random sample of trees and
leaf-labelings.
A previous survey described this FPT result in the context of an encounter

with an evolutionary biologist who reported earlier, rather fruitless interac-
tions with theoretical computer scientists who proved that his problems were
NP-complete and “went away”. We claimed that we were different! and that
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we had a result on one of his computational problems (The Steiner Prob-

lem for Hypercubes) that might be of interest. After we described the
FPT algorithm he said simply [3.27]:

“That’s what I already do!”

Those who design FPT algorithms should keep in mind that their f(k)’s
are only the best they are able to prove concerning a worst-case analysis, and
that their algorithms may in fact be much more useful in practice than the
pessimistic analysis indicates, on realistic inputs, particularly if any nontrivial
kernelization is involved. Furthermore, large parametric costs can also be
systematically mitigated in heuristic adaptations of FPT algorithms. Real
usefulness can only be settled by implementation and experimentation.

3.4 A Critical Tool
for Evaluating Approximation Algorithms

The emphasis in the substantial new industry of research on polynomial-time
approximation algorithms is concentrated on the notions of:

– Polynomial-time constant factor approximation algorithms.
– Polynomial-time approximation schemes.

The connections between the parameterized complexity and polynomial-time
approximation programs are deep and developing rapidly. Approximation im-
mediately concerns a fundamental parameter: k = 1/ε, the goodness of the
approximation.
To illustrate the issue, consider the following more-or-less random sample

of recent PTAS results:

– The PTAS for the Euclidean TSP due to Arora [3.4] has a running time
of around O(n3000/ε). Thus for a 20% error, we have a “polynomial-time”
algorithm that runs in time O(n15000).

– The PTAS for the Multiple Knapsack problem due to Chekuri and
Khanna [3.16] has a running time of O(n12(log(1/ε)/ε8)). Thus for a 20%
error we have a “polynomial-time” algorithm that runs in time O(n9375000).

– The PTAS for the Minimum Cost Routing Spanning Tree problem
due to Wu, Lancia, Banfna, Chao, Ravi and Tang [3.53] has a running time
of O(n2�2/ε�−2). For a 20% error, we thus have a “polynomial” running time
of O(n18).

– The PTAS for theUnbounded Batch Scheduling problem due to Deng,
Feng, Zhang and Zhu [3.20] has a running time ofO(n5 log1+ε(1+(1/ε))). Thus
for a 20% error we have an O(n50) polynomial-time algorithm.

– The PTAS for Two-Vehicle Scheduling on a Path due to Karuno
and Nagamochi [3.36] has a running time of O(n8(1+(2/ε))); thus we have
O(n88) time for a 20% error.
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– The PTAS for the Maximum Subforest Problem due to Shamir and
Tsur [3.48] has a running time of O(n221/ε−1). For a 20% error we thus
have a “polynomial” running time of O(n958267391).

– The PTAS for the Maximum Indendent Set problem on geometric
graphs due to Erlebach, Jansen and Seidel [3.25] has a running time of
O(n(4/π)(1/ε2+2)2(1/ε2+1)2). Thus for a 20% error we have a running time of
O(n532804).

– The PTAS for the Class-Constrained Packing Problem due to
Shachnai and Tamir [3.47] has a running time of O(n64/ε+(log(1/ε)/ε8)) (for
three colors). Thus for a 20% error (for three colors) we have a running
time of O(n1021570).

– The PTAS for the problem of Base Station Positioning in UMTS

Networks due to Galota, Glasser, Reith and Vollmer [3.28] has a running
time of O(n25/ε2), and thus we have O(n627) time for a 20% error.

– The PTAS for the General Multiprocessor Job Scheduling Prob-

lem due to Chen and Miranda [3.18] runs in time O(n(3mm!)(m/ε)+1
) for m

machines. Thus for 4 machines with a 20% error we have an algorithm that
runs in time O(n10000000000000000000000000000000000000000000000000000000000000 )
or so.

Since polynomial-time algorithms with exponent greater than three are
generally not very practical, the following question would seem to be impor-
tant.

Can we get the k = 1/ε out of the exponent?

The following definition captures the essential issue.

Definition 3.4.1. An optimization problem Π has an efficient P -time ap-
proximation scheme (EPTAS) if it can be approximated to a goodness of
(1 + ε) of optimal in time f(k)nc where c is a constant and k = 1/ε.

In 1997, Arora gave an EPTAS for the Euclidean TSP [3.5], but for
all of the other PTAS’s mentioned above, the possibility of such an improve-
ment remains open, and perhaps not much explored, particularly in terms of
potential W [1]-hardness.
The following easy but important connection between parameterized com-

plexity and approximation was first proved by Bazgan [3.9, 3.13].

Theorem 3.4.1. Suppose that Πopt is an optimization problem, and that
Πparam is the corresponding parameterized problem, where the parameter is
the value of an optimal solution. Then Πparam is fixed-parameter tractable if
Πopt has an efficient PTAS.

Applying Bazgan’s Theorem is not necessarily difficult — we will sketch
here a recent example. Khanna and Motwani introduced three planar logic
problems in an interesting effort to give a general explanation of PTAS-
approximability. Their suggestion is that “hidden planar structure” in the
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logic of an optimization problem is what allows PTASs to be developed [3.37].
They gave examples of optimization problems known to have PTASs, prob-
lems having nothing to do with graphs, that could nevertheless be reduced to
these planar logic problems. The PTASs for the planar logic problems thus
“explain” the PTASs for these other problems. Here is one of their three
general planar logic optimization problems.
Planar TMIN

Input: A collection of Boolean formulas in sum-of-products form, with all
literals positive, where the associated bipartite graph is planar (this graph
has a vertex for each formula and a vertex for each variable, and an edge
between two such vertices if the variable occurs in the formula).
Output: A truth assignment of minimum weight (i.e., a minimum number of
variables set to true) that satisfies all the formulas.
The following theorem is recent joint work with Cai, Juedes and Rosa-

mond [3.12].

Theorem 3.4.2. Planar TMIN is hard for W [1] and therefore does not have
an EPTAS unless FPT =W [1].

Proof. We show that Clique is parameterized reducible to Planar TMIN

with the parameter being the weight of a truth assignment. Since Clique is
W[1]-complete, it will follow that the parameterized form of Planar TMIN

is W[1]-hard.
To begin, let 〈G, k〉 be an instance of Clique. Assume that G has n

vertices. From G and k, we will construct a collection C of FOFs (sum-of-
products formulas) over f(k) blocks of n variables. C will contain at most
2f(k) FOFs and the incidence graph of C will be planar. Moreover, each
minterm in each FOF will contain at most 4 variables. The collection C is
constructed so that G has a clique of size k if and only if C has a weight f(k)
satisfying assignment with exactly one variable set to true in each block of n
variables. Here we have that f(k) = O(k4).
To maintain planarity in the incidence graph for C, we ensure that each

block of n variables appears in at most 2 FOFs. If this condition is maintained,
then we can draw each block of n variables as follows.

v1

v2

v3

vn

FOF FOF



3. Parameterized Complexity 67

We describe the construction in two stages. In the first stage, we use k
blocks of n variables and a collection C ′ of k(k− 1)/2+ k FOFs. In a weight
k satisfying assignment for C′, exactly one variable vi, j in each block of
variables bi = [vi,1, . . . , vi,n] will be set to true. We interpret this event as
“vertex j is the ith vertex in the clique of size k.” The k(k − 1)/2 + k FOFs

are described as follows. For each 1 ≤ i ≤ k, let fi be the FOF
n∨

j=1

vi,j . This

FOF ensures that at least one variable in bi is set to true. For each pair
1 ≤ i < j ≤ k, let fi,j be the FOF

∨
(u,v)∈E

vi,uvj,v. Each FOF fi,j ensures that

there is an edge in G between the ith vertex the clique and the jth vertex in
the clique.
It is straightforward to show that C′ = {f1, . . . , fk, f1,2, . . . , fk−1,k} has

a weight k satisfying assignment if and only if G has a clique of size k. To
see this, notice that any weight k satisfying assignment for C ′ must satisfy
exactly one variable in each block bi. Each first order formula fi,j ensures
that there is an edge between the ith vertex in the potential clique and the
jth vertex in the potential clique. Notice also that, since we assume that G
does not contain edges of the form (u, u), the FOF fi,j also ensures that the
ith vertex in the potential clique is not the jth vertex in the potential clique.
This completes the first stage.
The incidence graph for the collection C′ in the first stage is almost cer-

tainly not planar. In the second stage, we achieve planarity by removing
crossovers in incidence graph for C′. Here we use two types of widgets to re-
move crossovers while keeping the number of variables per minterm bounded
by four. The first widget Ak consists of k + k − 3 blocks of n variables and
k − 2 FOFs. This widget consists of k − 3 internal and k external blocks of
variables. Each external block ei = [ei,1, . . . , ei,n] of variables is connected to
exactly one FOF inside the widget. Each internal block ij = [ij,1, . . . , ej,n] is
connected to exactly two FOFs inside the widget. The k − 2 FOFs are given
as follows. The FOF fa,1 is

n∨
j=1

e1,je2,ji1,j . For each 2 ≤ l ≤ k − 3, the FOF

fa,l =
∨n

j=1 il−1,jel+1,jil,j. Finally, fa,k−2 =
n∨

j=1

ik−3,jek−1,jek,j . These k− 2
FOFs ensure that the settings of variables in each block is the same if there
is a weight 2k − 3 satisfying assignment to the 2k − 3 blocks of n variables.
The widget Ak can be drawn as follows.

fa;1 fa;2 fa;k�2

ik�3

e1 ek

i1 i2

e2 e3 ek�1

fa;k�3.........

.........

............

Since each internal block is connected to exactly two FOFs, the incidence
graph for this widget can be drawn on the plane without crossing any edges.
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The second widget removes crossover edges from the first stage of the
construction. In the first stage, crossovers can occur in the incidence graphs
because two FOFs may cross from one block to another. To eliminate this,
consider each edge i, j in Kk with i < j as a directed edge from i to j. In the
construction, we send a copy of block i to block j. At each crossover point
from the direction of block u = [u1, . . . , un] and v = [v1, . . . , vn], insert a
widget B that introduces two new blocks of n variables u1 = [u11 . . . u1n ] and

v1 = [v11 . . . v1n ] and a FOF fB =
n∨

j=1

n∨
l=1

uju1jvlv1l
. The FOF fB ensures

that u1 and v1 are copies of u and v. Moreover, notice that the incidence
graph for the widget B is also planar.
To complete the construction, we replace each of the original k blocks

of n variables from the first stage with a copy of the widget Ak−1. At each
crossover point in the graph, we introduce a copy of widgetB. Finally, for each
directed edge between blocks (i, j), we insert the original FOF fi,j between
the last widget B and the destination widget Ak−1. Since one of the new
blocks of variables created by the widget B is a copy of block i, the effect of
the FOF fi,j in this new collections is the same as before.
The following diagram shows the full construction when k = 5.

f1;2

f1;3

f1;4 f2;4

f3;4

f2;3

f1;5

f2;5

f3;5

f4;5

B

B

B

BB A4

A4A4

A4

A4

Since each the incidence graph of each widget in this drawing is planar, the
entire collection C of first order formulas has a planar incidence graph.
Now, if we assume that there are c(k) = O(k4) crossover points in stan-

dard drawing of Kk, then our collection has c(k) B widgets. Since each B
widget introduces two new blocks of n variables, this gives 2c(k) new blocks.
Since we have k Ak−1 widgets, each of which has 2(k − 1) − 3 = 2k − 5
blocks of n variables, this gives an additional k(2k − 5) blocks. So, in total,
our construction has f(k) = 2c(k) + 2k2 − 5k = O(k4) blocks of n variables.
Note also that there are g(k) = k(k − 1)/2 + k(k − 2) + c(k) = O(k4) FOFs
in the collection C.
As shown in our construction C has a weight f(k) satisfying assignment

(i.e., each block has exactly one variable set to true) if and only if the original



3. Parameterized Complexity 69

graph G has a clique of size k. Since the incidence graph of C is planar and
each minterm in each FOF contains at most four variables, it follows that
this construction is a parameterized reduction as claimed. ��
In a similar manner the other two planar logic problems defined by

Khanna and Motwani can be shown to be W [1]-hard. PTAS’s for these prob-
lems therefore can never be useful, since the goodness of the approximation
must be paid for in the exponent of the polynomial running time. A PTAS
result alone establishes that an approximation problem is in the parameter-
ized complexity class XP . By analogy, one would not reasonably claim any
practical significance for a demonstration that a problem just belongs to NP.
It would be interesting to sort out which problems with PTAS’s have any
hope of practical approximation, and for which such “good news” (see [3.7]
for a comprehensive survey) is chimerical.

3.5 The Extremal Connection: A General Method
Relating FPT, Polynomial-Time Approximation,
and Pre-Processing Based Heuristics

The toolkit for establishing fixed-parameter tractability includes a num-
ber of mathematically deep methods: well-quasi-ordering, color-coding, and
bounded treewidth — as well as the elementary methods of kernelization
and search trees. Some of these positive methods are very powerful at clas-
sifying problems as fixed-parameter tractable, but are far from any practical
significance (for example, methods based on well-quasiordering). For the pur-
poses of practical algorithm design, reduction to a problem kernel is probably
the single most important contribution to the systematic design of heuris-
tics. This is in some sense a comprehensive connection, since fixed-parameter
tractability is equivalent to kernelizability as shown by Lemma 3.3.1
There are several points to be noted about kernelization that lead to

important research directions:

(1) Kernelization rules are frequently surprising in character, laborious to
prove, and nontrivial to discover. Once found, they are small gems of
data reduction that remain permanently in the heuristic design file for
hard problems. No one concerned with any application of Hitting Set

on real data should henceforth neglect Weihe’s data reduction rules for
this problem. The kernelization for Vertex Cover to graphs of mini-
mum degree four, for another example, includes the following nontrivial
transformation [3.24]. Suppose G has a vertex x of degree three that has
three mutually nonadjacent neighbors a, b, c. Then G can be simplified
by: (1) deleting x, (2) adding edges from c to all the vertices in N(a), (3)
adding edges from a to all the vertices in N(b), (3) adding edges from b
to all the vertices in N(c), and (4) adding the edges ab and bc. Note that
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this transformation is not even symmetric! The resulting (smaller) graph
G′ has a vertex cover of size k if and only if G has a vertex cover of size k.
Moreover, an optimal or good approximate solution for G′ lifts construc-
tively to an optimal or good approximate solution for G. The research
direction this points to is to discover these gems of smart prepro-
cessing for all of the hard problems. There is absolutely nothing to
be lost in smart pre-processing, no matter what the subsequent phases of
the algorithm (even if the next phase is genetic algorithms or simulated
annealing).

(2) Kernelization rules cascade in ways that are surprising, unpredictable in
advance, and often quite powerful. Finding a rich set of reduction rules for
a hard problem may allow the synergistic cascading of the pre-processing
rules to “wrap around” hidden structural aspects of real input distribu-
tions. Weihe’s train problem provides an excellent example. According
to the experience of Alber, Gramm and Niedermeier with implementa-
tions of kernelization-based FPT algorithms [3.3], the effort to kernelize
is amply rewarded by the subsequently exponentially smaller search tree.
Similar results have also been reported by Moret et al. with respect to
the Breakpoint Phylogeny problem [3.40].

(3) Kernelization is an intrinsically robust algorithmic strategy. Frequently
we design algorithms for “pure” combinatorial problems that are not
quite like that in practice, because the modeling is only approximate,
the inputs are “dirty”, etc. For example, what becomes of our Vertex

Cover algorithm if a limited number of edges uv in the graph are special,
in that it is forbidden to include both u and v in the vertex cover? Because
they are local in character, the usual kernelization rules are easily adapted
to this situation.

(4) Kernelization rules normally preserve all of the information necessary
for optimal or approximate solutions. For example, Weihe’s kernelization
rules for the train problem (Hitting Set) transform the original instance
G into a problem kernel G′ that can be solved optimally, and the optimal
solution for G′ “lifts” to an optimal solution for G.

The importance of pre-processing in heuristic design is not a new idea.
Cheeseman et al. have previously pointed to its importance in the context
of artificial intelligence algorithms [3.15]. What parameterized complexity
contributes is a richer theoretical context for this basic element of prac-
tical algorithm design. Further research directions include potential meth-
ods for mechanizing the discovery and/or verification of reduction rules, and
data structures and implementation strategies for efficient kernelization pre-
processing.
Lemma 3.3.1 tells us that a parameterized problem is fixed-parameter

tractable if and only if there is a polynomial-time kernelization algorithm
transforming the input (x, k) into (x′, k′) where k′ ≤ k and |x′| ≤ g(k′) for
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some function g special to the problem. The basic schema is that reduction
rules are applied until an irreducible instance (x′, k′) is obtained. At this point
a Kernel Lemma is invoked to decide all those reduced instances x′ that are
larger than g(k′) for the kernel-bounding function g. For example, in the cases
of Vertex Cover and Planar Dominating Set, if a reduced graph G′

is larger than g(k′) then (G′, k′) is a no-instance. In the case of Max Leaf

Spanning Tree large reduced instances are automatically yes-instances. (It
is notable that for all three of these problems linear kernelization, g(k) =
O(k), has been established, in all cases nontrivially [3.17, 3.26, 3.2].)

How does one proceed to discover an adequate set of reduc-
tion rules, or elucidate (and prove) a bounding function g(k)
that insures for instances larger than this bound, that the
question can be answered directly?

The technique of coordinatized kernelization is aimed at these difficulties,
and we will illustrate it by example with the Max Leaf Spanning Tree

problem. Our objective is to prove:
The Kernel Lemma. If (G = (V,E), k) is a reduced instance of Max

Leaf Spanning Tree and G has more than g(k) vertices, then (G, k) is a
yes-instance.
We will prove the Kernel Lemma as a corollary to the following.

The Boundary Lemma. If G = (V,E) is a reduced instance of Max Leaf

Spanning Tree that is a yes-instance for k and a no-instance for k+1, then
G has at most h(k) vertices.
Let us first verify that the Kernel Lemma follows from the Boundary

Lemma. We will make the mild assumption that our functions g(k) and h(k)
are nondecreasing. Take g(k) = h(k). Suppose (G, k) is a counterexample to
the Kernel Lemma. Then G is reduced, and has more than h(k) vertices, but
is a no-instance, that is, G does not have a spanning tree with at least k
leaves. Let k′ < k be the maximum number of leaves in a spanning tree of
G. Then G is a yes-instance for k′ and a no-instance for k′ + 1. Since k′ < k
and h is non-decreasing, G has more than h(k′) vertices, but this contradicts
the Boundary Lemma.
The form of the Boundary Lemma ( ... which still needs to be proved, and

we still need to discover what we mean by “reduced”, and we also need to
identify the particular bounding function h ... ) is conducive to an extremal
theorem style of argument based on a list of inductive priorities. The proof is
sketched as follows.
Sketch Proof of the Boundary Lemma. The proof is by minimum coun-
terexample. If there is any counterexample, then we can take G to be one
that satisfies:

(1) G is reduced.
(2) G is connected and has more than h(k) vertices.
(3) G is a no-instance for k + 1.
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(4) G is a yes-instance for k, as witnessed by an t-rooted tree subgraph T of
G that has k leaves. (We do not assume that T is spanning. Note that if
T has k leaves then it can be extended to a spanning tree with at least
as many leaves.)

(5) G is a counterexample where T has a minimum possible number of ver-
tices.

(6) Among all of the G, T satisfying (1)–(5), T has a maximum possible
number of internal vertices that are adjacent to a leaf of T .

(7) Among all of the G, T satisfying (1)–(6), the quantity
∑

l∈L d(t, l) is
minimized, where L is the set of leaves of T and d(t, l) is the distance in
T to the “root” vertex t.

Then we argue for a contradiction.

Comment. The point of all this is to set up a framework for argument that
will allow us to see what reduction rules are needed, and what g(k) can be
achieved. In essence we are setting up a (possibly elaborate, in the spirit
of extremal graph theory) argument by minimum counterexample — and
using this as a discovery process for the FPT algorithm design. The witness
structure T of condition (4) gives us a way of “coordinatizing” the situation
— giving us some structure to work with in our inductive argument. How
this strucuture is used will become clear as we proceed.
We refer to the vertices of V − T as outsiders. The following structural

claims are easily established. The first five claims are enforced by condition
(3), that is, if any of these conditions did not hold, then we could extend T
to a tree T ′ having one more leaf.

Claim 1: No outsider is adjacent to an internal vertex of T .
Claim 2: No leaf of T can be adjacent to two outsiders.
Claim 3: No outsider has three or more outsider neighbors.
Claim 4: No outsider with 2 outsider neighbors is connected to a leaf of T .
Claim 5: The graph induced by the outsider vertices has no cycles.

It follows from Claims (1)–(5) that the subgraph induced by the outsiders
consists of a collection of paths, where the internal vertices of the paths
have degree two in G. Since we are ultimately attempting to bound the size
of G, this suggests (as a discovery process) the following reduction rule for
kernelization.

Kernelization Rule 1: If (G, k) has two adjacent vertices u and v of degree
two, then:

(Rule 1.1) If uv is a bridge, then contract uv to obtain G′ and let k′ = k.
(Rule 1.2) If uv is not a bridge, then delete the edge uv to obtain G′ and let
k′ = k.

The soundness of this reduction rule is not completely obvious, although
not difficult. Having now partly clarified condition (1), we can continue the
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argument. The components of the subgraph induced by the outsiders must
consist of paths having either one, two, or three vertices.
Because we are trying to efficiently bound the total number of outsiders

(as well as everything else, eventually, in order to obtain the best possible
kernelization bound h(k)), the situation suggests we should look for further
reduction rules to address the remaining possible situations with respect to
the outsiders. This discovery process leads us to the following further kernel-
ization rules.

Kernelization Rule 2: If (G, k) is a (connected) instance of Max Leaf where
G has a vertex u of degree one, with neighbor v, and where ∃x /∈ N(v)
(that is, not every vertex of G is a neighbor of v), then transform (G, k) into
(G′, k′), where k = k′ and G′ is obtained by:

(1) deleting u, and
(2) adding edges to make N [v] into a clique.

The reader can verify that this rule is sound: (G, k) is a yes-instance if
and only if (G′, k′) is a yes-instance.

Kernelization Rule 3: If (G, k) is a (connected) instance of Max Leaf where
G has two vertices u and v such that either:

(1) u and v are adjacent, and N [u] = N [v], or
(2) u and v are not adjacent, and N(u) = N(v),

and also (in either case) there is at least one vertex of G not in N [u] ∪N [v],
then transform (G, k) to (G′, k′) where k′ = k − 1 and G′ is obtained by
deleting u.
Returning to our consideration of the outsiders, we are now in the situa-

tion that for a reduced graph, the only possibilities are:

(1) A component of the outsider graph is a single vertex having at least two
leaf neighbors in T .

(2) A component of the outsider graph is a K2 having at least three leaf
neighbors in T .

(3) A component of the outsider is a path of three vertices P3 having at least
four leaf neighbors in T .

The weakest of the ratios is given by case (3). We can conclude that the
number of outsiders is bounded by 3k/4.
The next step is to study the tree T . Since it has k leaves, it has at

most k − 2 branch vertices. Using conditions (5) and (6), but omitting the
details, it is argued that: (1) the paths in T between a leaf and its parental
branch vertex has no subdivisions, and (2) any other path in T between
branch vertices has at most three subdivisions (with respect to T ). These
statements are proved by various further structural claims (as in the analysis
of the outsider population) that must hold, else one of the inductive priorities
would fail (constructively) — a tree with k+1 leaves would be possible, or a
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smaller T , or a T with more internal vertices adjacent to leaves can be devised,
or one with a better score on the sum-of-distances priority (7). Consequently
T has at most 5k vertices, unless there is a contradiction. Together with the
bound on the outsiders in a reduced graph, this yields a g(k) of 5.75k. ��
The above sketch illustrates how the project of proving an FPT kernel-

ization bound is integrated with the search for efficient kernelization rules.
But there is more to the story. The argument above also leads directly to
a constant-factor polynomial-time approximation algorithm in the following
way. First, reduce G using the kernelization rules. It is easy to verify that the
rules are approximation-preserving. Thus, we might as well suppose that G is
reduced to begin with. Now take any tree T (not necessarily spanning) in G.
If all of the structural claims hold, then (by our arguments above) the tree
T must have at least n/c leaves for c = 5.75, and therefore we already have
(trivially) a c-approximation. (It would require further arguments, but prob-
ably the approximation factor is much better than c.) If at least one of the
structural claims does not hold, then the tree T can be improved against one
of the inductive priorities. Notice that each claim is proved (in the kerneliza-
tion argument above) by a constructive consequence. For example, if Claim 1
did not hold, then we can find a tree T ′ (by modifying T ) that has one more
leaf. Similarly, each claim violation yields a constructive consequence against
one of the inductive priorities in the extremal argument for the kernelization
bound. These consequences can be applied to our original T (and its succes-
sors) only a polynomial number of times (determined by the list of inductive
priorities) until we arrive at a tree T ′ for which all of the various structural
claims hold. At that point, we must have a c-approximate solution.
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Summary.

An experimental comparison of cache aware and cache oblivious static
search tree algorithms is presented. Both cache aware and cache oblivi-
ous algorithms outperform classic binary search on large data sets because
of their better utilization of cache memory. Cache aware algorithms with
implicit pointers perform best overall, but cache oblivious algorithms do
almost as well and do not have to be tuned to the memory block size as
cache aware algorithms require. Program instrumentation techniques are
used to compare the cache misses and instruction counts for implementa-
tions of these algorithms.

4.1 Introduction

The performance of an algorithm when implemented is a function of many
factors: its theoretical asymptotic performance, the programming language
chosen, choice of data structures, the configuration of the target machine,
and many other factors. One factor that is becoming more and more impor-
tant is how well the algorithm takes advantage of the memory hierarchy, its
memory performance. Data to be processed by the algorithm can stored in
different levels of the memory hierarchy: the registers on the processor chip,
first level cache, second level cache, main memory, and secondary memory
on disk. Each successive level of the memory hierarchy is slower and larger
than the preceding level. When a datum is required by the processor it must
be transferred from its current location in the hierarchy to the processor.
Because of the time delay in moving the datum to the processor, typically
surrounding data is also transferred down the memory hierarchy in a block
that contains the required datum. This block transfer amortizes the transfer
time of all the data in the hope that not just the one datum is required,
but that surrounding data will be required soon. Typical block sizes are 1024
bytes from disk to main memory, 32 bytes from main memory to the level two
and level one caches, and four bytes from the level one cache to the registers.
Most algorithms are not designed with memory performance in mind and

probably shouldn’t be. However, there are cases where an algorithm is in the
“inner loop” where good memory performance is necessary. In these cases
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designing for good memory performance is needed to achieve optimal perfor-
mance. It is not difficult to find examples where a “memory sensitive” main
memory algorithm can achieve a 50% reduction in running time over a sim-
ilar “memory insensitive” algorithm. The reduction in running time can be
attributed to the reduction in level two cache misses, where a cache miss is
an access to a datum that is in main memory but not in the level two cache.
In this paper we concentrate on the memory performance of algorithms

where the data resides in main memory and not in secondary memory. In
particular, we examine the classic technique of binary search, an algorithm
to locate an item among a static set of items. Classic binary search is so
well known that it does not need any introduction. However, a quick analysis
shows that its memory performance is poor. Suppose several items can fit
into a memory block. In classic binary search the items are stored in a sorted
array. The query item is compared with the middle item in the array. If it is
equal, the search is completed. If it is smaller, the subarray to the left of the
middle is searched in the same way. If it is larger, the subarray to the right is
searched in the same way. The important point is that in the two latter cases
the next item accessed is likely to be far from the middle of the array, so it is
not in the same memory block. Thus, memory blocks are poorly utilized in
classic binary search. Can binary search’s memory performance be improved?
The answer is a resounding yes, and there are several strategies to do so.
In this paper we examine two strategies for improving the memory per-

formance of binary search. The first is the cache aware approach where items
that are accessed together are stored together in the same memory block.
Knowledge of the memory block size is needed to accomplish this. In this
approach the items can be stored without the use of explicit pointers, but
the layout of the items in memory does not constitute a sorted array. A dis-
advantage of cache aware search is that, because the items are organized into
memory blocks, the algorithm does not achieve the perfect binary splitting
into equal size subproblems. Cache aware algorithms have been studied in a
number of different contexts [4.7, 4.8, 4.5, 4.10].
The second approach to improving the memory performance of binary

search is the cache oblivious [4.9, 4.4, 4.1, 4.2, 4.3] approach where the items
are organized in a universal fashion so that items that are accessed closely in
time are stored near each other. The method is called cache oblivious because
knowledge of the memory block size is not needed to achieve the organiza-
tion. The advantage of the cache oblivious approach is that the organization
of the data yields good memory performance at all levels of the memory hi-
erarchy. One disadvantage of the cache oblivious approach is that it might
not perform as well as the cache aware approach because it cannot take ad-
vantage of knowledge of the memory block size. Another disadvantage of the
cache oblivious approach is that, although items can be accessed without ex-
plicit pointers, the computation to find the next item may be prohibitively
expensive. This means that explicit pointers must be used, which increases
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the memory footprint of the data structure, which may hurt memory perfor-
mance.
We take an experimental approach in comparing cache aware and cache

oblivious search. We first implemented in C classic binary search, cache aware
search, and cache oblivious search. There are two versions of each implemen-
tation, one with implicit pointers and one with explicit pointers. As is nor-
mally done we did execution time studies on a wide range of data set sizes
on several platforms. More interesting is our use of program instrumentation
tools to count the number of machine instructions executed by each program
and to simulate the number of cache misses that occurs for each implemen-
tation. The former metric is called instruction count and the latter metric is
called cache performance. We simulated a direct mapped cache with several
different memory block sizes.
We summarize our main results as:

1. In terms of execution time, both cache aware search with implicit pointers
and cache oblivious search with explicit pointers perform comparably,
and are both significantly faster the classic binary search.

2. Cache aware search with implicit pointers has slightly better cache per-
formance than cache oblivious search with explicit pointers.

3. Cache aware search with implicit pointers has slightly worse instruction
count performance than cache oblivious search with explicit pointers.

In summary, the cache oblivious approach is almost as effective as the cache
aware approach to reducing cache misses for static search and has the advan-
tage that it does not need to be tuned to the memory block size.

4.2 Organization

In Sections 4.3 and 4.4 we present cache aware search and cache oblivi-
ous search, respectively. In Section 4.5 we present the instrumentation tool
ATOM [4.12] and how it is used for measuring cache misses and instruction
counts. In Section 4.6 we present our experimental results. In Section 4.7 we
present our conclusions.

4.3 Cache Aware Search

In this section, we present the cache aware approach for improving memory
performance of binary search. The basic idea is to store in the same memory
block those items that are most likely accessed together in time. In this way
when an item moves from main memory to the cache, other items that are
likely to be accessed soon are moved to the cache in the same block. Hence,
cache misses are avoided. A simple way to achieve this is to use a k-ary tree
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b ca

Fig. 4.1. Node of a cache aware 4-ary search tree stored in a 32 byte memory block

where a node contains k− 1 items and k pointers to subtrees. To achieve the
effect we want we choose k so that all the items and pointers fit in a memory
block.
There are several ways to implement k-ary trees, one which employs ex-

plicit pointers and one that uses implicit pointers. In the former memory
must be allocated to the pointers, while in the latter the address of the child
of a node is calculated and no storage is wasted on pointers. Suppose that we
know the cache line size is 32 bytes, and assume that an item and a pointer
each occupies four bytes, we can store at most four pointers and three items.
This means that our tree would be a 4-ary tree. Figure 4.1 depicts this ex-
ample.
However, there are still four bytes in the memory block left unused. In

order to make the node cache-align, these four bytes need to be padded
in our structure. Hence, we lose some more memory for padding besides the
memory used for pointers. A big disadvantage of the explicit pointer structure
is the size of its memory footprint is increased by the inclusion of pointers
and padding. An advantage of the explicit pointer structure is the speed in
following pointers rather than calculating them.
Using implicit pointers helps to alleviate memory footprint problem. By

not storing the explicit pointers, we can use the whole memory block to store
keys, so the parameter k is larger. For example, for 32 byte memory block we
now can store eight items instead of three in a memory block and have no
padding. Interestingly, the utilization of the memory blocks for explicit and
implicit pointers is about the same. If binary search is done within a node,
then in the explicit pointer case two items and one pointer are touched most
commonly. In the implicit pointer case three or four items are touched most
commonly. The big win of implicit pointers is that the height of the tree,
which bounds the number of cache misses, is much less.
For a k-ary tree, we layout the nodes in a contiguous piece of memory,

starting from the root node going down, and from left to right for nodes at
the same height. If the nodes are stored in an array, the root is stored at index
0 and the j-th child (1 ≤ j ≤ k) of the node stored at index i is stored at
index ik+(k−1)(j+1). This simple calculation replaces the explicit storage
of pointers. The layout of the nodes of a 3-way cache aware search tree with
implicit pointer is described in Figure 4.2.
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root

...

Fig. 4.2. Memory layout of a 3-way cache aware search tree with implicit pointers

4.4 Cache Oblivious Search

Cache oblivious algorithms operate under the same principles as cache aware
algorithms. Both types of algorithms try to “cluster” data together in mem-
ory so that the locality of memory references is increased. The cache aware
algorithm described above accomplishes this by “clustering” nodes of a binary
search tree into nodes that fit into a memory block. The cache oblivious al-
gorithm described by Prokop [4.9] approximates the same behavior, but does
so without any knowledge of the cache parameters. Figure 4.3 shows how the
cache oblivious algorithm lays out the data in memory to accomplish this.
Given a binary search tree of h (assuming h is a power of 2) levels, the

memory layout algorithm works as follows. Cut the tree in half vertically,
leaving one subtree above the cut and 2h/2 subtrees below the cut, giving a
total of 2h/2+1 subtrees all of the same size. The top subtree is then placed

T0

T1 T3 TkT2

T1 T2 T3 TkT0

...h/2

h/2

k = 2
h/2

Decomposition

Layout in memory

...
Fig. 4.3. Cache oblivious search tree decomposition and layout in memory
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Fig. 4.4. A subtree of memory block size spans at most two memory blocks

in a contiguous block of memory followed by the 2h/2 subtrees from the left
most to the right. The algorithm is then recursively applied to the to the top
subtree followed by the bottom subtrees in left to right order. The algorithm
terminates when it is applied to a subtree of one level, at which point it will
add the single node into the array. As the algorithm recurses through each
of the subtrees, it will eventually reach a tree which will occupy contiguous
memory of size about the same as a memory block. This is similar to the
behavior of the cache aware algorithm, the only difference in the two lay-
outs is that the cache aware algorithm ensures that each “cluster” starts at
the beginning, and spans only one memory block. The cache oblivious algo-
rithm on the other hand cannot ensure that the cluster starts on a memory
block boundary. Instead it guarantees that each cluster will span at most two
memory blocks. This is illustrated below in Figure 4.4.
The cache aware algorithm knows the cache parameters and can therefore

align the array in memory as to ensure that all the clusters are cache aligned.
By virtue of the fact that the cache oblivious algorithm knows nothing of the
cache parameters there is no way for it to ensure that a “cluster” does not
begin somewhere in the middle of a memory block and thus ending in another
memory block. Because of this fact, the cache aware algorithm will inherently
have better cache performance than the cache oblivious algorithm. However,
the cache oblivious algorithm does have the advantage that it does not have to
be “hand tuned” for each cache size. Its properties ensure that each “cluster”
will only span at most two memory blocks no matter the memory block size,
where as the cache aware algorithm must be adjusted for each memory block
size to ensure that its properties hold. As was the case with the cache aware
implementation, the cache oblivious algorithm can be implemented with both
explicit and implicit pointers. Implicit pointers have the benefit of reducing
the memory footprint of a single node, and thus increase the overall cache
performance. However the computation of the implicit pointers at run time
impacts the instruction count of the algorithm and can have a negative effect
on performance.
In recent work Bender et al. [4.2] and Brodal et al. [4.3] have used the

cache oblivious static search tree as the basis of a cache oblivious dynamic
search structures that allow for insertions and deletions. In particular, Bro-
dal et al. have discovered a very elegant and efficient way to calculate the
pointers in the cache oblivious static search tree with implicit pointers. For
our cache oblivious search tree with implicit pointers we use a more compu-
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tation intensive algorithm for computing pointers which is described in the
next paragraph. Hence, our cache oblivious search tree with implicit pointers
have high instruction counts and execution times. This could be remedied by
using the Brodal et al. calculation of pointers.
As described in Figure 4.3, the layout of the cache oblivious search tree

in memory is determined by recursively “cutting” the tree in half height-wise
and placing the nodes in contiguous memory starting with the top half of
the tree. It is not surprising that traversing the tree also involves recursively
cutting the tree. The algorithmworks as follows. Initially the algorithm begins
it search at the root of the tree, the first level of the tree, and the initial “cut”
is located at h, where h is the height of the tree. If the number of levels that
separate the current node from the next cut is greater than or equal to two,
a new cut is placed halfway between the current level of the search and the
level of the next cut. If the current node is at the same level as the next
cut an inter-cut traversal is done. Otherwise an intra-cut traversal is done.
This process is repeated at the new node until the search succeeds or fails.
An intra-cut traversal is defined as follows. Let i be the index of the current
node in the search. If the difference between the level of the current node and
the level of the next cut is #, where # ≤ 2 the left child of the current node is
located at i+1 while the right child is located at i+2�. An inter-cut traversal
is done in the case that by moving to the next node in the traversal, we cross
over an existing cut. In this case, the next node is located in memory after
all the nodes above the cut and after all the nodes between the cut and the
next cut in the subtrees to the left of the next node. If the number of levels
in the tree above it is d and the number of trees to the left of it is s then j
child (1 ≤ j ≤ 2) of the node indexed at i is located at

(2s+ j − 1)(2� − 1) + 2d+1 − 1.
The quantity 2d+1−1 is the number of nodes above the cut and the quantity
2� − 1 is the number of nodes in each of the subtrees to the left of the
next node. There are either 2s or 2s+1 subtrees to the left of the next node
depending on whether the traversal goes left or right respectively. A stack can
be used to maintain the current cut by simulating the recursive construction
described in Figure 4.3. The values of d and s can be maintained easily and
the value of # can be calculated from the cut value and d.

4.5 Program Instrumentation

Program instrumentation is a general way to understand what an executing
program is doing. Program instrumentation can be achieved automatically or
manually. For example, when a compiler is called with the debugger on, then
the executable code is augmented automatically to allow the user to view val-
ues of variables or other quantities. The semantics of the program should be
the same whether or not the debugger is turned on. Manual instrumentation
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is where the programmer inserts instructions into the source code to measure
some quantity or print out some intermediate values. For this study we em-
ployed the system ATOM [4.12] which enables the user to build customized
tools to automatically instrument and analyze programs that run on DEC
alphas. Other program instrumentation tools that are useful for measuring
memory performance are Cacheprof [4.11] and Etch [4.6].
The programmer provides three pieces of code to ATOM: (i) the unlinked

object code of the program to be instrumented, (ii) instrumentation code
that tells atom what “sensors” to insert into the object code and where to
place them, and (iii) analysis code that processes the sensor data from the
executing program to provide information about the execution. ATOM takes
the three pieces and produces an instrumented program executable. When
the executable is then run, it has the same semantics as the uninstrumented
program, but during the execution the sensors gather data that is processed
by the analysis code. Figure 4.5 gives a picture of the ATOM system. A simple
example of the use of ATOM is an instruction counter. The instrumentation
code inserts an increment-counter instruction after every instruction in the
object code. The analysis code sets the counter to zero initially and outputs
the final count on termination. We employ such an instruction counter in our
study.
A second, more sophisticated example, is a trace driven cache simulator.

In this case the instrumentation code inserts instructions after each load
and store to sense the memory address of the operand. The analysis code is a
cache simulator that takes the address as input and simulates what a memory
system would do with the address. In addition, the analysis code keeps track
of the number of loads and stores to memory and how many accesses are
misses. Figure 4.6 shows the instrumentation code for a cache simulator and
Figure 4.7 shows the analysis code for a very simple one level, direct mapped

data

Object
code

Analysis
code

ATOM
Instrumented

code
Analysis 

data

data
Output

code
Instrumentation Input

Fig. 4.5. Schematic of the ATOM system
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Instrument() {
Proc *p; Block *b; Inst *i;
AddCallProto("LoadReference(VALUE)");
AddCallProto("StoreReference(VALUE)");
AddCallProto("PrintResults()");
for (p = GetFirstProc(); p != NULL; p = GetNextProc(p)) {
for (b = GetFirstBlock(p); b != NULL; b = GetNextBlock(b)) {

for (i = GetFirstInst(b); i != NULL; i = GetNextInst(i)) {
if (GetInstClass(i) == ClassLoad ||

GetInstClass(i) == ClassFload) {
AddCallInst(i,InstBefore,"LoadReference",EffAddrValue);

xs}
if (GetInstClass(i)== ClassStore ||

GetInstClass(i)== ClassFstore) {
AddCallInst(i,InstBefore,"StoreReference",EffAddrValue);

}
}

}
}

}
AddCallProgram(ProgramAfter,"PrintResults");

}

Fig. 4.6. Instrumentation code for a trace driven cache simulator

cache simulator. We used a trace driven cache simulator similar to this one
for our study.
In the instrumentation code, Figure 4.6, the nested for loops identify

each procedure in the object code, then each basic block within the proce-
dure, then each instruction within the basic block. If the instruction is a
load, then code is inserted before the instruction which calls LoadReference
in the analysis code passing EffAddrValue, the operand, as a parameter.
If the instruction is a store, then code is inserted before the instruction
which calls StoreReference in the analysis code passing EffAddrValue, the
operand, as a parameter. At the end of the program code is inserted which
calls PrintResults.
The analysis code implements a direct mapped cache with size CACHE SIZE

in bytes and block size BLOCK SHIFT in bits. The analysis code maintains the
array tags which stores the memory addresses that currently reside in the
cache. In addition it maintains counters for the number of load and store
references and load and store misses. For our study we use a similar cache
simulator, but we add the load and store values into one value for both
references and misses. We chose to simulate a one level cache because the
cache miss penalty for the level two cache is typically much greater than
that for the level one cache. Having just one number representing the cache
performance is reasonable compromise considering that level one cache misses
tend to have a low order effect on performance on large data sets.
ATOM is a powerful tool but it must be used properly to obtain accurate

results. First, the analysis code is interleaved with the code to be analyzed.
This means that the instrumented code can be considerably slower than the
uninstrumented code. This is not a serious problem with either instruction
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void generalreference(long address, int isLoad) {
int index = (address & (CACHE_SIZE-1)) >> BLOCK_SHIFT;
long tag = address >> (BLOCK_SHIFT + INDEX_SHIFT);
int returnval;

if (tags[index] != tag) {
if (isLoad){

loadmisses++;
tags[index] = tag;

}
else {

storemisses++
}

}
if (isLoad) {

loadreferences++;
}
else {

storereferences++;
}

}
void LoadReference(long address) {

generalreference(address, 1);
}
void StoreReference(long address) {

generalreference(address, 0);
}

Fig. 4.7. Analysis code for a trace driven cache simulator for a one level, direct
mapped cache

counting or cache simulation because the analysis code is quite efficient. For
cache simulation it is important not to use dynamic memory in the analysis
code. Use of dynamic memory would cause a difference in the addresses used
by the instrumented and uninstrumented codes, and distort the results. This
is not a problem in our case because we used static memory to allocate the
tags array and counters. Finally, the trace driven cache simulator is just
that. It does not measure cache misses caused by swapping, TLB misses, or
instruction cache misses.

4.6 Experimental Results

In order to better understand the alternative static search algorithms we
implemented in C six algorithms: classic binary search, cache aware search,
and cache oblivious search each with explicit and implicit pointers versions.
All studies were for data sets the range from 128 to 2,097,152 and for larger
data sets when possible. All items and pointers used are four bytes. In order to
compare our static search algorithms we employed program instrumentation
for trace driven cache simulation and instruction counts. These studies were
done using ATOM on a Compaq Alpha 21164. In addition, we performed two
execution studies one on Windows and one on Linux. In Table 4.6 we list the
computer configurations and compilers. All the caches in the two platforms
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Table 4.1. Computer configurations and compilers used in the execution time
studies

Windows Linux

Operating Windows 2000 “Professional” Linux Mandrake 7.2
System

Processor 533 MHz Intel Celeron 350 MHz Intel Pentium II
Memory 64 MB 128 MB

Memory Block 32 B 32 B
L2 Cache 128 KB 512 KB
L1 Cache 32 KB 32 KB
Compiler MSVC 6.0 gcc 2.95.2
Options Release Build Highest Option -O3 (highest setting)

are 4-way set-associative and all block sizes are 32 bytes. In all the studies
each data point represents the median of ten trials where a trial consisted of
n random successful lookups where n is the number of items. The median of
ten is computed as the average of the fifth and sixth ranked trials to avoid
the effect of outliers. For a given n, the ten measured trials were preceded by
n unmeasured successful lookups to warm up the cache.
Figure 4.8 gives the results a cache simulation using ATOM where we

simulated a direct mapped cache of size 8,192 bytes and a memory block size
of 32 bytes. In the x-axis we plot the number of items on a log scale and in
the y-axis we plot the number of cache misses. We see that the cache aware
search with implicit pointers has the fewest cache misses, while classic binary
search has the most. All the algorithms that use implicit pointers have fewer
cache misses than their explicit pointer counterparts showing the effect of
the larger memory footprint for the explicit pointers. Most important is that
both cache oblivious and cache aware search algorithms have much better
memory performance than classic binary search.
Figure 4.9 gives the results of instruction counting using ATOM for the

algorithms. In the x-axis we plot the number of items on a log scale and in
the y-axis we plot the number of Compaq Alpha 21164 instructions executed
per lookup. We see immediately the high price in instruction count that is
paid for our version of cache oblivious search with implicit pointers. The
instruction count penalties for implicit pointers for classic binary search and
cache aware search are small. The explicit pointer versions of classic binary
search and cache oblivious search execute the fewest instructions per lookup.
Cache aware search with explicit pointers has slightly more instructions per
lookup because it does not achieve perfect binary splitting into equal size
subproblems.
In our execution time studies shown in Figures 4.10 and 4.11 in the x-axis

we plot the number of items on a log scale and in the y-axis we plot the time
per lookup measured in microseconds. Each trial was measured using time.h
from the Standard C library.
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Figure 4.10 gives the results of an execution time study using Windows.
Cache aware search with implicit pointers is the fastest, but cache oblivious
search with explicit pointers is not far behind. Cache oblivious search with
implicit pointers is the slowest of all because of the high cost of computing
pointers.
Figure 4.11 gives the results of an execution time study using Linux.

Again, cache aware search with implicit pointers is the fastest, but cache
oblivious search with explicit pointers is not far behind. Again, cache oblivi-
ous search with implicit pointers is the slowest of all because of the high cost
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Fig. 4.10. Execution time on Windows for static search algorithms

of computing pointers. Inexplicably, cache aware search with explicit pointers
showed consistently poor performance under Linux. We looked at a number
of possible causes for the poor performance but were not able to pin down a
reason for it. We believe that the Linux behavior perhaps demonstrates the
perils of cache aware programming. The cache oblivious algorithms performed
consistently on both platforms.

4.7 Conclusion

Both cache aware and cache oblivious search perform better than classic
binary search on large data sets. Cache aware search algorithms have the
disadvantage that they require knowledge of the memory block size. Cache
oblivious search algorithms have only slightly worse memory performance
than cache aware search, but in our study only the explicit pointer version
of oblivious search has comparable overall performance. As mentioned earlier
Brodal et al. [4.3] have found a way to compute the implicit pointers efficiently
in the cache oblivious algorithm. The cache oblivious search algorithms do
not require knowledge of the memory block size to achieve good memory
performance. Finally, program instrumentation tools like ATOM let us obtain
a deeper understanding of the performance of these algorithms.
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Summary.

In the analysis of algorithms we are interested in obtaining closed form
expressions for algorithmic complexity, or at least asymptotic expressions
in O(·)-notation. It is often possible to use experimental results to make
significant progress towards this goal, although there are fundamental rea-
sons why we cannot guarantee to obtain such expressions from experiments
alone. This paper investigates two approaches relating to problems of de-
veloping theoretical analyses based on experimental data.

We first consider the scientific method, which views experimentation
as part of a cycle alternating with theoretical analysis. This approach has
been very successful in the natural sciences. Besides supplying preliminary
ideas for theoretical analysis, experiments can test falsifiable hypotheses
obtained by incomplete theoretical analysis. Asymptotic behavior can also
sometimes be deduced from stronger hypotheses which have been induced
from experiments. As long as complete mathematical analyses remains elu-
sive, well tested hypotheses may have to take their place. Several examples
are given where average complexity can be tested experimentally so that
support for hypotheses is quite strong.

A second question is how to approach systematically the problem of in-
ferring asymptotic bounds from experimental data. Five heuristic rules for
“empirical curve bounding” are presented, ogether with analytical results
guaranteeing correctness for certain families of functions. Experimental
evaluations of the correctness and tightness of bounds obtained by the
rules for several constructed functions and real datasets are described.

5.1 Introduction

The complexity analysis of algorithms is one of the core activities of computer
scientists, especially in the branch of theoretical computer science known as
algorithmics. The ultimate goal would be to find closed form expressions
for the runtime (or other measures of resource consumption), in terms of
∗ Partially supported by the IST Programme of the EU under contract number
IST-1999-14186 (ALCOM-FT).
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input parameters of interest. Since this is usually too complicated, we are
often content with asymptotic expressions for the worst case performance
depending on a small number of input parameters like problem size, which
are usually presented in O(·)-notation. Even this task can be very difficult so
it is important to use all available tools.
In this paper we investigate the empirical version of this primary activity

– how to use finite experimental data to shed insight on universal asymptotic
properties of algorithms. We illustrate both the promise and the difficulties
inherent in the use of experiments to suggest, support, and refute hypotheses
about asymptotic behavior. Experimental data can be employed for asymp-
totic analysis both indirectly – for example, in support of conjectures neces-
sary to theoretical arguments; and directly, by extrapolation of trend data
beyond the range of experimentation. In the latter scenario, we consider a
specific problem, which we call empirical curve-bounding: given a set of data
points (Ni, Yi) obtained from an experiment in which Yi = f(Ni), for some
unknown function f(n), find complexity classes O(gu(n)) and/or Ω(gl(n)) to
which f(n) belongs.
This paper has two goals. The first is to show how, with some care, it is

possible to obtain good insights about asymptotic trends, based on analyses
of data obtained from experiments. One way to make the meaning of “some
care” more precise is to apply the terminology of the scientific method [5.31].
The scientific method views science as a cycle between theory and practice.
Theory can inductively or (partially) deductively1 formulate falsifiable hy-
potheses which can be tested by experiments. The results may then yield
new or refined hypotheses. This mechanism is widely accepted in the natural
sciences and is often viewed as a key to the success of these disciplines. We
present four examples of ways in which the scientific method can be applied
to the use of experimentation to advance the goals of asymptotic algorithm
analysis, using problems in parallel disk scheduling, random polling, shellsort,
and randomized process allocation.
The second goal is to evaluate a collection of curve-bounding techniques,

in order to identify their practical limitations. Unfortunately, no data analysis
method for inferring asymptotic trends in data can be guaranteed correct for
all data sets: to see this, note that for any finite vector of problem sizes,
there are functions of arbitrarily high degree that are indistinguishable from
the constant function c at those problem sizes. Therefore any algorithm for
this problem must be regarded as a heuristic that sometimes fails. We desire
robust heuristics that produce correct bound estimates (or clear indications
of failure) for broad classes of functions and for functions that tend to arise
in practice.
We describe five simple heuristics (or rules) for curve bounding, and a

hybrid rule that handles some specific pathologies. For each of the five rules,
1 Inductive reasoning draws general conclusions from specific data whereas deduc-
tive reasoning draws specific conclusions from general statements.



