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CHAPTER 1 

Introduction 

But ask the animals, and they will teach you, or the birds of the air, and they will tell 
you; or speak to the earth, and it will teach you, or let the fish of the sea inform you. 

—Job 12:7-9 

This book discusses approaches to the solution of optimization problems. In 
particular, we1 discuss evolutionary algorithms (EAs) for optimization. Although 
the book includes some mathematical theory, it should not be considered a math-
ematics text. It is more of an engineering or applied computer science text. The 
optimization approaches in this book are all given with the goal of eventual imple-
mentation in software. The aim of this book is to present evolutionary optimization 
algorithms in the most clear yet rigorous way possible, while also providing enough 
advanced material and references so that the reader is prepared to contribute new 
material to the state of the art. 
1This book uses the common practice of referring to a generic third person with the word we. 
Sometimes, the book uses we to refer to the reader and the author. Other times, the book uses we 
to indicate that it is speaking on behalf of the general population of teachers and researchers in 
the areas of evolutionary algorithms and optimization. The distinction should be clear from the 
context. Do not read too much into the use of the word we; it is a matter of writing style rather 
than a claim to authority. 
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Overview of the Chapter 

This chapter begins in Section 1.1 with an overview of the mathematical notation 
that we use in this book. The list of acronyms starting on page xxiii might also be 
useful to the reader. Section 1.2 gives some reasons why I decided to write this book 
about EAs, what I hope to accomplish with it, and why I think that it is distinctive 
in view of all of the other excellent EA books that are available. Section 1.3 discusses 
the prerequisites the are expected from a reader of this book. Section 1.4 discusses 
the philosophy of the homework assignments in this book, and the availability of 
the solution manual. Section 1.5 summarizes the mathematical notation that we 
use in this book. The reader is encouraged to regularly remember that section when 
encountering unfamiliar notation, and also to begin using it himself in homework 
assignments and in his own research. Section 1.6 gives a descriptive outline of 
the book. This leads into Section 1.7, which gives some important pointers to 
the instructor regarding some ways that he could teach a course from this book. 
That section also gives the instructor some advice about which chapters are more 
important than others. 

1.1 TERMINOLOGY 

Some authors use the term evolutionary computing to refer to EAs. This empha-
sizes the point that EAs are implemented in computers. However, evolutionary 
computing could refer to algorithms that are not used for optimization; for exam-
ple, the first genetic algorithms (GAs) were not used for optimization per se, but 
were intended to study the process of natural selection (see Chapter 3). This book 
is geared towards evolutionary optimization algorithms, which are more specific 
than evolutionary computing. 

Others use the term population-based optimization to refer to EAs. This empha-
sizes the point that EAs generally consist of a population of candidate solutions to 
some problem, and as time passes, the population evolves to a better solution to 
the problem. However, many EAs can consist of only a single candidate solution at 
each iteration (for example, hill climbing and evolution strategies). EAs are more 
general than population-based optimization because EAs include single-individual 
algorithms. 

Some authors use the term computer intelligence or computational intelligence to 
refer to EAs. This is often done to distinguish EAs from expert systems, which have 
traditionally been referred to as artificial intelligence. Expert systems model deduc-
tive reasoning, while evolutionary algorithms model inductive reasoning. However, 
sometimes EAs are considered a type of artificial intelligence. Computer intelligence 
is a more general term than evolutionary algorithm, and includes technologies like 
neural networks, fuzzy systems, and artificial life. These technologies can be used 
for applications other than optimization. Therefore, depending on one's perspec-
tive, EAs might be more general or more specific than computer intelligence. 

Soft computing is another term that is related to EAs. Soft computing is a 
contrast to hard computing. Hard computing refers to exact, precise, numerically 
rigorous calculations. Soft computing refers to less exact calculations, such as 
those that humans perform during their daily routines. Soft computing algorithms 
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calculate generally good (but inexact) solutions to problems that are difficult, noisy, 
multimodal, and multi-objective. Therefore, EAs are a subset of soft computing. 

Other authors use terms like nature-inspired computing or bio-inspired computing 
to refer to EAs. However, some EAs, like differential evolution and estimation 
of distribution algorithms, might not be motivated by nature. Other EAs, like 
evolution strategies and opposition-based learning, have a very weak connection 
with natural processes. EAs are more general than nature-inspired algorithms 
because EAs include non-biologically motivated algorithms. 

Another oft-used term for EAs is machine learning. Machine learning is the 
study of computer algorithms that learn from experience. However, this field often 
includes many algorithms other than EAs. Machine learning is generally considered 
to be more broad than EAs, and includes fields such as reinforcement learning, 
neural networks, clustering, support vector machines, and others. 

Some authors like to use the term heuristic algorithms to refer to EAs. Heuristic 
comes from the Greek word ηνρισκω, which is transliterated as eurisko in English. 
The word means find or discover. It is also the source of the English exclamation 
eureka, which we use to express triumph when we discover something or solve a 
problem. Heuristic algorithms are methods that use rules of thumb or common 
sense approaches to solve a problem. Heuristic algorithms usually are not expected 
to find the best answer to a problem, but are only expected to find solutions that 
are "close enough" to the best. The term metaheuristic is used to describe a 
family of heuristic algorithms. Most, if not all, of the EAs that we discuss in this 
book can be implemented in many different ways and with many different options 
and parameters. Therefore, they can all be called metaheuristics. For example, 
the family of all ant colony optimization algorithms can be called the ant colony 
metaheuristic. 

Most authors separate EAs from swarm intelligence. A swarm intelligence algo-
rithm is one that is based on swarms that occur in nature (for example, swarms 
of ants or birds). Ant colony optimization (Chapter 10) and particle swarm opti-
mization (Chapter 11) are two prominent swarm algorithms, and many researchers 
insist that they should not be classified as EAs. However, some authors consider 
swarm intelligence as a subset of EAs. For example, one of the inventors of particle 
swarm optimization refers to it as an EA [Shi and Eberhart, 1999]. Since swarm 
intelligence algorithms execute in the same general way as EAs, that is, by evolving 
a population of candidate problem solutions which improve with each iteration, we 
consider swarm intelligence to be an EA. 

Terminology is imprecise and context-dependent, but in this book we settle on 
the term evolutionary algorithm to refer to an algorithm that evolves a problem so-
lution over many iterations. Typically, one iteration of an EA is called a generation 
in keeping with its biological foundation. However, this simple definition of an EA 
is not perfect because, for example, it implies that gradient descent is an EA, and 
no one is prepared to admit that. So the terminology in the EA field is not uniform 
and can be confusing. We use the tongue-in-cheek definition that an algorithm is 
an EA if it is generally considered to be an EA. This circularity is bothersome at 
first, but those of us who work in the field get used to it after a while. After all, 
natural selection is defined as the survival of the fittest, and fitness is defined as 
those who are most likely to survive. 
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1.2 WHY ANOTHER BOOK ON EVOLUTIONARY ALGORITHMS? 

There are many fine books on EAs, which raises the question: Why yet another 
textbook on the topic of EAs? The reason that this book has been written is to 
offer a pedagogical approach, perspective, and material, that is not available in any 
other single book. In particular, the hope is that this book will offer the following: 

• A straightforward, bottom-up approach that assists the reader in obtaining 
a clear but theoretically rigorous understanding of EAs is given in the book. 
Many books discuss a variety of EAs as cookbook algorithms without any 
theoretical support. Other books read more like research monographs than 
textbooks, and are not entirely accessible to the average engineering stu-
dent. This book tries to strike a balance by presenting easy-to-implement 
algorithms, along with some rigorous theory and discussion of trade-offs. 

• Simple examples that provide the reader with an intuitive understanding of 
EA math, equations, and theory, are given in the book. Many books present 
EA theory, and then give examples or problems that are not amenable to an 
intuitive understanding. However, it is possible to present simple examples 
and problems that require only paper and pencil to solve. These simple 
problems allow the student to more directly see how the theory works itself 
out in practice. 

• MATLAB®-based source code for all of the examples in the book is available 
at the author's web site.2 A number of other texts supply source code, but 
it is often incomplete or outdated, which is frustrating for the reader. The 
author's email address is also available on the web site, and I enthusiastically 
welcome feedback, comments, suggestions for improvements, and corrections. 
Of course, web addresses are subject to obsolescence, but this book contains 
algorithmic, high-level pseudocode listings that are more permanent than any 
specific software listings. Note that the examples and the MATLAB code are 
not intended as efficient or competitive optimization algorithms; they are 
instead intended only to allow the reader to gain a basic understanding of the 
underlying concepts. Any serious research or application should rely on the 
sample code only as a preliminary starting point. 

• This book includes theory and recently-developed EAs that are not avail-
able in most other textbooks. These topics include Markov theory mod-
els of EAs, dynamic system models of EAs, artificial bee colony algorithms, 
biogeography-based optimization, opposition-based learning, artificial fish swarm 
algorithms, shuffled frog leaping, bacterial foraging optimization, and many 
others. These topics are recent additions to the state of the art, and their 
coverage in this book is not matched in any other books. However, this book 
is not intended to survey the state-of-the-art in any particular area of EA 
research. This book is instead intended to provide a high-level overview of 
many areas of EA research so that the reader can gain a broad understanding 
of EAs, and so that the reader can be well-positioned to pursue additional 
studies in the state-of-the-art. 

2See http : //academic. csuohio. edu/simond/EvolutionaryOptimization - if the address changes, 
it should be easy to find with an internet search. 
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1.3 PREREQUISITES 

In general, a student will not gain anything from a course like this without writing 
his own EA software. Therefore, competent programming skills could be listed as a 
prerequisite. At the university where I teach this course to electrical and computer 
engineering students, there are no specific course prerequisites; the prerequisite 
for undergraduates is senior standing, and there are no prerequisites for graduate 
students. However, I assume that undergraduates at the senior level, and graduate 
students, are good programmers. 

The notation used in the book assumes that the reader is familiar with the 
standard mathematical notations that are used in algebra, geometry, set theory, 
and calculus. Therefore, another prerequisite for understanding this book is a 
level of mathematical maturity that is typical of an advanced senior undergraduate 
student. The mathematical notation is described in Section 1.5. If the reader can 
understand the notation described in that section, then there is a good chance that 
he will also be able to follow the discussion in the rest of the book. 

The mathematics in the theoretical sections of this book (Chapter 4, Section 7.6, 
much of Chapter 13, and a few other scattered sections) require an understanding 
of probability and linear systems theory. It will be difficult for a student to follow 
that material unless he has had a graduate course in those two subjects. A course 
geared towards undergraduates should probably skip that material. 

1.4 HOMEWORK PROBLEMS 

The problems at the end of each chapter have been written to give flexibility to 
the instructor and student. The problems include written exercises and computer 
exercises. The written exercises are intended to strengthen the student's grasp 
of the theory, deepen the student's intuitive understanding of the concepts, and 
develop the student's analytical skills. The computer exercises are intended to help 
the student develop research skills, and learn how to apply the theory to the types 
of problems that are typically encountered in industry. Both types of problems 
are important for gaining proficiency with EAs. The distinction between written 
exercises and computer exercises is not strict but is more of a fuzzy division. That is, 
some of the written exercises might require some computer work, and the computer 
exercises require some analysis. The instructor might have EA-related assignments 
in mind based on his own interests. Semester-length, project-based assignments are 
often instructive for topics such as this. For example, students could be assigned 
to solve some practical optimization problem using the EAs discussed in this book, 
applying one EA per chapter, and then comparing the performance of the EAs and 
their variations at the end of the semester. 

A solution manual to all of the problems in the text (both written exercises 
and computer exercises) is available from the publisher for instructors. Course 
instructors are encouraged to contact the publisher for further information about 
how to obtain the solution manual. In order to protect the integrity of the homework 
assignments, the solution manual will be provided only to course instructors. 
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1.5 NOTATION 

Unfortunately, the English language does not have a gender-neutral, singular, third-
person pronoun. Therefore, we use the term he or him to refer to a generic third 
person, whether male or female. This convention can feel awkward to both writers 
and readers, but it seems to be the most satisfactory resolution to a difficult solution. 

The list below describes some of the mathematical notation in this book. 

• x <— y is a computational notation that indicates that y is assigned to the 
variable x. For example, consider the following algorithm: 

a = coefficient of x2 

b = coefficient of x1 

c = coefficient of x° 

• 

x* <- ( -6 + Vb2 - 4ac)/(2a) 

The first three lines are not assignment statements in the algorithm; they 
simply describe or define the values of a, 6, and c. These three parameters 
could have been set by the user, or by some other algorithm or process. The 
last line, however, is an assignment statement that indicates the value on the 
right side of the arrow is written to x*. 

df(-)/dx is the total derivative of / ( · ) with respect to x. For example, suppose 
that y = 2x and / ( # , y) = 2x + 3y. Then / ( x , y) = 8x and df(-)/dx = 8. 

fx{-), also denoted as df(-)/dx, is the partial derivative of / ( · ) with respect 
to x. For example, suppose again that y = 2x and f(x,y) = 2x + Sy. Then 
fx(x,y) = 2. 

{x : x G S} is the set of all x such that x belongs to the set S. A similar 
notation is used to denote those values of x that satisfy any other particular 
condition. For example, {x : x2 — 4} is the same as {x : x G {—2,+2}}, 
which is the same as {—2, +2} . 

[a, b] is the closed interval between a and 6, which means {x : a < x < b}. 
This might be a set of integers or a set of real numbers, depending on the 
context. 

(a, b) is the open interval between a and 6, which is {x : a < x < b}. This 
might be a set of integers or a set of real numbers, depending on the context. 

If is it understood from the context that i G 5, the {xi} is shorthand for 
{xi : i G S}. For example, if i G [1, iV], then {x^ = {xi,X2? * * * >#iv}· 

• Si U 52 is the set of all x such that x belongs to either set S\ or set $2- For 
example, if 5Ί = {1,2,3} and S2 = {7,8}, then Si U S2 = {1,2,3, 7,8}. 

• \S\ is the number of elements in the set S. For example, if S = {i : i G [4,8]}, 
then \S\ = 5. If S = {3,19, π, >/2}, then | 5 | = 4. If S = {a : 1 < a < 3}, 
then \S\ = oo. 

0 is the empty set. |0| = 0. 
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• x mod y is the remainder after x is divided by y. For example, 8 mod 3 = 2. 

• \x] is the ceiling of x; that is, the smallest integer that is greater than or 
equal to x. For example, [3.9] = 4, and [5] = 5 . 

• [:rj is the floor of x; that is, the largest integer that is less than or equal to x 
For example, [3.9] = 3 , and [5J = 5 . 

• minx f(x) indicates the problem of finding the value of x that gives the small-
est value of f(x). Also, it can indicate the smallest value of f(x). For exam-
ple, suppose that f(x) = (x — l ) 2 . Then we can solve the problem min^ f(x) 
using calculus or by graphing the function f(x) and visually noting the small-
est value of f(x). We find for this example that m i n x / ( # ) = 0. A similar 
definition holds for max^ f(x). 

• argminx f(x) is the value of x that results in the smallest value of f(x). For 
example, suppose again that f(x) = (x — l ) 2 . The smallest value of f(x) is 
0, which occurs when x = 1, so for this example argminx f(x) = 1. A similar 
definition holds for argmaxx f(x). 

• Rs is the set of all real s-element vectors. It may indicate either column 
vectors or row vectors, depending on the context. 

• Rsxp is the set of all real s x p matrices. 

• {ykVk=L ls ^ n e se^ °f a ^ 2/fc, where the integer k ranges from L to U. For 
example, {yk}t=2 = {2/2,2/3,2/4,2/5}. 

• {yk} is the set of all yk, where the integer k ranges from a context-dependent 
lower limit to a context-dependent upper limit. For example, suppose the 
context indicates that there are three values: 2/1, 2/2, and 2/3. Then {yk} = 
{2/1,2/2,2/3}. 

• 3 means "there exists," and $ means "there does not exist." For example, if 
Y = {6,1,9}, then 3 y < 2 : y e Y. However, $ y > 10 : y G Y. 

• A => B means that A implies B. For example, (x > 10) =^> (x > 5). 

• / is the identity matrix. Its dimensions depend on the context. 

See the list of acronyms on page xxiii for more notation. 

1.6 OUTLINE OF THE BOOK 

This book is divided into six parts. 

1. Part I consists of this introduction, and one more chapter that covers in-
troductory material related to optimization. It introduces different types of 
optimization problems, the simple-but-effective hill climbing algorithm, and 
concludes with a discussion about what makes an algorithm intelligent. 
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2. Part II discusses the four EAs that are commonly considered to be the classics: 

• Genetic algorithms; 
• Evolutionary programming; 

• Evolution strategies; 
• Genetic programming. 

Part II also includes a chapter that discusses approaches for the mathematical 
analysis of G As. Part II concludes with a chapter that discusses some of the 
many algorithmic variations that can be used in these classic algorithms. 
These same variations can also be used in the more recent EAs, which are 
covered in the next part. 

3. Part III discusses some of the more recent EAs. Some of these are not really 
that recent, dating back to the 1980s, but others date back only to the first 
decade of the 21st century. 

4. Part IV discusses special types of optimization problems, and shows how the 
EAs of the earlier chapters can be modified to solve them. These special types 
of problems include: 

• Combinatorial problems, whose domain consists of integers; 

• Constrained problems, whose domain is restricted to a known set; 

• Multi-objective problems, in which it is desired to minimize more than 
one objective simultaneously; and 

• Problems with noisy or expensive fitness functions for which it is diffi-
cult to precisely obtain the performance of a candidate solution, or for 
which it is computationally expensive to evaluate the performance of a 
candidate solution. 

5. Part V includes several appendices that discuss topics that are important or 
interesting. 

• Appendix A offers some miscellaneous, practical advice for the EA stu-
dent and researcher. 

• Appendix B discusses the no-free-lunch theorem, which tells us that, on 
average, all optimization algorithms perform the same. It also discusses 
how statistics should be used to evaluate the differences between EAs. 

• Appendix C gives some standard benchmark functions that can be used 
to compare the performance of different EAs. 

1.7 A COURSE BASED ON THIS BOOK 

Any course based on this book should start with Chapters 1 and 2, which give an 
overview of optimization problems. From that point on, the remaining chapters 
can be studied in almost any order, depending on the preference and interests of 
the instructor. The obvious exceptions are that the study of genetic algorithms 
(Chapter 3) should precede the study of their mathematical models (Chapter 4). 
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Also, at least one chapter in Parts II or III (that is, at least one specific EA) needs 
to be covered in detail before any of the chapters in Part IV. 

Most courses will, at a minimum, cover Chapters 3 and 5-7 to give the student 
a background in the classic EAs. If the students have sufficient mathematical 
sophistication, and if there is time, then the course should also include Chapter 4 
somewhere along the line. Chapter 4 is important for graduate students because it 
helps them see that EAs are not only a qualitative subject, but there can and should 
be some theoretical basis for them also. Too much EA research today is based 
on minor algorithmic adjustments without any mathematical support. Many EA 
practitioners only care about getting results, which is fine, but academic researchers 
need to be involved in theory as well as practice. 

The chapters in Parts III and IV can be covered on the basis of the instructor's 
or the students' specific interests. 

The appendices are not included in the main part of the book because they 
are not about EAs per se, but the importance of the appendices should not be 
underestimated. In particular, the material in Appendices B and C are of critical 
importance and should be included in every EA course. I recommend that these 
two appendices be discussed in some detail immediately after the first chapter in 
Parts II or III. 

Putting the above advice together, here is a proposed outline for a one-semester 
graduate course. 

• Chapters 1 and 2. 

• Chapter 3. 

• Appendices B and C. 

• Chapters 4-8. I recommend skipping Chapter 4 for most undergraduate stu-
dents and for short courses. 

• A few chapters in Part III, based on the instructor's preference. At the risk 
of starting an "EA war" with my readers, I will go out on a limb and claim 
that ACO, PSO, and DE are among the most important "other" EAs, and 
so the instructor should cover Chapters 10-12 at a minimum. 

• A few chapters in Part IV, based on the instructor's preference and the avail-
able time. 





CHAPTER 2 

Optimization 

Optimization saturates what we do and drives almost every aspect of engineering. 
—Dennis Bernstein [Bernstein, 2006] 

As indicated by the above quote, optimization is a part of almost everything 
that we do. Personnel schedules need to be optimized, teaching styles need to 
be optimized, economic systems need to be optimized, game strategies need to be 
optimized, biological systems need to be optimized, and health care systems need 
to be optimized. Optimization is a fascinating area of study not only because of its 
algorithmic and theoretical content, but also because of its universal applicability. 

Overview of the Chapter 

This chapter gives a brief overview of optimization (Section 2.1), including optimiza-
tion subject to constraints (Section 2.2), optimization problems that have multiple 
goals (Section 2.3), and optimization problems that have multiple solutions (Sec-
tion 2.4). Most of our work in this book is focused on continuous optimization 
problems, that is, problems where the independent variable can vary continuously. 
However, problems where the independent variable is restricted to a finite set, which 
are called combinatorial problems, are also of great interest, and we introduce them 
in Section 2.5. We present a simple, general-purpose optimization algorithm called 
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hill climbing in Section 2.6, and we also discuss some of its variations. Finally, we 
discuss a few concepts related to the nature of intelligence in Section 2.7, and show 
how they relate to the evolutionary optimization algorithms that we present in the 
later chapters. 

2.1 UNCONSTRAINED OPTIMIZATION 

Optimization is applicable to virtually all areas of life. Optimization algorithms can 
be applied to everything from aardvark breeding to zygote research. The possible 
applications of EAs are limited only by the engineer's imagination, which is why 
EAs have become so widely researched and applied in the past few decades. 

For example, in engineering, EAs are used to find the best robot trajectories for 
a certain task. Suppose that you have a robot in your manufacturing plant, and you 
want it to perform its task in such a way that it finishes as quickly as possible, or 
uses the least power possible. How can you figure out the best possible path for the 
robot? There are so many possible paths that finding the best solution is a daunting 
task. But EAs can make the task manageable (if not exactly easy), and at least find 
a good solution (if not exactly the best). Robots are very nonlinear, so the search 
space for robotic optimization problems ends up with lots of peaks and valleys, 
like what we saw in the simple example presented earlier in this chapter. But with 
robotics problems the situation is even worse, because the peaks and valleys lie in a 
multidimensional space (instead of the simple three-dimensional space that we saw 
earlier). The complexity of robotics optimization problems makes them a natural 
target for EAs. This idea has been applied for both stationary robots (i.e., robot 
arms) and mobile robots. 

EAs have also been used to train neural networks and fuzzy logic systems. In 
neural networks we have to figure out the network architecture and the neuron 
weights in order to get the best possible network performance. Again, there are so 
many possibilities that the task is formidable. But EAs can be used to find the 
best configuration and the best weights. We have the same issue with fuzzy logic 
systems. What rule base should we use? How many membership functions should 
we use? What membership function shapes should we use? GAs can (and have) 
helped solve these difficult optimization problems. 

EAs have also been used for medical diagnosis. For example, after a biopsy, 
how do medical professionals recognize which cells are cancerous and which are 
not? What features should they look for in order to diagnose cancer? Which 
features are the most important, and which ones are irrelevant? Which features are 
important only if the patient belongs to a certain demographic? A EA can help 
make these types of decisions. The EA always needs a professional to get it started 
and to train it, but after that the EA can actually outperform its teacher. Not only 
does the EA never get tired or fatigued, but it can extract patterns from data that 
may be too subtle for humans to recognize. EAs have been used for the diagnosis 
of several different types of cancer. 

After a disease has been diagnosed, the next difficult question involves the man-
agement of the disease. For example, after cancer has been detected, what is 
the best treatment for the patient? How often should radiation be administered, 
what kind of radiation should it be, and in what doses? How should side effects 
be treated? This is another complex optimization problem. The wrong kind of 



SECTION 2.1: UNCONSTRAINED OPTIMIZATION 1 3 

treatment can do more harm than good. The determination of the right kind of 
treatment is a complicated function of things like cancer type, cancer location, pa-
tient demographics, general health, and other factors. So GAs are used to not only 
diagnose illness, but also to plan treatment. 

EAs should be considered any time that you want to solve a difficult problem. 
That does not mean that EAs are always the best choice for the job. Calculators 
don't use EA software to add numbers, because there are much simpler and more 
effective algorithms available. But EAs should at least be considered for any com-
plex problem. If you want to design a housing project or a transportation system, 
an EA might be the answer. If you want to design a complex electrical circuit or a 
computer program, an EA might be able to do the job. 

An optimization problem can be written as a minimization problem or as a 
maximization problem. Sometimes we try to minimize a function and sometimes 
we try to maximize a function. These two problems are easily converted to the 
other form: 

min / (x ) <<==>· max[—f(x)] 
X X 

max/(a:) <=>■ min[ - / (* ) ] . (2.1) 
X X 

The function f(x) is called the objective function, and the vector x is called the 
independent variable, or decision variable. Note that the terms independent vari-
able and decision variable sometimes refer to the entire vector x, and sometimes 
refer to specific elements in x, depending on the context. Elements of x are also 
called solution features. The number of elements in x is called the dimension of 
the problem. As we see from Equation (2.1), any algorithm that is designed to 
minimize a function can easily be used to maximize a function, and any algorithm 
that is designed to maximize a function can easily be used to minimize a function. 
When we try to minimize a function, we call the function value the cost function. 
When we try to maximize a function, we call the function value the fitness. 

min / (x ) => f(x) is called "cost" or "objective" 
X 

m a x / ( s ) => f(x) is called "fitness" or "objective." (2.2) 
X 

■ EXAMPLE 2.1 

This example illustrates the terminology that we use in this book. Suppose 
that we want to minimize the function 

/ ( x , y, z) = {x- l ) 2 + (y + 2)2 + (z- 5)2 + 3. (2.3) 

The variables x, y, and z are called the independent variables, the decision 
variables, or the solution features; all three terms are equivalent. This is a 
three-dimensional problem, / ( x , y, z) is called the objective function or the 
cost function. We can change the problem to a maximization problem by 
defining g(x,y,z) = —f(x,y,z) and trying to maximize g(x,y,z). The func-
tion g(x, y, z) is called the objective function or the fitness function. The 
solution to the problem min / ( # , y, z) is the same as the solution to the prob-
lem maxg(x,y, z), and is x = 1, y = —2, and z = 5. However, the optimal 
value of / ( # , y, z) is the negative of the optimal value of g(x, y, z). 
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Sometimes optimization is easy and can be accomplished using analytical meth-
ods, as we see in the following example. 

■ EXAMPLE 2.2 

Consider the problem 

min / (x ) , where f(x) = x4 + 5x3 + Ax2 - 4x 4-1. (2.4) 

A plot of / (# ) is shown in Figure 2.1. Since f(x) is a quartic polynomial 
(also called fourth order or fourth degree), we know that it has at most three 
stationary points, that is, three values of x at which its derivative f'(x) = 0. 
These points are seen from Figure 2.1 to occur at x = —2.96, x — —1.10, and 
x = 0.31. We can confirm that f'(x), which is equal to Ax3 + 15x2 + 8x — 4, is 
zero at these three values of x. We can further find that the second derivative 
of f(x) at these three points is 

f"(x) = 12x2 + 30x4 -8 : 
24.33, x = -2.96 

-10.48, x = -1 .10 
18.45, x = 0.31 

(2.5) 

Recall that the second derivative of a function at a local minimum is positive, 
and the second derivative of a function at a local maximum is negative. The 
values of f"(x) at the stationary points therefore confirm that x = —2.96 is a 
local minimum, x — —1.10 is a local maximum, and x = 0.31 is another local 
minimum. 

Figure 2.1 Example 2.2: A simple minimization problem. f(x) has two local minima 
and one global minimum, which occurs at x = —2.96. 
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The function of Example 2.2 has two local minima and one global minimum. 
Note that the global minimum is also a local minimum. For some functions 
minx f(x) occurs at more than one value of x\ if that occurs then f(x) has multiple 
global minima. A local minimum x* can be defined as 

f(x*) < f(x) for all x such that ||x - x*\\ < e (2.6) 

where || · || is some distance metric, and e > 0 is some user-defined neighborhood 
size. In Figure 2.1 we see that x = 0.31 is a local optimum if, for example, the 
neighborhood size e = 1, but it is not a local optimum if e = 4. A global minimum 
x* can be defined as 

f{x*) < f(x) for all x. (2.7) 

2.2 CONSTRAINED OPTIMIZATION 

Many times an optimization problem is constrained. That is, we are presented with 
the problem of minimizing some function f(x) with restrictions on the allowable 
values of x, as in the following example. 

■ EXAMPLE 2.3 

Consider the problem 

min f(x) where f(x) = x4 + 5x3 + 4x2 — 4x + 1 
X 

and x > - 1 . 5 . (2.8) 

This is the same problem as that in Example 2.2 except that x is constrained. 
A plot of f(x) and the allowable values of x are shown in Figure 2.2, and an 
examination of the plot reveals the constrained minimum. To solve this prob-
lem analytically, we find the three stationary points of / (x ) as in Example 2.2 
while ignoring the constraint. We find that the two local minima occur at 
x = —2.96 and x — 0.31, as in Example 2.2. We see that only one of these 
values, x — 0.31, satisfies the constraint. Next we must evaluate f(x) on the 
constraint boundary to see if it is smaller than at the local minimum x = 0.31. 
We find that 

f ( x ) Î 4 . 1 9 f o r * = -1.50 
J[X) \ 0.30 îovx= 0.31 . ^ ' y j 

We see that x = 0.31 is the minimizing value of x for the constrained mini-
mization problem. 

If the constraint boundary were farther to the left, then the minimizing 
value of x would occur at the constraint boundary rather than at the local 
minimum x = 0.31. If the constraint boundary were left of x = —2.96, then 
the minimizing value of x for the constrained minimization problem would be 
the same as that for the unconstrained minimization problem. 
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Figure 2.2 Example 2.3: A simple constrained minimization problem. The constrained 
minimum occurs at x = 0.31. 

Real-world optimization problems almost always have constraints. Also, the 
optimizing value of the independent variable almost always occurs on the constraint 
boundary in real-world optimization problems. This is not surprising because we 
normally expect to obtain the best engineering design, allocation of resources, or 
other optimization goal, by using all of the available energy, or force, or some other 
resource [Bernstein, 2006]. Constraints are therefore important in almost all real-
world optimization problems. Chapter 19 presents a more detailed discussion of 
constrained evolutionary optimization. 

2.3 MULTI-OBJECTIVE OPTIMIZATION 

Not only are real-world optimization problems constrained, but they are also multi-
objective. This means that we are interested in minimizing more than one measure 
simultaneously. For example, in a motor control problem we might be interested in 
minimizing tracking error while also minimizing power consumption. We could get 
a very small tracking error at the expense of high power consumption, or we could 
allow a large tracking error while using very little power. In the extreme case, we 
could turn off the motor to achieve zero power consumption, but then our tracking 
error would not be very good. 

EXAMPLE 2.4 

Consider the problem 

min[/(x) and g(x)], where f(x) = x4 + 5x3 + Ax2 — Ax + 1 
X 

and g(x) = 2{x + l ) 2 . (2.10) 
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The first minimization objective, / ( # ) , is the same as that in Example 2.2. 
But now we also want to minimize g{x). A plot of f(x), g(x), and their 
minima, are shown in Figure 2.3. An examination of the plot reveals that 
x = —2.96 minimizes / ( # ) , while x = — 1 minimizes g(x). It is not clear what 
the most preferable value of x would be for this problem because we have two 
conflicting objectives. However, it should be obvious from Figure 2.3 that 
we would never want x < — 2.96 or x > 0.31. lî x decreases from —2.96, or 
increases from 0.31, objectives f(x) and g(x) both increase, which is clearly 
undesirable. 
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Figure 2.3 Example 2.4: A simple multi-objective minimization problem. f(x) has two 
minima and g(x) has one minimum. The two objectives conflict. 

One way to evaluate this problem is to plot g{x) as a function of f(x). This 
is shown in Figure 2.4, where we have varied x from —3.4 to 0.8. Below we 
discuss each section of the plot. 

• x G [—3.4,-2.96]: As x increases from —3.4 to —2.96, both f(x) and g(x) 
decrease. Therefore, we will never choose x < —2.96. 

• x G [—2.96, —1]: As x increases from —2.96 to —1, g(x) decreases while f(x) 
increases. 

• x G [—1,0]: As x increases from —1 to 0, g(x) increases while f(x) decreases. 
However, on this part of the plot, even though g(x) is increasing, it is still less 
than g(x) for x G [—2, — 1]. Therefore, x G [—1,0] is preferable to x G [-2, —1]. 

• x G [0,0.31]: As x increases from 0 to 0.31, g(x) increases while f(x) decreases. 
We see from the plot that for x G [0,0.31], g(x) is greater than it is on the 
x G [—2.96,-2] part of the plot. Therefore, we will never want to choose 
x G [0,0.31]. 

• x G [0.31,0.8]: Finally, as x increases from 0.31 to 0.8, both f(x) and g(x) 
increase. Therefore, we will never choose x > 0.31. 
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Summarizing the above results, we graph potentially desirable values of f{x) 
and g(x) with the solid line in Figure 2.4. For values of x on the solid line, 
we cannot find any other x values that will simultaneously decrease both f(x) 
and g(x). The solid line is called the Pareto front, and the corresponding set 
of x values is called the Pareto set. 

Pareto set: x* = {x : x G [-2.96, -2] o r x G [-1,0]} 
Pareto front: {(f(x),g(x)) : x £ x*}. (2.11) 

After we obtain the Pareto set, we cannot say anything more about the op-
timal value of x. It is a question of engineering judgment to select a point 
along the Pareto front as the ultimate solution. The Pareto front gives a set 
of reasonable choices, but any choice of x from the Pareto set still entails a 
tradeoff between the two objectives. 

12 

10 

8 

S 6 

4 

2 

- 6 - 4 - 2 0 2 4 6 
f(x) 

Figure 2.4 Example 2.4: This figure shows g(x) as a function of f(x) for a simple multi-
objective minimization problem as x varies from —3.4 to 0.8. The solid line is the Pareto 
front. 

D 

Example 2.4 is a fairly simple multi-objective optimization problem with only 
two objectives. A typical real-world optimization problem involves many more than 
just two objectives, and so its Pareto front is difficult to obtain. Even if we could 
obtain the Pareto front, we would not be able to visualize it because of its high 
dimensionality. Chapter 20 presents a more detailed discussion of evolutionary 
multi-objective optimization. 
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2.4 MULTIMODAL OPTIMIZATION 

A multimodal optimization problem is a problem that has more than one local 
minimum. We saw an example of a multimodal problem in Figure 2.1, but there 
were only two local minimum in that problem so it was fairly easy to handle. Some 
problems, however, have many local minima and it can be challenging to discover 
which minimum is the global minimum. 

■ EXAMPLE 2.5 

Consider the problem 

m in / (x ,y ) , where (2.12) 
x,y 

/ (* , , ) = e - 2 0 e x p ( - 0 . 2 ^ ± Z ) - exp ( C ° s ( 2 ^ + ™ ^ ) . 

This is the two-dimensional Ackley function. It is plotted in Figure 2.5 and 
is defined in Appendix C.1.2. A plot like Figure 2.5 is often called a fitness 
landscape because it graphically illustrates how a fitness or cost function varies 
with independent variables. We cannot illustrate a plot like Figure 2.5 in 
more than two dimensions, but even if we have a problem with more than 
two dimensions, fitness or cost as a function of independent variables is still 
called a fitness landscape. Figure 2.5 shows that even in two dimensions, the 
Ackley function has many local minima. Imagine how many minima it has in 
20 or 30 dimensions. We could attack this problem by taking the derivative of 
/ ( # , y) with respect to x and y, and then solving for fx(x, y) = fy(x, y) = 0 to 
find the local minima. However, solving these simultaneous equations could 
be difficult. 

Figure 2.5 Example 2.5: The two-dimension Ackley function. 

D 
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The previous example shows why EAs are useful. We were able to solve Ex-
amples 2.2, 2.3, and 2.4 using graphical methods or calculus, but many real-world 
problems are more like Example 2.5 except with more independent variables, with 
multiple objectives, and with constraints. With these types of problems, methods 
based on calculus or graphics fall short, and EAs can give better results. 

2.5 COMBINATORIAL OPTIMIZATION 

Up until now we have considered continuous optimization problems; that is, the 
independent variables have been allowed to vary continuously. However, there are 
many optimization problems for which the independent variables are restricted to a 
set of discrete values. These types of problems are called combinatorial optimization 
problems. 

■ EXAMPLE 2.6 

Suppose a business person wants to visit four branch offices, starting and 
ending at his home office. The home office is in city A, and the branch offices 
are in cities B, C, and D. The business person wants to visit the branch 
offices in the order that minimizes his total travel distance. There are six 
possible solutions Si to this problem: 

Sx 

s2 
Sz 

s4 

s5 

s e 

A^B^C -+D^A 
A^B^D-^C -> A 
A-+C -*B-*D->A 
A^C^D^B^A 
A^D-^B^C ->A 
A^D^C^tB^A. 

It is easy for the business person to solve this problem by calculating the total 
distance for each of the six possible solutions.1 

D 

The problem of Example 2.6 is called the closed traveling salesman problem 
(TSP).2 We can easily enumerate all of the possible solutions for a four-city TSP. 
Searching through all possible solutions of a combinatorial problem is called a brute-
force search, or exhaustive search. If you have time to do that, then it is often the 
best way to solve a combinatorial problem because it guarantees a solution. 

But how many possible solutions exist for a general n—city TSP? A little thought 
shows that there are (n— 1)! possible solutions. This number grows very rapidly, and 
for modest values of n it is not possible to calculate all possible solutions. Suppose 
the business person needs to visit one city in each of the 50 states in the USA. 
The number of possible solutions is 49! = 6.1 x 1062. Could modern computers 

1 Actually, the problem is simpler than it seems at first. S\ is the reverse of Se, and so S\ and 5*6 
have the same total distance. The same can be said for S2 and 54, and S3 and £5. 
2The open TSP is the problem of visiting all cities exactly once without returning to the starting 
city. 
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calculate this number of possible solutions? The universe is about 15 billion years 
old, which is 4.7 x 1017 seconds. Suppose a trillion computers were running since 
the beginning of the universe, and suppose each of those trillion computers could 
calculate the distance for a trillion possible solutions every second. Then we would 
have calculated the distance for a total of 4.7 x 1041 possible solutions. We would 
not even have scratched the surface of solving the 50-city TSP. 

Here is another way of looking at the complexity of the TSP. There are some-
where between 1020 and 1024 grains of sand on earth [Weiland, 2009]. If each grain 
of sand on earth were an earth-like planet with the same amount of sand that earth 
has, then the number of possible 50-city TSP routes would still be much greater 
than the total number of mini-grains of sand. Obviously it is impossible to do a 
brute force search for the solution of such a large problem. 

We see that some problems are so large that a brute-force approach is simply 
not feasible. Also, combinatorial problems like the TSP don't have continuous 
independent variables and so they cannot be solved with derivatives. Although we 
can never be sure that we have the best solution to a combinatorial problem unless 
we try every possible solution, EAs provide a powerful way to find good solutions. 
EAs are not magic, but they can help find at least a good solution (if not the best 
solution) to these types of large, multidimensional problems. Potential solutions 
in an EA share information with each other and eventually come to a "consensus" 
of the best solution. We cannot prove that it is the best solution; we would have 
to look every possible solution to prove that we have found the best. But when 
compare EA solutions with other types of solutions, we see that EAs work pretty 
well. Chapter 18 discusses evolutionary combinatorial optimization problems in 
more detail. 

2.6 HILL CLIMBING 

This section presents a simple optimization algorithm called hill climbing. Actually, 
hill climbing is a family of algorithms with many variations. Some researchers 
consider hill climbing to be a simple EA, while others consider it a non-evolutionary 
algorithm. When we encounter a new optimization problem, hill climbing is often a 
good first choice for solving it because it is simple, surprisingly effective, has many 
simple variations, and provides a good benchmark with which to compare more 
complicated algorithms such as EAs. The idea of hill climbing is so straightforward 
that it must have been invented many times, and long ago, so it is difficult to 
determine its origin. 

If you want to get to the highest point in a landscape, one reasonable strategy 
is to simply take a step in the direction of steepest ascent. After that step, you 
re-evaluate the slope of the hill, and again take a step in the direction of steepest 
ascent. This process is continued until there are no directions which lead you higher, 
at which point you have reached the top of a hill. This is a local search strategy, 
and is called hill climbing. 

A better strategy would be to look around, estimate where the highest point is, 
and then estimate the best way to get there. This would eliminate the problem of 
zigzagging your way to the top, or getting stuck at the top of a small hill that is 
lower than the globally highest point. But if visibility is low, a local search strategy 
may be your best course of action. 
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Hill climbing may or may not work well, depending on the shape of the hill, the 
number of local maxima, and your initial position. Hill climbing can be used by 
itself as an optimization algorithm. It can also be combined with an EA, which 
would combine the global search ability of an EA with the local search ability of 
hill climbing. There are several varieties of hill climbing strategies [Mitchell, 1998], 
a few of which we discuss in this section. 

Figure 2.6 shows the steepest ascent hill climbing algorithm. This algorithm 
proceeds conservatively, changing only one solution feature at a time, and replacing 
the current best solution with the best one-feature change. 

xo <— randomly generated individual 
While not (termination criterion) 

Compute the fitness f(xo) of XQ 
For each solution feature q = 1, · · ·, n 

xq <- xo 
Replace the q-th solution feature of xq with a random mutation 
Compute the fitness f(xq) of xq 

Next solution feature 
xf <- aigmsxXq(f(xq) : q G [0,n]) 
If xo = x' then 

xo <- randomly generated individual 
else 

xo «- Χ' 

End if 
Next generation 

Figure 2.6 The above pseudocode outlines the steepest ascent hill climbing algorithm 
for the maximization of the n-dimensional function f(x). Note that xq is equal to xo but 
with its q-th feature mutated. 

Figure 2.7 shows the next ascent hill climbing algorithm, also called simple hill 
climbing. This algorithm, like the steepest ascent hill climbing algorithm, changes 
only one solution feature at a time. But the next ascent hill climbing algorithm is 
more greedy because as soon as a better solution is found, the current solution is 
replaced. 

The next two hill climbing algorithms randomly select which solution feature to 
mutate, and therefore fall under the general classification of stochastic hill climbing. 
Figure 2.8 shows the random mutation hill climbing algorithm. This algorithm is 
very similar to the next ascent hill climbing algorithm, except that the mutated 
solution feature is chosen randomly. 

Figure 2.9 shows the adaptive hill climbing algorithm. This algorithm is similar 
to the random mutation hill climbing algorithm, except that every solution feature 
is mutated with some probability before the mutated solution is compared with the 
current best solution. 

The results of a hill climbing algorithm can strongly depend on the initial con-
dition XQ in Figures 2.6-2.9. It therefore makes sense to try hill climbing with 
several different randomly generated initial conditions. This approach of putting a 
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hill climbing algorithm inside an initial condition loop is called random restart hill 
climbing. 

Xo —̂ randomly generated individual 
While not (termination criterion) 

Compute the fitness f(xo) of XQ 
ReplaceFlag «— false 
For each solution feature q = 1, · · ·, n 

Xq <- X0 

Replace the q-th solution feature of xq with a random mutation 
Compute the fitness f(xq) of xq 

If f(xq) > f(x0) then 
XQ <~ Xq 

ReplaceFlag «— true 
End if 

Next solution feature 
If not (ReplaceFlag) 

Xo <— randomly generated individual 
End if 

Next generation 

Figure 2.7 The above pseudo-code outlines the next ascent hill climbing algorithm for 
the maximization of the n-dimensional function f(x). Note that xq is equal to XQ but with 
its Q-th feature mutated. 

Xo *- randomly generated individual 
While not (termination criterion) 

Compute the fitness f(xo) of xo 
q «— randomly chosen solution feature index G [Ι,τι] 
X\ <— Xo 

Replace the g-th solution feature of x\ with a random mutation 
Compute the fitness f{x\) of x\ 
I f / ( x i ) > f(xo) then 

Xo —̂ X\ 

End if 
Next generation 

Figure 2.8 The above pseudo-code outlines the random mutation hill climbing algorithm 
for the maximization of the n-dimensional function f(x). Note that x\ is equal to xo but 
with a random feature mutated. 
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Initialize p m G [0,1] as the probability of mutation 
XQ 4— randomly generated individual 
While not (termination criterion) 

Compute the fitness f(xo) of xo 
X\ «— XQ 

For each solution feature q = 1, · · ·, n 
Generate a uniformly distributed random number r G [0,1] 
If r < pm then 

Replace the q-th solution feature of X\ with a random mutation 
End if 

Next solution feature 
Compute the fitness f{x\) of x\ 
If f{xi) > / ( x 0 ) then 

X0 <— X\ 

End if 
Next generation 

Figure 2.9 The above pseudo-code outlines the adaptive hill climbing algorithm for the 
maximization of the n-dimensional function }{x). Note that xq is equal to xo but with its 
q-th feature mutated. 

■ EXAMPLE 2.7 

We simulate the four hill climbing algorithms on a set of 20-dimensional bench-
mark problems (see Appendix C.l). Note that the benchmark problems in 
Appendix C.l are minimization problems, and so we adapt the hill climbing 
algorithms in a straightforward way to obtain hill descending algorithms. We 
run each algorithm on each benchmark 50 times, each time with a different 
initial condition. For adaptive hill climbing, we use pm — 0.1. We terminate 
each hill climbing algorithm after 1,000 fitness function evaluations. 

Table 2.1 shows the results. Note that steepest ascent hill climbing (Fig-
ure 2.6) requires at least n fitness function evaluations every generation (n = 
20 in our examples), while random mutation hill climbing (Figure 2.8) requires 
only one fitness function evaluation every generation. The vast majority of 
the computational effort of a heuristic algorithm is typically consumed by fit-
ness function evaluations (see Chapter 21). Therefore, for a fair comparison of 
different optimization algorithms, the number of fitness function evaluations 
should be the same for the algorithms that are being compared. If different 
optimization algorithms have the same number of fitness function evaluations 
per generation (for example, steepest ascent hill climbing in Figure 2.6 and 
next ascent hill climbing in Figure 2.7), then it would be fair to compare the 
algorithms on the basis of the number of generations. 

Table 2.1 shows that random mutation hill climbing performs the best on 12 
of the 14 benchmarks, and on average it far outperforms the other hill climb-
ing methods. Adaptive hill climbing and steepest ascent hill climbing each 
perform slightly better than random mutation hill climbing on one bench-
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mark. However, the performance of adaptive hill climbing can be strongly 
dependent on the mutation rate (see Problem 2.11), and we did not make any 
effort to find a good mutation rate in this example. 

Steepest Next Random 
Benchmark Ascent Ascent Mutation Adaptive 

Ackley 
Fletcher 

Griewank 
Penalty # 1 
Penalty # 2 

Quartic 
Rastrigin 

Rosenbrock 
Schwefel 1.2 

Schwefel 2.21 
Schwefel 2.22 
Schwefel 2.26 

Sphere 
Step 

2.27 
2.62 
9.58 

26624 
99347 
133.94 
3.76 
2.68 
1.63 
1.00 
3.65 
5.05 
17.97 
16.58 

1.82 
1.87 
4.41 
2160 
5690 
29.99 
2.52 
1.50 
1.37 
1.75 
2.73 
3.63 
7.32 
6.78 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.24 
1.02 
1.00 
1.00 
1.00 
1.00 

1.70 
1.68 
3.81 
281 

4178 
25.61 
2.10 
1.72 
1.00 
1.12 
2.30 
2.91 
6.09 
6.52 

Average 9012 565 1.02 323 

Table 2.1 Example 2.7: Relative performance of hill climbing algorithms. The table 
shows the normalized minimum found by four hill climbing algorithms, averaged over 
50 Monte Carlo simulations. Since hill climbing is stochastic, your results may vary. 

2.6.1 Biased Optimization Algorithms 

We now mention one important caveat related to benchmark functions that we 
must keep in mind during our optimization studies. This caveat includes two re-
lated statements: first, many benchmark cost functions have their minima near the 
middle of the search domain; and second, many optimization algorithms are biased 
toward the middle of the search domain.3 We discuss this biasing phenomenon 
in more detail in Appendix C.7, which we encourage the reader to carefully study 
before performing any serious research. Many of the simulation results in this book 
are based on benchmarks with minima at the center of the search domain. Those 
results are not intended to accurately portray optimization algorithm performance, 
but are only intended to illustrate the application of a particular optimization al-
gorithm. We need to implement the unbiasing approach of Appendix C.7 before 
we can safely make conclusions about optimization algorithm performance. 

3This is not necessarily the case for the hill climbing algorithms in this section, but it is the case 
for many of the evolutionary algorithms that we discuss later in this book. 
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2.6.2 The Importance of Monte Carlo Simulations 

Note that in Example 2.7 we averaged 50 simulation results to plot the performance 
of the binary G A and the continuous G A. Showing the results of a single simulation 
does not prove anything, because the results depend on a random number generator. 
We can obtain very few valid conclusions from a single simulation, or from a single 
experiment. We discuss this in more detail in Appendix B, but we also mention it 
here since this is the first place in this book that we have averaged the results of 
multiple simulations. 

Multiple simulations that are used for performance analysis are often called 
Monte Carlo simulations. The name came from John von Neumann, Stanislaw 
Ulam, and Nicholas Metropolis, during their work in the 1940s on nuclear weapons. 
Much of their work involved the analysis of the results of multiple experiments, and 
there was an obvious connection between the statistical analysis of their experiments 
and the statistical properties of gambling. This connection, in conjunction with the 
fact that Ulam's uncle was a notorious gambler at the casinos of Monte Carlo in 
Monaco, led to the name "Monte Carlo simulations" [Metropolis, 1987]. 

2.7 INTELLIGENCE 

In the early days of computing researchers realized that computers were very good 
at things that humans did poorly, like calculating the trajectory of a ballistic missile. 
But computers were (and still are) not effective at tasks that humans can do well, 
like recognizing a face. This led to attempts to mimic biological behavior in an 
effort to make computers better at such tasks. These efforts resulted in technologies 
like fuzzy systems, neural networks, genetic algorithms, and other EAs. EAs are 
therefore considered to be a part of the general category of computer intelligence. 

In our development of EAs, we try to create algorithms that are intelligent. But 
what does it mean to be intelligent? Does it mean that our EAs can score high 
on an IQ test? This section discusses the meaning of intelligence and some of 
its characteristics: adaptation, randomness, communication, feedback, exploration, 
and exploitation. These are the characteristics that we implement in EAs in our 
search for intelligent algorithms. 

2.7.1 Adaptation 

We usually consider adaptation to changing environments as a feature of intelli-
gence. Suppose you learn how to assemble a widget, and then your supervisor asks 
you to assemble a doohickey, which you've never seen before. If you are intelligent, 
you will be able to generalize what you know about widgets, and you will be able to 
assemble the doohickey. However, if you are not so intelligent, then you will have 
to be taught the specific details of doohickey assembly. 

However, adaptive controllers [Aström and Wittenmark, 2008] are not consid-
ered intelligent. A virus that can survive extreme environments is not considered 
intelligent. We thus conclude that adaptation is a necessary but not sufficient con-
dition for intelligence. We try to design EAs that can be adapted to a wide class of 
problems. Adaptability in an EA is only one of many criteria for a successful EA. 
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2.7.2 Randomness 

We usually think of randomness in negative terms. We don't like unpredictability in 
our lives and so we try to avoid it, and we try to control our environment. However, 
some degree of randomness is a necessary component of intelligence. Think of a 
zebra that is running from a lion. If the zebra runs in a straight line and at 
a constant speed, it will be easy to catch. But an intelligent zebra will zigzag 
and move unpredictably to avoid its predator. Conversely, think of a lion that is 
trying to catch a zebra. The lion stalks the herd of zebras each day. If the lion 
waits at the same place and at the same time every day, it will be easy to avoid. 
But an intelligent lion will strike at different places and different times and in an 
unpredictable way. Randomness is a characteristic of intelligence. 

Too much randomness will be counterproductive. If the zebra randomly decides 
to lie down while being chased, we would be right to question its intelligence. If a 
lion randomly decides to dig a hole in its search for a zebra, we would be right to 
question its intelligence. So randomness is a feature of intelligence, but only within 
limitations. 

Our EA designs will include some component of randomness. If we exclude 
randomness, our EAs will not work well. But if we use too much randomness, they 
will not work well either. We will need to use the right amount of randomness in 
our EA designs. Of course, as discussed earlier, EAs are adaptable. Therefore, good 
EAs will perform well over a range of randomness measures. We cannot expect the 
EAs to be so adaptable that we can use any level of randomness, but they will be 
adaptable enough so that the exact randomness measure will not be critical. 

2.7.3 Communication 

Communication is a feature of intelligence. Consider a genius who takes an IQ 
test, except the genius has no way of communicating. He will fail the IQ test even 
though he is a genius. Many deaf, dumb, and autistic individuals fail IQ tests 
even though they are quite intelligent. Children who are raised without human 
interaction are not creative, intelligent, happy, or well adjusted [Newton, 2004]. 
Their lack of communication with others during their formative years prevents 
them from developing any intellectual capacity beyond a young child. Their years 
of isolation are irrecoverable, and they cannot learn to communicate or adapt to 
society. 

Intelligence not only involves communication, but it is also emergent. That is, 
intelligence arises from a population of individuals. A single individual cannot be 
intelligent. It can be argued that there are many intelligent individuals in the 
world, and even if such an individual were isolated he would still be intelligent. 
However, such individuals gained their intelligence only through interaction with 
others. A single ant wanders aimlessly and accomplishes nothing, but a colony of 
ants can find the shortest path to food, build elaborate networks of tunnels, and 
organize themselves as a self-sustaining community. Likewise, a single individual 
will never accomplish anything if he never has any interaction with a community. 
A community, however, can send a man to the moon, connect billions of people 
through the Internet, and build food and water supply systems in the desert. 

We see that intelligence and communication form a positive feedback loop. Com-
munication is required to develop intelligence, and intelligence is required to com-



2 8 CHAPTER 2: OPTIMIZATION 

municate. But the main point here is that communication is a feature of intelligence. 
This is why most EAs involve a population of candidate solutions to some problem. 
Those candidate solutions, which we call individuals, communicate with each other 
and learn from each other's successes and failures. Over time, the population of 
individuals evolves a good solution to the optimization problem. 

2.7.4 Feedback 

Feedback is a fundamental characteristic of intelligence. This involves adaptation, 
which was discussed above. A system cannot adapt if it cannot sense and react to 
its environment. However, feedback involves more than adaptation; it also involves 
learning. When we make mistakes, we change so that we don't repeat those mis-
takes.4 However, even more importantly, when others make mistakes, we adjust 
our behavior so that we don't repeat those mistakes. Failure provides negative 
feedback. Conversely, success (our's and others') provides positive feedback and 
influences us to adopt those behaviors to which we attribute success. We often see 
others who don't seem to learn from mistakes, and who don't adopt behaviors that 
are proven to lead to success; we don't consider such people to be very intelligent. 

Feedback is also the basis for many natural phenomena. The water cycle consists 
of an endless succession of rain and evaporation. More rain leads to more evapora-
tion, and more evaporation leads to more rain. Since this includes a fixed amount 
of water, the water cycle leads to a stable amount of moisture on the surface of the 
earth and in the sky. If this feedback mechanism were somehow disturbed, there 
would be a lot of difficulties for life, including floods and drought. 

The sugar/insulin balance in the human body is another feedback mechanism. 
The more sugar we eat, the more insulin our pancreas produces; the more insulin 
our pancreas produces, the more sugar is absorbed from the blood. Too much sugar 
in the blood leads to hyperglycemia, and too little sugar in the blood leads to hy-
poglycemia. Diabetes is the disturbance of the sugar/insulin feedback mechanism, 
and can lead to serious and long-term health problems. 

This characterization of feedback as a hallmark of intelligence is often recognized 
in intelligent control theory. Feedback is not a sufficient condition for intelligence. 
No one would call a proportional controller intelligent, and no one would call a 
mechanical thermostat intelligent. Feedback is a necessary, but not sufficient, con-
dition for intelligence. 

Our EA designs will incorporate positive and negative feedback. An EA without 
feedback will not be very effective, but an EA with feedback has satisfied this 
necessary condition for intelligence. 

2.7.5 Exploration and Exploitation 

Exploration is the search for new ideas or new strategies. Exploitation is the use of 
existing ideas and strategies that have proven successful in the past. Exploration is 
high-risk; a lot of new ideas waste time and lead to dead ends. However, exploration 
can also be high-ret urn; a lot of new ideas pay off in ways that we could not 
have imagined. Exploitation is closely related to the feedback strategies discussed 

4 Albert Einstein is reputed to have defined insanity as doing the same thing over and over again 
and expecting different results. 
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previously. Someone who is intelligent uses what they know and what they have 
instead of constantly reinventing the wheel. But someone who is intelligent is also 
open to new ideas, and is willing to take calculated risks. Intelligence includes the 
proper balance of exploration and exploitation. The proper balance of exploration 
and exploitation depends on how regular our environment is. If our environment is 
rapidly changing, then our knowledge quickly becomes obsolete and we cannot rely 
as much on exploitation. However, if our environment is highly consistent, then our 
knowledge is dependable and it may not make sense to try very many new ideas. 

Our EA designs will need a proper balance of exploration and exploitation to 
be successful. Too much exploration is similar to too much randomness, which 
we discussed earlier, and will probably not give good optimization results. But 
too much exploitation is related to too little randomness. The proper balance of 
exploration and exploitation in EAs was called "the optimal allocation of trials" by 
John Holland, one of the pioneers of genetic algorithms [Holland, 1975]. 

2.8 CONCLUSION 

The key point of this chapter is that optimization is a fundamental aspect of engi-
neering and problem solving. When we try to optimize a function, we refer to the 
function as an objective function. When we try to minimize a function, we refer 
to it as a cost function. When we try to maximize a function, we refer to it as a 
fitness function. Any optimization problem can easily be converted back and form 
between a minimization problem and a maximization problem. Some special types 
of problems that we introduced in this chapter are constrained problems, multi-
objective problems, and multimodal problems. Almost all real-world optimization 
problems are constrained, multi-objective, and multimodal. Another special class 
of problems is combinatorial problems, in which the independent variables belong 
to a finite set. 

We introduced hill climbing in this chapter, which is a simple but effective op-
timization algorithm. There are many different types of hill climbing algorithms. 
Although they are usually quite simple, they provide a nice benchmark with which 
to compare more complicated optimization algorithms. Finally, we mentioned some 
features of natural intelligence, and discussed how we can implement those features 
in our evolutionary algorithms to justify the label intelligent. 
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PROBLEMS 

Written Exercises 

2.1 Consider the problem min / (x ) , where 

4 

f(x) = 40 + ^ x 2 - 1 0 c o s ( 2 7 r x ; ) · 

Note that f(x) is the Rastrigin function - see Section C . l . l l . 
a) What are the independent variables of f(x)l What are the decision vari-

ables of f(x)l What are the solution features of / (# )? 
b) What is the dimension of this problem? 
c) What is the solution to this problem? 
d) Rewrite this problem as a maximization problem. 

2.2 Consider the function f(x) = sinx. 
a) How many local minima does f(x) have? What are the function values at 

the local minima, and what are the locally minimizing values of x? 
b) How many global minima does f(x) have? What are the function values 

at the global minima, and what are the globally minimizing values of x? 

2.3 Consider the function f(x) = xs + 4x2 — 4x + 1. 
a) How many local minima does f(x) have? What are the function values at 

the local minima, and what are the locally minimizing values of xl 
b) How many local maxima does f(x) have? What are the function values 

at the local maxima, and what are the locally maximizing values of xl 
c) How many global minima does / (x ) have? 
d) How many global maxima does f(x) have? 

2.4 Consider the same function as in Problem 2.3, f(x) = x3 + 4x2 — 4x + 1 , but 
with the constraint x G [—5,3]. 

a) How many local minima does f(x) have? What are the function values at 
the local minima, and what are the locally minimizing values of xl 

b) How many local maxima does f(x) have? What are the function values 
at the local maxima, and what are the locally maximizing values of xl 

c) How many global minima does f(x) have? What is the function value at 
the global minimum, and what is the globally minimizing values of xl 

d) How many global maxima does f(x) have? What is the function value at 
the global maximum, and what is the globally maximizing values of xl 

2.5 Recall that Figure 2.4 shows the Pareto front for a two-objective problem in 
which the goal is to minimize both objectives. 

a) Sketch a possible set of points in the (/, #)-plane and the Pareto front for 
a problem in which the goal is to maximize f(x) and minimize g(x). 

b) Sketch a possible set of points in the (/, #)-plane and the Pareto front for 
a problem in which the goal is to minimize / (x ) and maximize g(x). 
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c) Sketch a possible set of points in the (/, g)-plane and the Pareto front for 
a problem in which the goal is to maximize both f(x) and g(x). 

2.6 How many unique closed paths exist through N cities? By unique we mean 
that the starting city does not matter, and the direction of travel does not matter. 
For example, in a four-city problem with cities A, B, C, and D, we consider route 
A - ^ B ^ C ^ D - ^ A equivalent to routes D-+C-*B->A^D and 
B-+C -> D^A-* B. 

2.7 Consider the closed TSP with the cities in Table 2.2. 

City x y 

A 5 9 
B 9 8 
C - 6 - 8 
D 9 - 2 
E - 5 9 
F 4 - 7 
G - 9 1 

Table 2.2 TSP coordinates of cities for Problem 2.7. 

a) How many closed routes exist through these seven cities? 
b) Is it easy to see the solution by looking at the coordinates in Table 2.2? 
c) Plot the coordinates. Is it easy to see the solution from the plot? What is 

the optimal solution? This problem shows that looking at a problem in a 
different way might help us find a solution. 

2.8 Given an arbitrary maximization problem f(x) and a random initial can-
didate solution xo, what is the probability that the steepest ascent hill climbing 
algorithm will find a value x' such that f(x') > f(xo) after the first generation? 

Computer Exercises 

2.9 Plot the function of Problem 2.4 with the local and global optima clearly 
indicated. 

2.10 Consider the multi-objective optimization problem min{/i , /2} , where 

/ i ( x i , x 2 ) = x\ + #2, and / 2 ( x i , ^ ) = x\+x\ 

and x\ and x2 are both constrained to [—10,10]. 
a) Calculate j\{x\,X2) and /2(#i,#2) for all allowable integer values of x\ 

and #2, and plot the points in ( / i , / 2 ) space (a total of 212 = 441 points). 
Clearly indicate the Pareto front on the plot. 

b) Given the resolution that you used in part (a), give a mathematical de-
scription of the Pareto set. Plot the Pareto set in (£1,2:2) space. 
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2.11 Adaptive hill climbing. 
a) Run 20 Monte Carlo simulations of the adaptive hill climbing algorithm, 

with 1,000 generations per Monte Carlo simulation, for the two-dimensional 
Ackley function. Record the minimum value achieved by each Monte Carlo 
simulation, and compute the average. Do this for 10 different mutation 
rates, p m = /c/10 for k G [1,10], and record your results in Table 2.3. 
What is the best mutation rate? 

b) Repeat part (a). Do you get the same, or similar, results? What do you 
conclude about the number of Monte Carlo simulations that you need to 
get reproducible results for this problem? 

c) Repeat part (a) for the 10-dimensional Ackley function. What do you 
conclude about the relationship between the optimal mutation rate and 
the problem dimension? 

Pm Average Result 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

Table 2.3 Complete this table for Problem 2.11. 
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CHAPTER 3 

Genetic Algorithms 

Genetic algorithms are NOT function optimizers. 
—Kenneth De Jong [De Jong, 1992] 

Genetic algorithms (GAs) are the earliest, most well-known, and most widely-
used EAs. GAs are simulations of natural selection that can solve optimization 
problems. In spite of the above quote by Kenneth De Jong, GAs often serve as 
effective optimization tools. De Jong's quote emphasizes the point that GAs were 
originally developed to study adaptive systems rather than to optimize functions. 
GAs comprise a much more broad class of systems than function optimizers. We can 
use GAs to study the dynamics of adaptive systems [Mitchell, 1998, Chapter 4], to 
provide advice to fashion designers [Kim and Cho, 2000], to provide design tradeoffs 
to bridge designers [Furuta et al., 1995], and for many other non-optimization 
applications. Sometimes the dividing line between an optimization algorithm and a 
non-optimization algorithm is fuzzy because all algorithms attempt to function as 
well as possible. In any case, our main interest in GAs in this book is their specific 
application as optimization algorithms. To begin our study of GAs, we observe 
some basic features of natural selection. 

1. A biological system includes a population of individuals, many of which have 
the ability to reproduce. 
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2. The individuals have a finite life span. 

3. There is variation in the population. 

4. The ability to survive is positively correlated with the ability to reproduce. 

Genetic algorithms simulate each of these features of natural selection. Given an 
optimization problem, we create a population of candidate solutions, which we 
call individuals. Some solutions are good, and some are not so good. The good 
individuals have a relatively high chance of reproducing, while the poor individuals 
have a relatively low chance of reproducing. Parents beget children, and then the 
parents drop out of the population to make way for their offspring. As generations 
come and go, the population becomes more fit. Sometimes one or more "supermen" 
evolve to become highly fit individuals that can provide near-optimal solutions to 
our engineering problem. 

Overview of the Chapter 

This chapter gives an overview of natural genetics, and also of artificial genetic 
algorithms for optimization problems. Since we are just getting started with EAs 
in this chapter, we spend more time in this chapter on history and biological under-
pinnings than we do in most of the later chapters. The reader who wants to jump 
right in to the study of GAs can safely skip the first three sections without seriously 
jeopardizing their understanding of GAs. Section 3.1 briefly discusses the history of 
the science of genetics, focusing on the work of Charles Darwin and Gregor Mendel 
in the 19th century. Section 3.2 reviews the science of genetics, which forms the 
foundation of GAs. Section 3.3 provides a history of computer simulations of genet-
ics, beginning in the 1940s with biologists who were interested in studying natural 
selection, and ending with the explosion of G A research in the 1970s and 1980s. 

Section 3.4 develops a simple binary GA in a methodical, step-by-step manner. 
The G A is based on natural genetics, and so it represents solutions to optimization 
problems as chromosomes with binary alleles. The binary GA is naturally suited 
to optimization problems whose domain is comprised of an n-dimensional binary 
search space, or at least to problems whose domains are discrete. 

We can use bit strings to represent candidate solutions to optimization problems 
with continuous domains, provided that we use enough bits to give us the required 
resolution. But it is more natural to represent candidate solutions to continuous-
domain problems as vectors of real numbers. Section 3.5 therefore extends GAs to 
continuous-domain problems. 

3.1 THE HISTORY OF GENETICS 

Genetics is the study of heredity and variation in living organisms. This section 
gives a brief history of the development of modern genetics, focusing on the work of 
Charles Darwin, the father of evolution, and Gregor Mendel, the father of genetics. 

3.1.1 Charles Darwin 

Charles Darwin was born in England in 1809, the son of the wealthy doctor Robert 
Darwin. Charles's privileged position in life allowed him to wander from one interest 
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to another as a young man, apparently destined to waste his life in lazy meanderings. 
His father was a hard-working man, but as often happens, hard work by the father 
resulted in laziness in the son. "You care for nothing but shooting, dogs, and rat-
catching; and you will be a disgrace to yourself and all your family," Robert told 
his son [Darwin et al., 2002, page 10]. Robert tried to involve his son in his medical 
practice, but Charles was not interested, and besides, he hated the sight of blood. 
So Robert sent his son to Cambridge University to study for the ministry. 

Charles wasn't really interested in his studies at Cambridge; the only thing he 
was interested in was the outdoors. He spent all of his time exploring and studying 
nature, reading the books of great naturalists, and collecting beetles. His life began 
to take on some focus as he became more proficient as a naturalist. Charles began 
meeting professors and other students who shared his interest in nature. He began 
making plans to leave his ministerial studies and pursue his true passion in life. He 
was finally becoming ambitious. 

In 1831, at the age of 22, Charles applied for a position on the Beagle, a ship 
that was commissioned to survey the southern tip of South America for the English 
government. Charles was accepted for the position under the condition that he pay 
his own way. 

What would you do if you were the father of Charles Darwin? You've sent your 
son to school and have paid for three years of ministerial training, and now he comes 
to you asking for funds to pay for a five-year sea voyage as a naturalist. You would 
say no, of course. And that is just what Robert told his son - at first. Fortunately 
for Charles, Robert recognized that his son was becoming a man and had found 
a passion in life. Robert eventually allowed himself to become convinced, and he 
agreed to fund the excursion. 

During the five-year voyage of the Beagle, Charles lived on the 90-foot long, 
25-foot wide ship with over 70 other sailors. The ship also contained surveying 
equipment and enough supplies to last for several months at sea. For Charles it 
must have been a difficult transition from his life of ease, but he made the most of 
it. He spent his time at sea reading and studying. When the ship stopped at islands 
or at the South American mainland, he collected animals and sent them back to 
England on the next available ship. He collected a huge variety of species during 
his travels. Similar species on neighboring islands were different enough from one 
another that each seemed to have adapted to its own particular environment. 

Charles returned home to England in 1836 at the age of 27. Almost immedi-
ately after his return to England, he began working on his book Origin of Species 
[Darwin, 1859], which would end up being a decades-long project. He also was ac-
tive in writing journal papers and speaking at conferences. He continued studying 
and learning as he began putting together a coherent theory of natural selection. 
Natural selection says that the most fit individuals survive and pass on their char-
acteristics to their offspring. This is how adaptation takes place - through the 
"survival of the fittest." 

As Charles continued working on his book, he was hesitant to publicize his theory 
of evolution. Having studied the ministry for three years, he knew that his theory 
could generate a storm of controversy because of its possible contradiction with 
the Bible. He wanted to build an air-tight case and a true magnum opus before 
publishing his results. However, in 1858 he received a paper from Alfred Wallace, 
a naturalist who was traveling in the South Pacific. Wallace had independently 
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arrived at many of the same ideas as Darwin, and sent a paper to Darwin asking 
for his help in publishing it. 

Darwin was in somewhat of a predicament. He had a choice to make. He could 
"lose" Wallace's paper,1 publish his own results, and claim precedence for his theory 
of evolution. Or he could submit Wallace's paper for publication and allow Wallace 
to have precedence. To his credit, Darwin decided to try to strike a balance. He 
quickly wrote his own paper, and then presented both his and Wallace's paper at 
the next available conference. He then put the finishing touches on his book, which 
ended up being much shorter than he originally intended2 due to his haste to stake 
a claim to the credit that he deserved. The Origin of Species was published in 1859, 
and the first printing of 1,250 copies sold out in one day. Darwin was on the fast 
track to becoming the most famous and controversial scientist of his generation. 

Although Darwin's theory of evolution quickly gained scientific credibility, like 
all new theories, it was not without detractors. First, it seemed to go against the 
Bible's teaching of the special creation of all species and thus was susceptible to 
attacks by religious leaders. Second, Darwin did not have any idea how traits were 
passed by parents to their offspring. In some ways it is surprising that his theory 
gained acceptance as quickly as it did in spite of his lack of explanation for heredity. 
He observed that it happened and so he postulated natural selection, but he could 
not say how it happened. 

Darwin, along with other scientists of his time, had two fundamental misconcep-
tions about heredity. First, he believed that the traits of parents could be blended 
in their offspring; for example, the child of a black mouse and a white mouse might 
be gray. Second, he believed that acquired traits could be passed to offspring. For 
example, a man who lifts weights and becomes strong will tend to have strong 
children because of his weight lifting. 

Darwin, a child of privilege, developed the theory of natural selection, but it 
would be left to a child of poverty, Gregor Mendel, to prove it. 

3.1.2 Gregor Mendel 

Gregor Mendel was the first to understand and explain how heredity occurs. He 
was born as Johann Mendel in 1822 to a poor farmer in Czechoslovakia [Bankston, 
2005]. His father needed him to help on the farm, but young Johann was much 
more suited to academics than physical labor. His parents could barely afford it, 
but they sent him to school in order to help him gain the opportunities in life that 
they lacked. In spite of his parents' support and his own part-time work, he could 
barely survive financially as a student. His financial situation was much the same 
as many graduate students today, except that there were fewer opportunities for 
financial aid. 

At the age of 21, Mendel heard about a nearby monastery where he could con-
tinue his education without any financial worries. He would have to take a vow of 
poverty and celibacy, but the financial benefits were too good to turn down. Mendel 

1Who would have doubted Darwin's claim that a letter mailed from the South Pacific to England 
in 1858 had never arrived? 
2This all worked out for the best in the long run. Darwin's book was about 500 pages. If he had 
finished it the way he wanted to, it would have been several hundred pages longer and would have 
been more daunting to potential readers. By making the book shorter he increased his readership 
and subsequent success. 
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was not particularly religious, but he jumped at the opportunity and joined the Au-
gustinian order of the St. Thomas Monastery. 

Augustine, who lived in the Roman empire around 400 AD, was one of the 
greatest intellectual leaders in Christian history. His theology emphasized the abil-
ity of God to communicate to man through secular knowledge. The monastery that 
Mendel joined, in keeping with the philosophy of its namesake, encouraged learning 
in all areas of life and was thus a perfect fit for Mendel. It was "worldly" compared 
with many other monasteries. The monks did not have to punish themselves, or 
spend all day praying, or take vows of silence. They only had to study, believing 
that God spoke to them through their learning. In accordance with tradition, Jo-
hann Mendel gave himself a new name when he joined St. Thomas; his name was 
now Gregor Mendel. 

As a monk, Mendel continued to take classes at universities, taught science 
at nearby schools, read, and conducted his own research at the monastery. The 
research that he pursued involved the breeding of plants, and in particular, peas. 
This was a fitting avenue for his creative talents because of his background on his 
father's farm. 

As Mendel experimented with peas, he noticed that they had various traits. Some 
were smooth, while others were rough; some were more green, while others were 
more yellow; some had buds in one location, others had buds in another location. 
As Mendel experimented, he realized that the traits were controlled by some unseen 
unit of heredity, which he called elements. Some of the elements were strong and 
tended to have more control over the peas' traits. Other elements were weak and 
had less control over the peas' traits. Today, we use the word gene instead of 
element, and we say that genes are either dominant or recessive, rather than strong 
or weak. But it was Mendel who first understood genetics, heredity, and dominance. 
Mendel's work was the missing link in Darwin's theory, and explained how natural 
selection worked. 

Mendel presented his findings at a conference in 1865. This was only six years 
after Darwin's publication of Origin of Species, but for some reason Mendel's au-
dience did not realize the magnitude of what he had discovered. The reception of 
Mendel's scientific breakthrough could not have been more different than that of 
Darwin's. Whereas Darwin became immediately famous, Mendel's work was ig-
nored. He continued to work in obscurity at St. Thomas, publishing a few papers 
here and there, all of which were essentially overlooked by the scientific community. 

Mendel became the administrative leader of St. Thomas in 1868 and didn't have 
much time for science after that .3 Mendel died in 1884. His work on genetics was 
finally rediscovered by the Dutch biologist Hugo de Vries, the German botanist 
Carl Correns, and the Austrian agronomist Erich von Tschermak, all around 1900. 

3.2 THE SCIENCE OF GENETICS 

Each of our individual characteristics, or traits, is controlled by a pair of genes. 
Human genetics are therefore called diploid, meaning that the genes for each trait 
occur in pairs. Some plants and animals are haploid, meaning that each trait is 

3 As often happens in academia today, a thriving career in research was tragically cut short by a 
promotion to administration. 
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determined by a single set of genes. Other organisms are polyploid, meaning that 
each trait is determined by more than two sets of genes. 

In diploid genetics, some genetic values are dominant while others are recessive. 
If a dominant and recessive gene both appear in an individual, then the dominant 
gene will determine the trait that appears in the individual. The only way that a 
recessive gene can determine the trait is if both genes are the same. 

■ EXAMPLE 3.1 

Consider three individuals: Chris has two brown-eye genes, Kim has two 
green-eye genes, and Terry has a brown-eye gene and a green-eye gene. Since 
Chris has two brown-eye genes, Chris has brown eyes. Since Kim has two 
green-eye genes, Kim has green eyes. Since Terry has one brown-eye gene and 
one green-eye gene, and the brown-eye gene is dominant, Terry has brown 
eyes. 

• Chris: brown/brown —» brown eyes 

• Kim: green/green —>· green eyes 

• Terry: brown/green —> brown eyes 

If Chris and Terry mate, they will each contribute one eye-color gene to 
their offspring. Their offspring could therefore have either two brown-eye 
genes, or else one brown-eye gene and one green-eye gene. All of their offspring 
will have brown eyes since brown is dominant. 

If Chris and Kim mate, their offspring will all have one brown-eye gene 
from Chris and one green-eye gene from Kim. All of their offspring will have 
brown eyes since brown is dominant. 

If Terry and Kim mate, their offspring will have either one brown-eye gene 
and one green-eye gene, or two green-eye genes. Their offspring could either 
have brown eyes or green eyes. 

a 

Now suppose that there is some evolutionary benefit in having green eyes. For 
example, females may be highly attracted to males with green eyes. Or perhaps 
green eyes are more receptive to certain frequencies of light, which enables green-
eyed individuals to be more successful in hunting. In that case the green-eyed 
individuals will be more likely to survive than the brown-eyed individuals. Fur-
thermore, the green-eyes will be more likely to be strong and successful than the 
brown-eyes, which will give them more opportunities to reproduce. This will af-
fect the gene pool of the human race by increasing the number of green-eye genes 
while reducing the number of brown-eye genes. This is called natural selection, or 
survival of the fittest, and this is what Darwin deduced during his journey on the 
Beagle during the 1830s. 

Sometimes a mutation affects the parents' offspring. In this case the genes are 
not passed intact from parent to offspring, but the genes are instead changed. Mu-
tations are caused by the fundamental imperfection of life and biological processes, 
including radiation and illness. 
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The vast majority of mutations are neutral; they have little or no effect on the 
offspring because of the remarkable resilience and redundancy of biology. These 
neutral mutations are important in biology's search for improved fitness, and we 
will see later in this book that mutations are also usually important in an EA's 
search for improved fitness. However, the majority of mutations that measurably 
affect biological offspring are harmful. In fact, we can say that almost all such 
mutations are harmful. There are more than 6,000 commonly-occurring single-
gene mutations that cause disease, and these occur in one of every 200 births. 
Some genetic disorders appear at birth while others may show up only later in life. 
For example, many types of cancer have a genetic component. 

However, once in a great while a mutation appears that is actually beneficial. 
For example, suppose that in Example 3.1, one of Terry and Kim's offspring has 
a mutation that results in a purple-eye gene. Suppose that this offspring with 
purple eyes has sharper vision than average because of the correlation of purple 
irises with higher corneal adaptability. This allows the purple-eyed mutant to be 
more successful in hunting. He becomes strong and successful because of his purple 
eyes, and this allows him more opportunities to mate. If his purple-eye gene is 
dominant, then all of his offspring will have purple eyes, and the mutation will 
spread throughout the species. If his purple-eye gene is recessive, he could have 
offspring with purple eyes if he finds another purple-eye mutation to mate with. 
Mutation, accompanied by natural selection, helps improve the survivability of 
the species. Without mutation the species would become stagnant. Mutation is 
generally harmful to individuals, but ironically it is beneficial to the species as a 
whole. 

3.3 THE HISTORY OF GENETIC ALGORITHMS 

1903 was a good year for technology. The Marconi Company began the first reg-
ular trans-Atlantic radio broadcast, the Wright brothers successfully completed 
their first airplane flight, and Neumann Janos was born in Budapest, Hungary. 
Neumann's genius displayed itself at a young age in his voracious reading and his 
mathematical aptitude. His parents, both of whom were from educated upper-class 
families, recognized early on that he was a prodigy, but they were careful not to 
push him too hard. By the time he was 23 years old he had an undergraduate 
degree in chemical engineering and a PhD in mathematics. He continued to be 
productive as an academic professional, and in 1929 accepted a faculty position at 
Princeton University in New Jersey. His name was now John von Neumann, and in 
1933 he became one of the original members of Princeton's Institute of Advanced 
Studies. 

During his wide-ranging career at Princeton, von Neumann made fundamental 
contributions to mathematics, physics, and economics. He was one of the leaders of 
the atomic bomb effort during World War II, and he was also one of the pioneers of 
the invention of the digital computer. There were others who were just as influential 
(or perhaps even more influential) in the development of digital computing - for 
example, Alan Turing (who worked with von Neumann at Princeton), and John 
Mauchly and John Eckert (who led the construction of ENIAC, the first computer, 
in the 1940s). But it was von Neumann who first realized that program instructions 
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should be stored in the same way in a computer as program data. To this day, such 
machines are called "von Neumann machines." 

After the war, von Neumann became interested in artificial intelligence. In 1953 
he invited Italian-Norwegian mathematician Nils Barricelli to Princeton to study 
artificial life. Barricelli used the new digital computers to write simulations of 
evolutionary processes. He was not interested in biological evolution, and he was 
not interested in solving optimization problems. He wanted to create artificial life 
inside a computer by using processes that are found in nature (e.g., reproduction 
and mutation). In 1953 he wrote, "A series of numerical experiments are being 
made with the aim of verifying the possibility of an evolution similar to that of 
living organisms, taking place in an artificially created universe" [Dyson, 1998, 
page 111]. Barricelli became the first person to write genetic algorithm software. 
His first work on the subject was published in Italian in 1954 with the title "Esempi 
numerici di processi di evoluzione" (Numerical models of evolutionary processes) 
[Barricelli, 1954]. 

Alexander Eraser, born in London in 1923, followed shortly after Barricelli and 
used computer programs to simulate evolution. His education and career took him 
to Hong Kong, New Zealand, Scotland, and finally, in the 1950s, to the Com-
monwealth Scientific and Industrial Research Organisation in Sydney, Australia. 
Fraser was not an engineer; he was a biologist, and he was interested in evolution. 
He couldn't observe evolution happening in the world around him because it was 
too slow, requiring time periods on the order of millions of years. So Fraser de-
cided that he would study evolution by creating his own universe inside of a digital 
computer. That way he could speed up the process and observe how evolution 
really worked. In 1957 Fraser wrote a paper titled "Simulation of genetic systems 
by automatic digital computers" [Fraser, 1957] becoming the first to use computer 
simulations for the express purpose of studying biological evolution. He published 
many papers about his work, mostly in biology journals. In the late 1950s and 
1960s, many other biologists followed in his steps and began using computers to 
simulate biological evolution. 

Hans-Joachim Bremermann, a mathematician and physicist, also performed early 
computer simulations of biological evolution. His first work on the subject was pub-
lished as a technical report in 1958 while he was a professor at the University of 
Washington, and was titled "The evolution of intelligence" [Fogel and Anderson, 
2000]. Bremermann worked for most of his career at the University of California, 
Berkeley, where in the 1960s he used computer simulations to study the operation 
of complex systems, especially evolution. But his computer programs didn't just 
model evolution - they also simulated parasite/host interactions, pattern recogni-
tion by the human brain, and immune system response. 

George Box, born in 1919 in England, was also interested in artificial evolution, 
but unlike his predecessors, he wasn't interested in artificial life or evolution for its 
own sake. He wanted to solve real-world problems. Box used statistics to analyze 
the design and results of experiments, then he became an industrial engineer and 
used statistics to optimize manufacturing processes. What 's the best way to lay 
out the machines on the plant floor to maximize the production of widgets? What 's 
the best way to schedule the flow of material through the plant? During the 1950s, 
Box developed a technique that he called "evolutionary operation" as a way of 
optimizing an industrial process while it was operating. His work was not a GA per 
se, but it did use the idea of evolution via an accumulation of many incremental 
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changes to optimize an engineering design. His first paper on the subject was 
published in 1957 with the title "Evolutionary operation: A method for increasing 
industrial productivity" [Box, 1957]. 

George Friedman, like George Box, was also a practical man. For his 1956 
Master's thesis at UCLA, he designed a robot that could learn how to build electric 
circuits to control its own behavior. The title of his thesis was "Selective Feedback 
Computers for Engineering Synthesis and Nervous System Analogy" [Friedman, 
1998], [Fogel, 2006]. His work was similar to today's GAs, although he used the 
term "selective feedback computer" to describe his approach. The last paragraph 
of his conclusion states, "The concepts and schematic illustrations in this paper, 
while not conclusively demonstrating the usefulness of [GAs] ... did at least indicate 
a possible area for further investigation." Indeed! Now, more than a half century 
after Friedman's thesis, thousands of technical articles are published every year on 
the topic of genetic algorithms. 

Another pioneer in the area of genetic algorithms was Lawrence Fogel, who 
began working on GAs in 1962. In 1966, along with Alvin (Al) Owens and Michael 
(Jack) Walsh, he wrote the first book about GAs: Artificial Intelligence through 
Simulated Evolution [Fogel et al., 1966]. Fogel's early work in genetic algorithms 
was motivated by engineering problems such as the prediction of signals, modeling 
combat, and controlling engineering systems. Lawrence Fogel's son, David Fogel, 
edited an important volume that contains 31 foundational papers about GAs and 
related topics [Fogel, 1998]. 

After the seminal work of Barricelli, Fraser, Bremermann, Box, and Friedman 
in the 1950s, others began using genetic algorithms to study biological evolution 
and to solve engineering problems. Some important advances in genetic algorithms 
were made in the 1960s by John Holland, a professor of psychology, electrical engi-
neering, and computer science at the University of Michigan. In the 1960s Holland 
was interested in adaptive systems. He wasn't necessarily interested in evolution 
or optimization, but rather in how systems adapt to their surroundings. He began 
teaching and conducting research in these areas, and in 1975 he wrote his famous 
book Adaptation in Natural and Artificial Systems [Holland, 1975]. The book be-
came a classic because of its presentation of the mathematics of evolution. Also in 
1975, Holland's student Kenneth De Jong finished his doctoral dissertation, titled 
"An analysis of the behavior of a class of genetic adaptive systems." De Jong's dis-
sertation was the first systematic and thorough investigation of the use of GAs for 
optimization. De Jong used a set of sample problems to explore the effects of vari-
ous GA parameters on optimization performance. His work was so thorough that 
for a long time any optimization paper that did not include De Jong's benchmark 
problems was considered inadequate. 

It was in the 1970s and 1980s that G A research increased exponentially. This 
was probably due to several factors. One factor was the increased computing power 
that became available with the popularization and commercialization of the tran-
sistor in the 1950s, which exponentially increased computing capabilities. Another 
factor was the increased interest in biologically-motivated algorithms as researchers 
saw the limitations of conventional computing. Fuzzy logic and neural network re-
search, two other biologically-motivated computing algorithms, also increased ex-
ponentially in the 1970s and 1980s, even though those paradigms do not require 
much computing power. 
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3.4 A SIMPLE BINARY GENETIC ALGORITHM 

Suppose you have a problem that you want to solve. If you can represent each 
possible solution to the problem as a bit string, then a GA might be able to solve the 
problem. Each potential solution is called a "candidate solution" or "individual." 
A group of individuals is called the "population" of the G A. This means that we 
need to encode each problem parameter as a bit string. This section introduces 
G As by giving a couple of simple examples. We do not present these examples 
as realistic problems, but we present them as straightforward problems that nicely 
illustrate the essential features of G As. 

3.4.1 A Genetic Algorithm for Robot Design 

Suppose that our problem involves the design of a low-weight mobile robot that has 
enough power to navigate rough terrain, and enough range that it does not need to 
return to its home base too often. The parameters that we need to specify in our 
robot design include the motor type and size, and the power source type and size. 
The motor type and size might be encoded as follows: 

= 5-volt step motor 
= 9-volt step motor 
= 12-volt step motor 
— 24-volt step motor 
= 5-volt servo motor 
= 9-volt servo motor 
= 12-volt servo motor 
= 24-volt servo motor. (3.1) 

The power source type and size might be encoded as follows: 

12-volt nickel-cadmium battery 
24-volt nickel-cadmium battery 
12-volt lithium-ion battery 
24-volt lithium-ion battery 
12-volt solar panel 
24-volt solar panel 
12-volt fusion reactor 
24-volt fusion reactor. (3.2) 

The encoding of the system parameters is a crucial aspect of the GA and will have 
a significant influence on whether the G A really works or not. 

After we have decided on an encoding scheme, we need to decide how to evaluate 
the "fitness" of each potential problem solution. In our robot example, we might 
have a formula that relates robot weight to motor type/size and to power source 
type/size. We might have other formulas that relate the robot power to the motor 
and to the power source, and that relates robot range to the motor and to the power 

000 

001 

010 

011 

100 

101 

110 

111 

pe and sis 

000 

001 

010 

011 

100 

101 

110 

111 

= 

= 
= 

= 

= 

= 

= 
zzz 



SECTION 3.4: A SIMPLE BINARY GENETIC ALGORITHM 4 5 

source. We can't simulate evolution if we don't have a good definition for fitness. 
Alternatively, we might have a computer simulation in which we could input motor 
type/size and power source type/size, and output a measure of how well our design 
works. This is where the GA designer's understanding of the problem is critical. 
There are no hard-and-fast rules for defining the fitness function of the GA problem. 
It is up to the GA designer to understand the problem well enough so that he can 
define a fitness function that makes sense. In our example, we might have a fitness 
function that looks like the following: 

Fitness = Range (hours) + Power (Watts) — Weight (kilograms). (3.3) 

The range, power, and weight might each be complicated functions involving mo-
tor type and power source type, or they might be determined by the output of 
simulation software or hardware experiments.4 

We begin the G A by randomly generating a set of individuals. Consider two of 
the individuals in a GA population. The first individual is a robot design with a 
12-volt step motor and a 24-volt solar panel, and the second individual is a robot 
design with a 9-volt servo motor and a 24-volt nickel-cadmium battery. These two 
individuals are specified as follows: 

Individual 1 = 12-volt step motor, 24-volt solar panel 
v v ' v v ' 

010 101 
Individual 2 = 9-volt servo motor, 24-volt NiCad battery. (3.4) 

101 001 

Individual 1 is encoded with the bit string 010101, and individual 2 is encoded 
with the bit string 101001. Each bit is called an allele. A sequence of bits in an 
individual that contains information about some trait of that individual is called a 
gene. Specific genes are called genotypes, and the problem-specific parameter that 
a genotype represents is called a phenotype. In our robot example, each individual 
has two genes: one for the motor size/type, and one for the battery size/type. 
Individual 1 has a motor genotype of 010, which corresponds to a phenotype of "12-
volt step motor," and a battery genotype of 101, which corresponds to a phenotype 
of "24-volt solar battery." The collection of all genes in an individual is called a 
chromosome. Individual 1 has a chromosome of 010101. 

3.4.2 Selection and Crossover 

A G A might have many individuals. Typical G As have dozens or hundreds of 
individuals. The two individuals above could mate, just as individuals in biological 
populations mate. In order to mate, we cause them to "cross over," which means 
that each individual shares some of its genetic information with its offspring. To 
find the crossover point, we choose a random number between 1 and 5. Suppose that 
we choose the random number 2. That means the two individuals swap all of their 
alleles after the second bit position in each chromosome, as shown in Figure 3.1. 

4Because of unit differences, we can't add hours and watts and kilograms together, so we would 
need some scaling parameters to weight the relative importance of each term, and to convert the 
quantities to units that can be added together. Nevertheless, this equation gives a general idea of 
how to formulate a fitness equation. 
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T w o P a r e n t s 

0 1 0 1 0 1 0 1 1 0 0 1 

1 0 0 1 0 1 1 0 1 0 0 1 

crossover point 

Figure 3.1 Illustration of crossover in a binary GA. The crossover point is randomly 
chosen. The two parents produce two children. 

The two parents have mated (i.e., crossed over) to produce two children. Each 
child receives some genetic information from one parent, and the other genetic 
information from the other parent. The parents die and the children survive to 
continue the evolutionary process. This event is called one generation of the G A. 

Just as in biology, some of the children will have high fitness while others will 
have low fitness. Low-fitness individuals have a high probability of dying in their 
generation; that is, they are removed from the GA simulation. High-fitness individ-
uals survive to cross over with other high-fitness individuals, and thereby produce 
a new generation of individuals. This process is continued until the GA finds an 
acceptable solution to the optimization problem. 

At some point in our GA software we will have to decide which individuals mate 
to produce children. This decision is based on the fitness of the individuals in the 
population. The most fit individuals are likely to mate to produce children, while 
the least fit individuals are unlikely to find mates and therefore are likely to die 
without producing any offspring. 

One common way to select parents is roulette-wheel selection, which is also called 
fitness-proportional selection, or fitness-proportionate selection. Suppose we have 
four individuals in our population. (A real GA would have many more than four 
individuals, but this example is just for the sake of illustration.) Suppose that the 
individual fitnesses are evaluated as follows: 

Individual 1: Fitness = 10 
Individual 2: Fitness = 20 
Individual 3: Fitness = 30 
Individual 4: Fitness = 40 (3.5) 

Individual 4 is the most fit and Individual 1 is the least fit. We create a roulette 
wheel with each slot area corresponding to the fitness of one of the individuals. In 
our example, the roulette wheel is shown in Figure 3.2. 

To keep the population size constant from one generation to the next, we pick 
two pairs of mates. This will produce four children total. To pick the first pair 
of mates, we spin an imaginary (computer simulated) spinner, and wherever it 
ends up in the roulette wheel decides who the first parent is. We see from the 
roulette wheel in Figure 3.2 that Individual 1 has a 10% chance of being selected, 
Individual 2 has a 20% chance of being selection, Individual 3 has a 30% chance 

Two Children 
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Individual 4 
Individual 2 

Individual 1 

Individual 3 

Figure 3.2 The above pie chart illustrates roulette-wheel selection in a GA for a four-
member population. Each individual is assigned a slice that is proportional to its fitness. 
Each individual's selection as a parent is proportional to its slice in the roulette wheel. 

of being selected, and Individual 4 has a 40% chance of being selected. In other 
words, each individual has a probability of being selected that is proportional to 
its fitness. Next we spin the roulette wheel a second time to select a second parent. 
If the roulette wheel stops at the same individual as the first spin, then we spin 
again - a parent can't mate with itself. After we have two parents, they cross over 
to produce two children. We then repeat the process to obtain two more parents, 
mate them, and obtain two more children. This process continues to repeat until 
the population of children is the same size as the population of parents. This idea 
is illustrated in Figure 3.3. 

Individual 1 

Individual 2 

Individual 3 

Individual 4 

Individual N-1 

Individual N 

Selection 
^ 

Individual 7 

Individual 9 

Individual 18 

Individual 2 

! 

Individual 9 

Individual 33 

Crossover 

Crossover 

Crossover 

Child 1 

Child 2 

Child 3 

Child 4 

Child N-l 

Child N 

Figure 3.3 Illustration of the crossover of population of parents to create a population of 
children. The initial population of N individuals on the left undergoes a selection process, 
perhaps roulette-wheel selection, to create a set of N parents. Some individuals may be 
selected more than once, while other individuals may not* be selected at all. Then each pair 
of parents in the middle crosses over to create a pair of children. Adapted from [Whitley, 
2001]. 
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Given the fitness values shown in Figure 3.2, the process of spinning the roulette 
wheel to select a parent can be accomplished as shown in Figure 3.4. We repeat the 
process of Figure 3.4 four times to select four parents, which create four children 
for the next generation. 

In general, given a population of TV individuals, Figure 3.5 shows the pseudo-
code to select a parent using roulette-wheel selection. We repeat the process of 
Figure 3.5 as many times as necessary to select parents for the creation of children 
for the next generation. 

Generate a uniformly distributed random number r G [0,1] 
If r < 0 . 1 then 

Parent = Individual 1 
else if r < 0.3 then 

Parent = Individual 2 
else if r < 0.6 then 

Parent = Individual 3 
else 

Parent = Individual 4 
End if 

Figure 3.4 The above pseudo-code shows how to select one parent based on the roulette 
wheel of Figure 3.2. 

Xi = i-th individual in population, i G [l,iV] 
fi <— fitness(xi) for i G [1, N] 

/ s u m — 2_-a=l Ji 
Generate a uniformly distributed random number r G [0, /SUm] 

k<-l 
While F < r 

k <- k + 1 

End while 
Parent <— Xk 

Figure 3.5 The above pseudo-code shows how to select one parent from N individuals 
using roulette-wheel selection. This code assumes that the fitness value f > 0 for all 
ie[i,N). 
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3.4.3 Mutation 

The final step in the GA is called mutation. Mutation in biology is relatively rare, 
at least in so far as it noticeably affects offspring. In most G A implementations, 
mutation is also rare (on the order of 2%). But we cannot say, in general, what 
the correct setting should be for a G A mutation rate. The best mutation rate 
depends on the problem, population size, encoding, and other factors. Regardless 
of its frequency, mutation is important because it allows the evolutionary process 
to explore new potential solutions to the problem. If some genetic information 
is missing from the population, mutation provides the possibility of injecting that 
information into the population. This is important in biological evolution, but even 
more important in G As. This is because G As typically have such small population 
sizes that inbreeding can easily become a problem, and evolutionary dead ends 
are more common in GAs than in biological evolution. In biological evolution we 
typically talk about populations of millions, while in GAs we talk about populations 
of dozens or hundreds. 

To implement mutation, we select a mutation probability, say 1%. This means 
that after the crossover process produces offspring, each bit in each child has a 1% 
probability of flipping to the opposite value (a 1 changes to a 0, or a 0 changes 
to a 1). Mutation is simple, but it's important to select a reasonable mutation 
probability. Too high of a mutation probability makes the GA behave like a random 
search, which is not usually a great way to solve a problem. Too low of a mutation 
probability results in problems with inbreeding and evolutionary dead ends, which 
also prevents the GA from finding a good solution. 

If we have a population of iV" individuals x^ where each individual has n bits, 
and our mutation rate is p, then at the end of each generation, we flip each bit in 
each individual with a probability of p: 

r <- U[Q, 1] i Xi{k) if r > p 

0 if r <p and Xi(k) = 1 (3.6) 
1 if r < p and Xi(k) = 0 

for i G [l,iV] and k G [l ,n], where C7[0,1] is a random number that is uniformly 
distributed on [0,1]. 

3.4.4 GA Summary 

This section has given a simple example of a G A for robot design, and a discussion 
of selection, crossover, and mutation in GAs. Now we bring all of this material 
together to summarize the outline of a G A in Figure 3.6. 

3.4.5 GA Tuning Parameters and Examples 

Figure 3.6 outlines a simple G A, but we can see a lot of flexibility in the implemen-
tation of the algorithm of Figure 3.6. For instance, the stopping criteria for a G A 
can include a few different options - the same options as with any other iterative 
optimization algorithm. One possibility is that the G A can run for a predetermined 
number of generations. Another possibility is for the G A to run until the fitness 
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Parents <— {randomly generated population} 
While not (termination criterion) 

Calculate the fitness of each parent in the population 
Children <- 0 
While | Children | < | Parents | 

Use fitnesses to probabilistically select a pair of parents for mating 
Mate the parents to create children c\ and c<i 
Children <— Children U {ci,C2} 

Loop 
Randomly mutate some of the children 
Parents <— Children 

Next generation 

Figure 3.6 The above pseudo-code illustrates a simple genetic algorithm. 

of the best individual is better than some user-defined threshold. If our problem is 
to find a solution that is "good enough," then this might be a reasonable stopping 
criterion. Another possibility is for the GA to run until the fitness of the best 
individual stops improving from one generation to the next. This indicates that 
the evolutionary process has reached a plateau and cannot improve any further. 

There are a number of parameters that the GA designer needs to specify to 
obtain good results. The selection of these parameters can often spell the difference 
between success and failure. Some of these parameters include the following: 

1. An encoding scheme that maps problem solutions to bit strings. Some exam-
ples below illustrate binary encoding of real numbers, Section 3.5 discusses 
G As with real-valued parameters, and Section 8.3 discusses gray coding in 
binary G As. 

2. A fitness function that maps problem solutions to fitness values. 

3. Population size. 

4. Selection method. Above we talked about roulette-wheel selection, but other 
types of selection are also possible, including tournament selection, rank selec-
tion, and many other variations. Section 8.7 discusses some of these options. 

5. Mutation rate. A G A that uses a mutation rate that is too high will degen-
erate into a random search. But a G A that uses a mutation rate that is too 
low will not be able to sufficiently explore the search space. 

6. Fitness scaling. This defines how the fitness function is implemented. Some-
times a fitness function is poorly defined so that all of the individuals have fit-
ness values that are very close to each other. If the fitness values are clumped 
together, the selection process cannot distinguish well between high-fit and 
low-fit individuals. This prevents the more fit individuals from propagating to 
the next generation. The opposite problem also occurs sometimes; the fitness 
values are spread apart too much, so that low-fitness individuals don't have 



SECTION 3.4: A SIMPLE BINARY GENETIC ALGORITHM 5 1 

any chance of being selection for reproduction. Section 8.7 discusses fitness 
scaling. 

7. Crossover type. Above we talked about crossover at one point in each chro-
mosome pair, but we could cross over at multiple points also. Section 8.8 
discusses different types of crossover. 

8. Speciat ion/incest. Some G A researchers allow individuals to mate only if 
they are similar enough to each other; that is, only if they belong to the 
same "species." Other G A researchers allow individuals to mate only if they 
are different enough from each other; that is, only if they belong to different 
"families." Section 8.6 discusses some of these ideas. 

These issues also apply to EAs other than G As, and so Chapter 8 discusses these 
issues and several others. 

■ EXAMPLE 3.2 

Consider the minimization problem of Example 2.2: 

min f(x) where f(x) = x4 + 5x3 + 4x2 - Ax + 1. (3.7) 
X 

Suppose we know ahead of time, somehow, that the minimum of f(x) occurs 
in the domain x G [—4, —1]. We choose to encode x with four bits: 

0000 = -4 .0 , 0001 = -3 .8 , 
0010 = -3 .6 , 0011 = -3 .4 , 
0100 = -3 .2 , 0101 = -3 .0 , 
0110 = - 2 . 8 , 0111 = -2 .6 , 
1000 = -2 .4 , 1001 = -2 .2 , 
1010 = -2 .0 , 1011 = - 1 . 8 , 
1100 = -1 .6 , 1101 = -1 .4 , 
1110 = -1 .2 , 1111 = -1 .0 . (3.8) 

The encoding scheme is a tradeoff between accuracy and complexity. More 
bits will give us more resolution, but will also make the GA more complicated. 
Consider a randomly generated initial population of four individuals: 

xi = 1100, 
X2 = 1011, 

x3 = 0010, 
x4 = 1001. (3.9) 

We want to minimize / ( # ) , but GAs are designed to maximize fitness.5 We 
therefore need to convert the minimization problem to a maximization prob-
lem so that it fits in the GA framework. We can do this by maximizing the 

5This statement assumes that we use roulette wheel selection. Some of the selection methods that 
we discuss in Section 8.7 do not assume that the underlying problem is a maximization problem. 
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negative of f(x). The fitness values are thus obtained by decoding the indi-
viduals using the genotype/phenotype combinations shown in Equation (3.8) 
and then evaluating —f(x): 

fitnessOi) = - / ( - 1 . 6 ) = -3 .71 
fitness(x2) = - / ( - 1 . 8 ) = -2.50 
fitness(x3) = - / ( - 3 . 6 ) - -1.92 
ntness(x4) = - / ( - 2 . 2 ) - +0.65. (3.10) 

Now we arbitrarily add some offset to each fitness value so that they are all 
greater than 0. This is necessary so that we can later assign percentage fitness 
values to each individual: 

/ i = -3 .71 + 10 = 6.29 
h = -2 .50 + 10 = 7.50 
/ 3 = -1.92 + 10 = 8.08 
U = +0.65 + 10 - 10.65. (3.11) 

Now we compute the relative fitness values of each individual. The relative 
fitness value of each individual is its probability of selection when the roulette 
wheel is spun: 

Pi = / l / ( / l + / 2 + / 3 + / 4 ) = 0 . 1 9 
V2 = /2/(/i + Λ + Λ + Λ) = 0.23 
Ps = fs/Ui + h + h + h) = 0.25 
P4 = / 4 / ( / ι + / 2 + /3 + /4) = 0.33. (3.12) 

The initial population is summarized in Table 3.1. Table 3.1 shows us that 
#2 and xs both have about a 25% chance of selection on each roulette wheel 
spin, while £4 has almost twice the probability of selection as x\. To begin the 
first G A generation, we generate four uniformly distributed random numbers 
in the domain [0,1] and use them to select four parents. Suppose that this 
process results in the selection of £3, £4, £4, and x\. This means that we 
want to cross £3 and £4 to get two children, and £4 and £1 to get two more 
children. Remember that the crossover point is randomly selected for each 
pair of parents. This is shown in Table 3.2. 

Individual Selection 
Number Genotype Phenotype Fitness Probability 

£1 

X2 

Z3 

£4 

1100 
1011 
0010 
1001 

-1.4 
-1.8 
-3.6 
-2.2 

-4.56 
-2.50 
-1.92 
+0.65 

0.19 
0.23 
0.25 
0.33 

Table 3.1 Example 3.2: Initial population for a simple G A. 
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Parents Children 
Individual Genotype Genotype Fitness 

xs 0 010 0001 -8 .11 
x4 1001 1010 -1.00 

x4 10 01 1000 +2.30 
xx 1100 1101 -4.56 

Table 3.2 Example 3.2: Crossover for a simple GA. The randomly-chosen crossover 
points are indicated with bold italics. The crossover point is between the first two bits 
for the first set of parents, and in the middle of the chromosome for the second set of 
parents. 

We see from Table 3.2 that the best child has a fitness of 2.30, which is 
better than the best individual of the initial generation (0.65). The GA has 
taken a significant step toward optimizing f(x). There are no guarantees 
that the children will be better than the parents, but this simple example 
illustrates how a GA can home in on the solution to an optimization problem. 

EXAMPLE 3.3 

Consider the minimization problem of Example 2.5: 

min f(x,y), where (3.13) 
x,y 

/ ( » , y) = e- 20exp ^ - 0 . 2 ^ ± ^ j - exp ^ < 2 ^ + C O S ^ > ) , 

Suppose, as in Example 2.5, that x and y can both range from —5 to +5 . We 
need to decide on the resolution that we want to use for x and y in our G A. 
If we want a resolution of 0.25 or better for each independent variable x and 
2/, then we need to use six bits for both x and y: 

x genotype = xg G [0,63] 
lOXq r „ _, 

x pnenotype = —5 H——- G [—5,5J 
Do 

y genotype = yg G [0,63] 

yphenotype = - 5 + ^ G [-5,5]. (3.14) 

This gives us a resolution of 10/63 = 0.159 for each bit of xg and yg. Let us 
run a GA for 10 generations to try to minimize f(x, y). We need to decide on 
a population size and a mutation rate. Let us use a population size of 20 and 
a mutation rate of 2% per bit. A typical G A run gives the results shown in 
Figure 3.7. Each run will be different because of the random numbers used in 
the G A, but Figure 3.7 shows typical results. As the number of generations 
increases, we see a decrease in both the minimum cost (that is, the cost of the 
best individual) and the average cost of the population. 
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Figure 3.8 shows a contour plot of f(x,y), along with the location on the 
plot of the GA individuals, at the first, fourth, seventh, and tenth generations. 
We see from Figure 3.8 that the population is initially scattered throughout 
the domain because of our random initialization. As the GA progresses, the 
population begins to cluster, and the individuals tend to move closer to the 
minimum, which is at the center of the plot. 

12 

10 

o 
O 

Average Cost 
-Minimum Cost 

4 6 
Generation 

10 

Figure 3.7 Example 3.3: Typical G A simulation results for the minimization of the 
two-dimensional Ackley function. 

T T ^ 

-5 0 5 - 5 0 5 
1st generation 4th generation 

-K · · 

-5 0 
7th generation 

0 5 
10th generation 

Figure 3.8 Example 3.3: Typical GA simulation results for the minimization of the 
two-dimensional Ackley function. As the GA progresses, the individuals in the population 
gradually begin to cluster together and move toward the minimum, which is at the center of 
the contour plot. 
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The contour plot of Figure 3.8 shows how difficult it might be to minimize a 
multimodal, high dimensional function. You can imagine that you are standing on 
a landscape with hills and valleys of Figure 3.8, and you want to find the lowest 
point of the landscape. It would be difficult to do because there are so many peaks 
and valleys. However, a group of individuals scattered throughout the landscape 
would have a better chance of finding the lowest point. The individuals could learn 
from each other: "This valley looks pretty low; let's explore it," says one. "No, this 
one looks lower; come on over here!" The individuals cooperate with each other 
and together find the lowest point in the valley. That is similar to how a GA and 
other EAs work. The individuals in the population work together to find a good 
solution to the problem. 

3.5 A SIMPLE CONTINUOUS GENETIC ALGORITHM 

Figure 3.6 outlines a simple binary G A, and that is exactly the algorithm that we 
used in Examples 3.2 and 3.3. However, the problems in those examples are defined 
on a continuous domain, and so we had to discretize the domain to apply the binary 
GA. It would be simpler and more natural if we could apply a GA directly to the 
continuous domain of the problems. We use the term continuous GAs, or real-coded 
G As, to refer to GAs that operate directly on continuous variables. 

The extension of GAs from binary domains to continuous domains is pretty 
straightforward. In fact, we can still use the algorithm of Figure 3.6 - we just need 
to modify some of the steps in that algorithm. Look at the operations in Figure 3.6 
and consider how they might work on an optimization problem with a continuous 
domain. 

1. In Figure 3.6, we first generate a random initial population. We can easily do 
this on a continuous domain. Suppose that we want to generate N individuals 
in our G A. Then we denote the i-th individual as Xi for i G [1,-/V]. Also 
suppose that we want to minimize an n-dimensional function on a continuous 
domain. Then we use Xi(k) to denote the k-th element of Xf. 

Xi= [ Xi(l) Xi(2) · · · Xi{n) ] . (3.15) 

Suppose that the search domain of the k-th. dimension is [xmin(k), xmax(k)]'. 

Xi(k) G [ (*), s w W ] (3.16) 

for i G [1,N] and k G [l ,n]. We can generate a random initial population, as 
in the first line of Figure 3.6, as follows: 

For i = 1 to N 
For k — 1 to n 

%i\k) ~̂~ ^l#min(#J> ^max(^)J 
Next k 

Next i 

That is, we simply set each Xi(k) equal to a realization of a random variable 
that is uniformly distributed between xmin(k) and xmax(k). 
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2. Next, we begin the "while not (termination criterion) loop" in Figure 3.6. The 
first step in that loop is to calculate the fitness of each individual. If we are 
trying to maximize / ( x ) , then we calculate the fitness of each Xi by computing 
f(xi). If we are trying to minimize / ( # ) , then we calculate the fitness of each 
Xi by computing the negative of f(x%). 

3. Next, we begin the "while |Children| < |Parents|" loop in Figure 3.6. The 
first step in that loop is to "use fitnesses to probabilistically select a pair 
of parents for mating." We perform this step using roulette-wheel selection, 
as we discussed in Section 3.4.2. We discuss other options for this step in 
Section 8.7, but for now we simply use roulette-wheel selection. 

4. Next, we perform the "Mate the parents" step in Figure 3.6 to create two 
children. We perform this step using single-point crossover as illustrated 
in Figure 3.1. The only difference is that we combine continuous-domain 
individuals rather than binary-domain individuals. We illustrate single-point 
crossover for continuous-domain individuals in Figure 3.9. We discuss other 
types of crossover for continuous G As in Section 8.8. 

Two Parents Two Children 

4J2 0,6B 3J3 e.m 154 8J2 

5.82 1.10 9.22 3.61 8.30 2.99 

4J2 0.68 3J3 $M 8.30 2.99 

5.82 1.10 9.22 3.61 1,54 BJ2 

crossover point 

Figure 3.9 Illustration of crossover in a continuous-domain GA. The crossover point is 
randomly chosen. The two parents produce two children. 

5. Next, we perform the "Randomly mutate" step in Figure 3.6. In binary EAs, 
mutation is a straightforward operation, as shown in Equation (3.6). In a 
continuous GA, we mutate Xi(k) by assigning it a random number that is 
generated from a uniform distribution on the search domain: 

Xi(k) 

tf[0,l] 
f Xi(k) 

c(*0] 

if r > p 
if r < p 

(3.17) 

for i e [l,N] and k G [l ,n], where p is the mutation rate. We discuss other 
possibilities for mutation in continuous-domain G As in Section 8.9. 

Mutation in Continuous GAs 

Note that a given mutation rate has a different effect in a binary GA than in a 
continuous G A. If we have a continuous-domain problem with n dimensions and a 
mutation rate of pc , then each solution feature of each child has a probability of 
pc of being mutated. For example, in Figure 3.9, each of the six components of 
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both children has a mutation probability of pc. Also, mutation in a continuous G A 
results in the solution feature being taken from a uniform distribution between its 
minimum and maximum possibility values, as shown in Equation (3.17).6 

However, in a binary GA, we discretize each dimension of each individual. If we 
discretize a continuous dimension into m bits and use a mutation rate of p&, then 
each bit has a probability of pb of being mutated. That means that each bit has 
a probability of 1 — pb of not being mutated. Therefore, the probability of each 
dimension not being mutated is equal to the probability that all m of its bits are 
not mutated, which is equal to (1 — Pb)m- Therefore, the probability of the ra-th 
dimension being mutated is 1 — (1 — pb)m> Furthermore, if mutation does occur, 
then the mutated dimension is not uniformly distributed between its minimum and 
maximum values; it's distribution instead depends on which bit is mutated. 

We can obtain the mutation rate pc for a continuous-domain problem that has an 
effect that is approximately equal to the mutation rate pb for a discrete problem. 
As we discussed above, if a binary GA for a discrete problem with m bits per 
dimension has a mutation rate of pb, then the probability that any given dimension 
is not mutated is equal to (1 — pb)m- This can be approximated with a first-order 
Taylor series: 

Pr(no mutation in a binary G A) = (1 — pb)m 

« l-mpb (3.18) 

where the approximation is valid for small pb. If a G A for a continuous problem 
has a mutation rate of p c , then the probability that any given dimension is not 
mutated is equal to 1 — pc. Equating this probability with Equation (3.18) gives 

1 - pc = 1 - rnpb 

pc = mpb. (3.19) 

Therefore, the mutation process in a binary G A with m bits per dimension and 
a mutation rate of p&, is approximately equivalent to the mutation process in a 
continuous G A with a mutation rate of mpb· We stress the word approximately 
in the previous sentence because it is not clear that equivalent mutation rates in 
binary and continuous GAs give equivalent results. This is because he distribution 
of the magnitude of a binary GA mutation is different than that of a continuous 
GA mutation. An interesting topic for further work would be a thorough study of 
the equivalence of binary and continuous G A mutations. 

■ EXAMPLE 3.4 

Consider the minimization problem of Example 3.3: 

min/(#,£/), where (3.20) 

f(x,y) = e - 20exp ( - 0 . 2 ^ ± ^ - exp ( C ° S ^ + C ° S ^ ) . 

Suppose that x and y can both range from —1 to + 1 . In Example 3.3, we 
discretized the search domain so that we could apply a binary G A. However, 

6Uniform mutation is probably the most classic type of mutation in continuous GAs. However, 
we can also choose from many other types of mutation as described in Section 8.9. 
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since the problem is defined on a continuous domain, it is more natural to 
use a continuous G A. In this example we run both the binary G A and the 
continuous GA for 20 generations with a population size of 10. For the binary 
GA, we use four bits per dimension and a mutation rate of 2% per bit, as in 
Example 3.3. To keep the effect of mutation approximately the same for the 
continuous G A as for the binary G A, we use a mutation rate of 8% in the 
continuous G A. We also use an elitism factor of 1, which means that we keep 
the best individual in the population from one generation to the next (see 
Section 8.4). 

Figure 3.10 shows the best individual found at each generation, averaged 
over 50 simulations. We see that the continuous G A is significantly better 
than the binary GA. For continuous-domain problems, we generally (but not 
always) get better performance with a binary G A as we use more bits, and 
we get the best performance if we use a continuous G A. 

2.5 

2 

8 1.5 
E 
E 
I 1 

Έ 

0.5 

~0 5 10 15 20 
Generation 

Figure 3.10 Example 3.4: Binary G A vs. continuous GA performance for the two-
dimensional Ackley function. The plot shows the cost of the best individual at each 
generation, averaged over 50 simulations. 

It is interesting to note that continuous GAs have a somewhat controversial his-
tory. Since GAs were originally developed for binary representations, and since all 
of the early G A theory was geared towards binary GAs, researchers were skeptical 
about the rise of continuous GAs in the 1980s [Goldberg, 1991]. However, it is 
difficult to argue with the success of continuous GAs, their ease of use, and their 
relatively recent theoretical support. 

«* ** « Binary GA 
— Continuous GA 
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3.6 CONCLUSION 

The genetic algorithm was one of the first evolutionary algorithms, and today it 
is probably the most popular. Recent years have seen the introduction of many 
competing EAs, but G As remain popular because of their familiarity, their ease of 
implementation, their intuitive appeal, and their good performance on a variety of 
problems. 

Many books and survey papers have been written about G As over the years. 
David Goldberg's book [Goldberg, 1989a] was one of the first books about GAs, but 
like early books in many other subjects, it has aged well and is still popular because 
of its clear exposition. There are many other good books about GAs, including 
[Mitchell, 1998], [Michalewicz, 1996], [Haupt and Haupt, 2004], and [Reeves and 
Rowe, 2003], which is notable because of its strong emphasis on theory. Some 
popular tutorial papers include [Back and Schwefel, 1993], [Whitley, 1994], and 
[Whitley, 2001]. 

In view of the huge number of books and papers about GAs, this chapter is 
a necessarily brief introduction to the topic. We have neglected many GA-related 
issues in this chapter - not because we believe that they are unimportant, but simply 
because our perspective is limited. Some of these issues include messy GAs, which 
have variable-length chromosomes [Goldberg, 1989b], [Mitchell, 1998]; gender-based 
GAs, which simulate multiple genders in the GA population and are often used for 
multi-objective optimization (Chapter 20) [Lis and Eiben, 1997]; island GAs, which 
includes subpopulations [Whitley et al., 1998]; cellular GAs, which impose a specific 
spatial relationship among the individuals in the population [Whitley, 1994]; and 
covariance matrix adaptation, which is a local search strategy that can augment 
any EA [Hansen et ah, 2003]. 

There are also many variations on the basic G A that we presented in this chapter. 
Some of those variations are extremely important, and can make the difference be-
tween success and failure in a GA application. Chapter 8 discusses many variations 
that apply to GAs and other EAs. 
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PROBLEMS 

Written Exercises 

3.1 Section 3.4.1 gave a simple example for how we could represent robot design 
parameters in a G A. Suppose that we have a G A individual given by the bit string 
110010. 

a) What is the chromosome for this GA individual? 
b) What are the genotypes and phenotypes for this individual? 

3.2 We want to use a binary G A to find x to a resolution of 0.1 to minimize the 
two-dimensional Rastrigin function (see Section C. l . l l ) on the domain [—5,5]. 

a) How many genes do we need for each chromosome? 
b) How many bits do we need in each gene? 
c) Given your answer to part (b), what is the resolution of each element of 

xl 

3.3 We have a G A with 10 individuals {a:*}, and the fitness of xi is f(xi) = i for 
i 6 [1,10]. We use roulette wheel selection to select 10 parents for crossover. The 
first two parents mate to create two children, and the next two mate to create two 
more children, and so forth. 

a) What is the probability that the most fit individual will mate with itself 
at least once to create two cloned children? 

b) Repeat part (a) for the least fit individual. 

3.4 We have a GA with 10 individuals {#«}, and the fitness of Xi is /(#*) = i for 
i G [1,10]. We use roulette wheel selection to select 10 parents for crossover. 

a) What is the probability that X\Q is not selected at all after 10 spins of the 
roulette wheel? 

b) What is the probability that xio is selected exactly once after 10 spins of 
the roulette wheel? 

c) What is the probability that X\Q is selected more than once after 10 spins 
of the roulette wheel? 

3.5 Roulette wheel selection assumes that the fitness values of the population 
satisfy f(xi) > 0 for i e [1,N]. Suppose you have a population with fitness values 
{ — 1 0 , - 5 , 0 , 2 , 3 } . How would you propose modifying those fitness values so that 
you could use roulette wheel selection? 

3.6 Roulette wheel selection assumes that the population is characterized by fit-
ness values {/(x^)}, where higher fitness values are better than lower fitness values. 
Suppose we have a problem whose population is characterized by cost values {c(x^)}, 
where lower cost values are better than higher cost values, and c(xi) > 0 for all i. 
How could you modify the cost values to use roulette wheel selection? 

3.7 We have two parents in a binary G A, each with n bits. The 2-th bit in 
parent 1 is different than the z-th bit in parent 2 for i G [1, n]. We randomly select 
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a crossover point c G [l ,n]. What is the probability that the children are clones of 
(that is, identical to) the parents? 

3.8 Suppose we have TV randomly initialized individuals in a binary G A, where 
each individual is comprised of n bits. 

a) What is the probability that the i-th bit of each individual is the same for 
a given il 

b) What is the probability that the i-th bit of each individual is not the same 
for a l i i G [l,n]? 

c) Recall that exp(—am) « 1 - am for small am, and (1 — a)m « 1 — am for 
small values of a. Use these facts to approximate your answer to part (b) 
as an exponential. 

d) Use your answer to part (c) to find the population size N that is required 
to obtain a probability p that both alleles occur at each bit position of a 
randomly initialized population. 

e) Suppose we want to randomly initialize a population of individuals, each 
with 100 bits, so that there is a 99.9% or greater chance that both alleles 
occur at each bit position. Use your answer to part (d) to obtain the 
minimum population size. 

3.9 We have a binary G A with a population size of N and a mutation rate of p, 
and each individual is comprised of n bits. 

a) What is the probability that we will not mutate any bits in the entire 
population for one generation? 

b) Use your answer to part (a) to find the minimum mutation rate p for a 
given population size N and. bit length n such that the probability of no 
mutations during each generation is no greater than Pn0ne· 

c) Use your answer to part (b) to find the minimum mutation rate p such 
that the probability of not mutating any bits is 0.01% when N = 100 and 
n = 100. 

Computer Exercises 

3.10 Write a computer simulation to confirm your answers to Problem 3.3. 

3.11 Write a computer simulation to confirm your answer to Problem 3.8. 

3.12 The one-max problem is the search for a string of n bits with as many l's 
as possible. The fitness of a bit string is the number of l 's. Of course, we can easily 
solve this by simply writing n consecutive l 's, but in this problem we are interested 
in seeing if a GA can solve the one-max problem. Write a GA to solve the one-max 
problem. Use n = 30, generation limit = 100, population size = 20, and mutation 
rate = 1%. 

a) Plot the fitness of the best individual, and the average fitness of the pop-
ulation, as a function of generation number. 

b) Run 50 Monte Carlo simulations of your GA. This will result in 50 plots of 
the fitness of the best individual as a function of generation number. Plot 
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the average of those 50 plots. Denote the average of the 50 best fitness 
values at the 100th generation as f(x*). What is /(a;*)? 

c) Repeat part (b) with a population size of 40. How does f(x*) change 
compared to your answer from part (b)? Why? 

d) Set the population size back to 20 and change the mutation rate to 5%. 
How does /(#*) change compared to your answer from part (b)? Why? 

e) Set the mutation rate to 0%. How does f(x*) change compared to your 
answer from part (b)? Why? 

f) Instead of setting the fitness equal to the number of l 's, set the fitness 
equal to the number of l 's plus 50. Now repeat part (b). How does f(x*) 
change compared to your answer from part (b)? Why? 

g) As in part (b), set fitness equal to the number of l 's; but then for all 
individuals with fitness less than average, set fitness to 0. How does f(x*) 
change compared to your answer from part (b)? Why? 

3.13 Write a continuous G A to minimize the sphere function (see Section C. l . l ) . 
Set the search domain in each dimension to [—5, +5], the problem dimension to 20, 
the generation limit to 100, the population size to 20, and the mutation rate to 1%. 
For roulette wheel selection, we need to map the cost values c(xi) to fitness values 
f(xi). Do this as follows: f(xi) = l/c(xi). 

a) Plot the cost of the best individual, and the average cost of the population, 
as a function of generation number. 

b) Run 50 Monte Carlo simulations of your GA. This will result in 50 plots 
of the cost of the best individual as a function of generation number. Plot 
the average of those 50 plots. Denote the average of the 50 best cost values 
at the 100th generation as c(x*). What is c(x*)? 

c) Repeat part (b) with a mutation rate of 2%. How does c(x*) change 
compared to your answer from part (b)? Repeat with a mutation rate of 
5%. 



CHAPTER 4 

Mathematical Models of Genetic Algorithms 

But program source code is not necessarily the most perspicuous description possible. 
—Michael Vose [unpublished course notes, 2010] 

The study of evolutionary algorithms (EAs) has often been ad-hoc, simulation-
based, heuristic, and non-analytic. Historically, engineers have been more con-
cerned with the question of whether EAs work, rather than how or why they work. 
However, with the maturing of EA research in the last couple of decades of the 
20th century, engineers began focusing more on the how and why questions. In this 
chapter, we discuss some ways to answer these questions for G As. This chapter 
is the most technical and mathematical one in this book. The student who wants 
only a working knowledge of EAs can skip this chapter. However, it is important 
for the student who wants to become well-informed and well-rounded in the area 
of EA research to understand the ideas in this chapter. The student who takes the 
time and effort to understand this material might find unexpected and brand new 
avenues of research. 

Overview of the Chapter 

One of the early answers to the how and why questions was schema theory, which 
analyzes the growth and decay over time of various bit combinations in G As, and 
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so we discuss this in Section 4.1. Some of the more recent mathematical analyses 
of G As have relied on Markov models and dynamic system models, and we also ex-
plore those approaches in this chapter. These models have their own shortcomings, 
but their shortcomings are in the area of implementation and computing resources 
rather than theory. Section 4.2 gives an overview of Markov theory, which was 
developed by the Russian mathematician Andrey Markov1 in 1906 [Seneta, 1966]. 
Markov theory has become a fundamental area of mathematics, with applications 
in physics, chemistry, computer science, social science, engineering, biology, music, 
athletics, and other surprising areas. We will see in this chapter that Markov theory 
can also provide insight into G A behavior. Section 4.3 presents some notation and 
preliminary results that we will use in later sections as we develop Markov models 
and dynamic system models. 

Section 4.4 develops a Markov chain model for a GA that uses fitness-based 
selection, followed by mutation, followed by single-point crossover. Unfortunately, 
the dimension of the Markov model grows factorially (i.e., faster than exponentially) 
with the population size and the search space size. This limits its application to 
very small problems. However, Markov models are still useful for giving exact 
results without the need to rely on the random nature of stochastic simulations. 

Section 4.5 develops a dynamic system model for a G A. The dynamic system 
model is based on the Markov model, but the application is quite different. The 
Markov model gives the steady-state probability as the generation count approaches 
infinity of each possible population. The dynamic system model gives the time-
varying proportion of each individual in the search space as the population size 
approaches infinity. 

4.1 SCHEMA THEORY 

Consider the simple problem maxx f(x), where f(x) = x2. Suppose we encode x as 
a 5-bit integer, where the bit string 00000 represents decimal 0, and the bit string 
11111 represents decimal 31. The maximum of f(x) occurs when x = 11111. Not 
only that, but any bit string that begins with a 1 is better than every bit string that 
begins with a 0. This leads to the concept of a schema. A schema is a bit pattern 
that describes a set of individuals, where an * is used to represent a "don't care" 
bit. For example, the bit strings 11000 and 10011 both belong to the schema 1****. 
This schema is a very high-fitness schema for the function x2. Any bit string that 
belongs to this schema is better than every bit string that does not belong to it. 
G As combine schemata in a way that results in a highly fit individuals. 

Consider bit strings of length two. The schemata (plural of schema) with length 
two are **, 0*, 1*, *0, * 1 , 00, 01, 10, and 11. There are a total of nine unique 
schemata of length two. In general, there are a total of 3l schemata of length /. 

Now consider the number of schemata to which a bit string belongs. As an 
example, notice that 01 belongs to four schemata: 01, * 1 , 0*, and **. In general, a 
bit string of length / belongs to 2l schemata. 

Now consider a population of AT bit strings, each of length I. Each bit string in 
the population belongs to a certain set of schemata. We say that the union of these 
N sets of schemata is the set to which the entire population belongs. If all the bit 

Markov's son, Andrey Markov Jr., was also an accomplished mathematician. 
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strings are identical, then each bit string belongs to the same 2l schemata, and the 
entire population belongs to 2l schemata. At the other extreme, all the bit strings 
may be unique and not belong to any of the same schemata except for the universal 
schema * * · · · * * . In this case the entire population belongs to N2l — (N — 1) 
schemata. We see that a population of N bit strings, each of length /, belongs to 
somewhere between 2l and (N(2l — 1) + 1) schemata. 

The number of denned bits (that is, non-asterisks) in a schema is called the order 
o of the schema. For example, o(l * * * 0) = 2, and o(0 * 11*) = 3. 

The number of bits from the left-most defined bit to the right-most defined bit in 
a schema is called is defining length Ô. For example, δ(1 * * * 0) = 4, £(0 * 11*) = 3, 
and δ(1 * * * * ) = 0. 

A bit string that belongs to a schema is called an instance of the schema. For 
example, the schema 0 * 11* has four instances: 00110, 00111, OHIO, and 01111. 
In general, the number of instances that a schema has is equal to 2A , where A is 
the number of asterisks in the schema. Note that A — l — o. 

We use the notation m(h, t) to represent the number of instances of schema h at 
generation t in a G A. We use / (# ) to denote the fitness of the bit string x. We use 
f(h,t) to denote the average fitness of the instances of schema h in the population 
at generation t: 

m{n,t) 

We use f(t) to denote the average fitness of the entire population at generation t. 
If we use roulette-wheel selection to choose the parents of the next generation, we 
see that the expected number of instances of h after selection is 

E[m{h,t + 1)] = Σχγ{^
Χ) 

f(h,t)m(h,t) 
fit) · ( } 

Next we perform crossover with probability pc. We assume that the crossover point 
is between bits, and never at the end of a bit string. We obtain two children from 
each pair of parents. What is the probability that crossover will destroy a schema? 
Let us look at a few examples. 

• Consider the schema h — 1 * * * *. Crossover will never destroy this schema. 
If an instance of this schema crosses with another bit string, at least one child 
will be an instance of h. 

• Consider the schema h = 11***. If an instance of this schema crosses with bit 
string x, the crossover point could be one of four places. If the crossover point 
is between the two most significant bits, then the schema might be destroyed, 
depending on the value of x. However, if the crossover point is to the right of 
that point (three other possible crossover points), then the schema will never 
be destroyed; at least one child will be an instance of h. We see that the 
probability of destroying the schema h is less than or equal to 1/4, depending 
on where crossover occurs. 

• Consider the schema /i = 1 * 1 * *. If an instance of this schema crosses 
with bit string x, the crossover point could be one of four places. If the 
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crossover point is between the two 1 bits (two possible crossover points), then 
the schema might be destroyed, depending on the value of x. However, if 
the crossover point is to the right of the rightmost 1 bit (two other possible 
crossover points), then the schema will never be destroyed; at least one child 
will be an instance of h. We see that the probability of destroying the schema 
h is less than or equal to 1/2, depending on where crossover occurs. 