5. Using Finite Experiments to Study Asymptotic Performance 95

we present analytical results guaranteeing correctness for certain families of
functions. Then, using a variety of algorithmic data sets, we evaluate the
rules in “typical” and in near-pathological situations. Negative results con-
cerning two plausible rules that turned out to have high failure rates are also
presented.
In our informal and designed experiments with little or no random noise

in the data, all the rules generally provide correct asymptotic bounds that
are within about a

√
n factor of the true asymptotic bound. The reliability

of the rules deteriorates, however, in the presence of random variation in
the data, and/or when too-large constants or negative coefficients appear in
second-order terms. Fortunately it is usually easy in algorithmic problems to
reduce the noise problem by taking more experiments or applying variance
reduction techniques during experimentation. It is of course possible to reduce
the effect of large second-order terms by taking larger problem sizes, but the
rules can be slow to respond to this type of change. A hybrid diagnostic
method described in Section 5.6 can be used with success on such problems.
This explicit study of techniques for curve-bounding appears to be com-

pletely new. We can find no techniques in the statistical and data analysis
literature specifically designed for finding asymptotic bounds on data, al-
though much is known about fitting curves to data. As we shall demonstrate,
good algorithms for curve fitting are not always best for curve bounding, and
vice versa.
The importance of experiments in algorithm design and analysis has

gained much attention in the past decade. New workshops (ALENEX, WAE)
and journals (ACM Journal of Experimental Algorithmics) have been in-
stalled, and established conferences (e.g., SODA, ESA) explicitly call for
experimental work. Several articles [5.4], [5.19], [5.27], [5.28]) present guide-
lines for performing experiments on algorithmic research problems, and one
book [5.12] presents methods of data analysis in the context of experimen-
tation on heuristic algorithms. Using the scientific method as a basis for
algorithmics was proposed by Hooker [5.17], but similar ideas concerning ex-
perimental computer science in general can also be found in other papers
[5.14, 5.15, 5.3, 5.37, 5.16, 5.23, 5.29, 5.41].
Section 5.2 reviews the main difficulties in experimental algorithmics and

explains how to partially solve them. Section 5.3 gives several concrete exam-
ples of using experimental results to suggest, support, or to falsify hypotheses
about algorithmic performance. The algorithms presented in this section are
randomized, with expected resource consumption dependent only on input
size so that many repeated experiments give us rather accurate information
on average behavior. On the other hand, all the algorithms are nontrivial to
analyze analytically. It turns out that in this situation the scientific method
with a close, problem specific interaction between theoretical and experi-
mental reasoning yields quite accurate insight on the asymptotic behavior of
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the algorithm. For example, in Section 5.3.2 we are able to resolve even an
additive O(log logn) term.
We then turn to a systematic evaluation of rules for the empirical curve-

bounding problem. Section 5.4 presents each rule R, together with a “justi-
fication” that describes a class of functions for which the rule is guaranteed
correct. Section 5.5 presents an empirical study of the rules using data sets
from constructed parameterized functions. We observe that some rules are
sensitive to large lower order terms and some to random noise, and some to
both. Most of the rules are surprisingly unresponsive to changes in the largest
problem size. One rule produces bounds that are rarely incorrect and rarely
tight. A second collection of data comes from eight experimental studies of
algorithms, to assess performance on “typical” algorithmic problems. In three
cases there is at least a logarithmic gap in known analytical bounds, and we
show how the rules can (and cannot) be used to support conjectures that
tighten the gaps.
Section 5.4 assumes some familiarity with data analysis terms such as

correlation coefficient, least-squares regression, and residuals, which may be
found in any introductory statistics textbook. For introductions to the curve-
fitting methods adapted here for curve-bounding, see Atkinson [5.1], Cohen
[5.12], Chambers et al. [5.11], Rawlins [5.33], or Tukey [5.42]. Algorithms
for domain-independent function finding [5.36] might be adapted to curve
bounding but are not considered here.
Finally, Section 5.7 discusses the role of the scientific method in the con-

text of experimental analysis of data and summarizes our observations about
curve-bounding rules.
We emphasize that this work represents a small initial investigation of

a potentially large research area. This paper only scratches the surface of a
related important methodological topic, namely how to perform experiments
on algorithms, and how to evaluate the confidence in our findings statistically.
Our analyses are far from complete, and we do not consider here many in-
teresting methodological and statistical questions, function classes, function
parameters, rule variations, or multivariate problems.
In specific examples, we mostly consider cases where it is of interest to

bound the complexity of algorithms for inputs of size n, using functions of the
single parameter n. Later sections emphasizing data analysis use the symbol
x in place of n, to refer to the “control parameter” in the experiment, but
again we assume that only one such control parameter is present. Issues of
experimentation with combinations of control parameters is outside the scope
of this paper.
Of course, many problems in experimental evaluation include combina-

tions of parameters (such as problem size n, graph density d, and algorithm
tuning parameter p). But these problems can sometimes be studied by vary-
ing each parameter in turn while holding others fixed.
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5.2 Difficulties with Experimentation

There is no question that experimental analysis of algorithms presents several
fundamental problems to the researcher. Some of the major difficulties are
surveyed in this section.

Too Many Inputs. Perhaps the most fundamental problem with algorith-
mic experimentation is that we can rarely test all possible inputs, even for
bounded input size, because there are usually exponentially (or infinitely)
many of them. In application-oriented research this problem may be miti-
gated by collections of test instances which are considered “typical”.2 For
example, there is a large class of oblivious algorithms where the execution
time only depends on a small number of parameters like the input size, for
example, matrix multiplication. Although many oblivious algorithms are easy
to analyze directly, experiments can sometimes help. Furthermore, there are
algorithmic problems with few inputs. For example, the locality properties of
several space filling curves were first found experimentally and then proven
analytically. Later it turned out that a class of experiments can be systemat-
ically converted into theoretical results valid for arbitrary curve sizes [5.30].
But in most cases there are far too many instances to allow exhaustive

testing. In these situations, our rich statistical understanding of random sam-
pling makes algorithm randomization and average case analyses most impor-
tant for experimentation. Randomization can be used to convert a hypothesis
about “all instances” into one about behavior “on average,” for which exper-
imental approaches are most suited. For example, every sorting algorithm
which is efficient on average can be transformed into an algorithm for worst-
case instances by permuting the inputs randomly. In this case, a few hundred
experimental trials with random inputs can give a reliable picture of the ex-
pected performance of the algorithm for inputs of a given size. On the other
hand, closed form analyses of randomized algorithms can be very difficult
to obtain. For example, the average performance of randomized Shellsort has
been open for a long time [5.38]. Section 5.3.3 presents an experimental study
of Shellsort.

Unbounded Input Size. Another problem with experiments is that we can
only test a finite number of input sizes. As a result, no inference about asymp-
totic behavior is reliable. For example, assume we observe that some sorting
algorithm needs an average of C(n) ≤ 3n logn comparisons3 for n < 106 ele-
ments. We cannot claim that C(n) ≤ 3n logn as a theorem, since quadratic
behavior might set in for n > 42 · 106. Here, the scientific method partially
saves the situation. We can formulate the hypothesis C(n) ≤ 3n logn, which
is scientifically sound since it can be falsified by presenting an instance of size
n with C(n) > 3n logn.
2 For example, a list with 23 collections of problem instances can be found under
http://mat.gsia.cmu.edu/Resources/Problem_Instances/

3 Throughout this paper log x stands for the base two logarithm log2 x.
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Note that not every sound hypothesis is a good hypothesis. For ex-
ample, we would be cowardly to change the above hypothesis to C(n) ≤
100000n logn, since it would be difficult to falsify it even if it later turns
out that the true bound is C(n) = n logn+ 0.1n log2 n. Issues like accuracy,
simplicity, and generality of hypotheses also arise in the natural sciences and
should not be obstacles to the use of the scientific method here.

O(·)-s are not Falsifiable. The next problem is that an asymptotic ex-
pression cannot be used directly in formulating a scientific hypothesis since
it could never be falsified experimentally. For example, if we claim that a
certain sorting algorithm needs at most C(n) ∈ O(n logn) comparisons it
cannot even be falsified by a set of inputs which clearly indicate quadratic
behavior, since we could always claim that this quadratic development would
stop for sufficiently large inputs. This problem can be solved by formulating
a hypothesis which is stronger than the asymptotic expression we really have
in mind. The hypothesis C(n) ≤ 3n logn used above is a trivial example. A
less trivial example is given in the study of Shellsort in Section 5.3.3.

Complexity of the Machine Model. Although the actual execution time
of an algorithm is perhaps the most interesting subject of analysis, this mea-
sure of resource consumption is often difficult to model by closed form ex-
pressions. Caches, virtual memory, memory management, compilers, and in-
terference from other processes all influence execution time in ways that are
difficult to predict.4 At some loss of accuracy, this problem can be solved by
counting the number of times a certain set of source code operations (which
cover all the inner loops of the program) is executed. This count often suffices
to capture the asymptotic behavior of the code in a machine-independent way.
For example, for comparison-based sorting algorithms it is usually sufficient
to count the number of key comparisons.

Finding Hypotheses. Except in very simple cases, it is almost impossi-
ble to guess exactly an appropriate formula for a worst case performance,
given only measurements, even when the investigated resource consumption
only depends on input size. For example, the measured function may be non-
monotonic but we are only interested in a monotonic upper bound. There are
often considerable contributions of lower order terms for small inputs. Indeed
our experience described in later sections shows that simple fitting methods
sometimes just won’t work, especially if we are interested in fine distinctions
like logarithmic factors.
In some cases the scientific method can help to mitigate this difficulty

by applying problem-specific information to the study. We may be able to
handle a related or simplified version of the system analytically, or we can
4 Remember that the above is also an argument in favour of doing experiments
because the full complexity of the hardware is difficult to model theoretically.
We only mention it as a problem in the current context of inducing asymptotic
expressions from experiments.
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make “heuristic” steps in a derivation of a theoretical bound. Although the
result is not a theorem about the target system, it is good enough as a
hypothesis about its behavior in the sense of the scientific method. Section
5.3 gives several examples of this powerful approach which so far seems to be
underrepresented in algorithmics.

5.3 Promising Examples

Our first example in Section 5.3.1 can be viewed as the traditional use of ex-
periments as a method to generate conjectures on the behavior of algorithms
— but it has an additional interpretation in the sense that experiment plus
theory (on a less attractive algorithm) yields a useful hypothesis. Section 5.3.2
gives an example in the same category but using a less well known approach.
Rather than simplifying the algorithm, we simplify the analysis by mak-
ing simplifying assumptions (independence) in the middle of the derivation.
The resulting bound has the status of a theory in the sense of the scientific
method and is then validated by simulation. Sections 5.3.3 and 5.3.4 touch
on the difficult question of how to use experiments to learn something about
the asymptotic complexity of an algorithm. Finally Section 5.3.4 is a good
example how experiments can suggest that an analysis can be sharpened.

5.3.1 Theory with Simplifications:
Writing to Parallel Disks

Consider the following algorithm, EAGER, for writing D randomly allocated
blocks of data to D parallel disks. EAGER is an important ingredient of a
general technique for scheduling parallel disks [5.35]. We maintain one queue
Qi for each disk. The queues share a buffer space of size W ∈ O(D). We
first put all the blocks into the queues and then write one block from each
nonempty queue. When the sum of the queue lengths exceeds W , additional
write steps are invested. We have no idea how to analyze this algorithm.
Therefore, in [5.35] a different algorithm, THROTTLE, is proposed that only
admits (1− ε)D blocks per time step to the buffers. Then it is quite easy to
show using queuing theory that the expected sum of the queue lengths is
close to D/(2ε). Further, it can be shown that the sum of the queue lengths
is concentrated around its mean with high probability so that a slightly larger
buffer suffices to make waiting steps rare.5

Still, in many practical situations EAGER is not only simpler but also
somewhat more efficient. Was the theoretical analysis futile and misguided?
One of the reasons why we think the theory is useful is that it suggests a nice
explanation of the measurements shown in Fig. 5.1. It looks like 1−D/(2W )

5 The current proof shows that W ∈ O(D/ε) suffices but we conjecture that this
can be sharpened considerably using more detailed calculations.
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Fig. 5.1. Inefficiency (i.e., 1−efficiency) of EAGER. N = 106 · D blocks were
written

is a lower bound for the average efficiency of EAGER and a quite tight one
for largeD. This curve was not found by fitting a curve but by the theoretical
observation that algorithm THROTTLE with ε = D/(2W ) would have buffer
requirement about W .
More generally speaking, the algorithms we are most interested in might

be too difficult to understand analytically. In such cases it makes sense to
analyze a related and possibly inferior algorithm, and to use the scientific
method to develop theoretical insights about the original algorithm. In the
next Section we see that rather than simplifying the algorithm we can also
simplify the analysis and achieve a similar effect — a theory in the sense of
the scientific method.

5.3.2 “Heuristic” Deduction: Random Polling

Let us consider the following simplified model for the startup phase of random
polling dynamic load balancing [5.21, 5.9, 5.34] which is perhaps the best
available algorithm for parallelizing tree shaped computations of unknown
structure: There are n processing elements (PEs) numbered 0 through n− 1.
At step t = 0, a random PE is busy while all other PEs are idle. In step t, a
random shift k ∈ {1, . . . , n− 1} is determined and the idle PE with number
i asks PE i+ k mod n for work. Idle PEs which ask idle PEs remain idle; all
others are busy now. How many steps T are needed until all PEs are busy?
A trivial lower bound is T ≥ log n steps since the number of busy PEs can
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at most double in each step. An analysis for a more general model yields an
E[T ] ∈ O(log n) upper bound [5.34].
We will now argue that there is a much tighter upper bound of E[T ] ≤

logn + log lnn + 1. We start with a theoretical analysis and get stuck half
way. We then make a simplifying assumption (independence) that allows us to
complete the analysis. The hypothesis generated in this way is then validated
experimentally.
Define the 0/1-random variable Xik to be 1 iff PE i is busy at the be-

ginning of step k. For fixed k, these variables are identically distributed and
P [Xi0 = 1] = 1− 1/n. Let Uk =

∑
i<n Xik. We have

E(Uk) = E(
∑
i<n

Xik) =
∑
i<n

P [Xik = 1] = nP [Xik = 1].

Since the Xik are not independent even for fixed k, we are stuck with this
line of reasoning. However, if we (falsely) assume independence, we get

P [Xi,k+1 = 0] = P [Xik = 0]
∑
j 	=i

1
n− 1P [Xjk = 0] = P [Xik = 0]2,

and, by induction,

P [Xik = 0] = (1 − 1/n)2k ≤ e−2k/n.

Therefore, E(Uk) ≥ n(1−e−2k/n) and for k = logn+log lnn, E(Uk) ≥ n−1.
One more step must get the last PE busy.
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We have tested the hypothesis by simulating the process 1000 times for
n = 2j and j ∈ {1, . . . , 16}. Fig. 5.2 shows the results. On the other hand,
the measurements do exceed log n+ log lnn. We conjecture that our results
can be verified using a calculation which does not need the independence
assumption.

5.3.3 Shellsort

Shellsort [5.39] is a classical sorting algorithm which has been widely studied.
Given an increasing integer sequence of offsets hi with h0 = 1, the following
pseudo-code describes Shellsort.

for each offset hk in decreasing order do
for j := hk to n step hk do

x := data[j]
i := j − hk
while i ≥ 0 ∧ x <data[i] do

data[i+ hk] := data[i]
i := i− hk

od
data[i+ hk] := x

Despite its long history, Shellsort still poses several open problems. For ex-
ample, let T (n) denote the average number of key comparisons performed
by Shellsort for n inputs. It is unknown whether there is an offset se-
quence which yields a sorting algorithm with T (n) ∈ O(n log n) or even
one with T (n) ∈ o(n log2 n) [5.38, 5.18]. It is known that any algorithm with
T (n) = O(n logn) must use Θ(log n) offsets [5.18]. Previous experiments
with many carefully constructed offset sequences led to the conjecture that
no sequence yields T (n) close to O(n logn) [5.45].
Motivated by the successful use of randomness for sorting networks

[5.22, Section 3.5.4] where no comparably good deterministic alternatives
are known, we asked ourselves whether random offsets might work well for
Shellsort. For our experiments we used offsets which are the product of ran-
dom numbers. The situation now is more difficult than in Section 5.3.2 where
the theory gave us a very accurate hypothesis. Now we have little information
about the dependence of the performance on n. Still, we should put the little
things we do know into the measurements. First, by counting comparisons
we can avoid the pitfalls of measuring execution time directly. Furthermore,
we can divide these counts by the lower bound log(n!) ≈ n logn−n/ ln(2) for
comparison based sorting algorithms. The difficult part is to find an adequate
model for the resulting quotient plotted in Fig. 5.3. According to the conjec-
ture in [5.45] the quotient should follow a power law. In a semilogarithmic
plot this should be an exponentially growing curve. So this conjecture is not
a good model at least for realistic n (also remember that Shellsort is usually
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not used for large inputs). A sorting time of O(n loga n) for any constant
a > 1 would result in a curve converging to a straight line in Fig. 5.3. Indeed,
the curve gets flatter and flatter and its inclination might even converge to
zero.
We might be tempted to conjecture that T (n) = O(n log1+o(1) n). But

we must be careful here, because assertions like “T (n) = O(f(n))” or “the
inclination of g(n) converges to zero” are not experimentally falsifiable.

5.3.4 Sharpening a Theory: Randomized Balanced Allocation

Consider the following load balancing algorithm known as random allocation:
m jobs are independently assigned to n processing elements (PEs) by choosing
a target PE uniformly at random. Using Chernoff bounds, it can be seen that
the maximum number of jobs assigned to any PE is

lmax = m/n+O(
√
(m/n) logn+ logn)

with high probability (whp). For m = n,

lmax = Θ(log(n)/ log logn)

whp can be proven.
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load. In order to minimize artifacts of the random number generator, we have used a
generator with good reputation and very long period (219937 −1)[5.24]. In addition,
we have repeated some experiments with the Unix generator srand48 leading to
almost identical results

Now consider the slightly more adaptive approach called balanced random
allocation. Jobs are considered one after the other. Two random possible
target PEs are chosen for each job and the job is allocated on the PE with
lower load. Azar et al. [5.2] have shown that

lmax = O(m/n) + (1 + o(1)) log lnn

whp for m = n. Interestingly, this bound shows that balanced random al-
location is exponentially better than plain random allocation. However, for
large m their methods of analysis yield even weaker bounds than that for
plain random allocation. Fig. 5.4 shows that a simple experiment predicts
that lmax−m/n cannot depend much on m. Recently6 Berenbrink et al. [5.8]
have published a proof (using quite nontrivial arguments) that indeed,

lmax = m/n+ (1 + o(1)) log lnn.

Our experiments were done before the theoretical solution. For other ex-
amples, we could have picked one of the other open problems in the area of
balls into bins games. For example, Vöcking [5.43] recently proved that an
6 After our experiments were done.
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asymmetric placement rule for breaking ties can significantly reduce lmax for
m = n but nobody seems to know how to generalize this result for generalm.

5.4 Empirical Curve Bounding Rules

We now develop several heuristic rules for finding asymptotic trends in data
sets. To emphasize the general applicability of these techniques of data anal-
ysis, and to achieve some notational compatibility with related works in data
analysis, we use the symbol x rather than n to refer to the parameter that is
controlled during experimentation.
We begin with some notation and a precise specification of the prob-

lem. The cost of algorithm A is described by an unknown exact function
f(x), where x may denote problem size. An experiment produces a pair
of vectors X,Y such that Y [i] = F (X [i]); in cases with randomized in-
puts and/or randomized algorithms, the experiment produces X,Y such that
E(Y [i]) = f(X [i]) (that is, f is a function describing the average behavior of
the algorithm). By convention, the vector X is assumed to contain k distinct
nonnegative values arranged in increasing order.
The complexity class O(g(x)) denotes a set of functions: we have f(x) ∈

O(g(x)) if there exist positive constants cu, xu such that 0 ≤ f(x) ≤ cug(x)
for all x ≥ xu. Similarly, f(x) is in the set Ω(g(x)) if there exist positive
constants cl, xl such that 0 ≤ clg(x) ≤ f(x) for all x ≥ xl.
By convention, a complexity class is always labeled by the “simplest”

member of the set; thus while O(3x2 + 4x) is technically correct, we would
use O(x2) to denote this class. Throughout, g(x) and ḡ(x) are assumed to
be simple functions labeling complexity classes, while f(x) and f̄(x) may be
arbitrary functions. The bar notation denotes functions that are estimates,
and functions without bars denote (typically unknown) target functions.
Each heuristic rule takesX,Y , and reports a class estimator ḡ(x) together

with a bound type, either upper, lower, or close. Upper signifies a claim that
f(x) ∈ O(ḡ(x)), and lower signifies a claim that f(x) ∈ Ω(ḡ(x)). A rule will
report a bound of close when the data is “too close to call” with respect
to the upper/lower bound criteria being used. Usually this occurs when the
data is indeed very close to the estimate, but in some cases a close result is
returned because of some unexpected property of the data set.
An upper bound estimate O(ḡ(x)) is correct if in fact f(x) ∈ O(g(x)). A

correct upper bound is exact if it labels the smallest correct class that holds
the target function. Analogous definitions hold for lower bound estimates.
Some heuristics iteratively generate internal guess functions f̄(x) stopping
when come criteron is met and then reporting the corresponding estimate
ḡ(x) obtained from the leading term of f̄(x).
We consider the five strategies outlined below.

– The Guess-Ratio (GR) rule “guesses” a function f̄(x) and evaluates the
guess according to the apparent convergence of the ratios Y/f̄(X).
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– The Guess-Difference (GD) rule also guesses a function f̄(x), but evaluates
the differences f̄(X)− Y rather than ratios.

– The Power (PW) rule combines log-log transformation of X and Y , lin-
ear regression on the transformed data, and residuals analysis. Two varia-
tions PW3 and PWD are introduced that improve this method for curve-
bounding problems.

– The Box Cox (BC) rule combines a parametric transformation of Y values
with linear regression and residuals analysis.

– The Difference (DF) rule generalizes Newton’s divided difference method
for polynomial interpolation. The generalization ensures that the method
is defined and terminates for any data set.

Oracle Functions. In general, the rules can be viewed as interactive tools
or as offline algorithms. To accommodate both views, we describe the algo-
rithms in terms of a small set of oracle functions which decide, for example,
whether “residuals are concave upwards.” When the rules are used interac-
tively, a human provides the oracle values; when the rules are offline, simple
computations are used for each oracle function.

Trend(X, Y, cr). Returns a value indicating whether Y appears to be in-
creasing with X , decreasing, or neither. Our implementation compares the
correlation coefficient r, computed on X and Y , to a cutoff parameter cr
which is 0.1 by default.

Concavity (X, Y, s). This function performs a linear regression on X and
Y , smooths the residuals, and examines the signs of the smoothed residuals. It
returns “concave upward” if signs obey the regular expression (+)+(−)+(+)+
(at least one plus, followed by at least one minus, followed by at least one
plus); it returns “concave downward” if they obey (−)+(+)+(−)+; and oth-
erwise the function returns “neither.” The parameter s can be used to ad-
just the smoothing operation; the default low setting produces “less smooth”
residuals and more frequent “neither” results.

DownUp( X, Y, s ). The DownUp oracle examines smoothed Y values to
determine whether Y appears to be first decreasing and then increasing within
its range. If successive differences in smoothed Y values obey the regular
expression (−)+(+)+, the function returns True; otherwise it returns False.
The default low setting of parameter s (identical in purpose to the one for
Concavity) produces less smooth values and more frequent False results.

NextCoef(f, direction, cstep) and NextOrder(f, direction, estep).
Rules that iterate over several guesses require an oracle to supply the next
guess. Our implementation constructs functions f(x) = axb for positive ra-
tionals a and b. NextCoef changes a according to direction (up or down) and
the cstep size. If a decrement of size cstep would give a negative coefficient,
then cstep is reset to cstep/10 before decrementing. NextOrder changes the
exponent b according to the estep size. In our tests the default estep is .001
for all but one rule, and the initial cstep value is .01.
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The remainder of this section presents a “justification” for each rule in
the form of a family of functions for which the rule is guaranteed to produce
correct results.

5.4.1 Guess Ratio

To justify the Guess Ratio (GR) rule, let the set FGR contain functions of
the form f(x) = a1x

b1 + a2x
b2 + · · · + atx

bt , with rationals ai positive, and
rationals bi such that b1 > 0, bi ≥ 0, and bi > bi+1. Let the guess function be
of the form f̄(x) = xb. Then the ratio f(x)/f̄(x) has the following properties:
(1) When f1(x) ∈ O(f̄(x)), the ratio decreases to a nonnegative constant as
x increases; (2) When f1(x) �∈ O(f̄(x)) the ratio eventually increases and has
a unique minimum point at some location xr. If xr > 0, then the ratio shows
an initial decrease followed by an eventual increase. These properties are
established by an application of Descartes’ Rule of Signs [5.44] which (when
extended from polynomials to functions in FGR having rational exponents
and coefficients) bounds the number of sign changes in the derivative of the
ratio.
The Guess Ratio rule exploits this property by guessing a function f̄(x)

and examining the ratio obtained for the finite sample X,Y . If a plot of X vs
Y/f̄(X) shows an eventual increasing trend (perhaps with an initial decrease
at low X values), then case (2) must hold. If only a decrease is observed in
the plotted values, then cases (1) and (2) cannot be distinguished.
The Guess Ratio rule begins with a constant guess function f̄(x) = x0,

and increments the exponent b using the NextOrder oracle, iterating until
the ratios Y/f̄(X) do not appear to eventually increase. The Trend oracle
is used to determine whether the ratios increase. The largest guess f̄ ′(x)
for which an eventual increase is observed is reported as a “greatest lower
bound” on the target f(x): thus this rule always generates a lower claim that
f(x) = Ω(ḡl(x)), using the estimate ḡl(x) = f̄ ′(x).
When f(x) ∈ FGR and k ≥ 2, the correctness of GR can be guaranteed

simply by defining “eventual increase” as Y [k − 1] < Y [k] (recall that k is
the size of X). However our implementation uses the Trend oracle (which
calculates the correlation coefficient) for this test because of possible random
noise in Y . Thus for any data set (X,Y ) and for our Trend oracle, the rule
must eventually terminate, but cannot be guaranteed correct.

5.4.2 Guess Difference

The Guess Difference (GD) rule also iterates over several guess functions
f̄(x), evaluating differences f̄(X) − Y rather than ratios. It produces an
upper rather than a lower bound estimate.
This rule is guaranteed correct for the set FGD which contains functions

f(x) = cxd + e where c, d and e are positive rationals, by the following
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argument. Let the guess function have the form f̄(x) = axb, and consider
the difference curve f̄(x) − f(x). When f̄(x) �∈ O(f(x)), this curve must
eventually increase (when x is “large enough”), and it must have a unique
minimum at some location xd. Also, note that xd is inversely related to the
coefficient a in the guess: for large a the difference curve increases everywhere
(xd = 0), but for small a there might be an initial decrease at small x. In the
latter case we say the curve has the DownUp property.
The GD rule starts with an upper bound guess f̄(x) = axb and searches for

a difference curve having the DownUp property by adjusting the coefficient
a. If a DownUp curve is found, the rule concludes that f̄(x) overestimates the
order of f(x), so it decrements the exponent b and tries adjusting a again.
The lowest b for which the rule finds a DownUp curve is reported as a “least
upper bound” found. Thus if the rule stops at f̄ ′(x) = a′xb

′
, it reports an

upper bound f(x) = O(ḡu(x)) with ḡu(x) = xb
′
.

Using an analysis similar to that for GR, we can show that when f(x) ∈
FGD and X is fixed and when k ≥ 4, then there exists an a such that
f̄(X)− f(Y ) will have the DownUp property. If the rule is able to find the a
that produces a DownUp curve in its finite sample, then the upper bound it
returns must be correct. In our implementation, if the rule is unable to find
an initial DownUp curve within preset limits on iteration, the rule stops and
reports the original guess provided by the user.
Note that Guess Difference rule cannot be guaranteed correct for functions

from FGR (defined for the Guess Ratio rule), because these functions may
have several non-constant terms. If t is the number of terms in f(x), and if
f̄(x) over-estimates the order of f(x), then the difference curve f̄(x)−f(x) can
have at most t− 1 local minimal points (down-up-down-up-down-up) before
its eventual increase. A DownUp curve in the plot for the finite sample may
only be some initial fluctuation at small x, and it is not necessarily the case
that f̄(x) overestimates f(x).

5.4.3 The Power Rule

Power Rule (PW) modifies a standard data analysis technique for fitting
curves to data. Suppose that the set FP contains functions f(x) = cxd for
positive rationals c and d. Let y = f(x). Applying the logarithmic transfor-
mation x′ = ln(x) and y′ = ln(y), we obtain y′ = dx′ + c. Now y′ is linear in
x′, and the slope obtained by a linear regression fit of x′ to y′ is equal to d,
the exponent in the original function.
The Power Rule applies this log-log transformation to the data sets X and

Y and then reports d, the slope of a linear regression fit on the transformed
data. Since we are interested in bounds rather than fits, the Concavity oracle
is applied to residuals from the linear regression fit. If the residuals appear to
be concave upward, then the rule concludes that the data is growing faster
than the fit, and returns a “lower” bound claim. If the residuals are concave
downwards, the the rule returns “upper.” If the residuals do not meet the
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convexity criteria for these two claims, the oracle returns “neither” and the
Power Rule returns “close.”
If Y = f(X) and f(X) ∈ FP then the Power rule finds the exponent d

exactly. If Y is a random variate such that Y = f(X) ·ε and the random noise
component ε obeys standard assumptions of independence and lognormality,
then confidence intervals on the estimate of d can be derived by standard
techniques (see [5.33] for details).

High-End Power Rule (PW3). When f(x) contains low-order terms
(such as axb + e), the log-log transformed points do not lie on a straight
line. In this case, a linear regression using only the transformed points at the
j highest X values might give a better asymptotic bound than one using all
k points. The PW3 variation on the Power Rule applies the Power rule to
the three highest data points corresponding to X [k− 2], X [k− 1], and X [k].

Power Rule with Differences (PWD). The differencing variation on the
Power rule attempts to straighten out plots under log-log transformation by
removing constant terms. This variation can be applied when theX values are
chosen such that X [i] = ∆ ·X [i−1] for a positive constant ∆ (for example, if
∆ = 2 then the X values are obtained by successive doubling. This variation
applies the Power rule to successive differences in adjacent Y values, rather
than to Y values alone.
To justify this rule, suppose FPWD contains f(x) = cxd + e where c, d

and e are positive rationals, and let Y = f(X). Set Y ′[i] = Y [i + 1] − Y [i]
and X ′[1..k − 1] = X [1..k − 1].
Then we have

Y ′[i] = f(X [i+ 1])− f(X [i])
= cX [i+ 1]d + e− cX [i]d − e

= c(∆X [i])d − cX [i]d

= c(∆)dX [i]d − cX [i]d

= X [i]d(c∆d − c)

Now Y ′ = c′X ′d: that is, the exponent is the same as in the original, there
is a new coefficient, and the constant e has been removed. The Power rule is
then applied to Y ′ and X ′ in order to bound the exponent d. If f(x) ∈ FPWD,
Y = f(X) and k > 4, then the PWD rule is guaranteed to find d exactly.
Note that it is straightforward to extend this result to show that taking

differences on Y twice will remove a logarithmic term.

5.4.4 The BoxCox Rule

To generalize the power rule, a standard approach in curve-fitting is to find
transformations on Y or on X , or both, that produce a straight line in the
transformed scale, and then to invert the transformation to obtain an estimate
of the original curve. For example, if Y = X2, then a plot of X vs

√
Y would
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produce a straight line, as would a plot of X2 vs Y . One difficulty with the
general approach is that it can be hard to find a good statistic to compare
the quality of different transformations because the transformation changes
the scale of the data points.
The Box-Cox ([5.1, 5.10]) curve-fitting method applies a transformation

on Y that is parameterized by λ, and defines a “straightness” statistic that
permits comparisons of transformations across different parameter levels. The
transformation is as follows:

Y (λ) =




Y λ−1
λȲ λ−1 if λ �= 0

Ȳ ln(Y ) if λ = 0

where Ȳ is the geometric mean of Y , equal to exp(mean(ln (Y ))). The
“straightest” transformation in this family minimizes the Residual Sum of
Squares (RSS) statistic which is calculated from X and Y λ.
Our BC rule iterates over a range of guesses f̄(x) = xb generated by the

NextOrder oracle (with the range specified by the user). The rule evaluates
Y (λ) with λ = 1/b at each iteration, and the b′ that produces the minimum
RSS statistic is returned as the complexity class estimate ḡ(x) = xb

′
. The

Concavity oracle is then applied to residuals from the linear regression fit
under the transformation, to determine the type of bound claimed (upper,
lower, close).
When f(x) = FPW , Y = f(X), k > 2, and when NextGuess oracle

includes f(x), this rule is guaranteed to finds the function exactly. With
standard normality assumptions about an additive random error term, it is
possible to calculate confidence intervals for the estimate on exponent b: see
[5.1] or [5.10] for details.

5.4.5 The Difference Rule

The Difference heuristic extends Newton’s divided difference method for
polynomial interpolation (see [5.40] for an introduction) This method cal-
culates Y 1 = diff(Y )/diff(X), where diff(Y ) denotes the differences be-
tween successive values in Y (and is therefore of length k − 1), and X1 =
X [1 . . . k−1]. If after d such calculations the resulting Y d values are all equal,
then we can conclude that f(x) is a polynomial of degree d.
The extension used here applies when when Y contains random noise and

nonpolynomial terms. The method iterates numerical differentiation on X
and Y until the data “appears to be non-increasing,” according to the Trend
oracle. The number of iterations d required to obtain this condition provides
an upper bound guess ḡ(x) = xd. If f(x) is a positive increasing polynomial
of degree d, and if k > d, and Y = f(X), then this method is guaranteed
correct. Much is known about numerical robustness, best choice of design
points, and (non)convergence when k ≤ d.



5. Using Finite Experiments to Study Asymptotic Performance 111

5.4.6 Two Negative Results

A basic requirement is that a curve-bounding heuristic be internally con-
sistent. For example, it should not be possible to reach the contradictory
conclusions “Y is growing faster than X2” and “Y is growing more slowly
than X2” on the same data set, merely by applying variations on the heuris-
tic rule. Surprisingly, two plausible approaches included in our initial study
turned out to have exactly this failure.
The first, perhaps the most obvious approach to the problem of bounding

empirical curves, is to use general (nonlinear) regression to fit a multi-term
function f̄(x) to the data set. The leading term of f̄(x) would provide the
complexity class estimate, and the curvature of the residuals from regression
analysis would provide the upper/lower bound claim.
Several general regression methods are known in the literature. These

methods can be viewed as simple types of heuristic search, where a “step”
from the current model f̄i(x) to the next involves the addition or removal (or
both) of an additive term, and the objective function (to be minimized) is a
goodness-of-fit statistic such as the residual sum of squares (RSS).
In preliminary tests we found the RSS to be woefully inadequate for curve-

bounding problems, in the sense that the statistic was quite oblivious to how
close the leading term of f̄(x) was to that of true function f(x). Nor were we
able to discover a substitute statistic that could distinguish between a variety
of guesses having different leading terms. As a result, when experimenting
with this general regression method there was no sense of “convergence”
towards a correct answer, and our “final” results were primarily artifacts of
the stepping rule applied during the heuristic search. It seems an interesting
problem for future research to determine whether general regression can be
adapted to the curve-bounding problem.
The second approach is based on Tukey’s [5.42] “ladder of transformation”

technique, by which the X or Y values (or both), are transformed according
to functions along the scale

. . . x−1, x−1/2, log(x), x1/2, x1, x2 . . . ,

until the transformed data appears as a straight line. The best transformation
on X , or inverse of the best transformation on Y , produces the asymptotic
bound g(x).
We implemented two versions of this approach, one which systematically

applies transformations to Y , and one which transforms X . The straightness
of each transformation was assed by the RSS statistic with respect to a linear
regression on the transformed data; the upper/lower bound was determined
by the Concavity oracle (or by visual inspection).
Our preliminary investigation showed that this approach frequently gives

contradictory results depending on whether the transformation is applied
to Y or X . The problem is that the correct transformation for the leading
term of f(X) can be difficult to find when a large (or even moderately-sized)
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second-order term is present, and the importance of the second-order term
varies considerably depending on whether Y or X is transformed. In our
early tests these two rules frequently gave contradictory bound claims, such
as both Ω(x2.2) and O(x1.8).
As a result of these early failures, these two approaches were abandoned

prior to the developement of the designed experiments, and are not consid-
ered further here. Note that the BoxCox curve-fitting method can be seen
as a formalization of Tukey’s transformation ladder (restricted to Y trans-
formations), and some of the difficulties that we observe for BC may have
similar foundation.

5.5 Experimental Results

The rules have been implemented in the S language [5.5], which is supported
by the Splus software package designed for statistical and graphical computa-
tions. The main set of experiments were carried out on a Sun SPARCstation
ELC, using functions running within Splus; some supporting experiments
were conducted using the Lisp-based CLASP statistical/graphics package.
Timing statistics would be very misleading in this context and are not re-
ported in detail.
Roughly, however, the three Power rules required a few microseconds, and

two of the iterative rules (Guess Ratio, BoxCox) usually took no more than
a few seconds per trial (each trial corresponding to around 20-50 iterations
of guess function generation). The Guess Difference rule iterates over two
parameters (e and c), and was significantly slower than the other iterative
rules; therefore a coarser estep value in the NextOrder oracle (0.01 instead of
0.001) was adopted to produce comparable wall clock times for this heuristic.

5.5.1 Parameterized Functions

The first experiment uses constructed functions f(x) = axb+cxd, with b > d,
with a positive, and with no randomization. To illustrate the sensitivity of
the rules to low-order terms that may dominate at small x, this experiment
varies the relative magnitudes of a to c and of b to d. Here the input vector
X is small, containing powers of two ranging between 16 and 128.
Note that all of the successful examples in Section 5.3 use much larger

problem sizes than are presented here. At any given maximum problem size,
any curve-bounding rule will have no difficulty detecting asymptotic trends
on “easy” functions having b >> d and a > c. Similarly, any curve-bounding
rule will fail on “hard” functions with b ≈ d and/or a < c. The goal of this ex-
periment is to “stress” the rules and find the limits of successful applicability
by using and difficult test functions for the given problem sizes.
To that end, the parameter values used in this experiment were selected

(from the enormous space of possible combinations) after several weeks of



5. Using Finite Experiments to Study Asymptotic Performance 113

informal testing in order to locate the boundaries between easy and hard
functions and problem sizes vfor these rules. Each parameter is allowed to
vary within a range that causes some rules to move from success to failure.
Curve-bounding rule that fail here will also tend to fail on harder functions
and/or smaller problem sizes.
The exponent b takes three values [0.2, 0.8, 1.2]. Our initial exploration

suggested that functions with exponents above two are generally quite easy
to bound. Also, many open problems of interest to algorithm analyzers involve
functions with exponents below two (see Section 5.3). Non-integer exponents
were chosen here to avoid “lucky guesses” in our parallel tests using human
oracles (since people tend to start guessing with integers). Similarly, the fixed
coefficient a = 3 was chosen because people tend to guess one and ten first.
For each b value the second exponent d is set to [0, 0.2, b−0.2], subject to

the restriction that d < b. The zero provides a constant second term, the 0.2
gives a second term which is “small” compared to b, and the third exponent
is “near” b. For d = 0, the constant c is set to 104, and when d > 0 the
coefficient c takes values from [1,−1, 104] (small, negative, and large).
Figure 5.5 presents raw results from an experiment using all combinations

of b, c, and d described above, plus three extra tests identified as functions
1, 2, and 11 (to illustrate some observations made below). In function 11 the
constant 106 is added to ensure that all y values are positive, because some
rules cannot handle negative y values.
The table shows the leading exponents that were returned by the rules. On

functions 1 through 3, the correct exponent is 0.2; on functions 4 through 11 it
is 0.8; and on functions 12 through 17 the exponent is 1.2. The notations (l, u)
indicate the type of bound reported by the rule, either lower or upper. These
numerical results have been rounded to two decimal places – lower bounds
were rounded down, and upper bounds were rounded up. An underline marks
a bound that is incorrect. A *marks a case where the heuristic failed to return
an answer, usually because of lack of convergence.
Many intriguing observations arise.
The Guess Ratio (GR) rule, possibly the most widely-used curve-bounding

technique in the folklore, performs surprisingly poorly. While it is frequently
correct and close, it never dominates the three Power rules, and it always
fails on functions having negative second terms (6, 9 and 16), even when the
magnitude of the second term is small. This rule begins with a low guess
function and iterates, increasing guesses, until the Trend oracle reports the
ratio is “not increasing.” With a negative second order term, the true func-
tion approaches its asymptote from above, which fools the oracle. A more
sophisticated termination test might reduce this problem; but on the other
hand we note in Section 5.6.1 that using a human to provide the termination
test gives worse results in general.
Note that GR tends to “track” large positive second terms, producing

correct, but less tight bounds, when the second term dominates the data.
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Function GR GD PW PW3 PWD BC DF
1 3x0.2 + 1 0.17l 0.24u 0.17l 0.17l 0.20u 0.17l 1u
2 3x0.2 + 102 0.01l 0.24u 0.01l 0.01l 0.20l 0.01l 1u
3 3x0.2 + 104 0.00l 0.24u 0.00l 0.00l 0.20l * 1u
4 3x0.8 + 104 0.00l * 0.00l 0.00l 0.80l * 1u
5 3x0.8 + x0.2 0.77l * 0.77l 0.78l 0.79l 0.79l 1u
6 3x0.8 − x0.2 0.82l * 0.83u 0.82u 0.81u 0.81u 1u
7 3x0.8 + 104x0.2 0.20l * 0.20l 0.20l 0.20l 0.20l 1u
8 3x0.8 + x0.6 0.77l * 0.77l 0.77l 0.77l 0.77l 1u
9 3x0.8 − x0.6 0.83l 0.88u 0.85u 0.84u 0.83u 0.81l 1u
10 3x0.8 + 104x0.6 0.60l * 0.60l 0.60l 0.60l 0.60l 1u
11 3x0.8 − 104x0.6

+106 -0.01l * -0.06u -0.09u * * 0u
12 3x1.2 + 104 0.03l 1.3u 0.03l 0.05l 1.2l * 2u
13 3x1.2 + x0.2 1.18l 1.22u 1.18l 1.19l 1.19l 1.2u 2u
14 3x1.2 + 104x0.2 0.21l * 0.21l 0.22l 0.26l 0.23l 1u
15 3x1.2 + x1 1.17l 1.3u 1.17l 1.17l 1.17l 1.18u 2u
16 3x1.2 − x1 1.23l 1.27u 1.25u 1.24u 1.24u 1.22l 2u
17 3x1.2 + 104x1 1.00l * 1.00l 1.00l 1.00l 1.0l 1u

Fig. 5.5. Parameterized nonrandom functions. The numbers indicate the leading
exponents returned by the rules. The notations l, u, indicate whether a lower or
upper bound was returned. These numbers have been rounded to two decimal
places – lower bounds were rounded down and upper bounds were rounded up. An
underline marks a bound that is incorrect. The starred entries (*) mark cases where
the rule failed to return a result

On functions 1, 2, and 3, for example, the bound actually decreases as the
constant term becomes more important. Similarly, functions 3, 4, and 12 have
the same constant second term, and in these three cases the bound returned
by GR fails to follow the leading exponent. Finally, notice that performance
deteriorates with respect to the function pairs (5 and 7), (13 and 14), and
(15 and 17), which differ only in the coefficient on the second term.
The Guess Difference (GD) column contains several starred entries that

mark cases where the rule failed to find an initial DownUp curve. In cases it
returned the user-supplied starting guess, which was either 1x1 (functions 1
through 11) or 1x2 (functions 12 through 17). It appears that the performance
of GD is quite sensitive to the choice of initial guess and step sizes: further
exploration here suggests that the failures in functions 4 through 11, for
example, are caused by an initial guess 1x1 that is too close to the true
function 3x0.8. A higher initial guesses does allow the rule to get started and
to find a tighter bound. Function 14 represents a different kind of failure – in
this trial the GD routine was canceled after about 60 minutes of processing, at
which time it was working on a guess of 1502.2x0.56, approaching the second
order term from above.
However, when GD is able to get started, its estimates are surprisingly

tight – much better than other rules in some cases. GD shows less sensitivity
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to large second terms than does GR, but the rule is not impervious to second-
order interference, as function 14 indicates.
The Power rules are close to one another, and also surprisingly close to GR

in performance. However unlike GR, the three Power rules remain correct on
functions 6, 9 and 16 (with negative second terms) by switching from “lower”
to “upper” bound claims. Both PW3 and PWD give slightly tighter bounds
than PW. Not only does PWD successfully eliminate the constant terms,
producing exact bounds in functions 1–4 and 12, but it is slightly better than
PW and PW3 even when the second term is not constant.
The BC rule returns bounds similar to those for GR and the Power rules.

This rule provides very competitive bounds when it works, but it fails to
converge on functions 3, 4, 11, and 12. These functions have a very large con-
stant as a second term: it turns out that the failure of BC here is an intrinsic
property of the λ transformation. That is, if the data is nearly constant, then
the “straightest” transformation, having minimum RSS value, is obtained by
the transformation Y 1/b with b = 0. The rule iterates towards ever-smaller b
values until the calculation of 1/b produces a numeric error.
Large increasing second terms (functions 7, 10, 14, 17) present no such

termination problems for BC, although the rule does tends to track the second
term. On functions 9, 15, and 16 the bound is incorrect although the estimate
is close to those obtained by other rules. This appears to be due to interactions
between the λ transformation and our Concavity function.
As is the case with PWD, the differencing operation performed by the

DF rule eliminates the effect of large constant terms. Recall that this rule
can only return integer exponents, which are often correct but rarely close to
the selected functions. This rule fails on functions 11, 14, and 17.
Function 11 is disasterous for all the rules because the large negative sec-

ond term causes Y to be decreasing within its range. As a general rule, these
rules do not work well on functions that are decreasing or even temporarily
decreasing within their range.

Increasing the Largest Problem Size. The obvious remedy to the prob-
lem of a dominant second-order term is to use larger problem sizes. The
second experiment uses functions identical to those of the previous section,
but X takes values at powers of two in the range 8 . . . 256 rather than 8 . . . 128
thereby doubling the largest problem size.
The results in Figure 5.6 are very similar to those in in the previous

chart, suggesting that in general the rules respond very slowly to changes in
the largest input values. In particular, doubling the largest problem size has
very little effect on the bounds returned by Guess Ratio and the three Power
Rules. The observed changes in estimates were generally only in the third or
higher decimal places, and incorrect bounds remain incorrect.
The Guess Ratio rule could be made more responsive to changes in prob-

lem size if a different Trend oracle were used to provide the stopping condi-
tion: instead of calculating the correlation coefficient, an oracle that concen-
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Function GR GD PW PW3 PWD BC DF
1 3x0.2 + 1 0.17l 0.23u 0.17l 0.17l 0.20u 0.18l 1u
2 3x0.2 + 102 0.01l 0.23u 0.01l 0.01l 0.20l 0.01l 1u
3 3x0.2 + 104 0.00l 0.23u 0.00l 0.00l 0.20l * 1u
4 3x0.8 + 104 0.00l 0.83u 0.00l 0.01l 0.80l 0.00l 1u
5 3x0.8 + x0.2 0.77l 0.82u 0.77l 0.78l 0.79l 0.79l 1u
6 3x0.8 − x0.2 0.82l 0.83u 0.83u 0.82u 0.81u 0.81u 1u
7 3x0.8 + 104x0.2 0.20l * 0.20l 0.20l 0.20l 0.20l 1u
8 3x0.8 + x0.6 0.77l 0.80u 0.77l 0.77l 0.77l 0.78c 1u
9 3x0.8 − x0.6 0.83l 0.85u 0.84u 0.83u 0.83u 0.82c 1u
10 3x0.8 + 104x0.6 .60l * 0.60l 0.60l 0.60l 0.60l 1u
11 3x0.8 − 104x0.6

+106 -0.01l * -0.07u -0.15u * * 0u
12 3x1.2 + 104 0.06l 1.22u 0.05l 0.11l 1.20l * 2u
13 3x1.2 + x0.2 1.19l 1.22u 1.18l 1.19l 1.19l 1.20u 2u
14 3x1.2 + 104x0.2 0.22l * 0.21l 0.23l 0.29l 0.25l 1u
15 3x1.2 + x0.8 1.17l 1.20u 1.17l 1.18l 1.18l 1.19u 2u
16 3x1.2 − x0.8 1.22l 1.24u 1.24u 1.23u 1.23u 1.21l 2u
17 3x1.2 + 104x0.8 0.80l * 0.80l 0.80l 0.80l 0.80c 1u

Fig. 5.6. Doubling the largest problem size. The numerical values show the leading
exponent returned by the rule. The notations l, u, c, indicate the type of bound
reported by the rule, either lower, upper, or close. These results are rounded to
two decimal places: lower bounds are rounded down, upper bounds are rounded up
and close bounds are rounded to the nearest decimal. An underline marks a bound
that is incorrect. A * marks a rule that failed to return an answer

trates on the high end of the data set might be more successful here. It is
surprising that PW3 does not respond much to the change in problem size,
because only the highest three data points are checked each time. One would
expect the new point to have much greater leverage for this rule.
The greatest improvement is found in the Guess Difference (GD) rule on

functions 4 through 9 (excepting 7). In the previous experiment the rule failed
to find an initial DownUp curve at all—now the rule is able to find an initial
curve, and iterate to find upper bounds within 0.05 of the true exponent.
The BC rule also shows some very slight improvement: in two cases the rule
produces close bound claims where previously the claim had been incorrect.
It is a problem for future research to how best to design rules that respond

to significant changes in problem sizes. For now, it remains important in
any algorithmic experiment to obtain results using the largest problem sizes
possible, especially when the underlying function has low exponents.

Adding Random Noise. The previous two experiments use functions with
no random noise in the data. In the third experiment we add a random term
to three functions (1, 5, and 13) that were easy for all rules, to learn how
rule performance degrades with increased variance. We let Y = f̄(X) + εi
with i = 1, 2, 3. The random variates εi are drawn independently from a
normal distribution with mean 0 and standard deviation set to constants 1
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(i = 1) and 10 (i = 2), and to the function means f̄(X [j]) (i = 3). We ran
two independent trials for each i, in order to check for spurious positive and
negative results. A table of results appears in Figure 5.7.
Not surprisingly, the quality of results returned by all rules degrades as

dramatically as random variation increases. The replication of tests in each
category demonstrates that many correct bounds are in fact spurious. Con-
versely, of course, rule performance improves when variance in the data de-
crease: This is good news for experimentors because is often possible to reduce
variance in experimental data, either by increasing the number of trials or
by applying one of several variance reduction techniques known in the liter-
ature (see [5.25]). Note that variance is less of a problem when the first term
exponent is large enough.
The GR rule responds strangely to random data, returning negative

bounds and lower bounds of 2.98 and even 25.7 [sic] on these functions. Not
surprisingly, PW3 is frequently wrong – when random variation is present,
it seems wise to make use of all the data, rather than just part of it. As

Function GR GD PW PW3 PWD BC DF
3x0.2 + 1 0.173l 0.23u 0.17l 0.17l 0.2c 0.18l 1u
3x0.2 + 1 + ε1 0.12l * 0.15c -0.00u 0.05u 0.90u 1u
3x0.2 + 1 + ε1 0.10l * 0.10c 0.34u -0.02l 0.40u 1u
3x0.2 + 1 + ε2 25.7l 0.57u 0.97u 0.67u -0.5c * 1u
3x0.2 + 1 + ε2 0.90l * 0.63c 0.40l 0.19l * 2u
3x0.2 + 1 + ε3 -0.1l * -0.01c -0.55u 0.93l 0.41c 0u
3x0.2 + 1 + ε3 -0.01l * -0.05c -0.34l 0.03c 1.00c 0u
3x0.8 + x0.2 0.77l 0.82u 0.77l 0.78l 0.79l 0.79l 1u
3x0.8 + x0.2 + ε1 0.77l 0.83u 0.77l 0.77l 0.80u 0.78c 1u
3x0.8 + x0.2 + ε1 0.76l 0.78u 0.76c 0.81u 0.77l 0.81c 1u
3x0.8 + x0.2 + ε2 0.71l * 0.75c 0.77u 0.78c 0.69c 1u
3x0.8 + x0.2 + ε2 0.69l * 0.68c 0.73l 0.89c 0.81c 1u
3x0.8 + x0.2 + ε3 1.50l * 1.34c 1.03u 0.91u * 2u
3x0.8 + x0.2 + ε3 1.08l * 1.01u -0.35u 1.98u * 1u
3x1.2 + x0.2 1.19l 1.22u 1.18l 1.19l 1.19l 1.20u 2u
3x1.2 + x0.2 + ε1 1.18l 1.22u 1.18l 1.19l 1.21u 1.20c 2u
3x1.2 + x0.2 + ε1 1.18l 1.22u 1.18l 1.19l 1.19l 1.20c 2u
3x1.2 + x0.2 + ε2 1.18l 1.22u 1.17l 1.20u† 1.19u 1.19c 2u
3x1.2 + x0.2 + ε2 1.15l 1.30u 1.14l 1.18l 1.22c 1.22c 2u
3x1.2 + x0.2 + ε3 0.10l 1.99u 1.25l 2.20l 1.83l * 1u
3x1.2 + x0.2 + ε3 2.98l 2.00u 1.58u 0.39u 0.94l 2.59u 1u

Fig. 5.7. Adding random noise. The numbers show the exponents returned by the
rules. The notations l, u, c, indicate the type of bound reported by the rule, either
lower, upper, or close. These results are shown rounded to two decimal places:
lower bounds are rounded down, upper bounds are rounded up, and close bounds
are rounded to the nearest decimal. The † marks a case where rounding changed
an originally incorrect upper bound (1.194u) to a correct one (1.2u). An underline
marks a bound that is incorrect. The starred entries (*) mark cases where the rule
failed to return a bound
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variance in Y increases, the Power and the BoxCox rules more frequently re-
turn claims of close. We do not know how to interpret these results to obtain
bounds (upper or lower) on function growth; therefore these rules may be
less useful for curve-bounding problems when large variance is present.