Generalizing the above, we see that the probability that crossover will destroy a 
schema, if it occurs, is less than or equal to 6/(1 — 1). The probability that crossover 
occurs at all is p c , so the total probability that crossover destroys a schema is less 
than or equal to pc8/(l — 1). Therefore, the probability that a schema will survive 
crossover is 

P.>I-PC(J4Ï)· ( 4 · 3 ) 

Next we perform mutation with a probability of pm per bit. The number of defined 
(non-asterisk) bits in h is the order of h and is denoted as o(h). The probability that 
a defined bit mutates is p m , and the probability that it does not mutate is 1 — pm. 
Therefore, the probability that none of the defined bits mutate is (1 — pm)0^h\ 

This probability is of the form g(x) = (1 — x)y. The Taylor series expansion of 
g(x) around XQ is 

5(z) = £ f l (">(*o)^P- . (4.4) 
n\ 

Setting #o = 0 gives 
OO 

g(x) = X><»>(0): 
n=Q 

x2y{y - 1) x3y(y - l)(y - 2) 
= l-xy+ - + ··■ 

« 1 — xy for xy <C 1. (4.5) 

So if Pmo(h) <ξ^ 1, then (1 — pm)°^ ~ 1 — Pmo(h). Combining this with Equa-
tions (4.2) and (4.3) gives 

£|m(M + l)] > /%™ ( M )(l-!>.( f j Î))(l- Î>,, . ,>W) 

Suppose that a schema is short; that is, its defining length δ is small. Then 6/(1 — 
l ) C l . Suppose that we use a low mutation rate, and a schema is of low order; that 
is, there are not many defined bits. Then pmo(h) <C 1. Suppose that a schema has 
above-average fitness; that is, f(h)/f(t) = k > 1, where k is some constant. Finally, 
suppose that we have a large population so that E [m(h, t + 1)] « ra(/i, t +1 ) . Then 
we can approximately write 

ra(/i, t + 1) > km(h, t) = fc*ra(/i,0). (4.7) 

This results in the following theorem, which is called the schema theorem. 
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Theorem 4.1 Short, low-order schemata with above-average fitness values receive 
an exponentially increasing number of representatives in a G A population. 

The schema theorem is often written as Equation (4.6) or (4.7). 
Schema theory originated with John Holland in the 1970s [Holland, 1975] and 

quickly gained a foothold in G A research. Schema theory was so dominant in 
the 1980s that G A implementations were suspect if they violated its assumptions 
(for example, if they used rank-based rather than fitness-based selection [Whitley, 
1989]). A description of how schema theory works on a simple example is provided 
in [Goldberg, 1989a, Chapter 2]. 

However, some counterexamples to schema theory are provided in [Reeves and 
Rowe, 2003, Section 3.2]. That is, the schema theorem is not always useful. This 
is because of the following. 

• Schema theory applies to arbitrary subsets of the search space. Consider 
Table 3.2 in Example 3.2. We see that x\ and £4 both belong to schema 
h = 1*0*. But these are the least fit and most fit individuals in the population, 
and so these two individuals do not really have anything to do with each other, 
besides the fact that they are both members of h. There is nothing special 
about /i, so the schema theorem does not give useful information about h. 

• Schema theory does not recognize that similar bit strings might not belong to 
the same schema. In Example 3.2, we see that 0111 and 1000 are neighbors 
in the search space, but do not belong to any common schema except the 
universal schema * * **. This problem can be alleviated with gray coding, but 
even then, depending on the search space, neighbors in the search space may 
not have a close relationship in fitness space. 

• Schema theory tells us the number of schema instances that survive from 
one generation to the next, but it is more important which schema instances 
survive. This is closely related to item 1 above. Again looking at Example 3.2, 
we see that x\ and X4 both belong to schema h = 1*0*. Schema theory tells us 
if h survives from one generation to the next, but we are much more interested 
in the survival of £4 than of X\. 

• Schema theory gives us the expected number of schema instances. But the 
stochastic nature of G As results in different behavior each time the G A runs. 
The expected number of schema instances is equal to the actual number of 
schema instances only as the population size approaches infinity. 

• No schema can both increase exponentially and have above-average fitness. If 
a schema increases exponentially, then it will soon dominate the population, 
at which time the average fitness of the population will approximately equal 
the fitness of the schema. The approximation f(h)/f(t) = /c, in the paragraph 
before Theorem 4.1 above, where k is a constant, is therefore incorrect. Re-
lated to this idea is the fact that most GAs operate with a population size of 
100 or fewer. Such small population sizes cannot support exponential growth 
of any schema for more than a couple of generations. 

By the 1990s, an overemphasis on the shortcomings of schema theory resulted in 
extreme statements like the following: "I will say - since it is no longer controversial 
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- that the 'schema theorem' explains virtually nothing about SGA [simple genetic 
algorithm] behavior" [Vose, 1999, page xi]. The pendulum has swung from one 
side (over-reliance on schema theory) to the other (complete dismissal of schema 
theory). This high variance is typical of many new theories. Schema theory is true, 
but it has limitations. A balanced view of the benefits and shortcomings of schema 
theory is given in [Reeves and Rowe, 2003, Chapter 3]. 

4.2 MARKOV CHAINS 

Suppose that we have a discrete-time system that can be described by a set of 
discrete states 5 = {Si, · · ·, 5 n } . For instance, the weather might be described by 
the set of states 5 — {rainy, nice, snowy}. We use the notation S(t) to denote the 
state at time step t. The initial state is 5(0), the state at the next time step is 
5(1), and so on. The system state might change from one time step to the next, or 
it might remain in the same state from one time step to the next. The transition 
from one state to another is entirely probabilistic. In a first-order Markov process, 
also called a first-order Markov chain, the probability that the system transitions 
to any given state at the next time step depends only on the current state; that 
is, the probability is independent of all previous states. The probability that the 
system transitions from state i to state j from one time step to the next is denoted 
by pij. Therefore, 

n 

for all i. We form the n x n matrix P , where p^ is the element in the i-th row and 
j-th column. P is called the transition matrix, probability matrix, or stochastic 
matrix, of the Markov process.2 The sum of the elements of each row of P is 1. 

■ EXAMPLE 4.1 

The land of Oz never has two nice days in a row [Kemeny et al., 1974]. If it 
is a nice day, then the next day has a 50% chance of rain and a 50% chance 
of snow. If it rains, then the next day has a 50% chance of rain again, a 25% 
chance of snow, and a 25% chance of nice weather. If it snows, then the next 
day has a 50% chance of snow again, a 25% chance of rain, and a 25% chance 
of nice weather. We see that the weather forecast for a given day depends 
solely on the weather of the previous day. If we assign states R, N, and 5, to 
rain, nice weather, and snow respectively, then we can form a Markov matrix 
that represents the probability of various weather transitions: 

R N S 

1/2 1/4 
P = | 1/2 0 1/2 | AT (4.9) 

2More precisely, the matrix that we have defined is called a right transition matrix. Some books 
and papers denote the transition probability as pji, and define the Markov transition matrix as 
the transpose of the one that we have defined. Their matrix is called a left transition matrix, and 
the sum of the elements of each column is 1. 

1/4 
0 

1/4 

1/4" 
1/2 
1/2 

R 
N 
S 
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Suppose a Markov process begins in state i at time 0. We know from our previous 
discussion that the probability that the process is in state j at time 1, given that 
the process was in state i at time 0, is given by Pr (5( l ) = 5^15(0) = Si) = pij. 
Next we consider the following time step. We can use the total probability theorem 
[Mitzenmacher and Upfal, 2005] to find the probability that the process is in state 
1 at time 2 as 

Pr(S(2) = 5!|5(0) = 5i) = Pr(S( l ) = Si|S(0) = # ) ρ ι ι + 
Pr (5 ( l ) = 52 |S(0) = Si)p2i + -.- + 
Pr (5 ( l ) = Sn |S(0) = Si)pni 

= £ P r ( S ( l ) = Sk\S(0) = Si)pkl 

fc=l 
n 

= Y^PikPki- (4.10) 
k=l 

Generalizing the above development, we find that the probability that the process 
is in state j at time 2 is given by 

Pr(S(2) = Sj\S(0) = Si) = Y^PikPkj. (4.11) 
fc=l 

But this is equal to the element in the i-th row and j - t h column of the square of 
P ; that is, 

Pr(5(2) = Sj\S(0) = Si) = [P% . (4.12) 

Continuing this line of reasoning in an inductive manner, we find that 

Pt(S(t) = Sj\S(0) = Si)=[Pt]ij. (4.13) 

That is, the probability that the Markov process transitions from state i to state j 
after t time steps is equal to the element in the z-th row and j-th column of P*. 

In Example 4.1, we can compute P* for various values of t to obtain 

0.5000 0.2500 0.2500 
0.5000 0.0000 0.5000 
0.2500 0.2500 0.5000 

0.4375 0.1875 0.3750 
0.3750 0.2500 0.3750 
0.3750 0.1875 0.4375 

0.4023 0.1992 0.3984 
0.3984 0.2031 0.3984 
0.3984 0.1992 0.4023 

P« = 
0.4000 0.2000 0.4000 
0.4000 0.2000 0.4000 
0.4000 0.2000 0.4000 

(4.14) 
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Interestingly, Pt converges as t —> oo to a matrix with identical rows. This does not 
happen for all transition matrices, but it happens for a certain subset as specificed 
in the following theorem. 

Theorem 4.2 A regularnxn transition matrix P, also called a primitive transition 
matrix, is one for which all elements of Pl are nonzero for some t. If P is a regular 
transition matrix, then 

1. \imt^0CPt = P0O; 

2. All rows of P ^ are identical and are denoted as pss; 

3. Each element of pss is positive; 

4. The probability that the Markov process is in the i-th state after an infinite 
number of transitions is equal to the i-th element of pss; 

5. pjs is the eigenvector of PT corresponding to the eigenvalue 1, normalized so 
that its elements sum to 1; 

6. If we form the matrices Pi, i G [l ,n] , by replacing the i-th column of P with 
zeros, then the i-th element of pss is given as 

p»' = CT^i (4I5) 

where I is the n x n identity matrix, and | · | is the determinant operator. 

Proof: The first five properties above comprise the fundamental limit theorem for 
regular Markov chains and are proven in [Grinstead and Snell, 1997, Chapter 11] and 
other books on Markov chains. For more information on concepts like determinants, 
eigenvalues, and eigenvectors, read any linear systems text [Simon, 2006, Chapter 1]. 
The last property of Theorem 4.2 is proven in [Davis and Principe, 1993]. 

D 

■ EXAMPLE 4.2 

Using Equation (4.14) and applying Theorem 4.2 to Example 4.1, we see that 
any given day in the distant future has a 40% probability of rain, a 20% 
probability of sun, and a 40% probability of snow. Therefore, 40% of the days 
in Oz are rainy, 20% are sunny, and 40% are snowy. Furthermore, we can find 
the eigenvalues of PT as 1, —0.25, and 0.25. The eigenvector corresponding 
to the eigenvalue 1 is [ 0.4 0.2 0.4 ] T . 

D 

Now suppose that we don't know the initial state of the Markov process, but we 
do know the probabilities for each state; the probability that the initial state S(0) 
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is equal to Sk is given by Pfc(O), k G [l ,n] . Then we can use the total probability 
theorem [Mitzenmacher and Upfal, 2005] to obtain 

Pr(S( l ) = St) = Pr(5(0) = S1)pli + Pr(5(0) = S2)p2i + ■■■ + 

Pr(S(0) = Sn)Pni 

= £ P r ( S ( 0 ) = Sfc)Pki 

n 

= ^2PkiPk(0). (4.16) 

Generalizing the above equation, we obtain 

Pr(S(l)=S0 n T 

Pr(5(l) = S„) 
: p T (0 )P (4.17) 

where p(0) is the column vector comprised of pfc(0), fc G [l ,n]. Generalizing this 
development for multiple time steps, we obtain 

PT(t) = 
Pr(S(t) = Si) 

Pr(S(t) = Sn) 
= pr(0)P*. (4.18) 

EXAMPLE 4.3 

Today's weather forecast in Oz is 80% sun and 20% snow. What is the weather 
forecast for two days from now? 

Prom Equation (4.18), pT(2) = pT(0)P2, where P is given in Example 4.1 
andp(0) - [ 0.0 0.8 0.2 ] T . This gives p(2) = [ 0.3750 0.2375 0.3875 ] T . 
That is, two days from now, there is a 37.5% chance of rain, a 23.75% chance 
of sun, and a 38.75% chance of snow. 

EXAMPLE 4.4 

Consider a simple hill-climbing EA comprised of a single individual [Reeves 
and Rowe, 2003, page 112]. The goal of the EA is to minimize / ( # ) . We use 
Xi to denote the candidate solution at the i-th generation. Each generation 
we randomly mutate Xi to obtain x\. If /(#$) < f(xi), then we set a^+i = x'{. 

If f(Xi) > f{xi), then we use the following logic to determine 2^+1. If 
we had set Xk+i = x'k a t the previous generation k at which f(x'k) > f(xk), 
then we set x;+i = x\ with a 10% probability, and x^+i = Xi with a 90% 
probability. If, however, we had set a^+i = xk at the previous generation k 
at which f(xf

k) > f(xk), t n e n w e s e t x%+\ = x[ with a 50% probability, and 
we set Xi_|_i = X{ with a 50% probability. This EA is greedy in that it always 
accepts a beneficial mutation. However, it also includes some exploration in 
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that it sometimes accepts a detrimental mutation. The probability of accept-
ing a detrimental mutation varies depending on whether or not the previous 
detrimental mutation was accepted. The algorithm for this hill-climbing EA 
is shown in Figure 4.1. 

Initialize x\ to a random candidate solution 
Intialize AcceptFlag to false 
For i = 1,2, · · · 

Mutate Xi to get x\ 
If/(*5) </(*<) 

Xi+l <- X'i 

else 
If AcceptFlag 

P r ^ + i <— x'j) = 0.1, and P r (x i + i <— Xi) — 0.9 
else 

Pr(xj+ i —̂ χ[) = 0.5, and Pr(xj+ i <— xi) = 0.5 
end if 
AcceptFlag «— (x^+i = χ£) 

end if 
Next i 

Figure 4.1 The above pseudo-code outlines the single-individual hill-climbing EA of 
Example 4.4. AcceptFlag indicates if the previous detrimental mutation replaced the 
candidate solution. 

We can analyze this EA by considering what happens if x\ is worse than Xi. 
We use Zk to denote the state the fc-th time that /(#£) > f(xi)· We define Y\ 
as the "accept" state; that is, x^+i <— x\. We define Y^ as the "reject" state; 
that is, Xi+i —̂ Xi. Then, by examining the algorithm of Figure 4.1, we can 
write 

Pi(Zk = Y1\i Zk-i=Yi) = 0.1 
Pr(z fc = y2|Zfc_i = yi) - 0.9 
Pr(Zk = Y1\Zk.l = Y2) = 0.5 

Pi(Zk = Y2\Zk-1=Y2) = 0.5 

This equation shows that the transition matrix is 

P = 
' 0.1 0.9 " 

0.5 0.5 

(4.19) 

(4.20) 

Notice that the rows of P sum to 1. We also see that all the elements of 
P* are nonzero for some t (actually, for all t in this case) so P is a regular 
transition matrix. Theorem 4.2 assures us that: (1) Pl converges as t —> oo; 
(2) All the rows of P°° are identical; (3) Each element of P°° is positive; (4) 
The probability that the Markov process is in state Y{ after an infinite number 
of transitions is equal to the z-th element of each row of P°°; and (5) Each 
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row of P°° is equal to the transpose of the eigenvector corresponding to the 
eigenvalue 1 of PT. 

We use a numerical calculation to find 

poo _ _j_ 
14 

(4.21) 

We also find that the eigenvalues of PT are equal to —0.4 and 1, and the 
eigenvector corresponding to the 1 eigenvalue is [ 5/14 9/14 ] T . These re-
sults tell us that in the long run, the ratio of acceptances to rejections of 
detrimental mutations is 5/9. 

4.3 MARKOV MODEL NOTATION FOR EVOLUTIONARY ALGORITHMS 

In this section we define the notation that we will use later to derive a Markov 
model and dynamic system model for EAs. Markov models can be valuable tools 
for analyzing EAs because they give us exact results. We can run simulations to in-
vestigate the performance of EAs, but simulations can be misleading. For instance, 
a set of Monte Carlo simulations might happen to give misleading results due to 
the particular sequence of random numbers generated during the simulation. Also, 
the random number generator using in the EA simulation may be incorrect, which 
happens more often than we would like to think, and which would give misleading 
results [Savicky and Robnik-Sikonja, 2008]. Finally, the number of Monte Carlo 
simulations to estimate highly improbable outcomes might be so high as to not be 
attainable in a reasonable amount of computational time. The Markov model re-
sults that we derive avoid all of these pitfalls and give exact results. The drawback 
of the Markov models is the high amount of computational effort that is required 
for their implementation. 

We will focus on EAs with a population size N operating in a discrete search 
space of cardinality n. We will assume that the search space consists of all q-bit 
binary strings, so that n = 2q. We use Xi to denote the z'-th bit string in the search 
space. We use v to denote the population vector; that is, Vi is the number of xi 
individuals in the population. We see that 

Y^Vi = N. (4.22) 

This equation simply means that the total number of individuals in the population 
is equal to JV. We use y^ to denote the k-th individual in the population. The 
population Y of the EA can be represented as 

Y = {VI,---,VN} (4-23) 

= \X\ -, X\ -> * ' ' i X\i X2i ^2i i %2i ' ' ' %ηι %ηι i %nj 

vi copies V2 copies vn copies 

where the y^s have been ordered to group identical individuals. We use T to denote 
the total number of possible populations Y. That is, T is the number of n x 1 integer 
vectors v such that Σ7=ι vi — N and Vi G [0, N]. 
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EXAMPLE 4.5 

Suppose that N = 2 and n — 4; that is, the search space consists of the bit 
strings {00,01,10,11}, and there are two individuals in the EA. The search 
space individuals are 

xi = 00, 
X3 = 10, 

The possiblw populationsinclude the 

{00,00}, 
{00,10}, 
{01,01}, 
{01,11}, 
{10,11}, 

x2 = 01, 
X4 = 11. 

following: 

{00,01}, 
{00,11}, 
{01,10}, 
{10,10}, 
{11,11}. 

(4.24) 

(4.25) 

We see that T = 10 for this example. 

D 

How many possible EA populations exist for a population size of N in a search 
space of cardinality n? It can be shown [Nix and Vose, 1992] that T is given by the 
following binomial coefficient, also called the choose function: 

τ = ( η + £ - 1 ) · (4-26) 
We can also use the multinomial theorem [Chuan-Chong and Khee-Meng, 1992], 
[Simon et al., 2011a] to find T. The multinomial theorem can be stated in several 
ways, including the following: given K classes of objects, the number of different 
ways that N objects can be selected, independent of order, while choosing from 
each class no more than M times, is the coefficient ÇN in the polynomial 

q(x) = (1 + χ + χ2 + · · · + χ Μ ) κ 

- 1 + qlX + q2x
2 + ■ · · + qNxN + · ■ · + xMK'. (4.27) 

Our EA population vector v is an n-element vector where each element is an integer 
between 0 and N inclusive, and whose elements sum to N. T is the number of unique 
population vectors v. So T is the number of ways that iV objects can be selected, 
independent of order, from n classes of objects while choosing from each class no 
more than N times. Applying the multinomial theorem (4.27) to this problem gives 

T = qN 

where q(x) = (1 + x + x2 + · · · + xN)n 

= 1 + qlX + q2x
2 + · · · + qNxN + · · · + xNn. (4.28) 

We can also use a different form of the multinomial theorem to find T [Chuan-
Chong and Khee-Meng, 1992], [Simon et al., 2011a]. The multinomial theorem can 
be stated as follows: 
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I N 

{ΧΙ + Χ2 + ...+ΧΝΤ = ^ ^ _ _ r j ^ 
S(k) l\.j=0K3· j=0 

N / ™ , x N 

En( E ; r f c 0n4 j (4-29) 
C/ΊΛ i=Cl \ t / ■ n S(fc)i=0 x ' ' j=0 

N 

where S (A;) = {keRN : fcj G {0,1, · · · , n} , ] T fy = n} . 
i=o 

Now consider the polynomial (x° + x1 + x2 + · · · + xN)n. Prom the multinomial 
theorem of Equation (4.29) we see that the coefficient of [(x°)k°(xx)kl · · · (xN)kN] 
is given by 

π( Σ ΐ ?**) · (430) 

If we add up these terms for all kj such that 

N 

Y,3kj = N (4.31) 
j=0 

then we obtain the coefficient of xN. But Equation (4.28) shows that T is equal to 
the coefficient of xN. Therefore 

T = ΣΠ(Σνθ (4·32) 
ΛΓ iV 

where S"(fc) = {/c G R N + 1 : kj G {0,1,· ·· , η } , ] Γ ^ =n,^jk3 = n} . 

Equations (4.26), (4.28), and (4.32) give equivalent expressions for T. 

■ EXAMPLE 4.6 

This example is taken from [Simon et al., 2011a]. Suppose that we have a 
two-bit search space (q = 2, n = 4) and an EA population size N = 4. 
Equation (4.26) gives 

T = (I ) = 35. (4.33) 

Equation (4.28) gives 

q(x) = (l + x + x2 + x3+ x4)4 

= 1 + · · · + 35x4 + · · · + x1 6 (4.34) 

which means that T — 35. Equation (4.32) gives the following: 
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T = E n ( V ) 
5'(fc)t=0^ Ä t ' 

where S'(k) = feeR5:^ {0,1, · · · , 4 } , ] T fy = 4 , ^ ^ · = 4 I 
[ j=o j=o J 

- { ( 3 0 0 0 1 ) , ( 2 1 0 1 0 ) , ( 2 0 2 0 0 ) , 

( 1 2 1 0 0 ) , ( 0 4 0 0 0 ) } . (4.35) 

This means that T = 4 + 12 + 6 + 12 + 1 = 35. We see that all three methods 
for the calculation of T give the same result. 

D 

4.4 MARKOV MODELS OF GENETIC ALGORITHMS 

Markov models were first used to model GAs in [Nix and Vose, 1992], [Davis and 
Principe, 1991], and citeDavis93, and are further explained in [Reeves and Rowe, 
2003] and [Vose, 1999]. As we saw in Chapter 3, a GA consists of selection, 
crossover, and mutation. For the purposes of Markov modeling, we will switch 
the order of crossover and mutation, so we will consider a GA which consists of 
selection, mutation, and crossover, in that order. 

4.4.1 Selection 

First we consider fitness-proportional (that is, roulette-wheel) selection. The proba-
bility of selecting an x^ individual with one spin of the roulette wheel is proportional 
to the fitness of the Xi individual, multiplied by the number of Xi individuals in the 
population. This probability is normalized so that all probabilities sum to 1. As 
defined in the previous section, vi is the number of Xi individuals in the population. 
Therefore, the probability of selecting an Xi individual with one spin of the roulette 
wheel is 

Ps(Xi\v) = Vifi (4.36) 

for i £ [ l ,n], where n is the cardinality of the search space, and fj is the fitness 
of Xj. We use the notation Ps(xi\v) to show that the probability of selection an x^ 
individual depends on the population vector v. Given a population of N individuals, 
suppose that we spin the roulette wheel N times to select N parents. Each spin 
of the roulette wheel has n possible outcomes {xi, · · · ,x n }· The probability of 
obtaining outcome Xi at each spin is equal to Ps(xi\v). Let U = [ U\ · · · Un ] 
be a vector of random variables where Ui denotes the total number of times that Xi 
occurs in N spins of the roulette wheel, and let u = [ u\ · · · un } be a realization 
of U. Multinomial distribution theory [Evans et al., 2000] tells us that 

Pvs{u\v) = N\f[[P'{Xil")]Ui. (4.37) 
A -*■ 7/..· Î 
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This gives us the probability of obtaining the population vector u after N roulette-
wheel spins if we start with the population vector v. We use the subscript s on 
Vrs{u\v) to denote that we consider only selection (not mutation or crossover). 

Now recall that a Markov transition matrix contains all of the probabilities of 
transitioning from one state to another. Equation (4.37) gives us the probability of 
transitioning from one population vector v to another population vector u. There 
are T possible population vectors, as discussed in the previous section. Therefore, 
if we calculate Equation (4.37) for each possible u and each possible v, we will 
obtain a T x T Markov transition matrix which gives an exact probabilistic model 
of a selection-only G A. Each entry of the transition matrix contains the probability 
of transitioning from some particular population vector to some other population 
vector. 

4.4.2 Mutation 

Now suppose that after selection, we implement mutation on the selected individ-
uals. Define Mji as the probability that Xj mutates to X{. Then the probability of 
obtaining an Xi individual after a single spin of the roulette wheel, followed by a 
single chance of mutation, is 

n 

) = Y^M3lPs{x3\v) (4.38) 

for i G [1, n]. This means that we can write the n-element vector whose i-th element 
is equal to Psm(xi\v) as follows: 

Psm(x\v) = MTPs(x\v) (4.39) 

where M is the matrix containing Mji in the j - t h row and z-th column, and P3(x\v) 
is the n-element vector whose j - t h element is PS(XJ\V). Now we use multinomial 
distribution theory again to find that 

Prsm(u\v) = N\f[ 1Ρ™(ΧΜ"\ ( 4 4 0 ) 

This gives us the probability of obtaining the population vector u if we start with the 
population vector v, after both selection and mutation take place. If we calculate 
Equation (4.40) for each of the T possible u and v population vectors, we will have 
a T x T Markov transition matrix which gives an exact probabilistic model of a GA 
which consists of both selection and mutation. 

If mutation is defined so that Mji > 0 for all i and j , then Prsrn(u\v) > 0 
for all u and v. This means that the Markov transition matrix will contain all 
positive entries, which means that the transition matrix will be regular. Theo-
rem 4.2 tells us that there will be a unique nonzero probability for obtaining each 
possible population distribution. This means that in the long run, each possible 
population distribution will occur for a nonzero percent of time. These percent-
ages can be calculated using Theorem 4.2 and the transition matrix obtained from 
Equation (4.40). The GA will not converge to any specific population, but will 
endlessly wander throughout the search space, hitting each possible population for 
the percent of time given in Theorem 4.2. 
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EXAMPLE 4.7 

Suppose we have a four-element search space with individuals x = {00,01,10,11}. 
Suppose that each bit in each individual has a 10% chance of mutation. The 
probability that 00 remains equal to 00 after a mutation chance is equal to 
the probability that that first 0 bit remains unchanged (90%), multiplied by 
the probability that the second 0 bit remains unchanges (90%), which gives a 
probability of 0.81. This gives M n , which is the probability that x\ remains 
unchanged after a mutation chance. The probability that 00 will change to 
01 is equal to the probability that that first 0 bit remains unchanged (90%), 
multiplied by the probability that the second 0 bit changes to a 1 (10%), 
which gives a probability of Mi2 =0 .09 . Continuing along these lines, we find 
that 

" 0.81 0.09 0.09 0.01 
0.09 0.81 0.01 0.09 
0.09 0.01 0.81 0.09 
0.01 0.09 0.09 0.81 

M (4.41) 

Note that M is symmetric (that is, M is equal to its transpose MT). This is 
typically (but not always) the case, which means that it is equally likely for 
Xi to mutate to form Xj, as it is for Xj to mutate to form xit 

4.4.3 Crossover 

Now suppose that after selection and mutation, we implement crossover. We let 
Tjki denote the probability that Xj and Xk cross to form Xi. Then the probability 
of obtaining an Xi individual after two spins of the roulette wheel, followed by a 
single chance of mutation for each selected individual, followed by crossover, is 

n n 

(xk\v). (4.42) 
j = l fc=l 

Now we use multinomial distribution theory again to find that 

Prsmc(u\v) = Nlf[ [ P * m c ( X ; | t ; r . (4.43) 
i=i Ui' 

This gives us the probability of obtaining the population vector u if we start with 
the population vector v, after selection, mutation, and crossover take place. 

■ EXAMPLE 4.8 

Suppose we have a four-element search space with individuals {xi, x2, £3, £4} = 
{00,01,10,11}. Suppose that we implement crossover by randomly setting 
b = 1 or b = 2 with equal probability, and then concatenating bits 1 —>· b from 
the first parent with bits ( 6 + 1 ) —> 2 from the second parent. Some of the 
crossover possibilities can be written as follows: 
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This gives crossover 

nn 
r* i2 i 

7*131 

T141 

00 x 00 -+ 
00 x 01 -> 
00 x 10 -> 
00 x 11 -» 

îr probabilities 

= 1.0, r112 = 0.0, 
= 0.5, r122 = 0.5, 
= 1.0, r132 = 0.0, 
= 0.5, 7-142 = 0.5, 

00 
01 or 00 
00 
01 or 00. 

r u a = 0.0, 
Π23 = 0.0, 
Γ133 = 0.0, 
ri43 - 0.0, 

n i 4 
T124 

»"134 

T144 

= 0.0 
= 0.0 
= 0.0 
= 0.0. 

(4.44) 

(4.45) 
> ' 1 3 4 — ^.\J 

, 7*144 = 0.0. 

The other r ^ values can be calculated similarly. 

D 

EXAMPLE 4.9 

In this example we consider the three-bit one-max problem. Each individual's 
fitness value is proportional to the number of ones in the individual: 

/(000) = 1, /(001) = 2, /(010) = 2, / (Oi l ) = 3, 
/(100) = 2, /(101) = 3, /(110) = 3, /(111) = 4. (*Λ0) 

Suppose each bit has a 10% probability of mutation, which gives the mutation 
matrix derived in Example 4.7. After selection and mutation, we perform 
crossover with a probability of 90%. If crossover is selected, then crossover 
is performed by selecting a random bit position be [Ι,ρ — 1], where q is the 
number of bits in each individual. We then concatenate bits 1 —» b from the 
first parent with bits (b + 1) —> q from the second parent. 

Let's use a population size N = 3. There are (n + N — l)-choose-7V = 10-
choose-3 = 120 possible population distributions. We can use Equation (4.43) 
to calculate the probability of transitioning between each of the 120 popula-
tion distributions, which gives us a 120 x 120 transition matrix P . We can 
then calculate the probability of each possible population distribution in three 
different ways: 

1. We can use the Davis-Principe result of Equation (4.15); 

2. From Theorem 4.2, we can numerically raise P to ever-increasing higher pow-
ers until it converges, and then use any of the rows of P°° to observe the 
probability of each possible population; 

3. We can calculate the eigendata of PT and find the eigenvector corresponding 
to the 1 eigenvalue. 

Each of these approaches give us the same set of 120 probabilities for the 120 
population distributions. We find that the probability that the population 
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contains all optimal individuals, that is, each individual is equal to the bit 
string 111, is 6.1%. The probability that the population contains no optimal 
individuals is 51.1%. Figure 4.2 shows the results of a simulation of 20,000 
generations, and shows that the simulation results closely match the Markov 
results. The simulation results are approximate, will vary from one run to 
the next, and will equal the Markov results only as the number of generations 
approaches infinity. 

^"50 o 

§ 4 0 | 

ro 20 

■ 

j*V " 

! 

-
- no optimal 

all optima | 

-

0.5 1 1.5 
generation number 

Figure 4.2 Example 4.9: Three-bit one-max simulation results. Markov theory predicts 
that the percentage of no optima is 51.1% and the percentage of all optima is 6.1%. 

EXAMPLE 4.10 

Here we repeat Example 4.9 except we use the following fitness values: 

/(000) = 5, /(001) = 2, /(010) = 2, / (Oi l ) = 3, 
/(100) = 2, /(101) = 3, /(110) = 3, /(111) = 4. 

(4.47) 

These fitness values are the same as those in Equation (4.46), except that we 
made the 000 bit string the most fit individual. This is called a deceptive 
problem because usually when we add a 1 bit to one of the above individuals 
its fitness increases. The exception is that 111 is not the most fit individual, 
but rather 000 is the most fit individual. 

As in Example 4.9, we calculate a set of 120 probabilities for the 120 popu-
lation distributions. We find that the probability that the population contains 
all optimal individuals, that is, each individual is equal to the bit string 000, is 
5.9%. This is smaller than the probability of all optima in Example 4.9, which 
was 6.1%. The probability that the population contains no optimal individu-
als is 65.2%. This is larger than the probability of no optima in Example 4.9, 
which was 51.1%. This example illustrates that deceptive problems are more 
difficult to solve than problems with a more regular structure. Figure 4.3 
shows the results of a simulation of 20,000 generations, and shows that the 
simulation results closely match the Markov results. 
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Figure 4.3 Example 4.10: Three-bit deceptive problem simulation results. Markov theory 
predicts that the percentage of no optima is 65.2% and the percentage of all optima is 5.9%. 

The Curse of Dimensionality: The curse of dimensionality is a phrase which 
was originally used in the context of dynamic programming [Bellman, 1961]. How-
ever, it applies even more appropriately to Markov models for GAs. The size of the 
transition matrix of a Markov model of an EA is T x T, where T = (N + n — 1)-
choose-iV. The transition matrix dimensions for some combinations of population 
size N, and search space cardinality n, which is equal to 2q for q-bit search spaces, 
are shown in Table 4.1. We see that the transition matrix dimension grows ridicu-
lously large for problems of even modest dimension. This seems to indicate that 
Markov modeling is interesting only from a theoretical viewpoint, and does not 
have any practical applications. However, there are a couple of reasons that such a 
response may be premature. 

# b i t s ç n = 2« N T 

10 
10 
20 
50 

2 i o 

2 i o 

2 20 

2 50 

10 
20 
20 
50 

1023 

1042 

1 0 1 0 2 

1 0 6 8 8 

Table 4.1 Markov transition matrix dimensions for various search space 
cardinalities n and population sizes N. Adapted from [Reeves and Rowe, 2003, 
page 131]. 

First, although we cannot apply Markov models to realistically-sized problems, 
Markov models still give us exact probabilities for small problems. This allows us 
to look at the advantages and disadvantages of different EAs for small problems, 
assuming that we have Markov models for EAs other than GAs. This is exactly 
what we do in [Simon et al., 2011b] when we compare GAs with BBO. A lot of 
research in EAs today is focused on simulations. The problem with simulations 
is that their outcomes depend so strongly on implementation details and on the 
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specific random number generator that is used. Also, if some event has a very 
small probability of occurring, then it would take many simulations to discover 
that probability. Simulation results are useful and necessary, but they must always 
be taken with a dash of skepticism and a grain of salt. 

Second, the dimension of the Markov transition matrices can be reduced. Our 
Markov models include T states, but many of these states are very similar to each 
other. For example, consider a GA with a search space cardinality of 10 and a 
population size of 10. Table 4.1 shows us that the Markov model has 1023 states, 
but these include the states 

v(l) = {5 ,5 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0} 
v(2) = {4 ,6 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0} 
v{3) = {6 ,4 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0} . (4.48) 

These three states are so similar that it makes sense to group them together and 
consider them as a single state. We can do this with many other states to get a 
new Markov model with a reduced state space. Each state in the reduced-order 
model consists of a group of the original states. The transition matrix would then 
specify the probability of transitioning from one group of original states to another 
group of original states. This idea was proposed in [Spears and De Jong, 1997] and 
is further discussed in [Reeves and Rowe, 2003]. It is hard to imagine how to group 
states to reduce a 1023 x 1023 matrix to a manageable size, but at least this idea 
allows us to handle larger problems than we would be able to otherwise. 

4.5 DYNAMIC SYSTEM MODELS OF GENETIC ALGORITHMS 

In this section we use the Markov model of the previous section to derive a dynamic 
system model of G As. The Markov model gives us the probability of occurrence 
of each population distribution as the number of generations approaches infinity. 
The dynamic system model that we derive here is quite different; it will give us 
the percentage of each individual in the population as a function of time as the 
population size approaches infinity. The view of a GA as a dynamic system was 
originally published in [Nix and Vose, 1992], [Vose, 1990], [Vose and Liepins, 1991], 
and is explained further in [Reeves and Rowe, 2003], [Vose, 1999]. 

Recall from Equation (4.22) that v = [ V\ · · · vn ]T is the population vector, 
Vi is the number of X{ individuals in the population, and the elements of v sum to 
TV, which is the population size. We define the proportionality vector as 

p = v/N (4.49) 

which means that the elements of p sum to 1. 

4.5.1 Selection 

To find a dynamic system model of a G A with selection only (i.e., no mutation or 
crossover), we can divide the numerator and denominator of Equation (4.36) by TV 
to write the probability of selecting individual Xi from a population described by 
population vector v as follows: 
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Pi / I \ Pi H 
s{Xi\v) = = n T-

L,j=iPjfj 

(4.50) 
fTP 

where / is the column vector of fitness values. Writing Equation (4.50) for i € [1, n 
and combining all n equations gives 

" Pe(Xl\v) ~ 
Ps(x\v) = 

diag(/)j> , . 

~ΎΓ ( 4 · 5 1 ) 
Ps(Xn\v) 

where diag(/) is the nxn diagonal matrix whose diagonal entries are comprised of 
the elements of / . 

The law of large numbers tells us that the average of the results obtained from 
a large number of trials should be close to the expected value of a single trial 
[Grinstead and Snell, 1997]. This means that as the population size becomes large, 
the proportion of selections of each individual Xi will be close to Ps(xi\v). But the 
number of selections of xi is simply equal to vi at the next generation. Therefore, 
for large population sizes, Equation (4.50) can be written as 

Pi(t) = ^ ( * " 1 } / ; u - (4-52) 

where t is the generation number. 
Now suppose that 

n m Pi(°)fi {A roï m = TJü^m' ( } 

This is clearly true for t = 1, as can be seen from Equation (4.52). Supposing that 
Equation (4.53) holds for t — 1, the numerator of Equation (4.52) can be written as 

f.O.(t-i) - f ^ ( Ο ) / / - 1 

pmn 

and the denominator of Equation (4.52) can be written as 

(4.54) 

" èn= 1 /rv f c(o) · (4·55) 

Substituting Equations (4.54) and (4.55) into Equation (4.52) gives 

Lfc=i fk P * ( ° ) 
This equation gives the proportionality vector as a function of time, as a function 
of the fitness values, and as a function of the initial proportionality vector, when 
only selection (no mutation or crossover) is implemented in a GA. 
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■ EXAMPLE 4.11 

As in Example 4.9, we consider the three-bit one-max problem with fitness 
values 

/(000) = 1, /(001) = 2, /(010) = 2, / (Oi l ) = 3, 
/(100) = 2, /(101) = 3, /(110) = 3, /(111) = 4. ^'0i) 

Suppose the initial proportionality vector is 

p ( 0 ) = [ 0 . 9 3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 ] T . (4.58) 

93% of the initial population is comprised of the least fit individual, and only 
1% of the population is comprised of the most fit individual. Figure 4.4 shows 
a plot of Equation (4.56). We see that as the GA population evolves, £4, 
XQ, and £7, which are the second best individuals, initially gain much of the 
population that originally belonged to p\. The least fit individual, # i , quickly 
is removed from the population by the selection process. p2> P3, and p$ are 
not shown in the figure. It does not take very many generations before the 
entire population converges to xg? the optimal individual. 

Figure 4.4 Population proportionality vector evolution for Example 4.11. Even though 
the best individual, x&, starts with only 1% of the population, it quickly converges to 100%. 
The least fit individual, xi, starts with 93% of the population but quickly decreases to 0%. 

D 
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We have discussed the dynamic system model for fitness-proportional selection, 
but other types of selection, such as tournament selection and rank selection, can 
also be modeled as a dynamic system [Reeves and Rowe, 2003], [Vose, 1999]. 

4.5.2 Mutation 

Equation (4.51), along with the law of large numbers, tells us that 

diag(/)p(t - 1) 
P(*) = 

fTp(t - 1) 
(selection only). (4.59) 

If selection is followed by mutation, and Mji is the probability that Xj mutatates 
to Xi, then we can use a derivation similar to Equation (4.38) to obtain 

, x MTdmg(f)p(t - 1) , , . 
p(t) = -pF/ 7 (selection and mutation). 

fÂp{t-1) 
(4.60) 

If p(t) reaches a steady state value, then we can write pss = p(t — 1) = p(t) to write 
Equation (4.60) as 

Pss = 

MTdmg(f)pss = 

M T diag( / )p 
s 

fTPss 

{fTPss) Pss-

(4.61) 

This equation is of the form Ap = \p, where λ is an eigenvalue of A, and p is an 
eigenvector of A. We see that the steady-state proportionality vector of a selection-
mutation G A (i.e., no crossover) is an eigenvector of M T d iag ( / ) . 

EXAMPLE 4.12 

As in Example 4.10, we consider the three-bit deceptive problem with fitness 
values 

/(000) = 5, /(001) = 2, /(010) = 2, / (Oi l ) = 3, 
/(100) = 2, /(101) = 3, /(110) = 3, /(111) = 4. 

(4.62) 

We use a mutation rate of 2% per bit in this example. For this problem, we 
obtain 

M T d iag( / ) = 
4.706 
0.096 
0.096 
0.002 
0.096 
0.002 
0.002 
0.000 

(4.63) 

0.038 
1.882 
0.001 
0.038 
0.001 
0.038 
0.000 
0.001 

0.038 
0.001 
1.882 
0.038 
0.001 
0.000 
0.038 
0.001 

0.001 
0.058 
0.058 
2.824 
0.000 
0.001 
0.001 
0.058 

0.038 
0.001 
0.001 
0.000 
1.882 
0.038 
0.038 
0.001 

0.001 
0.058 
0.000 
0.001 
0.058 
2.824 
0.001 
0.058 

0.001 
0.000 
0.058 
0.001 
0.058 
0.001 
2.824 
0.058 

0.000 
0.002 
0.002 
0.077 
0.002 
0.077 
0.077 
3.765 

We calculate the eigenvectors of M T d iag( / ) as indicated by Equation (4.61) 
and scale each eigenvector so that its elements sum to 1. Recall that eigen-
vectors of a matrix are invariant up to a scaling value; that is, if p is an 
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eigenvector, then cp is also an eigenvector for any nonzero constant c. Since 
the each eigenvector represents a proportionality vector, its elements must 
sum to 1 as indicated by Equation (4.49). We obtain eight eigenvectors, but 
only one of them is comprised entirely of positive elements, and so there is 
only one steady-state proportionality vector: 

paa{l) = [ 0.90074 0.03070 0.03070 0.00221 

0.03070 0.00221 0.00221 0.0005 ] T . (4.64) 

This indicates that the G A will converge to a population consisting of 90.074% 
of x\ individuals, 3.07% each of X2, #3, and x$ individuals, and so on. Over 
90% of the GA population will consist of optimal individuals. However, there 
is also an eigenvector of M T d iag( / ) that contains only one negative element: 

pss{2) = [ -0.0008 0.0045 0.0045 0.0644 

0.0045 0.0644 0.0644 0.7941 ] T . (4.65) 

This is called a metastable point [Reeves and Rowe, 2003], and it includes 
a high percentage (79.41%) of x% individuals, which is the second most fit 
individual in the population. Any proportionality vector close to pss{2) will 
tend to stay there since pss(2) is a fixed point of Equation (4.61). However, 
p s s(2) is not a valid proportionality vector since it has a negative element, 
and so even though the G A population is attracted to p s s(2), eventually the 
population will drift away from it and will converge to p s s ( l ) . Figure 4.5 
shows the results of a simulation of the select ion-mut at ion G A. We used a 
population size N — 500, and an initial proportionality vector of 

p ( 0 ) = [ 0 . 0 0.0 0.0 0.1 0.0 0.1 0.1 0.7 ] T (4.66) 

which is close to the metastable point pss(2). We see from Figure 4.5 that 
for about 30 generations the population stays close to its original distribu-
tion, which is comprised of 70% of x$ individuals, and which is close to the 
metastable point pss(2). After about 30 generations, the population quickly 
converges to the stable point p s s ( l ) , which is comprised of about 90% of x\ 
individuals. Note that if the simulation is run again it will give different re-
sults because of the random number generator that is used for selection and 
mutation. 

Figure 4.6 shows p\ and p$ from Equation (4.60) for 100 generations. This 
gives an exact proportion of x\ and x% individuals as the population size 
approaches infinity. We can see that Figures 4.5 and 4.6 are similar, but 
Figure 4.5 is the result of a finite population size simulation and will change 
each time the simulation is run due to the random number generator that is 
used. Figure 4.6, on the other hand, is exact. 
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Figure 4.5 Simulation results for Example 4.12. The population hovers around the 
met astable point, which is comprised of 70% of x\ individuals, before eventually converging 
to the stable point of 90% of x& individuals. Results will change from one simulation to the 
next due to the stochastic nature of the simulation. 
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Figure 4.6 Analytical results for Example 4.12. Compare with Figure 4.5. Analytical 
results do not depend on random number generators. 

D 

4.5.3 Crossover 

As in Section 4.4.3, we use r ^ to denote the probability that Xj and Xk cross to 
form xi. If the population is specified by the proportionality vector p in an infinite 
population, then the probability that Xi is obtained from a random crossover is 
derived as follows: 

Proportion of [0 0 0] 
Proportion of [1 1 1] 
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n n 
Pc(Xi\p) = 

j=\ fc=l fc=l j=l 

Y^Pk [ Pi · · ' Pn ] 
k=l 

= [ Pi '" Pn ] y^Pfc 
fc=l 

Tnki 

riki 

Tnki 

Ση 

[ rlu : rini J P 

[ f*nli * ' ' Vnni J P 

ï*lli * * ' fini 

rnli 

p 

PTRiP (4.67) 

where the element in the j - t h row and k-th column of Ri is r ^ , the probability that 
Xj and Xk cross to form X{. We again using the law of large numbers [Grinstead and 
Snell, 1997] to find that in the limit as the population size N approaches infinity, 
crossover changes the proportion of Xi individuals as follows: 

pi = Pc(xi\p)=pTRip. (4.68) 

Although Ri is often nonsymmetric, the quadratic Pc(xi\p) can always be written 
using a symmetric matrix as follows. 

Pc(xi\p) = pTRiP 

= ^pTRiP+^{pTRip)T (4.69) 

where the second line follows because pTRiP is a scalar, and the transpose of a 
scalar is equal to the scalar. Therefore, recalling that (ABC)T = CTBTAT, 

Pc(xi\p) = ^PTRiP+^PTR[p 

= -pT(Ri + Rj)P 

= pTRiP 

where the symmetric matrix Ri is given by 

Ri — 9 ^ * "*" ^ )' 

(4.70) 

(4.71) 
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EXAMPLE 4.13 

As in Example 4.8, suppose we have a four-element search space with indi-
viduals x = { # i , x 2 , # 3 , £ 4 } = {00,01,10,11}. We implement crossover by 
randomly setting 6 = 1 or 6 = 2 with equal probability, and then concatenat-
ing bits 1 —l· b from the first parent with bits ( 6 + 1 ) —> 2 from the second 
parent. The crossover possibilities can be written as 

0 0 x 0 0 
0 0 x 0 1 
00 x 10 
00 x 11 
01 xOO 
01 xOl 
01 x 10 
01 x 11 
1 0 x 0 0 
1 0 x 0 1 
10 x 10 
10 x 11 
11 xOO 
11 xOl 
11 x 10 
11 x 11 

-» 
- ) ► 

->· 
-> 
—> 

-> 
-> 
-> 

-> 
-> 
-> 
— y 

-> 
-> 
-» 
-> 

00 
01 or 00 
00 
01 or 00 
00 or 01 
01 
00 or 01 
01 
10 
11 or 10 
10 
11 or 10 
10 or 11 
11 
10 or 11 
11. (4.72) 

This gives rjki crossover probabilities, which are the probabilities that Xj and 
Xk cross to give x\ — 00, as follows: 

r i n = 1.0, ri2i = 0.5, r131 = 1.0, r14i = 0.5 
r 2 n = 0.5, r2 2 i = 0.0, r2 3 i = 0.5, r2 4 i = 0.0 
r 3 n = 0 . 0 , r 3 2 i = 0 . 0 , r3 3 i = 0.0, r3 4 i = 0.0 
r-411 = 0.0, r4 2 i = 0.0, r 4 3 i = 0.0, r 4 4 i = 0.0 

(4.73) 

which results in the crossover matrix 

Ri = 

1.0 
0.5 
0.0 
0.0 

0.5 
0.0 
0.0 
0.0 

1.0 
0.5 
0.0 
0.0 

0.5 
0.0 
0.0 
0.0 

(4.74) 

Ri is clearly nonsymmetric, but Pc(xi\p) can still be written using the sym-
metric matrix 

where Ri -

Pc{xi\p) 

= ±(R1+Rl) 

= I 

= 

>TRiP 

' 1.0 
0.5 
0.5 
0.25 

0.5 
0.0 
0.25 
0.0 

0.5 
0.25 
0.0 
0.0 

0.25 
0.0 
0.0 
0.0 

(4.75) 
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The other Ri matrices can be found similarly. 

Now suppose we have a GA with selection, mutation, and crossover, in that 
order. We have a proportionality vector p at generation t — 1. Selection and 
mutation modify p as shown in Equation (4.60): 

MTdmg(f)p(t-l) 
P{t)= fTpit-1) · ( 4 · 7 6 ) 

Crossover modifies pi as shown in Equation (4.68). However, p on the right side 
of Equation (4.68) has already been modified by selection and mutation to result 
in the p shown in Equation (4.76). Therefore, the sequence of selection, mutation, 
and crossover, results in pi as shown in Equation (4.68), but with the p on the right 
side of Equation (4.68) replaced by the p resulting from the selection and mutation 
of Equation (4.76): 

Pi(t) = 
MTdmg(f)p(t - 1) 

fTp(t-i) 

T 

Ri 
MTdiag(f)p{t - 1) 

fTp(t - 1) 
pT(t - l)dmg(f)MRiM

Tdi&g(f)p(t - 1) 

(fTP(t - I))2 
(4.77) 

Ri can be replaced with Ri in Equation (4.77) to give an equivalent expression. 
Equation (4.77) gives an exact, analytic expression for the dynamics of the propor-
tion of Xi individuals in an infinite population. 

We see that we need to calculate the dynamic system model of Equation (4.77) 
for i G [ Ι ,Ή] ) at each generation, where n is the search space size. The matrices in 
Equation (4.77) are n x n, and the computational effort of matrix multiplication 
is proportional to n 3 if implemented with standard algorithms. Therefore, the 
dynamic system model requires computation on the order of n4 . This is much 
less computational effort than the Markov model requires, but it still grows very 
rapidly as the search space size n increases, and it is still requires unattainable 
computational resources for even moderately-sized problems. 

■ EXAMPLE 4.14 

Once again we consider the three-bit one-max problem (see Example 4.9) in 
which each individual's fitness is proportional to the number of ones. We 
use a crossover probability of 90%, a mutation probability of 1% per bit, a 
population size of 1,000, and an initial population proportionality vector of 

p(0) = [ 0.8 0.1 0.1 0.0 0.0 0.0 0.0 0.0 ] T . (4.78) 

Figure 4.7 shows the percent of optimal individuals in the population from a 
single simulation, along with the exact theoretical results of Equation (4.77). 
The simulation results match the theory nicely, but the simulation results are 
approximate and will vary from one run to the next, while the theory is exact. 

Now suppose that we change the initial population proportionality vector 
to 

p(0) = [ 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.8 ] T . (4.79) 
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Figure 4.8 shows the percent of least fit individuals from a single simulation, 
along with the exact theoretical results. Since the probability of obtaining a 
least-fit individual is so low, the simulation results show a couple of spikes in 
the graph due to random mutations. The spikes look large given the graph 
scale, but they are actually quite small, peaking at only 0.2%. The theoret-
ical results, however, are exact. They show that the proportion of least-fit 
individuals initially increases for a few generations due to mutation, and then 
quickly decreases to the steady-state value of precisely 0.00502%. It would 
take many, many simulations to arrive at this conclusion. Even after thou-
sands of simulations, the wrong conclusion may be reached, depending on the 
integrity of the random number generator that is used. 
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Figure 4.7 Proportion of most-fit individuals for Example 4.14. 
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Figure 4.8 Proportion of least-fit individuals for Example 4.14. 
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4.6 CONCLUSION 

In this chapter we outlined Markov models and dynamic system models for GAs. 
These models, which were first developed in the 1990s, give theoretically exact 
results, whereas simulations change from one run to the next due to the random 
number generator that is used for selection, crossover, and mutation. The size of the 
Markov model increases factorially with the population size and with the search 
space cardinality. The dynamic system model increases with n4 , where n is the 
search space cardinality. These computational requirements restrict the application 
of the Markov models and dynamic system models to very small problems. However, 
the models are still useful for comparing different implementations of GAs and for 
comparing different EAs, as we see in [Simon et al., 2011b]. Some additional ideas 
and developments along these directions can be found in [Reeves and Rowe, 2003], 
[Vose, 1999]. 

Markov modeling and dynamic system modeling are very mature fields and many 
general results have been obtained. There is a lot of room for the additional appli-
cation of these subjects to GAs and other EAs. 

Other methods can also be used to model or analyze the behavior of GAs. For 
example, the field of statistical mechanics involves averaging many molecular par-
ticles to model the behavior of a group of molecules, and we can use this idea to 
model GA behavior with large populations [Reeves and Rowe, 2003, Chapter 7]. 
We can also use the Fourier and Walsh transforms can to analyze GA behavior 
[Vose and Wright, 1998a], [Vose and Wright, 1998b]. Finally, we can use Price's 
selection and covariance theorem to mathematically model GAs [Poli et al., 2008, 
Chapter 3]. 

The ideas presented in this chapter could be applied to many other EAs besides 
GAs. We do this in [Simon et al., 2011a] and [Simon, 2011a] for biogeography-based 
optimization, and other researchers apply these ideas to other EAs, but there is still 
a lot of room for the application of Markov models and dynamic system models 
to EAs. This would allow for comparisons and contrasts between various EAs on 
an analytical level, at least for small problems, rather than reliance on simulation. 
Simuation is necessary in our study of EAs, but it should be used to support theory. 
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PROBLEMS 

Written Exercises 

4.1 How many schemata of length 2 exist? How many of them are order 0, how 
many are order 1, and how many are order 2? 

4.2 How many schemata of length 3 exist? How many of them are order 0, how 
many are order 1, how many are order 2, and how many are order 3? 

4.3 How many schemata of length I exist? 
a) How many of them are order 0? 
b) How many of them are order 1? 
c) How many of them are order 2? 
d) How many of them are order 3? 
e) How many of them are order p? 

4.4 Suppose that instances of schema h have fitness values that are 25% greater 
than the average fitness of a GA population. Suppose that the destruction prob-
ability of h under mutation and crossover are neglible. Suppose that the G A is 
initialized with a single instance of h. Determine the generation number when h 
will overtake the population for population sizes of 20, 50, 100, and 200 [Goldberg, 
1989a]. 

4.5 Suppose that we have a G A with 2-bit individuals such that the probability 
of mutating from any bit string Xi to any other bit string Xj is pm for all j φ i. 
What is the mutation matrix? Verify that each row sums to 1. 

4.6 Suppose that we have a G A with 2-bit individuals such that the probability 
of mutating a 0 bit is po> a n d the probability of mutating a 1 bit is p\. What is the 
mutation matrix? Verify that each row sums to 1. 

4.7 Calculate r2ij in Example 4.8 for i G [1,4] and j G [1,4]. 

4.8 Find R2 and R2 for Example 4.13. 

4.9 Suppose that the population at the t-th generation consists entirely of optimal 
individuals. Suppose that mutation is implemented so that the probabilty of an 
optimal individual mutating to a different individual is 0. Use Equation (4.77) to 
show that the population at the (t + l)-st generation consists entirely of optimal 
individuals. 

Computer Exercises 

4.10 Consider a G A in which each individual consists of a single bit. Let m\ 
denote the number of instances of schema h\ = 1, and let f\ denote its fitness. Let 
mo denote the number of instances of schema ho = 0, and let /o denote its fitness. 
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Suppose that the GA has an infinitely large population and uses reproduction and 
mutation (no crossover). Derive a recursive equation for p(t), which is the ratio 
mi/mo at the t-th generation [Goldberg, 1989a]. 

a) Suppose that the G A is initialized with p(0) = 1. Plot p(t) for the first 100 
generations when the mutation rate is 10% for fitness ratios fi/fo = 10, 
2, and 1.1. 

b) Repeat for a mutation rate of 1%. 
c) Repeat for a mutation rate of 0.1%. 
d) Give an intuitive explanation of your results. 

4.11 Verify Property 6 of Theorem 4.2 for the transition matrix of Example 4.1. 

4.12 A certain professor gives difficult exams. 70% of students who currently 
have an A in the course will drop to a B or worse after each exam. 20% of students 
who currently have a ß o r worse will raise their grade to an A after each exam. 
Given an infinite number of exams, how many students will earn an A in the course? 

4.13 Use Equations (4.26) and (4.28) to calculate the number of possible popu-
lations in a G A with a population size of 10 in which each individual is comprised 
of 6 bits. 

4.14 Repeat Example 4.10 with the following fitness values: 

/(000) = 7, /(001) = 2, /(010) = 2, / (Oi l ) = 4, 
/(100) = 2, /(101) = 4, / ( 1 1 0 ) = 4 , /(111) = 6. 

What do you get for the probability of no optimal solutions? How does this prob-
ability compare with that obtained in Example 4.10? How can you explain the 
difference? 

4.15 Repeat Example 4.10 with a mutation rate of 1%. What do you get for the 
probability of no optimal solutions? How does this probability compare with that 
obtained in Example 4.10? How can you explain the difference? 

4.16 Repeat Example 4.9 with the change that if the optimal solution is obtained, 
then it is never mutated. How does this change the mutation matrix? What do you 
get for the probability of all optimal solutions? How can you explain your results? 



CHAPTER 5 

Evolutionary Programming 

Success in predicting an environment is a prerequisite to intelligent behavior. 
—Lawrence Fogel [Fogel, 1999, page 3] 

Evolutionary programming (EP) was invented by Lawrence Fogel, along with his 
coworkers Al Owens and Jack Walsh, in the 1960s [Fogel et al., 1966], [Fogel, 1999]. 
An EP evolves a population of individuals but does not involve recombination. New 
individuals are created only by mutation. 

EP was originally invented to evolve finite state machines (FSMs). An FSM is 
a virtual machine that generates a sequence of outputs from a sequence of inputs. 
The output sequence generation is determined not only by the inputs, but also by 
a set of states and state transition rules. Lawrence Fogel considered prediction to 
be a key component of intelligence. Therefore, he considered the development of 
FSMs that could predict the next output of some process as a key step toward the 
development of computational intelligence. 

Overview of the Chapter 

Section 5.1 gives an overview of EP for continuous problem domains. Although EP 
was originally described as operating on a discrete domain, today it is often (perhaps 
usually) implemented on continuous domains, and so that is how we describe it in 
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general terms. Section 5.2 describes finite state machines (FSMs) and shows how 
EPs can optimize them. FSMs are interesting because they can be used to model 
many different types of systems, including computer programs, digital electronics, 
control systems, and classifier systems. 

Section 5.3 discusses Fogel's original method of EP for discrete problem domains. 
Section 5.4 discusses the prisoner's dilemma, which is a classic game theory problem. 
Prisoner's dilemma solutions can be represented as FSMs, and so EPs can find 
optimal solutions to the prisoner's dilemma. Section 5.5 discusses the artificial ant 
problem, which uses EP to evolve an FSM with which an ant can navigate a grid 
to efficiently find food. 

5.1 CONTINUOUS EVOLUTIONARY PROGRAMMING 

Suppose we want to minimize f(x), where x is an n-dimensional vector. Assume 
that f(x) > 0 for all x. An EP begins with a randomly-generated population of 
individuals {x^}, i £ [0, AT]. We create children {x^} as follows: 

x'i = Xi + riy/ßf(xi)+>y, ie[l,N] (5.1) 

where r* is a random n-element vector, each of whose elements is taken from a 
Gaussian distribution with a mean of 0 and a variance of 1, and ß and 7 are EP 
tuning parameters. The variance of the mutation of X{ is (ßf(xi) + 7). If ß = 0, 
then all individuals have the same average mutation magnitude. If ß > 0, then an 
individual with a low cost does not mutate as much as an individual with a high 
cost. Often ß = 1 and 7 = 0 are used as default, standard EP parameter values. 
We will see in Chapter 6 that an EP with a population size of one is equivalent to 
a two-membered ES. 

An examination of Equation (5.1) reveals some of the implementation issues 
associated with EP [Back, 1996, Section 2.2]. 

• First, cost values f(x) should be shifted so that they are always non-negative. 
This is not difficult in practice but it is still something that needs to be done. 

• Second, ß and 7 need to be tuned. The default values are ß = 1 and 7 = 0, but 
there is no reason to suppose that these values will be effective. For example, 
suppose the X{ values have a large domain, and we use the default values 
ß — 1 and 7 = 0. Then the mutation in Equation (5.1) will be very small 
relative to the value of α ,̂ which will result in very slow convergence, or no 
convergence at all. Conversely, if the Xi values have a very small domain, then 
the default values of β and 7 will result in mutations that are unreasonably 
large; that is, the mutations will result in Xi values that are outside of the 
domain. 

• Third, if β > 0 (the typical case) and all of the cost values are high, then 
(ßf(xi) + 7 ) will be approximately constant for all x^, which will result in an 
approximately constant expected mutation for all individuals, regardless of 
their cost value. Even if an individual improves its cost by a beneficial muta-
tion, that improvement is likely to be reversed by a detrimental mutation. 

For example, suppose that cost values range from a minimum of f(x\) — 1000 
to a maximum of /(XN) — 1100. Individual x\ is relatively much better than #τν, 
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but the cost values are scaled in such a way that both x\ and XN are mutated by 
approximately the same magnitude. However, this is not a problem that is exclusive 
to EP. This issue of cost function value scaling applies to other EAs also, and we 
will discuss it further in Section 8.7. 

After Equation (5.1) generates TV children, we have 2TV individuals: {xi} and 
{χ'ι\. We select the best TV from these 27V individuals to form the population at 
the next generation. A basic EP algorithm is summarized in Figure 5.1. 

Select non-negative EP parameters β and 7. Nominally β = 1 and 7 = 0. 
{xi} «— {randomly generated population}, i E [1,7V] 
While not (termination criterion) 

Calculate the cost f(xi) of each individual in the population 
For each individual Xi, i E [1, TV] 

Generate a random vector Ti with each element ~ TV(0,1) 
x\ <- Xi + ri^Jßf(xi) + 7 

Next individual 
{xi} <— best TV individuals from {x;,x^} 

Next generation 

Figure 5.1 The above pseudo-code outlines a basic evolutionary program (EP) for 
minimizing f(x). 

Different options can be used in EP to select individuals for the next genera-
tion from {xi,x[}. Figure 5.1 shows that this is done deterministically; the best TV 
individuals are selected from {xi^x^}. However, selection could also be done prob-
abilistically. For example, roulette-wheel selection could be used TV times to select 
TV individuals from {a^, x[}, or tournament selection could be used, or various other 
selection methods could be used (see Section 8.7). 

An EP is often written so that not only the candidate solutions evolve, but also 
their mutation variances evolve. This is often called a meta EP and is summarized in 
Figure 5.2. In a meta EP, each individual X{ is associated with a mutation variance 
Vi. The mutation variances themselves mutate in the search for an optimal mutation 
variance. We constrain the mutation variances in Figure 5.2 to a minimum of e, 
which is a user-defined tuning parameter. A meta EP can speed convergence by 
automatically adapting mutation variances, but it can also slow down convergence, 
depending on the specific problem. 
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Select non-negative EP parameters e and c. Nominally e < l and c = 1. 
{xi} <— {randomly generated population}, i G [1, N] 
ivi} ~̂~ {randomly generated variances}, i G [l,iV] 
While not (termination criterion) 

Calculate the cost / (# ; ) of each individual in the population 
For each individual Xi, i G [1, N] 

Generate random vectors rxi and rvi with each element ~ iV(0,1) 

v[ «- i;» + rviy/cui 
v[ f-max(uj,€) 

Next individual 
{a^} —̂ best TV individuals from {a^,x£} 
{^} —̂ variances that correspond to {x^ 

Next generation 

Figure 5.2 The above pseudo-code outlines a meta evolutionary program (EP) for 
minimizing f(x). Note that v% is associated with the individual xi for all i G [1, iV]. 

■ EXAMPLE 5.1 

In this example we use an EP to optimize the Griewank and Ackley test 
functions (see Appendix C for the definitions of these benchmarks). We use 
20 dimensions in each benchmark. We run the standard EP of Figure 5.1 
with β = (#max — #min)/10 and 7 = 0. We use a population size of 50 and we 
normalize the cost of each individual so that f(xi) G [1,2] at every generation. 

We also use the meta EP of Figure 5.2 with c = 1 and e = β/10. Figures 5.3 
and 5.4 show the minimum cost of the population as a function of generation 
number, averaged over 20 Monte Carlo simulations. We see that the meta 
EP converges much better than the standard EP on the Griewank function, 
but much worse than the standard EP on the Ackley function. This is no 
doubt due to the different domains of the two functions. The domain of each 
independent variable is ±600 in the Griewank function, but only ±30 in the 
Ackley function. A comparison of the numbers on the vertical axes of the two 
figures shows that the ranges of the two functions are also very different. 
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Figure 5.3 Example 5.1: EP convergence on the 20-dimensional Griewank function, 
averaged over 20 Monte Carlo simulations. The meta EP converges much faster than the 
standard EP. 
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Figure 5.4 Example 5.1: EP convergence on the 20-dimensional Ackley function, 
averaged over 20 Monte Carlo simulations. The standard EP converges much faster than 
the meta EP. 
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5.2 FINITE STATE MACHINE OPTIMIZATION 

EP was originally invented to evolve finite state machines (FSMs). An FSM gen-
erates a sequence of outputs as a function of an internal state and a sequence of 
inputs. Figure 5.5 shows an example of an FSM. It has four states, A, B, C, and 
D; it has two possible inputs, 0 and 1, which are shown on the left of each forward-
slash in the figure; and it has three possible outputs, a, 6, and c, which are shown 
on the right of each forward-slash. The arrow at the top right of the figure shows 
that the FSM begins in state C. The arrows show how the state transitions after 
a particular input. The labels on the lines show the input/output combinations. 
Figure 5.5 can also be depicted in tabular form as shown in Table 5.1. 

Figure 5.5 Finite state machine of Table 5.1 shown in diagram form. This FSM has 
four states. The pair beside each arrow shows the input and the corresponding output if the 
FSM is in the state at the tail of the arrow. The arrow at the top right shows that the FSM 
begins in state C. 

Current State 
Input 

Next State 
Output 

A 
0 
A 
b 

A 
1 

~Ä~ 
a 

B 
0 
B 
c 

B 
1 

~X~ 
c 

c 
0 
D 
b 

C 
1 

~X~ 
c 

D 
0 
B 
a 

D 
1 

~C 
b 

Table 5.1 Finite state machine of Figure 5.5 in tabular form. 

Suppose that we want to create an FSM that replicates a certain output sequence 
from a certain input sequence. For example, we might know that the input sequence 

Input - {1 ,0 ,1 ,0 ,1 ,0 ,0 ,1 ,1 ,0 ,1 ,0} (5.2) 

should result in the output sequence 

Output - {0 ,0 ,1 ,1 ,1 ,1 ,0 ,1 ,1 ,0 ,0 ,1} . (5.3) 
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Can we create a state machine that will produce the desired behavior? This is 
an optimization problem: we want to evolve an FSM that minimizes the difference 
between the FSM behavior and the goal behavior. We can represent a state machine 
in the format 

S = [ ( output0 next stateo ) ( outputx next statei ) · · · ] . (5.4) 

We assume, without loss of generality, that the FSM begins in state 1. The elements 
of 5 are arranged as 

5(1) = output if the FSM is in state 1 and the input is 0 
5(2) = next state if the FSM is in state 1 and the input is 0 
5(3) = output if the FSM is in state 1 and the input is 1 
5(4) = next state if the FSM is in state 1 and the input is 1 
5(5) = output if the FSM is in state 2 and the input is 0 

5(4n) = next state if the FSM is in state n and the input is 1 (5.5) 

where we have assumed that the input is binary. We can easily extend this structure 
to the case of non-binary inputs. We see that 5 is a 4n-element column vector that 
describes the FSM, where n is the number of states. We can apply the input of 
Equation (5.2) to an FSM, and define the error cost of the FSM as 

12 

Cost = ^ [ ( D e s i r e d Output). - (FSM Output)·I (5.6) 
i=l 

where (Desired Output)« is the i-th output of Equation (5.3), and there is a sequence 
of 12 outputs. We can then use the EP algorithm of Figure 5.1 or 5.2 to evolve an 
FSM to minimize Equation (5.6). 

One implementation detail that we need to consider is that Xi is a continuous 
variable in Figure 5.1; but in FSM evolution, the elements of each individual are 
integers that are constrained to specific domains. Equation (5.5) shows that for 
an FSM with binary outputs, S(i) G [0,1] for odd values of i, and S(i) G [l,n] for 
even values of z, where n is the number of states. This can be handled by simply 
performing the mutations shown in Figure 5.1, then constraining the elements of x\ 
to the appropriate domain, and finally rounding the elements of x\ to the nearest 
integers. Again, other approaches are possible and are left to the research and 
creativity of the reader. 

Other implementation details include tuning of ß and 7, and scaling the cost 
values f(xi) appropriately before using them to obtain mutation variances. 

■ EXAMPLE 5.2 

In this example we use EP to evolve an FSM to minimize the cost function 
of Equation (5.6), where the inputs and outputs are given in Equations (5.2) 
and (5.3). We use four states in each EP individual, ß = 1, 7 = 0, and a 
population size of 5. We use the EP algorithm of Figure 5.1 to evolve the 
population of FSMs. We scale the cost of each individual so that at each 
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generation the costs G [1,2]. Figure 5.6 shows the convergence of the cost 
function for one EP simulation. An S vector that gives zero cost was found 
as follows: 

£ = [ 1 3 1 2 , 1 1 0 4, 0 1 0 2, 1 4 0 2 ] 

which corresponds to the FSM shown in Figure 5.7. 

(5.7) 
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Figure 5.6 Example 5.2: Convergence of the finite state machine. 

0/0 

0 / 1 

Figure 5.7 The finite state machine evolved by the EP of Example 5.2. If the input to 
this FSM is given by Equation (5.2), it creates the output of Equation (5.3). 
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5.3 DISCRETE EVOLUTIONARY PROGRAMMING 

Fogel's original EP for FSM generation was implemented differently than what we 
described in the previous section [Fogel et al., 1966], [Fogel, 1999]. His implementa-
tion was directly applicable to integer domains. His approach can be used not only 
for FSM optimization, but for any problem that is defined on a discrete domain. 
We give a summary of his approach in Figure 5.8. 

{xi} <— {randomly generated population}, i G [l,iV] 
While not (termination criterion) 

Calculate the cost f(xi) of each individual in the population 
For each individual x^, i G [l,iV] 

x\ <— random mutation of X{ 
Next individual 
{xi} <— best N individuals from {χι,χ[} 

Next generation 

Figure 5.8 The above pseudo-code outlines Fogel's evolutionary program for discrete 
optimization problems. Note that this algorithm is a generalization of Figure 5.1. 

The "random mutation" in Figure 5.8 depends entirely on the specific problem 
that we are trying to solve. As an example, the random mutation that Fogel used 
for FSM optimization was selected randomly as one of the following. 

• Add a state with random input/output and input/transition pairs. 

• Delete a state. Any state transitions to the deleted state are redirected to 
another randomly-selected state. 

• Randomly change an input/output pair for a randomly-selected state. 

• Randomly change an input/transition pair for a randomly-selected state. 

• Randomly change the initial state. 

Fogel also suggested adding a penalty to the cost function that was proportional 
to the complexity of the state machine. This biases the selection of the best TV 
individuals at the end of each generation to simpler state machines. This idea 
allows us to not only find FSMs to generate a desired pattern, but also to find 
simple FSMs to generate a desired pattern. 

■ EXAMPLE 5.3 

In this example we try to find a state machine that can generate prime num-
bers. We use 0 to indicate non-prime numbers, and 1 to indicate prime num-
bers. The input to the state machine at each time step is the prime indicator 
(0 for false, 1 for true) of the previous time step. This gives the input and 
output sequences 

Input = {0 ,1 ,1 ,0 ,1 ,0 ,1 ,0 ,0 ,0 ,1 ,0 , · · ·} 
Desired Output = { 1 ,1 ,0 ,1 ,0 ,1 ,0 ,0 ,0 ,1 ,0 , · · ·} . (5.8) 
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The input sequence corresponds to the fact that 1 is nonprime; 2 and 3 are 
prime; 4 is nonprime; 5 is prime; 6 is nonprime; 7 is prime; 8, 9, and 10 are 
nonprime; 11 is prime; 12 is nonprime; and so on. The output sequence is 
equal to the input sequence delayed by one time step. We use the first 100 
positive integers to evaluate the performance of an FSM, so the input and 
output sequences are each 99 bits long; the input sequence corresponds to 
integers 1-99, and the desired output sequence corresponds to integers 2-100. 
We use a population size TV — 20. For each individual at each EP generation, 
we randomly select one of the five mutations described earlier in this section. 
We simulate the EP with a cost penalty for the number of FSM states, and 
also without a penalty. Figure 5.9 shows the best FSM for each generation, 
averaged over 100 Monte Carlo simulations. The average number of states 
is 4.7 if there is no penalty for the number of states, and 2.8 if there is a 
cost penalty of n /2 for the number of states, where n is the number of states. 
Figure 5.9 shows that the best cost that we can achieve is between 18 and 19, 
which is not that impressive considering that there are only 25 prime numbers 
in the first 100 positive integers. A state machine that always generated a 0 
would have a cost of 25. 

Without Size Penalty 
— With Size Penalty 

40 60 
Generation 

80 100 

Figure 5.9 Example 5.3: Convergence of the finite state machine for prime number 
prediction, averaged over 100 Monte Carlo simulations. 

D 
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5.4 THE PRISONER'S DILEMMA 

The prisoner's dilemma is a classic game theory problem. Suppose that two crime 
suspects are arrested by the police. The police independently question the sus-
pects. The police offer each suspect immunity from prosecution if he betrays his 
accomplice. A confession by either suspect will give the police enough evidence to 
imprison his accomplice for a long period of time. However, if both suspects re-
main silent, then the police will not have enough evidence to imprison the suspects 
for very long. Herein lies the quandry for the prisoners, who are not allowed to 
communicate with each other. If each suspect remains silent (cooperate with each 
other), then both suspects receive a suspended sentence. If each suspect talks (de-
fect against each other), then both suspects receive a medium sentence. However, 
if one suspect cooperates and one defects, then the suspect who defects goes free, 
while the suspect who cooperates receives a long sentence. The prisoner's dilemma 
is summarized in Table 5.2. 

Prisoner A Cooperates 

Prisoner A Defects 

Prisoner B Cooperates Prisoner B Defects 
Prisoner A: 1 Year Prisoner A: 10 Years 
Prisoner B: 1 Year Prisoner B: Free 
Prisoner A: Free Prisoner A: 5 Years 
Prisoner B: 10 Years Prisoner B: 5 Years 

Table 5.2 Prisoner's dilemma cost matrix. 

Suppose that you are Prisoner A. If your accomplice cooperates, then you can 
go free if you defect. If your accomplice defects, then you can get 5 years instead 
of 10 years by defecting. Therefore, it seems that no matter what your accomplice 
does, you should defect. However, if both prisoners use this strategy, then both 
prisoners will defect and receive 5 year sentences. If both prisoners cooperate with 
each other, then they will both receive only 1 year sentences. Selfish decisions result 
in both prisoners being worse off than if they act in the interest of their accomplice. 
This is why the problem is called a dilemma. 

In the iterated prisoner's dilemma, the prisoner's dilemma game is played several 
times, and each player's goal is to maximize his total benefit (that is, minimize 
his total prison time) over all of the games [Axelrod, 2006]. As you play the 
game by making a choice to cooperate or defect, you remember your accomplice's 
previous decisions. Therefore, if your accomplice repeatedly defects, you can choose 
to defect to maximize your benefit. If your accomplice cooperates, then you can 
choose to cooperate to maintain mutual cooperation and mutual benefit. The word 
"iterated" is often omitted from the term "iterated prisoner's dilemma." So the 
term "prisoner's dilemma" can refer to one round of Table 5.2, or multiple rounds. 

There are several strategies that have been proposed for the prisoner's dilemma, 
each of which can be conveniently represented as an FSM [Ashlock, 2009], [Rubin-
stein, 1986]. One strategy is to cooperate all the time. This optimistic strategy is 
depicted with the one-state FSM shown in Figure 5.10. We begin by cooperating 
on our first turn and moving to state 1. If our opponent's previous decision was C, 
then we output C and remain in state 1. If our opponent's previous decision was 
-D, we do the same - output C and remain in state 1. 
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C/C 

D/C ^ y 

Figure 5.10 Finite state machine for the always-cooperate strategy in the prisoner's 
dilemma. 

Another strategy, the tit-for-tat strategy, follows the philosophy "do unto others 
as they have done unto you." We begin by cooperating on our first turn and moving 
to state 1. We cooperate if our opponent cooperated on his previous move, and 
defect if our opponent defected on his previous move. This strategy is shown in 
Figure 5.11. 

Figure 5.11 Finite state machine for the tit-for-tat strategy in the prisoner's dilemma. 

Another strategy, tit-for-two-tats, is a little more hopeful and forgiving than tit-
for-tat. We cooperate unless our opponent defects for two consecutive turns. This 
strategy is shown in Figure 5.12. 

c/c 1^ 

C/C 

Figure 5.12 Finite state machine for the tit-for-two-tats strategy in the prisoner's 
dilemma. 

The grim strategy is very unforgiving. We begin optimistically by cooperating 
on our first turn and moving to state 1, and we continue to cooperate as long as 
our opponent cooperates. However, if our opponent defects, then we never again 
cooperate. This strategy is shown in Figure 5.13. 

In the punish strategy, we take some revenge on our opponent for defecting, but 
eventually we forgive. If our opponent defects, then we defect, and we continue to 
defect until our opponent cooperates for three consecutive turns. Only after our 
opponent cooperates for three consecutive turns do we once again cooperate. This 
strategy is shown in Figure 5.14. 

The prisoner's dilemma has been studied a lot because it has many applica-
tions, including peer-to-peer file sharing [Ellis and Yao, 2007], advertising strate-
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C/C 
D/D 

C/D 

Figure 5.13 Finite state machine for the grim strategy in the prisoner's dilemma. 

C/C 
C/C 

Figure 5.14 Finite state machine for the punish strategy in the prisoner's dilemma. 

gies among competing companies [Corfman and Lehmann, 1994], politics [Grieco, 
1988], cheating in sports and other areas [Ehrnborg and Rosen, 2009], and many 
others [Poundstone, 1993]. 

■ EXAMPLE 5.4 

In this example we evolve an FSM to minimize the cost in a prisoner's dilemma 
game. The FSM for a prisoner's dilemma can be represented as shown in 
Equation (5.5), except we add one more integer at the beginning of the vector 
to indicate the first move. We use 0 to indicate cooperate, and 1 to indicate 
defect. We create four random but constant opponents, each with a four-state 
FSM strategy. We run an EP with ß — 1 and 7 = 0. We randomly initialize 
an EP population size of 5, with each individual containing four states. Each 
EP individual plays 10 games against each of the four random but constant 
opponents to evaluate its performance. In this example, the state machines 
for the four random but constant opponents are 

Sx = [ 0, 0 3 0 3, 0 3 1 2, 1 4 0 2, 1 3 1 3 ] 

52 = [ 0, 0 1 0 4, 1 2 0 2, 0 4 0 3, 0 2 0 4 ] 

53 = [ 0, 1 4 0 4, 0 1 0 1, 1 4 0 2, 0 1 1 4 ] 

54 = [ 1, 0 4 1 4, 0 4 0 1, 0 3 0 3, 0 3 0 2 ] .(5.9) 

We use the EP algorithm of Figure 5.1 to evolve a population of FSMs. Fig-
ure 5.15 shows the convergence of the EP cost function for one simulation. 
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The S vector that gives minimum cost was found to be 

S = [ 1, 1 2 1 2, 0 1 1 3, 1 4 0 1, 1 1 0 1 ] 

which corresponds to the FSM shown in Figure 5.16. 

(5.10) 
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Figure 5.15 Example 5.4: Convergence of the cost of the prisoner's dilemma finite state 
machine. 

c/c 

C/D 

Figure 5.16 Example 5.4: The best finite state machine evolved by the EP. The asterisk 
coming out of state 1 means either C or D; that is, if the FSM is in state 1, then regardless 
of the opponent's previous move (C or D), the FSM's output will be D and the next state 
will be state 2. 

D 

We can also do interesting experiments in which an EP population evolves by 
playing against itself. That is, each individual in the EP plays every other individual 
in the EP to evaluate individual costs. 
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There are many variations of the prisoner's dilemma. For example, we have 
assumed that each individual can choose one of two possible moves at each turn. 
However, we could also assume levels of cooperation so that each turn could involve 
a continuum of moves, along with a continuum of associated costs. 0 could represent 
total cooperation, 1 could represent total defection, and anything in between 0 and 
1 could represent varying degrees of cooperation and defection [Harraid and Fogel, 
1996]. Another variation is to allow each individual to voluntarily terminate the 
game at any desired time [Delahaye and Mathieu, 1995]. Another variation is to 
allow more than two players to play simultaneously. In this case the cost for a given 
player is often a function of the player's move and the number of opponents who 
cooperate [Bonacich et al., 1976]. Another complication could be introduced if the 
cost matrix of Table 5.2 changes with time [Worden and Levin, 2007]. 

5.5 THE ARTIFICIAL ANT PROBLEM 

In this section we discuss the artificial ant problem (not to be confused with ant 
colony optimization), which is another famous problem that can be solved with an 
FSM. The artificial ant problem was introduced in 1990 [Jefferson et al., 2003] and 
is nicely described in [Koza, 1992, Section 3.3.2]. An artificial ant is placed on a 
32 x 32 toroidal grid that has food in 90 of the 1024 squares. The ant's sensory 
capabilities are extremely limited; he can only sense whether or not there is food 
in the square directly in front of him. At each square, he can make one of three 
moves: he can move one square forward in the direction in which he is facing, 
in which case he will eat the food in that square, if it is present; or he can turn 
right while remaining in his present square; or he can turn left while remaining in 
his present square. The trail is referred to as the Sante Fe trail, and is shown in 
Figure 5.17. 

The ant begins in the (1,1) square, which is the bottom left corner of the grid 
(although technically speaking there are not any "corners" since the grid is toroidal), 
and the initial orientation of the ant is facing to the right. He senses food ahead of 
him in Figure 5.17, and so he should move forward to the next square at the (2,1) 
coordinate to eat that food. While in the (2,1) square, he will again sense food in 
front of him, and so he should move forward to the (3,1) square to eat that food. 
While in the (3,1) square, he will sense food in front of him, and so he should move 
forward to the (4,1) square to eat that food. But now he encounters a snag in his 
heretofore predictable and satisfying journey. While in the (4,1) square, he will 
sense that there is no food in front of him. Should he move forward anyway, hoping 
to find food in the next square? Or should he turn left or right, hoping to find food 
beside his current position? If he turns left, then he will sense food in the (4,2) 
square and remain on the optimal trail. But if he turns right, then he will sense 
food in the (4,32) square (remember that the grid is toroidal). This will provide 
him with some short-term gratification, but will eventually lead him astray. 

The artificial ant problem consists of finding an FSM to guide the ant through 
the Sante Fe trail so that the ant eats all of the food in the fewest moves possible. 
A step forward, a turn to the right, and a turn to the left, are each considered one 
move. The optimal path through the grid, which is achieved by moving through 
the black and gray squares in Figure 5.17, consists of 167 moves. 
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Figure 5.17 The 32 x 32 Sante Fe trail. An ant is placed in the lower left corner facing 
the right. The white squares are empty, and the black squares have food. The gray squares 
are also empty, but are shown as gray to better illustrate the ant's optimal path through the 
grid. 

We can use EP to evolve a solution to the artificial ant problem. First we decide 
how many states we want to use. Suppose that we decide we want to use five states. 
Then we encode an FSM with the following sequence of integers: 

^Ο,τηι l o ,S5 -Ll,ra? -Ll,S5 

^0, ra> ^0,si ^Χ,ΎΠΊ ^ l , s i 

So,™, 5o,s, 5i>m, 5i5s . (5-11) 

The notation used in the above FSM representation is as follows: 

• no,m is the move that the ant makes if he is currently in state n and does not 
sense food directly in front of him. We set no,m = 0, 1, or 2 to respectively 
indicate a move forward, a turn to the right, or a turn to the left. 

• no,s is the state to which the ant transitions if he is currently in state n and 
does not sense food directly in front of him. 

• n i ? m is the move that the ant makes if he is currently in state n and senses 
food directly in front of him. 

• ni î S is the state to which the ant transitions if he is currently in state n and 
senses food directly in front of him. 

We thus encode an FSM with AN integers, where N is the number of states. We 
assume that the ant always begins in state 1. 

We can evaluate each FSM in an EP population and see how well it navigates 
through the grid. We initialize the ant by placing it in the lower left corner facing 
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right. We put an upper limit of 500 on the number of moves that the ant can make 
with each FSM. The cost of an FSM is measured by the number of moves that the 
ant requires to eat all of the food in the grid. If the ant has not eaten all of the 
food after 500 moves, then the cost is equal to 500 plus the number of food squares 
that the ant has not reached. Figure 5.18 shows the progress of one EP simulation 
for five-state FSMs with a population size of 100. 

I 7 _ 
— Maximum Fitness 

*-« I » - - Average Fitness 

- t J 
I 

I 
1 

0~~ 20 40 60 80 100 
Generation 

Figure 5.18 The progress of one EP simulation for FSM evolution for solving the artificial 
ant problem. Each FSM has five states, and the number of moves is limited to 500. The best 
FSM at initialization enables the ant to eat 24 of 90 food pellets. After 100 generations, the 
best FSM enables the ant to eat 50 food pellets. 

The average number of food pellets that the ants eat depends on how many states 
we use in the FSMs. If we use too few states, then we do not have enough flexibility 
to find a good solution. If we use too many states, then EP performance improves, 
but the improvement may not be worth the increased computer run time. The 
average amount of food eaten by each ant in the population after 100 generations 
in an EP with a population size of 100 is given as follows: 

FSM dimension = 
FSM dimension = 
FSM dimension = 
FSM dimension = 
FSM dimension = 

4 
6 
8 

10 
12 

50.1 food pellets 
60.5 food pellets 
62.5 food pellets 
63.1 food pellets 
63.8 food pellets. 

We see that there is a big jump in performance if we increase the number of states 
from four to six, but after that, increases in the number of states result in smaller 
improvements. 

After several Monte Carlo runs, we found that the best FSM that the EP evolved 
had 12 states. However, five of the states were never reached, so the FSM actually 
included only seven operational states. This FSM is depicted in the format of 
Equation (5.11) as the 28-element array shown in Table 5.3. 

Figure 5.19 shows the FSM in graphical format. An ant navigating with this 
FSM was able to eat all 90 food pellets in 349 moves, which is slightly more than 
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twice the minimum number of moves required. A close look at Figure 5.19 shows us 
some inefficiencies in the FSM. For example, when in state 4, if the ant senses food, 
then it turns right and proceeds to state 7. However, any time the ant senses food, 
we intuitively expect that he should move forward to eat the food. It seems that 
the "1,R" label coming from state 4 is wasteful. We could correct this problem by 
forcing all FSMs to move forward whenever they sense food. This would be a way 
of incorporating problem-specific information into our EP, which could possibly 
improve EP performance. In general, we should always try to incorporate problem-
specific information into our EAs to improve performance. 

State 1 
State 2 
State 3 
State 4 
State 5 
State 6 
State 7 

Food Not Sensed 
Move 

2 
1 
1 
2 
0 
0 
2 

Next State 
2 
3 
4 
5 
1 
5 
6 

Food Sensed 
Move 

Ö 
0 
0 
1 
0 
0 
0 

Next State 
5 
3 
1 
7 
6 
1 
7 

Table 5.3 The best finite state machine evolved by EP for the 32 x 32 Sante Fe 
trail. Moves are labeled as follows: 0 = move forward, 1 = turn right, and 2 = turn 
left. This FSM is shown in graphical form in Figure 5.19. 

Figure 5.19 The best finite state machine evolved by EP for the 32 x 32 Sante Fe trail. 
The outputs of each state are labeled (/, s), where / = 0 indicates that food is not sensed, 
and / = 1 indicates that food is sensed; and s = F indicates a move forward, s = L indicates 
a turn to the left, and s = R indicates a turn to the right. This FSM is shown in tabular 
form in Table 5.3. 

Other versions of the artificial ant problem include the Los Altos Hills trail [Koza, 
1992, Section 7.2], the San Mateo trail [Koza, 1994, Chapter 12], and the John Muir 
trail [Jefferson et al., 2003]. 
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5.6 CONCLUSION 

Historically, EP has often been used to find optimal FSMs. However, we emphasize 
two important points to conclude this chapter. First, we can use EP as a general-
purpose algorithm to solve any optimization problem, and EP is in fact a popular 
algorithm for general-purpose optimization. Second, we can solve FSM problems 
not only with EP, but also with any of the other EAs discussed in this book. The 
prisoner's dilemma and its variations are general optimization problems that can 
be solved with many types of optimization algorithms. The reason that we devote 
so much of this chapter to the prisoner's dilemma is because EP was originally 
developed to solve FSMs. In conclusion, we note that several books and papers 
discuss EP from other perspectives, and sometimes in more detail than this chapter, 
including [Back and Schwefel, 1993], [Back, 1996], and [Yao et al., 1999]. 
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PROBLEMS 

Written Exercises 

5.1 The EP mutation variance 

a2
i=ßf{xi) + 1 

is often referred to as a linear relationship between f(xi) and σ\. Actually, it is not 
linear, but is affine. How should the above equation be written to obtain a linear 
relationship between / (# ; ) and σ\1 

5.2 An elevator can be in one of two states: on the first floor, or on the second 
floor. It can take one of two inputs: the user can press the first floor button, or the 
second floor button. Write an FSM for this system in both graphical and tabular 
form. 

5.3 Expand the system of Problem 5.2 so that the elevator has four states (on 
the first floor, on the second floor, traveling from the first to the second floor, and 
traveling from the second to the first floor), and so that it has three inputs (the 
user pressed the first floor button, the second floor button, or nothing). Write an 
FSM for this system in both graphical and tabular form. 

5.4 Write the always-cooperate prisoner's dilemma strategy in the vector form 
of Equation (5.9). Do the same for the tit-for-tat strategy, the tit-for-two-tats 
strategy, and the grim strategy. Based on your vector forms, which strategies are 
more similar: the always-cooperate and tit-for-tat strategies, or the tit-for-two-tats 
and grim strategies? 

5.5 Suppose the always-cooperate, tit-for-tat, tit-for-two-tats, and grim strategies 
compete against each other in a prisoner's dilemma competition. Which one will 
win? 

5.6 The FSM of Figure 5.20 has been suggested for an artificial ant in the Sante Fe 
trail, where input 0 means that no food is sensed; input 1 means that food is sensed; 
and outputs L, R, and F mean move left, right, and forward, respectively [Meuleau 
et al., 1999], [Kim, 2006]. Write this FSM in the format of Equation (5.11). 

Figure 5.20 Problem 5.6: FSM for the artificial ant problem. 

5.7 What is the minimum number of moves required for an artificial ant to visit 
every square of the Sante Fe trail? 
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5.8 Suppose an artificial ant visits ß unique random squares of the 32 x 32 Sante 
Fe trail. What is the probability that the ant will find all of the food? 

Computer Exercises 

5.9 Simulate the EP of Figure 5.1 to minimize the 10-dimensional sphere function. 
Use the search domain [—5.12,+5.12], ß = (xm a x — #min)/10 = 1.024, 7 = 0, 
population size = 50, and generation limit = 50. When calculating the mutation 
variance, normalize the cost function values so that f(xi) £ [1,2] for all i. 

a) What is the best solution obtained by the EP, averaged over 20 Monte 
Carlo simulations? 

b) Replace the variance with the function ßf2(xi) and repeat. 
c) Replace the variance with the function ßy/f(xi) and repeat. 
d) Use ß as the variance for all i and repeat. 

5.10 Rerun Example 5.3 with an FSM size penalty of n, where n is the number 
of states. What is the number of states and the cost of the best FSM, averaged 
over 100 Monte Carlo simulations? How do your results compare to Example 5.3, 
which used an FSM size penalty of n/2? 

5.11 Given a prisoner's dilemma opponent that defects every turn, we know that 
our best strategy is to also defect every turn. Use an EP to evolve an FSM that 
performs as well as possible against an always-defect opponent. 

5.12 How many moves does it take for an ant using the FSM of Problem 5.6 to 
eat all of the food on the Sante Fe trail? 

5.13 Use your answer to Problem 5.8 to plot the probability, for ß G [l, 1024], 
that an ant will find all of the food in the Sante Fe trail after visiting ß unique 
random squares. Use a log scale for the probability axis. How many squares must 
the ant visit to have at least a 50% chance of finding all of the food? 





CHAPTER 6 

Evolution Strategies 

The first ES version operated with just one offspring per 'generation' because we did 
not have a population of objects to operate with. 

—Hans-Paul Schwefel [Schwefel and Mendes, 2010] 

An early European foray into EAs occurred at the Technical University of Berlin 
in the 1960s by three students who were trying to find optimal body shapes in a 
wind tunnel to minimize air resistance. The students, Ingo Rechenberg, Hans-Paul 
Schwefel, and Peter Bienert, had difficulty solving their problem analytically. So 
they came up with the idea of trying random changes to the body shapes, selecting 
those that worked best, and repeating the process until they found good solutions 
to their problem. 

Rechenberg's first publication on evolution strategy (ES), which is also called 
evolutionary strategy, was in 1964 [Rechenberg, 1998]. Interestingly, the first ES 
implementations were experimental. Computational resources were not sufficient 
for high-fidelity simulations, so fitness functions were obtained experimentally, and 
mutations were implemented on physical hardware. Rechenberg received his doc-
torate for his efforts in 1970 and later published his work in book form [Rechenberg, 
1973]. Although the book is written in German, it is still interesting to non-German 
readers because of its graphical depictions of optimization processes. The book 
shows the evolution of wing shapes to minimize drag in an air-flow field, rocket 
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nozzle shapes to minimize the drag of fuel as it passes through the nozzle, and pipe 
shapes to minimize the drag of fluid as it passes through the pipe. These early 
algorithms were called cybernetic solution paths. 

Schwefel received his doctorate in 1975, and later wrote several books about ES 
[Schwefel, 1977], [Schwefel, 1981], [Schwefel, 1995]. Since 1985 he has been with 
the University of Dortmund. Bienert received his doctorate in 1967. An interesting 
account of the early years of ES is given in an interview with Schwefel in [Schwefel 
and Mendes, 2010]. 

Overview of the Chapter 

Section 6.1 discusses the (1+1)-ES. This was the first ES that was used, and it is 
the most simple. It consists solely of mutation, and does not involve recombination. 
Section 6.2 derives the 1/5 rule for ES, which tells us how to adjust the mutation rate 
to obtain the best performance, and which can be skipped by readers who are not 
interested in mathematical proofs. Section 6.3 generalizes the (1+1)-ES to obtain 
an algorithm with μ parents at each generation, where μ is a user-defined constant. 
The parents combine to form a single child, which might become a part of the 
next generation if it is fit enough. Several options are available for recombination. 
Section 6.4 is a further generalization which results in λ children at each generation. 
Section 6.5 discusses how we can adapt the mutation rate to dramatically improve 
ES performance. These adaptation options include the state-of-the-art algorithms 
CMA-ES and CMSA-ES. 

6.1 THE (1+1) EVOLUTION STRATEGY 

Suppose that f(x) is a function of a real random vector x, and that we want to 
maximize the fitness f(x). The original ES algorithm operated by initializing a 
single candidate solution and evaluating its fitness. The candidate solution was 
then mutated, and the mutated individual's fitness was evaluated. The best of 
the two candidate solutions (parent and child) formed the starting point for the 
next generation. The original ES was designed for discrete problems, used small 
mutations in a discrete search space, and thus tended to get trapped in a local 
optimum. The original ES was therefore modified to use continuous mutations in 
continuous search spaces [Beyer and Schwefel, 2002]. This algorithm is summarized 
in Figure 6.1. 

Figure 6.1 is called a (1+1)-ES because each generation consists of 1 parent and 
1 child, and the best individual is chosen from the parent and child as the individual 
in the next generation. The (1+1)-ES, also called the two-membered ES is very 
similar to the hill climbing strategies of Section 2.6. It is also the same as an EP 
with a population size of 1 (see Section 5.1). The following theorem guarantees 
that the (1+1)-ES eventually finds the global maximum of f{x). 

Theorem 6.1 If f(x) is a continuous function defined on a closed domain with a 
global optimum f*(x), then 

Hm / (* ) = /*(*) (6.1) 
t-ïoo 

where t is the generation number. 
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Initialize the non-negative mutation variance σ2 

#o <— randomly generated individual 
While not (termination criterion) 

Generate a random vector r with r* ~ N(0, σ2) for i G [1, n] 
xi <- xo + r 
If xi is better than XQ then 

Xo <— x\ 
End if 

Next generation 

Figure 6.1 The above pseudocode outlines the (1+1) evolution strategy, where n is the 
problem dimension, and x\ is equal to xo but with each element mutated. 

Theorem 6.1 is proven in [Devroye, 1978], [Rudolph, 1992], [Back, 1996, Theo-
rem 7], and [Michalewicz, 1996]. It also agrees with our intuition. Since we use 
random mutations to explore the search space, given enough time, we will even-
tually explore the entire search space (to within computer precision) and find the 
global optimum. 

The σ2 variance in the (1+1)-ES of Figure 6.1 is a tuning parameter. The value 
of σ is a tradeoff. 

• σ should be large enough so that mutations can reach all areas of the search 
space in a reasonable period of time. 

• σ should be small enough so that the search can find the optimal solution 
within the user's desired resolution. 

It may be appropriate to decrease σ as the ES progresses. At the beginning of 
the ES, large values of σ will allow the ES to conduct a coarse-grained search and 
get close to the optimal solution. Toward the end of the ES, smaller values of σ 
will allow the ES to fine-tune its candidate solution and converge to the optimal 
solution with better resolution. 

The mutation in Figure 6.1 is called isotropic because the mutation of each 
element of XQ has the same variance. In practice we might want to implement 
non-isotropic mutations as follows: 

xi ^χο + Ν(0,Σ) (6.2) 

where Σ is an n x n diagonal matrix with diagonal elements σ* for i e [ l ,n]. This 
means that each element of x$ is mutated with a different variance. We would 
assign each σ̂  independently, depending on the domain of the i-th element of x and 
the shape of the objective function in that dimension. 

Rechenberg analyzed the (1+1)-ES for some simple optimization problems and 
concluded that 20% of mutations should result in improvements in the fitness func-
tion f(x) [Rechenberg, 1973], [Back, 1996, Section 2.1.7]. We reproduce some of 
his analysis in Section 6.2. If the mutation sucess rate is higher than 20%, then 
the mutations are too small, which leads to small improvements, which results in 
long convergence times. If the mutation success rate is lower than 20%, then the 



1 2 0 CHAPTER 6: EVOLUTION STRATEGIES 

mutations are too large, which leads to large but infrequent improvements, and this 
also results in long convergence times. Rechenberg's work led to the 1/5 rule: 

In the (1+1)-ES, if the ratio of successful mutations to total mutations is less 
than 1/5, then the standard deviation σ should be decreased. If the ratio is 
more than 1/5, then the standard deviation should be increased. 

This rule really applies only to a couple of specific objective functions as we 
will see in Section 6.2, but it has proven to be a useful guideline for general ES 
implementations. But the 1/5 rule raises the question, By how much should the 
standard deviation be decreased or increased? Schwefel theoretically derived the 
factor by which to decrease or increase σ: 

standard deviation decrease: σ «— ca 

standard deviation increase: σ <— σ/c 

where c = 0.817. (6.3) 

These results lead to the adaptive (1+1)-ES shown in Figure 6.2. The adaptive 
(1+1)-ES requires that we define a moving window length G. We want G to be 
large enough to get a good idea of the success rate of the ES mutations, but not 
so large that the adaptation of σ is sluggish. The recommendation in [Beyer and 
Schwefel, 2002] is 

G = min(n, 30) (6.4) 

where n is the problem dimension. 

Initialize the non-negative mutation variance σ2 

XQ <— randomly generated individual 
While not (termination criterion) 

Generate a random vector r with r* ~ N(0, σ2) for i G [1, n] 
xi 4- XQ + r 
If X\ is better than XQ then 

XQ <— X\ 

End if 
φ <— proportion of successful mutations during the past G generations 
If φ < 1/5 

σ 4- c2a 
else if 0 > 1/5 

σ <- σ/c2 

End if 
Next generation 

Figure 6.2 The above pseudo-code outlines the adaptive (1+1) evolution strategy where 
n is the problem dimension. x\ is equal to xo but with each feature mutated, φ is the 
proportion of mutations during the past G generations that result in xi being better than 
xo- The mutation variance is automatically adjusted to increase the rate of convergence. 
The nominal value of c is 0.817. 
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EXAMPLE 6.1 

In this example, we use the (1+1)-ES to optimize the 20-dimensional Ackley 
benchmark function (see Appendix C.1.2). We compare the standard (1+1)-
ES shown in Figure 6.1 with the adaptive (1+1)-ES shown in Figure 6.2. For 
the adaptive ES, we keep track of the number of successful mutations and 
the total number of mutations. The total number of mutations is equal to 
the number of generations. Every 20 generations, we examine the mutation 
success rate, and adjust the standard deviations as shown in Equation (6.3). 
Figure 6.3 compares the average convergence rate of the standard (1+1)-ES 
and the adaptive (1+1)-ES. We see that the adaptive ES converges much 
faster than the standard ES. Figure 6.4 shows a typical profile of the mu-
tation success rate and the mutation standard deviation. We see that when 
the success rate has been greater than 20% over the previous 20-generation 
time span, the mutation standard deviation is automatically increased; when 
the success rate has been less than 20%, the mutation standard deviation is 
automatically decreased. 

20.5 

o 
O 

19.5 

19 

- - - Without Standard Deviation Adaptation 
— With Standard Deviation Adaptation 

100 200 300 
Generation 

400 500 

Figure 6.3 Example 6.1: The convergence of the (1+1)-ES algorithms, averaged over 
100 simulations. The adaptive ES, which automatically adjusts the mutation standard 
deviations, converges much faster than the standard ES. 
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Standard Deviation 
Success Rate 

200 300 
Generation 

400 500 

Figure 6.4 Example 6.1: The mutation success rate and mutation standard deviation 
of the adaptive (l-f-l)-ES. The adaptive ES automatically increases the mutation standard 
deviation when the success rate is greater than 20%, and decreases the mutation standard 
deviation when the success rate is less than 20%. This illustrates the 1/5 rule. 

D 

6.2 THE 1/5 RULE: A DERIVATION 

This section derives the 1/5 rule, which states that approximately 20% of all muta-
tions should lead to an improvement in the mutated ES individual. This section is 
motivated by [Rechenberg, 1973, Chapters 14-15], and can be skipped by readers 
who are not interested in the details of mathematical proofs. 

Suppose we have an n-dimensional minimization problem with the cost func-
tion f(x), where x = [ x\ · · · xn ] . We focus in this section on the corridor 
problem, which has the domain 

x\ G [0, oo ) 
Xj G (-00,00), j G [2,n]. 

The corridor problem has the cost function 

/(*) = {Co + ci#i , if Xj G [—6, b] for all j G [2, n] 
00, otherwise 

(6.5) 

(6.6) 

where Co, ci, and b are positive constants. This is called the corridor problem 
because the cost improves as x\ decreases, but only if x is in the corridor Xj G [—6, b] 
for all j G [2,n]. 
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Recall from Figures 6.1 and 6.2 that a given ES individual XQ is mutated ac-
cording to the equation x\ <— XQ + r, where r is a random n-element vector.1 We 
use XOJ to refer to the j-th element of the XQ vector, and x\j to refer to the j - t h 
element of the X\ vector, for j G [1, n]. 

The mutation of each element of xo is selected from a Gaussian distribution with 
zero mean and variance σ2 . The PDF of x\j can therefore be written as 

PDF(xy) = 
1 

exp[-(xij - x0j)
2/{2a2)}, j G [l ,n]. 

σ ν 2 π 

A mutation that improves x requires the occurrence of n independent events: 

n < o 
xij G [-6,6], je[2,n] 

(6.7) 

(6.8) 

where r\ is the mutation of the first element of XQ (that is, x\\ <— x0i + ri)· 
Therefore, φ', the expected magnitude of a useful mutation, is 

n 

φ' = | E ( r 1 | r 1 < 0 ) i n P r o b ( x l j G [ - 6 , 6 ] ) 

= I f - ^ e x p ( - r 2 / ( 2 a 2 ) ) d r 1 | f[ f -±^exp(-(xl3 - x0j)
2/(2σ2)) dx 

\J-oc σ ν 2 π | f_0J-b σ\/2π 

n 
e r f ( 6 _ _ ^ ) + e r f 

3=2 

6 + XQJ 

ay/2 J V crV2 

(see Problem 6.2) where erf(·) is the error function: 

2 fx 

erf(x) = —= exp( - t 2 ) di, x > 0. (6.10) 
v W o 

The expected magnitude of a useful mutation, given that XQ was in the [—6,6] 
corridor before the mutation, can be written as 

φ = Ε(φ' | x0j G [-6,6] for all j G [2, n]) 

/

b nb 

•. ■ / φ' PDF(x0 2) · · · PDF(zon) dxQ2 ' ' ' dxvn. (6.11) 
-6 J-b 

Given that XQJ G [—6,6], we assume that XQJ is uniformly distributed in [—6,6] (an 
admittedly unproven assumption), which gives 

(6.9) 

n Z*6 1 

e r f / ^ A + e r f ^ 6 ^ 

Now recall that 

/ 

ay/2 

evf(z) dz = z erf(2) + 

ay/2 

exp(—z2) 

2b dXo>-
(6.12) 

(6.13) 

1 There is a temporary inconsistency in notation here, XQ and x\ in Figures 6.1 and 6.2 refer to 
an ES candidate solution before and after mutation, while x\ in Equations (6.5) and (6.6) refer 
to the first element of the x vector. 
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Using this in Equation (6.12) gives 

nil 
26 

4 6 e r f f ^ U 2 ^ ( e X p ( - ^ 2 ) - ^ 

erf 
ay/2j 6Λ/2ΤΓ 

( 1 - β χ ρ ( - 2 ο 7 σ 2 ) ) 

Recall that lim^-^oo erf(x) = 1, and lim^-^oo exp(—x) = 0. Therefore, 

il 
\/2π V bV2Ïr 

for large b/σ. 

(6.14) 

(6.15) 

φ is the expected value of a useful mutation, which we would like to be large. We 
can find the values of σ that result in extreme values of φ by taking the derivative 
of φ with respect to σ, and setting the result to 0. We find that 

άφ 
da y/Ζκ \ by/2n) 

\ n—l / 1 \ 
σ \ σ(η — 1) 1 

62π V^ 6>/27r7 

Setting this derivative to 0 and solving for σ results in 

σ* = 6λ/2π/η 

\ n-2 
(6.16) 

(6.17) 

which gives the largest possible value of φ and hence the largest expected magnitude 
of a useful mutation. 

Now consider the probability w' that a mutation is useful. A mutation is useful 
if the n independent events shown in Equation (6.8) occur. The probability that 
this occurs can be written as 

wf = Prob(ri < 0) f | Ρτόύ(χυ G [-6,6]). 
i=2 

(6.18) 

Since r\ is zero-mean, the probability that v\ < 0 is one-half, so the above equation 
can be written as 

ν' = Ιΐ[ΡτοΗχυΕ[^}). 
3=2 

Comparing the above equation with Equation (6.9), we see that 

w = 2σ 

(6.19) 

(6.20) 

Now consider the expected value w of the probability that a mutation is useful, 
given that XQ was in the [—6, b] corridor before the mutation. This can be written 
as follows: 

w = E(w'\x0j G [-6,6] for all j e [2,n]) 

/

O rb 

• · · / w' PDF(z02) · · · PDF(xon) cfoo2 · · · dxon-
-b J-b 

(6.21) 
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Comparing this equation with Equations (6.11) and (6.20), we see that 

V7^ , 
2σ ^' 

Now we substitute for φ from Equation (6.15) to obtain 

n - l 

(6.22) 

*1)( * \(x_ * , . ( 6 e 2 3 ) 

2σ ) \y/2^) V by/5H) 

Next we substitute for the optimal value of σ from Equation (6.17) to obtain the 
optimal value of w: 

w* = \ (1 - I / « ) " " 1 . (6.24) 

Recall that exp(—x) « 1 — x for small x. Therefore, exp(—1/n) « 1 — 1/n for large 
n. This gives 

«,* = \ ( e x p i - l / n ) ) " - 1 = 1 « 0.18. (6.25) 

The optimal standard deviation σ* results in a mutation magnitude that gives 
improvements 18% of the time. 

Rechenberg also analyzed a sphere function, where the objective was to minimize 

f(x) = J2xl (6·26) 
j = l 

He found that the optimal mutation success rate for the sphere function was 27%. 
These results apply only to specific functions, and they were derived under sim-

plifying approximations, but they resulted in a rule of thumb called the 1/5 rule 
that has proven useful in many problems. To maximize convergence rate, the stan-
dard deviations in an ES should be adjusted to give a 1/5 ratio of successful to 
total mutations. 

6.3 THE ( μ + l ) EVOLUTION STRATEGY 

The first generalization of the (l-hl)-ES is the (/z+l)-ES. In the (μ+1)-Ε8, μ parents 
are used at each generation, where μ is a user-defined parameter. Each parent also 
has an associated σ vector that controls the magnitude of mutations. The parents 
combine with each other to form a single child, and then the child is mutated. The 
best μ individuals are chosen from among the μ parents and the child, and they 
become the μ parents of the next generation. This algorithm is summarized in 
Figure 6.5. Since the (μ + 1)-ES retains the best individuals each generation, it is 
elitist; that is, its best individual never gets worse from one generation to the next 
(see Section 8.4). The (μ 4- 1)-ES is also called the steady-state ES. Since only one 
individual is removed from the overall population at the end of each generation, 
this strategy could be called extinction of the worst, which is the flip side of survival 
of the fittest. 

The parents in Figure 6.5 combine both their solution features and their mutation 
variances. However, Figure 6.5 does not include the type of mutation variance 
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adaptation that we saw in Figure 6.2. In fact, after a certain number of generations 
that is proportional to μ, the σ values in Figure 6.5 will collapse to a single value, 
which may or may not reflect an appropriate mutation strength [Beyer, 1998]. 
Figure 6.5 should probably not be implemented as shown, but is a stepping stone 
to the more effective self-adaptive ES of Section 6.5. 

{(xk,&k)} <- randomly generated individuals, k e [Ι,μ]. 
Each Xk is a candidate solution, and each σ^ is a standard deviation vector. 
Note that Xk G Rn, and σ^ e Rn with each element positive. 
While not (termination criterion) 

Randomly select two parents from the population {(xki&k)} 
Use a recombination method to combine the two parents and obtain a child, 

which is denoted as ( χ μ + ι , σ μ + ι ) 
Σ μ + 1 <- d i a g ( a 2 + M , - · - ,σ2+ 1 ϊ Λ) e Rnxn 

Generate a random vector r from iV(0, Σ μ +ι) 
χ μ +ι <- χμ+1 + r 
Remove the worst individual from the population: that is, 

{(xk,crk)} <- the best μ individuals from {(χ ι ,σ ι ) , · · ·, ( χ μ + ι , σ μ + ι ) } 
Next generation 

Figure 6.5 The above pseudo-code outlines the (μ+l) evolution strategy, where n is the 
problem dimension. 

The recombination step in Figure 6.5 says, "Use a recombination method to 
combine the two parents . . . " There are various ways to perform recombination.2 

Discrete sexual crossover works by randomly selecting each child element from 
either xp or xq, and randomly selecting each child standard deviation from either 
σρ or aq, where each selection is independent of the others. This type of crossover 
is described with the word discrete because each child feature comes from a single 
parent, and it is described with the word sexual because each child feature comes 
from one of two parents. Discrete sexual crossover is illustrated in Figure 6.6. 

Another recombination option is intermediate sexual crossover. In this option, 
child features are set to the midpoint of their parent features; hence the designation 
intermediate. Intermediate sexual crossover is illustrated in Figure 6.7. 

Another recombination option is global crossover, or panmictic crossover. A 
panmictic population is one in which each individual is a potential mate for every 
other individual. In discrete global crossover, each child feature comes from a parent 
selected randomly from the entire population. This is illustrated in Figure 6.8. The 
discrete crossover options of Figures 6.6 and 6.8 are also called dominant crossover. 

Global crossover can be combined with intermediate crossover to obtain inter-
mediate global crossover. In this option, each child feature is a linear combination 
of a randomly-selected pair of parents. This is illustrated in Figure 6.9. Interme-
diate global crossover is the type that is usually used in practice, and it is also 
recommended for well-understood theoretical reasons [Beyer and Schwefel, 2002]. 

2The ES community generally prefers the term recombination or mixing rather than crossover. 
Throughout this book we use these terms synonymously. 
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Parent 1: 

Parent 2: 

Offspring: 

Yn Y12 Y13 ; Y i 4 "^Π | ση σ12 σ13 σ 1 4 1 σ 1 5 ] 

Y21 | Y22 J y23 Y24 I Y25 11 σ 2 1 | σ 2 2 1 σ 2 3 σ24 σ25 

Y11 ! Y22 V13 Yl4 Υ25 σ2ι σ22 σ ΐ 3 σΐ4 σ 2 5 j 

Figure 6.6 Discrete sexual crossover in an ES, where the problem dimension n = 5. Each 
solution feature and standard deviation in the child is randomly selected from one of two 
parents. 

Parent 1: 

Parent 2: 

Yn 

! 
! Y21 

Yl2 

y22 

Yl3 

Y23 

< * 1 1 

σ2ι 

σ12 

σ22 

σ13 

σ23 

Offspring: Kl+Λι 
2 

^12+^22 
2 

^,3+723 
2 

σ„+σ2ι 

2 
σι2+σ22 

2 

σ ! 3 + σ 2 3 
2 

Figure 6.7 Intermediate sexual crossover in an ES, where the problem dimension n = 3. 
Each solution feature and standard deviation in the child is half way between the two parents. 

Individual 1 

Individual 2: 

Individual 3: 

Individualί 

»,, v„ Yl3 I Yl4 I Yl5 | σιι σ ΐ2 1 σ ΐ3 I σ14 σΐ5 ! 

Y21 Y22 Y23 V24 j Y25 | σ2ι σ22 σ23 σ24 σ25 : 

Y31 j Y32 j Y33 Y34 Lv*J σ31 1 σ32 !σ 3 3 °34 ^ 

Y41 Υ42 Υ43 Υ44 Υ45 σ43 j σ44 j σ45 1 

Individual 5: 

Offspring: 

V51 Υ52|Υ53ΤΥ54 YS5 j | σ 5 ι σ52 σ53 σ54 σ55 

Yn Υ32 YS3 Yl4 
: 

Υ25 ! σ51 σ32 σ« σ44 [_σ45 ] 

Figure 6.8 Discrete global crossover in a five-member ES (μ = 5), where the problem 
dimension n = 5. Each solution feature and standard deviation in the child is randomly 
selected from the entire population. 

Other types of crossover can also be used. For example, one parent xp(o) could be 
selected for the child, and n other parents could be selected, {xp(k)} for k G [l ,n], 
one for each solution feature. Then the k-th child solution feature Χμ+ι,/c could 
be generated by crossing xp(0) with xp(k) f° r k G [l ,n]. Likewise, the k-th child 
standard deviation σμ+ι^ could be generated by crossing σρ(0) with σρ^γ See 
Section 8.8 for additional types of crossover operators. 
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Individual 1: 

Individual 2: 

Individual 3: 

Individual 4: 

Individual 5: 

Offspring: 

Vu 

Y21 

V31 

Y41 

Vsi 

^21+^31 

2 

Vl2 

Y22 

Y32 

Y42 

Y52 

-V12+-V42 

2 

Yl3 

Y23 

Y33 

Y43 

YS3 

^+^Ι 
2 

<*n 

σ21 

σ 3 1 

σ12 

σ22 

σ 3 2 

σ41 

σ5ι 

σ42 

σ52 

σ13 

σ23 

σ33 

σ43 

« . 

σ 4 1 +σ 5 1 | 

2 
σ22 + σ42 

2 
σ1 3+σ3 3 

2 

Figure 6.9 Illustration of intermediate global crossover in a five-member ES (μ = 5), 
where the problem dimension n = 3. Each solution feature and standard deviation in the 
child is half way between two randomly-selected parents. 

6.4 (μ + λ) AND (μ, λ) EVOLUTION STRATEGIES 

The next evolution strategy generalization is the (μ + A)-ES. In the (μ 4- A)-ES, we 
have a population size of μ, and we generate λ children each generation. After the 
generation of the children, we have a total of (μ + A) individuals, which includes 
both parents and children. We select the best μ of those individuals as the parents 
of the next generation. 

Another commonly-used evolution strategy is the (μ, A)-ES. In the (μ, A)-ES, the 
parents of the next generation are selected as the best μ individuals from among 
the λ children. In other words, none of the μ parents survive to the next generation; 
instead, a subset of μ of the λ children are chosen to become the parents of the next 
generation. In the (μ, A)-ES, we need to make sure that we choose λ > μ. Parents 
of the previous generation never survive to the next generation. The life of each 
individual is limited to one generation. 

If μ > 1 in the (μ + λ)-Ε8 or (μ, A)-ES, then the ES is called multi-membered. In 
spite of the success of these generalizations, there were initially strong objections 
to setting μ and λ greater than 1. The argument against λ > 1 was that the 
exploitation of information would be delayed. The argument against μ > 1 was 
that survival of inferior individuals would delay the progress of the ES [De Jong 
et al., 1997]. 

The (μ, A)-ES often works better than the (μ + A)-ES when the fitness function 
is noisy or time-varying (Chapter 21). In the (μ + A)-ES, a given individual (χ,σ) 
may have a good fitness but be unlikely to improve due to an inappropriate σ. 
So the (x, σ) individual may remain in the population for many generations with-
out improving, which wastes a place in the population. The (μ, A)-ES solves this 
problem by forcing all individuals out of the population after one generation, and 
allowing only the best children to survive. This helps restrict survival in the next 
generation to those children with a good σ, which is a σ that results in a muta-
tion vector that allows improvement in x. [Beyer and Schwefel, 2002] recommends 
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the (μ, A)-ES for problems with unbounded search spaces, and the (μ + A)-ES for 
problems with discrete search spaces. 

Figure 6.10 summarizes the (^ + A)-ES and the (μ, A)-ES. Note that if σ& = con-
stant for all /c, then the σ& values will remain unchanged from one generation to the 
next. Figure 6.10, like Figure 6.5, does not include mutation variance adaptation. 
Therefore, Figure 6.10 should not be implemented as shown, but is a stepping stone 
to the self-adaptive ES. We will generalize Figure 6.10 to obtain the self-adaptive 
(μ + A)-ES and (μ, A)-ES in the next section. 

{(xk,&k)} 4— randomly generated individuals, k G [Ι,μ]. 
Each Xk is a candidate solution, and each σ^ is a standard deviation vector. 
Note that Xk G Rn, and σ^ G Rn with each element positive. 
While not (termination criterion) 

For fc = 1 , · · · , λ 
Randomly select two parents from {(a^Cfc)} 
Use a recombination method to combine the two parents and obtain a 

child, which is denoted as (x'k,ak) 

Generate a random vector r from N(0, Σ^) 
x'k <-x'k + r 

Next k 
If this is a (μ + A)-ES then 

{(xk,&k)} «- the best μ individuals from {(xk,&k)} U {(xf
k,a'k)} 

else if this is a (μ, A)-ES then 
{(xk,&k)} <— the best μ individuals from {(x'k,ak)} 

End if 
Next generation 

Figure 6.10 The above pseudo-code outlines the (μ + A) and (μ, A) evolution strategies, 
where n is the problem dimension. 

■ EXAMPLE 6.2 

In this example we compare the (μ + A) and (μ, A) evolution strategies. We 
run both strategies with μ = 10, A = 20, discrete sexual crossover, and a 
problem dimension of 20. Figure 6.11 shows the average performance of both 
algorithms on the Schwefel 2.26 benchmark. We see that the (μ 4- A)-ES 
outperforms the (μ, A)-ES. In general, this is expected because the (μ, A)-ES 
might throw away a good solution due to its limitation of one generation 
for the lifetime of each individual. However, the performance comparison 
between the two ES variations depends on the problem. Figure 6.12 shows 
the average performance of the two algorithms on the Ackley benchmark. The 
(μ + A)-ES initially outperforms the (μ, A)-ES, but eventually the (μ, A)-ES 
catches up and performs better than the (μ -h A)-ES. Sometimes the (μ, λ)-
ES is advantageous. This is not only because of its greater adaptability to 
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noisy and time-varying fitnesses; for some functions its greater emphasis on 
exploration results in better performance than the (μ + A)-ES. 

-(mu+lambda)-ES 
(mu,lambda)-ES 

40 60 
Generation 

Figure 6.11 Example 6.2: The convergence rate of the (μ + A)-ES and the (μ, A)-ES 
on the Schwefel 2.26 benchmark, averaged over 100 simulations. The (μ + A)-ES clearly 
outperforms the (μ, A)-ES. 
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Figure 6.12 Example 6.2: The convergence rate of the (μ + A)-ES and the (μ, A)-ES on 
the Ackley benchmark, averaged over 100 simulations. The (μ + A)-ES initially outperforms 
the (μ, A)-ES, but eventually the (μ, A)-ES does much better than the (μ, A)-ES. 
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The (/x, K, λ , p) Evolution Strategy 

Recall in Figure 6.10 that each child has two parents. But there is no reason to 
restrict the number of parents to two. We could instead combine more than two 
parents, and we use p to indicate the number of parents that contribute to each 
child. We discussed some multi-parent crossover operators at the end of Section 6.3, 
and we discuss additional possibilities in Section 8.8. 

We could also set a maximum lifetime for each individual in the population, 
which we denote with κ. If the maximum lifetime is one generation, then κ = 1 
and we have a (μ, A)-ES because parents are not allowed to survive to the next 
generation. If the maximum lifetime is unlimited, then κ = oo and we have a 
(μ + A)-ES because there is no restriction on allowing parents to survive to the next 
generation; as long as a parent is one of the μ most fit individuals in the combined 
child/parent population, then it survives to the next generation, regardless of how 
long it has been in the population. In general we may want to limit the lifetime 
of ES individuals to prevent stagnation, especially for time-varying problems (see 
Section 21.2). 

Combining these two generalizations results in the (μ, κ,, λ, p)-ES [Schwefel, 1995]. 
The population of the (μ, «, λ, p)-ES has μ parents, each individual has a maximum 
lifetime of κ generations, and each generation produces λ children, each of whom 
has p parents. 

6.5 SELF-ADAPTIVE EVOLUTION STRATEGIES 

The ES algorithms that we have studied do not give us a lot of options for adjusting 
the standard deviations σ ^ of the mutations. Our only option so far is the adaptive 
(l-hl)-ES of Figure 6.2, which adjusts standard deviations based on the mutation 
success ratio. This can be generalized to (1 + λ) ES algorithms by examining all λ 
of the mutations at each generation, and keeping track of how many of them result 
in improvements. However, there is no clear way to generalize this idea to (μ + λ) 
or (μ, λ) ES algorithms when μ > 1. The children in this case are comprised not 
only of mutations, but also of combinations of their parents. Therefore, it may not 
be meaningful to determine the appropriate mutation rate by comparing the fitness 
of the child to that of its parents. 

However, just like we mutate the solution features {xi} for % G [l,n] to search 
for an optimum x, we can also mutate the elements {σ^} of the standard deviation 
vector to search for an optimum σ. After a child (χ', σ') is created, we mutate the 
child as follows [Schwefel, 1977], [Back, 1996, Section 2.1.2]: 

σ· <- σ·βχρ(τ'ρο + τρ;) 
x\ <- x'i + a'fi (6.27) 

for i G [l ,n], where po, Pi, and r^, are scalar random variables taken from AT(0,1); 
and r and τ' are tuning parameters. The factor r'po allows for a general change in 
the mutation rate of x', and the factors rpi allow for changes in the mutation rates 
of specific elements of x'. The form of the σ' mutation guarantees that σ' remains 
positive. 

Note that po and pi are equally likely to be positive as they are to be negative. 
This means that the exponential in Equation (6.27) is equally likely to be greater 
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than one as it is to be less than one. This in turn means that σ[ is just as likely 
to increase as it is to decrease. Schwefel concludes that this mutation approach is 
robust to changes in r and τ ' , but he suggests setting them as follows [Schwefel, 
1977], [Back, 1996, Section 2.1.2]: 

τ' = P2 (V2n) (6.28) 

where n is the problem dimension, and P\ and P2 are proportionality constants 
which are typically equal to 1. 

It is important to implement the mutation in the order indicated by Equa-
tion (6.27); that is, σ' needs to be mutated before x' is mutated. This is because 
σ' needs to be used to mutate x' so that the fitness of x' indicates, as accurately 
as possible, the appropriateness of σ'. These ideas lead to the self-adaptive (μ + λ) 
and (μ, λ) evolution strategies shown in Figure 6.13. Note that Figure 6.13 is called 
the self-adaptive ES, in contrast to the simpler adaptive ES idea of Figure 6.2. The 
self-adaptive ES, introduced in [Rechenberg, 1973], is perhaps the most important 
contribution of the ES to evolutionary algorithm research and practice. Today 
virtually all EAs use some type of self-adaptation to adjust algorithmic tuning pa-
rameters. In addition, [Beyer and Deb, 2001] has shown that even EAs without 
explicit self-adaptation can exhibit self-adaptive behavior. The interpretation of 
EAs as self-adaptive algorithms, and the effect of self-adaptive behavior on EA 
performance, remain as important tasks for future research. 

The algorithm of Figure 6.13 that the mutation covariance matrix E'fc is diagonal. 
In general, we could use a non-diagonal covariance to generate the mutation vector 
r. We could then try to optimize the entire covariance matrix rather than just the 
diagonal elements [Back, 1996, Section 2.1]. 

■ EXAMPLE 6.3 

In this example, we use the (μ + A)-ES to optimize the Ackley benchmark 
function. We compare the standard (μ + λ)-Ε8 shown in Figure 6.10, and the 
self-adaptive (μ + A)-ES shown in Figure 6.13. We use both algorithms with 
μ = 10, λ = 20, discrete sexual crossover, and a problem dimension n = 20. 
We use the standard values for r and τ' shown in Equation (6.28), and the 
standard values P\ — P2 = 1. Figure 6.14 compares the average convergence 
rates of the standard (μ + λ)-Ε8 and the self-adaptive (μ + λ)-Ε8. We see that 
the self-adaptive ES converges much faster than the standard ES. Figure 6.15 
shows the standard deviation values σ^ , i 6 [1,20], for the best individual 
(xk^k) in the population at the last generation. Figure 6.15 shows that 
the standard deviations have evolved differently for different feature numbers. 
They have evolved in a way that attempts to optimize the effectiveness of the 
mutations. 

D 
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Initialize constants r and τ' as shown in Equation (6.28). 
{(xk,&k)} ^- randomly generated individuals, k G [Ι,μ]. 
Each Xk is a candidate solution, and each ak is a standard deviation vector. 
Note that xk G Rn and ak e Rn. 
While not (termination criterion) 

For k = 1 , · · · , λ 
Randomly select two parents from {(xk^k)} 
Use a recombination method to combine the two parents and obtain 

a child, which is denoted as (x'k, ak) 
Generate a random scalar po from iV(0,1) 
Generate a random vector [ p\ · · - pn ] from N(0,I) 
aki <- v'ki exp(^Vo + rpi) for i G [1, n] 
E ^ d i a g ( ( a ^ ) 2 , - - . , ( a ^ ) 2 ) G ^ x -
Generate a random vector r from iV(0, E'fc) 
x'k ^x'k + r 

Next k 
If this is a (μ + A)-ES then 

{(xkiCk)} —̂ the best μ individuals from {(χ^,σ^)} U {(xk,a'k)} 
else if this is a (μ, A)-ES then 

{(xkiCk)} —̂ the best μ individuals from {(x'k,ak)} 
End if 

Next generation 

Figure 6.13 The above pseudo-code outlines the self-adaptive (μ+λ) and (μ, λ) evolution 
strategies, where n is the problem dimension. 

EXAMPLE 6.4 

This example is the same as Example 6.3 except we use the (μ, A)-ES and the 
Griewank benchmark function. Figure 6.16 compares the average convergence 
rates of the standard (μ, A)-ES and the self-adaptive (μ, A)-ES. We see that 
the self-adaptive ES performs very poorly. The reason is that although the σ' 
mutation in Equation (6.27) has a median of 1, which means that σ' is equally 
likely to increase as it is to decrease, the σ' mutation has a mean that is greater 
than 1. The argument of the exponential function in Equation (6.27) is the 
sum of two zero-mean Gaussian random variables. Suppose for simplicity 
sake that the argument x of an exponential function exp(x) is a zero-mean 
Gaussian random variable with a variance of 1. Then the exponential has a 
median of 1, but it has a mean of 

/

oo 
PDF(x) exp(x) dx 

-oo 

/

oo -̂  

.— exp(—x2/2) exp(x) dx 

= exp(l/2) « 1.65. (6.29) 
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Figure 6.14 Example 6.3: The convergence of the standard and self-adaptive (μ + λ)-
ES algorithms on the 20-dimensional Ackley function, averaged over 100 simulations. The 
self-adaptive ES, which automatically adjusts the mutation standard deviations, converges 
much faster than the standard ES. 
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Figure 6.15 Example 6.3: The standard deviation values of the best individual at the final 
generation for the self-adaptive ES as applied to the 20-dimensional Ackley function. There 
are 20 standard deviations, corresponding to the 20-dimensional optimization problem. The 
self-adaptive ES seeks to adjust the mutation standard deviations in a way that maximizes 
the effectiveness of the mutations. 

We see that the σ' mutation tends to increase σ' more than it tends to decrease 
&'. This can result in a preponderance of large σ' values in the offspring. If 
all the parents are discarded at the end of each generation, as they are in the 
(μ, A)-ES, unacceptably large σ' values can perpetuate in the population and 
lead to poor performance. 

D 
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Figure 6.16 Example 6.4: The convergence rate of the standard and self-adaptive (μ, λ)-
ES approaches on the 20-dimensional Griewank function, averaged over 100 simulations. The 
self-adaptive ES, which automatically adjusts the mutation standard deviations, performs 
very poorly. 

Covariance Matrix Adaptation 

One successful ES variation is CMA-ES, where CM A is an acronym for covariance 
matrix adaptation [Hansen, 2010]. The goal of CMA-ES, which has shown a lot of 
success on benchmark functions, is to fit (as well as possible) the distribution of 
the ES mutations to the contour of the objective function. This attempted fit can 
perfectly succeed only for quadratic objective functions, but many objective func-
tions can be approximated with a quadratic near their optimum. The drawbacks of 
CMA-ES are its complicated adaptation strategy, and its complicated tuning pa-
rameter settings. Here we present a simplified version of CMA-ES which is called 
covariance matrix self-adaptive ES (CMSA-ES) [Beyer and Sendhoff, 2008], The 
idea of CMSA-ES is to learn the shape of the search space during evolution, and 
adapt the mutation variance. Figure 6.17 outlines CMSA-ES. 

In Figure 6.17, r is a learning parameter that determines the adaptation speed of 
the Gk values. The σ^ values govern the mutation strength. Note that each σ& is a 
scalar, which is in contrast to the self-adaptive ES of Figure 6.13. The time constant 
rc determines the adaptation speed of the covariance matrix C, which governs 
the relative magnitudes and correlations of the mutations along each dimension. 
Recommended values for τ and rc are as follows [Beyer and Sendhoff, 2008]: 

r 

1 + η(η + 1)/(2μ) (6.30) 

although more efficient performance might be obtained with time-varying values of 
r and rc. 

The square root y/C in Figure 6.17 could be calculated a couple of different ways. 
The original CMA-ES used spectral decomposition, or eigenvalue decomposition 
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[Hansen and Ostermeier, 2001], and CMSA-ES uses Cholesky decomposition [Beyer 
and Sendhoff, 2008]. 

Figure 6.17 shows the averages σ, χ, and S as simple averages. However, we 
could also compute them as weighted averages, which means that we could give 
more weight to more fit individuals. In view of its nice tradeoff between simplicity 
and effectiveness on benchmark problems, CMSA-ES seems to hold much promise 
for future research, including hybridization with other EAs. 

Initialize constants r and rc 

C <— I = n x n identity matrix 
{(xk,&k)} 4— randomly generated individuals, k G [Ι,μ]. 
Each Xk is a candidate solution, and each ak is a standard deviation. 
Note that Xk G Rn and ak G R. 
While not (termination criterion) 

σ <- E L i σ*Ιμ 
x <- E L i xk/ß 
For k= 1 , · · · , λ 

r <— iV(0,1) = Gaussian random scalar 
Gk <- â exp( r r ) 
R <— N(0,1) = n-dimensional Gaussian random vector 
sk^VCR 
zk <- akSk 
xk «- x + zk 

Next h 

C<-{1-1/TC)C + S/TC 

Next generation 

Figure 6.17 The above pseudo-code outlines the covariance matrix self-adaptive evolution 
strategy (CMSA-ES), where n is the problem dimension. See the text for details. 

6.6 CONCLUSION 

We have discussed the original (l-hl)-ES, the more general (μ -h 1)-ES, and the 
even more general (μ + A)-ES. We have also discussed the (μ, A)-ES. We see that 
an ES is similar to a G A, but G As were originally developed by encoding candidate 
solutions as bit strings, while ES has always operated on continuous parameters. 
Although GAs are often developed to operate on continuous parameters, this re-
mains a philosophical difference between the two algorithms: ES tends to operate on 
representations that are closer to the problem statement, while GAs tend to operate 
on representations that are farther removed from the original problem statement. 
Another difference between the two algorithms is that GAs emphasize recombina-
tion, while ES emphasizes mutation. This can guide our choice of algorithms when 
we are faced with a particular optimization problem. If exploration is more impor-
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tant than exploitation for a particular problem, then we might want to use an ES. 
However, if exploitation is more important, then we might want to use a GA.3 

In all of the ES variations that we have discussed thus far, the selection mecha-
nism is deterministic. That is, the best μ individuals are chosen for the next gen-
eration. As a variation on this approach, we could instead perform a probabilistic 
selection of individuals for the next generation. For example, in the (μ + A)-ES, we 
could use roulette-wheel selection to probabilistically select the parents of the next 
generation, where each section of the roulette wheel is proportional to the fitness 
of a corresponding individual. Work in this direction remains as future research. 

Additional material on ES is presented in [Back and Schwefel, 1993] and [Beyer, 
2010]. A Markov model of ES is presented in [Francçis, 1998]. Evolution strate-
gies for multi-objective problems (see Chapter 20) are discussed in [Rudolph and 
Schwefel, 2008]. 

See Section 2.7.5 for a discussion of exploration and exploitation. 
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PROBLEMS 

Written Exercises 

6.1 The conclusion to this chapter says that an ES might be more appropriate 
for a problem where exploration is needed, but a GA might be more appropriate 
for a problem where exploitation is needed. In what type of problem would explo-
ration be more desirable, and in what type of problem would exploitation be more 
desirable? 

6.2 Show that the second and third lines of Equation (6.9) are equal. 

6.3 Use Equation (6.16) to derive Equation (6.17). 

6.4 Suppose we use the (l-hl)-ES to minimize the one-dimensional sphere func-
tion. What is the probability that a mutation with a standard deviation of σ will 
improve a candidate solution x0? 

6.5 Equation (6.27) shows that the standard deviation of the mutation of the 
self-adaptive ES changes by an exponential factor. Equation (6.29) shows that the 
mean of that factor is greater than 1, which may lead to poor ES performance. 
How could you change Equation (6.27) so that the mean of the factor is 1? 

Computer Exercises 

6.6 Simulate the adaptive (1 + 1)-ES of Figure 6.2 to minimize the 10-dimensional 
sphere function (see Section C.l . l) on a domain of [—5.12,+5.12]. Initialize the 
standard deviation of the mutation of each dimension to 0 . 1 / ( 2 Λ / 3 ) . Simulate for 
500 generations, and record the cost at each generation. Run 50 simulations like 
this, and average the 50 cost values at each generation. Plot the average cost values 
as a function of generation number. Do this for c = 0.6,0.8, and 1.0. Which value 
of c gives the best performance? 

6.7 Repeat Problem 6.6, but instead of simulating for three different values of c, 
use the default value of c and simulate for three different mutation success ratio 
thresholds ^thresh- That is, instead of using the default value ^thresh = 1/5, use 
^thresh = 0.01,0.2, and 0.4. Which value of ^thresh gives the best performance? 

6.8 Plot the two-dimensional corridor function on the domain [—50, +50] with 
the constants CQ = 0, c\ — 1, and b = 10. 

6.9 Use the (μ + A)-ES to minimize the 10-dimensional sphere function on the 
domain [—5.12,+5.12] with μ = 10 and λ = 20. Set the standard deviation of the 
mutation of each dimension to 0.1/(2>/3). Simulate for 100 generations, and record 
the minimum cost at each generation. Run 50 simulations like this, and average the 
50 minimum cost values at each generation. Plot the average minimum cost values 
as a function of generation number. Do this for discrete sexual, discrete global, 
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intermediate sexual, and intermediate global crossover. Which type of crossover 
gives the best performance? 

6.10 Recall that Equation (6.29) showed that if x ~ N(0,1), then exp(x) has a 
median of 1 and a mean of about 1.65. Equation (6.27) shows that the standard 
deviation of the mutation of the self-adaptive ES changes by an exponential factor. 
Numerically approximate the median and mean value of the exponential factor if 
n = 10. How does an increase in n affect the median and mean of the exponential 
factor? 

6.11 Pi and P2 in Equation (6.28) have default values of 1, but perhaps other 
values would give better performance. Use the self-adaptive (μ + λ)-Ε8 to minimize 
the 10-dimensional sphere function on the domain [—5.12,+5.12] with μ = 10 and 
λ = 20. Initialize the standard deviation of the mutation of each dimension to 
0.1/(2\/3)· Simulate for 100 generations, and record the minimum cost at each 
generation. Run 50 simulations like this, and average the 50 minimum cost values at 
each generation. Plot the average minimum cost values as a function of generation 
number. Do this for Ρλ = P2 = 0.1, Px = P2 = 1, and Px = P2 = 10. Which value 
of Pi and P2 gives the best performance? 





CHAPTER 7 

Genetic Programming 

Machines would be more useful if they could learn to perform tasks for which they were 
not given precise methods. 

—Richard Friedberg [Friedberg, 1958] 

Genetic algorithms and similar EAs are powerful optimization techniques, but 
they have an inherent limitation: they incorporate the assumed solution structure 
in the representation of their candidate solutions. For instance, if we want to use 
a GA to solve a continuous optimization problem with 10 variables, then the GA 
chromosome is typically represented as (χχ, #2, · · ·, #io)· This is both an advantage 
and a disadvantage for G As. It is an advantage because it allows the engineer to 
encode problem-specific information into the solution representation. If we know 
that our target solution can be nicely represented with 10 real parameters, then 
defining the chromosome as (XI,X2J * ' · Î # IO) makes a lot of sense. However, we 
may not know which parameters need to be optimized in a given problem. Also, 
we may not know the structure of the parameters that need to be optimized. Are 
the parameters real numbers, or state space machines, or computer programs, or 
complex arrays, or time schedules, or something else? 

Genetic programming (GP) is an attempt to generalize EAs to an algorithm that 
can learn not only the best solution to a problem given a specific structure, but 
that can also learn the optimal structure. GP evolves computer programs to solve 
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optimization problems. This is the distinctive feature of GP compared with other 
EAs; other EAs evolve solutions, while GP evolves programs that can compute 
solutions. In fact, this was one of the original goals of the artificial intelligence 
community. Arthur Samuel, one of the early American pioneers of artificial intel-
ligence, wrote in 1959, "Programming computers to learn from experience should 
eventually eliminate the need for much of this detailed programming effort." 

The fundamental features of GP can be summarized in three basic principles 
[Koza, 1992, Chapter 2]. First, GP, which evolves computer programs, gives us the 
flexibility to obtain solution methods to a wide variety of problems. Many engi-
neering problems can be solved with structures that are organized like a computer 
program, decision tree, or network architecture. Second, GP does not constrain its 
solutions nearly as much as other EAs; the evolved programs have the freedom to 
assume the size, shape, and structure that is best suited to the problem at hand. 
Third, GP evolves computer programs using induction. This is both a strength and 
a weakness. GP does not evolve programs by building them, as a human would, 
in a deductive and logical manner. However, some problems are not amenable to 
deduction. If we want to write a computer program on the basis of a set of train-
ing samples, it would be difficult to do so with standard computer programming 
techniques. But this is the way that GP, like other EAs, operates. GP inductively 
constructs optimal computer programs. 

Early Results in Genetic Programming 

Alan Turing, one of the fathers of computer science and artificial intelligence, en-
visioned something like GP when he wrote in a famous paper in 1950, "We cannot 
expect to find a good child-machine at the first attempt. One must experiment with 
teaching one such machine and see how well it learns. One can then try another 
and see if it is better or worse" [Turing, 1950, page 456]. Richard Friedberg, who 
studied computer intelligence in the 1950s and later went on to a career in medicine, 
was one of the first to work on problems that could be classified as genetic pro-
gramming. Friedberg wrote computer programs that could evolve other computer 
programs, which could then themselves solve problems. His work was published in 
the late 1950s with the title "A Learning Machine" [Friedberg, 1958], [Friedberg 
et al., 1958]. He took a number of shortcuts in his work because of the limited 
computing capability of the time. For instance, he grouped similar programs to-
gether and assumed that their fitness was correlated so that he could reduce the 
number of fitness calculations. This was a remarkably prescient forerunner to the 
many methods for fitness computation reduction that we see today in EAs (see 
Chapter 21). Computing power (speed and memory) increased by a factor of about 
one million during the 50 years from 1960 to 2010, but we are still just as concerned 
today about processing power as Friedberg was in the 1950s. 

A precursor to modern GP was the variable-length GA developed by Stephen 
Smith in his 1980 doctoral dissertation [Smith, 1980], in which each individual in 
the G A population represented a set of decision rules. Another early work which 
foreshadowed today's GP was Richard Forsyth's paper in 1981, which evolved pat-
tern classification rules [Forsyth, 1981]. Nichael Cramer wrote perhaps the first 
explicit GP paper in 1985 [Cramer, 1985], which was partly based on Smith's dis-
sertation. In 1990, Hugo de Garis used the term "genetic programming" to refer 
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to the optimization of neural networks using genetic algorithms [de Garis, 1990], 
but his use of the term has since been superceded by today's definition, which de-
fines GP as the evolution of computer programs. John Koza's 1992 book, which 
is still an excellent introduction to the topic, was instrumental in popularizing GP 
research [Koza, 1992]. Koza has since written three additional GP books [Koza, 
1994], [Koza et al., 1999], [Koza et al., 2005] that discuss practical applications and 
more advanced aspects of GP. More discussion of the early history of GP can be 
found in [Koza, 2010]. 

Overview of the Chapter 

We begin this chapter with a preliminary discussion of the computer programming 
language Lisp in Section 7.1. Lisp is often used for GP because the structure of 
Lisp is amenable to EA operations like crossover and mutation. Section 7.2 gives a 
basic overview of GP, including some of the design choices that we need to make. 
Section 7.3 discusses an example of GP for minimum time control. Section 7.4 
discusses GP bloat, which is the tendency of GP solutions to uncontrollably in-
crease in size. Section 7.5 discusses the use of GP for evolving solutions other than 
computer programs, including electric circuits and other engineering designs. Sec-
tion 7.6 discusses some ways that GP performance can be modeled mathematically, 
especially using schema theory; this section can be skipped by the reader who wants 
only a working knowledge of GP practice. Section 7.7 summarizes this chapter and 
provides suggestions for future GP research. 

7.1 LISP: THE LANGUAGE OF GENETIC PROGRAMMING 

Genetic programming is often implemented in the Lisp computer language be-
cause the structure of Lisp ties in so nicely with computer program crossover and 
mutation. This section provides an overview of Lisp, and provides a conceptual 
description of how Lisp programs can be combined to create new programs. 

The evolution of computer programs is challenging because programs are not 
usually represented in a way that makes mutation and crossover feasible. This is 
the primary obstacle that we need to overcome to evolve computer programs. For 
example, consider two standard MATLAB programs: 

Program 1 
if x < 1 

z = [1, 2, 3, 4, 5]; 
else 

for i = 1 : 5 
z(i) = i/x; 

end 
end 

Program 2 
for i 

end 

- 1 : 10 
if x > 5 

z(i) = x*; 
else 

z(i) = x/i; 
end 

How could we perform crossover on these programs? A crossover operation that 
does not carefully consider syntax will result in an illegal program (that is, a pro-
gram that does not run, or even compile). For example, if we replace the first two 
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lines in the left program above with the first two lines from the right program, we 
obtain the following: 

Child Program 
for i 

else 

end 

= 1 : 
if x 

for i 

end 

: 10 
> 5 

= 1 :5 
z(i) = i/x: 

The child program above is clearly not a legal program. Most of the crossover 
operations and mutation operations that we perform on MATLAB programs will 
result in illegal programs. The same can be said for programs written in most other 
popular languages (C, Java, Fortran, Basic, Perl, Python, and so on). All of these 
languages have similar structures, and so none of them can be easily mutated or 
crossed over with other programs. 

However, there is one language that is suitable for crossover and mutation. That 
language is called Lisp [Winston and Horn, 1989]. Lisp, invented in 1958, is prob-
ably the second oldest programming language, only one year newer than Fortran. 
Lisp is an acronym for "list processing." Linked lists are one of the major struc-
tures in Lisp, and this made it a likely choice for artificial intelligence applications 
(that is, expert systems and their chains of inference rules) in its early days. Lisp 
is not particularly popular any more because it is different from other languages. 
However, it has become popular among GP researchers and practitioners because 
of its suitability for crossover and mutation. 

Lisp program code is written with parentheses, with the function name followed 
by its arguments. For example, the following code adds x and 3: 

(+ x 3) . 

This is an example of prefix notation because the mathematical operator precedes 
its inputs. A parenthetical expression in Lisp is also called an s-expression, which 
is short for symbolic expression. All s-expressions can be viewed as functions that 
return the value that they compute. S-expressions that compute multiple values 
return the last value that they compute. Not only does (+ x 3) add x and 3, but 
it returns x + 3 to the next higher level of function execution. 

We present a few more examples. The following code computes the cosine of 
(a?+ 3): 

(cos (+ x 3)) . 

The following code computes the minimum of cos(x + 3) and zj 14: 

(min (cos (+ x 3)) (/ z 14)) . 

The following code copies the value of y to x if z > 4: 

(if (> z 4) (setf x y)) . 

Note that s-expressions are like sets in that s-expressions can contain other s-
expressions. In the above s-expression, (> z 4) and (setf a: y) are both s-expressions 
that are part of the higher-level s-expression (if (> z 4) (setf x y)). 
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The reason Lisp code is evolvable is that s-expressions directly correspond to 
tree structures, also called syntax trees. For example, a Lisp s-expression for the 
calculation of xy -f \z\ can be written as follows: 

(+ (* x y) (abs z)) . 

This s-expression can be represented with the syntax tree shown in Figure 7.1. 
We interpret a syntax tree like the one in Figure 7.1 by working our way up from 
the bottom. Figure 7.1 shows that x and y are at the bottom of the tree, and are 
connected to each other with a multiplication operator. This gives us the expression 
xy, or the s-expression (* x y). We see that this sub-s-expression corresponds to a 
subtree in Figure 7.1. The symbols that appear at the bottom of a syntax tree (for 
example, x, y, and z in Figure 7.1) are called leaves. 

Figure 7.1 Syntax tree for the function xy+ \z\, which is represented with the s-expression 
(+ (* x y) (abs z)). The "A" node represents the absolute value operator. 

Figure 7.1 also shows that z is at the bottom of the tree, and is operated on by 
the absolute value function. This gives us the expression \z\, or the s-expression (abs 
z). We see again that the sub-s-expression corresponds to a subtree in Figure 7.1. 

Finally, Figure 7.1 shows that xy and \z\ meet at the addition node at the top of 
the tree. This gives us the expression xy + |z|, or the s-expression (+ (* x y) (abs 
z)). We see that this high-level s-expression corresponds to the entire tree structure 
in Figure 7.1. 

For another example, consider a function that returns (x + y) if t > 5, and 
(x + 2 + z) otherwise: 

If* > 5 
return (x + y) 

else 
return (x + 2 + z) 

End 

This function can be written in Lisp notation as: 

(if (> i 5 ) ( + x | / ) ( + x 2 z)) . 

Figure 7.2 shows the syntax tree for this function. Note that many Lisp functions, 
like the addition function in the above example, can take a variable number of 
arguments. 



1 4 6 CHAPTER 7: GENETIC PROGRAMMING 

Figure 7.2 Syntax tree for the function, "If t > 5 then return (x + y), else return 
(x + 2 + 2:)." 

Crossover with Lisp Programs 

The correspondence between s-expressions and subtrees makes it conceptually straight-
forward to perform operations like crossover and mutation on Lisp computer pro-
grams. For example, consider the following functions: 

Parent 1: xy + \z\ => (+ (* x y)) abs z) 
Parent 2: (x + z)x — (z + y/x) => (— (* (+ x z) x) (+ z (/ y x))). 

(7.1) 
These two parent functions are shown in Figure 7.3. We can create two child 
functions by randomly choosing a crossover point in each parent, and swapping 
the subtrees that lie below those points. For example, suppose that we choose 
the multiplication node in Parent 1, and the second addition node in Parent 2, as 
crossover points. Figure 7.3 shows how the subtrees in the parents that lie below 
those points can be swapped to create child functions. Child functions that are 
created in this way are always valid syntax trees. 

Now consider crossover between the s-expressions of Equation (7.1). The fol-
lowing equation emphasizes the parenthetical pairs that correspond to the subtrees 
of Figure 7.3, and shows how swapping parenthetical pairs in the two original s-
expressions (parents) creates new s-expressions (children): 

(4- [ * x y ]) abs z) 1 = > ί (+ { + z ( / y x ) } ) abs z) 
( - (* (+ x z) x) { + z ( / y x ) } ) J \ ( - (* (+ x z) x) [ * x y ] ) 

(7.2) 
where the crossed-over s-expressions are shown in bold font. This is called tree-
based crossover. Any s-expression in a syntax tree can be replaced by any other s-
expression, and the syntax tree will remain valid. This is what makes Lisp a perfect 
language for GP. If we want to perform crossover between two Lisp programs, we 
simply find a random left parenthesis in Parent 1, then find the matching right 
parenthesis; the text between those two parentheses forms a valid s-expression. 
Similarly, we find a random left parenthesis in Parent 2, then find the matching right 
parenthesis, to obtain another s-expression. After we swap the two s-expressions, 
we have two children. We can perform mutation in a similar way by replacing a 
randomly selected s-expression with a randomly-generated s-expression, which is 
called tree-based mutation. 
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Parent 1 Parent 2 

Child 1 Child 2 

Figure 7.3 Two syntax trees (parents) cross over to produce two new syntax trees 
(children). Crossover performed in this way always results in valid child syntax trees. 

Figure 7.4 shows an additional crossover example. We have the same two parents 
as in Figure 7.3, but we randomly select the z node as the crossover point in 
Parent 1, and the division node as the crossover point in Parent 2. The crossover 
operation of Figure 7.4 is represented in s-expression notation as follows (where, as 
before, the crossed-over s-expressions are shown in bold font): 

(+ ( * x y )) abs z) \ [ (+ ( * x y )) abs [ / y x ] ) 
{-{*(+xz)x)( + z[/yx])) J \ ( - ( * ( + x z) x) ( + z z ) ) . 

(7.3) 
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Parent 1 Parent 2 

Child 1 Child 2 

Figure 7.4 Two syntax trees (parents) cross over to produces two new syntax trees 
(children). The parents shown here are the same as those in Figure 7.3, but the crossover 
points are chosen differently. 

7.2 THE FUNDAMENTALS OF GENETIC PROGRAMMING 

Now that we know how to combine Lisp programs, we have the tools to generalize 
EAs to the evolution of computer programs. Figure 7.5 shows a simple outline of 
GP. We see that it is similar to a genetic algorithm, but the GA evolves solutions 
to an optimization problem, while the GP evolves computer programs which can 
themselves solve an optimization problem. 

We need to make some basic decisions before we can implement a GP. 

1. What is the fitness measure in Figure 7.5? 

2. What is the termination criterion in Figure 7.5? 

3. What is the terminal set for the evolving computer programs? That is, what 
symbols can appear at the leaves of the syntax trees? 

4. What is the function set for the evolving computer programs? That is, what 
functions can appear at the non-terminal nodes of the syntax trees? 

5. How should we generate the initial population of computer programs? 

6. What other parameters do we need to determine to control GP execution? 
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Some of these decisions are also required for other EAs, but some of them are 
specific to GP. The following sections discuss each of these issues in turn. 

Parents «— {randomly generated computer programs} 
While not (termination criterion) 

Calculate the fitness of each parent in the population 
Children <- 0 
While | Children | < | Parents | 

Use fitnesses to probabilistically select parents p\ and P2 
Mate pi and P2 to create children c\ and c^ 
Children <l·- Children U {ci,C2} 

Loop 
Randomly mutate some of the children 
Parents <— Children 

Next generation 

Figure 7.5 A conceptual overview of a simple genetic program. 

7.2.1 Fitness Measure 

What is the fitness measure in Figure 7.5? This decision must be made for all EAs, 
but the decision is more complicated with GP. A computer program needs to work 
well for a wide variety of inputs, a variety of initial conditions, and a variety of en-
vironments. For example, a program to find a fuel-efficient satellite trajectory from 
one orbit to another should work well for various satellite parameters and various 
orbits. Therefore, many different conditions must be used when determining the 
fitness of a computer program. For a given computer program, each computer input 
set and operating condition returns its own "subfitness." How should we combine 
these subfitnesses to obtain a single fitness measure for the computer program? 
Should we use average performance? Should we try to maximize worst-case per-
formance? Should we use some combination of the two? These questions naturally 
lead to multi-objective optimization (Chapter 20), although it not necessary to use 
multi-objective optimization in GP. 

7.2.2 Termination Criteria 

What is the termination criterion in Figure 7.5? This question needs to be answered 
for all EAs (see Section 8.2), but it may be especially important for GP. This is 
because the fitness measure is usually more computationally demanding in GP than 
in other EAs. The choice of the termination criterion could determine whether or 
not the GP is successful. As with other EAs, the termination criterion for GP 
could include factors such as number of iterations, number of fitness evaluations, 
run time, best fitness value, change in best fitness over several generations, or 
standard deviation of fitness values over the entire population. 
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7.2.3 Terminal Set 

What is the terminal set for the evolving computer programs? This set describes 
the symbols that can appear at the leaves of the syntax trees. The terminal set is 
the set of all possible inputs to the evolving computer programs. This set includes 
variables that are input to the computer program, along with constants that we 
think might be important. The constants could include basic integers like 0 and 1, 
and also constants that may be important for the particular optimization problem 
(π, e, and so on). The syntax trees in Figure 7.3 have three terminals: x, y, and z. 
Some constants can be obtained implicitly; for example, x — x = 0, and x/x — 1. 
So as long as we have a subtraction and division function, we do not really need the 
0 and 1 constants. However, most GP implementations should include constants in 
their terminal sets. 

We can also use random numbers in the terminal set, but usually we do not want 
a random number to change after it is generated. These type of random numbers are 
called ephemeral random constants [Koza, 1992, Chapter 26]. Ephemeral random 
constants are obtained by specifying a quantity denoted as ΊΖ in the terminal set. 
If ΊΖ is chosen as a terminal during population initialization, we generate a random 
number r\ between given limits, and insert r\ into the GP individual. From that 
point on, that particular value r\ does not change. However, if ΊΖ is chosen again 
for initialization of another individual, or for mutation, then we generate a new 
random constant V2 for that realization. The choice of the limits within which to 
generate ephemeral random constants is another GP design decision. 

Defining the terminal set for a GP application is a balancing act. If we use a 
set that is too small, then the GP will not be able to effectively solve our problem. 
However, if we use a terminal set that is too large, then it may be too difficult 
for the GP to find a good solution in a reasonable time. Koza studies this issue 
in [Koza, 1992, Chapter 24] for the simple problem of discovering the program 
x3 + x2 + x on the basis of 20 test cases. For this problem, the only terminal that 
the GP needs is x. When the terminal set is the minimal set {x}, the GP finds 
the correct program within 50 generations 99.8% of the time. Table 7.1 shows how 
the probability of success decreases when extra members (random floating point 
numbers) are added to the terminal set of the GP. For this simple problem, the 
probability of success decreases linearly with the number of extraneous variables in 
the terminal set. The good news is that even when 32 of the 33 members in the 
terminal set are extraneous, GP is still able to solve the problem 35% of the time. 

7.2.4 Function Set 

What is the function set for the evolving computer programs? This set describes 
the functions that can appear at the non-terminal nodes of the syntax trees, such 
as the following. 

• Standard mathematical operators can be included in the function set (for 
example, addition, subtraction, multiplication, division, absolute value). 

• Problem-specific functions that we think are important for our particular 
optimization problem can be included in the function set (for example, ex-
ponential functions, logarithmic functions, trigonometric functions, filters, 
integrators, differentiators). 
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Number of Probability of 
extra variables success (percent) 

0 99.8 
1 96.6 
4 84.0 
8 67.0 
16 57.0 
32 35.0 

Table 7.1 GP probability of success after 50 generations for discovering the 
program x3 + x2 + x- The population size was 1,000. The data is obtained from 
[Koza, 1992, Chapter 24]. 

• Conditional tests can be included in the function set (for example, greater 
than, less than, equal to). 

• Logic functions can be included in the function set, if we think that they 
could be applicable to the solution of our particular optimization problem 
(for example, and, nand, or, xor, nor, not). 

• Variable assignment functions can be included in the function set. 

• Loop statements can be included in the function set (for example, while loops, 
for loops). 

• Subroutine calls can be included in the function set, if we have a set of pre-
defined functions that we have created for our problem. 

The syntax trees in Figure 7.3 include five functions: addition, subtraction, mul-
tiplication, division, and absolute value. We need to find the right balance in our 
definition of the function set and the terminal set. The sets need to be large enough 
to be able to represent a solution to our problem, but if they are too large, then 
the search space will be so large that the GP will have a hard time finding a good 
solution. 

Some functions need to be modified for GP because the syntax trees evolve 
might not have legal function arguments. For example, GP could evolve the s-
expression (/ x 0), which is division by zero. This would result in a Lisp error, 
which would cause the GP to terminate. Therefore, instead of using the standard 
division operator in Lisp, we can define a division operator DIV that protects 
against division by zero, and that also protects against overflow due to division by 
a very small number: 

(defun DIV (x y) ; define a protected division function 
(if (< (abs y) e) (return-from DIV 1)) ; return 1 if the divisor is very small 
return-from DIV (/ x y)) ; else return x/y 

(7.4) 
where e is a very small positive constant, like 10 20. Equation (7.4) shows the Lisp 
syntax for defining a protected division routine.1 The DIV function returns 1 if the 

Note that any text following a semicolon in a Lisp function is interpreted as a comment. 



1 5 2 CHAPTER 7: GENETIC PROGRAMMING 

divisor has a very small magnitude. We may need to redefine other functions in 
a similar way (logarithm functions, inverse trigonometric functions, and so on) to 
make sure that the functions in our function set can handle all possible inputs. 

7.2.5 Initialization 

How should we generate the initial population of computer programs? We have 
two basic options for initialization, which are referred to as the full method and the 
grow method. We can also combine these options to get a third option, which is 
referred to as the ramped half-and-half method [Koza, 1992]. 

The full method creates programs such that the number of nodes from each 
terminal node to the top-level node is Dc, a user-specified constant. Dc is called 
the depth of the syntax tree. As an example, Parent 1 in Figure 7.3 has a depth 
of three, while Parent 2 has a depth of four. Parent 1 in Figure 7.3 is a full 
syntax tree because there are three nodes from each terminal node to the top-level 
addition node. However, Parent 2 is not a full syntax tree because some of the 
program branches have a depth of four while others only have a depth of three. 

We can use recursion to generate random syntax trees. For example, if we want to 
generate a syntax tree with a structure like Parent 2 in Figure 7.3, we first generate 
the subtraction node at the top level and note that it requires two arguments. For 
the first argument, we generate the multiplication node and note that it requires 
two arguments. This process continues for each node and each argument until 
we have generated enough levels to reach the desired depth. When we reach the 
desired depth, we generate a random terminal node to complete that branch of 
the syntax tree. Figure 7.6 illustrates the concept for a recursive algorithm that 
generates random computer programs. We can generate a random syntax tree by 
calling routine GrowProgramFull(Dc, 1), where Dc is our desired syntax tree depth. 
GrowProgramFull calls itself each time it needs to add another layer in its growing 
syntax tree. 

The grow method of initialization creates programs such that the number of nodes 
from each terminal node to the top-level node is less than or equal to Dc. If the 
parents in Figure 7.3 were created by random initialization, then Parent 1 might 
have been generated with either the full method or the grow method, while Parent 2 
was definitely generated with the grow method since it is not a full syntax tree. 
The grow method can be implemented the same way as the full method, except 
that when we generate a random node at depths less than D c , either a function or 
terminal node can be generated. If a function node is generated, the syntax tree 
continues to grow. As with the full method, when we reach the maximum depth 
Dc, we generate a random terminal to complete that branch of the syntax tree. 
Figure 7.7 illustrates the concept for a recursive algorithm that generates random 
computer programs with the grow method. 

The ramped half-and-half method generates half of the initial population with the 
full method, and half with the grow method. Also, it generates an equal number 
of syntax trees for each value of depth between 2 and D c , which is the maximum 
allowable depth specified by the user. Figure 7.8 illustrates the concept of ramped 
half-and-half syntax tree initialization. 
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function [SyntaxTree] = GrowProgramPull(Depth, NumArgs) 
SyntaxTree <- 0 
For i = 1 to NumArgs 

If Depth = 1 
SyntaxTree <— Random terminal 

else 
NewFunction «— Randomly chosen function 
NewNumArgs <— Number of arguments required by NewFunction 
SyntaxTree «— (NewFunction + GrowProgramFull(Depth—1, NewNumArgs)) 

End 
Next i 

Figure 7.6 A conceptual view of a recursive algorithm to grow random syntax trees 
in s-expression form with the full method. This routine is initially called with the syntax 
GrowProgramFull(Z)c, 1), where Dc is the desired depth of the random syntax tree. The plus 
operator indicates string concatenation. Note that this algorithm is conceptual; it does not 
include all of the details required for valid syntax tree generation, such as correct parenthesis 
placement. 

function [SyntaxTree] = GrowProgramGrow(Depth, NumArgs) 
SyntaxTree <- 0 
For i — 1 to NumArgs 

If Depth = 1 
SyntaxTree <— Random terminal 

else 
NewNode <— Randomly chosen function or terminal 
If NewNode is a terminal 

SyntaxTree «- (SyntaxTree + NewNode) 
else 

NewNumArgs <- Number of arguments required by NewNode 
SyntaxTree «— (NewNode + GrowProgramGrow(Depth— 1, NewNumArgs)' 

End 
End 

Next i 

Figure 7.7 A conceptual view of a recursive algorithm to grow random syntax trees in 
s-expression form with the grow method. This routine is initially called with the syntax 
GrowProgramGrow(Dc, 1), where Dc is the desired depth of the random syntax tree. As 
with Figure 7.6, the plus operator indicates string concatenation, but this algorithm does 
not include all of the details required for implementation. 
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Dc = maximum syntax tree depth 
TV = population size 
For i = 1 to N 

Depth <-U[2,Dc] 
r <- t/[0,1] 
If r < 0.5 

SyntaxTree(z) <— GrowProgramGrow(Depth, 1) 
else 

SyntraxTree(i) <— GrowProgramFull(Depth, 1) 
End 

Next i 

Figure 7.8 Algorithm to create an initial GP population with the ramped half-and-half 
method. U[2,DC] is a random integer uniformly distributed on [2, Dc], and C/[0,1] is a 
random real number uniformly distributed on [0,1]. This algorithm calls the routines of 
Figures 7.6 and 7.7. 

Koza experimented with the three different types of initializations described 
above for some simple GP problems [Koza, 1992, Chapter 25]. He found a difference 
in the probability of GP success depending on which initialization method was used, 
as shown in Table 7.2. The table shows that the ramped half-and-half initialization 
method is generally much better than the other two initialization methods. 

Problem Full Grow Ramped Half-and-Half 

Symbolic Regression 3% 17% 23% 
Boolean Logic 42% 53% 66% 
Artificial Ant 14% 50% 46% 

Linear Equation 6% 37% 53% 

Table 7.2 GP probability of success for various problems and various initialization 
methods. This data is obtained from [Koza, 1992, Chapter 25]. 

To conclude our discussion of initialization, we note that it is often advantageous 
to seed the initial population of an EA with some known good individuals. These 
good individuals may be user-generated individuals, or they may come from some 
other optimization algorithm or other source. However, seeding does not neces-
sarily improve EA performance. If there are only a few good individuals in the 
initial population, and the rest of the individuals are relatively poor randomly-
generated individuals, then the few good individuals could dominate the selection 
process, and the poor individuals might quickly die out. This could result in an 
evolutionary dead end and premature convergence, otherwise known as "survival 
of the mediocre" [Koza, 1992, page 104]. However, the chances that this negative 
event occurs depends on the type of selection that we use (see Section 8.7). If we 
use roulette-wheel selection, then selection pressure is high and a few fit individu-
als are likely to quickly dominate the population. If we use tournament selection, 
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then selection pressure is much lower and the probability of a few fit individuals 
dominating the population is correspondingly lower. 

7.2.6 Genetic Programming Parameters 

What are the parameters that control GP execution? These parameters include 
those that are used for other EAs, but also include GP-specific parameters. 

1. We need to specify the selection method by which parents are chosen to par-
ticipate in crossover. We could use fitness-proportional selection, tournament 
selection, or some other method. In fact, we could use any of the selection 
methods discussed in Section 8.7. 
This is also a good place to mention that we could implement tree-based 
crossover more intelligently than simply selecting random crossover points. 
There are some subtrees that are more useful than others, and we may not 
want to break up those subtrees. We could quantify the fitness of subtrees 
by obtaining correlations between crossover points and the fitness of child 
programs, and then using those correlations to bias the selection of future 
crossover points [Iba and de Garis, 1996]. 

2. We need to specify the population size. Since there are so many degrees 
of freedom in computer programs, GP usually has larger populations than 
other EAs. GP usually has a population size of at least 500, and often has a 
population size of several thousand. 

3. We need to specify the mutation method. Various GP mutation methods 
have been used over the years, some of which are described as follows. 

(a) We can select a random node, and replace everything below that node 
with a randomly-generated syntax subtree. This is called subtree mu-
tation [Koza, 1992, page 106]. This is equivalent to crossing a program 
with a randomly generated program, and is also called headless chicken 
crossover [Angeline, 1997]. 

(b) Expansion mutation replaces a terminal with a randomly-generated sub-
tree. This is equivalent to subtree mutation if the replaced node in sub-
tree mutation is a terminal. 

(c) We can replace a randomly selected node or terminal with a new ran-
domly generated node or terminal. This is called point mutation or 
node replacement mutation, and requires that the arity of the replaced 
node be equal to the arity of the replacement node.2 For example, we 
could replace an addition operation with a multiplication operation, or 
we could replace an absolute value operation with a sine operation. 

(d) Hoist mutation creates a new program that is a randomly selected sub-
tree of the parent program [Kinnear, 1994]. 

(e) Shrink mutation replaces a randomly chosen syntax subtree with a ran-
domly selected terminal [Angeline, 1996a]; this is also called collapse 

2The arity of a function is equal to the number of its arguments. For example, a constant has 
an arity of 0, the absolute value function has an arity of 1, and an addition function can have an 
arity of two or more. 
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subtree mutation. Hoist mutation and shrink mutation were originally 
introduced to reduce code bloat (see Section 7.4). 

(f ) Permutation mutation randomly permutes the arguments of a randomly 
selected function [Koza, 1992]. For example, we could replace the x and 
y arguments of a division function. Of course, this type of mutation does 
not have any affect on commutative functions. 

(g) We can randomly mutate constants in a program [Schoenauer et al., 
1996]. 

We often implement mutation in such a way that the mutated program re-
places the original program only if it is more fit. This idea of replace-only-if-
more-fit can be applied to mutation in any EA. 

4. We need to specify the mutation probability pm. This is similar to other EAs. 
Mutation in a GP with N individuals is often implemented with a method 
similar to the following: 

For each candidate computer program a^, where i G [l,iV] 
Generate a random number r uniformly distributed in [0,1] 
If r < pm 

Randomly select a node k in computer program Xi 
Replace the selected subtree starting at node k with a 

randomly-generated subtree 
End 

Next computer program 

The large population size that is used in GP, along with the large number 
of possible nodes at which crossover can occur, usually means that good GP 
results do not depend on mutation [Koza, 1992, Chapter 25]. Often we can 
get good results with pm = 0. However, mutation may still be desirable just 
in case an important terminal or function is lost from the population. If that 
occurs, mutation is the only way that it could re-enter the population. 

5. We need to specify the crossover probability pc. This is similar to G As. After 
selecting two parents in Figure 7.5, we can either use crossover to combine 
them, or we can instead clone them for the next generation. The line: 

Mate pi and pi to create children c\ and c2 

in Figure 7.5 would then be replaced with something like the following: 

Generate a random number r uniformly distributed on [0,1] 
If r < Pc 

Mate p\ and p^ to create children c\ and c2 

else 
c\ <-pi 
c2 <~P2 

End 
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Most experience suggests that crossover is an important aspect of GP and 
should be used with a probability pc > 0.9 [Koza, 1992, Chapter 25]. 

6. We need to decide whether or not to use elitism. As with any other EA, 
we can save the best m computer programs in GP from one generation to 
the next to make sure they are not lost in the following generation (see Sec-
tion 8.4). The parameter m is called the elitism parameter. Elitism can be 
implemented in several different ways. For example, we could archive the 
best m individuals at the end of a generation, create the children for the next 
generation as usual, and then replace the worst m children with the elites 
from the previous generation. Alternatively, we could copy the m elites to 
the first m children each generation, and then create only (TV — m) additional 
children each generation (where N is the population size). 

7. We need to specify D^, the maximum program size of the initial population. A 
program's size can be quantified by its depth, which measures the maximum 
number of nodes between the highest level and the lowest level (inclusive). 
For example, Parent 1 in Figure 7.3 has a depth of three, while Parent 2 has 
a depth of four. 

8. We also need to specify Dc, the maximum depth of child programs. During 
GP operation, child programs can grow larger and larger with each succeeding 
generation. If a maximum depth is not enforced, then child programs can 
become unreasonably long, wasting space and execution time; this is called 
GP bloat (Section 7.4). The maximum depth Dc can be enforced in several 
ways. One way is to replace a child with one of its parents if the child's depth 
exceeds Dc. Another way is to redo the crossover operation if the child's 
depth exceeds Dc. Yet another way is to examine the parent syntax trees 
before choosing their crossover points, and constrain the randomly selected 
crossover points so that Dc will not be exceeded by the children's depths. 

9. We need to decide whether or not we want to allow a terminal node in a syntax 
tree to be replaced with a subtree during crossover. Figure 7.4 shows that the 
z terminal in Parent 1 is selected for crossover, and is replaced with a subtree 
in Child 1. We use pi to denote the probability of crossover at an internal 
node. When selecting a crossover point, we generate a random number r 
uniformly distributed on [0,1]. If r is less than pi, then we select a terminal 
node for crossover; that is, we select a symbol in the syntax tree that is not 
immediately preceded by a left parenthesis. However, if r is greater than pi, 
then we select an s-expression for crossover; that is, we select a subtree that 
is surrounded by matching left and right parentheses for crossover. 

10. We need to decide whether or not to worry about duplicate individuals in 
the population. Duplicate individuals are a waste of computer resources. In 
EAs with relatively small search spaces or small populations, duplicates can 
arise quite often, and dealing with duplicates can be an important aspect of 
the EA (see Section 8.6.1). However, in GP, the search space is so large that 
duplicates rarely occur. Therefore, we usually do not need to worry about 
duplicate individuals in GP. 
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7.3 GENETIC PROGRAMMING FOR MINIMUM TIME CONTROL 

In this section, which is motivated by [Koza, 1992, Section 7.1], we demonstrate 
the use of GP for minimum time control of a second-order Newtonian system. A 
second-order Newtonian system is a simple position-velocity-acceleration system 
that satisfies the equations 

x = v 

v — u (7.5) 

where x is position, v is velocity, and u is the commanded acceleration. That is, 
the derivative of position is velocity, and the derivative of velocity is acceleration. 
We consider motion only in one dimension. The problem is to find the acceleration 
profile u{t) to drive the system from some initial position x(0) and velocity f(0), to 
x(tf) = 0 and v(tf) — 0, in the minimum time tf. Intuition tells us approximately 
how to accomplish this: we accelerate as fast as we can in one direction until we 
reach a certain position, and then we accelerate as fast as we can in the opposite 
direction until we reach x(Q) = v(0) = 0.3 

We assume for the sake of simplicity, and without loss of generality, that the 
maximum acceleration magnitude is 1, and that we can acceleration in either direc-
tion. The minimum time control problem is illustrated at the top of Figure 7.9. We 
accelerate in the positive direction (toward the right) until reaching the strategic 
point labeled "Switch." Then we accelerate in the negative direction (toward the 
left) until reaching the goal. Note that the vehicle's velocity is toward the right 
for the entire time period. If the timing is right, we will reach the goal with zero 
velocity. 

u = +1 u = - 1 

Switch Goal 

u = + l 
u = - 1 

Goal Switch v = 0 

Figure 7.9 Illustration of minimum time control. In the top figure, we accelerate to the 
right to the switching point, then accelerate to the left, and reach the goal with zero velocity. 
In the bottom figure, our initial velocity is so high tha we twill inevitably overshoot the goal. 
In this case we accelerate to the left, overshoot the goal, switch the acceleration to the right 
at the switching point, and reach the goal with zero velocity. 

It may be that we have such a high initial velocity that we cannot stop before the 
goal. In this case we will inevitably overshoot the goal, and so we must return back 

3In fact, this is what we observe in teenage male drivers at every stoplight: accelerate as fast as 
possible when the light turns green, and then at a carefully chosen point before the next stoplight, 
slam on the brakes. If the teenager's timing is right, the car will stop precisely at the next red 
light, and the travel time between stoplights will be minimized. 
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to the goal, reaching it with zero velocity. This situation is a little less intuitive, 
and is shown at the bottom of Figure 7.9. The minimum time solution is to first 
accelerate as much as possible in the negative direction (toward the left). The 
vehicle overshoots the goal. Eventually the vehicle will reach zero velocity, at which 
point the vehicle begins moving toward the left. We continue accelerating in the 
negative direction until reaching the strategic point labeled "Switch," at which time 
we begin accelerating in the positive direction (toward the right) until returning to 
the goal. Again, if the timing is right, we will reach the goal with zero velocity. 

The minimum-time control problem is a classic optimal control problem with 
many aerospace applications, and is studied in detail in many optimal control books 
[Kirk, 2004]. The solution is called bang-bang control, because for any initial condi-
tion x(0) and v(0), the solution consists of one time period of maximum acceleration 
in one direction, followed by a time period of maximum acceleration in the other 
direction. The minimum time control problem can be represented in graphical form 
with a phase plane diagram as shown in Figure 7.10. We assume for simplicity that 
the vehicle mass is 2. In this case, the curve drawn in Figure 7.10, which is called 
the switching curve, is given by 

x = -v\v\/2. (7.6) 

The goal is to reach the origin x = 0 and v = 0 in minimum time from any 
initial point in the phase plane. If the position and velocity is above the switching 
curve, then we should apply maximum acceleration in the negative direction. If the 
position and velocity is below the switching curve, then we should apply maximum 
acceleration in the positive direction. This will take us on a trajectory that reaches 
the switching curve, at which point we will reverse the direction of the acceleration. 
Then we will follow the switching curve to the origin of the phase plane. 

2 

1 

I 0 
> 

-1 

-2 -1 0 1 2 
Position 

Figure 7.10 Switching curve for minimum time control. If the position and velocity 
lie above the switching curve, then the acceleration should be maximum in the negative 
direction. If the position and velocity lie below the curve, then the acceleration should be 
maximum in the positive direction. 
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Figure 7.11 illustrates the optimal trajectory for the initial condition x(0) = —0.5 
and v(0) = 1.5. This corresponds to the bottom picture in Figure 7.9. The vehicle 
is moving too fast to stop before reaching x = 0. Therefore, we apply the maximum 
accleration in the negative direction until reaching the switching curve; note that 
the vehicle passes through v = 0 during the time of maximum negative acceleration. 
When the vehicle reaches the switching curve, we apply the maximum acceleration 
in the forward direction. The trajectory reaches the origin of the phase plane (x = 0 
and v = 0) in the minimum possible time. 

* ^*w % * % 

* \ 
1 

% 

" ■ ■ Switching Curve 
1 « _ Minimum Time Trajectory 

: 

* 

* * ^ . 2 L _ _ _ ^ _ _ ^ 
- 2 - 1 0 1 2 

Position 

Figure 7.11 Minimum time trajectory for initial condition x(0) = —0.5 and v(0) = 1.5. 
The acceleration is —1 above the switching curve, and +1 after the trajectory reaches the 
switching curve. 

Now we use GP to try to evolve a minimum time control program for this 
problem. We define two special Lisp functions for this problem. The first is the 
protected division operator shown in Equation (7.4), and the second is the greater-
than operator: 

(defun GT (x y) 

(if (> x y) (return-from GT 1) (return-from GT -1 ) ) ) . (7.7) 

The GT function returns 1 if x > y, and returns —1 otherwise. 
To evaluate the cost of a program, we take 20 random initial points in the (x, v) 

phase plane, with \x\ < 0.75 and |i?| < 0.75, and see if the program can bring each 
of the (x, v) pairs to the origin within 10 seconds. If the program is successful for an 
initial condition, then the cost contribution of that simulation is the time required 
to bring (x,v) to the origin. If the program is not successful within 10 seconds, 
then the cost contribution of that simulation is 10. The total cost of a computer 
program is the average of all 20 cost contributions. Table 7.3 summarizes the GP 
parameters for this problem, which are mainly based on [Koza, 1992, Section 7.1]. 
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GP Option Setting 

Objective Find the minimum time vehicle control program 
Terminal set x (position), v (velocity), —1 
Function set + , - , * , DIV, GT, ABS 
Cost Time to bring the vehicle to the phase plane origin, 

averaged over 20 random initial conditions 
Generation limit 50 
Population size 500 
Maximum initial tree depth 6 
Initialization method Ramped half-and-half 
Maximum tree depth 17 
Probability of crossover 0.9 
Probability of mutation 0 
Number of elites 2 
Selection method Tournament (see Section 8.7.6) 

Table 7.3 GP parameters for the minimum time vehicle control problem. 

Figure 7.12 shows the cost of the best GP solution as a function of generation 
number. The best computer program is found after less than 10 generations for 
this particular run, but the average performance of the entire population continues 
to decrease during the entire 50 generations. For most GP problems, it takes much 
longer than 10 generations to find the best solution. The reason this particular run 
was quicker than the average GP run might be because the problem is relatively 
easy, or it might simply be a statistical fluke. The best solution obtained by the 
G P i s 

u = ( * ( GT ( - ( DIV x v) ( - - 1 v) ) ( GT ( + v x) ( DIV x v) ) ) 

( DIV ( GT ( + x v) ( + v x) ) ( GT ( + v x) x ) ) ) ) . (7.8) 

The switching curve for this control is plotted in Figure 7.13, along with the the-
oretically optimal switching curve. For v < 0 the two curves are very similar. For 
v > 0 there is more of a difference between the curves, but the general shape is still 
similar. 

The time that it takes the vehicle to reach the origin of the phase plane, aver-
aged over 10,000 random initial conditions in the state space x G [—0.75, +0.75] 
and v G [—0.75,+0.75], is about 1.53 seconds for the optimal switching curve and 
1.50 seconds for the GP switching curve. Interestingly, the GP switching actually 
performs slightly better than the optimal switching curve! This is not possible 
theoretically, but practice and theory do not always match.4 In practice, there are 
implementation issues that make it possible to perform better than the theoreti-
cally optimal strategy. For example, we terminated our simulation when \x\ < 0.01 
and \v\ < 0.01, and considered such small values a complete success. In theory, we 
can reach the origin with exactly zero error, but in practice, we cannot. Also, we 
used a step size of τ = 0.02 seconds to simulate the dynamic system. Rather than 

4In theory, practice and theory should match. In practice, they do not. 
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20 30 
Generation 

Figure 7.12 GP performance for the minimum time control problem. The best solution 
is found after less than 10 generations for this particular run. 

8 o 
CD > 

U = +1 

——GP Solution 
- - - Optimal Solution | 

u = -1 

0 
Position 

Figure 7.13 The best switching curve obtained by the GP for the minimum time control 
problem, along with the theoretically optimal switching curve. 

computing the exact continuous time solution to 

v — u 

x — v 

we instead approximated the solution as 

Vk+i = vk + ruk 

Xk+i = Xk + T{vk + vk+i)/2 

(7.9) 

(7.10) 
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where k is the time index, which ranges from 0 to 500 (that is, 0 to 10 seconds). 
That is, we used rectangular integration for the solution of velocity, and trapezoidal 
integration for the solution of position [Simon, 2006, Chapter 1]. These differences 
between theory and practice may result in more control chattering along the optimal 
switching curve than is present along the GP-generated switching curve.5 The 
reader can replicate the results in this section by following the steps described in 
Problem 7.13. 

Theory versus Practice 

The superiority of the GP switching curve over the theoretically optimal solution 
raises an important point regarding the difference between theory and practice. En-
gineering solutions are often generated on the basis of theory, but as any practicing 
engineer knows, theoretical results need to be modified to take real-world consider-
ations into account. This example shows that a GP may be able to take real-world 
considerations into account to find a solution that is better than the theoretically 
optimal solution to a problem. 

It may be easier to learn optimal control theory and solve the minimum time 
control problem in a more traditional way, rather than learning how to use a GP. 
But it may not. This example shows us that GP might be able to find solutions 
to problems that we lack the expertise to solve on our own. It further shows the 
possibility of finding "better-than-optimal" solutions when practical considerations 
are taken into account. 

7.4 GENETIC PROGRAMMING BLOAT 

Genetic programming can result in a programs that become unreasonably long, and 
that require high levels of computational effort. The extra code that evolves during 
GP goes by several different names, including introns, junk code, fluff, ineffective 
code, hitchhiker code, and invisible code [Langdon and Poli, 2002, Chapter 11]. 
Some examples of introns include the following: 

(not (not x)) 

( + x 0 ) 
(if (> 1 2) x y). (7.11) 

Any serious GP implementation needs to protect against bloat to prevent uncon-
trolled increases in code length. There are several ways to protect against bloat. 

The first way of combatting code bloat is to use a maximum depth parameter 
Dc, as discussed in Section 7.2.6. However, this is a balancing act. If Dc is too 
small, then we limit the search space of the GP, and we may reduce the fitness of 
the best program that it can find. 

The second way to combat code bloat is to adjust our implementations of 
crossover and mutation to combat bloat. For example, size fair crossover chooses 
crossover points that balance the size of the parent code fragments, and that there-
fore results in children that are no larger than the parents [Langdon, 2000]. If 

5Koza reports an average time of 2.13 seconds for the theoretically optimal switching curve [Koza, 
1992, Section 7.1], again pointing to differences in the implementation of the dynamic system 
equations. 
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subtree mutation is used, it can be adjusted to guarantee that the size of the mu-
tated program is limited [Kinnear, 1993]. Hoist mutation removes code to decrease 
the length of a program [Kinnear, 1994]. One-point crossover is a method that we 
have not discussed in this chapter, but it automatically limits the depth of children 
to the depth of the largest parent [Poli et al., 2008, Chapter 5]. 

The third way to combat bloat is to penalize long programs in the selection, 
reproduction, and crossover operations. This idea can be implemented in several 
different ways. For example, we can add a cost penalty to large programs: 

Penalized Cost <— Cost + Program Size. (7.12) 

In general, it will require more fitness evaluations to find a good solution if large 
programs are penalized [Koza, 1992, Chapter 25]. On the other hand, those fitness 
evaluations will be faster since the programs will be smaller. This approach essen-
tially biases selection toward those programs that are shorter. This idea has been 
called parsimony pressure, Occam's razor, and minimum description length [Lang-
don and Poli, 2002, Chapter 11]. Another approach to penalize long programs is 
the Tarpeian method [Poli, 2003], which sets the selection probability of randomly 
selected longer-than-average programs to zero. As we change the frequency with 
which this is done, we adjust the anti-bloat capability of the method. This has the 
additional benefit of reducing execution time, since programs with zero selection 
probability do not need to be evaluated. 

There are also other ways to fight code bloat, such as using multi-objective 
optimization with the two objectives of program fitness and program length (see 
Chapter 20, automatically removing excess code, and using automatically defined 
functions (ADFs). These methods are more complex, and do not guarantee the 
prevention of code bloat [Langdon and Poli, 2002, Chapter 11]. 

Finally, we mention that code bloat may be beneficial in some circumstances. 
Bloat has a biological analogy, and it may help computer programs protect their 
children against the effects of harmful crossover [Angeline, 1996b], [Nordin et al., 
1996]. This gives rise to the term effective fitness, which indicates not only how 
fit a computer program is, but how fit its children are likely to be [Banzhaf et al., 
1998, Chapter 7]. A fit parent computer program may not be likely to produce fit 
children if the parent program is fragile, but a fit parent with a lot of bloat may be 
more likely to produce fit children. Consider the crossover operation between two 
computer programs. A good program with a lot of unused code is likely to result 
in fit children after crossover, because the crossover point is likely to occur at an 
unused portion of the parent. 

We can also talk about effective complexity. The absolute complexity of a com-
puter program is a function of its length and structure, while its effective complexity 
is a function of the length and structure of the non-bloat portion (that is, the active 
portion) of the program. 

7.5 EVOLVING ENTITIES OTHER THAN COMPUTER PROGRAMS 

The accomplishments of GP are impressive. [Koza, 1992] gives examples of GP for 
discovering trigonometric identities, discovering scientific laws, solving mathemat-
ical equations in symbolic form, inducing the symbolic form for a sequence, and 
finding programs for image compression. He also gives control problem examples, 
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including balancing an inverted pendulum on a moving cart, and backing up a 
tractor-trailer. 

But GP still has not seen widespread use compared to other EAs. There are 
various reasons for this lag [Koza, 1992, Chapter 1]. 

1. Engineers have been trained to find correct solutions to problems. In school, 
there is often only one correct answer to a homework problem. GP finds 
solutions that are only approximately correct, and so this deters its use in 
practice. However, in the real engineering world, all of our solutions are 
approximation, if for no other reason than the assumptions that we make 
(explicitly or implicitly) while deriving our solutions. The lack of correctness 
is a theoretical roadblock to the use of GP, but it need not be a practical 
roadblock. 

2. Engineers have been trained to find solutions by incremental improvements. 
GP follows this approach, but it also encourages searches in blind alleys. Poor 
programs need to evolve before good programs are achieved. In the real world, 
failure is a stigma, but the most successful engineers recognize that failure is 
a prerequisite to success [Petroski, 1992]. This is true not only for humans, 
but also for G P. 

3. Engineers have been trained to solve problems deductively. We learn about 
the problem, and we build solutions one step at a time. Loosely speaking, 
there is some deduction in GP; after all, highly fit programs are combined to 
obtain programs with hopefully higher fitness. But the computer programs 
generated by GP are not built up by logically by adding functionality one 
step at a time. 

4. Engineers have been trained to solve problems deterministically. The more 
that we can remove randomness from our environment, the more control we 
can obtain. The more control we can obtain, the better we can proceed with 
our solution method. But GP, like other EAs, relies on randomness to find 
good solutions. 

5. Engineers have been trained to solve problems economically. A short and 
simple solution is better than a complicated solution. But GP evolves com-
puter programs with branches that never execute, with terminals that do 
not contribute to the final result, and with inefficient structures. This is like 
the problem solving processes that we see in nature. Many animals routinely 
have hundreds of babies for every one that survives. Evolution is a notoriously 
wasteful and inefficient process. 

6. Engineers have been trained to solve problems with specific success criteria. 
We have tasks, subtasks, milestones, and schedules. Validation processes tell 
us if we have succeeded, and they tell us if we have failed. GP, however, does 
not have a well-defined termination point. This was discussed in more detail 
in Section 7.2.2. 

Many of these factors apply to EAs other than GP, but they seem to be especially 
applicable to GP. The difference is that EAs find solutions, while GP finds solution 
methods. We seem to be better able to tolerate sloppiness in our solutions than in 
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our solution methods. When we find a good solution to a problem, we are often 
not too worried about where the solution came from, as long as it works. However, 
when we find a solution method, we are likely to be distrustful of the method if we 
do not understand it, even if works. 

We have seen in this chapter that GP can evolve computer programs. However, 
computer programs are still much more likely to be written by humans than by 
GP. This is because computer programs can usually be planned, structured, and 
organized in a way that is amenable to human experts. Computer programs can 
be modularized, and major tasks can be divided into subtasks and assigned to 
individual computer programmers. Large-scale software projects have too many 
degrees of freedom to expect GP, a process that is based on a random search, to 
succeed. Even if GP did succeed, the resulting program might be inefficient and 
hard to maintain. In summary, simple computer programming tasks are too easy 
for GP, because humans can complete such tasks without much effort; but difficult 
computer programming tasks are too hard for GP, and therefore require human 
ingenuity. This raises important questions about GP. What types of problems are 
suitable for GP that are truly difficult for humans? Does GP have any practical 
applications? 

To discuss these questions, we look at the application areas of EAs. EAs are 
good at finding solutions to difficult, multidimensional, multimodal optimization 
problems. Computer programming can be difficult, multidimensional, and multi-
modal. However, computer programming is a task at which many humans excel. 
Parameter optimization is a task at which humans do not excel. Almost all nontriv-
ial parameter optimization problems are solved by computer programs. We see that 
EAs have become widespread because they excel at problems which are difficult for 
humans. 

Since many humans are skilled computer programmers, GP is not likely to be 
widely applied to real-world computer programming problems. However, GP could 
become widely applied to problems similar to computer programming at which 
humans do not excel. There are many engineering (and other) problems whose 
candidate solutions can be represented as tree-like structures, and at which humans 
do not excel. These problems include the design of lens systems [Koza et al., 2008], 
photonic crystal structures [Preble et al., 2005], algorithms for protein classification 
[Koza, 1997], cellular automata [Andre et al., 1996], algorithms to find numerical 
solutions to difficult equations [Balasubramaniam and Kumar, 2009], algorithms to 
solve puzzles and find game strategies [Hauptman and Sipper, 2007], [Hauptman 
et al., 2009], electric circuits [McConaghy et al., 2008], field programmable gate 
arrays [Koza et al., 1999], and antennas [Lohn et al., 2004]. 

The key feature of these problems is that they cannot be easily reduced to 
parameter optimization problems, and so they cannot be solved by G As, ES, EP, 
or similar methods. They can be solved by a GP that evolves an algorithm, or 
that evolves a design program. The results from GP often improve on existing 
patents while using very little problem-specific information [Koza, 2010]. The term 
"computer intelligence" is used so much nowadays that it does not mean much; it 
has become a nearly content-less buzzword. But when a computer program creates 
a patentable invention, many people will probably agree that the program has a 
significant degree of intelligence. 
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7.6 MATHEMATICAL ANALYSIS OF GENETIC PROGRAMMING 

We can mathematically analyze GPs, just as we can other EAs (see Chapter 4). 
This section extends GA schema theory (Section 4.1) to GP [Langdon and Poli, 
2002, Chapter 4]. Our main approach in this section is to use simple examples to 
obtain a general idea for how GP schema theory works, and then use those examples 
to present a general GP schema formula. 

7.6.1 Definitions and Notation 

For our first example, suppose that our terminal set is {x, y}. We use # to indicate 
a "don't care" terminal. Consider the schema 

# = ( ( + ( - # » ) # ) · (7.13) 
If x and y are the only two available terminals, then this schema has four instances: 

( + ( - x y ) rr ), ( + ( - x y ) y ), 

( + ( - 1/ y ) x ), ( + ( - Î/ y ) y ). (7.14) 
We say that a schema matches an s-expression if the s-expression is an instance of 
the schema. For example, the schema (+ # y) matches (+ x y), and it also matches 
(+ 2 y), but it does not match (— x y). 

Now we define three important terms that are related to GP schemata. 

1. The order of üf, o(H), is the number of defined symbols in H, including both 
functions and terminals. In Equation (7.13), o(H) = 3. 

2. The length of H, 71(11), is the total number of symbols in # , including both 
defined functions and terminals, and "don't care" functions and terminals. In 
Equation (7.13), n(H) = 5. 

3. The defining length of H, L(H), is the minimum number of links in the syntax 
subtree that includes all of the defined symbols. Defining length is difficult to 
determine directly from an s-expression, but it can be easily seen by looking 
at the corresponding syntax tree. 

Figure 7.14 shows some examples of syntax trees, their orders, their lengths, and 
their defining lengths. 

Now consider how many schemata match an s-expression of length n. As an 
example, consider the s-expression 

(( + (-2x)(*3y)). (7.15) 

A schema can match this s-expression with either a + function or a # symbol in 
the top node. A similar statement can be made for all of the other nodes in the s-
expression. Therefore, a schema matches the s-expression if the schema has either 
the given s-expression symbol, or a # symbol, at each node. We see that there 
are 2 n schemata that match an s-expression of length n. For example, there are 
27 = 128 schemata that match the s-expression of Equation (7.15). 

Now we define the structure of a schema. We use G to denote the structure of 
a schema, and we obtain G by replacing all symbols in H with # symbols. For 
example, the schema of Equation (7.13) has the structure 

<? = ( ( # ( # # # ) # ) ■ (7-16) 
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2 x # x 2 # # # 

(+(-2x)#) (+(##x)#) (#(-2#)#) (#(-##)#) 

/. = 3 
o = 4 
n = 5 

L = 2 
0 = 2 
n = 5 

L = l 
o = 2 
n = 5 

Z. = 0 
o = l 
n = 5 

Figure 7.14 Four GP schemata in syntax tree form and in s-expression form. The defining 
length L, order o, and length n, is shown below each schema. The links that are used to 
determine the defining length are those that are in the smallest subtree that includes all of 
the non-# symbols; those links are shown as dashed lines. 

7.6.2 Selection and Crossover 

Consider a GP that uses roulette-wheel selection and crossover. We use m(H,t) 
to denote the number of instances of schema H in a GP population at the t-th 
generation. We use ra(if, t+1/2) to denote the number of schema instances in the 
population after selection. Then m(H,t + 1) is the number of schema instances 
after selection, crossover, and mutation. If we use roulette-wheel selection, then on 
average, 

m(H, t + 1/2) = m(H, t)f(H, t)/fm(t) (7.17) 

where f(H, t) is the average fitness of all of the instances of H at the t-th generation, 
and /ave(^) is the average fitness of all of the individuals at the t-th generation. 

Now consider the effect of crossover on the population. Crossover might destroy 
an instance of H; thai is, if a parent is an instance of H, it might cross over to 
produce children of which none are instances of H. This will result in one less 
instance of H at the next generation. Crossover can destroy an instance of H in 
two different ways. Consider a parent pi such that pi e H and pi e G, where G 
is the structure of H. First, an instance of H might be destroyed by crossing p\ 
with an individual p^ £ G\ we call this event D\. Second, an instance of H might 
be destroyed by crossing p\ with an individual p2 such that p2 € G but p2 ^ H; we 
call this event Z>2- Since D\ and Ό2 are mutually exclusive events, the probability 
that crossover destroys an instance of H is given by 

Pr(£>) - Pr(Di) + Pr(£>2). (7.18) 

EXAMPLE 7.1 

Figure 7.15 shows an example of event D\. Parents (+ (— 2 x) (— 3 y)) and 
(+ x y) are selected to cross over with each other. The crossover points are 
randomly chosen as the leftmost subtraction function in Parent 1, and the 
y terminal in Parent 2. The crossover results in children (+ y (— 3 y)) and 
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(+ x (— 2 x)). We see that neither child has the same structure as either of 
the parents. Crossover has destroyed all schemata H\ of which Parent 1 is an 
instance, and all schemata H2 of which Parent 2 is an instance. 

Parent 2 

+ 

! 2 x / 3 y 

y 

y 

3 y 

Figure 7.15 Crossover between these parents results in children that do not have the 
structure of either parent. This is an example of event Di, in which crossover between 
individuals with different structures results in the destruction of schemata. 

D 

EXAMPLE 7.2 

We consider the possibility of event D2 by looking at an example. Consider 
the schema H = ( # x y). Suppose that two parents are given as 

pi = (+ x y) G H 

V2 = ( - y x) i H. (7.19) 

Both parents have the same structure G, but p\ belongs to schema H, while 
P2 does not. If the crossover points are chosen at the top link in both p\ and 
P2, then the children will be 

ci = (+ y x) i H 

c2 = ( - x y) e H. (7.20) 

We see that the instance of H is preserved for the next generation. 
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Now consider the schema H = ( + x # ) and the same two parents as 
shown in Equation (7.19). As before, p\ G H and p2 $ H. However, in this 
case, neither c\ nor c2 from Equation (7.20) belong to H, so the instance of 
H is destroyed. 

D 

Now we consider the effect of D\ on the number of schema instances in a pop-
ulation. Recall that D\ is the destruction of an instance of schema if, which has 
structure G, due to crossover between a parent p\ such that p\ G H and p\ G G, 
with a parent p2 £ G. That is, 

D1 = Dn(p2^G) (7.21) 

where D is the event that an instance of H is destroyed due to crossover. Bayes' 
theorem tells us that 

Pv(D1) = Pv(D \p2 i G)Pr(p2 g G). (7.22) 

But the probability that p2 £ G is proportional to the number of individuals in the 
population that do not belong to G after selection; that is, 

Pr(p2 £G) = (N- ro(G, t + 1/2))/N (7.23) 

where TV is the population size. Combining this with Equation (7.22) gives 

P r ( D 0 = P r ( 0 | p 2 ^ ) ^ ^ ^ · (7.24) 

Now consider the probability of event D2. Recall that D2 is the destruction of 
an instance of schema H, which has structure G, due to crossover between a parent 
Pi such that pi G H and p\ G G, with a parent p2 G G. That is, 

D2 = Dn(p2e G) 

= Dn(p2£G)n(p2(£H) (7.25) 

where the second equality comes from the fact that schema destruction cannot 
occur unless p2 £ H. Bayes' theorem tells us that 

PT(D2) = Pv(D\p2 G G,p2 t Η)Ρτ(ρ2 G G,p2 i H). (7.26) 

The second term on the right side of Equation (7.26) is the probability that p2 G G 
and p2 £ H. However, the event p2 G H is a subset of p2 G G\ therefore, 

Pr(p2 eG,p2£H) = Pr(p2 G G) - Pv(p2 G H) (7.27) 

as shown in Figure 7.16. 
The probabilities on the right side of Equation (7.27) are respectively propor-

tional to the number of G and H instances after selection; therefore, 

Pr(p2 e G,P2 t H) = m(G, t + 1/2) - m(H, t + 1 / 2 ) _ ( 7 . 2 8 ) 
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Figure 7.16 The set of programs belonging to schema if is a subset of the set of programs 
belonging to schema structure G. Therefore, Pr(p £ G,p £ H) = Pr(p € G) — Pr(p G H). 

Now consider the first term on the right side of Equation (7.26), which is the 
probability of D given that p<i € G and P2 £ H. A schema instance can be 
destroyed only if crossover is at one of the defining links of the schema. For example, 
in Figure 7.14, the schema on the left will be destroyed only if crossover occurs at 
one of the three dashed links; this is true for all of the schemata depicted in the 
figure. Even if crossover does occur at one of those links, the schema might not 
be destroyed, depending on the contents of the subtree that is spliced into the 
schema instance. Since there are L(H) links at which crossover must occur for a 
schema instance to be destroyed, and there are a total of n(H) — 1 links, there is a 
probability of L(H)/(n(H) — 1) that crossover occurs at one of the defining links. 
Since crossover at one of these links is a necessary but not sufficient condition for 
the destruction of the schema instance, the probability of D given that p2 £ G is 
bounded from above by this probability; that is, 

P r ( u | P 2 6 G , p 2 ^ J J ) < n ( ^ 1 . (7.29) 

The right side of the above equation is called the fragility of the node composition 
of schema H [Langdon and Poli, 2002, Section 4.4]. It gives an upper bound to the 
probability that an instance of schema H will be destroyed if the other parent has 
the same structure as H. 

Combining Equations (7.18), (7.24), (7.28), and (7.29) gives an upper bound for 
the probability of the destruction of schema H: 

Pr(D) < Pr(D\P2 é 0 ^ ^ ί + ^ +
 £ < g > rn(G,t+1/2) - m(H,t + 1/2) 

(7.30) 
This gives us a general expression for the probability of the destruction of an in-
stance of schema H due to crossover. 

Considering the fact that crossover occurs with probability p c , we assume that 
the GP population is large enough to use the law of large numbers [Grinstead and 
Snell, 1997] for m(H,t + 1), which is the number of instances of H at generation 
t + 1. This quantity is given by the sum of two terms: (1) the number of instances 
of H after selection, multiplied by the probability that crossover does not occur; 
(2) the number of instances of H after selection, multiplied by the probability of 
crossover, multiplied by the probability that crossover does not destroy an instance 
of H. This gives 
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m(H, t + 1) - m(H, t + 1/2)(1 - pc) + m(H, t + l /2)p c ( l - Pr(£>)) 
- ro(ff,f + l / 2 ) ( l - p c P r ( I > ) ) (7.31) 

where m(H,t + 1/2) is shown in Equation (7.17). Equation (7.31) gives us the 
approximate number of schema instances after crossover. 

7.6.3 Mutation and Final Results 

Now we consider the probability of schema destruction due to mutation. Suppose 
that the probability of mutation at each node is p m . Then the probability that 
mutation does not occur at each node is 1 — pm. The probability that mutation does 
not occur at any of the defined nodes is (1 — Pm)o("H\ where o(H) is the schema 
order (that is, the number of defined nodes). So the probability that mutation 
occurs at a defined node is 

Pr(Dm) = l - ( l - P r o ) ° < " > 
« Pmo(H) (7.32) 

where the approximation is based on a Taylor series expansion of Pr(Dm) around 
Pm = 0. Note that mutation at a defined node is a necessary but not sufficient 
condition for schema destruction. We therefore combine Equations (7.31) and (7.32) 
to obtain 

m(H, t + 1) > m(H, t + 1/2)(1 - pc Pv(D))(l - pmo{H)). (7.33) 

We combine this equation with Equations (7.17) and (7.30) to obtain 

m(H,t + l) > ^ ^ [ l - P m o ( F ) ] x 

1-Pc TtlDMa){l.^mn) 
L(H) m(G, t)f(G, t) - m(H, t)f(H, t) 

}· n(H) - 1 Nfme(t) ' · ' ( 7 ' 3 4 ) 

This gives us a lower bound for the number of instances of schema H at generation 
t + 1 , where we have taken both crossover and mutation into account. As expected, 
this is slightly more complicated than the GA schema theory that we derived in Sec-
tion 4.1. GP is more complicated than G As because of the variable size and shape 
of GP individuals. However, we can make some simplifications in Equation (7.34). 
For example, early in the GP run we have a lot of diversity in the population, so 
it is unlikely that two individuals with different shapes will cross over at a point 
that results in the preservation of a schema. Therefore, Pr(D\g £ G) « 1 early in 
the GP run. Also, with high diversity, the total fitness of individuals belonging to 
a structure G will be small simply because there will be a small number of such 
programs; that is, m(G,t)f(G,t)/(NfSive) <C 1. Therefore, Equation (7.34) can be 
approximated early in the GP run as 

m(H,t)f(H,t) .„ /TrN1 

1-Pc 
L(H) f-m(H,t)f{H,t)\]\ 
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This gives an approximation to Equation (7.34) early in a GP run. We can make 
a further approximation for short schema, in which case L(H)/(n(H) - 1 ) < 1 : 

m(H, t + 1) > ™( g »*)/ ( g >*) [i _ Pm0{H)] ( i _ p c ) . ( 7 . 3 6 ) 
/ a v e ^ / 

This GP schema approximation, which is valid for short schema early in a GP 
run, is similar to the G A schema expression in Equation (4.6). The schema theory 
that we derived in this section gives a lower bound for m{H,t + 1) rather than an 
equality. This is because we used approximations in our development. Therefore, 
this schema theory is called pessimistic. 

Schema theory can be approached in many different ways. Other ways of model-
ing GP selection, crossover, and mutation give GP schema theories that are different 
than the one derived in this section. Some of those theories are exact instead of 
pessimistic, in which case we obtain an equation instead of inequality like Equa-
tion (7.34) [Altenberg, 1994], [Langdon and Poli, 2002, Chapters 3, 5]. Una-May 
O'Reilly developed a lower-bound schema theory based on John Koza's work, which 
defined schemata differently than in this chapter [Koza, 1992], [O'Reilly and Op-
pacher, 1995]. Justinian Rosca developed a GP schema theory using yet another 
schema definition [Rosca, 1997]. Schema theory has also been developed for GP 
systems that use program representations other than syntax trees [Whigham, 1995]. 

There are also other methods besides schema theory for mathematically analyz-
ing GP. For example, Markov models for GP were introduced in 2001 [Poli et al., 
2001], [Poli et al., 2004]. Also, Price's selection and covariance theorem can be used 
to mathematically model GP [Langdon and Poli, 2002, Chapter 3]. 

7.7 CONCLUSION 

This chapter has been limited to GP using Lisp and syntax trees. GP has also 
been implemented with many other structures and in many other languages. For 
example, programs can be represented as a linear sequence of instructions, which 
is the programming format that most of us are used to in our everyday experience. 
This is called linear GP [Poli et al., 2008, Chapter 7], and is particularly suited 
for assembly code programs. It is difficult to evolve an assembly code program 
for an embedded system using tree syntax, because we would need to first build a 
tree-to-assembly compiler. However, if we evolve programs directly using assembly 
code, cost evaluation is much more straightforward. 

Cartesian GP is a way of representing programs with a set of arrays. Each array 
includes an element that specifies the operation of that array, and elements that 
specify the arrays from which to obtain inputs [Miller and Smith, 2006]. Graph 
GP is a way of representing programs with nodes and edges [Poli et al., 2008]. 
Various other structures have also been used to represent computer programs in 
GP [Banzhaf et al., 1998, Chapter 9]. 

Genetic programming is becoming more widely used as its domain expands be-
yond computer programming to the more general evolution of engineering algo-
rithms and designs. John Koza lists 76 results from GP that are competitive with 
human-generated results [Koza, 2010]. He also states that the production rate of 
GP-generated results that are competitive with human results is proportional to 
computing power. This portends a future dramatic increase in engineering de-
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signs that are generated by computer programs, and in meaningful collaborations 
between humans and computers. 

There are some problems for which GP may not be suitable. The search space 
of a GP is the set of all computer programs, within user-defined syntax limitations. 
This broad search domain is both a strength and weakness of GP. The broad search 
domain allows GP to search for optima more thoroughly than other EAs, but also 
indicates that GP typically does not use much available domain information from 
the human programmer. In general, if we know the structure of the solution ahead of 
time, then a more standard EA should outperform GP, because we can more easily 
incorporate problem-specific information into a parameter optimization problem 
than a program optimization problem. However, if discovering the structure of the 
solution is a major challenge of the optimization problem, then a GP might be 
a suitable approach. Also, note that we can seed an initial GP population with 
known good candidate solutions. Then the GP will improve on these solutions as 
it progresses. Therefore, problems for which incremental improvements in existing 
solutions are highly desirable are also especially suitable for GP [Koza, 2010]. 

An interesting area for future work is the generation of computer programs that 
evolve computer programs that evolve computer programs. This might be called a 
meta-GP. A GP can evolve computer programs, but how do we find the best GP? 
Perhaps a meta-GP could evolve a GP. The meta-GP would presumably at least 
square the computing power required for a single GP. Jürgen Schmidhuber first 
proposed meta-GPs in his 1987 dissertation [Schmidhuber, 1987]. Meta-GPs are a 
type of meta-learning (that is, learning how to learn) [Anderson and Oates, 2007]. 
A meta-GP could be considered to be a search for a search and thus falls into the 
category of the vertical no-free-lunch theorem [Dembski and Marks, 2010]. 

Note that GP can be combined with other EAs. For example, we can combine 
GP and ED As to find probabilistic descriptions of effective programs, which can in 
turn guide our search for better programs. This was first proposed with the name 
probabilistic incremental program evolution [Salustowicz and Schmidhuber, 1997]. 
In this algorithm, each node in a syntax tree has a probability of being equal to a 
specific function or terminal, and those probabilities depend on the fitness values 
of individual programs. New EAs are proposed in the literature quite often and it 
could be interesting to explore which of these new EAs are particularly suited for 
implementation as a GP (see Chapter 17). 

Finally, we note that the serious student of GP should master the art of automat-
ically defined functions (ADFs). ADFs are subroutines that evolve automatically 
and dynamically in a GP. Considering the fact that a human programmer naturally 
uses subroutines, it makes sense that a GP should also create and use subroutines. 
ADFs can significantly reduce the computational effort of a GP when applied to 
complex problems. ADFs are discussed in detail in [Koza, 1994, Chapter 4], [Koza 
et al., 1999], and in other GP books. 

For further study, the reader can find several excellent books that are dedicated to 
GP. The book by Wolfgang Banzhaf et al. is a very readable introduction [Banzhaf 
et al., 1998]. John Koza's compendious volumes are standard references in the field 
that richly deserve their stellar reputation, especially his first book [Koza, 1992], 
[Koza, 1994], [Koza et al., 1999], [Koza et a l , 2005]. A Field Guide to Genetic 
Programming is a freely available book that provides a nice overview of the topic of 
GP [Poli et al., 2008]. Detailed schema analyses can be studied in William Langdon 
and Riccardo Poll's book [Langdon and Poli, 2002]. 
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PROBLEMS 

Written Exercises 

7.1 Write an s-expression and syntax tree for the positive solution to the quadratic 
equation: (y/b2 — Aac — 6)/(2a). What is the depth of your syntax tree? Is your 
syntax tree full? 

7.2 Write an s-expression that returns 8 if x > 2, and 9 otherwise. 

7.3 Suppose you evaluate a GP candidate solution f on n different inputs {ui}. 
Write a fitness function that gives twice as much weight to the average performance 
of / as it does to the worst-case performance of / . 

7.4 Define a protected square root function in Lisp that returns 0 in case the 
input is negative. 

7.5 Suppose we use use the grow method to generate a random s-expression with 
maximum depth Dc. Suppose there is a 50% chance at each node of selecting a 
terminal or a function. What is the probability that a given branch will reach its 
maximum possible depth? 

7.6 Suppose we use the grow method to generate a random s-expression with 
maximum depth Dc. Suppose there is a 50% chance at each node of selecting a 
terminal or a function. Assume that each function takes two arguments. What is 
the probability that the s-expression will represent a full syntax tree with a depth 
of£>c? 

7.7 List all of the programs that could be created by hoist mutation of the syntax 
tree of Figure 7.1. 

7.8 List the unique programs that could be created by permutation mutation of 
the syntax tree of Figure 7.2. 

7.9 Write the following equation in simplified form (for instance, ( + 1 1 ) can be 
replaced with 2). After obtaining the simplified version, write the equation in a 
more conventional form. 

(defun Pgm (x) ( + ( DIV ( - ( + ( + 1 1) ( + ( DIV x 1) ( + 1 1) ) ) ( - ( * x 
1) ( + 1 1) ) ) ( abs x) ) ( DIV ( + ( - x 1) ( abs x) ) ( - ( - ( * x 1) ( + 1 1) ) ( 
- ( + 1 1) ( * 1 1) ) ) ) ) ) . 

7.10 What is the defining length, order, and length of the schema ( if ( # x # ) 
8 # )? What is the structure of the schema? 
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7.11 How does the lower bound for the number of schema instances vary with 
mutation probability? How does it vary with schema order? How does it vary with 
crossover probability? Explain your answers. 

Computer Exercises 

7.12 Lisp exercise: 
a) Download and install the latest version of CLISP (Common Lisp). 
b) Download and install an integrated development environment (IDE) for 

CLISP. Note: The minimum-time control problem in Section 7.3 was im-
plemented with a program called LispIDE. 

c) Run the Lisp IDE and type the following line at the command prompt: 
( print ( * 5 ( + 3 2 ) ) ) 

This will cause Lisp to print 25 to your terminal twice: once because of 
the print command, and once because of the value that is returned from 
the print function. 

7.13 Minimum-t ime control exercise: 
a) Download GPCartControl . l isp and associated files from the book web site 

and run it on your computer. This duplicates the minimum-time control 
GP results of Section 7.3. If you are using LispIDE, you can do this as 
follows. 

• Run LispIDE. 

• Open GPCartControl . l isp from LispIDE. 

• Modify line 15 of GPCartControl . l isp so that the path points to the directory 
on your computer that contains the Lisp files. 

• Select the entire GPCartControl . l isp (use your computer mouse, or type 
Ctrl-A). 

• Select the "Edit —>· Send to Lisp" menu item. This defines the GPCartControl 
function in Lisp. 

• Type (GPCartControl) at the LispIDE command prompt. This runs the 
program. 

b) After GPCartControl . l isp is done, it will output two files. One file is 
[DateTimeStringJ.txt, which contains the generation number, best cost, 
and average cost. The other file is [DateTimeStringJ.lisp, which contains 
the best program found by the GP. (Note that [DateTimeString] is a text 
string representing the date and time that the file was created.) 

c) Run the Lisp command (se t f LispPgm [BestProgram] ), where [BestProgram] 
is the text string that defines the best program found by the GP. You 
should get this text string from [DateTimeStringJ.lisp. For example, 
(se t f LispPgm 
"(defun CartControl (x v) (if ( > ( * - ! x) (* v (abs v))) 1 - 1))"). 
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d) Run the Lisp function (PhasePlane LispPgm). This will create two files. 
One file is PhasePlane. txt , which is a list of (x, v, control) values gen-
erated by LispPgm. The other file is PhasePlane l . tx t , which is a list of 
(x, v) values at which the control switches between —1 and + 1 . This as-
sumes that the control generated by LispPgm is always saturated. If this 
assumption is not true, then PhasePlane l . tx t will not be useful. 

e) Run the Matlab program PlotPhasePlane.m with input string "Phase-
Plane." This will generate a phase plane plot of the control as a function 
of x and v, using the PhasePlane. txt and PhasePlane l . tx t files gener-
ated above. However, the plot will not be useful unless the assumption 
stated above is satisfied - that is, unless the control generated by LispPgm 
is always saturated. 

f ) The fitness of a cart control Lisp program can be evaluated by running 
Eva lCar tCont ro l . l i sp . If you define Car tControl as described in sub-
problem (c) above, then you can open Eva lCar tCont ro l . l i sp , evaluate 
it in the Lisp IDE so that EvalCartControl is a defined function, and then 
run it by typing the following command: (EvalCartControl # ' Car tControl ) . 

7.14 Modify some of the parameters in GPCartControl . l isp to see what effect 
they have on performance. Some of the parameters you could modify include the 
following. 

• D i n i t i a l , the maximum initial tree depth 

• Dcreated, the maximum tree depth 

• Peross , the probability of crossover 

• Preproduce, the probability of reproduction 

• P i n t e r n a l , the probability of crossover at internal (function) nodes 

• NumEvals, the number of function evaluations per individual 

• NumElites, the number of elites each generation 

• GenLimit, the generation limit 

• PopSize, the population size 

• SelectionMethod, the selection method 

7.15 Modify GPCartControl . l isp and its associated files so the GP can find a 
mapping y(x) that closely matches the target y(x), where y(x) is given as follows: 

y(0) = 3, y(l) = 5, 2/(2) = 1, 2/(3) = 2, y(4) = 9 
2/(5) = 8, 2 / ( 6 ) - 3 , 2/(7) = 4, 2/(8) = 1, y(9) = 6. 

Hand in a GP convergence plot showing the progress of the minimum and aver-
age cost of the population as functions of generation number, the best program 
found by the GP, and a plot showing the target values y{x) compared to the GP-
approximated values y(x). 





CHAPTER 8 

Evolutionary Algorithm Variations 

Many options exist. 
—David Fogel [Fogel, 2000] 

The previous chapters discussed four popular and foundational approaches to 
evolutionary computing. However, the previous chapters only presented the basic 
ideas and algorithms. There are many variations that we can implement in those 
algorithms. These variations have application not only to the EAs discussed in prior 
chapters, but also to those that will be discussed later in this book. Therefore, this 
chapter has broad applicability to a wide variety of EAs. Some of the variations 
that we discuss in this chapter can make a big difference in EA performance. When 
we compare two EAs, algorithms A and B, it is often not the essential difference 
between A and B that makes the difference between their performance levels, but 
it is often these supposedly minor variations and implementation details that make 
the difference. 

Overview of the Chapter 

Section 8.1 discusses different ways of initializing an EA population. Section 8.2 
discusses various ways of deciding when to terminate an EA. Section 8.3 discusses 
how to represent candidate EA solutions, and how the chosen representation can 
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make a significant difference in results. Section 8.4 discusses elitism, which was 
originally proposed for genetic algorithms but is now typically implemented in all 
EAs because of its inherent advantages. Section 8.5 discusses the difference between 
generational EAs and steady-state EAs. 

EA populations often tend to converge to a single highly-fit individual; that is, 
the entire population becomes clones of a single candidate solution. This severely 
reduces the ability of the EA to search for an optimal solution, and so Section 8.6 
discusses how to maintain diversity in an EA population. 

Until now, we have focused on roulette-wheel selection for choosing parents, 
but there are also other approaches to selection, and we discuss some of them in 
Section 8.7. One important selection option is the stud option (Section 8.7.7), 
which was initially proposed for genetic algorithms but can also be used with other 
EAs. Section 8.8 discusses different ways of combining parents to obtain children, 
and Section 8.9 discusses different ways to implement mutation. 

8.1 INITIALIZATION 

We typically initialize an EA with a random population. This is the easiest and 
most popular initialization method. However, initialization can make a significant 
difference in the success of an EA. A little extra effort spent on initialization can 
pay big dividends. 

Suppose we want to run an EA with TV individuals. One initialization approach 
is to generate more than TV individuals, and simply keep the best TV as our initial 
population. For example, [Bhattacharya, 2008] generates 5TV random individuals 
and keeps the best TV as the initial population. 

We could also randomly generate individuals and then locally optimize each 
individual to obtain our initial EA population. For example, we could generate 
TV random individuals, perform gradient descent optimization on a subset of those 
individuals, and then use the resulting individuals as our initial EA population. We 
could implement this in several different ways; for example, we could use only the 
best individuals in our initial population, or we could perform gradient descent on 
only the best individuals but use all of the individuals in our initial population. 

Another option is to use expert solutions to initialize the EA population. For 
example, suppose we want to use an EA to tune a control algorithm. We could use 
expert knowledge to estimate reasonable control solutions, and seed an initial EA 
population with those solutions. Or we could use candidate solutions that we find 
from any other source (other algorithms, other published results, and so on) to seed 
our initial EA population. The use of problem-dependent information to seed the 
initial EA population is often called directed initialization. 

■ EXAMPLE 8.1 

This example looks at the effect of additional initial individuals on an EP for 
the optimization of the 10-dimensional Rosenbrock function (see Appendix C.1.4). 
We use a population size of 10 and run the EP for 50 generations. In our stan-
dard EP implementation, we initialize the 10 initial individuals randomly. In 
our additional-initial-individuals implementation, we randomly generate 20 
individuals and use the best 10 for our initial EP population. Figure 8.1 
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shows the results of the two algorithms, averaged over 20 Monte Carlo sim-
ulations. Initializing extra individuals requires twice as much computational 
effort during the initialization phase, but the extra effort results in much bet-
ter performance. The figure shows that if we initialize additional individuals, 
we obtain significantly better results during the first 40 generations, although 
the two algorithms perform about the same by the time they reach the 50th 
generation. 
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Figure 8.1 Example 8.1: Cost versus generation number for an EP that minimizes the 
10-dimensional Rosenbrock function, averaged over 20 Monte Carlo simulations. The extra 
work of generating 10 more initial individuals appears to be worth the additional effort, at 
least during the first 40 generations. 

D 

Using directed initialization or additional initial individuals is an approach that 
makes sense for problems with few generations and few individuals; that is, prob-
lems that are restricted to few fitness function evaluations because of their high 
expense (see Section 21.1). With this type of problem, the extra effort expended 
during initialization can have benefits that last for many generations. 

8.2 CONVERGENCE CRITERIA 

One thing we have to decide when we implement an EA is when to stop. We 
have glossed over this issue in the algorithms of the previous chapters by using the 
generic phrase, "While not (termination criterion)" (for example, see Figures 3.6, 
5.1, 6.1, and 7.5). What termination criterion should we use? How long should an 
EA run before we stop the program? There are several criteria that we can use to 
define convergence. 

1. We can stop the EA after a preset number of generations. This has the ad-
vantage of simplicity, and run-time predictability, and is probably the most 

* 
- - -Without Extra Initial Individuals 

With Extra Initial Individuals \\ 

V 

>. X 

\ 



182 CHAPTER 8: EVOLUTIONARY ALGORITHM VARIATIONS 

commonly used termination criterion for EAs. However, if we are comparing 
different EAs, then we should stop the EAs after a preset number of objec-
tive function evaluations rather than a preset number of generations. This is 
because different EAs use a different number of function evaluations per gen-
eration, so we can obtain a fair comparison between EAs only by terminating 
after a common function evaluation limit. 

2. We can stop the EA after the solution is "good enough." This termination 
criterion is problem-dependent because "good enough" varies from one prob-
lem to the next. This is an appealing termination criterion; if we find a 
solution that provides satisfactory performance, then why should we continue 
to search for a better solution? However, most solutions to real-world prob-
lems are never quite good enough. We always want to try to do better. On 
the other hand, doubling run time while improving performance by a minis-
cule amount is a waste of resources in many cases. The tradeoff between run 
time and performance is a problem-dependent issue that requires engineering 
judgment. 

3. We can stop the EA after the best individual fitness does not change appre-
ciably for a certain number of generations. This indicates that the EA may 
be stuck in a local minimum. The local minimum may also be the global 
minimum, but we will never know unless we can somehow find a better local 
minimum. 

4. We can stop the EA after the average of the population's fitness values does 
not change appreciably for a certain number of generations. This is similar to 
the above criterion; it indicates that the population as a whole has stopped 
improving. 

5. We can stop the EA after the standard deviation of the population's fitnesses 
stops decreasing, or drops below some threshold. This indicates that the 
population has reached a certain level of uniformity. 

6. We can use some combination of the above criteria. 

Items 3-5 imply (but do not guarantee) that the population is no longer improv-
ing, so we might as well stop the EA. However, there is a danger in this approach. 
Even when the EA has apparently converged, a statistically improbable mutation 
or recombination event could result in a significant improvement in the solution, as 
illustrated in Figure 8.2. We cannot keep running forever; we have to stop eventu-
ally. But regardless of when we stop, we take the chance that we are quitting just 
before a particularly fortunate mutation or recombination. 
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Figure 8.2 A plot of cost (best or mean) versus generation number for a hypothetical EA 
simulation. If we terminate the EA after the cost stops improving, we will miss a significant 
improvement at the 70th generation, which might be caused by a statistically improbable 
but serendipitous mutation. However, if a cost value of 5 satisfies the customer, then we 
might not care about the improvement at the 70th generation. 

8.3 PROBLEM REPRESENTATION USING GRAY CODING 

This section discusses how to implement binary EAs using gray coding. A gray 
code, also called a reflected binary code, is a way to represent numbers in such a 
way that the codes for neighboring numbers differ by only one bit [Doran, 2007]. 
Consider the representation of the numbers 0-7 in binary code: 

000 = 0, 

010 = 2, 

100 = 4, 

110 = 6, 

001 - 1, 

011 = 3, 

101 = 5, 

111 = 7. (8.1) 

We see that the binary codes for neighboring numbers can differ by more than one 
bit. For example, the code for 3 is 011 while the code for 4 is 100. The binary 
codes for 3 and 4 differ in all three bit locations. The converse is also true; that is, 
binary codes that are very similar to each other sometimes represent numbers that 
are very far apart. For example, 000 represents the number 0; if we change one bit 
to obtain the code 100, we now have the representation for the number 4, which is 
far from 0 relative to the range of numbers that we are representing. 
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Now consider the representation of the numbers 0-7 in gray code: 

000 = 0, 001 = 1, 
011 = 2, 010 = 3, 
110 = 4, 111 = 5, 
101 = 6, 100 = 7. (8.2) 

We see that the gray codes for neighboring numbers always differ by exactly one 
bit. For example, the code for 3 is 010 while the code for 4 is 110. The gray codes 
for 3 and 4 differ in only the left-most bit. Gray coding removes Hamming cliffs, 
which are large changes in integer values between representations that differ by only 
one bit [Deep and Thakur, 2007]. 

■ EXAMPLE 8.2 

Consider the function y = f(x) of Example 2.2. If we code the values x G 
[—4, +1] of 16 evenly-space values from the horizontal axis of Figure 2.1 with 
four-bit binary coding, we obtain 

Binary coding: 0000 = -4.00, 0001 = -3.67, 
0010 = -3 .33 , 0011 = -3.00, 
0100 = -2.67, 0101 = -2 .33 , 
0110 = -2.00, 0111 = -1.67, 
1000 = - 1 . 3 3 , 1001 = -1.00, 
1010 = -0.67, 1011 = -0 .33 , 
1100 = +0.00, 1101 = +0.33, 
1110 = +0.67, 1111 = +1.00. (8.3) 

On the other hand, we can also code the values with four-bit gray coding to 
obtain 

Gray coding: 0000 = -4.00, 0001 = -3.67, 
0011 = -3 .33 , 0010 = -3.00, 
0110 = -2.67, 0111 = -2 .33 , 
0101 = -2.00, 0100 = -1.67, 
1100 = -1 .33 , 1101 = -1.00, 
1111 = -0.67, 1110 = -0 .33 , 
1010 = +0.00, 1011 = +0.33, 
1001 = +0.67, 1000 = +1.00. (8.4) 

If we plot y versus x in such a way that neighboring values of x differ by one 
bit in their binary codes, we obtain the top plot of Figure 8.3. If we plot y 
versus x such that neighboring values of x differ by one bit in their gray codes, 
we obtain the bottom plot. We see that with gray coding, the plot retains 
its original shape (compare with Figure 2.1). This makes optimization easier 
for functions that are smooth, because small changes in codes result in small 
changes in function values. 
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Figure 8.3 Example 8.2: In the top plot the x axis is arranged so that one-bit changes 
in x are adjacent when we use binary coding. The bottom plot shows the same thing when 
we use gray coding. A smooth function loses its smoothness if we use binary coding. 

D 

■ EXAMPLE 8.3 

In this example, we test the effect of binary coding versus gray coding on 
G A performance. We use the G A to optimize the two-dimensional Ackley 
function described in Example 3.3, where each dimension is coded with six 
bits. We use a population size of 20, and a mutation rate of 2% per bit per 
generation. Figure 8.4 shows the average cost of the 20 GA individuals at each 
generation, averaged over 50 Monte Carlo simulations. Gray coding performs 
noticeably better than binary coding because of the smooth, regular surface 
of the Ackley function (see Figure 2.5). 

D 

Although gray coding seems to perform better in most practical applications, it 
can be proven that binary coding works better on worst-case problems [Whitley, 
1999]. A worst-case problem is a discrete problem for which half of the points in 
the search space are local minima. Finally, we mention that we can use many other 
representations besides binary and gray coding in EAs. The representation that 
we use can have a significant impact on EA performance, and so although we do 
not discuss representations in much detail in this book, they should not be ignored 
in EA applications. The study of representations can be quite involved, and we 
point the reader to references such as [Choi and Moon, 2003] and [Rothlauf and 
Goldberg, 2003] for further study. 
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Figure 8.4 Example 8.3 results for the minimization of the two-dimensional Ackley 
function, where each dimension is coded with six bits. The plot shows the average cost 
of all GA individuals at each generation, averaged over 50 Monte Carlo simulations. A GA 
with gray coding performs noticeably better than a GA with binary coding. 

EXAMPLE 8.4 

Suppose that we have a worst-case problem for which even values of the binary 
coding have a cost of 1, and odd values have a cost of 2. If the individuals 
are represented with binary codes, the cost values for a three-bit worst-case 
problem are 

/(000) = 1, 
/(010) = 1, 
/(100) = 1, 
/ (HO) = 1, 

/(001) = 2, 
/ (OH) = 2, 
/ ( 1 0 1 ) = 2 , 
/(111) = 2 . (8.5) 

If the individuals are represented with gray codes, the cost values for a three-
bit worst-case problem, written in the same order as the binary representations 
above, are 

/(000) = 1, 

/(on) = i, 
/(no) = i, 
/(101) = 1, 

/(001) = 2, 
/(010) = 2, 
/ ( H I ) = 2, 
/(100) = 2. (8.6) 

If we look at the cost function values of Equation (8.5), we see that crossover 
between binary coded highly-fit individuals will result in children that are also 
highly fit. This is because all highly-fit individuals have a 0 at their right-most 
bit position, so any children from highly-fit individuals will also have a 0 at 
their right-most bit position. This means that they will be even, which means 
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that they will be highly fit, just like their parents. However, Equation (8.6) 
shows that crossover between gray coded highly-fit individuals may result in 
low-fitness children. This simple example gives us an intuitive understanding 
that binary coding might be better than gray coding for problems with many 
local minima. 

■ EXAMPLE 8.5 

In this example, we test G A performance on a 20-bit worst-case problem 
for which even values of the binary coding have a cost of 1, and odd values 
have a cost of 2. We use a population size of 20, and a mutation rate of 
2% per bit per generation. Figure 8.5 shows the average cost of the 20 G A 
individuals at each generation, averaged over 50 Monte Carlo simulations. 
Binary coding does much better than gray coding. This indicates that for 
problems with many local minima, binary coding might do better than gray 
coding at finding a wide variety of the local minima. Remember that for 
many practical optimization problems, we would like to find a variety of good 
solutions, rather than finding only one good solution. 

0 10 20 30 40 50 
Generation 

Figure 8.5 Example 8.5 results. The plot shows the average cost of all GA individuals 
at each generation of a 20-bit problem that has many local minima, averaged over 50 Monte 
Carlo simulations. Binary coding does better than gray coding at finding multiple local 
minima. 

D 
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8.4 ELITISM 

This section discusses elitism, which is a way of making sure that the best indi-
viduals in an EA are retained in the population from one generation to the next. 
Although the EA results that we have shown in this book look pretty good, there 
is the danger that we might lose some of our best individuals from one generation 
to the next. Elitism prevents this from happening. 

Consider the G A outline of Figure 3.6. We see that the best parents recombine 
to produce children. However, if there is an excellent candidate solution xe to our 
optimization problem at the z-th generation, there is no guarantee that the best 
individual at the (z+l)-st generation will be an improvement over xe , or will even be 
as good as xe. Individual xe will recombine with other parents to produce children, 
but xe will not be part of the next generation. How can we retain the nice results 
that arise from recombination, while avoiding the loss of the best individual in the 
population? 

The answer to this question is to keep the best individuals in the EA from one 
generation to the next. This idea, first proposed in [De Jong, 1975], is called elitism 
and usually improves the performance of an EA. We can implement elitism in at 
least a couple of different ways. 

1. We can implement elitism by producing only (N—E) children each generation, 
where N is the population size and E is the user-defined number of elite 
individuals. Suppose we want to keep the best E individuals out of a total 
population of N from one generation to the next. In that case we would use 
recombination and mutation to produce (N — E) children, and then we would 
merge the best E individuals with the children to obtain the next generation 
of N individuals. Figure 8.6, which is a modification of Figure 3.6, shows this 
option for an elitist G A. We can easily use this idea in other EAs also. 

2. We can implement elitism by producing N children and replacing the worst 
children with the best E individuals of the previous generation. Figure 8.7 
shows this option for an elitist G A, and we can easily use this idea in other 
EAs also. We can usually expect better performance with this option than 
with the above elitism option, but this option requires an additional sorting 
step. 

3. There are other elitism options also. For example, we could produce N chil-
dren and use some type of inverse-roulette-wheel selection algorithm to select 
E of them, where the worst children have the greatest probability of selec-
tion. We could then replace those children with the best E individuals of the 
previous generation. We could also implement other variations on this theme. 
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Parents <— {randomly generated population} 
While not (termination criterion) 

Calculate the fitness of each parent in the population 
Elites <— Best E parents 
Children <- 0 
While | Children | < | Parents | - E 

Use fitnesses to probabilistically select a pair of parents for mating 
Mate the parents to create children c\ and c^ 
Children «— Children U {ci,C2} 

Loop 
Randomly mutate some of the children 
Parents <— Children U Elites 

Next generation 

Figure 8.6 Elitism option 1: A simple genetic algorithm modified for elitism. N is the 
population size, E is the number of elites that are retained from one generation to the next, 
and each generation produces (N — E) children. 

Parents <— {randomly generated population} 
While not (termination criterion) 

Calculate the fitness of each parent in the population 
Elites «— Best E parents 
Children <- 0 
While | Children | < | Parents | 

Use fitnesses to probabilistically select a pair of parents for mating 
Mate the parents to create children c\ and C2 
Children <— Children U {ci,C2} 

Loop 
Randomly mutate some of the children 
Parents <— Children U Elites 
Parents «- Best N Parents 

Next generation 

Figure 8.7 Elitism option 2: A simple genetic algorithm modified for elitism. N is the 
population size, E is the number of elites that are retained from one generation to the next, 
and each generation produces N children. 

EXAMPLE 8.6 

In this example, we test the effect of elitism on G A performance. We again 
optimize the two-dimensional Ackley function described in Example 3.3, where 
each dimension is coded with six bits. We use a population size of 20, and a 
mutation rate of 2% per bit per generation. Figure 8.8 shows the minimum 
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cost of the 20 G A individuals at each generation, averaged over 20 Monte Carlo 
simulations. The elitist G A saves the best two individuals each generation, 
and uses the elitism option shown in Figure 8.6. We see that the incorporation 
of elitism makes a big improvement in G A performance. 
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Figure 8.8 Example 8.6 results for the minimization of the two-dimensional Ackley 
function, where each dimension is coded with six bits. The plot shows the minimum cost of 
all GA individuals at each generation, averaged over 20 Monte Carlo simulations. An elitist 
GA does significantly better than a non-elitist GA. 

D 

We should almost always use elitism in our EAs because it costs very little 
but pays high dividends. However, there may be certain types of problems with 
expensive or dynamic cost functions for which a non-elitist EA performs better 
than an elitist EA (see Chapter 21). 

8.5 STEADY-STATE AND GENERATIONAL ALGORITHMS 

Most of the EAs that we have discussed so far are generational evolutionary algo-
rithms. That means that the entire population is replaced each generation, with 
the possible exception of elite individuals as described in Section 8.4. However, 
this is not the way that evolution occurs in nature. Generations are staggered in 
nature, and death and birth occur continuously. This type of evolution is called 
steady state. Our observation of nature motivates us to implement steady-state 
versions of our EAs. Figure 8.9 gives an outline of a steady-state G A. 

Figure 8.9 shows that we create only two children each generation, and the 
two children replace their two parents in the population. Compare this with the 
generational GA in Figure 3.6, in which we create all N children before they replace 
their parents. There are various options that we can implement in a steady-state 
EA. 
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Parents «— {randomly generated population} 
Calculate the fitness of each parent in the population 
While not (termination criterion) 

Use fitnesses to select a pair of parents, p\ and p2, for recombination 
Recombine the parents to create children c\ and c2 

Randomly mutate C\ and c2 

Calculate the fitness of c\ and C2 
P\ <- ci, and p2 <- c2 

Next generation 

Figure 8.9 A steady-state genetic algorithm. 

• We could replace pi with c\ only if c\ has a better fitness than pi , and 
we could do the same with p2 and c2. This would be similar to elitism as 
described in Section 8.4 because the best individual would never be lost from 
the population. It would also be similar to the (μ + A)-ES of Figure 6.10 in 
which a child survives to the next generation only if it is one of the best μ 
individuals out of (μ + λ) individuals total. 

• We could create and replace more than just two individuals each generation. 
Note that the generational G A of Figure 3.6 replaces all N individuals each 
generation, while the steady-state GA of Figure 8.9 replaces only two individu-
als each generation. We could design a G A that lies somewhere between these 
extremes by replacing four individuals each generation, or six individuals, or 
a random number of individuals, or any number that we desire. Kenneth 
De Jong uses the term "generation gap" to refer to the number of individuals 
that we replace each generation [De Jong, 1975]. 

Note that we cannot compare the performance of the generational GA of Fig-
ure 3.6 with the performance of the steady-state G A of Figure 8.9 by running 
both algorithms for the same number of generations. A generation of Figure 3.6 
produces TV children, while a generation of Figure 8.9 produces only two children. 
Therefore, the generational GA will always outperform the steady-state GA for a 
given number of generations. This would not be a fair comparison. We can make 
a fair comparison only by running both algorithms for the same number of fitness 
function calculations. Therefore, NG/2 generations of the steady-state GA of Fig-
ure 8.9 would be computationally equivalent to G generations of the generational 
GA of Figure 3.6. 

Figures 3.6 and 8.9 illustrate the generational and steady-state strategies for 
G As, but we can easily extend the ideas to almost any other EA. As we have seen 
in the earlier pages of this book, and as we will also see later, some EAs seem to 
lend themselves more naturally to a generational approach, and others seem to fit 
more naturally with a steady-state approach. But the standard implementation of 
any EA can be modified as the user wishes to obtain either a generational or a 
steady-state algorithm. 
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8.6 POPULATION DIVERSITY 

This section discusses how to handle duplicate individuals in the population, and 
how selection and recombination can be modified to encourage diversity in mul-
timodal problems. First we consider the problem of duplicate individuals in Sec-
tion 8.6.1. Then we discuss two methods for promoting diverse EA populations: 
restrictions on recombination in Section 8.6.2; and methods for the maintenance 
of population niches in Section 8.6.3, which include fitness sharing, clearing, and 
crowding. 

8.6.1 Duplicate Individuals 

In a population that is repeatedly recombined from one generation to the next, 
uniformity often results. This means that the entire population becomes a popu-
lation of clones. Uniformity occurs more often in discrete-domain problems than 
in continuous-domain problems, but it can occur in both types of problems. Uni-
formity limits the EA from further exploration of the search space. Although the 
candidate solution to which an EA converges is usually a good solution, there may 
be much better solutions in other regions of the search space; therefore, even after 
the EA finds a good solution, we hope that it will keep exploring in an attempt 
to find even better solutions. When uniformity occurs before we have found a sat-
isfactory solution to our optimization problem, it is called premature convergence 
[Ronald, 1998]. We can prevent this with higher mutation rates, but if we use too 
high of a mutation rate our EA will degenerate into a random search. One com-
mon way to prevent premature convergence is to continuously search for duplicate 
individuals and replace them in the population. We can do this in several different 
ways, as described below. 

1. Whenever we create a child, we can scan the population to make sure that 
we are not creating a duplicate. If we have created a duplicate, then we can 
redo the recombination operation with different parents or different crossover 
parameters to obtain a different, non-duplicate child. Or we can mutate the 
child to obtain a non-duplicate. 

2. Whenever we mutate an individual, we can scan the population to make sure 
that we are not creating a duplicate. If we have created a duplicate, then we 
can redo the mutation operation. 

3. At the end of each generation, we can scan the population for duplicates. We 
can replace duplicates in a variety of ways. For example, we could replace du-
plicates with randomly-generated individuals, or we could mutate duplicates, 
or we could perform a recombination operation to replace each duplicate. 

4. We could allow some duplicates in the population, but no more than a user-
specified threshold D. Duplicates are likely to be highly-fit individuals, other-
wise they would not be likely to occur in the population. Therefore, we might 
not mind duplicates because they provide a higher probability for high-fitness 
individuals to participate in recombination. So we could replace duplicates 
only if there are more than D of them. Or we could probabilistically replace 
them, depending on how fit they are, or how many duplicates there are. 
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Duplicate scanning can seem to be computationally expensive because it essen-
tially requires a nested loop, and therefore requires computational effort on the 
order of iV2, where N is the population size. This can result in a significant portion 
of an EA's computational effort for benchmark problems. However, we should re-
member that real-world problems are typically orders of magnitude more complex 
than benchmark problems. For real-world problems, the fitness function evaluation 
comprises the vast majority of the computational effort (see Chapter 21), and the 
computational effort of a duplicate-search-and-replace operation will be insignifi-
cant. However, if computational effort on EA benchmark testing is a concern, we 
could reduce the effort by scanning the population for duplicates every G genera-
tions instead of every generation, where G is a user-defined parameter. 

8.6.2 Niche-Based and Species-Based Recombination 

The typical EA implementation selects parent individuals and combines them to 
obtain children, without any consideration of how similar or how different the par-
ents are. In biology, however, we often see that parents are similar to each other, 
but not too similar. For example, we rarely see mating between individuals of dif-
ferent species, but also we rarely see mating between close relatives. Figure 8.10 
illustrates the problem with recombination between two individuals that are very 
different from each other. First, the resulting child may be a poor solution to the 
optimization problem, because the midpoint between two highly-fit individuals may 
have poor fitness. Second, the crossover may result in the loss of genetic information 
that could be important for the problem solution. 

Figure 8.10 This figure illustrates a multimodal minimization problem. This example 
function illustrates the problem with recombining two individuals that are very different 
from each other. Parents x\ and X2 have low cost, but their offspring y has high cost. Also, 
if the child y replaces one of its parents (say, £2), then it may be difficult for the EA to find 
the global optimum that is near X2. 

Figure 8.11 illustrates the problem with recombination between two individuals 
that are too similar to each other. If we do not allow recombination between 
individuals that are different from each other, the evolutionary search process may 
get stuck in a rut. 
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Figure 8.11 This figure illustrates a multimodal minimization problem. This example 
function illustrates the problem if individuals that are very different from each other are not 
allowed to recombine. If x\ and X2 are not allowed to recombine due to their dissimilarity, 
then it may be difficult to find the global minimum that is near y. 

The problems discussed above motivate niche-based and species-based strategies 
for recombination. 

• Niching strategies discourage recombination between individuals that are highly 
different from each other in domain space [Mahfoud, 1995b], [Mahfoud, 1995a]. 
Not only can this help find optimal solutions as shown in Figure 8.10, it can 
also help find multiple local optima, which is important for many problems. 
Niching can also be useful for multi-objective optimization (see Chapter 20) 
and for dynamic optimization (see Section 21.2). 

• Species-based strategies discourage recombination between individuals that 
are highly similar to each other in domain space [Banzhaf et al., 1998, Sec-
tion 6.4]. This encourages exploration by encouraging recombination between 
individuals that are much different than each other. 

Note that niche-based and species-based strategies are opposite strategies for 
the same problem. The philosophy of niche-based recombination is that when we 
recombine fit individuals, we cannot expect the offspring to be fit unless the parents 
are similar to each other. The philosophy of species-based recombination is that 
when we recombine fit individuals, we must ensure that the parents are different 
from each other so that we can effectively explore the search space. Choosing which 
of these approaches to use is a problem-dependent decision. 

8.6.3 Niching 

In this section we used the term niching differently than in the previous section. 
Niching in this section is a method that allows EA individuals to survive in separate 
pockets of the search space. Niching in this section has the same motivation as in the 
previous section; however, the niching in the previous section specifically addressed 
the selection of parents, while the niching in this section involves the adjustment 
of fitness values. 

Niching is motivated by multi-modal problems for which it may be important 
to maintain individuals near many local optima, or for which it may be impor-
tant to find multiple good solutions. The earliest niching method is fitness sharing 
[Holland, 1975, page 164]. We discuss three niching strategies: fitness sharing in 
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Section 8.6.3.1, clearing in Section 8.6.3.2, and crowding in Section 8.6.3.3. Addi-
tional discussion of these ideas is provided in [Sareni and Krähenbühl, 1998]. 

8.6.3.1 Fitness Sharing Sometimes EA individuals in a good region of the search 
space can take over the population. This can lead to premature convergence. We 
would like to retain good individuals in the population, but we also want to maintain 
diversity so that we have a chance to explore new regions of the search space as the 
EA progresses from one generation to the next. Fitness sharing is especially useful 
for multimodal problems in which we want to find multiple solutions in different 
regions of the search space. 

Consider Figure 8.12. We see that x* is the global maximum, but individuals 
near x* are unlikely to survive to the next generation because of their low fitness 
values relative to other individuals in the search space. To encourage diversity in 
the population, we can artificially increase the fitness values of individuals that are 
relatively unique, and decrease the fitness values of individuals that are relatively 
common. 

M 

Figure 8.12 This function has a global maximum at x*, but individuals near x* are 
unlikely to be selected for recombination due to their low fitness values relative to other 
individuals in the search space. 

Fitness sharing decreases the fitnesses of individuals that are close to each other 
in the search space [Sareni and Krähenbühl, 1998]. The biological motivation of this 
idea is the fact that similar individuals compete for similar resources. Therefore, 
even if an individual is highly fit, it may not be able to reproduce if there are many 
other similar individuals in the same geographic region. 

Suppose that we have an EA population {xi} of N individuals, and that fa is 
the fitness of X{. Fitness sharing calculates modified fitness values as follows: 

Si = Si/mi (8.7) 

where m;, which is called the niche count of xi, is related to the number of individ-
uals that are similar to x^. The niche count is computed as 

mi = Y^s(dij) (8.8) 
3 = 1 

where s(·) is the sharing function, and dij measures the distance between individuals 
Xi and Xj. We often use the Euclidean distance to obtain dij. One commonly-used 
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sharing function is 

^={l-T° ILL· <"> 
where σ is a user-defined parameter called the dissimilarity threshold,, distance 
cutoff, or niche radius; and a is a user-defined parameter. We commonly use 
a = 1, which gives a triangular sharing function. Researchers have suggested 
various methods to set the dissimilarity threshold [Deb and Goldberg, 1989]. For 
example, 

σ = rq-^n 

1 n 2 

r = - y ^ ( max Xj (k) — min Xj (k) ) (8.10) 
k=l 

where n is the problem dimension, Xi(k) is the fc-th element of Xi, and q is the 
expected number of local optima in the fitness function. In fitness sharing, we use 
the modified fitness values of Equation (8.7) to select parents for recombination. 
Note that if we have a minimization problem, then we need to convert cost values 
to fitness values before applying Equation (8.7), and then we need to convert the 
modified fitness values to modified cost values (see Problem 8.7). 

8.6.3.2 Clearing Clearing is similar to fitness sharing, but instead of sharing fit-
ness values between individuals that share the same niche, we decrease the fitness of 
some of those individuals [Pétrowski, 1996], [Sareni and Krähenbühl, 1998]. There 
are several ways that we could implement this idea, including the following. First, 
we define the niche set Di of each individual in the population: 

Di = {xj : dij < σ} (8.11) 

where d^ is the same distance as in Equation (8.8), and σ is a user-defined param-
eter. Next, we rank the individuals in each niche according to their fitness: 

Vki = rank of Xk in Di (8.12) 

where the best individual in each niche has a rank of 1, the second-best has a rank 
of 2, and so on. Finally, we define the parameter R as the number of individuals 
that we want to survive in each niche, and we obtain the modified fitness values as 
follows, where TV is the population size. 

For i = 1 to N 
For k = 1 to | AI 

If Tki < R then 

else 

End if 
Next niche 

Next individual 

The above algorithm ensures that the least fit individuals in each niche are not 
available for selection or recombination. However, it does not ensure that the most 



SECTION 8.6: POPULATION DIVERSITY 1 9 7 

fit individuals are available for selection, because individuals may belong to more 
than one niche. For example, individual x m might be the most fit in its niche, but 
it might also belong to another niche in which it is not the most fit, in which case 
its modified fitness could be set to — oo. The set of individuals that survive the 
above algorithm depends on the order in which we process the niches {Di}. 

8.6.3.3 Crowding Crowding works by replacing individuals in the population with 
similar individuals that have recently been produced by recombination. Crowding 
was introduced by Kenneth De Jong [De Jong, 1975] to mimic resource compe-
tition in nature. Below we discuss three types of crowding: standard crowding, 
deterministic crowding, and restricted tournament selection. 

Standard Crowding Standard crowding is used in conjunction with steady-state 
recombination (see Section 8.5). Standard crowding produces M children each 
generation and then compares those children with Cf randomly-selected parents, 
where M and Cf are user-specified parameters. Cf is called the crowding factor. 
Each child replaces the most similar individual from the group of Cf randomly-
selected parent individuals. Commonly-used parameter values are M = N/10 and 
Cf = 3, where N is the population size [Mahfoud, 1992]. Figure 8.13 shows an 
implementation of standard crowding. 

Parents {pk} <- {randomly generated population of N individuals} 
Calculate the fitness of each parent pk, k G [1, N] 
While not (termination criterion) 

Use fitnesses to probabilistically select M parents for recombination 
Recombine the parents to create M children Q , i G [1, M] 
Randomly mutate each child Q , i G [1, M] 
Calculate the fitness of each child Q , i € [1,M] 
For i = 1 to M 

Randomly select Cf individuals X from the parent population {p^} 
Pmin = argminp ||p - Q\\ '.pel 

Pvcun 4 C% 

Next child 
Next generation 

Figure 8.13 A steady-state evolutionary algorithm with standard crowding. M and Cf 
are user-selected parameters, and ||p — c»|| is a user-defined distance function. 

Deterministic Crowding Deterministic crowding involves tournaments between chil-
dren and parents [Mahfoud, 1995b]. Parents recombine to produce children, and 
each child replaces its most similar parent, but only if the child has a better fitness 
than that parent. Figure 8.14 shows an implementation of deterministic crowding. 

Restricted Tournament Selection Restricted tournament selection has features in 
common with both standard crowding and deterministic crowding [Harik, 1995]. 
M parents recombine to produce two children. We then compare the children with 
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Cf randomly-selected individuals. Each child replaces the most similar individual 
from the group of randomly-selected individuals, but only if the child has a better 
fitness. See Figure 8.15 for an implementation of restricted tournament selection. 

Parents —̂ {randomly generated population} 
Calculate the fitness of each parent in the population 
While not (termination criterion) 

Use fitnesses to probabilistically select a pair of parents p\ and p2 
Recombine the parents to create children c\ and C2 
Randomly mutate c\ and C2 
Calculate the fitness of c\ and c<i 
For i = 1 to 2 

If \\pi — Ci\\ < \\p2 — Ci\\ and fitness(ci) > fitness(pi) then 
Pi <- Ci 

else if ||p2 — Ci|| < ||pi — Q | | and fitness(Q) > fitness^) then 
V2 <r- Ci 

End if 
Next child 

Next generation 

Figure 8.14 A steady-state evolutionary algorithm with deterministic crowding. Each 
child replaces its nearest parent if the child is more fit than that parent. 

Parents <— {randomly generated population} 
Calculate the fitness of each parent in the population 
While not (termination criterion) 

Use fitnesses to probabilistically select M parents for recombination 
Recombine the parents to create M children Q , i G [1, M] 
Randomly mutate each child Q , i G [1, M] 
Calculate the fitness of each child Q , i G [1, M] 
Randomly select Cf individuals X from the parent population 
For i = 1 to M 

Pmin = argminp ||p - a\\ :p£l 
If fitness (ci) > fitness (pmin) then 

Pmin *s Ci 

End if 
Next child 

Next generation 

Figure 8.15 A steady-state evolutionary algorithm with restricted tournament selection. 
M and Cf are user-selected parameters, and ||p — c\\ is a user-defined distance function. 
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8.7 SELECTION OPTIONS 

Before we can combine EA individuals to create children, we have to select which 
individuals to use as parents. Roulette-wheel selection, which we discussed in Sec-
tion 3.4.2, is the standard selection method for GAs, and other EAs also use it. 
But there are also many other selection algorithms, and this section discusses seven 
of those algorithms. Almost all selection methods are biased toward fit individuals 
in the population. That is, no matter which selection method we use, a more fit 
individual will almost always have a greater chance of being selected than a less fit 
individual. 

If a selection method is overly biased towards selecting fit individuals, then the 
population may converge too quickly to a uniform solution, while not exploring the 
search space widely enough. However, if a selection method is not biased strongly 
enough towards fit individuals, then the EA may not be able to properly exploit 
the information that is present in the most fit individuals. 

A useful metric for quantifying the difference between various selection algo-
rithms is selection pressure </>, which is defined as 

Pr(selection of most fit individual) 
Preelection of average individual) 

where Preelection of x) is the probability that individual x is selected for recom-
bination. Selection pressure quantities the relative probability that a highly-fit 
individual will take part in recombination. Below we discuss seven different types 
of selection. 

8.7.1 Stochastic Universal Sampling 

As noted above, the standard method for selection in GAs, and in many other EAs, 
is roulette-wheel selection, also called fitness-proportionate selection. Figure 3.2, 
which is reproduced below in Figure 8.16 for convenience, illustrates roulette-wheel 
selection for a four-member population. 

Individual 2 
Individual 4N 

N^ 1 20 \ 
Individual 1 

Individual 3 

Figure 8.16 Illustration of roulette wheel selection for a four-member population. Each 
individual is assigned a slice whose area is proportional to its fitness. Each individual's 
selection as a parent is proportional to the area of its slice in the roulette wheel. 
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A potential problem with roulette-wheel selection is that there is a good chance 
that the best individual will not be selected for recombination. For example, sup-
pose that we spin the roulette wheel of Figure 8.16 four times to select four parents 
for recombination. The probability that the best individual, individual # 4 , is not 
selected on any of the four spins is equal to (0.6)4 = 13%. We have a chance of 
about 1/7 that the best individual will not be selected for recombination. This 
may be an unacceptably high probability for losing the information of the best 
individual in the population. 

Stochastic universal sampling [Baker, 1987] solves this problem while still using 
the roulette-wheel approach. Instead of spinning the roulette wheel of Figure 8.16 
four times to select four parents, we instead use a spinner with four uniformly-spaced 
pointers, place it on the roulette wheel, and spin it once. This gives us four parents 
with a single spin, and guarantees that we get at least one selection of individual 
# 3 and at least one selection of individual # 4 , since they both have fitness shares 
that are greater than 25% of the total summed fitness values. Figure 8.17 illustrates 
this idea. 

Individual 2 

Individual 1 

Individual 3 

Figure 8.17 Stochastic universal sampling for a four-member population. Each individual 
is assigned a slice that is proportional to its fitness. A spinner with four evenly-spaced 
pointers is spun once to obtain the four parents. 

Stochastic universal sampling applied to the fitness values of Figure 8.17 will 
give us one of the following selections of parents: 

Individual # 1 , # 2 , # 3 , and # 4 
or Individual # 1 , # 3 , # 4 , and # 4 
or Individual # 2 , # 3 , # 3 , and # 4 
or Individual # 2 , # 3 , # 4 , and # 4 . (8.14) 

Figure 8.18 shows pseudo-code for stochastic universal sampling. Compare this 
with the roulette-wheel selection code of Figure 3.5. Figure 8.18 guarantees that 
individual Xi will be selected somewhere between 7Vj?min and A^5max times, where 

Nfj I 

/sum J 

#^■1 (8-15) 
/sum | 

Individual 4 

N- ■ 
1 vz,min 

N-
J ' i , m a x 

= 

= 
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where [a\ is the largest integer that is less than or equal to a, and \ai] is the 
smallest integer that is greater than or equal to a. 

Xi = z-th individual in population, i e [l,N] 
fi —̂ fitness of Xi, for i G [1, TV] 
/ sum ^ 2_-a=l Ji 
Generate a uniformly distributed random number r G [0, /sum/TV] 
/accum ^ U 
Parents <- 0 

While | Parents | < TV 
k <- fc + 1 
/accum ^ /accum ι JA; 
While /accum > r 

Parents <— Parents U x^ 
r ^ r + /sum/TV 

End while 
Next parent 

Figure 8.18 Pseudo-code for selecting TV parents from TV individuals using stochastic 
universal sampling. This code assumes that f%>0 for all i G [1, TV]. 

8.7.2 Over-Selection 

Over-selection is a method originally proposed by John Koza in the context of ge-
netic programming [Koza, 1992, Chapter 6]. Over-selection modifies roulette-wheel 
selection by disproportionately weighting fitness values of highly fit individuals to 
increase their chances of selection. In Koza's version of over-select ion, the best 32% 
of the population has an 80% chance of being selected, and the worst 68% of the 
population has a 20% chance of being selected. The exact percentages are not too 
important; the key feature of over-selection is that fit individuals have a dispro-
portionately higher probability of being selected. This is a type of fitness scaling 
[Goldberg, 1989a]. 

Koza tested three different types of selection for genetic programming and found 
that roulette-wheel selection performed the worst, tournament selection performed 
better, and over-selection performed best [Koza, 1992, Chapter 25]. However, this 
may be due to the large population sizes that are typically used in GP. For smaller 
population sizes, over-selection might provide too much selection pressure during 
the early stages of evolution when the population's fitness variance is large (see 
Equation (8.13)), but its additional selection pressure might be beneficial during 
the later stages of evolution when the fitness variance is small. 
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8.7.3 Sigma Scaling 

Sigma scaling normalizes fitness values relative to the standard deviation of the 
entire population's fitness. The scaled fitness values are 

/'(*,) = { maX t1 + M**} - ̂ 2σ^ l l t l (8.16) 
where / (# ; ) is the fitness of the i-th individual in the population, / is the mean 
of the fitness values, σ is the standard deviation of the fitness values, and e is a 
non-negative user-defined minimum allowable scaled fitness value. 

Note that the statement that σ is the standard deviation of the fitness values is 
ambiguous. If the fitness values are noise-free and we want to know the standard 
deviation of the specific fitness values that we have measured, then the standard 
deviation is defined as 

σ = ί ν Σ ( ^ « ) - / ) 2 ■ (8·17) 

However, if the fitness values include noise, or if we view the fitness values as 
samples from a probability distribution, then an unbiased estimate of the standard 
deviation of the fitness values is computed as follows [Simon, 2006, Problem 3.6]: 

/ N γΙ* 

EXAMPLE 8.7 

Suppose we have a four-member population with fitness values 

/ ( x i ) = 10, / ( x 2 ) = 5, 
f(x3) = 40, f(x4) = 15. (8.19) 

Roulette-wheel selection gives the individuals the following selection proba-
bilities: 

Pr(xi) = 14%, Pr(x2) = 7%, 
Pr(x3) = 57%, Pr(x4) = 22%. (8.20) 

The mean and standard deviation of the fitness values of Equation (8.19) 
are / = 17.5 and σ = 15.5, where we use Equation (8.18) to estimate σ. 
Equation (8.16) gives scaled fitness values 

/ , ( x i ) = 0.76, / , ( x 2 ) = 0.60, 
f'(x3) = 1.72, f'(x4) = 0.92. (8.21) 

If we use these scaled fitness values in a roulette-wheel selection algorithm, 
we get the selection probabilities 

Pr(xi) = 19%, Pr(x2) = 15%, 
Pr(x3) = 43%, Pr(x4) = 22%. (8.22) 
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Comparing Equations (8.20) and (8.22), we see that sigma scaling tends to 
even out the selection probabilities of widely-differing fitness values. 

D 

■ EXAMPLE 8.8 

As another example, suppose we have four individuals with the following 
fitness values: 

/ O n ) = 15, / ( x 2 ) = 25, 
f(x3) = 20, / ( x 4 ) = 10. (8.23) 

Roulette-wheel selection gives these individuals the following selection prob-
abilities: 

Pr(xi) = 21%, Pr(x2) = 36%, 
Pr(x3) = 29%, Pr(x4) = 14%. (8.24) 

The mean and standard deviation of the fitness values of Equation (8.23) are 
/ = 17.5 and σ = 6.5. Equation (8.16) gives scaled fitness values 

/ ' ( * ! ) = 0.81, / ' ( x 2 ) = 1.58, 
/ ' 0 r 3 ) = 1.19, / ' ( x 4 ) = 0.42. (8.25) 

If we use these scaled fitness values in a roulette-wheel selection algorithm, 
we get the selection probabilities 

Pr(xi) = 20%, P r ( x 2 ) = 4 0 % , 
Pr(x3) - 30%, Pr(x4) = 10%. (8.26) 

Comparing Equations (8.24) and (8.26), we see that sigma scaling tends to 
spread out out the selection probabilities of closely-spaced fitness values. 

D 

8.7.4 Rank-Based Selection 

Rank-based selection, also called rank weighting, sorts individuals in the popu-
lation from best to worst, and performs selection using the rankings rather than 
the absolute fitness values [Whitley, 1989]. For example, suppose that we have 
four individuals in a population with the fitness values of Equation (8.19) and 
the roulette-wheel selection probabilities of Equation (8.20). Rank-based selection 
ranks the individuals according to fitness values, giving the best individual a rank 
of N (where TV is the population size), and giving the worst individual a rank of 1: 

Ä(xi) = 2, R(x2) = 1, 
R(x3) = 4, R(X4) = 3. (8.27) 

Rank-based selection then performs selection on the basis of the rankings rather 
than on the basis of the fitness values. 
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■ EXAMPLE 8.9 

Suppose that we use rank-based selection in conjunction with roulette-wheel 
selection for the ranks of Equation (8.27). This gives the following selection 
probabilities: 

Pr(zi) = 20%, PT{X2) = 10%, 

Pv{x3) = 40%, Pr(x4) = 30%. (8.28) 

We see that when fitness values are widely different from each other, as in 
Equation (8.19), rank-based selection evens out the selection probabilities. 
This prevents highly fit individuals from overtaking the population during 
the early stages of evolution; that is, it prevents premature convergence. 

D 

■ EXAMPLE 8.10 

As another example, suppose we have four individuals with the fitness val-
ues of Equation (8.23) and the roulette-wheel selection probabilities of Equa-
tion (8.24). Rank-based selection ranks the individuals as follows: 

Ä(xi) = 2, Ä(x2) = 4, 

R(x3) = 3, R(xA) = 1. (8.29) 

If we use rank-based selection in conjunction with roulette-wheel selection, 
then Equation (8.29) results in the following selection probabilities: 

Pr(xi) = 20%, P r ( x 2 ) - 4 0 % , 
Pr(x3) = 30%, Pr(x4) = 10%. (8.30) 

We see that when fitness values are tightly clustered together, as in Equa-
tion (8.23), rank-based selection spreads out the selection probabilities. This 
gives a greater distinction between similar individuals late in an EA run after 
the population has begun to converge. 

D 

We can adjust the spread of selection probabilities by passing the rankings 
through a nonlinear function. For example, if we want more of a distinction between 
the selection probabilities of the individuals, we can square the ranking before using 
roulette-wheel selection. Equation (8.29) would then become 

# 2 ( χ ι ) = 4, i?2(x2) = 16, 

R2(x3)=9, R2(x4) = l. (8.31) 

Using the above values for roulette-wheel selection gives selection probabilities 

Pr(xi) = 13%, Pr(x2) - 53%, 
Pr(x3) = 30%, Pr(x4) - 4%. (8.32) 

We see that squaring the rankings spreads out the selection probabilities compared 
to Equation (8.30). Other types of operations on the rankings (for example, the 
square root operation) might result in more uniform selection probabilities. 
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8.7.5 Linear Ranking 

Linear ranking is a generalization of rank-based selection. In linear ranking, we set 
the probability of selection of individual Xi to 

Pr(xi) = a + ßR(xi) (8.33) 

where R(xi) is the rank of Xi as defined in Section 8.7.4, and a and ß are user-
defined parameters. Figure 8.19 shows the probability of selection with a population 
size of TV. As the line becomes more steep, the selection pressure increases. 

pr(selection) 

+~~ — I — > rank 
(N+l)/2 N 

Figure 8.19 This figure illustrates the linear ranking method for selection in an EA with 
a population size of N. The worst individual has a rank of 1, and the best individual has a 
rank of N. 