5.5.2 Algorithmic Data Sets

The experiment in this section applies the rules to eight data sets taken
from previous computational experiments by the first author. The data sets
were originally developed in the context of experimental research on algo-
rithms, and not for testing curve-bounding heuristics. Thus the performance
of the heuristics on these data sets may give more realistic indications of their
performance in practice. On the other hand, since these data sets are from
research problems, we don’t always know the true underlying function f̄(x),
and can’t always tell when the rules are correct.
The results appear in Figure 1.8. The left column gives the best analytical

bounds known for each function. The entries NA for PWD mark cases where
this rule was not applied because design points were not in required format
(with X increasing by constant multiples).
Data sets 1 and 2 represent the expected costs of Quicksort and Insertion

Sort, formulas for which are known exactly (see for example [5.20]). The
X values are [10, 20, 30, . . . , 1000] for Quicksort, and [10, 20, 30 . . . , 500]
for Insertion sort. These data sets were generated from the formulas with
no random noise. An experimental study of these algorithms would produce
random variation in the data, but because these algorithms are extremely
efficient it would be possible to make the variace quite small by taking large
batches of trials. For Quicksort the asymptotic leading term (i.e. the “correct
answer” is Θ(x log x); for Insertion sort the leading term is Θ(x2).
Sets 3 through 6 are from experiments on heuristics for one-dimensional

bin packing [5.6], [5.7]. In these experimentsX takes values [200, 400, 800, . . . ,
128000] (doubling each time). Set 3 shows measurements of bin count and Set
4 measures empty space, for First Fit Decreasing rule. Sets 5 and 6 show mea-
surements of empty space for the First Fit rule under two different parameter
settings. In all four cases, each Y value represents the mean of 25 indepen-
dent trials. Variance in the four data sets is, respectively, about 0.3x, 40x,
1x ,0.1x (times) the mean. The formulas shown on the left represent the best
analytical bounds known for the functions generating these data.
Sets 7 and 8 are from experiments on distances in random complete graphs

having weights drawn from a uniform distribution on (0, 1] [5.26]. In both
cases X = [200, 400, 600, . . . , 1400] and each Y value represents the mean
of 50 independent trials. In Set 7 variance is about 2x mean, and in Set 8
variance is a constant near 1000.
Contrary to experience with the constructed functions, the Guess Ratio

rule (GR) obtains a correct and tight bound when a negated second term
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Known GR GD PW PW3 PWD BC DF
1 (x+ 1)(2Hx+1−2) 1.20l 1.24u 1.23u 1.19u NA 1.18c 2u
2 (x2 − x)/4 2.00l 2.03u 3.01u 3.01u NA 2.00l 2u
3 x/2 +O(1/x2) 0.99l * 0.99l 1.00u† 1.00c 1.20c 2u
4 Θ(x0.5) 0.52l * 0.55c 0.58u 0.78c 1.00c 1u

5 O(x2/3(log x)1/2), 0.68l 0.72u 0.69c 0.69u 0.69c 0.69c 1u

Ω(x2/3)
6 y ≤ 0.68x 0.90l 1.00u 0.89l 0.95l 1.26l 0.98c 1u
7 x− 1 ≤ y

≤ 13.5x ln x 1.13l 1.18u 1.15u 1.12l NA 1.11c 2u
8 x lnx < y < 1.2x2 1.30l 1.47u 1.32u 1.20l NA 1.20c 2u

Fig. 5.8. Data from algorithmic experiments. The numbers give the leading ex-
ponents returned by the rules. The notations l, u, c, indicate the type of bound
reported, either lower, upper, or close. The numbers are rounded to two decimal
places: lower bounds are rounded down, upper bounds are rounded up, and close
bounds are rounded to the nearest decimal. The † marks a case where rounding
changed an incorrect result (0.999u) to a correct one (1.00u). An underline marks
a bound which is known to be incorrect, and * marks a case where the rule failed
to return an answer. In some cases (NA) the PWD rule was not applied because
the X values in the data did not increase by constant factors

is present (Set 2). However in four cases (Sets 1, 4, 5, and 7), GR produces
lower bound claims that violate the known bounds.
For Set 1 (and possibly for Sets 5, 7, and 8), the leading term contains a

logarithmic factor, which is not generated by our NextOrder function. From
additional tests that include logarithmic terms as guess functions, we observe
that none of the rules is able to distinguish logarithms from low-order expo-
nents such as x0.2 with any degree of reliability. Since logarithms do tend to
occur in many algorithmic research problems, it would be useful to develop
some techniques that can be applied specifically to this problem.
The Guess Difference rule and the Power Rules rarely violate known

bounds on the data sets, although without better analyses it is impossible to
tell whether the rules are correct in all cases. Note that BC nearly always re-
turns a “close” report, which is very difficult to evaluate. Interestingly, every
incorrect bound produced by these rules is a lower bound.
Data Sets 5 through 8 have gaps between the known lower and upper

bounds. In these cases we might hope that the heuristic rules can provide
some insight to direct future analytical research: does the upper bound need
to be lowered, or does the lower bound need to be raised (or both)?
In Sets 5 and 7, the (log x)0.5 and c log x gaps are too small to be dis-

tinguishable by these rules. In Set 6, however, the rules provide consensus
support for a conjecture that the true function f̄(x) is closer to linear Θ(x1)
than, say, to a square-root function Θ(x0.5). In Set 8 the results are even
stronger. Given the above observation that logarithmic terms tend to be in-
distinguishable from terms near x0.2, we have much greather support for a
conjecture f̄(x) = Θ(x log x) than than f̄(x) = Θ(x2) although the true an-



120 Catherine McGeoch et al.

swer may be somewhere in between. (In this case there is external supporting
evidence that the lower bound is tight.)

5.6 A Hybrid Iterative Refinement Method

In our informal explorations and designed experiments with little or no ran-
dom noise in the data, all the rules generally can get within a linear or
sometimes

√
x factor of the exact bound, except when they become “fooled”

by very large second-order terms. It is possible to reduce the effect of large
second-order terms by taking larger problem sizes, but the rules are surpris-
ingly slow to respond to this type of change. In this section we describe a
hybrid rule which appears to be very robust with respect to large second
terms.
The hybrid rule incorporates an iterative diagnosis and repair technique

that combines the existing heuristics to produce improved guess function
modes. The technique is designed to find upper bounds for functions of the
form axb+ cxd with rational exponents b > d ≥ 0 and real coefficients a � c.
This method represents a departure from our approach up to now: The earlier
methods were intended to be general, but this one is specific to functions
with relatively large coefficients on low order terms. This suggests a new role
for the methods we have discussed so far: Instead of using them to guess
at the order of a function, they can provide diagnostic information about
the function (e.g., whether a � c), and then more specific, purpose-built
methods, designed for particular kinds of functions, can estimate parameters.
To illustrate this new approach, we developed a three-step hybrid method

for functions of the form f̄(x) = axb + cxd;

1. Apply a discrete derivative (the Difference rule) to the datasets, in order
to find the integer interval of the exponent b.

2. Refine the guess for the exponent using the Guess Ratio rule. We start
with the known upper and lower bound for the exponent, u and l. At each
step we consider the model x(u+l)/2 by plotting x against y/x(u+l)/2. If
the plotted points appear to be decreasing, then (u+l)/2 is overestimating
the exponent, and we replace u by (u+ l)/2. If the points are increasing,
then l will be replaced. The estimates are refined until u and l get within a
desired distance ε of each other. At this point, if the dataset y/x(u+l)/2 has
a DownUp feature, then we know that function f̄ must have a relatively
high coefficient c on a low order term. This diagnosis invokes the next
step.

3. If, as we suspect, the current result is tracking a low-order term with
a high coefficient, then this term will dominate f̄ for small values of x.
Thus we can approximate the upper bound for small x’s to be cxd. Let
(x1, y1) and (x2, y2) be two points from the beginning part of the curve.
If we consider that y1 ≈ cxd1 and y2 ≈ cxd2, then d can be approximated
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by log y1−log y2
log x1−log x2

, and c is y1
xd
1
. Now we can correct the model using these

estimates, in order to make the high-order term appear. For all points
(x, y), we transform y into y

xd − c. Now we can apply the same procedure
as above to find the a and b parameters, assuming that y ≈ axb. In this
case, though, we use for our estimates two points that have high values
of x, as the influence of the high-order term is stronger for these points.

This technique illustrates a way in which models can be improved by
generating data and comparing it against the real values to obtain diagnostic
information (step 2), which suggests a method specific to the diagnosis—
in this case, a method specific to functions with large coefficients on low
order terms. (We envision similar diagnostics and methods for functions with
negative coefficients, but we haven’t designed them, yet.)
The results of this method are found in the columns labeled HY in Figures

1 and 2. The results are tight upper bounds when f̄ does in fact contain a
low order term with a large coefficient (functions 7, 10, 11, 14, and 17 in
Figure 5.5). In fact, these bounds are tighter than those returned by the other
methods, and, remarkably, this hybrid method estimates coefficients and low
order exponents very well. When the functions do not contain low order terms
with large coefficients, the bounds returned by this method remain correct
but they are looser than those given by other methods. Interestingly, this
situation is often indicated by very low estimated coefficients on the high
order terms; for example, in funtion 1 (Fig. 1), the coefficient of the first
term is 0.03. The only cases when the technique fails are those in which
negative coefficients appear in the low-order terms. The failure is probably
due to the sensitivity of the Guess Ratio heuristic to such circumstances. This
new method was also tested on noisy datasets but the noise had negligible
effects. The new method used different oracles and different implementations
of oracles from the previous methods, which might account for the relatively
robust performance. Or, the small effects of noise might be due to a different
method for sampling data from the given functions. Clearly, the effects of
noise on these methods are still poorly understood.

5.6.1 Remark

In our informal and designed experiments with little or no random noise in
the data, all the rules generally can get within about a

√
x factor of the

exact bound, except when they become “fooled” by large or negative-valued
second-order terms. It is possible to reduce the effect of large second-order
terms by taking larger problem sizes, but the rules are slow to respond to
this type of change. The hybrid diagnostic method described in Section 5.6
can be used with success on such problems.
On data from algorithmic research problems, the rules can return results

within a factor of x and sometimes less (of the correct answer when it is
known, and of one another when it is not known). The rules are not reliable
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in distinguishing low-order and logarithmic factors (this holds even when
logarithms are added to the NextOrder oracle). Thus while the simple rules
applied here provide fairly reliable conjectures to guide future analytical re-
search when the known bounds are separated by at least a linear factor, more
sophisticated approaches (or perhaps better data sets) are necessary if finer
distinctions are needed.
It is sometimes possible to improve the data sets to obtain more reliable

results. Although the rules do not much respond when the largest problem
size is doubled, they do seem to be very responsive to reductions in data
variance. This is good news for algorithm analyzers, since variance can be
reduced by taking more random trials, and trials are easier to get when Y
grows slowly: the situations where small variance is most needed are those
situations where small variance is easiest to obtain.
Can Humans Do Better? We have preliminary results concerning inter-
active uses of the rules. In one experiment, the fourth co-author was given
the 25 data sets presented here, without any information about their prove-
nance, and was allowed to use any data analysis approach available in the
powerful CLASP library. The human was more frequently incorrect than any
of the implemented rules, and the human/machine interactions took much
more time to accomplish.
A second experiment involved strict application of the heuristic rules, but

with a human oracle (the first co-author) who was familiar with the eight
algorithmic data sets. Here also, interactive trials required much more time
to perform than did the offline versions (on the order of a few hours rather
than a few seconds). Very preliminary results indicate that: the GR produces
worse (less close) bounds with a human Trend oracle; the human Concavity
oracle tends to agree with the implemented one when used by the Power rules
(no change in performance); a human-interactive version of the GD rule is
more successful at finding initial DownUp curves (leading to more frequent
success), but is not able to find tighter bounds for this rule in general; and an
interactive BoxCox can be used to provide upper/lower bounds that bracket
the estimate, thus avoiding the “close” and errorneous bounds returned by
the implemented version.

Removing Constant Terms. In many applications it may be possible to
remove a constant from Y before analysis, either by testing with x = 0
or by subtracting an estimated constant. Our preliminary results suggest
that subtraction of a known constant uniformly improves all the rules, but
subtracting an estimated constant gives mixed results.

Rule Variations. It is a problem for future research to implement and
evaluate the many variations on the oracles and the iterative rules GR, GD,
and BC. The Guess Ratio rule would probably be improved by a Trend
oracle that is robust with respect to negated second terms. Indeed, it is likely
that much more sophisticated oracle functions than our simple ones can be
developed.
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The Guess Difference rule appears to be very sensitive to the initial
function and to the granularity of the step functions in the NextOrder and
NextCoefficient oracles. So far we cannot find any pattern for this sensitivity.
It does seem clear that when an initial guess is too close to the answer, GD
fails to find an initial DownUp curve. This rule might be greatly improved by
addition of a heuristic search mechanism. Also, we might give the iterative
rules fewer options to choose from. The BoxCox rule sometimes improves
with coarser step size (because the best transformation gives an exponent
somewhere the first and second terms). When the fit is close, however, the
BC rule can make erronous bound claims. Thus the rule’s goal of finding the
best fit works at odds with the goal of finding a reliable bound. The bounds
returned by GR and GD nearly always improve when step size decreases. The
PWD might be improved by taking differences more than once; one promising
idea is to take differences until the data appears concave downwards.

5.7 Discussion

We have seen different aspect of the problem how to identify asymptotic
behaviour from experiments. Sections 5.4–5.6 provide us with a few rather
general semi-automatic tools for this purpose but also with plenty of examples
where these rule do not work.
More successful is the more specific approach based on the scientific

method discussed in Section 5.3. But in what sense are these examples “suc-
cessful”? Assume that using the scientific method we have found an experi-
mentally well supported hypothesis about the running time of an important,
difficult to analyze algorithm. How should this result be interpreted? It may
be viewed as a conjecture for guiding further theoretical research for a math-
ematical proof. If this proof is not found, a well tested hypothesis may also
serve as a surrogate. For example, in algorithmics the hypotheses “a good
implementation of the simplex method runs in polynomial time” or “NP-
complete problems are hard to solve in the worst case” play an important
role. The success of the scientific method in the natural sciences — even where
deductive results would be possible in principle — is a further hint that such
hypotheses may play an increasingly important role in algorithmics. For ex-
ample, Cohen-Tannoudji et al. [5.13] (after 1095 pages of deductive results)
state that “in all fields of physics, there are very few problems which can
be treated completely analytically.” Even a simple two-body system like the
hydrogen atom cannot be handled analytically without making simplifying
assumptions (like handling the proton classically). For the same reason, ex-
periments are of utmost importance in chemistry although there is little doubt
that well known laws like the Schrödinger equation in principle could explain
most of chemistry.
Of course, no tool is perfect, and the hazards of extrapolating from ex-

perimental data to find reliable asymptotic bounds can not be ignored. Our
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study of five simple heuristic strategies (with variations) suggests that any
of the approaches can produce a correct asymptotic bound within an order
of magnitude when the data set is well-behaved: that is, when there is very
little random noise in the y-values, and when the largest problem size is large
enough to overcome “noise” due to large constant factors in low order terms.
However, when the research problem requires inferences about bounds

that are more finely-tuned than one order of magnitude (for example, whether
a function grows as O(n) vs O(n log n), or whether a root-n factor is present),
the five rules become unreliable, especially when the quality of data deterio-
rates. The rules are quite sensitive to random variation in the y-values, and
somewhat less sensitive to changes in the largest problem size.
In these types of experimental situations, then, the extrapolation tech-

niques described here must be used with caution, and/or steps must be taken
to improve the quality of the data obtained from the experiment. Fortunately,
in many algorithmic research problems it is easy to reduce variance in the
experimental data by taking more experiments or by applying variance re-
duction techniques. It does appear to be an important component of good
experimental practice to set problem sizes as large as possible, so as to over-
come any possible interference from low order terms.
It is an interesting open research problem to develop better and more

sophisticated strategies for obtaining reliable asymptotic inferences from al-
gorithmic experiments.
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Summary.

There is an upcoming need for World Wide Web portal sites to fa-
cilitate access to resources for specific research communities. The portal
site described in this paper provides a testbed functionality besides addi-
tional information resources that are of interest in the research in Binary
Decision Diagrams (BDDs). In the last decade, BDDs have proven to be
the state-of-the-art data structure in computer aided design of integrated
digital circuits. To assess the strengths and weaknesses of manipulation
algorithms for BDDs, benchmark calculation is one of the most important
methods in BDD-research. Due to the inherent high sensitivity of these
algorithms to the particular experimental setup it is rather difficult or
even impossible to reproduce benchmark results for comparison or for in-
dependent result verification. We have designed and implemented a WWW
based BDD-testbed that overcomes these problems and greatly facilitates
BDD algorithm comparison.

6.1 Introduction

Today the Internet offers the possibility of standardized and global communi-
cation without a need for special hardware or expensive infrastructure. While
the World Wide Web (WWW) has become the largest information resource,
esp. also for sciences and research, its inherent lack of any structure is re-
sponsible for the fact that the direct access to specific information is difficult.
Search engines are still far from indexing even large fractions of the entire
web [6.9] and even concerning the part being indexed the results of their
searches are almost unstructured. Thus, in most cases, the user is faced to
an all-or-nothing situation, where queries return even far too many hits or
none at all.

6.1.1 WWW Portal Sites for Research Communities

One solution is the recent notion of specialized “portal”-sites that organize
WWW-content into categories and in some cases grade the quality of the

c© Springer-Verlag Berlin Heidelberg 2002
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provided information. But, most portal-sites are targeted to the general pub-
lic and relatively small communities as, e.g. research communities are not
commercially interesting to the existing portals. On the other hand, research
oriented portal sites might also provide access to highly specialized research
tools available to the research community via an appropriate web interface.
Today, in computer science, experimental evaluation of algorithms result-

ing from theoretical work has become more important. This comes due to the
fact that more and more important algorithms, although having bad theo-
retical average-case properties due to their heuristic nature, perform well in
practical applications.

6.1.2 Binary Decision Diagrams

Algorithms for Binary Decision Diagrams (in particular we address Ordered
Binary Decision Diagrams, but they will be further simply referred to as
BDDs or OBDDs) are a good example for that case. In computer aided design
of very large scale integrated circuits BDDs have been established as the state-
of-the-art data structure. They are extensively used for simulation, modeling,
and verification of digital circuits, often being orders of magnitude more
powerful than other techniques. For an overview of BDD related research,
see [6.11].
But, while BDD-based methods perform well in many cases, the underly-

ing problem of representing subsets of a Boolean vector space is known to be
hard. This means that circuit descriptions given as a relatively small Boolean
formula can have an extremely large BDD representation. Unfortunately, for-
mulas and other alternative representation techniques are unsuitable for use
in computations and at present it seems that BDDs are the most convenient
representation for these purposes.
The important optimization algorithms for BDDs have exponential (time

and memory) worst case complexity, but perform still better than any al-
gorithm for alternative data structures in that particular area. To achieve
meaningful results at reasonable expenses, heuristics are applied and for most
applications they can be utilized to solve practical problems. But, the prob-
lem remains to get a meaningful assessment of the power of these heuristical
methods. And for that reason, benchmark computations for comparing the
qualities of different optimization heuristics are applied.
Algorithms for BDDs are rather sensitive to the details of the environment

that is used for experimentation. Usual research papers will state something
like ”benchmark computation was done on a UltraSparc with 512MB of mem-
ory”. While this will be adequate for some classes of algorithms and will allow
reasonable predictions for the performance on other machines, it is insufficient
for BDD benchmarking. Small details like a slightly different compiler or a
different OS version can have a large impact on BDD performance. For that
reason it is often impossible to verify published research results, sometimes
to the extend that not even the authors of a paper are able to reconstruct
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their results a year later without extensive reverse engeneering. To make the
situation even worse, BDD algorithm performance is very much dependent
on the exact nature of the computed benchmark. Performance figures for
some benchmarks do not allow a reasonable prediction of the performance
of a new heuristic for other types of benchmarks. This fact drastically limits
the usability of published benchmark results and forces research groups to
reimplement the heuristics they are interested in, in order to obtain their own
benchmark results for their setting.
To address this problem, a finely standardized experimentation platform

is required. Because of the necessary degree of accuracy, the only feasible way
to achieve this, seems to be to provide a set of identical benchmark servers,
where researchers can perform benchmark computations with their very own
benchmarks. In this way they are able to evaluate new heuristics on their
own circuits and verify other published results.
The authors have created a powerful and versatile experimentation envi-

ronment that is fit for real world use and has actually been available since
1999. This environment offers access to a number of research tools that con-
tain recent BDD algorithms. Questions of scheduling, load balancing, and
error recovery have been solved in a satisfying manner within this system. It
is embedded into a larger environment, a WWW portal site that supports
the BDD research community in other ways as well.
When researchers do real world benchmark computations on systems

other than their own, security and confidentiality questions arise. The authors
have addressed these questions by allowing the use of encoded BDDs as input
data format for benchmark computations. Because OBDDs have a canonical
structure, circuit details are hidden. The purely Boolean function represented
by an BDD is usually not a secret. Furthermore, this abstraction step does
not reduce the meaningfulness of the computation as BDD-algorithms usually
do this as a first step anyway.
An important step to gain acceptance with such an approach is the in-

clusion of methods developed by researchers other than the authors. The
current system already features several heuristic methods provided by other
researchers [6.6, 6.5, 6.2, 6.10], with the prospect that this number will grow.

6.2 A Benchmarking Platform for BDDs

When new BDD heuristics are developed, they are usually added to some
existing software package. After optimization, when a sufficient level of per-
formance is reached, the algorithm is presented to the community. Usually,
evaluation is carried out by using benchmarks from a standard benchmark
set first, for example the ISCAS 89 [6.4] set of circuits. Due to the nature of
the problem, performance both in speed and memory consumption can vary
extremely between different circuits of the benchmark. Predictions about the
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behavior of a heuristic on other circuits are extremely difficult or even impos-
sible. Because of this, there often arises the whish to allow other researchers
to use the software, to evaluate the suitability of the new heuristic applied
to their own problems.

6.2.1 To Publish Code is not Optimal

But, here the problem manifests itself. Let us consider giving away the source
code of the implemented algorithm:

– The code usually only works within the software package it was written
for.

– The code has research level quality and may still lack documentation or
even worse, contain errors.

– Due to some ideas that are not yet published, one may not want to give
away all the details of the implementation.

So, this is not an appealing option. But giving away executables means no
improvement either:

– The software has to be adapted to different platforms.
– There is need for support for every other possible platform.
– There is need to develop the software to a higher level of stability.

Another option is reimplementation of the algorithm by interested parties.
But this requires even larger effort and special experience. Almost nobody is
willing to undertake such an effort for an uncertain outcome.
Further complications arise because the published results are difficult to

reproduce as fine-tuning often is required and usually, it seems to be critical
for good results. This makes comparisons outside of the published results
extremely difficult. We think most of these issues can be addressed in a
satisfying way by providing the possibility to access the tools containing
heuristics by using the Internet.
We believe that some requirements need to be addressed to make an

Internet based solution truly usable. Ease of use is achieved by using a WWW
interface, but other aspects are important as well. The WWW Interface alone
does not automatically improve the quality of the program code, but a well
suited wrapper for external code might prevent a lot of possible ommisions
and errors, which the authors did not pay attention in their coding. On
the other hand, the problem of implementing the software within your own
computing environment including all earlier mentioned error probabilities
can be prevented. As the computations done are time and memory intensive
(i.e. taking hours of cpu-time and up to hundreds of megabytes of memory),
just writing some cgi-scripts clearly would represent an inadequate solution.
A significantly larger effort is required, even if the system is only used for
the evaluation of heuristics. Usability would be critically lowered if getting
computations done would take very long or only very small ”toy” examples
could be computed.
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6.2.2 What is Really Needed

Flexibility. It should be possible to add tools of various nature to the system
with reasonable effort. We do not want to limit the system to a specific tool. If
some researcher has a new heuristic and wants to publish it via our system,
the amount of customization necessary should be as low as possible, and
ideally, no more than a recompilation for the computing platform in use
should be necessary.

Speed. To achieve an appropriate overall speed it is necessary to distribute
the actual computations over several computers. The number of engaged com-
puters should be easily adjustable, and it should even be possible to include
computers that are remote and only reachable via an Internet connection. To
maintain comparability of the results, it is mandatory that the pool of com-
puters can be divided into groups of machines with comparable computing
power.

Reliability. As computations can take hours and as there might be a num-
ber of still pending computations, there should be a mechanism that allows
automated crash recovery without loss of submitted requests.

6.3 A Web-Based Testbed

With OHO (for OBDD Heuristics Online) we have developed a testbed en-
vironment that meets the requirements mentioned above [6.12].

6.3.1 The WWW Interface

The system is accessed by a web interface. After an introductory page contain-
ing general information, the user can access a menu that allows the selection
of submission forms for individual tool and heuristic types, as well as browsing
the specific documentation. When one of the possible types of computation
is selected, the user is guided to a submission form, where all the relevant
information needed for a first meaningful evaluation of an algorithm can be
enterd. This includes an (optional) e-mail address for notification about re-
sults, tool options and selection of input data. Options include the choice
between the featured heuristic for reordering or some reference heuristic. In-
put data can be provided by either, some predefined circuit, or by a circuit
description file transferred by the user. File upload is done with the browser,
a feature available with most ordinary Web browsers.
After the submission the request is queued and computations begin as

soon as the required resources will become available. If a notification email
address has been provided, the results will be delivered immediately after
completion.
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6.3.2 Implementation

The basic structure of the system is simple. Individual tools have individual
user interfaces that have the task of accepting new requests, giving feedback
about the status of a computation submitted previously, and returning the
results to the submitter. A central scheduler manages every submitted re-
quest during its whole life-cycle. A group of computers perform the actual
computations necessary to complete a request. If a computation is termi-
nated because of unavailable resources due to local usage of the computer it
was scheduled on, the request will be rescheduled on an other computer or
restarted later. We use Linux as operating system.
To achieve flexibility every contained tool is fitted with a small wrapper

script that controls its I/O. As long as the tool communicates via command
line, processing the standard input and output with files, the customization
of these scripts is quite simple. We believe that this approach covers the
majority of research tools.

Speed is achieved by distributing the computations, as mentioned earlier.
This distribution is managed by the central scheduler in such a way that non-
dedicated computers can be used. Queuing of requests is performed here as
well.
As requests will be queued and queues might get longer, reliability be-

comes an important issue. In order to achieve this, the scheduler performs
frequent dumps of the current system status. In case of a crash the scheduler
will automatically recover with the help of these dump files and will resume
computations without the need for manual intervention.

6.3.3 Available BDD Tools

At the moment we have integrated recently published heuristics added to
nanotrav (part of the CUDD system, [6.17]) by a number of researchers.
These heuristics are not part of the CUDD standard distribution itself, but
rather actual research code provided by the developers of the specific heuris-
tics. There are as well some heuristics that are part of the CUDD standard
distribution for the purpose of comparison. We also have heuristics online
that were added recently to the well known model checker SMV [6.15]. At
the moment, only new heuristics for model checking are provided that have
been implemented by our research group. Additionally we had made available
another online BDD heuristic from external researchers for the verification
and synthesis tool VIS [6.3], before it was included into the last recent release
of VIS.
Of course, we intend to incorporate many more tools and heuristics in the

near future and therefore, we invite every researcher, who plans the publica-
tion of a specific new heuristic or any new tool within our portal to contact
us. As stated above, we do not need access to source code and the addition
of usual research tools will not be a problem at all.
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6.4 Added Value: A BDD Portal Site

The WWW has the potential for becoming something like a ”super library”,
allowing access to all information that somebody finds relevant enough to
put up on some web pages. Today, its size and growth are impressive and
the basic technology for accessing the WWW and maintaining a presence
on the WWW seem to be adequately developed. But, by its very nature as
a decentralized, somehow ”anarchistic” medium, structure is the important
point that is missing within the WWW. Despite the existence of sophisticated
search engines it is often still difficult to find specific content. If someone only
relies on traditional search engines the situation is likely to get even worse
[6.9], and especially so for research content of limited public interest. We will
discuss some of the reasons now.

6.4.1 Structure of a Conventional Portal

By a conventional portal we mean a general search site, as, e.g. Yahoo! [6.18]
that supports general (raw) searches and in most cases has a set of prear-
ranged categories where handpicked sites are accessible in a more structured
way. Figure 6.1 depicts the basic structure of such a conventional portal site.
The main information gathering mechanism is shown to the right: A web-
robot or ”spider” that searches known pages within the WWW for embedded
links to other pages and includes the pages linked into the database of known
pages. Usually, there is also some manual insertion of appropriate starting
points for these searches, when new popular sites become online. As a third
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mechanism to insert new pages into the database, most conventional portals
also offer the possibility that pages might be registered by someone, which
usually means the site owners.
The central component of a conventional portal is the database including

more or less sophisticated its search mechanisms. This component processes
the search requests submitted by the users. In most cases, there is also a
database of commercial advertisements that are sent back with the pages
found for the users requests. Often additional effort is spent to match the
advertising to the request the user has made.

6.4.2 Shortcomings of Conventional Portals

Here exactly, the inadequacy of a conventional portal manifests itself: The
primary motivation for operating a conventional portal is to earn money.
This is achieved by being paid for advertisements sent to the user together
with the answers retrieved for his query. Hence, the main focus is to attract as
many people as possible that are interested at least in some of the advertising
delivered by the portal. And here the time for manual improvement of the
content will be spent. Web pages of interest only to a small group, as e.g.
researchers in a specific field, will usually only be added to the database if they
are registered manually by their owners. With the number of conventional
portals out there, registering pages most times requires a significant amount
of work and additional maintenance.
For these reasons we believe that there is need for small, specialized portal

sites that support specific research communities. These specialized portals
should contain a significant amount of structured and preselected contents
aimed at the specific needs of the addressed research community.

6.4.3 The BDD Portal

The structure of our BDD Portal can be found in Figure 6.2. The topmost
component consists out of a collection of research oriented links. This includes
a list of links to homepages of active researchers. ”Active” in that particular
sense means that they have to have at least one publication in the area of
Binary Decision Diagrams. This list aims to be a complete representation of
the BDD research community. For researchers, where no homepage could be
found, the email address is provided instead. Additionally, links to specific
BDD oriented research projects and working groups are gathered, and not
forget to mention links to companies that are commercially promoting BDD
technology and research.
The second component is serving as a datebook for all important events

concerning BDDs, like conferences and workshops, including all relevant in-
formation as dates, deadlines and links to the according homepages. This
collection is subject to permanent update.
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The third component comprises a database of literature on BDDs avail-
able on the WWW. This database contains information about technical re-
ports, papers and other texts, which can be searched in their full text, even
if the documents are only available in Postscript or PDF (portable docu-
ment format). Search results will include the first lines of text for documents
found and links to their original location. The documents for this database
are periodically collected by a specialized robot, that is driven by the links to
homepages of researchers. The robot is capable of recognizing document for-
mats and creates a searchable index out of them. This component represents
a significant improvement compared to conventional search engines, which,
in most cases are not able to access the contents of non-html documents.
This database is endorsed by a collection of links to journals, where arti-
cles on BDDs are published, specific series of technical reports related to the
subject, and, as well, by links to available monographs and textbooks. Ad-
ditionally, links to lecture notes and course materials of several international
universities are provided and maintained.
The fourth component, OBDD Heuristics Online, is our effort to address

some of the specific problems with the publication of results from research in
heuristics for BDDs, which was explicitely described in the previous section.
In addition to these four components, a tool providing the possibility to

test and to visualize BDD computations is added, the OBDD Calculator.
The OBDD Calculator offers the possibility to perform BDD manipulation
operations and symbolic simulation of formula input or circuit descriptions.
It serves as a graphical front-end to the CUDD BDD-package and provides
the possibility of a graphical visualization of the computed BDDs. In addi-
tion to the BDD Calculator, a recently developed visualisation tool for BDD
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algorithms is to be included, which offers the possibility to gain insight into
the BDD synthesis algorithm. These features might be particularly useful for
students to understand BDD algorithms and BDD manipulation operations,
especially also for the purpose of tele-teaching. The user has the possibility
to access a personalized database of circuit descriptions and BDDs, which
can be subject to further research and studies during a course schedule.
Other material, as e.g. the links to relevant benchmarks, links providing

download access to the relevant BDD packages, model checkers, and also
related tools as SAT-solvers are added to the site as well.

6.5 Online Operation Experiences

OHO was released to the WWW in 1999 and soon started to raise the interest
of the BDD research community. Besides the basic idea of maintaining an
independent WWW-based platform for benchmark and algorithm evaluation
for BDDs, the requirement for a centralized archive site dedicated to BDD
research soon became obvious and the efforts of our working group were
driven towards that desired goal.
In December 1999 the portal site www.bdd-portal.org went online and

page requests starting at about 8000 pages a month, now, have reached 30000
and more page requests. This seems to be not much, compared to portal
sites addressing the general public. But, for our small research community,
the number is quite impressive. Several publications [6.12, 6.13, 6.14] about
OHO and the related BDD portal site point out the importance of this con-
tribution for the BDD research community on the one hand, and also for the
development of specialized portal sites, providing the benefit of information
structure to the WWW on the other hand.
More resources and links for BDDs will be added to our portal site, in

order to further establish this portal as a central announcement and link
site for all information in the WWW connected to BDDs. We are thinking
about a mechanism that allows remote administration of the conference and
workshop database by the organizers of the events.
More Decision Diagram heuristics and tools will be added to the section

that allows online evaluation. In fact the experimentation platform should
be kept current with ongoing research by our efforts as well as by external
contributions. There might also be other kinds of interfaces than the WWW
interface that would prove beneficial.

The portal can be accessed at http://www.bdd-portal.org.

6.6 Related Work

As far as the authors know, there is no other effort to create a specialized
portal site for BDD research and there are only very few sites targeted at
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specific research communities. The authors also do not know of any effort to
make BDD-tool functionality available via the WWW on a comparable scale.
There seem to be a few efforts capable of computing only small examples,
e.g. the WWW interface for the word-level DD package developed by Stefan
Höreth [6.7]. There, only small Boolean functions in terms of Boolean formu-
las can be transformed into several different types of decision diagrams that
can be visualized in a way similar to the BDD Calculator of our BDD portal.
There have been efforts to use the WWW as an unified interface to a

heterogenous set of EDA (Electronic Design Automation)tools. In [6.1] such
an application has been described. The main focus there is the integration
of different tools on different platforms with different data formats into a
seemingly homogenous environment. The framework is intended to do actual
work rather than to allow the comparison of the power of different approaches
to a specific problem (like BDD heuristics) as in our case.
In [6.8] the vision of integrating a great number of different EDA CAD

services running in different places into one ”global” EDA CAD system using
the Internet has been described. The main techniques here are the use of
proxies to abstract the actual tool being used. In [6.16] another approach to
the integration of different EDA tools is mentioned. This approach is mostly
centered on the notion of ”active messages”.
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7.1 Introduction

The increasing complexity of nowadays VLSI designs makes it hard up to
impossible to check their correctness by using validation methods like simu-
lation. Therefore there is is a growing demand for formal verification methods
in VLSI design and verification.
This paper presents application of heuristics in the field of symbolic formal

verification.
In 1986 Bryant introduced ordered binary decision diagrams (OBDDs)

that are still one of the most common data structures used for the verification
of digital circuits. The use of OBDDs made it possible to circumvent two
major problems in formal verification:

– exponential blow up of the circuit representation, and
– state space explosion in finite state machine traversal.

But it turned out that all optimization problems needed for OBDDs to
work efficiently are at least NP-hard. For some problems it is shown that even
approximation schemes do not exist. Thus, only heuristic approaches remain
applicable. We will present heuristic approaches to some basic problems in
OBDD based formal verification, i.e., variable reordering and partitioning of
transition relations.
Since we apply our heuristics to intractable optimization problems the

quality of the approach can only be judged by the use of benchmarks. We
will discuss the benchmarking problems for OBDD applications.
A meaningful evaluation of heuristic algorithms requires a suited experi-

mentation environment. We will discuss issues as use of open source software
and the influence of parameter settings.
This article is structured as followed. The next section gives basic defini-

tions of OBDDs, their algorithms and explains the most important applica-
tions, where OBDDs are used. In Section 7.3 we will present and improved
heuristic for the variable reordering Problem. In Section 7.4 we will give al-
gorithms for a typical OBDD-based application, namely the partitioning of
transition relations.

c© Springer-Verlag Berlin Heidelberg 2002
R. Fleischer et al. (Eds.): Experimental Algorithmics, LNCS 2547, pp. 139–162, 2002.
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7.2 Preliminaries

7.2.1 OBDDs – Ordered Binary Decision Diagrams

In 1986, by introducing ordered binary decision diagrams (OBDDs), Randall
E. Bryant got ahead a fundamental step in the search for suitable data struc-
tures in circuit design [7.4, 7.6]. Bryant’s OBDDs combine two advantages:
the new established data structure is not only quite space efficient but can
also be handled efficiently from the algorithmic point of view.

Definition 7.2.1. An Ordered Binary Decision Diagram (OBDD) P for a
Boolean function f : {0, 1}n → {0, 1} is a directed acyclic graph consisting
of inner nodes labeled by Boolean variables and sinks labeled by the Boolean
constants 1 and 0. Each inner node has two outgoing edges: the 1-edge and
the 0-edge. The OBDD has a starting node called root. The computation of
f(a1, . . . , an) follows a path from the root to a sink, where on a node labeled by
xi the input bit ai is tested. If ai = 1, the path follows the 1-edge, otherwise the
0-edge. The value of the reached sink determines the value of f(a1, . . . , an).
On a path from the root to the sink, each variable occurs at most once. The
variables on a path respect a given order, which is (possibly after renaming)
x1, . . . , xn. For an edge leading from a node labeled by xi to a node labeled by
xj it follows that j > i.

An OBDD with more than one root node (i.e., representing f : {0, 1}n →
{0, 1}m,m > 1) is called a shared OBDD. In practice all functions to be
represented are kept in one single shared OBDD. For simplicity we stay with
the term OBDD.
Figure 7.1 gives two examples for OBDDs for the Boolean function f =

bc+ abc w.r.t. the variable order a < b < c.
From the Shannon decomposition on can derive the first important prop-

erty of OBDDs:

Property 7.2.1 (Universality). Any Boolean function can be represented by
an OBDD w.r.t. any predefined variable order.

a

b b

c c c c

1 0 1 0

a

b b

cc

01

Fig. 7.1. Two OBDDs of f = bc+ abc
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If we give up the restrictions on the variable order and the read-once
property we get more general decision diagrams. Like in many other rep-
resentations general decision diagrams have difficulties in handling Boolean
functions in terms caused by the missing uniqueness, By using a surprisingly
simple reduction mechanism, for OBDDs this problem can be solved very
elegantly. Obviously, the following two reduction rules keep the represented
function invariant:

Elimination rule: If 1- and 0-edge of a node v point to the same node u,
then eliminate v, and redirect all incoming edges to u.

Merging rule: All terminal nodes with a given label are merged to one
node, redirect all incoming edges to this node. If the non-terminal nodes
u and v are labeled by the same variable, their 1-edges lead to the same
node and their 0-edges lead to the same node, then eliminate one of the
two nodes u, v, and redirect all incoming edges to the remaining node.

Definition 7.2.2. An OBDD is called reduced if none of the two reduction
rules can be applied.

It is easy to see that the right OBDD in Figure 7.1 is reduced. Regard-
ing the algorithmic properties of reduced OBDDs, the following property of
canonicity is of basic importance:

Property 7.2.2 (Canonicity). With respect to a fixed variable order, the re-
duced OBDD of a Boolean function f is determined uniquely.

Besides universality and canonicity, OBDDs have a third fundamental
property, which makes OBDDs such a successful data structure for represen-
tation of Boolean functions: the efficiency in algorithmic manipulation.

7.2.2 Operations on OBDDs

OBDDs are the only data structure for the representation of switching func-
tions, whose representation size is not exponential in the number of variables
for all functions (like truth tables) and that has deterministic polynomial
algorithms for all important operations.
In the following the runtime and space requirements for these operations

are given (|Pf | denotes the number of nodes in the OBDD P for the function
f , which depends on n variables and a ∈ {0, 1}n). All OBDDs have to respect
the fixed variable order π.

Satisfiability test: (∃af(a) = 1) Runtime: O(|Pf |)
Equivalence test: (f ≡ g) Runtime: O(min(|Pf |, |Pg|))
Evaluation: (f(a)) Runtime: O(n)
Composition: (f ⊗ g) Runtime and space: O(|Pf | · |Pg|)
Replacement by function: (fxi=g) Runtime and space: O(|Pf |2 · |Pg|)
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Minimization: (Find the minimum OBDD representation of f w.r.t. π) Run-
time and space: O(|Pf |)
It is worthwhile mentioning that most operations (except synthesis and

replacement by function) have time and space requirements linear in the size
of the OBDD. So, together with an efficient implementation OBDDs form a
powerful data structure.

Efficient Synthesis of OBDDs. By ⊗ we denote an arbitrary Boolean
operation, e.g., the conjunction or the disjunction. In order to compute the
OBDD Ph of h = f ⊗ g from the OBDD representations Pf and Pg of two
functions f and g, one uses Shannon’s decomposition w.r.t. the leading vari-
able x in the variable order π:

h = f ⊗ g = x (f |x=1 ⊗ g|x=1) + x (f |x=0 ⊗ g|x=0),

where f |x=1 is the subfunction that results from f after replacing the variable
x by the constant 1. By repeated application of this decomposition an OBDD
representation Ph of the function h is computed.
In an OBDD Pf every node represents a subfunction f ′ of f . If the node

that represents f ′ is marked with xi, its successors represent f ′|xi=1 resp.
f ′|xi=0. For the representation of any subfunction in Ph two pairs of nodes
from Pf and Pg have to be computed. If one would simply follow the Shannon-
decomposition, where the number of computations doubles on each level, 2n

pairs would be computed (for n variables). But, only (|Pf |·|Pg |) different pairs
exist Thus, recomputation of pairs has to be avoided, as different subfunctions
may be represented by the same node.
The already computed results from earlier stages are being recalled from

a computed-table. In this way, the originally exponential number of decom-
positions is now bounded by the product of the two OBDD-sizes.
To increase the usage of the computed table all synthesis operations are

mapped to a single operation, the so called if-then-else operator (ITE):

ITE(f, g, h) = f · g + f · h.

E.g. h = f · g maps to h = ITE(f, g, 0). Because of the huge number of ITE
operations during synthesis the computed table is usually implemented as a
cache to reduce memory consumption.
Another helpful construction is the usage of a unique-tablewhich holds in a

hash-table all already represented nodes. Before a node is created it is checked
in the unique-table whether an functionally equivalent node already exists.
This technique implements the merging rule. Together with an immediate
check for the elimination rule the constructed OBDDs are always reduced
and the reduction operation becomes obsolete.

Construction of OBDDs: Symbolic Simulation. The process of con-
structing an OBDD is called symbolic simulation of the circuit to be repre-
sented. Symbolic simulation is based on the synthesis operation:
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Starting with the (trivial) OBDD representations of the input nodes one
constructs, in topological order, OBDDs for each gate from the OBDDs of
the corresponding predecessor gates.
Of course, it may happen that the OBDDs of the circuits are quite large.

However, many circuits of the real world inherently contain much structure
– hence, the reduction rules of the OBDDs cause the graphs describing the
circuit to remain small.

7.2.3 Influence of the Variable Order on the OBDD Size

The size of an OBDD and hence the complexity of its manipulation heavily
depends on the underlying variable order. An example is shown in Figure 7.2.
With respect to the variable order a1, b1, . . . , an, bn the function

a1b1 + a2b2 + . . .+ anbn

has an OBDD representation of linear size. For the variable order a1, a2, . . . ,
an, b1, b2, . . . , bn however, the size of the OBDD grows exponentially in n.
It can be shown that any order that separates the a-variables from the b-
variables leads to an exponentially large OBDD.
The same effect occurs in the case of adder functions: Depending on the

variable order, the OBDD-size varies from linear to exponential in the number
of input bits. Other important functions, e.g., the multiplication of two n-
bit numbers imply OBDDs of exponential size w.r.t. every variable order
[7.5, 7.33].
Due to the uniqueness of the OBDD representation of a Boolean function

f w.r.t. a given variable order, the only way to optimize the size of the OBDD
representation for f is to find a suited variable order.

a1

b1

a2

1

b2

a3

b3

0
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a2 a2

a3 a3 a3 a3

b1 b1 b1 b1

b2 b2

b3
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Fig. 7.2. Influence of the variable order
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Optimization of the Variable Order. Due to the strong dependence of
the OBDD-size upon the chosen variable order it is one of the most impor-
tant problems in the use of OBDDs to construct “good” orders, i.e., orders
that fit well to the represented function. However, the problem to construct
an optimal order of a given OBDD is known to be NP-hard [7.30, 7.2]. The
currently best known exact procedure is based on dynamic programming and
has running time O(n ·3n) [7.32]. Unfortunately, for real-life applications this
method is useless. To make the problem even worse, Sieling [7.26] has shown
that there in no polynomial time approximation scheme for the variable or-
dering problem unless P=NP.

Static Techniques. There exist a variety of heuristics to determine a vari-
able ordering before building the OBDD of a function. These heuristics utilize
various informations given by the netlist of the function [7.16, 7.22]. It turned
out that these heuristics often work only for very specific functions. Never-
theless, these heuristics might be useful to determine starting orders.
Applications in OBDD based sequential verification often require repre-

sentation of state sets, as these states sets and thus their OBDD representa-
tion changes a change in the variable order becomes necessary and a dynamic
approach is required

Dynamic Techniques. Dynamic Variable Reordering is the process of im-
proving the variable order and hence the size of an already built OBDD.
Virtually, any optimization paradigm has been applied to variable reordering
from genetic techniques to simulated annealing but one of the most successful
strategies still is the local search algorithm proposed by Ruddell 1993. The so
called Sifting [7.24] algorithm is based on the swap operation of two variables
in the order, which can be carried out locally and hence is very efficient.
We will discuss Sifting in more detail in Section 7.3.

7.2.4 Reachability Analysis

Beyond verification of combinatorial circuits, sequential verification of finite
state machines (FSMs) is the major field of application for OBDDs. An im-
portant task during verification of FSMs is the exploration of the system’s
state space.

BFS Traversal. Since the set of reachable states can be quite large, an
explicit representation of this set, e.g., in form of a list, cannot be suitable
under any circumstances. Coudert, Berthet and Madre have investigated the
characteristic function of state sets which can be considered as a Boolean
function and therefore be represented by an OBDD [7.9, 7.11]. They have
shown that this representation form goes well together with the operations
which have to be performed for the computation of the reachable states: If
reachable states are computed according to a breadth-first-traversal then the
representation via the characteristic function allows to compute all corre-
sponding successor states within a single step. For this reason, one also uses



7. Algorithms and Heuristics in VLSI Design 145

traverse(δ, q0) {
/* Input: Next-state function δ, initial set S0 */
/* Output: Set of reachable states */

Reached = From = S0;
do {

To = Img(δ,From);
New = To \ Reached;
From = New;
Reached = Reached ∪ New;

} while (New �= ∅);
return Reached;

}

Fig. 7.3. Basic algorithm for reachability analysis based on breadth-first traversal

the term symbolic breadth-first traversal. Once more, the complexity of the
computation depends on the OBDD-size of the occurring state sets. For an
outline of the traversal algorithm see Figure 7.3.

Image Computation. The computation of the reachable states is a core
task for optimization and verification of sequential systems. The essential
part of OBDD-based traversal techniques is the transition relation (TR):

TR(x, y, e) =
∏
i

δi(x, e) ≡ yi,

which is the conjunction of the transition relations of all latches (δi denotes
the transition function of the ith latch, x, y, e represent present state, next
state and input variables).

Partitioned Transition Relation. The transition relation is monolithi-
cally represented as a single OBDD and such a monolithic representation is
usually much too large to allow an efficient computation of the reachable
states. Therefore, more sophisticated reachable states computation methods
make use of a partitioned TR [7.7], i.e., a cluster of OBDDs each of them rep-
resenting the TR of a subgroup of latches. A transition relation partitioned
over sets of latches L1, . . . , Lj can be described as follows:

TR(x, y, e) =
∏
j

TRj(x, y, e) , where

TRj(x, y, e) =
∏
i∈Pj

δi(x, e) ≡ yi.

7.2.5 Image Computation Using AndExist

The reachable states computation consists of repeated image computations
Img(TR, R) of a set of already reached states R:
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Img(TR, R) = ∃x,e(TR(x, y, e) ·R)

With the use of a partitioned transition relation the image computation can
be iterated over Pi and the ∃ operation can be applied during the product
computation (early quantification):

Img(TR, R) = ∃vj (TRj · . . . · ∃v2(TR2 · ∃v1(TR1 ·R) . . .),

where vi are those variables in (x ∪ e) that do not appear in the following
TRk, (i < k ≤ j).
The so called AndExist [7.7] or AndAbstract operation performs the AND

operation on two functions (here partitions) while simultaneously applying
existential quantification (∃xif = (fxi=1 ∨ fxi=0)) on a given set of variables,
i.e., the variables that are not in the support of the remaining partitions.
Unlike the conventional AND operation the AndExist operation only has a
exponential upper bound for the size of the resulting OBDD, but for many
practical applications it prevents a blow-up of OBDD-size during the image
computation.
Another important problem is finding an optimal schedule of the parti-

tions for the AndExist operation. Geist and Beer [7.13] presented a heuristic
for the ordering of partitions each representing a single state variable. The
goal of this heuristic is to keep the support variable set of the intermediate
products as small as possible. This heuristic was broadened by Ranjan et
al. [7.23] to allow partitions including more than one state variable.
An insight into the complexity of the partition problem was given by

Hojati et al. [7.14]: they have shown that finding a tree of conjunctions s.t.
the support of the largest intermediate product is less than a given constant
is NP-complete even under the simplifying assumption that the support of
f ∧ g is the union of the supports of f and g.

Symbolic Model Checking. Since a complete formal verification of a se-
quential system is often too complex, methods are of interest that guarantee
at least correctness of certain properties. One of them is the so-called model
checking.
Model checking is the problem to decide whether an implementation sat-

isfies its specification given in terms of a temporal logic, e g., the so-called
computation tree logic (CTL). The formulas of CTL describe properties of
infinite pathes of states that are traversed during the computation.
The idea to use OBDDs for a symbolic representation of state sets during

model checking was first introduced by McMillan [7.17] and Coudert/Madre
[7.10]. Using this way of symbolic model checking, real-life systems up to
10100 states can be verified. For an introduction to model checking and CTL
see [7.17].
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7.3 Heuristics for Optimizing OBDD-Size — Variable
Reordering

Most of the reordering heuristics published so far were general purpose algo-
rithms independent on the application where they were used. This assured
them universality, but on the other side, a lot of useful information was ig-
nored. This section is devoted to an approach that uses the meaning of the
functions represented by OBDDs in a particular application for speeding up
the computational process. The main idea is to focus minimization on that
part of the OBDD that represents the functions used in the next steps of the
computation. We call these functions key functions and the corresponding
subOBDDs key OBDDs. Obviously, the set of key functions is dynamically
changing during the computation. If the size of the rest of the OBDD remains
manageable, we achieve a gain for two reasons: the minimization of a part of
a OBDD can be performed faster than for the entire OBDD, and secondly,
the particular OBDD operations are faster. The latter is caused by the fact
that the operations are performed over the key functions that have due to
the approach smaller OBDD representation than they would have had if any
usual reordering strategy aimed to the minimization of the whole OBDD
would have been used.
Although the definition of the key OBDDs is dependent on an application,

it requires only a small extension of the interface of the application software to
the OBDD package used. The main part of the reordering can be implemented
in the OBDD package itself. In this sense, the proposed method is universal
and can be used in diverse applications. In the following we will describe an
application of sampling to symbolic model checking.

7.3.1 Sample Reordering Method

Random sampling is a technique successfully used in several hard discrete
problems. The idea to use sampling for the variable order problem arises
naturally from the character of the problem.
The difficulty of the dynamic reordering problem does not arise from the

size of the search space, but from the fact that the quality of the found
solution (i.e., the OBDD size) can only be determined by constructing the
resulting OBDD.
The first application of sampling to variable reordering was presented by

Meinel and Slobodovà in [7.28]. The basic idea can be summarized in a few
sentences: A part of the OBDD is chosen as a representative of the OBDD
and the minimization problem is solved for this part. The new order found
as a feasible (or even optimal) solution for the sample is extrapolated and
applied to the entire OBDD. If the attempt is evaluated as successful, i.e., the
reduction of the OBDD size achieved a given threshold value, the algorithm
terminates. Otherwise further attempts with new samples are undertaken,
until success, or the number of allowed attempts is exhausted.
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Obviously, the choice of a sample has an influence on the variable order
found. It can be done in random manner (like in many sampling strategies)
or by use of some structural and semantic properties of the OBDD under
consideration. In our approach, we use randomness, but we are targeting to
key OBDDs, i.e., we chose random fractions of the key OBDDs. Randomness
substitutes a missing information, assures a balance between the key OBDDs
and the rest of the OBDD, and avoid repetition of the same sample choice.
There are several important implementation details that may play an im-

portant role on the success of the heuristic, e.g., how to minimize the sample,
how to extrapolate the compute order, or how to rebuild the whole OBDD
with respect to the new order. In the following we describe an implementation
of the Sample Reordering in the CUDD package [7.29].
Let InitialSize be the OBDD size at the start of the reordering. A sample

of the size
SamplePortion × InitialSize,

is chosen from the OBDDs whose roots are passed by the application/user. If
no roots are given random sampling is chosen. The chosen sample is copied
to a new OBDD and then reordered by means of Sifting. The new variable
order is derived from the new variable order of the sample. The variables
that do not occur in the sample are kept on their old positions. All other
variables are moved according to their positions in the new variable order of
the sample. Rebuilding of the entire OBDD with respect to the new order
is done by subsequent movement of each variable to its new position. We
monitor the size of the OBDD during this reconstruction. If there is a better
order with respect to the corresponding OBDD size than the target order, we
shuffle variables back to this order. This is also the case of an unsuccessful
attempt when the new order is worse than the original one. The process of
the rebuilding is interrupted if the size of the OBDD grows over a given
threshold:

ChangeOrderBound × InitialSize,

This may happen even if the targeted order is better than the original but
the peak size is too big.
The CUDD package has a user option for grouping of variables. Variables

in a group should be always kept together. This is useful for some applications
where the meaning of variables is known and can be used as a navigation
in the search for a good order, e.g., the couple of present and next state
variable in the coding of finite state machines. If such groups are defined,
they are respected by the new order, too. The rebuilding procedure moves
the variables of the same group together. Also the candidates for a better
order that could be found during the rebuilding process are required to fulfill
the group restrictions.
If the new size of the OBDD is less than

ExpectedReduction× InitialSize,
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the reordering is considered to be successful. Otherwise, a second attempt
with a new sample is allowed.