Since the best individual has a rank of N and the average individual has a rank 
of (N + l ) /2 , the selection pressure of Equation (8.13) is 

^ a + ßN (8.34) ψ a + /3(7V + l ) / 2 ' 

If we normalize the selection probabilities so that they sum to 1, we get 

N 

] Γ ( α + ßi) = aN + ßN(N + l ) / 2 = 1. (8.35) 
i-l 

If we desire a certain selection pressure φ, then we can solve Equations (8.34) 
and (8.35) for a and β to obtain 

2Ν-φ(Ν+1) 
a = 

N(N-l) 
2 ( 0 - 1 ) 

N(N-l)' 
(8.36) 

This tells us how to set a and β to obtain a desired selection pressure. 
Since Pr(xi) is a linear function of R{xi) as shown in Equation (8.33), we have 

Pr(average x) = -[Pr(worst x) + Pr(best x)\ 

> ^Pr(best x) (8.37) 
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assuming that all probabilities are non-negative. Combining this with the definition 
of selection pressure in Equation (8.13), we see that 

- - P r ( b e S t l ) < 2 . (8.38) 
Pr(average x) 

If we try to set φ > 2, then Pr(worst x) will be less than 0. Typically we want a 
low selection pressure during the early stages of an EA to avoid premature conver-
gence, and a higher selection pressure during the later stages to exploit highly-fit 
individuals. 

Linear Ranking and Roulette-Wheel Selection 

Linear ranking has the advantage that even if we use it in conjunction with roulette-
wheel selection, we do not need to use a loop in our computer program, as in 
Figure 3.5. To see how we can avoid looping, suppose that we generate a random 
number r ~ U[0,1] for selection. This implies that we want to select the ra-th 
individual, where 

£>(*«) 
m 

am + ßm(m + l ) / 2 « r. (8.39) 

But this is simply a quadratic equation for m, which we can solve as 

m=-2a-ß±^TWTsßr (840) 

Of course, since m is restricted to the set of integers, we need to round the right 
hand side of Equation (8.40) to the nearest integer to obtain m. We can thus imple-
ment linear ranking in conjunction with roulette-wheel selection without looping, in 
contrast to the standard roulette-wheel algorithm of Figure 3.5. Figure 8.20 shows 
an algorithm for roulette-wheel selection with linear ranking. 

A disadvantage of linear ranking is that we need to sort the fitness values of the 
population, which we do not need to do for standard roulette-wheel selection. But if 
we use a steady-state EA in which we only generate a few children each generation, 
then it might be easy to maintain the EA population in order of fitness without 
a full-fledged sort each generation. In summary, there is no clear-cut advantage 
or disadvantage to using linear ranking and Equation (8.40) for roulette-wheel se-
lection; it depends on the other aspects of the EA implementation, and the user's 
preference. 
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Choose user-specified selection pressure φ G (1,2) 
Solve Equation (8.36) for a and β 
{xi} — ΕΑ population sorted in order of fitness, i 6 [1, AT], where 

x\ is the worst individual and XN is the best individual 
Generate a uniformly distributed random number r G (0,1) 
Solve Equation (8.40) for ra, the index of the selected parent 

Figure 8.20 Pseudocode for selecting one parent from N individuals using linear ranking 
and roulette-wheel selection. 

8.7.6 Tournament Selection 

Tournament selection reduces the computational cost associated with selection. 
Figure 3.5 shows that roulette-wheel selection of N parents from a population of N 
individuals requires nested loops, which can be computationally expensive for large 
populations. With tournament selection we randomly pick r individuals from the 
population, where τ > 2 is the user-defined tournament size. We then compare the 
fitness values of the selected individuals, and select the most fit for recombination. 

To analyze tournament selection, consider selection pressure as defined in Equa-
tion (8.13). If the most fit individual is picked for a tournament, then it will be 
selected for recombination with a probability of 100%. If the average individual x is 
picked for a tournament, then it must be more fit than the r — 1 other individuals in 
the tournament to be selected for recombination. In this case there is a 50% prob-
ability that x is more fit than each individual with which it is compared,1 so there 
is a ( l / 2 ) r _ 1 probability that x will be selected for recombination. Equation (8.13) 
then becomes 

φ = 2τ~ι. (8.41) 

We see that as r increases, selection pressure also increases in tournament selection. 
The above tournament selection method is called a strict tournament because 

the best individual in the tournament wins 100% of the time. A soft tournament 
is one in which the best individual in the tournament wins with probability p < 1 
[Reeves and Rowe, 2003, Section 2.3]. The other, less-fit, individuals also have 
some probability of winning the tournament. Given the same tournament size, soft 
tournaments have less selection pressure than strict tournaments. 

One advantage of tournament selection over other types of selection is that it 
can work with only subjective comparisons between individuals. That is, we do not 
need to calculate absolute fitness values to perform tournament selection; we only 
need to know the relative fitness values of the individuals in the tournament. 

8.7.7 Stud Evolutionary Algorithms 

Many EAs probabilistically choose individuals for recombination based on their 
relative fitness values. All of the methods we have discussed so far follow this prin-

1 T h i s is approximately correct, assuming t h a t r <̂C N. 
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ciple. In stud EAs, however, we always choose the best individual each generation 
for every recombination operation. The best individual each generation is called 
the stud. We then choose the other parents, with which the stud combines to cre-
ate offspring, in the normal way (for example, fitness-based selection, rank-based 
selection, tournament selection, and so on). This idea was first applied to G As, in 
which case it is called the stud GA [Khatib and Fleming, 1998]. The addition of 
stud logic to a GA results in the modification of the standard GA of Figure 3.6 and 
results in the stud G A of Figure 8.21. 

Parents <— {randomly generated population} 
While not (termination criterion) 

Calculate the fitness of each parent in the population 
Children <- 0 
x\ 4— most fit parent 
While |Children| < |Parents| 

Use fitnesses to probabilistically select a second parent x<i : X2 φ x\ 
Mate xi and #2 to create children c\ and C2 
Children «— Children U {ci,C2J 

Loop 
Randomly mutate some of the children 
Parents «— Children 

Next generation 

Figure 8.21 The above pseudo-code outlines the stud genetic algorithm. 

■ EXAMPLE 8.11 

In this example we simulate a continuous G A, with and without the stud 
option, on a set of 20-dimensional benchmark problems from Appendix C. 
We use a population size of 50, a generation limit of 50, and a mutation 
rate of 1% for each of the 20 features in each individual at each generation. 
We implement mutation by replacing an independent variable with one that 
we randomly choose from a uniform distribution between the minimum and 
maximum domain values. We also use an elitism parameter of two, which 
means that we keep the two best individuals from one generation to the next. 

Table 8.1 shows the best performance of the standard G A and the stud G A, 
averaged over 50 Monte Carlo simulations. The table shows that the stud G A 
clearly outperforms the standard GA for the benchmarks shown. For some of 
the benchmarks, performance dramatically improves with the stud option. 

To this point the stud EA has been mostly (perhaps exclusively) applied to 
G As in the research literature, but we could easily apply it to many other EAs 
also. The addition of stud logic to an EA is a simple change in the basic EA, as 
we see from a comparison between Figures 3.6 and 8.21. Because of its ease of 
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implementation, and the excellent performance shown in Table 8.1, we should give 
serious consideration to stud logic for our EAs. Another interesting area for future 
research would be to derive mathematical models for G As (Chapter 4) and other 
EAs when they include stud logic. 

Benchmark 

Ackley 
Fletcher 

Griewank 
Penalty # 1 
Penalty # 2 

Quartic 
Rastrigin 

Rosenbrock 
Schwefel 1.2 

Schwefel 2.21 
Schwefel 2.22 
Schwefel 2.26 

Sphere 
Step 

Non-Stud G 

1.44 
3.26 
3.96 

1.05 x 105 

160.8 
9.14 
1.92 
3.89 
1.24 
1.65 
3.70 
2.56 
4.47 
4.23 

Table 8.1 Example 8.11 results, showing the relative performance of a GA with 
and without the stud option. The table shows the normalized minimum found by the 
two GA versions, averaged over 50 Monte Carlo simulations. See Appendix C for the 
definitions of the benchmark functions. 

8.8 RECOMBINATION 

The simple GA uses single-point crossover. This section discusses other types of 
recombination for both binary and continuous EAs. Note that we use the terms 
crossover and recombination interchangeably. Some of the recombination methods 
that we present in this section are further discussed in [Herrera et al., 1998]. 

Suppose that we have a population of individuals {xi,X25 · · · ? # # } · Each indi-
vidual has n features, and we denote the k-th feature of the i-th individual as xi(k) 
for k e [1, n]. So we can represent Xi as the vector 

Xi= [ Xi(l) Xi(2) · · · Xi(n) ] . (8.42) 

We denote a child individual, which we also call an offspring and which is the result 
of recombination, as y. We denote the k-th feature of the offspring as y(k), so 

y=[ y(l) y(2) · · · y(n) ] . (8.43) 

8.8.1 Single-Point Crossover (Binary or Continuous EAs) 

Suppose that we have two parents, xa and x^, where a G [l,N] and b G [l,iV]. 
Single-point crossover, also called simple crossover or discrete crossover, is the type 
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of crossover that was first used in binary G As (see Chapter 3): 

y(k) <- [ xa(l) · · · xa(m) xb(m+l) · · · xb(n) ] (8.44) 

where m is a randomly selected crossover point; that is, m ~ C/[0,n]. If m = 0, 
then y is a clone of xb. If m = n, then y is a clone of xa. Single-point crossover is 
often implemented to obtain two children from a pair of parents. This is done by 
selecting each feature of the second child y2 from the opposite parent than the one 
from which y\ obtained its feature: 

2/1 (&) <- [ xa(X) ··· xa(m) xb(m+l) · · · xb(n) ] 

2/2(&) <- [ xb(l) '" Xb(jn) xa(m + l) · · · xa(n) ] . (8.45) 

8.8.2 Multiple-Point Crossover (Binary or Continuous EAs) 

Two-point crossover results in 

y(k) <- [ xa(l) · · · xa(mi) 

Xb{mi + 1) · · · xb(m2) 

xa(m2 + l) · · · xa(n) ] (8.46) 

where the two crossover points are m\ ~ c7[0, n] and rri2 ~ U\rn\ + 1, n]. If mi = 0 
or ?7i2 = n, then two-point crossover reduces to single-point crossover. If mi — n, 
then y is a clone of xa. Equation (8.46) can be extended to three-point crossover, 
or M-point crossover for any M > 2. As with single-point crossover, multiple-point 
crossover is often implemented to obtain two children from a pair of parents. 

8.8.3 Segmented Crossover (Binary or Continuous EAs) 

We can think of segmented crossover [Michalewicz, 1996, Section 4.6] as a gener-
alization of multiple-point crossover. Child 1 gets its first feature from parent 1. 
Then, with a probability of p, we switch to parent 2 to obtain the second child 1 
feature; and with a probability (1 — p) we obtain the second child 1 feature from 
parent 1. Every time we obtain a feature for child 1, we switch to the other par-
ent to obtain the next feature with a probability of p. Child 1 and child 2 obtain 
their features from different parents, so if child 1 gets feature h from parent 1, then 
child 2 gets feature k from parent 2, for A: G [1, n]. Similarly, if child 1 gets feature k 
from parent 2, then child 2 gets feature k from parent 1. Segmented crossover is 
equivalent to multiple-point crossover where the number of crossover points is a 
random number. Figure 8.22 shows an algorithm for segmented crossover. The 
switching probability p is often set to around 0.2. 

8.8.4 Uniform Crossover (Binary or Continuous EAs) 

Suppose that we have two parents, xa and xb. Uniform crossover [Ackley, 1987a], 
[Michalewicz and Schoenauer, 1996] results in the child y, where the k-ih feature 
of y is 

y(k) <-xi{k)(k) (8.47) 
for each k G [l ,n], where we randomly choose i(k) from the set {a, b}. That is, 
we randomly choose each child feature from one of its two parents, each with a 
probability of 50%. 
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S <- true 
For k = 1 to n 

If S then 
ci(k) <r-pi(k) 
c2(k)^p2(k) 

else 
ci{k) +-P2(k) 
c2{k) <-Pi(k) 

End if 
r <r- C/[0,1] 
If r < p then S <- not S 

Next solution feature 

Figure 8.22 Segmented crossover for n-dimensional individuals. p\ and p2 are the two 
parents, and c\ and C2 are their two children. 

8.8.5 Multi-Parent Crossover (Binary or Continuous EAs) 

The multi-parent crossover that we discuss here is a generalization of uniform 
crossover [Eiben, 2003], [Eiben and Back, 1998], [Eiben, 2000] and goes by several 
other names, including gene pool recombination [Back, 1996], [Back et al., 1997b], 
[Mühlenbein and Voigt, 1995], scanning crossover [Eiben and Schippers, 1996], and 
multi-sexual crossover [Schwefel, 1995] (in contrast to two-parent crossover, which 
is called bisexual crossover). In multi-parent crossover, we randomly choose each 
child feature from one of its parents, where the number of parents is greater than 
two. This was suggested as early as 1966 [Bremermann et al., 1966]. Multi-parent 
crossover gives 

Vk *-Xi(k)(k) (8.48) 

for each k G [1, n], where we randomly choose i(k) from a subset of [1, N] (recall that 
we have N potential parents in the population). We need to make several choices 
when implementing multi-parent crossover. For example, how many individuals 
should be in the pool of potential parents? How should individuals be chosen for 
the pool? Once the pool has been determined, how should parents be selected from 
the pool? Finally, we note that other approaches to multi-parent crossover have 
also been proposed Eiben95. 

8.8.6 Global Uniform Crossover (Binary or Continuous EAs) 

One way of implementing multi-parent crossover is to randomly choose each child 
feature from one of its parents, where the parent pool is equivalent to the entire 
population. This gives global uniform recombination: 

Vk <- xiik)(k) (8.49) 

for each k G [l ,n], where i(k) is randomly selected from the uniform distribution 
[l,iV] for each k. Alternatively, i(k) could be chosen on the basis of fitness. That 
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is, the probability that i(k) = m could be proportional to the fitness of x m for all 
k e [l,n] and m G [l,iV]. 

8.8.7 Shuffle Crossover (Binary or Continuous EAs) 

Shuffle crossover randomly rearranges the solution features in the parents [Eshelman 
et al., 1989]. We use the same rearrangement of solution features in all parents that 
contribute to a given child. We then perform one of the crossover methods above 
(usually single-point crossover) to obtain children. We then undo the rearrangment 
of solution features in the children. Figure 8.23 shows a shuffle crossover algorithm 
combined with single-point crossover. 

{r\,· · - ,rn} <— random permutation of {1, · · · ,n) 
Crossover point m «— E/[l, n — 1] 
For k = 1 to m 

h(k) <r-pi{rk) 
t2(k) <r-p2(rk) 

Next k 
For k = m + 1 to n 

h(k) <-p2{rk) 
t2(k) <r-pi{rk) 

Next k 
For k = 1 to n 

ci(rjfe) <-ti(fc) 
c2(rk) <r-t2(k) 

Next k 

Figure 8.23 Shuffle crossover combined with single-point crossover for n-dimensional 
parents. p\ and p2 are the two parents, t\ and ti are the two children before they are 
unshuffled, and c\ and C2 are the unshuffled children. 

8.8.8 Flat Crossover and Arithmetic Crossover (Continuous EAs) 

Flat crossover, also called arithmetic crossover, is described as follows: 

y(k) <- U[xa(k),xb(k)} 

- axa(k) + (1 - a)xh(k) (8.50) 

where a ~ L7[0,1]. That is, y(k) is a random number taken from a uniform distri-
bution between the k-th features of its two parents. This is equivalent to saying 
that the offspring is a linear combination of the features of its two parents. Some-
times flat crossover and arithmetic crossover are distinguished by saying that flat 
crossover gives one offspring while arithmetic crossover gives two offspring: 

flat crossover: y(k) = axa(k) + (1 — a)xb(k) 

.,, ,. / y\{k) = axa(k) + (1 -a)xb(k) , . 
arithmetic crossover: < ; , ( ΙΛ

 v < ;, N , ; , ( (8.51) 
I V2\k) = (l-a)xa(k) + axb(k). v J 
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We could also use a triangular probability density function for a instead of a uniform 
density function: 

™^ = {\-°a ïo"s.Ss.<0 <8·52» 
in which case Equation (8.51) is called fuzzy recombination [Eshelman and Schaffer, 
1993]. 

8.8.9 Blended Crossover (Continuous EAs) 

Blended crossover, which is also called BLX-a crossover and heuristic crossover 
[Houck et al., 1995], combines parents xa and xb as follows: 

Zmin(fc) <- min(xa(k), xb(k)) 

£max(*0 «- max(xa(fc), xb{k)) 

LXX\K) 4 ^max(^j ~ ^minl^J 

Vk <- U[xmin(k) - aAx(k), zmax(fc) + aAx(k)] (8.53) 

where a is a user-defined parameter. If a — 0, then blended crossover is equivalent 
to flat crossover. If a < 0 (with a lower limit of —0.5), then blended crossover 
shrinks the search domain, which is beneficial for exploitation of the current pop-
ulation. If a > 0, then blended crossover expands the search domain, which is 
beneficial for exploration. [Herrera et al., 1998] recommends a = 0.5. 

8.8.10 Linear Crossover (Continuous EAs) 

Linear crossover creates three offspring from parents xa and x^: 

Vl(k) <- (l/2)xa(k) + (l/2)xb{k) 

y2(k) <- (3/2)xa(k)-(l/2)xb(k) 

y3(k) <- (-l /2)x a(fc) + (3/2)x6(fc). (8.54) 

We retain the most fit, or the two most fit, of the three offspring for the next 
generation, depending on the particular EA implementation. 

8.8.11 Simulated Binary Crossover (Continuous EAs) 

Simulated binary crossover (SBX) creates the following two offspring from parents 
xa and xb [Deb and Agrawal, 1995]: 

yi(k) <- (l/2)[(l-ßk)xa{k) + {l + ßk)xb(k)} 

y2(k) <- (l/2)[{l + ßk)xa(k) + (l-ßk)xh(k)] (8.55) 

where ßk is a random number generated from the following density function: 

PDF(^) - | i ( r / + 1 ) r < „ + 2 ) i f β > ! (8 ·5 6) 



2 1 4 CHAPTER 8: EVOLUTIONARY ALGORITHM VARIATIONS 

where η is any nonnegative real number. [Deb and Agrawal, 1995] includes a dis-
cussion of the effect of η on the SBX operator and generally recommends values 
between 0 and 5. We can generate β with the following algorithm: 

r <- U[0,1] 
Γ (2r)1/(.-M) i f r < l / 2 , 

P \ ( 2 - 2 r ) - 1 / ( ^ D i f r > l / 2 . ( 8 ' 5 7 j 

Note that SBX is equivalent to arithmetic crossover in Equation (8.51) if β — 2a — 1. 
We could also implement SBX with ßk values that have distributions other than 
that of Equation (8.56). 

8.8.12 Summary 

The recombination methods discussed above were originally proposed for G As, but 
they can also be used for other EAs. Researchers have also proposed other crossover 
methods [Herrera et al., 1998], but the above approaches give the main ideas. In 
addition, we could combine some of these approaches to create our own customized 
recombination algorithm. There is no clear winner among these crossover methods. 
One crossover method might work the best on one problem, while another works 
best on another problem. However, even though we cannot say which crossover 
method is best, we can usually say that single-point crossover is one of the worst. 

8.9 MUTATION 

In binary EAs, mutation is a straightforward operation. If we have a population of 
N individuals, where each individual has n bits, and our mutation rate is p, then 
at the end of each generation we flip each bit in each individual with a probability 
of p, as shown in Equation (3.6). 

In continuous EAs, we have more options for mutation. We still call p the 
mutation rate, and we still modify Xi(k) with a probability of p for each i and each 
k. But if we decide to modify Xi(fc), we then need to decide how to modify Xi(k). 
One way is to generate Xi(k) from a uniform or Gaussian distribution whose mean 
is at the center of the search domain. Another way is to generate Xi(k) from a 
uniform or Gaussian distribution whose mean is at the non-mutated value of Xi(k). 
We describe these options below, where we use xmin{k) and xm&x(k) to denote the 
limits of the search domain of the k-th dimension in our optimization problem. 

8.9.1 Uniform Mutation Centered at X{(k) 

Uniform mutation centered at X{(k) can be written as 

r <- C/[0,1] 
ίκ\ j Xi(k) if r > p , v 

XiW *~ \ C/[^(/c)-a,( /c) ,^(Ä:) + a,(/c)] if r < p ^*] 

for i G [1, N] and k G [1, n], where ai{k) is a user-defined parameter that determines 
the mutation magnitude. We often choose ai(k) as large as possible while still 
ensuring that the mutation remains within the search domain: 

oa(k) = min(xi(k) - xmin(A;), xm^(k) - Xi(k)). (8.59) 
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8.9.2 Uniform Mutation Centered at the Middle of the Search Domain 

Uniform mutation centered at the middle of the search domain can be written as 

r <- t/[0,l] 

Xi{k) <- { U[XmS), Zmax(*)] i f r < p ( 8 * 6 0 ) 

for i G [1,N] and k G [l ,n]. 

8.9.3 Gaussian Mutation Centered at Xi(k) 

Gaussian mutation centered at Xi(k) can be written as 

r <r- U[0,1] (8.61) 

x(k) *- { Xi^ Hr>p 
tV \ max [min(xmax(/c), N(xi(k)1af(k)), xmin(k)] if r < p 

for i G [1, N] and /c G [1, n], where Gi(k) is a user-defined parameter that is propor-
tional to the mutation magnitude. The min and max operations ensure that the 
mutated value of Xi(k) remains within the search domain. This type of mutation 
is similar to the search operators that we use in EP and ES. 

8.9.4 Gaussian Mutation Centered at the Middle of the Search Domain 

Gaussian mutation centered at the middle of the search domain can be written as 

r <r- U[0,1] (8.62) 

x(k) <r- { X i ^ i f r > p 
Λ \ max [min(xmax(/c), N(ci(k), σ?(k)), xmin(k)} if r < p 

for i G [Ι,ΑΓ] and k G [l ,n], where Ci(k) = (xm-m(k) + xmax(k))/2 is the center of 
the search domain, and where Œi(k) is a user-defined parameter that is proportional 
to the mutation magnitude. The min and max operations ensure that the mutated 
value of Xi(k) remains within the search domain. 

8.10 CONCLUSION 

We have examined many EA variations in this chapter, but we actually restricted 
our discussion to only the most common variations. There are many other ways 
that EAs can be modified, such as the use of varying population sizes [Hu et al., 
2010]; interacting sub-populations [Li et al., 2009]; diploidy or polyploidy, in which 
case each individual is associated with multiple candidate solutions [Wang et al., 
2009]; and gender modeling, which restricts crossover to parents of the opposite 
gender [Mitchell, 1998]. Researchers have also proposed other modifications, but 
we do not have space here to discuss all of the variations that have been studied 
over the past few decades. 

Considering all of the EA variations that are available, it may be useful to 
distinguish between an EA, and an EA instance [Eiben and Smit, 2011]. An EA 
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is a general framework that defines the approach to optimization which includes a 
population of candidate solutions, selection, recombination, and mutation; and an 
EA instance is a realization of that framework which includes specific approaches to 
those tasks and specific tuning parameters (for example, a specifically-tuned GA, 
ES, or any of the other specific algorithms discussed in this book). This perspective 
views all EA instances as particular realizations of the general EA framework, which 
is useful for unifying the field, and for preventing the field from splintering into 
apparently disconnected fragments. This unified EA perspective is the basis of the 
books [De Jong, 2002], [Eiben and Smith, 2010]. 

Note that EA parameter adjustments can be considered from two different per-
spectives. First, we can tune parameters to optimize EA performance; and second, 
we can adjust parameters to study how performance varies with parameter settings 
[Eiben and Smit, 2011]. This second perspective is closely related to EA robustness, 
which we briefly discuss in Section 21.4. 

The future will doubtless see the introduction of new and creative EA variations. 
The most challenging aspect of such studies is to first carefully explore past research 
to see if supposedly-new ideas have already been published. The current literature 
has many examples of the wheel being reinvented because of authors' and reviewers' 
ignorance of past research. Sometimes algorithms are reinvented and given different 
names by different authors, and sometimes new algorithms are invented but are 
given the same name as a completely different algorithm. In fairness, it is difficult 
to keep up with the explosion of EA literature over the past few decades, and we are 
all ignorant of past research to a certain extent. Nevertheless, when we document 
our research, we owe it to our readers and to past researchers to thoroughly study 
the published literature so that we can place our research in its proper context. 
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Written Exercises 

8.1 Suppose you initialize a population of TV individuals that are uniformly dis-
tributed in a one-dimensional search domain [^min,^max]5 where xmax = — #min· 

a) What is the probability that at least one of those individuals will be within 
e of the optimal point in the domain? 

b) Suppose that e /xm a x <C 1 and that TV is "not too large." Use Taylor 
series approximations to find the factor by which your answer to part (a) 
increases ifi the initial population is doubled. 

8.2 Gray codes are not unique. Equation (8.2) shows a gray coding of the numbers 
0-7. Give an alternate gray coding. 

8.3 Elitism and evolution strategies: 
a) Explain how an elitist G A is similar to a (μ + A)-ES. 
b) What values would we use for N and E in Figure 8.7, and for μ and λ in 

Figure 6.10, to obtain an elitist GA and a (μ + A)-ES that are as similar 
as possible? 

8.4 Elitism and steady-state evolution: 
a) How could we combined elitism option 1 in Figure 8.6 with steady-state 

evolution? 
b) How could we combined elitism option 2 in Figure 8.7 with steady-state 

evolution? 

8.5 Suppose we have an EA with a generation gap of k. How many generations 
of this EA are computationally equivalent to G generations of a generational EA? 

8.6 How many comparisons do we need to perform in a population of size N to 
completely check for duplicate individuals? 

8.7 Write a sequence of equations to transform cost values (where lower is better) 
to modified cost values using fitness sharing. 

8.8 Do we need to worry about the possibility of divide-by-zero in Equation (8.7)? 

8.9 The clearing method of Section 8.6.3.2 may result in the most fit individual 
in a niche becoming unavailable for selection and recombination. Sketch a visual 
example of a situation where this could occur. 

8.10 Selection pressure: 
a) What is the selection pressure of roulette-wheel selection with the fitness 

values shown in Figure 8.16? 
b) What is the selection pressure of stochastic universal sampling with the 

fitness values shown in Figure 8.17? 
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8.11 Stochastic universal sampling: 
a) What is the probability that the most fit individual in Figure 8.17 will be 

selected twice using stochastic universal sampling? 
b) What is the probability that the least fit individual in Figure 8.17 will be 

selected once using stochastic universal sampling? 

8.12 Suppose we have four individuals in an EA population with fitness values 
10, 20, 30, and 40. 

a) What are the selection probabilities of each individual given one spin of a 
roulette-wheel? 

b) Suppose we use over-selection so that the best 50% of the population has 
a 75% probability of selection, and the worst 50% of the population has a 
25% probability of selection. What are the selection probabilities of each 
individual given one spin of a roulette-wheel? 

c) What are the selection probabilities if we use sigma scaling? 
d) What are the selection probabilities if we use rank-based selection? 

8.13 Suppose we have four individuals in an EA population with fitness values 
10, 20, 30, and 40. Use Equation (8.36) to calculate a and ß to obtain the following 
selection pressures when linear ranking is used. 

a) φ = 1.4. 
b) 0 = 1.6. 
c) 0=1 .8 . 

8.14 Suppose you use a soft tournament for selection with a tournament size of 
3, where the probability of selecting the best individual in the tournament is 70%, 
the probability of selecting the second-best individual is 20%, and the probability 
of selecting the worst individual is 10%. What is the selection pressure of this 
tournament? 

8.15 Suppose you are using an EA to solve a 20-dimensional problem. 
a) What is the probability that children produced by single-point crossover 

will be clones of the parents? 
b) What is the probability that children produced by two-point crossover will 

be clones of the parents? 
c) What is the probability that children produced by segmented crossover 

with p = 0.2 will be clones of the parents? 
d) What is the probability that children produced by uniform crossover will 

be clones of the parents? 
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Computer Exercises 

8.16 Implement a continuous G A with elitism to minimize the 10-dimensional 
Ackley function. Run the G A for 50 generations with a population size of 50 and a 
mutation probability of 1%. Run the G A 20 times, and plot the average (over the 
20 simulations) of the minimum cost as a function of generation number. Do this 
for 0 elites, 2 elites, 5 elites, and 10 elites. Put the four plots in a single figure to 
facilitate comparison. 

8.17 Implement a continuous G A with the three types of crowding discussed in 
Section 8.6.3.3 to minimize the 10-dimensional Ackley function. Use the crowding 
parameters recommended in the text. Use a population size of 40, a mutation 
rate of 2%, an elitism parameter of 2, and replace duplicates at the end of each 
generation with randomly-generated individuals. Run each G A for 1,000 function 
evaluations. (Note that different crowding types give a different number of function 
evaluations per generation. Therefore, we need to run G As for different generation 
limits to get a fair comparison between crowding types.) Report the minimum cost 
attained by the GA for no crowding, and for the three types of crowding discussed 
in the text, averaged over 20 Monte Carlo simulations. 

8.18 Write a program to numerically confirm your answers to Problem 8.11. 

8.19 Suppose you have the individuals of Problem 8.13 and linear ranking with 
selection pressure φ — 1.6. 

a) Simulate Equation (8.40) a few thousand times and record the percentage 
of times that each individual is selected. Use rounding in Equation (8.40) 
to obtain the integer index of the selected individual. How do your simu-
lation results compare with the theoretical selection probabilities? 

b) What is the largest possible value of Equation (8.40) (with no rounding) 
for this problem? How does this help explain the discrepancy between the 
simulated and theoretical results? 
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CHAPTER 9 

Simulated Annealing 

We conjecture that the analogy with thermodynamics can offer a new insight into 
optimization problems and can suggest efficient algorithms for solving them. 

—V. Cerny [Cerny, 1985] 

Simulated annealing (SA) is an optimization algorithm that is based on the 
cooling and crystallizing behavior of chemical substances. The literature often 
distinguishes SA from EAs because SA does not involve a population of candidate 
solutions. SA is a single-individual stochastic algorithm. However, the (1+1)-ES is 
actually a special case of an SA algorithm [Droste et al., 2002], so we can reasonably 
consider SA as an EA. 

SA was first presented in its current form by Scott Kirkpatrick, Charles Gelatt, 
and Mario Vecchi in 1983 for the optimal solution of problems related to computer 
design, such as component placement and wire routing [Kirkpatrick et al., 1983]. 
SA was independently derived by Vlado Cerny in 1985, who used it to solve the 
traveling salesman problem [Cerny, 1985]. An optimization algorithm very similar 
to SA was developed in by Martin Pincus in the late 1960s [Pincus, 1968a], [Pincus, 
1968b]. SA is sometimes called the Metropolis algorithm because it is closely related 
to the work of Nicholas Metropolis [Metropolis et al., 1953], whose development of 
an algorithm for investigating the properties of interacting particles formed the 
foundation for SA. Finally, SA is also sometimes called the Metropolis-Hastings 
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algorithm due to the work of W. Keith Hastings [Hastings, 1970], who generalized 
the results of Metropolis et al. 

Overview of the Chapter 

Section 9.1 gives a brief discussion of statistical mechanics, which is the foundational 
principle of SA. Section 9.2 presents a simple SA algorithm. Section 9.3 discusses 
various cooling schedules, which is the primary tuning parameter for SA, and which 
has the strongest effect on its performance. Section 9.4 briefly discusses a few 
implementation issues, including ways that we can generate new candidate solutions 
in SA, when to reinitialize the cooling temperature, and why we need to keep track 
of the best candidate solution. 

9.1 ANNEALING IN NATURE 

Crystalline lattices are fascinating examples of the optimization ability of nature. 
A crystalline lattice is an arrangment of atoms or molecules in a liquid or solid. 
Some familiar examples that are common to most people's everyday experiences are 
the crystalline structures of quartz, ice, and salt. At high temperatures, crystalline 
materials don't exhibit much structure; high temperatures give the materials a lot 
of energy, which contributes to a lot of vibration and disorder. However, as the 
temperature decreases, the crystalline materials settle into a more ordered state. 
The particular state into which they settle is not always the same. A material 
that is heated and then cooled multiple times will settle into a different equilibrium 
state every time, but every equilibrium state tends to have low energy. Figure 9.1 
compares a crystalline structure with a high entropy (a high level of disorder) at 
a high temperature, and one with a low entropy (a high level of order) at a low 
temperature. The process of heating and cooling a material to recrystallize it is 
called annealing. 

Figure 9.1 This figure gives a conceptual view of the annealing process. The figure on the 
left shows the disordered, high-energy state of a crystalline structure at a high temperature. 
The figure on the right shows the ordered, low-energy state of the same structure after it 
has cooled. (This figure was copied from http://en.wikipedia.org/wiki/Simulated_annealing 
and is distributed under the provisions of the GNU Free Documentation License.) 
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SA is based on statistical mechanics, which is the study of the behavior of large 
numbers of interacting particles, such as atoms in a gas. The number atoms in 
any material is on the order of 1023 per cubic centimeter, so when we examine the 
properties of a material, we only observe properties that are highly likely to occur. 
We also notice that equilibrium-energy configurations, and configurations that are 
similar to them, are observed very often, even though those configurations comprise 
only a tiny fraction of the possible configurations. This is because materials tend 
to converge to minimum-energy states; that is, nature is an optimizer. 

Suppose that we use E(s) to denote the energy of a specific configuration s 
of the atoms in some material. The probability that the system of atoms is in 
configuration s is given as 

eM-E(s)/(kT)} 
nS)-J2weM-E(w)/(kT)} ^ 

where k is Boltzmann's constant, T is the temperature of the system at equilibrium, 
and the sum in the denominator is taken over all posible configurations w [Davis 
and Steenstrup, 1987]. Now suppose that we have a system that is in configuration 
q, and we randomly select a configuration r that is a candidate for the system 
configuration at the next time step. If E(r) < E(q), then we accept r as the 
configuration at the next time step with probability one: 

P(r\q) = l \îE(r) < E(q). (9.2) 

That is, if our candidate configuration r has an energy that is less than that of s, 
we automatically move to r at the next time step. However, if E(r) > E(q), then 
we move to r at the next time step with a probability that is proportional to the 
relative energy of q and r: 

P{r\q) = exp[(E(q) - E(r))/(kT)} if E{r) > E(q). (9.3) 

That is, there is a nonzero probability P(r\q) that the system moves to a config-
uration with higher energy. If E(r) > E(q), then Equation (9.3) shows that the 
probability P(r\q) that the system transitions from state q to state r is less than 
1, but it increases as T increases. If we use the transition rules of Equations (9.2) 
and (9.3), then as time -> co, the probability that the system is in some configura-
tion s converges to the Boltzmann distribution of Equation (9.1). 

9.2 A SIMPLE SIMULATED ANNEALING ALGORITHM 

Since annealing in nature results in low-energy configurations of crystals, we can 
simulate it in an algorithm to minimize cost functions. We start with a candidate 
solution s to some minimization problem. We also start with a high "temperature" 
so that the candidate solution is likely to change to some other configuration. We 
randomly generate an alternative candidate solution r and measure its cost, which 
is analogous to the energy of a crystalline structure. If the cost of r is less than 
that of s, then we update the candidate solution accordingly, as indicated by Equa-
tion (9.2). If the cost of r is greater than or equal to that of s, then we update the 
candidate solution with some probability less than or equal to one, as indicated by 
Equation (9.3). SA is sometimes called Boltzmann annealing because of its use of 
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Equations (9.2) and (9.3). As time progresses (that is, as the the iteration number 
increases), we decrease the temperature. This results in a tendency of the candidate 
solution to settle in a low-cost state. The analogies between annealing in nature 
and the SA algorithm are summarized as follows. 

Annealing in Nature Simulated Annealing 
atomic configuration <—> candidate solution 

temperature <—y tendency to explore search space 
cooling <—> decreasing tendency to explore 

changes to atomic configurations <—> changes to candidate solutions 

We see that SA includes many standard EA behaviors. Although we have used 
annealing in nature to motivate SA in this chapter, SA can in fact be developed 
without any motivation from nature [Michiels et al., 2007]. There are advantages 
to both approaches. Appealing to nature may open up new avenues of SA research, 
but it may also limit the possible extensions to SA. A simple SA algorithm is shown 
in Figure 9.2. 

T = initial temperature > 0 
a(T) = cooling function: a(T) <E [Ο,Γ] for all T 
Initialize a candidate solution xo to minimization problem f(x) 
While not (termination criterion) 

Generate a candidate solution x 

If/(*)</(*„) 
XQ <— X 

else 
r <- C7[0,1] 
If r < exp[(/(x0) - f(x))/T\ then 

XQ 4— X 

End if 
End if 
T <- a(T) 

Next iteration 

Figure 9.2 A basic simulated annealing algorithm for the minimization of f(x). The 
function C/[0,1] returns a random number uniformly distributed on [0, 1]. 

Figure 9.2 shows that the basic SA algorithm has features in common with most 
other EAs. First, it is simple and intuitively appealing. Second, it is based on an 
optimization process in nature. Third, it has several tuning parameters that can 
each have a significant impact on its performance. 

• The initial temperature T provides an upper bound for the relative impor-
tance of exploration versus exploitation. If the initial temperature is too low, 
then the algorithm will not effectively explore the search space. If the initial 
temperature is too high, then the algorithm will take too long to converge. 
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• The cooling schedule a(T) controls the rate of convergence. At the beginning 
of the algorithm, exploration is high and exploitation is low. At the end of the 
algorithm, the converse is true: exploitation is high and exploration is low. 
The cooling schedule controls the transition from exploration to exploitation. 
If a(T) is too drastic, then, like a crystalline structure that cools too rapidly, 
the annealing process will converge to a disordered (high cost) state. If a(T) 
is too gradual, then the annealing process will take too long to converge. We 
discuss cooling schedules in Section 9.3. 

• The strategy used to generate a candidate solution x at each iteration can have 
a significant impact on SA performance. Random generation of x may work, 
but a more intelligent method for trying to generate an x that is better than 
#o will probably give better performance. We discuss candidate generation 
strategies in Section 9.4.1. 

A simplified SA algorithm can be implemented by replacing the acceptance test 
in Figure 9.2 as follows: 

Replace "If r < exp[(/(x0) - f(x))/T\n w i t h " I f r < exp[-c/T\n (9.4) 

where c is called the acceptance probability constant This indicates that if the 
candidate solution x has a higher cost than xo, then the probability of replacing XQ 
with x is independent of its cost. The acceptance probability constant c controls 
exploration versus exploitation. If c is too large, then the algorithm will not explore 
the search space aggressively enough. If c is too small, then the algorithm will 
explore too aggressively without exploiting good solutions that it has previously 
discovered. 

9.3 COOLING SCHEDULES 

This section discusses different cooling schedules a(T) that can be used in the SA 
algorithm of Figure 9.2. The cooling schedule can have a significant impact on 
SA performance. If an SA implementation does not work on some problem, it 
may be because the cooling schedule is not appropriate for the problem. Some 
commonly use cooling schedules include linear cooling, exponential cooling, inverse 
cooling, logarithmic cooling, and inverse linear cooling, which we discuss in the 
following sections. We also note that optimization problems can have different 
scales along different dimensions, and so we discuss in dimension-dependent cooling 
in Section 9.3.6. 

9.3.1 Linear Cooling 

Linear cooling is the simplest type of cooling, and follows the schedule 

a{T) = T0 - φ (9.5) 

where To is the initial temperature, k is the SA iteration number, and 77 is a constant. 
We need to make sure that T > 0 for all &, so we should choose 77 such that the 
temperature at the maximum iteration number is positive. Alternatively, we could 
use the following modified form of linear cooling: 
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a(T) = max(T0 - i/fc, Tmin) (9.6) 
where Tm-m is a user-specified minimum temperature. 

9.3.2 Exponential Cooling 

Exponential cooling follows the schedule 

a(T) = aT (9.7) 

where typically a G (0.8,1). A larger value of a will give a slower cooling schedule. 
Figure 9.3 shows normalized temperature for the exponential cooling schedule for 
different values of a. We see that a should be quite close to 1, otherwise the cooling 
rate will be too drastic. 

)| ■ , ■ , I ^ I Ü J 
0 1000 2000 3000 4000 5000 

Iteration 

Figure 9.3 Normalized temperature as a function of a for the exponential cooling 
schedule. The parameter a is usually very close to 1 for this cooling schedule. The cooling 
rate is very sensitive to changes in a. 

9.3.3 Inverse Cooling 

Inverse cooling follows the schedule 

a{T) = T/(l + ßT) (9.8) 

where β is a small constant, typically on the order of 0.001. A smaller value of 
ß will give a slower cooling schedule. This cooling schedule was first suggested in 
[Lundy and Mees, 1986]. Figure 9.4 shows normalized temperature for the inverse 
cooling schedule for different values of β. We see that β should be quite small, 
otherwise the cooling rate will be too drastic. 

Comparing Figures 9.3 and 9.4, we see that the exponential cooling and inverse 
cooling schedules can be made to be very similar to each other by choosing appro-
priate values for a and β. 
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Figure 9.4 Normalized temperature as a function of β for the inverse cooling schedule. 
The parameter β is usually very small for this cooling schedule. The cooling rate is very 
sensitive to changes in β. 

■ EXAMPLE 9.1 

In this example, we optimize the 20-dimensional Ackley function, which is 
defined in Appendix C.1.2, with the SA algorithm of Figure 9.2. We use the 
inverse cooling function described in Equation (9.8): Ifc+i = Xfc/(1 + βΤ^), 
where k is the iteration number, β is the cooling schedule parameter, T^ is the 
temperature at the k-th iteration, and TQ = 100. We use a Gaussian random 
number centered at xo to generate a new candidate solution at each iteration: 

x^xo + N(0,TkI) (9.9) 

where iV(0, T^I) is a Gaussian random vector with a mean of 0 and a covari-
ance of T*J, and / is the 20 x 20 identity matrix. We use the simple acceptance 
test of Equation (9.4) with c — 1. 

Figure 9.5 shows the best solution found as a function of the SA iteration 
number, averaged over 20 Monte Carlo simulations, and for three different 
values of β. We see that if β is too small (0.0002), then cooling occurs too 
slowly and the SA algorithm jumps around too aggressively in the search 
space without exploiting good solutions that it has already obtained. If β is 
too large (0.001), then cooling occurs too quickly and the SA algorithm tends 
to get stuck in local minima. If β is just right (0.0005), then cooling occurs 
at a rate that results in the best convergence. However, we note that toward 
the end of the plot, the β = 0.0002 trace appears to be rapidly overtaking 
the β = 0.0005 trace. This indicates that although β = 0.0002 is too small to 
give good convergence within the iteration number limit that we have used, 
it will eventually result in enough cooling if the iteration number continues to 
increase, and will eventually converge to a good result. 
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Figure 9.5 Example 9.1 simulation results of the SA algorithm for optimizing the 20-
dimensional Ackley function. Results are averaged over 20 Monte Carlo simulations. The 
inverse cooling schedule parameter ß has a significant impact on SA performance. 

D 

Example 9.1 shows that if cooling is too fast or too slow, then SA performance 
might not be good. The same conclusion can be drawn about the initial temperature 
TQ. In Example 9.1 we arbitrarily used To = 100. Unfortunately, there are not 
any good guidelines for the selection of TQ; it depends entirely on the particular 
optimization problem. 

9.3.4 Logarithmic Cooling 

Logarithmic cooling follows the schedule 

a(T) = c/Ink (9.10) 

where c is a constant, and k is the SA iteration number. This was first suggested 
in [Geman and Geman, 1984]. It is sometimes generalized to 

a(T) = c/]n(k + d) (9.11) 

where d is a constant that is often set equal to 1 [Nourani and Andresen, 1998]. 
Logarithmic cooling is qualitatively different than exponential and inverse cooling, 
as seen from Figure 9.6. The temperature decreases very rapidly for the first few 
iterations, and then decreases extremely slowly. This slow decrease means that SA 
convergence is usually poor with the logarithmic cooling schedule. Therefore, the 
logarithmic cooling schedule is not recommended for practical applications. 

However, the logarithmic cooling schedule is theoretically attractive and widely 
known in the SA community because it has been proven to give a global minimum 
under certain conditions [Geman and Geman, 1984]. As a simple demonstration 
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Figure 9.6 Normalized temperature for the logarithmic cooling schedule. The top 
figure shows the temperature for the first 50 iterations, and the bottom figure shows the 
temperature for the first 5,000 iterations. The temperature decreases very rapidly for the 
first few iterations, and then decreases so slowly that it is impractical for SA implementations. 

of the proof [Ingber, 1996], suppose that we have a discrete problem so that the 
size of the search space is finite. We generate the candidate x from a Gaussian 
distribution so that the probability of generating x, given that xk is the current 
candidate solution at the /c-th iteration, is 

gk = P(x\xk) = ( 2 ^ ) D / 2 e x p H | x - x f c | | i / ( 2 T f c ) ] (9.12) 

where D is the problem dimension. In other words, the conditional probability of 
generating x given that xk is the current candidate, is Gaussian with a mean of 
Xk and a covariance of TkI, where Tk is the temperature at the /c-th iteration, and 
/ is the identity matrix. In order to visit every possible candidate solution in the 
search space, it suffices to show that as the iteration count approaches infinity, the 
probability of not visiting x approaches zero; that is, 

Jim Π(1-ί /*) = 0. (9.13) 
fe=l 

Taking the natural log of the above equation gives 

In lim l[(l-9k) 
N—>oo 

lim 
N-+00 

lnJT(l-3fc) 

A Taylor series expansion of the logarithm about gi = g2 = 

ln[(l - 0i)( l - g2) · · ·] = In 1 - gx - g2 - · 

: - o o . (9.14) 

= 0 gives 

(9.15) 
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Combining the two previous equations gives the following sufficient condition for 
obtaining a 100% probability of visiting x as the iteration count approaches infinity: 

N 

N—too 
lim ; ^ = oo. (9.16) 
\f—von ^ — ' 

fc=l 

If gk is given by Equation (9.12), and if Xfc = To/In A;, then the left side of the 
above equation becomes 

N 

N—^oo 
lim ^(2πΤο/1ηΑ:) 0 / 2 βχρ[- | | χ -α: / 0 | | ^ / (2Γο/1ηΑ;)] > 

oo oo 

] T e x p ( - In k) = ] T 1/k = oo (9.17) 
fc=l k=l 

where the inequality is true if TQ is large enough (see Problem 9.5). 

9.3.5 Inverse Linear Cooling 

Inverse linear cooling follows the schedule 

a{T) = T0/k (9.18) 

where To is the initial temperature, and k is the SA iteration number. The inverse 
linear cooling schedule exhibits the fast cooling of the logarithmic schedule during 
the first few iterations, but it avoids the nonzero temperatures and slow cooling of 
later iterations, as seen from Figure 9.7. The temperature decreases very rapidly 
and quickly reaches zero. This means that inverse linear cooling is not effective for 
problems that require a lot of exploration, but is more suitable for problems that 
can be initialized with a candidate solution that is known to be close to the optimal 
solution. 

Inverse linear cooling, like logarithmic cooling, is theoretically attractive and 
widely known in the SA community because it has been proven to result in a 
global optimum under certain conditions [Szu and Hartley, 1987]. As a simple 
demonstration similar to that used in the previous section for logarithmic cooling 
[Ingber, 1996], suppose that we have a discrete problem so that the size of the 
search space is finite. We generate the candidate x from a Cauchy distribution so 
that the probability of obtaining x, given that Xk is the current candidate solution 
at the fc-th iteration, is 

ÄSP(*', = ^ Ä ^ (9'19) 
where D is the problem dimension. Note that in the previous section we used a 
Gaussian distribution to generate candidate solutions, while in this section we use 
a Cauchy distribution. Figure 9.8 compares a Cauchy PDF with a Gaussian PDF. 
We see that the Cauchy PDF has much fatter tails, which means that we are more 
likely to generate candidate solutions that are farther from the current candidate 
solution. 
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Figure 9.7 Normalized temperature for the inverse linear cooling schedule. The 
temperature reaches zero very quickly. 
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Figure 9.8 A comparison of the one-dimensional Cauchy and Gaussian probability 
density functions. 

If gk is given by Equation (9.19), and if Tk = T0/k, then the left side of Equa-
tion (9.16) becomes 

iim y To/k 
, 2 U D + l ) / 2 > Σ>* = · 

k^{\\x-xk\\i+n/vf fc=1 
where the inequality is true for appropriate values of To (see Problem 9.6). 

(9.20) 
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Now we compare the convergence results obtained with the logarithmic and 
inverse linear cooling schedules. Recall that the Cauchy PDF has much fatter tails 
than the Gaussian PDF. Also recall that the candidate solution generation function 
of Equation (9.19), which uses the Cauchy PDF, is combined with the inverse linear 
cooling schedule of Figure 9.7. Finally, recall that the candidate solution generation 
function of Equation (9.12), which uses the Gaussian PDF, uses the logarithmic 
cooling schedule of Figure 9.6. Since the Cauchy generation function has fatter 
tails than the Gaussian generation function, it is guaranteed to converge with a 
much faster cooling schedule than the one used in conjunction with the Gaussian 
generation function. 

9.3.6 Dimension-Dependent Cooling 

In real-world applications, and even in some benchmark problems, the landscape of 
the cost function can look very different when viewed along different dimensions. 
For example, consider the function 

f(x) = 20 + e - 20exp I - 0 . 2 ^ ^ 2 / n J - exp ( ^ ( c o s 2 7 n / ; ) / n ) 

ί Xi for odd i , , 
y% ~ \ Xi/4 for even i. \ - ) 

This is simply a scaled version of the Ackley function, which is defined in Ap-
pendix C.1.2. The fact that Xi is scaled for even values of i means that the function 
is "stretched out" along those dimensions. Figure 9.9 shows a two-dimensional plot 
of this function. Because of the scaling of even dimensions, the function is much 
smoother along the #2 dimension than along the x\ dimension. 

Figure 9.9 Scaled version of the two-dimensional Ackley function. The topology is much 
smoother along the X2 direction, which indicates that the SA algorithm should use a slower 
cooling schedule along that dimension. 
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For functions that have different topologies along different dimensions, we might 
want to use a different cooling schedule for different dimensions. For the scaled 
Ackley function of Equation (9.21), we would want to use slower cooling along the 
even dimensions, and faster cooling along the odd dimensions. This will allow the 
SA algorithm to gradually converge to optimal values along the gradually-changing 
dimensions of the function. A fast cooling schedule along gradually-changing dimen-
sions would prevent the SA algorithm from moving down gentle slopes. However, 
along the more dynamic dimensions of the function, a faster cooling schedule is 
needed. The SA algorithm will move downhill along dynamic dimensions even with 
a fast cooling rate, but a slow cooling rate will result in too much jumping around. 
As another way of looking at it, we can say that we need a more aggressive search 
(high temperatures) along low-sensitivity dimensions, and a less aggressive search 
(low temperatures) along high-sensitivity dimensions. 

If we use the inverse cooling schedule of Equation (9.8), the above discussion 
implies a smaller value of ß for the even dimensions and a larger value of ß for the 
odd dimensions. This means that each dimension of the problem will have its own 
temperature. This results in a modification of the basic SA algorithm of Figure 9.2 
to obtain the dimension-dependent SA algorithm of Figure 9.10. 

Ti — initial temperature > 0, i G [l,n] 
QLi{Ti) = cooling function for z-th dimension, i G [l ,n]: a(Ti) G [0,7*] for all T{ 
Initialize a candidate solution XQ to minimization problem f(x): 

X0 = [Χ01,Χ02,'··,Χ0η] 

While not (termination criterion) 
Generate a candidate solution x\ — [xn, £12, · · ·, x\n] 

I f / ( x i ) < / ( x 0 ) 
XQ 4— X\ 

else 
For i = 1, · · · , n 

r <- U[0,1] 
If r < exp[(/(x0) - /(*ι))/Τ<] then 

xoi <- X\i 

End if 
Next dimension i 

End if 
Γ<^-α < (Γ<) , ί€ [1 ,η ] 

Next iteration 

Figure 9.10 A dimension-dependent simulated annealing algorithm for the minimization 
of the n-dimensional function f(x). The function U[0,1] returns a random number uniformly 
distributed on [0, 1]. This algorithm is a generalization of the basic SA algorithm of 
Figure 9.2; here we have allowed each dimension to have its own temperature and its own 
cooling schedule. 
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EXAMPLE 9.2 

In this example we optimize the 20-dimensional scaled Ackley function, which 
is given by Equation (9.21), with the dimension-dependent SA algorithm of 
Figure 9.10. We use the inverse cooling function described in Equation (9.8) 
for each dimension: Tjt+i,* = ^ / ( l + f t T j f e ) , where i is the dimension number, 
k is the SA iteration number, ßi is the cooling schedule parameter for the i-th 
dimension, T^ is the temperature at the k-th iteration of the z-th dimension, 
and TQI = 100 for all i. We use a Gaussian random number centered at xo to 
generate a new candidate solution at each iteration: 

x\i <- xoi + JV(0,jTfci) (9.22) 

where iV(0, Tki) is a Gaussian random number with a mean of 0 and a variance 
of Tki. We use the simple acceptance test of Equation (9.4) with c = 1. 

Figure 9.11 shows the best solution found as a function of the SA iteration 
number, averaged over 20 Monte Carlo simulations, and for four different 
combinations of β. We see that if β is too small (0.001), then cooling occurs 
too slowly and the SA algorithm jumps around too aggressively in the search 
space without exploiting good solutions that it has already obtained. If β is 
too large (0.005), then cooling occurs too quickly and the SA algorithm tends 
to get stuck in local minima. However, if β is large for odd dimensions and 
small for even dimensions, then cooling occurs at a rate that results in the 
best convergence. This combination gives fast cooling for the highly dynamic 
odd dimensions, and slow cooling for the even dimensions. 

201 
» - beta = 0.005 

beta = 0.001 (odd), 0.005 (even) 
beta = 0.001 

* - beta = 0.005 (odd), 0.001 (even) 

0 2000 4000 6000 8000 10000 
Iteration 

Figure 9.11 Example 9.2 simulation results of the dimension-dependent SA algorithm 
optimizing the 20-dimensional scaled Ackley function. Results are averaged over 20 Monte 
Carlo simulations. The cooling schedule parameters {ßi} can be adjusted individually for 
each dimension to give the best results. 

D 
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9.4 IMPLEMENTATION ISSUES 

This section discusses a couple of implementation issues, including how to generate 
candidate solutions, when to reinitialize the cooling temperature, and why we need 
to keep track of the best candidate solution. 

9.4.1 Candidate Solution Generation 

The statement "Generate a candidate solution" in the SA algorithms of Figures 9.2 
and 9.10 is deceptively simple. There are many different ways that this statement 
can be implemented, and the implementation choice can have a large impact on 
SA performance. One method of generating candidate solutions is to simply choose 
a random point in the search space. However, after the SA algorithm has begun 
converging to a good solution, we would expect that the current solution candidate 
XQ is much better than most other points in the search space. Therefore, generating 
a random solution candidate will probably not be very effective. As a general 
rule, we should bias candidate solution generation toward the current candidate 
solution XQ. This is the reason that Equations (9.9) and (9.22) use a Gaussian 
random variable centered at XQ for candidate solution generation. Furthermore, the 
variance of Gaussian random variable is equal to the temperature, which decreases 
with time, and so the search tends to narrow as the SA iteration count increases. 
Equation (9.19), the Cauchy distribution, can be used as a more aggressive method 
for generating candidate solutions while still being centered at XQ. Biasing candidate 
solution generation toward XQ tends to exclude not only very poor candidates, but 
also very good candidates. However, very poor points in the search space are 
generally more common than very good candidates, so biasing the search toward 
XQ is usually effective. 

9.4.2 Reinitialization 

As we discussed earlier in this chapter, the cooling schedule is an important contrib-
utor to SA performance. If we cool the temperature too quickly, then the SA will 
get stuck in a local optimum and performance will be poor. However, we usually 
do not know ahead of time what the appropriate cooling schedule is. Therefore, 
we often monitor the improvement of the SA algorithm, and if we do not find a 
better candidate solution within L iterations, we reinitialize the temperature to To 
to increase exploration. 

9.4.3 Keeping Track of the Best Candidate Solution 

Recall from Figure (9.2) that a new candidate solution x might replace a current 
candidate solution XQ, even if x is worse than x0. This is a necessary risk to suffi-
ciently explore the search space, but it might result in the loss of a good candidate 
solution. Therefore, we usually want to implement an archive in SA so that we 
keep track of the best candidate solution obtained so far. This is similar to elitism 
in Section 8.4; however, in that section we actually retained the best candidate 
solutions in the population. We cannot do that directly in SA unless we increase 
the population size beyond 1, which is a possibility that we have not discussed in 
this chapter. However, regardless of the population size, we can always maintain 
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an archive that contains the best candidate found so far. So even if we replace a 
good candidate solution with a poor candidate due to the exploratory nature of 
SA, we will still keep track of the best candidate found so far. The best candidate 
solution in the archive will never be replaced with a worse candidate. Then we can 
return the best candidate found when the SA algorithm is complete. 

9.5 CONCLUSION 

Simulated annealing is one of the older EAs, originating in 1983, but we have 
discussed in this part of the book because it is not always considered to be a classic 
EA. It is not population based, but it is clear that some of the classic EAs are not 
population based either, and so that is not a sufficient reason to remove it from the 
EA category. Since SA is based on a natural process, and since it is an iterative 
optimization algorithm, we generally consider it to be an EA. Its maturity and 
scientific roots have resulted in many papers, books, and applications. Readers 
who want a more comprehensive coverage of SA are recommended to the books 
[van Laarhoven and Aarts, 2010], [Otten and van Ginneken, 1989], and [Aarts and 
Korst, 1989]. Tutorial chapters are available at [Aarts et al., 2003] and [Henderson 
et al., 2003]. 

Like all of the EAs discussed in this book, SA can be useful for a wide variety 
of optimization problems, including both continuous-domain and discrete-domain 
problems. Current research directions in the area of SA mirrors current emphases 
in general EA research: SA for multi-objective problems [Bandyopadhyay et al., 
2008], hybridizations of SA with other EAs [Cakir et al., 2011], parallelization 
[Zimmerman and Lynch, 2009], and constrained optimization [Singh et al., 2010]. 

This chapter has presented the background and implementation of SA, but there 
are other important aspects of SA that we have not had time to discuss. For 
instance, a Markov model and some theoretical convergence proofs are presented in 
[Michiels et al., 2007], although there is still much room for additional modeling and 
theoretical results. Practitioners are interested not only in convergence, but also 
in performance over finite time intervals, and this issue is discussed in [Henderson 
et al., 2003], [Vorwerk et al., 2009]. 
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Written Exercises 

9.1 What are the units of temperature in Equation (9.1)? 

9.2 Draw a qualitatively correct plot of the probability P(r\q) from Section 9.1 
as a function of ΔΕ = E(r) — E(q). 

9.3 What value of the acceptance probability constant c will give an acceptance 
probability of p when the new candidate solution x has a higher cost than the 
current candidate solution XQ? 

9.4 Suppose you want to run SA for 10,000 iterations with linear cooling. What 
value of η should you use so that the temperature reaches 0 at the final iteration? 

9.5 What is "large enough" in the convergence proof of the logarithmic cooling 
schedule? 

9.6 What are "appropriate values of To" in the convergence proof of the inverse 
linear cooling schedule? 

9.7 Write the linear and inverse linear cooling schedules in the form Tk+i = 
a(fc, Tfc), where k is the iteration number of the SA algorithm. 

9.8 This problem compares exponential cooling and inverse cooling. 
a) Write the exponential and inverse cooling schedules in the form Tk = 

/(/c,To), where k is the iteration number of the SA algorithm and To is 
the initial temperature. 

b ) Find an expression for a in the exponential cooling schedule so that the 
temperature after N iterations is the same as it is in the inverse cooling 
schedule. 

c) Given To = 100, what value of a gives an equivalent temperature after 
10,000 iterations when: (1) β = 0.01; (2) β = 0.001; (3) β = 0.0001? 

Computer Exercises 

9.9 This problem explores the reinitialization strategy discussed in Section 9.4.2. 
Implement an SA to minimize the 20-dimensional Ackley function. Use the follow-
ing parameters: 

• Inverse cooling with β = 0.001; 

• Initial temperature = 100; 

• Iteration limit = 10,000; 

• Acceptance testing with Equation (9.4) with c = 1; 
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• Candidate solution generation using x <— xo + r, where r is a normally dis-
tributed zero-mean random number with variance T 2 . 

Keep track of the best-so-far solution Xi~ a s a function of iteration number /c, and 
plot the average of x\ over 20 Monte Carlo simulations. Compare the plots for the 
following reinitialization strategies: 

• Reinitialize T whenever x is worse than XQ for 10 consecutive iterations; 

• Reinitialize T whenever x is worse than XQ for 100 consecutive iterations; 

• Reinitialize T whenever x is worse than XQ for 1,000 consecutive iterations; 

• Never reinitialize T. 

What do you conclude from your results about the value of reinitializing T? 

9.10 This problem explores methods used for generating candidate solutions. 
Implement an SA to minimize the 20-dimensional Ackley function. Use the same 
parameters as in Problem 9.9. Keep track of the best-so-far solution x L. as a function 
of iteration number k, and plot the average of x*k over 20 Monte Carlo simulations. 
Compare the plots for the following candidate solution generation strategies: 

• x <— xo + r i , where r\ is a normally distributed zero-mean random number 
with variance T2 ; 

• x 4r- Γ2, where r<i is a random number uniformly distributed on the search 
domain. 

What do you conclude from your results about the importance of candidate solution 
generation? 



CHAPTER 10 

Ant Colony Optimization 

Go to the ant, you sluggard; consider its ways, and be wise! 
—Proverbs 6:6 

Ants are simple creatures but they can accomplish a lot by working together. 
The quote at the beginning of this chapter presents ants as a paradigm of hard 
work, but they can also be portrayed as the epitome of selfless cooperation. A 
single ant does not have much to offer. A solitary ant might wander aimlessly in 
circles until it dies of exhaustion [Delsuc, 2003]. The average ant has only 10,000 
neurons in its brain, which doesn't seem like enough to accomplish much. But ants 
join together in colonies that can number in the millions. A one-million member 
ant colony has a collective neuron count of 10 billion, which begins to rival the 
neuron count of an average human. Ants seem to operate as a single entity and are 
therefore sometimes referred to as a superorganism [Hölldobler and Wilson, 2008]. 
An ant colony discovered on the Japanese island of Hokkaido was reported in 1979 
to contain over 300 million ants living in 45,000 interconnected nests [Hölldobler 
and Wilson, 1990, page 1]. Ants thrive in almost every environment on earth, and 
are estimated to comprise over 15% of the mass of all land animals on earth [Schultz, 
2000]. Myrmecologists (that is, those who study ants) tell us that the number of ant 
species is about 8,800 and have a global population of about one quadrillion, which 
means that there are about 150,000 ants for every person on earth. Why is it that 
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ants, such tiny creatures, have been so successful for so long in so many different 
environments? Scientists attribute their adaptability and dominance to their social 
organization. Perhaps it is no coincidence that the most dominant mammal on 
Earth, humans, is also the clear leader in social organization. 

Ants communicate mainly by using pheromones, which are chemical substances 
that they excrete. When ants travel along a path to a food source and bring 
food back to their colony, they leave a trail of pheromone. Other ants smell the 
pheromone with their antennas, follow the path, and bring more food back to the 
colony. In the process, ants continue to lay down pheromone, which other ants 
continue to smell, and the path to the food source is reinforced. The shortest path 
to the food thus becomes more attractive over time as it is strengthened by positive 
feedback. 

Sometimes the food source is depleted or an obstacle prevents travel to the food 
source. When ants travel along a path and do not find food, they wander until they 
do find food. If they do not return to their colony using the original path, they do 
not deposit any additional pheromone on that path. As time passes, the pheromone 
on the original path evaporates, fewer ants take the original path, more ants take 
the new path to the new food source, and a new optimal path is discovered by the 
ants. This general process is depicted in Figure 10.1. 

Figure 10.1 Ants depositing and following pheromone. (1) The first ant travels in the 
direction indicated by a, finds a food source F, and returns to the nest N in the direction 
indicated by 6, laying a pheromone trail as it travels. (2) The ants follow one of four possible 
paths from N to F, but pheromone reinforcement makes the shortest path more appealing. 
(3) The ants tend to follow the path with the most pheromone, continuing to reinforce its 
desirability, while the pheromone on the longer paths evaporates. (This figure was created by 
Johann Dréo, was copied from http://en.wikipedia.Org/wiki/File:Aco_branches.svg, 
and is distributed under the provisions of the GNU Free Documentation License.) 

Ants can not only find the optimal path to a food source, but they can also 
perform many other impressive tasks by working together. They can build complex 
networks of tunnels, either underground, or, in the case of weaver ants, in trees. 
Their colonies have specialized rooms for storing, mating, and caring for larvae. 
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They can plant gardens to cultivate their own food source [Schultz, 1999]. They 
can form chains to cross gaps over the ground or over water (see Figure 10.2). They 
can form rafts to survive a flood, or to travel across water. 

Figure 10.2 Ants form a bridge between leaves. Ants use bridges not only for 
transportation, but also to pull leaves together during nest construction. Many other 
photographs like this can be found in [Hölldobler and Wilson, 1994]. (This photograph was 
taken by Sean Hoyland, was copied from http://en.wikipedia.Org/wiki/File:SSL11903p.jpg, 
and is distributed under the provisions of the GNU Free Documentation License.) 

Overview of the chapter 

In this chapter we discuss ant colony optimization (ACO), which is an algorithm 
that is motivated by the pheromone-depositing behavior of ants. Most ACO re-
searchers emphasize that it is not an EA since candidate solutions do not directly 
exchange solution information with each other. We include ACO in this book not 
because we want to engage in the EA/non-EA debate, but simply because ACO is 
an interesting and effective biologically-motivated, population-based optimization 
algorithm. 

ACO was developed by Martin Dorigo in his doctoral dissertation and was first 
published in 1991 [Colorni et al., 1991]. In Section 10.1 we discuss the pheromone 
deposition of biological ants, its evaporation, and mathematical models that de-
scribe these processes. In Section 10.2 we discuss the ant system (AS), which was 
proposed in the mid-1990s, and which was the first ACO algorithm. ACO was 
originally proposed to find optimal paths, but was quickly modified to deal with 
optimization problems with continuous domains, and that is what we discuss in 
Section 10.3. In Section 10.4 we discuss some popular modifications that have 
been made to the basic ant system algorithm, including the max-min ant system 
(MMAS) and the ant colony system (ACS). In Section 10.5 we give a brief overview 
of ACO research in the area of theory and modeling. 
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10.1 PHEROMONE MODELS 

Suppose that we observe an ant nest and a food source, and that ants have two 
possible routes to obtain food. One route is long, and the other is short, as shown 
in Figure 10.3. Goss and his coworkers ran many experiments of this type with the 
Argentine ant, and they found that in 95% of their experiments, over 80% of the 
ant traffic was on the shorter path [Goss et al., 1989]. As ants reached the fork of 
the path, they made a random decision which path to take. The ants that chose 
the shorter path were able to return to their nest sooner than the ants that chose 
the longer path. This resulted in more ants taking the shorter path per unit time. 
This, in turn, resulted in more pheromone deposition on the shorter path. Finally, 
the larger amount of pheromone on the shorter path motivated later ants to take 
that path. 

Nest \ 7 Food 

Figure 10.3 An experimental setup to explore how ants find the shortest distance to food. 
In 95% of the experiments, over 80% of the ant traffic was on the shorter path. Adapted 
from [Goss et al., 1989]. 

We see that ant travel is a positive feedback phenomenon, at least to a certain 
point. There were always some ants that chose the longer path because their 
choices are partially governed by random processes. However, in general, as more 
ants choose the shorter path, the shorter path receives more pheromone; and as the 
shorter path receives more pheromone, more ants choose it. 

This positive feedback phenomenon is also a characteristic of EAs. For example, 
in G As, individuals in the first generation with beneficial genetic features are more 
likely to be selected for recombination. This means that the second generation is 
more likely to possess those genetic features. The increased prevalence of those 
beneficial features in the second generation then makes it more likely that they will 
be passed on to the third generation. This positive feedback phenomenon is seen 
not only in ACO and GAs, but in all EAs. 

Pheromones are not only deposited by ants, but they also evaporate. Goss 
performed another experiment in which only one path was available to the ant 
colony. The ants ran back and forth between their nest and the food source on this 
path because they did not have any other options. After a while, Goss added a 
short path to the food, as shown in Figure 10.4. The ants now had a choice, but 
all of the pheromone was on the long path. However, when ants reach a fork in the 
road, they do not automatically take the pheromone-saturated path. They are more 
likely to take a path with more pheromones, but there is also a random element to 
their behavior. Therefore, some of the ants took the newly-presented short path. 
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As they took this short path, they deposited pheromones on it, which made it 
more attractive to subsequent ant travelers. In about 20% of the experiments, the 
majority of ants ended up taking the short path, even though it did not have any 
initial pheromone deposits. This demonstrates the fact that pheromones evaporate. 
However, in this experiment, they did not evaporate quickly enough for the ants to 
take the shorter path more often than the longer path. 

After 30 Minutes 

r 

Figure 10.4 An experimental setup to explore how ants react when a shorter path to 
food is added. In 20% of the experiments, over 50% of the ant traffic converged to the shorter 
path. Adapted from [Goss et al., 1989]. 

In view of these experiments, and others like them, Deneubourg and his col-
leagues proposed a mathematical model for the deposition and evaporation of 
pheromone [Deneubourg et al., 1990]. Given two paths to choose from, the proba-
bility that an ant chooses path 1 is given by 

(mi+k)h 

Pl (mi + k)h + (ma + k)h (W ' 

where rrii is the number of ants that have previously chosen path z, and h and k are 
experimentally-determined parameters. This initial model does not take pheromone 
evaporation into account. Typical values for k and h are 

A; « 20, /i « 2. (10.2) 

Figure 10.5 shows the results of a simulation of Equation (10.1), which applies to 
two paths of equal length. The top plot shows that the behavior of the first 100 
ants is not predictable. The ants' behavior is mostly random, and there is about a 
50% chance that an ant will choose either path 1 or path 2. The bottom plot shows 
that as one path starts to receive the majority of pheromone deposits, it becomes 
more attractive, which results in the postive feedback phenomon that we discussed 
earlier in this section. Eventually 100% of the ant traffic will be on only one of the 
two paths. 

We see that ants are able to find optimal solutions to the problems that they 
encounter in their everyday lives. This motivates us to simulate artificial ants to 
find optimal solutions to engineering problems. 
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Figure 10.5 Simulation results of Equation (10.1). Initially the ants have about a 
50% chance of choosing either path. After awhile, one path receives the predominance 
of pheromone, which results in a positive feedback phenomenon, and 100% of the ant traffic 
settles on one of the two paths. 

10.2 ANT SYSTEM 

The ant system was the first ACO algorithm that was published [Colorni et al., 
1991], [Dorigo et al., 1996]. It can be illustrated on the traveling salesman problem 
(TSP; see Section 2.5 and Chapter 18). Each ant in the ACO simulation travels 
from one city to another, and the simulation deposits pheromone on the ants' paths 
after they complete their trip. Pheromones are not only deposited, but they also 
evaporate. The probability that an ant travels from its current city to some other 
city is proportional to the amount of pheromone between the cities. Ants are also 
assumed to have some knowledge about the problem that helps them make decisions 
during their travels. They know the distance from their current city to other cities, 
and they are more likely to travel to a close city than to a distant city, since the 
objective of the algorithm is to find the shortest path. The ant system algorithm 
is illustrated in Figure 10.6. 

Figure 10.6 shows that the probability of each ant traveling from city i to city j 
is proportional to the amount of pheromone on the path between those cities, and 
is inversely proportional to the distance between those cities. The ratio a/ß deter-
mines the relative importance of pheromone information to distance information 
when deciding which city to travel to. When an ant travels from city i to city j , 
the amount of pheromone on that path is increased in an amount proportional to 
the quality of that ant's solution (that is, inversely proportional to the ant's total 
travel distance). 

Figure 10.6 is a fairly complete algorithm, but there are still some implementation 
details that are left to the programmer. For example, is τ^ — τ^? In a biological 
ant system, the amount of pheromone between nodes i and j is the same as the 
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n — number of cities 
α, β — relative importance of pheromones vs. heuristic information 
Q = deposition constant 
p = evaporation rate G (0,1) 
T~ij — To (initial pheromone between cities i and j) for i G [l,n] and j G [l,n] 
dij = distance between cities i and j for z G [1, n] and j G [1, n] 
While not (termination criterion) 

For q = 1 to n — 1 
For each ant /c G [1, N] 

Initialize the starting city c^i of each ant k G [1, TV] 
Initialize the set of cities visited by ant k: Ck <- {cki} for k G [1, N] 
For each city j G [1, n], j £ Ck 

probability p£> ^ ( ^ / < ) / ( E m ^ i ^ c , ^ / ^ ) 
Next j 
Let ant /c go to city j with probability p\^ 
Use Cfc,q+i to denote the city selected in the previous line 
Ck < - C f c U { c M + i } 

Next ant 
Next q 
Lk <r- total path length constructed by ant /c, for k G [1, iV] 
For each city z G [1, n] and each city j G [1, n] 

For each ant ke[l,N] 
If ant /c went from city i to city j 

else 
Δ τ « <- Q/Lk 

Δ τ ^ ^ Ο 
End if 

Next ant 

Next city pair 
Next generation 

Figure 10.6 A simple ant system (AS) for solving a TSP. Each generation, some of the 
pheromone between cities i and j evaporates, but the pheromone also increases due to ants 
that travel between the two cities. 

amount between nodes j and i, but this is not necessary in ant system simulations. 
It can easily be imagined that travel from node i to j could lead to a good solution, 
while travel from node j to i could lead to a poor solution. This would result in 
Tij φ Tji, which corresponds to the asymmetric TSP (see Figure 10.7). 

Other implementation details that could be added to Figure 10.6 include in-
telligent initialization, elitism, and mutation. First, ACO performance, like EA 
performance, can strongly depend on proper initialization (see Section 8.1). For 
the TSP we may want to initialize certain individuals using a simple heuristic al-
gorithm. For example, at the first generation we could force one of the ants to 
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Figure 10.7 In this example, we assume that the tour begins at node 1. The tour on 
the left is much worse (that is, it has a longer distance) than the tour on the right, but both 
tours have paths between nodes 2 and 3. Since the tour on the left is long and the tour on 
the right is short, we would expect T23 to be less than T32 for an effective ACO algorithm; 
that is, it should be less attractive to go from node 2 to 3, than to go from node 3 to 2. 

deterministically visit the closest city at each decision point. We discuss TSP ini-
tialization in more detail in Section 18.2. Second, elitism can be used in ACO, just 
as in any EA (see Section 8.4). Elitism could be incorporated by keeping track of 
the best few ants each generation, and forcing them to repeat the same route at the 
next generation. This ensures that the best route is not lost from one generation 
to the next. An ant system algorithm with elitism is sometimes called an elitist ant 
system [Dorigo et al., 1996], [Blum, 2005a]. Third, mutation could also be used in 
ACO, just like in any EA (see Section 8.9). Mutation could be incorporated by ran-
domly altering routes with some mutation probability. Researchers have proposed 
several mechanisms for mutating TSP routes, which we discuss in Section 18.4. 

Figure 10.6 shows that there are several parameters that need to be tuned for 
an ant system. These parameters include: 

• The number of ants N, which is the population size; 

• a and ß, which are the relative importance of pheromone amounts and heuris-
tic information; 

• <3, which is the deposition constant; 

• p, which is the evaporation rate; 

• To, which is the initial pheromone amount between each city. 

The effects of these parameters have been studied by several researchers. As a 
typical example of recommended values [Dorigo et al., 1996]: 

• N = n (that is, number of ants = number of cities); 

• a = 1 and ß = 5; 

• Q = 100, although its effect is not significant; 

• pe [0.5,0.99]; 

• r0 « 10- 6 . 



SECTION 10.2: ANT SYSTEM 2 4 9 

■ EXAMPLE 10.1 

This example applies the ant system algorithm of Figure 10.6 to the Berlin52 
TSP, which consists of 52 locations in Berlin, Germany [Reinelt, 2008]. Berlin52 
is a symmetric TSP, which means that we are given a set of nodes and dis-
tances between each pair of nodes, and our goal is to find a round trip of 
minimal total length while visiting each node exactly once. In a symmetric 
TSP, such as the Berlin52 TSP, the distance from node i to j is the same as 
from node j to i. We use the following ant system parameters: 

• N = 53;1 

• a = 1 and ß — 5; 

• Q - 20; 

• p = 0.9; 

• T0 = l O " 6 ; 

• In general, τ^ -φ τ^ ; 2 

• Random initialization; 

• Two elite ants each generation; 

• No mutation. 

Figure 10.8 shows the best tour of the initial population, with a total dis-
tance of 24,780. We see that the best initial tour appears to be quite poor. 
Figure 10.9 shows the convergence of the AS as it searches for the best tour. 
We see that the AS converges very quickly, and elitism ensures that the best 
tour never increases in total distance from one generation to the next. Fig-
ure 10.10 shows the best tour found by the AS after 10 generations, with a 
total distance of 7,796. We see that ACO has found a much better tour than 
the best one from the initial population, and the total distance has decreased 
by 69%. 

Finally, Figure 10.11 shows the globally optimal tour, which has been 
proven to be optimal, and which has a total distance of 7,542. Compar-
ing Figures 10.10 and 10.11, we see that ACO has found a tour that is similar 
to the optimal tour, and that is only 3% worse than the optimal tour. Ev-
ery ACO simulation will find a different solution since ACO is a stochastic 
algorithm. But considering the fact that there are 51! = 1.6 x 1066 potential 
solutions to this problem, ACO does quite well to find a solution that is only 
3% worse than optimal. 

lrThe standard population size for ACO varies from one paper to the next. Many ACO and TSP 
papers use N = n, while others use N = n + 1. 
2Usually Tij = Tji is recommended (but not required) for symmetric TSPs. 
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Figure 10.8 The best initial tour out of 53 random tours for Example 10.1, with a total 
distance of 24,780. 
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Figure 10.9 Ant system convergence of Example 10.1. 
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Figure 10.10 The best tour found after 10 ant system generations for Example 10.1, with 
a total distance of 7,796. This is 69% better than the best initial tour shown in Figure 10.8, 
and 3% worse than the globally optimal tour shown in Figure 10.11. 
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Figure 10.11 The globally optimal tour for Example 10.1, with a total distance of 7,542. 
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10.3 CONTINUOUS OPTIMIZATION 

ACO was originally developed for TSP-like problems, but it has since been modi-
fied for optimization problems with continuous domains [Socha and Dorigo, 2008], 
[Tsutsui, 2004], [de Franca et al., 2008]. One simple approach for applying a dis-
crete optimization algorithm like ACO to a continuous-domain problem is to divide 
each dimension i of the search space into discret ized intervals. That is, we are 
trying to minimize the n-dimensional problem f(x), where x = [xi, · · ·, x n ] , and 

Xi c: [^i,min5 ^i,maxj 

Zi,min = bn < bi2 < ' ' ' < biyBi = ^ ,max (10.3) 

where B{ — 1 is the number of discrete intervals into which we divide the i-th 
domain. Each generation, if the z-th domain of a candidate solution is between bij 
and &i,j+i, then we update the pheromone of that interval as in the standard ant 
system algorithm: 

if xi e \bij,bij+\] t n e n Tij <- Tij + Q/f(x) (10-4) 

where Q is the standard ant system deposition constant, and we assume that 
f(x) > 0 for all x. Equation (10.4) is analogous to the statement Δ τ ^ ' <— Q/Lk 
in Figure 10.6. We use pheromone amounts to probabilistically construct new so-
lutions at the beginning of each generation. If the interval [δ^,δζ,^+ι] has a lot of 
pheromone, then there is a large probability that a candidate solution will be con-
structed such that its i-th dimension is in that interval. One way of doing this is to 
set the i-th. dimension of the candidate solution to a random number r G [bij,bij+i\. 

Figure 10.12 outlines a continuous ant system algorithm. Figure 10.12 assumes 
that the cost function, which is denoted as L^, is positive for all k. If this property 
is not satisfied for a given problem, then the cost values of the population should 
be shifted so that it is satisfied. Figure 10.12 does not show the elitism option, 
but we can (and should) easily include elitism as described for EAs in Section 8.4. 
A continuous AS could also be combined with local search so that after an ant is 
placed in a discrete bin, local search is used to find the optimal solution within that 
bin. 

The use of discretized intervals for each problem dimension is a simple way 
to extend the AS to continuous problems. A more rigorous implementation of a 
continuous ant system could use kernels to construct a continuous approximation 
to the discrete PDF that is represented by the pheromone amounts [Simon, 2006, 
Chapter 15], [Blum, 2005a]. 
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n = number of dimensions 
Divide the i-th dimension into Bi — 1 intervals as shown in Equation (10.3), z G [l,n] 
a — importance of pheromone amounts 
Q = deposition constant 
p = evaporation rate G (0,1) 
Tij. — To (initial pheromone) for i G [l,n] and ji G [ 1 , ^ — 1] 
Randomly initialize a population of ants (candidate solutions) α^, k G [1, N] 
While not (termination criterion) 

For each ant α^, k G [1, N] 
For each dimension i G [l,n] 

For each discretized interval [bij, bij+ι], j G [l,Bi — 1] 
Probability p£> <- τ « / Σ ^ τ&, 

Next discretized interval 
afe(^t) <- ^ ß ü A j + i ] w i t n probability p ^ ' 

Next dimension 
Next ant 
L/e 4— cost of solution constructed by ant α&, A; G [1, iV] 
For each dimension i G [l,n] 

For each discretized interval [6^·,6^·+ι], j G [ l , ß i — 1] 
For each ant α&, /c G [1, iV] 

If afc(xi) G [&tj,6*,j+i] 

else 
Δτ<*> f- Q/Lfc 

Ari f c ) <- 0 
End if 

Next ant 
τ ί , Μ ΐ - Α θ ^ + Σ ^ ι Δ τ ^ 

Next discretized interval 
Next dimension 

Next generation 

Figure 10.12 A simple ant system (AS) for solving a continuous-domain minimization 
problem. ak(xi) is the i-th. element of the k-th. candidate solution. Each generation, 
pheromone in each bin evaporates, but the pheromone also increases in an amount 
proportional to the number of ants that construct a candidate solution in that bin. 
U[bij,bij+i] is a random number that is uniformly distributed between bij and bij+i. 

EXAMPLE 10.2 

In this example we optimize the 20-dimensional Ackley function (see Ap-
pendix C.1.2). We use the algorithm of Figure 10.12 with the following pa-
rameters: 

• N = 50; 

• a = 1; 
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• Q = 20; 

• p = 0.9; 

• To - 10- 6 ; 

• Two elite solutions each generation; 

• Mutation rate = 1% per dimension per individual per generation; 

• Number of intervals Bi = 40 or 80, for i G [1, n]. 

Figure 10.13 shows the best solution at each generation, averaged over 20 
Monte Carlo simulations, for both 40 and 80 intervals per dimension. We see 
that convergence is better for more intervals per dimension, but computation 
time increases as the number of intervals increases. There are two reasons 
for this that can be seen from Figure 10.12. The first reason is the "for 
each discretized interval" loops. The second reason is that the decision of 
which interval in which to place dk(xi) is more complicated. However, it 
should be noted that for most real-world optimization problems, the cost 
function calculation is the primary computational consideration, so the extra 
computation required for discret ized domain intervals may not be a major 
problem (see Chapter 21). 
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Figure 10.13 Example 10.2: Convergence of the continuous ant system applied to the 20-
dimensional Ackley function. The plots show the best solution at each generation averaged 
over 20 Monte Carlo simulations. We get better performance if we distribute pheromone 
over more intervals per dimension. 
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10.4 OTHER ANT SYSTEMS 

Many modifications have been made to the standard ant system algorithm that 
is described in the previous sections. This section describes two basic modifica-
tions: the max-min ant system in Section 10.4.1 and the ant colony system in 
Section 10.4.2. 

10.4.1 Max-M in Ant System 

The max-min ant system (MMAS) is a simple modification to the standard ant 
system algorithm [Dorigo et al., 2006], [Stützle and Hoos, 2000]. It is characterized 
by two main features. First, pheromone is increased only by the best ant each 
generation. This has the effect of reducing exploration and increasing exploitation 
of the best known solution. Second, the pheromone amount is bounded from above 
and below. This has the opposite effect; that is, it increases exploration because 
even the worst tours retain a nonzero amount of pheromone, and even the best tours 
cannot get so much pheromone that they completely dominate the ants' decisions. 

The first difference between the standard ant system algorithm and MMAS can 
be seen in the following equations, which are replaced in Figures 10.6 and 10.12: 

N 

Standard AS: T{j «- (1 - ρ)τίό + ] Γ Δ τ $ ° 
fc=l 

MMAS: Tij <- (1 - p)ria + Ar^b e s t ) (10.5) 

where best is the index of the best candidate solution. In the TSP of Figure 10.6, 
Δτ^· es is given as 

Δ (best) ^_ f Q/Lbest if city i -> city j belongs to the best tour , , 
*·*' (̂  0 otherwise ^ ' ' 

and in the continuous AS of Figure 10.12, Δ τ ^ es is given as 

Λ (best) j Q/Lbest if the z-th dimension of the best individual G [&ij,&i,j+i] 
*■? 1 0 otherwise. { 

(10.7) 
The second difference between the standard ant system algorithm and MMAS is 
implemented with the following simple equations after τ^ has been updated: 

τ^ 4— max(r^j, Tm[n) 

Tij <- min(Ttj, r m a x ) (10.8) 

where Tmm and r m a x are tuned for the specific problem that is being optimized. 
With some imagination, we can see that MMAS could be generalized in several 

different ways. For example, instead of allowing only by the best ant to deposit 
pheromone, we could allow the best M ants to deposit pheromone, where M is a 
tuning parameter. Or we could allow the m-th best ant to deposit pheromone with 
probability p m , where pm decreases with increasing cost. Assuming that we want 
more exploration at the beginning of the optimization process and more exploitation 
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at the end of the process, we could increase (rm a x — rmin) as the generation count 
increases. With some imagination and experimentation, we could undoubtedly also 
find other extensions of MMAS that would improve performance on various kinds 
of problems. 

■ EXAMPLE 10.3 

In this example we repeat the minimization of the Ackley function with n — 20 
dimensions as in Example 10.2. We use the following parameters: 

• N = 40; 

• a = 1; 

• Q = 20; 

• p = 0.9; 

• r0 - 10"6; 

• Two elite candidate solutions each generation; 

• Mutation rate 1% per dimension per individual per generation; 

• Number of intervals Bi = 20 for i G [1, n]; 

• Tmin = 0 and r m a x = oo. 

We only allow M ants to deposit pheromone: 

r y ^ ( l - p ) r i j + A ^ e s t m ) (10.9) 

for m G [1,M], where bestm is the index of the ra-th best individual each 
generation. That is, only the best M ants deposit pheromone on the domain 
that they have explored. Other than this change, the algorithm we use in 
this example is the same as the ant system algorithm in Example 10.2. Fig-
ure 10.14 shows the best solution at each generation, averaged over 20 Monte 
Carlo simulations, for M = 4 and M = 40. We see that convergence is much 
better when fewer ants are allowed to deposit pheromone. This makes sense 
intuitively. We do not want poor individuals to reinforce their solutions. 
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Figure 10.14 Example 10.3: Convergence of the continuous ant system applied to the 20-
dimensional Ackley function. The plots show the best solution at each generation averaged 
over 20 Monte Carlo simulations. We get better performance if we allow only the best ants 
to deposit pheromone on their solutions. 

D 

10.4.2 Ant Colony System 

The ant colony system (ACS) is an extension of AS [Dorigo and Gambardella, 
1997a], [Dorigo and Gambardella, 1997b], [Dorigo et al., 2006]. In spite of their 
common roots, AS and ACS are quite different in their behavior and performance. 
ACS is characterized by two main extensions to AS. First, a local pheromone update 
is implemented by each ant as it constructs its solution. As soon as an ant travels 
from city i to city j , the pheromone along that path is updated as follows: 

Tij <- (1 - φ)τίό + φτ0 (10.10) 

where φ e [0,1] is the local pheromone decay constant, and To is the initial 
pheromone amount. If φ = 0 then τ^ does not change and we are back to the 
original ant system. Equation (10.10) indicates that pheromone between cities i 
and j decays as ants travel that path. This is not biologically accurate,3 but it dis-
courages other ants from following the same path and hence encourages exploration 
and diversity. After all ants have constructed a candidate solution we implement 
one of the standard global pheromone update rules of Equation (10.5). 

The second extension that ACS makes to AS is the use of a pseudo-random 
proportional rule for candidate solution construction. Denote by (α& —> j) the event 

3Extensions to ACO and EAs often stray from the algorithms' biological foundations, but our goal 
is primarily to develop effective optimization algorithms rather than to accurately model biology. 
The biological roots of ACO and EAs primarily serve as inspiration. 
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that the k-th ant goes to city j while constructing its candidate solution. Denote 
by Pr(a/c —>· j) the probability that (α^ —> j). The difference between standard 
AS candidate solution construction and ACS candidate solution construction is the 
following: 

AS: Pv(ak ^ j) = pff (10.11) 

1 ifj/^argmaxjp^ j i f ψ < ^ 
ACS: Pr(afc ->► j) = < 0 otherwise 

Pi? if r > Co 

where r is a random number taken from a uniform distribution on [0,1], and 
qo £ [0,1] is a tuning parameter. In standard AS, probabilities are derived us-
ing pheromone amounts, and ant k decides which city to go to based on those 
probabilities (see Figures 10.6 and 10.12). However, in ACS, there is a qo probabil-
ity that ant k goes to the city with the highest probability (that is, with the largest 
amount of pheromone leading from the current city to it, denoted by the arg max 
function in Equation (10.12)); and there is a (1 — qo) probability that ant k uses 
the standard AS rule to decide which city to go to. This biases the ants to explore 
highly promising options in their solution construction. This is conceptually equiv-
alent to increasing the probability of high-pheromone paths, which is equivalent to 
increasing a in Figures 10.6 and 10.12. 

The ACS probabilities of Equation (10.11) when r > qo are only approximately 
accurate. For better accuracy, they should be normalized so that they sum to 1 
(see Problem 10.7). 

■ EXAMPLE 10.4 

In this example we investigate the use of the local pheromone decay constant 
φ in ACS. As in earlier examples in this chapter, we minimize the Ackley 
function with n = 20 dimensions. We use the following parameters: 

• N = 40; 

• a = 1; 

• Q = 20; 

• p = 0.9; 

• r0 - 10"6; 

• Two elite solutions each generation; 

• Mutation rate 1% per dimension per individual per generation; 

• Number of intervals Bi = 20 for i G [1, n]; 

• Tmin = 0 and r m a x = oo; 

• The best four ants deposit pheromone each generation; 

• Exploration constant qo = 0. 
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Figure 10.15 shows the best solution at each generation, averaged over 20 
Monte Carlo simulations, for 0 = 0, 0.001, and 0.01. We see that perfor-
mance is noticeably better with a nonzero value for the local pheromone decay 
constant. A positive value of φ encourages more exploration, which results 
in faster convergence. However, if φ is too large, other ants are discouraged 
too strongly from exploring previously used paths, and performance becomes 
worse. To make more firm conclusions, we should perform statistical signifi-
cance tests on the results of Figure 10.15 (see Appendices B.2.4 and B.2.5). 
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Figure 10.15 Example 10.4: Performance of the ant colony system (ACS) on the 20-
dimensional Ackley function. The traces show the best solution at each generation averaged 
over 20 Monte Carlo simulations for various values of the local pheromone decay constant. 
We get better performance with φ > 0, but if φ is too large then performance suffers. 

EXAMPLE 10.5 

In this example we investigate the use of the exploration constant qo in ACS. 
As in earlier examples in this chapter, we minimize the Ackley function with 
n = 20 dimensions. We use the same ACS parameters as in Example 10.4, 
except that we fix the local pheromone decay constant φ = 0 and test various 
values of qo. Figure 10.16 shows the best solution at each generation, aver-
aged over 100 Monte Carlo simulations, for q0 = 0, 0.001, and 0.01. We see 
that performance is slightly better with a nonzero value for the exploration 
constant. A positive value of qo provides a greater bias to the ants to use 
more favorable solution features. However, if qo is too large, then the ACS 
does not have enough exploration and performance becomes worse. To make 
more firm conclusions, we should perform statistical significance tests on the 
results of Figure 10.16 (see Appendices B.2.4 and B.2.5). Also note that these 
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results are highly dependent on the particular problem that we solve, and on 
the other parameter settings listed in the previous example. Most ACS imple-
mentations use high values of #o, such as qo = 0.9 [Dorigo and Gambardella, 
1997b]. 

20 30 
Generation 

Figure 10.16 Example 10.5 performance of the ant colony system (ACS) on the 20-
dimensional Ackley function. The traces show the best solution at each generation averaged 
over 100 Monte Carlo simulations for various values of the exploration constant. We get 
better performance with qo > 0, but if go is too large then performance suffers. 

10.4.3 Even More Ant Systems 

Space prevents us from going into detail about other ant systems, but there are 
a few notable variations that we mention briefly here. In the elitist ant system, 
the best solution deposits pheromone every time the other ants deposit pheromone 
[Dorigo and Stützle, 2004, Chapter 3]. The Δ τ calculation in Figure 10.12 is thus 
modified as follows: 

Standard AS: Δ τ ^ } 

Elitist AS: Δτ, (k) 
<-

StfQ/Lk 
Ô^Q/Lk + ô%est)Q/Lhest (10.12) 

(*) where 6\y — 1 if the z-th dimension of the /c-th candidate solution lies in the j - t h 
discretized interval, and best is the index of the best individual in the population. 
We see that in the elitist ant system, every time an ant deposits pheromone, the 
best ant also does so. 

Ant-Q is a hybrid of AS and Q-learning [Gambardella and Dorigo, 1995]. In rank-
based AS, the amount of pheromone deposited depends not only on an ant's solution 
quality, but also on its rank relative to the other ants [Dorigo and Stützle, 2004, 
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Chapter 3]. Approximated non-deterministic tree search (ANTS) specifies certain 
mechanisms to define how attractive a move is, and how to update pheromone 
[Maniezzo et al., 2004]. The best-worst AS deposits extra pheromone on the best 
solution, applies extra evaporation on the worst solution, and also uses mutation 
to encourage exploration [Cordon et al., 2000]. The hypercube ACO algorithm 
limits pheromone amounts to the interval [0,1] to regularize the behavior of ACO 
on problems with different objectives, and to facilitate is theoretical investigation 
[Blum and Dorigo, 2004]. The population-based ACO maintains a population of 
pheromone histories rather than storing all information in a single pheromone map; 
it uses this population to modify the update algorithm [Guntsch and Middendorf, 
2002]. Beam ACO is a hybrid of ACO and beam search, which is a popular tree 
search algorithm [Blum, 2005b]. 

10.5 THEORETICAL RESULTS 

Ever since experimental results first began to show that ACO works, researchers 
have been working on developing ACO theory to explain when, why, and how it 
works. The first convergence proofs of ACO were given in [Gutjahr, 2000]. Since 
then various convergence proofs for various types of ACO algorithms have been 
published [Dorigo and Stiitzle, 2004]. Most of these proofs claim something like, 
"Given enough time, ACO will eventually find the best solution to a combinatorial 
optimization problem." Convergence results like this are mathematically inter-
esting, but have limited practical interest. As long as the pheromone along each 
branch is maintained within lower and upper bounds as in the MM AS, there is 
always a nonzero probability of each ant exploring each possible branch of the so-
lution space, so that given enough time, every branch will be explored. This means 
that eventually the optimal solution will be found. Of course, any stochastic search 
algorithm with a nonzero probability of searching each possible candidate solution 
will eventually converge. Even the simplest random search will eventually converge 
[Back, 1996]. 

More interesting theoretical results are along the lines of time to convergence 
[Gutjahr, 2008], [Neumann and Witt, 2009], probability of convergence within a 
given time, scalability with problem size, and descriptive mathematical models 
such as Markov models or dynamic system models (see Chapter 4 for mathematical 
models for G As). Note that theoretical results for combinatorial problems are 
much different than theoretical results for continuous-domain problems. Also, if 
ACO could be shown to be equivalent to other optimization algorithms for which 
more interesting convergence proofs exist, then those convergence proofs might be 
able to be adapted to ACO to strengthen its theoretical foundations. 

ACO has already been shown to be equivalent to the stochastic gradient ascent 
(SGA) and cross entropy (CE) optimization algorithms under certain conditions 
[Meuleau02 and Dorigo, 2002], [Zlochin et al., 2004], [Dorigo and Stiitzle, 2004]. 
SGA and CE are model-based optimization algorithms that construct solutions on 
the basis of a parameterized probability distribution over the search space. The 
evaluation of candidate solutions is used to modify the probability distribution so 
that it is biased toward better candidate solutions. 
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10.6 CONCLUSION 

Some ACO researchers emphasize that ACO is not an algorithm but is instead a 
meta-heuristic because of its many variations. However, we could say that about 
any of the algorithms discussed in this book (GAs, EP, ES, GP, and so on); they all 
have many variations, and so they are all met a-heuristics. The difference between 
an algorithm and a meta-algorithm is one of degree, and so the difference is not 
black and white. Most ACO researchers emphasize that ACO is not an evolutionary 
algorithm because individuals do not exchange information with each other in the 
traditional sense of EAs. As we have seen in this chapter, although ACO solution 
construction parameters evolve over time, it is true that ACO individuals do not 
directly share information with each other. 

Most of our discussion in this chapter has focused on trail pheromones. However, 
ants deposit other pheromones for purposes other than marking paths. The typical 
ant colony uses as many as 20 different pheromones [Hölldobler and Wilson, 1990, 
Chapter 7]. For example, ants deposit alarm pheromones when they are crushed. 
This can stimulate other ants to agressively fight the predator that crushed their 
colleague [Sobotnik et al., 2008]. These types of pheromones could be simulated in 
an ACO algorithm by having a poor solution broadcast information that discourages 
other individuals from repeating its poor strategy. This is similar to the negative 
reinforcement PSO discussed in Section 11.6. 

Female ants deposit epideictic pheromones when they lay their eggs to signal 
other females of the same species to lay their eggs elsewhere [Gomez et al., 2005]. 
Animals deposit territorial pheromones to mark their territory [Home and Jaeger, 
1988]. Territorial pheromones are present in the urine of cats and dogs, which 
they deposit on the boundaries of their claimed territory. Animals release sex 
pheromones to communicate their availability for breeding [Wyatt, 2003]. Ants 
release recruitment pheromones to attract other ants to some place where work 
is required [Hölldobler and Wilson, 1990]. These types of pheromones could be 
simulated in ACO by having individuals broadcast information about previously 
explored territory in the search space to prevent other individuals from searching 
in regions that have already been explored, or to encourage other individuals to 
explore promising regions of the search domain. Ants can also release task-specific 
pheromones [Greene and Gordon, 2007]. This could be simulated in ACO for 
multi-objective optimization with different individuals pursuing the optimization of 
different sub-problems. We see that there are many opportunities for biologically-
motivated extensions of ACO. 

Additional reading about ACO can be found in books [Bonabeau et al., 1999], 
[Dorigo and Stiitzle, 2004], [Solnon, 2010]; book chapters [Maniezzo et al., 2004], 
[Dorigo and Stiitzle, 2010]; and tutorial papers [Blum, 2005a], [Blum, 2007]. Other 
directions for future research in ACO are similar to research priorities for other 
optimization algorithms [Dorigo et al., 2006]. How can ACO be applied to dynamic 
optimization problems for which the search space changes with time, and how can 
ACO be applied to stochastic optimization problems with noisy fitness function 
evaluations (see Chapter 21)? How can ACO be applied to multi-objective op-
timization problems (see Chapter 20)? How can ACO be hybridized with other 
evolutionary algorithms? 
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PROBLEMS 

Written Exercises 

10.1 Give an example in a real-world problem when the cost of traveling from 
node A to node B would be different than the cost of traveling from node B to 
node A. 

10.2 Let t be the total number of ants so that m\ « p\t and 777,2 ~ Vrt m 

Equation (10.1). 
a) What are the equilibrium ratios οΐρι/ρζΊ 
b) Which of the equilibrium ratios are stable, and which are unstable? 

10.3 Suppose β = 1 in the ant system of Figure 10.6. If two path segments have 
equal amounts of pheromone and segment 1 is half as long as segment 2, how much 
more likely is an ant to travel on segment 1 than segment 2? What if β = 2? What 
if β = 3? 

10.4 The ant system of Figure 10.6 sets the pheromone deposit of the k-th ant 
to Δ τ ^ = ô\jQ/Lk, where δ\^ = 1 if the k-th. ant went from city i to city j , 
and ô\j = 0 otherwise. Suppose we instead set it to £>· er^·, where e is a tuning 
parameter. 

a) What range of e makes the pheromone update equation stable? 
b) What is the equilibrium value of r^ in this case? Is this a desirable equi-

librium value? 

10.5 In the standard continuous-domain AS of Figure 10.12, the ra-th ant's 
pheromone deposit is Δτ^· = Q/Lm. Suppose we instead allow the ra-th ant 
to deposit pheromone with probability pm, where pm decreases with increasing 
cost, as mentioned at the end of Section 10.4.1: 

ι_ ^ i v r 
Pm ~̂~ £ m 2-/r=l r 

r «— C/[0,1] - that is, r is a random number uniformly distributed on [0,1] 
If r < Pm then 

Δ τ ^ <- Qx/Lm 

else 
Δ Τ ^ } 4r- 0 

End if 

What value should we use for Qi in the above algorithm so that the average 
pheromone amount deposited by the ra-th ant is equal to that deposited in the 
standard AS of Figure 10.12? 

10.6 How does computational effort in the continuous-domain ant system of Fig-
ure 10.12 increase with the population size? How does it increase with the problem 
dimension? How does it increase with the number of discretized intervals in each 
dimension? 
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10.7 A n t colony s y s t e m probabi l i t i es : 
a) Suppose we have an ACS with four cities and qo = 1/2. Suppose the k-th 

ant is in city 1, and that 

0(*) -
P u (fe) 
Pl2 = 

(k) 
Pl3 = 

(k) 
Pl4 '-

= 0 

= 1/4 

= 1/4 

= 1/2 

According to Equation (10.11), what is the probability that the k-th ant 
will proceed to each of the four cities? Do these probabilities sum to 1? 

b) Normalize the ACS probabilities Pr(a/e —> j) of Equation (10.11) so that 
the sum from j = 1 to n is 1. 

c) Use your answer to part (b) to calculate new probabilities for the scenario 
described in part (a). Do the new probabilities sum to 1? 

10.8 Propose a way to implement a rank-based AS such as the one mentioned in 
Section 10.4.3. 

10.9 Propose a way to implement a best-worst AS such as the one mentioned in 
Section 10.4.3. 

Computer Exercises 

10.10 This problem explores the effect of ß, which is the heuristic sensitivity of 
an ant system, on AS performance. Simulate the ant system of Example 10.1 20 
times, recording the best cost among all ants at each generation. Plot the average 
of the 20 Monte Carlo simulations as a function of generation number. Do this for 
ß — 0.1, 1, and 10. Discuss your results. 

10.11 Repeat Example 10.3 with M = 40. Run 20 Monte Carlo simulations 
for each of the following values of rm i n : 0, 0.001, 0.01, and 0.1. Plot the results. 
Comment on the effect of rm-m on AS performance. 

10.12 Repeat Example 10.3 with M = 40. Run 20 Monte Carlo simulations for 
each of the following values of rm a x : 1, 10, 100, and oo. Plot the results. Comment 
on the effect of rm a x on AS performance. 



CHAPTER 11 

Particle Swarm Optimization 

The particle swarm algorithm imitates human social behavior. 
—James Kennedy and Russell Eberhart [Kennedy and Eberhart, 2001] 

We observe collective intelligence in many natural systems. For example, ants 
exhibit an extraordinary level of collective intelligence, as we discussed at the be-
ginning of Chapter 10. In such systems intelligence does not reside in individuals 
but is instead distributed among a group of many individuals. This can be seen in 
flocks of animals as they avoid predators, seek food, seek to travel more quickly, 
and other behaviors. 

Animal groups can often avoid predators more effectively in a group than alone. 
For example, it might be easy for a lion to recognize a single zebra because of its 
contrast with the surrounding landscape, but a group of zebras blend together and 
are more difficult to recognize as individuals [Stone, 2009]. A group of animals 
might also appear to be larger, or sound louder, or be more threatening in other 
ways, than a solitary animal. Finally, it may be difficult for a predator to focus 
on a single animal when it is part of a large group. These phenomena are called 
the predator confusion effect [Milinski and Heller, 1978]. [Heinrich, 2002] gives an 
interesting description of how antelope use the predator confusion effect. 

Another way that groups protect themselves from predators is described by the 
many-eyes hypothesis [Lima, 1995]. When a large group forages for food or drinks 
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from a stream, random effects dictate that there will always be a few animals who 
are watching for predators. This collaboration not only provides more protection 
from predators, but also allows each individual more time for feeding and drinking. 

Finally, groups protect themselves from predators because of the encounter di-
lution effect [Krause and Ruxton, 2002]. This can take several forms. First, indi-
vidual animals might seek the cover and protection of a group as a type of selfish 
behavior to reduce their chance of being attached [Hamilton, 1971]. Second, as a 
predator wanders through its territory, it might be less likely to encounter a single 
group than one of many individuals scattered throughout the territory [Turner and 
Pitcher, 1986]. 

Animals also have more success in finding food when they are in groups than 
when they are alone. At first glance, this might not seem correct. After all, when an 
individual is in a group, it cannot approach its prey stealthily; and when it catches 
its prey, it has to share the food with others in the group. However, the success 
of groups in foraging is related to the many-eyes hypothesis in predator avoidance. 
With more eyes searching for food, the group has a disproportionately greater 
chance of success than a single animal that searches for food by itself [Pitcher and 
Parrish, 1993]. Also, a group increases its chances of success if it can surround its 
prey. 

Animals can also move more quickly when in groups than when alone. This is 
seen in bicycle riders who ride in a line and draft off of each other. The trailing 
riders might expend as much as 40% less energy than the lead rider because of wind 
resistance [Burke, 2003]. The same type of effect, albeit to a lesser extent, can be 
seen in speed skating, running, swimming, and other sports. In the animal world, 
drafting can be seen in groups of geese as they fly [McNab, 2002], groups of ducks 
as they paddle [Fish, 1995], and groups of fish as they swim [Noren et al., 2008]. 

Particle swarm optimization (PSO) is based on the observation that groups of 
individuals work together to improve not only their collective performance on some 
task, but also each individual performance. The principles of PSO are clearly seen 
not only in animal behavior but also in human behavior. As we try to improve our 
performance at some task, we adjust our approach based on some basic ideas. 

• Inertia. We tend to stick to the old ways that have proven to be successful 
in the past. "I've always done it this way, and so that is how I am going to 
continue doing things." 

• Influence by society. We hear about others who have been successful and we 
try to emulate their approaches. We may read about the success of others in 
books, or on the internet, or in the newspaper. "If it worked for them, then 
maybe it will work for me too." 

• Influence by neighbors. We learn the most from those who are personally 
close to us. We are influenced more by our friends than by society. In our 
conversations with others, we share stories of success and failure, and we 
modify our behavior because of those conversations. Investment advice from 
our millionaire neighbor or cousin will have a stronger influence on us than 
the more distant stories of billionaires that we read on the internet. 
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Overview of the Chapter 

Section 11.1 gives a basic overview of PSO and some simple examples. Section 11.2 
discusses ways of limiting the velocity of PSO particles, which is necessary for good 
optimization performance. Section 11.3 discusses inertia weighting and constriction 
coefficients, which are two features of PSO that indirectly limit particle velocities. 
Section 11.4 discusses the global PSO algorithm, which is a PSO generalization 
that uses the best individual at each generation to update each individual's ve-
locity. Section 11.5 discusses the fully informed PSO algorithm, in which every 
individual's velocity contributes to every other individual's velocity each genera-
tion. Section 11.6 approaches PSO learning from the other direction - if we can 
learn from others' successes, then we can also learn from their mistakes. 

11.1 A BASIC PARTICLE SWARM OPTIMIZATION ALGORITHM 

Suppose that we have a minimization problem that is defined over a continuous 
domain of d dimensions. We also have a population of N candidate solutions, 
denoted as {#«}, i 6 [1, iV]. Furthermore, suppose that each individual xi is moving 
with some velocity Vi through the search space. This movement through search 
space is the essence of PSO, and it is the fundamental difference between PSO 
and other EAs. Most other EAs are more static than PSO because they model 
candidate solutions and their evolution from one generation to the next, but they 
do not model the dynamics of the movement of the candidate solutions through the 
search space. 

As a PSO individual moves through the search space, it has some inertia and so 
it tends to maintain its velocity. However, its velocity can change due to a couple 
of different factors. 

• First, it remembers its best position in the past, and it would like to change 
its velocity to return to that position. This is similar to the human tendency 
to remember the good old days, and to try to recapture the experiences of the 
past. In PSO, an individual travels through the search space, and its position 
in the search space changes from one generation to the next. However, the 
individual remembers its performance from past generations, and it remem-
bers the search space location at which it obtained its best performance in 
the past. 

• Second, an individual knows the best position of its neighbors at the cur-
rent generation. This requires the definition of a neighborhood size, and it 
requires that all of the neighbors communicate with each other about their 
performance on the optimization problem. 

These two effects randomly influence an individual's velocity and are similar to our 
own social interactions. Sometimes we feel more stubborn than at other times, 
and so we are not strongly influenced by our neighbors. Other times we feel more 
nostalgic than at other times, and so we are more strongly influenced by our past 
successes. We summarize the basic PSO algorithm in Figure 11.1. 
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Initialize a random population of individuals {xi}, i G [1,N] 
Initialize each individual's n-element velocity vector t>j, i G [1,N] 
Initialize the best-so-far position of each individual: bi «— x^, i G [1, N] 
Define the neighborhood size σ < N 
Define the maximum influence values 0 i , m a x and 02,max 
Define the maximum velocity t>max 

While not (termination criterion) 
For each individual Xi, i G [1, AT] 

Hi «— {σ nearest neighbors of Xi} 
hi <- avgmmx{f(x) : x G Hi} 
Generate a random vector 0i with 0i(fc) ~ £/[0,0i,max] for k G [l,n] 
Generate a random vector 02 with 02(&) ~ t/[0,02,max] for A; G [1, n] 
fi <- Vi + 0 i ° (&i - Xi) + 02 ° (hi - Xi) 
If \vi\ > vmax then 

^ <- ViVmax/\Vi\ 

End if 
Xi ^ Xi i Vi 

bi <- a rgmin{ / (x i ) , / (6 i )} 
Next individual 

Next generation 

Figure 11.1 A basic particle swarm optimization algorithm for minimizing the n-
dimensional function /(a;), where xi is the i-th. candidate solution and v% is its velocity 
vector. The notation aob means element-by-element multiplication of the vectors a and b. 

Figure 11.1 shows that there are several tuning parameters in the PSO algorithm. 

• Not only do we have to initialize a population, as with every other EA, but 
we also have to initialize the population's velocity vectors. There are several 
ways to initialize velocities. For example, they could be initialized randomly, 
or they could be initialized to zero [Helwig and Wanka, 2008]. 

• We have to define the neighborhood size σ of the algorithm. Note that the 
term "neighborhood size" is ambiguous. Sometimes it means that each indi-
vidual has σ close neighbors, and sometimes it means that since there are a 
total of σ individuals in the neighborhood, each individual has (σ - 1) close 
neighbors. One of the initial PSO papers indicates that smaller neighbor-
hoods (as small as two) provide better global behavior and avoid local min-
ima, while larger neighborhoods provide faster convergence [Eberhart and 
Kennedy, 1995]. 

• We have to choose the maximum learning rates 0i )max and 02,max- The 
parameter 0 i , which is called the cognition learning rate, and 02, which is 
called the social learning rate, are random numbers distributed in [0,0i,max] 
and [0,02,max] respectively. We discuss these further in Section 11.3.3, but 
for now we simply note the rule of thumb that 0i,max and 02,max are often 
set to about 2.05. 
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• We have to choose the maximum velocity vmax. Empirical evidence indicates 
that each element of vm a x should be limited to the corresponding dynamic 
range of the search space [Eberhart and Shi, 2000]. This seems intuitive; if 
^max were greater than the dynamic range of the search space, then a particle 
could easily leave the search space in a single generation. Other results suggest 
setting vmax to between 10% and 20% of the search space range [Eberhart and 
Shi, 2001]. There are some problems for which we do not have a search space 
range in mind; that is, we do not have any idea ahead of time about the 
location of the optimum for which we are searching. In this case we should 
still enforce a finite vmax for best performance [Carlisle and Dozier, 2001]. 

• We could simplify the velocity update of Figure 11.1 as follows: 

Vi <- Vi + φχ(bi - Xi) + 02(^i - x%) (11-1) 

where φ\ and φι are scalars instead of vectors with φ\ ~ C/[0,0i,max] and 
02 ~ £/[O,02,max]· In this option, called linear PSO [Paquet and Engelbrecht, 
2003], each element of the velocity vector vi is updated with the same φ\ 
and 02 values. However, linear PSO is generally considered to provide worse 
performance than the standard algorithm of Figure 11.1. 

• As with most other EAs, elitism often improves the performance of PSO. We 
have not shown elitism in Figure 11.1, but we can easily implement elitism as 
discussed in Section 8.4. 

• The update equation x^ <— Xi + Vi in Figure 11.1 may result in Xi moving 
outside of the search domain. We usually implement some type of limiting 
operation to keep X{ within the search domain. For instance, we could include 
the following two equations after the update equation: 

Xi <- min(xi ,xm a x) 
Xi <- max(xi ,xm i n) (11-2) 

where [xmin,^max] defines the limits of the search domain. 

Particle Swarm Topologies 

Figure 11.1 shows that each particle is influence by its σ nearest neighbors. The 
arrangement of the neighbors that influence a particle is call the topology of the 
swarm. Since the neighborhood of each particle in Figure 11.1 changes each gener-
ation, it is called a dynamic topology. Since the neighborhood is local (that is, it 
does not include the entire swarm), it is also called an West topology. 

We can use many other methods to define the neighborhood of each particle [Akat 
and Gazi, 2008]. For instance, we could define neighborhoods at the beginning of 
the algorithm so that the neighborhoods are static and do not change from one 
generation to the next. Or, if the optimization process stagnates, we could at that 
time randomly redefine the neighborhoods [Clerc and Poli, 2006]. In the extreme 
case we can have a single neighborhood that encompasses the entire swarm, which 
means that Hi in Figure 11.1 is equal to the entire swarm for all z, and hi is 
independent of i and is equal to the best particle among the entire population. This 
is called the all topology or the gbest topology. This is the topology with which PSO 
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was originally developed, and it is still widely used. Another common topology is 
thering topology, in which each particle is connected to two other particles. The 
cluster topology is one in which each particle is fully connected within its own 
cluster, while a few particles in each cluster are also connected to an additional 
particle in another cluster. The wheel topology is one in which a focal particle is 
connected to all other particles, while all of the other particles are connected only 
to the focal particle. The square topology, also called the von Neumann topology, 
is one in which each particle is connected to four neighbors. Figure 11.2 depicts 
some of these topologies. PSO performance can vary strongly with topology, and 
researchers have experimented with many other topologies besides the few that we 
mention here [Mendes et al., 2004], [del Valle et al., 2008]. 

o ft m 
(c) (d) 

Figure 11.2 Some PSO topologies, (a) represents the ring topology, (b) represents the 
all topology, (c) represents the wheel topology, and (d) represents the square topology. The 
square topology wraps around from the top to the bottom, and from the left to the right, 
so that it forms a toroid with each particle connected to four neighbors. Each of these 
topologies can be either static or dynamic. 

11.2 VELOCITY LIMITING 

It has been found in many applications of PSO that if um a x is not used, PSO 
particles jump wildly around the search space [Eberhart and Kennedy, 1995]. To 
see why, consider the basic PSO algorithm of Figure 11.1, but with the simplification 
02 = 0. The position and velocity update in this case is 

Vi(t + 1) = Vi(t) + <j>i(bi - Xi) 

Xi(t + 1) = Xi{t) + Vi(t + 1) (11.3) 

where t is the generation number and φ\ is the cognition learning rate. This can 
be written as 

Xi(t + l) 

Vi(t + 1) 
1 01 1 

i i 1 
Xi(t) 

M*) J k. 

The eigenvalues of the matrix on the right side of the above equation are 

Λ _ 2 - φ! ± y/<fi - 401 

(11.4) 

(11.5) 

and these eigenvalues govern the stability of the system.1 If φ\ G [0,4] then both 
eigenvalues have a magnitude of 1, which means that the system is marginally 

xSee any book on linear systems, or [Simon, 2006, Chapter 1], for a discussion of stability. 
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stable, and that Xi(t) and Vi(t) could become unbounded as t -» oo, depending 
on initial conditions. If φ\ > 4, then one of the eigenvalues is greater than 1 
in magnitude, which means that the system is unstable, and that Xi(i) and Vi(t) 
increase without bound for almost any initial conditions. This simple example 
shows why it could be important to use vmax to limit the magnitude of Vi, as shown 
in Figure 11.1. 

However, this analysis assumes that bi is not a function of X{. Also, real im-
plementations of PSO are more complicated than Equation (11.3), so our analysis 
may not be valid for general PSO algorithms. If 02 > 0, or if an inertia weight less 
than 1 is used as we later discuss in Equation (11.9), then it may not be necessary 
to limit the velocity to get good performance [Carlisle and Dozier, 2001], [Clerc and 
Kennedy, 2002]. 

If we want to limit the velocity, then we could limit it in a couple of different 
ways. One way is to check the magnitude of Vi, and if it is greater than the scalar 
^max5 then scale the components of Vi so that \vi\ = vm8L^: 

If \vi\ > Umax then v{ < l-^- (11.6) 

as shown in Figure 11.1. Another way is to limit the magnitude of each compo-
nent of Vi. Recall that each individual in the population has n dimensions, so 
Vi = [ Vi(l) -" Vi(n) ] . 2 With this approach, the maximum velocity of each 
dimension is specified, so we have vmax(j) defined for j G [l ,n]. Velocity limiting 
of the i-th particle is then performed as follows: 

Vi(j)<-{ , Λ · fVM ΐ h r î î Î ^ r ! forje[l,n]. (H-7) 
U ; \ Vmax(j)81ga{Vi(j)) if \Vi(j)\ > VmaxO) J L J V ' 

Velocity limiting can be viewed as a control over the exploration-exploitation bal-
ance of PSO. A large vmSiX allows more change in each individual from one genera-
tion to the next, which emphasizes exploration. A small t>max restricts changes in 
individuals, which emphasizes exploitation. 

11.3 INERTIA WEIGHTING AND CONSTRICTION COEFFICIENTS 

To avoid velocity limiting, we can modify the velocity update equation in Fig-
ure 11.1 to prevent the velocity from increasing without bound. In this section, 
we first discuss the use of inertia weighting in Section 11.3.1. Then we discuss 
the equivalent but more commonly-used constriction coefficient in Section 11.3.2. 
Finally, we present some conditions for the stability of the PSO algorithm in Sec-
tion 11.3.3. 

11.3.1 Inertia Weighting 

An inertia weight is often used in PSO applications. As we see from the velocity 
update equation of Figure 11.1, a particle tends to maintain its velocity from one 

2Note that j in the term Vi(j) here indicates a specific element of the vector Vi, while t in the 
term Vi(t) in Equation (11.3) indicates the value of vi at the i-th generation. This notation is not 
consistent, but its meaning should be clear from the context. 



2 7 2 CHAPTER 11: PARTICLE SWARM OPTIMIZATION 

generation to the next, although some velocity changes are allowed due to the 
learning rates: 

Vi(k) <- Vi(k) + 0ι(6* - Xi(k)) + <fo{k)(hi(k) - Xi(k)) for k G [1, n] (11.8) 

where n is the problem dimension. However, it has been found empirically that 
decreasing inertia during the optimization process may provide better performance. 
Equation (11.8) is thus modified to the following equation: 

Vi(k) <- wvi(k) + 0i(fc)(&<(fc) - Zi(k)) + <MM*0 - Xi(k)) (11.9) 

where w is the inertia weight, which often decreases from about 0.9 at the first 
generation to about 0.4 at the last generation [Eberhart and Shi, 2000]. This helps 
slow down the velocity of each particle as the generation count increases, which 
improves convergence. 

[Clerc and Poli, 2006] recommend PSO parameters for velocity updates of the 
form of Equation (11.9). In that paper, the population size is set to 30, the neigh-
borhood size is set to four and the neighborhoods are fixed until the PSO process 
stagnates, at which time the neighborhoods are randomly reinitialized. The velocity 
update is implemented as shown in Equation (11.9) with the following recommended 
parameters [Clerc and Poli, 2006, Equation 19]: 

w = 0.72 
0i(k) ~ t/[0,1.108] for fee [l,n] 
02(A;) ~ i/[0,1.108] for k e [ l ,n]. (11.10) 

Reference [Clerc and Poli, 2006] also proposes other PSO variations for improved 
performance. The stability of PSO with the velocity update of Equation (11.9) is 
discussed in [Poli, 2008]. 

A more extensive set of recommended PSO parameters are found for velocity 
updates of the form of Equation (11.9) in [Pedersen, 2010] and are shown in Ta-
ble 11.1. These recommended parameters apply when the neighborhood for each 
particle is the entire swarm, so that hi (for all i) in Equation (11.9) is equal to the 
best individual in the population. 
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Problem Function 
Dimension Evaluations N w φ\ 02 

2 

2 

5 

5 

10 

10 

20 

20 

30 

50 

400 

4,000 

1,000 

10,000 

2,000 

20,000 

40,000 

400,000 

600,000 

100,000 

25 
29 

156 
237 

63 
47 

223 
203 

63 
204 

53 

69 

149 
60 

256 

95 

106 

0.3925 
-0.4349 

0.4091 
-0.2887 

-0.3593 
-0.1832 

-0.3699 
0.5069 

0.6571 
-0.2134 

-0.3488 

-0.4438 

-0.3236 
-0.4736 
-0.3499 

-0.6031 

-0.2256 

2.5586 
-0.6504 

2.1304 
0.4862 

-0.7238 
0.5287 

-0.1207 
2.5524 

1.6319 
-0.3344 

-0.2746 

-0.2699 

-0.1136 
-0.9700 
-0.0513 

-0.6485 

-0.1564 

1.3358 
2.2073 

1.0575 
2.5067 

2.0289 
3.1913 

3.3657 
1.0056 

0.6239 
2.3259 

4.8976 

3.3950 

3.9789 
3.7904 
4.9087 

2.6475 

3.8876 

100 200,000 161 -0.2089 -0.0787 3.7637 

Table 11.1 Recommended PSO parameters for various problem dimensions and 
available fitness function evaluations [Pedersen, 2010]. N is the population size, and 
w, 0i, and 02 are the recommended parameters for Equation (11.9) when each 
particle's neighborhood is comprised of the entire swarm. The table shows that some 
problem configurations have more than one recommended set of parameters because 
multiple sets of parameters give almost the same performance on the benchmarks. 

11.3.2 The Constriction Coefficient 

Instead of Equation (11.9), inertia weighting is often implemented with a constric-
tion coefficient. This implementation, which accomplishes the same thing as the 
inertia weight, involves writing the velocity update equation as 

Vi <- K [vi + φ\ (bi - Xi) + 02(hi - Xi)} (11-11) 

where K is called the constriction coefficient [Clerc, 1999], [Eberhart and Shi, 2000], 
[Clerc and Kennedy, 2002]. We have used the linear velocity update in Equa-
tion (11.11) to simplify our analysis. Equation (11.11) is equivalent to the linear 
form of Equation (11.9) if K = w, and if 0i and 02 in Equation (11.11) are replaced 
with φι/Κ and Φ2/Κ respectively. To analyze this approach, we use t to denote 
the generation number and we write Equation (11.11) as follows: 
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Vi(t+1) = K Vi{t) + (Φ1 + Φ2) 
4>Mt) + <fohj{t) 

Φ\ +02 
-Xi(t) 

= KlviW + fafaM-Xitb))] (11.12) 

where φτ and pi (t) are defined by the above equation. Now we define 

yi(t)=pi(t)-xi(t). (11.13) 

Assuming that pi(t) is constant with time, we can combine Equations (11.12) 
and (11.13) to get 

Vi(t + 1) = Kvi{t) + Kfcyiit) 

2/i(t + l) = pi-Xi(t + l) 

= pi -Xi(t) -Vi(t + 1) 
= yi(t) - Kvi(t) - K<fryi{t) 

= -Kvi(t) + (l-K<l>T)yi(t). 

These equations for Vi(t + 1) and yi(t + 1) can be combined to give 

Vi(t+1) 
Vi{t + 1) 

K Κφτ 

-K 1 - Κφτ 
Vi(t) 

Vi{t) 

(11.14) 

(11.15) 

The matrix on the right side of the above equation, which governs the stability of 
the system, has eigenvalues 

λ = i [l - Κ(φτ - 1) ± x/1 + Κ2{φτ - l ) 2 - 2Κ{φτ + 1)] 

= i [l - tf(0r - 1) ± VS] (11.16) 

where the discriminant Δ is defined by the above equation. We denote the eigen-
values as λι and Ä2: 

λχ = I [i - ^ ( ^ -1) + VÂ] 

λ2 = I [ I - ^ ( 0 T - I ) _ V Ä ] (11.17) 

The dynamic system of Equation (11.15) is stable if |λχ| < 1 and |λ2 | < 1. This 
analysis assumes that φτ is constant. In the velocity update of Equation (11.11), the 
φ{ terms are random, but in this analysis we make the simplifying assumption that 
each φι is constant. See Problem 11.8 for a discussion of whether to use constant 
K or time-varying K in PSO. In the following section, we study the behavior of λχ 
and λ2, which determines the stability of the PSO algorithm, as a function of the 
constriction coefficient K. 
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11.3.3 PSO Stability 

We can use Equation (11.16) to make the following observation. 

Observation 11.1 When K = 0, we obtain Δ = 1, λι = 1, and \2 0. 

Next we consider the values of λι and \2 as K increases from 0. Equation (11.16) 
shows that 

lim Δ 
\K\-*oo 

A 

A 

= 0îorK= {φτ_ι)2 = {KUK2} 

< 0 for K G (KUK2) (11.18) 

where K\ and K2 are defined by the above equation. We assume that φτ > 0 so 
that y/φτ is real. Figure 11.3 shows a plot of Δ as a function of K. This leads us 
to the following observation. 

Observation 11.2 λι and X2 are real for K <K\. 

Figure 11.3 The discriminant Δ of Equation (11.16) as a function of the constriction 
coefficient K. A > 0 for K < K\ and K > K2, which means that λι and λ2 are real. Δ < 0 
for K G (Ki, K2), which means that λι and λ2 are complex. 

When K = K\, we see that Δ = 0, which means that λι = \2. In fact, it is easy 
to make the following observation from Equation (11.16). 

Observation 11.3 When K = K\, we obtain \\ = X2 = (1 — >/φτ)/(1 — φτ), 
which is between 0 and 1 for all φτ φ 1 · 

Now consider the behavior of λι as K increases from 0 to K\. Taking the 
derivative of \\ with respect to X, we see that 

rfAi 
ΌΪΚ 

1 - φτ Ρτ ~ Κ(φτ - l ) 2 + 1 
yf&ifa - l ) 2 - 2Κ(φτ + 1) + 1 " 

(11.19) 
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We can use basic algebraic manipulations to show that if φτ > 1, then this deriva-
tive is negative for K < K\. We can similarly show that the derivative of λ2 with 
respect to K is positive for K < K\. This leads us to the following observation. 

Observation 11.4 If φτ > 1, then X\ and λ2 are both between 0 and 1 for K e 
( 0 , # ι ) . 

Now consider the behavior of λχ and λ2 as K increases from K\. We see from 
Figure 11.3 that when K G (Κχ^Κ^), \\ and λ2 are complex with the same mag-
nitude, which can be derived as 

|λ| = ±y/[\ - Κ(φτ - l ) ] 2 + 2Κ(φτ + 1) - 1 - Κ2(φτ - l ) 2 · (11.20) 

After some algebraic manipulations, this reduces to |λ| = y/K. The derivative of 
this expression is positive for all K > 0. This leads us to the following observation. 

Observation 11.5 When K G (ΑΊ, K2), \\ and X2 are complex and have the same 
magnitude, which monotonically increases with K. 

Now consider the value of λι and \2 when K — K2· Prom Figure 11.3, we know 
that λι and \2 are real and equal when K = K2. In fact, it is easy to see from 
Equation (11.16) that when K = K2, \\ = λ2 = (1 + \/Φτ)Ι(1 - φτ)· This is 
between 0 and —1 for all φτ > 4, which we state as follows. 

Observation 11.6 When K = K2, we obtain \ λ = \2 = (1 + ^/φτ)/{\ — φτ), 
which is between 0 and — 1 if φτ > 4. 

Now consider the values of λχ and λ2 when K > if2- Both λι and λ2 are real for 
this range of K. Equation (11.19) gives the derivative of λι with respect to K when 
λι is real. We can perform some basic algebraic manipulations of Equation (11.19) 
to show that if φχ > 1 and K > K2, then the derivative of λι is positive and the 
derivative of λ2 is negative. Combining this reasoning with Observation 11.6, we 
see that λχ remains less than 1 in magnitude for all values of K > K2. However, 
λ2 approaches — 00 as K —> 00, as can be seen from Equation (11.17). This gives 
us the following observation. 

Observation 11.7 When K > K2, \\ is real and negative and less than 1 in 
magnitude, and λ2 is real and negative and approaches —00 as K —» 00. 

The limit of λι as K —> 00 can be derived from Equation (11.16): 

λι = i [l - Κ(φτ - 1) + χ/1 + Κ2(φτ - l ) 2 - 2Κ(φτ + 1)] 

1/K - (φτ - 1) + y/l/K* + (φτ - l ) 2 - 2(φτ + l)/K 

2j K 

where the numerator N(K) and denominator D(K) are defined by the above equa-
tion. The limit of both N(K) and D(K) is 0 as K -> 00, so we can use l'Hopital's 
rule to evaluate the limit as follows.3 

3Thanks to Steve Szatmary for deriving Πηΐκ-^οο λι . 
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dN(K) 

dK 

dD{K) 

dK 

dN(K)/dK 

dD(K)/dK 

lim λι 

= -K - 2 2K~3 + 2(φτ + ΐ)Κ~ 

2y/K~2 + (φτ - I ) 2 - 2{φτ + Ι ) ^ - 1 

-2Κ-2 

1 κ-1-* - 1 

— lim 

2 2y/K~2 + (0τ - I ) 2 - 2(φτ + Ι ) ^ - 1 

d^(ü i ) /dÄ' 
κ^οο dD(K)/dK 

1 _ 0Γ + 1 
2 2(0 Τ 

1 
1) 

1 
(11.22) 

which is less than one in magnitude if φτ > 2. This leads us to the following 
observation, which is an expansion of Observations 11.6 and 11.7. 

Observation 11.8 As K increases from K2 to 00, Xi monotonically increases 
from (1 + τ/φτ)/(1 — φτ) to 1/(1 — φτ), and \2 monotonically decreases from 
{1 + νΦτ)/{1-φτ) to - 0 0 . 

Since X2 decreases from (1 + \^φτ)/(1 — φτ), which is greater than —1, to - c o , 
X2 must be equal to —1 at some value of if, which we denote as K%. Therefore, 
from Equation (11.17) we have 

-1 = \ [l - Κ3(φτ - 1) - VI + ^ 2 ( 0 T - 1 ) 2 - 2 ^ ( 0 T + 1)] (11.23) 

Solving this equation for K3 gives K3 = 2/{φτ — 2). Combining this with all of the 
above observations gives us the following theorem. 

Theorem 11.1 Ifbi and hi are constant in the velocity update of Equation (11.11), 
and if φτ = φι + Φ2 > 4, then PSO is stable for 

K < (11.24) 

Figure 11.4 illustrates how the eigenvalues of Equation (11.15) change in the com-
plex plane as K increases from 0 to 00. Figure 11.5 shows how their their magni-
tudes change with K. 