7.3.2 Speeding up Symbolic Model Checking with Sample Sifting

Sample Sifting is a good candidate for speeding up model checking. But, a
successful application of the sampling method to model checking is challeng-
ing: Any branch-and-bound algorithm has a trade-off between computation
time and quality of the result. In model checking the problem arises from the
fact that a poor order results in larger OBDDs that require more computa-
tion time. Also larger OBDDs lead to earlier and more time consuming calls
to variable reordering. Thus, the trade-off multiplies and there are usually
not enough calls to variable reordering to compensate these effects. Never-
theless, a successful sampling strategy for symbolic model checking can be
implemented, if the following points are taken into account:

Sample Size. The size of the sample is the most important parameter of
sample sifting. Choosing a smaller sample will reduce the computational over-
head for copying the sample. But even more important: The accelerating
effect of sample sifting results from the fact that only a small OBDD is
reordered, also resulting in smaller intermediate OBDD sizes during the re-
ordering. The smaller the sample is, the faster the reordering performs. But,
the sample cannot be chosen arbitrarily small, because in this case it does
not represent the original OBDD’s properties sufficiently. The result of the
reordering usually will be a poor ordering for the original OBDD. Thus, the
size of the sample directly influences the quality of the computed order. To
fulfill the quality requirements of model checking the sample has to be chosen
larger than for combinatorial applications.

Method for Reordering the Sample. As stated above the time saved be
sample sifting results from sifting a smaller OBDD. One may try to accelerate
even this reordering, but this will usually result in variable orders of less
quality. Instead, we suggest to reorder the sample even more by enlarging the
search space, e.g., by allowing a larger growth of the OBDD during reordering.
This may compensate the quality losses resulting from reordering only a
fraction of the OBDD.

Number of Attempts per Reordering. More than one sampling attempt
per reordering might be a good idea for combinatorial application but not
for model checking for the following reasons:
– Due to the small number of reorderings, several trials will compensate all
the time savings, especially if larger samples are used.
– In some situations OBDD sizes grow despite of good variable orders. Here
any reordering will fail.
While the above points are about reordering time, the following points

deal with the choice of the sample that is crucial for the quality of the com-
puted order.
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Sample Without Semantical Information. If no external semantical in-
formation is available one may at least use some structural information about
the represented functions. One may use a random strategy Random Sampling
proposed by [7.28]: Starting from the top level of the OBDD nodes that are
not representing projection functions (i.e., f = xi) are chosen randomly as
roots of subOBDDs for the sample. This process is repeated level by level
until the size requirements for the sample are fulfilled.
Another strategy is to chose the sample from the roots with the largest

subOBDDs. Unfortunately, this strategy does not work well. Obviously, op-
timizing the order of only a few OBDDs does not meet the requirements of
all represented functions.

Sample with Semantical Information. One should make use of the se-
mantical information about represented functions provided by the model
checker. In [7.28] it is proposed to use recently-used-roots, i.e., roots involved
in operations in the last steps of the computation.
In more detail: The roots resulted from the Boolean operations are pushed

into a stack. Any garbage collection of the unreferenced nodes is completed
by cleaning the stack. The size of the stack is bounded. Its capacity can be set
according to the considered application and examples. The push operation
into a full stack discards the bottom item. When the sample reordering is
invoked, the sample is preferably built from the roots in the stack. If the
OBDDs whose roots are in the stack do not suffice to cover the requirements
on the size of the sample, we choose additional roots randomly.
Again, this strategy is not suitable for model checking, since the huge

number of operations will result in a random choice of roots. In [7.19] it
was shown how to utilize the key functions of FSM traversal like the transi-
tion relation or the reachable state set to get a good sample for reordering.
Here, we use recently-used-important-roots, i.e., roots involved in elementary
model checking operations like Exist-Abstract, Universal-Abstract and And-
Abstract (see [7.17]), since state sets play a minor role in model checking.
If we cannot fulfill the size requirements for the sample by using important
roots we fall back to Random Sampling. Using this strategy we obtain the
best results for sampling.

Methods for Copying. In [7.28, 7.19] copying a fraction of an OBDD is
done in the following way (postorder): The OBDD is traversed in DFS order
and the nodes are copied to the sample whenever a node is backtracked. This
is done until the required size of the sample is reached. This method copies
at first the lower part of the OBDD. The resulting sample is a subfunction
of the original OBDD. If only a small sample is chosen it will leave some
variables of the upper part of the OBDD (see Figure 7.4a).
To avoid this, we use the following method (preorder): The OBDD is also

traversed in DFS order. But, the nodes are copied to the sample when the
node is visited the first time. This results in samples that include usually all
variables and the outline of the sample is related to the outline of the original
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a b

Fig. 7.4. a) Sample using postorder method b) Sample using preorder method

OBDD, i.e., from a level with many nodes a larger number of nodes is chosen
for the sample. Applying this method results in unvisited edges that are set
to the 1-sink. Thus, the resulting sample is modified but closely related to
the original function (see Figure 7.4b). Our experience has shown that the
preorder method works more stable and produces better results than the
postorder method.

7.3.3 Experiments

We implemented our sifting strategies in the CUDD Package [7.29] (version
2.3.0). All experiments were performed on Intel PentiumPro 200MHz Linux
Workstations with 250MByte datasize and CPU-time limited to 4 hours.
For all computations we used the common technique of grouping present-
and next-state variables, i.e., a present-/next-state pair is always kept in
adjacent levels. This on the one hand accelerates reordering and on the other
usually results in better orders.We compare our results to the standard sifting
method.
For our experiments we used the publicly available SMV-traces of

Yang [7.34, 7.35]. SMV is the description language for the SMV-model
checker [7.17]. Traces are recorded calls of OBDD operations done by the
SMV model checker during the computation of a certain model. With the
use of Traces, one is not restricted to use the underlying OBDD-package of
SMV instead one can use any OBDD package and/or own algorithms. The
underlying SMV-models come from different sources and represent a range
from communication protocols to industrial controllers. Traces have become
the reference benchmark set for reordering during model checking. We used
those traces, that require less than 250MB of memory and less than 4 hours
CPU-time.
The choice of Traces as benchmarks enables us to show that our strategies

are applicable to any OBDD based model checking tool and are not restricted
to a special model checker.
Figure 7.1 gives an overview of computation time, reordering effort and

peaknodes of the models computed with standard sifting as reordering strat-
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egy. During reordering grouping of present- and next-state variables was en-
abled. The maximum allowed growth of the OBDD-size while sifting one
variable was set to 20%.
The figure shows some evident differences of model checking in comparison

to the OBDD application of combinatorial verification that mostly consists
of symbolic simulation.. The number of variables (244 avg.) is comparable
or even smaller than in combinatorial verification. The computation time is
quite high (2044s avg.). The fraction of computation time, that is spent on
reordering is extremely large (61% avg. of each reordering fraction), but only
a few reorderings occur (4.7 avg.), while in combinatorial verification usu-
ally many reorderings occur. The average size reduction over all reorderings
(avg. Size Reduction) is not very high. This results from the fact, that some
reordering attempts do not result in smaller OBDDs at all (size reduction <
5%). E. g. four reorderings during the computation of furnace17 do no lead
to smaller OBDDs, but one reordering drastically reduces the OBDD size
(85%). Finally, the models are quite large (2.8 Mio. peaknodes avg.). Thus,
most of them will not finish computation without reordering.

Results. Due to the random choice when copying a sample, for all experi-
ments 10 single runs were performed.
For experiments we used the method Important Roots (IR) with sample

size of 30% and 40%. For experimental results see Figure 7.2 and Figure 7.3.
All samples are chosen by using the preorder method. We were able to de-
crease the average computation time up to 35% and the overall computation
time up to 34%. The maximum improvement is 70%.
Since we obtained our results with a very loose coupling of the model

checker to the OBDD-package, a tighter coupling to the model checker e.g.,
having exact knowledge about the represented functions would lead to even
better results.

7.4 Heuristics for Optimizing OBDD Applications –
Partitioned Transition Relations

The quality of the partitioning is crucial for the efficiency of the reachable
states computation. The image computation is iterated over the partitions
and includes costly computations. Therefore, maintaining a large number of
partitions is time consuming. A small number of partitions may lead to un-
manageable large OBDDs. One extremum of this trade-off is the partitioning
where each latch forms a partition, which is usually small but requires many
iterations. The other extremum is a monolithic transition relation (TR), that
can be computed in one iteration but has large OBDD-size. Furthermore, the
ordering of latches and clusters is crucial for an efficient AndExist operation.
Using a poor order may lead to extremely large intermediate OBDD sizes
that could make a complete image computation impossible.
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Table 7.1. Overview of computation and reordering effort for the benchmarks
using standard sifting

Vars CPU- Reorder- Re- avg. Reord. Peakn.
time/s time/s ord. Size >5% in 1000

Red.
dartes 198 504 441 87% 3 8% 1 583
dme2-16 586 3757 2331 62% 5 18% 3 5151
dpd75 600 4574 2676 58% 5 0% 0 3296
ftp3 100 1119 588 52% 4 1% 0 3126
furnace17 184 3938 1328 33% 5 21% 1 2373
key10 140 846 643 76% 6 24% 3 1099
mmgt20 264 1610 860 53% 4 2% 0 2904
motors-stuck 172 265 142 53% 4 36% 3 670
over12 174 3002 2526 84% 6 7% 2 4725
phone-async 86 2604 1094 42% 5 8% 1 6118
valves-gates 172 268 200 74% 5 35% 5 542
sum 2686 22487 12829 57% 52 160% 19 30587
avg 244 2044 1166 61% 4.7 15% 1.7 2781

Table 7.2. Comparison of CPU-time for standard sifting and sample sifting

Sifting Sample Sifting
Sample Size 30% 40%

time/s % time/s % time/s
dartes 504 +70 149 +62 194
dme2-16 3757 +45 2073 +53 1765
dpd75 4574 +28 3304 + 9 4144
ftp3 1119 +43 635 +34 742
furnace17 3938 +41 2341 +35 2545
key10 846 +33 568 +28 610
mmgt20 1610 - 9 1770 -17 1961
motors-stuck 265 +44 147 +38 164
over12 3002 +51 1475 +39 1831
phone-async 2604 +13 2268 +13 2273
valves-gates 268 +24 202 +14 220
sum 22487 +34 14934 +27 16458
avg +35 +28

In the following we will describe the standard partitioning strategy, fol-
lowed by a description of the RTL partitioning heuristic.

7.4.1 Common Partitioning Strategy

A common strategy for partitioning of the TR as it is used e.g., by VIS [7.3,
7.23] proceeds in three steps:

1. Order latches. First, the latches are ordered by using a benefit heuris-
tic [7.13] that performs a structural analysis of the latches’ transition
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Table 7.3. Comparison of peaknodes in thousands for standard sifting and sample
sifting

Sifting Sample Sifting
Sample Size 30% 40%

nodes % nodes % nodes
dartes 583 -17 707 -17 707
dme2-16 5151 -12 5824 -13 5945
dpd75 3296 - 9 3633 - 8 3566
ftp3 3126 + 4 2986 +10 2806
furnace17 2373 -16 2841 - 3 2439
key10 1099 -51 2236 -51 2236
mmgt20 2904 - 1 2945 - 1 2944
motors-stuck 670 -38 1073 -37 1058
over12 4725 + 4 4550 + 4 4543
phone-async 6118 - 7 6603 -24 8080
valves-gates 542 -43 950 -42 941
sum 30593 -11 34353 +13 35270
avg -17 +16

function to address an effective AndExist operation. During the iterated
image computation next state variables are added while present state
variables are quantified out. the benefit heuristic uses a greedy scheme
to minimize the balance of introduced next state variables and quanti-
fied present state variables Additionally, the heuristic takes into account
the highest index of a variable to be quantified out, resulting in a more
efficient AndExist.

2. Cluster latches. The single latch relations are clustered by following
a greedy strategy. Latches are added to an OBDD (i.e., by performing
AND) until the size of the OBDD exceeds a given threshold.

3. Order clusters. In the last step the clusters are ordered similarly to the
latches by using a benefit heuristic (VIS uses the same heuristic as in
Step 1).

Figure 7.5a gives a schematic overview of this process.

7.4.2 RTL Based Partitioning Heuristic

Since modern complex designs require a structured hierarchical description
to be feasible they are currently written in a hardware description language
(HDL) at register transfer level (RTL). The term RTL is used for an HDL
description style that utilizes a combination of data flow and behavioral con-
structs. Logic synthesis tools take the RTL HDL description to produce an
optimized gate level netlist and high level synthesis tools at the behavioral
level output RTL HDL descriptions. Verilog [7.31] and VHDL [7.15] are the
most popular HDLs used for describing the functionality at RTL. Within the
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b) RTL Methoda) Standard Method

1. Group latches

Latches

1.Order latches

3. Order clusters

2. Cluster Latches
2. Cluster latches

3. Order cluster

  within groups

  acc. to RTL modules

Relations (BDDs)

Fig. 7.5. Schematic of partitioning strategies

design cycle of optimization and verification the RTL level is an important
and frequently used part.
The design methodology in Verilog is a top down hierarchical modeling

concept based on modules, which are the basic building block. The experimen-
tal work for the following heuristic based on designs written in this language,
but our approaches can be easily extended to any HDL or hierarchical FSM
representation as it is, e.g., provided by state space decomposition algorithms
(see, e.g. [7.18]).
As mentioned above, the way to build a complex design is to break it

into modules, each with a dedicated functionality and a smaller complex-
ity. For example communication protocols contain transmitters and receivers
that represent independent modules. These modules are usually not too com-
plex, thus the complexity of their TRs will be small. If a partition contains
state variables of several modules, we need to represent the Cartesian prod-
uct of these modules leading to a much more complex TR. The main reason
for the efficiency of the partitioned TR approach is that state variables not
appearing in other partitions are quantified out during the AndExist oper-
ation. This leads to much smaller OBDD-sizes and a faster computation. If
the state variables of a module are spread over several partitions, the quan-
tification does take effect only late in image computation. Therefore, most of
the computation has to be done with large OBDDs.
RTL level description languages like Verilog [7.31] or VHDL [7.15] support

a hierarchical design methodology by providing module constructs. As it can
be seen this modularization has effects on the image computation that should
not be neglected.
Although the standard method optimizes the partitioning twice, its main

disadvantage is that it only uses structural information to optimize the par-
titioning for an efficient order for the AndExist operation during the image
computation.
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The RTL heuristic improves this optimization by including additional
semantical information about the represented functions. As the experimental
results show, there is a close connection between the RTL description and an
efficient image computation.
The RTL heuristic proceeds in three steps:

1. Group latches. The latches are grouped according to the modules given
in the top module of the RTL description in Verilog. Within the groups
the latches are ordered by a lexicographic order that takes into account
submodule names and bit numbers (names of latches from submodules
are prefixed by the submodule name). Also, the bits of a certain register
are named by the register and the bit number. The effect of this sorting
is, that latches of a submodule within the group stay adjacent, without
being grouped explicitly. The same holds for the bits of a register.

2. Cluster groups. The groups represent borders for the clusters. There is
no cluster containing latches from different groups. To control the OBDD
size of the clusters, the greedy partitioning strategy is applied within
the groups. The clustering given by the groups lowers the influence of
the arbitrary clustering produced by the OBDD-size threshold. Thus,
resulting in a more natural partitioning.

3. Order clusters. (optional) In the last step the clusters may be ordered
by using the benefit heuristic from the standard method.

Figure 7.5b gives an overview of this strategy.
Modifications of this strategy are possible:

– Step 1a) As an additional step the benefit heuristic of the standard
method may be applied to order the latches within the single groups. It
emerged that in our case the lexicographic order of the latches preserves
more of the structure of the design and leads to better results.

– Step 2a) One may allow to create clusters that cross a group border. This
will lead to a more compact representation of the TR with fewer clusters.
Although the representation is more efficient the image computation does
not perform as efficient as with the strict group borders.

7.4.3 Experiments

We implemented our strategy in the VIS-package [7.3] (version 1.3) using the
underlying CUDD-package [7.29] (version 2.3.0). VIS is a popular verifica-
tion and synthesis package in academic research. It inherits state of the art
techniques for OBDD manipulation, image and reachable states computation
as well as formal verification techniques. Together with the vl2mv translator
VIS provides a Verilog front-end needed for our heuristic.
For our experiments we used Verilog designs from the Texas97 benchmark

suite [7.1]. This publicly available benchmark suite contains real life designs
including:
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– MSI Cache Coherence Protocol
– PCI Local BUS
– PI BUS Protocol
– MESI Cache Coherence Protocol
– MPEG System Decoder
– DLX
– PowerPC 60x Bus Interface

The benchmark suite also contains properties given in CTL formulas for
verification.
We left all parameters of VIS and CUDD unchanged. The most important

default values are:

– Partition cluster size = 5000
– Partition method for MDDs = inout
– OBDD variable reordering method = sifting
– First reordering threshold = 4004 nodes

The reachable states computation or the model checking was preceeded by
an explicitely triggered variable reordering. The CPU time was limited to 2
CPU hours and memory usage was limited to 200MB. All experiments were
performed on Linux PentiumIII 500Mhz workstations.

Results. For results see Table 7.4 and Table 7.5. Img.comp. is the sum of
all image and pre-image computations performed during the analysis. Part
gives the number of partitions of the transition relation. The OBDD-size of
the transition relation cluster and the peak number of live nodes is given by
TRn resp. Peakn. The CPU time is measured in seconds and given as Time.
The columns denoted with % describe the improvement in percent1.
At the bottom of Table 7.5 you can find the sum of all numbers of parti-

tions, BDD-sizes and CPU-times. Also, the average of the relative improve-
ment is given as well as the total improvement
The experiments show significant improvements in time and space: The

overall CPU time decreased by 67% overall and 40% on average. The method
outperforms the standard method in 45 of the 47 benchmarks. The decrease in
computation time ranges up to 90%. The OBDD peak sizes could be lowered
by 62% overall and 25% on average. Interestingly, the RTL method results
in 5% less partitions without requiring more OBDD nodes for the transition
relation. This also proves the improved quality of the partitioning.

7.5 Conclusion

In this article we have presented algorithms for OBDD-based formal verifi-
cation. All important problems for optimizing the OBDD data structure or
1 0 < improvement < 100; −100 < impairment < 0.
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Table 7.4. Comparison of original VIS partitioning, and RTL heuristic
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Table 7.5. Comparison of original VIS partitioning, and RTL heuristic cont
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OBDD-based applications like reachability analysis are at least NP-hard. We
have given two examples for heuristic approaches to the variable reordering
problem and the problem of partitioning a transition relation. Both heuristics
have been implemented in open source software packages and have been eval-
uated using public domain benchmark suites. This scheme is the only way to
allow a fair judgment of new and improved algorithms in VLSI design.
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Summary.

The benefits of experimental algorithmics and algorithm engineering
need to be extended to applications in the computational sciences. In this
paper, we present on one such application: the reconstruction of evolution-
ary histories (phylogenies) from molecular data such as DNA sequences.
Our presentation is not a survey of past and current work in the area, but
rather a discussion of what we see as some of the important challenges
in experimental algorithmics that arise from computational phylogenetics.
As motivational examples or examples of possible approaches, we briefly
discuss two specific uses of algorithm engineering and of experimental al-
gorithmics from our recent research. The first such use focused on speed:
we reimplemented Sankoff and Blanchette’s breakpoint analysis and ob-
tained a 200, 000-fold speedup for serial code and 108-fold speedup on
a 512-processor supercluster. We report here on the techniques used in
obtaining such a speedup. The second use focused on experimentation:
we conducted an extensive study of quartet-based reconstruction algo-
rithms within a parameter-rich simulation space, using several hundred
CPU-years of computation. We report here on the challenges involved in
designing, conducting, and assessing such a study.

8.1 Introduction

A phylogenetic tree or phylogeny is a representation of the evolutionary his-
tory of a collection of organisms, in which modern organisms are placed at
the leaves of the tree and the (unknown) ancestral organisms occupy internal
nodes; the edges of the tree thus denote evolutionary relationships. Due to
difficulties in rooting the trees, these phylogenies are usually (but not always)
represented by unrooted leaf-labelled trees. Figure 8.1 shows two proposed
phylogenies, one for several species of the Campanulaceae (bluebell flower)
family (from [8.10]) and the other for herpesviruses that are known to affect
humans (from [8.8]). Note that the Campanulaceae tree is rooted through the
use of a distantly related species (here tobacco), called an outgroup in this
context (the root is taken to be the internal node to which the outgroup is
attached); the herpesvirus tree is unrooted.

c© Springer-Verlag Berlin Heidelberg 2002
R. Fleischer et al. (Eds.): Experimental Algorithmics, LNCS 2547, pp. 163–180, 2002.
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Fig. 8.1. Two phylogenies: some plants of the Campanulaceae family (left) and
some herpesviruses affecting humans (right)

Reconstructing phylogenies is a major component of modern research pro-
grams in many areas of biology and medicine. An understanding of evolution-
ary mechanisms and relationships is at the heart of modern pharmaceutical
research for drug discovery, is helping researchers understand (and defend
against) rapidly mutating viruses such as HIV, is the basis for the design of
genetically enhanced organisms, etc. In developing such an understanding,
the reconstruction of phylogenies is a crucial tool, as it allows one to test new
models of evolution. Due to the importance of phylogenetic trees in biologi-
cal inquiry, there are many methods available for reconstructing phylogenetic
trees. Most of these methods are applied to biomolecular sequences, such as
DNA, RNA, or amino-acid sequences. More recently, methods have also been
developed to reconstruct phylogenies from data on gene content and gene
order within a genome.
Evaluating the performance of phylogenetic reconstruction methods is

complicated. Since many phylogenetic reconstruction methods are explicit
attempts to solve optimization problems, methods may be compared, for ex-
ample, with respect to the value of these optimization criteria on both real
and synthetic data. However, the biological community has also looked at the
performance of these methods with respect to an assumed stochastic model of
evolution and has evaluated phylogenetic methods with respect to the topo-
logical accuracy of the underlying unrooted trees returned by these meth-
ods. Thus, phylogenetic methods are evaluated in two different, yet related,
ways. Furthermore, the difficulty in establishing true evolutionary histories
for many datasets has led the research community to study these questions
largely from results on synthetic, rather than real, data, and to use simu-
lations as the main technique. The design of appropriate simulation studies
presents interesting and subtle challenges to the researcher in experimental
algorithmics.
Fast implementations of phylogenetic methods are also of potentially

tremendous impact, since biologists want to apply these methods to large



8. Reconstructing Optimal Phylogenetic Trees 165

datasets (containing hundreds to thousands of taxa)—and some smaller
datasets have required nearly one hundred CPU-years of computation on
modern machines for acceptable analyses. Thus, algorithm engineering also
has an important role to play in this domain.
In this paper, we review the experimental challenges posed by phylogeny

reconstruction, in terms both of algorithm engineering and of data generation,
collection, and analysis, and present examples from our own experimental
research.

8.2 Data for Phylogeny Reconstruction

Phylogenies are most commonly reconstructed using biomolecular sequences
(DNA, RNA, or amino acid) for particular genes or non-coding regions of
DNA. More recently, “genomic rearrangement” data have been used to infer
deep evolutionary histories (i.e., very ancient evolutionary events), as well as
to clarify evolutionary relationships in difficult datasets. The use of genome
rearrangement data is part of an increased interest in the development of new
sources of phylogenetic information, especially those which can be character-
ized as “rare genomic changes” (see [8.31] for a survey of these approaches).
Sequence data and genomic rearrangement data are highly complementary,
with different rates of evolution especially in organelles (chloroplasts and mi-
tochondria), so that using both types of data holds potential for improving
accuracy in phylogenetic reconstructions.
DNA, RNA, and amino-acid sequences are used for phylogenetic recon-

struction. DNA and RNA sequences can be considered simply as strings over
a 4-letter alphabet (A, C, T, and G for DNA), while amino-acid sequences
can be considered as strings over a 20-letter alphabet (one for each amino-
acid). These sequences evolve through events such as substitutions of one
nucleotide by another, insertions and deletions of substrings, etc. Typical
sources of biomolecular sequence data are individual genes, so that the se-
quence coding for a given gene is used in each of the relevant taxa. These
sequences are then placed in a multiple alignment through the introduction
of spaces; each resulting column of the alignment then corresponds to a place
in the sequence and changes can be identified as mutations (two sequences
have different entries in that column), insertions (a sequence has an entry,
but the other has a space), and deletions (the reverse). Computing a good
multiple sequence alignment is itself a hard optimization problem, but out-
side our scope; we direct the interested reader to [8.38] for an introduction
to this problem.
Genome rearrangement data indicate how the genes are ordered within

the given genomes. Many organellar genomes are composed of a single chro-
mosome and are relatively small, so that every gene within the genome can be
identified and their relative ordering inferred (most accurately through whole
genome sequencing, but also through gene mapping). Given an ordering of
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the genes, we can represent a given genome by an ordering of signed integers.
Organellar genomes are thought to evolve via inversions (mechanisms that
pick up a segment of a genome and invert it, thus reversing the order of the
affected genes), transpositions (mechanisms that pick up a segment of the
genome and move it to another position, thus changing the order but not the
sign of the affected genes), and inverted transpositions (which are inversions
followed by transposition of the inverted segment).

8.2.1 Phylogenetic Reconstruction Methods

For both biomolecular sequences and gene orders, assumptions are made
about the mechanism by which these objects evolve. Phylogenetic reconstruc-
tions explicitly use assumptions about evolution, but differ in the details of
these assumptions. For example, in an analysis of DNA sequences, we may
have an explicit model about the evolutionary process; we may know the rates
of each type of nucleotide substitution on the true (but unknown) tree. If we
assume these rates, then we can seek the tree which is most likely to have
generated the given data—the so-called “maximum-likelihood” approach. We
can also use these assumptions to infer evolutionary distances between each
pair of the given sequences, where the “evolutionary distance” between two
sequences is the most likely number of individual changes within the se-
quence on the path between the two sequences. Both of these approaches
have theoretical guarantees, with respect to topological accuracy of the re-
sultant trees, provided that the model is not over-parameterized and that
the assumptions about the model are correct. However, maximum-likelihood
methods are computationally very intensive, while the second type of meth-
ods (called “distance-based” methods) tend to run in polynomial time.
A final class of methods (called “maximum parsimony”) does not make

any explicit assumption about the model parameters; instead, it seeks a tree
with a minimum “number of events”. In the context of DNA sequence evolu-
tion, these events are nucleotide substitutions, insertions, or deletions, while
in the context of gene-order data, they are inversions, transpositions, and in-
verted transpositions. Maximum parsimony is thus the Steiner Tree Problem
for the appropriate space—for instance, the maximum parsimony problem
on DNA sequences is the Hamming Distance Steiner Tree problem on strings
over a four-letter alphabet. When the input is just the set of taxa (e.g., DNA
sequences or gene orders), then the problem is to construct a tree and to label
its internal nodes in such a way as to minimize the total number of changes.
This problem is NP-hard for both types of data. The point estimation prob-
lem, i.e., the scoring of a particular tree topology (in which case the input
also includes a specific tree with leaves labelled by the taxa), is solvable in
polynomial time for the biomolecular sequence data case, but is NP-hard for
gene-order data.
These three types of methods, namelymaximum likelihood, distance-based,

and maximum parsimony, account for great majority of the methods used by
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biologists and their relative performance is passionately argued in the biolog-
ical literature. One of the major limitations of both maximum parsimony and
maximum likelihood techniques (even their heuristic versions, which may not
have any performance guarantees) is that they take too long. Even some only
moderately large datasets can take years of real analysis (hundreds of CPU
years), without resolution [8.29]. By comparison, distance-based methods,
including the popular Neighbor-Joining (NJ) method [8.32], are often quite
accurate (with respect to topological accuracy, as determined using simula-
tion studies) and are very fast (polynomial-time and fast in practice). While
the experimental evidence is not yet definitive, the best distance-based meth-
ods appear less accurate than the better heuristics for maximum parsimony
and maximum likelihood, at least on large trees with high rates of evolution
(see, e.g., [8.13]).

8.3 Algorithmic and Experimental Challenges

8.3.1 Designing for Speed

Because both parsimony- and likelihood-based approaches involve NP-hard
optimization problems and because poor approximations may lead to biolog-
ically incorrect conclusions, developing efficient exact algorithms is a major
concern. The range of data used in current analyses is fortunately limited
(e.g., the length of available DNA sequences is bounded, as is the number
of genes in a mitochondrial or chloroplast genome). This bounded range is
tailor-made for applications of algorithm engineering techniques.

8.3.2 Designing for Accuracy

When exact methods fail to terminate, one needs to use approximations.
But it is important to keep in mind that the optimization criterion rarely
has direct biological significance, so that deviations from optimal, even by
small amounts, may yield results that are grossly different from a biological
perspective. Thus the development and evaluation of approximation algo-
rithms must be guided by biological considerations. As discussed earlier, the
main criterion by which biologists judge the quality of a reconstruction is its
topological accuracy, which is only indirectly related to a parsimony or like-
lihood criterion. Indeed, the great success of the neighbor-joining heuristic,
which has no approximation guarantees for the standard optimization crite-
ria, demonstrates that the biological relevance of results matters more than
the traditional algorithmic goal of performance guarantees. Simulation exper-
iments can measure topological accuracy, but designing algorithms to produce
topologically correct trees is another matter—the methods most closely ori-
ented toward this goal, the family of quartet-based methods, turns out to
produce generally much poorer trees than the much simpler neighbor-joining
algorithm.
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8.3.3 Performance Evaluation

Phylogenetic reconstruction methods are evaluated according to three basic
types of criteria: statistical performance, which addresses the accuracy of the
method under a specified stochastic model of evolution; computational perfor-
mance, which addresses the computational requirements of the method; and
data requirements, which addresses the requirements, in terms of quality and
quantity, placed on the input data. Accuracy in a phylogenetic reconstruc-
tion method is determined primarily by comparing the unrooted leaf-labelled
tree obtained by the method to the “true” tree. Since the true tree is usu-
ally unknown, accuracy is addressed either theoretically, with reference to a
fixed but unknown tree in some model of evolution, or through simulation
studies. A method is said to be accurate if the tree obtained is exactly equal
to the unrooted version of the model (or true) tree; degrees of accuracy are
quantified typically by the percentage of the edges of the true tree that occur
in the estimated tree. A method is said to be statistically consistent with
respect to a specific model of evolution if it is guaranteed to recover the true
tree with probability going to 1 as the amount of data (e.g., sequence length)
goes to infinity. The latter property is not as good as it may sound: nature
provides us with finite data only—for instance, DNA sequences cannot be of
arbitrary length, much less gene orders; thus the rate of convergence is crucial
and needs to be evaluated experimentally as well as bounded theoretically
(see [8.35] for such an evaluation and [8.37] for a theoretical approach). Data
requirements therefore loom large—and indeed may prove more detrimen-
tal than computational requirements, since we can always run the program
longer.
Because the evolutionary models that biologists favor are parameter-rich,

experimental assessment of performance (whether accuracy, convergence rate,
or running time) is a daunting task: choosing how to vary the parameters
while keeping the total computation down is a difficult tradeoff.

8.4 An Algorithm Engineering Example:
Solving the Breakpoint Phylogeny

Blanchette et al. [8.6] developed an approach, which they called breakpoint
phylogeny, for reconstructing phylogenies from gene order data. Their ap-
proach is limited to the special case in which the genomes all have the same
set of genes and each gene appears once. This special case is of interest to
biologists, who hypothesize that inversions (which can only affect gene order,
but not gene content) are the main evolutionary mechanism for a range of
genomes or chromosomes (chloroplast, mitochondria, human X chromosome,
etc.). Simulation studies we conducted suggested that this approach works
well for certain datasets (i.e., it obtains trees that are close to the model
tree), but that the implementation developed by Sankoff and Blanchette, the
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For each tree topology do:
Initially label all internal nodes with gene orders
Repeat

For each internal node v, with neighbors A, B, and C, do
Solve the MPB on A,B,C to yield label m
If relabelling v with m improves the score of T , then do it

until no internal node can be relabelled

Fig. 8.2. BPAnalysis

BPAnalysis software [8.33], is too slow to be used on anything other than
small datasets with a few genes [8.9, 8.10].

8.4.1 Breakpoint Analysis: Details

When each genome has the same set of genes and each gene appears exactly
once, a genome can be described by an ordering (circular or linear) of these
genes, each gene given with an orientation that is either positive (gi) or
negative (−gi). Given two genomes G and G′ on the same set of genes, a
breakpoint in G is defined as an ordered pair of genes, (gi, gj), such that gi and
gj appear consecutively in that order in G, but neither (gi, gj) nor (−gj,−gi)
appears consecutively in that order in G′. The breakpoint distance between
two genomes is the number of breakpoints between that pair of genomes. The
breakpoint score of a tree in which each node is labelled by a signed ordering
of genes is then the sum of the breakpoint distances along the edges of the
tree.
Given three genomes, we define their median to be a fourth genome that

minimizes the sum of the breakpoint distances between it and the other three.
The Median Problem for Breakpoints (MPB) is to construct such a median
and is NP-hard [8.27]. Sankoff and Blanchette developed a reduction from
MPB to the Travelling Salesman Problem (TSP), perhaps the most studied
of all optimization problems [8.15]. Their reduction produces an undirected
instance of the TSP from the directed instance of MPB by the standard
technique of representing each gene by a pair of cities connected by an edge
that must be included in any solution.

BPAnalysis (see Figure 8.2) is the method developed by Blanchette and
Sankoff to solve the breakpoint phylogeny. Within a framework that enumer-
ates all trees, it uses an iterative heuristic to label the internal nodes with
signed gene orders. This procedure is computationally very intensive. The
outer loop enumerates all (2n− 5)!! leaf-labelled trees on n leaves, an expo-
nentially large value.1 The inner loop runs an unknown number of iterations
(until convergence), with each iteration solving an instance of the TSP (with
a number of cities equal to twice the number of genes) at each internal node.

1 The double factorial is a factorial with a step of 2, so we have (2n − 5)!! =
(2n− 5) · (2n− 7) · . . . · 3.
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The computational complexity of the entire algorithm is thus exponential in
each of the number of genomes and the number of genes, with significant
coefficients. The procedure nevertheless remains a heuristic: even though all
trees are examined and each MPB problem solved exactly, the tree-labeling
phase does not ensure optimality unless the tree has only three leaves.

8.4.2 Re-Engineering BPAnalysis for Speed

Profiling. Algorithmic engineering suggests a refinement cycle in which the
behavior of the current implementation is studied in order to identify prob-
lem areas which can include excessive resource consumption or poor results.
We used extensive profiling and testing throughout our development cycle,
which allowed us to identify and eliminate a number of such problems. For
instance, converting the MPB into a TSP instance dominates the running
time whenever the TSP instances are not too hard to solve. Thus we lav-
ished much attention on that routine, down to the level of hand-unrolling
loops to avoid modulo computations and allowing reuse of intermediate ex-
pressions; we cut the running time of that routine down by a factor of at
least six—and thereby nearly tripled the speed of the overall code. We lav-
ished equal attention on distance computations and on the computation of
the lower bound, with similar results. Constant profiling is the key to such an
approach, because the identity of the principal “culprits” in time consump-
tion changes after each improvement, so that attention must shift to different
parts of the code during the process—including revisiting already improved
code for further improvements. These steps provided a speed-up by one order
of magnitude on the Campanulaceae dataset.

Cache Awareness. The original BPAnalysis is written in C++ and uses a
space-intensive full distance matrix, as well as many other data structures. It
has a significant memory footprint (over 60MB when running on the Campan-
ulaceae dataset) and poor locality (a working set size of about 12MB). Our
implementation has a tiny memory footprint (1.8MB on the Campanulaceae
dataset) and good locality (all of our storage is in arrays preallocated in the
main routine and retained and reused throughout the computation), which
enables it to run almost completely in cache (the working set size is 600KB).
Cache locality can be improved by returning to a FORTRAN-style of pro-
gramming, in which storage is static, in which records (structures/classes)
are avoided in favor of separate arrays, in which simple iterative loops that
traverse an array linearly are preferred over pointer dereferencing, in which
code is replicated to process each array separately, etc. (This style of pro-
gramming is not always easy to reconcile with the currently favored object-
oriented style; fortunately, compiler support for this type of code optimization
is slowly developing—as of January 2002, for instance, at least one commer-
cial compiler could optimize storage access by breaking an array of record
into multiple arrays. We found it easier to code in C, simply because of
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the much greater transparency of the language.) While we cannot measure
exactly how much we gain from this approach, studies of cache-aware algo-
rithms [8.1, 8.11, 8.18, 8.19, 8.20, 8.39] indicate that the gain is likely to be
substantial—factors of anywhere from 2 to 40 have been reported. New mem-
ory hierarchies show differences in speed between cache and main memory
that exceed two orders of magnitude.

Low-Level Algorithmic Changes. Unless the original implementation
is poor (which was not the case with BPAnalysis), profiling and cache-aware
programming will rarely provide more than two orders of magnitude in speed-
up. Further gains can often be obtained by low-level improvement in the
algorithmic details. In our phylogenetic software, we made two such improve-
ments. The basic algorithm scores every single tree, which is clearly very
wasteful; we used a simple lower bound, computable in linear time, to enable
us to eliminate a tree without scoring it. On the Campanulaceae dataset, this
bounding eliminates over 99.95% of the trees without scoring them, resulting
in a 100-fold speed-up. The TSP solver we wrote is at heart the same basic
include/exclude search as in BPAnalysis, but we took advantage of the na-
ture of the instances created by the reduction to make the solver much more
efficient, resulting in a speed-up by a factor of 5–10. These improvements
all spring from a careful examination of exactly what information is readily
available or easily computable at each stage and from a deliberate effort to
make use of all such information.

A High-Performance Implementation.Our implementation, GRAPPA2,
incorporates all of the refinements mentioned above, plus others specifically
made to enable the code to run efficiently in parallel (see [8.23, 8.24, 8.26] for
details). Because the basic algorithm enumerates and independently scores
every tree, it presents obvious parallelism: we can have each processor han-
dle a subset of the trees. In order to do so efficiently, we need to impose a
linear ordering on the set of all possible trees and devise a generator that
can start at an arbitrary point along this ordering. Because the number of
trees is so large, an arbitrary tree index would require unbounded-precision
integers, considerably slowing down tree generation. Our solution was to de-
sign a tree generator that starts with tree index k and generates trees with
indices {k + cn | n ∈ N}, where k and c are regular integers, all without
using unbounded-precision arithmetic. Such a generator allows us to sample
tree space (a very useful feature in research) and, more importantly, allows
us to use a cluster of c processors, where processor i, 0 ≤ i ≤ c− 1, generates
and scores trees with indices {i+ cn | n ∈ N}. We ran GRAPPA on the 512-
processor Alliance cluster Los Lobos at the University of New Mexico and
obtained a 512-fold speed-up. When combined with the nearly 200, 000-fold
speedup obtained through algorithm engineering, our run on the Campan-
ulaceae dataset demonstrated a one hundred million-fold speed-up over the
2 Genome Rearrangement Analysis through Parsimony and other Phylogenetic
Algorithms.
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original implementation [8.26] (a first speedup of one million was reported
in [8.2]).

8.4.3 A Partial Assessment

Clearly, generating every single tree is a self-defeating approach: even our
huge 108-fold speedup allowed us to move from 10 taxa to just 16 taxa—and
20 or more taxa remain forever out of reach of this computational approach.
A real search strategy should reduce the cost of computation by an enormous
factor. Yet this exercise in algorithm engineering already produced significant
results in both biology and computer science: the analysis of the Campan-
ulaceae dataset conformed to the expectations of the biologists and thus
reinforced the conjecture that gene-order data carries significant information
about evolution (and, incidentally, that inversion-driven rearrangements are
indeed the main mechanism for such evolution), while the improved under-
standing of inversion distance computations gained through the implementa-
tion enabled us to design the first true linear-time algorithm for this purpose.
In turn, the availability of a fast implementation for inversion distance com-
putations and inversion-based phylogenies has spurred renewed interest in
the inversion median problem [8.7, 8.34] and other related problems.

8.5 An Experimental Algorithmics Example:
Quartet-Based Methods for DNA Data

8.5.1 Quartet-Based Methods

A quartet tree is an unrooted binary tree on four taxa. A quartet tree thus
induces a unique bipartition of the four taxa and can be denoted by that
bipartition. If the taxa are {a, b, c, d}, we can use {ab|cd} to denote the quartet
tree that pairs a with b and c with d (see Figure 8.3). A quartet tree {ab|cd}
agrees with a tree T if all four of its taxa are leaves of T and the path from a
to b in T does not intersect the path from c to d in T . Equivalently, {ab|cd}
agrees with a tree if the subtree induced in T by the four taxa is the quartet
tree itself. The quartet tree {ab|cd} is an error with respect to the tree T if it
does not agree with T . If Q(T ) denotes the set of all quartet trees that agree
with T , then T is uniquely characterized by Q(T ) and can be reconstructed
from Q(T ) in polynomial time [8.12].
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Fig. 8.3. The three possible quartet trees on four taxa {a, b, c, d} and their bipar-
tition encodings
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Quartet-based methods operate in two phases. In the first phase they
construct a set Q of quartet trees on the different sets of four taxa; in the
second phase, they combine these quartet trees into a tree on the entire set
of taxa. In practice, the input data are not of sufficient quality to ensure that
all quartet trees are accurately inferred, so that quartet methods have to find
ways of handling incorrect quartet trees. With the exception of Quartet Puz-
zling, all quartet methods we examine provide guarantees about the edges of
the true tree that they reconstruct. These guarantees are expressed in terms
of “quartet errors around an edge,” a concept we now define.
Consider an edge e in the true tree T ; its removal defines the bipartition

A|B on the leaves of S. Consider those sets of four leaves {a, a′, b, b′} with
{a, a′} ⊆ A and {b, b′} ⊆ B. A quartet tree t is said to be an “error around
e” if we have t = {ab|a′b′} or t = {ab′|a′b}. Similarly, if T ′ is a proposed tree
and Q is a set of quartet trees, then t ∈ Q is an error around edge e ∈ E(T ′)
if t = {ab|a′b′} or t = {ab′|a′b}, while e defines the bipartition A|B.
Two of the methods we study, the Q∗ method (also known as the Bune-

man method) and the Quartet-Cleaning methods, can be described in terms
of an explicit bound on the number of quartet errors around the edges they
reconstruct. The Q∗ method [8.4] seeks the maximally resolved tree T ′ obey-
ing Q(T ′) ⊆ Q; therefore, there are no quartet errors around any edge in the
tree T ′. Quartet-Cleaning (QC) methods [8.3, 8.5, 8.14] have explicit bounds
on the number of quartet errors around each reconstructed edge e. These
error bounds have the form m

√
q
e
, where qe is the number of quartet trees

around edge e and m is a small constant. Thus, the Q∗ method is a cleaning
method with m = 0. The global cleaning method sets m = 1 and the local
cleaning method sets m = 1

2 ; these methods are guaranteed to recover every
edge of the true tree for which Q contains a small enough number of quartet
errors. The hypercleaning method allows m to be an arbitrary integer and
thus has the potential to recover more edges, at the cost of a high running
time (proportional to n7 ·m4m+2), so that it is impractical form larger than 5.
The final quartet-based method we examined is the best known and the

most frequently used by biologists [8.22, 8.30, 8.17]: the Quartet-Puzzling
(QP) method [8.36]. This heuristic computes quartet trees using maximum
likelihood (ML) and then uses a greedy strategy to construct a tree on which
many input quartets are in agreement. QP uses an arbitrary ordering of
taxa, constructs the optimal quartet tree on the first four, then inserts each
successive taxon in turn, attaching the new leaf to an edge of the current tree
so as to optimize a quartet-based score. Because the input ordering of taxa is
pertinent, QP uses a large number of random input orderings and computes
the majority consensus of all trees found. (The majority consensus is the tree
that contains all bipartitions that appear in more than half of the trees in
the set and is commonly used by biologists.)
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8.5.2 Experimental Design

We used Jukes-Cantor model trees with varying numbers of taxa and rates of
evolution to generate a large number of synthetic datasets of varying lengths.
(The Jukes-Cantor model [8.16] is the simplest of the various evolutionary
models, with just one parameter.) For each dataset generated, we computed
the neighbor-joining (NJ) and QP trees on the entire dataset and two sets of
quartet trees, one based upon ML, QML, and one based upon NJ, QNJ. We
then applied various cleaning methods to each of the sets QML and QNJ. We
compared quartet trees ofQML, ofQNJ, and of the reconstructed trees, as well
as the reconstructed trees themselves, against the model tree for accuracy.
We randomly generated model tree topologies from the uniform distri-

bution on binary leaf-labelled trees. For each edge of each tree topology, we
generated a random number (from the uniform distribution) between 1 and
1000 and used that number as the initial “length” of the edge. We then scaled
each such “base” model tree by a multiplicative factor, ranging from 10−7

to 10−3. This process produces Jukes-Cantor trees with edge lengths (λe for
edge e) ranging from a minimum of 10−7 to a maximum of 1. The edge length
denotes the probability that a particular character in the sequence at the base
of the edge will be affected by an evolutionary event along the edge; thus the
expected number of changes affecting the sequence at the base of the edge is
the product of the edge length by the sequence length. In the following we
write λe to denote the average edge length in a collection of trees—which is
just 500 times the scaling factor. We generated random DNA sequences for
the root and used the program Seq-Gen [8.28] to evolve these sequences down
the tree under the Jukes-Cantor model of evolution, thus producing sets of
sequences at the leaves, our synthetic datasets.
Because the number of distinct unrooted, leaf-labelled trees on n leaves

is (2n− 5)!! and because our input space is further expanded by the choice
of evolutionary rates, it is not possible to take a fair sample of the entire
input space. In order to obtain statistically robust results, we followed the
advice of McGeoch [8.21] and Moret [8.25] and used a number of runs, each
composed of a number of trials (a trial is a single comparison), computed the
mean outcome for each run, and studied the mean and standard deviation
over the runs of these events.
A critical parameter of our study, one that has not been explored in most

prior studies, is the number of input taxa. Previous experimental studies have
often been limited to a small number of taxa due to computational problems.
However, to resolve phylogenetic trees of interest to biologists, algorithms
must scale reasonably, both in terms of topological accuracy and running
time, to problems of the size that biologists typically study (20–200 taxa), as
well as those they would like to address (a few hundred to several thousand
taxa).
We ran our test suite for 5, 10, 20, 40, and selected sets of 80 taxa.

Our tests included a selection of eight expected evolutionary rates, from 5×
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10−5 to 5× 10−1 per tree edge. For each evolutionary rate and problem size,
we generated a total of 100 topologies, grouped into ten runs of ten trials.
All tests were conducted for four sequence lengths: 500, 2, 000, 8, 000, and
32, 000. We note that sequence lengths above 1, 000 are considered long and
those above 5, 000 extremely long; thus our study explores longer sequence
lengths than are usually encountered in practice. In all, our study used 16, 000
datasets and required many months of computation on two medium-sized
clusters.
Our focus was the accuracy of solutions generated by the various tree

reconstruction methods. To assess topological accuracy, we measured the
number of true positives (edges of the true tree that appear in the recon-
structed tree). For cleaning methods, we measured these values before and
after cleaning. For each run of ten trials, we retained only the mean values.
Our results are composed of the means for each set of ten runs.

8.5.3 Some Experimental Results

We provide only a few illustrative results from our study [8.35]. Because our
focus was accuracy, we wanted to find out whether the goal of minimizing
quartet errors would correlate closely with the true goal of maximizing topo-
logical accuracy. Our results showed convincingly that topological accuracy
is a more demanding criterion than quartet accuracy and should therefore be
used to assess performance of phylogenetic reconstruction methods; typical
results are shown in Figures 8.4 and 8.5. Both NJ and QP can return trees
with only 20% of the edges correct from a set of quartet trees that is 80% cor-
rect. Worse yet, both methods, except when the percentage of correct quartet
trees is close to 100%, can return fewer than 80% of the true tree edges (in
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Fig. 8.4. Percent of true tree edges recovered by global NJ for various λe as a
function of the percentage of correct induced quartet trees for 40 taxa and two
sequence lengths
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Fig. 8.5. Percent of true tree edges recovered by QP for various λe as a function
of the percentage of correct induced quartet trees for 40 taxa and two sequence
lengths

the case of QP, some such trees had only 60% of the true tree edges). Because
failure to obtain at least 90 or 95% of the edges can be unacceptable to sys-
tematists, quartet-based measures of accuracy are not acceptable surrogates
for true tree edges.
Theory predicts that the accuracy of methods will degrade as the number

of taxa increases while sequence length and average edge length (the expected
number of changes for a random site on each edge) are held fixed. Figure 8.6
shows the topological accuracy achieved by all six methods as a function
of the number of taxa for a sequence length of 500 and for three different
average edge lengths. All methods decrease in accuracy as the number of taxa
increases, even though both NJ and QP show an initial increase (particularly
for lower evolutionary rates). QC provides a distinct improvement over the
Q∗ method, whether the quartet trees are computed using ML or local NJ.
QCML and QCNJ are very close in performance, although QCNJ slightly
outperforms QCML; similarly Q∗NJ slightly outperforms Q∗ML. Of the five
quartet methods, QP is the best throughout the range of parameters studied,
but NJ completely dominates it.

8.6 Observations and Conclusions

Our two examples illustrate two different facets of computational phylogenet-
ics: the first shows that algorithmic engineering can turn what appears to be
strictly a proof of concept into a usable tool, while the second demonstrates
the scale required in good experimentation when assessing the behavior of
reconstruction algorithms. It is worth stressing that the goal of a biologist
is to analyze a specific dataset—so that the biologist will not mind running
a cluster on the problem for as long as necessary (weeks or months), since
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Fig. 8.6. Number of taxa vs. percentage of edges correct for sequence length 500
and various λe

just one instance must be solved. In contrast, the role of the algorithm de-
signer or engineer is to document the practical performance of an algorithm,
which requires many runs on many different sizes and types of data. In conse-
quence, an algorithm that a biologist finds acceptable computationally may
be judged completely inadequate by an algorithm engineer—a discrepancy
that can only be resolved through a close collaboration between the biologist
and the algorithm engineer.
A boon to the experimentalist in the area is the availability of real

datasets: academic biologists are generally very free with their data and only
too pleased to have an algorithm designer help them answer their questions.
We have a national database that stores most known DNA sequences (Gen-
Bank) and government laboratories that sequence organellar genomes, pro-
viding vast amounts of challenging problems to the algorithms community.
On the other hand, the absence of consensus on a model of evolution makes
it difficult to obtain definitive results. Current models appear to be brittle, in
the sense that small deviations from optimality may cause significant degra-
dation of the quality of the solution as perceived by a biologist; the optimality
criteria need to be refined to remedy this problem. Again, working with a re-
search biologist is crucial, as the biologist can sift through the changes in
model parameters and the output produced under each model and prepare
an analysis and, if necessary, a new model.
On the algorithm engineering side, the area needs a large effort in code

production, code that is made freely available to biologists everywhere, in
order to replace poor existing codes, implement new ideas, and provide the
most efficient tools to the biologists. Perhaps more than in any other area,
there is an opportunity in computational biology, in particular in computa-
tional phylogenetics, for algorithm designers and engineers to have a profound
impact on the course of scientific research.



178 Bernard M. E. Moret and Tandy Warnow

Acknowledgments

This work was supported in part by NSF grants CCR 94-57800 (Warnow),
ACI 00-81404 (Moret), DEB 01-20709 (Moret and Warnow), EIA 01-13095
(Moret), EIA 01-13654 (Warnow), EIA 01-21377 (Moret), and EIA 01-21680
(Warnow), and by the David and Lucile Packard Foundation (Warnow).

References

8.1 L. Arge, J. Chase, J. S. Vitter, and R. Wickremesinghe. Efficient sorting
using registers and caches. In Proceedings of the 4th Workshop on Algorithm
Engineering (WAE’00). Springer Lecture Notes in Computer Science 1982,
2000.

8.2 D. A. Bader and B. M. E. Moret. GRAPPA runs in record time. HPC Wire,
9(47), 2000.

8.3 V. Berry, D. Bryant, T. Jiang, P. Kearney, M. Li, T. Wareham, and H. Zhang.
A practical algorithm for recovering the best supported edges of an evolution-
ary tree. In Proceedings of the 11th ACM/SIAM Symposium on Discrete
Algorithms (SODA’00), pages 287–296, 2000.

8.4 V. Berry and O. Gascuel. Inferring evolutionary trees with strong combina-
torial evidence. Theoretical Computer Science, 240(2):271–298, 2000.

8.5 V. Berry, T. Jiang, P. Kearney, M. Li, and T. Wareham. Quartet cleaning:
improved algorithms and simulations. In Proceedings of the 7th European
Symposium on Algorithms (ESA’99). Springer Lecture Notes in Computer
Science 1643, pages 313–324, 1999.

8.6 M. Blanchette, G. Bourque, and D. Sankoff. Breakpoint phylogenies. In
S. Miyano and T. Takagi, editors, Genome Informatics 1997, pages 25–34.
Univ. Academy Press, Tokyo, 1997.

8.7 A. Caprara. On the practical solution of the reversal median problem. In
Proceedings of the 1st Workshop on Algorithms for Bioinformatics (WABI’01).
Springer Lecture Notes in Computer Science 2149, pages 238–251, 2001.

8.8 J. I. Cohen. Epstein-barr virus infection. New England Journal of Medicine,
343(7):481–492, 2000.

8.9 M. E. Cosner, R. K. Jansen, B. M. E. Moret, L. A. Raubeson, L.-S. Wang,
T. Warnow, and S. K. Wyman. An empirical comparison of phylogenetic
methods on chloroplast gene order data in Campanulaceae. In D. Sankoff
and J. Nadeau, editors, Comparative Genomics: Empirical and Analytical Ap-
proaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene
Families, pages 99–121. Kluwer, 2000.

8.10 M. E. Cosner, R. K. Jansen, B. M. E. Moret, L. A. Raubeson, L. Wang,
T. Warnow, and S. K. Wyman. A new fast heuristic for computing the break-
point phylogeny and experimental phylogenetic analyses of real and synthetic
data. In Proceedings of the 8th International Conference on Intelligent Sys-
tems for Molecular Biology (ISMB’00), pages 104–115, 2000.