We can write K for a stable PSO algorithm as 

K = 
2a 

-2 
, where φτ = 0ι)ΙΪ1&χ + </>2,max (11.25) 

with a G (0,1), so that a indicates how close the constriction coefficient K is to 
its theoretically maximum value before the PSO algorithm becomes unstable. A 
larger a allows more exploration, while a smaller a emphasizes more exploitation. 
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1 

0.5 

«f o 

-0 .5 

-1 

Unit Circle *°x 

i CT\_ TV 1 fT 
J x* 4 

\2(κ3) χ(κ2) λ2(0)λ(ΑΊ) ^ 

" ° 

- - ■ λ 2 | 

\ 

A 

λι(0) 

-1 -0.5 0 0.5 1 
Real(A) 

Figure 11.4 The eigenvalues of Equation (11.15) as the constriction coefficient K varies 
from 0 to oo, illustrated for the case φτ — 5. At K — 0, λι = 1 and λ2 = 0. At K = ΑΊ, 
λι = λ2 > 0. For K G (Ki , ^ 2 ) , λι and λ2 are complex. At K = K2 , λι = λ2 < 0. At 
i f = K3, X2 = —1. As X ->· 00, λι ->· 1/(1 - φτ) and λ2 ->· - o o . 

0.8 

0.6 

0.4 

0.2 

A' = A'2 
|λ| = ( ν ^ + 1 ) / ( 0 - 1 

A = 
|λ | : 

= A'i 

= (>/<*-- l ) / ( 0 - - i ) 

|λι| 

■ ■ ■ | λ 2 | 

0.2 0.4 
K 

0.6 0.8 

Figure 11.5 The magnitudes of the eigenvalues of Equation (11.15) as the constriction 
coefficient K increases from 0, illustrated for the case φτ = 5. This plot shows the 
magnitudes of the eigenvalues that are illustrated in Figure 11.4. 
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PSO algorithms are often presented in the books and research papers with the 
following recommendation [Carlisle and Dozier, 2001], [Clerc and Kennedy, 2002], 
[Eberhart and Shi, 2000], [Poli et al., 2007]: 

Common recommendation: φτ > 4 

K < 2 (11.26) 
Φτ - 2 + ^φτ(Φτ - 4 ) 

This is equivalent to Theorem 11.1 as φτ —> 4, but Theorem 11.1 is more general for 
φτ > 4. Equation (11.26) does not provide any guidance for an upper bound for φτ, 
or for how to allocate φτ among 0 i , m a x and 02,max· It is often recommended to set 
φτ slightly larger than 4, and to allocate φτ approximately equally among 0 i , m a x 

and 02,max - for example, 0 i , m a x = 02,max = 2.05. However, empirical results 
indicate there are some optimization problems for which better PSO performance 
can be obtained for values of φτ that are much greater than 4.1, and for values of 
0i,max a n d 02,max that are far apart [Carlisle and Dozier, 2001]. Also note that 
our analysis takes only one specific approach, but other approaches with other 
assumptions lead to different stability conditions [Clerc and Poli, 2006]. 

11.4 GLOBAL VELOCITY UPDATES 

One way that we can generalize the velocity update of Equation (11.11) is to write 

Vi<- K [vi + 0i(bi - xi) + φ2(Ηί - xi) + 03(p - Χχ)\ (11.27) 

where g is the best individual found so far since the first generation. The analysis 
of the previous section is valid for Equation (11.27) if we define φτ = 0i,max + 
02,max + 03,max, and if we assume that bi + hi + g is constant with time. The new 
term 03(g — Xi) adds a term to the velocity update equation that tends to drive 
each particle toward the best individual found so far since the first generation. 
This is conceptually similar to the stud EA, which uses the best individual at each 
generation for each recombination operation (Section 8.7.7). The difference is that 
g in Equation (11.27) is the best individual found since the first generation, while 
the stud in Section 8.7.7 is the best individual in the current generation. This 
similarity and difference could motivate the use of a more g-like operation in the 
stud EA, or the use of a more stud-like operation in the global PSO algorithm. 

■ EXAMPLE 11.1 

In this example we use PSO with the general velocity update of Equation (11.27) 
to optimize the 20-dimensional Ackley function. We use a population size of 
50, an elitism parameter of 2, and a neighborhood size σ = 4. We use the 
nominal values 

01,max — 02,max = 03,max = 2.1 

0T = 01,max + 02,max + 03,max 

K = - ^ - , a = 0.9. (11.28) 
φτ - 2 
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Note that we can alternatively solve for φτ in terms of K: 

Φτ 
2(α + K) 

K ' 
(11.29) 

Figures 11.6-11.9 show the average performance of PSO for various values of 
01,max? 02,max5 03,max, and a, when the other parameters are equal to their 
nominal values. We see that the nominal values of Equation (11.28) are indeed 
approximately optimal for the 20-dimensional Ackley function. 

Figures 11.6-11.8 show that when the 0max values are too small, the parti-
cles wander in an undirected manner. When they are too large, the particles 
are overly restricted and are unable to effectively explore the search space. 

Figure 11.9 shows that when a (and hence K) is too small, the particles 
stagnate due to small velocities. When a (and hence K) is too large, the 
particles jump too aggressively through the search space. 
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Figure 11.6 Example 11.1: Performance of PSO on the 20-dimensional Ackley function 
for various values of <£i,max, averaged over 20 Monte Carlo simulations. φ\ 
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approximately optimal for this benchmark function. 
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Figure 11.7 Example 11.1: Performance of PSO on the 20-dimensional Ackley function 
for various values of 02,max, averaged over 20 Monte Carlo simulations. 02,max = 2 is 
approximately optimal for this benchmark function. 
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Figure 11.8 Example 11.1: Performance of PSO on the 20-dimensional Ackley function 
for various values of 03,max, averaged over 20 Monte Carlo simulations. 03,max = 2 is 
approximately optimal for this benchmark function. 
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Figure 11.9 Example 11.1: Performance of PSO on the 20-dimensional Ackley function 
for various values of the constriction coefficient K = aKmaLX, averaged over 20 Monte Carlo 
simulations. K = 0.9Kmax is approximately optimal for this benchmark function. 
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11.5 THE FULLY INFORMED PARTICLE SWARM 

Equations (11.12) and (11.27) show that our most general (so far) form for the 
velocity update is 

Vi(t + 1) = K[vi(t) + <l>T(pi{t)-Xi(t))] 

Φτ = 01,max + </>2,max + 03,max 

Pi{t) = 
0 1 + 0 2 + 0 3 

(11.30) 

We see that three particle positions contribute to the velocity update: the current 
individual's best position so far &*(£), the neighborhood's best current position /ii(£), 
and the population's best position so far g(t). This leads to the idea of making the 
velocity update more general. Why not allow every individual in the population 
to contribute to the velocity update? A generalization of Equation (11.30) can be 
written as 

i>i(i + l) 

0T 

Pi(t) = 

K[vi{t) + <h(pi{t)-Xi(t))] 

1 N 

r,max 
3 = 1 

Σ^1ι^ϋ0Α·(*) 
Σ , = 1 ^χάΦθ 

(11.31) 
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where bj (t) is the best solution found so far by the j-th particle: 

bj(t) = arg min f(x) : x e fe(0),· · · , x , ( i )} . (11.32) 
X 

Note the 1/N factor in the definition of φτ in Equation (11.31), which is an ad-hoc 
approach to maintaining a reasonable balance between the contribution of Vi(t) 
and (pi(i) — Xi(t)) to the new velocity Vi(t + 1). The φ$ parameters in Equa-
tion (11.31) are random influence factors that are taken from the uniform distribu-
tion £/[0,0j )max]. As indicated in Example 11.1, we often use 

Çj,max ~ ^ 
K = 2α/(3φτ-2) (11.33) 

where a G (0,1). The factor of 3 in the value of K compensates for the fact that 
in Equation (11.27) φτ is the sum of three 0j,max terms, while in Equation (11.31) 
it is the average of the 0j,max terms. The Wij weights in Equation (11.31) are 
deterministic factors that describe the influence of the j-th particle on the velocity 
of the i-th particle. Sometimes we use Wij = constant for all j . Other times, we 
want wij to be larger for values of j that correspond to better Xj particles, and 
also larger for values of j that correspond to Xj particles that are closer to xi. For 
instance, if our problem is a minimization problem, we could use something like 

Wa = max/(x f c) - f(xj) 
k 

+ m a x \Xi — Xk\ — \Xi — Xj\ 
k 

(11.34) 

where | · | is a distance measurement. We might also need to weight the cost and 
fitness contributions appropriately so that they both contribute equal orders of 
magnitude to Wij. For example, 

_ max*: f(xk) - minfc f(xk) 
£>i — 

maxfc \Xi - Xk\ 

max/(x f c) - f(xj) 
k 

+ Si m a x \Xi — Xk \ — \Xi — Xj 
k 

(11.35) 

Si is a scale factor that makes the two terms that contribute to Wij approximately 
equal. Since Equation (11.31) allows every particle to influence every other particle, 
it is called the fully informed particle swarm (FIPS) [Mendes et al., 2004]. This 
idea is reminiscent of global uniform recombination in EAs (Section 8.8.6). 

■ EXAMPLE 11.2 

In this example, we use the fully informed particle swarm of Equation (11.31) 
with the weights of Equation (11.35) to optimize the 20-dimensional Ackley 
function. We use a population size of 40 and an elitism parameter of 2. We 
use the nominal values 

07,max = </>max = 2, for j G [1, 20] 

K = 2 a / ( 3 0 m a x - 2 ) , a = 0.9. (11.36) 

Figures 11.10 and 11.11 show the average performance of PSO for various 
values of </>max and a, when the other parameter is equal to its nominal value. 
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Figure 11.10 shows that when (/>max is small, the swarm converges very quickly, 
but it converges to a poor solution. As 0 m a x increases, initial convergence 
slows, but the final converged solution becomes better. This may motivate us 
to use an adaptive (/>max that is initially small and then gradually increases 
over time. Figure 11.11 shows that for small values of a, convergence is very 
slow. Convergence is fastest for a = 0.9, but the final solution is better for 
a = 0.5. 

These results are very specific. They apply for a specific benchmark func-
tion with a specific dimension, a specific elitism parameter, and a specific form 
for the Wij weighting parameters (Equation (11.35)). Additional experimen-
tation is needed to see if the conclusions for this example can be generalized 
to a wider range of problems. 
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Figure 11.10 Example 11.2: Performance of the fully informed particle swarm on the 
20-dimensional Ackley function for various values of 0max, averaged over 20 Monte Carlo 
simulations. </>max = 1 gives the best short-term performance, but larger values of ^m a x give 
better long-term performance. 

\ 
\s 

- 1 ' 
l\ \ 

'- * '; » 
I] v 

- -1 K 

Ξ1 i» 

- -, \ \ 

~-\ λ 

"IRUJJU 

- .,„ 

H ^ ... 

0j,max — 1 
0j,max = 2 U 
0j,max = 10 
0j,max = 2 0 |j 

: 

-

-
j 

-



SECTION 11.6: LEARNING FROM MISTAKES 2 8 5 

= 0.1 
= 0.5 
= 0.9 

15 20 25 
Generation 

30 35 40 

Figure 11.11 Example 11.2: Performance of the fully informed particle swarm on the 
20-dimensional Ackley function for various values of a, averaged over 20 Monte Carlo 
simulations, a — 0.9 gives the best short-term behavior, and a = 0.5 gives the best long-term 
behavior. 
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Sometimes fully informed PSO is written differently than Equation (11.31). For 
example, Equation (11.31) can be replaced with the following [Poli et al., 2007]: 

Vi(t+1) = K 
i _n i . 

Ui 3 = 1 

(11.37) 

where η^ is the neighborhood size of the i-th. particle, φ^ is taken from the uniform 
distribution C/[0, 0 m a x ] , and bij(t) is the best solution found so far by the j-th 
neighbor of the i-th particle. In this formulation, each particle has a certain fixed 
neighborhood, and each neighbor's best solution bij(t) has an equally weighted 
contribution (on average) to the velocity update of the i-th particle. Note that 
Equation (11.37) is equivalent to Equation (11.11) under certain conditions. Some 
papers have found that fully informed PSO performs poorly because the particles 
experience too many conflicting attractions, or because the search space of each 
particle decreases with increasing neighborhood size [de Oca and Stützle, 2008]. 

11.6 LEARNING FROM MISTAKES 

PSO is based on the idea that biological organisms tend to repeat strategies that 
have proven successful in the past. This includes beneficial strategies that they have 
used themselves, and also beneficial strategies that they have observed in others. 
The basic equation for updating velocity, as we see in Equation (11.27), is 

Vi <- K [vi + φ\(bi - Xi) + φ2(άί - xi) + </>3(p - Xi)] (11.38) 
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where Xi and Vi are the position and velocity of the z-th particle; bi is the previous 
best position of the z-th particle; hi is the current best position of the z-th neigh-
borhood; g is the previous best position of the entire swarm; and K, 0i,max, 02,max, 
and 03,max are positive tuning parameters. 

However, biological organisms not only learn from successes, but also learn from 
mistakes. We tend to avoid strategies that have proven harmful in the past. This 
includes detrimental strategies that we have used ourselves, and also detrimental 
strategies that we have observed in others. A natural extension of PSO is to in-
corporate this avoidance of negative behavior in the basic PSO algorithm. This 
algorithm has been called "new PSO" in [Yang and Simon, 2005], [Selvakumar and 
Thanushkodi, 2007], but the term "new" is overused and nondescript ive, so we refer 
to it as "negative reinforcement PSO" (NPSO) in this section. 

In NPSO, each particle adjusts its velocity not only in the direction of the best 
position of itself and its neighbors, but also away from the direction of the worst 
position of itself and its neighbors. Equation (11.38) is therefore modified to 

Vi <- K [vi + φι(bi - Xi) + faihi - Xi) + 03(# - Xi) 

-<j)A(bi - Xi) - 05(/^ - Xi) - 06(<? - Xi)] (11.39) 

where bi is the previous worst position of the z-th particle; hi is the current worst 
position of the z-th neighborhood; g is the previous worst position of the entire 
swarm; each φ^ is taken from a uniform distribution on (0,0j,max); and each 0j,max 
is a positive tuning parameter. 

We have to find a balance between the velocity adjustment towards beneficial 
solutions that comes from standard PSO, and the velocity adjustment away from 
detrimental solutions that we have added to NPSO. This balance is something that 
we all try to find in our everyday lives. How much do we focus on success and try to 
emulate it, compared to how much we focus on failure and try to avoid it? Most of us 
agree that positive reinforcement is more effective than negative reinforcement, but 
most of us also agree that both types of reinforcement are important for learning. 

■ EXAMPLE 11.3 

In this example, we use the NPSO of Equation (11.39) to optimize the 20-
dimensional Schwefel 2.26 function. We use a population size of 20 and an 
elitism parameter of 2. We use the nominal values 

01,max == 02,max = 03,max = 2 
04,max = 05,max = 06,max = U 

2a 
K=- - , a = 0.9. (11.40) 

01,max + 02,max + 03,max ~ 2 

Figures 11.12-11.14 show the average performance of NPSO for various val-
ues of 04,max, 05,max5 and 06,max5 when the other parameters are equal to 
their nominal values. Figure 11.12 shows that when 04,max, which deter-
mines how much each particle avoids its previous worst position, is increased 
above its nominal value of 0, it can result in a large improvement in perfor-
mance. Figure 11.13 shows a similar but less dramatic improvement when 
05,max5 which determines how much each particle avoids the current worst 
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position of its neighborhood, is increased beyond its nominal value of 0. Fi-
nally, Figure 11.14 shows that performance also improves when 06, max, which 
determines how much each particle avoids the previous worst position of the 
entire swarm, is increased beyond its nominal value of 0 . It appears from 
these figures that 06,max has the greatest effect on NPSO performance. 
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Figure 11.12 Example 11.3: Performance of NPSO on the 20-dimensional Schwefel 2.26 
function for various values of 04,max, averaged over 20 Monte Carlo simulations. Particles 
that avoid their own previous worst position perform significantly better than particles that 
do not. 
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Figure 11.13 Example 11.3: Performance of NSPO on the 20-dimensional Schwefel 2.26 
function for various values of </>5,max, averaged over 20 Monte Carlo simulations. Particles 
that avoid the current worst position of their neighbors perform noticeably better than 
particles that do not. 
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Figure 11.14 Example 11.3: Performance of NSPO on the 20-dimensional Schwefel 2.26 
function for various values of </>6,max, averaged over 20 Monte Carlo simulations. Particles 
that avoid the previous worst position of the swarm perform significantly better than particles 
that do not. 

D 

Example 11.3 indicates that the NPSO can perform much better than standard 
PSO. Notice in Example 11.3 that we changed only one of the negative reinforce-
ment terms at a time while leaving the other two equal to zero. We have not tried 
combining nonzero values of 04,m a x , 05,max, and 06,max5 but we leave this for fu-
ture research by the reader. Also note that we could combine the idea of negative 
reinforcement with the fully informed PSO of Equation (11.31). We also leave this 
extension to the reader for further research. Finally, it would be interesting to red-
erive the stability results of Section 11.3 for NPSO; this is another area for future 
research. 

11.7 CONCLUSION 

PSO has proven itself to be an effective EA for a variety of problems. Any investi-
gation of a newly proposed EA should include a comparison with PSO because of 
its good performance. Similar to ant colony optimization, some researchers do not 
consider PSO as an evolutionary algorithm, but instead consider it to be a type of 
swarm intelligence. It is true that PSO particles do not directly share candidate 
solution information with each other. However, PSO does include fitness-based 
selection, and PSO particles do share velocity information with each other, and 
velocity information directly affects the solutions. Therefore, we categorize PSO as 
an EA in this book. 

Catfish PSO is a modification that was introduced to combat stagnation in PSO 
[Yang et al., 2011]. In a holding tank, sardines often settle into a locally optimal 
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behavior and location, but then become lethargic and experience rapidly degrading 
health. If catfish are added to the tank, the sardines experience a renewed sense of 
stimulation and remain healthy for a longer period of time. Catfish PSO is based 
on this observation, and stimulates a PSO population when it stagnates. If the best 
individual in the PSO population has not improved for m consecutive generations 
(m is often between 3 and 7), then each independent variable of the worst 10% of the 
population is set equal to one of the boundaries of the search domain. The reason 
the particles are moved to the boundaries of the search domain is to maximize the 
search space. Also, optimization problems with constraints often have solutions 
that lie on a constraint boundary [Bernstein, 2006]. 

All of the discussion in this chapter has focused on PSO for continuous-domain 
problems. PSO has been extended in several different ways for combinatorial opti-
mization [Kennedy and Eberhart, 1997], [Yoshida et al., 2001], [Clerc, 2004]. Other 
current research directions include simplifying the PSO algorithm [Pedersen and 
Chipperfield, 2010], hybridizing it with other EAs [Niknam and Amiri, 2010], adding 
mutation-like operators to avoid premature convergence [Xinchao, 2010], using mul-
tiple interacting swarms [Chen and Montgomery, 2011], removing randomness from 
the PSO algorithm [Clerc, 1999], using dynamic and adaptive topologies [Ritscher 
et al., 2010], exploring initialization strategies [Gutierrez et al., 2002], and adapting 
PSO parameters on-line [Zhan et al., 2009]. Also note that just as we model the ve-
locity of each PSO particle, we could also model their accelerations [Tripathi et al., 
2007]. Other future work could include particle swarm behavior and convergence 
analysis that takes the randomness of the algorithm into account, and that takes 
the relationships between the particles into account. 

Additional recommended reading and study in the area of PSO includes books 
[Kennedy and Eberhart, 2001], [Clerc, 2006], [Sun et al., 2011]; and papers [Bratton 
and Kennedy, 2007], [Banks et al., 2007], [Banks et al., 2008]. Useful and extensive 
PSO web sites include [PSC, 2012] and [Clerc, 2012a]. 
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PROBLEMS 

Written Exercises 

11.1 What are some arguments for having static neighborhoods in PSO? What 
are some arguments for having dynamic neighborhoods? 

11.2 Acceleration in PSO: 
a) How could you modify the PSO algorithm of Figure 11.1 to include accel-

eration? 
b) Given this modification of the PSO algorithm, how would Equation (11.4) 

change, and what would be the eigenvalues? 

11.3 Suppose that φ\ = 4 in Equation (11.4). 
a) What are the eigenvalues of the matrix? 
b) Is the system stable? 
c) Give an initial condition and input bi that will result in X{ and v\ being 

bounded as t —> oo. 
d) Give an initial condition and input bi that will result in X{ and V{ being 

unbounded as t —» oo. 

11.4 Equation (11.35) uses the cost and distance of Xi to calculate the weight 
Wij. What are some other features of Xi that we might consider using as part of 
the Wij calculation? 

11.5 Assuming that Pi(t) is constant in Equation (11.30), write the dynamic 
state-space equations for Xi(t + 1) and Vi(t + 1). What are the eigenvalues of the 
system? 

11.6 Under what conditions are Equations (11.11) and (11.37) equivalent? 

11.7 Generalize the NPSO update of Equation (11.39) to obtain a fully-informed 
NPSO update equation. 

11.8 Equation (11.25) recommends setting the constriction coefficient as follows: 

where a G (0,1). We can set φτ to the sum of the maximum possible values of the 
0i terms, in which case φτ is constant for the PSO algorithm; or we can set φτ 
to the sum of the actual φ^ terms that are randomly computed for each velocity 
update, in which case φτ is different for each velocity update. Assuming that we 
use Equation (11.27) for our velocity update, these two options can be written as 
follows: 
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where each φι is uniformly distributed on [0,0i i m a x]. What value of 0:2 in the 
above equations makes K\ = Ki on average? (See Problem 11.12 for the computer 
exercise counterpart to this problem.) 

Computer Exercises 

11.9 Neighborhood Sizes: Simulate the PSO algorithm of Figure 11.1 for 40 
generations to minimize the 10-dimensional sphere function (see Appendix C.l . l 
for the definition of the sphere function). Use a population size of 20, and use the 
global velocity update of Equation (11.27). Use 0 i , m a x = 02,max = 03,max = 2, 
use fmax = 00, and use a = 0.9 to find the constriction coefficient K. Run 20 
Monte Carlo simulations for neighborhood sizes σ = 0, 5, and 10. Plot the average 
performance of each Monte Carlo set as a function of generation number. What do 
you conclude about the importance of local neighborhoods in PSO? 

11.10 Fully Informed Particle Swarm Distance Weighting: Equation (11.35) 
can be written as 

Wij(c) + Swij(d) 

maxf(xk) - f(xj) 
k 

maxlxj - xk\ - \xi - χΔ. 
k 

Wij(c) is the cost contribution of Xj to u^-, and Wij(d) is the distance contribution. 
The above equation can be generalized as follows: 

Wij = (wij{c) + DSwi:J(d))/(l + D) 

where D is the importance of the distance contribution relative to the cost contri-
bution. Use this weight formula to simulate the fully informed PSO to optimize 
the 20-dimensional Rastrigin function (see Appendix C.1.11 for the definition of 
the Rastrigin function). Run 20 Monte Carlo simulations for D = 0, 0.5, 1, 2, 
and 1000. Plot the average performance of each Monte Carlo set as a function of 
generation number, and provide some general observations about your results. 

11.11 Fully Informed Particle Swarm Neighborhood Sizes: Implement 
the velocity update of Equation (11.37) in a PSO simulation to minimize the 20-
dimensional Rosenbrock function (see Appendix C.1.4 for the definition of the 
Rosenbrock function). Use a population size of 20 and a generation count limit 
of 40. Tune 0 m a x and K for good performance. Run 20 Monte Carlo simulations 
with neighborhood sizes of 2, 5, 10, and 20. Plot the average performance of each 
Monte Carlo set as a function of generation number, and provide some observations 
about your results. 

Wij = 

where Wij(c) — 

Wij(d) = 



2 9 2 CHAPTER 11: PARTICLE SWARM OPTIMIZATION 

11.12 Constant vs. Time-Varying Constriction: Simulate the PSO algo-
rithm of Figure 11.1 for 50 generations to minimize the 10-dimensional Ackley 
function (see Appendix C.1.2 for the definition of the Ackley function). Use a pop-
ulation size of 20, and use the global velocity update of Equation (11.27). Use 
01,max = 02,max = 03,max = 2 .1 , USe Vmax = 00, and USe Οί\ = 0.9 t o find t h e 
constriction coefficient K\ that is defined in Problem 11.8. Run 20 Monte Carlo 
simulations with the constant constriction coefficient ΑΊ, and run 20 Monte Carlo 
simulations with the time-varying constriction coefficient if2 that you found in 
Problem 11.8. Plot the average performance of each Monte Carlo set as a function 
of generation number, and comment on your results. 



CHAPTER 12 

Differential Evolution 

Compared to several existing EAs, DE is much simpler and straightforward to imple-
ment . . . Simplicity of programming is important for practitioners from other fields, 
since they may not be experts in programming 

—S. Das, P. Suganthan, and C. Coello Coello [Das et al., 2011] 

Differential evolution (DE) was developed by Rainer Storn and Kenneth V. Price 
around 1995. Like many new optimization algorithms, DE was motivated by real-
world problems: the solution of Chebyshev polynomial coefficients, and the opti-
mization of digital filter coefficients. DE made a quick and impressive entrance into 
the world of EAs by finishing as one of the top entries at the First International 
Contest on Evolutionary Computation [Storn and Price, 1996] and at the Second 
International Contest on Evolutionary Optimization [Price, 1997]. The first DE 
publications were in conference proceedings [Storn, 1996a], [Storn, 1996b], and the 
first journal publication was a year later [Storn and Price, 1997]. However, the first 
DE publication that was widely read was in a non-refereed magazine [Price and 
Storn, 1997]. DE is a unique evolutionary algorithm because it is not biologically 
motivated. 

Evolutionary Optimization Algorithms, First Edition. By Dan J. Simon 293 
©2013 John Wiley & Sons, Inc. 
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Overview of the Chapter 

Section 12.1 outlines a basic DE algorithm for optimization over continuous do-
mains. After the original introduction of DE, researchers introduced many varia-
tions, and we discuss some of these variations in Section 12.2. After DE proved to 
be successful for continuous-domain problems, researchers extended it to discrete 
domains, and so we discuss DE for discrete-domain problems in Section 12.3. DE 
was originally introduced not as a separate EA, but as a genetic algorithm variation, 
and so we look at DE from that perspective in Section 12.4. 

12.1 A BASIC DIFFERENTIAL EVOLUTION ALGORITHM 

DE is a population-based algorithm that is designed to optimize functions in an 
n-dimensional continuous domain. Each individual in the population is an n-
dimensional vector that represents a candidate solution to the problem. DE is 
based on the idea of taking the difference vector between two individuals, and 
adding a scaled version of the difference vector to a third individual to create a new 
candidate solution. This process is depicted in Figure 12.1. 

\ H X r 2 Xr3l 
if 

Figure 12.1 The basic idea of differential evolution, illustrated for a two-dimensional 
optimization problem (n = 2). xri, xr2, and xr3 are candidate solutions. A scaled version 
of the difference between individuals xr2 and xr3 is added to xri to obtain a mutant vector 
Vi, which is a new candidate solution. Note that vi is indexed with the subscript i because 
we generate n separate mutant vectors each generation, where n is the population size. 

Figure 12.1 depicts DE in a two-dimensional search space. Two individuals, xr2 
and xr3, are randomly chosen with Τ2 φ r$. A scaled version of the difference 
between those two individuals is added to a third randomly chosen individual, xri, 
where r\ £ {r2,r3}. This results in a mutant v\ that might be accepted into the 
population as a new candidate solution. 

After the mutant vector V{ is created, it is combined (that is, crossed over) with 
a DE individual Xi, where i £ { Γ Ι , Γ 2 , Γ 3 } , to create a trial vector ui. Crossover is 
implemented as follows: 

if (rcj < c) or (j = Jr) 
otherwise (12.1) 
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for j G [1, n], where n is the problem dimension and is also the dimension of Ui, ^ , 
and Xi; u^ is the j - t h component of ui\ v^ is the j-th component of vi\ x^ is the 
j-th component of individual random number taken from the uniform 
distribution [0,1]; c is the constant crossover rate G [0, l ] ; 1 and Jr is a random 
integer taken from the uniform distribution [l ,n]. We see that the trial vector Ui 
is a component-by-component combination of a current DE individual X{ and the 
mutant vector V{. The purpose of Jr is to guarantee that U{ is not a clone of a^, 
although this complication can be omitted for most problems (see Problem 12.3). 
The crossover rate c controls how likely it is that each component of U{ comes from 
the mutant vector V{. 

After TV trial vectors ui have been created as described above, where TV is the 
population size, the ui and X{ vectors are compared. The most fit vector in each 
(ui,Xi) pair is kept for the next DE generation, and the least fit is discarded. The 
basic DE algorithm for an n-dimensional problem is summarized in Figure 12.2. 

F = stepsize parameter G [0.4,0.9] 
c = crossover rate G [0.1,1] 
Initialize a population of candidate solutions {xi} for i G [1, TV] 
While not (termination criterion) 

For each individual x^ % G [1,TV] 
7*1 «— random integer G [1, TV] : τ\ φ i 
V2 4- random integer G [1,TV] : r<i £ {^,^1} 
Γ3 «— random integer G [1,TV] : r% £ { i , r i , r2} 
Vi <— xr\ + F(xr2 — xr3) (mutant vector) 
Jr «— random integer G [l,n] 
For each dimension j G [l,n] 

rcj <— random number G [0,1] 
If (rcj < c) or (j = Jr) then 

Uij T Vij 

else 
Uij ^ *^ij 

End if 
Next dimension 

Next individual 
For each population index i G [1, TV] 

If f(ui) < f(xi) then x{ <- ut 

Next population index 
Next generation 

Figure 12.2 A simple differential evolution (DE) algorithm for minimizing the n-
dimensional function f(x). This algorithm is called classic DE, or DE/rand/1/bin . 

1Most DE literature uses the symbol Cr for the crossover rate. But two-letter symbols can 
be misinterpreted as separate symbols (for example, C multiplied by r), and so we use a more 
standard mathematical notation for the crossover rate in this chapter. 
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As seen from Figure 12.2, DE has several parameters that need to be tuned. As 
with any other EA, the population size needs to chosen. DE-specific parameters 
include the stepsize F, which is also called the scale factor, and the crossover rate 
c. These parameters are problem-dependent but are typically (but not always) 
chosen in the range F e [0.4,0.9] and c G [0.1,1]. The optimal value of F generally 
decreases with the square root of the population size N. The optimal value of c 
generally decreases with the separability of the objective function [Price, 2013]. 

The algorithm in Figure 12.2 is often referred to as classic DE. It is also called 
DE/rand/1/bin because the base vector, xri, is randomly chosen; one vector dif-
ference (that is, F(xr2 — xr3)) 1S added to xr\\ and the number of mutant vector 
elements that are contributed to the trial vector closely follows a binomial distri-
bution. It would exactly follow a binomial distribution if not for the "j = Jr" test 
(see Problem 12.1). 

Some thought about the classic DE algorithm of Figure 12.2 indicates why it 
works [Price, 2013]. First, perturbations of the form (xr2 — xr?>) decrease as the 
population narrows in on the problem solution. Second, perturbation magnitudes 
are different from one dimension to the next depending on the scale of the problem. 
That is, the magnitude of the p-th component of (xr2 — xr?>) is proportional to how 
close the population is to the problem solution along the p-th dimension. Third, 
perturbation steps are correlated between dimensions, which makes the search ef-
ficient even for highly nonseparable problems (see Appendix C.7.2). The result of 
these DE features is contour matching, which means that the DE population dis-
tributes itself along the contours of the objective function. A DE population tends 
to adapt to the objective function shape. 

12.2 DIFFERENTIAL EVOLUTION VARIATIONS 

In this section we look at some DE variations. Section 12.2.1 shows an alternative 
way of creating the trial vector U{ at each iteration, Section 12.2.2 shows some 
alternative ways of creating the mutant vector v, and Section 12.2.3 discusses some 
possibilities for using a random scale factor F. 

12.2.1 Trial Vectors 

Note that the method of Figure 12.2 does not include any mechanism for keeping 
solution features together from V{ or xim That is, the probability of copying Vij 
to Uij is the same whether or not Vij-i was copied to Uij-ι. However, there are 
many problems for which fitness depends on combinations of solution features rather 
than individual solution features, so it may be desirable to keep solution features 
together. DE/rand/1 /L works by generating a random integer L e [ l ,n], copying 
L consecutive features from vi to U{, and then copying the remaining features from 
Xi to Ui [Storn and Price, 1996]. 

For example, suppose that we have a seven-dimensional problem (n = 7). The 
DE/rand/1 /L algorithm works by first generating a random integer L G [l ,n]; 
suppose that L = 3. We then generate a random starting point s E [l ,n]; suppose 
that s = 6. Given these parameters, solution features from vi and x^ are copied to 
trial vector ui as follows: 
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un <- vu 

Ui2 ^— Xi2 

Ui3 ^— Xi3 

Uis <— Xis (ending point) 
Ui6 <- V{Q (starting point s) 

un <- vi7. (12.2) 

We see that since s = 6, we start copying elements of Vi to elements of Ui at the 
sixth dimension (that is, the sixth solution feature). Since L = 3, we copy three 
consecutive elements from vi to Ui, where consecutive means that we wrap around 
to the beginning of the vectors after we reach the end. After copying three elements 
from Vi to Ui, we begin copying elements of Xi to Ui, stopping when Ui is completely 
defined. More formally, DE/rand/1 /L works by replacing the "For each dimension" 
loop in Figure 12.2 with the loop in Figure 12.3. 

L —̂ random integer G [l,n] 
s <r- random integer G [l,n] 
J <- {s, min(n, s + L - 1)} U {1, s + L - n - 1} 
For each dimension j G [l,n] 

If j e J 
Uij T 17jjf 

else 
Uij T *^ij 

End if 
Next dimension 

Figure 12.3 The DE/rand/1/L loop that copies elements from Xi and the mutant vector 
Vi to the trial vector Ui. The a mod b function returns the remainder of a/b. This loop 
replaces the "For each dimension" loop in Figure 12.2. 

It is interesting to consider the average number of mutant vector elements Vij 
that are copied to trial vector features u^ for a given index i. For DE/rand/1/bin, 
there are n iterations of the "For each dimension" loop in Figure 12.2. One of 
those iterations has a 100% probability of copying Vij to Uij, and the other (n — 1) 
iterations have a c probability of copying v^ to u^. That means that the expected 
number of Vij elements that are copied to the trial vector is 

^(number of V{ elements copied) = 1 + c(n — 1) for DE/rand/1/bin. (12.3) 

For DE/rand/1/L, L mutant vector features υ^ are copied to the trial vector. Since 
L is uniformly distributed in [l ,n], 

^(number of Vi elements copied) = n /2 for DE/rand/1/L. (12.4) 
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Under what conditions is the expected number of mutant vector elements copied 
to the trial vector equal for the bin and L options? Equating Equations (12.3) 
and (12.4), we obtain 

"wky < Ι2·5> 
This value of the crossover parameter c in the DE/rand/1/bin algorithm of Fig-

ure 12.2, which is slightly less than 0.5, will result in the same average number of 
mutant vector elements copied to the trial vector as the DE/rand/1 /L algorithm 
of Figure 12.3. 

In general we could set L to a random integer between 1 and L m a x , with the 
user-specified constant L m a x G [l ,n]. We see that L m a x = n in Figure 12.3, but 
values of L m a x less than n might give better performance for some problems. 

■ EXAMPLE 12.1 

In this example we apply DE to the 20-dimensional Ackley function described 
in Appendix C.1.2. We use the following parameters: 

• Population size = 50; 

• Stepsize F = 0.4; 

• Crossover rate c = 0.49 from Equation 12.5. 

We will look at the difference between generating the trial vector using the 
bin option shown in Figure 12.2, and the L option shown in Figure 12.3. 
Figure 12.4 shows the best individual at each generation, averaged over 20 
Monte Carlo simulations. We see that the L option converges more quickly at 
the beginning of the simulation, but the bin option gives significantly better 
performance in the long run. We would not expect to gain any improvement 
from using the L option because the solution features in the Ackley function 
are not coupled in any way; that is, the Ackley function is a separable problem. 
However, it is not clear why the bin option performs so much better than the 
L option. 

D 

12.2.2 Mutant Vectors 

In this section we look at some alternatives for mutant vector creation. For example, 
instead of randomly choosing the base vector x r l , it may be beneficial to always 
use the best individual in the population as the base vector. That way the entire 
set of trial vectors U{ for i e [1, n] is comprised of mutations of the best individual. 
This approach is called DE/best /1/bin [Storn and Price, 1996], [Storn, 1996b]. It is 
identical to Figure 12.2 except that the calculation of the mutant vector is replaced 
with 

Vi <- Xb + F(xr2 - xr3) (12.6) 

where x^ is the best individual in the population. This has the effect of increasing 
exploitation and reducing exploration. This idea is similar to the stud EA dis-
cussed in Section 8.7.7. If we use Equation (12.6) to create the mutant vector, 
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Figure 12.4 Example 12.1: DE performance on the 20-dimensional Ackley function for 
Example 12.1. The traces show the cost of the best individual at each generation, averaged 
over 20 Monte Carlo simulations. The bin option for trial vector generation performs 
noticeably better than the L option. 

and Figure 12.3 to copy features to the trial vector, we obtain the DE/bes t /1 /L 
algorithm. 

Another option is to use two difference vectors to create the mutant vector [Storn 
and Price, 1996], [Storn, 1996b]. This can increase exploration because the total 
difference vector is not constrained to lie in the direction of the differences between 
pairs of vectors. The total difference vector has more degrees of freedom. This can 
be combined with a random selection of the base vector each Xi loop iteration as 
shown in Figure 12.2, or with the selection of the best individual as the base vector 
each xi loop iteration as shown in Equation 12.6. This results in the following two 
options for generating the mutant vector: 

random integer G [l,N] : r± φ {^,ΤΊ,^,Γβ} 
random integer e [l,N] : r5 £ { i , r i , r 2 , r 3 , r 4 } 

f xri + F(xr2 - Xr3 + #r4 - avs) DE/rand/2 /? (12 7) 
[ Xb + F(xr2 - xr3 + Xr4 — 2V5) DE/bes t /2 /? ^ ' ' 

Now we explain the question marks at the end of the above equation. If we use one 
of the options of Equation (12.7) to create the mutant vector and Figure 12.2 to 
copy features to the trial vector, we obtain the DE/rand/2/bin or DE/best /2/bin 
algorithm. If we use Equation (12.7) to create the mutant vector and Figure 12.3 
to copy features to the trial vector, we obtain the DE/rand/2 /L or DE/bes t /2 /L 
algorithm. 

Note that Equation (12.7) increases the effect of the difference vectors on the 
mutant vector. If F = F0 is used in Figure 12.2 or Equation (12.6), then for a fair 
comparison, some F < FQ should be used in Equation (12.7). The exact relationship 
between the two values of F depends on the shape of the objective function. 

V 

V 

V 
V 

* W 

DE/best/1/L 
-DE/best/1/bin 

-

r4 *-

Vi <-
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DE can also be implemented by using the current Xi as the base vector [Storn, 
1996a]. For example, 

Vi<-Xi + F Ax (12.8) 

where Ax is a difference vector. Depending on the method that we use to create the 
difference vector, and the method that we use to create the trial vector, this results 
in the DE/target/1/bin, DE/target/2/bin, DE/target /1/L, or DE/target /2 /L al-
gorithm.2 In contrast to the DE/rand algorithms of Sections 12.1 and 12.2.1, 
DE/target algorithms seem to be much less sensitive to F [Price, 2013]. 

Yet another option is to create the difference vector by using the best individual 
in the population, xb. This tends to create mutant vectors that all move toward 
xb. The vector that is subtracted from xb could be a random individual or the base 
individual. We can imagine many possibilities based on this idea. For example 
[Storn, 1996a], 

Vi <- Xi + F(xb - x^ 

Vi <- Xrl + F(xb - Xrz) 

Vi <- Xb + F(xr2 - Xr3 +Xb -Xrb) 

Vi 4 - Xi + F(xb -Xi+ XT2 - XrZ) (12.9) 

and so on. If the last equation above is used to generate Vi, the algorithm is called 
DE/target-to-best/1/bin [Price et al., 2005, Section 3.3.1].3 Note that sometimes 
we use recombination to create Vi, sometimes we use mutation, and sometimes we 
use both. The first option in Equation (12.9) is a recombination operation because 
it involves a combination of xi and another vector. The second and third options 
are mutation operations because xi does not appear in the equations. The fourth 
option is a hybrid operation because it involves x^ but it also involves a vector 
difference (xr2 — xrz) in which x^ does not appear. 

We could combine various methods by randomly deciding how to generate the 
mutant vector. For example, Figure 12.5 shows a method for generating the mutant 
vector that gives rise to the DE/rand/1/either-or algorithm [Price et al., 2005, 
Section 2.6.5]. If a < p / , then the standard DE/rand/1/bin method is used to 
generate v. However, if a > p / , then a special type of DE/rand/2 method is used 
to generate v. 

At this point we are getting almost too many permutations of the DE algorithm 
to manage. Most of these options, though, are generally of secondary importance. 
The main idea of DE is depicted in Figures 12.1 and 12.2, and all of the possible 
variations are just details. 

2The DE/target algorithms are also referred to in the literature as DE/current and DE/i. 
3It seems that it should be called DE/target-to-best/2/bin to be consistent with other DE naming 
conventions. On the other hand, the equation can be interpreted as the addition of a single 
mutation to the base vector x^, which justifies the terminology DE/target-to-best/1/bin. 
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Pf = mutation probability G [0,1] 
a <— random number G [0,1] 
If a < pf then 

V{ «— Xr\ + F(xr2 — Xr2>) 
else 

Vi 4— Xr\ + K{xr2 — Xrl "+" #r3 ~" # r l ) 
End if 

Figure 12.5 Mutant vector generation that results in the DE/rand/1/either-or algorithm. 
Generally, K = (F + l)/2 gives good results in benchmark problems. 

■ EXAMPLE 12.2 

In this example we again apply DE to the 20-dimensional Ackley function 
described in Appendix C.1.2. Since Example 12.1 showed that the bin option 
performed better than the L option, we use the bin option in this example. 
In this example we will look at how performance changes depending on which 
vector we use as our base vector. We have three options. We can use a ran-
dom vector xr\ as the base vector as shown in Figure 12.2, or we can use the 
best vector as the base vector as shown in Equation (12.6), or we can use the 
current population member as the base vector as shown in Equation (12.8). 
Figure 12.6 shows the best individual at each generation, averaged over 20 
Monte Carlo simulations. We see that the random and current options per-
form about the same. This is expected since: (1) the current option results 
in each individual from the current population being used as the base vector 
exactly once per generation; and (2) the random option results in each indi-
vidual being used as the base vector an average of once per generation. On 
the other hand, Figure 12.6 shows that the best option clearly outperforms 
the other two options. It is apparent that focusing the search around the best 
individual each generation is a beneficial strategy. 

Since using the best individual as the base vector gives the best perfor-
mance, we use that option in the rest of this example. For our last simulation 
in this example we look at how performance changes depending on how many 
difference vectors are used to generate the mutant vector. We can use a single 
difference vector as shown in Equation (12.6), or we can use two difference 
vectors as shown in Equation (12.7). Figure 12.7 shows the best individual at 
each generation, averaged over 20 Monte Carlo simulations. We see that using 
only one difference vector performs slightly better than using two difference 
vectors, even when F is corrected for the effect of using two difference vectors 
as discussed in the text following Equation (12.7). The reason for this is not 
clear, but it is consistent with the findings reported in [Price et al., 2005, 
Section 2.4.7], and it would be interesting to explore this issue in more detail. 

D 
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Figure 12.6 Example 12.2: DE performance on the 20-dimensional Ackley function. 
The traces show the cost of the best individual at each generation, averaged over 20 Monte 
Carlo simulations. Using the best individual as the base vector gives significantly better 
performance. 

We could also implement other EA options in DE. For example, we could easily 
add a more standard EA mutation operation to the DE algorithm, such as Gaussian 
or uniform mutation centered at the candidate solution (see Section 8.9). However, 
this operation it might not have much impact since DE's mutant vector is already 
highly exploratory. 

Recall that elitism is a common feature of EAs that ensures that we do not lose 
high-performing individuals, and that the performance of the best individual in 
the population never gets worse from one generation to the next (see Section 8.4). 
Elitism is an attractive option for all EAs and usually provides a significant im-
provement in performance. However, there is no need to implement elitism in DE, 
because DE automatically saves the best individuals each generation, as seen in 
the "for each population index" loop in Figure 12.2. But this raises the issue that 
there may be problems for which DE performs better with a less aggressive elitism 
strategy. Sometimes EAs need to tunnel through poor regions of the search space 
to reach good solutions. Non-elitist EAs may be better suited for certain problems 
with expensive or dynamic cost functions (see Chapter 21). 

12.2.3 Scale Factor Adjustment 

DE's scale factor F determines the effect that difference vectors have on the mutant 
vector. So far we have assumed that F is a constant. However, randomization is 
one of the hallmarks of EAs, so it makes sense to let F be a random variable. This 
allows a broader range of mutant vectors, which may lead to greater exploration 
by the DE algorithm. Also, making F random allows for the analysis of DE's 
convergence properties [Zaharie, 2002]. 

~ - , Λ , „ . , ι , . . . . . . . : 

- - - Random base vector 
Current base vector 

— Best base vector 
-

-
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Figure 12.7 Example 12.2: DE performance on the 20-dimensional Ackley function for 
Example 12.2. The traces show the cost of the best individual at each generation, averaged 
over 20 Monte Carlo simulations. The use of only one difference vector for mutant vector 
generation is slightly better than the use of two difference vectors. 

We can vary the DE scale factor two different ways. First, we can allow F to 
remain a scalar and randomly change it each time through the "for each individual" 
loop in Figure 12.2. This type of variation is called dither. Second, we can change 
F to an n-element vector and randomly change each element of F in the "for each 
individual" loop, so that each element of the mutant vector v is modified by a 
uniquely-scaled component of the difference vector. This type of variation is called 
jitter. 

Dither replaces the mutant vector generation line in Figure 12.2 with the follow-
ing: 

Γ ^ U ΐΛππη? -^maxj 

Vi <- Xr\ + F(xr2 - #r3)· (12.10) 

That is, the scale factor is a random scalar uniformly distributed between Fm in 

and F m a x . Other approaches to dithering allow F to be taken from a Gaussian 
distribution [Price et al., 2005, Section 2.5.2]. 

Jitter replaces the mutant vector generation line in Figure 12.2 with the following: 

For each dimension j G [1, n] 

Vij i Xrl,j i -Fj \Xr2,j **V3,j/ 

Next dimension (12.11) 

That is, each element of the difference vector is scaled by a different amount to 
create the mutant vector. 

In general, constant values of F seem to work better for simple functions (for 
example, the sphere function), and randomized values of F seem to work better 

- - -Two difference vectors 
——One difference vector 
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for most multimodal functions. Jitter works best for functions that are mostly 
separable, and dither works best for highly nonseparable functions [Price, 2013]. 

■ EXAMPLE 12.3 

In this example we explore the use of dithering and jittering. We use a popu-
lation size of 50, as in previous examples. We use F m j n = 0.2 and F m a x = 0.6 
in Equations (12.10) and (12.11). Figure 12.8 shows the average performance 
of DE on the 20-dimensional Ackley function with crossover rate c = 0.9 and 
with three different implementations of the scale factor: (1) Constant F\ (2) 
Dithered F\ and (3) Jittered F. We see that the dithering and jittering options 
perform about the same, while the constant F option performs the best. This 
indicates that randomizing F degrades performance. However, Figure 12.9 
shows the same results on the Fletcher optimization benchmark. In this case 
jittering performs slightly but clearly better than constant F , which in turn 
performs better than dithered F. 

These results indicate that the effects of dithering and jittering depend on 
the specific problem that is being solved, and also on the other parameters in 
the DE algorithm. The effect of varying F depends on what value of constant 
F we compare to, crossover rate, the range and type of distribution used for 
varying F , and so on. 
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Figure 12.8 Example 12.3: DE performance on the 20-dimensional Ackley function with 
crossover rate c = 0.9. The traces show the cost of the best individual at each generation, 
averaged over 100 Monte Carlo simulations. The use of a constant scale factor F performs 
slightly better than dithering or jittering. 
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Figure 12.9 Example 12.3: DE performance on the 20-dimensional Fletcher function 
with crossover rate c = 0.9. The traces show the cost of the best individual at each 
generation, averaged over 100 Monte Carlo simulations. Jittering F performs slightly better 
than constant F, which in turn performs slightly better than dithered F. 

Equations (12.10) and (12.11) both use a zero-mean uniform distribution to de-
termine the scale factor variation AF from its nominal value (Fm-m + Fmax)/2. 
Other distributions, such as non-zero-mean uniform and log-normal, can also be 
used. These distributions have shown improvements in performance for some prob-
lems [Price et al., 2005, Section 2.5.2]. 

12.3 DISCRETE OPTIMIZATION 

In this section we discuss how DE can be used to optimize functions over a discrete 
domain. The only place that discrete domains cause a problem in DE is in the 
generation of the mutant vector. Recall Figure 12.2, where we see that 

Xrl + F ( # r 2 - Xrs)- (12.12) 

Since F G [0,1], V{ might not belong the problem domain D. DE was originally 
designed for problems with a continuous domain, but it can be modified for discrete 
domains. There are two similar but fundamentally different ways to modify DE for 
discrete problems. First, we can generate the mutant vector Vi with standard DE 
methods, such as the method of Equation (12.12), and then modify it to lie in the 
problem domain D\ we discuss one approach along these lines in Section 12.3.1. 
Second, we can modify the mutant vector generation method so that the mutant 
vector is directly generated so that it is in D\ we discuss one approach along these 
lines in Section 12.3.2. See [Onwubolu and Davendra, 2009] for additional discus-
sions of DE for discrete domains. 
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12.3.1 Mixed-Integer Differential Evolution 

One obvious approach to ensure that Vi G D is to simply project it onto D. When 
DE is modified in this way to optimize over a discrete domain, it is often called 
mixed-integer DE [Huang and Wang, 2002], [Su and Lee, 2003]. For example, if D 
is the set of n-dimensional integer vectors, then we could replace Equation (12.12) 
with the following: 

Vi —̂ round[x ri + F(xr2 — 2V3)] (12.13) 

where the round function operates element-by-element on a vector. A more general 
way to do this is 

Vi <- P[xrl + F{xr2 - xr3)] (12.14) 

where P is a projection operator such that P(x) G D for all x. Equation (12.13) 
gives a specific and simple possibility for P. 

In general, P could be more complicated than Equation (12.13). For example, 
suppose again that the problem domain D is the set of iV-dimensional integer 
vectors. Then we could define P as 

P(x) = a r g m i n / ( a ) : a e D, \χά - αΛ < 1 for all j G [l ,n]. (12.15) 
a 

This would project the real-valued vector x onto the integer-valued vector a which 
results in the lowest cost function, and where each element of a is within one unit 
of the corresponding element of x. This idea is illustrated in Figure 12.10 for two 
dimensions. Other possible forms for the projection operator could be used, and 
might depend on the specific problem. 

A 
I · · · · 

α(1) φ) 
I · · · · 

X 
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«(4) φ) 

I · · · · 
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Figure 12.10 Projection of the continuous-valued vector x onto a discrete-valued vector 
a. This two-dimensional example shows that x is not in the problem domain of the discrete 
optimization problem. The cost function values of the four closest points to x in the problem 
domain are tested. The a(i) that results in the smallest value of the cost function is equal 
to P(x), the projected value of x. 
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12.3.2 Discrete Differential Evolution 

Another way to modify DE for discrete problems is to change the mutant vector 
generation method so that it directly creates mutant vectors that lie in the discrete 
domain D. When DE is modified in this way, it is often called discrete DE [Pan 
et al., 2008]. With this approach, we replace Equation (12.12) with 

Vi <- G(xruXr2,Xr3) (12.16) 

where G(-) 6 D if all of its arguments are in D. This is a generalization of Equa-
tion (12.14), and so we see that discrete DE is a generalization of mixed-integer 
DE. The function G(·) can be written to handle general discrete problems, or it can 
be formulated as a problem specific function. For example, suppose again that D 
is the set of n-dimensional integer vectors. Then we could use the following options 
for generating the mutant vector: 

Option 1: Vi «— xr\ + round[F(x r2 — xr3)] 
Option 2: Vi <— xr\ + sign(xr2 — xr3) (12.17) 

where the round and sign functions operate element-by-element on vectors. 
Recall that the basic idea of mutant vector generation with discrete DE is to 

obtain Vi by modifying a candidate solution vector (xri in the above equation) 
using the difference between two other candidate solution vectors (xr2 and xrs in 
the above equation). Any method of doing this that gives Vi 6 D is suitable for 
discrete DE. There are many possible methods that could be explored in future 
research. 

12.4 DIFFERENTIAL EVOLUTION AND GENETIC ALGORITHMS 

In this section we show that DE is a special type of continuous GA. Suppose that 
we do not know anything about DE, but that we want to develop an EA based 
on the material that we read in Part II of this book. In particular, suppose that 
we want to develop a modified version of a G A. For each individual x^, we want 
to probabilistically copy independent variables from a randomly-selected individual 
Vi, which we call the mutant vector, to Xi, to obtain a child Ui. We use c, which we 
call the crossover rate, to denote the probability that an independent variable in 
Xi is replaced by the corresponding independent variable from Vi. This idea is very 
similar to uniform crossover in Section 8.8.4 if, in that section, we define xa = Xi, 
Xb = Vi, and y = u^. Furthermore, we want to replace Xi with the child Ui if the 
child is better; this idea is similar to (1+1)-ES of Section 6.1. With these ideas in 
mind, we propose the modified G A of Figure 12.11. 

Now suppose that we want to tune our algorithm to get better performance. 
Instead of assigning a random individual to Vi, we decide to perturb a random 
individual to obtain Vi. In particular, we decide to perturb a random individual 
as shown in Figure 12.1. This is a conceptual change in the way that we obtain 
Vi, but it is, after all, still based on current population members. We also realize 
that because of the "If rand(0,l) < c" statement in Figure 12.11, it is possible that 
Uij = Xij for all j G [l ,n]; that is, it is possible that the child Ui is a clone of 
its parent a^. We want to prevent this, and so we think of a way to ensure that 
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at least one independent variable in ui is copied from V{. We do this by adding 
another condition to the "If rand(0,l) < c" statement; we change the statement to 
"If (rand(0,l) < c) or (j — random index G [l,n])," where n is the dimension of 
the problem. With these ideas in mind, we obtain a generalization of Figure 12.11 
as shown in the algorithm of Figure 12.12. 

Initialize a population of candidate solutions {x^}, i G [1, N] 
While not (termination criterion) 

For each individual Xi, i G [1, N] 
n «— random integer G [l,N] : r i φ i 
Vi <- Xri 

For each dimension j G [l,n] 
If rand(0,l) < c then 

Uij y Vîj 

else 
Uij i ^ij 

End if 
Next dimension 

Next individual 
For each i G [1, N], If f(ui) < f(xi) then Xi <- Ui 

Next generation 

Figure 12.11 The above pseudocode outlines Version 1 of a modified genetic algorithm 
for minimizing f{x) where c is the crossover rate and rand(0,l) is a random number G [0,1]. 

Now we note that Figure 12.12 is identical to the basic DE algorithm of Fig-
ure 12.2; that is, DE is a special type of genetic algorithm. This raises two ques-
tions. 

1. Should a G A be called a G A, or should it be considered a special case of DE? 

2. Should DE be called DE, or should it be considered a GA variant? 

To answer the first question, we know that the G A label will never become ob-
solete because of its history and its foundational importance in the development of 
EAs. Furthermore, the G A label is useful because it encourages the incorporation 
of biological features into the algorithm (sexual reproduction, aging, island popu-
lations, and so on), which can lead to interesting and rewarding GA extensions. 

To answer the second question above, the EA community has realized since the 
1990s that DE is distinctive enough to be considered a separate EA, and should not 
be considered as a special case of some other EA. However, although these questions 
have been answered for DE, they have far-reaching implications for other EAs. 
Every year new EAs are proposed, some of which we discuss in Chapter 17. Which 
ones deserve their own class, and which ones should be considered as generalizations 
or special cases of already-established EAs? As more and more EAs arise in the 
literature, it will be more and more difficult for new EAs to find a niche. However, 
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just as DE deserves its own class in spite of its similarity to GAs, some of these new 
EAs may also deserve their own class. We discuss this topic further in Chapter 17.4 

Initialize a population of candidate solutions {#;}, i G [1, N] 
While not (termination criterion) 

For each individual Xi, i G [1, N] 
7*1 <— random integer G [l,N] : ri φι 
Τ2 «- random integer G [l,iV] : V2 £ {^,^1} 
rs <— random integer G [1, AT] : r$ £ {2,7*1,^} 
Vi «- Xri + F(xr2 — Xr3) 
Jr <— random integer G [l,n] 
For each dimension j G [l,n] 

If (rand(0,l) < c) or (j = Jr) then 
Uij A Vîj 

else 

End if 
Next dimension 

Next individual 
For each i G [1, N], If /(iti) < f(xi) then a:̂  —̂ U{ 

Next generation 

Figure 12.12 The above pseudo-code outlines Version 2 of a modified genetic algorithm 
for minimizing f(x) where F is the stepsize, c is the crossover rate, and rand(0,l) is a random 
number G [0,1]. 

12.5 CONCLUSION 

Current research in DE mirrors current research in other EAs: simplification of the 
DE algorithm [Omran et al., 2009]; on-line adaptation of the DE control parameters 
[Qin et al., 2009]; hybridization with other search algorithms [Noman and Iba, 
2008]; and the extension of DE to special types of optimization problems, like 
dynamic problems [Brest et al., 2009], multi-objective problems [Mezura-Montes 
et al., 2008], [Dominguez and Pulido, 2011], and constrained problems [Lampinen, 
2002], [Mezura-Montes and Coello Coello, 2008]. As with many other EAs, there 
is a lot of room for theoretical and mathematical analyses of DE, so that would 
be a fruitful area for further research. It would be interesting to compare DE's 
approach to contour matching (recall the discussion at the end of Section 12.1) 
with that of CMA-ES (see the end of Section 6.5). Further reading on the topic 
of DE can be found in books [Price et al., 2005], [Feoktistov, 2006], [Qing, 2009], 
[Zhang and Sanderson, 2009]; and tutorial papers [Das and Suganthan, 2011], [Neri 
and Tirronen, 2010]; and book chapters [Syswerda, 2010]. 

4One of the first DE publications includes the subtitle, "A simple evolution strategy for fast 
optimization" [Price, 1997]. However, DE does not seem to have much in common with ES. 
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PROBLEMS 

Written Exercises 

12.1 Section 12.1 says that the number of mutant vector elements k that are 
contributed to the trial vector closely follows a binomial distribution. (See Prob-
lem 12.9 for the computer exercise counterpart to this problem.) 

a) Given an experiment with a success probability c, what is the probability 
of obtaining k successes in n independent experiments? 

b) Given the classic DE algorithm, what is the probability that the mutant 
vector will contribute k components to the trial vector? 

12.2 The classic DE algorithm of Section 12.1 requires the generation of three 
random integers, but the random number generations might need to be repeated 
due to their restricted allowable values. 

a) On average, how many random number generations are required to obtain 
acceptable values of r i , r2, and rs? (Hint: Use the geometric distribution.) 

b) Given n = 20, how many random number generations are required, on 
average, to obtain acceptable values of 7*1, Γ2, and Γ3? 

12.3 Suppose we omit the "j = Jr" test in Figure 12.2. What is the probability 
that ui is a clone of x{l What is the probability if c — 0.5 and n = 20? 

12.4 Suppose we want to implement DE/rand/1 /L as described in Section 12.2.1, 
except that we do not want to allow elements of v to wrap around when copying 
them to Ui. In this case we could replace the J value in Figure 12.3 with the 
statement J «— {s,min(n,s -f L — 1)}. What would be the average number of v 
features copied to the trial vector? 

12.5 How could you change the DE algorithm to be non-elitist? 

12.6 Propose a stochastic projection operator for mixed-integer DE. 

12.7 Propose a stochastic mutant vector generator for discrete DE. 

12.8 Modify the statement "If f(ui) < f(xi) then xi <- u" in Figure 12.2 so 
that DE is more like a (μ + A)-ES. 

Computer Exercises 

12.9 Number of Mutant Contributions: In Problem 12.1 you obtained two 
probabilities: (1) the probability of k successes out of n independent trials, each 
of which have a success probability c; (2) the probability that the mutant vector 
contributes k components to the trial vector. Plot these two probabilities as a 
function of k for n = 20 and c = 0.5. 
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12.10 D E Step Size: Implement the classic DE algorithm of Figure 12.2 to 
minimize the 10-dimensional Rosenbrock function (see Appendix C.1.4 for the def-
inition of the Rosenbrock function). Use a population size N = 100, a crossover 
rate c — 0.9, and a generation limit of 30. Run 40 Monte Carlo simulations for 
each of the following step size values F: 0.1, 0.3, 0.5, 0.7, and 0.9. For each set of 
Monte Carlo simulations, compute the average of the best cost of the 40 simula-
tions at each generation. Plot the average performance of each Monte Carlo set as 
a function of generation number, and comment on your results. 

12.11 D E Crossover Rate: Implement the classic DE algorithm of Figure 12.2 
to minimize the 10-dimensional Rastrigin function (see Appendix C . l . l l for the 
definition of the Rastrigin function). Use a population size N = 100, a step size 
F = 0.4, and a generation limit of 50. Run 40 Monte Carlo simulations for each of 
the following crossover values CR: 0.1, 0.5, and 0.9. For each set of Monte Carlo 
simulations, compute the average of the best cost of the 40 simulations at each 
generation. Plot the average performance of each Monte Carlo set as a function of 
generation number, and comment on your results. 





CHAPTER 13 

Estimation of Distribution Algorithms 

Estimation-of-distribution algorithms take a different approach to sample the search 
space. The population is used to estimate a probability distribution over the search 
space that reflects what are considered to be important characteristics of the popula-
tion. 

—Alden Wright [Wright et al., 2004] 

An estimation of distribution algorithm (EDA) optimizes a function by keep-
ing track of the statistics of the population of candidate solutions [Larranaga and 
Lozano, 2002]. Since the statistics of the population are maintained, the actual pop-
ulation itself does not need to be maintained from one generation to the next. A 
population is created at each generation from the previous generation's population 
statistics, and then the statistics of the most fit individuals in the population are 
computed. Finally, a new population is created by using the statistics of the most 
fit individuals. This process repeats from one generation to the next. So ED As 
are population-based algorithms that discard at least part of the population each 
generation and replace it using the statistical properties of highly-fit individuals. 
ED As differ from most EAs in that they typically do not include recombination. 
EDAs are also called probabilistic model-building genetic algorithms (PMBGAs) 
[Pelikan et al., 2002], and iterated density estimation algorithms (IDEAs) [Bosman 
andThierens, 2003]. 
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Overview of the Chapter 

Section 13.1 begins this chapter by presenting the basic outline of a generic EDA, 
and by showing how meaningful statistics can be computed from a population of 
EA individuals. All EDAs use statistics such as those computed in Section 13.1.2 
to create the next generation of individuals. Section 13.2 outlines some popular 
EDAs for discrete optimization problems that rely on only first-order statistics, 
including the univariate marginal distribution algorithm (UMDA), the compact ge-
netic algorithm (cGA), and population based incremental learning (PBIL), which 
is a generalization of UMDA. Section 13.3 outlines some discrete EDAs that use 
second-order statistics, including mutual information maximization for input clus-
tering (MIMIC), combining optimizers with mutual information trees (COMIT), 
and the bivariate marginal distribution algorithm (BMDA). Section 13.4 discusses 
multivariâte EDAs, which are EDAs that use higher-order statistics, and gives an 
outline of the extended compact genetic algorithm (ECGA). 

All of the EDAs mentioned above are designed for problems with binary domains. 
We conclude this chapter by showing how to extend those EDAs to problems with 
continuous domains. We illustrate this idea by presenting continuous UMDA and 
PBIL algorithms in Section 13.5. 

13.1 ESTIMATION OF DISTRIBUTION ALGORITHMS: BASIC 
CONCEPTS 

This section presents the basic outline of a generic EDA in Section 13.1.1, and shows 
how meaningful statistics can be computed from a population of EA individuals in 
Section 13.1.2. 

13.1.1 A Simple Estimation of Distribution Algorithm 

Figure 13.1 shows the basic outline of an EDA. Each EDA has its own unique 
approach to the three main steps of the algorithm of Figure 13.1. First, how are 
the M individuals selected from the total population of N candidate solutions? 
Second, what statistics are calculated from the M individuals, and how are those 
statistics calculated? Third, how are the statistics used to create a new population 
for the next generation? It is the answers to these questions that give rise to different 
types of EDAs, and this will occupy our attention for most of the remainder of this 
chapter. 

The first step in the loop of Figure 13.1 is the selection of M individuals from 
a population of N candidate solutions, where M < N. This can be done in many 
different ways. There is nothing distinctive about the selection method in an EDA. 
Selection can be performed just as in any other EA, as discussed in Section 8.7, so 
we will not discuss selection any further in this chapter. 

13.1.2 Computations of Statistics 

This section describes how to compute the statistics of a population of individuals, 
which is the second step in the loop of Figure 13.1. We will explore this topic with 
a simple example. Suppose that we have a binary optimization problem, that we 
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Initialize a population of candidate solutions {x^}, i G [1, N] 
While not (termination criterion) 

Select M individuals from {xi} according to fitness, where M < N 
Compute the statistics of the M individuals selected above 
Use the statistics to create a new population {xi}, i £ [1, N] 

Next generation 

Figure 13.1 The basic outline of an estimation of distribution algorithm (EDA). 

have TV candidate solutions, that we evaluate their fitness values, and that we use 
some fitness-based method to select M of the individuals, where M < N. The 
selection should be biased toward the more fit individuals, as with any other EA 
(see Section 8.7). Suppose that M — 10 and we select the following 10 individuals: 

Xl ■ 

X3 

x5 

x7 

X9 

= (0,1,1,1,1,0) , 
= (1,0,0,1,1,0) , 
= (0,1,0,0,0,1) , 
= (0,0,1,1,1,0) , 
= (0,1,0,0,0,0) , 

X2 

X4 

XQ 

x» 
X\0 

= (0,1,1,1,1,1), 
= (1,1,1,0,1,0) , 
= (0,1,0,0,1,0), 
= (1,0,1,0,1,0), 
= (0,1,1,1,1,1) . 

The mean of these individuals can easily be computed as 

x = (0.3,0.7,0.6,0.5,0.8,0.3). (13.2) 

The mean is a first-order statistic. We see that the first bit of this relatively fit 
subpopulation has only a 30% chance of being a 1. Therefore, when we generate 
the next population, the first bit of each individual should have a 30% chance of 
being a 1, and a 70% chance of being a 0. We also see that the second bit has a 
70% chance of being a 1. So when we generate the next population, the second bit 
of each individual should have a 70% chance of being a 1. 

However, we can also use second-order statistics. Note that if the first (leftmost) 
bit Xi(l) — 1 in Equation (13.1), then the second bit X{(2) has only a 1/3 chance 
of being a 1; also, if X{(1) = 0 in Equation (13.1), then the second bit has a 6/7 
chance of being a 1. It appears that there might be some correlation between the 
first and second bit values. So instead of giving the second bit a 70% chance of 
being a 1 in each member of the new population, maybe we should wait until after 
we generate the first bit. Then if the first bit is a 1 we should give the second bit 
a 1/3 chance of being a 1, and if the first bit is a 0 we should give the second bit a 
6/7 chance of being a 1. 

Finally, note that we could use also third-order or even higher-order statistics to 
create the next generation. For example, we see that if the fourth and fifth bits in 
Equation (13.1) are 0 and 1 respectively, the last bit is always 0. 

13.2 FIRST-ORDER ESTIMATION OF DISTRIBUTION ALGORITHMS 

This section presents three first-order EDAs, including the univariate marginal 
distribution algorithm (UMDA) in Section 13.2.1, the compact genetic algorithm 
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(cGA) in Section 13.2.2, and population based incremental learning (PBIL) in Sec-
tion 13.2.3. 

13.2.1 The Univariate Marginal Distribution Algorithm (UMDA) 

The univariate marginal distribution algorithm (UMDA) is the most basic ED A, 
and was introduced by Heinz Mühlenbein for binary problems in the late 1990s 
[Mühlenbein and Paa/3, 1996], [Mühlenbein and Schlierkamp-Voosen, 1997]. It uses 
only first-order statistics to generate the population at each generation. Figure 13.2 
gives an outline of UMDA for binary optimization problems. 

Although the standard UMDA does not include elitism, we can use elitism with 
UMDA just as with any other EA. An elitism parameter e means that we keep 
the best e individuals from one generation to the next. This ensures that the best 
individual at each generation is never worse than the best individual of the previous 
generation, and guarantees continuous improvement (see Section 8.4). 

Initialize a population of candidate solutions {xi}, i G [1, N] 
Note that each Xi includes n bits Xi( 1 ) , . . . , Xi(n) 
While not (termination criterion) 

Select M individuals from {xi} according to fitness, where M < N 
Index the M selected individuals as {^} , i G [1, M] 

Pr{x(k) = 1) <- Y^=1à{xi{k) - 1 ) / M , for k G [l,n] 
For i — 1 to N (population size) 

For k = 1 to n (number of bits in each candidate solution) 
r <- C/[0,1] 
If r < Pv(x(k) = 1) 

Xi(k) <- 1 
else 

Xi(k) <- 0 
End if 

Next bit 
Next individual 

Next generation 

Figure 13.2 The basic outline of a univariate marginal distribution algorithm (UMDA) 
for optimization on an n-bit binary domain. ô(y) is the Kronecker delta function; that is, 
S(y) = 1 if y = 0, and ô(y) — 0 if y φ 0. C/[0,1] is a random number generated from a 
uniform distribution between 0 and 1. Xi(k) is the fe-th bit in the i-th individual. 

■ EXAMPLE 13.1 

In this example, we use the UMDA of Figure 13.2 for the minimization of the 
20-dimensional Ackley function, which is defined in Appendix C.1.2. We use 
six bits per dimension, so the minimization problem includes n = 120 bits. 
We use a domain of [—5, +5] for each of the 20 dimensions, which gives us 
a resolution of 10/(26 — 1) = 0.16 for each dimension. We use a population 
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size N = 100 and an elitism parameter of two, which means that we always 
keep the best two individuals from one generation to the next. We tried four 
different values for M: 2, 10, 40, and 70. Figure 13.3 shows the performance 
of UMDA, averaged over 50 Monte Carlo simulations. Figure 13.3 shows that 
if we use too few or too many individuals to calculate probabilities, then 
performance is not good. We have to use just the right number of individuals 
in the probability calculation to get good performance. 

» M = 2% of population 
— M = 70% of population 

; M = 40% of population 
- M = 10% of population 

20 30 
Generation 

Figure 13.3 Example 13.1: UMDA results for the minimization of the 20-dimensional 
Ackley function with six bits per dimension. The results show the cost of the best individual 
at each generation, averaged over 50 Monte Carlo simulations. 

D 

Further UMDA research could include modifying the probability vector calcu-
lation to use weighted contributions from each individual. Figure 13.2 shows that 
the probability vector is calculated as 

1 M 

PrOr(fc) = 1) <- — Y^S{Xi{k) - 1), k 6 [l ,n]. (13.3) 

Each of the best M individuals in the population has the same contribution to 
the computation of the probability vector. But it makes sense to weight the best 
individuals more heavily than worse individuals. This extension would be similar 
to fully-informed particle swarm optimization. Standard PSO uses a neighborhood 
of a certain size to adjust each particle's velocity, but the fully-informed PSO of 
Section 11.5 uses the entire population to adjust each particle's velocity. This idea 
could result in the replacement of Equation (13.3) with something like the following: 

Pr(x(k) = 1) <- ^2wiô{xi{k) - 1) 
i = l / 

where W{ is proportional to the fitness of xim 

J^Wi, ke[l,n] (13.4) 
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13.2.2 The Compact Genetic Algorithm (cGA) 

The compact genetic algorithm (cGA) was developed by Georges Harik, Fernando 
Lobo, and David Goldberg in 1999 [Harik et al., 1999]. As its name indicates, it is a 
minimalist approach to evolutionary computation. Although the term G A is in its 
name, the cGA is more of an EDA than a GA. Like the UMDA, it uses only first-
order statistics to generate individuals at each generation. Given an optimization 
problem on an n-element binary domain, we begin with an n-element probability 
vector p with each element initialized to 1/2. We then randomly generate two 
individuals x\ and X2, using p to determine the probability of the value for each bit 
in each of the two individuals. We then measure the fitness of the two individuals. 
If one individual is more fit than the other, and the i-th bit in the two individuals is 
different, then we adjust the i-th element of the probability vector p accordingly. We 
continue to the next generation by using the updated probability vector. Figure 13.4 
shows a basic cGA algorithm. 

Initialize the n-element probability vector p = [0.5, · · ·, 0.5] 
Set Pmin and pmax5 the minimum and maximum values for each element of p 
Set a, the probability update increment 
While not (termination criterion) 

For i = 1 to 2 (population size) 
For k = 1 to n (number of bits in each candidate solution) 

r <- U[0,1] 
If r < p(k) 

Xi{k) <- 1 
else 

Xi(k) <- 0 
End if 

Next bit 
Next individual 
Evaluate x\ and #2, and re-order them so that #1 is more fit than x<i 
For k — 1 to n (number of bits in each candidate solution) 

If x\(k) Φ X2(k) then 
If x\(k) = 1 then 

p(k) <- p(k) -h a 
else 

p(k) «— p(k) — a 
End if 

p(k) <- max(min(p(/c),pmax), Pmin) 
End if 

Next bit 
Next generation 

Figure 13.4 The basic outline of the compact genetic algorithm (cGA) for optimization 
on an n-bit binary domain. U[0,1] is a random number generated from a uniform distribution 
between 0 and 1. Q £ (0,1) governs the speed of convergence. xi{k) is the fc-th bit in the 
i-th. individual. 
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As with any other EA, elitism can be incorporated into the cGA. In this case, the 
best individual at the end of each generation is included with the two new individ-
uals that are created at the next generation, and the best of the three individuals 
is used to adjust the probability vector. 

■ EXAMPLE 13.2 

In this example, we again attempt to minimize the 20-dimensional Ackley 
function, this time using the cGA of Figure 13.4. Our problem parameters 
are the same as in Example 13.1: six bits per dimension, resulting in a mini-
mization problem with n = 120 bits; and a domain of [—5, +5] for each of the 
20 dimensions, giving a resolution of 10/(26 — 1) = 0.16 for each dimension. 
We use a population size N = 2, as indicated by the algorithm of Figure 13.4. 
We used pmm = 0.05 and pmax = 0.95. We also use elitism, which means that 
we always keep the best individual from one generation to the next. We tried 
three different values for a: 0.001, 0.01, and 0.1. Figure 13.5 shows the per-
formance of cGA, averaged over 50 Monte Carlo simulations. We see that if 
a is too large, then there is too much jumping around in the search space and 
convergence is poor. If a is too small, then the probability vector converges 
slightly more slowly during the early generations, but better performance is 
obtained in the long run. Even with the optimal value of a, though, conver-
gence is not nearly as good as UMDA, as seen from Example 13.1. However, 
it should be be noted that cGA requires only two new individuals, and only 
one fitness function comparison, at each generation. Therefore, it is not re-
ally fair to compare UMDA and cGA with an equal number of generations; 
instead, they should be compared with an equal number of fitness function 
calculations (see Problems 13.3 and 13.12). 

!' 0 10 20 30 40 50 
Generation 

Figure 13.5 Example 13.2: cGA results for the minimization of the 20-dimensional 
Ackley function with six bits per dimension. The results show the best individual at each 
generation, averaged over 50 Monte Carlo simulations. 

D 
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Example 13.2 showed only results with elitism, but the reader can confirm with 
his or her own experiments that removing elitism results in poor performance in the 
cGA. Pmin a n d Pmax can also have a strong influence on cGA performance. Finally, 
notice that there is nothing to prevent us from using more than two individuals 
per generation. If we create more than two individuals per generation, then we 
can modify the probability vector by comparing the best individual with the worst 
individual. See Figure 13.6 for a generalized version of the cGA. 

Initialize the n-element probability vector p = [0.5, · · ·, 0.5] 
Set pmin and p m a x , the minimum and maximum values for each element of p 
Set a, the probability update amount 
Set N, the population size 
Initialize elite individual xe 4- 0 (null vector) 
While not (termination criterion) 

For i = 1 to N (population size) 
For k = 1 to n (number of bits in each candidate solution) 

r *- t/[0,1] 
If r < p(k) 

Xi(k) +- 1 
else 

Xi(k) <- 0 
End if 

Next bit 
Next individual 
^best < - b e s t Of { χ β , £ ι , · · · , £ ] ν } 
^worst < - WOrst Of {xe, X i , · · · , XN} 

For k = 1 to n (number of bits in each candidate solution) 
If Xbest(k) φ Xworst(k) then 

If Xbest(fc) = 1 then 
p(k) <-p(k) + a 

else 
p(k) «— p(k) — a 

End if 
p(k) <- max(min(p(/c),pmax),pmin) 
End if 

Next bit 
Xe i Xbest 

Next generation 

Figure 13.6 A generalized version of the compact genetic algorithm (cGA) with elitism 
for optimization on an n-bit binary domain. C/[0,1] is a random number generated from a 
uniform distribution between 0 and 1. a G (0,1) governs the speed of convergence. Xi(k) is 
the fc-th bit in the z-th individual. 
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EXAMPLE 13.3 

In this example, we again attempt to minimize the 20-dimensional Ackley 
function, this time using the generalized cGA of Figure 13.6. Our problem 
parameters are the same as in Example 13.2, but we set a = 0.001. We 
tried three different values for the population size: N = 2 (cGA default), 
N — 5, and N = 20. Figure 13.7 shows the performance of cGA, averaged 
over 50 Monte Carlo simulations. We see that as population size increases, 
performance improves. However, computational effort is directly proportional 
to population size. Instead of comparing with equal numbers of generations, 
a more fair comparison would use equal numbers of function evaluations (see 
Problems 13.4 and 13.13). 
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10 20 30 
Generation 
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Figure 13.7 Example 13.3: cGA results for the minimization of the 20-dimensional 
Ackley function with six bits per dimension. The results show the best individual at each 
generation, averaged over 50 Monte Carlo simulations. cGA performance and computational 
effort are both directly proportional to population size. 

13.2.3 Population Based Incremental Learning (PBIL) 

This section presents population based incremental learning (PBIL), which is an 
ED A that uses first-order statistics. PBIL is a generalization of UMDA. PBIL was 
introduced in [Baluja, 1994], [Baluja and Caruana, 1995]. It is also called hill climb-
ing with learning (HCwL) [Kvasnicka et al., 1996] and the incremental univariate 
marginal distribution algorithm (IUMDA) [Mühlenbein and Schlierkamp-Voosen, 
1997]. Given an n-dimensional binary optimization problem, PBIL maintains an 
n-dimensional probability vector p. The k-th element of p specifies the probability 
that the k-th. element of a candidate solution will be equal to 1. PBIL is motivated 
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by competitive learning, which is a simple method of learning in artificial neural 
networks [Fausett, 1994]. 

At each generation we use the probability vector p to probabilistically generate 
a random set of candidate solutions. Then we test the fitness of each candidate 
solution. Next we adjust the probability vector so that the next generation is more 
likely to be similar to the most fit individuals, and less likely to be similar to the 
least fit individuals. Given this new probability vector, we proceed to the next 
generation by using p to create another random population of candidate solutions. 
This process continues until the user-defined convergence criterion is satisfied. Fig-
ure 13.8 outlines a basic PBIL algorithm for an n-dimensional binary optimization 
problem. 

TV = population size 
Nbest = number of good individuals that are used to adjust p 
■Nworst = number of bad individuals that are used to adjust p 
f max G [0,1] = maximum allowable value of p 
Pmin £ [0,1] = minimum allowable value of p 
η = learning rate G (0,1) 
Initialize the n-element probability vector p = [0.5, · · ·, 0.5] 
While not (termination criterion) 

Use p to randomly generate N individuals {xi} as follows: 
For i G [1, N] (for each individual) 

For k G [l,n] (for each bit) 
r <— random number in i/[0,1] 
If r < pk 

Xi(k) <- 0 
else 

Xi{k) «- 1 
End if 

Next dimension k 
Next individual i 

Sort the individuals so that f(x\) < f(x2) < · * * < I(XN) 
Forte [l,iVbest] 

P <- P + V(xi - P) 
Next i 
Forte [Ν-ΝνοπΑ + Ι,Ν] 

p<-p- η(χΐ - p) 
Next i 
Probabilistically mutate p 
p <- max(min(p,pm a x) ,pm i n) 

Next generation 

Figure 13.8 A simple PBIL algorithm for minimizing f(x), where the problem domain 
has n binary dimensions, and Xi(k) G {0,1} is the kth element of the ith individual. 
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Figure 13.8 shows that there are several tuning parameters in the PBIL algo-
rithm. 

• We have to decide on a population size TV, just as with all other EAs. 

• We have to choose A^est and iVworst, which are the numbers of individuals 
used to modify the probability vector at each generation. Large values (close 
to N/2) for these parameters will result in a relatively stagnant, slow process 
of evolution. Small values (1 or slightly larger) will result in an aggressive 
learning process. 

• We have to choose the learning rate 77. This parameter has an effect that 
is the opposite to that of TVbest and 7Vworst. A small 77 will result in slow 
optimization, and a large 77 will result in fast optimization. If optimization is 
too fast, then the PBIL algorithm will tend to overshoot the optimum. 

• We have to decide on a mutation algorithm, just as with all other EAs (see 
Section 8.9). 

We see from Figure 13.8 that we do not maintain the population from one generation 
to the next. We keep track of the probability vector, and we create a population 
at each generation, but the population is created anew at each generation. 

Figure 13.8 shows that the probability vector is adjusted so that succeeding 
generations of individuals will be more likely to be similar to highly fit individuals. 
Conversely, the probability vector is adjusted so that later generations will be less 
likely to be similar to low-fitness individuals. This idea is illustrated for the two-
dimensional case in Figure 13.9, where we suppose that x\ is an individual with 
high fitness, and XN is an individual with low fitness. Note from Figure 13.9 that 
if we add some multiple of (x\ — p) to p, then the result will be a new p that has 
moved closer to x\\ 

Pnew <- P + η(Χΐ - P) 

I l i W - s i l h < IIP-Z1II2 (13.5) 

where η G (0,1) is the learning rate. Conversely, Figure 13.9 shows that if we 
subtract some multiple of (XN — p) from p, then the result will be a new p that has 
moved away from XN' 

Pnew <- P - V(XN - P) 

\\Pnew - XN\\2 > \\p ~ XN\\2- (13.6) 

The PBIL algorithm combines Equations (13.5) and (13.6) for several candidate 
individuals (N\^est good individuals and NWOTSt bad individuals) in a search space 
that is typically of high dimension. This results in the probability vector moving 
closer to the good individuals, and farther from the bad individuals. Subsequent 
generations are then more likely to be closer to the good individuals and farther 
from the bad individuals. 
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Figure 13.9 Probability vector adjustment for a two-dimensional optimization problem. 
We adjust p to move toward xi, which is a good individual. We adjust p to move away from 
XN, which is a poor individual. 

13.3 SECOND-ORDER ESTIMATION OF DISTRIBUTION ALGORITHMS 

Ideally we would like to use the entire probability distribution of the best M individ-
uals when creating the next generation. However, that would be computationally 
infeasible, and so we relax rigor for the sake of simplicity and practicality. ED A al-
gorithms like UMDA, cGA, and PBIL, which were discussed in the previous section, 
use only first-order statistics to generate the population; this emphasizes simplic-
ity and practicality over rigor. The EDA algorithms in this section accept some 
additional complication for the sake of increased rigor, and thus use second-order 
statistics to generate the population. Section 13.3.1 discusses mutual information 
maximization for input clustering (MIMIC), Section 13.3.2 discusses combining op-
timizers with mutual information trees (COMIT), and Section 13.3.3 discusses the 
bivariate marginal distribution algorithm (BMDA). 

13.3.1 Mutual Information Maximization for Input Clustering (MIMIC) 

This section discusses mutual information maximization for input clustering (MIMIC), 
which is an EDA that uses second-order statistics, and which was developed by 
Jeremy De Bonet, Charles Isbell, and Paul Viola in 1997 [De Bonet et al., 1997]. 
The probability density function (PDF) of a random individual x can be written as 

p(x) = ρ (χ (1 ) , χ (2 ) , · · · , χ (η ) ) 
= p(x(l) | x(2), x(3), - - -, x(n))p(x(2) \ x(S), x(4), · · ·, x(n)) ■ · · 

p(x{n - 1) | x(n)) p(x(n)) (13.7) 

where x(k) is the k-th bit of a relatively fit candidate solution. For example, if we 
notice from the best M individuals that bit 4 has a 78% chance of being 1 when bits 
5, 8, 9, 14, and 15, are equal to 0, 1, 1, 1, and 0 respectively, then we would like to 
use that information in the creation of the next generation. However for problems 
containing more than a few bits, it is not computationally realistic to obtain the 
complete distribution. That is why UMDA, cGA, and PBIL use only first-order 
statistics; they make the implicit assumption that the PDF of the population can 
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be approximated with first-order statistics: 

p(x)=p(x(l))p(x(2))---p(x(n))*p(x). (13.8) 

MIMIC attempts to find a better approximation than the one in Equation (13.8): 

p(x) = p(x(ki) | x(k2))p{x{k2) \ x(k3)) · · -p(x(kn-i) \ x(kn))p(x(kn)) (13.9) 

where (&i, fc2, · · ·, kn) is a permutation of {1,2, · · ·, n} . Recall that a permutation 
is simply a re-ordering of integers. For example, if n — 5, then (4,5,1,3,2) and 
(5,1, 2,4,3) are both permutations of {1,2, 3,4,5}. The problem that MIMIC tries 
to solve is the determination of the permutation (&i, /c2, · · ·, kn) that makes Equa-
tion (13.9) as close as possible to the true PDF p{x)\ then MIMIC uses p(x) to 
create a new population of candidate solutions each generation. 

Before we can find the permutation that minimizes the approximation error of 
p(x), we need to define approximation error. The similarity of two discrete PDFs 
p(x) and p(x) can be quantified by the Kullback-Liebler divergence [Bishop, 2006]: 

D{p,p) = Y^p(x)\og2(p(x)/p(x)) 
X 

x 

= Y^(p{x)\og2p{x) -p{x)\og2p{x)) (13.10) 
X 

where the sum is taken over all points x where p(x) or p(x) is nonzero. We want 
to minimize D(p,p) with respect to p. The first term on the right side of Equa-
tion (13.10) is not a function of p, so our cost function can be written as 

J(P) = - ^ P ( z ) l o g 2 p ( : r ) 
X 

= - Y^p(x) log2 [p(:r(fci) | x(k2))p(x(k2) \ x(k3)) · · -p{x(kn-i) \ x(kn))p(x{kn))] 
X 

= ~Σ [P( X ) lo§2 P{x(fa ) I x(k2)) + p(x) log2 p(x{k2) I x(k3)) + h 
x 

p(x)\og2p(x(kn-1)\x(kn))+p(x)log2p(x(kn))} 

= -E [log2p(:r(fci) | x(k2))} - E [\og2p(x{k2) \ x(k3))} 

-E [\og2p(x(kn.1) | x(kn))] - E [\og2p(x{kn))} (13.11) 

where we substituted Equation (13.9) for p(x). Our cost can now be written as 

J(p) - h(h | k2) + h(k2 | k3) + · - · + M^n-i I kn) + h(kn) (13.12) 

where the entropy terms h(-) are defined as follows [Gray, 2011]: 

h{ki) = -E [log2 p(x(ki))} 

Hkilkj) = -Ε^2ρ(χ(^)\χ(^))}. (13.13) 

Our problem is now more clear. We want to find the permutation (k\, k2, · · ·, kn) 
of {1,2, · · ·, n} so that the combined entropy on the right side of Equation (13.12) 



3 2 6 CHAPTER 13: ESTIMATION OF DISTRIBUTION ALGORITHMS 

is minimized. The entropy of a single bit can be written as 

h(ki) = -J2 P r f e = a) loS2 Pr(x(i) = a ) . (13.14) 
a 

The conditional entropy of bit ki given that bit kj is equal to ß can be written as 

h(x(ki) | x{kj) = β) = ~Σ Pv(x(ki) = a | x(kj) = β) log2 Pr(x(ki) = a \ x{k0) = β). 

(13.15) 
Finally, the conditional entropy of bit ki given bit kj can be written as 

h{x(ki) | x(kj)) = Σ h(x(ki) | x(kj) = β) Vx(x{kj) = β). (13.16) 
ß 

M EXAMPLE 13.4 

Let us consider a few simple examples of entropy calculation. Suppose that 
we have four three-bit EA individuals: 

Xl = (0,0,0), x2 = (0,0,0), x3 = (1,0,0), *4 - (1,1,0). (13.17) 

The entropy of the first (left) bit is 

h(l) = -E[\og2p(x(l))} 

= - [Pr(x(l) = 0) log2 P r ( i ( l ) = 0) + Pr(x(l) = 1) log2 P r ( i ( l ) = 1)] 
= - [0.5 log2 0.5 + 0.5 log2 0.5] = 1. (13.18) 

The entropy of the second (middle) bit is 

ft(2) = -E[\og2p(x(2))} 

= - [Pr(i(2) = 0) log2 Pr(x(2) = 0) + Pr(x(2) = 1) log2 Pr(i(2) = 1)] 
= - [0.75 log2 0.75 + 0.25 log2 0.25] = 0.81. (13.19) 

The entropy of the third (right) bit is 

h(3) = -E[\og2p(x(3))} 

= - [Pr(x(3) = 0) log2 Pr(x(3) = 0) + Pr(z(3) - 1) log2 Pr(x(3) - 1)] 
= - [ l l o g 2 l + 0 1 o g 2 0 ] = 0 (13.20) 

where we have used the convention 0 log2 0 = 0, which is based on the fact that 
\imz„+o(z log2 z) = 0. We see that the entropy of the first bit is the maximum 
possible value, which means that the first bit does not tell us anything about 
the most fit individual in the population. Based on the four individuals that 
we have, the most fit individual is equally likely to have either a 0 or a 1 as its 
left-most bit. On the other hand, the entropy of the third bit is the minimum 
possible value, which means that the third bit contains the maximum possible 
information about the most fit individual in the population. Based on the four 
individuals of Equation (13.17), the most fit individual has a 100% chance of 
having a 0 as its right-most bit. 
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The conditional entropies of bit 1 can be calculated as 

h(x(l) | x{2) = 0) = - P r ( x ( l ) - 0 | x(2) = 0) log2 Pr(x(l) = 0 | x(2) = 0) 
-Pr(x( l ) = 11 x(2) = 0) log2 Pr(z(l) - 11 x(2) = 0) 

= - ( 2 / 3 ) log2(2/3) - (1/3) log2(l/3) - 0.92 
h(x{l) | x(2) = 1) = - P r ( x ( l ) - 0 | x(2) = 1) log2 Pr(x(l) = 0 | x(2) = 1) 

- P r ( x ( l ) = 11 x{2) = 1) log2 Pr(x(l) = 11 x{2) = 1) 
= - 0 1 o g 2 0 - l l o g 2 l = 0. (13.21) 

We see that the conditional entropy of bit 1 given that bit 2 = 0 is relatively 
high, which means that knowing that bit 2 = 0 does not tell us much about 
the value of bit 1. On the other hand, the conditional entropy of bit 1 given 
that bit 2 = 1 is the lowest possible value, which means that knowing that 
bit 2 = 1 gives us 100% certainty about the value of bit 1. Combining these 
results gives the conditional entropy of bit 1 given bit 2 as 

h(x(l) | x{2)) = h(x(l) | x(2) = 0)Pr(x(2) = 0) + h(x(l) \ x(2) = l)Pr(x(2) = 1) 
= (0.92) (3/4) + (0)(l/4) = 0.69 (13.22) 

which is a weighted sum of the two individual conditional entropy terms. 

D 

We want to find the permutation o f { l , 2 , - - - , n } that minimizes Equation (13.12). 
But there are many possible permutations of {1,2, · · ·, n). In general, there are n! 
permutations of {1, 2, · · ·, n} . This number becomes extremely large for even small 
values of n, so a brute-force search for the optimal permutation is not possible. 
Instead we use a greedy algorithm [De Bonet et al., 1997] that approximately min-
imizes Equation (13.12) and quickly finds a good approximation for p(x). The 
greedy algorithm is shown in Figure 13.10. The first step is to find the bit kn that 
has the lowest entropy (most information). The second step is to find the bit kn-\ 
that has the lowest conditional entropy given bit kn. At each subsequent step, we 
find the bit that has the lowest conditional entropy given the previously discovered 
bit, making sure not to use the same bit more than once. 

kn = argminj h(j) 
For i = n — l , n — 2, · · · , ! 

ki = argmin, h(j \ ki+1) : j £ {ki+1, h+2, -',Κ} 
Next i 

Figure 13.10 A greedy algorithm for approximately minimizing Equation (13.12). 

The MIMIC algorithm works by selecting a subset of highly-fit individuals from 
a population. It uses the greedy algorithm of Figure 13.10 to find a near-optimal 
solution to Equation (13.12). It then uses those probabilities to generate the next 
population of candidate solutions. Figure 13.11 gives a MIMIC algorithm for opti-
mization on a binary domain. 
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Initialize a population of candidate solutions {xi}, i G [1, N] 
Note that each X{ includes n bits Xi( 1 ),·*·> Xi(n) 
While not (termination criterion) 

Select M individuals from {#;} according to fitness, where M < N 
Index the M selected individuals as {£*}, i G [1, M] 
kn <- argmin, h(x(j)) 
For m = n — 1, n — 2, · · ·, 1 

A:m <- arg min, h(x(j) | z(/cm+i)) : j £ {fcn, fcn_i, · · ·, km+i} 
Next m 

Pr(x(fcn) = 1) «- Σ " ι *(*<(*») - l)/M 

For m = n — Ι , η — 2 , · · · , 1 
Define l m + i = {iG [1,M] : x»(fcm+i) = 1} 
Define 0 m +i = {z G [1,M] : Xi(km+i) = 0} 

Pr(x(/Cm) = 1 | X(km+i) = 1) <- E i € l m + 1 <Η^(^τη) - 1 ) / | l m + l | 

Pr(x(fcm) = 11 x(km+i ) = 0) <- Σ<£0„+ 1 *(*i(*m) - 1 ) / Om+l | 
Next m 
For i = 1 to TV (population size) 

r <- C/[0,1] 
If r < Pv(x(kn) = 1) then Xi{kn) «— 1; else £i(fcn) <— 0 
For m = n — l , n — 2, · · ·, 1 

r f- £/[0,1] 
If x»(A;m+i) = 0 

H r < P r ( x ( f e m ) = l |x ( fe m + i ) = 0) 

else 

End if 
else 

I f r < P r ( x ( f e m ) = l |x(fem+i) = l) 
Xi\km) ^~ 1 

else 
Xi(km) <- 0 

End if 
End if 

Next bit m 
Next individual i 

Next generation 

Figure 13.11 The basic outline of mutual information maximization for input clustering 
(MIMIC) for optimization on an n-bit binary domain. h(y) is the entropy of the PDF of y, 
and is empirically estimated from candidate solutions. 6(y) is the Kronecker delta function; 
that is, 6(y) = 1 if y = 0, and S(y) = 0 if y φ 0. C/[0,1] is a random number generated from 
a uniform distribution between 0 and 1. 
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The MIMIC algorithm includes a lot of probability calculations. During imple-
mentation we want to make sure that none of these probabilities are 0 or 1, because 
that would result in an inability to completely explore the search space of the opti-
mization problem. Therefore, during the implementation of Figure 13.11, after the 
calculation of each probability pi we might want to limit the probability value: 

Pi <- max(pi,e) 
Pi <- m i n ( p i , l - e ) (13.23) 

where e is a small positive tuning parameter, often equal to about 0.01. An example 
of MIMIC is given later in Example 13.7. 

13.3.2 Combining Optimizers with Mutual Information Trees (COMIT) 

The COMIT algorithm was introduced in [Baluja and Davies, 1998]. COMIT 
is similar to MIMIC. However, in MIMIC we find a near-optimal permutation 
(&i, &2> · * * Î &n) by minimizing conditional entropy terms, as shown in Figure 13.10. 
In COMIT we instead find a near-optimal permutation by maximizing mutual infor-
mation terms. Instead of finding the permutation that minimizes Equation (13.12), 
we find the permutation that maximizes 

Jc(p) = I(ki | k2) + I(k2 | fc3) + · · ■ + /(fcn-i I kn) - h(kn) (13.24) 

The mutual information between bits k and m is defined as follows [Cover and 
Thomas, 1991]: 

J(fc, m) = ^2 Pr(# W = i, x(m) = j) !o§2 
Pi(x(k) = i, a; (TO) = j) 

[Pi(x(k) = i)Pr(x(m) = j)\ 

where the summation is taken over i G [0,1] and j G [0,1]. 

(13.25) 

EXAMPLE 13.5 

In this example, which is based on [Chow and Liu, 1968], we illustrate the 
calculation of mutual information. Suppose that we are executing an EA 
algorithm on a four-bit optimization problem. We have many individuals 
from the algorithm, maybe 100 or so. We choose 20 relatively fit individuals. 
Suppose that these 20 individuals are given as follows: 

Xl 

xs 
x5 

x7 

Xg 

xu 

Z l 3 

xib 
xvr 

S l 9 

= 
= 
= 
— 
= 
= 
= 
= 
= 
= 

(0,0,0,0), 
(0,0,0,1), 
(0,0,1,0), 
(0,1,1,0), 
(0,1,1,1), 
(1,0,0,1), 
(1,1,0,0), 
(1,1,1,0), 
(1,1,1,0), 
(1,1,1,1), 

X2 

Χ4 

XQ 

X8 

#10 
#12 
#14 
#16 
#18 
#20 

= 
= 
= 
= 
= 
= 
= 
= 
— 
= 

(0,0,0,0) 
(0,0,0,1) 
(0,0,1,1) 
(0,1,1,0) 
(1,0,0,0) 
(1,0,0,1) 
(1,1,0,1) 
(1,1,1,0) 
(1,1,1,1) 
(1,1,1,1) 

(13.26) 
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The bit numbers are indexed from 1 to 4 as we go from left to right. For 
example, £13(1) = £13(2) = 1, and £13(3) = £13(4) — 0. By counting the bits 
and following the procedure shown in Example 13.4, we find the following: 

Pr(£( l) = 1) = 0.55 
Pr(x(2) = 1) = 0.55 
Pr(x(3) = 1) = 0.55 
Pr(x(4) = 1) = 0.50 

— y 

h(l) = 0.993 
h{2) = 0.993 
h{3) = 0.993 
h(A) = 1. 

(13.27) 

We see that bits 1,2, and 3 all have the same amount of information, while bit 
4 has the least amount of information. Now we calculate the mutual informa-
tion between bit 1 and the other bits. Equation (13.25) shows that before we 
calculate mutual information, we need to calculate the individual bit probabil-
ities Pr(xi). Consider the individuals in Equation (13.26). Equation (13.27) 
shows the following: 

Pr(x(l) = 0) = 0.45, Pr(x(l) = 1) = 0.55 
Pr(x(2) = 0) = 0.45, Pr(x(2) = 1) = 0.55. (13.28) 

Now note that there are six individuals in Equation (13.26) such that £(1) = 0 
and £(2) = 0; there are three individuals such that £(1) = 0 and £(2) = 1; 
there are three individuals such that £(1) = 1 and £(2) = 0; and there are 
eight individuals such that £(1) = 1 and £(2) = 1. Therefore, 

Pr(x(l) = 0,x(2) = 0) - 0.30 
Pr(x(l) = 0,x(2) = l) - 0.15 
Pr(x(l) = l ,x(2) = 0) - 0.15 
Pr(x(l) = l ,x(2) = l) = 0.40. (13.29) 

Now we use Equation (13.25) to calculate the mutual information between 
bits 1 and 2 as follows: 

7(1,2) = J2Pr(x(l) = i,x(2)=j)log, 

= Pr(x(l) = 0,x(2) = 0)log2 

Pr(x(l) = 0,x(2) = l) log2 

Pr(x(l) = l ,x(2) = 0)log2 

Pr(£(l) = i , £ ( 2 ) = j ) 
LPr(x(l) = i)Pr(x(2) = j) 

Pr(x(l) = 0,x(2) = 0) 
Pr(x(l) = 0)Pr(x(2) = 0) 

Pr(x(l) = 0,x(2) = 1) 
Pr(£(l) - 0)Pr(x(2) - 1) 

Pr(x(l) = l ,x(2) = 0) 

Pr(x(l) = l ,x(2) = l) log2 

Pr(x(l) = l)Pr(x(2) = 0) 
Pr(£(l) = 1,£(2) = 1) 

_Pr(x(l) = l)Pr(x(2) = l)_ 
- 0.30 log2[0.30/(0.45 x 0.45)] + 0.15 log2[0.15/(0.45 x 0.55)] + 

0.151og2[0.15/(0.55 x 0.45)] + 0.40log2[0.40/(0.55 x 0.55)] 
= 0.1146. (13.30) 

We use the same method to calculate the mutual information between the 
other bits, which results in the following: 
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7(1,2) = 0.1146 
7(1,3) = 0.0001 
7(1,4) = 0.0073 
7(2,3) = 0.2727 
7(2,4) = 0.0073 
7(3,4) - 0.0073. (13.31) 

The mutual information I(i,j) quantifies how much information is shared be-
tween bits i and j . It tells us how much we can know about the value of one bit if 
we know the value of the other bit. If bit j is given, maximizing the mutual infor-
mation I(i,j) over all i is similar to minimizing the conditional entropy h(i \ j) over 
all i. COMIT can therefore be performed with the same algorithm as MIMIC, but 
instead of using Figure 13.10 for selecting a permutation, we use Figure 13.12. The 
COMIT algorithm is therefore the same as the MIMIC algorithm of Figure 13.11, 
except that the first "For m — n — 1, n — 2, · · · , ! " loop in Figure 13.11 is replaced 
with Figure 13.12. 

kn = Άΐg minjh(j) 
For i — n — 1, n — 2, · · ·, 1 

hi = argmaxj 7(j, fci+1) : j £ {fci+i, ki+2, --,kn} 
Next i 

Figure 13.12 A greedy algorithm for approximately maximizing Equation (13.25). 
Compare with Figure 13.10. 

■ EXAMPLE 13.6 

In this example, which is a continuation of Example 13.5, we illustrate the 
greedy algorithm of Figure 13.12. The greedy algorithm first finds the bit 
with the most information, which is equivalent to finding the bit with the 
least entropy. In Equation (13.27) in Example 13.5 we saw that bits 1,2, and 
3 all have the same amount of information, while bit 4 has the least amount 
of information. Therefore, the solution of the problem kn = arg min^ h(j) 
in Figure 13.12 is either 1, 2, or 3. We arbitrarily choose bit 1 as the so-
lution. Now we find the bit that shares the most information with bit 1; 
Equation (13.31) shows us that bit 2 shares the most information with bit 1. 
Now we find the bit (not including bit 1) that shares the most information 
with bit 2; Equation (13.31) shows us that bit 3 shares the most information 
with bit 2. Bit 4 is the only remaining bit, and so the greedy algorithm is 
complete and Equation (13.9) becomes 

p{x) = p(x(l))p(x(2) | x( l)) p(x(3) | x(2)) p(x(4) | x(3)). (13.32) 
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We can use Equation (13.26) to calculate these probabilities. Table 13.1 shows 
the probability of each bit combination, the estimated probability using a first-
order approximation of Equation (13.8), and the estimated probability from 
Equation (13.32). 

UMDA: COMIT: 
p(x( l ) , s (2) , p(x(l))p(a(2)) . p(x(l))p(x(2) | x(l))· 

x(l)x{2)x(3)x(A) x(3),x(4)) p(x(3))p(x(4)) p(x(3) | x(2))p(x(4) | x(3)) 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

0.100 
0.100 
0.050 
0.050 
0.000 
0.000 
0.100 
0.050 
0.050 
0.100 
0.000 
0.000 
0.050 
0.050 
0.150 
0.150 

0.0456 
0.0456 
0.0557 
0.0557 
0.0557 
0.0557 
0.0681 
0.0681 
0.0557 
0.0557 
0.0681 
0.0681 
0.0681 
0.0681 
0.0832 
0.0832 

0.1037 
0.1296 
0.0364 
0.0303 
0.0121 
0.0152 
0.0669 
0.0558 
0.0519 
0.0648 
0.0182 
0.0152 
0.0323 
0.0404 
0.1785 
0.1488 

Table 13.1 Example 13.6 results: True probabilities (second column) and 
estimated probabilities (third and fourth columns) of all possible bit combinations. 

A cursory glance through the numbers in Table 13.1 shows that the true 
probability of the second column is estimated more accurately by the fourth 
column than by the third column. We can use Equation (13.10) to quantify 
the similarity between probability distributions. We find that the probabilities 
in the second and third columns have a closeness measure of 0.53, while those 
in the second and fourth columns have a closeness measure of 0.14. 

Note that we do not use the probabilities of Table 13.1 in the COMIT 
algorithm. We only show them in this example to illustrate the effectiveness 
of the greedy algorithm of Figure 13.12. The COMIT algorithm uses the 
probabilities on the right side of Equation (13.32) to generate the population 
at the next generation. 

Example 13.6 shows how to find a second-order approximation to a probability 
distribution using a mutual information criterion (COMIT) rather than a condi-
tional entropy criterion (MIMIC). If we obtain a probability distribution estimate 
of highly-fit individuals in an EA, we can use the estimate to generate candidate 
solutions at each generation. This is the essence of COMIT, and is illustrated in 
the following example. 
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EXAMPLE 13.7 

In this example, we use the MIMIC and COMIT algorithms of Figures 13.10, 
13.11, and 13.12 to minimize the Ackley function, which is defined in Ap-
pendix C.1.2. We use six bits per dimension, so the minimization problem 
includes n = 6D bits, where D is the dimension of the Ackley function. We 
use a domain of [—5, +5] for each dimension, which gives us a resolution of 
10/(26 - 1) = 0.16 for each dimension. We use a population size N — 100, 
we use M — 40, and we use an elitism parameter of two, which means that 
we always keep the best two individuals from one generation to the next. We 
use e = 0.01 in Equation (13.23). 

To study the performance of MIMIC, we compare it to UMDA (see Fig-
ure 13.2), which uses only first-order statistics. We also implement a MIMIC 
algorithm in which the permutation (fci, /c2, · · ·, kn) is assigned randomly 
rather than using the greedy algorithm of Figure 13.10. Figure 13.13 shows the 
performance of MIMIC, UMDA, and random permutation MIMIC on the two-
dimensional Ackley function, averaged over 20 Monte Carlo simulations. We 
see that the use of second-order statistics outperforms the first-order UMDA 
algorithm, even if the permutation is random. However, MIMIC performs 
the best because it uses the near-optimal greedy algorithm to determine the 
permutation of bit indices. 

•UMDA 
Random Permutation 
MMIC 

10 
Generation 

15 20 

Figure 13.13 Example 13.7: UMDA and MIMIC results for the minimization of the 
two-dimensional Ackley function with six bits per dimension. The results show the cost of 
the best individual at each generation, averaged over 20 Monte Carlo simulations. 

Figure 13.14 shows the performance of MIMIC, UMDA, and random per-
mutation MIMIC on the 10-dimensional Ackley function, averaged over 20 
Monte Carlo simulations. We see that MIMIC performs the best for the first 
few generations, but after a few generations UMDA and random-permutation 
MIMIC catch up and outperform MIMIC. This shows that there are no guar-
antees that MIMIC will perform better than first-order algorithms, but it 
could be a valuable optimization tool, depending on the problem. 
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MMIC 
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Figure 13.14 Example 13.7: UMDA and MIMIC results for the minimization of the 
10-dimensional Ackley function with six bits per dimension. The results show the cost of 
the best individual at each generation, averaged over 20 Monte Carlo simulations. 

Finally, we compare COMIT and MIMIC. Both algorithms are identically 
described by Figure 13.11, except MIMIC uses the greedy algorithm of Fig-
ure 13.10 and COMIT uses the greedy algorithm of Figure 13.12 to decide 
which bit indices to pair to generate candidate solutions at each genera-
tion. Figure 13.15 shows the performance of COMIT and MIMIC on the 10-
dimensional Ackley function, averaged over 20 Monte Carlo simulations. We 
see that COMIT performs much better in the earlier generations. However, 
after about 15 generations, MIMIC catches up and surpasses the performance 
of COMIT. 

8 

7 

§ 6 
O 

§ 5 
E 
c 
1 4 

3 

O 

v -
%, 

MIMIC 
— COMIT 

'% ^ y 

\ % \ '% 
% \ 

"X, \ 
"*~i , % 

5 10 15 20 
Generation 

Figure 13.15 Example 13.7: MIMIC and COMIT results for the minimization of the 
10-dimensional Ackley function with six bits per dimension. The results show the cost of 
the best individual at each generation, averaged over 20 Monte Carlo simulations. 

D 
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13.3.3 The Bivariate Marginal Distribution Algorithm (BMDA) 

The bivariate marginal distribution algorithm (BMDA) was developed in [Pelikan 
and Mühlenbein, 1998]. BMDA uses second-order statistics, like MIMIC and 
COMIT. However, it has a couple of notable differences. First, it uses Pearson's 
chi-square tests [Boslaugh and Watters, 2008] to establish links between interde-
pendent bits. Second, it creates a PDF approximation that does not necessarily 
use all of the bits in a single, connected chain. Recall from Equation (13.9) that 
MIMIC and COMIT find a permutation (fci, k2, · · ·, kn) of {1,2, · · ·, n) (where n is 
the number of bits in x) such that 

p(x) « pixfa) | x(k2))p(x(k2) | x(k3)) - ■ .p(x(Avi-i) I x(kn))p(x(kn)). (13.33) 

The above approximation can be viewed as a single chain of ki values: 

k\ -» k2 -> - - - -> kn-i -> kn. (13.34) 

BMDA, on the other hand, finds a more general approximation to p(x): 

ρ(χ)κ Π p(x(r)) H p(x(i)\x(mi)). (13.35) 
x(r)£R x(i)€V\R 

In the approximation above, R is the set of root bit indices and is determined by 
BMDA, and V is the set of all bit indices; that is, V = {1, · · · , n } . The x(i) bits 
belong to V\R, which is the set of all indices that do not belong to R; that is, 
V\R — {i G V : i £ R}. Finally, m(i) is a bit index determined by BMDA that has 
a high degree of dependence with bit i. 

An example may clarify the interpretation of Equation (13.35). Suppose we have 
nine bits in our search domain. Equation (13.33) is used by MIMIC and COMIT, 
and may result in the chain 

3 - > 9 - > l - > 5 - * 8 - > 2 - > 4 - > 7 - > 6 (13.36) 

which gives the approximation 

p(x) « p(x(3) 11(9)) P 0 E ( 9 ) | I ( 1 ) ) p(x(l) | x(5)) p(x(S) \ x(8)) x 
p(x(8) | x(2)) p(x(2) | x(4))p(x(4) \ x(7)) p(x(7) \ x(6)) p(x(6))(13.37) 

Equation (13.35), which is used by BMDA, may result in the chains 

3 - ^ 9 - ^ 1 
3 - + 5 
8 - * 2 - > 4 - > 7 
8 - ^ 6 (13.38) 

which gives the approximation 

p(x) « ρ(;τ(3))ρ(*(9) I x(3))p(x(l) | x(9))p(x(5) | x(3)) x 
p(x(8))p(x(2) | x(8))p(x(4) \ x(2))p(x(7) \ x(4))p(x(ß) \ x(8))(13.39) 

The root bit indices 3 and 8 were determined by BMDA, and multiple bit index 
chains were determined by BMDA for each root. 
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BMDA works by first choosing a random bit index, r, as the first root bit index. 
Then the chi-square statistic is computed for the root bit index r and all of the 
remaining bits. The chi-square statistic between bits r and j is computed as 

v2 .,. M y \P*(x{r) = a,x(j) = ß) - Pr(x(r) = a)Pr(g(j) = ßf 
Xr* jj Pr(x(r) = a)Pr(x(j) = ß) { " > 

where M is the number of bit strings, and the summation is taken over all values of 
a such that Pr(x(r) = a) Φ 0, and over all values of ß such that Pr(x(j) = β) φ 0. 
The xjL statistic measures the amount of dependence between bits r and j . A high 
value of xjL- indicates that there is a high degree of correlation between bits r and 
j . In statistics, xjL- < 3.84 is often used as a threshold for the independence of bits 
r and j . This value of χ2 indicates that there is a 95% probability that the bit 
values are independent. 

After BMDA computes χ2^· for the root bit r and all remaining bits j , it selects 
the j with the highest value of χ2^ as the next bit in the chain. Next, BMDA 
computes χ2^ and χ2^ for all k φ {r,j}. Whichever k has the highest χ2 statistic 
becomes the next bit in the chain, following either bit r or bit j . This process is 
continued until all of the χ2 statistics are below some threshold. When that occurs, 
then another random root bit is chosen and the process repeats for the next chain. 
When all of the bits have been used, the probability approximation is complete. 
The BMDA algorithm is summarized in Figure 13.16 [Pelikan and Mühlenbein, 
1998]. 

(1) ^ < - { 1 , 2 , . · . , η } 
A<-V 

(2) v <— randomly chosen element from A 
Add Pr(v) to the PDF approximation 

(3) Remove v from A 
If A = 0, terminate 

(4) Compute χ?· for a l i i G A and all j G V\A 
If max*,, χ% < 3.84, go to (2) 

(5) {v, v'} = arg max t J· χ^ :ieA,je V\A 
Add Pr(î / | v) to the PDF approximation 
Go to (3) 

Figure 13.16 The basic outline of a bivariate marginal distribution algorithm (BMDA) 
for the generation of an n-dimensional PDF approximation. V is the constant set of all bit 
indices, and A is the set of available bit indices for inclusion in a chain of bits. The value 
3.84 is used here as the 95% confidence level for independence. 

EXAMPLE 13.8 

Let us consider a few simple examples of the calculation of the χ2 statistic. 
Suppose that we have four four-bit EA individuals: 

xi = (0,0,0,1), x2 = (0,0,0,1), x3 = (1,0,0,0), x4 = (1,1,0,0). (13.41) 
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We find the marginal probabilities of bits 1 and 2 as 

Pr(a?(l) = 0) = 1/2, Pr(x( l) = 1) = 1/2 
Pr(x(2) = 0) = 3/4, Pr(x(2) = 1) = 1/4 (13.42) 

where we define x(l) (bit 1) as the left bit, x{2) (bit 2) as the next bit, and 
so on. We find the joint probabilities of bits 1 and 2 as 

Pr(x(l) = 0, x{2) - 0) - 1/2, Pr(x( l ) = 0, x(2) = 1) = 0 

Pr(z( l ) - 1, x(2) = 0) = 1/4, Pr(rr(l) = 1, x{2) = 1) = 1/4. (13.43) 

The xf2 statistic is computed from Equation (13.40) as 

χ\2 = 4(1/24 + 1/8 + 1/24 + 1/8) - 4 /3 . (13.44) 

We see that there is some relationship between bits 1 and 2, but we have so few 
samples (four) that we cannot say with much confidence that the dependence 
is statistically signficant; that is, χ{2 < 3.84. 

Now consider bits 1 and 3. In this case, the %f3 statistic is computed as 

x
2
13 = 4(0 + 0 + 0 + 0) = 0. (13.45) 

There is no relationship between bits 1 and 3. We can see this by looking at 
Equation (13.41); bit 1 is equal to 0 half the time and 1 half the time, while 
bit 3 is always equal to 0. 

Finally, consider bits 1 and 4. In this case, the χ14 statistic is computed as 

χ? 4 = 4(1 + 1 + 1 + 1) = 4. (13.46) 

We see that there is a statistically significant relationship between the two 
bits. Even though we only have four individuals, since bits 1 and 4 are always 
complements of each other, we can be fairly certain that they are dependent 
on each other. 

13.4 MULTIVARIATE ESTIMATION OF DISTRIBUTION ALGORITHMS 

We have seen that first-order EDAs emphasize simplicity over mathematical rigor. 
Second-order EDAs place more emphasis on mathematical rigor, thus resulting in 
algorithms that are more complicated but potentially more effective. Multivariâte 
EDAs take another step in this direction by using statistics that are even higher 
than second order, and we present one such algorithm in this section: the extended 
compact genetic algorithm (ECGA). 

13.4.1 The Extended Compact Genetic Algorithm (ECGA) 

As its name implies, the extended compact genetic algorithm (ECGA) is a general-
ization of the cGA of Section 13.2.2. The ECGA was proposed in [Harik, 1999] and 
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is further explained in [Sastry and Goldberg, 2000], [Lima and Lobo, 2004], [Harik 
et al., 2010]. The ECGA attempts to find a probability distribution that satisfies 
two properties: first, it is simple; and second, it accurately approximates the prob-
ability distribution of a set of highly fit individuals. The approximate probability 
distribution is called a marginal product model (MPM). An example of an MPM 
p(x) for a 10-dimensional problem is the following: 

p(x) = p(x(l) , s(3), x(6)) p(x(2)) p(x(4), x(5), x(7), x(10)) p(x(8), x(9)). (13.47) 

The variables in each marginal distribution on the right side of the above equation is 
called a building block, so the MPM above has four building blocks: (x(l) , x(3), x(6)), 
(x(2)), (x(4),x(5),x(7),x(10)), and (x(8),x(9)). The number of variables in the i-
th building block Bi of an MPM is called the length Li of the building block. The 
MPM of Equation (13.47) therefore has the building block lengths 

Li = 3, L2 = 1, L3 = 4, L4 = 2. (13.48) 

The variables in the building blocks are distinct, so if x(k) belongs to Bi then it 
does not belong to Bj for any j φ i. The complexity of an MPM is quantified as 

Nb 

Cm = (log2(M + 1)) Σ (2L< - 1) (13.49) 

where M is the number of high-fitness individuals that are selected from the popu-
lation, Nb is the number of building blocks, and Li is the length of the i-th building 
block. The accuracy of an MPM is quantified as 

Nb 2Li 

Cp = Σ Σ N* ^g2(M/Nij) (13.50) 

where Nij is the number of individuals in the population that include the j-th bit 
sequence in the 2-th building block. If the i-th building block has length L t , then it 
includes 2Li possible bit sequences, and we order them as (0, · · ·, 0,0), (0, · · ·, 0,1), 
· · · , ( 1 , · · · , 1 , 1 ) . The ECGA consists of finding an MPM that minimizes the total 
cost 

Cc = Cm + Cp. (13.51) 

The following example illustrates how to compute Cc for an MPM. 

■ EXAMPLE 13.9 

Suppose we have the following five highly-fit individuals (M = 5): 

xi = (0,0,0,0), x2 = (0,0,1,0), x3 = (0,0,1,1), ( , 
x4 = (1,0,1,0), x5 = (1,1,0,1). (lo*Z) 

One possible MPM is the univariate model 

p1(x)=p(x(l))p(x(2))p(x(3))p(x(4)) (13.53) 



SECTION 13.4: MULTIVARIATE ESTIMATION OF DISTRIBUTION ALGORITHMS 3 3 9 

with Nb — 4 and Li = 1 for i G [l, 4]. The complexity of this model is 

4 

Cm = (log2 6) Σ (2Li - 1) = 10·4· (13·54) 
i = l 

We order the building blocks as ft = p(x(z)) for z G [1,4]. We order the 
bit sequences in binary order so that Nu is the number of individuals for 
which x(i) = 0, and iVi2 is the number of individuals for which x(i) = 1. The 
accuracy of the model is therefore given by 

4 2 

Cp = Σ Σ Nii ^g2{M/Nio) = 18.2. (13.55) 
i = l j = l 

Another possible MPM for the population of Equation (13.52) is the model 

p2(x) = p(x(l),x(2))p(x(3))p(x(4)) (13.56) 

with Ni = 3, L\ = 2, and L2 = L3 = 1. This appears to be more complex 
than Equation (13.53), but we can guess that it will be more accurate because 
it includes the joint distribution of x(l) and x(2), and the population of 
Equation (13.52) indicates that there is a significant correlation between those 
two bits; that is, in four of the five individuals, x(l) and x(2) have the same 
value. The complexity of p2(x) is 

Cm = (log2 6) (3 + 1 + 1) = 15.4 (13.57) 

which, as expected, is higher than the complexity of p2(x) as shown in Equa-
tion (13.54). We order the building blocks of p2(x) as shown in Equation (13.56). 
We order the bit sequences in binary order so that Nu is the number of 
individuals for which (x(l),x(2)) = (0,0), Νχ2 is the number of individ-
uals for which (x(l),x(2)) = (0,1), iVi3 is the number of individuals for 
which (x(l),x(2)) = (1,0), and N14 is the number of individuals for which 
(x(l),x(2)) = (1,1). Similarly, iV21 is the number of individuals for which 
x(3) = 0, and iV22 is the number of individuals for which x(3) = 1. Finally, 
7V31 is the number of individuals for which x(4) = 0, and 7V32 is the number 
of individuals for which x(4) = 1. Given this convention, we can calculate the 
accuracy of the model as 

3 2Li 

CP = J2J2 Nii loS2 W % ) = 16-6- (13.58) 
i=l j = \ 

As expected, the accuracy of p2(x) is better (that is, less) than that of p\{x). 
We combine these results to obtain 

Cm + Cp = 10.4 + 18.2 = 28.6 for ρλ(χ) 

Cm + Cv = 15.4 + 16.6 - 32.0 for p2(x). (13.59) 

ECGA indicates that pi (x) is a better model because of its lower complexity. 

D 
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Now that we know how to quantify the cost of an MPM, we use a steepest descent 
algorithm to find the MPM that approximately minimizes Cc. Given an MPM with 
Nb building blocks, we can form Nb(Nb — l)/2 alternative sets of building blocks by 
merging each possible pair of building blocks. For example, given the four building 
blocks of Equation (13.47), we can form the following six alternative MPMs: 

p(s ( l ) , x(3), x(6), x(2)) p(z(4), x(5), z(7), x(10)) p(x(8), x(9)) 
p(x(l) , x(3), x(6), x(4), x(5), z(7), x(10)) p(x(2)) p(x(8), x(9)) 
p(x(l) , x(3), x(6), x(8), x(9)) p(x(2)) p(x(4), x(5), x(7), x(10)) 
p(x(l) , x(3), x(6)) p(x(2), a(4), x(5), z(7), z(10)) p(x(8), x(9)) 
p(x(l) , x(3), x(6)) p(x(2), x(8), x(9)) p(x(4), x(5), x(7), x(10)) 
p(x(l) ,x(3),x(6))p(x(2))p(x(4),x(5),x(7), x(10),x(8),x(9)). (13.60) 

ECGA works by selecting the MPM from this set that minimizes the cost of Equa-
tion (13.51). The ECGA algorithm is summarized in Figure 13.17. Note that 
Figure 13.17 executes each generation. To implement an ECGA, we need to se-
lect M, which is some number less than the population size N. We also need to 
select P c , which is the proportion of children that we create using the best identi-
fied MPM. We create these children by randomly selecting MPM subsets from the 
M best individuals identified at the beginning of Figure 13.17. This is equivalent 
to (Nb — l)-point crossover, so each child has 7V& parents, some of which may be 
repeated. 

Select the M best individuals from the current population 
Po(x) <- p(x(l)) p(x(2)) · · · p(x(n)) 
While (true) 

Nt, 4— number of building blocks in po(x) 
Use po(x) to form alternative MPMs pi(x) for i G [l,Nb(Nb - l)/2] 
p(x) <- Mgmin(Cc(pi(x)) : i G [l,Nh(Nb - l)/2]) 
If p(x) = po(x) then exit this loop 

Next iteration 
Use the building blocks in po(x) to create NPC individuals for the next generation 
Randomly create N(l — Pc) individuals for the next generation 

Figure 13.17 Marginal product model (MPM) construction using steepest descent in the 
extended compact genetic algorithm (ECGA). This algorithm executes each generation of 
the ECGA. 

13.4.2 Other Multivariate Estimation of Distribution Algorithms 

Researchers have proposed many other multivariate ED As, including the factor-
ized distribution algorithm (FDA) [Mühlenbein et al., 1999], the learning FDA 
[Mühlenbein et al., 1999], the estimation of Bayesian networks algorithm (EBNA) 
[Larranaga et al., 1999a], [Larranaga et al., 2000], the Bayesian optimization al-
gorithm (BOA) [Pelikan et al., 1999], the Markov network factorized distribution 
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algorithm (MN-FDA) [Santana, 2003], and the Markov network EDA (MN-EDA) 
[Santana, 1998]. Hierarchical BOA (hBOA) attempts to reduce the computational 
complexity of BOA by decomposing the optimization problem into subproblems 
[Pelikan, 2005]. 

13.5 CONTINUOUS ESTIMATION OF DISTRIBUTION ALGORITHMS 

The preceding sections discussed various ED As for discrete-domain problems. This 
section extends the EDA concept for continuous-domain problems. For discrete-
domain problems, EA individuals are created from discrete probability distribu-
tions. The same idea is used in continuous-domain problems, except that the prob-
ability distributions are continuous instead of discrete. 

To set the stage for continuous ED As, first recall the procedure for discrete ED As. 
Suppose that we have a discrete-domain problem where the probability of having a 
0 bit in the z-th position of a candidate solution, x(i), is 0.75, and the probability 
of having a 1 bit is 0.25. We can generate x(i) with code like the following: 

<- u[o,i] 
i: 
otherwise 

x(i) <_ / ° i f r < 0 · 7 5
 ( 1 3 6 1 ) 

where r is a random number uniformly distributed in [0,1]. If, on the other hand, 
our problem has a continuous domain [0,1], then the i-th position of a candidate 
solution is not a bit, but is a continuous variable. We can generate the variable by 
writing code like the following: 

r *- U[0,1] 

x(i) <- 3/2 - >/(9/4) - 2r. (13.62) 

This results in the probability density function (PDF) for x(i) shown in Fig-
ure 13.18. This can be viewed as a continuous counterpart of Equation (13.61) 
because the probability of x(i) linearly increases as x(i) approaches 0. Note that 
functions that transform one PDF to another can be found with standard methods 
from probability texts (see Problems 13.11 and 13.15) [Grinstead and Snell, 1997]. 

EDAs for continuous-domain problems all operate on this same idea. Given a 
subpopulation of relatively fit individuals, we generate an approximate continuous 
PDF, and then use the PDF to create the next generation of candidate solutions. 
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Figure 13.18 Sample probability density function (PDF) for the continuous variable 
described by Equation (13.62). 

13.5.1 The Continuous Univariate Marginal Distribution Algorithm 

We illustrate EDAs for continuous-domain problems in this section with a simple 
modification of the binary UMDA algorithm of Section 13.2.1. We use Gaussian 
distributions to create the next generation, and so this algorithm is denoted as 
UMDA^ [Gallagher et al., 2007]. UMDA^ may be the simplest continuous EDA, 
and is summarized in Figure 13.19. In UMDAj? we calculate the mean and variance 
of each element of the selected population subset, and then we use Gaussian random 
numbers to create the next generation. We could also modify Figure 13.19 to create 
the next generation from distributions other than Gaussian. See Equation (8.18) 
for the rationale for using M — 1 instead of M in the estimate of σ&. 

Initialize a population of candidate solutions {x^}, iG [1, N] 
Note that each Xi includes n continuous variables Xi( 1 ) , . . . ,Xi{n) 
While not (termination criterion) 

Select M individuals from {xi} according to fitness, where M < N 
Index the M selected individuals as {x^}, i £ [1, M] 

°k <- [ M 3 T Yl^=i(xj(k) - Mfc)2] 
For i = 1 to N (population size) 

For k = 1 to n (number of variables in each candidate solution) 
Xi(k) ^Ν(μ^σΙ) 

Next variable 
Next individual 

Next generation 

Figure 13.19 Continuous Gaussian univariate marginal distribution algorithm (UMDA^3) 
for optimization on an n-dimensional continuous domain, ^(μ^,σ^) is a Gaussian random 
variable with mean μ^ and variance σ\. Xi(k) is the fc-th element of the z-th individual. 
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13.5.2 Continuous Population Based Incremental Learning 

We illustrate continuous ED As in this section by modifying the binary PBIL algo-
rithm of Section 13.2.3 for continuous-domain problems [Sebag and Ducoulombier, 
1998]. PBIL for continuous-domain problems is also called stochastic hill climbing 
with learning by vectors of normal distributions (SHCLVND) [Rudlof and Koppen, 
1996], [Pelikan, 2005, Section 2.3]. Suppose that each independent variable X{(k) 
of a candidate solution x^ is constrained to lie within some domain: 

Xi(k) G [ 

for i G [1,-/V] and k G [l ,n], where N is the population size and n is the prob-
lem dimension. Suppose that we have an n-dimensional vector p such that pk G 
[#min(fc), xmax(fc)] for k G [1, n}. We can then create the candidate solution element 
Xi(k) for each individual Xi by generating a Gaussian random number that has a 
mean of pk> As the generation count increases, we expect p to converge toward 
the optimal solution; therefore, we typically decrease the standard deviation of the 
Gaussian random number generator as the generation count increases. This idea is 
illustrated in Figure 13.20. 

Figure 13.21 gives a simple PBIL algorithm for problems with continuous do-
mains. It is very similar to the binary PBIL algorithm of Figure 13.8. The main 
difference is that the vector P is used to generate candidate solutions within the 
continuous domain of the problem, and the standard deviation that is used to gener-
ate those candidate solutions decreases at each generation as shown in Figure 13.20. 
This gives two additional tuning parameters, a and ß, in Figure 13.21. Note that 
we should limit Xi(k) to the domain [xmin(k),xm8iX(k)] each time we update it in 
Figure 13.21. 

pdf 

min(x) max(x) 

Figure 13.20 Illustration of PDF evolution in continuous PBIL. The probability density 
function (PDF) has a large variance at the beginning of the algorithm, which allows a lot of 
exploration in the search space. The PDF has a smaller variance in later generations, which 
allows the algorithm to narrow in on the optimal solution. 
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N = population size 
Nbest? -Nworst = number of good and bad individuals used to adjust P 
η = learning rate G (0,1) 
[#min(fc),#max(&)] — domain of the k-th element of the search space, k G [l,n] 
β = (initial standard deviation) -r (parameter range) G (0,1) 
a = standard deviation contraction factor G (0,1) 
0"fc «— ß{xmax(k) — a?min(fc)) = initial standard deviations, k G [l,n] 
Pk «- ^ [^minW^max^) ] for k G [l,n] (uniformly distributed random numbers) 
While not (termination criterion) 

Use p to randomly generate N candidate solutions as follows: 
F o r i G [1,N] 

For k G [l,n] 
Xi(k) <r-pk + N(0,ak) 

Next dimension k 
Next individual i 

Sort the individuals so that f(x\) < f(x2) < · * * < I{XN) 
F o r i G [l,iVbest] 

P <- p + 7/(Χί - p) 
Next z 
For i G [Ar-iVw o r s t-fl ,AT] 

p^p- η(χΐ - p) 
Next i 
Probabilistically mutate p 
ak <— ûicrfc for /c G [1, n] 

Next generation 

Figure 13.21 A PBIL algorithm for minimizing f(x) on n continuous dimensions, and 
Xi(k) G [xmin(fc),#max(fc)] is the fc-th element of the z-th candidate solution. N(0,ak) is a 
zero-mean Gaussian random variable with standard deviation σ^. 

■ EXAMPLE 13.10 

In this example, we attempt to minimize the 20-dimensional Ackley func-
tion defined in Appendix C.1.2. We use the continuous PBIL algorithm of 
Figure 13.21 with the following settings. 

• Population size N = 50. 