8.11 N. Eiron, M. Rodeh, and I. Stewarts. Matrix multiplication: a case study of
enhanced data cache utilization. ACM Journal of Experimental Algorithmics,
4(3), 1999. Online at www.jea.acm.org/1999/EironMatrix/.
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9. Presenting Data from Experiments
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Summary.

Algorithmic experiments yield large amounts of data that depends on
many parameters. This paper collects a number of rules for presenting this
data in concise, meaningful, understandable graphs that have sufficiently
high quality to be printed in scientific journals. The focus is on common
sense rules that are frequently useful and can be easily implemented using
tools such as gnuplot1.

9.1 Introduction

A paper in experimental algorithmics will often start by describing the prob-
lem and the experimental setup. Then a substantial part will be devoted to
presenting the results together with their interpretation. Consequently, com-
piling the measured data into graphs is a central part of writing such a paper.
This problem is often rather difficult because several competing factors are
involved. First, the measurements can depend on many parameters: prob-
lem size and other quantities describing the problem instance; variables like
number of processors, available memory describing the machine configuration
used; and the algorithm variant together with tuning parameters such as the
cooling rate in a simulated annealing algorithm.
Furthermore, many quantities can be measured such as solution quality,

execution time, memory consumption and other more abstract complexity
measures such as the number of comparisons performed by a sorting algo-
rithm. Mathematically speaking, we sample function values of a mapping
f : A → B where the domain A can be high-dimensional. We hope to un-
cover properties of f from the measurements, e.g., an estimate of the time
complexity of an algorithm as a function of the input size. Measurement
errors may additionally complicate this task.
As a consequence of the the multitude of parameters, a meaningful exper-

imental setup will often produce large amounts of data and still cover only
a tiny fraction of the possible measurements. This data has to be presented
∗ This work was partially supported by the Future and Emerging Technologies
programme of the EU under contract number IST-1999-14186 (ALCOM-FT).

1 www.gnuplot.org. The source codes of the examples in this paper can be found
under http://www.mpi-sb.mpg.de/~sanders/gnuplot/
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in a way that clearly demonstrates the observed properties. The most impor-
tant presentation usually takes place in conference proceedings or scientific
journals where limited space and format restriction further complicate the
task.
This paper collects rules that have proven to be useful in designing good

graphs. Although the examples are drawn from the work of the author, this
paper owes a lot to discussions with colleagues and detailed feedback from sev-
eral referees. Sections 9.3–9.7 explains the rules. The stress is on Section 9.4
where two-dimensional figures are discussed in detail.
Instead of an abstract conclusion, Section 9.8 collects all the rules in a

check list that can possibly be used when looking for teaching and as a source
of ideas for improving graphs.

Related Work

A number of papers on the methodology of experimental algorithmics have
come out recently [9.10, 9.8, 9.9, 9.6]. In particular, [9.6] explains some of the
rules presented here.
There are also entire books on presenting data graphically [9.5, 9.4, 9.17].

The role of the present paper is to formulate domain specific rules, to adapt
and specialize more abstract rules and to summarize less important rules. For
example, the main emphasis of the above books is on approaches to visualize
a limited set of data items in ways which discern structure. Tufte even reports
that 75 % of the graphics found in newspapers and magazines are time series
— a species of graphs rather rare in algorithmics, where we often face a
different situation. We have instance generators which provide us with an
unlimited supply of examples and we have control over many parameters.
Furthermore, we can repeat experiments as often as we want and hence can
often reduce measurement errors to quite small values. The difficulty is now
to select the right measurements and display a large amount of data in a
compact way.
Another active area of research is the visualization of large amounts of

data using three-dimensional, colored animations. Here we limit ourselves
to simple graphs suited for black-and-white printing that can be produced
with off-the-shelf tools like gnuplot. This paper should not be regarded as a
research paper but as a collection of “folklore” rules.

9.2 The Process

In a simplified model of experimental algorithmics a paper might be written
using a “waterfall model”. The experimental design is followed by a descrip-
tion of the measurement which is in turn followed by an interpretation. In
reality, there are numerous feedbacks involved and some might even remain
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visible in a presentation. After an algorithm has been implemented, one typi-
cally builds a simple yet flexible tool that allows many kinds of measurements.
After some explorative measurements the researcher gets a basic idea of in-
teresting parameter settings. Hypotheses are formed which are tested using
more extensive measurements using particular parameter ranges. This phase
is the scientifically most productive phase and often leads to new insights
which lead to algorithmic changes which influence the entire setup.
It should be noted that most algorithmic problems are so complex that

one cannot expect to arrive at an ultimate set of measurements that answers
all conceivable questions. Rather, one is constantly facing a list of interesting
open questions that require new measurements. The process of selecting the
measurements that are actually performed is driven by risk and opportunity:
The researcher will usually have a set of hypotheses that have some support
from measurements but more measurements might be important to confirm
them. For example, the hypothesis might be “my algorithm is better than
all the others” then a big risk might be that a promising other algorithm or
important classes of problem instances have not been tried yet. A small risk
might be that a tuning parameter has so far been set in an ad hoc fashion
where it is clear that it can only improve a precomputation phase that takes
20 % of the execution time.
An opportunity might be a new idea of the authors’ that an algorithm

might be useful for a new application where it was not originally designed
for. In that case, one might consider to include problem instances from the
new application into the measurements.
At some point, a group of researchers decides to cast the current state

of results into a paper. The explorative phase is then stopped for a while.
To make the presentation concise and convincing, alternative ways to display
the data are designed that are compact enough to meet space restrictions
and make the conclusions evident. This might also require additional mea-
surements giving additional support to the hypotheses studied.

9.3 Tables

Tables are easier to produce than graphs and perhaps this advantage causes
that they are often overused. Tables are more difficult to interpret and too
large for large data sets. A more detailed explanation why tables are often
a bad idea has been given by McGeoch and Moret [9.9]. Nevertheless, tables
have their place. Tufte [9.17] gives the rule of thumb that “tables usually
outperform a graph for small data sets of 20 numbers or less”. Tables give
very accurate values which make it easier to check whether some experiments
can be reproduced. Furthermore, one sometimes wants to present some quan-
tities, e.g., solution quality, as a function of problem instances which cannot
be meaningfully arranged on the axis of a graph. In that case, a graph or bar
chart may look nicer but does not add utility compared to a more accurate
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and compact table. Often a paper will contain small tables with particularly
important results and graphs giving results in an abstract yet less accurate
way. Furthermore, there may be an appendix or a link to a web page con-
taining larger tables for more detailed documentation of the results.

9.4 Two-Dimensional Figures

As our standard example we will use the case that execution time should be
displayed as a function of input size. The same rules will usually apply for
many other types of variables. Sometimes we mention special examples which
should be displayed differently.

9.4.1 The x-Axis

The first question one can ask oneself is what unit one chooses for the x-
axis. For example, assume we want to display the time it takes to broadcast
a message of length k in some network where transmitting k′ bytes of data
from one processor to another takes time t0+k′. Then it makes sense to plot
the execution time as a function of k/t0 because for many implementations,
the shape of the curve will then become independent of t0. More generally,
by choosing an appropriate unit, we can sometimes get rid of one degree of
freedom. Figure 9.1 gives an example.
The variable defining the x-axis can often vary over many orders of mag-

nitude. Therefore one should always consider whether a logarithmic scale is
appropriate for the x-axis. This is an accepted way to give a general idea of
a function over a wide range of values. One will then choose measurement
values such that they are about evenly spaced on the x-axis, e.g., powers
of two or powers of

√
2. Figures 9.3, 9.5, and 9.6 all use powers of two. In

this case, one should also choose tic marks which are powers of two and not
powers of ten. Figures 9.1 and 9.4 use the “default” base ten because there
is no choice of input sizes involved here.
Sometimes it is appropriate to give more measurements for small x-

values because they are easily obtained and particularly important. Con-
versely, it is not a good idea to measures using constant offsets (x ∈
{x0 + i∆ : 0 ≤ i < imax}) as if one had a linear scale and then to display
the values on a logarithmic scale. This looks awkward because points are
crowded for large values. Often there will be too few values for small x and
one nevertheless wastes a lot of measurement time for large inputs.
A plain linear scale is adequate if the interesting range of x-values is

relatively small, for example if the x-axis is the number of processors used
and one measures on a small machine with only 8 processors. A linear scale
is also good if one wants to point out periodic behavior, for example if one
wants to demonstrate that slow-down due to cache conflicts get very large
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Fig. 9.1. Improvement of the fractional tree broadcasting algorithm [9.15] over
the best of pipelined binary tree and sequential pipeline algorithm as a function of
message transmission time k over startup overhead t0. P is the number of processors.
(See also Sections 9.4.3 and 9.4.5)

whenever the input size is a multiple of the cache size. However, one should
resist the temptation to use a linear scale when x-values over many orders of
magnitude are important but the own results look particularly good for large
inputs.
Sometimes, transformations of the x-axis other than linear or logarithmic

make sense. For example, in queuing systems one is often interested in the
delay of requests as the system load approaches the maximum performance
of the system. Figure 9.2 gives an example. Assume we have a disk server
with 64 disks. Data is placed randomly on these disks using a hash function.
Assume that retrieving a block from a disk takes one time unit and that there
is a periodic stream of requests — one every (1 + ε)/64 time units. Using
queuing theory one can show that the delay of a request is approximately
proportional to 1/ε if only one copy of every block is available. Therefore,
it makes sense to use 1/ε as the x-value. First, this transformation makes it
easy to check whether the system measured also shows this behavior linear
in 1/ε. Second, one gets high resolution for arrival rates near the saturation
point of the system. Such high arrival rates are often more interesting than
low arrival rates because they correspond to very efficient uses of the system.
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Fig. 9.2. Comparison of eight algorithms for scheduling accesses to parallel disks
using the model described in the text (note that “shortest queue” appears in both
figures). Only the two algorithms “nonredundant” and “mirror” exhibit a linear
behavior of the access delay predicted by queuing theory. The four best algorithms
are based on random duplicate allocation — every block is available on two randomly
chosen disks and a scheduling algorithm [9.13] decides which copy to retrieve. (See
also Section 9.4.3)



9. Presenting Data from Experiments in Algorithmics 187

9.4.2 The y-Axis

Given that the x-axis often has a logarithmic scale, we often seem to be
forced to use a logarithmic scale also for the y-axis. For example, if the exe-
cution time is approximately some power of the problem size, such a double-
logarithmic plot will yield a straight line.
However, plots of the execution time can be quite boring. Often, we

already know the general shape of the curve. For example, a theoretical
analysis may tell us that the execution time is between T (n) = Ω(n) and
T (n) = O(npolylog(n)). A double-logarithmic plot will show something very
close to a diagonal and discerns very little about the polylog term we are
really interested in. In such a situation, we transform the y-axis so that a
priori information is factored out. In our example above we could better dis-
play T (n)/n and then use a linear scale for the y-axis. A disadvantage of
such transformations is that they may be difficult to explain. However, often
this problem can be solved by finding a good term describing the quantity
displayed. For example, “time per element” when one divides by the input
size, “competitive ratio” when one divides by a lower bound, or “efficiency”
when one displays the ratio between an upper performance bound and the
measured performance. Figure 9.3 gives an example for using such a ratio.

Fig. 9.3. Comparison of three different priority queue algorithms [9.16] on a
MIPS R10000 processor. N is the size of the queue. All algorithms use Θ(logN)
key comparisons per operation. The y-axis shows the total execution time for some
particular operation sequence divided by the number of deletion/insertion pairs
and logN . Hence the plotted value is proportional to the execution time per key
comparison. This scaling was chosen to expose cache effects which are now the main
source of variation in the y-value. (See also Sections 9.4.1 and 9.4.3.)
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Another consideration is the range of y-values displayed. Assume ymin > 0
is the minimal value observed and ymax is the maximal value observed. Then
one will usually choose [ymin, ymax] or (better) a somewhat larger interval
as the displayed range. In this case, one should be careful however with
overinterpreting the resulting picture. A change of the y-value by 1 % will
look equal to a change of y-value of 400 %. If one wants to support claims
such as “for large x the improvements due to the new algorithm become very
large” using a graph, choosing the range [0, ymax] can be a more sound choice.
(At least if ymax/ymin is not too close to one. Some of the space “wasted” this
way can often be used for placing curve labels.) In Figure 9.2, using ymin = 1
is appropriate since no request can get an access delay below one in the model
used.
The choice of the the maximum y value displayed can also be nontrivial.

In particular, it may be appropriate to clip extreme values if they correspond
to measurement points which are clearly useless in practice. For example, in
Figure 9.2 it is not very interesting to see the entire curve for the algorithm
“nonredundant” since it is clearly outclassed for large 1/ε anyway and since
we have a good theoretical understanding of this particular curve.
A further degree of freedom is the vertical size of the graph. This param-

eter can be used to achieve the above goals and the rule of “banking to 45◦”:
The weighted average of the slants of the line segments in the figure should be
about 45◦.2 Refer to [9.5] for a detailed discussion. The weight of a segment
is the x-interval bridged. There is good empirical and mathematical evidence
that graphs using this rule make changes in slope most easily visible.
If banking to 45◦ does not yield a clear insight regarding the graph size,

a good rule of thumb is to make the graph a bit wider than high [9.17]. A
traditional choice is to use the golden ratio, i.e., a graph that is 1.62 times
wider than high.

9.4.3 Arranging Multiple Curves

An important feature of two-dimensional graphs is that we can place sev-
eral curves in a single graph as in Figures 9.1, 9.2, and 9.3. In this way we
can obtain a high information density without the disadvantages of three-
dimensional plots. However, one can easily overdo it resulting in a chaos of
undecipherable points and lines. How many curves fit into one pictures de-
pends on the information density. When curves are very smooth, and have
few points where they cross each other, as in Figure 9.2, up to seven curves
may fit in one figure. If curves are very complicated, even three curves may
be too much. Often one will start with a straight-forward graph that turns
out to be too ugly for publication. Then one can use a number of techniques
to improve it:
2 This is one of the few things described here which are are not easy to do with
gnuplot. But even keeping the principle of banking to 45◦ in mind is helpful.
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– Remove unnecessary curves. For example, Figure 9.2 from [9.13] compares
only eight algorithms out of eleven studied in this paper. The remaining
three are clearly outclassed or equivalent to other algorithms for the mea-
surement considered.

– If several curves are too close together in an important range of x-values,
consider using another y range or scale. If the small differences persist and
are important, consider to use a separate graph with a magnification. For
example, in Figure 9.2 the four fastest algorithms were put into a separate
plot to show the differences between them.

– Check whether several curves can be combined into one curve. For example,
assume we want to compare a new improved algorithm with several inferior
old algorithms for input sizes on the x-axis. Then it might be sufficient to
plot the speedup of the new algorithm over the best of the old algorithms;
perhaps labeling the sections of the speedup curve so that the best of the
old algorithms can be identified for all x-values. Figure 9.1 gives an example
where the speeup of one algorithm over two other algorithms is shown.

– Decrease noise in the data as described in Section 9.4.6.
– Once noise is small, replace error bars with specifications of the accuracy
in the caption as in Figure 9.6.

– Connect points belonging to the same curves using straight lines.
– Choose different point styles and line styles for different curves.
– Arrange labels explaining point and line styles in the “same order”3 as
they appear in the graph. Sometimes one can also place the labels directly
at the curves. But even then the labels should not obscure the curves.
Unfortunately, gnuplot does not have this feature so that we could not use
it in this paper.

– Choose the x-range and the density of x-values appropriately.

Sometimes we need so many curves that they cannot fit into one figure.
For example, when the cross-product of several parameter ranges defines the
set of curves needed. Then we may finally decide to use several figures. In this
case, the same y-ranges should usually be chosen so that the results remain
comparable. Also one should choose the same point styles and line styles
for related curves in different figures, e.g., for curves belonging to the same
algorithm as for the “shortest queue” algorithm in Figure 9.2. Note that tools
such as gnuplot cannot do that automatically.
The explanations of point and line styles should avoid cryptic abbrevia-

tions whenever possible and at the same time avoid overlapping the curves.
Both requirements can be reconciled by placing the explanations appropri-
ately. For example, in computer science, curves often go from the lower left
corner to the upper right corner. In that case, the best place for the definition
of line and point styles is the upper left corner.
3 For example, one could use the order of the y-values at the larges x-value as in
Figure 9.3.
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9.4.4 Arranging Instances

If measurements like execution time for a small set of problem instances
are to be displayed, a bar chart is an appropriate tool. If other parameters
such as the algorithm used, or the time consumed by different parts of the
algorithm should be differentiated, the bars can be augmented to encode this.
For example, several bars can be stacked in depth using three-dimensional
effects or different pieces of a bar can get different shadings.4

If there are so many instances that bar charts consume too much space,
a scatter plot can be useful. The x-axis stands for a parameter like problem
size and we plot one point for every problem instance. Figure 9.4 gives a
simple example. Point styles and colors can be used to differentiate different
types of instances or variations of other parameters such as the algorithm
used. Sometimes these points are falsely connected by lines. This should be
avoided. It not only looks confusing but also wrongly suggests a relation
between the data points that does not exist.

Fig. 9.4. Each point gives the ratio between total problem size and “core” prob-
lem size in a fast algorithm for solving set covering problems from air line crew
scheduling [9.1]. The larger this ratio, the larger the possible speedup for a new
algorithm. The x-axis is the ratio between the number of variables and number of
constraints. This scale was chosen to show that there is a correlation between these
two ratios that is helpful in understanding when the new algorithm is particularly
useful. The deviating points at n/m = 10 are artificial problems rather different
from typical crew scheduling problems. (See also Section 9.4.1.)

4 Sophisticated fill styles give us additional opportunities for diversification but
Tufte notes that they are often too distracting [9.17].
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9.4.5 How to Connect Measurements

Tools such as gnuplot allow us to associate a measured value with a sym-
bol like a cross or a star that clearly specifies that point and encodes some
additional information about the measurement. For example, one will usu-
ally choose one point symbol for each displayed curve. Additionally, points
belonging to the same curve can be connected by a straight line. Such lines
should usually not be viewed as a claim that they present a good interpola-
tion of the curve but just as a visual aid to find points that belong together.
In this case, it is important that the points are large enough to stand out
against the connecting lines. An alternative is to plot measurements points
plus curves stemming from an analytic model as in Figure 9.5.
The situation is different if only lines and no points are plotted as in

Figure 9.1. In this case, it is often impossible to tell which points have been
measured. Hence such a lines-only plot implies the very strong claim that the
points where we measured are irrelevant and the plotted curve is an accurate
representation of the true behavior for the entire x-range. This only makes
sense if very dense measurements have been performed and they indeed form
a smooth line. Sometimes one sees smooth lines that are weighted averages
over a neighborhood in the x-coordinates. Then one often uses very small
points for the actual measurements that form a cloud around this curve.
A related approach is connecting measured points with interpolated

curves such as splines which are more smooth than lines. Such curves should
only be used if we actually conjecture that the interpolation used is close to
the truth.

9.4.6 Measurement Errors

Tools allow us to generalize measured points to ranges which are usually a
point plus an error bar specifying positive and negative deviations from the y-
value.5 The main question from the point of view of designing graphs is what
kind of deviations should be displayed or how one can avoid the necessity for
error bars entirely.
Let us start with the well behaved case that we are simulating a random-

ized algorithm or work with randomly generated problem instances. In this
case, the results from repeated runs are independent identically distributed
random variables. In this case, powerful methods from statistics can be in-
voked. For example, the point itself may be the average of the measured
values and the error bar could be the standard deviation or the standard
error [9.11]. Figure 9.5 gives an example. Note that the latter less well known
quantity is a better estimate for the difference between the average and the
actual mean. By monitoring the standard error during the simulation, we can
5 Uncertainties in both x and y-values can also be specified but this case seems to
be rare in Algorithmics.
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Fig. 9.5. Number of iterations that the dynamic load balancing algorithm random
polling spends in its warmup phase until all processors are busy. Hypothesized upper
bound, lower bound and measured averages with standard deviation [9.12, 9.14].
(See also Sections 9.4.1 and 9.4.5.)

even repeat the measurement sufficiently often so that this error measure is
below some prespecified value. In this case, no error bars are needed and it
suffices to state the bound on the error in the caption of the graph. Figure 9.6
gives an example.
The situation is more complicated for measurements of actual running

times of deterministic algorithms, since this involves errors which are not of
a statistical nature. Rather, the errors can stem from hidden variables such
as operating system interrupts, which we cannot fully control. In this case,
points and error bars based on order statistics might be more robust. For
example, the y value could be the median of the measured values and the
error bar could define the minimum and the maximum value measured or
values exceeded in less than 5 % of the measurements. The caption should
explain how many measurements have been performed.

9.5 Grids and Ticks

Tools for drawing graphs give us a lot of control over how axes are deco-
rated with numbers, tick marks and grid lines. The general rule that is often
achieved automatically is to use a few round numbers on each axis and per-
haps additional tick marks without numbers. The density of these numbers
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should not be too high. Not only should they appear well separated but they
also should be far from dominating the visual appearance of the graph. When
a very large range of values is displayed, we sometimes have to force the sys-
tem to use exponential notation on a part of the axis before numbers get too
long. Figure 9.6 gives an example for the particularly important case of base
two scales. Sometimes we may decide that reading off values is so important
in a particular graph that grid lines should be added, i.e., horizontal and ver-
tical lines that span the entire range of the graph. Care must be taken that
such grid lines to not dilute the visual impression of the data points. Hence,
grid lines should be avoided or at least made thin or, even better, light gray.
Sometimes grid lines can be avoided by plotting the values corresponding to
some particularly important data points also on the axes.
A principle behind many of the above considerations is called Data-Ink

Maximization by Tufte [9.17]. In particular, one should reduce non-data ink
and redundant data ink from the graph. The ratio of data ink to total ink
used should be close to one. This principle also explains more obvious sins
like pseudo-3D bar charts, complex fill styles, etc.

Fig. 9.6. m Balls are placed into n bins using balanced random allocation [9.2, 9.3].
The difference between maximal and average load is plotted for different values of
m and n. The experiments have been repeated at least sufficiently often to reduce
the standard error (σ/

√
repetitions [9.11]) below one percent. In order to minimize

artifacts of the random number generator, we have used a generator with good
reputation and very long period (219937 − 1) [9.7]. In addition, some experiments
were repeated with the Unix generator srand48 leading to almost identical results.
(See also Section 9.4.3.)
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9.6 Three-Dimensional Figures

On the first glance, three-dimensional figures are attractive because they look
sophisticated and promise to present large amounts of data in a compact way.
However there are many drawbacks.

– It is almost impossible to read absolute values from the two-dimensional
projection of a function.

– In complicated functions interesting parts may be hidden from view.
– If several functions are to be compared, one is tempted to use a correspond-
ing number of three-dimensional figures. But in this case, it is more difficult
to interpret differences than in two-dimensional figures with cross-sections
of all the functions.

It seems that three-dimensional figures only make sense if we want to present
the general shape of a single function. Perhaps three-dimensional figures be-
come more interesting using advanced interactive media where the user is
free to choose viewpoints, read off precise values, view subsets of curves, etc.

9.7 The Caption

Graphs are usually put into “floating figures” which are placed by the text
formatter so that page breaks are taken into account. These figures have a
caption text at their bottom which makes the figure sufficiently self contained.
The captions explains what is displayed and how the measurements have
been obtained. This includes the instances measured, the algorithms and
their parameters used, and, if relevant the system configuration (hardware,
compiler,. . . ). One should keep in mind that experiments in a scientific paper
should be reproducible, i.e., the information available should suffice to repeat
a similar experiment with similar results. Since the caption should not become
too long it usually contains explicit or implicit references to surrounding text,
literature or web resources.

9.8 A Check List

In the following we summarize the rules discussed above. This list has the
additional beneficial effect to serve as a check list one can refer to for preparing
graphs and for teaching. The Section numbers containing a more detailed
discussion are appended in brackets. The order of the rules has been chosen
so that in most cases they can be applied in the order given.

– Should the experimental setup from the exploratory phase be redesigned
to increase conciseness or accuracy? (9.2)
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– What parameters should be varied? What variables should be measured?
How are parameters chosen that cannot be varied? (9.2)

– Can tables be converted into curves, bar charts, scatter plots or any other
useful graphics? (9.3, 9.4.4)

– Should tables be added in an appendix or on a web page? (9.3)
– Should a 3D-plot be replaced by collections of 2D-curves? (9.6)
– Can we reduce the number of curves to be displayed? (9.4.3)
– How many figures are needed? (9.4.3)
– Scale the x-axis to make y-values independent of some parameters? (9.4.1)
– Should the x-axis have a logarithmic scale? If so, do the x-values used for
measuring have the same basis as the tick marks? (9.4.1)

– Should the x-axis be transformed to magnify interesting subranges? (9.4.1)
– Is the range of x-values adequate? (9.4.1)
– Do we have measurements for the right x-values, i.e., nowhere too dense
or too sparse? (9.4.1)

– Should the y-axis be transformed to make the interesting part of the data
more visible? (9.4.2)

– Should the y-axis have a logarithmic scale? (9.4.2)
– Is it misleading to start the y-range at the smallest measured value? (9.4.2)
– Clip the range of y-values to exclude useless parts of curves? (9.4.2)
– Can we use banking to 45◦? (9.4.2)
– Are all curves sufficiently well separated? (9.4.3)
– Can noise be reduced using more accurate measurements? (9.4.3)
– Are error bars needed? If so, what should they indicate? Remember that
measurement errors are usually not random variables. (9.4.6, 9.4.3)

– Use points to indicate for which x-values actual data is available. (9.4.5)
– Connect points belonging to the same curve. (9.4.3,9.4.5)
– Only use splines for connecting points if interpolation is sensible.
(9.4.3,9.4.5)

– Do not connect points belonging to unrelated problem instances. (9.4.5)
– Use different point and line styles for different curves. (9.4.3)
– Use the same styles for corresponding curves in different graphs. (9.4.3)
– Place labels defining point and line styles in the right order and without
concealing the curves. (9.4.3)

– Captions should make figures self contained. (9.7)
– Give enough information to make experiments reproducible. (9.7)
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the heavily loaded case. In 32th Annual ACM Symposium on Theory of Com-
puting (STOC’00), pages 745–754, 2000.

9.4 J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Tukey. Graphical
Methods for Data Analysis. Duxbury Press, Boston, 1983.

9.5 W. S. Cleveland. Elements of Graphing Data. Wadsworth, Monterey, Ca, 2nd
edition, 1994.

9.6 D. S. Johnson. A theoretician’s guide to the experimental analysis of algo-
rithms. In M. Goldwasser, D. S. Johnson, and C. C. McGeoch, editors, Pro-
ceedings of the 5th and 6th DIMACS Implementation Challenges. American
Mathematical Society, 2002.

9.7 M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACMTMCS: ACM
Transactions on Modeling and Computer Simulation, 8:3–30, 1998. http:
//www.math.keio.ac.jp/~matumoto/emt.html.

9.8 C. C. McGeoch, D. Precup, and P. R. Cohen. How to find big-oh in your
data set (and how not to). In Advances in Intelligent Data Analysis. Springer
Lecture Notes in Computer Science 1280, pages 41–52, 1997.

9.9 C. C. McGeoch and B. M. E. Moret. How to present a paper on experimental
work with algorithms. SIGACT News, 30(4):85–90, 1999.

9.10 B. M. E. Moret. Towards a discipline of experimental algorithmics. In 5th
DIMACS Challenge, DIMACS Monograph Series, 2000. To appear.

9.11 W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C. Cambridge University Press, 2nd edition, 1992.

9.12 P. Sanders. Lastverteilungsalgorithmen für parallele Tiefensuche. Number 463
in Fortschrittsberichte, Reihe 10. VDI Verlag, 1997.

9.13 P. Sanders. Asynchronous scheduling of redundant disk arrays. In 12th ACM
Symposium on Parallel Algorithms and Architectures (SPAA’00), pages 89–98,
2000.

9.14 P. Sanders and R. Fleischer. Asymptotic complexity from experiments? A
case study for randomized algorithms. In Proceedings of the 4th Workshop
on Algorithm Engineering (WAE’00). Springer Lecture Notes in Computer
Science 1982, pages 135–146, 2000.

9.15 P. Sanders and J. Sibeyn. A bandwidth latency tradeoff for broadcast and
reduction. In Proceedings of the 6th International Euro-Par Conference.
Springer Lecture Notes in Computer Science 1900, pages 918–926, 2000.

9.16 P. Sanders. Fast priority queues for cached memory. ACM Journal of Exper-
imental Algorithmics, 5, 2000.

9.17 E. R. Tufte. The Visual Display of Quantitative Information. Graphics Press,
Cheshire, Connecticut, U.S.A., 1983.



10. Distributed Algorithm Engineering

Paul G. Spirakis and Christos D. Zaroliagis
1 Computer Technology Institute
P.O. Box 1122, 26110 Patras, Greece

2 Department of Computer Engineering & Informatics
University of Patras, 26500 Patras, Greece
spirakis@cti.gr
zaro@ceid.upatras.gr

Summary.

When one engineers distributed algorithms, some special character-
istics arise that are different from conventional (sequential or parallel)
computing paradigms. These characteristics include: the need for either a
scalable real network environment or a platform supporting a simulated
distributed environment; the need to incorporate asynchrony, where arbi-
trary asynchrony is hard, if not impossible, to implement; and the gener-
ation of “difficult” input instances which is a particular challenge. In this
work, we identify some of the methodological issues required to address
the above characteristics in distributed algorithm engineering and illus-
trate certain approaches to tackle them via case studies. Our discussion
begins by addressing the need of a simulation environment and how asyn-
chrony is incorporated when experimenting with distributed algorithms.
We then proceed by suggesting two methods for generating difficult input
instances for distributed experiments, namely a game-theoretic one and an-
other based on simulations of adversarial arguments or lower bound proofs.
We give examples of the experimental analysis of a pursuit-evasion proto-
col and of a shared memory problem in order to demonstrate these ideas.
We then address a particularly interesting case of conducting experiments
with algorithms for mobile computing and tackle the important issue of
motion of processes in this context. We discuss the two-tier principle as
well as a concurrent random walks approach on an explicit representation
of motions in ad-hoc mobile networks, which allow at least for average-
case analysis and measurements and may give worst-case inputs in some
cases. Finally, we discuss a useful interplay between theory and practice
that arise in modeling attack propagation in networks.

10.1 Introduction

It is a common feeling among scientists, not only in the algorithms commu-
nity, that a significant fraction of the research done in the algorithms area
is eminently practical. However, only a small part of it is actually used. A
suggested and also widely accepted remedy of this is that algorithmic re-
search must include experiments and implementation if the field wants to
have maximum impact.
In certain new fields much affected by current technology, the need of

demonstration of practicality of algorithmic research is more intense. Such

c© Springer-Verlag Berlin Heidelberg 2002
R. Fleischer et al. (Eds.): Experimental Algorithmics, LNCS 2547, pp. 197–228, 2002.
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a field is that of distributed systems. These systems are ubiquitous today
throughout business, academia, government, and home. Typically, they pro-
vide means to share resources and data. More ambitious distributed systems
attempt to provide improved performance by attacking subproblems in par-
allel, and to provide improved availability in case of failures of some compo-
nents.
The research in distributed algorithms tries to identify fundamental prob-

lems that are abstractions of those that arise in a variety of distributed sys-
tems, state them precisely, and then design and analyze efficient solutions.
However, there are some important differences from the sequential case. First,
there is not a single, universally accepted model of distributed computation
— and there probably never will be — since distributed systems tend to
vary much more than sequential computers do. Second, fundamental diffi-
culties are introduced by three factors: asynchrony, limited local knowledge,
and failures. The term asynchrony means that the absolute and even rela-
tive times at which events take place cannot always be known precisely. Also,
since each computing entity can only be aware of information that it acquires,
it has only a local view of the global situation. Computing entities can fail
independently, leaving some components operational while others are not.
The explosive growth of distributed systems makes it imperative to un-

derstand how to overcome these difficulties. The fact that these difficulties
are of a fundamental nature, led the theoreticians of distributed computing
towards an effort to abstract and model their “negative” nature. In fact,
the field of the theoretical aspects of distributed computing is full of lower
bound and impossibility results. It is perhaps the field where the notion of
an adversary to the solution is so well examined and modeled.
We believe that for all these reasons a systematic theory of distributed

algorithm engineering should arise. By the term distributed algorithm engi-
neering we mean the considerable effort required to convert theoretically ef-
ficient and correct distributed algorithms to efficient, robust, and easily used
software implementations on a simulated or real distributed environment,
usually accompanied by thorough experimentation, fine-tuning and testing.
This conversion has to preserve the assumed properties and limitations of the
distributed computing model. This in addition implies that the semantics of
the implementation operations must agree with those assumed by the the-
oretical algorithm. Our experience indicates that such a conversion process
may lead to improved distributed algorithms through perhaps the experi-
mental discovery of behaviours or properties that were not exploited in the
initial theoretical version of the algorithm.
The conducted experiments with implementations of distributed algo-

rithms, henceforth distributed experiments, should evaluate algorithms by
primarily providing them with “difficult”, or “practical” inputs. It is exactly
the rich collection of negative results about the “adversaries” of a distributed
algorithm that allow the start of a systematic theory of the construction of
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“hard” instances, so useful for experiments. In addition, the need for de-
tailed parameterization of the various complexity measures involved in any
distributed problem, has led to a good understanding of various costs (such
as number of messages, size and number of shared variables, number of faulty
components, etc) which provides strong tools for the answer to the impor-
tant question of “what to measure?” in a distributed experiment. The above
idiosyncracies of distributed experiments justify well the creation of a whole
new subfield of algorithm engineering. The current paper is a first contribu-
tion in this direction.
Our aim in this work is to address several methodological issues in dis-

tributed algorithm engineering. We do not attempt to cover every possible
issue, but to address those which we find important. As explained above,
we emphasize on issues that are not usually encountered when engineering
sequential or parallel algorithms. Most of them are illustrated by case studies
that are based on our own experience with developing simulators for dis-
tributed algorithms and experimenting with implementations of distributed
algorithms on these simulators.
We start by discussing the need for a simulation environment which ad-

dresses the critical issue of scalability. Real distributed systems and algo-
rithms are asynchronous. Incorporating asynchrony into a simulator is rather
hard (if at all possible). To this end, we focus on a causality-affects rela-
tion which distributed experiments should obey and discuss advantages and
disadvantages of known approaches to achieve it.
We then address the challenging issue of generating difficult (e.g., worst-

case) inputs for implementations of distributed algorithms. We argue for two
approaches, namely the construction of worst-case event schedules by mim-
icking impossibility arguments or lower bound proofs, and the use of game-
theoretic notions (worst-case Nash equilibria) to construct test-sets which
force the implemented algorithm to exhibit a nearly worst-case behaviour. To
demonstrate these ideas, we present the experimental analysis of a pursuit-
evasion protocol and an example of a lower bound proof for a shared memory
problem which leads to worst-case schedules.
We then proceed to a particular interesting case of conducting exper-

iments with algorithms for mobile computing. Two alternative models for
mobile computing are discussed, the fixed backbone model and the ad-hoc
model. The new element here is the question of how to implement motions.
We discuss the two-tier principle that usually guides the fixed backbone model
as well as a concurrent random walks approach on an explicit representation
of motions in ad-hoc mobile networks which allow at least for average-case
analysis and measurements, and may give worst-case inputs in some cases.
Finally, we consider a rather general model for modeling attacks in com-

puter networks and discuss the development of protocols for propagation of
attacks under this model. The development of such protocols turns out to be
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an interesting case of distributed algorithm engineering as both analytic and
experimental methods are used which are tied to each other.

10.2 The Need of a Simulation Environment

In this section, we will argue about the need for a simulation environment
which addresses the crucial issue of scalability. We first attempt to formally
define the simulator and then give an overview of existing systems.
Distributed applications code runs usually on rather huge networks of

possibly heterogeneous local machines. Even if one manages to control such
an environment for conducting experiments, still several important questions
cannot be answered due to the implied restrictions of available technology.
Perhaps the most important one is that of scalability: given that a distributed
algorithm behaves “well”, for example, on a network of ten machines, how
will it behave on a much larger network? Thus, this critical issue of scalability
of distributed solutions can be experimentally treated only via simulations.
It is a nice byproduct of distributed algorithmic practice the fact that simu-
lations and simulation environments are themselves extensively studied and
formalized. The crucial idea here is that the simulator executions should not
alter the nature of executions on the “real” (or envisioned) system. We can
capture this via some definitions by adopting the framework in [10.3].
We view a distributed system as a collection of a set of nodes or processors,

a communication system C linking the nodes, and the external environment E .
Usually the environment E and the communication system C are not explicitly
modeled but are given as problem specifications, which impose conditions on
their behaviour. A node or processor is a (rather) hardware notion. On each
node there are one or more (software) processes running. Let us, for the
sake of definition of simulations, restrict our attention to the situation where
processes are organized into a single stack of layers and that there are the
same number of layers on each node. Each layer communicates with the layer
above it and the layer below it. The bottom layer communicates with C and
the top layer communicates with E .
Each process is modeled as an automaton with a (possibly infinite) set of

states. Transitions between states are triggered by the occurrence of events
of the process. Events are inputs or outputs that come from (or go to) the
layer above or below. A configuration of a distributed system specifies a state
for every process on every node. An initial configuration contains all initial
states. An execution of a distributed program is a sequence C0Φ1C1Φ2C2 · · ·
of alternating configurations Ci and events Φi beginning with a configuration
and, if finite, ending with a configuration. An execution must satisfy four
conditions:
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1. C0 is an initial configuration.
2. For every i ≥ 1, event Φi is enabled in configuration Ci−1 and configu-
ration Ci is the result of Φi acting on Ci−1. In more detail, every state
is the same in Ci and Ci−1 except for the (at most two) processes for
which Φi is an event. The states of these processes change according to
the transition functions of those processes.

3. For every i ≥ 1, if Φi is not a node input, then i > 1 and Φi is on the
same node as event Φi−1.

4. A node input does not happen until all other events have acted and no
more are enabled.

The last two conditions are stated just to guarantee atomicity with respect
to events on different nodes. A node is triggered into action by the occurrence
of an input either from the external environment, or from the communication
system. The trigger causes a “chain reaction” of events at the same node,
and this occurs atomically, until no more events are enabled, other than node
inputs. In fact, there are many ways to state (or even omit) conditions (3) and
(4) if the implementation guarantees atomicity of events on different nodes
via some other mechanism, for example, via the event generation scheme or
via the scheme that assigns durations to steps of processes and delays to
messages according to a global simulator (virtual) clock.
The schedule of an execution is the sequence of events in the execution.

Given execution a, let us denote by top(a) (resp. bot(a)) the restriction of the
schedule for a to the events on the interface of the top (resp. bottom) layer.
An execution a is then said to be correct for communication system C if bot(a)
is an element of the allowable sequences of inputs/outputs of C. An execution
is fair if every event (other than a node input) that is continuously enabled,
eventually occurs. This ensures that executions do not halt prematurely, while
there is still a step to be taken. An execution a is user-compliant for problem
specification P if, informally speaking, the environment satisfies the input
constraints of P (if any). The details of the input constraints will naturally
vary depending on the particular problem. An execution is called (P, C)-
admissible if it is fair, user-compliant for the problem specification P , and
correct for the communication system C.
We are now ready to define what a simulator should do. Let us denote by

communication system C1 whatever is available for our experiments. We wish
this to simulate some (larger or envisioned) communication system C2. For
such a simulation we then demand the existence of a collection of processes
called Sim (the simulation program) which must satisfy three laws:

1. The top interface of Sim is the interface of C2.
2. The bottom interface of Sim is the interface of C1.
3. For every (C2, C1)-admissible execution a of Sim, there exists a sequence

σ of events in the set of sequences of events of C2 such that σ = top(a).
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Fig. 10.1. The simulation of a communication system C2

Informally, we run our simulation on top of the (available for experimen-
tation) communication system C1 and this produces the same appearance to
the external environment as does the (envisioned) communication system C2.
This is illustrated in Figure 10.1.
Let us define the richness of (Sim,C1) as the set of all possible C2 com-

munication systems that can be simulated by it. It is then apparent that our
experimental environment (Sim,C1) for distributed experiments should be
rich enough to include C2 communication systems which are, for example,
scalable C1 communication systems or extensions or systems with stronger
technological capabilities. There are several such environments, some of which
we discuss next.

10.2.1 An Overview of Existing Simulation Environments

Simulation environments that provide all the necessary primitives to allow
simulation of any distributed algorithm are not so many. To the best of
our knowledge, there are three such environments: DSP [10.11], IOA [10.20],
and DAP [10.10]. On the other hand, there are several environments for the
simulation of network algorithms (i.e., distributed protocols with low-level
functionality), or environments that focus on the simulation of a specific area
of research in distributed computing. Important examples of such environ-
ments include ns [10.32], YACSIM [10.22], and SimUTC [10.42]. Another cru-
cial characteristic is that some simulation environments request that a user
develops a protocol using a specific description language provided by the en-
vironment, or a scripting language (this is the case for ns, IOA, DSP). This
should be contrasted to simulation environments (e.g., YACSIM, SimUTC,
DAP) that allow users to develop programs in a standard programming lan-
guage (C or C++), which could be advantageous in the sense that the same
program can be directly run on a real distributed environment. In the rest of
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this section, we shall give a brief overview of the above mentioned simulation
environments.
Ns (network simulator) [10.32] is a discrete event simulator aiming at

simulating network protocols for low-level functionality, that is, simulation of
TCP-like protocols, as well as of routing and multicast protocols over wired
and wireless (local and satellite) networks. Ns requires that the protocols
and the simulation setup is written in the OTcl scripting language (Tcl with
object-oriented extensions by MIT). A user may develop protocols in a stan-
dard programming language (C++), but needs to bind them to OTcl in order
to be simulated by ns. An animation tool (nam) for animating the simulation
accompanies ns.
The IOA project [10.20] provides a formal language for describing pro-

cesses that are modeled using I/O automata and a toolset (currently under
development) which will provide support for the development, analysis, and
simulation of IOA programs. The toolset is developed in Java. To model a
distributed algorithm or system, a user has to program in the IOA language.
(A similar effort was done earlier with the Esterel language [10.12].)
The Distributed Systems Platform (DSP) [10.11] is a software platform

that has been designed for the implementation, simulation, and testing of dis-
tributed algorithms. It offers a set of subtools which allow the researcher and
the algorithm designer to work under a familiar graphical and algorithmic
environment. DSP provides a set of simple, algorithmic languages (DSPL)
which can describe the topology and the behaviour of distributed systems
and it can support the testing process (on-line simulation management, se-
lective tracing, and presentation of results) during the execution of specific
and complex simulation scenarios. The DSP tool has been implemented in C.
YACSIM [10.22] is a discrete event simulator implemented in C that pro-

vides a basic set of C subroutines (which model processes, events, queues) that
the user can link with his/her program in order to produce an executable that
performs the simulation (i.e., YACSIM does not provide a separate simula-
tor, but the simulator is contained in the executable produced by the user).
YACSIM is normally used as a base to produce more sophisticated simula-
tors. For example, it was used to produce NETSIM [10.21], a general purpose
interconnection network simulator for parallel architectures.
SimUTC [10.42] is a simulation toolkit intended to develop simulations

of algorithms for the specific problem of clock synchronization. It is round-
based and built on C++SIM [10.29], a toolkit written in C++ that implements
facilities provided in SIMULA [10.9]. It uses threads and is a process-oriented,
continuous-time discrete-event simulator. It is interesting that the C++SIM
developers observe that C++ compilers produce much more efficient code than
SIMULA, thus resulting in faster simulations.
The Distributed Algorithms Platform (DAP) [10.10] is a software plat-

form, currently under development, aiming to support the implementation,
simulation, and testing of distributed algorithms. It is implemented in C++
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using LEDA [10.33]. To transfer the full power of LEDA to distributed exper-
iments and implementation of distributed algorithms, DAP will be provided
as a LEDA Extension Package. The major goal of DAP is to provide a homo-
geneous environment for the simulation of distributed algorithms, regardless
of whether they are designed for wired or for wireless networks. It allows the
algorithm designer to implement a protocol using a standard programming
language (C++), along with the primitives of the DAP library, and hence waive
the need for re-writing an existing application program as well as the need for
an interpreter. DAP also provides a graphical user interface that allows the
execution of simulations, protocol animation, as well as correctness checking.

10.3 Asynchrony in Distributed Experiments

Notions of causality and time play an important role in the design of dis-
tributed algorithms. It is often helpful to know the relative order in which
events take place in the system. This knowledge can be achieved (and exper-
imentally dealt with), even in totally asynchronous systems that have no way
of measuring the passage of real time, by observing the causality relations
between events.
In many systems, processors have access to real-time measuring devices,

for example, to hardware clocks, or by tuning in to a satellite clock, or by
reading the time across a communication network. In such cases the experi-
ments become easier, since we only have to provide the logical equivalent of
a “global time”.
Since executions of a distributed system are sequences of events, they

induce a total order on all possible events. However, this way of describing
executions is experimentally painful since it requires the (frequently intol-
erable) overhead of submitting our experiment to all possible sequences of
events! This is wasteful since it is possible that two computation events by
different nodes, which may not influence each other, to be nonetheless arbi-
trarily ordered by the execution. What is important for our experiment to
capture is the structure of causality between events.
Consider two events by different processors (nodes) – possibly simulated in

our experiment. The only way for one processor to influence another processor
is by sending information (a message) to the other processor. But also note
that events can causally influence each other indirectly through other events.
Hence, it seems that a successful distributed experiment should capture this
essential causality relationship for every execution. Consequently, a causality-
affects relation for execution a is defined as follows (see [10.3, Ch. 8] and also
[10.28]).
Given two events Φ1 and Φ2 in a, we say that Φ1 causally-affects Φ2 in a,

denoted by Φ1
a=⇒ Φ2, if one of the following holds:
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(i) Φ1, Φ2 are events in the same (sequential) process pi and Φ2 follows
(occurs after) Φ1 in a’s part of pi.

(ii) Φ1 is the “send” event of passing information I from process pi to an-
other process pj and Φ2 is the “receive” event of information I by pj .

(iii) There exists an event Φ such that Φ1
a=⇒ Φ and Φ

a=⇒ Φ2.

We conclude that distributed experiments should respect the causality-
affects relationship.
Even if processors cannot “observe” the above relationship, the exper-

iment has to observe it. Till now, there are two approaches (both unsat-
isfactory for reasons that we will explain) for dealing experimentally with
this. The first approach is to supply the experiment with an event genera-
tor which produces (sequentially in time) events for various processes that
respect causality. The second approach is to assign “time durations” (or de-
lays) to each local process step and to each send-receive event in the exper-
iment. These delays can be just integers and may not necessarily relate to
the local simulation hardware clock, but they must respect the specifications
of the (possibly hypothetical) system on which the experiment runs via the
simulator.
The trouble with both approaches is that usually the specifications of

the hypothetical system, on which the distributed algorithm runs, allow for
many (sometimes a vast number of) total orders of causally related events.
An example is the specification of a totally asynchronous system, where no
relation is given in advance between durations of local processor steps or
message delays.
The usual experimental answer here is the use of random number gen-

erators in order to assign local or message event durations. However, even
this approach suffers in two directions. First, each random number selection
must specify an interval of possible numbers. This, theoretically, restricts the
number of possible event orderings. Second, processes might try to draw con-
clusions about asynchrony by monitoring locally their event durations. Such
a (statistical) monitoring should not draw conclusions about biases or about
the mechanism of (pseudo) randomness. Cryptographically secure generators
might be an answer to this problem [10.5].
In any case, the experimental implementation of the degree of asynchrony,

specified by the hypothetical system specifications, should at least produce
those admissible sequences of events that can demonstrate the worst-case
behaviour of the implemented algorithm when all other inputs are fixed.
This issue is further investigated in the next section.
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10.4 Difficult Input Instances for Distributed
Experiments

In this section we address the problem of how to generate “hard” input
instances for experiments on distributed algorithms or protocols. We focus
on two approaches:

(a) An adversarial-based approach, taking as point of departure the rich liter-
ature about adversarial arguments in distributed computing. These argu-
ments often lead to proofs of impossibility results for the computation of
certain tasks or to lower bounds on the (worst-case) performance of any
distributed algorithm for a certain problem. We note that quite frequently
such arguments are indeed adversarial constructions in the sense that
they propose particular execution orders of certain events (among the
admissible schedules) and/or particular fault patterns that can be pro-
duced effectively in an experiment and that have the property of driving
any distributed algorithm to its limits as far as worst-case performance is
concerned. In fact, many impossibility scenarios can be modified suitably
to create hard inputs for the experiments.

(b) A game-theoretic approach; namely, to view the distributed protocol as
a game in cases where processes or agents may act selfishly or compete
to each other for resources. The goal is to select (if computationally pos-
sible), among the possibly many Nash equilibria for such games (which
are a well-accepted characterization of “rational” behaviour in competi-
tion situations), those equilibria that are as worst as possible according
to a global system, or social cost, criterion. Then, the computed worst-
case equilibria strategies are used as the “hard” input instances in the
experiments.

In the rest of this section we shall elaborate on these two approaches.

10.4.1 The Adversarial-Based Approach

Any distributed algorithm has to overcome a variety of adversarial system
behaviours. For example, processes may fail (and perhaps later recover), their
states can become corrupted, or even they can behave maliciously. Communi-
cation channels can fail, lose or delay messages, or deliver them out of order.
Also, shared (memory) objects may fail to respond.
Such behaviours are captured by the notion of an adversary to the al-

gorithm. The adversary can select the failure patterns and/or the schedules
of events among the admissible schedules. The adversary may control a sub-
set of system’s processes. Such processes might relay false information (even
deliberately) and can be allowed to conspire.
The precise characterization of the power of the adversary is crucial, be-

cause its consequences are either impossibility results (that is, no distributed
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algorithm can achieve certain goals under such adversaries), or lower bounds
in worst or average case performance which cannot be improved by any dis-
tributed algorithm.
Among the earliest impossibility proofs in distributed computing is the

impossibility result for the achievement of distributed consensus in an asyn-
chronous system of processes even with only one faulty process, that is, the
well-known result by Fischer et al. [10.13]. (Perhaps the oldest impossibility
result for agreement of processes on a value was given by Pease et al. [10.37].)
In the paper by Fischer et al. [10.13], the authors were the first to use a

valency argument to show that consensus achievement is impossible in a to-
tally asynchronous message-passing system which is allowed to tolerate just
one process fault. This fault can be the simplest one, i.e., the faulty process
fails by halting permanently at some point (fail-stop model). Valency argu-
ments have become the most widely-used techniques for impossibility proofs
in distributed computing. We now give an outline of the valency argument.
Recall that a configuration is basically a “snapshot” of a distributed sys-

tem during the execution of an algorithm. It consists of the state of every
process and of the surrounding environment (e.g., messages in transit). A
configuration of any consensus algorithm is called univalent if every possible
execution continuing from that configuration gives the same output value,
and multivalent otherwise. In the case where the possible output values are
just two, then the configuration is called bivalent. For example, in the binary
consensus problem all input values to the processes come from {0, 1}. To
achieve consensus, there are two correctness properties that must be satis-
fied.

1. Agreement: the output values of all processes are identical.
2. Validity: the output value of each process is the input value of some
process.

Now, notice that in the case of input values from {0, 1}, any con-
sensus protocol must have a bivalent initial configuration. Let e be any
event applicable to a bivalent configuration C, let D be the set of con-
figurations reachable from C without applying e, and let D∗ = {C′′ :
configuration C′′ follows from configuration C′ by applying e and C′ ∈ D}.
Then, it is proved in [10.13] that D∗ contains a bivalent configuration (the

proof of this, rather intuitive, statement is very technical, but beautiful). Con-
sequently, any deciding (on a value) execution must go from a bivalent initial
configuration to a univalent one, which in turn implies that there should be
some single step that goes from a bivalent to a univalent configuration. In
[10.13] a particular way is proposed for an execution that avoids such steps
and thus leading to an execution that never decides. The execution is con-
structed in stages, starting from an initial configuration. Each stage has one
or more steps of some processes. A queue of processes is maintained (initially
in an arbitrary order). For each process, a queue of incoming messages is also
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maintained. The stage ends with the first process in the queue of processes
executing a step, in which, if its message queue was not empty at the start
of the stage, then its earliest message is received. This process is then moved
to the back of the queue of processes.
Note that this execution can be easily implemented in an experiment, and

that in an infinite sequence of stages, every process takes an infinite number
of steps and receives every message sent to it. In [10.13] it is then shown
that this execution avoids a decision ever being reached, because it always
produces bivalent configurations.
Although valency arguments are the most well-known techniques to show

impossibility results, other arguments (for example, based on algebraic topol-
ogy [10.18]) have also been used.
We note that in the valency arguments it is crucial for the adversarial

scheduler to select when to schedule a particular process (in order to destroy
consensus). Most lower bound arguments also make use of such adversarial
schedules of events. Based on this important remark, we propose that such
adversarial schedules should be tried (if possible) in a distributed experiment.
Then, the experiment will reveal the worst-case behaviour of the proposed
protocol under test. Of course, adversarial schedules are not always easy or
possible to construct, but the impossibility or lower bound proofs in most
cases give strong hints. We illustrate the method through an example.