• Gk linearly decreases from 10% of the parameter range at the initial generation 
to 2% of the parameter range at the final generation. The parameter range 
is [—30,30] for each dimension, so ak linearly decreases from an initial value 
of 6 to a final value of 6/5. This does not exactly follow the σ^ profile shown 
in Figure 13.21, but it accomplishes the same essential purpose. 

• We use the five best and the five worst individuals (A^est = -Nworst = 5) to 
update the probability vector P at each generation. 

• We do not use any mutation. 
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Figure 13.22 shows the effect of the learning rate η on PBIL performance. If 
the learning rate is too small, then the adjustment of P will not be aggressive 
enough and convergence will be slow. If the learning rate is too high, then 
P will jump agressively toward good solutions, which gives good initial per-
formance. However, this could result in overshooting the optimal probability 
vector, and could lead P in misleading directions in the search space. 

20 

18 

*- 1 6 
"GO 
O 

O 14 
E 

I 1 2 

6 

0 20 40 60 80 100 
Generation 

Figure 13.22 Example 13.10: Continuous PBIL results for the 20-dimensional Ackley 
function. The plot shows the cost of the best individual at each generation, averaged over 
20 Monte Carlo simulations. We need to use an appropriate value for the learning rate η to 
get the best performance. 

Next we explore the effect of A/best and Nworst on PBIL performance. We 
use η = 0.1 since that appears to be the best learning rate in Figure 13.22. 
Figure 13.23 shows PBIL performance for three different values of ATbest and 
Nworst· We see that if these parameters are too small, then PBIL puts too 
much emphasis on a few individuals and does not obtain a broad enough 
picture of the performance of diverse individuals in the population. However, 
if these parameters are too large, then PBIL adjusts its probability vector 
using too many individuals, some of which may not be suitable for such use. 

Finally, we explore the effect of σ& on PBIL performance. We use 77 = 0.1 
and Asbest = Nworst = 5. We vary ak linearly from k0(xm&x(k) - Xmin(k)) a t 

the first generation to kf(xma^(k) — £min(&)) at the final generation. Fig-
ure 13.24 shows PBIL performance for three different combinations of ko and 
kf. We see that if ko is too small, then initial convergence is slow due to the 
relative sluggishness of P. If kf is too large, then PBIL does not converge 
well because the variation of candidate solutions is too large. We could run 
further experiments to explore the effect of ko being too large or kf being too 
small. 
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Figure 13.23 Example 13.10: Continuous PBIL results for the 20-dimensional Ackley 
function. The plot shows the cost of the best individual at each generation, averaged over 
50 Monte Carlo simulations. We need to use appropriate values for TVbest and NWOTSt to get 
the best performance. 
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Figure 13.24 Example 13.10: Continuous PBIL results for the 20-dimensional Ackley 
function. The plot shows the cost of the best individual at each generation, averaged over 
50 Monte Carlo simulations, ko and kj control the standard deviation of candidate solution 
generation at the first and last generation. We need to use appropriate values for ko and kf 
to get the best performance. 
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13.6 CONCLUSION 

The EDAs in this chapter estimate probabilities to model the search space and find 
a global optimum. We could use maximum likelihood to estimate the sample mean 
and covariance of a population, and this is the approach taken in the estimation 
of multivariate normal algorithm (EMNA) [Larranaga, 2002]. If we model the 
search space with Gaussian networks, we obtain estimation of Gaussian network 
algorithms (EGNAs) [Larranaga, 2002], [Paul and Iba, 2003]. 

EDAs have been modeled mathematically use Markov chains [Gonzalez et al., 
2001], dynamic systems theory [Gonzalez et al., 2000], [Mahnig and Mühlenbein, 
2000], and other methods [Gonzalez et al., 2002]. We discuss mathematical model-
ing of evolutionary algorithms in Chapter 4 for genetic algorithms and in Chapter 7 
for genetic programming, but we do not discuss EDA math models in this book. 

EDAs are relatively recent innovations, and so there is a lot of room of ad-
ditional research and applications. Current directions in EDA research include 
multi-objective optimization [Bureerat and Sriworamas, 2007], dynamic optimiza-
tion [Yang and Yao, 2008a], hybridizations of EDA with other algorithms [Pena 
et al., 2004], and on-line adaptation of EDA parameters [Santana et al., 2008]. 

This chapter has presented EDAs that use first-order and second-order statistics. 
The first paragraph in this conclusion mentions a few EDAs that use higher order 
statistics. This naturally raises the possibility of an EDA that gradually increases 
the order of statistics as the EDA gets closer to convergence. During the early 
stages of the EDA we could use first-order statistics to obtain a population that is 
reasonably close to local optima, and during the later stages of the EDA we could 
use higher order statistics to fine-tune our results. 

Another promising direction for future work would be to combine EDAs with 
more traditional EAs. This would result in merging the ideas of recombination, mu-
tation, and probability theory, to create the next generation of individuals. Other 
important research directions for continuous-domain EDAs include exploring meth-
ods for approximating continuous PDFs on the basis of a discrete set of EDA in-
dividuals. PDF approximation also needs to be performed in particle filtering, and 
so there is a lot of room for cross-fertilization between EDA research and particle 
filter research [Simon, 2006, Section 15.3]. Additional introductory, overview, and 
research material on EDAs can be found in [Larranaga and Lozano, 2002], [Pelikan 
et al., 2002], [Kern et a l , 2004], [Lozano et al., 2006], [Shakya and Santana, 2012], 
and [Larranaga et al., 2012]. A MATLAB toolbox for EDA-based optimization is 
available on the internet at [Santana and Echegoyen, 2012]. 
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PROBLEMS 

Written Exercises 

13.1 In Equation (13.1), what is the probability that bit 5 is a 1 if bits 3 and 4 
are 1? What is the probability that bit 4 is a 1 if bits 3 and 5 are 1? What is the 
probability that bit 3 is a 1 if bits 4 and 5 are 1? 

13.2 What are the values of Wi in Equation (13.4) that reduce it to Equa-
tion (13.3)? 

13.3 How many generations in the cGA algorithm of Figure 13.4 give the same 
number of fitness function evaluations as one generation in the UMDA algorithm 
of Figure 13.2? 

13.4 How many generations in the generalized cGA algorithm of Figure 13.6 with 
a population size Νχ are equivalent to one generation with a population size Λ^ in 
terms of the number of fitness function evaluations? 

13.5 In Example 13.4, calculate the conditional entropy of bit 2 given bit 1. 

13.6 Given a set of binary EA individuals, what is the conditional entropy of 
bit k given bit k? 

13.7 Suppose the entropy of five bits in an EA population are /i(l) = 0.3, h(2) = 
0.4, /i(3) = 0.5, h(2) = 0.5, and h(l) = 0.6. Suppose also that the following table 
specifies the conditional entropy of bit j given bit k. 

k = 1 k = 2 k = 3 k = 4 k = 5 

3 = 1 
3 = 2 
j = 3 
. 7 = 4 
j = b 

0.0 
0.4 
0.9 
0.8 
0.2 

0.1 
0.0 
0.8 
0.2 
0.5 

0.4 
0.5 
0.0 
0.1 
0.2 

0.3 
0.6 
0.7 
0.0 
0.5 

0.4 
0.7 
0.6 
0.1 
0.0 

a) Use the greedy algorithm of Figure 13.10 to minimize Equation (13.12). 
What value does the algorithm give for Equation (13.12)? 

b) Start with k& — 2 and continue with the greedy algorithm to obtain the 
remaining values of ki. What value does this approach give for Equa-
tion (13.12)? 

13.8 Show that the mutual information between bits m and k is the same as that 
between bits k and TO. 

13.9 Verify the calculation of 7(1,3) in Example 13.5. 

13.10 Calculate χ | 3 for Example 13.8. 
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13.11 Given a random variable x ~ £/[0,1], find a function y(x) with the PDF 

, v ί 2α if 0 < | / < 3 / 4 
^ = \ a if 3 / 4 < y < l . 

What value of a is required to make g(y) a valid PDF? 

Computer Exercises 

13.12 cGA versus U M D A : Repeat Example 13.2, but use a cGA generation 
limit that allows a fair comparison with the UMDA results of Example 13.1 (see 
Problem 13.3). What cGA generation limit should you use? How do your cGA 
results compare with the UMDA results? 

13.13 cGA Population Size: Repeat Example 13.3 with TV = 2 and TV = 20, 
but use a larger generation limit with TV = 2 to allow a fair comparison between 
the two different population sizes (see Problem 13.4). What generation limit should 
you use with TV = 2? How do your cGA results compare for TV = 2 and TV = 20? 

13.14 PBIL: Simulate the PBIL algorithm of Figure 13.8 to minimize the 20-
dimensional Ackley function, using six bits per dimension. Run for 50 generations, 
use TVbest = TVworst = 5, Pmin = 0, P m a x = 1, and do not mutate P. Run 20 Monte 
Carlo simulations. Plot the cost of the best individual each generation, averaged 
over the 20 Monte Carlo simulations. Do this for the following values of the learning 
rate η: 0.001, 0.01, and 0.1. Comment on your results. 

13.15 P D F Transformation: Generate 100,000 random numbers {xi} that are 
uniformly distributed on [0,1]. Apply the function that you found in Problem 13.11 
to {xi} to obtain {yi}. Plot a histogram of {yi} to verify that you obtained the 
desired PDF. 





CHAPTER 14 

Biogeography-Based Optimization 

"... the Zoology of Archipelagoes will be well worth examination ..." 
—Charles Darwin [Keynes, 2001], [MacArthur and Wilson, 1967, page 3] 

Biogeography is the study of the speciation, extinction, and geographical dis-
tribution of biological species. As Charles Darwin predicted in the above quote, 
biogeography has indeed been a fruitful area of examination. A recent search of 
Biological Abstracts, a biology research index, reveals that 37,847 papers were writ-
ten in the year 2010 on the subject of biogeography, and there are several journals 
devoted to the subject. Popular science writer David Quammen has written a fas-
cinating account of biogeography in his book The Song of the Dodo [Quammen, 
1997]. 

Just as the behavior of biological ants gave rise to ant colony optimization, the 
science of genetics gave rise to genetic algorithms, and the study of animal swarms 
gave rise to particle swarm optimization, so the science of biogeography has given 
rise to biogeography-based optimization. BBO is a relatively recent addition to 
the stable of EAs, but we devote a full chapter to it in this book because of the 
following reasons. 

Evolutionary Optimization Algorithms, First Edition. By Dan J. Simon 351 
©2013 John Wiley L· Sons, Inc. 
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• The popularity of BBO is growing rapidly. A search of Google Scholar shows 
the following: 

- 1 BBO paper in 2008; 
- 37 BBO papers in 2009; 
- 81 BBO papers in 2010; 
- 145 BBO papers in 2011. 

We are on pace to see over 200 BBO papers in 2012 (as of this writing). 
It remains to be seen whether this growth will continue, but these numbers 
indicate that BBO is rapidly gaining in popularity. 

• In spite of its recent introduction, BBO has seen a lot of success in real-world 
applications, including biomédical problems, power optimization, antenna de-
sign, mechanical design, robotics, scheduling, navigation, military problems, 
and others. See the BBO web site [Simon, 2012] for more details. 

• In contrast to many other recent EAs, there has been a relatively large amount 
of material written about BBO theory in the short time since its inception, 
including papers on Markov models [Simon et al., 2011a], dynamic system 
models [Simon, 2011a], and statistical mechanics models [Ma et al., 2013]. 

• The author of this book is also the inventor of BBO and thus has a natural 
interest in it. 

Overview of the Chapter 

This chapter gives an overview of natural biogeography in Section 14.1, and dis-
cusses its interpretation as an optimization process in Section 14.2. We then show 
how biogeography can be adapted to obtain the BBO algorithm in Section 14.3. 
We suggest some useful BBO modifications and extensions in Section 14.4. 

14.1 BIOGEOGRAPHY 

The science of biogeography can be traced to the work of 19th century naturalists, 
most notably Alfred Wallace [Wallace, 2006] and Charles Darwin [Keynes, 2001]. 
Wallace is usually considered the father of biogeography, although Darwin is much 
better known because of his theory of evolution. 

Before the 1960s, biogeography was mostly descriptive and historical, with the 
notable exception of Eugene Munroe's quantitative doctoral thesis [Munroe, 1948]. 
In the early 1960s Robert MacArthur and Edward Wilson began working on math-
ematical models of biogeography, culminating with their classic 1967 book The 
Theory of Island Biogeography [MacArthur and Wilson, 1967]. They were mostly 
interested in the distribution of species between neighboring islands, and mathe-
matical models for the extinction and migration of species. Since MacArthur and 
Wilson's work, biogeography has become a major subset of biology [Hanski and 
Gilpin, 1997]. 

Mathematical models of biogeography describe speciation (the evolution of new 
species), the migration of species between islands, and the extinction of species. 
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The term island here is descriptive rather than literal. An island is considered any 
habitat that is geographically isolated from other habitats. In the classic sense of 
the term, an island is isolated from other habitats by water. But islands can also be 
habitats that are isolated by stretches of desert, rivers, mountain ranges, predators, 
man-made artifacts, or other obstacles. An island could consist of a riverbank that 
supports herbs, a pond that supports amphibians, a rocky outcrop that supports 
snails, or a dead tree trunk that supports insects [Hanski and Gilpin, 1997]. 

Geographical areas that are friendly to life are said to have a high habitat suit-
ability index (HSI) [Wesche et al., 1987]. Features that correlate with HSI include 
such factors as rainfall, vegetative diversity, topographic diversity, land area, and 
temperature. These variables which characterize habitability are called suitability 
index variables (SIVs). In terms of habitability, SIVs are the independent variables 
of the habitat and HSI is the dependent variable. 

Islands with a high HSI tend to support many species, and islands with a low 
HSI can support only a few species. Islands with a high HSI have many species 
that emigrate to nearby habitats, simply by virtue of the large number of species 
that they host. Emigration from an island with a high HSI does not occur because 
species want to leave their home; after all, the home island is an attractive place 
to live. The reason that emigration occurs from these islands is due to the accu-
mulation of random effects on a large number of species with large populations. 
Emigration occurs as animals ride flotsam, swim, fly, or ride the wind to neighbor-
ing islands. When a species emigrates from an island, it does not mean that the 
species completely disappears from the island; only a few representatives emigrate, 
so an emigrating species remains present on its home island while at the same time 
migrating to a neighboring island. However, in most of our discussion, we will as-
sume that emigration from an island results in extinction from that island. This 
assumption will be necessary in our use of biogeography to develop BBO. 

Islands with a high HSI not only have a high emigration rate, but they have a 
low immigration rate because they already support many species. The species that 
arrive at such islands will tend not to survive, even though the HSI is high, because 
there is too much competition for resources. 

Islands with a low HSI have a high immigration rate because of their low popu-
lations. Again, this is not because species want to immigrate to such islands; after 
all, these islands are undesirable places to live. The reason that immigration occurs 
to these islands is because there is a lot of geographical room for additional species. 
Whether or not the immigrating species can survive in its new home, and for how 
long, is another question. However, species diversity is correlated with HSI, so the 
more species that arrive at a low HSI island, the greater chance that the island's 
HSI will increase [Wesche et al., 1987]. 

Figure 14.1 illustrates a model of species abundance on a single island [MacArthur 
and Wilson, 1967]. The immigration rate λ and the emigration rate μ are functions 
of the number of species on the island. We have depicted the migration curves as 
straight lines, but in general they might be more complicated curves, as we will 
discuss later. 

Consider the immigration curve. The maximum possible immigration rate to 
the habitat is / , which occurs when there are zero species on the island. As the 
number of species increases, the island becomes more crowded, fewer species are 
able to successfully survive immigration, and the immigration rate decreases. The 
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largest possible number of species that the habitat can support is 5 m a x , at which 
point the immigration rate is zero. 

Now consider the emigration curve. If there are no species on the island, then the 
emigration rate is zero. As the number of species on the island increases, it becomes 
more crowded, more species are able to leave the island, and the emigration rate 
increases. The maximum emigration rate is E, when the island contains the largest 
number of species that it can support. 

E 

3 

*̂ 0 *̂ max 

number of species 

Figure 14.1 Species migration model of an island, based on [MacArthur and Wilson, 
1967]. 5o is the equilibrium species count. 

A Mathematical Model of Biogeography 

The remainder of this section presents a mathematical model of species counts in 
biogeography. This material is not necessary for an understanding of the BBO 
algorithm, and so the reader can safely skip to the next section if so inclined. 

The equilibrium number of species in Figure 14.1 is SO, at which point the 
immigration and emigration rates are equal. However, there will be occasional 
excursions from So due to temporal, random causes. Positive excursions from So 
could be due to an unusually large piece of flotsam arriving from a neighboring 
island, or a statistically unlikely high number of births. Negative excursions from 
SO could be due to disease, the temporary introduction of a new predator, or a 
natural catastrophe. It can take many years for the number of species to reach 
equilibrium after a large perturbation [Hanski and Gilpin, 1997], [Hastings and 
Higgins, 1994]. 

Now consider the probability Ps that the island contains S species. Ps changes 
from time t to (t + At) as follows: 

Ps(t + Δί) = Ps(t)(l - XsAt - ßsAt) + Ρβ_ι(ί)λβ_ιΔί + Ρ 5 + 1 ( ί )μ 5 + 1 Δί (14.1) 

immigration 
λ 

emigration 
μ 
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where Xs and μ8 are the immigration and emigration rates when there are 5 species 
on the island. This equation holds if we assume that At is small enough so that the 
probability of more than one migration between time t and (t + At) can be ignored. 
Therefore, to have 5 species at time (t + At), one of the following conditions must 
hold: 

1. There were 5 species at time t, and no immigration or emigration occurred 
between t and (t + At); or, 

2. There were (5 — 1) species at time t, and one species immigrated; or, 

3. There were ( 5 + 1 ) species at time t, and one species emigrated. 

Taking the limit of Equation (14.1) as At —> 0 gives 

{ -(Xs 4- μ3)Ρ3 + μ8+ιΡ3+ι 
— (Xs + ßs)Ps + Xs-lPs-l + ßs+lPs+1 

- ( λ 8 + μβ)Ρθ + λ β _ιΡ θ _ι 

5 = 0 
1 ί? & S: '-'max — 1 (14.2) 

We define n = 5 m a x , and P = [ Po · · · Pn ] . Now we can arrange the (n + 1) 
equations of Equation (14.2) into the single matrix equation 

where the matrix A is given as 

-(λο + μο) μι 

λ0 - ( λ ι + μ ι ) 
Α= ' 

Ρ = ΑΡ 

0 

μ2 

(14.3) 

λ η -2 
0 

-(λη_ι + μ η _ι) 
λ η - ι 

μη 

-(λ„ + μη) 

For the straight line migration rates of Figure 14.1, we have 

ßk = Ek/n 

Xk = 1(1-k/P). 

For the special case E = 7, we have 

Afc + μ/c = E = I for all fc G [0, n] 

(14.4) 

(14.5) 

" -1 

n/n 

0 

1/n 

-1 

0 

2/n 

2/n 
0 

-1 
1/n 

0 

n/n 
-1 

= £ ^ ' (14.6) 

where A! is defined by the above equation. 
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Theorem 14.1 The (n-hl) eigenvalues of A!, for any natural n, are 

x(A') = {0, - 2 / n , - 4 / n , · · ·, -n} 

= -2k/n, fce[0,n]. 

Furthermore, the eigenvector corresponding to the zero eigenvalue is 

(14.7) 

v(0) = [ υ0(0) 

where t>fc(0) = 

Vn(0) ] 

k\{n-k)V 
fee [0,n]. (14.8) 

The first part of the theorem was conjectured in [Simon, 2008] and proven in 
[Igelnik and Simon, 2011]. The second part of the theorem was proven in both 
references but in two different ways. After the publication of [Igelnik and Simon, 
2011] we discovered that the basic idea of the first part of Theorem 14.1 had been 
previously stated without proof in [Clement, 1959] and [Gregory and Karney, 1969, 
Example 7.10]. 

In steady state we have t —>· oo, so P(oo) = AP(oo) = EA'P(oo) = 0; that 
is, P(oo) is the eigenvector that corresponds to the zero eigenvalue. Recall that 
eigenvectors are not defined uniquely, but are defined only up to a nonzero scaling 
factor. The elements of Ρ(οο) must add up to 1 since they are probabilities. These 
facts give us the following [Simon, 2008], [Igelnik and Simon, 2011]. 

Theorem 14.2 The steady state value for the probability of the number of each 
species is given by 

P(oo) = 
v(0) 

ELo^(o) 
= 2"%(0). (14.9) 

EXAMPLE 14.1 

Consider an island that can support a maximum of four species. The max-
imum immigration and emigration rates are two species per unit of time. 
Therefore, n = 4 and E — 1 — 2. The A! matrix of Equation (14.6) is 

A' = 

-1 1/4 0 0 0 
1 -1 2/4 0 0 
0 3/4 -1 3/4 0 
0 0 2/4 -1 1 
0 0 0 1/4 -1 

(14.10) 

-2}, 
IT 

Theorem 14.1 tells us that the eigenvalues are x = {0, —1/2, —1, —3/2, -
and the eigenvector corresponding to x = 0 is v(0) = [ 1 4 6 4 1 
Theorem 14.2 tells us that the steady-state probability for the number of 
each species count is 

pT(S = 0) = Pr(5 = 4) = 1/16 

Pr(5 - 1) - Pr(S = 3) = 4/16 

Pr(S = 2) = 6/16. (14.11) 
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If we run a migration simulation for 5,000 time steps, we obtain the following 
probabilities for each species count: 

Pr(5 = 0) 

Pr(5 = 1) 

PT(S = 2) 

Pr(5 = 3) 

Pr(5 = 4) 

= 0.0714 

= 0.2605 

= 0.3734 

- 0.2358 

= 0.0544. 

These are fairly close to the analytical probabilities shown in Equation (14.11). 

D 

14.2 BIOGEOGRAPHY IS AN OPTIMIZATION PROCESS 

We know that nature includes many processes that optimize [Alexander, 1996]. In 
fact, this premise is the foundational principle of most EAs. However, is biogeog-
raphy an optimization process? At first glance it seems that biogeography simply 
maintains species count equilibria among islands, and that it is not necessarily 
optimal. This section discusses biogeography from the viewpoint of optimality. 

As discussed earlier, biogeography is nature's way of distributing species, and it 
has often been studied as a process that maintains equilibrium in habitats. Equi-
librium can be seen at the point SO in Figure 14.1 where the immigration and 
emigration curves intersect. One reason that biogeography has been viewed from 
the equilibrium perspective is that this viewpoint was the first to place biogeog-
raphy on a firm mathematical footing [MacArthur and Wilson, 1963], [MacArthur 
and Wilson, 1967]. However, since then the equilibrium perspective has been in-
creasingly questioned, or rather expanded, by biogeographers. 

In engineering, we often view stability and optimality as competing objectives; 
for example, a simple system is typically easier to stabilize than a complex system, 
while an optimal system is typically complex and less stable than a simpler system 
[Keel and Bhattacharyya, 1997]. However, in biogeography, stability and optimal-
ity are two sides of the same coin. Optimality in biogeography involves diverse, 
complex communities that are highly adaptable to their environment. Stability in 
biogeography involves the persistence of existing populations. Field observations 
show that complex communities are more adaptable and stable than simple com-
munities [Harding, 2006, page 82], and this observation has also been supported by 
simulation [Elton, 1958], [MacArthur, 1955]. 

Although the complementary nature of optimality and stability in biogeography 
has been challenged [May, 1973], those challenges have been adequately answered 
and the idea is generally accepted today [McCann, 2000], [Kondoh, 2006]. The 
equilibrium vs. optimality debate in biogeography thus becomes a matter of se-
mantics, because equilibrium and optimality are simply two different perspectives 
on the same phenomenon in biogeography. 

A dramatic example of the optimality of biogeography is Krakatoa, a volcanic 
island in the Indian Ocean which erupted in August 1883 [Winchester, 2008]. The 
eruption was heard from thousands of miles away and resulted in the death of over 
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36,000 people, mostly from tidal waves whose remnants were recorded as far away 
as England. The eruption threw dust particles 30 miles high which remained aloft 
for months and were visible all around the world. Rogier Verbeek, a geologist and 
mining engineer, was the first visitor to Krakatoa six weeks after the eruption, 
but the surface of the island was too hot to touch and showed no evidence of 
life. The island was completely sterilized [Whittaker and Bush, 1993]. The first 
animal life (a spider) was discovered on Krakatoa in May 1884, nine months after 
the eruption. By 1887, dense fields of grass were discovered on the island. By 
1906, plant and animal life was abundant. Although volcanic activity continues 
today on Krakatoa, by 1983 (one century after its desolation) there were 88 species 
of trees and 53 species of shrubs [Whittaker and Bush, 1993], and the species 
count continues to increase linearly with time. Life immigrates to Krakatoa, and 
immigration makes the island more habitable, which in turn makes the island more 
friendly to additional immigration. 

Biogeography is a positive feedback phenomenon, at least to a certain point. 
This is analogous to natural selection, also called survival of the fittest. As species 
become more fit, they are more likely to survive. As they survive longer, they dis-
perse and become better able to adapt to their environment. Natural selection, like 
biogeography, entails positive feedback. However, the time scale of biogeography is 
much shorter than that of natural selection. 

Another good example of biogeography as an optimization process is the Amazon 
rainforest, which is a typical case of a mutually optimizing life/environment system 
[Harding, 2006]. The rainforest has a large capacity to recycle moisture, which leads 
to less aridity and increased evaporation. This leads to cooler and wetter surfaces, 
which are more amenable to life. This suggests that a view of biogeography "based 
on optimizing environmental conditions for biotic activity seems more appropriate 
than a definition based on homeostasis" [Kleidon, 2004] (emphasis added). This 
view of the environment as a life-optimizing system was suggested as early as 1997 
[Volk, 1997]. There are many other examples of the optimality of biogeography, such 
as Earth's temperature [Harding, 2006], Earth's atmospheric composition [Lenton, 
1998], and the ocean's mineral content [Lovelock, 1990]. 

This is not to say that biogeography is optimal for any particular species. For 
example, investigations of the Bikini Atoll show that the high level of radioactivity 
resulting from nuclear tests had little effect on its natural ecology, but mammals 
were seriously affected [Lovelock, 1995, page 37]. This and similar studies indicate 
that the Earth "will take care of itself [and] environmental excesses will be amelio-
rated, but it's likely that such restoration of the environment will occur in a world 
devoid of people" [Margulis, 1996]. Interestingly, amid all of the current warnings 
about ozone depletion, we overlook the fact that for the first two billion years of 
life Earth had no ozone at all [Lovelock, 1995, page 109]. Life flourishes and evolves 
without ozone, but not in a human-centric way. Although global warming or an 
ice age might be disastrous for humans and many other mammals, it would be a 
minor event in the overall history of biogeography on our planet. 

The premise that biogeography is optimization process motivates the develop-
ment of BBO as an evolutionary optimization algorithm, which we discuss next. 
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14.3 BIOGEOGRAPHY-BASED OPTIMIZATION 

Biogeography is nature's way of distributing species and optimizing environments 
for life, and is analogous to mathematical optimization. Suppose that we have 
an optimization problem and some candidate solutions, which we call individuals. 
Good individuals perform well on the problem, and poor individuals perform poorly. 
A good individual is analogous to an island with a high HSI, and a poor individual 
is analogous to an island with a low HSI. Good individuals resist change more than 
poor individuals, just like highly habitable islands have lower immigration rates 
than less habitable islands. By the same token, good individuals tend to share 
their features (that is, their independent variables) with poor individuals, just like 
highly habitable islands have high emigration rates. Poor individuals are likely to 
accept new features from good individuals, just like less habitable islands are likely 
to receive many immigrants from highly habitable islands. The addition of new 
features to poor individuals may raise the quality of those individuals. The EA 
that is based on this approach is called biogeography-based optimization (BBO). 

We assume that each BBO individual is represented by an identical species count 
curve with E = / for simplicity. Figure 14.2 illustrates the migration rates for 
a BBO algorithm with these assumptions. S\ in Figure 14.2 represents a poor 
individual, while S2 represents a good individual. The immigration rate for 5i will 
be relatively high, which means that it will be likely to receive new features from 
other candidate solutions. The emigration rate for £2 will be relatively high, which 
means that it will be likely to share its features with other individuals. Figure 14.2 
is called a linear migration model since the μ and λ values are linear functions of 
fitness. 

E=I 

2 

Si S2 

fitness 

Figure 14.2 BBO feature-sharing relationship. Si represents a poor individual with a 
low probability of sharing features, but a high probability of receiving features from other 
individuals. 52 represents a good individual with a high probability of sharing features, but 
a low probability of receiving features from other individuals. 
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We use the migration rates of each individual to probabilistically share informa-
tion between individuals. There are several different ways to implement the details 
of BBO, but in this chapter we focus on the original BBO formulation [Simon, 
2008], which is called partial immigration-based BBO [Simon, 2011b]. Using our 
standard notation, we suppose that we have a population size of TV, that Xk is the 
k-th individual in the population, that the dimension of our optimization problem 
is n, and that Xk{s) is the s-th independent variable in £fc, where k G [l,iV] and 
s G [l ,n]. At each generation and for each solution feature in the k-th individual, 
there is a probability of λ^ (immigration probability) that it will be replaced: 

Afc = Probability that s-th independent variable in Xk will be replaced (14.13) 

for k G [1, AT] and s G [l ,n]. If a solution feature is selected to be replaced, then 
we select the emigrating solution with a probability that is proportional to the 
emigration probabilities [μΐ]. We can use any fitness-based selection method for 
this step (see Section 8.7). If we use roulette-wheel selection, then 

Pr(xj) is selected for emigration = —j^- . (14.14) 
Σ<=ι Mi 

This gives the algorithm of Figure 14.3. Migration and mutation of each individual 
in the current generation occurs before any of the individuals are replaced in the 
population, which requires the use of the temporary population z in Figure 14.3. 
Borrowing from GA terminology [Vavak and Fogarty, 1996], we say that Figure 14.3 
depicts a generational BBO algorithm as opposed to a steady-state algorithm. As 
with other EAs, we typically implement elitism in BBO (see Section 8.4), although 
this is not shown in Figure 14.3. 

Figure 14.4 illustrates migration in BBO. The figure shows that individual Zk 
immigrates features. We use Equation (14.13) to decide whether or not to replace 
each feature in z^. In the example of Figure 14.4, we see the following migration 
decisions: 

1. Immigration is not selected for the first feature; that is why the first feature 
in Zk remains unchanged. 

2. Immigration is selected for the second feature, and Equation (14.14) chooses 
x\ as the emigrating individual; that is why the second feature in Zk is replaced 
by the second feature from x\. 

3. Immigration is selected for the third feature, and Equation (14.14) chooses £3 
as the emigrating individual; that is why the third feature in Zk is replaced 
by the third feature from £3. 

4. Immigration is selected for the fourth feature, and Equation (14.14) chooses 
£2 as the emigrating individual; that is why the fourth feature in Zk is replaced 
by the fourth feature from £2. 

5. Finally, immigration is selected for the fifth feature, and Equation (14.14) 
chooses £JV as the emigrating individual; that is why the fifth feature in Zk is 
replaced by the fifth feature from x^. 
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Initialize a population of candidate solutions {xk} for k G [1, N] 
While not (termination criterion) 

For each xk, set emigration probability μ/~ oc fitness of xk, with μ^ (Ξ [0,1] 
For each individual xk, set immigration probability Xk = 1 — μ^ 
{zk} <- {xk} 
For each individual zk 

For each solution feature s 
Use Xk to probabilistically decide whether to immigrate to Zk 

(see Equation (14.13)) 
If immigrating then 

Use {μι)^=1 to probabilistically select emigrating individual Xj 
(see Equation (14.14)) 

zk(s) ^Xj{s) 
End if 

Next solution feature 
Probabilistically mutate {zk} 

Next individual 
{xk} <- {zk} 

Next generation 

Figure 14.3 Outline of the BBO algorithm with a population size of N. This algorithm is 
also known as partial immigration-based BBO. {xk} is the entire population of individuals, 
Xk is the k-th individual, and Xk(s) is the s-th feature of Xk- Similarly, {zk} is the temporary 
population of individuals, Zk is the k-th temporary individual, and Zk(s) is the s-th feature 
of zk. 

Figure 14.4 Illustration of BBO migration for a five-dimensional problem. Feature 1 is 
not selected for immigration, but features 2-5 are selected for immigration. Equation (14.14) 
is used to select the emigrating individuals. 

■ EXAMPLE 14.2 

This simple BBO experiment is motivated by David Goldberg's "GA simu-
lation by hand" [Goldberg, 1989a]. Suppose that we want to maximize x2, 
where x is encoded as a five-bit integer. We have to decide how many in-
dividuals we want in our population, and what mutation rate we want to 
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use. We start with a randomly-generated population of four individuals, and 
a mutation rate of 1% per bit. For each individual, we compute the fitness 
value a;2, and then we assign migration rates in a linear manner as shown in 
Figure 14.2. Migration rates should be between 0 and 1, but we often set 
the smallest value to slightly greater than 0, and the largest value to slightly 
less than 1. This allows some randomness (non-determinism) even for the 
best and worst individuals in the population. For this example, we arbitrarily 
decide to use I/TV as the minimum values for λ and μ, and (N — l)/N as 
the maximum values, where N = 4 is the population size. Suppose that our 
random initial population is created as shown in Table 14.1. 

String 
number x (binary) x (decimal) f(x) = x2 μ λ 

1 
2 
3 
4 

01101 
11000 
01000 
10011 

13 
24 
8 
19 

169 
576 
64 
361 

2/5 
4/5 
1/5 
3/5 

3/5 
1/5 
4/5 
2/5 

Table 14.1 Example 14.2: Initial population for a simple BBO problem. 

The first thing we do is copy the population x to temporary population 
z. Then we consider the possibility of immigration to each bit of the first 
individual in the temporary population, z\, which is equal to x\ (01101). We 
order bit numbers from left to right starting with index 1. We therefore see 
that 

*i(l) = 0, *i(2) = l, *i(3) = l, *i(4) = 0, *i(5) = 1. (14.15) 

Since z\ is the third most fit individual, immigration rate λι — 3/5, so there 
is a 60% chance of immigrating to each bit in z\. We generate a random 
number r ~ C/[0,1] for each bit in z\ to determine whether or not we should 
immigrate to that bit. 

1. Suppose r = 0.7. Since r > λχ, we will not immigrate to 2i( l ) , so z\{\) 
remains equal to 0. 

2. Suppose the next random number that we generate is r = 0.3. Since r < 
λι , we will immigrate to z\(2). We use roulette-wheel selection to choose 
the immigrating bit. #3(2) has the greatest probability of immigrating to 
2:1(2), #i(2) has the second greatest probability, x±(2) has the third greatest 
probability, and #2(2) has the least probability. We could exclude x\(2) from 
consideration since z\ is a copy of χχ, but this is an implementation detail 
that depends on the preference of the engineer. Suppose that this roulette-
wheel selection process results in the choice of £3(2) for immigration. Then 
2:1(2) «— £3(2) = 1. Even though we immigrated to 2:1(2), it did not change 
from its original value. 

3. We continue this process for 2:1(3), 21 (4), and 2:1(5). Suppose that the random 
numbers generated result in the following: 



SECTION 14.4: BBO EXTENSIONS 3 6 3 

• 2i(3) = 1 (no immigration); 
• 2i(4) <— X4(4) = 1 (immigration); and 
• 2i(5) = 1 (no immigration). 

Now we have completed the migration process for z\ and have obtained z\ = 
01111. 

4. We repeat steps 1-3 for 22, 23, and 24. 

5. We next consider the possibility of mutation for each bit in each temporary 
individual ζχ, Z2, 23, and Z4. Mutation can be implemented as with any other 
EA (see Section 8.9). 

6. Now that we have a modified population of {z^} individuals, we copy Zk to 
Xk for k G [1,4], and the first BBO generation is complete. 

The above process continues until some convergence criterion is met. For 
instance, we could continue for a specified number of generations, or continue 
until we achieve a satisfactory fitness value, or continue until the fitness value 
stops changing (see Section 8.2). 

D 

14.4 BBO EXTENSIONS 

This section discusses some extensions that can be made to BBO to improve perfor-
mance. We discuss migration curve shapes, blended migration, and alternative ap-
proaches to BBO implementation. We conclude this discussion with Section 14.4.4, 
which considers whether or not BBO should be viewed as a GA variation rather 
than a separate EA. 

14.4.1 Migration Curves 

Up to this point, we have assumed that the BBO migration curves are linear as 
shown in Figure 14.2. This is a convenient assumption, and it corresponds to linear 
rank-based selection (see Section 8.7.4); but in biogeography, migration curves are 
nonlinear. The exact shape of biogeography migration curves is difficult to quantify 
and changes from one island to the next. However, many curves in nature follow an 
S-shape. It was surmised in the original BBO paper [Simon, 2008] that nonlinear 
migration curves might give better performance than linear curves. This led to the 
investigation of several different migration curves in [Ma et al., 2009], [Ma, 2010]. 
Here we discuss the most promising curve: S-shaped migration curves. 

Figure 14.2 models the unnormalized migration rates as 

Mfc = rk 

\k = l - n (14.16) 

where r^ is the fitness rank of the k-th individual in the population, r^ = 1 for the 
least fit individual, and r^ = N (where TV is the population size) for the most fit 
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individual. Sinusoidal migration rate modeling assigns the migration rates as 

Mfc = £ ί1 ~ ^os(nrk/N)) 

Xk = 1-Mfc. (14.17) 

These equations result in the S-shaped curves shown in Figure 14.5. 

1 

0.8 

0.6 

2 
0.4 

0.2 

fitness 

Figure 14.5 Sinusoidal BBO migration model. Compare with Figure 14.2. 

■ EXAMPLE 14.3 

If natural biogeography is really an optimization process, then it stands to 
reason that modeling BBO more closely after natural biogeography could re-
sult in better optimization performance. With this idea in mind, we simulate 
linear BBO and sinusoidal BBO on a set of 20-dimensional benchmark prob-
lems, obtaining the results shown in Table 14.2. We use a population size of 
50, a generation limit of 50 for each BBO run, and a mutation rate of 1% per 
solution feature. We implement mutation by generating a solution feature 
that is uniformly distributed between the minimum and maximum domain 
values, with a 1% probability per individual per generation. We also use an 
elitism parameter of 2, which means that we keep the two best individuals 
from one generation to the next. 

Table 14.2 shows that sinusoidal migration clearly outperforms linear mi-
gration for the standard benchmarks shown in the table. The average perfor-
mance is 43% better for sinusoidal migration than for linear migration. This 
shows that migration models that are closer to nature outperform simpler 
migration models, and supports the hypothesis that natural biogeography is 
itself an optimization process. 

\ 

emigration μ 
immigration λ 

/ 
\ / \ / \ / 

X / 
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Linear Sinusoidal 
Benchmark Migration Migration 

Ackley 
Fletcher 

Griewank 
Penalty # 1 
Penalty # 2 

Quartic 
Rastrigin 

Rosenbrock 
Schwefel 1.2 

Schwefel 2.21 
Schwefel 2.22 
Schwefel 2.26 

Sphere 
Step 

1.0373 
1.2015 
1.2367 
1.4249 
4.3265 
1.6876 
1.0665 
1.0759 
1.0980 
1.0468 
1.0721 
1.2471 
1.2582 
1.2683 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Average 1.4319 1 

Table 14.2 Example 14.3 results: Relative performance of BBO with linear and 
sinusoidal migration models. The table shows the normalized minimum found by the 
two BBO versions, averaged over 50 Monte Carlo simulations. See Appendix C for the 
definitions of the benchmark functions. 

14.4.2 Blended Migration 

Blended crossover has been shown to improve the performance of GAs and other 
EAs [McTavish and Restrepo, 2008], [Mezura-Montes and Palomeque-Oritiz, 2009], 
[Mühlenbein and Schlierkamp-Voosen, 1993] (see Section 8.8.9). In blended GA 
crossover, instead of copying a single parent's gene to a child gene, the child gene 
is obtained as a convex combination of two parent genes. This motivates the use 
of a blended migration operator for BBO [Ma and Simon, 2010], [Ma and Simon, 
2011b]. In the standard BBO algorithm of Figure 14.3, a feature s of individual zk 

is completely replaced by a feature from individual xy. 

zk(s)^Xj(s). (14.18) 

In blended migration in BBO, a feature of individual zk is not simply replaced by 
a feature from individual xy instead, the feature of individual zk is set equal to a 
convex combination of that of Zk(s) and Xj(s): 

zk{s) <r- azk(s) + (1 - a)xj(s) (14.19) 

where a G (0,1). If a = 0, then blended BBO reduces to standard BBO; therefore, 
blended BBO is a generalization of standard BBO. The blend parameter a could 
be random, deterministic, or proportional to the relative fitness of zk and Xj. 

Blended migration is suitable for problems with continuous solution features. 
It could possibly be adapted for problems with discrete solution features, but we 
do not explore that idea here. There are a couple of justifications for blended 
migration compared to standard migration. First, good individuals will be less 
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likely to be degraded due to migration, since they will retain a certain proportion 
of their original features in the migration process. Second, poor individuals will still 
accept at least part of the solution features from good individuals during migration. 

■ EXAMPLE 14.4 

To explore the effect of blended migration on BBO performance, we simulate 
standard BBO and blended BBO with a = 0.5 on a set of 20-dimensional 
benchmark problems. We use the same BBO parameters as in Example 14.3, 
and we obtain the results shown in Table 14.3. 

Standard BBO Blended BBO 
Benchmark (a = 0) (a = 0.5) 

Ackley 
Fletcher 

Griewank 
Penalty # 1 
Penalty # 2 

Quartic 
Rastrigin 

Rosenbrock 
Schwefel 1.2 

Schwefel 2.21 
Schwefel 2.21 
Schwefel 2.26 

Sphere 
Step 

1.6559 
1.0 
3.4536 

701.47 
8817.7 

49.663 
1.0 
3.9009 

12.63 
4.0846 
1.3280 
1.0 
5.4359 
4.5007 

1.0 
2.388 
1.0 
1.0 
1.0 
1.0 
1.6892 
1.0 
1.0 
1.0 
1.0 
4.8213 
1.0 
1.0 

Average 686.34 1.4213 

Table 14.3 Example 14.4 results: Relative performance of standard BBO and 
blended BBO with a = 0.5. The table shows the normalized optimum found by the 
two BBO versions, averaged over 50 Monte Carlo simulations. See Appendix C for the 
definitions of the benchmark functions. 

Table 14.3 shows that blended BBO performs better than standard BBO 
on 11 of the 14 benchmarks. The magnitude of the improvement is quite 
impressive. Standard BBO performs better on three benchmarks with an 
average factor of improvement of about 3. But blended BBO performs better 
on 11 benchmarks, with a factor of improvement as high as 8818 (Penalty # 2 
function). 

D 

14.4.3 Other Approaches to BBO 

The algorithm presented in Figure 14.3 is called partial immigration-based BBO 
[Simon, 2011b]. The word partial in the name means that only one solution feature 
is considered for immigration at a time. That is, for individual Zk, Xk is tested 
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against a random number once for every solution feature to decide whether or 
not to replace that solution feature. The term immigration-based in the name 
means that λ^ is first used to decide whether or not to immigrate to zk\ it is only 
after immigration is decided upon that the {μι} variables are used to choose the 
emigrating solution, using some procedure like roulette-wheel selection. 

However, there are also other ways that we could implement the idea of BBO. 
Instead of testing \k against a random number once for each solution feature, we 
could test \k against a random number only once for each individual, and then if 
immigration is decided upon, we replace all solution features in Zk· This could be 
called total immigration-based BBO. 

Also, we could first use μ^ to decide whether or not to emigrate a feature from 
a given individual. Then, only if emigration is decided upon, would we use the 
{Xi} variables in a roulette-wheel process to select where to immigrate the chosen 
solution feature. This idea gives rise to emigration-based BBO. 

Combining the above ideas results in four different BBO implementations. The 
first, partial immigration-based BBO, is the default implementation and is outlined 
in Figure 14.3. The other three are outlined in Figures 14.6-14.8. In addition, each 
of these approaches could be combined with sinusoidal migration curves as discussed 
in Section 14.4.1, and/or blended migration as discussed in Section 14.4.2. As with 
any other EA, we should also implement mutation and elitism, although these pro-
cedures are not shown in Figures 14.6-14.8. Theoretical and applied investigations 
of these BBO options are reported in [Ma and Simon, 2013]. 

Initialize a population of candidate solutions {xk} for k G [l,N] 
While not (termination criterion) 

For each #&, set emigration probability μ^ oc fitness of Xk, with μ^ G [0,1] 
For each individual Xk, define immigration probability λ& = 1 — μ^ 
{zk} «- {xk} 
For each individual Xk 

For each solution feature s 
Use ßk to probabilistically decide whether to emigrate Xfc(s) 
If emigrating then 

Use {λ^} to probabilistically select the immigrating solution Zj 
Zj(s) <- xk{s) 

End if 
Next solution feature 

Next individual 
Probabilistically mutate {zk} 
{xk} <- {zk} 

Next generation 

Figure 14.6 The above algorithm outlines partial emigration-based BBO with a 
population size of N. {xk} is the entire population of individuals, Xk is the k-th individual, 
and Xk(s) is the s-th feature of Xk- Similarly, {zk} is the temporary population of individuals, 
Zk is the k-th temporary individual, and Zk(s) is the s-th feature of Zk. 
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Initialize a population of candidate solutions {xk} for k G [1, AT] 
While not (termination criterion) 

For each xk, set emigration probability μ^ oc fitness of xk, with μ^ G [0,1] 
For each individual xk, define immigration probability Xk = 1 — μ^ 
{zk} <- {xk} 
For each individual zk 

Use Xk to probabilistically decide whether to immigrate to zk 

If immigrating then 
For each solution feature s 

Use {μι} to probabilistically select the emigrating solution Xj 
zk{s) *-Xj(s) 

Next solution feature 
End if 

Next individual 
{xk} «- {zk} 

Next generation 

Figure 14.7 The above algorithm outlines total immigration-based BBO with a 
population size of N. {xk} is the entire population of individuals, Xk is the k-th individual, 
and Xk(s) is the s-th feature of xk- Similarly, {zk} is the temporary population of individuals, 
Zk is the k-th temporary individual, and Zk(s) is the s-th feature of Zk· 

Initialize a population of candidate solutions {xk} for k G [1, N] 
While not (termination criterion) 

For each xk, set emigration probability //& oc fitness of xk, with μ& G [0,1] 
For each individual xk, define immigration probability Xk = 1 — μιί 

{zk} *- {xk} 
For each individual xk 

Use μΐς to probabilistically decide whether to emigrate xk 

If emigrating then 
For each solution feature s 

Use {Xi} to probabilistically select the immigrating solution Zj 
Zj{s) f-Xfc(s) 

Next solution feature 
End if 

Next individual 
{xk} <- {zk} 

Next generation 

Figure 14.8 The above algorithm outlines total emigration-based BBO with a population 
size of N. {xk} is the entire population of individuals, Xk is the fc-th individual, and Xk(s) 
is the s-th feature of Xk- Similarly, {zk} is the temporary population of individuals, Zk is 
the k-th temporary individual, and Zk(s) is the s-th feature of Zk-
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14.4.4 BBO and Genetic Algorithms 

This section discusses the relationship between GAs and BBO. In GAs with uniform 
crossover we randomly choose each child gene from one of its two parents (see 
Section 8.8.4). In gene pool recombination, which is also known as multi-parent 
recombination and scanning crossover, we randomly choose each child gene from one 
of its parents, where the number of parents is greater than two (see Section 8.8.5). 
We need to make several choices when implementing gene pool recombination in 
GAs. For example, how many individuals should be in the pool of potential parents? 
How should individuals be chosen for the pool? Once the pool has been determined, 
how should parents be selected from the pool? One way of implementing gene pool 
recombination might be called global uniform recombination, in which we randomly 
choose each child gene from one of its parents, where the parent population is 
equivalent to the entire G A population, and the random selection is based on fitness 
values (for example, roulette-wheel selection). 

If we use global uniform recombination, and if we also use fitness-based selection 
for each solution feature in each offspring, we obtain the algorithm shown in Fig-
ure 14.9, which we call the genetic algorithm with global uniform recombination 
(GA/GUR). Comparing Figures 14.3 and 14.9 we see that BBO is a generalization 
of a specific type of GA/GUR. This is because if, rather than setting λ/~ = 1 — μ^ 
in the BBO algorithm of Figure 14.3, we instead set λ^ = 1 for all /c, then the 
BBO algorithm of Figure 14.3 would be equivalent to the GA/GUR algorithm of 
Figure 14.9. 

Initialize a population of candidate solutions {xk} for k G [l,N] 
While not (termination criterion) 

For k = 1 to TV 
Childfc <- [ 0 0 · · · 0 ] G Rn 

For each solution feature s = 1 to n 
Use fitness values to probabilistically select individual Xj 
Childfc(s) <r- Xj(s) 

Next solution feature 
Probabilistically mutate Child*; 

Next child 
{xk} <- {Childfc} 

Next generation 

Figure 14.9 Outline of genetic algorithm with global uniform recombination (GA/GUR) 
for an n-dimensional optimization problem. N is the population size, {xk} is the entire 
population of individuals, Xk is the /c-th individual, and Xk(s) is the s-th feature of Xk-

This discussion is similar to that in Section 12.4, where we showed that DE is a 
special type of continuous G A. In that section, we saw that even though DE and 
GAs have many similarities, DE is distinctive enough to be considered a separate 
EA rather than a special type of G A. We make a similar conclusion in this section. 
Even though BBO and GAs have many similarities, BBO is distinctive enough to 
be considered a separate EA rather than a special type of G A. There is also another 
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even more important reason to consider BBO as a separate EA, and that is because 
the biogeography roots of BBO open up many avenues for extensions and modifi-
cations that would otherwise be unavailable to the researcher. We discussed one of 
these extensions in Section 14.4.1, and we discuss some others in the conclusion of 
this chapter. 

14.5 CONCLUSION 

We have seen how biogeography, the study of the geographical distribution of bio-
logical species, can be used to obtain the biogeography-based optimization (BBO) 
algorithm. BBO has been modeled using Markov theory [Simon et al., 2011a], dy-
namic systems [Simon, 2011a], and statistical mechanics [Ma et al., 2013]. Some of 
these models are analogous to those that we derived for G As (see Chapter 4). G A 
and BBO Markov models are compared in [Simon et al., 2011b]. The BBO Markov 
model was extended to BBO with elitism in [Simon et al., 2009]. Like many other 
EAs, BBO has been applied to many real-world problems. A web site devoted to 
BBO is available at [Simon, 2012]. 

One shortcoming of the BBO algorithm presented here is that it migrates only 
one independent variable at a time between solutions. This works fine for separable 
problems, that is, problems whose fitness function f(x) can be written as 

n 

/ ( * ) = ! > ( * ( * ) ) (14.20) 

where x(si) is the i-th independent variable of x, and n is the problem dimension. 
However, most optimization problems are not separable. This means that if a can-
didate solution contains a group of independent variables that makes it highly fit, 
there is no easy way to migrate that group to another candidate solution. One 
remedy for this shortcoming might be to modify the BBO algorithm so that ran-
dom groups of independent variables migrate, rather than simply one independent 
variable at a time. Something similar, although not identical, to this idea has been 
suggested in [Omran et al., 2013]. 

BBO is actually a family of algorithms, and so it could be called a metaheuristic. 
It includes the options shown in Table 14.4. A systematic study of the combinations 
of the options in Table 14.4, both theoretical and applied, remains as a task for 
future research. 

Migration Migration Migration 
Approaches Curves Blending 

Partial immigration-based Linear None (a = 0) 
Total immigration-based Sinusoidal a = 0.5 
Partial emigration-based Other a = some other constant 
Total emigration-based a oc fitness 

Table 14.4 BBO implementation options. BBO can be implemented with the 
combination of any choice from column 1, any choice from column 2, and any choice 
from column 3. 
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There are many other interesting possibilities for aligning BBO more closely with 
biogeography, including the following. 

Habitat Similarity: In island biogeography, immigration rate is correlated 
with island isolation [Adler and Nuernberger, 1994]. Islands that are isolated are 
relatively well-buffered from immigration. This intuitive idea is called the distance 
effect [Wu and Vankat, 1995]. It also stands to reason that emigration rates are 
correlated with island isolation. In island biogeography, the environmental unique-
ness of an island is related to island isolation because environmental conditions vary 
predictably with geographical distance [Lomolino, 2000a]. In BBO, candidate so-
lution isolation would be related to candidate solution uniqueness. Similar islands 
could be viewed as clustered together in solution space, and dissimilar solutions as 
isolated in solution space. In biogeography language, similar solutions would belong 
to the same archipelago (island group). This would tend to increase immigration 
and emigration between similar solutions, and decrease those rates between dissim-
ilar solutions. This could be implemented in BBO by probabilistically increasing 
solution feature sharing between similar solutions. This is analogous to species-
based crossover, also called niching, in G As [Stanley and Miikkulainen, 2002], and 
is also similar to the speciating island model [Gustafson and Burke, 2006] (see 
Section 8.6.2). It is also analogous to the idea of neighborhoods in particle swarm 
optimization [Kennedy and Eberhart, 2001] (see Chapter 11). However, the motiva-
tion and mechanism is entirely different. Niching in G As is based on the likelihood 
of individuals to mate with similar individuals. Neighborhoods in PSO are based 
on the likelihood of individuals to congregate together in solution space. Archipela-
gos in BBO are formed on the likelihood of similar islands to cluster together. A 
quantitative way to determine the effect of island isolation on immigration rates is 
given in [Hanski, 1999]. 

Initial Immigration: Classic island biogeography theory indicates that immi-
gration rate decreases as the number of species increases, as shown in Figures 14.1 
and 14.5. In BBO this corresponds to a monotonie decrease in immigration rate 
as individual fitness increases. This means that as an individual becomes more fit, 
the probability of incorporating features from other individuals decreases. However, 
more recent advances in biogeography indicate that for some pioneer species (plants, 
for example), an initial increase in species count results in an initial increase in the 
immigration rate [Wu and Vankat, 1995]. This is because these early immigrants 
modify the island to make it more hospitable to other species. That is, the positive 
effect of increased diversity due to initial immigration overcomes the negative effect 
of increased population size. In BBO this would correspond to an initial increase 
in immigration rate as a very poor candidate solution initially improves its fitness. 
This can be viewed as a temporary positive feedback mechanism in BBO. A very 
poor individual accepts features from other individuals, increasing its fitness, which 
subsequently increases its likelihood of accepting even more features from other in-
dividuals. This is depicted in Figure 14.10. This idea can be incorporated into 
other EAs also, but its initial motivation comes from biogeography [Ma and Simon, 
2011a]. 

Minimum Fitness Requirement: We could suppose that a habitat must have 
some minimum fitness rank to have a nonzero emigration rate. This is similar to 
supposing that an island must have a nonzero HSI to support any species [Hanski 
and Gilpin, 1997]. 
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Figure 14.10 This proposed model shows that immigration initially increases with 
fitness. This gives poor but improving individuals momentum to continue improving. As an 
individual continues to become more fit after the initial increase in immigration, immigration 
begins to decrease to give less fit individuals relatively greater opportunities to immigrate 
good solution features. 

Age Criterion: The reproductive value of an individual (that is, the expected 
number of offspring per unit time) is a triangular function of its age. Reproductive 
value is low at young ages due to immaturity, high at child-bearing ages, and low 
again at old ages due to loss of fertility. The same could be said of species. A young 
species might be poorly adapted to its environment and so has only a small chance 
of speciating, a middle-aged species is both mature enough and dynamic enough 
to speciate, and an old species is too stagnant to speciate. This could lead to the 
introduction of an age criterion in BBO, similar to that which has been used in 
G As [Zhuet al., 2006]. 

Species Mobility: Classic island biogeography theory assumes that all species 
are equal in their migratory ability. In reality, some species are more mobile than 
others, and some species are better dispersers than others. Efforts are being made in 
biogeography to incorporate species-specific characteristics into island biogeography 
theory [Lomolino, 2000b]. BBO presently assumes that all species are equally 
mobile. BBO would be more consistent with its motivating framework if species 
mobility were proportional to the species' contribution to solution fitness. That 
is, given a population of individuals, statistical methods can be used to find the 
correlation of each solution feature with fitness. Mobility would then be defined as a 
solution feature, or a set of features, that is positively correlated with fitness. BBO 
species mobility would follow biogeography theory by assigning mobility values 
with a Gaussian distribution [Lomolino, 2000b]. Those solution features that tend 
to increase fitness would be more likely to emigrate. This should improve the mean 
fitness of the population. 

Predator /Prey Relationships: In biology, certain species have adversarial 
relationships. These relationships do not necessarily harm the prey species. For 
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instance, prey may respond to predators by reducing the exploitation of their re-
sources, thus benefiting themselves in the long term [Hanski and Gilpin, 1997]. 
However, the more common scenario is the one in which predators reduce prey to 
such an extent that one or both populations face extinction. Predator/prey re-
lationships can be inferred from a BBO population by examining individuals and 
noting which pairs of solution features have a low probability of coexisting. Those 
solution features would then be modeled as a predator/prey pair. Combining this 
information with the fitness contribution of each species would result in defining the 
predator solution feature as the adversary that is positively correlated with fitness, 
and the prey solution feature as the adversary that is negatively correlated with 
fitness. The predator/prey relationship might lead to a nonzero equilibrium popu-
lation, or it might lead to the extinction of one or both populations [Gotelli, 2008], 
[Hanski and Gilpin, 1997]. This information could be used throughout the popula-
tion of individuals to increase the likelihood of the presence of predator features, and 
reduce the likelihood of the presence of prey features. Most predator/prey models 
in biology are for two-species systems. These models could be used in BBO, but 
a more complete description would be obtained if existing predator/prey models 
could be extended to multi-species systems. 

Resource Competit ion: In contrast to the predator/prey relationship de-
scribed above, we note that similar species compete for similar resources. There-
fore, it is unlikely that many similar species occupy the same island, especially if 
they have large populations [Tilman et al., 1994]. In BBO, this means that it is 
unlikely that solution features would emigrate to islands that already have large 
populations that are similar to each other. Alternatively, it could mean that emi-
gration rate is not affected, but survival likelihood is lower. Resource competition 
in BBO also means that if two solution features have equal probability of extinc-
tion, then the feature most similar to other features in the solution is more likely 
to become extinct. This is a different type of interaction than the predator/prey 
relationship described above. However, both models are plausible, and competition 
is generally viewed in biology as a more significant driver of community composition 
than predator/prey interactions. 

Time Correlation: In island biogeography, if a species migrates to an island 
in a given geographical direction, it is likely to continue moving in that direction 
to the next island. This is because migration is influenced by prevailing winds 
and currents, and those winds and currents have a positive time correlation. This 
is described by biodiffusion theory, the telegraph equation, and the equation of 
diffusion [Okubo and Levin, 2001]. If a species migrates from island A to island 
B, it is likely to continue in the same direction to the next island in the chain at 
the next time step. In BBO this means that if a solution feature migrates from 
one individual to the next, it is likely to continue migrating in that direction at the 
next evolutionary generation. The concept of "direction" in BBO could be defined 
in terms of solution location, where location is defined as a point in solution feature 
space. 

Other aspects of biogeography could inspire other variations to BBO. The bio-
geography literature is so rich that there are many possibilities along these lines. 
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PROBLEMS 

Written Exercises 

14.1 We wrote Equation (14.1) under the assumption that At is small enough 
so that the probability of more than one migration between time t and (t + At) 
can be ignored. Rewrite the equation under the assumption that no more than two 
migrations can occur between t and (t -f At). 

14.2 We defined selection pressure for EAs in Equation (8.13). How could you 
change the migration curves of Figure 14.2 to increase the selection pressure? 

14.3 How could you change the BBO algorithm of Figure 14.3 to be steady state 
rather than generational? 

14.4 We typically set μΛ = rk/(N + 1) and Xk = (N + 1 - rk)/(N + 1), where rk 

is the rank of the fc-th individual, the best individual has rank JV, and the worst 
individual has rank 1. This means that Xk e [1/{N + 1),N/(N + 1)]. What is the 
practical result of enforcing λ^ > 0 for the best individual? 

14.5 This problem explores the initial immigration model of Figure 14.10. Let β 
denote the normalized fitness value at the peak value of λ. 

a) Find an equation for the immigration rate of Figure 14.10. 
b) Find the equilibrium species count for Figure 14.10. 

14.6 Suppose we use linear migration rates with a population size N, so that 
λι = 1/(JV+1) for the best individual, and λ;ν = N/(N+1) for the worst individual. 

a) What is the probability that the best individual x& will receive an immi-
gration of at least one solution feature in the partial immigration-based 
algorithm of Figure 14.3? 

b) What is the probability that the best individual x& will receive an immi-
gration of at least one solution feature from an individual other than itself 
in the partial emigration-based algorithm of Figure 14.6? 

14.7 Look in Appendix C. 1 for an example of a separable function and an example 
of non-separable function. 

Computer Exercises 

14.8 Repeat Example 14.1 for n = 5. 

14.9 The standard BBO algorithm of Figure 14.3 indicates that for each individ-
ual xk, we should set emigration probability μ& oc fitness of xk, with μ^ e [0,1]. 
We use the emigration probabilities to select the emigrating individual, and we can 
use the following options for this operation. 
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• Rank-based selection, as discussed in Section 8.7.4. This is the standard BBO 
option, as indicated in Example 14.2. 

• Square ranking, which is also discussed in Section 8.7.4. 

• Tournament selection, as discussed in Section 8.7.6. 

• Stud selection, as discussed in Section 8.7.7. 

Implement BBO to minimize the 10-dimensional Ackley function with N = 50, 
generation limit = 50, mutation rate = 1%, and elitism parameter = 2. Run BBO 
for 20 Monte Carlo simulations, keeping track of the lowest cost at each generation 
for each Monte Carlo simulation. Plot the lowest cost, averaged over the Monte 
Carlo simulations, as a function of generation number. Compare the BBO plots 
from each of the four emigration selection options mentioned above. Comment on 
your results. 

14.10 Plot your answers to Problem 14.6 as a function of population size N for 
N (Ξ [10, 50] and problem dimension n = 10. Comment on your results. 

14.11 One potential way to improve BBO performance is to select the next gen-
eration from the old individuals and the new individuals [Du et al., 2009]. That is, 
the {xk} «- {zk} statement at the end of Figure 14.3 could be replaced with the 
following: 

{xk} <— Best N individuals from {xk} U {zk}> 

This is motivated by evolution strategy, and so we can call it BBO-ES. Implement 
BBO to minimize the 10-dimensional Ackley function with population size TV = 50, 
generation limit = 50, mutation rate — 1%, and elitism parameter = 2. Run BBO 
for 20 Monte Carlo simulations, keeping track of the lowest cost at each generation 
for each Monte Carlo simulation. Plot the lowest cost, averaged over the Monte 
Carlo simulations, as a function of generation number. Compare the plot from the 
standard BBO algorithm with that from BBO-ES. Comment on your results. 





CHAPTER 15 

Cultural Algorithms 

Culture optimizes cognition. 
—James Kennedy [Kennedy, 1998] 

The point of the above quote is that cognition (that is, the process of thinking) 
involves more than brain activity and neuronal behavior. Our thinking is influenced 
by our culture. Furthermore, this influence is beneficial (even optimal, according 
to the above quote). Without culture, our cognitive abilities would be impaired. 

This idea is exemplified by the discovery of feral children [Newton, 2004]. Some 
of these children grow up in the wild, while others grow up in isolation as a result of 
abusive caretakers. Children who grow up without any social or cultural interaction 
typically never learn to assimilate society, never learn to speak, never learn to relate 
to others, and never learn to act in a socially acceptable way. Their inability to 
learn how to function in their new and civilized environment is not genetic; it is not 
due to a lack of innate intelligence. The lack of social and cultural influences during 
their upbringing severely compromises their intelligence. Feral children provide a 
strong argument for the nurture side in the nature vs. nurture debate. 

Scientists used to believe that human culture originated at a high level and then 
later degenerated to lower levels. This degeneration resulted in low and uncivilized 
cultures scattered around the world. This belief was largely based on religious 
accounts of creation and the Biblical story of the Tower of Babel in the book of 
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Genesis. However, this view of cultural degeneration has testable implications. For 
instance, degenerationism should result in archeological records of increasing cul-
tural sophistication as digs go deeper and farther back into the past. Although 
specific religious stories cannot be scientifically tested, the testability of degener-
ationism as a general principle was instrumental in its demise as a sociological 
theory. 

Edward Tylor, a 19th-century anthropologist, showed that advanced cultures 
developed from primitive cultures, rather than the other way around [Tylor, 2011]. 
He showed that culture evolves from lower to higher forms just as biological organ-
isms evolve. Tylor was the first to use the word culture in its modern sociological 
sense, and he defined it as "that complex whole which includes knowledge, belief, 
art, morals, law, custom, and any other capabilities and habits acquired by man as 
a member of society" [Tylor, 2009]. 

A society's culture is a complex entity that interacts with the environment, in-
dividuals, and other cultures. Individuals can act independently, but they also 
interact with each other, both directly and indirectly; individuals influence each 
other directly, and they influence each other indirectly through culture. Most indi-
viduals are constrained by the culture in which they live. Some individuals swim 
against the tide, but most individuals conform to society. 

Overview of the Chapter 

This chapter discusses some ways that culture can be modeled in evolutionary 
algorithms (EAs) to improve their performance. Section 15.1 is a preliminary sec-
tion that discusses optimal strategies for human relationships at a high level; this 
provides some motivation and background for the remainder of the chapter. Sec-
tion 15.2 discusses a particular model of culture called belief spaces, and discusses 
their co-evolution with candidate solutions in EAs. Section 15.3 uses belief spaces 
to develop a cultural evolutionary program (EP), and shows that it provides better 
performance than the standard EP. Section 15.4 takes a different perspective of 
culture and views it as more interpersonal and relationship oriented; this section 
discusses the adaptive culture model (ACM), and shows how ACM can solve the 
traveling salesman problem. 

15.1 COOPERATION AND COMPETITION 

This section discusses culture in the sense of interpersonal relationships. Modern 
society involves a lot of interpersonal communication, and the amount of commu-
nication is increasing at a rapid pace. Society also involves a lot of cooperation and 
a lot of competition. Sometimes we communicate for the purpose of cooperating, 
but sometimes we communicate for the purpose of competing. When we write a 
technical paper or a research proposal, we communicate the disadvantages of com-
peting ideas and the advantages of our own ideas. Sometimes we exaggerate to 
make ourselves look better or to make someone else look worse. Sometimes our 
exaggerations are intentional, sometimes they are unintentional, and sometimes it 
is hard to discern our own intentions. In our communication with others, we some-
times tell the truth because we hope that others will in turn tell us the truth. But 
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we often lie when the benefits or rewards outweigh the consequences. Consider 
typical answers to questions like the following. 

1. How are you? 

2. Did you like the meal I cooked for you? 

3. How often do you lie? 

We reason that the one who asks does not really want to know the answer to 
the question. The one who asks is only trying to make conversation, or is fishing 
for a specific answer, and so we willingly oblige even though our answer might 
technically be classified as a lie. Interestingly, everyone thinks that they lie less 
often than others [DePaulo et al., 1996]. Furthermore, everyone thinks that their 
own lies are more justifiable than those of others. 

We can simulate interpersonal communication in evolutionary algorithms to 
study communication strategies, or to find solutions to optimization problems. The 
prisoner's dilemma (see Section 5.4) is one example of agents communicating with 
each other. It is an interesting example because it has many variations, the best 
strategy depends on the opposing player's strategy, and the best strategy is not 
always obvious. 

El Farol 

Another interesting example of interpersonal communication is the El Farol problem 
[Kennedy and Eberhart, 2001, Chapter 5]. This problem involves a man named 
Brian Arthur1 who likes to go to a pub by the name of El Farol in downtown 
Sante Fe. He particularly likes to go on Thursdays when El Farol plays Irish music. 
However, he prefers to stay home if the place is crowded. In particular, he wants 
to go to El Farol if there will be fewer than 60 people there, but he wants to stay 
home if there will be 60 or more people. Brian's friends are in the same situation. 
They love to go to El Farol if there will be fewer than 60 people there, but they do 
not want to go if there will be 60 or more people. 

Brian and his friends know that for the past 14 weeks, the number of people at 
El Farol have been 

44,78,56,15,23,67,84,34,45,76,40,56,22, and 35. (15.1) 

Should he go this Thursday? In other words, based on the data from the past 
14 weeks, will there be fewer than 60 people at El Farol this week? He could 
use various pattern recognition techniques and regression tests to try to predict 
the number of people who will be at El Farol this Thursday. If he found a good 
predictor, then his problem would be solved. However, if he told all of his friends 
about his predictor, then the predictor would not work any more. If all of his friends 
knew that his algorithm predicted fewer than 60 people, then they would all go to 
El Farol and there would be more than 60 people. If his algorithm predicted more 
than 60 people, then all of his friends would stay home and there would be fewer 
than 60 people. This is the paradox of a good prediction algorithm when the human 
element is taken into account. A good predictor becomes a poor predictor. 

Brian Arthur is an economist and co-founder of the Sante Fe Institute. 



3 8 0 CHAPTER 15: CULTURAL ALGORITHMS 

Now suppose that Brian and his friends talk with each other about whether or 
not they are going to El Farol on Thursday. If Brian decides to go to El Farol and 
tells all of his friends, then they will be more likely to stay home, and Brian will be 
rewarded with a small crowd at El Farol. If Brian decides to stay home and tells all 
of his friends, then they will be more likely to go, and his friends will be penalized 
with a large crowd. 

However, Brian and his friends may not be completely honest with each other. 
They may all tell each other that they are going to El Farol in hopes that most of 
the others will stay home. After telling all of his friends that he is going, Brian may 
decide to stay home if he hears that everyone else is planning to go. In addition, 
Brian might tell his friends that he and 10 of his other friends are going. Brian 
might exaggerate the size of his party to encourage his friends to stay home. Of 
course, his friends may pursue the same strategy. That is, they might lie for their 
own benefit. 

What is the optimal communication strategy for Brian? Should he always tell 
the truth? If he consistently lies, then his friends will eventually recognize his 
pattern of lies and will learn to ignore him. However, if his ultimate goal is to go to 
El Farol on uncrowded nights and avoid El Farol on crowded nights, then it seems 
that he may need to lie on occassion. 

The El Farol problem is interesting because it involves truth, lies, trust, commu-
nication, and possibly conflicting objectives. If Brian's objective is to be liked by 
his friends, then he will probably tell the truth all the time. If his objective is to 
go to El Farol on uncrowded nights and avoid El Farol on crowded nights, then he 
might sometimes lie. 

Other Examples 

The other reason that El Farol is interesting is that, as mentioned earlier, a good 
predictor will become a poor predictor if everyone uses it. This characteristic 
arises in many real-world situations. For example, consider the romantic interest 
that a boy shows to a girl. If he shows too much interest then he will appear 
to be desperate, which will be unattractive to the girl. However, if his interest 
is not obvious enough, then he will appear to be uninterested, which will not be 
conducive to a relationship with the girl of his dreams. Furthermore, how should 
the girl interpret his apparent lack of interest? Should she interpret it as true 
disinterest, in which case she will turn her attention to other suitors? Or should 
she interpret his lack of interest as subdued passion, in which case she will respond? 
Courtship is a complex give-and-take activity between two individuals who behave 
according to their own goals but also according to their culture. 

Baseball is another interesting example. When the count is three balls and two 
strikes, the pitcher needs to throw a strike to avoid walking the batter - especially 
if the bases are loaded late in a tie game. But the batter knows that the pitcher 
needs to throw a strike. This seems to give the advantage to the batter, because 
he knows approximately where the ball will be pitched. But since the pitcher is 
aware of the batter's thought process, the pitcher might deliver a pitch outside of 
the strike zone, trying to entice the batter to swing at a bad pitch. Of course, the 
batter is aware of the pitcher's thought process too. Baseball becomes not only a 
physical contest but also a mental battle. The batter needs to decide how aggressive 
he will be in his anticipation of a pitch in the strike zone. The pitcher needs to 
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decide if he can risk a pitch outside of the strike zone. Players take into account 
not only the game situation when deciding their strategies, but also the history of 
previous encounters with their opponent. 

Other examples arise in our business and in our research programs. What area 
should we focus on with our research proposals? Should we write proposals in highly 
funded areas? High funding amounts increase our chances, but everyone else is also 
writing proposals in those areas, which decreases our chances. Perhaps we should 
write proposals in areas with less funding so that we have less competition. If our 
proposal is the only one in a certain area, then it is more likely to be funded. But 
if our competitors follow that same strategy, then the strategy will fail. Deciding 
where to focus our proposal-writing efforts is complex and multidimensional, but 
the optimal strategy is probably to spread out our efforts among both high-risk 
and low-risk areas, and both high-funding and low-funding areas [Simon, 2005]. A 
similar mixed strategy can be used for investing (recall the investor's mantra of 
diversification), product marketing, and other applications. 

Problems with interpersonal relationships, communication, cooperation, decep-
tion, and multiple objectives, have a lot in common with human culture. Humans 
have learned near-optimal ways of relating, structuring society, and developing cul-
ture. We are not aware of all of the optimization features that are inherent in 
human culture, but considering the possibility of such features would surely be a 
fascinating and rewarding study. Imitating and simulating the optimization behav-
ior of human culture is another fascinating and rewarding study, and we turn our 
attention to that pursuit in the remaining sections of this chapter. 

15.2 BELIEF SPACES IN CULTURAL ALGORITHMS 

A cultural algorithm (CA) is similar to other EAs in viewing candidate solutions to 
an optimization problem as individuals. However, a CA also views the principles 
that guide the evolution of individuals as their culture. The CA models the influence 
between individuals and their culture to obtain an optimization algorithm. The 
cultural norms of the CA's virtual society are sometimes called a belief space. At 
each generation in a CA individuals recombine and mutate, just as in the other EAs 
that we have discussed earlier in this book. But in a CA this recombination and 
mutation is influenced by the belief space. The belief space can be designed by the 
programmer to impose constraints, or to favor preferred features in the population, 
or to avoid undesirable features. 

■ EXAMPLE 15.1 

In this example we discuss a general idea for how a belief space might be 
implemented in an EA. Recall the artificial ant problem in Section 5.5. An 
artificial ant is placed in a grid with some empty cells and some food-filled 
cells. The only sensory ability that the ant has is to sense the presence or 
absence of food in the cell directly in front of him. In each cell, the ant can 
take one of three actions: he can either move ahead, in which case he eats 
the food in the next cell, if food is present; or he can remain in his current 
cell and turn to the right; or he can remain in his current cell and turn to the 
left. We want to evolve a finite state machine (FSM) to help the ant navigate 
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his way through the grid and consume as much food as possible. We know 
intuitively that if the ant senses food in the cell in front of him, he should 
probably move ahead and eat the food. However, we may not want to impose 
this action as a hard constraint. We know that evolution often requires the 
exploration of suboptimal solutions in its search for an optimum. So we would 
like to encourage each FSM in our EA population to move ahead whenever 
food is sensed, but we do not want to make this a strict requirement. This 
is the type of behavior that could be encoded in a belief space to encourage, 
but not require, a certain feature in an EA population. 

The level of encouragement that we provide to EA individuals to move 
ahead when food is sensed represents the strength of the culture. In human 
society, some cultures are stronger than others and exert more pressure to 
conform. If our encouragement is mild, then we will allow quite a few individ-
uals to explore other options rather than moving ahead when food is sensed. 
If our encouragement is strong, then we will allow only a very few individuals 
to explore alternate options. As the population evolves, we might want to 
modify our level of encouragement based on the fitness of the individuals who 
conform to the prevailing culture, relative to the fitness of those individuals 
who oppose the prevailing culture by taking an alternate action when sensing 
food. 

D 

Example 15.1 shows that CAs can implement dual inheritance: solution features 
are inherited by children from parents, and the belief space of one generation is 
inherited from the previous generation. Evolution still occurs on an individual 
level but the evolution is influenced by the belief space. 

The belief space of a CA might be static or dynamic depending on how we 
implement it. If the belief space is static then it does not change with time. If the 
belief space is dynamic then it changes with time; that is, the culture can evolve. A 
CA with a dynamic belief space evolves not only a population of individuals from 
one generation to the next, but it also evolves a belief space from one generation to 
the next. In a CA with a dynamic belief space, the belief space not only influences 
the evolution of the population, but the population in turn influences the evolution 
of the belief space. Dynamic belief spaces are motivated by what we observe in 
human society. We see that culture evolves much faster than biology. We therefore 
hope that we can find optimal solutions more quickly in an EA with a dynamic 
belief space than in an EA without it. 

Just as there are many theories about human culture [Welsch and Endicott, 
2005], there are also several different types of CAs. Figure 15.1 shows a basic outline 
of a CA. As with any other EA, we initialize a population of candidate solutions, 
but we also initialize a belief space B. The belief space influences the evolution of 
the population; it can be said to guide the evolutionary process. The algorithm of 
Figure 15.1 proceeds like any other EA by evaluating the cost of each individual. 
But then it uses the individuals to modify B. There are many options for how we 
can implement the modification of B. For example, if the population indicates that 
most of the good individuals have a certain feature, then B might be updated to bias 
future candidate solutions toward that feature. Of course, future individuals are 
already biased toward that feature by virtue of the fact that fit individuals are more 
likely to recombine than unfit individuals. But B can also bias future individuals 
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in more complex ways than standard recombination methods. For example, we can 
incorporate certain combinations of features, or types of behaviors, in B. (Recall 
the idea in Example 15.1 of biasing artificial ant FSMs toward solutions that move 
ahead if food is sensed.) 

Initialize the population of candidate solutions {xi}, i £ [1, N] 
Initialize the belief space B 
While not (termination criterion) 

Calculate the cost f(xi) of each individual in the population, i G [1, iV] 
Use the population {xi} to update B 
Incorporate B in the recombination and mutation of the population {x^} 

Next generation 

Figure 15.1 Outline of a basic cultural algorithm, based on [Reynolds, 1994], 
[Engelbrecht, 2003, Chapter 14]. 

After B is updated in Figure 15.1, we perform recombination and mutation of the 
population {xi}. This step can be performed with any of the EAs that we discuss 
in this book. Therefore, a CA should be viewed not as a separate EA but rather as 
a way of augmenting other EAs, or as a meta-EA. The distinctive feature of CAs 
is that recombination and mutation are influenced by a belief space B\ individuals 
in the next generation tend to be consistent with B. 

There are many details to be worked out in the CA of Figure 15.1. For example: 

• What type of information will we encode in the belief space ΒΊ 

• How will we update ΒΊ 

• What type of recombination and mutation will we use? That is, what EA 
will we use as the baseline for the CA? 

• How will we use B to influence recombination and mutation? 

These questions all provide opportunities to the researcher to find answers that 
are effective for specific problems, or for general classes of problems. For instance, 
consider the first question in the above list. We can partially answer this question 
by noting that the belief space in a CA can represent the following aspects of an 
optimization problem. 

• The belief space can represent constraints for the solution of optimization 
problems with either hard constraints or soft constraints [Coello Coello and 
Becerra, 2002], [Becerra and Coello Coello, 2004]. 

• The belief can represent domain-specific knowledge to bias the search in pre-
ferred directions that are based on human expertise [Sverdlik and Reynolds, 
1993], [Alami and El Imrani, 2008]. 

• The belief space can include the importance of diversity to help preserve 
diversity in the search. 
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• The belief space can include the importance of cooperation to improve the per-
formance of co-evolutionary systems. Co-evolution involves the development 
of distinct but interacting evolutionary systems in a common environment 
[Durham, 1992]. We do not discuss co-evolution in this book, but artificial 
co-evolution can find optimal solutions when fitness evaluations vary with 
time (see Section 21.2), or when the fitness evaluations of the population of 
candidate solutions depend on other populations which themselves change 
with time [Yang et al., 2008]. 

• The belief space can include the importance of creativity, which would bias 
an evolutionary algorithm's search toward novel candidate solutions or to-
ward unexplored regions of the search space. These ideas are incorporated in 
opposition-based learning (see Chapter 16) and the search for novelty [Lehman 
and Stanley, 2011] but have not yet been incorporated in CA belief spaces. 

15.3 CULTURAL EVOLUTIONARY PROGRAMMING 

This section shows how a simple belief space can improve the performance of an 
evolutionary program (EP). The basic EP algorithm is outlined in Figure 5.1. In 
this section we include the option of implementing a belief space in the EP. The 
belief space indicates where the best-performing candidate solutions lie in the search 
space. The CA-influenced EP (CAEP) that we present in this section is similar to 
the one discussed in [Engelbrecht, 2003, Chapter 14]. The belief space B is encoded 
as 2n parameters, where n is the dimension of the optimization problem. The 
interval [Bm[n(k), Bmax(k)] indicates where the prevailing culture believes that the 
k-th dimension of good solutions lie in the search space. The belief space influences 
the mutation process of the EP. If ß — 0 in the EP mutation method shown in 
Figure 5.1, we have 

x'iWi-XiW + riWyfy (15.2) 

for i G [l,iV] and k G [l,n], where N is the population size, n is the problem 
dimension, ri(k) ~ Af(0,1), and 7 is the variance of the mutation. In the CAEP, 
Equation (15.2) is replaced with 

i Bmin(k) - Xi(k) if Xi(k) < Bmin(k) 
0 iî Bmin(k) < Xi(k) < Bm^(k) 

Bmax(k) - Xi(k) if Bm8LX(k) < x^k) 

x'tik) <- Xifâ + nWy/ï + Aiik). (15.3) 

We see that if the k-th dimension of individual Xi is within the belief space, then 
its mutated version x[(k) is a random variable with a mean of Xi(k). However, 
if Xi(k) is outside the belief space, then its mutated version is a random variable 
with a mean of either Bm[n(k) or Bmax(k), whichever is closer to Xi(k). Figure 15.2 
illustrates this idea. The figure shows that when Xi(k) is inside the belief space 
(the left part of the figure), then it is mutated in a standard way. However, when 
Xi{k) outside the belief space (the right part of the figure), its mutated version is 
centered at the closest edge of the belief space. The mutated version could end up 
outside of the belief space - in fact, it has at least a 50% chance of being outside 

max(&)]· However, it also has almost a 50% chance of being within the 
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belief space, which is much higher than the chance would be if the mean of the 
mutation were not shifted. 

LL 
Q 
Q. 

B(k,min) x(k) B(k,max) x(k) B(k,min) B(k,max) 

Figure 15.2 Mutation in the cultural evolutionary program. In the figure on the left, 
x(k) is within the belief space, so the probability density function (PDF) of its mutated 
version has a mean of x(k). In the figure on the right, x(k) is outside the belief space, so the 
PDF of its mutated version has a mean that is equal to the closest edge of the belief space. 

Now we discuss how to update the belief space in the CAEP. There are several 
ways that we could do this. For instance, we could use the best M individuals to 
update the belief space. First we find the minimum and maximum values of each 
dimension of the best M individuals: 

£fc,min *- min{xj(k) : j G [1, M}} 

Zfc,max +- max{xj(k) : j G [1, M]} (15.4) 

for k G [1, n], where the individuals are indexed from best to worst, so that {xj(k) : 
j G [1,M]} comprises the best M individuals in the population. Now we use 
the minimum and maximum domain values to influence the belief space from one 
generation to the next: 

Bmin(k) <- aBmin(k) + (1 - a)xk,min 

£ m a x ( A 0 <- OtBmax(k) + (1 - a)£fc,max (15.5) 

for k G [1, n]. The parameter a G [0,1] is the belief space inertia, and it determines 
how stagnant the belief space is from generation to generation. Equation (15.5) 
shows that if a = 1, then the belief space never changes. If a = 0, then the belief 
space is entirely determined by the current population and is not influenced at all 
by the past generation's belief space. 

■ EXAMPLE 15.2 

This example shows how the incorporation of culture can improve the perfor-
mance of EP. We use N = 50, ß — 0, and 7 = 1 in the basic EP of Figure 5.1. 
We use the EP to minimize the 20-dimensional Ackley function described in 
Appendix C.1.2, with each dimension of each individual randomly initialized 
in the domain [-30,+30]. For the CAEP, we use M = 5 in Equation (15.4), 
and a = 0.5 in Equation (15.5). Figure 15.3 shows the optimization results 
of the standard EP and the cultural EP, averaged over 20 Monte Carlo sim-
ulations. We see that the CAEP far outperforms standard EP. Figure 15.4 
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shows how the belief space of the first dimension changes from one generation 
to the next. We see that the belief space converges pretty quickly to a small 
domain that includes the optimal solution, which is 0. There is no guarantee 
that the belief space will include the optimal solution. In fact, Figure 15.4 
shows that the lower bound of the belief space sometimes slightly exceeds 0. 
But in general, the belief space gives a good indication of where good candi-
date solutions are likely to reside in the search space. A smaller value of a 
in Equation (15.5) would result in faster convergence, and a larger value of a 
would result in a slower convergence. 

Without Belief Space 
With Belief Space 

40 60 
Generation 

Figure 15.3 Example 15.2: Evolutionary programming without a belief space, and with 
a belief space. The figure shows the best cost of the population at each generation, averaged 
over 20 Monte Carlo simulations. CAEP far outperforms standard EP. 

30 

20 

10 

0 

-10 

-20 

30 

' 

Π 
! 

20 

/- — 

40 60 
Generation 

1 

-

80 1C 

Figure 15.4 Example 15.2: The belief space of the first dimension of the CAEP for the 
20-dimensional Ackley function. The belief space quickly converges to a small region around 
0, which is the optimal solution. 
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15.4 THE ADAPTIVE CULTURE MODEL 

This section discusses a cultural algorithm that is an alternative to the belief space 
approach of the previous sections. Th algorithm that we discuss in this section 
is called the adaptive culture model (ACM) [Axelrod, 1997], [Kennedy, 1998], 
[Kennedy and Eberhart, 2001, Chapter 6]. The ACM is based on the way that 
individuals in human societies interact with each other. For instance: 

• Individuals are influenced more by those who are close to them, either geo-
graphically or relationally, than by those who are far from them [Latané et al., 
1994]. This is reminiscent of the particle swarm neighborhoods in Chapter 11. 

• Individuals are influenced more by those who are similar to them than by 
those who are different than them [Axelrod, 1997], [Kennedy, 1998]. 

• As a balance to the previous point, individuals are influenced more by those 
who are successful than by those who are not [Noel and Jannett, 2005]. A 
related point is that individuals are influenced more by those who are similar 
to their ideal selves than by those who are similar to their actual selves [Wetzel 
and Insko, 1982], [Kennedy, 1998]. 

The ACM can be simulated by laying out a grid of candidate solutions to some 
optimization problem. The candidate solutions are treated as individuals in a 
population. The proximity of two individuals can be measured in at least a couple 
of different ways. First, the individuals have a geographical proximity to each 
other since they are arranged in a grid. Second, the individuals have a behavioral 
proximity to each other depending on how similar they are with respect to their 
solution features. 

Figure 15.5 shows an example of a grid of EA individuals in which each individual 
is encoded as an eight-character string. As the population evolves, the individuals 
maintain the same position in the grid, but their representations change from one 
generation to the next. Individuals that are closer to each other, either geograph-
ically or behaviorally, are more likely to exchange information with each other, 
and are therefore more likely to become even more similar to each other from a 
behavioral point of view. Also, when individuals exchange information with each 
other, the more fit individual is more likely to share information with the less fit 
individual, rather than vice versa. 

We can use all of these ideas to obtain an algorithm for an ACM. Figure 15.6 
shows a basic outline of an ACM. The population is initialized, and each candidate 
solution is assigned to a specific location in a grid. At each iteration of the ACM 
algorithm, we randomly select an individual and one of its neighbors. We randomly 
decide whether or not to share information between these two neighbors, using a 
higher probability if the neighbors are more similar. If we decide to share informa-
tion, then we randomly replace one of the solution features in the less fit individual 
with a solution feature from the more fit individual. 
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These two individuals have similar 

characteristics and are also geographically close 

ACFBEGED CFGGEGCG AFHAAGAG HBCEHHED HDEDADEE FFHBHDFD 

DDABGBBF AEDFAEFB ACDEFHBF FEBHHCBB FEBEHCBB AHEAHAGD 

DDDBBFBC EEGEHEGB GCDCFEGE EGCHDHBB AFCDEHCE GCECGCFG 

GDDBEBBA HCHEAAED^EHBC^CA EABDECAC ABBDBDHC HCGCBHHA 

^HGEFL2BDH FEDAHGBE BFHBCAKH EGBGBBHG BEDGAEFG EFCCDAGF 

GGDBEHFC CABDEFCB AGHGCHGA FGFCDDCB FAHC3DDC HABBFCED HC>3C 

These two individuals do not have similar These two individuals have similar 

characteristics, but are geographically close characteristics, but are not geographically close 

Figure 15.5 Example of a grid of ACM individuals. Some individuals are similar to 
each other but are not geographically close; they are not likely to share information with 
each other. Other individuals, like the two noted in the lower left portion of the grid, 
are geographically close but are not similar to each other; they are also unlikely to share 
information with each other. However, some individuals, like the two noted in the upper 
right portion of the grid, are geographically close and are also similar to each other. They 
are likely to share information with each other. 

Initialize N individuals {x*}, i G [l,iV] 
Assign each individual to a random location in a grid 
While not (termination criterion) 

Randomly select an individual Xi, where i G [l,iV] 
Randomly select a neighbor Xk of X{ 
Calculate the behavioral similarity bi^ G [0,1] between X{ and Xk 
r <- C/[0,1] 
If r < biik 

Randomly select a solution feature index s G [1, n] 
Comment: Begin Information Sharing 
If Xi is more fit than Xk then 

xk(s) <-Xi{s) 
else 

Xi(s) <- xk(s) 
End if 
Comment: End Information Sharing 

End if 
Next interaction 

Figure 15.6 The outline of a basic adaptive culture model (ACM). N is the population 
size, n is the problem dimension, and £/[0,1] is a random number uniformly distributed 
between 0 and 1. 
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We see from Figure 15.6 that we always transmit information from the more 
fit individual to the less fit individual. In keeping with the spirit of stochasticity, 
we could instead make a probabilistic decision about who shares information with 
whom. We set the tuning parameter ρχ G [0.5,1] equal to the probability of sharing 
from the better to the worse individual. We call p\ the selection pressure. We 
always want p\ > 0.5 because it does not make intuitive sense to bias the direction 
of information sharing from worse to better. Suppose that x\ and x<i are two neigh-
boring candidate individuals. We then replace the code between "Comment: Begin 
Information Sharing" and "Comment: End Information Sharing" in Figure 15.6 
with the information-sharing logic shown in Figure 15.7. 

P<-£/ [0 , l ] 
If p < pi then 

If X{ is more fit than Xk then 
xk(s) <- Xi(s) 

else 
Xi(s) <-Xk(s) 

End if 
else 

If Xi is more fit than x^ then 
Xi(s) <- xk(s) 

else 
Xjfe(s) < - Xi(s) 

End if 
End if 

Figure 15.7 Adaptive cultural model with stochastic information sharing. p\ G [0.5,1] 
is the probability of sharing information from the better individual to the worse individual. 
This pseudo-code snippet replaces the code between "Comment: Begin Information Sharing" 
and "Comment: End Information Sharing" in Figure 15.6. This snippet results in a p\ 
probability of sharing from the better individual to the worse individual. If p\ = 1 then this 
code reduces to Figure 15.6. 

■ EXAMPLE 15.3 

In this example, which is motivated by [Kennedy and Eberhart, 2001, Chap-
ter 6], we solve the traveling salesman problem (TSP) with the ACM. Suppose 
that we want to travel to eight locations in an order that minimizes the total 
travel distance. We suppose that the locations are arranged in a circle as 
shown in Figure 15.8, and that we begin at location A. We can easily see 
that there are two solutions to this TSP: A-B-C-D-E-F-G-H, and A-H-G-F-
E-D-C-B. We randomly initialize an 18 x 8 grid of candidate solutions. We 
consider the grid to be toroidal so that individuals at the far right of the grid 
are neighbors to those on the far left, and individuals at the bottom of the 
grid are neighbors to those at the top. We use the ACM logic of Figures 15.6 
and 15.7 to coordinate information sharing between candidate solutions. We 
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implement the statement "Randomly select a neighbor Xk οΐχ^ in Figure 15.6 
by randomly selecting one of the four closest individuals to X{ - that is, the 
individual immediately to the right, left, above, or below Xi. Use use p\ = 0.9 
in Figure 15.7. 

© 

p 

© A 

© H 

© 

Figure 15.8 The TSP locations of Example 15.3. The goal is to visit all eight locations 
while minimizing the total travel distance. If we start at location A, there are two optimal 
solutions: A-B-C-D-E-F-G-H, and A-H-G-F-E-D-C-B. 

Figure 15.9 shows the convergence of a typical ACM simulation. We find 
the first optimum solution after about 2500 iterations of the outer loop of 
Figure 15.6, and the average cost of the population steadily decreases with 
the number of interactions. 

0 1000 2000 3000 4000 5000 6000 
Interactions 

Figure 15.9 ACM convergence for the TSP of Example 15.3. If the eight cities of 
Figure 15.8 are arranged in a unit circle, the globally minimum cost is 5.3576. 
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As the individuals in the population continue to interact with each other, 
good individuals spread and poor individuals are gradually lost from the popu-
lation. Figure 15.10 shows a typical progression of the spread of good individ-
uals. The first optimal individual is found after about 2500 interactions, after 
which the prevalence of optimal solutions increases approximately linearly. 
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Figure 15.10 Example 15.3: The spread of optimal solutions in the population grid for 
the TSP. It takes about 2500 interactions for the first optimal solution to appear in the grid, 
after which the prevalance of optimal solutions increases approximately linearly. 

Figure 15.11 shows the 18 x 8 population grid after 5760 interactions, which 
is an average of 80 interactions per individual. We see that 31 optimal so-
lutions A-B-C-D-E-F-G-H are clustered together at the left and right edges 
of the grid (recall that the grid is a toroid, so the right and left edges are 
adjacent). We also see that there is a smaller cluster of five optimal solutions 
A-H-G-F-E-D-C-B near the bottom of the grid. A close look at Figure 15.11 
reveals that there are also other clusters, which are suboptimal solutions to 
the TSP. This behavior is similar to how information and behavior spreads 
through a culture, how similar individuals tend to group together, and how 
we can simulate such cultural behavior to solve optimization problems. 
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ABHGFCDE ABHGFCDE ABHGFCDE ABHGFCDE ABHGFCDE ABHGFCDE ABHGFCDE ABHGFCDE 
ABHGFCDE ABHGFCDE ABHGFCDE ABGHFCDE ABHGFCDE ABHGFCDE ABHGFCDE ABHGFCDE 
ABHGFCDE ABHGFCDE ABHGFCDE ABHGFCDE ABHGFCDE ABHGFCDE ABHGFCDE ABHGFCDE 
ABCGHFDE ABFGHCDE ABHGFCDE ABHGFCDE ABHGFCDE ABHGFCDE ABHGFCDE ABFDHCGE 
ABCDEFGH ABCDHFGE ABHGFEDC ABHGFCDE ABHGFCDE ABHGFCDEUßCDFFGH ABCDEFGH 
ABCDEFGHABCDEFGH ABFGHEDC ABHGFCDE ABHGFCDE ABHDFCGBABCDEFGH ABCDEFGH 
ABCDEFGH ABCDEFGH ABCDEFGHIABtGHEDC A&HGFCDEIABCDEFGH ABCDEFGH ABCDEFGH 

ABCDEFGH ABCDEFGH ABCDEFG HÎA&fDHEGC ABFEHGDO 

ABCDEFGH ABCDEFGH ABCDEFGH 

ABCDEFGHABCDEFGH ABCDEFGH 

\ABCDEFGH ABCDEFGH ABCDEFGH 

lABCDEFGH ABCDEFGH ABCDEFGH pMHDFCGBE AHDEFGB^ 
AHGFCBDE AHGFCBDE AHCDEFGBUßCDEFGH ABCDEFGH 
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Figure 15.11 The population grid of Example 15.3 after 5760 interactions. Two optimal 
clusters (one with 31 individuals, and one with five individuals) are outlined in the grid. 
In the ACM, similar individuals group together, and highly fit solutions tend to spread 
throughout the population. 

Example 15.3 shows how the ACM can find multiple solutions to a combinatorial 
optimization problem. The example can be extended to solve continuous optimiza-
tion problems. We could make various generalizations to the ACM algorithms of 
Figures 15.6 and 15.7. 

1. We allowed an individual to be influenced only by one of its four nearest neigh-
bors. We could allow individuals to be influenced by more distant neighbors 
also. The probability or amount of interaction could be a decreasing function 
of distance. 

2. We usually share information from more fit individuals to less fit individuals. 
This is in keeping with our desire to spread beneficial candidate solution 
features. However, we see in society that unsuccessful individuals can also 
exert an influence on others. We tend to avoid behaviors that we observe 
in unsuccessful individuals. We use this idea in the negative reinforcement 
particle swarm optimization in Section 11.6, but it may not yet have been 
explicitly used in CA, and so it is an open area for future research. 

3. In Figure 15.6, we randomly select an individual Xi for an interaction. How-
ever, it might make more sense to select low-fitness individuals, since they are 
in more need of improvement. This idea is reminiscent of the immigration 
probabilities in BBO (see Chapter 14). 

4. In Figure 15.6, we randomly select a neighbor Xk to interact with Xi. However, 
it might make more sense to randomly select a group of neighbors and decide 
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the information-sharing strategy based on relative fitness values. This idea 
is reminiscent of the emigration probabilities in BBO (see Chapter 14). This 
generalization, and the previous one, hint at interesting possibilities for a 
hybrid cultural BBO algorithm. 

5. We could combine the idea of a belief space with the ACM. Individuals in 
human society are influenced by a combination of their neighbors and their 
culture. This idea is called the generalized other model (GOM), which can be 
loosely analogized with media influence [Shibani et al., 2001]. In Figure 15.6, 
we randomly select one of four neighbors to share information with Xi. In 
the GOM, we create a generalized neighbor that represents the consensus 
of the entire population. The generalized neighbor is a neighbor that does 
not actually exist in the population, but it is a pseudo-individual that is 
formed by taking the average of the entire population. The individual X{ could 
then receive information from either one of its four neighbors, or from the 
generalized neighbor. This idea is reminiscent of the fully informed particle 
swarm, which involves global information sharing (see Section 11.5). The 
generalized neighbor could also be obtained as a fitness-weighted average of 
the population, although this extension has apparently not yet been studied. 

15.5 CONCLUSION 

Cultural algorithms are a fascinating branch of evolutionary computation. They 
are different from typical EAs because they are not directly motivated by biology 
but are instead motivated by the social sciences. This motivation opens up a huge 
are of social science research that can be applied to self-organizing computational 
systems and optimization algorithms. Since cultural algorithms were first studied 
in the 1980s, it seems that most research in this area has been focused on sim-
ple applications or modifications of the basic CA ideas. However, there is a large 
body of research in the social sciences on many aspects of culture, including mu-
sic, economics, language, nonveral communication, technology, family relationships, 
entertainment, education, sports, medicine, religion, art, literature, politics, war, 
and so on. Any engineering or computer science researcher who is interested in 
one of these aspects of culture has a virtually limitless reservoir of ideas to apply 
to CA research. Some other interesting and potentially important areas for future 
research include the following. 

• Mathematical modeling of cultural algorithms seems to be a ripe area for 
future work. We see mathematical modeling work in the literature for other 
EAs (see Chapter 4 and Section 7.6), but there seems to be a dearth of 
mathematical modeling results for cultural algorithms. 

• Cultures have multiple sets of beliefs, some of which are held by the majority 
of individuals, and others of which are held by the minority of individuals 
[Latané et al., 1994]. Sometimes these belief spaces conflict in what are called 
culture wars [Thomson, 2010]. We see this phenomenon in controversial areas 
such as religion, sports, and politics. 

• Societies include multiple cultures. These cultures-within-cultures are called 
subcultures. Individuals within subcultures interact closely, and individuals 
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from separate subcultures interact more loosely. Certain value systems are 
emphasized more in one subculture, and other value systems are emphasized 
more in other subcultures. This idea has applications to multi-objective op-
timization [Coello Coello and Becerra, 2003], [Alami et al., 2007]. 

How can these factors be modeled in a CA? How do these factors interact with each 
other? What other aspects of culture are important in human learning? How do 
cultural influences vary between individuals? These are all open research questions. 
Additional survey and tutorial reading in the area of CAs can be found in [Reynolds, 
1994], [Reynolds and Chung, 1997], [Reynolds, 1999], and [Reynolds et al., 2011]. 
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Written Exercises 

15.1 Suggest a couple of different methods to predict the next number in the 
sequence of Equation (15.1). What values do your methods predict? 

15.2 Consider Equation (15.3) and Figure 15.2. 
a) If Xi(k) is within the belief space, what is the probability that x[(k) will 

be within the belief space? 
b) If Xi(k) is outside the belief space, what is the probability that x'^k) will 

be within the belief space? 

15.3 Consider Equation (15.3) and Figure 15.2. 
a) What would be a more aggressive strategy of using the belief space when 

Xi(k) G ΒΊ We use the term more aggressive here to indicate a higher 
probability that x'^k) G B. 

b) What would be a more aggressive strategy of using the belief space when 
Xi(k) i ΒΊ 

15.4 How many fitness function evaluations are required each generation in the 
ACM algorithm of Figure 15.6? What does this imply for fair comparisons with 
other EAs? 

15.5 The ACM algorithm of Figure 15.6 shares only one solution feature per 
interaction. What does this imply for its performance on non-separable problems? 
(Recall a similar discussion at the beginning of Section 14.5.) How could the ACM 
algorithm be modified to get better performance on non-separable problems? 

15.6 Figure 15.9 shows that the ACM finds the optimal solution of the 8-city 
TSP in about 2500 iterations. Analyze the quality of that performance. 

Computer Exercises 

15.7 Repeat Example 15.2 with a = 0, 0.25, 0.5, 0.75, and 1. Plot results similar 
to Figure 15.3 for each value of a. Comment on your results. 

15.8 Repeat Example 15.2 with M = 0, 2, 5, 10, and 25. Plot results similar to 
Figure 15.3 for each value of M. Comment on your results. 

15.9 Repeat Example 15.3 with selection pressure p\ = 0.5, 0.7, 0.9, and 1. 
Limit the number of interactions to 2,000 for each simulation. Plot results similar 
to Figure 15.9 for each value of pi; however, whereas Figure 15.9 shows the results 
of a typical ACM simulation, you should run 20 Monte Carlo simulations for each 
value of p x , record the best cost at each generation for each value of pi , and plot 
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the average of the best cost as a function of generation number for each value of 
pi. Comment on your results. 

15.10 Repeat Example 15.3 with neighborhood sizes of 4 and 8. Limit the num-
ber of interactions to 2,000 for each simulation. Plot results similar to Figure 15.9 
for each value of neighborhood size; however, whereas Figure 15.9 shows the results 
of a typical ACM simulation, you should run 20 Monte Carlo simulations for each 
neighborhood size, record the best cost at each generation for each neighborhood 
size, and plot the average of the best cost as a function of generation number for 
each neighborhood size. Comment on your results. 



CHAPTER 16 

Opposition-Based Learning 

Social revolutions are . . . extremely fast changes in human society. They occur to 
establish, simply expressed, the opposite circumstances. 

—Hamid Tizhoosh [Tizhoosh, 2005] 

Evolution is a slow process; change takes time. However, some types of change 
are rapid. One type of rapid change that almost all evolutionary algorithms (EAs) 
use is mutation. But there is also a type of rapid change that occurs in human 
society that we have not yet explored: social revolutions. A social revolution is a 
paradigm shift to the opposite of the currently accepted norm. Sometimes social 
revolutions have important and long-lasting effects, like when the United States 
fought against England in the revolutionary war and made the change from colonies 
to states. Other revolutions are less dramatic, like the introduction of synthetic 
materials in clothing, or the introduction of microwaves for cooking. However, all 
revolutions, by definition, result in significant lifestyle changes. 

Opposition-based learning (OBL) was introduced as an attempt to increase the 
rate of learning in EAs. Since evolution is a slow process while revolution is a 
fast process, the simulation of revolution in EAs might speed up their convergence. 
OBL was originally introduced as an improvement to reinforcement learning, ge-
netic algorithms, and neural network training [Tizhoosh, 2005]. It has also been 
implemented in many other optimization algorithms, including biogeography-based 
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optimization (BBO) [Ergezer et al., 2009], particle swarm optimization [Omran, 
2008], [Rashid and Baig, 2010], differential evolution [Rahnamayan et al., 2008], 
ant colony optimization [Malisia, 2008], and simulated annealing [Ventresca and 
Tizhoosh, 2007]. 

Overview of the Chapter 

Section 16.1 presents some definitions of opposition as the term relates to numerical 
problems. Section 16.2 outlines how OBL can be incorporated into an EA, and 
particularly how it can be used to improve the performance of BBO. Section 16.3 
mathematically studies the probability of EA improvement using various types of 
opposition. Section 16.4 introduces jumping ratio, which is a concept that is used 
in OBL. Although OBL was originally defined for continuous-domain problems, 
Section 16.5 discusses how it can be extended to combinatorial problems, and in 
particular to the traveling salesman problem. Section 16.6 reviews some concepts 
from dual learning, which preceded OBL, and shows the relationship between the 
two methods. 

16.1 OPPOSITION DEFINITIONS AND CONCEPTS 

This section discusses definitions and concepts related to the opposite of a scalar or 
vector. We begin by considering scalars. We begin by assuming that x is defined 
on the domain [a, b], and the center of the domain is c: 

x G [a, b] where a < b 

c = (a + 6)/2. (16.1) 

16.1.1 Reflected Opposites and Modulo Opposites 

We can think of several different ways to define the opposite of a scalar x [Tizhoosh 
et al., 2008]. For example, the reflected opposite of x is defined as 

Xoi = a + b — x. (16.2) 

This means that XQI 1S the same distance as x from the center of the domain: 

c — x — x0\ — c. (16.3) 

The modulo opposite of x is defined as 

%o2 = (x — a + c) mod (b — a). (16.4) 

This views the domain [a, b] as a circle, and defines the opposite of x as the number 
that lies on the opposite side of the circle. Figure 16.1 illustrates the reflected 
opposite and modulo opposite. 

The reflected opposite and modulo opposite definitions can be extended to vec-
tors in a simple but straightforward way. Suppose that x is an n-dimensional vector 
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a, b 

I S I S S 
a x c x0l xo2 

c 

Figure 16.1 Illustration of the reflected opposite χ0ι and the modulo opposite x02 of a 
scalar x. The figure on the left illustrates the domain of a; as linear segment, and the figure 
on the right illustrates it as circle. The scalar x is defined on the domain [a, 6], and c is the 
center of the domain. The reflected opposite x0\ is the same distance as x from c, and the 
modulo opposite x02 is on the opposite side of the circle that defines the domain of x. 

defined on a rectangular domain; that is, X; is defined on the domain [a^,^], and 
the center of the domain of X; is Q : 

X :— I X\ ' ' ' Xn \ 

where xi G [cii,bi] and α̂  < b{ for i G [l,n] 
d = (en + bi)/2 for i G [1,n}. (16.5) 

The reflected opposite of x is defined as 

%ol ~ [ %ol,l " * " %ol,n J 

where x0\^ = ai + bi — xi for i G [1, n]. (16.6) 

The modulo opposite of a vector x is defined as 

Xo2 = [ Xo2,l ' ' ' Xo2,n ] 

where x02,i = {x% — a* + Ci) mod (pi — a^). (16-7) 

These definitions apply only to rectangular domains. The extension of these defi-
nitions to non-rectangular domains is left for future work but is probably not too 
difficult. 

We will not use the modulo opposite any more in this chapter. In the remainder 
of this chapter we use the term "opposite of x" as shorthand for "reflected opposite 
of x," and we use the notation XQ a s shorthand for x o i . 

16.1.2 Partial Opposites 

Given a vector x, we can define xp , a partial opposite of x, by taking the opposite 
of some of the dimensions of x while leaving other elements of x unchanged. For 
example: 
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X = [ X\ 

partial opposite xp = [ xv\ 

{ X0-i 

Xi 

*n ] 

where χΌ 

^ρη J 

for i e S 
for i e S 

(16.8) 

where S is some subset of {1,2, · · ·, n} , and S is its complement; that is, S U S = 
{ 1 , 2 , · · · , η } , Sj i S for all j G { 1 , · · · , | £ | } , and Sj £ S for all j <Ξ { 1 , · · . , | 5 | } . 
The degree of opposition of xp is defined as 

T(XP) = |S | /n . (16.9) 

EXAMPLE 16.1 

Suppose that x = [ 0.5 0.5 ], where both elements of x are defined on the 
domain [0,2]. We can define four partial opposites of x: 

4 υ = [ 0.5 0.5 ] -> r (xpA = 0 

i<2) = [ 1.5 0.5 ] -> r ( i W ) = 1/2 

χ<3> = { 0.5 1.5 ] -»■ r ( 4 1 ' ) = 1/2 

r<4> [ 1.5 1.5 ] ■(*?>)=!. 

Figure 16.2 illustrates the partial opposites of x. 

(16.10) 

Figure 16.2 Example 16.1: Degree of opposition of partial opposites of the two-
dimensional vector x. Vector xp ' is identical to x, so its degree of opposition is 0. Vectors 
~v and Xp ' include one element that is opposite the corresponding element of x, and one 
element that is identical to the corresponding element of x, so their degree of opposition 
is 0.5. Each element of xp 

opposition is 1. 
opposite the corresponding element of #, so its degree of 

D 
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16.1.3 Type 1 Opposites and Type 2 Opposites 

Up to this point, we have defined opposite in terms of the domain of a function; 
this is called type 1 opposition. We can also defined opposite in terms of the range 
of a function, and this is called type 2 opposition [Tizhoosh et al., 2008]. We begin 
with a scalar function y(-) of a scalar x, where x is defined on the domain [a, 6]. 
The range [î/min,2/max] is defined as 

2/min = mmy(x) :x e[a,b] 

2/max = mnxy(x) : x e [a,b]. 

The center of the range is defined as 

Vc ~ v2/max 2/minJ/^· 

The type 2 reflected opposite of x is defined as 

x{
0
r) = x' : y(x') = ymin + ymax - y{x). 

This means that y (xo ) is the same distance as y(x) from yc 

yc-y[x{or)) =yc-y{x). 

(16.11) 

(16.12) 

(16.13) 

(16.14) 

This definition can result in multiple values for xj unless y(-) is a one-to-one 
mapping. Figure 16.3 illustrates the difference between type 1 and type 2 opposites. 
Note that we can extend the definition of type 2 opposition to obtain the type 2 
opposite of a vector, the type 2 modulo opposite of a vector, and the degree of 
type 2 opposition. 

In the remainder of this chapter we restrict our discussion to type 1 opposition. 
Type 2 opposition deserves further study in the context of EAs, but we leave that 
to further research. 

Figure 16.3 Consider the scalar x on the domain [a,b], and the function y{x). The 
type 1 opposite of x is x0, and is obtained by reflecting x across the center of the domain c. 
The type 2 opposite of x is obtained by reflecting y(x) across the center of the domain yc 

to obtain y(xj ), and then computing the inverse of y(xj ) to obtain XQ. This results in 
two possible values of x0 for this example. 
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16.1.4 Quasi Opposites and Super Opposites 

Now we define three additional approaches to opposition. As before, we consider 
the scalar x G [a, 6] with c as the center of its domain. 

The quasi opposite of x is defined as follows [Tizhoosh et al., 2008]: 

xqo = rand(c, x0) (16.15) 

where x0 is the standard reflected opposite defined in Equation (16.2). That is, 
xqo is the realization of a random number that is uniformly distributed on [c, x0]. 
Note that we define the rand function in such a way that its result is independent 
of the order of its arguments; that is, the notations rand(c, x0) and rand(#o, c) are 
equivalent. 

The super opposite of x is defined as follows [Tizhoosh et al., 2008]: 

rand(x0 ,6) if x < c 

-{ A( ^ -f ^ (16-16) 
rand(a, x0) if x > c. 

That is, xso is the realization of a random number that is uniformly distributed 
between x0 and the domain boundary that is farthest from x. This definition is not 
complete because it does not define xso for the case x — c, but that special situation 
can be handled by arbitrarily changing one of the inequalities in Equation (16.16) 
so that it includes both equality and inequality. 

The quasi reflected opposite of x is defined as follows [Ergezer et al., 2009]: 
xqr — rand(x,c). (16.17) 

That the realization of a random number that is uniformly distributed 
between x and c. Note that the use of the word "reflected" in the term "quasi 
reflected" is not related to the word "reflected" in the term "reflected opposite" 
(see Equation (16.2)). 

Figure 16.4 illustrates four different methods of opposition. We can extend 
these definitions to vectors, modulo opposites, and type 2 opposites, by following 
the procedures presented earlier in this section. 

Figure 16.4 Suppose we have a scalar x € [a, b]. The opposite of x is x0, and is obtained 
by reflecting x across the center of the domain c. The quasi opposite of x is xqo, and is 
obtained by generating a random number between c and x0 · The super opposite of X IS Xso·) 

and is obtained by generating a random number between x0 and the domain boundary that 
is farthest from x. The quasi reflected opposite of x is xqr, and is obtained by generating a 
random number between x and c. 

It is interesting to make connections between these opposition definitions and 
fuzzy logic. Figure 16.4 shows that the opposite x0 is crisp; given x, its opposite 
x0 is a crisp number or vector. However, xqr, xqo, and xso could be defined as 
fuzzy quantities. Connections between these opposition definitions and fuzzy logic 
have not been presented in the literature, but the investigation of such connections 
seems to be a ripe area for further research. 
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16.2 OPPOSITION-BASED EVOLUTIONARY ALGORITHMS 

This section presents a generic OBL algorithm and shows how it can augment an 
EA. One simple approach to using an OBL with any EA is to perform the following 
steps. 

1. When the N individuals of the EA population are initialized, N opposite in-
dividuals are created, each opposite individual corresponding to one of the N 
original individuals. Given our 27V candidate solutions (TV original individuals 
and N opposite individuals), we keep the best TV as the starting population 
of the opposition-based EA. This general idea is discussed in Section 8.1. 

2. We run a standard implementation of an EA. As we have seen earlier in this 
book, this involves a loop of cost function evaluations, recombinations, and 
mutations. By definition, the loop executes once per generation. 

3. Once every few generations, we compute the opposite of each of the N in-
dividuals. Of these 27V candidate solutions (N standard EA individuals and 
N opposite individuals), we keep the best N for the next EA generation. At 
each generation, we perform this step with probability Jr G [0,1], which is 
called the jumping rate. 

We have to make some decisions in our opposition-based EA. 

1. Which EA should we use? Answering this question also means that we must 
choose all of the tuning parameters of the EA. 

2. What type of opposition should we use? 

3. What value should we use for the jumping rate J r ? 

The jumping rate is a tuning parameter. We don't have many guidelines for J r , 
but we do not want to make it too high. The reason that we periodically create an 
opposite population is to explore uncharted areas of the search space. But we do 
not want to create an opposite population every generation because then we would 
just be repeatedly jumping back and forth in the search space, which would waste 
function evaluations. Results from opposition-based differential evolution indicate 
that Jr « 0.3 provides a good balance [Rahnamayan et al., 2008]. 

Note that a non-opposition-based EA that runs for G generations with N in-
dividuals requires a total of G N function evaluations. An opposition-based EA 
that runs for G' generations with N' individuals and a jumping rate Jr requires a 
total of G'N'(\ + Jr) function evaluations, on average. To make a fair comparison 
between a non-opposition-based EA and its opposition-based version, we need to 
choose G', Ν', and Jr so that 

GN = G'N'(1 + Jr). (16.18) 

We can do this by either setting TV' = TV and reducing the opposition-based gen-
eration limit so that G' = G/(I + J r ) , or by setting G — G and reducing the 
opposition-based population size so that TV' = TV/(1 + J r ) , or by reducing both G' 
and TV' simultaneously to satisfy Equation (16.18). 



4 0 4 CHAPTER 16: OPPOSITION-BASED LEARNING 

Oppositional Biogeography-Based Optimization 

Now we show how the OBL outline presented above can be used in biogeography-
based optimization (BBO). We combine the standard BBO algorithm of Figure 14.3 
with OBL to obtain oppositional BBO (OBBO) [Ergezer et al., 2009]. Figure 16.5 
shows an outline of the OBBO algorithm. Note that the algorithm of Figure 16.5 
is identical to that of Figure 14.3 except for the pseudo-code between the lines 
"Comment: Begin Opposition Logic" and "Comment: End Opposition Logic." 

Initialize a population of candidate solutions {xk} for k G [1,̂ /V] 
While not (termination criterion) 

For each Xk, set emigration probability μ& oc fitness of xk, with μ^ G [0,1] 
For each individual Xk, set immigration probability Xk = 1 — μ& 
{Zk} <- [Xk] 
For each individual Zk 

For each solution feature s 
Use Xk to probabilistically decide whether to immigrate to Zk 
If immigrating then 

Use {μι}^=1 to probabilistically select emigrating individual Xj 
zk{s) <-Xj(s) 

End if 
Next solution feature 
Probabilistically mutate {zk} 

Next individual 
Comment: Begin Opposit ion Logic 
r <- C/[0,1] 
If r < Jr then 

Use {zk} to create opposite population {zk} 
{zk} <— best TV individuals from {zk} U {z~k} 

End if 
Comment: End Opposit ion Logic 
{xk} <- {zk} 

Next generation 

Figure 16.5 The oppositional biogeography-based optimization (OBBO) algorithm with 
a population size of N. {xk} is the entire population of individuals, Xk is the fc-th individual, 
and Xk(s) is the s-th feature of Xk- Similarly, {zk} is the temporary population of individuals, 
Zk is the fc-th temporary individual, and Zk(s) is the s-th feature of Zk. 

■ EXAMPLE 16.2 

In this example we optimize the 20-dimensional Griewank function. This 
function is defined in Appendix C.1.6, and is also listed here for convenience: 

n n 

f(x) = 1 + Σ ^2 /4000 - Y[ cos (xi/Vtj (16.19) 
i = l i=l 
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where X{ G [—600, +600]. The minimizing value of x is X{ — 0 for all i G [1, n]. 
We use BBO with a population size N = 50 and a function evaluation limit 
of 2500. This results in 50 generations if we evaluate each BBO individual 
once per generation. We use a mutation probability of 1% per dimension per 
individual, and we use an elitism parameter of 2. We also add OBL to the 
BBO algorithm as shown in Figure 16.5. When implementing OBL we use 
a jumping rate Jr — 0.2, so the generation count decreases to about 41 or 
42, depending on the random number sequence that controls the generation 
of the opposite population. After 20 Monte Carlo simulations, the average of 
the lowest costs found by BBO and OBBO are as follows: 

BBO 
Reflected OBBO 

Quasi OBBO 
Super OBBO 

Quasi Reflected OBBO 

8.85 
9.69 
0.05 

11.82 
0.03 

The meaning of the terms in the above list can be seen in Figure 16.4. Re-
flected OBBO refers to x0, quasi OBBO refers to xqo, super OBBO refers to 
x s o , and quasi reflected OBBO refers to xqr. We see that reflected OBBO 
and super OBBO perform worse than BBO. However, quasi OBBO and quasi 
reflected OBBO perform amazingly better than BBO. 

D 

As we know from the no-free-lunch theorem (see Appendix B), the astound-
ing performance of quasi OBBO and quasi reflected OBBO in Example 16.2 is 
not magic. The reason for their superior performance is that the solution of the 
Griewank problem lies at the exact center of its domain. Figure 16.4 shows us that 
quasi OBBO and quasi reflected OBBO both tend to move individuals closer to 
the center of the search domain. Reflected OBBO maintains individuals the same 
distance from the center (but on the opposite side of the search domain), which is 
why reflected OBBO performs worse than BBO. Reflected OBBO neither degrades 
nor improves an individual in the Griewank problem; it merely consumes function 
evaluations. Super OBBO does even worse. Figure 16.4 shows us that super OBBO 
always moves individuals farther from the center of the search domain, which de-
grades performance in the Griewank problem. So the results of Example 16.2 are 
exactly what we would have predicted from our understanding of OBL and the 
Griewank problem. 

Of course, if we knew that the solution was near the center of the search domain, 
we would not need to use OBL; we could use any other method to bias BBO 
individuals toward the center of the domain. In this sense, the use of OBL for the 
Griewank problem is "cheating"; it relies on the fact that the Griewank problem 
solution is near the center of the domain. That is, it implicitly relies on problem-
specific information. This is closely related to the no-free-lunch theorem that is 
discussed in Appendix B. A problem whose solution can lie anywhere in the search 
domain might provide a better test for OBL, and this leads us to the following 
example. 
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EXAMPLE 16.3 

In this example we again optimize the Griewank function with n = 20 dimen-
sions (see Appendix C.1.6). We use the same parameters as those that are 
used in Example 16.2. However, this time we randomly shift the solution of 
the Griewank problem: 

n n 

f(x) = 1 + Y^(Xi - r02/4000 _ JJ cos ^x. _ r<)/\/i) (16.20) 

where ri is a random number uniformly distributed in the search domain 
[—600, +600]. The minimizing argument of f(x) is x\ = ri for i G [1, n]. After 
20 Monte Carlo simulations, where we use a different set of {r*} values for 
each Monte Carlo sample, the average of the lowest cost found by BBO and 
OBBO are as follows: 

BBO 
Reflected OBBO 

Quasi OBBO 
Super OBBO 

Quasi Reflected OBBO 

10.4 
14.1 
13.8 
13.4 
13.9 

All of the opposition-based BBO algorithms perform significantly worse than 
standard BBO. This is because the shifted Griewank solution is uniformly 
distributed in the search space, so an opposite point is no more likely than 
a BBO individual to be close to the optimal solution. In fact, as the BBO 
generation count increases, the opposite point is less likely to be close to the 
optimal solution. This is because as the generation count increases, BBO 
individuals move closer to the optimal solution by virtue of their information-
sharing mechanism. Therefore, the opposition function is likely to move them 
farther away from the solution. The use of opposition in this case not only 
wastes function evaluations, but seems to do so in a counterproductive way. 

D 

Example 16.3 seems to show that after a more careful consideration, the initially 
exhilarating results of Example 16.2 turn out to be a mirage. However, all is not 
lost. When we try to solve a real-world optimization problem with an EA, we need 
to define the search domain. We typically define it so that we are reasonably sure 
that the solution lies within the search domain. That means that we often make 
the search domain larger than necessary. We want a large search domain because 
we are not sure where the solution lies. We tend to err more on the side of a larger-
than-required search domain than on the side of a too-small search domain. But we 
probably suspect that the solution lies near the center of the domain. Therefore, 
a situation that is more realistic than either Example 16.2 or Example 16.3 might 
be to randomly shift the Griewank solution in a way that allows it to reach either 
extreme of the domain, but that tends to keep it near the center, and this leads us 
to the next example. 
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■ EXAMPLE 16.4 

In this example we once again optimize the Griewank function with n = 20 
dimensions. We use the same parameters as those that are used in Exam-
ples 16.2 and 16.3. However, this time we randomly shift the solution of 
the Griewank problem in such a way that the solution is the realization of a 
normally-distributed vector, each of whose elements have a standard deviation 
of 200: 

Ti <- 200iV(0,l) f o r z e [ l , n ] 
ri «- max(min(rj,600), —600) 

n n 

f(x) = 1 + Σ(Χί - r 0 2 / 4000 - Y[ cos ((x; - rj/y/i) . (16.21) 

iV(0,1) is a normally distributed random number with zero mean and unity 
variance, which means that 200TV(0,1) has a standard deviation of 200. The 
max/min operation in Equation (16.21) ensures that each element of the solu-
tion of the shifted Griewank function remains in the search domain [—600,600]. 
After 20 Monte Carlo simulations, where we use a different set of {r^} values 
for each Monte Carlo sample, the average of the lowest cost found by BBO 
and OBBO are as follows: 

BBO 
Reflected OBBO 

Quasi OBBO 
Super OBBO 

Quasi Reflected OBBO 

9.5 
11.2 
9.9 

11.9 
6.0 

The performance of BBO and quasi OBBO are statistically identical, while 
the performance of reflected OBBO and super OBBO are worse than stan-
dard BBO. However, quasi reflected OBBO performs noticeably better than 
standard BBO. This is because quasi reflected OBBO tends to move BBO 
individuals toward the center of the domain. It might be expected that quasi 
OBBO should also perform better than BBO, because quasi OBBO also moves 
individuals toward the center of the domain. However, quasi OBBO moves 
individuals toward the center of the domain while also moving them far away 
from the current individual x (see Figure 16.4). This tends to degrade per-
formance in later generations when most of the individuals have a low cost. 
Quasi reflected OBBO performs better because it not only moves individu-
als toward the center but it also tends to keep individuals near their original 
location in the search space, which is beneficial after the first few generations. 

D 
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16.3 OPPOSITION PROBABILITIES 

Section 16.2 showed how OBL can be incorporated into BBO to improve its per-
formance. This section studies the probability of getting closer to an optimization 
problem solution when we use various opposition types: reflected opposition, quasi 
opposition, and quasi reflected opposition. This section is highly mathematical, so 
the practice-oriented reader can safely skip this section or simply read the results 
at the end of this section in Table 16.1. 

We make the following assumptions in this section. 

1. We assume that the search space is one-dimensional. This is obviously very 
restrictive, but it is a starting point, and additional work should allow the 
extension of the one-dimensional case to higher dimensions. 

2. We assume that the solution x* of the optimization problem is not known, 
but that it is the realization of a random number that is uniformly distributed 
in the domain of x. This assumption is based on the principle of insufficient 
reason, which asserts that in the absence of prior knowledge we must assume 
that all events in the search space have equal probabilities [Dembski and 
Marks, 2009b], [Dembski and Marks, 2009a]. 

Suppose that we have an arbitrary EA individual x. We assume without loss 
of generality that x is in the lower half of the search domain. Let us consider the 
probability that its quasi opposite xqo is closer than its opposite x0 to the optimal 
solution x*. Figure 16.6 illustrates an arbitrary EA individual x, its opposite x0 , 
and its quasi opposite xqo. The optimal solution x* could be in one of the following 
three regions. 

1. We define case 1 as the situation in which x* G [a, c]. 

2. We define case 2 as the situation in which x* G [c, x0]. 

3. We define case 3 as the situation in which x* G [x0, b]. 

1 ' ' 1 ' ' nr—"-* 
x* for case 1 x* for case 2 x* for case 3 

Figure 16.6 x is an EA individual, x0 is its opposite, and xqo is its quasi opposite (taken 
from a uniform distribution between c and x0). The solution x* to an optimization problem 
is uniformly distributed on [a, 6], and so it could lie in one of three regions shown above. 

Case 1 

For case 1, it is clear that xqo is closer than x0 to x*. Therefore, 

Pr(\xqo - x*\ < \x0 - x*\) = 1 for case 1. (16.22) 
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Case 2 

For case 2, x* and xqo are independent and uniformly distributed in [c, x0]. We 
can use the total probability theorem [Mitzenmacher and Upfal, 2005], and the fact 
that x0 — x* > 0 for case 2, to write the probability that xqo is closer than x0 to 
x* as follows: 

Pr(\xqo-x*\ < | x 0 - x * | ) 
= Pr(\xqo - x*\ < x0 - x* \xqo - x* < 0)Pr(xqo - x* < 0) + 

Pr( |xg o — x*\ < xo — x* | xqo — x* > 0)Pr(xgo — x* > 0) 
= Pr(xqo > 2x* - xo | xqo < x*)Pr(xqo < x*) + 

Pr(xq o < x0 | Xqo > x*)Pr(xqo > x*). (16.23) 

Consider the terms on the right side of the above equation. First, since xqo and x* 
are both uniformly distributed on [c, x0], we see that 

Pl(Xqo<X*) = 1/2 

Pr(xq0 > x*) = 1/2 
Pr(xqo < xo | Xqo > x*) = 1. (16.24) 

We can use Bayes' theorem to write the first expression on the right side of Equa-
tion (16.23) as 

Pv(Xqo > 2X* - X0 | Xqo < X*)Pv(xqo < X*) 

= Ρΐ(χqo > 2X* - X0, Xqo < X*) 

= Pr(2x* — x0 < Xqo < x*) 
px0 p(xqo+x0)/2 

= / / }{x')f{xqo)dx* dxqo (16.25) 
Jc JXqo 

where we have assumed that x* and xqo are independent with PDFs /(#*) and 
f(xqo). Assuming uniform PDFs, the above integration can be performed as 

Pv(xqo > 2x* - xo | Xqo < x*)Pr(xqo < x*) 
f(xqo+x0)/2 2 rx0 r{ 

J c J xa 

-i 
[Xo - C) 

\2 Q'Xqo 

Xo Xqo i 
ax a 2{x0-cY^qo 

= 1/4. (16.26) 

Substituting Equations (16.24) and (16.26) into Equation (16.23) gives 

Pr( |x9 0 - x*\ < \x0 - x*\) = 3/4 for case 2. (16.27) 

Case 3 

For case 3, it is clear from Figure 16.6 that x0 is closer than xqo to x*. Therefore, 

Pr( |xq o - x*| < \x0 - x*|) = 0 for case 3. (16.28) 
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Final Results 

Let us use S as shorthand notation to indicate the event that xqo is closer than x0 

to the optimal solution x*: 

S = {\xqo-x*\<\x0-x*\}. (16.29) 

Then we can combine the results from cases 1, 2, and 3 to obtain 

Pr(£) - Pr(£ | x* G [a, c])Pr(x* G [a, c]) + 
P r ( £ | x * G [c,x0])Pr(x* G [c,x0]) + 
Pr(£ |x*G[x 0 ,6])Pr(x*G[x 0 ,&]) 

- <«G)+(i)(^)+a " 
If x is uniformly distributed in the lower half of the search domain, then x0 is uni-
formly distributed in the upper half of the search domain. Therefore, the expected 
value of x0 is 

E(x0) = (c + b)/2. (16.31) 

Taking the expected value of Equation (16.30) then gives 

E\Pr(\xqo-x'\<\x0-x*\)] = \ + ψ τ ^ 

= 1/2 + 3 / 1 6 - 1 1 / 1 6 . (16.32) 

The above derivation assumes that x G [a, c], but this does not affect the generality 
of the results; the same result holds if x G [c, b]. We have thus obtained the following 
theorem. 

Theorem 16.1 Assume that an EA individual x and the solution x* of a one-
dimensional optimization problem are independent and uniformly distributed in the 
search space. Then the average probability that the quasi opposite of x is closer than 
the opposite of x to the solution x* is 11/16. 

These results were first presented in [Ergezer et al., 2009], [Ergezer, 2011]. Some 
additional results are also available in those papers, and are summarized in Ta-
ble 16.1. The first row of Table 16.1 shows that an EA individual and its opposite 
both are equally likely to be closer to the optimal solution. This is as expected 
from the symmetry between x and x0. 

Although Table 16.1 is restricted to one-dimensional problems, the extension of 
the approach in this section to higher dimensions should be conceptually straight-
forward and is left for further research. Some experimental results from higher 
dimensions are shown in [Ergezer et al., 2009], where it seems that the probabil-
ities increase to an asymptote as the number of dimensions increases. Also see 
Problem 16.12. 

Note that we arbitrarily defined x* in this section as the solution to an optimiza-
tion problem. We could just as well have defined it as the worst individual in the 
search space. The key to OBL is that after the opposite population is generated, 
the best N individuals from the original N individuals and the opposite N individ-
uals are retained for the next generation. The reason that OBL works is that quasi 
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Event Probability 

\ χ ο - χ * \ < 

\*Eqo ·£ 1 "C. 

K O ( 7 7 ™ <*J ^ · 

\Xqo *£ 1 "^ 

\X QT '*·' 1 ^» 

\%qo *£ 1 "^ 

\x — x*\ 
\x — x*\ 
\x — x*] 
\X0 X | 

\X0 X | 

\Xqr X 1 

1/2 
9/16 
11/16 
11/16 
9/16 
1/2 

Table 16.1 One-dimensional probabilities of certain oppositional points being 
closer to the optimal solution than other points. 

opposite and quasi reflected points have a high probability of being closer than an 
arbitrary EA individual x to an arbitrary point in the search space. 