10.4.1.1 An Example of an Adversarial Schedule. In this section, we
shall present an example of an adversarial schedule which is easy to imple-
ment.
Suppose that we want to experiment with an algorithm A that solves the

following problem, called the write-all problem [10.23, 10.25]: P processes are
given, all having access to a shared memory (that is, to an array M [1..∞]).
Let the first N shared memory locations be called the write-all array. All
processes are assumed to work in complete synchrony, that is, in each global
time unit each process takes a step. The adversary can cause arbitrary process
failures and restarts. The problem is to provide a distributed algorithm which,
at termination, has managed to touch (mark) each position of the write-all
array by some process (initially all memory is untouched). The performance
measure here is the total number of steps of all processes until this is done.
This is called the work of the algorithm.
To test such an algorithm A, we suggest the following adversarial fail-

ure/restart schedule as proposed in [10.6]. Consider each global step. Let
U > 1 be the number of untouched array elements (i.e., the elements that no
process succeeds in writing to them). For as long as U > P the adversary in-
duces no failures. The work needed to touch N−P array elements when there
are no failures is at least N − P . As soon as a process is about to touch the
element N−P +1, making U ≤ P , the adversary fails it and then restarts all
P processes. For the upcoming cycle, the adversary examines the algorithm’s
implementation to determine how the processes are assigned to touch ar-
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ray elements. The adversary then lists the first &U/2' untouched elements
with the least number of processes assigned to them. The total number of
processes assigned to these elements cannot exceed (P/2). Subsequently, the
adversary fails these processes and allows all others to proceed. Therefore, at
least &P/2' will complete their step having touched no more than half of the
remaining untouched array locations. This strategy of failures/restarts can
be continued for at least logP global steps. Then, the work that A performs
is at least N − P + &P/2' logP = N +Ω(P logP ).
Note that the above schedule of failures/restarts can be easily constructed

in the experiment, given any algorithm A and its implementation. Note also
that the lower bound to the required work does not count how much work
is needed for the processes to read and locally process (without touching
the write-all array) the entire shared memory. Thus, such a schedule will
cause the implementation of any algorithm A to perform work bounded from
below by N−P+&P/2' logP . Most algorithms A will actually do more work,
since usually processes can read only a constant number of shared memory
locations at each step. Let L = N−P +&P/2' logP and letW (A) denote the
actual work performed by A’s implementation. We can then use W (A) − L
as a measure of how work-efficient A is for such work-demanding schedules.
Logarithmic lower bounds on the time of any synchronous execution for

deterministic write-all were first derived in [10.24].

10.4.2 The Game-Theoretic Approach

Distributed systems often invoke a set of independent selfish and antagonis-
tic agent processes trying to share a common resource. This situation evokes
game theory and its main concept of rational behaviour, the Nash equilib-
rium: in an environment in which each agent is aware of the situation facing
all other agents, a Nash equilibrium is a combination of choices (determinis-
tic or randomized), one for each agent, from which no agent has an incentive
to unilaterally move away. The ratio between the worst possible Nash equi-
librium and the global optimum, called coordination ratio, was first defined
in [10.27]. Some upper bounds for this ratio and the structure of worst-case
Nash equilibria for a very simple routing problem were given in [10.31].
An alternative way to derive “difficult” behaviours (schedules of events)

for distributed experiments is to use such game-theoretic ideas. We can some-
times consider the competition between a distributed algorithm and an ad-
versary as a game of possibly many rounds of moves of the opponents. Worst-
case Nash equilibria (with respect to some optimization criteria) may then
be examined and we suggest them as interesting behaviours to be tested
experimentally.
We motivate the above approach by a very simple problem of pursuit-

evasion. Several agents moving along neighbor vertices of a graph (network)
G are looking for a fugitive. The fugitive is eliminated when it coincides with
an agent at a vertex. The agents cannot “see” further away from their current
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location. The way the graph (network) operates is a sequence of rounds, each
of the form R = (T, F, S), where T is an agent’s target phase, followed by a
fugitive motion phase F , followed by an agent’s motion phase S.
Any protocol (strategy) for the agents implements T and S as follows.

Let v(a) be the current position, i.e., vertex in G, of agent a, and let N(v(a))
denote the set of neighbors of v(a) in G. Let also t(a) be a variable which
can be written by the agent and can be read by the fugitive under some
conditions that we explain next. We call t(a) the target variable of agent a.
T is implemented by setting t(a) to be a vertex in {v(a)} ∪ N(v(a)). S is
implemented by setting the next position v′(a) of the agent to be the value
of t(a).
Any strategy for the fugitive, f , implements F as follows. Let v(f) be

the position (vertex in G) of f just before round R, and let N(v(f)) de-
note the set of neighbors of v(f) in G. Each edge (x, y) in G (in direction
from x to y) is equipped with a queue, called the input channel of ver-
tex y, where an entity located at x can put information. This information
can subsequently be read by y. The fugitive can read (and store in its lo-
cal memory) the value of one input channel c(u) for each u ∈ N(v(f)).
The value of each c(u) is defined as follows: if there is an agent a in R
with v(a) = u and t(a) = v(f), then c(u) = v(f); otherwise, c(u) is unde-
fined. Thus, the fugitive is allowed to be “warned” about the next position
of any agent only when that position is the next position of the fugitive f
(we say that the fugitive has a limited sense of approaching agents). Let
Ci = {c(u) : ∀u ∈ N(v(f)) where v(f) is the position of f in round i} be
the set of all “warnings” that f got in round i. Then, the ordered tuple
HR(f) = 〈C1, C2, . . . , CR〉 of channel values of all rounds till R denotes the
history of all “warnings” that f got up to round R. Consequently, the fugi-
tive’s strategy F decides on a next position for f (which must be a neighbor
of v(f) in G) based on HR(f).
Simple randomized protocols for catching the fugitive were presented in

[10.39, 10.40]. In their general structure, these protocols suggest that agents
are partitioned into two sets: the traps, which stay immobile (hidden there-
fore) at some random vertices of the graph, and the searchers, i.e., agents
continuously performing independent random walks. Note that the above
stated model for the strategies of the agents and the fugitive does not allow
the fugitive to “sense” neighboring traps, since their intention variable does
not change and thus no information comes via the related channel. Actually,
f cannot distinguish between traps and vertices which are neighbors and
agent-free.
In this game, good strategies for the fugitive should allow it to stay alive

and not be eliminated for as long as possible. Fugitive motion around some
chosen cycle in the graph is (together with the way agents act) a Nash equi-
librium. The fugitive, while not caught, has no benefit in not following the
cycle. The game ends almost surely only if the traps can re-randomize their
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locations from time to time [10.40]. Since long cycles of fugitive’s movement
have higher probability to encounter a trap, we conclude that short cycles
of such a movement are worst-case equilibria in the sense that they extend
the game’s duration. Note that strategies which force the fugitive to stay at
some vertex forever (after some initial motion) are not good, since random
walks will hit any of those positions in short expected time.
A preliminary set of experiments with such strategies (that is, short cycles

in the graph for motions of the fugitive) was performed in [10.15], while the
game was theoretically analyzed in [10.39, 10.40]. The experiments indeed
demonstrated the longest durations of the game for such fugitive strategies.
These experiments were performed on the DSP tool [10.11] and are as fol-
lows. First note that if the fugitive is memoryless (or has only a fixed-size
memory), then its best strategy is to randomly-avoid approaching agents,
that is, when it senses an approaching agent, it should choose randomly any
way to go except for the edge via which the agent is approaching. Hence,
the experiments become much more interesting when the fugitive can store
and remember non-fixed parts of the graph. The fugitive initially wanders in
the graph until it discovers a small-sized cycle. Then it stops wandering and
starts moving along the cycle.
Various different graph topologies, including regular, irregular and ran-

dom graphs, were considered in [10.15], each consisting of 100 vertices and
the same number of expected edges (about 1000). The protocol was initial-
ized with 5 traps and 2 searching agents. The traps were re-randomizing
their positions periodically. The performance was measured in extermination
time, that is, after how many simulation rounds (excluding the rounds re-
quired for the traps to take their positions) the fugitive falls into a trap. The
reported experiments indicated that the cycling fugitive lasts much longer
(about 40 times) than the randomly-avoiding fugitive. Experiments were also
conducted with various numbers of traps which indicated that when the num-
ber of traps is doubled, the extermination time drops almost linearly. A last
set of experiments was performed with varying time periods, called epochs,
for re-randomization of the location of the traps. The experiments showed
that the extermination time grows almost linearly with the increase in the
epoch size. In all cases the experiments considerably helped the fine-tuning
of the parameters of the experimentally best strategy of the agents (number
of traps, duration of epochs) against the worst-case equilibrium strategy of
the fugitive.
We note that the approach presented above has already led other re-

searchers to design fugitive strategies and agent strategies in similar ways, by
especially following the game-theoretic paradigm in slightly different games
where the fugitive is completely blind [10.2].
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10.5 Mobile Computing

The major technological advances in mobile networks have recently motivated
the introduction of a completely new computing environment called mobile
(or nomadic) computing [10.19, 10.38].
Mobile computing is a special type of distributed computing that is char-

acterized by four kinds of constraints which make the design of mobile infor-
mation systems a highly complex task:

(i) Mobile elements have poor resources compared to static elements.
(ii) Mobile elements rely on a finite energy source (battery).
(iii) Mobility is inherently hazardous regarding damage or physical security

loss.
(iv) Mobile connectivity is highly variable in performance and reliability.

Hence, information access as well as fundamental distributed computing
problems (e.g., leader election) have to be re-considered in the new setting.
As a consequence, new approaches are usually required for the effective solu-
tion of these problems in order to develop a dependable and efficient mobile
information system.
Until now, two basic models have been proposed for mobile computing:

the fixed backbone model and the ad-hoc model. The fixed backbone model
assumes that a fixed infrastructure of support stations with centralized net-
work management is provided in order to ensure efficient communication.
Communication is done through the support stations which serve a certain
geographical area in which mobile hosts are moving. The fixed backbone
model is motivated by the current status of pragmatic mobile networks.
The ad-hoc model assumes that mobile hosts can form temporary net-

works, called ad-hoc networks, without the aid of any fixed infrastructure
or centralized administration. Communication between two hosts can be
achieved through other mobile hosts which participate in the ad-hoc network
and are willing to transfer packets for them. The ad-hoc model is motivated
by the need for rapid deployment of mobile hosts in an unknown terrain (e.g.,
emergency services in a disaster area), where there is no underlying fixed net-
work infrastructure either because it is impossible or very expensive to create
it, or because it has become unavailable.
The above imply that the design, implementation, testing and verifica-

tion of distributed protocols for mobile computing requires extension of soft-
ware (simulation) platforms that are designed to support development of
distributed algorithms on (classical) fixed networks. A simulation environ-
ment for mobile computing should be able to capture the notions of a mobile
process (can be viewed as a virus or an agent), the motion of a process or host
(which allows it to either migrate from cell to cell or to follow any course in
a given space), the energy of a process or host, and the channels (which ex-
cept for their bandwidth and latency could be further characterized by their
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frequency spectrum as well as by communication interference). All these are
crucial in the design of a simulation platform for mobile computing (for ex-
ample, they are taken into account in the Distributed Algorithms Platform
[10.10]).
Perhaps the most important of the above notions is that of motion of pro-

cesses or hosts. Two ways of capturing motions have appeared in the litera-
ture: the explicit and the implicit representation. The explicit representation
provides a definition of the space of possible motions and also a definition of
a trajectory of each host in that space. The implicit representation provides
a dynamic graph of possible direct communications among hosts, and the
way this graph changes with time. The change of communication edges is
assumed to occur due to the motion of hosts.
One of the most interesting cases is to deal with systems in which fast

motions of processes or hosts are allowed. In such cases, the implicit repre-
sentation has major inherent analysis problems and limitations, since in such
dynamic graph models protocols usually try to maintain network structures
(e.g., connectivity, multiple paths, etc), but the time to allow information to
propagate for the modification of these structures is not always comparable
with the speed of change of the network.
Consequently, in the rest of this section, we will focus on the explicit rep-

resentation of motions and will address certain methodological issues that
arise in distributed algorithm engineering regarding implementation and ex-
perimentation of algorithms for mobile computing. We shall address these
issues through two case studies, one for the fixed backbone model and an-
other for the ad-hoc model. The former concerns the problem of counting the
number of mobile hosts in a mobile network, while the latter concerns the
fundamental problem of establishing point-to-point communication between
two mobile hosts. Before diving into the case studies, we shall discuss the two
models in more detail.

10.5.1 Models of Mobile Computing

The fixed backbone model assumes two distinct sets of entities in a mobile
network: a large number of mobile hosts, and a relatively small number of
more powerful, fixed hosts. The fixed hosts and the communication paths
between them constitute the static or fixed (part of the) network. The ge-
ographical area that is served by the fixed network is divided into smaller
regions called cells. Each cell is served by a fixed host, also referred to as
the mobile service station (MSS) of the cell. An MSS communicates with the
mobile hosts within its cell via a wireless medium of low bandwidth. Host
mobility is represented in this model as migration of mobile hosts between
cells; each mobile host belongs to only one cell at any time instance.
We now discuss how mobile hosts exchange messages and which is the

incurred cost in the fixed backbone model. There are two types of messages:
point-to-point messages between any two MSSs, and messages between a
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mobile host and its local MSS. Let the cost of a former message be Cf and the
cost of a latter message be Cw. Assume that a mobile host h1 wants to send a
message to another mobile host h2. The host h1 sends first the message to its
local MSS, which forwards this message to the local MSS currently serving h2.
Since, however, the location of a mobile host is neither fixed nor universally
known to the network, the local MSS of h1 needs first to determine the MSS
which currently serves h2 and then transmit the message. This incurs an
extra search cost Cs for each message transmission. A reasonable assumption
to consider [10.4] is that Cs = aCf , where a is a constant depending on the
location management strategy used. Suppose thatm mobile hosts are moving
throughout a fixed base station mobile network G = (V,E) consisting of n =
|V | nodes (corresponding to the MSSs) and |E| edges (representing the point-
to-point direct communications between the MSSs). Note that |E| = O(n2)
in the worst-case and that usually m � n. Let D be the diameter of G.
Then, Cs = O(D) and a message between two mobile hosts incurs a cost of
2Cw + Cs.
The ad-hoc model assumes that mobile hosts can form temporary net-

works, called ad-hoc networks. An ad-hoc mobile network [10.19] is a collec-
tion of mobile hosts with wireless network interfaces forming a temporary
network without the aid of any established infrastructure or centralized ad-
ministration. In an ad-hoc network two hosts that want to communicate may
not be within wireless transmission range of each other, but could communi-
cate if other hosts between them are also participating in the ad-hoc network
and are willing to forward packets for them.

10.5.2 Basic Protocols in the Fixed Backbone Model

A fundamental problem in any network is to count the number of available
processes or nodes. In the case of mobile networks, this counting problem
retains its importance: the knowledge of how many mobile users are currently
connected is generally valuable and can be used both by the control and the
application level of the network.
Two algorithms for the counting problem in the fixed backbone model

were implemented and experimentally compared in [10.16]. The first algo-
rithm in that paper is a simple modification of an existing algorithm for the
counting problem in a fixed network [10.41, Ch. 6]. The second is a more
efficient algorithm presented in [10.17].
In the rest of this section, we shall discuss the implementation and exper-

imental evaluation of these algorithms on the Distributed Systems Platform
[10.11]. In particular, we discuss the main issue of modeling the speed and
the type of movement of the mobile hosts.
For the counting problem, it is assumed that one of the mobile hosts (the

initiator) wants to find the number of the mobile hosts (m) in the network. It
is further assumed that: the communication between the MSSs is based on the
asynchronous timing model; an operational mobile host responds immediately
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to messages broadcasted by its local MSS; each mobile host has its own
distinct identity; the set of mobile hosts does not change during the execution
of a counting algorithm.
The first algorithm considered in [10.16], called the virtual topology al-

gorithm (VTA), is based on the distributed execution by the mobile hosts
of a counting algorithm for fixed networks. The VTA algorithm is based on
the assumption that the mobile hosts are willing to control by themselves
the execution of the algorithm by avoiding the participation of the MSSs
(this may be necessary if some protocol requires computational power that
increases the overhead of MSSs). The counting algorithm for fixed networks
used is the Echo protocol given in [10.41, p.190]. It is based on the central-
ized wave paradigm [10.41, Ch. 6]. There is one initiator process and all other
are non-initiators. The initiator floods token messages to all processes and
eventually receives confirmation from all processes. The initiator sends mes-
sages to all its neighbors. Upon receipt of the first message, a non-initiator
forwards messages to all of its neighbors, except the one from which the mes-
sage was received and which marks as its parent and the corresponding link
as its parent link. It is easy to see that parent links define a spanning tree
of the fixed network. When a non-initiator has received messages from all
its neighbors, it sends an “echo” message to its parent. When the initiator
has received a message (either an echo or a flooding message) from all its
neighbors, it terminates. The application of the echo protocol in a mobile
network implies that some kind of virtual topology is defined on the mobile
hosts. By assuming that the virtual topology has O(m) edges, the total cost
of the VTA algorithm is O(mCw +DmCf ), where D comes from the search
cost in the fixed network.
The VTA algorithm has two drawbacks: (i) the high cost of message trans-

missions in the fixed network; and (ii) it requires the participation of every
mobile host in the virtual topology. The latter is crucial, since no mobile
host is allowed to disconnect during execution of VTA and which in turn
brings into play another parameter: the total execution time of the algorithm
which should not be large since otherwise it would increase the consumption
of battery power in the mobile hosts.
The second algorithm implemented in [10.16] is a new counting algorithm,

especially designed for the fixed backbone model, and presented in [10.17].
The algorithm is based on a common guiding principle of distributed pro-
tocols in the fixed backbone model, called the two tier principle [10.1], and
consequently named the two tier algorithm (TTA). The idea of this principle
is that the computation and communication costs of an algorithm should be
based, as much as possible, on the fixed portion of the mobile network.
The TTA algorithm is also based on the execution of the Echo protocol.

The execution is started by the initiator mobile host which broadcasts a
“count” message (afterwards, this initiator does not respond to any “count”
message). The (non-initiator) mobile hosts receive “count” messages from
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their local MSS and respond with “count-me” messages in order to be counted
by the MSS. The rest of the TTA algorithm is executed by the fixed part of
the network (i.e., by the MSSs). Let the initiator MSS be the MSS serving
the initiator mobile host. The part of the algorithm executed by the MSSs is
as follows.

1. The initiator MSS broadcasts a “count” message in its cell and then
spreads along the fixed part of the network the request for counting using
the Echo protocol. The protocol starts by sending “count-tok” messages
to all adjacent MSSs.

2. An MSS, upon receiving a “count-tok” message, broadcasts a “count”
message to its cell and waits to collect answers from mobile hosts in
this cell. The MSS also forwards a “count-tok” message to its neighbors
to continue the execution of the Echo protocol. When the MSS receives
a “count-me” message, it increases a local variable sz which stores the
number of counted mobile hosts in its cell. If the MSS receives a “join”
message (from a mobile host joining its cell), it broadcasts again a “count”
message. After the completion of the Echo protocol, all MSSs have been
informed about the execution of a counting algorithm and have broad-
casted a “count” message in their cell.

3. The initiator MSS starts a second execution of the Echo protocol by
sending a “(size-tok,0)” message to its neighbors aiming at collecting
the sz variables from all MSSs to the initiator. An MSS terminates the
execution of the second Echo protocol when it has received answers from
all its children (in the spanning tree) and has consequently “echoed”
its sz variable to its parent. After such termination, an MSS stops to
broadcast “count” messages when a new mobile hosts enters its cell.
After the completion of the second Echo protocol, the initiator MSS
knows the total number of mobile hosts in the network (stored in its
local sz variable).

4. The initiator MSS broadcasts a “(size,sz)” message in its cell and then
starts a third execution of the Echo protocol by sending a “(inform-
tok,sz)” message to its neighbors. This third execution aims at informing
all mobile hosts about the size of the network. An MSS, upon receiving
a “(inform-tok,sz)” message, broadcasts a “(size,sz)” message in its cell
and forwards a “(inform-tok,sz)” message to its neighbors to continue
the execution of the Echo protocol. If an MSS receives a “join” message,
it broadcasts again the “(size,sz)” message. After the completion of the
third Echo protocol, all MSSs have broadcasted the size of the mobile
network in their cells. Finally, the initiator MSS starts a fourth execution
of the Echo protocol to inform the MSSs about the completion of the
counting algorithm. After the completion of the fourth Echo protocol, an
MSS stops to broadcast “size” messages when a new mobile host enters
its cell.
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The four executions of the Echo protocol imply that the algorithm requires
8|E| messages to be exchanged in the fixed part of the network yielding a
total cost of O(mCw + |E|Cf ) = O(mCw + n2Cf ) which is better than the
cost of the VTA algorithm.
The simulated implementations of the VTA and the TTA algorithms were

done on the DSP tool. One of the major difficulties in the experimental setup
was the modeling of the speed and the type of movement of a mobile host.
When a mobile host moves fast, it will change many cells during the execution
of any counting algorithm and thus increase the overhead of keeping the
routing tables of MSSs updated. Since the description of the speed in terms of
physics was rather difficult, the approach followed in [10.16] was to associate
the speed of a host with the propagation delay of messages in the fixed part
of the network. In these terms, a slow mobile host is a host which does not
change cell for O(D) time units (where D is the diameter of the fixed part of
the network). A host which changes cell in time smaller than O(D) is called
a fast mobile host.
Five different topologies were considered in [10.16] with n (number of

MSSs) ranging from 20 to 100, |E| (number of edges in the fixed part of the
network) ranging from 50 to 310, and diameter ranging from 5 to 21. The
transmission delay in all links was unary in order to avoid the overhead of
message delay in the protocol execution time. In all topologies, there were
10 mobile hosts in each cell of an MSS. At the beginning of the simulation
the mobile hosts were left to move randomly in the network in order to take
random positions before a counting algorithm starts. For the VTA algorithm,
the virtual topology constructed was basically a list of mobile hosts where
the host with identity i considered as its neighbors the hosts with identities
i− 1 and i+ 1.
Three parameters were measured in all experiments: (i) the numberMf of

messages exchanged in the fixed part of the network in order to deliver mes-
sages to the mobile hosts; (ii) the number Mr of radio messages transmitted
by the mobile hosts (excluding the “join” messages, since these are also used
for network control and routing purposes); and (iii) the execution time of the
protocol. The last two parameters express the battery power of a mobile host,
since this power depends on the number of message transmissions made by
the mobile host as well as on the time the host remains active (algorithm
execution time).
The TTA algorithm was significantly better than VTA in any topology

and for any measurement parameter considered both in battery consumption
and in the load of the fixed network. For example, in topology 5 (n = 100,
|E| = 310, D = 21) and for slow mobile hosts, Mf was 29350 for VTA and
2480 for TTA, Mr was 2000 for VTA and 1000 for TTA, while the execution
time was 18152 for VTA and 171 for TTA. Very similar results hold for fast
mobile hosts.
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10.5.3 Basic Protocols in the Ad-Hoc Model

A fundamental problem in the ad-hoc model is to send a piece of information
from some sender host to another designated receiver host. This basic com-
munication or routing problem is a highly non-trivial task in ad-hoc mobile
networks for several reasons: (a) local connections are temporary and may
change as users move; (b) the movement rate of each user might vary, while
certain hosts may even stop in order to execute location-oriented tasks.
The most common way to establish communication is to form paths of in-

termediate nodes (i.e., hosts), where it is assumed that there is a link between
two nodes if the corresponding hosts lie within one another’s transmission ra-
dius and hence can directly communicate with each other [10.14, 10.36, 10.43].
In other words, starting from the sender, each host broadcasts the message to
all its neighbors until the intended receiver gets it (if possible). This protocol
is called flooding and clearly requires a lot of messages. Indeed, this approach
of exploiting pairwise communications is common in ad-hoc mobile networks
that either cover a relatively small space (i.e., the temporary network has
a small diameter with respect to the transmission range), or are dense (i.e.,
thousands of wireless nodes). Since almost all locations are occupied by some
hosts, broadcasting can be efficiently accomplished.
In wider area ad-hoc networks however, broadcasting is impractical, as two

distant hosts will not be reached by any broadcast since users do not occupy
all intervening locations, that is, a sufficiently long communication path is
difficult to establish. Even if such a path is established, single link failures
happening when a small number of users that were part of the communication
path move in a way such that they are no longer within the transmission range
of each other, will make this path invalid. Note also that the path established
in this way may be very long, even in the case of connecting nearby nodes.
A different approach to solve this basic communication problem is to take

advantage of the mobile hosts natural movement by exchanging information
whenever mobile hosts meet incidentally. Protocols based on this idea are
divided into non-compulsory and compulsory protocols.
A non-compulsory protocol is one whose execution does not affect the

movement of the mobile host. When the users of the network meet often
and are spread in a geographical area, flooding the network will suffice. It is
evident, however, that if the users are spread in remote areas and they do
not move beyond these areas, then there is no way for information to reach
them, unless the protocol takes care of such situations.
One way to alleviate these problems is to force mobile users to move

according to a specific scheme in order to meet the protocol demands, thus
yielding the so-called compulsory protocols. Such a protocol requests that all
mobile hosts perform certain moves in order to guarantee correctness of the
protocol.
A compromise between non-compulsory and compulsory protocols is in-

troduced in [10.7]. The idea is to force only a small subset of mobile users,
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called the support Σ of the network, to move as per the needs of the pro-
tocol (the move of the rest is arbitrary and is not affected by the protocol).
Such protocols are called semi-compulsory protocols. The support serves as
an intermediate pool for receiving and delivering messages.
To address the crucial issue of modeling the motions of mobile hosts in

the three-dimensional space, a rather general graph theoretic model was in-
troduced in [10.17]. Under this model, the space S of motions is mapped
to a graph G = (V,E) called the motion graph. The graph is constructed
as follows. The space S is quantized in cubes. Each cube has a volume that
approximates (from below) the volume of a sphere which represents the trans-
mission range of a mobile host. The motion graph has a vertex for each cube
of the quantization of S. Two vertices are connected by an edge if their
corresponding cubes are adjacent. Note that the number of vertices n of G
approximates the ratio of the volume of S and the space occupied by the
transmission range of a mobile host. Since edges represent the (at most 6)
neighboring polyhedra of a cube, it follows that |E| = O(n). The mobile
hosts move along the vertices and edges of the motion graph G (note that
the motion graph model neglects the detailed geometric characteristics of the
motion). It is assumed that the hosts know in advance (for example, from
the hardware) the type and the dimensions of the polyhedron that is used
for the quantization of S in order to be able to determine whether they have
covered enough distance to reach a new vertex of G.
In the rest of this section, we shall discuss two efficient semi-compulsory

protocols for the basic communication problem developed and implemented
in [10.7, 10.8], and which model motions of hosts using the motion graph.
Although “hard” input instances (in the sense of Section 10.4) were not con-
sidered, the experiments were conducted on several interesting “pragmatic”
inputs.

10.5.3.1 The Snake Protocol. The first semi-compulsory protocol for the
basic communication problem was presented in [10.7]. It uses a snake-like
sequence of k support stations (i.e., they form a list of k nodes) that always
remain pairwise adjacent and move in a way determined by the snake’s head.
As a consequence, the protocol is referred to as the snake protocol. There
is a set-up phase of the ad-hoc network, during which a predefined number,
k, of hosts, become the nodes or members of the support. The head is de-
termined by performing a leader election between the members of Σ. Once
determined, the head (denoted by M0) assigns unique names to the rest of
the support membersM1,M2, . . . ,Mk−1. The motion of the support stations
is accomplished in a distributed way via a support motion subprotocol P1

which enforces the support to move as a “snake”, with the head M0 doing a
random walk on the motion graph and each of the other nodes Mi executing
the simple protocol “move where Mi−1 was before”. When some node of the
support is within the communication range of a sender, an underlying sensor
subprotocol P2 notifies the sender that it may send its message(s). The mes-
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sages are then stored in every node of the support using a synchronization
subprotocol P3. When a receiver comes within the communication range of
a node of the support, the receiver is notified that a message is “waiting” for
him and the message is then forwarded to the receiver. Duplicate copies of
the message are then removed from the other members of the support. In this
protocol, the support Σ plays the role of a (moving) backbone subnetwork
(of a “fixed” structure, guaranteed by the motion subprotocol P1), through
which all communication is routed.
The snake protocol is theoretically analyzed in [10.7], where it is shown

that the total expected communication or delay time to send a message from
a sender to a receiver is at most 2

λ2(G)Θ(n/k) +Θ(k) where G is the motion
graph, λ2(G) is its second eigenvalue, n is the number of vertices in G, and
k = |Σ|.
A first implementation of the protocol was developed and experimentally

evaluated in [10.7] with the emphasis to confirm the theoretical analysis, and
to investigate whether it is helpful for the head of Σ to remember past posi-
tions occupied by Σ, thus avoiding them in the future. The implementation
was done in C++ using LEDA [10.33].
The experimental setup in [10.7] consisted of three kinds of inputs, one

random and two structured ones. Each kind of input corresponded to a dif-
ferent type of motion graph. The motion graphs considered were random
graphs (a natural starting point), 2D grid graphs (the simplest model of mo-
tion when mobile hosts move on a plane surface), and bipartite multi-stage
graphs. The latter type of graph consists of a number s of stages (or levels)
where each stage consists of n/s vertices. There are edges between vertices of
consecutive stages chosen randomly among all possible edges between the two
stages. This type of graphs is interesting as such graphs model movements of
hosts that have to pass through certain places or regions, and have a different
second eigenvalue than grid and random graphs (their second eigenvalue lies
between that of grid and random graphs).
For all these types of graphs several values for n in the range [100, 6400]

were considered and different values for the support size k in the range [5, 40].
For each motion graph constructed, 1, 000 users (mobile hosts not belonging
to Σ) were injected at random positions that generated 100 transaction mes-
sage exchanges of 1 packet each by randomly picking different destinations
(i.e., a total of 100, 000 messages were transmitted). The move of each user
was random and independent of the protocol. Each experiment was carried
out until all 100, 000 messages were delivered to the designated receivers. The
synchronization subprotocol P3 (storing every message to each member of Σ)
was not implemented and hence the extra delay imposed by this subproto-
col was not counted in the measured delay times. This does not affect the
behaviour of the snake protocol and helps simplifying the implementation.
The conducted experiments [10.7] indeed confirmed the theoretical anal-

ysis that only a small support is needed for efficient communication, and
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indicated that limited memory (remembering just a few past positions) in-
curs a slight improvement on the delay time, while bigger memory is not
helpful at all.

10.5.3.2 The Runners Protocol. The second semi-compulsory protocol
for the basic communication problem has been recently presented in [10.8].
This protocol is based on the idea that the members of Σ do not to move in a
snake-like fashion, but they perform independent random walks on the motion
graph G, that is, the members of Σ can be viewed as “runners” running on G.
In other words, instead of maintaining at all times pairwise adjacency between
members of Σ, all hosts sweep the area by moving independently from each
other. Consequently, this protocol is referred to as the runners protocol. When
two runners meet, they exchange any information given to them by senders
encountered using a new synchronization subprotocol P ′

3. As in the snake
case, when some node of the support is within the communication range of a
sender, the underlying sensor subprotocol P2 notifies the sender that it may
send its message(s). When a user comes within the communication range of
a node of the support which has a message for the designated receiver, the
waiting messages are forwarded to the receiver. The runners protocol does not
use the idea of a (moving) backbone subnetwork as no motion subprotocol
P1 is used. However, all communication is still routed through the support
Σ and it is expected that the size k of the support (number of runners) will
affect performance in a more efficient way than that of the snake approach.
This expectation stems from the fact that each host will meet each other
in parallel, accelerating the spread of information (that is, the messages to
be delivered). A member of the support stores all undelivered messages in
a set S1, and maintains a list of receipts S2 to be given to the originating
senders. When two runners meet at the same site of the motion graph G, the
synchronization subprotocol P ′

3 is activated. The subprotocol imposes that
when runners meet on the same site, their sets S1 and S2 are synchronized.
In this way, a message delivered by some runner will be removed from the
set S1 of the rest of runners encountered, and similarly delivery receipts
already given will be discarded from the set S2 of the rest of runners. The
synchronization subprotocol P ′

3 is partially based on the two-phase commit
algorithm as presented in [10.30].
The runners protocol turns out to be more robust than the snake protocol.

The latter is resilient only to one fault (one faulty member of Σ), while the
former is resilient to t faults for any 0 < t < k.
In [10.8], a comparative experimental study of the snake and the run-

ners protocols was conducted based on a new generic framework developed
to implement protocols for mobile computing which constitutes part of the
basic primitives provided by the Distributed Algorithms Platform [10.10] for
wireless computing. Under this framework, the implementation of the run-
ners protocol and the re-implementation of the snake protocol were carried
out. All implementations were done in C++ using LEDA [10.33] and the prim-
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itives of DAP [10.10]. To provide a fair comparison between the two different
protocols (snake and runners), the subprotocol P3 of the snake protocol was
implemented in [10.8], and consequently the extra delay imposed by the syn-
chronization of the mobile support hosts was also counted.
The experimental setup in [10.7] has been extended in [10.8] to include

more pragmatic test inputs regarding motion graphs. Hence, except for the
test inputs considered in [10.7] (random graphs, 2D graphs, bipartite multi-
stage graphs; see Section 10.5.3.1), two other structured families were consid-
ered: 3D graphs (modeling 3D space), and two-level graphs. The latter class
consists of dense subgraphs interconnected by a small number of paths. It was
motivated by the fact that most mobile users usually travel along favourite
routes (e.g., going from home to work and back) that usually comprise a small
portion of the whole area covered by the network (e.g., urban highways, ring
roads, metro lines), and that in more congested areas there is a high volume
of user traffic (e.g., city centers, airport hubs, tourist attractions). In the
conducted experimental study, the primary interest was to provide measures
on communication times (especially average message delay), message deliv-
ery rate, and support utilization (total number of messages contained in all
members of the support).
The experiments in [10.8] revealed that: (i) for both protocols only a

small support is required for efficient communication; (ii) the runners protocol
outperformed the snake protocol in almost all types of inputs considered.
More precisely, the runners protocol achieve a better average message delay
in all test inputs considered, except for the case of random graphs with a
small support size. The runners protocol achieves a higher delivery rate of
messages right from the beginning, while the snake protocol requires some
period of time until its delivery rate stabilizes to a value that is always smaller
than that of runners. Finally, the runners protocol utilizes more efficiently
the available resources as far as memory limitations are concerned, as it has
smaller requirements for the size of local memory per member of the support.

10.6 Modeling Attacks in Networks:
A Useful Interplay between Theory and Practice

A recent thread of research concerns attacks in computer networks which pose
several key problems regarding intrusion propagation and detection. Various
models have been proposed under which researchers mainly study the effec-
tive detection and defeat of attacks assuming a very powerful intruder; see
for example, [10.26, 10.35]. In this setting, intrusion propagation (the process
of spread of such attacks) has mostly been investigated under gossip or epi-
demiological models [10.26]. On the other hand, the fear of malicious attacks
along with the development of advanced cryptographic techniques has con-
siderably increased the security level of current computer systems. Hence,
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contrary to previous models and approaches, a recent work [10.34] is con-
cerned with studying intrusion propagation assuming that the intruder has a
rather limited power and aims at investigating how intrusion can propagate
in a perhaps highly secure network. To this end, a general model for such an
intrusion and its propagation in networks is introduced. In the rest of this
section, we shall discuss the particular model as well as the development of
distributed protocols for attack propagation under this model. The interest-
ing issue is that a tight combination of analytic and experimental methods
is used to develop the protocols.
In the model introduced in [10.34], a network N is viewed as a collection

of n host systems (nodes) each one having its own logical address. There
is some underlying physical infrastructure whose specific topology is not a
concern of the model. Communication is not necessarily done point-to-point.
Direct communication between two nodes is achieved by establishing a virtual
channel through the physical infrastructure between these two nodes.
Assume that in such a network an intruder, starting from his own com-

puter, would like to break as many other systems as possible. The intrusion
consists of a collection of attacks. An attack is issued from some node in N
and is an attempt to break the perimetric security of another node (host sys-
tem) in N . The intrusion is realized by an attack scheme. An attack scheme
is a protocol for the organization of the attacks issued from specific nodes
of N . The intruder is a greedy one, i.e., does not have a specific target, and
attacks computer systems equiprobably at random. An attack succeeds or
fails, independently of other attacks, with a failure probability 0 < f < 1
that represents the difficulty of breaking a system in N ; f is a gross measure
of the security level of the attacked systems (e.g., of the average security or
the perceived maximum security level of a system) and may also depend on
the intruder’s skills. The model assumption about f is motivated by a large
class of existing attacks; for example, attacks that are based on randomly
sampling a set of possible passwords from a large password domain and then
trying each of them. The probability of success of such a scheme in a node
does not depend on previous successes at other nodes or on previous attempts
at the same node. This is because the locally implemented set of passwords
is perhaps different in each node and the set of passwords used by the local
attack software is very small (for reasons of speed) compared to the password
domain set.
If an attack does not fail, then some, randomly and equiprobably chosen,

network node is returned. Because of that, it may happen that an already
selected node (an already broken system) is chosen again. If the result of
a non-failed attack is a node which has not been selected before, then the
attack is considered successful and a virtual link (virtual channel) is estab-
lished to that node. The random selection, with possible repetition, of a node
in the case of a non-failed attack is motivated by the following pragmatic
considerations: (i) if the local attack software (e.g., a worm) is successfully
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confronted, it should not reveal any information about broken nodes in the
past; (ii) the local attack software may blindly extend attacks to hosts con-
tained in tables of the newly broken systems which may include the already
broken ones. The intruder tries to protect himself as much as possible from
being traced: once a system is broken, his software tries from that system to
attack (again equiprobably at random) another system by disguising itself as
a user process of the broken system. Because of the danger to be discovered,
the intruder’s software can ever try only a limited (i.e., constant) number g
of attacks from a specific node of the network. If a successful attack is issued
before the limit g is reached, then the software enters a dormant phase and
performs no action (for the purpose of not raising any suspicions). If at some
node i the software exhausts the attack bound g, then it terminates execution
at i and “backtracks” to a previously broken system j to continue from there
its attacks, provided that there are still some attempts left at j. In such a
case, the local software at j is reactivated and starts again to issue attacks.
If at any time during the execution of the attack scheme, the intrusion is
discovered by some system, it is assumed that the whole attack scheme to N
terminates.
Two natural questions raised here are: (a) how long the intruder can go

on (i.e., how many computer systems can be successfully attacked) in N until
he is discovered, and (b) how many virtual links a detection mechanism has
to trace in order to find the origin of the intrusion. In particular, assume
that the intrusion starts at time 0 with attack scheme S. At any time t ≥ 0,
let nS(t) be the number of nodes captured, called the spread factor, and let
#S(t) be the shortest possible distance (in number of virtual links) from the
currently active position of the intruder’s software to the origin, called the
traceability factor. Given a discovery (i.e., stopping) time T , the problem is
to estimate nS(T ) and #S(T ). This is referred to as the attack propagation
problem. The goal, from the side of the intruder, is to employ an attack
scheme which maximizes both factors. Note that this is a non-trivial task; for
example, almost all epidemiological (and gossip propagation) models have
usually very small #S(T ) compared to nS(T ), because of their “radially”
spreading nature.
The above process defines naturally a graph G whose vertices correspond

to the nodes of the network and if a virtual link (i.e., a successful attack
through some virtual channel) is established between two nodes i and j, then
an edge between vertices i and j is added to G. In this setting, the spread
factor nS(T ) is the size of the obtained connected component in G, and the
traceability factor #S(T ) is the length (number of edges) of the path in this
connected component from the current vertex (node) issuing attacks to the
origin (the node from which the intrusion was started). This path is referred
to as the traceability path. Hence, the attack propagation problem reduces in
estimating the values of these two quantities in G.
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Another interesting issue is to investigate the possibility of a total failure
of an attack scheme, namely the possibility that it eventually returns to its
starting point, not because the intruder is discovered but due to backtracking
caused by the limited number of attempts from a specific node.
In [10.34], the attack propagation problem is tackled by presenting four

different protocols (attack schemes) by which an intruder can organize his
attacks in the above model. The starting point is an attack propagation
protocol that organizes attacks along a single traceability path. The g attacks
per node are grouped into three equally sized sets. The first two sets (called
green and red, resp.) are used to propagate the attack, while the third set is
kept for restarting the attack scheme in case of a total failure. The protocol
tries initially to establish a (long) traceability path, link by link, using only
the green attacks. Each attack is issued from the last node in the path which is
considered active (i.e., it possesses a token). An attack is considered successful
if a new node is returned which will now become the last node of the path and
gets the token. When attack propagation, that is, extension of the constructed
path using green attacks, is not possible, then the red set of attacks is used.
If extension to a new node is established, then the protocol passes the token
to that node and continues from there using its green attacks. Otherwise, it
backtracks to the first node whose red attacks have not been used yet and
(after passing the token) tries to extend the path from that node using the red
attacks. The node having the token always stores the maximum (in length)
traceability path of attacked systems constructed so far by the protocol.
When the path shrinks to a single node, then that node notifies all nodes
of the maximum traceability path seen in the past to try to use their third
batch of attacks in order to restart the protocol. The above protocol is referred
to as the original protocol and forms the basis for the development of three
other protocols, called tree protocols.
The tree protocols are based on the fact that the graph G, constructed

incrementally during the execution of the original protocol, is actually a tree
(only successful attacks are recorded as edges ofG). Hence, instead of keeping
only the maximum traceability path constructed, the idea is to store the whole
tree. Subsequently, various orders of the nodes in this tree for path extension
are considered using their third batch of attacks. The different orders specify
the different ways the intruder can use to organize his attacks. Clearly, the
maximum traceability path constructed by the original protocol is the path
of maximum depth in the tree. Hence, the tree protocols provide naturally a
bigger front for expansion. The tree protocols differ in the order the nodes
of the tree are considered for path expansion. Two protocols are based on
“reverse” DFS, while the third one is based on “reverse” BFS.
The above protocols are theoretically analyzed in [10.34] where also an

implementation of the protocols was carried out (in a simulation environ-
ment) along with a comparative experimental study. The development of the
protocols constitutes an interesting case of distributed algorithm engineering.
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For the analysis of the protocols, both analytic and experimental methods
were used that are actually tied to each other. The analytic study of the pro-
tocols, where applicable, was rather complicated and gave only lower bounds
that are (probably) not tight. Hence, resorting to experiments was the only
way to get insight as well as a basis of reasonable assumptions to further pro-
ceed with the analysis. For example, it was crucial in the analysis of the tree
protocols to find a lower bound on the ratio between the traceability factor
and the size of the tree. The experiments clearly demonstrated a lower bound
of 1/2 for this ratio which, along with the tree evolution observed experimen-
tally, helped to analytically prove it and complete the analysis. Moreover,
the implementation and experimentation with the original protocol provided
useful feedback which was crucial in the development of the tree protocols.
The analytic and experimental methods in [10.34] show that for any

0 < f < 1, there exists a g for which any of the above attack schemes
will achieve a Θ(n) spread factor with high probability, provided T is suffi-
ciently large. This means that if an intrusion is realized by any of the attack
schemes, it will spread, regardless of the security level, to a big part of the
network. It is also shown that the spread and the traceability factors are
linearly related. Actually, for the tree protocols this linear relationship holds,
with high probability, during the whole duration of the attack propagation.
This implies that it will not be easy for a detection mechanism to trace the
origin of the intruder, since at any time it will have to trace a number of links
proportional to the number of nodes captured. Finally, it is shown that the
probability of a total failure of any attack scheme is very small. The experi-
ments conducted in [10.34] verified the theoretical results and exhibited the
robustness of one tree protocol.

10.7 Conclusion

Distributed algorithm engineering has certain characteristics which are very
different from conventional algorithm engineering. In this work, we made a
first attempt to address these issues and suggest possible approaches that
could efficiently tackle them. We hope that the suggested approaches will
inspire researchers to further investigate these issues and result in more sys-
tematic methods.

References

10.1 A. Acharya, B. Badrinath, and T. Imielinski. Structuring distributed algo-
rithms for mobile hosts. In Proceedings of the 14th International Conference
on Distributed Computing Systems, 1994.
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Summary.

Dynamic graph algorithms have been extensively studied in the last two
decades due to their wide applicability in many contexts. Recently, several
implementations and experimental studies have been conducted investigat-
ing the practical merits of fundamental techniques and algorithms. In most
cases, these algorithms required sophisticated engineering and fine-tuning
to be turned into efficient implementations. In this paper, we survey sev-
eral implementations along with their experimental studies for dynamic
problems on undirected and directed graphs. The former case includes
dynamic connectivity, dynamic minimum spanning trees, and the sparsifi-
cation technique. The latter case includes dynamic transitive closure and
dynamic shortest paths. We also discuss the design and implementation of
a software library for dynamic graph algorithms.

11.1 Introduction

The traditional design of graph algorithms usually deals with the develop-
ment of an algorithm that, given a static (fixed) graph G as input, solves a
particular problem on G; for example, “is G connected?”. A dynamic graph,
on the contrary, is a graph which may evolve with time due to local changes
that occur in G; e.g., insertion of a new edge or deletion of an edge. The
challenge for an algorithm dealing with a dynamic graph is to maintain, in
an environment of dynamic local changes, a desired graph property (e.g., con-
nectivity) efficiently; that is, without recomputing everything from scratch
after a dynamic change. Dynamic graphs are usually more accurate models
than static graphs, since most real systems (e.g., physical networks) are not
truly static.
A dynamic algorithm is a data structure that allows two types of oper-

ations: queries and updates. A query asks for a certain property P of the
current graph G (e.g., “are vertices x and y connected in G?”), while an up-
date operation reflects a local change in G. Typical changes include insertion
of a new edge and deletion of an existing edge. An algorithm or a problem is
called fully dynamic if both edge insertions and deletions are allowed, and it is
called partially dynamic if either edge insertions or edge deletions are allowed

c© Springer-Verlag Berlin Heidelberg 2002
R. Fleischer et al. (Eds.): Experimental Algorithmics, LNCS 2547, pp. 229–278, 2002.
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(but not both). In the case of edge insertions (resp. deletions), the partially
dynamic algorithm or problem is called incremental (resp. decremental).
The main goal of a dynamic algorithm is to use structural properties of

the current graph G in order to handle updates efficiently, i.e., without re-
sorting to the trivial approach of recomputing P from scratch using a static
algorithm. In most cases, updates take more time than queries, and the se-
quence of operations (updates and queries) is provided in an on-line fashion
(i.e., the operations are not known in advance).
Dynamic graph algorithms have been an active and blossoming field over

the last years due to their wide applicability in a variety of contexts, and
a number of important theoretical results have been obtained for both fully
and partially dynamic graph problems. These results show a clear distinction
between problem solving in undirected and in directed graphs: maintaining a
property (e.g., connectivity) in a directed graph turns out to be a much more
difficult task than maintaining the same property on an undirected graph.
There is a bulk of striking results and novel techniques for undirected graphs
which cannot however be transferred to directed graphs.
The challenge for dynamic algorithms to beat their (usually very efficient)

static counterparts as well as the fact that their input is more complicated
than the input of the corresponding static algorithms, has sometimes led to
the development of rather sophisticated techniques and data structures. This,
however, makes their practical assessment a non-trivial task, since the actual
running times may depend on several parameters that have to do with the size
and type of input, the distribution of operations, the length of the operation
sequence, the update pattern in the operation sequence, and others.
Hence, it is inevitable to perform a series of experiments with several dy-

namic algorithms in order to be able to select the most appropriate one for
a specific application. On the one hand, this experimentation often requires
sophisticated engineering and fine-tuning to turn theoretically efficient al-
gorithms into efficient implementations. On the other hand, the conducted
experiments give useful insight which can be used to further improve the
algorithms and the implementations.
Experimentation, however, requires proper selection of the test sets on

which the implemented dynamic algorithms will be assessed, i.e, the test set
should be as complete as possible. This in turn implies that both unstructured
(i.e., random) and structured inputs should be considered. The former is
important to either confirm the average-case analysis of an algorithm, or (if
such an analysis does not exist) to understand its average-case performance.
The latter is equally important as it either provides more pragmatic inputs
(inputs originated from or motivated by real-world applications), or provides
worst-case inputs, that is, inputs which will enforce an algorithm to exhibit
its worst-case performance. Random inputs are usually easier to generate
than structured inputs, while generation of worst-case inputs is perhaps the
most difficult as it depends on several factors (problem, algorithm, etc).
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In this paper, we survey several implementations along with their experi-
mental studies for dynamic problems on undirected and directed graphs. The
former case includes dynamic connectivity, dynamic minimum spanning trees,
and the sparsification technique. The latter case includes dynamic transitive
closure and dynamic shortest paths. We also discuss the design and imple-
mentation of a software library for dynamic graph algorithms. All but one
of the implementations have been done in C++ using the LEDA platform for
combinatorial and geometric computing [11.52].
To give a better picture on how the implementations stand in relation with

the algorithms known from theory, the treatment of each dynamic problem
starts by presenting first the known theoretical results and then discussing the
available implementations, commenting on the data sets used, and concluding
with lessons learned.

11.2 Dynamic Algorithms for Undirected Graphs

The implementation studies known for dynamic problems on undirected
graphs concern dynamic connectivity and minimum spanning tree. For the
rest of this section, G = (V,E) represents an undirected graph with n vertices
and m edges, unless stated otherwise.

11.2.1 Dynamic Connectivity

11.2.1.1 Theoretical Background — Problem and History of Re-
sults. In the dynamic connectivity problem, we are interested in answering
connectivity queries in a graphG which undergoes a sequence of updates (edge
insertions and edge deletions). Given any two vertices x and y, a connectivity
query asks whether there is a path in G between x and y. The dynamic con-
nectivity problem reduces to the problem of maintaining a spanning forest
in G, i.e., maintaining a spanning tree for each connected component of G.
Dynamic connectivity was studied both in a fully and in a partially dynamic
setting.
The first algorithm for fully dynamic connectivity was given by Harel

[11.35]; it supported queries in O(1) time and updates in O(n logn) time.
Frederickson [11.25] reduced this update bound to O(

√
m). This was later

improved by Eppstein et al. [11.19] to O(
√
n) through the use of a very sim-

ple but powerful technique called sparsification, which is a general method for
producing dynamic algorithms. Further improvements came with the use of
randomization. The first such algorithm (of Las-Vegas type) was presented by
Henzinger & King [11.36] achievingO(log3 n) expected amortized time for up-
dates and O(log n/ log logn) time for queries. The expected amortized update
time was subsequently improved to O(log2 n) by Henzinger & Thorup [11.39].
At about the same time, Nikoletseas et al. [11.55] presented a fully dynamic,
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probabilistic (Monte-Carlo), connectivity algorithm for random graphs and
random update sequences which also achieves O(log3 n) expected amortized
time for updates, but answers queries in O(1) expected amortized time. The
need for randomization was removed by Holm et al. [11.40]; in that paper
a deterministic algorithm for fully dynamic connectivity is presented which
achieves O(log2 n) update time and O(log n/ log log n) query time. Very re-
cently Thorup [11.65] presented a new randomized (Las-Vegas) fully dynamic
algorithm with O(log n(log logn)3) expected amortized time for updates and
O(log n/ log log logn) time for queries. It is worth noting that the above poly-
logarithmic upper bounds for updates and queries are not far away from the
currently best lower bound of Ω(log n/ log logn) [11.27, 11.53] for both oper-
ations. All the above algorithms with polylogarithmic update and query time
require O(m+ n logn) preprocessing time and space. Thorup also showed in
[11.65] that the space bound of the algorithms in [11.40, 11.65] can be reduced
to O(m).
For partially dynamic connectivity, there are only two algorithms which

achieve better results than those provided by the fully dynamic ones: an
incremental algorithm based on Tarjan’s union-find data structure [11.62]
which achieves an amortized time of O(α(m,n)) per update or query op-
eration; a decremental randomized algorithm due to Thorup [11.64] which
supports queries in O(1) time and any number of edge deletions in a total
O(min{n2,m logn}+√nm log2.5 n) expected time, where m denotes the ini-
tial number of edges. This is O(1) amortized expected time per operation if
m = Ω(n2).
11.2.1.2 Implementations and Experimental Studies. There are three
works known regarding implementation and experimental studies of dynamic
connectivity algorithms. In chronological order, these are the works by Al-
berts et al. [11.3], Fatourou et al. [11.22], and Iyer et al. [11.44].
The first paper investigates the practicality of sparsification-based ap-

proaches and their comparison to the randomization-based approach by Hen-
zinger & King [11.36]. The second paper enhances this study by investigating
the comparison between two randomized approaches, the one by Henzinger
& King [11.36] and the other one by Nikoletseas et al. [11.55]. Finally, the
third paper brings the algorithm by Holm et al. [11.40] into play and aims at
investigating in practice the difference in the logarithmic improvement over
the algorithm of [11.36]. Moreover, that study considerably enhances the data
sets used in the experiments.
11.2.1.2.a The Implementation by Alberts et al. [11.3]
The main goal of the first experimental study for dynamic connectivity

algorithms was threefold:

1. To investigate the practicality of dynamic algorithms over static ones
(especially to very simple and easily implementable static algorithms).

2. To investigate the practicality of the sparsification technique and confirm
the theoretical analysis regarding its average-case performance.
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3. To compare dynamic algorithms based on sparsification with other dy-
namic algorithms and especially with the algorithm by Henzinger & King
[11.36] which is based on randomization.