Our derivation assumes that the EA individual x is uniformly distributed in the 
search space. We expect that as an EA progresses to later generations, most of 
the individuals will get closer to the optimal solution, which means that x will no 
longer be uniformly distributed. This seems to indicate that OBL should be more 
effective early in the search process. When implementing OBL, we may want to 
use a higher jumping rate early in the search process than later. This is the same 
type of logic that we often use in simulated annealing (see Chapter 9). We also 
often use similar reasoning in EA mutation; we use high rates of mutation early in 
the search process, and lower rates later [Haupt and Haupt, 2004, Section 5.9]. 

16.4 JUMPING RATIO 

This section introduces the concept of a jumping ratio, which is a simple extension 
that can improve the performance of OBL. This idea is motivated by the realization 
that OBL requires computational resources. Every opposite individual that we 
generate requires an extra fitness evaluation, and fitness evaluations can be very 
computationally expensive in real-world problems (see Chapter 21). We do not 
want to arbitrarily generate opposite solutions during our EA implementation. We 
would prefer to generate opposite solutions only if we are reasonably confident that 
the extra computational effort will pay for itself in improved performance. 

Note that the opposite of a highly-fit EA individual is less likely to be fit than 
the opposite of a low-fitness EA individual. That is, if an EA individual is close to 
the optimal solution, then it is not worth generating its opposite. Conversely, if an 
EA individual is far from the optimal solution, then it probably is worth generating 
its opposite. Of course, we do not know if a given individual is near to, or far from, 
the optimal solution. But we do know the relative fitness values of each individual 
in our EA population. Perhaps OBL should be implemented so that the probability 
of generating an opposite individual is a function of the fitness of that individual. 
The OBBO logic in Figure 16.5 could be replaced with something like that shown 
in Figure 16.7. 

The parameter a > 0 in Figure 16.7 controls the pressure to generate opposite 
individuals. Recalling that μ^ is proportional to the fitness of Zk, we see that fitness-
based opposition logic makes it more likely that a low-fitness individual will have 
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an opposite individual generated. A small value of a will result in the creation of a 
lot of opposite individuals. In the limit as a —> 0, the fitness-based opposition logic 
is equivalent to the standard opposition logic in Figure 16.5 and we will generate an 
opposite for every EA individual. As a becomes larger, fewer opposite individuals 
will be created. As a -> oo, no opposite individuals will be created, and the OBBO 
algorithm will reduce to standard BBO. Creating opposite individuals is a risk; it 
requires extra computational effort because the fitness of each opposite individual 
needs to be evaluated. Is the potential payoff of new, highly fit opposite individuals 
worth the extra fitness evaluations? The parameter a provides the balance. 

a = opposition pressure G [0,1] 
n *- C/[o, l] 
If r i < Jr then 

m = 0 
For each individual Zk 

r2 <- U[0,1] 
If Γ2 > αμΐς then 

w i f - m + 1 
<- opposite of zk 

End if 
Next individual 
{z^ «— best TV individuals from [zk] U {zm} 

End if 

Figure 16.7 Fitness-based opposition logic. This logic can replace the standard OBBO 
logic in Figure 16.5. 

Another way of implementing fitness-based opposition logic is to generate oppo-
site individuals only for the least-fit proportion p of the individuals in the popula-
tion. This is very similar to the idea outlined above, but is more deterministic, and 
can be implemented as shown in Figure 16.8, where p G [0,1]. 

The ideas presented in this section are an attempt to make OBL more intelli-
gent, more adaptive, and more effective. Creative researchers can develop other 
ideas along these lines to improve OBL. We might also be able to use ideas from 
guided mutation in general EA research to improve OBL [Zhang et al., 2005]. We 
demonstrate the jumping ratio logic outlined above in an example in the next sec-
tion. 
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p = jumping ratio G [0,1] 
r <- E/[0,1] 
If r < Jr then 

ra = 0 
For each individual Zk 

If Zk is in the least-fit p proportion of the population then 
m 4— m H- 1 

<- opposite of zfc 

End if 
Next individual 
{zk} <- best N individuals from {zk} U {zm} 

End if 

Figure 16.8 Fitness-based proportional opposition logic. This logic can replace the 
standard OBBO logic in Figure 16.5. If p = 1 then this logic reduces to the standard 
opposition logic of Figure 16.5. 

16.5 OPPOSITIONAL COMBINATORIAL OPTIMIZATION 

This section extends OBL to combinatorial optimization problems. We clearly need 
to rethink the definitions of opposites in Section 16.1 if we want to extend OBL 
to combinatorial problems. Initial work in this area was presented in [Ergezer and 
Simon, 2011]. 

A combinatorial problem is one for which we want to find the best way to order 
a set of nodes. The traveling salesman problem (TSP) is a good example of a 
combinatorial problem (see Section 2.5 and Chapter 18). A TSP can either be a 
closed-path problem or an open-path problem. A closed-path problem is one for 
which the solution makes a close path; that is, the route begins and ends at the 
same city. An open-path problem is one for which the solution visits each city 
exactly one time, so the beginning and ending cities are different. We will consider 
open-path problems in this section. 

Before we try to define the opposite of an individual in a combinatorial EA, we 
use a simple example to introduce some definitions. Suppose that we are trying to 
solve a four-city TSP with an EA. The cities are labeled A, B, C, and D. One of 
the candidate solutions is 

A -> B -+ C -+ D. (16.33) 

1. We define one leg of a trip as the travel between two adjacent cities. We 
see that Equation (16.33) is comprised of three legs: A -» B, B —»· C, and 

2. We define the proximity between two cities as the number of legs that it takes 
to get from one city to the other. In Equation (16.33), A and B have a 
proximity of one, A and C have a proximity of two, and A and D have a 
proximity of three. 
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3. We define the total proximity of a route as the sum of the proximities between 
each pair of adjacent cities. In Equation (16.33), the total proximity is three 
because A —» B, B —>· C, and C —>· D each have a proximity of one. The 
total proximity of a route is always equal to TV — 1, where N is the number 
of cities. 

4. We define the relative proximity of route ß as the sum of the proximities 
between each pair of adjacent cities in ß, where the proximities are obtained 
from some other route a. For example, suppose that we have the following 
routes: 

a : D ->C -> Α^ Β 

ß : B^D^A^C. (16.34) 

The proximity of ß relative to a is six. This is because ß consists of three 
legs: the first leg is B —>· D, two cities that have a proximity of three in a; 
the second leg is D —y A, two cities that have a proximity of two in a; and 
the third leg is A —» C, two cities that have a proximity of one in a. 

One way to define the opposite of a route a is to find a route ß whose relative 
proximity is as large as possible. This is intuitive because the relative proximity of 
a relative to a is AT — 1, which is the minimum possible value. Using this definition, 
the opposite of the route of Equation (16.33) is 

C -► A -+ D -+ B. (16.35) 

This route has a proximity of 7 relative to Equation (16.33), which is the maximum 
possible value. 

However, the problem of finding a route to maximize relative proximity is itself 
a combinatorial optimization problem. That means that if we want to solve a 
problem like the TSP using OBL, we have to solve a combinatorial problem that 
consists of multiple combinatorial problems at each generation. This could quickly 
become computationally infeasible. Therefore, we define a greedy opposite of a 
combinatorial individual. The greedy opposite keeps the initial city unchanged, 
and then inserts the city with the greatest relative proximity as the second city. 
We set the new third city equal to the city with the greatest relative proximity from 
the new second city. We iterate this process to complete the greedy opposite route. 
This process is outlined in Figure 16.9. 

Figure 16.9 gives the following greedy opposite of the route of Equation (16.33): 

A -> D -+ B -+ C. (16.36) 

This route has a proximity of six relative to Equation (16.33), which is one less 
than the opposite route of Equation (16.35). Figure 16.10 shows another, simpler 
way of implementing the greedy opposite. These algorithms do not give the exact 
opposite of a TSP candidate solution, but hopefully they give a near-opposite with 
a reasonably low computational cost. 
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α = {αι,α2,· · · ϊ<%Ν} — candidate solution 
p(ai,ctj) = \i — j \ = proximity between nodes o^ and aj 

ßi <-<*i 
ß<~{ßl} 
For k = 2 to N 

ßk <- axgmaxap(afc_i,a) : a £ ß 

ß+-ßUßk 
Next fc 

Figure 16.9 The above pseudo-code outlines an algorithm to find the greedy opposite ß 
of a candidate solution a to a combinatorial optimization problem, where N is the number 
of nodes in each candidate solution. 

a = {c*i, c*2, · · ·, &N} = candidate solution 
For k = 1 to TV 

If k is odd then 
ra<- (fc + l ) /2 

else 
m <- N + 1 - fc/2 

End if 

Next /c 

Figure 16.10 The above pseudo-code outlines a simple algorithm to find the greedy 
opposite β of a candidate solution a to a combinatorial optimization problem, where N is 
the number of nodes in each candidate solution. This algorithm is equivalent to Figure 16.9 
but is simpler. 

■ EXAMPLE 16.5 

In this example we investigate the use of OBL for the TSP. We use inver-
over crossover (see Section 18.3.1.5), and we use BBO to choose immigrating 
and emigrating population members. We use the Ulyssesl6 TSP benchmark, 
which consists of 16 cities (see Section C.6), and we use 10,000 function eval-
uations. Recall that a 16-city TSP has 16!/2 « 1013 possible solutions. Ta-
ble 16.2 shows the average and standard deviation of the shortest route found 
by various BBO/OBL combinations after 40 Monte Carlo simulations. The 
results show that performance improves as jumping rate Jr and jumping ratio 
p increase. (See Figure 16.8 for the definition of jumping ratio p.) If Jr and p 
increase too much, then performance degrades, although we have not shown 
those results here. 

D 



4 1 6 CHAPTER 16: OPPOSITION-BASED LEARNING 

p = 0.1 p = 0.2 p = 0.3 ρ = 0Λ 

Jr = 0.0 7266 ± 3 5 3 7266 ± 353 7266 ± 353 7266 ± 353 
J r = 0.1 7153 ±289 7284 ± 244 7122 ± 296 7127 ± 270 
Jr = 0.2 7160 ± 297 7100 ± 324 7047 ± 251 6910 ± 315 
J r = 0.3 7180 ± 2 6 7 6976 ± 336 6945 ± 270 6869 ± 319 
Jr = 0.4 7127 ± 201 7005 ± 326 6910 ± 265 6776 ± 207 

Table 16.2 Example 16.5: Oppositional biogeography-based optimization results 
for the solution of the Ulysseslô TSP. The results show the average and standard 
deviation of the best solution found over 40 Monte Carlo simulations. Jr = 0 
corresponds to standard BBO without any OBL. In general, performance improves as 
jumping rate Jr and jumping ratio p increase. 

16.6 DUAL LEARNING 

Opposition-based learning is similar to dual learning, which was first proposed in 
in the 1990s [Collard and Aurand, 1994], [Collard and Gaspar, 1996], and rediscov-
ered in the early 2000s [Yang, 2003a], [Yang, 2003b]. Later, [Yang and Yao, 2005] 
suggested taking the dual of only the worst individuals in the population. Incorpo-
rating the ideas of dual learning in the OBBO algorithm of Figure 16.5 gives the 
duality logic of Figure 16.11. Note that Figure 16.5 can replace the "Opposition 
Logic" section of Figure 16.5. 

[wk] i— {Nd worst individuals in the population} 
Use {wk} to create a population of Nd opposites {wk} 
For i = 1 to Nd 

If Wk is better than Wk, then replace Wk with Wk in the population 
Next i 

Figure 16.11 The above pseudo-code outlines duality logic. This logic can replace the 
"Opposition Logic" block of Figure 16.5. Nd is the number of duals that we create each 
generation, and can be adapted as described in the text. 

The number of duals Nd that we create each generation can be adapted for 
optimal EA performance. [Yang and Yao, 2005] suggests the following adaptation 
scheme, which we execute each generation, and which we could add to the end of 
the duality logic of Figure 16.11: 

Nv <- \wk : f(wk) > f(wk)\ 

s <- (ÔNd-Nv)/N 

Nd <- ßsNd 

Nd <- mdix(Nd,Nd ,min ) 

Nd « - mm(Nd,Ndtm!iX). (16.37) 
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In Equation (16.37), / ( · ) is the fitness function, so a larger value of / ( · ) indicates a 
better-performing individual. Nv is the number of "valid" duals from the previous 
generation, which is the number of duals Wk that were better than the individuals 
from which they were obtained. The parameter δ G (0,1) is a decision threshold. If 
the proportion of valid duals is greater than δ, then we want to create more duals 
in the following generation; but if the proportion of valid duals is less than <5, then 
we want to create fewer duals in the next generation, β G (0,1) is a constant that 
controls the adaptation speed. Nd,m\n and A^max are the minimum and maximum 
allowable values of Nd· The following values are suggested for the constants in 
Equation (16.37) [Yang and Yao, 2005]: 

Initial Nd = 0.57V 
δ = 0.9 
β = 0.5 

-''ci,min = -I-

7Vd,max - 0.57V (16.38) 

where N is the population size. Dual learning can also be extended to PBIL for solv-
ing dynamic optimization problems [Yang and Yao, 2005], [Yang and Yao, 2008b]. 
In PBIL, a dual probability vector pd is symmetric to probability vector p with 
respect to the 50% probability value: pd = 1 — p. 

16.7 CONCLUSION 

Opposition-based learning (OBL) is a relatively new arrival on the optimization 
scene, and so there are a lot of possible extensions. Adaptive OBL might be an 
interesting avenue to pursue. Adaptation could be implemented in a few different 
ways. For example, since an EA population tends to converge to good solutions as 
the generation count increases, perhaps OBL should be implemented more often at 
the early stages of EA operation, and less often later in the EA. This could be done 
by making the jumping rate Jr and/or the jumping ratio p a decreasing function 
of the generation number. Also, we have restricted the opposition degree to 0 or 
1 in this chapter (see Equation (16.9)). We could implement adaptive OBL by 
probabilistically decreasing the opposition degree with the generation count. 

Other ways of implementing adaptation in an OBL algorithm might include 
changing the opposition type as the generation count increases, or changing the 
opposition type based on individual fitness. Low-fitness individuals should benefit 
more than high-fitness individuals from drastic opposition operations, so maybe 
super opposition should be reserved for low fitness individuals. 

Although a lot of mathematical modeling has been done with OBL using prob-
ability theory, OBL as an optimization algorithm has not yet been mathematically 
modeled. Important areas for future OBL research include adapting mathematical 
EA models (see Chapter 4 and Section 7.6) for the incorporation of OBL. 

Additional research could also focus on exploring the relationship between OBL 
and evolution through the search for novelty [Lehman and Stanley, 2011]. Also, 
since OBL is based on social revolutions, it would be interesting to incorporate 
more cultural models into OBL (see Chapter 15). Additional tutorial material on 
OBL can be found in [Tizhoosh, 2005] and [Tizhoosh et al., 2008]. 
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PROBLEMS 

Written Exercises 

16.1 Equation (16.4) defines the modulo opposite. Give an equivalent definition 
that does not use the modulo function. 

16.2 Give an example of a two-dimensional domain where the opposite of a point 
x in the domain could be outside of the domain. 

16.3 Consider the point (x,y) = (2,2) where the domain of x is [1,5] and the 
domain of y is [1,7]. What is the opposite, quasi opposite, super opposite, and 
quasi reflected opposite of this point? 

16.4 Consider the point (x,y) = (2,2) where the domain of x is [1,5] and the 
domain of y is [1,7]. What type of opposite is the point (2,5)? 

16.5 Explain how you could modify the OBBO algorithm of Figure 16.5 to use 
an adaptive jumping rate. 

16.6 How does the assumption of Example 16.4 contradict the second assumption 
of Section 16.3? Which assumption do you think is more reasonable? 

16.7 Suppose the BBO emigration rate μ& in Figure 16.7 is a random variable 
uniformly distributed on [0,1]. 

a) What is the probability that an opposite individual will be generated for 
a randomly selected individual z*;? 

b) Does the probability that you derive make intuitive sense in the limit as 
a —» 0 and a —» oo? 

16.8 In Figures 16.9 and 16.10 we arbitrarily defined the starting point of the 
greedy opposite β of route a to be the same as the starting point of a. However, 
the proximity of β relative to a depends on the starting point. Consider the route 
a = {A -+ B -> C -+ D -> E}. 

a) What is the greedy opposite β if the starting city of β is A, and what is 
its proximity relative to a? 

b) What is the greedy opposite β if the starting city of β is B, and what is 
its proximity relative to a? 

16.9 What are the minimum and maximum values of s in Equation (16.37)? 

16.10 Suppose we use the dual adaptation logic of Equation (16.37) with the 
recommended constants, and that Nv = 0.1N after the first generation. What will 
the value of 7Vd be during the second generation? 
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Computer Exercises 

16.11 Write a program that sets x* ~ U[a,b] for some arbitrarily chosen values 
a and b such that a < b. Set x ~ U[a, 6], set x0 to the reflected opposite of x, and 
set χ ς ο to the quasi opposite of x. Check which opposite is closer to x*. Run the 
program a few thousand times to confirm Theorem 16.1. 

16.12 Solve Problem 16.11 for n = 1 to 20, where n is the number of dimensions. 
Plot the probability that \\xqo — x*\\2 < \\χο — X*\U as a function of n. Comment 
on your results. 

16.13 Repeat Example 16.4 with the fitness-based proportional opposition logic 
of Figure 16.8. Use p — 0.1, 0.5, and 1.0. What is the average (over 20 Monte 
Carlo simulations) of the lowest cost found by OBBO for each of these values of pi 
Comment on your results. 





CHAPTER 17 

Other Evolutionary Algorithms 

What has been will be again, what has been done will be done again; there is nothing 
new under the sun. 

—Ecclesiastes 1:9 

This chapter gives an overview of some of the EAs that we have not had time 
to discuss in previous chapters. Some of the algorithms in this chapter are in the 
murky region between evolutionary and non-evolutionary algorithms, and so this 
chapter seems to be a good place to summarize them. Other algorithms in this 
chapter are clearly evolutionary but are also new, and so it is not clear how much 
of an impact they will have on future EA theory and practice. When deciding 
which EAs to include in this book it was clear that G As, EP, ES, and GP should 
be covered in Part II because of their foundational importance and their history. 
Deciding which EAs to include in Part III was less clear. The EAs discussed in 
the previous chapters reflect the author's personal biases and his opinions of the 
importance of each algorithm. 

There are several optimization algorithms that do not have their own chapter in 
this book but that we should discuss to at least some extent. That is the purpose 
of this chapter. The algorithms in this chapter are not necessarily less important, 
less effective, or less useful than those in previous chapters. Their placement in this 
chapter simply reflects the author's limited experience and subjective interests. 

Evolutionary Optimization Algorithms, First Edition. By Dan J. Simon 421 
©2013 John Wiley & Sons, Inc. 
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17.1 TABU SEARCH 

Tabu search (TS) was introduced in [Glover and McMillan, 1986]. Tabu, or taboo, 
means forbidden, banned, or not allowed. Forbidden items, speech, or practices can 
be based on culture, religion, morality, or politics. TS is not strictly a population-
based approach to optimization, but it can be considered an EA because it is based 
on the natural world, and it is an iterative search process. TS is based on the idea 
that if a certain region of search space has already been visited during the search 
process, then it is tabu and the search algorithm is discouraged from visiting it 
again. Similarly, if a certain search strategy has already been used during the search 
process, then that search strategy is tabu and the search algorithm is discouraged 
from using it again. 

Figure 17.1 outlines a basic TS algorithm, where T is a list of tabu features, 
and #o is the current best candidate solution. When we create children from XQ, 
we do not allow the search process to include features from T. When an improved 
candidate solution x' is found, we add features from x' to the tabu list T. We 
periodically remove features from T, perhaps based on how long they have been 
in T. This simulates the gradual changing of tabu with time, as we see in human 
society. Note that the test for (features of x') $_ T in Figure 17.1 is intentionally 
left ambiguous. The details of this test depends on the problem, on the method 
used to create neighbors of XQ, on user preference, and on other details. 

Initialize a candidate solution xo 

While not (termination criterion) 
Children <- 0 
While |Children| < M 

Create a neighbor x' of XQ 
If (features of x') £ T 

Children <- Children U x' 
End if 

End while 
x' <— argmin(/(x) : x G Children) 
I f / (* ' )< / (*<>) 

Γ ^ Τ υ (features from x') 
xo +- x' 

End if 
Remove old features from T 

Next generation 

Figure 17.1 Outline of a tabu search (TS) algorithm to find the minimum of f(x). Each 
iteration includes the creation of M children, where M is a user-specified parameter. 

We can use many variations on the algorithm in Figure 17.1. For example, we 
could have varying degrees of tabu. We could also have a tabu list that contains 
not features to avoid, but that instead contains search strategies to avoid. TS is 
often used to augment other EAs. The brief outline in this section is intended to 
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give the reader enough information to implement a simple TS algorithm, learn the 
basic idea of TS, and learn more details from other sources. Additional reading 
about TS can be found in [Reeves, 1993, Chapter 3], [Glover and Laguna, 1998], 
[Gendreau, 2003], and [Gendreau and Potvin, 2010]. 

17.2 ARTIFICIAL FISH SWARM ALGORITHM 

The artificial fish swarm algorithm (AFSA), which was proposed in [Li et al., 2003] 
and is sometimes called the artificial fish school algorithm, is loosely based on the 
swarming behavior of fish. The position of an artificial fish in a search space is 
denoted as Xi, where i G [l,iV] is the index of the fish, and N is the number of 
fish in the swarm. We denote the search domain for each dimension as [lk,Uk] for 
k G [l ,n], where n is the dimension of the search space. Fish have a visual field 
within which they can see other fish, and beyond which they cannot see other fish. 
The visual range of the fish is defined as 

v = ôma,x(uk — h) (17.1) 
k 

where δ is a tuning parameter that is often gradually decreased during the opti-
mization process. [Fernandes et al., 2009] has found that values of Ô between 1 
and 10 give good performance for problems with between two and four dimensions, 
although this range may need to be adjusted for problems with more dimensions. 
The indices of the fish that are within visual range of fish xi are denoted as follows: 

Vi = {j^i:\\xi-xj\\2<v}. (17.2) 

A fish is said to be in a crowded environment if there are relatively many fish within 
its visual range: 

> Θ =£> The visual scope of Xi is crowded 

< Θ => The visual scope of xi is not crowded (17.3) 

where Θ is a tuning parameter. [Fernandes et al., 2009] has found that Θ « 1 gives 
good performance for low-dimensional problems. AFSA fish have five distinct be-
haviors which we discuss next: random, chasing, swarming, searching, and leaping. 

17.2.1 Random Behavior 

Sometimes fish behave randomly; that is, they move in a random direction in 
the search space. Figure 17.2 shows pseudo-code for a random move. Random 
behavior occurs if a fish does not have any other fish within its visual range, or if 
the optimization process has stagnated. Stagnation is defined as a failure of the 
best individual in the population to significantly improve during the previous m 
generations: 

a r g m i n / i _ m ( x ) — argmin/ t (x) < η = > Stagnation (17.4) 
X X 

where ft(x) is the optimization function value of individual x at the t-th generation, 
m is a positive integer-valued tuning parameter, and η is a non-negative tuning 

m 
N 

m 
N 
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parameter. We assume in Equation (17.4) that our optimization problem is a 
minimization problem. [Fernandes et al., 2009] has found that m « 10η and η « 
1 0 - 4 gives good performance for low-dimension benchmark problems, where n is 
the problem dimension. 

For k — 1 to n 
r <- L7[0, 1] 
If r < 1/2 then 

p<-£ / [0 , l ] 
yi(k) <- Xi(k) + pmm(v,uk - Xi(k)) 

else 
p + - t / [ 0 , l ] 
yi(k) <- Xi(k) - pmin(v,Xi(k) - lk) 

End if 
Next dimension 

Figure 17.2 Random behavior in an artificial fish swarm algorithm. This code shows a 
random move of fish xi to a new location yt, where n is the number of dimensions in the 
optimization problem, [/[0,1] is a random number uniformly distributed in [0,1], and v is 
the visual range defined in Equation (17.1). 

17.2.2 Chasing Behavior 

Sometimes a fish moves toward the fish that is at the location of highest food 
concentration within its visual range. Chasing behavior for fish Xi is described as 
follows: 

j * <- axgmin{/(xj) : j <E Vi) 
3 

yi <r- Xi + r(xj* - Xi) (17.5) 

where r G [0,1] is a uniformly distributed random variable, and yi is the new 
location of Xi. We again assume that our optimization problem is a minimization 
problem, so j * is the index of the fish within the visual range of X{ that has the best 
performance on our optimization problem. If a fish is not within visual range of any 
other fish, then it cannot engage in chasing behavior. Also, X{ chases another fish 
only if the best fish Xj* within its visual range has better optimization performance 
than Xi. 

17.2.3 Swarming Behavior 

Fish are social creatures, so sometimes they congregate. In this case, a fish Xi 
moves toward the centroid Q of the fish that are within its visual range. Swarming 
behavior for fish Xi is described as follows: 

Ci *~ ^ S X j 

yt <- xi + r(ci - Xi) (17.6) 
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where r G [0,1] is a uniformly distributed random variable, and yi is the new 
position of fish x^. If a fish is not within visual range of any other fish, then it 
cannot engage in swarming behavior. Swarming occurs only if the fish's visual 
scope is not empty, and it is not crowded, and f(c{) is better than f(xi). 

17.2.4 Searching Behavior 

When a fish sees another fish that has more food, it moves toward that fish. Search-
ing behavior for fish Xi is described as follows: 

j <— random integer G Vi 

yi <- Xi + r(xj - Xi) (17.7) 

where r G [0,1] is a uniformly distributed random variable, and yi is the new 
location of fish £;. Searching behavior is the movement of a fish toward a randomly 
selected fish that is within its visual range. If a fish is not within visual range of any 
other fish, then it cannot engage in searching behavior. Searching behavior occurs 
if the fish's visual scope is crowded, or if the fish's visual scope is not crowded 
and f(ci) in Equation (17.6) is worse than f(xi), or if the fish's visual scope is not 
crowded and f(xj*) in Equation (17.5) is worse than f(x). 

17.2.5 Leaping Behavior 

Sometimes a fish randomly leaps through the search space. This is analogous to a 
fish leaping out of the water and randomly landing in a different location. Leaping 
occurs for a single randomly-selected fish if the optimization process has stagnated 
as indicated in Equation (17.4). Figure 17.3 shows pseudo-code for the leaping 
behavior of a fish. 

For k — 1 to n 
r *- C/[0,1] 
p < - t f [ 0 , l ] 
If r < 1/2 then 

Xi(k) <- Xi(k) + p(uk - Xi(k)) 
else 

Xi(k) <- Xi(k) - p(xi(k) - h) 
End if 

Next dimension 

Figure 17.3 Leaping behavior in an artificial fish swarm algorithm. This code shows a 
leap of individual Xi in an artificial fish swarm algorithm, where n is the number of dimensions 
in the optimization problem, and f/[0,1] is a random number uniformly distributed in [0,1]. 
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17.2.6 A Summary of the Artificial Fish Swarm Algorithm 

AFSA uses a greedy selection method. That is, after random, chasing, swarming, 
and searching behavior, the fish Xi moves to its new position yi only if that new 
position is better than its old position. Figure 17.4 shows pseudo-code for the 
AFSA, which appears to have behavior similar to particle swarm optimization. 
Researchers have proposed many variations and hybrids of the AFSA [Neshat et al., 
2012]. Analyzing and modeling AFSA mathematically, incorporating additional 
features from biological fish behavior, and clarifying the relationship between AFSA 
and PSO, could all be important and fruitful areas for future AFSA research. 

N = population size 
Initialize a random population of candidate solutions {xi} for i G [1, N] 
While not (termination criterion) 

For each individual Xi 
Find the fish in the visual scope of Xi as shown in Equation (17.2) 
If Vi = 0 then 

yi <— random move as shown in Figure 17.2 
else if the visual scope of xi is crowded (see Equation (17.3)) then 

Hi <— search move as shown in Equation (17.7) 
else 

If f(a) < f(xi) (see Equation (17.6)) then 
yi <— swarm move as shown in Equation (17.6) 

else 
2/i <— search move as shown in Equation (17.7) 

End if 
If f(xj*) < }{xi) (see Equation (17.5) then 

yi <- chase move as shown in Equation (17.5) 
else 

yi 4- search move as shown in Equation (17.7) 
End if 
yi <- a r g m i n { / ( ^ ) , / ( ^ ) } 

End if 
Next individual 
Xi <- axgmin{/(x»),/(s/i)} for i G [1,7V] 
If the algorithm has stagnated as indicated in Equation (17.4) then 

j «— random integer G [l,iV] 
Xj «— leap move as shown in Figure 17.3 

End if 
Next generation 

Figure 17.4 An artificial fish swarm algorithm (AFSA) for minimizing the n-dimensional 
function f(x), where xi is the i-th candidate solution. 
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17.3 GROUP SEARCH OPTIMIZER 

The group search optimizer (GSO), also called group search optimization, is based 
on the food foraging behavior of animals [He et al., 2009]. This foundation is 
similar to that of the fish swarm algorithm (Section 17.2) and bacterial foraging 
optimization (Section 17.6), but GSO is based on the observed behaviors of land-
based animals. 

Some animals focus their efforts on searching for food; these animals are called 
producers. Other animals focus their efforts on following other animals and exploit-
ing the food-finding success of others; these animals are called joiners, or scroungers. 
GSO includes a third type of animal called rangers, which perform a random walk 
to search for resources. Each individual has a location in the n-dimensional search 
space denoted as Xi, and a heading angle denoted as φι = [ φι^ · · · φί,η-ι ] · 

Producers 

GSO assumes that there is only one producer in the population. The producer role is 
assumed at each generation by the individual with the lowest cost. Each generation, 
the producer scans three points in his immediate surroundings for a better cost 
function value than his current location in search space. This corresponds to local 
search. If we denote the producer as xp , then the three points are 

xr = xv + rii max 

Β(φρ + r 2 0 m a x /2) 
xi = xp + rilmaxD(</>p - r29max/2) (17.8) 

where r\ is a zero-mean, unity-variance, normally distributed random variable;1 

T2 G [0,1] is a uniformly distributed random variable; φρ is the heading angle of 
Χρ', 'max is a tuning parameter that defines how far the producer can see; 0m a x is a 
tuning parameter that defines how far the producer can turn his head; and D(-) is 
a polar-to-Cartesian coordinate transformation defined as 

Ό(φρ) = [άχ · . . dn] 
n-l 

d\ = J J cos φνΛ 

9=1 

n - l 

dj — sinφρ^-i TT cosφρ^ for j G [ 2 , n - l ] 
Q=3 

dn = sin0p5 n_i. (17.9) 
If the producer finds a better cost function value at one of the points defined 
by Equation (17.8), then it immediately moves to that point; otherwise, it remains 
where it is and randomly moves its heading angle φρ to a new value. If the producer 
cannot find a better point after am a x searches, then it moves its heading angle back 
to the value that it was am a x generations ago. However, it is not clear why this last 
strategy should have any effect on optimization performance, and so we might be 
able to safely neglect it. 

1Note that this definition of r\ allows the producer to look backward as well as forward in the 
three specified directions. 
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Scroungers 

Scroungers generally move toward the producer. But they do not move directly 
toward the producer; instead they move in a sort of zig-zag pattern toward the 
producer, which allows them to search for lower cost function values while they 
move. A scrounger's movement is modeled as 

Xi<- Xi + r3o (xp - Xi) (17.10) 

where r% is an n-dimensional vector of random variables, each of which is uniformly 
distributed on [0,1]; and o represents element-by-element multiplication. 

Rangers 

Rangers randomly travel through the search space looking for areas with low cost 
function values. Ranger movement is modeled as 

Φτ <- Φί+ potmax 

xi <- £i + amax/maxri£>(<^) (17.11) 

where a m a x is a tuning parameter that defines how far a ranger can turn his head; 
p G [—1,1] is a uniformly distributed random variable; Zmax is a tuning parameter 
that is related to the maximum distance that a ranger can travel in one generation, 
and is the same as Zmax in Equation (17.8); and r\ is a zero-mean, unity-variance, 
normally distributed random variable. 

Summary 

Figure 17.5 outlines the GSO, and shows that GSO has several tuning parameters. 
Note that Figure 17.5 specifies that one individual is a producer, about 80% of 
the individuals are scroungers, and about 20% of the individuals are rangers. [He 
et al., 2009] studies the effect of these settings and the other tuning parameters, 
and recommends the following: 

o m a x = round y/n + 1 

0max = V a m a x 

^max = "max/^ 

/max = \\U-L\\2 (17.12) 

where the n-dimensional vectors U and L are the upper and lower bounds of the 
search space, respectively. 

GSO is similar to PSO. One difference is that in PSO, each individual retains 
a memory of its previous locations in search space. Another difference is that in 
PSO, each individual performs the same search strategy. One distinctive of GSO 
is its ranging behavior, although this behavior is also seen in the catfish PSO (see 
Section 11.7). Promising directions for future GSO research include mathematical 
modeling and analysis, on-line adaptation of tuning parameters, and the incorpo-
ration of additional nature-inspired features. 
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TV = population size 
Initialize a random population of candidate solutions {x{} for i e [l,iV] 
Randomly initialize the heading angle φι of each candidate solution Xi 
While not (termination criterion) 

Find the producer: xp <- aigminXi{f(xi) : i G [1,TV]} 
{xz,xr,xi} <— scanning result of Equation (17.8) 
Iîmm{f(xz),f(xr),f(xi)} < f(xp) then 

xp <- a r g m i n { / ( ^ ) , / ( x r ) , / ( x / ) } 
else 

p<-U[-l,l] 
φ(Χρ) <- φ(Χρ) + 

End if 
For each Xi φ χρ 

r2 <- U[0,1] 
If r2 < 0.8 

Let Xi scrounge using Equation (17.10) 
else 

Let Xi range using Equation (17.11) 
End if 

Next individual 
Next generation 

Figure 17.5 A group search optimizer (GSO) for minimizing the n-dimensional function 
/(#), where Xi is the i-th candidate solution. 

17.4 SHUFFLED FROG LEAPING ALGORITHM 

The shuffled frog leaping algorithm (SFLA) was introduced in [Eusuff and Lansey, 
2003], [Eusuff et al., 2006] as a hybrid of PSO and shuffled complex evolution 
(SCE). SCE is based on the idea of allowing sub-populations to evolve independently 
while periodically allowing interactions between the sub-populations [Duan et al., 
1992], [Duan et al., 1993]. SCE uses probabilistic selection of parents in each sub-
population and also randomly creates new individuals to prevent stagnation. SFLA 
is based on ideas from both SCE and PSO. 

Figure 17.6 illustrates the global search strategy of the SFLA. We begin by ran-
domly creating a set of TV candidate solutions. We then divide these TV individuals 
into m sub-populations, also called memeplexes. Usually TV is a multiple of m so 
that each sub-population contains the same number of individuals. We then per-
form a local search algorithm in each sub-population. At the beginning of the next 
generation, we shuffle the population so that each individual is randomly assigned 
to a new sub-population. Common tuning parameters for the SFLA include a pop-
ulation size TV of about 200, with about m = 20 sub-populations [Elbeltagi et al., 
2005]. 

The statement "perform local search" in Figure 17.6 indicates execution of the 
algorithm of Figure 17.7. During local search, each sub-population independently 
performs an evolutionary search for zmax iterations. Each iteration, we update only 
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xw, which is the sub-population individual with the worst cost: 

xw —̂ Xw +r(xb — xw) (17.13) 

where r G [0,1] is a uniformly distributed random number, and x^ is the sub-
population individual with the best cost. If Equation (17.13) does not improve xw, 
then we update it again as follows: 

Xw «- Xw + r(xg - xw) (17.14) 

where r G [0,1] is a new random number, and xg is the globally best individual 
from all m sub-populations. If Equation (17.14) does not improve xw, then we 
replace xw with a randomly-generated individual. The iteration limit 2m a x = 10 
is a common tuning parameter in Figure 17.7 [Elbeltagi et al., 2005]. Promising 
directions for future SFLA research include mathematical modeling and analysis, 
and the incorporation of additional nature-inspired features. 

Initialize a random population {xi} for i G [1, JV] 
While not (termination criterion) 

Randomly divide the population into m sub-populations 
For each sub-population i = 1 to m 

Perform local search in the z-th sub-population (Figure 17.7) 
Next sub-population 

Next generation 

Figure 17.6 The above pseudo-code outlines the global search strategy of the shuffled 
frog leaping algorithm (SFLA). 

Find the best individual in the entire population, xg 

For i = 1 to i m a x 

Find the best and worst sub-population individuals, Xb and x, 
Use Equation (17.13) to update xw 

If the update did not improve xw then 
Use Equation (17.14) to update xw 

If the update did not improve xw then 
xw «— randomly-generated individual 

End if 
End if 

Next iteration 

Figure 17.7 The above pseudo-code outlines the local search strategy of the shuffled frog 
leaping algorithm (SFLA). 
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17.5 THE FIREFLY ALGORITHM 

The firefly algorithm was introduced in [Yang, 2008b, Chapter 8], [Yang, 2010b]. 
The firefly algorithm is based on the attraction of fireflies to one another. Attraction 
is based on the perceived brightness of a firefly, which exponentially decreases with 
distance. A firefly is attracted only to those fireflies that are brighter than itself. 

Figure 17.8 shows pseudo-code for the firefly algorithm. As 7 —> 0, all fireflies 
are attracted to each other equally, which corresponds to zero dispersion of light in 
the atmosphere. We would observe this type of behavior in a vacuum. As 7 —> 00, 
fireflies are not attracted to each other at all, which corresponds to random flight 
and a random search. We would observe this type of behavior in a dense fog. The 
parameters ßo and a determine the tradeoff between exploitation (attraction to 
other fireflies) and exploration (random search). Typical tuning parameters are as 
follows: 

To 7» = π ΓΓ-, where 70 = 0.8 
m a x j \\Xi — Xj\\2 

a = 0.01 
ßo = 1. (17.15) 

Each firefly Xi compares its brightness with every other firefly Xj, one at a time. If 
Xj is brighter than £;, then xi will make a move that includes both a component 
that is random, and a component that is directed toward Xj. The quantity ar 
in Figure 17.8 is the random component. This is usually relatively small due to 

2 
the small value of a (see Equation 17.15). The quantity ßoe~lir^(xj — Xi) is the 
directed component; as stated earlier, its magnitude is an exponential function of 
the distance r^ between Xj and Xi. Although the exponential function is biologically 
motivated, we might want to try some other functions that decrease with increasing 
distance. 

One thing that we notice from Figure 17.8 is that the best individual in the pop-
ulation is never updated. We might be able to improve the algorithm's performance 
if we periodically update the best individual to search for a better one. However, 
this approach might be a high-risk, low-payoff operation in that it could require 
many function evaluations before finding a location in search space that is better 
than the currently best position. 

Additional variations on the firefly algorithm are discussed in [Lukasik and Zak, 
2009], [Yang, 2009b], [Yang, 2010a]. For example, the parameter a is often a de-
creasing function of time, which serves to reduce exploration as the population 
becomes more optimized. A version of the algorithm for combinatorial problems 
has been proposed in [Sayadi et al., 2010]. The firefly algorithm, like the AFSA dis-
cussed of Section 17.2, is very similar to PSO (see Chapter 11). We can make some 
simple modifications to the firefly algorithm of Figure 17.8 to make it equivalent to 
a special case of PSO (see Problem 17.5). 
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Initialize a random population {xi} for i 6 [1, N] 
While not (termination criterion) 

For each individual Xi 
For each individual Xj φ χ^ 

If/(*, ·) < / ( * * ) 
For each dimension k G [l,n] 

p < - t f [ 0 , l ] 
If p < 1/2 

rk<-(uk-Xi(k))U[0,l] 
else 

rk<-{xi(k)-lk)U[0,l] 
End if 

Next dimension k 
Tij <— distance between Xi and Xj 
Xi <r- Xi + ß§e~liTii (XJ — Xi) + ατ (this is a vector operation) 

End if 
Next Xj 

Next Xi 
Next generation 

Figure 17.8 A firefly algorithm for minimizing the n-dimensional function f(x). In this 
algorithm, x% is the i-th candidate solution, and x%(h) is the fc-th element of Xi. U[0,1] is 
a random number uniformly distributed on [0,1], and lk and uk are the lower and upper 
bounds of the fc-th dimension of the search space, respectively. 

17.6 BACTERIAL FORAGING OPTIMIZATION 

The bacterial foraging optimization algorithm (BFOA) was introduced in [Passino, 
2002] and is based on the behavior of escherichia coli bacteria, commonly known as 
E. coli. BFOA is based on the premise that natural selection favors the propagation 
of genetics that lend themselves to successful food foraging behaviors. Food foraging 
is, of course, common among all species, not only bacteria. Sometimes animals 
forage cooperatively, and sometimes they forage alone. If they forage alone, they 
have the advantage of keeping the food that they find entirely to themselves. But if 
they forage in teams, they have the advantage of being able to more easily fight off 
predators. Animals need to balance the probability of foraging success with risks 
from predators. 

If an animal finds a geographical area with a lot of food, the animal needs 
to balance its exploitation of those known resources with the possibility of finding 
better resources in another location; this is another type of risk-balancing behavior. 
As an animal depletes its resources in a given location, there is an optimal time to 
leave the known resources to search for regions with more resources. 

Foraging also includes behaviors besides searching for food. Foraging includes 
pursuing and attacking the prey, and also consuming the prey. If the prey is larger 
than the predator, then the predators need to coordinate with each other to attack 
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and consume the prey. If the prey is smaller than the predator, then it may be 
more optimal for the predator to forage on its own. Some foragers continually 
move through their environment while searching for prey. Other foragers remain 
hidden in a stationary location and wait for prey to come within striking distance. 
Other foragers practice a combination of these approaches. BFOA is specifically 
modeled on the foraging behavior of bacteria, but foraging theory is a widely studied 
discipline [Stephens and Krebs, 1986], [Giraldeau and Caraco, 2000] that has many 
potential applications to optimization theory [Quijano et al., 2006]. 

BFOA is based on three behaviors of bacteria. First, bacteria propel themselves 
through their environment; this behavior is called chemotaxis. Second, bacteria 
reproduce. Third, bacteria are eliminated from, and dispersed throughout, their 
habitat due to environmental events. 

Chemotaxis 

The first behavior of bacteria, self-propulsion or chemotaxis, can be further divided 
into two behaviors. First, bacteria can tumble in random directions. Second, they 
can propel themselves in the direction of an increasing food supply. This second 
type of self-propulsion is influenced not only by the food supply, but also by the 
presence of other bacteria. Other bacteria serve to both attract and repel each 
other. They have a certain level of attraction because the presence of a bacterium 
at a certain location implies that there is food at that location. They have a certain 
level of repulsion because the presence of a bacterium at a certain location indicates 
that there is competition for food at that location. 

Suppose that we want to find the minimum of a function / ( # ) . In BFOA, the 
self-propulsion of a bacterium is modeled as 

x<r-x + cA (17.16) 

where x is the location in the search space of an individual in the population, 
c is the step size, and Δ is a unit vector in some direction in the search space. 
When tumbling, Δ is a random unit vector. The combination of attraction and 
repulsion by other bacteria results in an effective cost function f'(x) perceived by 
an individual x as follows: 

N 

f(x) = f(x) + Σ [hexP {-u>r\\x - Xi\\l) - dexp (-wa\\x - Xi\\l)] (17.17) 

where N is the population size, and h, iur, d, and wa are tuning parameters related 
to the repulsive and attractive forces that bacteria exert on each other. If an 
individual x tumbles in a direction that decreases / ' ( # ) , then it continues moving 
in that direction, although an upper limit Ns (another tuning parameter) is placed 
on the number of moves in a given direction. 

Reproduction 

Each individual repeats the self-propulsion described above for iVc iterations. That 
is, it first tumbles in a random direction. If the random tumble decreases / ' ( # ) , 
it continues moving in that direction. 7VC movements defines the lifetime of each 
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bacterium. After this, the health of each bacterium is measured as its average 
f'(x) value over the previous Nc iterations. The most healthy half of the bacteria 
reproduce by spawning two clones per bacterium, thus providing N new bacteria 
for the next generation. 

Elimination and Dispersal 

After reproduction, the elimination-dispersal step takes place. Each bacterium is 
dispersed to a random location in the search space with probability pe (another 
tuning parameter). 

Summary 

Figure 17.9 outlines a basic BFOA. Typical tuning parameters are given as follows 
[Passino, 2002]: 

step size c = 0.1 
population size N = 50 

number of chemotaxis steps Nc = 100 
number of cost reduction steps Ns = 4 

number of reproduction steps Nr = 4 

number of elimination-dispersal steps Ne = 2 
attraction force depth d = 1 
repulsion force depth h = 1 

attraction force width wa = 0.2 
repulsion force width wr = 10 

probability of elimination-dispersal p e — 0.25. (17.18) 

The number of generations in BFOA is not as well-defined as in other EAs. The 
outermost loop of Figure 17.9 executes Ne times, which is typically only twice. 
The best way to measure EA computational effort is not with generations but with 
function evaluations. 

We note from Figure 17.9 that individuals reproduce by cloning. We might be 
able to improve performance by using a more sophisticated recombination operation 
(see Section 8.8), even though this would stray from the bacterial foundations of 
BFOA. Also, we arbitrarily clone the best half of the population in Figure 17.9 to 
create the next generation. We could instead clone the best B individuals, where 
B is a tuning parameter. 

BFOA is a research area with many possibilities. There are many aspects of 
bacterial foraging, and animal foraging in general, that could be modeled to obtain 
improved optimization performance. Automatic adaptation of the tuning parame-
ters might be especially important for BFOA since there are so many parameters, 
and this could give improved performance [Dasgupta et al., 2009]. BFOA could be 
hybridized with other EAs, as it already has been with PSO [Biswas et al., 2007b] 
and DE [Biswas et al., 2007a]. Some mathematical analysis of BFOA is provided 
in [Das et al., 2009], although much more remains to be done in that area. Note 
that the bacterial chemotaxis model is a separate but similar EA that is based on 
the behavior of bacteria [Muller et al., 2002]. 
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Initialize the parameters shown in Equation (17.18) 
Initialize a random population {x^ for i G [1, N] 
For I = 1 to Ne (elimination-disperal steps) 

For k = 1 to Nr (reproduction steps) 
For j = 1 to Nc (chemotaxis steps) 

For each individual Xi, i G [1, Af] 
Compute effective cost as shown in Equation (17.17) 
Generate a random n-dimensional unit vector Δ 
For m — 1 to Ns (cost reduction steps) 

Xi «— Xi + cA 
If f'(xi) <f'(xi) then 

Xi Λ Xi 

else 
m <- Ns (exit the cost reduction loop) 

End if 
Next m 

Next individual 
Next j 
For each individual Xi, i G [l,iV] 

Fi <— average value of ff(xi) during iVc steps of chemotaxis loop 
Next individual 
Eliminate the worst N/2 individuals based on {Fi} 
Clone the best N/2 individuals based on {Fi} 

Next k 
For each individual Xi, i G [1,N] 

Random number r «— Z7[0,1] 
If r < pe then 

Xi <- random point in the search space 
End if 

Next individual 
Next I 

Figure 17.9 A bacterial foraging optimization algorithm (BFOA) for minimizing the 
n-dimensional function f(x), where Xi is the i-th. candidate solution. 

17.7 ARTIFICIAL BEE COLONY ALGORITHM 

The artificial bee colony (ABC) algorithm is based on the behavior of bees and was 
first published in [Bastürk and Karaboga, 2006], [Karaboga and Bastürk, 2007]. 
ABC is based on the search by bees for an optimal food source. The location of a 
food source is analogous to a location in the search space of an optimization prob-
lem. The amount of nectar at a location is analogous to the fitness of a candidate 
solution. ABC simulates three different types of bees. 

First, forager bees, also called employed bees, travel back and forth between a 
food source and their hive. Each forager is associated with a specific location, and 
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remembers that location as it travels back and forth between the hive. When a 
forager takes its nectar to the hive, it returns to its food source, but it also engages 
in local exploration as it searches in the nearby vicinity for a better source. 

Second, onlooker bees are not associated with any particular food source, but 
they observe the behavior of the foragers when they return to the hive. Onlookers 
observe the amount of nectar that is returned by the foragers (that is, the fitness of 
each forager's location in search space), and use that information to decide where to 
search for nectar. The onlookers' search location is decided probabilistically based 
on their observations of the foragers. 

Third, scout bees are explorers and, like onlookers, are not associated with any 
particular food source. If a scout sees that a forager has stagnated and is not 
progressively increasing the amount of nectar that it returns to the hive, then the 
scout randomly searches for a new nectar source in the search space. Stagnation is 
indicated when the explorer fails to increase the amount of nectar it brings to the 
hive after a certain number of trips. 

These ideas lead to the ABC algorithm, which is summarized in Figure 17.10. 
The figures shows that the division between forager, onlooker, and scout bees is 
simply an analogy, and is not pressed too far in the ABC algorithm. The key 
idea of the ABC algorithm is that foraging, onlooking, and scouting behaviors are 
simulated in the search for a global optimum. 

Figure 17.10 shows that each forager randomly modifies its position in the search 
space. If the random modification results in an improvement, then the forager 
moves to the new position. The onlooker bees also randomly modify the position of 
a forager, where the forager that is modified is randomly chosen using roulette-wheel 
selection. Again, if the random modification improves the forager, then the forager 
moves to the new position. Finally, a scout replaces a forager if the forager has 
not improved after a preset number of random modifications. The T(xi) counters 
in Figure 17.10 are forager trial counters that keep track of how many consecutive 
unsuccessful modifications have been performed for each forager. Figure 17.10 
shows that ABC includes several tuning parameters. Typical ABC parameters are 

Pf = P0 = N/2, stagnation limit L = Nn/2. (17.19) 

The literature discusses several variations of the ABC algorithm [Karaboga and Bas-
türk, 2007], [Karaboga and Bastürk, 2008], [Karaboga and Akay, 2009], [Karaboga 
et al., 2013], and we could think of many modifications by examining Figure 17.10. 
For instance, Figure 17.10 shows that each forager updates its position determin-
istically if it finds a better position; we could instead make this update stochas-
tic. Figure 17.10 also shows that onlookers choose which forager to follow based 
on roulette-wheel selection; we could instead use another fitness-based selection 
method (see Section 8.7). 

Several other algorithms similar to ABC have been proposed; see [Tereshko, 
2000], [Teodorovic, 2003], [Benatchba et al., 2005], [Wedde et al., 2004], and the 
references in [Karaboga and Bastürk, 2008]. One algorithm that is very similar 
to ABC is the bees algorithm [Pham et al., 2006]. The evolutionary algorithm 
in this book with which ABC seems to have the most in common is differential 
evolution (DE; see Chapter 12). Future research in the area of ABC could include 
the investigation of its commonality with DE, its commonality with other bee-
oriented algorithms such as those referenced above, and the incorporation of more 
biologically-inspired features. 
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N = population size 
Initialize the positive integer L, which is the stagnation limit 
Initialize the forager population size Pf < N 
Initialize the onlooker population size P0 = N — Pf 
Initialize a random population of foragers [xi] for i G [1, Pf] 
Initialize the forager trial counters T(xi) = 0 for i G [1, Pf] 
While not (termination criterion) 

Forager Bees: 
For each forager x^, i G [1, Pf] 

k 4— random integer G [1, N] such that k φ i 
s <r- random integer G [l,n] 
r f - [ / [ - l , l ] 
Vi(s) <- Xi(s) + r(xi(s) - Xk(s)) 
If f(vi) is better than f(xi) then 

Xi <— Vi 

T{Xi) <- 0 
else 

T(Xi) <r- T{Xi) + 1 
End if 

Next forager 
Onlooker Bees: 
For each onlooker Vi, i G [1,P0] 

Select a forager Xj, where Pr(xj) oc fitness(xj) for j G [1, Pf] 
k «— random integer G [1, Pf] such that k φ j 
s «— random integer G [l,n] 
r<-U[-l,l] 
Vi(s) <- Xj(s) + r(xj(s) - Xk(s)) 
If / ( f i ) is better than f(xj) then 

Xj «— Vi 

Γ(χ , ) <- 0 
else 

T(xj) <- Τ(χ^) + 1 
End if 

Next onlooker 
Scout Bees: 
For each forager x i? i G [1, P/] 

If T(xi) > L then 
Xi «— randomly-generated individual 
T(xO *- 0 

End if 
Next forager 

Next generation 

Figure 17.10 An artificial bee colony (ABC) algorithm for optimizing the n-dimensional 
function /(#), where Xi is the i-th candidate solution. 
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17.8 GRAVITATIONAL SEARCH ALGORITHM 

The gravitational search algorithm (GSA) was introduced in [Rashedi et al., 2009] 
and is based on the law of gravity. GSA is similar to central force optimization, 
which is a deterministic evolutionary optimization algorithm that is also based on 
gravity [Formato, 2007], [Formato, 2008]. Other similar algorithms include space 
gravitational optimization [Hsiao et al., 2005], and integrated radiation optimiza-
tion [Chuang and Jiang, 2007]. GSA is similar to particle swarm optimization and 
operates on the principle that each individual in the population has a position and 
velocity in the search space, but it also includes an acceleration. The particles at-
tract each other based on their mass values, which are proportional to their fitness 
values (that is, inversely proportional to their cost values). Figure 17.11 depicts 
the GSA algorithm. 

Initialize a random population of individuals {xi}, i £ [1,N] 
Initialize each individual's velocity Vi, i G [1, N] 
Initialize the gravitational constant Go and the decay rate a 
Initialize the generation number t — 0 and the generation limit tn 

While not (termination criterion) 
Gravitational constant G <— Goexp(—at/tm8iX) 
For each individual Xi, i G [l,iV] 

m . <— f{xi)-maxkf(xk) p [Λ il 
"H ^ min,, /ïx^-max*. fix,,) ^ lU> 1J minfc /(xfc)-maxfc f(xk 

Normalized fitness Mi <r- N 
fc=imfc 

Next individual 
For each individual Xi, i G [1, N] 

Distance Rik <— \\xk — x%\\2 for /c G [1,N] 
Force vector Fik <- G^+e

h (xk ~ x%) for k G [1, TV] 
Random number rk «— C/[0,1] for k G [1,N] 
Acceleration vector α* <- -^- ^2k=lk¥:i rkFik 

Random number r <— £/[0,1] 
Velocity vector Vi «— rvi + α̂  
Position vector 

Next individual 
Increment generation number: t «— t + 1 

Next generation 

Figure 17.11 A gravitational search algorithm for minimizing f(x), where Xi is the i-th 
candidate solution, e is small positive constant to prevent division by zero. 

In the generational loop of Figure 17.11, we first update the value of the gravi-
tational constant G. The time invariance of G in nature is a matter of debate, with 
some physicists arguing that it is time varying [Jofré et al., 2006]. The gradual 
reduction of G in GSA reduces the exploration component of the algorithm as time 
progresses. Next, we set the fitness values so that the worst individual has a fitness 
rrii = 0 and the best individual has a fitness rrii = 1; the fitness values correspond 
to gravitational masses. Next, we obtain normalized fitness values {Mi} that sum 
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to 1. Next, for each pair of individuals, we calculate the attractive force, which is 
a vector whose magnitude is proportional to their fitness values and the distances 
between them. Next, we take a random combination of the force vectors to obtain 
the acceleration vector of each individual. We finally use the acceleration vector 
to update the velocity and position of each individual. Typical tuning values in 
Figure 17.11 are G0 = 100 and a = 20. 

Researchers have proposed various modifications and extensions to GSA, includ-
ing alternative ways to adjust G each generation. The acceleration equation can be 
updated so that only the best individuals attract each particle: 

αί^ττ Σ rkFik (17 ·20) 
where B is the set containing the best individuals, and the size of B is a tuning 
parameter. In addition, we can use different types of effective mass values for active 
gravitational force, passive gravitational force, and inertia [Rashedi et al., 2009]. 
An extension of GSA to discrete search domains is given in [Rashedi et al., 2010]. 
Given the similarity between GSA and PSO, it seems that many of the extensions 
proposed for PSO could also be implemented in GSA (see Chapter 11). 

17.9 HARMONY SEARCH 

Harmony search (HS) was introduced in [Geem et al., 2001] and is further explained 
in [Lee and Geem, 2006]. HS is based on musical processes. Each musician in a 
choir or band sounds a note within some allowable domain. If all of the notes result 
in good harmony, the positive experience is saved in the choir's collective memory 
and the possibility of achieving continued good harmony is increased. In HS, a choir 
or band is analogous to a candidate problem solution, and a musician is analogous 
to an independent variable or candidate solution feature. 

Figure 17.12 outlines the HS algorithm [Omran and Mahdavi, 2008]. Harmony 
search often uses alternative notation rather than standard EA notation. For ex-
ample, harmony vector is used to refer to the EA individual or candidate solution 
x, harmony memory size is used to refer to the population size iV, harmony mem-
ory considering rate is similar to the crossover rate c in G As, pitch adjusting rate 
is used to refer to the mutation rate p m , and distance bandwidth is used to refer 
to the standard deviation σ of the Gaussian mutation. Typical values for these 
parameters are c = 0.9; pm increases linearly from 0.01 at the first generation to 
0.99 at the last generation; and σ decreases exponentially from 5% of the search 
domain to 0.01% of the search domain. 

We see from Figure 17.12 that HS creates one child each generation. For each 
solution feature, we generate a random number rc. If rc is less than the crossover 
rate c, then that solution feature in the child is set equal to a randomly selected 
solution feature from the population; this step is similar to global uniform recom-
bination (see Section 8.8.6). However, if rm is greater than the crossover rate, then 
that solution feature in the child is set equal to a random number in the search do-
main; this step is similar to uniform mutation centered at the middle of the search 
domain (see Section 8.9.2). If the child's solution feature is obtained from the popu-
lation rather than a random number, then we perform Gaussian mutation centered 
at the solution feature (see Section 8.9.3). Finally, if the child is better than the 
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pm = mutation rate G [0,1] 
σ2 = Gaussian mutation variance 
c = crossover rate G [0,1] 
Initialize a population of candidate solutions {xk} for k G [1, N] 
While not (termination criterion) 

Child - [ 0 0 - - ■ 0 ] G Rn 

For each solution feature s = 1, · · ·, n 
rc <- C/[0,1] 
If rc < c then 

j «— random integer G [l,n] 
Child(s) <-Xj(s) 
Tm <- c7[0,1] 
If r m < p m then 

Child(s) *- Child(s) + 7V(0, σ2) 
End if 

else 
Child(s) 4- U[xmin(s) 

End if 
Next solution feature 
m <- argmax/c(/(xfc) - k G [1, AT]) 
If /(Child) < f(xm) then 

x m <— Child 
End if 

Next generation 

Figure 17.12 Outline of the harmony search (HS) algorithm with a population size of N 
for minimizing the n-dimensional function f(x). {xk} is the entire population of individuals, 
Xk is the k-th individual, and Xk(s) is the s-th feature of Xk-

worst individual in the population, then the child replaces that individual in the 
population; this last step is the same strategy that we use in EP (see Section 5.1). 

In summary, it appears that there are no fundamentally new ideas in the HS 
algorithm. HS is an amalgamation of previously established EA ideas, including 
global uniform recombination, uniform mutation, Gaussian mutation, and replace-
ment of the worst individual each generation. The contribution of HS lies in two 
areas. First, the way that HS combines these ideas is novel. Second, the musical 
motivation of HS is novel. However, very few publications in the area of HS discuss 
musical motivations or extensions of HS. Most publications deal with hybridizing 
HS with other EAs, tuning HS parameters, or applying HS to specific problems. If 
more musically motivated extensions could be applied to HS, this would help set it 
apart as its own distinctive EA. Such research would require studying music theory, 
studying the process of musical composition and arrangement, studying educational 
theories of music, and creatively applying those theories to the HS algorithm. Fur-
ther reading in the area of HS can be found in two edited volumes [Geem, 2010a], 
[Geem, 2010b], and one book [Geem, 2010c]. 
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17.10 TEACHING-LEARNING-BASED OPTIMIZATION 

Teaching-learning-based optimization (TLBO) was introduced in [Rao et al., 2011] 
and is further explained in [Rao et al., 2012], [Rao and Patel, 2012], [Rao and 
Savsani, 2012, Chapter 6]. TLBO is based on the teaching and learning process in 
a classroom. Each generation, the best candidate solution in the population is con-
sidered the teacher, and the other candidate solutions are considered learners. The 
learners mostly accept instruction from the teacher, but also learn from each other. 
In TLBO, an academic subject is analogous to an independent variable or candi-
date solution feature. The teacher phase consists of modifying each independent 
variable Xi(s) in each candidate solution Xi as follows: 

Ci(s) <- Xi(s) + r(xt(s) - Tfx(s)) 

1 N 

where x(s) = T7 X ^ f c ( s ) (17.21) 
k=\ 

for i G [Ι,ΛΓ] and s G [l,ra], where Ν is the population size, n is the problem 
dimension, xt is the best individual in the population (that is, the teacher), r is 
a random number taken from a uniform distribution on [0,1], and 7 / is called 
the teaching factor and is set equal to either 1 or 2 with equal probability. The 
child Ci replaces the parent Xi if the child is better than the parent. In general, 
Equation (17.21) adjusts Xi(s) in a direction toward the best individual Xt(s). We 
can see this by taking the expected value of Equation (17.21), which gives 

Ci(s) = Φ) + - lxt(s) --x(s)j 

Xt(s) x(s) /„„^N 
= -^r1 + - T 2 · (17.22) 

2 4 
That is, on average, Ci(s) is closer to Xt(s) than it is to Xi(s). Equation (17.22) also 
shows that Q ( S ) is, on average, closer to zero than the parent population, which 
may give TLBO an unfair advantage on problems whose solution is zero. Many 
optimization benchmarks have solutions at x* = 0, so further research on TLBO 
should carefully investigate its performance on problems with nonzero solutions, 
and adjust the algorithm as needed to remove this inherent bias. 

After the teacher phase completes, the learner phase begins. The learner phase 
entails adjusting each individual based on another randomly selected individual: 

/ x ̂ _ f Xi(s) + r(xi(s) - Xk(s)) if Xi is better than xk . . 
^ ' \ Xi(s) + r(xk(s) — Xi(s)) otherwise 

for i G [1, AT] and s G [l ,n], where k is a random integer in [l,iV] such that k φ ζ, 
and r is a random number taken from a uniform distribution on [0,1]. The learner 
phase adjusts Xi(s) away from xk if Xh is worse (the first case above), and toward 
Xk if Xk is better (the second case above). 

Figure 17.13 outlines the TLBO algorithm. An inspection of Figure 12.2 reveals 
that of all the EAs discussed in this book, TLBO has the most in common with 
differential evolution (DE). Suppose in Figure 12.2 that we set the crossover rate 
c = 1. Further suppose that instead of a constant stepsize parameter F we use a 
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Initialize a population of candidate solutions {xk} for k G [1, N] 
While not (termination criterion) 

For each individual Xi where i G [1, N] 
Comment: Teacher Phase 
xt <- argmin^ (f(x) : x G {xk}k=i) 
Tf <— random integer G {1,2} 
For each solution feature s G [1, n] 

r <- C7[0,1] 
Ci(s) <- Xi(s) + r(xt(s) - Tfx(s)) 

Next solution feature 
Xi <- axgmina. i>c.(/(a;i),/(ci)) 
Comment: Learner Phase 
/c «— random integer G [1, iV] : k φ i 
If /(x») < f(xk) then 

For each solution feature s G [l,n] 
r <- f/[0,1] 
Ct(s) <- Xi(s) + r ( ^ ( s ) - xk(s)) 

Next solution feature 
else 

For each solution feature s G [l,n] 
r 4- ί/[0,1] 
Q (s) 4- Xi (s) + r(xk{s) - Xi(s)) 

Next solution feature 
End if 
Xi <- axgminx .> c . ( /(xi) , /(ci)) 

Next individual 
Next generation 

Figure 17.13 Outline of the teaching-learning-based optimization (TLBO) algorithm 
with a population size of N for minimizing the n-dimensional function /(#). xt is the best 
individual in the population and is called the teacher. 

random stepsize parameter that is different for each independent variable, so that 
one independent variable at a time is set in the mutant vector v. Further suppose 
that we replace each individual Xi with its child immediately after the child is 
created, rather than waiting until after we have created all of the children. These 
are not necessarily insignificant changes to DE, but they are straightforward. With 
these changes, the DE algorithm of Figure 12.2 becomes the modified DE algorithm 
of Figure 17.14. 

Now suppose that instead of randomly generating r i , Γ2, and r% in Figure 17.14, 
we set them as follows: 

r i = i 

r2 = aigmm{f{xi):ie[l,N]} (17.24) 
i 

#r3(s) = the average of the s-th solution feature of the population. 
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Initialize a population of candidate solutions {a^}, i G [l,iV] 
While not (termination criterion) 

For each individual rr*, i G [1, N] 
r i <r- random integer G [1, N] : r\ φ i 
T2 <— random integer G [l,iV] : r2 £ {i,ri} 
r% «— random integer G [1,-ΛΓ] : Γβ ^ { Ϊ , Τ Ί , ^ } 
For each solution feature 5 G [l,n] 

r <- £/[0,1] 
V(s) <- Xrl{s) + r(xr2(s) - Xr3(s)) 

Next solution feature 
Xi <- a r g m i n ^ ^ I / ^ ) , / ^ ) ] 

Next individual 
Next generation 

Figure 17.14 A modified differential evolution algorithm for minimizing f(x). 

With these additional changes, the DE algorithm of Figure 17.14 becomes the 
algorithm of Figure 17.15, which is equivalent to the teacher phase of TLBO in 
Figure 17.13 with Tf = 1. 

Similarly, suppose that instead of randomly generating τ*ι, r2, and r% in Fig-
ure 17.14, we set them as follows: 

7*1 = l 

r2 = argmm{f(xi),f(xk)} 
i,k 

r3 = argmax{/(xi ) , / (x f c )} (17.25) 
i,k 

where k is a random integer G [l,iV] such that k Φ i. Then we obtain the learner 
phase of TLBO. 

In summary, it appears that there are no fundamentally new ideas in the TLBO 
algorithm. TLBO is modification of DE, which is itself a genetic algorithm variation 
(see Section 12.4). The contribution of TLBO is to execute DE in two distinct 
phases, one called the teacher phase, and the other called the learner phase. Also, 
the teaching-learning motivation of TLBO is novel. However, TLBO publications 
to this date have not exploited teaching-learning theories to improve the TLBO 
algorithm. If more teaching-learning based extensions could be applied to TLBO, 
this would help set it apart as its own distinctive EA and would also provide the 
potential for improved performance. Such research would require studying learning 
theory, learning styles, and teaching styles, and creatively applying those theories 
to the TLBO algorithm. Another important research topic in TLBO, as mentioned 
earlier, is to explore its performance on problems whose solutions are not at the 
center of the search domain, and to adjust the algorithm to remove its center-of-
domain bias. See [Crepinsek et al., 2012] for additional critiques of TLBO, and see 
[Waghmare, 2013] for responses to critiques. 
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Initialize a population of candidate solutions {xi}, i 6 [1, N] 
While not (termination criterion) 

For each individual xi: i 6 [1, N] 
xt 4- argminx f(x) : x e {xk}k=i 
For each solution feature s G [l,n] 

r <r- U[0,1] 
v{s) <- Xi(s) + r(xt(s) - x(s)) 

Next solution feature 
Xi <r- axgmin[/(xi), /(v)] 

Next individual 
Next generation 

Figure 17.15 Another modified differential evolution algorithm for minimizing f(x). 
This algorithm is equivalent to the teacher phase of teaching-learning-based optimization. 

17.11 CONCLUSION 

Researchers have proposed many EAs since Nils Barricelli's first genetic algorithm 
in 1953 [Dyson, 1998, page 111]. It seems that virtually every natural process can 
be interpreted as an optimization algorithm [Alexander, 1996]. We have seen in 
this chapter, and elsewhere, that many of these optimization processes have similar 
algorithmic features. It is therefore difficult to know where one EA ends, and 
another begins. When does a new EA belong in its own class, and when should it 
instead be classified as a variation of an existing EA? One of the challenges for the 
research community is to find this balance, and to encourage new research while still 
maintaining high standards for the introduction and development of purportedly 
new algorithms. 

We have covered several additional EAs in this chapter. Some of these are 
popular and useful, but have not fit well elsewhere in this book. Others are relatively 
new, and the level of their adoption by engineers and computer scientists is still to 
be determined. There are many other EAs that we have not had time to discuss, 
some of which are the following: 

• Society and civilization algorithm [Ray and Liew, 2003]; 

• Charged system search [Kaveh and Talatahari, 2010]; 

• Invasive weed optimization [Mehrabian and Lucas, 2006]; 

• Cuckoo search [Yang, 2009a]; 

• Intelligent water drops [Shah-Hosseini, 2007]; 

• River formation dynamics [Rabanal et al., 2007]; 

• Stochastic diffusion search [Bishop, 1989]; 
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• Gaussian adaptation [Kjellström, 1969]; 

• Big bang big crunch algorithm [Erol and Eksin, 2006]; 

• Imperialist competitive algorithm [Atashpaz-Gargari and Lucas, 2007]; 

• Squeaky wheel optimization [Joslin and Clements, 1999]; 

• Grammatical evolution [O'Neill and Ryan, 2003]; 

• Glowworm swarm optimization [Krishnanand and Ghose, 2009]; 

• Chemical reaction optimization [Lam and Li, 2010]; 

• Krill herd [Gandomi and Alavi, 2012]; 

• Bat-inspired algorithm [Yang, 2010c]; 

• Threshold accepting [Dueck and Scheuer, 1990]; 

• Great deluge algorithm and record-to-record travel [Dueck, 1993]; 

• Bacterial chemotaxis model [Muller et al., 2002], which we also briefly men-
tioned at the end of Section 17.6; 

• Several artificial bee algorithms, which we briefly mentioned in Section 17.7; 

• Several gravity-based and force-based algorithms, which we briefly mentioned 
in Section 17.8. 

There are doubtless other EAs that belong in the above list, or that deserve further 
discussion, and that are omitted only because of the author's lack of awareness. 
The algorithms in the above list, along with those discussed in the earlier sections 
of this chapter, could provide a lifetime of productivity to the interested student 
and researcher. There are also other computational methods that are not usually 
classified as EAs, but sometimes the dividing line between machine learning and 
optimization is fuzzy. This is why we do not discuss algorithms in this book such as 
neural networks [Fausett, 1994], fuzzy logic [Ross, 2010], artificial immune systems 
[Hofmeyr and Forrest, 2000], artificial life [Adami, 1997], membrane computing 
[Päun, 2003], and many other computing paradigms. 
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PROBLEMS 

Written Exercises 

17.1 Rewrite the definition of stagnation in Equation (17.4) for the case that the 
optimization problem is a maximization problem. 

17.2 Write an algorithm that is simpler but functionally equivalent to the artifi-
cial fish leaping behavior of Figure 17.3. 

17.3 Is the group search optimizer elitist? 

17.4 How many function evaluations does the shuffled frog leaping algorithm 
perform each generation? 

17.5 Give some specific conditions under which the firefly algorithm of Figure 17.8 
could be considered a special case, or a generalization, of the particle swarm opti-
mization algorithm of Figure 11.1. 

17.6 Section 8.7 discusses several selection options for EAs. What type of selec-
tion does bacterial foraging optimization use? 

17.7 Write some pseudo-code showing how you could generate a random unit 
vector for bacterial foraging optimization. 

17.8 Give some specific conditions under which the artificial bee colony algo-
rithm of Figure 17.10 could be considered a special case, or a generalization, of the 
differential evolution algorithm of Figure 12.2. 

17.9 Give some specific conditions under which the gravitational search algorithm 
of Figure 17.11 could be considered a special case, or a generalization, of the particle 
swarm optimization algorithm of Figure 11.1. 

17.10 What is the probability that a specific child in harmony search is comprised 
entirely of pre-existing, non-mutated solution features from the parent population? 

Computer Exercises 

17.11 Simulate one of the EAs in this chapter. Vary a couple of the parameters 
to see what effect they have on optimization performance. 

17.12 The teaching-learning-based optimization (TLBO) algorithm of Figure 17.13 
has a teacher phase and a learner phase. Write simulations for three variations of 
TLBO: the first variation is the original algorithm as shown in Figure 17.13, the 
second variation uses only the teacher phase, and the third variation uses only the 
learner phase. Optimize the 10-dimensional Ackley function with a population size 
of 100 and a function evaluation limit of 10,000. Report the best performance ob-
tained by the three TLBO variations, averaged over 20 Monte Carlo simulations. 
Repeat for the 10-dimensional Rosenbrock function. Comment on your results. 



PART IV 
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CHAPTER 18 

Combinatorial Optimization 

We designated as the Messenger Problem (since this problem is encountered by every 
postal messenger, as well as by many travellers) the task of finding, for a finite number 
of points whose pairwise distances are known, the shortest path connecting the points. 

—Karl Menger [Gutin and Punnen, 2007, page 1] 

Until now, this book has emphasized continuous optimization problems. This 
chapter discusses discrete optimization problems: that is, minx f(x) where the 
domain of x is discrete. A discrete optimization problem, also called a combinatorial 
optimization problem, can be thought of as finding the optimal object from among 
a finite set of candidate objects: 

min / (x ) where x G {xi,#2, · * * ^Nx}- (18.1) 
X 

Nx is called the cardinality of the search space. We could theoretically solve Equa-
tion (18.1) by evaluating f(x) for all Nx possible solutions. This approach to 
combinatorial optimization is called exhaustive search or brute force. However, 
combinatorial problems often have such a large search space that it is infeasible to 
check every possible solution. 

The knight's tour problem is a classic combinatorial optimization problem. The 
knight's tour problem was first discussed from a mathematical perspective by Leon-
hard Euler in 1759 [Ball and Coxeter, 2010]. How can a knight move on an otherwise 
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empty chess board so that it visits each square exactly one time? A closed tour 
(also called a re-entrant tour) is one in which the knight finishes its tour in the 
same square in which it started, and thus requires 64 moves; otherwise, the tour is 
open and thus requires 63 moves. 

The open knight's tour problem can be posed as mmxf(x), where x consists 
of an initial position and a sequence of 63 moves, and f(x) measures how many 
squares the knight failed to visit. The cardinality Nx of x (that is, the size of the 
search space) is over 3.3 x 1013 [Lobbing and Wegener, 1995]. We would not want 
to try to solve this problem using brute force, but by using human insight and 
ingenuity we can solve the knight's tour without much difficulty. We see that the 
cardinality of a combinatorial optimization problem is not necessarily indicative of 
its difficulty. Figure 18.1 shows a solution to the open knight's tour problem. The 
knight's tour problem has also been studied using chessboards with a size other 
than 8 x 8 . 

Figure 18.1 A solution to the open knight's tour problem [Fealy, 2006, page 237]. 

Overview of the Chapter 

Most of this chapter is devoted to the traveling salesman problem (TSP), which is 
perhaps the most famous, applicable, and widely studied combinatorial optimiza-
tion problem. Section 18.1 gives an overview of the TSP. Section 18.2 discusses a few 
simple and popular non-evolutionary heuristics for solving TSPs; it has relevance 
to EAs because we can use the heuristics discussed there to initialize or improve our 
EA population. Section 18.3 discusses various ways to represent TSP candidate so-
lutions, and how to combine candidate solutions in an EA to obtain child solutions. 
Section 18.4 discusses some ways to mutate TSP candidate solutions. Section 18.5 
ties together the material of the preceding sections and presents a basic EA that we 
can use to solve the TSP. Section 18.6 discusses the graph coloring problem, which 
is another popular combinatorial optimization problem. Note that Appendix C.6 
discusses TSP benchmark problems and other combinatorial benchmark problems. 
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18.1 THE TRAVELING SALESMAN PROBLEM 

The knight's tour that we discussed above is not a difficult problem, but it leads 
to the TSP, which is a very hard problem: What is the minimal-length tour that 
visits each of N cities exactly once? As with the knight's tour, a closed TSP is 
one in which the tour ends in the same city in which it began; otherwise, the TSP 
is open. The TSP first appears in written form in a German pamphlet that was 
published in 1832 with the title, "The traveling salesman - how he should be and 
what he has to do, to obtain orders and to be sure of a happy success in his business 
- by an old traveling salesman." Austrian mathematician Karl Menger called the 
TSP "the messenger problem," and he was the first to discuss it in the technical 
literature during the late 1920s and early 1930s [Schrijver, 2005]. 

The TSP has applications in robotics, circuit board drilling, welding, manufac-
turing, transportation, and many other areas. As we discussed in Section 2.5, an 
open n-city TSP has (n — 1)! possible solutions. This number becomes impossibly 
large for even moderate values of n. For example, the number of possible solutions 
to a 50-city TSP is 49! = 6.1 x 1062. And 50 cities is not very many for a TSP. 
A circuit board could have tens of thousands of holes, and a drill needs to be pro-
grammed to visit each of those holes while minimizing some cost function (time or 
energy, for example). 

In general, we will assume that an n-city TSP has cities denoted as city 1, city 2, 
• · ·, city n. We assume that there is a given distance D(i,j) between cities i and 
j for all i G [l,n] and j G [l ,n], and that D(i,j) — D(j,i). This is called the 
symmetric TSP because the distance (or cost) from city i to city j is the same as 
the distance from city j to city i. We could imagine scenarios where D(i,j) φ D(j,i) 
(for example, it might cost more to go uphill than downhill) - such problems are 
called asymmetric TSPs, but we do not discuss them further in this chapter. 

A valid tour in an open TSP is one in which all n cities are visited exactly once. 
A valid tour in a closed TSP is one that begins and ends at the same city, and that 
visits the other (n — 1) cities exactly one. An example of a valid tour in an open 
four-city TSP is the following: 

Valid four-city open tour: 3 ->· 2 ->> 4 -» 1. (18.2) 

An example of a valid tour in a closed four-city TSP is the following: 

Valid four-city closed tour: 3 - > 2 - > 4 - > l - > 3 . (18.3) 

An edge, or leg, is one segment of a tour. Equation (18.2) consists of three edges: 
3 -> 2 is the first edge, 2 -> 4 is the second edge, and 4 -> 1 is the third edge. 
Equation (18.3) consists of four edges. In general, an open n-city tour includes 
(n — 1) edges, and a closed n-city tour includes n edges. 

In the TSP, we try to minimize total distance. Suppose that n cities in an open 
TSP are listed in the order x\ -Λ X2 —> · · · —> xn- Then the total distance is 

n - l 

D T ^ % x l + 1 ) . (18.4) 
i=l 

Note that we use the term "distance" in a general sense. It might refer to phys-
ical distance, financial cost, or any other quantity that we want to minimize in a 
combinatorial problem. 
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18.2 TSP INITIALIZATION 

This section presents a few popular and simple non-evolutionary heuristics that we 
can use to try to solve TSPs [Nemhauser and Wolsey, 1999]. We can use these 
heuristics not only to search for TSP solutions, but also to initialize the population 
of an EA that is designed to solve a TSP. If we initialize an EA intelligently rather 
than randomly, we can greatly increase our chances of finding a good solution. This 
applies not only to the TSP but also to any other problem that we want to solve 
with an EA (see Section 8.1). 

The initialization algorithms in this section are called greedy because they all 
make the incremental change to their candidate solutions which promises the best 
immediate change in performance. That is, they all build candidate solutions based 
on the highest immediate payoff. Section 18.2.1 builds a candidate solution by it-
érât ively adding the city that is closest to the previously-added city. Section 18.2.2 
builds a candidate solution by itérât ively adding the next shortest edge. Sec-
tion 18.2.3 builds a candidate solution by itérât ively adding the city that is closest 
to any of the previously-added cities. Finally, Section 18.2.4 discusses the use of 
randomness in greedy initialization methods. 

18.2.1 Nearest-Neighbor Initialization 

One simple and intuitive way to initialize a candidate solution is with a nearest-
neighbor strategy. This strategy is described as follows for an n-city TSP. 

1. Initialize % = 1. 

2. Randomly select a city s( l ) £ [Ι,τι] as the starting city. 

3. s(i + 1) «— argmin (7{£)(s(i),a) : σ $ s(k) for k G [l , i]}. That is, find the city 
that is closest to s(i) that has not yet been assigned to an element of s, and 
assign it to s (i + 1). 

4. Increment i by one. 

5. If i = n, terminate; otherwise, go to step 3. 

At the end of this process we have an open tour s( l) —> s(2) —> · · · —»· s(n) that 
gives us a reasonable guess for a TSP solution. If we want a closed tour then we 
simply add s( l) to the end of the open tour. 

Because of the random selection of the starting city we will generally obtain 
different candidate solutions if we perform this algorithm more than once. For 
instance, consider the distance matrix 

D = 

X 

3 
2 
9 
3 

3 
X 

5 
8 

11 

2 
5 
X 

4 
6 

9 
8 
4 
X 

10 

3 
11 
6 

10 
X 

(18.5) 

where Dij, which we can also write as D(i,j), represents the distance between 
city i and city j . If we start at city 1, the nearest-neighbor algorithm gives the 
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tour 1 —» 3 —»4—»2—»5, which has a total cost of 25. If we start at city 2, the 
algorithm gives the tour 2—»1—»3—»4—»5, which has a total cost of 19. 

Note that a general n x n distance matrix D is symmetric since the distance 
between city i and city j is the same as that between city j and city i. Also, an 
n x n matrix has n(n — l ) /2 terms above the diagonal. Therefore, a symmetric 
n-city TSP has n(n — l ) /2 unique edges. 

If we want to intelligently initialize an EA to solve the TSP, we could use nearest-
neighbor initialization for just one individual in the population, or for a few indi-
viduals in the population, or for the entire population. However, if we initialize 
too many individuals this way then we will probably obtain many duplicate indi-
viduals. We could also use a stochastic nearest-neighbor initialization algorithm -
in this case, the probability of assigning a given city to s(i + 1) at each iteration 
would be inversely proportional to its distance from s(i). Finally, we could take the 
nearest-neighbor algorithm to another level by performing a "nearest two-neighbor" 
algorithm. In this approach, given s(z), we could assign a city to s(i + 1) that re-
sults in the smallest combined distance D(s(i), s(i + 1)) + D(s(i + 1),σ), where σ 
is allowed to be equal to any city φ s(k) for k < i + 1. 

It is not difficult to find an example where nearest-neighbor initialization per-
forms poorly. Figure 18.2 shows a simple five-city TSP. In the figure on the left, 
we start at city 1 and get a poor result with nearest-neighbor initialization. In the 
figure on the right, we start at city 3 and get the globally optimal solution with 
nearest-neighbor initialization. In Figure 18.2, the performance of nearest-neighbor 
initialization strongly depends on the starting city. But in general, nearest-neighbor 
initialization often fails due to the fact that it does not look more than one city 
ahead when planning its route. 

♦ 3 

è 

Figure 18.2 Nearest-neighbor initialization results for a five-city open TSP. Depending 
on the starting city, we either obtain a poor result (left) or a good result (right). 

18.2.2 Shortest-Edge Initialization 

Another simple way to initialize a candidate TSP solution is with a greedy shortest-
edge algorithm. Suppose that we have an n-city TSP with a distance matrix D as 
shown in Equation (18.5). We define Lk as the edge that is associated with the /c-th 
smallest number in D. That is, {Lk} consists of n(n — l ) / 2 edges that are sorted in 
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ascending order of distance. Shortest-edge initialization for an n-city closed TSP 
proceeds as follows. 

1. Define T as the set of edges in the tour. Initialize T to the empty set. 

2. Find the shortest edge in {Lk} that satisfies the following constraints: (a) It 
is not in T; (b) If added to T, it will not result in a closed tour with less than 
n edges; (c) If it joins cities i and j and it is added to T, then T will not have 
more than two edges associated with city i or city j . 

3. If T has n edges, then we are done; otherwise, go to step (2). 

Shortest-edge initialization includes in the tour the edges from the cities that are 
nearest to each other, and it continues that process until it obtains a valid tour. 
Unlike nearest-neighbor initialization, shortest-edge initialization is not stochastic 
so it results in the same tour every time it executes. Therefore, in general, shortest-
edge initialization should be used to initialize only one individual in an EA. The 
only exception to this statement is if more than one pair of cities have the same 
distance, in which case a random process can be used to break the tie in step (2) 
above, and in which case a different tour will result (in general), depending on the 
result of the random process. 

As an example of shortest-edge initialization, consider the distance matrix of 
Equation (18.5). Shortest-edge initialization proceeds as follows. 

1. The shortest edge is between cities 1 and 3, so we include that edge in T. 

2. The shortest remaining edge is between cities 1 and 2, and cities 1 and 5. We 
randomly choose the edge between cities 1 and 5 to include in T. 

3. The shortest remaining edge is between cities 1 and 2, but but city 1 already 
has two edges in T. So we look for the next shortest edge, which is between 
cities 3 and 4, and include that edge in T. 

4. The shortest remaining edge is between cities 2 and 3, but city 3 already 
has two edges in T. So we look for the next shortest edge, which is between 
cities 3 and 5, but again, city 3 already has two edges in T. So we look for 
the next shortest edge, which is between cities 2 and 4, so we include that 
edge in T. 

5. The only remaining edge that satisfies the constraints of the shortest-edge 
algorithm is the one between cities 2 and 5, so we include that edge in T to 
complete the closed tour. 

The above algorithm gives the closed tour 1 —» 3 —>> 4 —> 2 —► 5 -» 1. If we 
want to use shortest-edge initialization to find an open tour, we would simply stop 
the above algorithm after obtaining (n — 1) edges in T, which would give the tour 
5 - > l - > 3 - > 4 - > 2 . 



SECTION 18.2: TSP INITIALIZATION 4 5 5 

18.2.3 Insertion Initialization 

Insertion initialization begins with a subtour and then adds one city at a time to 
the tour such that the addition of the selected city gives the smallest increase in 
distance [Rosenkrantz et al., 1977]. The initial subtour is often a single edge, which 
is usually the shortest. In this case we have the nearest insertion algorithm, which 
is given as follows for the open TSP. 

1. Define T as the set of edges in the tour. Initialize T to the shortest edge in 
the distance matrix. 

2. c <- argminc{Z)(c, k) : (c ^ T) and (k G T)} . That is, among all cities that 
are not in T, select the one that is closest to T. 

3. {k,j} <- argminfcj{(£>(/c,c) + D{c,j)) - D(k,j) : D(kJ) G T} . That is, 
select the edge D(k,j) from T such that the difference between the subtour 
distance k —» c -» j and the distance k —> j is minimized. 

4. Remove D(k,j) from T, and add D(k,c) and D(c,j) to T. 

5. If T includes (n — 1) edges, then we are done; otherwise, go to step (2). 

If we want a closed tour, then we simply add one more edge to T to complete the 
tour. We can modify the nearest insertion algorithm by changing the initialization 
in step (1) so that T is initialized to the convex hull of the cities, or initialized 
randomly, or initialized with a variety of other options. This would allow us to 
initialize more than one EA individual with an insertion algorithm. 

As an example of nearest insertion initialization, consider the distance matrix of 
Equation (18.5). Nearest insertion proceeds as follows. 

1. The shortest edge is between cities 1 and 3, so we include that edge in T. 

2. The cities that are not yet in T are cities 2, 4, and 5. Among those cities, 
the one that is closest to T (that is, closest to either city 1 or city 3) is city 2 
or city 5, which are both 3 units from city 1. we randomly select city 5 to 
include in T. We then remove the 1/3 edge from T, and add the 1/5 and 5/3 
edges to T. 

3. The cities that are not yet in T are cities 2 and 4. Among those cities, the 
one that is closest to T (that is, closest to either city 1, city 3, or city 5) is 
city 2, which is 3 units from city 1. This gives us two options. 

(a) We could remove the 1/5 edge from T, and replace it with the 1/2 and 
2/5 edges. This would increase the subtour distance from 3 units (the 1/5 
edge distance) to 14 units (the sum of the 1/2 and 2/5 edge distances). 
This is an increase of 11 units. 

(b) We could remove the 5/3 edge from T, and replace it with the 5/2 and 
2/3 edges. This would increase the subtour distance from 6 units (the 5/3 
edge distance) to 16 units (the sum of the 5/2 and 2/3 edge distances). 
This is an increase of 10 units. 

We choose option (b) since it results in the smallest increase. T now includes 
the 1/5, 5/2, and 2/3 edges. 
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4. The only city that is not yet in T is city 4. We thus need to add an edge to 
T that includes city 4. This gives us three options. 

(a) We could remove the 1/5 edge from T, and replace it with the 1/4 and 
4/5 edges. This would increase the subtour distance from 3 units (the 1/5 
edge distance) to 19 units (the sum of the 1/4 and 4/5 edge distances). 
This is an increase of 16 units. 

(b) We could remove the 5/2 edge from T, and replace it with the 5/4 
and 4/2 edges. This would increase the subtour distance from 11 units 
(the 5/2 edge distance) to 18 units (the sum of the 5/4 and 4/2 edge 
distances). This is an increase of 7 units. 

(c) We could remove the 2/3 edge from T, and replace it with the 2/4 and 
4/3 edges. This would increase the subtour distance from 5 units (the 2/3 
edge distance) to 12 units (the sum of the 2/4 and 4/5 edge distances). 
This is an increase of 7 units. 

We could choose either option (b) or option (c) since they result in the smallest 
increase. We randomly choose option (c). T now includes the 1/5, 5/2, 2/4, 
and 4/3 edges. 

The above algorithm gives the open tour 1—> 5 —»2—»4—> 3. 

18.2.4 Stochastic Initialization 

Nearest-neighbor initialization is the only initialization method that we have dis-
cussed so far that is stochastic. However, we could modify any of the other ini-
tialization options to include a random component. In addition, we could modify 
nearest-neighbor initialization to be more random than the algorithm that we pre-
sented in Section 18.2.1. The addition of randomness to an initialization method 
maintains the attractive features of the method, while also incorporating one of the 
fundamental components of EAs. It also allows us to use the initialization methods 
for more than one EA individual. 

In nearest-neighbor initialization (Section 18.2.1), we could replace step (3), 
"Find the city that is closest to s(i)," with the selection of a city with a probability 
that is inversely proportional to the distance from s(i). This would give the greatest 
probability of selection to the city that is closest to s(i), but it would also give 
nonzero selection probabilities to all of the other cities in the TSP. 

In shortest-edge initialization (Section 18.2.2), we could replace the selection of 
the shortest edge that satisfies the given constraints, with the selection of an edge 
(among those that satisfy the given constraints) with a probability that is inversely 
proportional to the edge length. This would give the greatest probability to the 
shortest edge, but it would also give nonzero selection probabilities to all of the 
other edges in the TSP. 

In insertion initialization (Section 18.2.3), we could add randomness to two steps. 
First, in step (2), instead of selecting the city that is closest to T, we could select 
a city with a probability that is inversely proportional to the distance from T. 
This would give the greatest probability to the nearest city, but it would also 
give nonzero selection probabilities to all of the other cities that are not yet in T. 
Second, in step (3), instead of selecting the edge such that the difference in the 
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subtour distances is minimized, we could select an edge with a probability that is 
inversely proportional to the differences in the subtour distances. This would give 
the greatest probability to the minimum distance-difference edge, but it would also 
give nonzero selection probabilities to all of the other edges in T. 

18.3 TSP REPRESENTATIONS AND CROSSOVER 

This section discusses different ways to represent TSP candidate solutions. We dis-
cuss path (Section 18.3.1), adjacency (Section 18.3.2), ordinal (Section 18.3.3), and 
matrix (Section 18.3.4) representations. We also discuss how candidate solutions 
can be combined via crossover using these various representations. 

18.3.1 Path Representation 

Path representation is the most natural way of representing a TSP tour. In path 
representation, the vector 

X = [ Xl X2 · ' ' Xn ] (18.6) 

represents the n-city tour x\ —> x2
 —> · · · —> xn- The following sections discuss 

some ways that we can combine parent individuals that are represented in this way 
to obtain child individuals. 

18.3.1.1 Partially Matched Crossover Partially matched crossover (PMX) [Gold-
berg and Lingle, 1985] is based on classic single-point crossover as is often used in 
G As (see Section 8.8). As an example, consider the two parent vectors 

Pi = [ 2 3 4 5 6 1 ] 

P2 = [ 3 2 6 1 4 5 ] . (18.7) 

If we perform single-point crossover at the midpoint of the two vectors, we obtain 
the children 

d = [ 2 3 4 1 4 5 ] 

c2 = [ 3 2 6 5 6 1 ] . (18.8) 

These children are invalid because c\ visits city 4 twice and does not visit city 6 at 
all. C2 has the opposite problem; it visits city 6 twice and does not visit city 4 at 
all. We can easily repair the children by replacing one of the 4 elements in c\ with 
a 6, and by replacing one of the 6 elements in c2 with a 4. For example, this might 
result in the children of Equation (18.8) being modified to 

d = [ 2 3 6 1 4 5 ] 

c2 = [ 3 2 6 5 4 1 ] (18.9) 

where the bold-faced cities are the ones that were randomly changed to give valid 
tours. 
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18.3.1.2 Order Crossover Order crossover (OX) copies a section of a tour from 
one parent to the child [Davis, 1985]. This results in a child that has a partial tour. 
Order crossover then completes the child by copying the remaining required cities 
from the second parent to the child, while maintaining the relative order of those 
cities from Parent 2. For example, suppose that we have the parents 

Pi = [ 9 2 3 8 4 5 6 1 7 ] 

P2 = [ 4 5 2 1 8 7 6 9 3 ] . (18.10) 

We randomly select a subtour from Pi ; suppose that we select subtour [ 8 4 5 6 ] 
from Pi . This gives the partial child 

ci = [ - - - 8 4 5 6 - - ] . (18.11) 

We see that c\ still needs cities 1, 2, 3, 7, and 9. Those cities occur in the order 
{2,1, 7,9,3} in P 2 . We therefore copy those cities in that order into c\ to obtain 

ci = [ 2 1 7 8 4 5 6 9 3 ] . (18.12) 

In order crossover, we often create a second child by using the above process with 
the roles of Pi and P2 reversed. In our example, this would give a preliminary 
second child with a subtour copied from P 2 as 

c 2 = [ - - - 1 8 7 6 - - ] . (18.13) 

We would then copy the remaining cities 9, 2, 3, 4, and 5 in order from Pi to 
complete the second child: 

c2 = [ 9 2 3 1 8 7 6 4 5 ] . (18.14) 

18.3.1.3 Cycle Crossover Cycle crossover (CX), introduced in [Oliver et al., 1987], 
creates a child from two parents in a way that preserves as much sequence informa-
tion as possible from the first parent, while completing the child with information 
from the second parent. Cycle crossover is best explained with an example. Suppose 
that we have parents 

Pi = [ 2 3 4 5 6 1 ] 

P 2 = [ 4 5 2 1 6 3 ] . (18.15) 

We create a child as follows. 

1. Select a random index between 1 and n. Suppose that we select 4. Pi (4) = 5, 
so the child is initialized as c = [ — — — 5 — — ] . 

2. P2(4) = 1, and city 1 occurs in the sixth position of Pi , so the child is 
augmented to become c = [ — — — 5 — 1 ] . 

3. P2(6) = 3, and city 3 occurs in the second position of P2 , so the child is 
augmented to become c = [ — 3 — 5 — 1 ] . 

4. P2(2) = 5, but the child already includes city 5. Therefore we copy the remain-
ing required cities to the child from P2 , which gives c = [ 4 3 2 5 6 1 ] . 

We often create a second child by reversing the roles of Pi and P 2 . Figure 18.3 
shows how cycle crossover operates. Cycle crossover always results in valid children. 
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Pi = Parent 1, P 2 = Parent 2 
s <— random integer from [l,n] 
r < -P i ( s ) 
Initialize the child to an empty tour: C(i) = 0 for i G [l,n] 
C(s) *- r 
While C(i) = 0 for some i e [1, n] 

r <- P2(s) 
If C(i) ^ r for all ie[l,n] then 

S ^ { i : P l ( i ) = r } 
C(s) <r- r 

else 
For i = 1 to n 

If C(i) = 0 then C(i) * -P 2 ( i ) 
Next i 

End if 
Next city 

Figure 18.3 Cycle crossover for the n-city TSP. 

18.3.1.4 Order-Based Crossover Order-based crossover (OBX) is a modification 
of cycle crossover [Syswerda, 1991]. Order-based crossover randomly selects several 
positions in the first parent Pi , finds the cities in the corresponding positions in 
P2 , and then re-orders those cities in P\ with their order from P 2 . The result is the 
child. For example, suppose that we have the parents 

Pi = [ 2 3 4 5 6 1 ] 

P2 - [ 4 5 2 1 6 3 ] . (18.16) 

Order-based crossover would proceed by randomly selecting a certain number of 
positions in P\. Suppose that we select positions 1, 3, and 4. The cities in those 
positions in P2 are cities 4, 2, and 1. The child is initialized with all cities from Pi 
except for the cities 4, 2, and 1: 

ci = [ - 3 - 5 6 - ] . (18.17) 

Next, we copy cities 4, 2, and 1 to the child in the same order that they occur in 
P2. This gives the child 

ci = [ 4 3 2 5 6 1 ] . (18.18) 

We often create a second child by reversing the roles of Pi and P2, which in the 
above example results in c2 being initialized with all cities from P2 except for the 
cities 2, 4, and 5 (since those cities are in positions 1, 3, and 4 in Pi) : 

c2 = [ - - - 1 6 3 ] . (18.19) 

We then copy cities 2, 4, and 5 to the child in the same order that they occur in 
P i , which gives 

c2 = [ 2 4 5 1 6 3 ] . (18.20) 
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18.3.1.5 Inver-Over Crossover Given two parents P\ and P2, inver-over crossover 
works as follows [Tao and Michalewicz, 1998]. 

1. Randomly select a position s from P\. Suppose that P\(s) = r. 

2. Suppose that r is in the k-th position in P2; that is, P2(k) = r. Set the 
end-point city as e = P2(k + 1). 

3. Reverse the order of the cities between P\(s + 1) and e in P\ to obtain the 
child. 

For example, suppose that we have the parents 

Pi = [ 2 3 4 5 6 1 ] 

P2 = [ 4 5 2 1 6 3 ] . (18.21) 

We randomly select a position s from Pi ; suppose that we select s = 4. We see that 
Pi (4) = 5. We see that city 5 is in the second position in P2; that is, P2(2) = 5. So 
we set e = P2(3) = 2 as the end-point city. We then reverse the order of the cities 
between Pi (5) and city 2 in Pi to obtain 

c=[6 5 4 3 2 1 ] . (18.22) 

If k = n in Step 2, then p2(& +1) is not defined. In this case we can use some ad-hoc 
method to continue the crossover process; for example, we could set e = P2(k — 1), 
or we could go back to Step 1 and select a new random s. 

18.3.2 Adjacency Representation 

In adjacency representation [Grefenstette et al., 1985], if a tour represented by 
vector x includes a direct path from city i to city jf, then x(i) = j - that is, the 
z-th element of x is equal to j . For example, consider the vector 

x = [ 2 4 8 3 9 7 1 5 6 ] . (18.23) 

Vector x is interpreted as follows. 

• x( l ) = 2, so the tour includes an edge from city 1 to city 2. 

• x(2) = 4, so the tour includes an edge from city 2 to city 4. 

• x(S) — 8, so the tour includes an edge from city 3 to city 8. 

• x(4) = 3, so the tour includes an edge from city 4 to city 3. 

• x(5) = 9, so the tour includes an edge from city 5 to city 9. 

• x(6) = 7, so the tour includes an edge from city 6 to city 7. 

• x(7) = 1, so the tour includes an edge from city 7 to city 1. 

• x(S) = 5, so the tour includes an edge from city 8 to city 5. 

• x(9) = 6, so the tour includes an edge from city 9 to city 6. 
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Putting it all together, we see that the tour represented by x is 

l - > 2 - > 4 - > 3 - > 8 - > 5 - + 9 - * 6 - + 7 - > l . (18.24) 

A vector x that uses the adjacency representation for an n-city TSP has the fol-
lowing properties. 

• x{i) φ % for all i £ [ l ,n]. 

• For all j E [1, n], there exists exactly one i G [1, n] such that x(i) = j . 

The above properties are necessary but not sufficient properties for x to represent 
a valid tour. For example, the vector 

£ = [ 2 1 8 3 9 7 4 5 6 ] (18.25) 

is invalid. If we start in city 1, we repeat the sequence 1—> 2 —>· 1 —v 2 —>··· 
indefinitely, and we never visit the rest of the cities. The following sections discuss 
some ways that we can combine parent individuals that are represented in this way 
to obtain child individuals. 

18.3.2.1 Classic Crossover First we discuss a crossover method that does not work 
with the adjacency representation, and that is single-point crossover as used in G As 
(see Section 8.8). For example, consider the two parent vectors 

Pi = [ 2 4 1 3 ] 
P2 = [ 4 3 1 2 ] . (18.26) 

If we perform single-point crossover at the midpoint of the two vectors, we obtain 
the children 

ci = [ 2 4 1 2 ] 

c2 = [ 4 3 1 3 ] . (18.27) 

c\ represents the tour 1 -> 2 —> 4 —>· 2, which is invalid because it never visits 
city 3. Note that c\ includes two "2" entries and no "3" entries. c2 represents the 
tour 1 —>> 4 —> 3 —> 1, which is invalid because it never visits city 2. Note that c2 

includes two "3" entries and no "2" entries. 

18.3.2.2 Alternating Edges Crossover Alternating edges crossover starts with clas-
sic crossover and repairs invalid tours [Grefenstette et al., 1985]. For instance, we 
know that c\ in Equation (18.27) is invalid because it has two "2" entries and no 
"3" entries. We can try to repair it by replacing one of the "2" entries with a "3." 
If we replace the first "2" with a "3" we obtain 

ci = [ 3 4 1 2 ] . (18.28) 

This does not work because it leads to the cycle 1 —> 3 —> 1 —> . . . We can therefore 
try to repair c\ by instead replacing the second "2" with a "3" to obtain 

c'{ = [ 2 4 1 3 ] (18.29) 

which represents the valid tour 1 —>· 2 —» 4 —>· 3. The above example shows 
single-point crossover, but alternating edges crossover can also be used with two-
point crossover, or a larger number of crossover points. Although alternating edges 
crossover works in the sense that it creates valid tours, it often disrupts good tours, 
and so it usually does not work well in practice. 
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18.3.2.3 Heuristic Crossover Heuristic crossover is so called because it uses com-
mon sense to combine two candidate solutions [Grefenstette et al., 1985]. It works 
by combining the best edges from two parents to create the child. Heuristic 
crossover is described as follows. 

1. Choose a random city r as the starting point. 

2. Compare the edges from the parents that leave city r. Select the shorter edge 
for the child. 

3. The city on the other side of the edge selected above is the starting point for 
the selection of the next city. 

4. If the selected city is already in the child, then replace the selected city with 
a random one that is not in the child. 

5. Continue with Step 2 until the child tour is complete. 

Figure 18.4 presents pseudocode for heuristic crossover. Note that we can use 
heuristic crossover with any vector-based TSP representation. We can easily extend 
Figure 18.4 for more than two parents. Also, we could experiment with other 
modifications of Figure 18.4. For example, instead of deterministically choosing 
?"min from { T * ! , ^ } to minimize [d(r,ri),d(r,r2)\, we could select r m i n stochastically. 
This could entail, for instance, setting rmm = ri with a probability that is inversely 
proportional to d(r,ri) for i G [1,2]. 

Pi = Parent 1, P2 = Parent 2 
r *- random city in [l,n] 
Child C <- {r} 
While \C\ < n 

Use Ti to indicate the city that follows r in Parent z, for i E [1,2] 
d(r, Ti) = distance from r to r*, for i e [1,2] 
' m i n 
T ^ '"min 
UreC then 

r <f- random city in [1, n] such that r £ C 
End if 
C±-{C,r} 

Next city 

Figure 18.4 Heuristic crossover for the n-city TSP. 

As an illustration of heuristic crossover, suppose that we have a four-city TSP 
with the distance matrix 

D = 

- 13 9 15 
13 - 4 7 
9 4 - 12 

15 7 12 -

(18.30) 



SECTION 18.3: TSP REPRESENTATIONS AND CROSSOVER 4 6 3 

where Dij represents the distance between city i and city j . Suppose we have 
parents 

Pi = [ 2 4 1 3 ] 
P 2 = [ 4 3 1 2 ] . (18.31) 

Heuristic crossover proceeds as follows. 

1. We randomly select a starting city r G [1,4]; suppose that we select r = 2. 

2. We see that Pi has the edge 2 —► 4, and d(2,4) = 7. We see that P2 has the 
edge 2 —)> 3, and d(2,3) = 4. Therefore, we select the edge 2 -> 3 for the 
child, which gives C = {2,3}. 

3. We see that both parents have the edge 3 —» 1, so the child is augmented to 
become C = {2,3,1}. 

4. We see that Pi has the edge 1 ->> 2, and d(l , 2) = 13. We see that P 2 has the 
edge 1 -» 4, and d(l ,4) = 15. Therefore, we select the edge 1 —> 2 for the 
child. But city 2 is already in C, so we choose a random city that is not in 
C. Suppose we choose city 4 (which is, in fact, the only city that is not yet 
in C). This gives C = {2,3,1,4}. 

5. C is now complete, and its adjacency representation is C = [ 4 3 1 2 ] . 

18.3.3 Ordinal Representation 

In ordinal representation [Grefenstette et al., 1985], an n-city tour is represented 
as a vector 

x=[ xi x2 · · · Xn ] (18.32) 

where Xi G [1, n — i]. That is 

xi G [l,n] 
x2 G [ l , n - l ] 
x3 G [ l , n - 2 ] 

xn = 1. (18.33) 

Suppose that we have an ordered list of cities: 

L = { 1 2 · · · n }. (18.34) 

That is, L(i) = i for i G [l ,n]. In ordinal representation, x\ represents the first city 
of the tour. x2 gives the index in the set L2 = L\{xi} of the second city of the 
tour.1 xs gives the index in the set L3 = L\{xi,x2} of the third city of the tour. 
In general, Xk gives the index in the set Lk — L\ U ^ 1 X{ of the k-th city of the 
tour. Note that any vector of the form of Equation (18.33) represents a valid tour. 

1We use the notation A\B to indicate the set {x : x G A and x £ B}. That is, A\B means the 
set of all elements in A that are not in the set B. 
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For example, suppose that a six-city tour is represented as 

x = [ 5 2 4 1 2 1 ] . (18.35) 

Given the ordered list L = {1,2, 3 ,4,5,6}, we construct the tour represented by x 
as follows. 

1. x\ = 5, and L(5) = 5, so city 5 is the first city in the tour. Removing 5 from 
L gives L2 = {1,2,3,4,6}. 

2. X2 = 2, and L2(2) = 2, so city 2 is the second city in the tour. Removing 2 
from L2 gives L3 = {1,3,4,6}. 

3. £3 = 4, and 1/3(4) = 6, so city 6 is the third city in the tour. Removing 6 
from L3 gives L4 = {1,3,4}. 

4. £4 = 1, and L±{\) = 1, so city 1 is the fourth city in the tour. Removing 1 
from L4 gives L5 = {3,4}. 

5. £5 — 2, and Ls(2) = 4, so city 4 is the fifth city in the tour. Removing 4 from 
L5 gives L6 = {3}. 

6. XQ = 1, and 1/6(1) = 3, so city 3 is the sixth city in the tour. 

This gives the tour 5 - > 2 - ^ 6 - > l - ^ 4 - ^ 3 . 
Suppose that we want to try single-point crossover with ordinal representation 

to combine two parents and obtain a child. Consider the parents 

Pi = [ 5 2 4 1 2 1 ] 

P 2 = [ 1 5 3 3 1 1 ] . (18.36) 

If we select the crossover point as the midpoint of the parents, we obtain the children 

ci = [ 5 2 4 3 1 1 ] 

= 5 - > 2 - > 6 - > 4 - + 1 - > 3 
c2 = [ 1 5 3 1 2 1 ] 

= 1 ^ 6 - > 4 - > 2 - > 5 - > 3 . (18.37) 

Both children represent valid tours. Although ordinal representation seems a little 
awkward at first, it has the advantage that single-point crossover always results in 
a valid tour. 

18.3.4 Matrix Representation 

In matrix representation, an open n-city tour is represented by an n x n matrix M 
containing only zeros and ones [Fox and McMahon, 1991]. M ^ = 1 if and only if 
city i occurs before city k in the tour. For instance, consider the matrix 

M 

0 1 0 1 1 
0 0 0 1 1 
1 1 0 1 1 
0 0 0 0 1 
0 0 0 0 0 

(18.38) 
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The ones in the first row indicate that city 1 is before cities 2, 4, and 5. The ones 
in the second row indicate that city 2 is before cities 4 and 5. The ones in the 
third row indicate that city 3 is before cities 1, 2, 4, and 5. The one in the fourth 
row indicates that city 4 is before city 5. Finally, the fact that the fifth row is 
comprised of all zeros indicates that city 5 is the last city in the tour. Therefore, 
Equation (18.38) represents the tour 3 - » l - > 2 - * 4 - > 5 . 

Another way to interpret Equation (18.38) is to note that the row with the most 
ones is the first city, the row with the second most ones is the second city, and so 
on. The row with the k-th most ones is the k-th city in the tour. 

We note several properties for any n x n matrix M that represents a valid tour. 

• Exactly one row of M has (n — 1) ones, exactly one row of M has (n — 2) 
ones, and so on. 

• The above property allows us to find the number of ones in M: 

n 

Number of ones = ^ ( n - i) = n(n - l ) /2 . (18.39) 
i=l 

• No city occurs before itself in the tour, so Ma — 0 for all i £ [1, n]. 

• If city i occurs before city j , and city j occurs before city k, then city i occurs 
before city k. That is, 

(Mij = 1 and Mjk = 1) Mik = 1. (18.40) 

The following sections discuss a couple of ways that we can combine parent 
matrices to obtain children: we can take the intersection of the two parent matrices, 
or the union of the two matrices. 

18.3.4.1 Intersection Crossover We illustrate intersection crossover with an exam-
ple. Suppose that Equation (18.38) represents parent Mi, and that the second 
parent is given as 

M2 

0 
0 
0 
1 
0 

1 
0 
0 
1 
0 

1 
1 
0 
1 
1 

0 
0 
0 
0 
0 

1 
1 
0 
1 
0 

(18.41) 

M.2 represents the tour 4—>> 1 —>· 2 —► 5 —»3. We obtain the intersection of Mi 
and M2 by performing an element-by-element logical AND operation on the two 
matrices. This gives the partially-defined child 

Mc = Mi Λ M2 

0 1 0 0 1 
0 0 0 0 1 
0 0 0 0 0 
0 0 0 0 1 
0 0 0 0 0 

(18.42) 

This does not represent a valid tour, but it does indicate that city 1 is before cities 
2 and 5, that city 2 is before city 5, and that city 4 is before city 5. This ordering 
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occurs because the same ordering occurs in both parents - in fact, this is the only 
ordering that is common in both parents. At this point we can pseudo-randomly 
add ones to Mc until it is valid tour (that is, until it satisfies all of the properties 
enumerated above). For example, we might choose to add ones to Mc to obtain 

Mr.= 

0 1 1 1 1 
0 0 0 0 1 
0 0 0 0 0 
0 1 1 0 1 
0 1 1 0 0 

(18.43) 

where the added ones are denoted in bold font. M c now satisfies all of the properties 
of a valid tour, and represents the tour 1—>► 4 —^5—^2—^3. 

18.3.4.2 Union Crossover We now illustrate union crossover with an example. 
Suppose that Equations (18.38) and (18.41) represent parents M\ and M2. We 
obtain the union of M\ and M2 by performing an element-by-element logical OR 
operation on the two matrices. This gives the partially-defined child 

Mc = Mi V M2 = 

0 1 1 1 1 
0 0 1 1 1 
1 1 0 1 1 
1 1 1 0 1 
0 0 1 0 0 

(18.44) 

We next select a random "cut point" that divides Mc into four quadrants (not 
necessarily of equal size). Suppose that we generate a random cut point at the 
second row and the second column. We write Mc with the upper-left and lower-right 
quadrants unchanged, but with the lower-left and upper-right quadrants replaced 
with undefined terms: 

Mc = 

0 
0 
X 

X 

X 

1 
0 
X 

X 

X 

X 

X 

0 
1 
1 

X 

X 

1 
0 
0 

X 

X 

1 
1 
0 

(18.45) 

We next make necessary changes to Mc to remove contradictions. For example, 
^c34 = 1 and MC43 = 1, so one of those elements needs to be changed to a 0. 
Similarly, Μ&$ = 1 and Mc^ = 1, so one of those elements needs to be changed to 
a 0. This gives the corrected but still partially-defined child as 

Mr = 

0 
0 
X 

X 

X 

1 
0 
X 

X 

X 

X 

X 

0 
1 
1 

X 

X 

0 
0 
0 

X 

X 

0 
1 
0 

(18.46) 

Finally we pseudo-randomly add ones to the off-diagonal blocks in Mc until it is 
valid tour (that is, until it satisfies all of the properties enumerated earlier). For 
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example, we might choose to add ones to Mc to obtain 

Mr = 

0 1 1 1 1 
0 0 1 1 1 
0 0 0 0 0 
0 0 1 0 1 
0 0 1 0 0 

(18.47) 

Mc now satisfies all of the properties of a valid tour, and represents the tour 1 
2 -> 4 -+ 5 -+ 3. 

18.4 TSP MUTATION 

This section discusses a few ways to mutate TSP solutions. We restrict our discus-
sion to path representations (see Section 18.3.1). Mutations for other representa-
tions can be found in the literature. Also, any representation could be converted to 
path representation, and then we could use one of the mutation methods discussed 
in this section 

18.4.1 Inversion 

Inversion reverses the order of the tour between two randomly-selected indices [Fo-
gel, 1990]. For example, x could be mutated to become xm as follows: 

x = i _ > 5 _ > 4 - > 7 _ > 6 - > 2 - > 3 

Xm = l - + 6 - > 7 - > 4 - * 5 - > 2 - > 3 (18.48) 

where we randomly selected the start and end point of the mutated segment. Inver-
sion is also called 2-opt mutation [Beyer and Schwefel, 2002]. There are n(n — l ) / 2 
unique ways to implement inversion to an n-city TSP tour. The lowest cost solution 
that results from all possible inversions of an n-city TSP tour always results in a 
tour without any crossed edges [Back et al., 1997a]. 

18.4.2 Insertion 

Insertion moves the city in position i to position k, where i and k are randomly 
selected [Fogel, 1988]. For example, suppose that we have the tour x shown in 
Equation (18.48). Suppose that we randomly select i = 4 and k = 2. We then 
move city 7, which is in position 4, to position 2 to obtain the mutated tour 

x m = l - > 7 - > > 5 - + 4 - > 6 - > 2 - > > 3 . (18.49) 

Insertion is also called or-opt mutation [Beyer and Schwefel, 2002]. 

18.4.3 Displacement 

Displacement is a generalization of insertion [Michalewicz, 1996, Chapter 10]. Dis-
placement takes the sequence of q cities beginning at the z-th position and moves 
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them to the A;-th position in the tour, where q, i, and k are randomly selected. For 
example, suppose that we have the tour x shown in Equation (18.48). Suppose that 
we randomly select q = 2, i = 4, and k = 2. We then take the two-city sequence 
beginning at position 4 (cities 7 and 6), and move it to position 2 to obtain the 
mutated tour 

x m = l - > 7 - > 6 - > 5 - > 4 - > 2 - > 3 . (18.50) 

Displacement is also called shifting [Beyer and Schwefel, 2002]. We could combine 
displacement with inversion by reversing the order of the selected cities before we 
move them to their new position. 

18.4.4 Reciprocal Exchange 

Reciprocal exchange swaps the cities in the i-th and k-th positions, where i and 
k are randomly selected [Banzhaf, 1990]. For example, suppose that we have the 
tour x shown in Equation (18.48). Suppose that we randomly select i = 5 and 
k = 1. We then take the swap the cities in the first and fifth positions to obtain 
the mutated tour 

x m = 6 - > 5 - + 4 - > 7 - > l - > 2 - + 3 . (18.51) 

Reciprocal exchange is also called 2-exchange mutation [Beyer and Schwefel, 2002]. 
We could generalize this method by swapping sequences of cities rather than single 
cities. We could then combine this generalization with inversion by reversing the 
order of one or more of the swapped sequences. 

18.5 AN EVOLUTIONARY ALGORITHM FOR THE TRAVELING 
SALESMAN PROBLEM 

Given the background of the preceding sections, we can now present a basic EA 
to solve the TSP, which is shown in Figure 18.5. We have many options in the 
implementation of Figure 18.5. 

• We have several options for population initialization, as we discussed in Sec-
tion 18.2. 

• We have several options for crossover, as we discussed in Section 18.3. We 
could also use more than one crossover method, probabilistically switching 
back and forth between various methods from one generation to the next. 
Furthermore, we could keep track of which crossover method gives the best 
results, and adapt the frequency of the crossover methods depending on the 
fitness of their offspring. 

• We have several options for mutation, as we discussed in Section 18.4. As 
with crossover, we could use more than one mutation method, probabilistically 
switching back and forth between various methods from one generation to the 
next. Also as with crossover, we could keep track of which mutation method 
gives the best results, and adapt the frequency of the mutation methods 
depending on the fitness of their results. 

• We need to specify the "Select parents" statement in Figure 18.5 when im-
plementing the algorithm. We could use any of the selection methods in 
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Section 8.7: fitness-proportionate selection, rank-based selection, tournament 
selection, and so on. 

pm = mutation rate 
Initialize N candidate solutions {x{} (see Section 18.2) 
Represent the candidate solutions using the desired representation: 

path, adjacency, ordinal, or matrix representation 
Calculate the tour distance for each candidate solution 
While not (termination criterion) 

For k = 1 to N 
Select parents from {x{} to create a child 
Create a child Ck using one of the crossover methods discussed earlier: 
If using path representation then 

Use a crossover method from Section 18.3.1 to create Ck 
else if using adjacency representation then 

Use a crossover method from Section 18.3.2 to create Ck 
else if using ordinal representation then 

Use a crossover method from Section 18.3.3 to create Ck 
else if using matrix representation then 

Use a crossover method from Section 18.3.4 to create Ck 
End if 
r —̂ C/[0,1] (random number uniformly distributed between 0 and 1) 
If r < pm then 

Mutate Ck using one of the methods from Section 18.4 
End if 
Calculate the tour distance for Ck 

Next child 
Replace duplicate individuals in {x^ U {Ci} 
{xi} <- best N individuals from {xi} U {Ci} 

Next generation 

Figure 18.5 An evolutionary algorithm to solve the traveling salesman problem. 

• With problems like the TSP where problem-specific information (distances 
between cities) is readily available, we can often get much better results by 
combining the EA with an algorithm that uses distance information. For in-
stance, after obtaining each child Ck in Figure 18.5, we could select a random 
sub-tour from Ck and re-arrange it using either one of the heuristics from 
Section 18.2, or, if the subtour is small enough, using brute force [Jayalak-
shmi et al., 2001]. These types of approaches are called hybrid EAs because 
they combine standard EA operators with non-evolutionary algorithms that 
are specifically designed for TSPs. The literature proposes many hybrid EA 
variations for the TSP. 

• The line "Replace duplicate individuals" in Figure 18.5 is often necessary 
because in combinatorial optimization, the best few candidate solutions tend 
to dominate the entire population since the search space is discrete rather than 
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continuous. That is, the population converges so that it consists of only a few 
(sometimes only one) unique individual. We discussed diversity for continuous 
optimization in Section 8.6, and diversity requires even more consideration in 
combinatorial optimization. We can use several methods to replace duplicate 
individuals. We could replace them with randomly-generated individuals, we 
could replace them with individuals generated by one of the heuristics of 
Section 18.2, we could mutate them using one of the methods of Section 18.4, 
or we could use some combination of these methods. 

EXAMPLE 18.1 

In this example, we investigate the Berlin52 TSP, which is a set of 52 locations 
in Berlin, Germany. This problem is available on the TSPLIB web site (see 
Appendix C.6). Figure 18.6 shows a plot of the 52 cities and the minimum-
distance closed tour. The latitude and longitude units are normalized. The 
minimum-distance tour is 7542 units. 

1200 

1000 
Longitude 

2000 

Figure 18.6 Example 18.1: The Berlin52 TSP cities and the minimum-distance tour, 
which is 7542 units. 

In this example, we implement the evolutionary TSP algorithm of Fig-
ure 18.5 on the Berlin 52 TSP with the following parameters. 

• We use a population size TV = 53 (one more than the number of cities). 

• We initialize the population by generating N random tours. 

• We use path representation. 

• At each generation we define the fitness f(x) of tour x as 

f(x) = max D(z) + min D(z) - D(x) (18.52) 
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where the maximum and minimum are taken over the entire population of 
candidate solutions, and D(z) is the distance of tour z. This equation trans-
forms distance to fitness so that a low-distance solution has a high fitness 
value, and vice versa. The equation maps distance to fitness in such a way 
that all fitness values are positive. 

• We select parents in the algorithm of Figure 18.5 using roulette-wheel selec-
tion. 

• We use partially matched crossover (PMX) (see Section 18.3.1). 

• We use a mutation rate pm = 5% and inversion mutation (see Section 18.4). 

• We replace duplicate individuals with a two-step process. First, we scan the 
parent/child population and mutate duplicate individuals. Second, we again 
scan the parent/child population and replace duplicates with random tours. 

• We run 20 Monte Carlo simulations, each for 300 generations, and find the 
average distance D* of the best tour of the 20 simulations. 

We run several experiments in this example. First, we try five different 
crossover methods and obtain the following results. 

partially matched crossover: D* = 8724 
order crossover: D* = 8393 
cycle crossover: D* = 9493 

order-based crossover: D* — 17109 
inver-over crossover: D* — 10595. (18.53) 

We see that order crossover works the best. 
Second, we use order crossover and try three different mutation methods, 

obtaining the following results. 

inversion mutation: D* = 8393 
insertion mutation: D* = 9776 

reciprocal exchange mutation: D* = 10036. (18.54) 

We see that inversion mutation works the best. 
Third, we use order crossover and inversion mutation and try three different 

initialization methods. In the first method, we initialize the entire population 
to random tours. In the second method, we initialize two individuals using 
nearest-neighbor initialization (see Section 18.2.1), and initialize the remain-
ing (N — 2) cities randomly. In the third method, we initialize the entire 
population using nearest-neighbor initialization. We obtain the following re-
sults. 

TV random and 0 nearest-neighbor tours: D* = 8393 
(N — 2) random and 2 nearest-neighbor tours: D* — 8140 

0 random and TV nearest-neighbor tours: D* = 8115. (18.55) 
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We see that initializing the entire population with the nearest-neighbor al-
gorithm works the best. However, we can obtain nearly the entire benefit of 
nearest-neighbor initialization by initializing only a couple of individuals with 
the nearest-neighbor algorithm. Figure 18.7 shows the results of a typical 
EA simulation with order crossover, inversion mutation, and all individuals 
initialized with the nearest-neighbor algorithm. 

1000 
Longitude 

2000 

Figure 18.7 Example 18.1: Typical EA result for the Berlin52 problem. The distance of 
the tour shown here is 8036 units, which is 6.5% worse than the optimal solution. 

Example 18.1 investigated several different EA options, but we could still not 
obtain the globally-optimal solution. In one sense this is not surprising since the 
search space cardinality is on the order of 51!/2 = 1066. We ran 300 generations 
each EA simulation with a population size of 53 individuals. We therefore evaluated 
300 x 53 = 15,900 potential solutions each simulation, which is a miniscule, almost 
negligible portion of the search space, and we still got to within less than 10% of 
the optimal solution. However, the Berlin52 benchmark is considered to be a pretty 
easy TSP. Figure 18.6 shows the layout of the cities, and it does not look like it 
should be very difficult for a human, or for a good computer program, to find the 
optimal tour. These results underscore one of the points that we made at the end 
of the previous section, and which we restate here for emphasis. 

With problems like the TSP where problem-specific information (distances 
between cities) is readily available, we can often get much better results by 
combining the EA with an algorithm that uses distance information. 

Any serious EA implementation for the TSP needs to take this advice seriously. 
The EA researcher needs to study non-evolutionary state-of-the-art TSP heuristics 
and carefully incorporate them into the EA to get competitive results. 
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Finally, we need to run many more than the 300 generations of each simulation 
in Example 18.1 to get good results. Figure 18.8 illustrates a typical graph of the 
minimum-distance solution in the EA population as a function of generation num-
ber. That figure indicates that the best candidate solution is continuing to improve 
even after 300 generations, and that we could expect much better performance if 
we allowed the EA to run for a few hundred more generations. EA implementations 
that hope to get competitive results usually need to run at least tens-of-thousands 
of generations. Of course, processing-power-constrained EAs are interesting and 
important for obtaining real-time TSP solutions, but the price to be paid for faster 
performance is worse results. 
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Figure 18.8 Example 18.1: Typical EA convergence behavior for the Berlin52 problem. 
The EA has mostly converged after 300 generations, but it appears that the best candidate 
solution would continue to improve for a few hundred more generations. 

18.6 THE GRAPH COLORING PROBLEM 

A graph is a set of partially-connected nodes. Each node has a unique index, and 
a weight that is generally not unique [Pardalos and Mavridou, 1998]. Figure 18.9 
shows an example of a graph. 

There are many related but distinct graph coloring problems. The classical graph 
coloring problem is defined as either: 

1. Determine the smallest number of colors n such that each node of a connected 
graph can be colored with one of these n colors, under the constraint that 
linked nodes are not assigned the same color; or 

2. Color each node in a connected graph with one of n colors, where n is given, 
under the constraint that linked nodes are not assigned the same color. 

Note that the first problem listed above, which is also called the n-coloring problem, 
can be solved by repeatedly solving the second problem for successively smaller 
values of n. 
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Figure 18.9 An example of a connected graph. Each node is labeled (i, w) 
the unique node index and w is its weight. 

where i is 

The weighted graph coloring problem is a generalization of the second definition 
above. The weighted graph coloring problem consists of assigning one of n colors to 
each node, under the constraint that linked nodes are not assigned the same color, 
in such a way as to maximize the sum of the weights of the colored nodes. This 
is the problem that we emphasize in this section. Note that the second classical 
graph coloring problem above can be solved by assigning each node a weight of 1 
and solving the weighted graph coloring problem. 

In the weighted graph coloring problem, the fitness of a candidate solution is the 
sum of the weights of the colored nodes, and the problem is to color the nodes in such 
a way as to maximize fitness. The weighted graph coloring problem has applications 
in scheduling, computer networks, fault detection and diagnosis, pattern matching, 
communication theory, games, and many other areas [Ufuktepe and Bacak, 2005]. 
When we are faced with a practical optimization problem, if we can convert it to 
an equivalent graph coloring problem, then we can use a wealth of tools that are 
available for graph coloring problems to solve our practical optimization problem. 

The reason that these problems are called graph coloring problems, or sometimes 
map coloring problems, is because a map can be represented as a connected graph.2 

As an example of a conversion from a map to a graph, Figure 18.10 shows a map 
where each region is labeled with an index. To convert the map to a graph, we 
first note that the map shows that region 1 shares a boundary with regions 2, 4, 
and 5; therefore, the graph on the right shows that node 1 is connected to nodes 2, 
4, and 5. Next, we note that the map shows that region 2 shares a boundary with 
regions 1, 3, and 4; therefore, the graph on the right shows that node 2 is connected 
to nodes 1, 3, and 4. We continue this process to convert the map to an equivalent 
connected graph. We see that the problem of coloring the map with n colors so that 
neighboring regions do not have the same color, is equivalent to the graph coloring 
problem. Note that the converse is not true; that is, a connected graph cannot 
necessarily be converted to a planar map. For example, a completely connected 
graph with five nodes cannot be converted to a planar map. 

Consider the one-color graph coloring problem for the graph of Figure 18.9. 
Nodes 2 and 4 have the highest weights, but we cannot color both of them the 

The famous four-color theorem states that no more than four colors are required to color any 
map in such a way that no two connected regions are the same color. 
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Figure 18.10 The figure on the left shows a map. The figure on the right shows the 
equivalent connected graph. A map can always be converted to an equivalent connected 
graph, but the converse is not true. 

same color because they are connected. Which nodes should we color to obtain the 
highest fitness? One popular algorithm is the greedy algorithm, which is shown 
in Figure 18.11. The greedy algorithm is simple; it sorts the nodes in order of 
decreasing weight, and then assigns the first legal color to the nodes in their sorted 
order. 

Given the graph of Figure 18.9, the greedy algorithm sorts the nodes in the order 
{2,4,6 ,5 ,1 ,3}, although nodes 2 and 4 could be interchanged since they have the 
same weight. For the one-color problem, we color nodes 2 and 6, which gives a 
fitness of 15. For the two-color problem (red and green, for example), we assign 
red to node 2, green to node 4, red to node 6, and green to node 3, which gives a 
fitness of 27. 

The greedy algorithm is simple and quick, and it often performs pretty well. 
However, it is not too difficult to find a case where the greedy algorithm fails. For 
instance, consider the graph of Figure 18.12. When we use the greedy algorithm 
for the one-color problem for this graph, we color only node 7, which gives a fitness 
of 5. It is clear from looking at the graph that we can obtain a better fitness by 
coloring nodes 1,3, and 5, which gives a fitness of 9. 

{xi} = N nodes sorted in order of decreasing weight 
{Ck} = n colors 
For i = 1 to TV 

For k — 1 to n 
If legal, then assign Ck to xi and exit the "For fc" loop 

Next color 
Next node 

Figure 18.11 A greedy algorithm for the TV-node, n-color graph coloring problem. 
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2 3 

7,5 

3,3 

6,3 

Figure 18.12 When we use the greedy algorithm for the one-color graph coloring problem 
for this graph, we color only node 7, which gives a suboptimal solution. 

Evolutionary Algorithms and Graph Coloring Problems 

How could we use an EA to solve the graph coloring problem? One way is to define 
an individual in an EA population as an ordered list of nodes. Then we can use the 
greedy algorithm to assign colors, based on the order of the nodes. Each individual 
then has a fitness value. We can use any type of fitness-dependent selection, and 
then we can use any of the recombination methods of Section 18.3 and any of the 
mutation methods of Section 18.4 to create children. This approach transforms the 
graph coloring problem into TSP format, which allows us to use all of the TSP 
results of the previous sections. 

As with the TSP, any serious graph coloring EA needs to incorporate non-
evolutionary heuristics to get good results. There is a lot of literature on the graph 
coloring problem. [Jensen and Toft, 1994] provides a good background on the prob-
lem, analysis, theoretical results, and some heuristic algorithms. In addition, there 
are many other EA-based approaches for solving graph coloring problems. Hy-
brid EAs that combine evolutionary search with local optimization are among the 
best-performing graph coloring algorithms. See [Galinier et al., 2013] for a survey. 

■ EXAMPLE 18.2 

This example shows how a scheduling problem can be represented as a graph 
coloring problem. Suppose that we want to schedule events 1, 2, 3, 4, 5, and 6 
so that the following pairs of events do not occur at the same time: 

(1 and 2), (1 and 3), (3 and 5), (3 and 6), and (4 and 6). 
We can represent this problem with the graph of Figure 18.13. Each node has 
the same weight, and so the weights are not shown in the figure. Nodes that 
correspond to events that cannot be scheduled at the same time are connected 
in the graph. This graph does not have a one-color solution. However, we 
can obtain a two-color solution by coloring nodes 1, 5, and 6 one color, and 
node 2 another color, and nodes 3, and 4 a third color. In other words, we 
can schedule events 1, 5, and 6 during the first time slot, and event 2 during 
the second time slot, and events 3, and 4 during the third time slot. We 
see that we can use graph coloring algorithms to schedule operations in a 
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manufacturing plant where certain tasks use the same resources, to schedule 
classes in a school where certain students and teachers are involved in multiple 
classes, and to solve a variety of other scheduling problems. 

Figure 18.13 We can represent the scheduling problem of Example 18.2 with this graph. 