Sparsification is a simple and elegant technique which applies to a variety
of dynamic graph problems. It can be used either on top of a static algorithm
in order to produce a dynamic one, or on top of a dynamic algorithm in order
to speed it up. Sparsification works as follows. The edges of G are partitioned
into (m/n) sparse subgraphs, called groups, each one having n edges. The
remaining group, called the small group, contains between 1 and n edges. The
information relevant for each subgraph (e.g., connectivity) is summarized in
an even sparser subgraph called a sparse certificate (e.g., a spanning forest). In
a next step certificates are merged in pairs yielding larger subgraphs which
are made sparse by computing again their certificate. This step is applied
recursively resulting in a balanced binary tree, called sparsification tree, in
which each node represents a sparse certificate. Since there are (m/n) leaves,
the sparsification tree has height (log(m/n)). When an edge is inserted, it is
placed in the small group; if there are already n edges in this group, then a
new small group is created. When an edge is deleted, it is removed from the
group to which it belongs and an edge from the small group is moved to the
group which contained the deleted edge. If the last edge of the small group
is deleted, the small group is removed. Consequently, an update operation
(edge insertion/deletion) involves some changes to a O(1) number of groups
plus the examination of the sparse certificates (ancestors of the modified
groups) in a O(1) number of leaf-to-root tree paths. This in turn implies
the examination of O(log(m/n)) subgraphs of O(n) edges each, instead of
considering one large graph with m edges. This immediately speeds up an
f(n,m) time bound (representing either the time of a static algorithm or
the update bound of a dynamic algorithm) to O(f(n,O(n)) log(m/n)) and is
called simple sparsification. The logarithmic factor of the previous bound can
be eliminated with the use of more sophisticated graph decomposition and
data structures resulting in the so-called improved sparsification (see [11.19]
for the details).
Simple sparsification comes into three variants, depending on whether the

certificates are recomputed by a static, fully dynamic, or partially dynamic
algorithm. We shall keep the term simple sparsification for the first and third
variants, since the second variant requires that certificates obey a so-called
stability property and hence it is referred to as stable sparsification .
The simple sparsification was implemented in [11.3]. To achieve better

running times, a few changes w.r.t. the original algorithm were introduced in
the implementation:

(i) A queue keeps track of edge deletions in the groups. Namely, when an
edge is deleted from a group, a pointer to that group is inserted in the
queue (i.e., the queue represents “empty slots” in groups). When an
edge is inserted, the first item is popped from the queue and the edge
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is inserted into the corresponding group. If the queue is empty, then
the new edge is inserted as in the original algorithm (i.e., either in the
small group, or in a new small group). As a consequence, the deletion
of an edge needs no swapping of edges and involves the examination of
only one leaf-to-root path. According to the experiments in [11.3], this
modification yields roughly 100% speedup for edge deletions.

(ii) The above implementation may however impoverish the edge groups:
an update sequence with less insertions than deletions may invalidate
the group size invariant (i.e., some group may have less than n edges)
and result in a sparsification tree with height larger than (log(m/n)).
To confront this situation, the sparsification tree is rebuilt each time
its actual height differs by more than one from its “correct” height of
(log(m/n)).

(iii) During an update, not all certificates in the leaf-to-root path are re-
computed. Recomputation stops at the first tree node whose certificate
remains unaffected by the update, since all its ancestors will not be af-
fected as well. This introduces significant time savings on the average,
and it is also matched by a theoretical analysis [11.3] which shows that
on the average the number of sparsification nodes affected by an update
is bounded by a small constant.

For the dynamic connectivity problem, simple sparsification was imple-
mented on top of an incremental algorithm (based on the Spanning Tree
function of LEDA) which supports edge insertions in O(α(m,n)) time and re-
computes the solution from scratch after an edge deletion in O(n+mα(m,n))
time. This results in an update time of O(nα(n, n) log(m/n)). The resulting
implementation is called Sparsification.
The second algorithm implemented in [11.3] was the fully dynamic algo-

rithm of Henzinger & King [11.36], henceforth the HK algorithm. The algo-
rithm maintains a spanning forest F of the current graph G. Connectivity
queries are answered by checking whether two given vertices belong to the
same tree of the forest. As edges are inserted or deleted, the forest is main-
tained so that it is kept spanning. Hence, a data structure is required which
performs efficiently the operations of joining two trees by an edge, splitting
a tree by deleting an edge, and checking whether two vertices belong to the
same tree. In [11.36] a data structure called Euler-tour trees (ET-trees) is
introduced for this purpose. An ET-tree is a standard balanced binary tree
over the Euler tour of a tree and supports all the above operations in O(log n)
time. The key idea is that when trees are cut or linked, the new Euler tours
can be constructed by at most 2 splits and 2 concatenations of the original
Euler tours, while rebalancing of ET-trees affects only O(log n) nodes.
Maintaining the spanning forest F of G using the ET-trees yields im-

mediately a very efficient way to handle connectivity queries (obvious) and
edge insertions: when an edge is inserted, check whether its endpoints be-
long to the same tree of the forest. If yes, do nothing; otherwise, insert it in
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the forest by simply joining the two ET-trees it connects. Both operations
can be accomplished in O(log n) time. Edge deletions, however, require some
additional care. If the deleted edge e is not a tree edge, then it is simply
discarded. Otherwise, it causes the tree T to which it belongs to split into
two other trees T1 and T2. In order to maintain the invariant that the for-
est is spanning, we have to check whether there is a non-tree edge (an edge
which does not belong to any tree) that rejoins T1 and T2. Such an edge,
if exists, is called replacement edge. Consequently, a dynamic connectivity
algorithm must find replacement edges quickly. Henzinger & King [11.36] use
two nice ideas to achieve this. The first is to use random sampling among the
(possibly many) non-tree edges incident to T . However, the set of edges that
rejoin T , called the candidate set, may be a small fraction of the non-tree
edges adjacent to T and hence it is unlikely to find a replacement edge for
e among the sampled ones. Since examining all non-tree edges adjacent to
T is undesirable, another approach is required to deal with such a situation.
Here comes the second idea of [11.36]: maintain a partition of the edges of G
into O(log n) levels, forming O(log n) edge disjoint subgraphs Gi = (V,Ei)
of G, 1 ≤ i ≤ l = O(log n). The partition is done in a way such that edges
in highly-connected parts of the graph are on upper levels while edges in
loosely-connected parts are at lower levels1. For each level i, a spanning for-
est Fi is maintained for the graph whose edges are in levels j ≥ i. If a tree
edge e at level i is deleted, then the non-tree edges in the smaller subtree,
say T1, are sampled. If within O(log2 n) samples a replacement edge is found,
we are done. Otherwise, the cut defined by the deletion of e is too sparse
for level i (i.e., the vast majority of the non-tree edges incident on T1 have
both endpoints in T1). In such a case, all edges crossing the cut are copied
to level i − 1 and the procedure is applied recursively on level i − 1. Since
edge insertions can cause the number of levels to increase beyond O(log n),
the HK algorithm periodically rebuilds its data structure such that there are
always O(log n) levels. The implementation of the above algorithm in [11.3]
is referred to as HK.
A simplified version of the HK algorithm was also implemented in [11.3]

and is referred to as HK-var. This version was motivated by experiments
with random inputs which showed that it is very unlikely that edges move
to lower levels. Hence, in the simplified version of the HK algorithm there is
only one level and only O(log n) edges – instead of O(log2 n) – are sampled.
In this version, queries, edge insertions, and non-tree edge deletions still take
O(log n) time, but the deletion of a tree edge may take O(m logn) worst-case
time. Despite the latter, the simplified version was always faster than the
original algorithm on random inputs and was more robust to input variations.
Finally, two pseudo-dynamic algorithms were implemented to provide a

point of reference in the sense that they are the simplest possible methods
1 The level notation here is the inverted version of the original algorithm in [11.36],
in order to facilitate comparison with the forthcoming algorithm of [11.40].
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one could resort to, using static approaches. Since these algorithms require
only a few lines of code, their constants are expected to be rather low and
hence likely to be fast in practice for reasonable inputs. These two algo-
rithms are called fast-update and fast-query. The former spends only
O(1) time on updates (just updates two adjacency lists), but answers queries
in O(n +m) time using a BFS algorithm. The latter maintains a spanning
forest and component labels at the vertices. Hence, a query takes O(1) time
(just checks equality of component labels). An update operation may force
the current forest to change in which case the forest and the component labels
are recomputed from scratch taking O(n+m) time.
All the above implementations, Sparsification, HK, HK-var,

fast-update and fast-query were compared experimentally in [11.3]
on various types and sizes of graph inputs and operation sequences (updates
intermixed with queries). Experiments were run both on random inputs
(random graphs and operation sequences) as well as on non-random inputs
(non-random graphs and operation sequences) representing worst-case inputs
for the dynamic algorithms.
Random inputs are particularly important in the study of [11.3]. Recall

that one of the main goals was to investigate the average-case performance of
sparsification (and of the other algorithms), since in [11.3] the average-case
running time of simple sparsification is analyzed and it is proved that the log-
arithmic overhead vanishes (the number of nodes affected by an update in the
sparsification tree is bounded by a constant). The random inputs consisted of
random graphs with different edge densities (m ∈ {n/2, n, n lnn, n1.5, n2/4}).
Note that the first three values constitute points where (according to ran-
dom graph theory [11.9]) a radically different structural behaviour of the
graph occurs: if m ≈ n lnn, the graph is connected (with high probability); if
n < m < n lnn, the graph is disconnected, has a so-called giant component of
size Θ(n), and smaller components of size O(lnn) at most; if m ≈ n, then the
giant component has size Θ(n2/3); and if m < n, then the largest component
has size O(lnn). The update sequences consisted of an equal number of m
insertions, m deletions, and m queries, each one uniformly distributed on the
candidate set. The candidate set for deletions was the set of current edges,
for insertions the set of current non-edges w.r.t. the set of all possible edges,
and for queries the set of all vertex pairs.
Non-random inputs aim at establishing a benchmark for inputs that could

force dynamic connectivity algorithms to exhibit their worst-case perfor-
mance. The non-random inputs consisted of structured graphs and operation
sequences. A structured graph consists of a number k of cliques, each one
containing roughly n/k vertices, and which are interconnected by k−1 inter-
clique edges, called “bridges”. The dynamic operations are only (random)
insertions and deletions of bridges. As bridges are tree edges, constant in-
sertion and deletion of them will cause the algorithms to constantly look for
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replacement edges. Clearly, this kind of input represents a worst-case input
for dynamic connectivity algorithms.
The first issue investigated was whether the theoretical analysis for the

average-case performance of simple sparsification is confirmed in practice
and whether Sparsification is better than the static algorithm on top of
which it runs. The latter turned out to be true. The former was true for
unweighted graphs (i.e., for problems like dynamic connectivity), but in the
case of weighted graphs (e.g., for problems like dynamic minimum spanning
tree) the experimental results did not always comply with the theoretical
analysis, implying that perhaps a different model of analysis is required for
such a case.
Regarding the comparison among the dynamic algorithms and the sim-

ple (pseudo-dynamic) ones, the reported experiments were as follows. For
random inputs, HK-var was the fastest (as expected from the theoretical
analysis), except for very sparse graphs (m < n) where fast-query was
better. For non-random inputs, Sparsification and HK were better than
the other algorithms; for large sequences of updates HK is faster, while for
shorter sequences Sparsification is faster (the larger the update sequence,
the better becomes the amortization in the HK algorithm). The behaviour of
sparsification is due to the fact that it spreads the connectivity information
in a logarithmic number of small subgraphs that have to be updated even
if a local change does not affect the connectivity of the graph, i.e., tree and
non-tree edge deletions produce roughly the same overhead. This turns out
to be advantageous in the case of non-random graphs.
Another major conclusion of the study in [11.3] was that both sparsifi-

cation and the HK algorithm proved to be really practical as they compare
favorably to the simple algorithms even in the case of very small graphs (e.g.,
graphs with 10 vertices and 5 edges).
The source code of the above implementations is available from

http://www.jea.acm.org/1997/AlbertsDynamic.

11.2.1.2.b The Implementation by Fatourou et al. [11.22]
The main goal of that study was to compare in practice the average-case

performance of the fully dynamic, probabilistic algorithm by Nikoletseas et
al. [11.55], henceforth NRSY, with the HK algorithm that appears to have a
similar update bound and was also (along with the fast-query) among the
fastest implementations for random inputs in the previous study [11.3].
The NRSY algorithm is different from the HK algorithm. It alternates

between two epochs, the activation epoch and the retirement epoch, while it
periodically performs total reconstructions, i.e., it rebuilds its data structure
from scratch. A total reconstruction is called successful if it achieves in finding
a giant component of size Ω(n) of the input random graph. The algorithm
starts with a total reconstruction and builds a spanning forest of the graph.
An activation epoch starts after a successful total reconstruction and ends
when an edge deletion disconnects a spanning tree of the giant component
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and the attempted fast reconnection fails. A retirement epoch starts either
after an unsuccessful total reconstruction, or after the end of an activation
epoch.
An activation epoch maintains a spanning forest of the graph and parti-

tions the edges into three categories: tree edges, retired edges, and pool edges
(which are reactivated retired edges). The activation epoch is divided into
edge deletion intervals each consisting of O(log n) deletions. All edges marked
retired during an edge deletion interval are re-marked as pool edges after the
end of the next interval. An edge insertion during an activation epoch is per-
formed as follows. If the inserted edge joins vertices in the same tree, then
it is marked as retired and the appropriate data structures are updated; oth-
erwise, the edge joins vertices of different trees and the component name of
the smaller tree is updated. Edge deletions during an activation epoch are
handled as follows. If the deleted edge is a pool or a retired edge, then it is
simply deleted from all data structures it belongs. If the deleted edge is a
tree edge, then we distinguish between two cases depending on whether this
was an edge of the giant component or not. In the latter case, we look for a
replacement edge and if the search is not successful, the tree is split and the
smaller of the two resulted trees is relabeled. In the former case, a special
procedure, called NeighborhoodSearch, is applied which performs two
breadth-first searches (one in each tree) in tandem in an attempt to recon-
nect the tree of the giant component. The breadth-first searches (BFSs) stop
either when the tree is reconnected or as soon as O(log n) vertices have been
visited. NeighborhoodSearch proceeds in phases, where each phase starts
when a vertex is visited during BFS. During a phase, an attempt is made to
find a replacement edge by checking whether a randomly chosen pool edge (if
such an edge exists) incident on the visited vertex reconnects the tree of the
giant component and whether this reconnection is a “good” one (i.e., it does
not increase the diameter of the tree). If both checks are successful, then the
phase is considered successful and also in turn the NeighborhoodSearch.
If all phases fail, then NeighborhoodSearch finishes unsuccessfully, the
activation epoch ends, and a total reconstruction is executed. If more than
one of the phases are successful, then the replacement edge which is closer to
the root of the tree is selected.
A retirement epoch starts when the previous activation epoch ends, or

when a total reconstruction fails. During the execution of a retirement epoch,
the algorithm simply calls another dynamic connectivity algorithm to per-
form the operations. A retirement epoch lasts for (at least) cn log2 n oper-
ations (c > 1), after which a total reconstruction is performed. If the total
reconstruction is successful, then a new activation epoch is started; otherwise,
the retirement epoch continues for another cn log2 n operations. The process
is repeated until a successful total reconstruction occurs.
In the implementation of the NRSY algorithm, henceforth NRSY, the HK

implementation of [11.3] was used in the retirement epochs. In the activation
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epoch, each vertex maintains both a set of pool edges and a priority queue of
retired edges incident to it. A counter measuring the number of operations in
each epoch is maintained. When an edge becomes retired, its priority takes
the value of this counter. Reactivation of retired edges occurs only before
the deletion of a tree edge, i.e., before the execution of the Neighborhood-

Search, which is the only procedure for which it is important that several
pool edges must exist. Reactivation is performed if the difference of the prior-
ity of a retired edge and the current value of the operations counter is larger
than logn.
The experiments conducted in [11.22] concentrated on random inputs,

since the main goal was to investigate the average-case performance of the
NRSY algorithm which guarantees good performance only for these kinds
of inputs. The random inputs considered were similar to those generated in
[11.3] (cf. Section 11.2.1.2.a). The experiments showed that for long sequences
of operations, NRSY is better than HK and fast-query, except for the case
where the initial number of edges is small (i.e.,m < n). For medium sequences
of operations, NRSY and HK perform similarly when m is close to n, but NRSY
is better as the graph becomes denser. Finally, for short sequences, HK and
fast-query outperform NRSY, except for the case of non-sparse graphs. The
above behaviour is due to the fact that NRSY spends most of its time on
activation epochs as the graph becomes denser, while in sparser graphs NRSY
alternates between retirement epochs and total reconstructions; the overhead
imposed by the latter makes NRSY slower than HK in such cases. In conclusion,
NRSY is the fastest implementation for random sequences of updates on non-
sparse random graphs.
The source code of the above implementations is available from

http://www.ceid.upatras.gr/∼faturu/projects.htm.
11.2.1.2.c The Implementation by Iyer et al. [11.44]
The main goal of that paper was to investigate in practice the logarithmic

improvement of the fully dynamic algorithm by Holm et al. [11.40], henceforth
HDT, over the HK algorithm. To this end, the experimental study built upon
the one by Alberts et al. [11.3] and resulted in enhancing the data sets for
dynamic connectivity in several ways.
The HDT algorithm maintains a spanning forest F of the current graph

G. HDT has many similarities with the HK algorithm, but it differs in the way
deletions of tree edges are handled. More precisely, the difference lies in how
the levels are organized and how the edges are moved between levels. Both
algorithms search for replacement edges at levels no higher than that of the
deleted edge. Lower levels contain more important edges (and sparser parts
of the graph), while less important edges are moved to higher levels (which
contain denser parts of the graph). However, the HDT algorithm starts by
considering edges at the bottom level and pushes them up as they are found
to be in dense components, while the HK algorithm allows edges to float up
automatically but pushes them to lower levels as they are found to be in
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sparse components. Since the HDT algorithm also uses ET-trees to maintain
the trees in the forest F , it turns out that queries, edge insertions, and non-
tree edge deletions are done in a manner similar to that in the HK algorithm.
Before giving the details of the deletion of a tree edge, we have to explain
how the levels are organized.
Similarly to the HK algorithm, the HDT algorithm assigns to each edge

e a level l(e) ≤ L = logn, and let Fi denote the subforest of F induced by
the edges with level at least i (F = F0 ⊇ F1 ⊇ · · · ⊇ FL). Two invariants are
maintained:

(i) F is a maximum w.r.t. l spanning forest, i.e., if (x, y) is a non-tree edge,
then x and y are connected in Fl(x,y).

(ii) The maximum number of nodes in a tree of Fi is &n/2i'.
Initially, all edges have level 0 and as the algorithm proceeds their level is

increased (but never decreased). The level of a non-tree edge is increased when
it is discovered that its endpoints are close enough in F to fit in a smaller tree
on a higher level. The increment of the level of a tree edge should be done
with care as it may violate the second invariant. As in the HK algorithm,
when a tree edge e = (x, y) with level l(e) = i belonging to a tree T is
deleted, we have to find a replacement edge, i.e., an edge which rejoins the
two subtrees T1 and T2 resulted from the deletion of e. Let T1 be the smaller
subtree. Since |T | ≤ &n/2i', it follows that |T1| ≤ &n/2i+1'. Hence, all edges
of T1 can increase their level to i+ 1 preserving the invariants. All non-tree
edges of T1 with level i are visited until either a replacement edge is found
(in which case we stop), or all edges have been considered. In the latter case,
the level of the non-tree edge is increased to i+1 (both its endpoints belong
to T1). If all non-tree edges have been visited without finding a replacement
edge, then the procedure is applied recursively on level i− 1.
Heuristics are also considered for HDT but, contrary to [11.3], they are

restricted only to those which do not invalidate the worst-case time bounds.
Following the HK algorithm, the first heuristic considered is sampling; i.e.,
before edges are promoted to a higher level, a number of incident non-tree
edges is randomly sampled and tested for a replacement edge. The second
heuristic is similar to the simplified version of the HK algorithm in [11.3]:
truncate levels. This is accomplished by exhaustively traversing the (small)
trees at higher levels when searching for a replacement edge which gives rise
to fewer levels.
The main goal in the design of the experimental setup in [11.44] was to

exhibit in practice the asymptotic O(log n) improvement of the HDT algo-
rithm over the HK one. This could be achieved by designing inputs for which
the HK algorithm would indeed match its worst-case time. Consequently, the
experimental test set in [11.44] considers three different types of inputs, one
random and two structured ones.
The random inputs are similar to those considered in [11.3] (cf. Section

11.2.1.2.a). Since both the HK and HDT algorithms can delete non-tree edges
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rather easily, the conducted experiments concentrated on values ofm that are
close to n, i.e., m ∈ {n/2, 2n}, and are among the most interesting regarding
the structure of random graphs [11.9].
The structured inputs are split into two groups: two-level inputs (two-level

random graphs and two-level semi-random graphs), and worst-case inputs .
The two-level inputs are similar to the so-called “non-random inputs” in

[11.3]. As mentioned above, the “non-random input” of [11.3] is roughly a
path of cliques where only path (i.e., inter-clique) edges are inserted and
deleted. A two-level random graph is a sparse random graph of cliques. More
precisely, k cliques, each of c vertices, are generated (n = kc) and are in-
terconnected by 2k randomly chosen inter-clique edges. The operation se-
quence consists of random insertions and deletions of inter-clique edges. This
class of inputs is interesting not only as a difficult case for the algorithms
(as tree edges are constantly inserted and deleted), but also as an input
that exhibits the clustering behaviour which motivated the development of
both algorithms. Moreover, it reflects a kind of hierarchical structure that is
encountered in several physical networks (e.g., road networks consisting of
highways and city streets, computer networks consisting of local area net-
works interconnected by wide area backbones, etc). Semi-random graphs are
random graph instances which are strongly correlated over time. Initially a
fixed number (n/2 or 2n) of candidate edges is chosen and then random in-
sertions and deletions are performed from this set only. This class is perhaps
more interesting than pure random graphs when modeling network appli-
cations where links fail and recover, since usually the network is fixed and
it is the fixed edges which vanish and return. By replacing each vertex of
a semi-random graph with a clique, we can create a two-level semi-random
graph.

Worst-case inputs aimed at forcing the algorithms to tighten their worst-
case time bounds. While it appears difficult to construct a worst-case input
for the HK algorithm, Iyer et al. [11.44] succeeded to construct one for the
HDT algorithm. Such an input causes HDT to promote O(n) edges through
all levels for O(log n) times during a sequence of O(n) operations.
The worst-case input for HDT is a 4-ary tree with leaf siblings connected

to each other and an update sequence constructed as follows. Let S(k) be
an operation sequence at the end of which all edges below (and including)
tree-level k are at a level greater or equal to k in the HDT data structure.
S(k) is defined recursively as follows: (i) Run S(k − 1). (ii) Each vertex x at
tree-level k−1 selects two of its child edges, deletes and re-inserts them. This
causes the promotion of a deleted edge (x, y) and of all edges in the subtree
rooted at y. (iii) Run again S(k−1) to bring back to level k−1 the two child
edges which were deleted and re-inserted. (iv) Run step (ii) with the other
two child edges.
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It is not difficult to see that the sequence S(log4 n) will cause Θ(n) tree
edges at tree-level log4 n to be promoted through Θ(log n) levels resulting in
a total time bound of O(log2 n).
The implementations of HK and HDT algorithms in [11.44] are tuned

by two parameters s and b, and hence are referred to as {HK,HDT}(s, b): s
denotes the sample size and b denotes that there are only log n − log b lev-
els. Hence, HK(16 log2 n, 0) denotes the HK implementation of [11.3], HK(20, n)
denotes the HK-var implementation in [11.3], while HDT(0, 0) denotes the im-
plementation of the original HDT algorithm. The implementations of HK and
HDT algorithms were also compared to the fast-update and fast-query
implementations developed in [11.3].
The main conclusion of the experimental study in [11.44] is that the

heuristics proved to be rather beneficial and that the HDT algorithm with
heuristics dominates the HK algorithm. This is due to the repeated rebuild-
ings performed by the latter and the fact that in two-level inputs the HDT
algorithm searches through a clique less often than HK. More precisely, for
random inputs, where the initial graph has m ∈ {n/2, 2n} edges and random
sequences of insertions and deletions are performed such that the graph has
always no more than m edges, HDT(0, n) (i.e., just an ET-tree) achieves the
best performance, followed closely by HK(20, n); this is basically due to the
truncation of levels. In the case of two-level inputs, HDT(256, 0) – when k < c
– and HDT(256, 64) – when k ≥ c, or when a semi-random graph is consid-
ered – are the fastest. In the former case (k < c) this is because most of the
inter-clique edges are at level 0 and hence sampling for a replacement most
probably will succeed, while in the latter case this is due to the fact that the
HDT algorithm searches through a clique less often than HK and due to the
overhead introduced by the regular rebuildings performed by HK. Finally,
in the worst-case input for HDT, the HDT(256, 64) variant achieves the best
performance.
The source code of the above implementations is available from

http://theory.lcs.mit.edu/∼rajiyer/papers/IKRTcode.tar.gz.
11.2.1.3 Lessons Learned. The above experimental studies allowed us to
gain a deeper insight regarding existing dynamic connectivity algorithms and
their practical assessment. In particular:

– The experiments in [11.3] fully confirmed the practicality of sparsification
as well as its average-case analysis, thus providing valuable knowledge for
the suitability of the theoretical model used and its limitations.

– The heuristic improvements of the HK and HDT algorithms, regardless of
whether they do respect the asymptotic time bounds [11.44] or not [11.3],
proved to be very useful in practice.

– The study in [11.22] showed that complicated algorithms can sometimes
be useful in practice, while the study in [11.44] showed that a logarithmic
improvement in asymptotic performance can still have a practical impact.
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– The data sets developed in [11.3] formed the cornerstone upon which the
subsequent experimental studies were based. We feel that these data sets
along with their considerable expansion and elaboration in [11.44] yield an
important benchmark for the testing of other dynamic algorithms.

11.2.2 Dynamic Minimum Spanning Tree

11.2.2.1 Theoretical Background — Problem and History of Re-
sults. The minimum spanning tree (MST) of a graph G = (V,E), whose
edges are associated with real-valued weights, is a spanning tree of minimum
total weight. In the dynamic minimum spanning tree problem, we would like
to maintain the MST in a graph G that undergoes a sequence of updates
(edge insertions and edge deletions).
According to Frederickson [11.25], the first results for fully dynamic MST

are attributed to Harel (1983) and achieve an update time of O(n log n).
The first breakthroughs were given by Frederickson in [11.25, 11.26]; in
those papers fully dynamic MST algorithms were presented with a running
time per update ranging from O(m2/3) to O(m1/2). As explained in Sec-
tion 11.2.1.2.a, sparsification by Eppstein et al. [11.19] reduces these running
times to be in the range from O(n2/3) to O(n1/2). A further improvement was
achieved by Henzinger & King [11.38] who gave a fully dynamic algorithm
with O(n1/3 logn) amortized update bound. Finally, the first polylogarith-
mic update bound was given by Holm et al. [11.40]; they presented a fully
dynamic MST algorithm with amortized update time O(log4 n).

11.2.2.2 Implementations and Experimental Studies. There are two
works known regarding implementation and experimental studies of dynamic
MST algorithms. In chronological order, these are the works by Amato et
al. [11.4] and by Cattaneo et al. [11.10].
The former paper is a follow up of the study in [11.3] and investigates

the practical performance of both Frederickson’s algorithms [11.25, 11.26]
and of stable sparsification on top of dynamic algorithms [11.19]. The latter
paper enhances the study in [11.4] by bringing the algorithm by Holm et
al. [11.40] into play and aims at investigating its practicality in comparison
to the implementations in [11.4] as well as to new simple algorithms based
on static approaches.
Throughout the rest of this section, let G = (V,E) be the input graph

and let T be its minimum spanning tree.

11.2.2.2.a The Implementation by Amato et al. [11.4]
The main goal of the first experimental study for dynamic MST algo-

rithms was:

1. To investigate the practicality of stable sparsification, i.e., spasification
on top of dynamic algorithms [11.19].
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2. To compare sparsification-based algorithms with Frederickson’s algo-
rithms [11.25, 11.26] for dynamic MST.

3. To investigate the practicality of the dynamic algorithms in comparison
to simple-minded algorithms based on static approaches that were easy
to implement and likely to be fast in practice.

The algorithms by Frederickson are based on appropriately grouping the
vertices of T into vertex clusters (set of vertices which induce a connected
subgraph of T ) such that suitable partitions on V are defined either directly
(yielding balanced or restricted partitions) or indirectly by recursive applica-
tions of clustering (yielding topology trees and 2-dimensional topology trees).
These partitions allow for an encoding of the MST which can be efficiently
updated after a dynamic change in G.
Two different partitions are given in [11.25, 11.26]. The first partition

[11.25] is called a balanced partition of order z and is simply a partition of V
into vertex clusters of cardinality between z and 3z−2. The second partition
[11.26] is called restricted partition of order z as it sets more requirements on
how clustering is done: (i) each set in the partition yields a vertex cluster of
external degree2 at most 3; (ii) each cluster of external degree 3 has cardinal-
ity 1; (iii) each cluster of external degree less than 3 has cardinality at most z;
and (iv) no two adjacent clusters can be combined and still satisfy the above.
Both partitions have O(m/z) clusters. The maintenance of each partition
during edge insertions and deletions allows it to dynamically maintain the
MST of a graph in time O(z+(m/z)2) = O(m2/3) [11.25]. This method yields
the first two algorithms implemented in [11.4], namely FredI-85 (based on
the balanced partition) and FredI-91 (based on the restricted partition).
Although the asymptotic behaviour of both partitions is identical, the ex-

periments conducted in [11.4] revealed several differences between balanced
and restricted partitions w.r.t. their practical behaviour that favor the for-
mer: (a) the number of clusters generated by a balanced partition is much
less than those generated by a restricted partition; (b) there is a smaller
number of splits and merges of clusters (which are expensive operations) in
a balanced partition and hence clusters have a longer lifetime; and (c) the
average number of affected clusters by an update is substantially smaller in
balanced partitions than in restricted partitions. As a consequence, FredI-85
was always faster than FredI-91.
The above observed differences motivated a theoretical and experimental

tuning of the parameters of the two partitions resulting in a third partition
called light partition [11.4]. This partition is a relaxed version of the restricted
partition, namely: (i) each cluster is of cardinality at most z; and (ii) no two
adjacent clusters can be combined and still satisfy the above. Since a light
partition is a relaxation of the restricted partition, its number of clusters
(at least initially) cannot be more than those of the restricted partition,

2 Number of edges having their other endpoint at a different cluster.
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i.e., O(m/z). The problem, however, with light partition is that there is no
guarantee that this number is preserved throughout any sequence of edge
insertions and deletions. Consequently, the worst-case update bound of a
dynamic MST algorithm based on light partitions are worse than O(m2/3).
On the other hand, the experiments in [11.4] showed that in practice the
number of clusters in a light partition does not increase much beyond its
initial number of O(m/z) as the number of edge updates increases. To further
increase its efficiency, the light partition was further “engineered” in [11.4]
by introducing a lazy update scheme for the expensive update of the light
partition: the partition is updated only in the case of tree edge deletions
(i.e., in the case where there is certainly a change in the current MST).
Edge insertions are handled in O(log n) time by recomputing the MST of
the current graph using the dynamic tree data structure of Sleator & Tarjan
[11.61]. Hence, a cluster that would otherwise be affected by several edge
insertions and deletions, is now updated only at the time of a tree edge
deletion. This lazy update scheme along with a light partition of order (m2/3)
yields another implementation for the dynamic MST problem referred to
as FredI-Mod [11.4]. The experiments in [11.4] showed that FredI-Mod was
always significantly faster than both FredI-85 and FredI-91.
The recursive application of balanced or restricted partitions yields differ-

ent types of partitions that end up in the so-called topology tree. A multi-level
balanced partition has the following properties: (i) the clusters at level 0 con-
tain a single vertex; (ii) a cluster at level i ≥ 1 is either a cluster at level
(i − 1) of external degree 3 or the union of at most 4 clusters (according to
some rules) at level (i − 1); (iii) there is exactly one cluster at the topmost
level. A multi-level restricted partition obeys the same properties, except for
(ii) which is stated as: the clusters at level i ≥ 1 form a restricted partition
of order 2 w.r.t. the tree obtained after shrinking all clusters at level (i− 1).
Note that this rule makes a multi-level restricted partition to be defined in
a much simpler way than a multi-level balanced partition. A topology tree
is a tree which represents the above multi-level partitions, i.e., a balanced
(resp. restricted) topology tree is a tree for which a node at level i represents
a cluster at level i of a balanced (resp. restricted) multi-level partition, and
the children of a node at level i ≥ 1 are the clusters at level (i − 1) whose
union gives the cluster at level i. It is easy to see that both topology trees
have height O(logN), where N is the total number of nodes in the tree.
In [11.25, 11.26] it is shown that updating any topology tree after an edge
insertion, edge deletion, or edge swap, takes O(logN) time.
By using a topology tree to represent each cluster in a (balanced or

restricted) partition of order z, we can get an O(z + (m/z) log(m/z)) =
O(
√
m logm) time algorithm for the dynamic MST problem. This yields two

implementations in [11.4], namely FredII-85 (balanced partitions and topol-
ogy trees) and FredII-91 (restricted partitions and topology trees). The ex-
periments conducted in [11.4] showed that FredII-91was slightly faster than
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FredII-85, mainly due to the simpler clustering rules which the restricted
topology trees and multi-level partitions obey. In [11.4], a hybrid solution was
also investigated involving a suitable combination of a balanced partition of
order z with restricted topology trees. However, even this hybrid solution
turned out to be slower than FredI-85 for most inputs they considered.
To efficiently maintain information about the non-tree edges, Frederickson

introduces the 2-dimensional topology trees which are defined by pairs of
nodes in a topology tree. For every pair of nodes Va and Vb at the same
level of a topology tree, there is a node labeled Va × Vb in the 2-dimensional
topology tree which represents the non-tree edges of G having one endpoint in
Va and the other in Vb. If Va (resp. Vb) has children Vaj , 1 ≤ j ≤ p (resp. Vbk

,
1 ≤ k ≤ q) in the topology tree, then Va×Vb has children the nodes Vaj ×Vbk

(1 ≤ j ≤ p, 1 ≤ k ≤ q) in the 2-dimensional topology tree. The use of a
2-dimensional topology tree yields an O(z +m/z) = O(

√
m) time algorithm

for the dynamic MST problem. This theoretical improvement, however, does
not show up in practice: all implementations that employed 2-dimensional
topology trees in [11.4] were much slower than FredI-85.
The above implementations were enhanced by applying stable sparsifica-

tion (i.e., simple sparsification where a fully dynamic algorithm is used to
recompute certificates; see Section 11.2.1.2.a) on top of them. More pre-
cisely, sparsification was applied on top of FredI-85 yielding algorithm
Spars(I-85) with an O(n2/3 log(m/n)) worst-case time bound, and on top
of FredI-Mod yielding algorithm Spars(I-Mod).
Finally, a simple fully dynamic algorithm was implemented in [11.4],

called adhoc, which is a combination of a partially dynamic data structure –
based on the dynamic trees of Sleator & Tarjan [11.61] – and LEDA’s static
MST algorithm called Min Spanning Tree, which is a fine-tuned variant of
Kruskal’s algorithm based on randomization with an average-case time of
O(m + n log2 n) and a worst-case time of O(m logm). The adhoc algorithm
maintains two data structures: the MST T of G as a dynamic tree, and a pri-
ority queue Q which stores all edges of G according to their weight. When a
new edge is inserted, adhoc updates T and Q in O(log n) time. When an edge
is deleted from G, it is first deleted from Q in O(log n) time. If it was a non-
tree edge, nothing else happens. Otherwise, adhoc calls Min Spanning Tree
on the edges of Q. Consequently, adhoc requires O(log n) time plus the time
of Min Spanning Tree in the case where a tree edge is deleted. If the edge
to be deleted is chosen uniformly at random from G, then this expensive
step occurs with probability n/m resulting in an average running time of
O(log n + (n/m)(m + n log2 n)) = O(n + (n logn)2/m) for adhoc. Hence, it
is natural to expect that its running time decreases as the graph density
increases, a fact that was confirmed by the experiments in [11.4].
As mentioned above, in all experiments which carried out in [11.4],

FredI-85 was consistently the fastest among the six algorithms derived
by the approaches in [11.25, 11.26]. Hence, this implementation was cho-
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sen to be compared experimentally with the rest of implementations, namely
FredI-Mod, Spars(I-85), Spars(I-Mod), and adhoc.
Experiments were run on both random and non-random inputs. Ran-

dom inputs aimed at investigating the average-case performance of the im-
plemented algorithms and confirming the average-case complexity of adhoc.
Non-random inputs aimed at producing test sets which would make the al-
gorithms to exhibit their worst-case performance.
Random inputs were similar to those considered in [11.3, 11.44] and con-

sisted of random graphs (with random edge weights) and random operation
sequences in which edge insertions were uniformly mixed with edge deletions.
Also, the edge weights in each update sequence were chosen at random. Non-
random inputs were generated by first constructing a graph, then computing
its MST, and finally deleting the edges of the MST one at a time. Recall that
a tree edge deletion is the most expensive operation in any of the dynamic
MST algorithms considered.
In all experiments with random inputs, adhoc was almost always the

fastest algorithm; only in the case of (initially) sparse graphs on a large
number of vertices, FredI-Mod was faster. Among the dynamic algorithms,
FredI-Mod was consistently faster than any of the other implementations
followed by FredI-85. The implementations based on sparsification were the
slowest. In non-random inputs, however, a “reverse” situation was reported.
That is, Spars(I-Mod)was the fastest algorithm, followed by FredI-Mod, and
adhoc was by far the worst. This was more or less expected, since random
edge deletions (especially in non-sparse graphs) will most probably be non-
tree edge deletions which makes adhoc superior for random inputs; on the
contrary, tree edge deletions make adhoc exhibit its worst-case performance
since they cause it to recompute the MST.
The different behaviour of the implementations based on sparsification

can be explained as follows. Sparsification spreads the information about a
graph G into smaller sparse subgraphs. Even if a random update may not
change the MST of the entire G, it may happen that some of the smaller
subgraphs have to change their MST and this shows up in random inputs.
On the other hand, a bad update operation (tree edge deletion) will not
make a big difference w.r.t. a good update, since any update spreads on
a logarithmic number of smaller subgraphs. Consequently, this spreading is
simultaneously an advantage (for non-random inputs) and a disadvantage (for
random inputs) of sparsification. A final conclusion from the experimental
study of [11.4] was the efficiency of FredI-Mod which was consistently faster
than FredI-85 and Spars(I-85) even for non-random inputs, mainly due to
the more relaxed nature of light partitions.
The source code of the above implementations is available via anonymous

ftp from ftp.dia.unisa.it in the directory pub/italiano/mst.
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11.2.2.2.b The Implementation by Cattaneo et al. [11.10]
The main goal of that study was to investigate the practicality of the re-

cent fully dynamic MST algorithm by Holm et al. [11.40], henceforth HDTmst,
and comparing it with Frederickson’s dynamic algorithms, sparsification-
based algorithms and new simple algorithms. To this end, the experimental
study in [11.10] built upon the studies by Amato et al. [11.4] and by Iyer
et al. [11.44], and resulted in considerably enhancing the quiver of dynamic
MST implementations as well as our knowledge on their practicality.
The HDTmst algorithm is based on a decremental algorithm for MST

which has many similarities with the HDT algorithm for dynamic connectiv-
ity (cf. Section 11.2.1.2.c). Then, using a rather general construction which
was first introduced in [11.38], the decremental algorithm is converted into a
fully dynamic one.
The decremental MST algorithm can be obtained by the HDT algorithm

by doing two very simple changes. First, a minimum spanning forest (instead
of any spanning forest) F is maintained. Second, there is a different way with
which non-tree edges are considered for replacement edges, when a tree edge
is deleted. Instead of an arbitrary order, the non-tree edges incident to the
smaller subtree are considered in order of non-decreasing weight.
The partition of edges into levels is done similarly to that in the HDT

algorithm (cf. Section 11.2.1.2.c). In addition to the two invariants of the
HDT algorithm, the following invariant is maintained.

(iii) If e is the heaviest edge on a cycle C, then e has the lowest level on C.

It is not hard to see that the above invariant ensures that the minimum
weight edge among all replacement edges is the lightest edge among all re-
placement edges on the highest possible level.
The approach for converting the above decremental algorithm to a fully

dynamic one is as follows. A set of data structures A = A1, A2, . . . , As is
maintained, where s = (logn) and each Ai is a subgraph of G. Let Fi be the
local spanning forest maintained in Ai. Edges in Fi are referred to as local
tree edges while those in F are referred to as global tree edges. All edges
of G are in at least one Ai, hence F ⊆ ⋃

i Fi. The algorithm maintains the
invariant that for each global non-tree edge e ∈ G − F , there is exactly one
i such that e ∈ Ai − Fi and if e ∈ Fj , then j > i. The minimum spanning
forest F is maintained as a dynamic tree data structure of Sleator & Tarjan
[11.61] (ST-tree) and also as an Euler-Tour tree (ET-tree) of Henzinger &
King [11.36] (in order to easily find replacement edges).
Before describing the edge insertion and deletion operations, we have to

describe an auxiliary procedure, called Update(A,D), which updates the data
structure A with a set of edges D. Let Bj =

⋃
k≤j(Ak − Fk), i.e., the set of

local non-tree edges in all Ak, for k ≤ j. The procedure works as follows. It
finds the smallest j such that |(D ∪Bj)−F | ≤ 2j and sets Aj = F ∪D∪Bj .
Then, it initializes Aj as a decremental MST data structure and sets Ak = ∅
for all k < j.
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The insertion of a new edge e = (x, y) is carried out as follows. If x and
y are in different trees in F , then simply add e to F . Otherwise, find the
heaviest edge f in the x-y path. If e is heavier than f , then call Update(A, e).
Otherwise, replace f with e in F and call Update(A, f).
The deletion of an edge e is done as follows. The edge e is deleted from all

Ai which contained e and let R be the set of the collected replacement edges
returned by all decremental MST data structures. If e is a global tree edge,
then search in R (using the ET-tree representation of F ) to find the lightest
edge which reconnects F . Finally, call Update(A,R).
The crucial point in the update procedure is the initialization of Aj . To

achieve this efficiently, Holm et al. [11.40] perform a contraction of some local
tree paths (those which are not incident on any non-tree edge) using a special
data structure they introduce, called top trees. This allows them to bound
the initialization work in each update.
The implementation of the HDTmst algorithm in [11.10] is not based on

the HDT implementation of Iyer et al. [11.44], because Cattaneo et al. [11.10]
found the latter specifically targeted and engineered for the dynamic connec-
tivity problem and conversion of this code for dynamic MST appeared to be
a difficult task. Hence, they provided a completely new implementation that
is better suited for dynamic MST. In their implementation they follow closely
the above described HDTmst algorithm with the exception that they do not
use top trees for path compression, since top trees were consuming a lot of
memory. They initially used ST-trees instead, and later on observed that by
completely omitting path compression a considerable gain in performance
was obtained [11.23]. The resulting implementation is called HDT.
The simple algorithms considered in [11.10] are a kind of fast dynamiza-

tion of Kruskal’s algorithm. One algorithm is based on ST-trees and the other
on ET-trees.
The first algorithm maintains the MST T as an ST-tree and the non-tree

edges are maintained sorted in a binary search tree NT .
The insertion of a new edge (x, y) is similar to the insertion procedure of

the fully dynamic case: if (x, y) should replace an existing tree edge f (which
can be easily checked in O(log n) time using the ST-trees), then f is deleted
from T and is inserted into NT . Otherwise, (x, y) does not belong to the MST
and is inserted into NT . Clearly, insertion can be accomplished in O(log n)
time.
The deletion of an edge (x, y) depends on whether it is a non-tree or a

tree edge. In the former case, (x, y) is simply deleted from NT in O(log n)
time. In the latter case, the deletion of (x, y) disconnects T into Tx (the
subtree containing x) and Ty (the subtree containing y) and a replacement
edge has to be found. To accomplish this, non-tree edges in NT are scanned
in non-decreasing weight order in a manner similar to Kruskal’s algorithm:
if a non-tree edge (s, t) reconnects Tx and Ty (a fact which can be easily
checked using the findroot(s) and findroot(t) operations of ST-trees), then
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the scanning is terminated; otherwise, the non-tree edge is discarded. Clearly,
the total time of the deletion operation is O(k logn), where k is the number
of scanned non-tree edges, which is O(m logn) in the worst case.
The implementation of the above algorithm is referred to as ST. Since

ST can be implemented in a few lines of code using fast (and simple) data
structures, it is expected that it performs very well in practice, especially
when the update sequence contains a few tree edge deletions or when a tree
edge deletion results in a small set of possible replacement edges. This fact
was confirmed in most of the experiments, except for the case of sparse graphs
i.e., with m close to n. In these cases, and when dealing with random graphs,
a random edge deletion will most probably be a tree edge that disconnects the
MST and consequently will cause the scanning of many non-tree edges until
the proper replacement edge is found (if any). Actually, it turned out that
most of the time in these cases was spent in executing findroot operations.
Motivated by this difficult case of ST, Cattaneo et al. [11.10] designed

another variant, called ET, which in addition uses ET-trees (as they have
been implemented in [11.3] and supported by the randomized search trees
of [11.6]). More precisely, the information about tree edges is kept both on
an ST-tree and on an ET-tree. ET-trees are used only during the deletion
operation to check whether a non-tree edge reconnects the MST. It should be
pointed out that ET-trees have the same asymptotic time bounds with ST-
trees (cf. Section 11.2.1.2.a). Since findroot operations in randomized search
trees are expected to be faster than those in ST-trees, it is consequently ex-
pected that ET is faster than ST on sparse graphs. However, it is also expected
that the overhead of maintaining both ET-trees and ST-trees will show up
when the findroot operations are not any more the bottleneck. Both expec-
tations were confirmed by the experiments conducted in [11.10].
The above implementations HDT, ST and ET were experimentally com-

pared with Spars(I-Mod) from [11.4] (cf. Section 11.2.2.2.a). The experimen-
tal test set was built upon the ones used in [11.4] and [11.44]. In particular,
both random and structured inputs were considered.
The random inputs were identical to the random inputs used in [11.4]

(cf. Section 11.2.2.2.a). The structured inputs consisted of semi-random in-
puts, two-level random inputs, and worst-case inputs, all generated in way
very similar to that in [11.44] (cf. Section 11.2.1.2.c).
Semi-random inputs consisted of semi-random graphs with edge weights

chosen at random and where update operations are chosen from a fixed set
of edges in a way identical to that in [11.44].
Two-level random inputs consisted of two-level random graphs (k cliques,

each one of c vertices, interconnected by 2k randomly chosen inter-clique
edges) and edge weights chosen at random. The operation sequence was of two
types. The first involved only insertions and deletions of inter-clique edges,
as it happens in [11.44]. The second type involved insertions and deletions of
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edges inside a clique (intra-clique edges) and mixed updates between intra-
clique and inter-clique edges.
Finally, a worst-case input for HDTmst was constructed by suitably adapt-

ing the worst-case input of HDT in [11.44] for dynamic connectivity (cf. Sec-
tion 11.2.1.2.c).
In the experiments with random inputs, ET was the fastest implementa-

tion in sparse graphs followed by ST, even in sequences with a high percentage
of tree edge deletions. In non-sparse graphs, ET and ST had almost identical
behaviour, with ET being slightly worse due to the additional overhead in-
troduced by maintaining both ST-trees and ET-trees. HDT was slower than
Spars(I-Mod) when the graph is sparse, but it takes over as the edge density
increases and the overhead of the sparsification tree in Spars(I-Mod) shows
up. These outcomes are quite interesting, since they match those of other
studies [11.4, 11.44] (cf. Sections 11.2.2.2.a and 11.2.1.2.c, respectively) and
show that ET-trees are a particularly valuable data structure for dynamic
problems on random graphs.
Similar behaviour was reported for the case of semi-random inputs when

the cardinality of the fixed set of edges (from which updates are chosen ran-
domly) is small. However, when the cardinality of the fixed set of edges is
increased, ET still remains the fastest followed closely by Spars(I-Mod). The
other two algorithms are considerably penalized in performance, with ST be-
ing by far the slowest – apparently due to overhead of findroot operations.
In the case of two-level inputs, both ET and ST were not competitive,

because of the considerable overhead introduced by the deletion of inter-
clique edges. The HDT implementation was faster, regardless of the clique size,
in all cases where there were either no intra-clique edge deletions, or very few
of them. However, as the number of intra-clique edge deletions increases,
Spars(I-Mod) improves over HDT.
In the experiments with the worst-case input, HDT is penalized by the

update sequence in executing unnecessary promotions of edges among levels
and is worse than ET or ST which actually achieve their best performance
of O(log n) (as non-tree edges do not exist to be considered for replacement
edges). Spars(I-Mod) also suffered a significant performance loss by this
input (it was the slowest), because a tree edge deletion carries the burden of
the overhead imposed by the implementation of light partition.

11.2.2.3 Lessons Learned. The above experimental studies considerably
enhance our knowledge regarding the practicality of dynamic MST algo-
rithms.
The work by Amato et al. [11.4] is an exemplary study of algorithm engi-

neering. Thorough experimentation helped in identifying the best algorithm
in practice (an otherwise extremely difficult task) from a collection of iden-
tically behaving algorithms w.r.t. the asymptotics. Experimentation also re-
vealed the bottlenecks in performance, leading to the introduction of heuris-
tics followed by careful fine-tuning. This considerably improved the practical
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performance of theoretically inferior algorithms. On the other hand, theo-
retically superior algorithms achieved through the use of several layers of
complicated data structures turn out not to be useful in practice.
The work by Cattaneo et al. [11.10] is a follow up which on the one hand

provides an implementation of the theoretically best algorithm, and on the
other hand helps in identifying the cases in which that algorithm can be of
real practical value.
Finally, as in the case of dynamic connectivity, the carefully designed data

sets exhibited the differences in the average and worst case performances of
the implemented algorithms. To this end, the data sets for dynamic connec-
tivity developed in [11.3, 11.44] turned out to be an excellent starting point.

11.3 Dynamic Algorithms for Directed Graphs

The implementation studies known for dynamic problems in directed graphs
(digraphs) concern transitive closure and shortest paths.

11.3.1 Dynamic Transitive Closure

11.3.1.1 Theoretical Background — Problem and History of Re-
sults. Given a digraph G = (V,E), the transitive closure (or reachability)
problem consists in finding whether there is a directed path between any two
given vertices in G. We say that a vertex v is reachable by vertex u iff there
is a (directed) path from u to v in G. The digraph G∗ = (V,E∗) that has the
same vertex set with G but has an edge (u, v) ∈ E∗ iff v is reachable by u
in G is called the transitive closure of G; we shall denote |E∗| by m∗. If v is
reachable from u in G, then we call v a descendant of u, and u an ancestor
of v. In the following we denote by DESC [v] the set of descendants of v.
There are several partially dynamic algorithms for transitive closure, and

some recent fully dynamic ones. All algorithms create a data structure that
allows update operations (edge insertion/deletion) and query operations. A
query takes as input two vertices u and v and can be either Boolean (returns
“true” if there is a u-v path, otherwise “false”) or Path (returns in addition
the actual path if it exists). In the following, let G0 be the initial digraph
(before performing a sequence of updates) having n vertices and m0 edges.
We start with the partially dynamic algorithms.
The first partially dynamic algorithms were given by Ibaraki and Katoh

[11.41]. Their incremental (resp. decremental) algorithm supported any num-
ber m of edge insertions (resp. deletions) in O(n(m +m0)∗) (resp. O((n +
m0)m∗

0)) time and answered Boolean queries in O(1) time, and Path queries
in time proportional to the number of edges of the reported path (i.e., both
type of queries are answered optimally). These bounds were later improved
by Italiano [11.42, 11.43], Yellin [11.66], La Poutré & van Leeuwen [11.49],
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and Cicerone et al. [11.12]. The decremental part of these algorithms apply
only to directed acyclic graphs (DAGs). Italiano’s and Yellin’s data struc-
tures support both Path and Boolean queries, while the other two data
structures [11.12, 11.49] support only Boolean queries. All these partially
dynamic algorithms, except for Yellin’s, support any number m of edge in-
sertions (resp. deletions) in O(n(m + m0)) (resp. O(nm0) time); i.e., for
m = Ω(m0), they achieve an O(n) amortized update bound. Boolean and
Path queries (where applicable) are answered optimally. The algorithm by
La Poutré & van Leeuwen [11.49] can be extended to handle edge deletions
in general digraphs with an amortized time of O(m0) per deletion. Also, in
[11.32, 11.33] the algorithms by Italiano [11.42, 11.43] were extended so that
the decremental part applies to any digraph. While the amortized time per
edge deletion remains O(m0), this new algorithm is able to support Path
queries optimally. The above data structures by Italiano, La Poutré & van
Leeuwen, and Cicerone et al. can be initialized in O(n2 + nm0) time and
require O(n2) space.
Yellin’s data structure has different initialization bounds depending on

whether it supports Path queries or not. More precisely, the initialization time
and space bounds are the same as those of the other algorithms, if Yellin’s
data structure supports only Boolean queries. If in addition Path queries are
supported, then both time and space bounds become O(n2 + dm∗

0), where d
is the maximum outdegree of G0. In either variant of Yellin’s algorithm: (i)
Queries are supported optimally. (ii) The incremental part requiresO(d(m0+
m)∗) time to process a sequence of m edge insertions starting from an initial
digraph G0 and resulting in a digraph G; d is the maximum outdegree of G.
(iii) The decremental version requires O(dm∗

0) time to process any sequence
of m edge deletions; d is the maximum outdegree of G0.
Henzinger & King in [11.37] gave a decremental randomized algorithm

which is initialized in O(n2 + nm0) time and space, supports any sequence
of edge deletions in O(m0n log2 n) expected time, and answers Boolean
queries in O(n/ logn) worst-case time. Path queries are supported in an
additional time which is proportional to the number of edges of the re-
ported path. Recently, two incremental algorithms were given by Abdeddaim
[11.1, 11.2] who showed that if the graph is covered by a set of k vertex-
disjoint paths, then any sequence of m edge insertions can be accomplished
either in O(k2(m0 +m) + (m0 +m)∗) time [11.1], or in O(k(m0 +m)∗) time
[11.2]. Both algorithms use O(kn) space.
We now turn to the fully dynamic algorithms. The first two fully dy-

namic algorithms for transitive closure were presented in [11.37]. They are
randomized (with one-side error) and are based on the decremental algorithm
presented in the same paper. The first (resp. second) fully dynamic algorithm
supports update operations in amortized expected time O(m̂

√
n log2 n + n)

(resp. O(nm̂0.58 log2 n)), where m̂ is the average number of edges in G during
the whole sequence of updates. Since m̂ can be as high as O(n2), the update
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bounds of [11.37] can be O(n2.5 log2 n) (resp. O(n2.16 log2 n)). Queries are an-
swered within the same time bounds as those of the decremental algorithm.
Khanna, Motwani, and Wilson [11.46] presented a fully dynamic algorithm
that achieves a deterministic amortized update bound of O(n2.18), when a
lookahead of size Θ(n0.18) in the update sequence is allowed. The next fully
dynamic algorithm was given by King and Sagert [11.48]. It is a random-
ized one (with one-side error) supporting updates in O(n2.26) amortized time
for general digraphs and in O(n2) worst-case time for DAGs, and supports
Boolean queries in O(1) time. These bounds were further improved by King
in [11.47], who gave a deterministic algorithm with O(n2 logn) amortized
update time and O(1) Boolean query time. Very recently, Demetrescu and
Italiano [11.13] outperformed the above approaches by presenting two fully
dynamic algorithms: the first is a deterministic one supporting updates in
O(n2) amortized time and Boolean queries in O(1) time; the second is a
randomized algorithm (with one-side error), it applies only to DAGs, and
achieves a trade-off between query and update time. The currently best worst-
case time for an update is O(n1.575), which achieves a worst-case Boolean
query time of O(n0.575).

11.3.1.2 Implementations and Experimental Studies. There are two
works known regarding implementation and experimental studies of dynamic
algorithms for transitive closure. In chronological order, these are the works
by Frigioni et al. [11.32, 11.33] and by Abdeddaim [11.2].
The former paper investigates the practicality of several dynamic algo-

rithms (most of them with identical theoretical performance) in partially and
fully dynamic settings. The latter paper investigates incremental dynamic al-
gorithms under a specific application scenario (sequence alignment).

11.3.1.2.a The Implementation by Frigioni et al. [11.32, 11.33]
The main goal of the first experimental study for dynamic transitive clo-

sure was threefold:

1. To investigate the practicality of dynamic algorithms over their static
counterparts – especially to very simple and easily implementable ones.

2. To investigate the differences in the practical performance of several dy-
namic algorithms which appear to have similar asymptotic behaviour.

3. To compare partially dynamic algorithms against fully dynamic ones.

Several partially dynamic and one fully dynamic algorithm were inves-
tigated in [11.32, 11.33]. More precisely, the partially dynamic algorithms
considered were those by Italiano [11.42, 11.43], Yellin [11.66], Cicerone et
al. [11.12], and Henzinger & King [11.37]. The fully dynamic algorithm was
one of the two presented in [11.37]. Also, as a consequence of fine-tuning
of some of these algorithms, several variants were obtained (including hy-
bridizations of partially dynamic algorithms to yield fully dynamic ones)
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which turned out to be quite fast in practice. All these algorithms were com-
pared with other simple-minded approaches that were easy to implement and
hence likely to be fast in practice.
The starting point was the implementation of Italiano’s algorithms [11.42,

11.43]. The main idea of the data structure proposed in those papers is to
associate (and maintain) with every vertex u ∈ V a set DESC [u] containing
all descendants of u in G. Each such set is organized as a spanning tree rooted
at u. In addition, an n× n matrix of pointers, called INDEX , is maintained
which allows fast access to vertices in these trees. More precisely, INDEX [i, j]
points to vertex j in DESC [i], if j ∈ DESC [i], and it is Null otherwise.
A Boolean query for vertices i and j is carried out in O(1) time, by simply

checking INDEX [i, j]. A Path query for i and j is carried out in O(#) time,
where # is the number of edges of the reported path, by making a bottom-up
traversal from j to i in DESC [i].
The insertion of an edge (i, j) is done as follows. The data structure is

updated only if there is no i-j path in G. The insertion of edge (i, j) may
create new paths from any ancestor u of i to any descendant of j only if
there was no previous u-j path in G. In such a case the tree DESC [u] is
updated using the information in DESC [j] (deleting duplicate vertices) and
accordingly the u-th row of INDEX .
The deletion of an edge (i, j) on a DAG G is done as follows. If (i, j)

does not belong to any DESC tree, then the data structure is not updated.
Otherwise, (i, j) should be deleted from all DESC trees to which it belongs.
Assume that (i, j) belongs to DESC [u]. The deletion of (i, j) from DESC [u]
splits it into two subtrees, and a new tree should be reconstructed. This is
accomplished as follows. Check whether there exists a u-j path that avoids
(i, j); this is done by checking if there is an edge (v, j) in G such that the u-v
path in DESC [u] avoids (i, j). If such an edge exists, then swap (i, j) with
(v, j) in DESC [u], and join the two subtrees using (v, j). In such a case, (v, j)
is called a valid replacement for (i, j), and v is called a hook for j. If such an
edge does not exist, then there is no u-v path in G and consequently j cannot
be a descendant of u anymore: delete j from DESC [u] and proceed recursively
by deleting the outgoing edges of j in DESC [u]. To quickly find valid replace-
ment edges, an n×n matrix HOOK is used in the implementation. The entry
HOOK [u, j] stores the pointer to the first unscanned item in j’s list of in-
coming edges IN [j], if such an item exists; otherwise, HOOK [u, j] = Null. It
is also easy to verify that if some x ∈ IN [j] has already been considered as a
tentative hook for j, then it will never be a hook for j in any subsequent edge
deletion. The implementation of the above described algorithm is referred
to as Ital. In [11.32, 11.33], a second version of the above algorithm was
implemented by removing recursion in the edge insertion and edge deletion
procedures. This yielded implementation Ital-NR. The experiments showed
that Ital and Ital-NR have almost identical performances with Ital quite
often being slightly faster.
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Italiano’s algorithms were further optimized in [11.33] by providing a fine-
tuned third implementation, called Ital-Opt, which maintains descendant
trees and hook information implicitly. This implementation was consistently
faster than Ital and Ital-NR in all experiments performed.
The above implementations of Italiano’s algorithm were adapted to work

in fully dynamic environments, although their asymptotic bounds do not
hold in this case. The goal was to experimentally compare them with fully
dynamic algorithms as it may happen that they work well in practice, a fact
that was indeed confirmed by the experiments in [11.32, 11.33]. To handle
mixed sequences of updates, Italiano’s algorithm has to be modified, since
now the insertion of new edges may provide new hook information for some
vertices. Consequently, the HOOK matrix has to be reset after each edge in-
sertion that is followed by a sequence of edge deletions. Resetting the HOOK
matrix takes O(n2) time. The reset operation has been incorporated in Ital
and Ital-NR when they are used in a fully dynamic environment. Since the
overhead introduced by each reset may be significant (as it was also verified
in practice), a lazy approach was adopted in [11.32, 11.33]: delay the resetting
of an entry of the HOOK matrix until it is required by the algorithm. This
lazy approach was incorporated in Ital-Opt. Experiments showed a signif-
icant improvement upon Italiano’s original algorithms (Ital and Ital-NR)
on mixed sequences of updates.
The above ideas were extended in [11.32, 11.33] to develop a new algorithm

whose decremental part applies to any digraph, and not only to DAGs. This
algorithm (and its implementation) is referred to as Ital-Gen.
The algorithm is based on the fact that if we shrink every strongly con-

nected component of a digraph G = (V,E) to a single vertex, called super-
vertex, then the resulting graph G′ = (V ′, E′) is a DAG. The idea is to use
Italiano’s algorithm to maintain the transitive closure in G′ and additional
information regarding the strongly connected components (SCCs) which is
crucial for the decremental part of the algorithm.
The data structure consists of: (a) a collection of implicitly represented

descendant trees (as in Ital-Opt); (b) an n× n Boolean matrix INDEX (as
in Ital); (c) an array SCC of length n, where SCC[i] points to the SCC
containing vertex i; and (d) the SCCs of G as graphs. Furthermore, with
each k-vertex SCC two additional data structures are maintained: an array
HOOK of length n, where HOOK [i] points to the incoming edge of the SCC
used in the (implicitly represented) descendant tree rooted at i; and a sparse
certificate of the SCC consisting of k vertices and 2k − 2 edges.
The initialization involves computation of the above data structures where

the computation of the SCC and their sparse representatives is performed
only for the decremental part of the algorithm, i.e., before any sequence of
edge deletions. (If there is no such sequence, then every vertex is taken as a
SCC by itself.)
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Boolean and Path queries can be answered in the same time bounds with
those of Ital, by first looking at the INDEX matrix to check whether there
exists a path; if yes, then the path can be found using the HOOK arrays
(which provide the path in G′) and the sparse certificate of each SCC (which
gives the parts of the required path represented by supervertices in G′).
The insertion of an edge (i, j) is done similarly to the original algorithm

by Italiano. Deleting an edge (i, j) is done as follows. If (i, j) does not belong
to any SCC, then use Italiano’s decremental algorithm to delete (i, j) from
G′. Otherwise, check if (i, j) belongs to the sparse certificate of the SCC or
not. In the latter case, simply remove the edge from the SCC. In the former
case, check if the deletion of (i, j) breaks the SCC. If the SCC does not
break, we may need to recompute the sparse certificate. If the SCC breaks,
then compute the new SCCs, update the implicit data structures and the
HOOK arrays properly so that the information concerning descendant trees
and hooks in the new G′ is preserved, and finally apply Italiano’s decremental
algorithm to delete (i, j) from the new G′. The maintenance of the transitive
closure in G′ is done by a suitable modification of Ital-Opt which facilitates
the splitting of SCCs.
To use Ital-Gen in a fully dynamic environment, further modifications

and optimizations need to be made. Instead of recomputing SCCs, their
sparse certificates and G′ before any sequence of edge deletions, SCCs are
merged to supervertices as soon as they are created. This way, the recompu-
tation of the data structure before each sequence of edge deletions is avoided
(thus speeding up mixed sequences of operations). This further allows one
to adopt the lazy approach for resetting the data structure as applied in
Ital-Opt. This concludes the description of Italiano’s algorithm and its vari-
ants.
Yellin’s data structure associates with every vertex v the doubly linked

list Adjacent(v) of the heads of its outgoing edges, and the doubly linked
list Reaches(v) of the tails of its incoming edges. In addition, an n × n ar-
ray INDEX is maintained. Each entry INDEX [v, w] has (among others) a
field called refcount that stores the number of v-w paths in G, defined as
refcount(v, w)= |ref(v, w)|+1, if (v, w) ∈ E, and refcount(v, w)= |ref(v, w)|,
otherwise, where ref(v, w) = {(v, z, w) : z ∈ V ∧ (v, z) ∈ E∗ ∧ (z, w) ∈ E}.
The main idea for updating the data structure after the insertion of an

edge (a, b) is to find, for all x, z ∈ V , the new triples (x, y, z) that should
be added to ref(x, z) and update INDEX [v, w].refcount. The insertion al-
gorithm first finds all vertices x such that (x, a) was an edge of G∗

old (the
transitive closure graph before the insertion of (a, b)). In this case, (x, a, b)
is a new triple in ref(x, b), and refcount(x, b) has to be incremented. Then,
the insertion algorithm considers each new edge (x, y) in G∗

new (the transitive
closure graph after the insertion of (a, b)) and each edge (y, z) of G; (x, y) is
a new transitive closure edge if its refcount was increased from 0 to 1. Now,
(x, y, z) is a new triple for ref(x, z) and refcount(x, z) is increased by 1.
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The edge deletion algorithm is the “dual” of the edge insertion algorithm
described above.
To support Path queries, Yellin’s algorithm has to be augmented with

a rather “heavy” data structure called the support graph, which stores all
transitive closure edges and all triples (x, y, z) in ref(x, z). Consequently,
it occupies O(n3) space, making this version of Yellin’s algorithm very slow
and space consuming, a fact that was indeed confirmed by the experiments in
[11.32, 11.33]. It is also easy to see that the data structures in either version
need no modification in order to be used in a fully dynamic environment.
The algorithm of Cicerone et al. [11.12] provides a uniform approach for

maintaining several binary relationships (e.g., transitive closure, dominance,
transitive reduction) incrementally on general digraphs and decrementally
on DAGs. The main advantage of this technique, besides its simplicity, is the
fact that its implementation does not depend on the particular problem; i.e.,
the same procedures can be used to deal with different problems by simply
setting appropriate boundary conditions.
The approach allows a propagation property to be defined based on a

binary relationship (e.g., transitive closure) R ⊆ V × V that describes how
R “propagates” along the edges of a digraph G = (V,E). More precisely,
a relationship R satisfies the propagation property over G with boundary
condition R0 ⊂ R if, for any pair 〈x, y〉 ∈ V × V , 〈x, y〉 ∈ R if and only
if either 〈x, y〉 ∈ R0, or x �= y and there exists a vertex z �= y such that
〈x, z〉 ∈ R and (z, y) ∈ E. The relationship R0 is used to define the set of
elements of R that cannot be deduced using the propagation property. For
example, if R is the transitive closure, then R0 = {(x, x) : x ∈ V }. Actually,
if R is the transitive closure, then the algorithm of [11.12] collapses to the
algorithm of La Poutré and van Leeuwen [11.49].
The data structure maintains an integer matrix that contains, for each

pair of vertices 〈x, y〉 ∈ V × V , the number UR[x, y] of edges useful to that
pair. An edge (z, y) ∈ E is useful to pair 〈x, y〉 if z �= y and 〈x, z〉 ∈ R. Now, it
is easy to see that, for any pair 〈x, y〉 ∈ V ×V , 〈x, y〉 ∈ R if and only if either
〈x, y〉 ∈ R0 or UR[x, y] > 0. In addition to the n×n integer matrix described
above, and the binary matrix representing the boundary condition R0, two
additional data structures are maintained: (a) a set out[x], for each vertex
x, that contains all outgoing edges of x; and (b) a queue Qk, for every vertex
k, to handle edges (h, y) useful to pair 〈k, y〉. A Boolean query for vertices i
and j takes O(1) time, since it involves only checking the value UR[i, j].
After the insertion of edge (i, j) the number of edges useful to any pair

〈k, y〉 can only increase. An edge insertion is performed as follows: firstly,
for each vertex k, the new edge (i, j) is inserted into the empty queue Qk if
and only if 〈k, i〉 ∈ R, and hence it is useful to pair 〈k, j〉; then, edges (t, h)
are extracted from queues Qk, and the values UR[k, h] are increased by one,
because these edges are useful to pair (k, h). Now, edges (h, y) ∈ out[h] are
inserted in Qk if and only if the pair 〈k, h〉 has been added for the first time



11. Experimental Studies of Dynamic Graph Algorithms 259

to R as a consequence of an edge insertion, i.e., if and only if UR[k, h] = 1.
This implies that, during a sequence of edge insertions, the edge (h, y) can
be inserted in Qk at most once.
The behaviour of an edge deletion operation is analogous. After the dele-

tion of edge (i, j) some edges could no longer be useful to a pair 〈k, y〉, and
then the corresponding value UR[k, y] has to be properly decreased. An edge
deletion is handled as follows: firstly, for each vertex k, the deleted edge (i, j)
is inserted into the empty queue Qk if and only if 〈k, i〉 ∈ R; then, edges (t, h)
are extracted from queuesQk, and the values UR[k, h] are decreased each time
by one, because these edges are no longer useful to pair (k, h). Now, edges
(h, y) ∈ out[h] are inserted in Qk if and only if UR[k, h] = 0 and (k, h) �∈ R0,
that is, when there is no edge useful to pair (k, h). This implies that, during
a sequence of edge deletions, the edge (h, y) can be inserted in Qk at most
once. Notice that, if UR[k, h] > 0, then (k, h) is still in R after deleting edge
(i, j), because G is acyclic.
Two different variants of the algorithms in [11.12] were implemented in

[11.32, 11.33]: the general technique, denoted as CFNP, and its specialization
to the transitive closure problem, denoted as CFNP-Opt. The main difference
between the two implementations is that after each edge insertion, the origi-
nal algorithm (CFNP) performs at least a computation of O(n) time in order
to update the counters modified by that insertion; on the other hand, after an
edge insertion CFNP-Opt starts its computation only when the inserted edge
(i, j) introduces a new path between i and j (an idea borrowed from Ital-
iano’s approach). Thus, instead of the matrix of counters, CFNP-Opt simply
maintains a binary matrix representing the transitive closure of the graph.
As with Yellin’s algorithm, CFNP can be used in a fully dynamic envi-

ronment without any modification on its data structure. On the other hand,
CFNP-Opt cannot be used in such an environment.
The Henzinger-King algorithms [11.37] are based on the maintenance of

BFS trees of vertices reachable from (or which reach) a specific distinguished
vertex, and the fact that with very high probability every vertex in the graph
reaches (or is reachable by) a distinguished vertex by a path of small distance
(counted in number of edges).
Let out(x, k) (resp. in(x, k)) denote the set of vertices reachable from

(resp. which reach) vertex x by a path of distance at most k. The decre-
mental algorithm, denoted as HK-1, selects at random sets of distinguished
vertices Si, for i = 1, . . . , logn, where |Si| = min{O(2i logn), n}. For every
x ∈ Si the algorithm maintains (a) out(x, n/2i) and in(x, n/2i); and (b)
Out(x) =

⋃
i:x∈Si

out(x, n/2i) and In(x) =
⋃
i:x∈Si

in(x, n/2i). In addition,
for each u ∈ V the sets out(u, log2 n) and in(u, log2 n) are maintained. The
sets out(x, k) and in(x, k) are maintained in a decremental environment us-
ing a (modification of a) technique proposed by Even and Shiloach [11.21] for
undirected graphs. Each set is called a BFS structure, since it implicitly main-
tains a spanning tree for the descendants of x as it would have been computed
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by a BFS algorithm. Hence, an edge deletion reduces to the maintenance of
certain BFS structures.
A query for vertices u and v is carried out as follows. Check if v is in

out(u, log2 n). If not, then check for any vertex x ∈ S whether u ∈ In(x)
and v ∈ Out(x). If such an x exists, then there is a u-v path; otherwise, such
a path does not exist with high probability. A Boolean query is answered
in time proportional to |S|, i.e., in O(n/ logn) time, and a Path query is
answered in an additional O(#) time, where # is the length of the reported
path.
The HK-1 implementation in [11.32, 11.33] was further “engineered” to

improve performance, by reducing the required space and the time to check
whether there is a x-u (resp. u-x) path in an (out(x, k) (resp. in(x, k)) set.
The former is accomplished by keeping in Out(x) and In(x) only the tree
with the largest depth among the potentially many trees having as root the
same vertex. The latter is accomplished in O(1) time by assigning to the
vertices not in such a set a level greater than k.
The fully dynamic algorithm, denoted as HK-2, keeps the above decre-

mental data structure to give answers if there is an “old” path between two
vertices (i.e., a path that does not use any of the newly inserted edges). Up-
dates are carried out as follows. After the insertion of an edge (i, j), compute
in(i, n) and out(i, n). After the deletion of an edge, recompute in(i, n) and
out(i, n) for all inserted edges (i, j), and update the decremental data struc-
ture for old paths. Rebuild the decremental data structure after

√
n updates.

To answer a query for u and v, check first if there is an old path between
them. If not, then check if u ∈ in(i, n) and v ∈ out(i, n) for all i which are
tails of the newly inserted edges (i, j).
Finally, three simple-minded (pseudo-dynamic) algorithms were imple-

mented in [11.32, 11.33] and compared to the above dynamic algorithms;
they were based on the following method: in the case of an edge insertion
(resp. deletion), the new (resp. existing) edge is simply added to (resp. re-
moved from) the graph and nothing else is computed. In the case of a query,
a search from the source vertex s is performed until the target vertex t is
reached (if an s-t path exists) or until all vertices reachable from s are ex-
hausted. Depending on the search method used (DFS, BFS, and a combi-
nation of them), the three different implementations require no initialization
time, O(1) time per edge insertion or deletion, and O(n+m) time per query
operation, where m is the current number of edges in the graph. The im-
plementation of the simple-minded algorithms include: DFS, BFS, and DBFS.
The latter is a combination of DFS and BFS that works as follows. Vertices
are visited in DFS order. Every time a vertex is visited, first check whether
any of its adjacent vertices is the target vertex. If yes, then stop; otherwise,
continue the visit in a DFS manner. The experimental results in [11.32, 11.33]
showed that there were cases where DBFS outperformed DFS and BFS.
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An extensive experimental study of this bulk of implementations was con-
ducted in [11.32, 11.33]. The experiments were run on three different kinds
of inputs: random inputs (aimed at identifying the average-case performance
of the algorithms), non-random inputs (aimed at forcing the algorithms to
exhibit their worst-case performance), and on a more pragmatic input moti-
vated by a real world graph: the graph describing the connections among the
autonomous systems of a fragment of the Internet network visible from RIPE
(www.ripe.net), one of the main European servers. On this graph random
sequences of operations were performed.
Random inputs consisted of randomly generated digraphs and DAGs with

different edge densities (m0 ∈ {0, n/2, n, n lnn, n1.5, n2/ lnn, n2/4}) and ran-
dom sequences of operations. As it is mentioned in Section 11.2.1.2.a, the
values n/2, n, n lnn are thresholds around which a fundamentally different
structural behaviour of a random graph occurs [11.9] (the rest of the val-
ues are chosen as intermediate steps towards denser graphs). In the random
sequences of operations, the queries were uniformly mixed with updates (in-
sertions/deletions). Moreover, various lengths of such sequences were consid-
ered.
The non-random inputs were inspired from those proposed in [11.3]

(cf. Section 11.2.1.2.a). They consisted of a number k of cliques (complete
digraphs or complete DAGs), each one containing roughly n/k vertices, and
which are interconnected by a set B of at most k−1 inter-clique edges, called
“bridges”. Depending on the type of updates, the edges in B are precisely
those which are inserted or deleted from the graph during a sequence of oper-
ations. This forces the dynamic algorithms to handle dense subgraphs while
the reachability information of the whole graph keeps changing. To make it
even harder (and assuming an arbitrary numbering of the cliques), there is a
specific order in which these edges were inserted (resp. deleted) in an incre-
mental (resp. decremental) environment. In the incremental case, the graph
G initially has no bridges. Bridges are added from B as follows: the first
bridge is inserted between the first and the second clique, the second bridge
between the penultimate and the ultimate clique, the third bridge between
the second and the third clique, and so on. Hence, the bridge inserted last
will provide new reachability information from roughly n/2 to the other n/2
vertices ofG. The reverse order is followed in the case of edge deletions, where
all edges from B were initially in G.
For random inputs, the reported experiments were as follows. In the in-

cremental case as well as in the decremental case for DAGs, Ital-Opt and
Ital-Gen were almost always the fastest. The simple-minded algorithms be-
came competitive or faster in: (i) the incremental case when the initial graph
was very sparse (containing less than n/2 edges); (ii) the decremental case
when the initial graph was sparse (containing less than n lnn edges) and
the sequence of operations was of medium to small size. This could be ex-
plained by the fact that as the graph becomes denser edge insertions do not
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add new information w.r.t. transitive closure, while edge deletions below the
connectivity threshold (n lnn for random digraphs) increase considerably the
work performed by the dynamic algorithms (e.g., Italiano’s algorithms have
greater difficulty to find hooks in this case) which cannot be amortized with
the length of the operation sequence. In the decremental case for general di-
graphs, the simple-minded algorithms were always significantly faster than
HK-1 or Ital-Gen, because the former suffered by the updating of the BFS
structures, while the latter suffered by the splitting of SCCs and the recom-
putation of their sparse certificates. Similar behaviour was observed in the
fully dynamic case for general digraphs; an interesting fact was that HK-2 was
the slowest in practice, even for very small sequences of operations where the
algorithm is assumed to perform well (i.e., does not perform a rebuild). In the
fully dynamic case for DAGs, again Ital-Opt and Ital-Gen were the fastest
when the initial graph was not sparse (having more than n lnn edges); in
the sparse case, the simple-minded algorithms became competitive. The ef-
ficiency of Ital-Opt and Ital-Gen demonstrates that the lazy approach for
resetting the hooks was indeed successful.
In the case of non-random inputs, the simple-minded algorithms were

significantly faster than any of the dynamic algorithms. The best dynamic
algorithms were Ital-Opt or Ital-Gen. An interesting observation for this
type of inputs concerned the HK-2 algorithm: for small values of k, it was the
slowest. For larger values of k, it became competitive or faster than the best
dynamic (Ital-Opt or Ital-Gen). This behaviour is due to the rebuilding
of its data structure after a certain threshold in the length of the operation
sequence. The larger the value of k, the less rebuilds are performed by HK-2.
Finally, the experiments with the fragment of the Internet graph gave

similar conclusions to those obtained with random inputs. Additional ex-
periments have been performed with operation sequences for which some
knowledge about their update-query pattern is known in advance (e.g., the
percentage of queries). Although the theoretical bounds of the dynamic al-
gorithms may not hold in this case, these experiments might give useful sug-
gestions on how to proceed if information about the update-query pattern is
provided. The experimental results provided a quantitative idea of what is the
break point, i.e., after which percentage of queries the dynamic algorithms
overcome the simple-minded ones. As expected, the higher the percentage of
queries, the worse the simple-minded algorithms. The break points, however,
differ in each dynamic setting.
The source code of the above implementations is available from

http://www.ceid.upatras.gr/faculty/zaro/software.

11.3.1.2.b The Implementation by Abdeddaim. [11.2]
The main goal of that paper was to investigate whether certain knowl-

edge about the input digraph (in terms of the so-called “path cover”) could
help to speed up the computation time for maintaining the transitive closure
in an incremental environment (edge insertions and queries). The motiva-
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tion behind this interest lies on the fact that incremental transitive closure
is a fundamental subroutine in algorithms for sequence alignment and that
alignment graphs have the requested knowledge.
In [11.2], the incremental algorithms developed in [11.1, 11.2] were imple-

mented and compared with implementations of Italiano’s incremental algo-
rithm [11.42] which appears to be among the fastest in the previous study
(cf. Section 11.3.1.2.a).
The algorithms in [11.1, 11.2] assume that the input digraph is provided

with a set of k vertex-disjoint paths that cover all vertices of the graph. Such
a set is called a path cover. Finding a path cover of minimum cardinality
is an NP-complete problem (see e.g., [11.45]). However, there are families
of graphs for which a path cover (not necessarily minimum) can either be
efficiently computed or is known in advance. The former case includes DAGs,
where the computation of a minimum path cover reduces to a minimum flow
problem [11.45]. The latter case includes alignment graphs which are used in
greedy algorithms for sequence alignment [11.1]. Since computing a minimum
flow takes roughly O(nm) time (as it reduces to the max-flow problem), one
can resort to other approaches to find a path cover in a DAG which may
not be minimum. Such an algorithm is described in [11.51, pp. 11–12] and in
[11.60], and takes linear time. This idea can be extended to general digraphs
by shrinking each strongly connected component to a single vertex, thus
yielding a DAG on which the algorithm of [11.51, 11.60] can be applied.
The main idea of the algorithms in [11.1, 11.2] is to use the initial path

cover to compute, for each vertex x, a predecessor and a successor frontier
which encode the number of predecessors and successors of x in each path,
respectively. When a new edge (x, y) is inserted, it is first checked whether
there is already an x-y path in the graph. If yes, then the frontiers are not
modified. Otherwise, the algorithms consider each pair of paths Pi and Pj ,
and for each predecessor u of x in Pi, its successors’ number in Pj is updated
by the maximum of its current value and the number of successors of y in
Pj . The predecessor frontiers are computed in a similar way. The difference
between the two algorithms in [11.1, 11.2] lies in the order in which u and j
are considered. The algorithm from [11.1] (resp. [11.2]) is referred to as Abd97
(resp. Abd99).
In the experimental study of [11.2] two kind of inputs were considered:

random inputs and alignment graphs.
The random inputs are different from those we have seen so far. They are

constructed as follows: firstly, k paths of random lengths were generated by
assigning to each vertex v a random label lv in [1, k] and considering vertices
with the same label to belong to the same path. Secondly, a set of edges
chosen uniformly at random were added.
The alignment graphs were taken from two benchmarks libraries, namely

the BAliBASE [11.63] and the PFAM [11.8].
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The Abd97 and Abd99 algorithms were implemented in ANSI C and com-
pared to an implementation, called Ita86 (also in ANSI C), of the original
incremental algorithm by Italiano [11.42] that was developed in [11.2], and
to the Ital-Opt and CFNP-Opt implementations from [11.32]. Note that the
latter two are C++ implementations using LEDA [11.52] and hence expected
to be slower than an ANSI C implementation. From the theoretical analysis
of Abd97 and Abd99 (cf. Section 11.3.1.1), it turns out that for small values
of k and sufficiently large operation sequences both algorithms achieve a very
good amortized time per update operation. This was exactly confirmed by
the experiments in [11.2]. For both types of inputs, Abd97 and Abd99 were
faster than the other algorithms, with Abd97 being usually the fastest. When
the value of k was getting larger, or the graph was becoming denser, Abd99
was taking over.
It would be interesting to investigate the performance of Abd97 and Abd99

on the data sets developed in [11.32, 11.33].

11.3.1.3 Lessons Learned. The above experimental studies allow us to
obtain a better understanding of existing dynamic algorithms for transitive
closure and their practical assessment, and also to detect certain differences in
their practical behaviour compared with that of their undirected counterparts
for dynamic connectivity. In particular:

– In partially dynamic environments on unstructured inputs, dynamic al-
gorithms are usually faster than simpler approaches (based on static al-
gorithms). On the other hand, the simpler approaches are considerably
better than dynamic algorithms either in fully dynamic environments on
unstructured inputs, or in any kind of dynamic environment on structured
inputs.

– To beat the simpler approaches, thorough experimentation, fine-tuning,
and sophisticated engineering of dynamic algorithms is required.

– Certain knowledge about the input digraph or the update sequence turns
out to be useful in practice.

– The test suite of [11.32, 11.33], generated by a methodology analogous
to that in [11.3, 11.4], along with the enhancement of more pragmatic
inputs (e.g., inputs from benchmark libraries, real-world inputs, etc) can be
considered as a valuable benchmark for testing other dynamic algorithms
for directed graphs.

11.3.2 Dynamic Shortest Paths

11.3.2.1 Theoretical Background — Problem and History of Re-
sults. The shortest path problem consists in finding paths of minimum total
weight between specified pairs of vertices in a digraphG = (V,E) whose edges
are associated with real-valued weights. A path of minimum total weight be-
tween two vertices x and y is called shortest path; the weight of a shortest
x-y path is called the distance from x to y. There are two main versions of
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the shortest path problem: the all-pairs shortest paths (APSP) in which we
seek shortest paths between every pair of vertices in G; and the single-source
shortest path (SSSP) in which we seek shortest paths from a specific vertex
s to all other vertices in G.
The dynamic shortest path problem consists in building a data structure

that supports query and update operations. A shortest path (resp. distance)
query specifies two vertices and asks for the shortest path (resp. distance)
between them. An update operation updates the data structure after an
edge insertion or edge deletion or edge weight modification. There are sev-
eral algorithms for both the dynamic APSP and the dynamic SSSP prob-
lems. Actually, dynamic shortest path problems have been studied since 1967
[11.50, 11.54, 11.58]. In the following, let n = |V | and letm0 denote the initial
number of edges in G.
For the dynamic APSP problem and the case of arbitrary real-valued edge

weights, Even & Gazit [11.20] and Rohnert [11.59] gave (independently) two
fully dynamic algorithms in 1985. Both algorithms create a data structure
which is initialized in O(nm0 + n2 logn) time, supports shortest path or dis-
tance queries optimally, and is updated either in O(n2) time after an edge
insertion or edge weight decrease, or in O(nm+ n2 log n) time after an edge
deletion or edge weight increase (m being the current number of edges in
the graph). These were considered the best algorithms for dynamic APSP
on general digraphs with arbitrary real-valued edge weights, until a very re-
cent breakthrough achieved by Demetrescu & Italiano [11.14]: if each edge
weight can assume at most S different real values, then any update operation
can be accomplished deterministically in O(Sn2.5 log3 n) amortized time and
a distance query in O(1) time. In the same paper, an incremental random-
ized algorithm (with one-sided error) is given which supports an update in
O(Sn log3 n) amortized time.
In the case where the edge weights are nonnegative integers, a number of

results were known. Let C denote the largest (integer) value of an edge weight.
In [11.7], Ausiello et al. gave an incremental algorithm that supports queries
optimally, and updates its data structure in O(Cn3 log(nC)) time after a
sequence of at most O(n2) edge insertions or at most O(Cn2) edge weight
decreases. More recently, a fully dynamic algorithm was given by King [11.47]
which supports queries optimally, and updates (edge insertions or deletions)
in O(n2.5

√
C logn) amortized time (amortized over a sequence of operations

of length Ω(m0/n)). Also, in the same paper a decremental algorithm is
given which supports any number of edge deletions in O(m0n

2C) time (i.e.,
in O(n2C) amortized time per deletion if there are Ω(m0) deletions). We
note that very efficient dynamic algorithms are known for special classes of
digraphs (planar, outerplanar, digraphs of small treewidth, and digraphs of
small genus) with arbitrary edge weights; see [11.11, 11.17].
The efficient solution of the dynamic SSSP problem is a more difficult

task, since almost optimal algorithms are known for the static version of
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the problem. Nothing better than recomputing from scratch is known about
the dynamic SSSP problem, with the exception of a decremental algorithm
presented in [11.24]. That algorithm assumes integral edge weights in [1..C]
and supports any sequence of edge deletions in O(m0nC) time (i.e., O(nC)
amortized time per deletion, if there are Ω(m0) deletions).
For the above and other reasons most of the research for the dynamic

SSSP problem has been concentrated on different computational models. One
such model is the output complexity cost model introduced by Ramalingam
& Reps [11.56, 11.57] and extended by Frigioni et al. in [11.29, 11.31]. In this
model, the time-cost of a dynamic algorithm is measured as a function of the
number of updates to the output information of the problem caused by input
updates.
Let δ denote an input update (edge insertion, edge deletion, or edge weight

modification) to be performed on the given digraph G, and let Vδ be the
set of affected vertices, i.e., the vertices that change their output value as a
consequence of δ (e.g., for the SSSP problem their distance from the source
s). In [11.56, 11.57], the cost of a dynamic algorithm is measured in terms
of the extended size ‖δ‖ of the change in input and output. Parameter ‖δ‖
equals the sum of |Vδ| and the number of edges that have at least one affected
endpoint. Note that ‖δ‖ can be O(m) in the worst-case, and that both ‖δ‖ and
|Vδ| depend only on the problem instance. In [11.56, 11.57] a fully dynamic
algorithm is provided that updates its data structure after a change δ in the
input in time O(‖δ‖+ |Vδ| log |Vδ|). Queries are answered optimally.
In [11.29], the cost of a dynamic algorithm is measured in terms of the

number of changes on the output information of the problem. In the case of
the SSSP problem, the output information is the distances of the vertices
from s and the shortest path tree. The output complexity cost is measured
in this case as a function of the number of output updates |Uδ|, where Uδ

(the set of output updates) consists of those vertices which, as a consequence
of δ, either change their distance from s, or must change their parent in the
shortest path tree (even if they maintain the same distance). Differently from
the model of [11.56, 11.57], Uδ depends on the current shortest path tree (i.e.,
on the algorithm used to produce it.) In [11.29] an incremental algorithm for
the dynamic SSSP is given which supports queries optimally and updates
its data structure in time O(k|Uδ| logn) where k is a parameter bounded by
structural properties of the graph. For general graphs k = O(

√
m), but for

special classes of graphs it can be smaller (e.g., in planar graphs k ≤ 3). A
fully dynamic algorithm with the same update and query bounds is achieved
in [11.31].
All the above algorithms [11.29, 11.31, 11.56, 11.57] for the dynamic SSSP

problem require that the edge weights are nonnegative and that there are no
zero-weighted cycles in the graph either before or after an input update δ.
These restrictions have been waived in [11.30] where a fully dynamic algo-
rithm is presented that answers queries optimally and updates its data struc-
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ture in O(min{m, kna} logn) time after an edge weight decrease (or edge
insertion), and in O(min{m logn, k(na + nb) logn + nc}) time after an edge
weight increase (or edge deletion). Here, na is the number of affected vertices,
nb is the number of vertices that preserve their distance from s but change
their parent in the shortest path tree, and nc is the number of vertices that
preserve both their distance from s and their parent in the shortest path tree.

11.3.2.2 Implementations and Experimental Studies. There are two
works known regarding implementation and experimental studies of dynamic
algorithms for shortest paths. In chronological order, these are the works by
Frigioni et al. [11.28] and by Demetrescu et al. [11.15].
Both studies deal with the dynamic SSSP problem and aim at identifying

the practicality of dynamic algorithms over static approaches. The former
paper investigates the case of non-negative edge weights, while the latter
investigates the case of arbitrary edge weights.

11.3.2.2.a The Implementation by Frigioni et al. [11.28]
The main goal of the first experimental study on dynamic shortest paths

was to investigate the practicality of fully dynamic algorithms over static
ones, and to experimentally validate the usefulness of the output complexity
model.
In particular, the fully dynamic algorithms by Ramalingam& Reps [11.56]

and by Frigioni et al. [11.31] have been implemented and compared with
a simple-minded, pseudo-dynamic algorithm based on Dijkstra’s algorithm.
Both fully dynamic algorithms are also based on suitable modifications of
Dijkstra’s algorithm [11.16]. Their difference lies in how the outgoing edges
of a vertex are processed when its distance from s changes. In the following,
let d(v) denote the current distance of a vertex v from s and let c(u, v) denote
the weight of edge (u, v).
The algorithm of Ramalingam & Reps [11.56] maintains a DAG SP (G)

containing all vertices of the input graph G and exactly those edges that
belong to at least one shortest path from s to all other vertices of G.
In the case of an edge insertion, the algorithm proceeds in a Dijkstra-like

manner on the vertices affected by the insertion. Let (v, w) be the inserted
edge. The algorithm stores the vertices in a priority queue Q with priority
equal to their distance from w. When a vertex x of minimum priority is
deleted from Q, then all of its outgoing edges (x, y) are traversed. A vertex y
is inserted in Q, or its priority is updated, if d(x) + c(x, y) < d(y). In such a
case, (x, y) is added to SP (G) and all incoming edges of y are deleted from
SP (G). If d(x) + c(x, y) = d(y), then (x, y) is simply added to SP (G).
In the case of an edge deletion, the algorithm proceeds in two phases. Let

A (resp. B) denote the set of affected (resp. unaffected) vertices. In the first
phase the set A of affected vertices is determined by performing a kind of
topological sorting on SP (G). Let (v, w) be the deleted edge. Vertex w is put
into A, if its indegree in SP (G) is zero after the deletion of (v, w). If w ∈ A,
then all of its outgoing edges are deleted from SP (G). If this yields new
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vertices of zero indegree, then they added to A, and their outgoing edges are
deleted from SP (G). The process is repeated until all vertices are exhausted
or there are no more vertices of zero indegree in SP (G). In the second phase,
the new distances of the vertices in A are determined. This is done by first
shrinking the subgraph induced by B on a new super-source s′, and then by
adding, for each edge (x, y) with x ∈ B and y ∈ A, the edge (s′, y) with
weight equal to d(x) + c(x, y). Finally, run Dijkstra’s algorithm with source
s′ on the resulting graph and update SP (G) as in the case of edge insertion.
The implementation of the above algorithm is referred to as RR in [11.28].
The algorithm by Frigioni et al. [11.31] is based on a similar idea, but an

additional data structure is maintained on each vertex v in order to “guess”
which neighbors of v have to be updated when the distance from v to the
source changes. This data structure is based on the notions of the level and the
owner of an edge. The backward level of an edge (y, z), associated with vertex
z, is defined as BLy(z) = d(z) − c(y, z); the forward level of an edge (x, y),
associated with vertex x, is defined as FLy(x) = d(x) + c(x, y). Intuitively,
these levels provide information about the shortest available path from s to z
that passes through y. The owner of an edge is one of its two endpoints, but
not both. The incoming and outgoing edges of a vertex y is partitioned into
those owned by y and into those not owned by y. The incoming and outgoing
edges not owned by y are stored in two priority queues Fy (for the incoming)
and By (for the outgoing) with priorities determined by their forward and
backward levels, respectively. Any time a vertex y changes its distance from
s, the algorithm traverses all edges owned by y and an appropriately chosen
subset of edges not owned by y.
When the insertion of an edge (v, w) decreases d(w), then a priority queue

Q′ is used, as in Dijkstra’s algorithm, to find new distances from s. However,
differently from Dijkstra’s and the RR algorithm, when a vertex y is deleted
from Q′ and its new distance decreases, only those not-owned outgoing edges
(y, z) are scanned whose priority in By is greater than the new d(y), since
only in this case (i.e., BLy(z) = d(z)− c(y, z) > d(y)) d(z) is decreased by a
shortest s-z path that passes through y.
In the case of an edge deletion, the algorithm proceeds in two phases (like

RR). In the first phase, the affected vertices are determined. When a vertex y
increases its distance due to the edge deletion, then in order to find the best
possible alternative shortest s-y path, only those not-owned incoming edges
(x, y) are scanned whose priority in Fy is smaller than d(y). The vertex x
which minimizes FLy(x) − d(y) is the new parent of y in the shortest path
tree. The increase in d(y) is propagated to the outgoing edges owned by y.
In the second phase, the distances of the affected vertices are computed by
performing a Dijkstra-like computation on the subgraph induced by those
vertices and by considering only edges between affected vertices. The imple-
mentation of the above algorithm is referred to as FMN in [11.28].
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Finally, a pseudo-dynamic algorithm, called Dij, was implemented based
on LEDA’s implementation of Dijkstra’s algorithm. It simply recomputes
from scratch the shortest path information, only when an input update affects
this information. Since Dijkstra’s implementation in LEDA uses Fibonacci
heaps, all priority queues implemented in RR and FMN are also Fibonacci
heaps.
The implementations RR, FMN, and Dij were experimentally compared in

[11.28] using three kinds of inputs: random inputs, structured inputs, and on
the graph describing the connections among the autonomous systems of a
fragment of the Internet network visible from RIPE (www.ripe.net), one of
the main European servers.
For random inputs, two types of operation sequences were performed on

random graphs: randomly generated sequences of updates, and modifying
sequences of updates. In the latter type, an operation is selected uniformly
at random among those which actually modify some shortest path from the
source. Edge weights are chosen randomly.
The structured input consisted of a special graph and a specific update se-

quence on that graph. The graph consists of a source s, a sink t, and a setX of
k other vertices x1, . . . , xk. The edge set consists of edges (s, xi), (xi, s), (t, xi)
and (xi, t), for 1 ≤ i ≤ k. The sequence of updates consists of alternated in-
sertions and deletions of the single edge (s, t) with a proper edge weight.
The motivation for this input was to exhibit experimentally the difference
between the complexity parameters ‖δ‖ used by RR and |Uδ| used by FMN,
since the theoretical models proposed by [11.56] and [11.29] are different and
do not allow for a direct comparison of these parameters. Clearly, with this
input after each dynamic operation only the distance of t changes. Hence,
it is expected that as the size of the neighborhood of the affected vertices
increases, FMN should dominate over RR: after the insertion (resp. deletion)
of (s, t), RR visits all k edges outgoing from (resp. incoming to) t, while FMN
visits only those edges “owned” by t.
The input based on the fragment of the Internet graph consists of unary

weights and random update sequences.
In all experiments performed with any kind of input, both RR and FMN

were substantially faster than Dij (although in the worst-case the bounds
of all algorithms are identical). In the case of random inputs, RR was faster
than FMN regardless of the type of the operation sequence. In the cases of
structured input and of the input with the fragment of the Internet graph,
FMN was better. An interesting observation was that on any kind of input, the
edges scanned by FMN were much less than those scanned by RR (as expected).
However, FMN uses more complex data structures which, in the case of random
inputs, eliminate this advantage.
The source code of the above implementations is available from

http://www.jea.acm.org/1998/FrigioniDynamic.
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11.3.2.2.b The Implementation by Demetrescu et al. [11.15]
The main goal of that paper was to investigate the practical performance

of fully dynamic algorithms for the SSSP problem in the case of digraphs
with arbitrary edge weights.
In particular, the algorithms considered were the recent fully dynamic

algorithm by Frigioni et al. [11.30], referred to as FMN-gen; a simplified ver-
sion of it, called DFMN; a variant of the RR algorithm, referred to as RR-gen
[11.57] which works with arbitrary edge weights; and a new simple dynamic
algorithm, referred to as DF.
The common idea behind all these algorithms is to use the Edmonds-Karp

technique [11.18] to transform an SSSP problem with arbitrary edge weights
to another one with nonnegative edge weights without changing the shortest
paths. This is done by replacing each edge weight c(x, y) by its reduced
version r(x, y) = d(x)− d(y) + c(x, y) (the distances d(·) are provided by the
input shortest path tree), running Dijkstra’s algorithm to the graph with the
reduced edge weights (which are nonnegative), and then trivially obtain the
actual distances from those based on the reduced weights.
In the case of an edge insertion or weight decrease operation, FMN-gen and

DFMN behave similarly to FMN (cf. Section 11.3.2.2.a), while DF and RR-gen
behave similarly to RR (cf. Section 11.3.2.2.a). However, DF has not been
designed to be efficient according to the output complexity model as RR had,
and its worst-case complexity is O(m+ n logn).
In the case of an edge deletion or weight increase operation, there are

differences in the algorithms. Algorithm FMN-gen proceeds similarly to FMN
(cf. Section 11.3.2.2.a), but the traversal of the not-owned incoming edges
becomes more complicated as zero-weighted cycles should be handled. The
DFMN algorithm is basically the FMN-gen algorithm without the partition of
the incoming and outgoing edges into owned and not-owned. This allows for
simpler and, as experiments showed, faster code. Finally, the DF algorithm,
as in the case of edge insertion or weight decrease operation, uses the classi-
cal complexity model and not the output complexity one, and its worst-case
complexity is O(m+n logn). Let (x, y) be the edge whose weight is increased
by a positive amount ∆. The algorithm consists of two phases, called initial-
izing and updating. In the initializing phase, all vertices in the subtree T (y)
of the shortest path tree rooted at y are marked. Each marked vertex v finds
its “best” unmarked neighbor u in its list of incoming edges. This yields a
(not necessarily shortest) s-v path whose weight, however, is used as the ini-
tial priority of v (i.e., of an affected vertex) in a priority queue H used in
the updating phase. If u is not nil and d(u) + c(u, v) − d(v) < ∆, then the
priority of v equals d(u)+c(u, v)−d(v); otherwise, it equals ∆. In either case,
the initial priority is an upper bound on the actual distance. The updating
phase simply runs Dijkstra’s algorithms on the marked vertices inserted in
H with the above initial priorities.
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The experiments in [11.15] were conducted only on random inputs. In
particular, they were performed on randomly generated digraphs and var-
ious update sequences, which enhance in several ways the random inputs
considered in [11.28] (cf. Section 11.3.2.2.a).
Random digraphs were generated such that all vertices are reachable from

the source and edge weights are randomly selected from a predetermined in-
terval. The random digraphs come in two variants: those forming no negative
or zero weight cycles, and those in which all cycles have weight zero.
The update sequences were random update sequences (uniformly mixed

sequences of edge increase and decrease operations that do not introduce
negative or zero weight cycles), modifying update sequences (an operation is
selected uniformly at random among those which actually modify some short-
est path from the source), and alternate update sequences (updates alternate
between edge weight increase and decrease operations and each consecutive
pair of increase-decrease operation is performed on the same edge).
In all experiments, FMN-gen was substantially slower than DFMN, since it

uses more complex data structures. In the experiments with arbitrary edge
weights, but no zero-weighted cycles, DF was the fastest algorithm followed by
RR-gen; DFMN is penalized by its additional effort to identify affected vertices
in a graph that may have zero-weighted cycles. It is interesting to observe
that RR-gen is slightly faster than DF when the range of values of the edge
weights is small. In the case of inputs which included zero-weighted cycles,
either in the initial graph or because of a specific update sequence which tried
to force cycles in the graph to have weight zero, DFMN outperformed DF. Note
that in this case RR-gen is not applicable.
The source code of the above implementations is available from

ftp://www.dis.uniroma1.it/pub/demetres/experim/dsplib-1.1.

11.3.2.3 Lessons Learned. The experimental studies in [11.28] and [11.15]
enhance our knowledge on the practicality of several algorithms for the dy-
namic SSSP problem. In particular:

– The output cost model is not only theoretically interesting, but appears to
be quite useful in practice.

– Fully dynamic algorithms for the SSSP problem compare favorably in prac-
tice to almost optimal static approaches.

– The random test suite developed initially in [11.28] and considerably ex-
panded and elaborated in [11.15] provides an important benchmark of ran-
dom inputs for future experimental studies with dynamic shortest path
algorithms.

11.4 A Software Library for Dynamic Graph Algorithms

A systematic effort to build a software repository of implementations of dy-
namic graph algorithms has been recently initiated in [11.5].
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A library of dynamic algorithms has been developed, written in C++ us-
ing LEDA, and is provided as the LEDA Extension Package on Dynamic
Graph Algorithms (LEP-DGA). The library includes several implementations
of simple and sophisticated dynamic algorithms for connectivity, minimum
spanning trees, single-source and all-pairs shortest paths, and transitive clo-
sure. Actually, the afore mentioned implementations of dynamic connectivity
in [11.3] (cf. Section 11.2.1.2.a), dynamic minimum spanning tree in [11.4] (cf.
Section 11.2.2.2.a), dynamic transitive closure in [11.32, 11.33] (cf. Section
11.3.1.2.a), and dynamic single-source shortest paths in [11.28] (cf. Section
11.3.2.2.a), are part of the LEP-DGA.
All implementations in the library are accompanied by several demo pro-

grams, experimentation platforms, as well as correctness checkers. The li-
brary is easily adaptable and extensible, and is available for non-commercial
use from http://www.mpi-sb.mpg.de/LEDA/friends/dyngraph.html.
All dynamic data structures in the LEP-DGA are implemented as C++

classes derived from a common base class dga base. This base class defines
a common interface for all dynamic algorithms. Except for the usual goals of
efficiency, ease of use, extensibility, etc, special attention has been drawn on
some domain specific design issues. Two main problems arose in the imple-
mentation of the library.

– Missing Update Operations: Dynamic algorithms usually support only a
subset of all possible update operations, e.g., most dynamic graph algo-
rithms cannot handle single vertex deletions and insertions.

– Maintaining Consistency: In an application, a dynamic graph algorithm D
may run in the background while the graph changes due to a procedure P
which is not aware of D. Consequently, there has to be a means of keeping
D consistent with the current graph, because P will not use a possible
interface for changing the graph provided by D, but will use the graph
directly. Whether D exists or not should have no impact on P .

It was decided to support all update operations for convenience. Those
updates which are not supported by the theoretical background are imple-
mented by reinitializing the data structure for the new graph. This may not
be very efficient, but it is better than exiting the whole application. The
documentation tells the users which updates are supported efficiently or not.
The fact that the user calls an update which theoretically is not supported
results only in a (perhaps very small) performance penalty. This enhances
the robustness of the applications using the library or alternatively reduces
the complexity of handling exceptional situations.
An obvious approach to maintain consistency between a graph and a

dynamic data structure D working on that graph is to derive D from the
graph class. However, this may not be very flexible. In the case where there
are more than one dynamic graph data structures working on the same graph,
things could get quite complicated with this approach. Instead, the following
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approach was used, motivated by the observer design pattern of Gamma
et al. [11.34]. A new graph type msg graph has been created which sends
messages to interested third parties whenever an update occurs. The base
class dga base of all dynamic graph algorithms is one such third party; it
receives these messages and calls the appropriate update operations which
are virtual methods appropriately redefined by the specific implementations
of dynamic graph algorithms.

11.5 Conclusions

We have surveyed several experimental studies which investigate the prac-
ticality of dynamic algorithms for fundamental problems in graphs. These
studies try to exhibit advantages and limitations of important techniques
and algorithms, and to identify the best algorithm for a given input.
In all studies considered, it was evident that sophisticated engineering

and fine-tuning of dynamic algorithms is often required to make them com-
petitive or better than simpler, pseudo-dynamic approaches based on static
algorithms. Moreover, there were cases where the simpler approaches cannot
be beaten by any dynamic algorithm.
In an attempt to draw some rough conclusions on the practicality of dy-

namic algorithms, we could say that for problems in non-sparse unstructured
(random) inputs involving either undirected or directed graphs and operation
sequences that are not very small, the dynamic algorithms are usually bet-
ter than simpler, pseudo-dynamic approaches. In the case of more structured
(non-random) inputs, there is a distinction in the behaviour depending on
whether the input graph is directed or not. In the latter case, the dynamic
algorithms dominate the simpler approaches, while in the former we witness
a reverse situation (the simpler algorithms outperform the dynamic ones).
The experimental methodology followed in most papers allows us to sketch

some rough guidelines that could be useful in future studies:

• The data sets should be carefully designed to include both unstructured
(random) inputs and more structured inputs that include semi-random
inputs, pragmatic inputs, and worst-case inputs.

• In any given data set, several values of the input parameters (e.g., num-
ber of vertices and edges, length of the operation sequence) should be
considered. It was clear from the surveyed experimental studies that sev-
eral algorithms do not exhibit a stable behaviour and their performance
depends on the input parameters. For example, most update bounds are
amortized; consequently, the length of the operation sequence turns out to
be an important parameter as it clearly determines how well the update
bound is amortized in the conducted experiment. In all cases, the measured
quantities (usually the CPU time) should be averaged over several samples
in order to reduce variance.



274 Christos D. Zaroliagis

• It is important to carefully select the hardware platform upon which the
experiments will be carried out. This does not only involve memory issues
that eventually appear when dealing with large inputs, but also allows
investigation of the practical performance of dynamic algorithms on small
inputs. For example, in the latter case it is often necessary to resort to
slower machines in order to be able to exhibit the difference among the
algorithms.

The experimental methodology followed and the way the test suites developed
and evolved in the various studies (usually building upon and enhancing
previous test sets) constitute an important guide for future implementors
and experimenters of dynamic graph algorithms.
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