18.7 CONCLUSION 

We have summarized the traveling salesman problem (TSP), and discussed some 
of the most commonly-used TSP representations and operators. We have also 
discussed the graph coloring problem and have shown how it can be converted to a 
TSP. Researchers have proposed many TSP operators that we have not had time 
to cover in this chapter. [Larranaga et al., 1999b] gives a good overview of TSP 
representations and operators. The TSP has a long history, and researchers have 
solved it using many methods other than EAs. Many good books are devoted to 
the TSP, including [Applegate et a l , 2007] and [Lawler et al., 1985]. See [Hao 
and Middendorf, 2012] for the proceedings of a conference devoted to evolutionary 
algorithms for combinatorial problems. 

This chapter has discussed only two combinatorial optimization problems (the 
TSP and the graph coloring problem), but there are also many other popular and 
widely applicable combinatorial optimization problems. These include the mini-
mum spanning tree problem, the job shop scheduling problem, the knapsack prob-
lem, and the bin packing problem. EAs have been applied to all of these problems 
but there is plenty of room for additional research. Some of the newer EAs and 
EA variations have yet to be applied to some of these combinatorial optimization 
problems. Efficient ways to hybridize EAs with non-evolutionary combinatorial 
heuristics could be a fruitful area for future research. Finally, we need more the-
oretical results that quantify the performance of EAs on combinatorial problems 
and that can provide guidance for practical applications. 

Our discussion of TSPs in this chapter has covered only symmetric TSPs, that 
is, problems where the distance from city i to city k is the same as that from city 
k to city i. Appendix C.6 discusses a few other types of TSP-related problems, 
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including the asymmetric TSP, the sequential ordering problem, the capacitated 
vehicle routing problem, and the Hamiltonian path problem. 

Another interesting variation is the close-enough TSP. In this problem, we are 
given a connected graph in which each node i has a "close-enough" radius Vi associ-
ated with it. The objective is to find the minimum distance Hamiltonian cycle that 
passes within Ti units of each node i [Yuan et al., 2007]. This problem is closely 
related to the TSP but it is actually a continuous optimization problem, although 
it does include combinatorial elements. Finally we mention the Dubins TSP, which 
is a TSP for a vehicle with kinematic constraints. For instance, a vehicle might 
need to visit a set of locations while traveling the minimum possible distance with 
the constraint that it cannot instantaneously change its direction of travel [Savla 
et al., 2008]. 
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Written Exercises 

18.1 What TSP tour and distance results from nearest-neighbor initialization 
given the distance matrix of Equation (18.5) if we start at city 3? 

18.2 Suppose you have an n-city TSP and you want to determine M tours in the 
initial population using the nearest-neighbor strategy described in Section 18.2.1. 
What is the probability that you will select M different starting cities with this 
strategy? What is the probability if n = 100 and M — 10? 

18.3 Formulate a five-city open TSP such that the nearest two-neighbor algo-
rithm described in Section 18.2.1 performs better than the nearest-neighbor algo-
rithm. 

18.4 In the second step of the shortest-edge initialization example in Section 18.2.2, 
we had to make a random selection since two edges had the same length. Suppose 
we chose the other option in that example. What would be the final closed tour, 
and how would the total distance compare to the example in Section 18.2.2? 

18.5 In the second step of the insertion initialization example in Section 18.2.3, 
we had to make a random selection since two cities were both the same distance to 
T. Suppose we chose the other option in that example. What would be the final 
closed tour? 

18.6 Consider the open tour 1 —>· 2 —>· 3 —» 4 -» 5. What is the path represen-
tation, adjacency representation, ordinal representation, and matrix representation 
of this path? 

18.7 What is the rank of the matrix representation of a TSP tour? 

18.8 We used the greedy graph coloring algorithm to solve the two-color problem 
of Figure 18.9 by sorting the nodes in the order {2,4,6, 5,1,3}, assigning the first 
color to nodes 2 and 6, and assigning the second color to nodes 4 and 3, which gave 
a fitness of 27. However, we could also sort the nodes in the order {4,2,6,5,1,3} 
since nodes 2 and 4 have the same weight. What color assignment would result 
with this order, and what would the fitness be? 

18.9 Explain how a 9 x 9 Sudoku puzzle can be formulated as a graph coloring 
problem. Hint: the graph will have 81 nodes. 

18.10 Consider the graph coloring problem for the graph on the left side of Fig-
ure 18.14, where each node has the same weight. 

a) Use the greedy graph coloring algorithm to find the minimum number of 
colors required to color all of the nodes, where the nodes are ordered as 
shown. 

b) Repeat for the graph on the right side of the figure, which is the same 
graph except that the nodes are ordered differently. 
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Figure 18.14 Problem 18.10: The connected graphs on the left and right are equivalent. 
The only difference is the ordering of the nodes. 

Computer Exercises 

18.11 Repeat Example 18.1 using one of the other TSPs from the TSPLIB web 
site. 

18.12 Repeat Example 18.1 with order crossover, random initialization of the 
entire population, and the opposition-based logic outlined in Figure 16.10 for mu-
tation. What is the distance of the best solution found, averaged over 20 Monte 
Carlo simulations? How does this compare with the results obtained with the three 
mutation methods used in Example 18.1. 



CHAPTER 19 

Constrained Optimization 

[It] is necessary to find ways of incorporating the constraints (normally existing in any 
real-world application) into the fitness function. 

—Carlos A. Coello Coello [Coello Coello, 2002] 

All real-world optimization problems are constrained, at least implicitly if not 
explicitly. This chapter discusses various approaches to handling constraints in 
optimization problems. A constrained optimization problem can be written as 

min f(x) such that g%{x) < 0 for i G [l, m] 
X 

and hj(x) = 0 for j G [l,p]. (19.1) 

This problem includes (m + p) constraints, m of which are inequality constraints, 
and p of which are equality constraints. The set of x that satisfies all (m + p) 
constraints is called the feasible set, and the set of x that violates one or more 
constraints is called the infeasible set: 

feasible set T = {x : g%{x) < 0 for i G [l,ra] and hj(x) = 0 for j G [l,p]} 
infeasible set T = {x : x $. J7}. (19.2) 

Evolutionary Optimization Algorithms, First Edition. By Dan J. Simon 481 
©2013 John Wiley & Sons, Inc. 
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We use the term constrained evolutionary algorithms to refer to evolutionary algo-
rithms that are designed to solve problems of the form of Equation (19.1).1 

Overview of the Chapter 

Constrained EAs can be broadly classified into various categories. 

1. Penalty function approaches modify the cost function of an EA individual 
x based on some measure of its constraint violation. Penalty function ap-
proaches that allow, and sometimes even encourage, infeasible solutions in 
the population are called exterior approaches. In this case they penalize 
the cost or selection of infeasible candidate solutions. Penalty function ap-
proaches that do not allow infeasible solutions in the population are called 
interior point methods. We discuss general ways to implement penalty func-
tion approaches in Section 19.1. We show how to implement various penalty 
function approaches in constrained EAs in Section 19.2. 

2. Special representations are problem-dependent approaches for representing 
constrained problems in such a way that the representation is unconstrained 
while the candidate solutions remain constrained. Special operators are problem-
dependent approaches for performing selection, recombination, and mutation, 
in such a way that the constraints are always satisfied by child individuals. 
These two approaches do not allow infeasible candidate solutions in the pop-
ulation. We discuss these approaches in Section 19.3. 

3. Repair algorithms modify infeasible EA individuals so that they become feasi-
ble. These algorithms are largely problem-dependent. They may allow some 
infeasible individuals to remain in the population, while repairing other in-
feasible individuals. The only repair method that we discuss in this chapter 
is the Genocop algorithm of Section 19.3.2. 

4. Hybrid methods combine features from the above methods, or from non-
evolutionary constrained optimization algorithms. For example, many con-
strained EAs use one of the above methods along with local search. In this 
chapter we present some basic approaches to constrained EAs, but we do not 
discuss how they can be hybridized. However, the literature includes many 
examples of hybridization. After the reader becomes familiar with the basic 
constrained EA approaches in this chapter, he should be well-prepared to 
explore hybrid algorithms in the literature, or to take the best features of 
various constrained EAs to develop his own hybrid algorithm. 

We do not pretend to cover all of the constraint-handling methods that have been 
proposed over the years, but Section 19.4 outlines a few other approaches to con-
strained optimization, including the use of cultural algorithms, and the use of multi-
objective optimization. 

lrThe term constrained evolutionary algorithms is not quite correct from a grammatical viewpoint. 
A grammatically strict interpretation of the phrase would indicate that it refers to evolutionary 
algorithms that are constrained, rather than evolutionary algorithms that are designed to solve 
constrained problems. But the term is convenient, concise, and popular, so with this caveat we 
are confident that the reader will not confuse its meaning. 



SECTION 19.1: PENALTY FUNCTION APPROACHES 483 

One of the main problems that we need to solve during a constrained optimiza-
tion algorithm is how to rank candidate solutions. Some of the solutions have a high 
cost but satisfy the constraints, while other solutions have a low cost but violate 
the constraints. Section 19.5 summarizes the ranking approaches presented earlier 
in the chapter, and discusses a few alternative ranking methods. Section 19.6 ties 
together all of the material in this chapter and presents a comparison of various 
constrained BBO algorithms on some benchmarks. 

19.1 PENALTY FUNCTION APPROACHES 

Penalty function approaches penalize candidate solutions that violate constraints 
or that come close to violating constraints. Penalty function approaches for general 
constrained optimization problems were first proposed by Richard Courant in 1943 
[Courant, 1943]. They are often cited as being the most popular algorithms for 
constrained optimization, but other approaches for constrained EAs are rapidly 
gaining in popularity. 

We can design a penalty function method in two different ways. First, we could 
penalize feasible individuals as they move closer to the constraint boundary; these 
are called interior point methods, or barrier methods. This approach, which we 
briefly discuss in Section 19.1.1, does not allow any infeasible individuals in the 
population. 

Second, we could allow infeasible individuals in the population, but penalize them 
in terms of cost, or in terms of selection for contributing to the next generation. 
This approach, several examples of which we present in Section 19.1.2, generally 
does not penalize feasible individuals, no matter how close they are to the constraint 
boundary. Such approaches are called exterior methods. 

19.1.1 Interior Point Methods 

Interior point methods allow only feasible individuals in the population. These 
methods penalize the cost of individuals as they move close to the constraint bound-
ary, thus encouraging those individuals to remain within the constraints. We illus-
trate the idea of interior point methods with a simple example. 

■ EXAMPLE 19.1 

Consider the scalar problem 

min / (x ) such that x > c, where f(x) — x2. (19.3) 

We can modify this problem so that feasible values of x are penalized as they 
approach the constraint. The modified function is called a barrier function. 
For example, we could convert the constrained problem of Equation (19.3) to 
the unconstrained problem 

m i n / ' ( a ) , where f'(x) = x2 + (x - c + δ)~α (19.4) 

where δ > 0 is a small constant, and a > 0 is another constant. As a —> 0, 
argminx f'(x) —> argminx f(x), but we also obtain a more poorly-behaved 
f'(x); that is, f(x) becomes less smooth. 
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Figure 19.1 shows f(x) and f'{x) for c = 1, δ = 0.01, and a = 1. Of 
course, we still have to make sure that x > c for this simple example, so our 
interior point approach did not really help much. But this example illustrates 
how interior point methods can prevent feasible individuals in an EA from 
violating constraints after recombination or mutation. 

Figure 19.1 Example 19.1. We want to minimize f(x) such that x > 1. We use an 
interior point method to convert the constrained minimization of f(x) to the unconstrained 
minimization of f'(x). 

Interior point methods are not used very often in constrained EAs. This is 
because for many constrained optimization problems, finding candidate solutions 
that satisfy all of the constraints is itself a challenging problem. Also, infeasible 
solutions may include information that is valuable in the search for a constrained 
optimum. For example, a problem with a small feasible region might be solvable 
by combining two infeasible individuals (see Figure 19.2). 

However, there are also many optimization problems for which it is relatively 
easy to find feasible candidate solutions. The paucity of interior point methods 
for constrained EAs is therefore surprising in view of the vast literature on interior 
point methods for general-purpose optimization algorithms [Wright, 1987]. This 
may indicate a neglected area of constrained EA research. 
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\χ2 

Figure 19.2 Example of a small feasible set T in a large search space. It may be difficult 
to directly find a candidate solution x G J7, but it may be much easier to find two infeasible 
individuals x\ and X2 that can combine to produce a feasible individual. 

19.1.2 Exterior Methods 

Exterior methods allow infeasible individuals in the population, but penalize their 
cost or selection probabilities. This section gives a broad overview of exterior 
methods for constrained optimization. 

19.1.2.1 Death Penalty Approaches Death penalty approaches are exterior meth-
ods that allow infeasible individuals in the population, but only for brief periods 
of time. A death penalty approach takes the penalty function approach to an ex-
treme. With this approach we immediately remove any infeasible individual x from 
the population. If we obtain x by recombination, then we reject it, and we repeat 
the recombination operation until we obtain a feasible individual. If we obtain x by 
mutation, then we reject it, and we repeat the mutation operation until we obtain 
a feasible individual. 

The death penalty is a convenient approach to constrained optimization. It has 
the advantage of not requiring cost evaluations of infeasible individuals, which can 
save computational effort. However, for many problems, it is difficult to obtain 
feasible individuals in the first place, so rejecting infeasible individuals might be 
overly strict. Instead of completely rejecting infeasible individuals, we might need 
to retain them in the population while giving a relatively lower cost to those that 
violate the constraints less severely, thus encouraging the population to move toward 
the feasible region. In summary, the effectiveness of the death penalty approach is 
problem-dependent. 

19.1.2.2 Non-Death-Penalty Approaches The remainder of this chapter discusses 
non-death-penalty constraint-handling approaches. These approaches are more for-
giving exterior methods than death penalty approaches because they allow infeasi-
ble individuals to remain in the population for the entire duration of the EA. We 
transform the standard constrained optimization problem of Equation (19.1) into 
the following unconstrained problem: 
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min0(x), where φ(χ) = f(x) + 2_\riGi(x) + )^CjLj(x) 

Gi(x) = [max(0, gi(x))f 

L3{x) = |Λ,·(χ)Γ (19.5) 

where ri and c3 are positive constants that are called penalty factors, and β and 7 
are positive constants that are often set equal to 1 or 2. φ(χ) is called the penalized 
cost function, and we obtain φ(χ) as a weighted sum of the original cost function 
f(x) and the constraint violation magnitudes {G{(x)} and {Lj(x)}. We see that if 
x G J , then φ(χ) = f(x). However, if x £ J7, then φ(χ) > f(x) by an amount that 
increases with the amount of constraint violation. 

Now that we have a penalized cost function φ(χ), we can run an EA that uses 
φ(χ) as the cost function to select individuals for the next generation. We can 
therefore extend any of the unconstrained EAs discussed in this book to constrained 
optimization. We simply use φ(χ) instead of f(x) as the cost function. 

The constraints hj (x) = 0 are very unforgiving. If we randomly generate an ini-
tial population in a continuous search domain, we have an essentially zero chance of 
obtaining individuals that satisfy equality constraints. Therefore, we often change 
the hard equality constraints to soft constraints that require hj(x) to be approxi-
mately zero, rather than exactly zero. This results in 

\hj(x)\ < e (19.6) 

where e is a small positive constant. This is equivalent to the two constraints 

hj(x)-e < 0 
-hj(x)-e < 0. (19.7) 

Depending on the value of e, we have a reasonable chance of obtaining individuals 
that satisfy the soft constraint of Equation (19.6). One of way of assigning e is 
to use relatively large values of e early in the EA so that we can obtain some 
feasible individuals, and then gradually decrease e as the generation count increases 
[Brest, 2009], [Zavala et al., 2009]. Many research papers that compare constrained 
optimization algorithms on benchmark functions use e = 0.0001 [Liang et al., 2006]. 

The conversion of equality constraints to inequality constraints transforms Equa-
tion (19.5) to 

m+p 

min0(x), where φ{χ) = f(x) + 7 rtGi{x) 
i=\ 

Gi(x) = { [max(0,^(x))]^ for i e [l,m] ^ g ^ 
1 [max(0, |/ti(x)| — e)] for i G [m + l , ra + p] 

where we have simplified the problem by setting 7 = β. Problems like the one in 
Equation (19.8) can be solved with static methods or dynamic methods. Static 
methods use values of r^, β, and e that are independent of the EA generation 
number. 
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In contrast, dynamic methods use values of r^, ß, and e that depend on the 
EA generation number. Static methods are simpler to implement, but dynamic 
methods may perform better because of their flexibility. Dynamic methods may 
be able to intelligently adapt their weights, based on the population distribution 
or the problem characteristics, to improve performance. Dynamic methods often 
increase r» and ß, and decrease e, as the generation count increases. This increases 
the weight given to constraint violation, which results in a gradual attraction of 
more and more infeasible individuals toward the feasible region. 

19.2 POPULAR CONSTRAINT-HANDLING METHODS 

This section discusses several popular constraint-handling approaches that are used 
in EAs. These are all non-death-penalty approaches. 

19.2.1 Static Penalty Methods 

Equation (19.8) is proposed in [Homaifar et al., 1994] with ß = 2, and r* a function 
of the constraint violation magnitude. That is, r{ is a nondecreasing function of 
Gi (x). Sometimes the penalty factor Ti is set equal to one of a set of discrete values 
depending on the amount of the constraint violation: 

Ä<i if^(x)e(o,ra] 
Ri2 ιΐ Gi(x) e (T^Ta] 

. (19.9) 

Riq if Gi(x) G (Ti?(?_i,oo) 

where q is the user-specified number of constraint levels, the Rij values are user-
defined weights, and the T^ values are user-defined constraint thresholds. This is 
a static approach because the penalty on the constraints is not a function of the 
generation count. The research literature often criticizes this well-known approach 
because it requires many tuning parameters. It requires (2q — l)(ra + p) tuning 
parameters, although we can reduce this number by combining some of the weight 
levels and and thresholds to simplify the algorithm. 

19.2.2 Superiority of Feasible Points 

The method of the superiority of feasible points [Powell and Skolnick, 1993] modifies 
the penalized cost function of Equation (19.8) as follows: 

min<//(:r), where φ'(χ) = φ(χ) + θ(χ) 
X 

m+p 

= / ( * ) + X > Ä ( x ) + 0(x) (19.10) 
i=l 

where θ(χ) is an additional term that is designed to guarantee that φ'{χ) < φ'{χ) 
for all x G T and for all x £ T. That is, φ'[χ) < φ'{χ) for all feasible x and for all 
infeasible x. This can be accomplished by setting θ(χ) as follows: 

»(*) = { ™ w J . . . . r «ΖΥτ (19·η) 0 ifxeJ7 

ma,xf(y) : y G T if x £ T 
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assuming that f(x) > 0 for all x. A less conservative way [Michalewicz and Schoe-
nauer, 1996] to implement this method, which does not assume that f(x) > 0, is 
to set θ(χ) as follows: 

*(* )={ _ Γ η _ _ ^ L _ ^ ^ , . Λ Ί %ll% (19·12) 
0 ifxeJ7 

max [0, max^ej- f(y) - min^ j r (f)(y)] if x £ T. 

This definition of θ(χ) gives φ'(χ) = φ{χ) for all x, under the condition that 
φ(χ) < φ(χ) for all x G T and for all x £ T. That is, if the penalized cost 
function of Equation (19.8) results in all feasible individuals being ranked better 
than all infeasible individuals, then we do not make any changes to Equation (19.8). 
However, if Equation (19.8) results in φ(χ) > φ(χ) for some x G T and for some 
x £ T, then Equation (19.12) shifts the penalized cost function values of all the 
infeasible individuals so that min^ </>'(#) = maxx<//(x); that is, the best infeasible 
penalized cost is equal to the worst feasible penalized cost. 

The method of the superiority of feasible points may be an attractive approach if 
the optimization problem includes difficult constraints. If the constraints are hard 
to satisfy, then this method provides a lot of selection pressure for feasible points 
to remain in the population, which allows their information to carry on to the next 
generation. 

19.2.3 The Eclectic Evolutionary Algorithm 

The eclectic EA proposes another approach to enforcing the superiority of feasible 
points [Morales and Quezada, 1998]. The eclectic EA defines the penalized cost 
function as 

{ f(x) if x G T 

*(i-iS) ****■ (19'13) 

where K is a large constant, m 4- p is the total number of constraints, and s(x) 
is the number of constraints that are satisfied by x. The user-defined constant K 
needs to be large enough to guarantee that φ(χ) > φ(χ) for all x $. T and for all 
x G T. If we use a ranking method to select individuals for recombination, then 
there is no upper bound for K. However, if we use a roulette-wheel method, or 
some other method that uses absolute values of φ{·) for selection, then we need to 
be careful not to set K too large; we want to make sure that although infeasible are 
ranked worse than feasible individuals, infeasible individuals still have a reasonable 
chance of being selected for recombination. 

The eclectic EA differs from Equation (19.10) because the eclectic EA does not 
evaluate the cost f(x) for infeasible individuals. This could result in significant com-
putational savings. Also, the eclectic EA considers only the number of constraint 
violations in determining the penalized cost function, and it does not consider the 
magnitude of the constraint violations. Equation (19.10), on the other hand, consid-
ers only the magnitude of constraint violation, and it does not consider the number 
of constraint violations. This could provide another computational advantage to 
the eclectic EA because in real-world problems it is often much easier to count the 
number of constraint violations than to quantify the exact level of those violations. 
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19.2.4 Co-evolutionary Penalties 

It would be interesting to combine the approaches of Equations (19.10) and (19.13), 
because sometimes the magnitude of constraint violation may be important to us, 
but other times the number of constraint violations may be more important. A 
co-evolutionary approach that incorporates this idea is proposed in [Coello Coello, 
2000b], [Coello Coello, 2002], and uses the penalized cost 

rn+p , ( \ \ 
φ(χ) = f(x) + ^ V Gi(x) + w2 ( 1 - -i^L (19.14) 

where w\ and w2 are weights. This is a co-evolutionary approach because it involves 
two populations. One population, Pi , consists of candidate solutions x and evolves 
according to the penalized cost φ(χ). A second population, P2, consists solely of 
(iui, W2) pairs. An individual in Pi evolves using a specific individual from P2 (that 
is, a specific (^1,^2) pair). The cost of a (u?i, ιι^) pair is evaluated as 

Mx(w) = Ix-.xeF] (19.15) 

where w refers to a specific (u>i,u>2) pair from P2. Note that M\(w) is the number 
of feasible individuals in P\ after it has finished evolving using w. The cost ψ(ιν) 
of an individual w depends on the average penalized cost of all feasible individuals 
that it evolves in Pi , and also depends on the number of feasible individuals that 
it evolves in P\. Equation (19.15) is undefined if M\(w) = 0. If M\{w) = 0, then 
ψ(ιυ) can presumably be set equal to an arbitrarily high cost. 

For each individual and generation in P2, an EA evolves a population Pi- This 
co-evolutionary approach can be computationally demanding because of the nested 
evolutionary algorithms, but it is amenable to parallel implementation, which would 
decrease computational effort. 

Figure 19.3 gives an outline of the co-evolutionary penalty algorithm. The outer 
loop evolves the P2 population. For each P2 generation (that is, each outer loop 
iteration), IP2I EAs run in the inner loop to evolve candidate solutions x using the 
penalized cost of Equation (19.14). 

We could modify Figure 19.3 in several ways to try to improve performance. For 
example, we could use various types of elitism to preserve the best Pi individuals 
from one Pi evolution to the next. We could also perform more than one Pi 
evolution for each P2 individual to obtain the average or best performance for a 
given w. 

Figure 19.3 is an example of co-evolution. Here we use it for constrained op-
timization, but co-evolution also has many other interesting applications. We see 
co-evolution many places in nature. For example, flowers and bees have evolved in 
such a way that they depend on one another for their mutual survival [Pyke, 1978]. 
Co-evolution has also been studied in many different ways in EAs [Paredis, 2000], 
and it will surely provide an active and fruitful area for future research. 
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P2 = {w} <— randomly initialized population of candidate weights 
While not (termination criterion) 

For each w G P2 
Pi — {x} «— randomly initialized population of candidate solutions 
Run an EA to minimize Equation (19.14) with respect to x 
Use Equation (19.15) to compute ψ(ιν) 

Next w 
Use the ip(w) costs for selection, recombination, and mutation of P<i 

Next P2 generation 

Figure 19.3 Outline of the co-evolutionary penalty algorithm for the minimization of 
f(x) subject to Gi(x) = 0 for i e [l,ra + p]. 

19.2.5 Dynamic Penalty Methods 

The penalized cost function of Equation (19.8) is proposed in [Joines and Houck, 
1994] with β = 1 or 2, and r» = (ct)a, where c and a are constants, and where t is 
the generation count: 

φ(χ) = f(x) + (ct)aM(x) 
m+p 

M(x) = Y^Gi(x). (19.16) 
i=l 

This is a dynamic approach because the penalty on the constraints increases with 
the generation count. However, in order to be successful with this approach, the 
cost / ( · ) and the constraint violation magnitude M(·) should be normalized so that 
the penalized cost function φ(·) is written as follows: 

φ(χ) = f'(x) + (ct)aM'(x) 

M'( \ — / M(x)/ma,xxM(x) if maxx M(x) > 0 
[X) ~ { 0 if max, M(x) = 0 

f'{x) = f(x)/msx\f(x)\ (19.17) 
X 

assuming that f(x) > 0 for all x. This ensures that the components of the penalized 
cost φ(χ) have approximately the same magnitude. Another option is to combine 
a dynamic penalty method with the superiority of feasible points method that is 
described in Section 19.2.2. With this approach, the penalized cost is written as 

, t x _ / f'(x) iixeJ7 M Q 1 A Ï 
Ψ[Χ) ~ \ fix) + (ct)aMf{x) + θ(χ) 'ύχίΓ l i y ö j 

where θ(χ) is defined such that all feasible points have a lower penalized cost than 
all infeasible points. The literature [Joines and Houck, 1994] often reports typical 
constant values of c = 1/2 and a = 1 or 2, but appropriate values of c depend 
on the maximum generation count. For shorter EA simulations (a couple hundred 
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generations or fewer), c should be larger than 1/2 by one or two orders of magnitude. 
If c is too small, then the constraint violation penalty will be too small and the 
EA will place too high of a value on individuals with low costs but large constraint 
violations. 

19.2.5.1 Exponential Dynamic Penalties An exponential dynamic penalty function 
is proposed in [Carlson and Shonkwiler, 1998] as2 

φ(χ) = f(x) exp(M(x)/T) (19.19) 

where M(x) is the constraint violation magnitude defined in Equation (19.16), and 
T is a monotonically nonincreasing function of the generation count t. T = \j\ft 
is proposed in [Carlson and Shonkwiler, 1998]. This gives limt-^oo T = 0, so the 
penalized cost of infeasible individuals tends to infinity as the generation count 
tends to infinity. 

Equation (19.19) assumes that f(x) > 0 for all x; otherwise the constraint 
penalty would serve to decrease the cost (that is, make it more negative). If this 
assumption is not satisfied, then we should shift the cost function before we penalize 
it. We can also add a tuning parameter to the penalty part of φ(χ). 

φ(χ) = f(x)exp(aM'(x)/T) 

f'{x) = f(x)-minf(x) (19.20) 
X 

where the normalized constraint violation magnitude M'(x) is defined in Equa-
tion (19.17), and a is a tuning parameter to adjust the relative weight of the 
constraint violation. We find that values of a around 10 usually work pretty well. 

As with the additive penalty method described in Equation (19.17), we could 
combine the exponential dynamic penalty method with the superiority of feasible 
points method that is described in Section 19.2.2. With this approach, the penalized 
cost is written as 

ώ(χ)-ί / , ( x ) iïxeF ( , 
Ψ[Χ) " \ f'(x)exp(M{x)/T) + θ(χ) 'ιΐχφΤ l } 

or 

ώ(χ)-ί / , ( x ) iÎXe:F (19 22) 
Ψ{ } ~ \ f'(x) exp{aM'{x)/T) + θ(χ) if x £ I [™'ZZ) 

where θ(χ) is large enough to ensure that all feasible points have a lower cost than 
all infeasible points. 

19.2.5.2 Other Dynamic Penalty Approaches More complicated forms for dynamic 
penalty functions are proposed in [Coit and Smith, 1996], [Coit et al., 1996], [Joines 
and Houck, 1994], [Kazarlis and Petridis, 1998], and [Smith and Täte, 1993]. Dy-
namic penalty functions are surveyed in [Coello Coello, 2002]. Dynamic penalty 
methods often work better than static methods, but they require additional tuning. 
Tuning is problem-dependent. Penalties that are too high discourage exploration of 
the infeasible set, but sometimes we need to use infeasible individuals to find good 

2Note that [Carlson and Shonkwiler, 1998] uses φ(χ) = f(x)exp(—M(x)/T) because the opti-
mization problem there is a maximization problem. 
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solutions that satisfy the constraints (recall Figure 19.2). However, penalties that 
are too low result in too much exploration of the infeasible set, and poor conver-
gence to feasible solutions. These considerations lead us to a discussion of adaptive 
penalty methods in the following section. 

19.2.6 Adaptive Penalty Methods 

The problems with static and dynamic penalty methods motivate the development 
of special types of dynamic methods that are called adaptive methods. Adaptive 
methods use feedback from the population to adjust the penalty weights. One 
adaptive approach is proposed in [Hadj-Alouane and Bean, 1997], and sets the 
penalty weights of Equation (19.8) as follows: 

{ ri(i)/ßi if case 1 
ß2Ti(t) if case 2 (19.23) 

Ti (t) otherwise 
where t is the generation number, βι and βι are constants satisfying ß\ > ß% > 1, 
case 1 means that the best individual was feasible for each of the past k generations, 
and case 2 means that there were no feasible individuals in any of the past k 
generations. The generation window k is a tuning parameter that affects the speed 
of adaptation. We see that if the best individual in the population is feasible, we 
decrease the constraint weight to allow more infeasible individuals in the population. 
If there are no feasible individuals in the population, we increase the constraint 
weight to try to obtain some feasible individuals. The goal is to obtain a balanced 
mix of feasible and infeasible individuals to thoroughly explore the search space, and 
to exploit information from infeasible individuals even though they do not satisfy 
the constraints. Typical constant values for this method are r^(l) = 1, ß\ — 4, 
ß2 — 3, and k = n, where n is the problem dimension (that is, the number of 
independent variables in / (#) ) [Hadj-Alouane and Bean, 1993]. 

19.2.7 Segregated Genetic Algorithm 

The segregated GA [Le Riche et al., 1995] is a clever approach for handling the 
difficulty of tuning the penalty function parameters. The r̂  parameters in Equa-
tion (19.8) are hard to tune. If they are too large, then the constrained EA focuses 
too much on satisfying the constraints, and not enough on minimizing the cost func-
tion. If they are too small, then the constrained EA focuses too much on minimizing 
the cost function, and not enough on satisfying the constraints. The segregated G A 
solves this problem by creating two ranked lists of individuals: the first list uses 
small penalty weights ru, and the second list uses large penalty weights T2i· We 
select individuals for the next generation by choosing alternately from the two lists. 
This is roughly equivalent to the use of two subpopulations, one with small penalty 
weights, and one with large penalty weights. 

This approach appears to provide a lot of room for additional research. For 
example, we could use more than two penalty weights. We could also use the 
segregated G A concept to combine multiple constraint-handling methods. 
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19.2.8 Self-Adaptive Fitness Formulation 

An approach called the self-adaptive fitness formulation [Farmani and Wright, 2003] 
penalizes the cost values of infeasible individuals in two stages. First, if any infea-
sible individual x has an unpenalized cost that is better than the best feasible 
individual x (that is, if f(x) < f(x) for some x £ T and for the best x G J ) , then 
the cost value of each infeasible individual is penalized. However, if f(x) > f(x) 
for all x $. T and for the best x G J , then none of the infeasible individuals are 
penalized. This prevents the unnecessary penalization of infeasible individuals. It 
allows infeasible individuals to have reasonably low penalized cost values so that 
they can remain in the population, and so that their information can be exploited. 

Next we implement a second penalization phase. All of the infeasible individuals 
are penalized in such a way that the individual with the greatest constraint violation 
has the worst penalized cost. We do this by first defining the total infeasibility for 
each individual x as follows: 

1 m+p 

L(x) = γ^ Gi(x)/maxGi(x) (19.24) 
fit I U Xfp.J~ 

1 = 1 

where Gi(-) is given in Equation (19.8) with β — \. Next we define the individuals 
that are best {xb)i worst in terms of feasibility (xwf)i and worst in terms of cost 
(xwc), as follows: 

_ J argminx f(x) : x G T \ϊΤψ\ 
\ argminx^(x) otherwi 

_ J argmaxx t(x) : f(x) < f(xb) if 3 x ^ J7 such that f(x) < f(xb) 
w·* \ argmaxx L(X) otherwise 

Xwc — arg m a x / ( x ) . (19.25) 
X 

Note that if T ψ 0, then x^ e T even if there is some x £ T with a lower cost. 
With these definitions, the infeasibility metric is normalized to [0,1] as 

= ; ( * > - ^ > (19.26) 
i{xwf) - t{Xb) 

Now we can mathematically define the first penalization phase as 

φ(χ\ = { f(x) + l(x)(f(xb) - f(xwf)) if 3 x ^ T such that f(x) < f(xb) 
^ ' \ f(x) otherwise. 

(19.27) 
The second penalty maps φ(χ) to an additionally penalized cost φ'{χ)\ 

m - « „ ^ „ ( Ϊ * * ] ^ ) 

{ (f(xwc) - f{xb))/f(xb) if f(xwf) < f(xb) 
0 if f(xwf) = f(xh) (19.28) 

U(xwc) - f(xwf))/f(xwf) if fixwf) > IM-
The exponential function in Equation (19.28) results in only a small penalty for 
individuals with small constraint violations. The scaling factor 7 ensures that the 
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individual with the greatest constraint violation has the the greatest penalized cost: 

<l>'(xwf) > Φ\Χ) for all x. (19.29) 

This two-stage penalization method is somewhat involved, but the basic goal is that 
after penalization, the best individuals in the population include some that are fea-
sible and some that are infeasible. Individuals with low cost and small constraint 
violations are competitive, in terms of penalized cost, with feasible individuals. This 
idea seems to be pretty effective, and it has been applied to a lot of constrained 
optimization problems. Additional work could focus on better tuning, and sim-
plification of the penalization approach while still accomplishing its fundamental 
goals. 

19.2.9 Self-Adaptive Penalty Function 

The self-adaptive penalty function (SAPF) algorithm [Tessema and Yen, 2006] 
adapts penalty functions based on the distribution of the population. If there 
are only a few feasible individuals, then we want to assign low penalized costs φ(·) 
to individuals with small constraint violations, even though they may have high 
costs / ( · ) . On the other hand, if there are many feasible individuals, then we want 
to assign low penalized costs φ(-) only to individuals with low costs / ( · ) . The SAPF 
algorithm consists of the following steps. 

1. Normalize the cost function value for each individual x: 

f („\ / (x ) - minx f(x) MQQrVi 
fi\x) = 77"^ : 77-T· (19.30) 

maxx f(x) - ΐϊΐιηχ f(x) 

This gives the normalized cost fi(x) G [0,1] for all x, where the best individual 
in terms of cost has a normalized cost equal to 0, and the worst individual in 
terms of cost has a normalized cost equal to 1. 

2. Compute the normalized constraint violation magnitude i{x) of each individ-
ual as shown in Equation (19.24). This gives t(x) G [0,1] for all x. Note that 
L(X) = 0 for all x G J , and L{X) > 0 for all x £ T. Also, there may or may 
not exist an x such that i(x) = 1. 

3. Compute the distance value for each individual x: 

™={smhü Υτ7ΐ. (19·31) 

If there are no feasible individuals in the population, then the distance value 
of x is equal to the total constraint violation of x, without any consideration 
for the cost of x. Among two feasible individuals, the one with the lower cost 
will have a smaller distance. If there are feasible individuals in the population, 
then the distance of an infeasible individual is a combination of its cost and its 
constraint violation. Therefore, when we compare a feasible individual x with 
an infeasible individual x, either one may have a smaller distance, depending 
on their relative cost values. 
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X(x) = | 

Y(x) = { f,M «ΖΥΤ (19.32) 

4. Compute two additional penalized cost functions: 

0 if T = 0 
i(x) if T φ 0 

0 if x G 7* 
/ ι ( χ ) \ix$T. 

The penalized cost Χ(χ) is equal to 0 if there are no feasible individuals in 
the population, and it is equal to L(X) if there are feasible individuals in the 
population. This penalized cost serves to penalize infeasible individuals based 
on the magnitude of their constraint violations, but only if the population 
contains feasible individuals. The penalized cost Y(x) is equal to 0 if x is 
feasible, and it is equal to the normalized cost f\ (x) if x is infeasible. This 
penalized cost serves to further penalize infeasible individuals by an amount 
that is proportional to their cost values. 

5. Compute the penalized cost function 

φ(χ) = d(x) + (1 - r)X(x) + rY(x) (19.33) 

where r G [0,1] is the proportion of feasible individuals in the population. If 
there are a lot of feasible individuals in the population, φ(χ) emphasizes Y(x), 
which includes cost-based penalties on infeasible individuals. On the other 
hand, if there are few feasible individuals in the population, φ(χ) emphasizes 
X(x), which includes constraint violation penalties on infeasible individuals. 

SAPF has also been adapted to constrained multi-objective optimization problems 
[Yen, 2009]. 

19.2.10 Adaptive Segregational Constraint Handling 

The adaptive segregational constraint handling evolutionary algorithm (ASCHEA) 
is proposed in [Hamida and Schoenauer, 2000], [Hamida and Schoenauer, 2002]. 
ASCHEA is based on two ideas. First, we try to maintain a specified ratio of feasible 
individuals to infeasible individuals. This is similar to the adaptive approach that 
we discussed Section 19.2.6. This allows us to explore the entire search space, 
including both the feasible portion and the infeasible portion. 

Second, if there are few feasible individuals in the population, then we allow 
feasible individuals to recombine only with infeasible individuals. This is based 
on the idea that constrained optimization problem solutions often lie on, or near, 
the constraint boundary [Leguizamon and Coello Coello, 2009], [Ray et al., 2009b]. 
Therefore, to solve constrained optimization problems, it makes sense to push both 
feasible and infeasible individuals toward the constraint boundary. Recombining 
feasible individuals with infeasible individuals tends to bring their offspring closer 
to the constraint boundary. 

ASCHEA uses the penalty approach of Equation (19.8) with β — 1 and the 
following update method for the penalty weight: 

m+p 

φ{χ) = f(x) + Σ nGi{x) 
i=l 

r-(t + l) = ί r i ( i ) / 7 i f r W > T d (19 34) 
n ' [ luit) otherwise v ' 
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where t is the generation number, 7 > 1 is a tuning parameter, ra is the target 
ratio of the number of feasible individuals to infeasible individuals, and r{t) is the 
ratio at generation t: 

\{x - x e T\\ 
r W = j - ' - A T\\ a t g e n e r a t i o n *· (19.35) 

\{x : x f s}\ 

ASCHE A is often implemented with a target value Ta = 1/2. 
The second idea implemented in AS CHE A is to allow feasible individuals to 

recombine only with infeasible individuals if r(t) < τ^ This encourages the off-
spring of infeasible individuals to move toward the feasible region, which hopefully 
increases the number of feasible individuals. 

However, if r(t) > τ^, then we already have enough feasible individuals in the 
population, so we perform selection with the following two steps: first, we select 
a specified number of individuals from the feasible set T\ second, we select the 
remaining individuals for recombination on the basis of penalized cost values φ(·) 
without any explicit consideration of feasibility. The minimum number of feasible 
individuals that we select for recombination is typically about 30% of the total 
number of individuals that we need to select. For example, if we want to select 100 
individuals for recombination, we first select 30 feasible individuals on the basis of 
cost, and then we select the remaining 70 individuals from the entire population on 
the basis of penalized cost. 

A similar algorithm, called the infeasibility driven evolutionary algorithm (IDEA), 
is proposed in [Ray et al., 2009b] for both single-objective and multi-objective op-
timization. 

19.2.11 Behavioral Memory 

Behavioral memory uses a divide-and-conquer method to solved constrained opti-
mization problems [Michalewicz et al., 1996], [Schoenauer and Xanthakis, 1993]. 
Given the problem of Equation (19.8) with m + p constraints, we first evolve a 
population that minimizes G\(x); that is, we minimize the violation of the first 
constraint without considering any of the other constraints or the cost function. 
We terminate this EA after a user-specified fraction of the population satisfies the 
first constraint. After this evolution is complete, we use its final population to 
initialize an EA that minimizes Gz(x). During this second EA, we remove any 
individuals from the population that violate the G\(x) constraint, but we do not 
consider any of the other constraints or the cost function. 

We repeat these steps for each constraint. We initialize the z'-th EA with the 
results of the (i — l)-st EA. The i-th EA evolves a population that minimizes 
Gi(x), and during this evolution we remove any individuals that stray outside any 
of the Gj(x) constraints for j e [1,2 — 1]. Finally after all m + p constraints have 
been satisfied by the successive implementation of m + p EAs, we use the resulting 
population to initialize an EA that minimizes the cost function subject to all ra + p 
constraints. Figure 19.4 gives an outline of the behavioral memory algorithm. 

Behavioral memory can be classified as a penalty function approach because 
it uses the death penalty. However, the line in Figure 19.4 that begins with the 
statement "Run an EA to minimize . . . " may or may not involve penalty function 
approaches. That EA could include any EA and any constraint-handling approach, 
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{x}o <r- randomly initialized population 
For i = 1, · · ·, m + p 

Initialize the i-th EA: {x} <— {x}i-i 
Run an EA to minimize Gi(x) subject to Gj(x) = 0 for j < i, using 
the death penalty to ensure that all individuals satisfy the Gj constraints, 
and denote the final population of this EA as {x}i 

Next i 
Initialize the final EA: {x} <— { x } m + p 

Run an EA to minimize f(x) subject to Gj(x) = 0 for j G [l,ra + p], using 
the death penalty to ensure that all individuals satisfy the Gj constraints 

Figure 19.4 Outline of a behavioral memory algorithm for the minimization of f(x) 
subject to Gi(x) = 0 for i G [l,m + p]. 

as long as it eventually removes individuals that violate previously-considered con-
straints. 

Behavioral memory is actually a generalization of unconstrained optimization al-
gorithms that gradually increase the number of cost function evaluations [de Garis, 
1990], [Gathercole and Ross, 1994]. For example, suppose that we want to min-
imize fi(x) with respect to x, where i could be any of a large set of values X = 
{ 1 , 2 , · · · , i m a x } . One way to approach this is to minimize f\{x) with an EA. Then, 
using that final population, we minimize fi(x) + f2(x)· Again, using that second 
final population, we minimize fi(x) + Î2{x) + fs(x)· We continue this process until 
we are satisfied that we have minimized /*(#), averaged over all i G X. Another 
approach is to minimize the combination of a random selection of fi(x) instances, 
gradually increasing the number of instances as the generation count increases. This 
approach is called stochastic sampling [Banzhaf et al., 1998, Section 10.1.5]. We 
often see this approach in genetic programming since evaluating the cost of a single 
computer program requires computer runs for many input cases (see Chapter 7). 

This minimization of fi(x) for i G X appears to have the same form as a multi-
objective optimization problem (see Chapter 20), but the problem discussed here 
is actually a single-objective optimization problem; each cost function fi(x) is the 
same function, but it is evaluated with different parameters for different values of 
i. However, the dividing line between single-objective optimization problems with 
multiple parameters, and multi-objective optimization problems, is fuzzy. The same 
problem might be considered or treated as a single-objective problem by one person, 
but as a multi-objective problem by another person. 

19.2.12 Stochastic Ranking 

Stochastic ranking [Runarsson and Yao, 2000] adds a stochastic component to con-
strained EAs. Since randomness is such an important component of EAs, it makes 
sense to include randomness in the constraint-handling approach of EAs. Stochas-
tic ranking sometimes ranks candidate solutions according to their cost / ( · ) , and 
sometimes ranks them according to their constraint violation magnitude. The de-
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cision of how to rank individuals is stochastic. When we compare two individuals 
x\ and x2, we consider individual X\ to be better than x2 if: 

• Both solutions are feasible and f(x\) < f(x2)\ or> 

• A randomly-generated number r ~ C/[0,1] is less than a user-defined proba-
bility Pf, and / ( x i ) < f{x2); or, 

• Neither of the above conditions are satisfied, and x\ has a smaller constraint 
violation than x2. 

Otherwise, we consider x2 to be better than x\. We see that we might compare x\ 
and x2 on the basis of their costs, or we might compare them on the basis of their 
constraint violations, depending the outcome of a random number generator. After 
we have compared and sorted all of the individuals in the population, we then 
perform selection and recombination for the next generation. Probability values 
Pf G (0.4,0.5) give good results for many benchmark problems [Runarsson and 
Yao, 2000]. 

19.2.13 The Niched-Penalty Approach 

The niched-penalty approach [Deb and Agrawal, 1999], [Deb, 2000] is motivated 
by the difficulty of tuning the parameters of penalty methods. It uses tournament 
selection to select individuals for recombination according to the following rules. 

• Given two feasible individuals, the one with the lower cost wins the tourna-
ment. 

• Given one feasible individual and one infeasible individual, the feasible indi-
vidual wins the tournament. 

• Given two infeasible individuals, the one with the smaller constraint violation 
wins the tournament. 

This method is attractive because of its simplicity; it does not require any tuning 
of penalty parameters. A comparison of two infeasible individuals does not require 
any cost function evaluations, which can reduce computational effort. The niched-
penalty approach often obtains good results on constrained optimization problems. 
However, its simplicity may also be a disadvantage because it considers a feasible 
individual with a very high cost to be better than a slightly infeasible individual 
with a very low cost. Therefore, it may not work well for problems whose solutions 
are on the constraint boundary, which is the case for many real-world optimization 
problems [Leguizamon and Coello Coello, 2009], [Ray et al., 2009b]. 

The "niched" part of this approach is not integral to its constraint-handling 
capability, but is intended to preserve diversity in the population, and is described as 
follows. We do not allow individuals to participate in a tournament with each other 
(for selection) if they are far from each other in domain space. After we randomly 
choose individuals for tournament selection, we then compute their distance from 
each other. If the individuals are too far apart from each other, then we randomly 
choose different individuals for the tournament. This prevents distant clusters of 
individuals from disappearing from the population and thus maintains diversity. 
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The multimembered evolution strategy (MMES) [Mezura-Montes and Coello Coello, 
2005] is similar to the niched-penalty approach. The distinctive feature of MMES 
is that every so often (around 3% of the generations), the infeasible individuals 
with the lowest cost function values, or the infeasible individuals with the small-
est constraint violations, are guaranteed to be selected for the next generation. 
This elitist-like approach ensures that good infeasible individuals contribute their 
features to the EA search process. 

19.3 SPECIAL REPRESENTATIONS AND SPECIAL OPERATORS 

A special representation is a way of formulating a problem so that the constraints 
are automatically satisfied by candidate solutions. A special operator is a way of 
defining an EA's recombination and mutation operators in such a way that child 
individuals automatically satisfy the constraints. Both of these approaches are 
largely problem-dependent. We cannot write special representation code, or special 
operator code, that applies to a broad class of problems. However, although the 
problem-dependent nature of special representations and special operators creates 
more work for the EA designer, that work often pays high dividends. This is because 
the resulting EA uses problem-specific information, which often results in better 
performance than we can expect from a more general-purpose EA. This concept is 
directly related to the no free lunch theorem (see Appendix B.l) . 

Section 19.3.1 discusses special representations, including a method called the 
decoder approach. Section 19.3.2 discusses special operators, including a popular 
constrained EA called Genocop. 

19.3.1 Special Representations 

As a simple example of the special representation approach to constrained opti-
mization, consider the two-dimensional problem 

min / (x ) such that x\+x\<K (19.36) 
X 

where K is some constant. This can be transformed into the equivalent uncon-
strained problem 

min / (x ) such that p G [0, K) and Θ e [0,2π] 
ρ,θ 

where x\ = pcosO and xi = psin#. (19.37) 

This simple rectangular-to-polar transformation converts the constrained problem 
of Equation (19.36) into the unconstrained problem of Equation (19.37). The origi-
nal problem of Equation (19.36) has a nonlinear constraint, but we have transformed 
it into the problem of Equation (19.37), whose only constraints are simple limits 
on the search domain. 

Decoders 

One approach to solving constrained optimization problems is to encode instruc-
tions that determine candidate solutions, ensuring that the instruction set always 
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results in a feasible individual. That is, instead of directly encoding a candidate 
solution to the problem, we encode an instruction set that we use to obtain a 
candidate solution. Each individual in the EA population then consists of an in-
struction set for building a candidate solution. We can also use this approach for 
unconstrained optimization problems, but it seems to be particularly applicable to 
constrained optimization problems, because depending on the specific problem, we 
may be able to determine a set of instructions that always satisfies the problem 
constraints. 

An instruction set for building a candidate solution is called a decoder [Palmer 
and Kershenbaum, 1994], [Koziel and Michalewicz, 1998], [Koziel and Michalewicz, 
1999], and should satisfy several properties. 

• For each feasible solution to the optimization problem, there should exist at 
least one decoder. 

• Each feasible solution should correspond to the same number of decoders so 
as not to introduce bias in the search. 

• Each decoder should correspond to a feasible solution. 

• The transformation between decoder and candidate solution should be com-
putationally fast relative to cost evaluation. 

• Small changes in a decoder should correspond to small changes in the candi-
date solution. 

These rules can be relaxed for specific applications in case they are too difficult to 
satisfy [Koziel and Michalewicz, 1999], but they at least provide useful guidelines. 
For example, we may have a problem whose constraints are very difficult to satisfy, 
but we can find a set of decoders that gives candidate solutions that are feasible 
a high percentage of the time. Even though such a decoder set does not strictly 
satisfy the above conditions, it may be preferable to encoding candidate solutions 
directly in our EA. 

Once we obtain a set of instructions for building candidate solutions, we redefine 
the EA population to consist of a set of instructions (decoders). We then per-
form selection, recombination, and mutation on the decoders, thus guaranteeing 
constraint satisfaction. 

■ EXAMPLE 19.2 

Consider the convex feasible region T of the two-dimensional constrained 
optimization problem represented by Figure 19.5. The reference point r is an 
arbitrary point in T. Any point x G T is uniquely represented by ab+ (1 — a)r 
for some a G [0,1] and some b on the boundary of the search domain.3 

A decoder to solve this optimization problem might proceed as follows. 

1. We somehow find a feasible point r. 

2. We find the boundary of T by moving b around the entire search domain 
boundary. For each 6, we find the maximum a such that ab + (1 — a)r G T. 
This maximum is denoted as am a x(6) = max{a : ab -h (1 — a)r G J7}. 

3There is one exception: r has an infinite number of such representations since r = (0)(6) + (l)(r) 
for all b. 
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b \ 

r 

5 

Figure 19.5 Example of a decoder algorithm for optimization over T. Given any point 
r € T, any point x 6 T is uniquely represented by ab + (1 — a)r for some a € [0,1] and 
some b on the boundary of the search domain. 

3. We define a population of EA individuals so that each individual is comprised 
of a (6, a) pair. The parameter b can be any point on the search domain 
boundary, and a can be any real number in [0, amax(fc)]. 

4. We run an EA by performing recombination on (6, a) pairs. The only feasi-
bility check that we need to worry about is a G [0, amax(&)]. 

D 

Example 19.2 would need to be modified for nonconvex feasible regions, but it 
illustrates how a decoder can be used to simplify constraints. 

19.3.2 Special Operators 

In many real-world optimization problems, the solution lies on the constraint bound-
ary [Leguizamon and Coello Coello, 2009], [Ray et al., 2009b]. Consider the prob-
lem of optimizing the purchase of some equipment. If we were given the assignment 
of purchasing the best possible equipment, that assignment might be constrained 
by an upper bound on price. We would probably spend the maximum allowable 
amount of money, because better equipment typically costs more than worse equip-
ment. That is, the constrained optimum would lie on the price constraint boundary. 
Constraints related to the color of the equipment would typically not be part of 
the equipment purchase assignment, because equipment optimality and equipment 
color are typically unrelated. 

Similarly, if we wanted to travel from point A to point B in minimum time 
with an upper limit on fuel use, we would probably use the maximum allowable 
amount of fuel, because we can typically travel faster using more fuel. That is, the 
constrained optimum would lie on the fuel constraint boundary. As we think about 
real-world problems, we realize that most optimization problem solutions lie on the 
constraint boundary.4 

4 This statement applies to real-world problems but not necessarily to the benchmark problems 
that we see in the literature. This difference between benchmark problems and real-world problems 
is related to the discussion of the no free lunch theorem in Appendix B. 
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This leads to the idea of solving an optimization problem by exploring the con-
straint boundary. We might be able to safely ignore the interior of the constraint 
boundary because we expect optimization solutions to lie on the constraint bound-
ary. For example, consider an optimization problem with the product constraint 

xiX2Xzx± > 0.75. (19.38) 

If we have domain knowledge that leads us to expect that the constrained optimum 
lies on the constraint boundary, then we can try to solve the optimization problem 
by searching (£i,#2,#3,#4) combinations that satisfy the following [Michalewicz 
and Schoenauer, 1996]: 

X1X2X3XA = 0.75. (19.39) 

We can initialize an individual in an EA population as follows: 

X\ — U[ 3?min, 3?maxJ 

X2 ~ U[ *Emin ? *EmaxJ 

X3 = U[ 3?min , «^maxj 

x4 = 0.75/(xiX2^3). (19.40) 

This ensures that (χι ,α^,#3,£4) satisifies Equation (19.38). Now suppose that we 
have another individual (2/1,2/2,2/3,2/4) such that 2/12/22/32/4 = 0.75. Then if we create 
a child individual z such that zi — xfyl~a for i G [1,4], where the real number 
a G [0,1], the child will always satisfy the constraint z\Z2Z^z4 = 0.75. This is true 
because 

^22324 = xiy\-ax2y\~a^y\~a^yl~a 

= (^1^2^3^4)α(2/ΐ2/22/32/4)1_α 

= (0.75)α(0.75)1_α - 0.75. (19.41) 

We see that our specialized crossover operator ensures that the child of two feasible 
parents will always be feasible. 

We can also design a specialized mutation operator for this problem: 

x\ <- qxi 

Xj <- Xj/q (19.42) 

where i G [1,4] and j G [1,4] are distinct random integers, and g is a random 
number. Any feasible individual x that is mutated this way will result in a feasible 
individual x'. 

These simple recombination and mutation operators illustrate the use of special-
ized operators for constrained EAs. Note that specialized operators are problem-
specific; for any constrained optimization problems, the EA designer has to for-
mulate his own problem-specific operators to preserve feasibility. An additional 
example of a specialized operator is given in [Michalewicz and Schoenauer, 1996]. 

19.3.3 Genocop 

Next we discuss an algorithm known as the genetic algorithm for numerical op-
timization of constrained problems (Genocop) [Michalewicz and Janikow, 1991]. 
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This algorithm includes several special features and techniques for constrained op-
timization. We include Genocop in this section because it was first proposed with 
the idea of implementing special operators on EA individuals to ensure that they 
satisfy linear constraints. 

The idea behind Genocop is that sometimes, depending on the form of the con-
straint, we can use problem-specific operators to transform infeasible individuals 
into feasible individuals. We could do this with a constraint in the form of Equa-
tion (19.38). If we have an individual that does not satisfy the constraint, then 
we can replace its fourth component as shown in the last line of Equation (19.40). 
This would be a repair approach. Alternatively, if we create the first three elements 
of a child individual, we could then create the fourth element as shown in the last 
line of Equation (19.40). This would be a special operator approach. 

Suppose that we have the linear constraint 

-8x1 + x3 < 0. (19.43) 

If we have an individual that does not satisfy this constraint, we can easily repair 
it by setting £3 equal to any number less than or equal to Sx\. The modified 
individual will then satisfy the constraint. This example shows that any linear 
constraint can be easily satisfied using repair algorithms or special operators. 

Genocop is efficient but its design is problem-specific. As shown above, Genocop 
is limited to linear constraints, and special forms of nonlinear constraints in which 
one variable can be solved in terms of the others. This is a disadvantage from the 
viewpoint of user effort, but an advantage from the viewpoint of EA efficiency. 

19.3.4 Genocop II 

Genocop II [Michalewicz and Attia, 1994] combines Genocop as described above 
with a dynamic penalty similar to the one in Section 19.2.5. Genocop II uses special-
ized operators to maximize the feasibility of an EA population. First, we satisfy all 
linear constraints by repairing infeasible individuals as proposed in Genocop. Sec-
ond, we handle nonlinear constraints by minimizing φ(χ) in Equation (19.8), where 
all of the constraints in that equation are nonlinear, since we already satisifed the 
linear constraints with special operators. The Ti weight in Equation (19.8) is 1/r. 
Genocop II maintains a constant value of r for several generations. After a while 
(for example, after a specific generation count, or after a specified fraction of the 
population is feasible), Genocop II decreases r . This increases the constraint pres-
sure, which results in a gradual attraction of more and more individuals to the 
feasible set. Early Genocop II papers suggest decreasing r by a factor of 10 each 
time it is decreased [Michalewicz and Attia, 1994], [Michalewicz and Schoenauer, 
1996]. 

19.3.5 Genocop III 

Genocop III [Michalewicz and Nazhiyath, 1995] is a further modification of Geno-
cop. In this method, a co-evolutionary algorithm maintains a population Pr = {xr} 
of reference points that satisfy all the constraints, and a population Ps = {xs} of 
search points that satisfy the linear constraints due to the approach used in Geno-
cop. Pr and Ps may be different sizes. We assign the cost function value of each 
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individual xs from Ps using its repaired version. That is, we use information from 
Pr to repair xs and to obtain an individual x's that satisfies all constraints. We 
then assign }(xs) —̂ f{x's)· We create x's by generating a sequence of points 
x — axs + (1 — a)xr for a set of random numbers a G [0,1], and for a randomly 
selected xr G Pr. That is, we search through a random set of points that are on 
the straight line connecting xs and xr. After this search gives us a feasible x, we 
assign x's 4— x, and we assign f(xs) —̂ f(x's)· Also, if f{x's) < f(xr), we replace 
xr with x's in Pr. Finally, we also replace xs with x's in Ps with some user-defined 
probability of replacement p. 

The question of whether or not to replace an individual xs with its repaired 
version xf

s is related to Lamarckian inheritance: that is, can an organism pass 
on traits that it acquires during its lifetime to its offspring? Some researchers 
never replace individuals with their repaired versions (p = 0), others always replace 
individuals with their repaired versions (p = 1), and others recommend that values 
of p between 5% and 20% give good results [Michalewicz and Schoenauer, 1996], 
[Orvosh and Davis, 1993]. 

Figure 19.6 outlines the Genocop III algorithm. The first step in Genocop III is 
the random initialization of Ps. We generate this population without any regard for 
feasibility, except for the satisfaction of linear constraints as proposed by Genocop. 
The second step is the evaluation of f(xs) for each xs e Ps. We perform this with 
the "Evaluate f(xs)" function at the bottom of Figure 19.6. The third step is the 
random initialization of Pr. We generate this population in such a way that each 
individual satisfies all constraints.5 The fourth step is the evaluation of f(xr) for 
each xr e Pr. Finally we perform the evolutionary algorithm loop to evolve the Ps 

and Pr populations. We can use any EA to implement selection, recombination, 
and mutation as we modify the Ps and Pr populations. 

Genocop III seems to give good results and is thus an attractive algorithm for 
applications and future research. For example, we could try various EAs for the 
evolution of the Ps and Pr populations, and we do not have to use the same EA for 
the two evolutions. We could also experiment with self-adaptation of p. We note 
that [Michalewicz and Schoenauer, 1996] indicates that a new Pr population does 
not have to be created each generation; for example, we might need to perform the 
"generate a new population P r " step in Figure 19.6 once every few times through 
the loop. This would decrease computational effort. Finally, hybrids of Gencop III 
with other constrained EAs might improve performance. 

5 Finding individuals that satisfy all constraints can be a challenging task in itself, but Genocop 
III assumes that we have some method to do this. The discussion of constraint programming in 
Section 19.7 is relevant to this task. 
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Ps «— randomly initialized population of search points 
Evaluate f(xs) for each Xg \z ±g *^ shown in the algorithm below 
Pr «— randomly initialized population of feasible points 
Evaluate f(xr) for each xr G Pr 

While not (termination criterion) 
Use an EA with the f(xs) values to generate a new population Ps 

Evaluate f(xs) for each Xg t ; -ig a s shown in the algorithm below 
Use an EA with the f(xr) values to generate a new population Pr 

Evaluate f(xr) for each xr G Pr 

Next generation 

Evaluate f(xs): 
If xs G T then 

Compute f{xs) using the cost function 
else 

Xg ^ Xs 

While x'a £ T 
Randomly select an xr from Pr 

Randomly generate a ~ C/[0,1] 
x's <— axg + (1 — o)xr 

End while 
/(*.) «- f(x's) 
If f(Xg) < f(xr) then xr «— x's 

Randomly generate a ~ t/[0,1] 
If a < p then xs <r- xf

s 

End if 

Figure 19.6 Outline of the Genocop III algorithm for the minimization of f(x) subject 
to constraints. 

19.4 OTHER APPROACHES TO CONSTRAINED OPTIMIZATION 

This section briefly discusses a couple of other approaches to constrained opti-
mization. These approaches are not penalty function approaches, and they do 
not involve special representations or special operators, so we discuss them in this 
separate section. Section 19.4.1 discusses cultural algorithms, and Section 19.4.2 
discusses multi-objective optimization for constrained problems. 

19.4.1 Cultural Algorithms 

Cultural algorithms (CAs) are EAs that use belief spaces to guide their evolution. 
That is, as a CA tries to solve an optimization problem, its search is biased in 
certain directions. Constrained CAs are not penalty methods (in general), because 
penalty methods increase the evaluated cost function of infeasible solutions, whereas 
constrained CAs bias the search so that infeasible solutions are less likely to exist 
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in the population in the first place. However, using belief spaces in a CA opens 
up a wide area of possible approaches and implementations because of the cultural 
foundations of CAs. We discussed CAs in Chapter 15, and so we do not discuss 
them any further here, but we leave it to the reader to explore the use of CAs 
for constrained optimization [Becerra and Coello Coello, 2004], [Coello Coello and 
Becerra, 2002]. 

19.4.2 Multi-Objective Optimization 

Chapter 20 discusses multi-objective optimization problems (MOPs). A MOP is a 
problem for which we want to simultaneously minimize M cost functions: 

mn[/ i (x) , . - . , /Af(aO]. (19.44) 
X 

A constrained optimization problem can be viewed as a MOP by defining the first 
objective as the cost, and definining the remaining objectives as the constraints. 
Consider a constrained optimization problem that is written in the standard form 
of Equation (19.1): 

min / (x ) such that gi{x) < 0 for i e [l,ra] 
X 

and hj(x) = 0 for j e [l,p]. (19.45) 

This problem is equivalent to the MOP of Equation (19.44) if 

fi(x) = f(x) 
f2(x) = G^x) 

ÎM{X) = Gm+P(x) (19.46) 

where Gi(x) is given in Equation (19.8). Therefore, we can use any MOP algorithm 
to solve a constrained optimization problem. Chapter 20 discusses EAs for MOPs. 
Research on the use of MOP algorithms for constrained optimization can be found in 
[Aguirre et al., 2004], [Cai and Wang, 2006], [Coello Coello, 2000a], [Coello Coello, 
2002], and [Mezura-Montes and Coello Coello, 2008], among many other references. 

19.5 RANKING CANDIDATE SOLUTIONS 

The preceding sections discussed several ways of ranking candidate solutions for 
constrained optimization problems. This section summarizes the previously-discussed 
ranking approaches, and presents a couple of alternative approaches. First we sum-
marize the previously-discussed approaches. 

• Equation (19.8) penalizes the cost function with a function of the constraint 
violation magnitudes. 

• Equation (19.10) modifies Equation (19.8) so that all feasible individuals 
have a better rank than all infeasible individuals, while infeasible individ-
uals are ranked according to the magnitude of their constraint violations. 
Section 19.2.13 also takes this approach. 
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• Equation (19.13) ranks all feasible individuals better than all infeasible in-
dividuals, while ranking infeasible individuals on the basis of the number of 
constraint violations rather than on the magnitude of constraint violations. 

• Equation (19.14) penalizes the cost function with both the magnitude of con-
straint violations and the number of constraint violations. 

• Equation (19.19) penalizes the cost function with a constraint violation penalty 
that increases as the generation count increases. 

• Equations (19.23) and (19.34) impose a constraint violation penalty that is a 
function of the number of feasible individuals in the population. 

• Sections 19.2.7 and 19.2.8 adjust the cost penalty based on a combination of 
the number of feasible individuals and the relative costs of various individuals. 

• Section 19.2.12 uses a random process to determine how to rank candidate 
solutions. 

We have already discussed quite a few ranking approaches for constrained optimiza-
tion, and the literature includes several others. Next we present three additional 
ranking approaches. 

19.5.1 Maximum Constraint Violation Ranking 

Instead of using the sum of constraint violation magnitudes, or the number of 
constraint violations, we could rank individuals using their maximum constraint 
violation magnitude [Takahama and Sakai, 2009]. In this case, we replace the 
penalized cost function of Equation (19.8) with 

φ(χ) = f(x) + maxGi(x). (19.47) 
i 

We could also rank candidate solutions using a combination of the sum of the con-
straint violation magnitudes, the number of constraint violations, and the maximum 
constraint violation magnitude. 

19.5.2 Constraint Order Ranking 

[Ray et al., 2009b] proposes a way of combining the magnitude of constraint vi-
olations with the number of constraint violations. Suppose that Xk is the k-th 
individual in a population of N individuals. Suppose that we have a constrained 
optimization problem with m + p constraints. We use Gi(xk) to denote the magni-
tude of the z-th constraint violation of x^, with Gi(xk) > 0. We then use Ci(xk) to 
denote the rank of the 2-th constraint violation of Xk, where a lower rank means less 
constraint violation, and we set Ci(xk) = 0 if Gi(xk) = 0. Note that ci{xk) £ [0, TV]. 
Here is a simple example with a population size of five: 

Gi(xi) = 3.5 ' 
Gi(x2) = 5.7 
Gi(x3) = 0.0 
Gi(x4) = 1.3 
Gi(x5) = 0.0 Λ 

> - ► < 

' ci(xi) = 2 
ci(x2) = 3 
C\(X3) = 0 
ci(x4) = 1 
ci(x5) = 0. 
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We then define the constraint violation measure as 
m+p 

19.5.3 e-Level Comparisons 

e-level comparisons are similar to the static penalty approach of Section 19.2.1 in 
which different penalty function weights are used depending on the level of con-
straint violation. However, e-level comparisons use only two levels of constraint 
violations for ranking [Takahama and Sakai, 2009]. 

First, we quantify the constraint violation M(x) of each individual x by either 
combining all constraint violations, or by finding the maximum constraint violation: 

M(x\ = { Σ?ΛΡ°ί(χ) constraint sum method (19.50) 
\ maxiGi(x) maximum constraint method. 

As mentioned in Section 19.5.1, we could also combine the constraint sum method 
and the maximum constraint method to obtain M(x). 

Second, we rank two individuals x and y as follows: 

■ { f(x) < f(y) and M(x) < e and M(y) < e, or 
x is better than y if: { f(x) < f(y) and M(x) = M(y), or (19.51) 

M(x) < M(y) and M(y) > e 

where e > 0 is a user-defined constraint violation threshold.6 We see that a con-
straint violation that is less than e is considered to be a feasible solution for the 
purpose of ranking. Note that if e = oo, then individuals are ranked solely on the 
basis of cost. If e = 0, then feasible individuals are ranked on the basis of cost, 
infeasible individuals are ranked solely on the basis of their constraint violation, 
and feasible individuals are always ranked better than infeasible individuals. We 
typically decrease e as the generation count increases, which gradually increases the 
importance of constraint satisfaction: 

e(0) = M(xp) 

e(t) = M o x i - W ifo<^<rc (1952) 

where e(t) is the value of e during the t-th generation, xp is the individual with the 
p-th smallest constraint violation, p = ΛΓ/5, N is the population size, and c and Tc 

are tuning parameters that are often set to values of about c = 100 and Tc — t m a x / 5 
[Takahama and Sakai, 2009]. We could also try other tuning parameters and other 
profiles for decreasing e as a function of t. 

19.6 A COMPARISON BETWEEN CONSTRAINT-HANDLING METHODS 

This section presents a comparison between nine inequailty-constraint-handling 
methods. We use Equation (19.16) to measure the constraint violation magni-

6This e is not the same as the one in Equation (19.6). The same variable is used in the literature 
for both Equation (19.6) and (19.51), and so we follow that convention in this chapter also. 
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tude of a candidate solution, where Gi(x) is given by Equation (19.8) with ß = 1. 
The constraint-handling methods that we test include the following. 

1. EE: The eclectic EA of Section 19.2.3. 

2. DP: The dynamic penalty method of Equation (19.16) in Section 19.2.5 with 
c = 10 and a = 2. 

3. DS: The dynamic penalty method combined with the superiority of feasible 
points, as defined by Equation (19.18) in Section 19.2.5, with c = 10 and 
a = 2. 

4. EP: The exponential dynamic penalty method of Equation (19.20) in Sec-
tion 19.2.5.1 with a = 10. 

5. ES: The exponential dynamic penalty method combined with the superiority 
of feasible points, defined by Equation (19.22) in Section 19.2.5.1, with a = 10. 

6. AP: The adaptive penalty method of Equation (19.23) in Section 19.2.6 with 
βι = 4, ß2 = 3, and k = n, where n is the problem dimension. 

7. SR: The stochastic ranking method of Section 19.2.12 with Pf = 0.45. 

8. NP: The niched-penalty approach of Section 19.2.13. 

9. eC: The e-level comparison method of Section 19.5.3 with c = 100, Tc = 200, 
and p = N/b, where N is the population size. 

Since the constraint-handling methods listed above are solely concerned with 
how to rank candidate solutions, we can use any EA in conjunction with any of 
these constraint-handling methods. In this section we use the BBO algorithm of 
Figure 14.3, while calculating the fitness of each individual with one of the nine 
constraint-handling methods listed above. 

We test the constraint-handling methods on the 2010 Congress on Evolutionary 
Computation (CEC) benchmarks listed in Appendix C.2 with n = 10 dimensions. 
However, we only test on the benchmarks that do not include equality constraints: 
C01, C07, C08, C13, C14, and C15. 

Equality-constrained problems require special handling. As mentioned in Sec-
tion 19.1.2.2, equality constraints are very unforgiving. If we randomly generate an 
initial population, we have an essentially zero probability of obtaining any individ-
uals that satisfy equality constraints. There are two basic approaches to generate 
individuals that satisfy equality constraints: (1) Use problem-specific information, 
as discussed in Section 19.3; (2) Use Equation (19.8) to convert the equality con-
straints to inequality constraints, use large values of e early in the EA, and gradually 
decrease e as the generation count increases. Although it is possible to formulate 
general-purpose equality-constrained optimization algorithms, this section is fo-
cused on inequality-constraint-handling; we leave it to the reader to use dynamic 
adaptations of e to perform similar comparisons for equality-constrained problems. 

We use a population size of 100 and a generation count limit of 100. This gives 
a total of 10,000 function evaluations during the EA simulation. Note that many 
studies in the literature use hundreds of thousands of function evaluations (that 
is, hundreds of individuals and thousands of generations) when benchmarking EA 



5 1 0 CHAPTER 19: CONSTRAINED OPTIMIZATION 

performance. We believe that such a high number of function evaluations is not 
realistic for most real-world problems. When solving real-world problems for which 
function evaluations are relatively expensive computationally, it is not reasonable 
to perform hundreds of thousands of function evaluations. We encourage students 
and researchers to focus more on achieving good convergence with a relatively low 
number of function evaluations, rather than trying to achieve excellent convergence 
with an unreasonably high number of function evaluations. This will shorten the 
path from academic theory to practical application in EA research. See Section 21.1 
for more details. 

Because of the relatively low number of function evaluations that we use, the 
results in this section are not comparable with many of the published results for 
the CEC 2010 benchmarks. But the point here is not to try to achieve the best 
possible performance with an unreasonably high number of function evaluations. 
The point is instead to compare constraint-handling methods on an even playing 
field. Our choice of 100 individuals and 100 generations is a good tradeoff because 
it does not take too long to run such simulations, but it still gives different EAs 
and constraint-handling methods enough time to differentiate themselves. 

We implement mutation by replacing a feature in an individual with a value 
randomly chosen from a uniform distribution in the search domain. Each feature 
in each individual has a 1% probability of mutation each generation. We also use 
an elitism parameter of two, which means that we keep the two best individuals 
from one generation to the next. 

For the purpose of elitism, we define the best individual as the feasible individual 
with the lowest cost. If there are not any feasible individuals, then we define the best 
individual as the one with the lowest penalized cost, where we obtain penalized cost 
using one of the nine methods listed above. We take this approach because some 
of the constraint-handling methods listed above rank infeasible individuals better 
than feasible individuals. We can afford this approach when there are a relatively 
large number of individuals and the ranking leads to selection for recombination. 
But if we are saving only two elite individuals from one generation to the next, we 
need to make sure that feasible individuals are always preferred above infeasible 
ones. This ensures that once the EA finds a feasible individual, it will always have 
at least one feasible individual for the rest of the simulation. 

Table 19.1 shows a comparison of the nine constraint-handling methods on the 
six CEC 2010 constrained optimization benchmarks that do not have equality con-
straints. The results in the table are averaged over 20 Monte Carlo simulations. 
We randomly generated the offset values {oi} for the benchmarks in Appendix C.2, 
but we used the same {o*} for all constraint-handling methods for a given Monte 
Carlo trial. Some of the benchmarks use a rotation matrix M, which we randomly 
generated in the same way as the offset values. 

Table 19.1 shows some interesting features. First, we notice that all algorithms 
perform similarly for COL This indicates that C01 is either very easy, meaning 
that any method works well, or it is very hard, meaning that no method works 
well. Second, we note that all algorithms except EE perform about the same for 
C13; EE cannot find a feasible solution for C13, even after 20 Monte Carlo runs, 
and so its cost function value is written as oo. EE performs the worst on C13, 
C14, and C15, which is interesting because these are the three benchmarks whose 
constraints are the most difficult to satisfy (see Table C.l in Appendix C.2). 
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Table 19.1 indicates that, on average, the exponential penalty approach of Equa-
tion (19.20) in Section 19.2.5.1 performs best. However, there are many con-
strained optimization problems that have been discussed in the literature, and 
the constraint-handling mat hods above have several tuning parameters. Different 
conclusions might be obtained if we ran tests with other tuning values and other 
benchmark functions. 

EE 
DP 
DS 
EP 
ES 
AP 
SR 
NP 
eC 

C01 

-0.46 
-0.46 
-0 .45 
-0.44 
- 0 . 4 7 
-0 .46 
-0.46 
-0.46 
-0.46 

C07 

19800 
31900 
24700 
22000 
56800 
21000 
50500 
30900 
30900 

C08 

2.39 x 105 

1.51 x 105 

1.46 x 105 

1.03 X 10 5 

1.32 x 105 

1.64 x 105 

1.25 x 105 

1.97 x 105 

7.68 x 105 

C13 

oo 
-600 
-601 
- 5 9 3 

- 6 0 6 
-599 
-592 
-596 
-604 

C14 

5.78 x 1013 

1.64 x 1013 

2.34 x 1013 

0.01 X 1 0 1 3 

0.01 X 1 0 1 3 

0.13 x 1013 

4.93 x 1013 

0.99 x 1013 

2.74 x 1013 

C15 

6.911 x 1013 

0.066 x 1013 

0.228 x 1013 

O.OOl X 1 0 1 3 

0.005 x 1013 

0.072 x 1013 

0.231 x 1013 

0.353 x 1013 

0.160 x 1013 

Table 19.1 Comparison of the best feasible cost function values found by nine 
constraint-handling BBO algorithms on six 10-dimensional benchmark problems, 
averaged over 20 Monte Carlo simulations. See the list at the beginning of Section 19.6 
for the definitions of the acronyms. The best cost for each benchmark is in bold font. 

19.7 CONCLUSION 

We see from this chapter that there are many constraint-handling methods that 
can be used with EAs. Many of these algorithms have similar performance levels. 
Rather than trying all of these algorithms in a search for the best method, we would 
do better to remember some basic principles that may be important when solving 
constrained optimization problems. 

Important Principles for Constrained Optimization 

• As with unconstrained optimization problems, the more problem-specific in-
formation that we can incorporate into the EA, the better our chances for suc-
cess. Handling constraints with special representations or special operators 
is usually more effective than using a general-purpose approach. Black-box 
optimization tools are easy to use, and sometimes they are necessary, but we 
can almost always get better performance by using difflcult-to-obtain domain 
expertise. 

• Given a constrained optimization problem, we should quantify its difficulty 
of constraint satisfaction. This can be measured with the parameter 

P =\T\I\S\ (19.53) 

where \T\ is the size of the feasible set, and |<S| is the size of the search 
space. We can approximate p by randomly generating many individuals in 
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the search domain, and testing how many of them satisfy the constraints. 
We do not need to evaluate the cost function at this point; the purpose 
of this exercise is to see how difficult the constraints are. If only a tiny 
percentage of random individuals satisfy the constraints, then the constraints 
are difficult and our constrained EA should focus on constraint satisfaction. 
If a reasonably high percentage of random individuals satisfy the constraints, 
then the constraints are fairly easy and our constrained EA can focus more 
on cost function minimization. 

• We should quantify the difficulty of individual constraint satisfaction. As 
above, this can be done by randomly generating many individuals in the 
search domain. Constraints that are satisfied by very few random individuals 
are difficult constraints and so the constrained EA should focus on satisfying 
those constraints. Constraints that are satisfied by a relatively large number 
of individuals are easy constraints and so the constrained EA does not need 
to focus on them as much. Alternatively, we may be able to normalize the 
constraints so that the satisfaction of each constraint is equally difficult. 

• One of the biggest challenges in many constrained optimization problems is 
finding feasible solutions. This is especially true for problems with equal-
ity constraints. In this case, we might want to run constraint satisfaction 
algorithms before, or instead of, running a constrained EA. Constraint satis-
faction algorithms fall in the field of study known as constraint programming. 
Constraint programming is outside of the scope of this book but it is an im-
portant field of study related to constrained optimization. Anyone who is 
seriously interested in constrained optimization should study constraint pro-
gramming. Some good introductions to this topic are available in [Dechter, 
2003], [Marriott and Stuckey, 1998], and [Rossi et al., 2006]. 

• In spite of the above points, the difficulty of constraint satisfaction is not nec-
essarily an indication of the difficulty of the constrained optimization problem. 
Some problems with a relatively small area of feasibility are not difficult for 
constrained EAs. For example, [Michalewicz and Schoenauer, 1996] report 
two problems with p = 0.0111% and p = 0.0003% as being relatively easy for 
constrained EAs. 

• When running a constrained EA, we should keep track of how many individ-
uals satisfy the constraints from one generation to the next. Populations in 
which all the individuals are feasible are often inefficient, so we should take 
care to include both feasible and infeasible individuals in our search for a 
constrained optimum. 

Current and Future Research in Constrained Evolutionary Algorithms 

Constrained evolutionary optimization is an active research area because: (1) it is a 
relatively new area; (2) it is lacking in theoretical results (as typified by this chapter, 
which does not include any theoretical results); and (3) real-world optimization 
problems are almost always constrained. We conclude this chapter by mentioning 
some popular and important directions of current research. 
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• Much current research includes the incorporation of standard constraint-
handling methods, such as those discussed in this chapter, into newer EAs. 
The literature continually introduces new EAs. These new EAs are often 
nothing more than modifications of older EAs, but sometimes they have dis-
tinctive new features and capabilities (see Chapter 17). It is important to 
explore how well current constraint-handling methods perform when incorpo-
rated into different types of EAs. The relative performances of different EAs 
on unconstrained problems does not necessarily correlate with their relative 
performances on constrained problems. 

• This chapter discussed constrained optimization problems, and Chapter 20 
discusses multi-objective optimization problems. Current research is begin-
ning to combine these two fields to find algorithms for the solution of con-
strained multi-objective optimization problems [Yen, 2009]. 

• Theoretical results would be a highly fruitful area for future research in con-
strained optimization. This book discusses Markov models, dynamic system 
models, and schema theory for GAs and GP. Perhaps those tools, or others, 
could also be used to analyze constrained EAs. 

• Related to the above discussion of constraint programming is the idea of 
searching the constraint boundary to solve constrained optimization prob-
lems [Leguizamon and Coello Coello, 2009]. Boundary search is related to 
constraint programming, but constraint programming focuses on finding fea-
sible solutions while boundary search focuses on evolving a population that 
lies on the constraint boundary. 

• As mentioned earlier in this chapter, some problems have constraints that 
are difficult to satisfy, so it is challenging just to find feasible regions in the 
search space. However, beyond the problem of finding feasible regions is the 
challenge of designing an EA that can effectively oscillate between feasible 
and infeasible regions. This type of behavior is often desirable for problems 
whose solution lies on the constraint boundary [Schoenauer and Michalewicz, 
1996]. 

• Just as EAs can be combined in various ways, constraint handling methods 
can also be combined. For example, an ensemble of constraint handling meth-
ods could all use the same cost function results, and the best method at each 
generation would dominate the next generation [Mallipeddi and Suganthan, 
2010]. This is similar to some of the multi-objective algorithms of Chap-
ter 20, in which different cost functions are used at different stages of the 
optimization process. 

• As a further level of abstraction beyond ensembles, hyper-heuristics combine 
multiple EAs and multiple constraint handling methods into a single algo-
rithm. Recall that a heuristic is a family of algorithms (for example, a family 
of ACO variations, or a family of DE variations). A hyper-heuristic is a family 
of families of algorithms (for example, a family containing an ACO heuristic, 
a DE heuristic, and other heuristics). Hyper-heuristics can be used for any 
type of optimization problem, but we mention them here because of their 
promise for constrained problems [Tinoco and Coello Coello, 2013]. 
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Constrained optimization surveys can be found in [Eiben, 2001], [Coello Coello, 
2002], and [Coello Coello and Mezura-Montes, 2011]. The reader who is interested 
in further research should note that Carlos Coello Coello maintains a bibliography 
of papers related to constrained evolutionary optimization, which includes 1036 
references as of August 2012 [Coello Coello, 2012a]. 
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PROBLEMS 

W r i t t e n Exercises 

19.1 Many equality-constrained benchmarks use e « 0.0001 in Equation (19.7). 
What is the probability of satisfying the scalar constraint |x| < e with this value of 
e and with a randomly generated x G [—1000, +1000]? 

19.2 This problem shows how the superiority of feasible points method that uses 
Equation (19.11) works if / (x ) > 0 for all x, but how it may fail if that assumption 
is not satisfied. Use Equations (19.10) and (19.11) to find φ'(χ) for a two-element 
population with the following characteristics. 

a) 

/ ( * i ) = 0, Y^riGi{xl) = l 
i 

/(ar2) = 10, Σηβί(χ2) = 0 
i 

b) 

/ (an) = - 1 0 , Ç r i G i ( a ; i ) = l 
i 

/(x2) = 0, Y^riGi(x2) = 0 

19.3 This problem shows how the superiority of feasible points method that uses 
Equation (19.12) works. Use Equations (19.10) and (19.12) to find φ'(χ) for the 
two-element populations shown in Problem 19.2. 

19.4 Give an analytical expression for the smallest value of K in the eclectic EA 
of Equation (19.13) that guarantees that φ(χ) > φ(χ) for all x ^ T and for all 
x eJ7. 

19.5 Suppose you have four individuals in an EA population with the following 
cost values and constraint violation levels: 

/ ( x i ) = 3, G i ( x i ) = 0 , G2(*i) = 0 
/(ar2) = 2, Gi(x 2) = l, G2(x2) = 0 
/ ( x 3 ) = l, G i ( i 3 ) = l, G2(ar3) = l 
/ ( x 4 ) = 4, G i ( x 4 ) = 0 , G2(x4) = 0. 

Use the self-adaptive fitness formulation of Section 19.2.8 to find penalized cost 
values for these individuals. Give an intuitive explanation of your answer. 

19.6 Suppose you have four individuals in an EA population with the cost values 
and constraint violation levels shown in Problem 19.5. Use the self-adaptive penalty 
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function method of Section 19.2.9 to find penalized cost values for these individuals. 
Give an intuitive explanation of your answer. 

19.7 This problem deals with the adaptive segregational constraint handling al-
gorithm of Section 19.2.10. 

a) Explain how the r̂  update algorithm of Equation (19.34) attains the target 
ratio of feasible individuals to infeasible individuals. 

b) Explain the effect of increasing 7 in Equation (19.34). 

19.8 Several constrained EAs, including the stochastic ranking algorithm of Sec-
tion 19.2.12 and the niched-penalty approach of Section 19.2.13, include comparing 
individuals to see which one has a "smaller constraint violation." Suggest three 
ways that the size of a constraint violation might be measured. 

19.9 The traveling salesman problem (TSP) is a constrained problem: a can-
didate solution must visit each city exactly once to be considered a valid tour. 
Crossover operators for the path representation of TSP individuals are discussed in 
Section 18.3.1. Which of these operators preserve the TSP constraint, and which 
ones do not? 

19.10 Suppose you have four individuals in an EA population with the cost values 
and constraint violation levels shown in Problem 19.5. Suppose we use the e-level 
comparison of Equation (19.51) in conjunction with the constraint sum method. 

a) For what values of e will χ<χ be ranked better than x{l 
b) For what values of e will £3 be ranked better than x{l 
c) For what values of e will x^ be ranked better than £3? 

19.11 How many references are listed on Carlos Coello Coello's web site "List 
of References on Constraint-Handling Techniques used with Evolutionary Algo-
rithms" ? 

Computer Exercises 

19.12 Recreate Figure 19.1 with a = 0.5. What difference do you see between 
your figure and Figure 19.1? 

19.13 Suppose you have a circular search domain with a radius of 1 unit that is 
centered at the origin. Suppose individuals are constrained to lie in a circle with a 
radius of pc = 0.1 units, also centered at the origin. 

a) Use the Genocop III algorithm to generate a random feasible x r , a random 
infeasible x s , and random parameter a G [0,1], to generate a potentially 
repaired individual x's. Perform this experiment many times to estimate 
the probability that x's is feasible. Repeat for pc = 0.5 units. 

b) Repeat part (a) for a spherical domain. 

19.14 Section 19.6 compared nine constraint-handling methods in conjunction 
with BBO. Compare some of the constraint-handling methods in this chapter on 
one or more constrained optimization problems using an EA other than BBO. 



CHAPTER 20 

Multi-Objective Optimization 

Multiple, often conflicting objectives arise naturally in most real-world optimization 
scenarios. 

—Eckart Zitzler [Zitzler et al., 2004] 

All real-world optimization problems are multi-objective, at least implicitly if 
not explicitly. This chapter discusses how to modify EAs for multi-objective opti-
mization problems (MOPs). As the quote at the beginning of this chapter asserts, 
real-world optimization problems typically (perhaps always) include multiple goals, 
and those goals usually are in conflict. For example: 

• When designing a bridge, we might want to minimize its cost and maximize 
its strength. The minimum-cost bridge might be made from styrofoam and 
would be very weak. The maximum-strength bridge might be made from 
titanium and would be very expensive. What is the best tradeoff between 
cost and strength? 

• When purchasing a car, we might want to maximize comfort and minimize 
cost. The maximum-comfort car would be too expensive, but the minimum-
cost car would be too uncomfortable. 

• When designing a consumer product, we might want to maximize profit and 
maximize market share. The maximum-profit product would not provide 
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enough market penetration to position our company for future products, but 
the maximum market-share product would not result in enough profit. 

• When designing a control system, we might want to minimize rise time and 
minimize overshoot. The minimum rise-time controller would have too much 
overshoot, but a critically damped (zero overshoot) controller would not have 
a fast enough rise time. 

• When designing a control system, we might want to maximize input sensi-
tivity and minimize disturbance sensitivity. The maximum input sensitivity 
controller would be too sensitive to noise, but the minimum disturbance sen-
sitivity controller would not be responsive enough to control inputs. 

Multi-objective optimization is also called multi-criteria optimization, multi-
performance optimization, and vector optimization. In this chapter we assume 
that the independent variable x is n-dimensional, and we assume that our MOP is 
a minimization problem. An MOP can be written as follows: 

min f(x) = min[/i(x), / 2 (x) , · · ·, fk(x)]. (20.1) 
X X 

That is, we want to minimize a vector f(x) of functions. Of course, we cannot 
minimize a vector in the typical sense of the word minimize. Nevertheless, our goal 
in an MOP is to simultaneously minimize all k functions fi(x). We see that we 
must redefine our definition of optimality for MOPs. 

Multi-objective optimization has been studied by the operations research com-
munity by many years [Ehrgott, 2005]. It appears that [Rosenberg, 1967] was the 
first to suggest using EAs for MOPs, [Ito et al., 1983] was the first implementation, 
and [Schaffer, 1985] was the first widely-known publication on the topic. 

MOPs often include constraints, but as we see from the problem statement of 
Equation (20.1), we do not deal with constrained MOPs in this chapter. We can 
incorporate constraints into multi-objective evolutionary algorithms (MOEAs) in 
the same way that we incorporate them into single-objective EAs (see Chapter 19). 
Some researchers have proposed constraint-handling techniques that are unique to 
MOPs, but we do not discuss them in this chapter. 

Overview of the Chapter 

Section 20.1 discusses the concept of Pareto optimality, which is an extension of 
optimality to MOPs that are in the form of Equation (20.1). Since an MOP has 
multiple objectives, there are many ways to measure the performance of an MOEA 
and we discuss some of these ways in Section 20.2. We follow that discussion with a 
presentation of several popular MOEAs. Section 20.3 discusses MOEAs that do not 
explicitly use the concept of Pareto optimality, and Section 20.4 discusses MOEAs 
that do explicitly use the concept of Pareto optimality. Section 20.5 shows how we 
can combine biogeography-based optimization (BBO; see Chapter 14) with some 
of the MOEA approaches in this chapter, and presents a comparative study on 
some multi-objective benchmarks. The concluding section of this chapter provides 
references to additional resources, and suggests several important topics for current 
and future MOEA research. 
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20.1 PARETO OPTIMALITY 

This section outlines some basic concepts and examples that are related to MOPs. 
We first list some definitions that are often used in multi-objective optimization. 

1. Domination: A point x* is said to dominate x if the following two conditions 
hold: (1) fi(x*) < fi(x) for all i E [1,/c], and (2) fj(x*) < fj(x) for at least 
one j E [l,fc]. That is, x* is at least as good as x for all objective function 
values, and it is better than x for at least one objective function value. We 
use the notation 

x* y x (20.2) 

to indicate that x* dominates x. This notation can be confusing because 
the symbol >- looks like a "greater than" symbol, but since we deal mainly 
with minimization problems in this chapter, the symbol >- means the function 
values of x* are less than or equal to those of x. However, this notation is 
standard in the literature, so this is the notation that we use. The statement 
"x* is superior to x" is identical to the statement "x* dominates x." 

2. Weak Domination: A point x* is said to weakly dominate x if Λ(χ*) < /i(x) 
for all i E [1, &]. That is, x* is at least as good as x for all objective function 
values. Note that if x* dominates x, then it also weakly dominates x. Also 
note that if fi(x*) = fi(x) for all i E [l,fc], then x* and x weakly dominate 
each other. We use the notation 

x* >: x (20.3) 

to indicate that x* weakly dominates x. Some authors use the equivalent 
terminology that x* covers x. 

3. Nondominated: A point x* is said to be nondominated if there is no x that 
dominates it. Noninferior, admissible, and efficient, are synonyms for non-
dominated. 

4. Pareto optimal points: A Pareto optimal point x*, also called a Pareto point, 
is one that is not dominated by any other x in the search space. That is, 

x* is Pareto optimal <<=> (20.4) 
$x : (fi(x) < fi(x*) for all i E [1, k], and/j(x) < fj(x*) for some j E [1, k]). 

5. Pareto optimal set: The Pareto optimal set, also called the Pareto set and 
denoted as Ps, is the set of all x* that are nondominated. 

Ps = {x* : [$x : (fi(x) < fi(x*) for all i E [l,fc], and 
fj(x) < fj(x*) for some j E [l,fc])]}. (20.5) 

The Pareto set is also called the efficient set, and it is sometimes called the ad-
missible set, although this term usually implies constraint satisfaction rather 
than Pareto optimality. 

6. Pareto front: The Pareto front, also called the nondominated set and denoted 
as Pf, is the set of all function vectors / (x ) corresponding to the Pareto set. 

Pf = {/(**) : x* e P.}. (20.6) 
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The literature sometimes uses the terms Pareto set and Pareto front incorrectly 
or interchangeably, but the above list gives the technically correct definitions. Note 
that the statement that x* is nondominated does not necessarily mean that x* 
dominates all x that are not equal to x*. It may be true that fi(x*) = fi(x) for 
all i G [l,fc]. In this case both x and x* are nondominated with respect to each 
other, yet neither one dominates the other. It may also be the case, for example, 
in a two-objective problem, that fi(x) < fi(x*) and /2(^*) < /2(#)· Again, in this 
case both x and x* are nondominated with respect to each other, yet neither one 
dominates the other. 

This idea of Pareto optimality for MOPs is often attributed to Francis Edge-
worth, who introduced it in 1881 [Edgeworth, 1881], and to Vilfredo Pareto, who 
generalized Edgeworth's work in 1896 [Pareto, 1896]. However, the idea of trade-offs 
is a common one for anyone who has ever tried to balance conflicting objectives. 

■ EXAMPLE 20.1 

Suppose that we have a MOP for which the independent variable x is two 
dimensional (n = 2), and that x can take one of six discrete values x^ where 
i G [1,6]. Further suppose that we have two objectives (k = 2) with function 
values 

Mx{1)) = i, 
/ i (* ( 2 ) ) = 1, 
/ i (* ( 3 ) ) = 2, 
fi(xw) = 2, 
/ i (x ( 5 ) ) = 3, 
/ i (* ( 6 ) ) = 3, 

Λ(*(1)) 
/2(z (2 )) 
/2(* (3)) 
Λ(*(4)) 
/ 2 ( χ ( 5 ) ) 

/2(* (6)) 

If x = χΜ or x = x^2\ then fi(x) is minimized. If x = x^5\ then f2(x) 
is minimized. There is not a single value of x that minimizes both f\(x) 
and f2{x)· The optimal value of x is the one that provides the best tradeoff 
between the multiple objectives, where best is based on our problem-dependent 
judgment. Another interesting point in Equation (20.7) is χ(3\ because any 
point x φ # ( 3 ) gives either / i (x ) > / i (# ( 3 ) ) or f2(x) > f2{x^). 

A good way of visualizing this problem is to view a plot of f2 vs. / i , 
as shown in Figure 20.1. This clearly shows that for x G {x^\x^3\x^}, 
no other x exists that simultaneously decreases all objective function values. 
x^\ #(3), and x^ are therefore good tradeoff values for this MOP, and they 
comprise the Pareto set. If we connect all of the optimal points in the /1 / /2 
plane in Figure 20.1, we obtain a curve that forms a lower bound for all of 
the other points in the /1 / /2 plane. 

Another way of visualizing this problem is to view a plot of the search space, 
with the Pareto set indicated by some special notation. Figure 20.2 shows 
one possibility for the search space for this example, with the Pareto points 
indicated with stars. This shows the search space region that corresponds to 
the Pareto front of Figure 20.1. 

3, 
4, 
2, 
3, 
1, 
3. 

(20.7) 

D 
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Figure 20.1 Example 20.1: {χ^ \x^ \x^ '} form the Pareto set for this multi-objective 
minimization problem. The function vectors that correspond to the Pareto set form the 
Pareto front. 
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• 

*% 

χ < 4 ) · 

% 

χ(2) 
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χ(6) 
β 

Figure 20.2 Example 20.1: This figure shows a possible two-dimensional search space for 
Example 20.1. The search space consists of six two-dimensional vectors. The stars indicate 
the Pareto set. 

EXAMPLE 20.2 

Consider the MOP 

(20.8) minf(x) = min[/i(x), / ifa)] = min[x2 + x\, [xx - 2)2 + (x2 - 2)2] 

where x\ G [0,2] and x2 G [0,2]. This is a two-dimensional MOP (n = 2) 
because each x in the search space has two elements. This MOP also has two 
objectives (k — 2). The point x^ = (0,0) minimizes fi(x), and so (0,0) is 
one of the Pareto points. The point x^ — (2,2) minimizes /2(#), and so 
(2,2) is also one of the Pareto points. If we use a brute-force search to find 
all of the Pareto points, we find that the Pareto set is 

Ps = {x : x\ — X2, where x\ G [0,2]}. (20.9) 

That is, the Pareto set forms a straight line in the search space. We can find 
the Pareto front by substituting the Pareto points into Equation (20.8): 

Pf = { ( / i , / 2 ) : h = 2x1 f2 = 2(m - 2)2, where xx G [0,2]}. (20.10) 
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Figure 20.3 shows the Pareto set and Pareto front for this example. Any point 
other than a Pareto point maps to a function vector that is above and to the 
right of the Pareto front. 

2 

1.5 

M Λ 
K » 

0.5 

°0 1 x i 2 ~0 5 f| 10 

Figure 20.3 Example 20.2: The figure on the left shows the Pareto set. The figure on 
the right shows the corresponding Pareto front. Any point in the Pareto set provides a 
reasonable tradeoff for the multiple-objective optimization problem. 

D 

€ Dominance 

One limitation of the concept of Pareto dominance is its either-or, black-and-white 
nature. For example, consider the following three sets of cost function values: 

/ i (x ) = 200, / 2(x) = 300 
/i(î/) = 201, /2(2/) = 301 
/ i (*) = 500, / 2 (z) = 600. (20.11) 

x dominates both y and z, but the concept of Pareto dominance does not allow 
for any distinction between the level of domination, and it does not recognize two 
candidate solutions that are very close to each other in the objective function space. 
In Equation (20.11), x dominates y, but since x and y are so similar, they are 
almost nondominated with respect to each other. In fact, we can almost say that 
y dominates x. This gives rise to the concept of e dominance. 

1. Additive e Dominance: A point x* is said to additively e-dominate x if 
fi(x*) < fi(x) + e for some e > 0 and for all i G [l,fc]. That is, x* is 
"close" to dominating x, where "closeness" is quantified additively with the 
parameter e. 

2. Multiplicative e Dominance: A point x* is said to multiplicatively e-dominate 
x if fi(x*) < fi(x)(l + e) for some e > 0 and for all i e [1, k]. That is, x* is 
"close" to dominating x, where "closeness" is quantified multiplicatively with 
the parameter e. 
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We use the notation 
x* ye x (20.12) 

to indicate that x* e-dominates x, where the type of epsilon domination (additive 
or multiplicative) should be clear from the context. Note that if e = 0 then e 
dominance is equivalent to weak dominance: 

(x* ye x) for e = 0 <=> (x* >z x). (20.13) 

Also note that e dominance for e > 0 is an even weaker type of dominance than 
weak dominance. That is, if x* weakly dominates x, then x* also e-dominates x for 
all e > 0. Conversely, if x* e-dominates x for some e > 0, then x* may or may not 
weakly dominate x: 

(x* >- χ) = > (χ* ye χ) for all e > 0. (20.14) 

The e-dominance relationship between two individuals depends on the value of e 
that we use in our definition. In Equation (20.11), x >-e y for all e > 0. Also, 
y ye x holds in the additive sense if e > 1, and it holds in the multiplicative sense 
if e > 0.005. 

20.2 THE GOALS OF MULTI-OBJECTIVE OPTIMIZATION 

The goal of a single-objective optimization algorithm is usually straightforward: 
find the minimum value of the cost function and its corresponding decision vector. 
However, even in single-objective optimization, we might be interested in several 
different performance metrics for an EA. We might be interested not only in find-
ing the minimum cost function value, but also in quickly finding a "good" solution 
that is not necessarily the best. We might also be interested in finding many good 
solutions in diverse regions of the search space. So even in the apparently straight-
forward problem of single-objective optimization, we may have several performance 
metrics. This complication increases with multiple-objective optimization. Some 
potential goals of an MOEA might be the following. 

1. Maximize the number of individuals that we find within a certain distance of 
the true Pareto set. 

2. Minimize the average distance between the MOEA-approximated Pareto set 
and the true Pareto set. 

3. Maximize the diversity of the individuals that we find in the approximated 
Pareto set. 

4. Minimize the distance of a candidate solution in objective function space to 
an ideal point, also called a Utopia point.1 

Goals 1 and 2 are concerned with finding the "best" approximation of the true 
Pareto set. Goal 3 is concerned with finding a diverse set of solutions so that the 
human decision maker has enough resources to make an informed decision among 

1Some papers define the terms "ideal point" and "utopia point" (or "utopian point") slightly dif-
ferently from each other, but for the purposes of this chapter we consider them to be synonymous. 
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the possible trade-offs. In contrast to the other goals, Goal 4 is concerned with 
finding a solution that is as close as possible to the decision maker's ideal solution, 
which may not exist. However, most current MOE As are primarily concerned with 
finding the best approximation to the true Pareto set. 

Goals 1 and 2 above assume that we know the true Pareto set in the first place, so 
those criteria might be useful when testing MOE As on well-understood benchmarks, 
but the criteria are useless when running an MOEA on a real-world optimization 
problem. But if we know the true Pareto set P s , and an MOEA gives us an 
approximate Pareto set P s , the average distance M(PS,PS) between them can be 
computed as 

Μ^Ρ,,Ρ,) = - i - £ min \\x* - x\\ (20.15) 

where || · || is any user-specified distance metric. 
Goal 3 above can be measured in a few different ways. First, we could measure 

the average distance of each individual to its nearest neighbor in the approximated 
Pareto set. Second, we could measure the distance between the two extreme in-
dividuals in the approximated Pareto set. Third, we could compute the average 
number of individuals that are farther than some threshold from each element in 
the approximate Pareto set [Zitzler et al., 2000]: 

M2(PS) = * £ L ' G Ρβ : H*' - x|| > σ| (20.16) 

where σ is a user-specified distance threshold. In general, M<i increases as the 
number of elements in Ps increases, and also as the diversity of the elements in Ps 

increases. [Khare et al., 2003] discusses some additional diversity metrics for MOPs. 
Goal 4 above is called target vector optimization [Wienke et al., 1992], goal 

attainment [Wilson and Macleod, 1993], or goal programming. It assumes that the 
user is thinking of some ideal point in objective function space, and it requires a 
definition of "distance." Usually we use the Euclidean distance £>2, also called the 
two-norm distance, between an objective function vector / and an ideal point /* . 
The distance between / and /* is defined as follows: 

k 

DKr(x),f(x)) = | | / » - f(x)\\2
2 = £(#(*) - fi(x))2. (20.17) 

However, we can also use other distance measures, such as the weighted two-norm, 
the one-norm, or the infinity-norm. 

Recall Example 20.2. The user might think that it would be ideal to achieve 
both fi(x) — 0 and f2(x) = 0. After obtaining the Pareto front of Figure 20.3, we 
see that the closest we can get to the ideal point in terms of Euclidean distance is 
#i = #2 = 1, which gives fi(x) — 2 and f2(x) = 2. On the other hand, if the user's 
ideal solution is f\(x) = 2 and f2{x) = 0, the closest we can get is x\ — x2 — 1-20, 
which gives fi(x) = 2.87 and f2(x) = 1.29. Using Goal 4 to quantify MOEA 
performance incorporates the user's preferences into the final solution of the MOP. 

Note that we can pursue Goals 1-3 in terms of either the Pareto front or the 
Pareto set. For example, in Goal 1, instead of maximizing the number of individuals 
that are within a certain distance of the true Pareto set, we could maximize the 
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number of individuals whose function vectors are within a certain distance of the 
true Pareto front. In summary, we see that there are many possible performance 
criteria for an MOE A. In other words, optimizing the performance of an MOE A is 
itself a MOP. This seems appropriate, but it complicates the evaluation of MOE As. 

■ EXAMPLE 20.3 

Figure 20.4 shows the performance of three different EAs on an MOP. Fig-
ure 20.4(a) shows a solution that is fairly diverse and reasonably close to 
the true Pareto front. The Figure 20.4(b) shows a solution that is more di-
verse than Figure 20.4(a) in the sense that the distance between the extreme 
solutions is farther, but Figure 20.4(b) includes only three solutions while 
Figure 20.4(a) includes four solutions. Figure 20.4(c) shows solutions that are 
closer to the true Pareto front than Figures 20.4(a) or (b), but the diversity 
is not as good. Which of the three solutions is "best"? It depends on the 
priorities of the decision maker. 

m m 

''"i1** $ ► 

(a) 
f,(x) 

f2(x) 

'-·—> 
(b) 

ΊΜ 
(c) 

W 

Figure 20.4 Example 20.3: This figure shows three potential EA solutions to a 
two-objective MOP. The true Pareto front is the dotted line, and the circles are the 
approximations that were found by each EA. Which solution is "best"? It depends on 
the priorities of the decision maker with respect to solution diversity and closeness to the 
true Pareto front. 

20.2.1 Hypervolume 

Another metric that researchers often use to measure the quality of a Pareto front 
is its hypervolume. Suppose that an MOEA has found M points in an approximate 
Pareto front Pf = {f(xj)} for j G [1,M], where f(xj) is a /c-dimensional function. 
The hypervolume can be computed as 

M k 

«(ί» = ΣΠΛ(^·)· (20.18) 
3 = 1 t = l 

Given two MOEAs that compute two Pareto front approximations to a given MOP, 
we can use the hypervolume measure to quantify how good the two approximations 
are relative to each other. For a minimization problem, a smaller hypervolume 
indicates a better Pareto front approximation. 
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EXAMPLE 20.4 

Suppose that we have two MOE As, each of which are designed to approxi-
mate the Pareto front of a two-objective minimization problem. Figure 20.5 
shows their Pareto front approximations. Figure 20.5(a) has the Pareto front 
approximation points 

P , ( l ) = {[/ i (*,) , f2(xj)}} = {[1,5], [2,3], [5,1]} (20.19) 

which gives the hypervolume 5+6+5=16. Figure 20.5(b) has the Pareto front 
approximation points 

Pf(2) = {[/!(*,·), f2(Xj)}} = {[1,4], [3,3], [4,1]} (20.20) 

which gives the hypervolume 4+9+4=17. According to the hypervolume mea-
sure of Equation (20.18), Figure 20.5(a) gives a slightly better P / than Fig-
ure 20.5(b). 

ΛΜ 

h"t 

ΛΜ 

T 
L_ 

7-T 
J , 1 

(a) ΛΜ (b) ΛΜ 

Figure 20.5 Example 20.4: This figure shows two Pareto front approximations to 
a two-objective MOP. A hypervolume measurement is used to quantify the goodness of 
the approximations. The approximation on the left has a hypervolume of 16, and the 
approximation on the right has a hypervolume of 17. 

Hypervolume cannot be blindly used as an indicator of Pareto front quality. 
Equation (20.18) shows that an empty Pareto front approximation (M = 0) gives 
the smallest possible value of S. Therefore, a more accurate measure might be 
the normalized hypervolume Sn(Pf) = S(P/)/M. However, even this quantity 
may not be a good metric for a Pareto front approximation. We can see this by 
considering the possibility that a certain Pareto front approximation P / ( l ) has 
normalized hypervolume Sn(Pf(l)). Now suppose that we add a single new point 
to P / ( l ) to obtain P/(2). This might result in Sn(Pf(2)) > Sn(Pf(l)) even though 
the only difference between P / ( l ) and P/(2) is that P/(2) has an additional point. 
P/(2) is clearly better than P / ( l ) , but 5 n (P/(2)) is greater than 5 n ( P / ( l ) ) , which 
is counterintuitive. 

This leads us to modify the hypervolume measure by computing it not with 
respect to the origin of the objective function space, but instead with respect to a 
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reference point that lies outside the Pareto front. Suppose that we want to compare 
Q Pareto front approximations Pf(q) for q G [1, Q]. We compute the reference point 
vector r = [ri, · · ·, rfc], where 

ri > max 
Q 

max fi(x) 
xePs(q) 

(20.21) 

and then we compute the hypervolumes S' with respect to the reference point: 

(20.22) 
M(q) k 

^/( î ) )=ÈII( r i -^( i 
3 = 1 i=\ 

where M(q) is the number of points in the g-th Pareto front approximation, and 
Xj (q) is the j-th point in the q-th Pareto set approximation. A larger reference-point 
hypervolume S' indicates that we have a better Pareto front for a minimization 
problem. We can either use the normalized reference-point hypervolume 

S'n(Pf(q)) = S'(Pf(q))/M(q) (20.23) 

or we can use the total reference-point hypervolume measurement S'(Pf(q)) if we 
want the metric to take the number of Pareto points into account. Figure 20.6 
illustrates the reference-point hypervolume in two dimensions. 

ΛΜ 
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Figure 20.6 Reference-point hypervolume computation S'(Pf(q)) of Equation (20.22). 
The reference point r is an arbitrary reference point whose z-th component is larger than 
that of each of the points in the Pareto front approximation. A larger S'(Pf(q)) indicates a 
better Pareto front approximation to a minimization problem. 

Many MOEA discussions in the literature convert MOPs into maximization prob-
lems, which means that larger hypervolumes in Equation (20.18) are more desirable. 
This is consistent with more points in Pf (larger M) being more desirable. Equa-
tions (20.18) and (20.22) give the basic idea of hypervolume calculation, but the 
literature includes several other methods, definitions, and algorithms for hyper-
volume calculation [Auger et al., 2012], [Bringmann and Friedrich, 2010], [Zitzler 
et al., 2003]. Most papers use the union of the M hyperboxes of Equations (20.18) 
and (20.22) to calculate hypervolume. For example, if we compute the hypervol-
ume of the union of the hyperboxes of Figure 20.5, both Pf approximations have 



5 2 8 CHAPTER 20: MULTI-OBJECTIVE OPTIMIZATION 

a hypervolume of 11. Other ways of computing hypervolume may lead to differ-
ent conclusions about the relative merits of the two Pf approximations. However, 
Equations (20.18) and (20.22) are simpler to implement than computing the volume 
of the union of hyperboxes. There is clearly a high correlation between the sum 
of M hypervolumes, and the hypervolume of the union of M hyperboxes, although 
the correlation is not perfectly linear (see Problem 20.7). 

20.2.2 Relative Coverage 

Another way to compare Pareto front approximations is by computing the average 
number of individuals in one approximation that are weakly dominated by at least 
one individual in the other approximation [Zitzler and Thiele, 1999]. Suppose that 
we have two Pf approximations denoted as P / ( l ) and P/(2). We define the coverage 
of P / ( l ) relative to P/(2) as the average number of individuals in P/(2) that are 
weakly dominated by at least one individual in P / ( l ) : 

(Z2 G P/(2) such that 3 [a\ G P / ( l ) such that a\ >z a^\ 
σ ( Ρ / ( ΐ ) , Pf(2)) = i 

(20.24) 
Note that C(P / ( l ) ,P / (2 ) ) G [0,1]. If C (P / ( l ) ,P / (2 ) ) = 0, then for each indi-
vidual ü2 G P/(2), there is no individual in P / ( l ) that weakly dominates Ü2- If 
C(P / ( l ) ,P / (2 ) ) = 1, then for each individual a,2 G P/(2), there is at least one 
individual in P / ( l ) that weakly dominates α2· Although we cannot use the cov-
erage equation to obtain an absolute measure of the goodness of a Pareto front 
approximation, it can be valuable in comparing several approximations. 

20.3 NON-PARETO-BASED EVOLUTIONARY ALGORITHMS 

This section discusses several MOEAs that do not explicitly use the concept of 
Pareto dominance. Section 20.3.1 discusses aggregation methods, Section 20.3.2 
discusses the vector evaluated genetic algorithm (VEGA), Section 20.3.3 discusses 
lexicographic ordering approaches, Section 20.3.4 discusses the e-constraint method, 
and Section 20.3.5 discusses gender-based approaches. 

20.3.1 Aggregation Methods 

Aggregation methods combine the objective function vector of the MOP into a 
scalar objective function. For example, we can convert the /c-objective MOP of 
Equation (20.1) into the problem 

min / (x ) => min }^Wifj(x), where 2^Wi ~ *· (20.25) 

{wi} is a set of positive weight parameters whose elements sum to 1. Equa-
tion (20.25) is called the weighted sum approach, but other aggregation methods 
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can also be used. For example, we can combine the objectives in a product: 

k 

min / (x ) => minTT fAx). (20.26) 
X X ■*·■*-

i=l 

If we use the product aggregation method, then we should make sure that all of the 
objectives fi(x) > 0 for all x. But whatever aggregation method we use, the main 
point is to convert the MOP into a single-objective optimization problem. 

■ EXAMPLE 20.5 

Consider the MOP of Example 20.2. If we use Equation (20.25) to convert it 
to a single-objective problem, we obtain 

min{wi/ i (x) + ^ 2 / 2 ^ ) } - min {wi(x? + x\) + (1 - wY)[(xx - 2)2 + (x2 - 22)]} . 
X X 

(20.27) 
We can minimize this equation by taking its partial derivative with respect 
to x\ and x2 to obtain 

βκ/ι(*)+«*/2(*)] = 2 x i + 4 ( w i _ 1 } 
dx\ 

d[wifi(x) + w2f2(x)] 
2x2 + 4(wi - 1 ) . (20.28) 

dx2 

Setting these two equations to zero and solving for x gives the Pareto set 

x* =χ* =2(l-wi). (20.29) 

Substituting the Pareto set into the equations for fi(x) and f2(x) gives the 
Pareto front 

Λ ( χ · ) = . 8(1 - u;i)2 

f2(x*) = 2w\. (20.30) 

Plotting Equations (20.29) and (20.30) as w\ varies from 0 to 1 gives plots 
that are identical to Figure 20.3. 

Example 20.5 shows that the aggregation method can find the Pareto set and 
Pareto front, at least for some MOPs. In fact, the solution of Equation (20.25) for 
any set of weights results in a Pareto-optimal point. However, if the Pareto front 
is concave, then the aggregation method cannot find the complete Pareto set and 
Pareto front, as the following example illustrates. 

■ EXAMPLE 20.6 

Consider the problem 

min / (x ) = min[x2, cos3 x] (20.31) 
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where x G [0,4]. This is a single-dimensional MOP with two objectives. We 
can aggregate the two objectives into the scalar objective 

min f(x) = min [wx2 + (1 - w) cos3 x] (20.32) 

where w G [0,1], and we can solve Equations (20.31) and (20.32) with exhaus-
tive search. However, the solutions of these two equations are not the same. 
Figure 20.7 shows the solutions of the two problems. We see that the true 
Pareto front is concave. The aggregation method correctly gives the convex 
part of the Pareto front, but it does not correctly give the concave part. 

1 | ■ , i 

0.5 

Ö 0 

-0.5 

0 2 4 6 8 10 
f1 

Figure 20.7 Example 20.6: The aggregation method of Equation (20.32) correctly gives 
the convex part of the Pareto front, but it does not correctly give the concave part. 

D 

Goal Attainment for Concave Pareto Fronts 

It is not just the particular problem of Example 20.6 for which aggregation fails 
to find the Pareto front. In fact, it is impossible to find any concave Pareto front 
using an aggregation method [Fleming et al., 2005]. However, we can find concave 
Pareto fronts using an extension of the goal attainment approach of Section 20.2. 
Goal attainment is sometimes approached by solving the following problem: 

mina; such that fi(x) < f* + WiOt for all i G [1, k] and for some x (20.33) 

where /* is the ideal value of the i-th objective, and {w{} is a set of positive 
weights that indicate the relative importance of each objective. Equation (20.33) 
allows for the possibility that solutions may exist that are better than the user's 
ideal solution. If the optimal a > 0, then the ideal point is not attainable, but the 
solution to Equation (20.33) finds the solution vector that is as close as possible to 

% 

— i rue rareio r-roni 
Aggregation Approximation | 
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the ideal point. If the optimal a < 0, then we can find a solution that is better 
than the ideal point for each objective. It can be shown [Chen and Liu, 1994], 
[Coello Coello, 1999] that solving Equation (20.33) for all weight combinations 
{wi} such that ΣΪ™* = 1 g i y e s the Pareto set to the original MOP, even if the 
Pareto front is concave. 

Note that Equation (20.33) is an optimization problem with a single objective, k 
constraints, and n + 1 independent variables (the scalar a and the original decision 
vector x). We can thus use constrained optimization algorithms (see Chapter 19) 
to solve Equation (20.33). 

20.3.2 The Vector Evaluated Genetic Algorithm (VEGA) 

VEGA was the original MOEA [Schaffer, 1985]. VEGA operates by performing 
selection on the population using one objective function at a time. This gives a set of 
subpopulations, one set for each objective function. We then select individuals from 
the subpopulations to obtain the parents for the next generation, and combine the 
parents using standard EA recombination methods to obtain children. Figure 20.8 
gives an outline of VEGA. 

Initialize a population of candidate solutions P = {XJ} for j G [1, N] 
M <- \N/k] 
While not (termination criterion) 

Compute the cost fi(xj) for each objective i and for each individual Xj G P 
For i = 1 to k 

Pi ^ M individuals probabilistically selected from P using fi(-) 
Next i 
P «— TV individuals selected from {Ρχ, · · ·, Pfc} 
C «— N children created from recombining the individuals in P 
Probabilistically mutate the children in C 
P+-C 

Next generation 
Ps <— nondominated elements of P 

Figure 20.8 Outline of the vector evaluated genetic algorithm (VEGA) for solving an 
optimization problem with k objectives. 

Figure 20.8 shows that VEGA begins with a population of N individuals that we 
usually generate randomly. At each generation, we compute the value of all k cost 
function values for all N individuals. We then use any desired selection scheme (see 
Section 8.7) to select M individuals, where M = \N/k~\ is the smallest integer that 
is greater than or equal to N/k. We perform this selection probabilistically, first 
using / ι ( · ) to create population Pi , then using /2(·) to create population P2, and 
so on. After we have created the Pi subpopulations, we combine them to obtain 
a parent population P . We then recombine the individuals in P to create a set of 
children C. We can perform recombination using any of the EAs discussed in this 
book (genetic algorithms, differential evolution, biogeography-based optimization, 
and so on). We see that the name VEGA is somewhat of an anachronism; depending 
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on the recombination method that we use, we could call it VEDE, or VEBBO, or 
whatever other acronym seems appropriate for the type of recombination that we 
use. This point also applies to many other popular MOE As that we discuss in this 
chapter (NSGA, MOGA, and so on). 

As we have seen in single-objective EAs, elitism can greatly improve optimization 
performance, and this point also applies to MOE As. There are several ways that 
we could implement elitism in Figure 20.8. For example, at each generation we 
could find the best individuals with respect to each objective function, and make 
sure that they are preserved from one generation to the next. Or we could find 
the nondominated individuals at each generation, and make sure that at least a 
few of them are preserved from one generation to the next. Although VEGA is 
not generally defined as an elitist algorithm, the addition of elitism to Figure 20.8 
would not change its essence, and would probably improve its performance. 

An algorithm similar to VEGA, sometimes referred to as the Hajela-Lin genetic 
algorithm (HLGA), uses the weighted sum approach. HLGA includes the weight 
vector of Equation (20.25) as part of the decision variable of each individual [Hajela 
and Lin, 1997]. This approach uses single-objective optimization based on the 
weighted sum of Equation (20.25). HLGA uses fitness sharing to achieve a diversity 
of weights (see Section 8.6.3.1). 

20.3.3 Lexicographic Ordering 

Lexicographic ordering is similar to VEGA, but allows the user to prioritize objec-
tives [Fourman, 1985]. We perform tournament selection by comparing individuals 
on the basis of prioritized objectives. Instead of using prioritized objectives, we can 
also use randomly selected objectives for each tournament [Kursawe, 1991]. Lex-
icographic ordering is similar to the behavioral memory approach for constrained 
optimization (see Section 19.2.11) in its sequential handling of objectives. 

Figure 20.9 outlines the lexicographic ordering method. In the original lexico-
graphic ordering method, the outer loop in Figure 20.9 executes for i G [1, k] in the 
prioritized order of the objective functions. In the randomized variation, the outer 
loop executes until a user-defined termination criterion is satisfied, and the index 
i varies randomly at each generation. As with VEGA, we could implement many 
variations in Figure 20.9, including elitism, and including the incorporation of any 
of the EAs described in this book or elsewhere. 

P <— randomly-generated population 
While not (termination criterion) 

Set the objective function index i 
Initialize an EA with the population P 
Use the EA to minimize fi(x), denoting the final population as P 

Next EA 

Figure 20.9 Lexicographic ordering for an optimization problem with k objectives. The 
objective fi(x) each iteration can depend on user prioritization, or can be selected randomly. 
Also, the objective fi(x) can change from one generation to the next during each EA. 
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20.3.4 The e-Constraint Method 

The e-constraint method [Ritzel et al., 1995] minimizes one objective function at 
a time while constraining the other objective function values to be below a given 
threshold. First we find the minimum of each objective function value fi(x) for 
i G [1, k] by minimizing it with a single-objective EA. This gives a lower bound for 
the objective function constraints ef. 

€i > min/ i (x) for i G [l,fc]. (20.34) 
i 

Then we minimize the first objective while constraining the other objectives to be 
smaller than some threshold: 

min / i (x ) such that fi(x) < e* for i G [1,/c], i φ 1. (20.35) 
X 

Using the final population of the EA that resulted from Equation (20.35) as the 
initial population of the next EA, we minimize the next objective: 

min/2(a?) such that ft{x) < e* for i G [1, fc], i Φ 2. (20.36) 
X 

We repeat this process for all k objectives. We then decrease the e; values and 
repeat the sequential minimization process. This sequential approach is similar to 
lexicographic ordering (see Section 20.3.3), and to the behavioral memory approach 
for constrained optimization (see Section 19.2.11). Figure 20.10 outlines the e-
constraint MOE A. The most challenging part of implementing the e-constraint 
MOEA is deciding exactly how to "set ê  to some number greater than f*(x)v and 
how to "decrease ê  for i G [1, &]" in Figure 20.10. As with other MOEAs, we could 
implement many variations in Figure 20.10, including elitism, and including the 
incorporation of any of the EAs described in this book or elsewhere. 

For each objective function fi(x), where i G [1,/c] 
Use an EA to find /* (x) = minx fa (x) 
Set 6i to some number greater than f*(x) 

Next objective function 
Initialize the EA population P for the MOP 
While not (termination criterion) 

For each objective function /*(#), where i e. [1, &] 
Initialize an EA population with the result of the previous EA 
Use an EA to minimize fi(x) such that fr(x) < er for r G [ l , f c ] , r / i 
P <r- final EA population 

Next objective function 
Decrease ê  for i G [1, k] 

Next iteration 

Figure 20.10 Outline of the e-constraint method for solving an optimization problem 
with k objectives. 
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20.3.5 Gender-Based Approaches 

Gender-based approaches assign a gender to each individual based on the objective 
function with which they are to be evaluated [Allenson, 1992], [Lis and Eiben, 
1997]. Gender-based approaches also use a secondary population called an archive. 
The archive is a collection of nondominated individuals, and similar to elitism, 
it prevents the loss of good individuals. Many other MOEAs also use archives, 
including some that we discuss below. 

In a gender-based approach for a /c-objective MOP, we have k different genders, 
each corresponding to a different objective. We create an initial population with an 
equal number of individuals for each gender. We then select an individual from each 
gender i based on fi(x). We then use the selected individuals for recombination to 
obtain a child individual. We can assign the child individual's gender on the basis 
of which objective for which it performs the best. We can perform recombination 
using any of the methods discussed in this book. For standard single-point GA 
crossover, we would use only two individuals for recombination. For multi-parent 
crossover (see Section 8.8.5), we could use one or more individuals from each gender. 
At the end of each generation we usually compare the population with the archive 
and store the nondominated individuals in the archive while removing dominated 
individuals from the archive. Figure 20.11 outlines a gender-based approach for 
multi-objective optimization. 

Ng = desired population size for each gender 
Initialize k EA populations P*, where \Pi\ = Ng for i £ [1, k] 
EA population size TV <— kNg 

While not (termination criterion) 
For m = 1 to N 

For i = 1 to k 
Use fi(x) to probabilistically select one parent from Pi 

Next i 
Use the k selected individuals to create a child individual cm 

Next m 
Assign the genders of the children {cm} 
Randomly mutate the children {cm} 
Store the nondominated children to the archive 
Remove dominated individuals from the archive 
Replace the EA populations {Pi} with children of the appropriate gender 

Next generation 

Figure 20.11 Outline of a gender-based algorithm for solving an optimization problem 
with k objectives. 

We can see many opportunities for modifying the algorithm of Figure 20.11. For 
example, depending on the dimension of x, we may want to select more than one 
parent from each gender for recombination. Also, the line "Assign the genders of 
the children" leaves a lot of details to be determined. Should we restrict each child 
to a single gender? Should we make sure that we maintain an equal number of 
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each gender in the population? The approach outlined in Figure 20.11 creates TV 
children, but we may want to create more than that so that we can obtain a child 
population with highly-fit children for each gender. 

The statement "store the nondominated children to the archive" in Figure 20.11 
also leaves out a lot of details. Should we allow the archive to grow without bound? 
Should we place an upper limit on the size of the archive? Should we add individuals 
to the archive if they are nondominated with respect to the current population, or 
only if they are nondominated with respect to the archive? We discuss some of 
these archive-related issues in general terms in Section 20.4. 

20.4 PARETO-BASED EVOLUTIONARY ALGORITHMS 

The MOEA approaches of the previous section attempt to find a diverse Pareto-
optimal set of solutions to a MOP. However, none of them directly use the concept of 
Pareto optimality to compute the relative dominance between individuals or groups 
of individuals (except when adding individuals to the archive in Figure 20.11). The 
following sections discuss approaches that directly use Pareto dominance. 

• Section 20.4.1 discusses the simple evolutionary multi-objective optimizer 
(SEMO) and the diversity evolutionary multi-objective optimizer (DEMO). 

• Section 20.4.2 discusses the e-based MOEA (e-MOEA). 

• Section 20.4.3 discusses the nondominated sorting genetic algorithm (NSGA) 
and an updated version of it (NSGA-II). 

• Section 20.4.4 discusses the multi-objective genetic algorithm (MOGA). 

• Section 20.4.5 discusses the niched Pareto genetic algorithm (NPGA). 

• Section 20.4.6 discusses the strength Pareto evolutionary algorithm (SPEA) 
and an updated version of it (SPEA2). 

• Section 20.4.7 discusses the Pareto archived evolution strategy (PAES). 

20.4.1 Evolutionary Multi-Objective Optimizers 

This section discusses two evolutionary multi-objective optimizers: the simple evo-
lutionary multi-objective optimizer (SEMO), and the diversity evolutionary multi-
objective optimizer (DEMO). As will be seen in this section, these algorithms are 
motivated by the basic ideas of EP and ES. 

The Simple Evolutionary Multi-Objective Optimizer (SEMO) 

SEMO was originally proposed for binary optimization [Laumanns et al., 2003], but 
is easily extended to continuous optimization. In SEMO we begin with a randomly-
generated population of individuals. The original SEMO algorithm begins with 
a population size of one. The population grows as the algorithm finds more and 
more nondominated solutions. At each generation we mutate one randomly-selected 
individual from the population to create a child. We add the child to the population 
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if the child is nondominated by the population, and we also remove any dominated 
individuals from the population. Figure 20.12 illustrates the SEMO algorithm. The 
"random mutation" in Figure 20.12 could be any of the mutation methods discussed 
in Chapter 5, Chapter 6, or Section 8.9. 

SEMO provides a useful starting point for multi-objective optimization. We can 
modify SEMO based on ideas from other MOEAs. For example, instead of using 
a "randomly selected individual from P " as the parent of y, we could instead use 
fitness-proportional selection. Also, we could generate y from multiple parents, or 
we could prune the population periodically as in SPEA2 (see Section 20.4.6). 

Initialize a population of candidate solutions P = {XJ} 
Compute the cost fi(xj) for each objective i G [1,/c] and for each individual Xj G P 
While not (termination criterion) 

y «— mutation of randomly selected individual from P 
If y is not dominated by any individuals in P then 

P <- {P, y} 
Remove all individuals from P that are dominated by y 

End if 
Next generation 

Figure 20.12 Outline of the simple evolutionary multi-objective optimizer (SEMO). 

The Diversity Evolutionary Multi-Objective Optimizer (DEMO) 

One problem with SEMO is the unbounded growth of its population. We can handle 
this problem by using e-dominance instead of dominance in the test for including 
y in the population P. This results in the diversity evolutionary multi-objective 
optimizer (DEMO). DEMO uses the same algorithm as the one in Figure 20.12, 
except that it uses e dominance as the criterion for including y in P [Horoba and 
Neumann, 2010]. This raises the standard for including a child individual y in the 
current population; we include y in the population only if it is not e-dominated by 
any other individuals in P. Since e-dominance is a weaker type of dominance than 
Pareto dominance (see Section 20.1), the criterion for including y in the population 
is more strict in DEMO than in SEMO. DEMO essentially divides the objective 
space into hyperboxes, and does not allow the population to contain any more than 
one individual per hyperbox. We usually use additive e dominance in DEMO. 

Figure 20.13 illustrates the DEMO concept for a two-objective optimization 
problem. We would not include child y\ in the population because it is e-dominated 
by the individual that is in the same hyperbox. However, we would include y<i in 
the population because it is not e-dominated by any of the current population mem-
bers. Note that Figure 20.13 is not precisely correct because DEMO hyperboxes 
are defined relative to the current population. Nevertheless, the figure gives a con-
ceptual illustration of the use of e-dominance in DEMO. Although Figure 20.13 
shows that ei = €2 (that is, the boxes are square), the user can choose a different 
value €i for each objective index i G [1,/c] based on the desired solution accuracy 
for each objective. 
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Figure 20.13 e-dominance in the diversity evolutionary multi-objective optimizer 
(DEMO). Current population members are indicated with solid circles, and children are 
indicated with unfilled circles. We add a child to the population only if it is not e-dominated 
by any of the current population. In this figure, we would not add yi to the population, but 
we would add 2/2. 

20.4.2 The €-Based Multi-Objective Evolutionary Algorithm (6-MOEA) 

The e-MOEA uses the concept of e dominance in a similar manner to the e domi-
nance that DEMO uses as described above [Deb et al., 2005]. The e-MOEA includes 
a population and an archive. At each generation we select one individual from the 
population and one from the archive, and we use some recombination method to 
obtain a child. 

If the child dominates an individual in the population, then we replace the dom-
inated individual with the child. If the child dominates more than one individual, 
then we replace a randomly-selected individual. 

Next wé compare the child with the archive. There are four situations that could 
result from this comparison. (1) If the child is dominated by any of the archived 
individuals, then the child is not placed into the archive. (2) If the child dominates 
any of the archived individuals, then the child is added to the archive, and the 
dominated individuals are removed from the archive. 

If neither of these two conditions hold, then we calculate the e-box B(x) of the 
child x: 

Bj(x) = \jj(*)l*i\ (20.37) 

for j e [1,/c], where k is the number of objectives, 6j is the desired resolution of 
the j-th objective, and |_-J returns the largest integer that is less than or equal 
to its argument. This brings us to the third situation that could result from the 
comparison of the child with the archive. (3) If the child x is in the same e-box as 
an archived individual a, then the child replaces a if the child is closer to the origin 
of the objective function space: 

x replaces a if B(x) = B(a), and £ / ? ( * ) < £ / ? ( a ) 
i = i J = l 

(20.38) 

The above condition assumes that the objective functions are normalized so that 
the magnitudes of each objective function value are commensurate with each other. 
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Equation (20.38) also uses the Euclidean norm to measure distance, although we 
could use any other norm. (4) If neither of three previous conditions occurs, then 
we add the child to the archive, which increases the size of the archive by one 
individual. 

Figure 20.14 illustrates these four possibilities. Note that the logic described 
here ensures that no more than one individual is in each e-box of the archive. 
Although the archive can grow from one generation to the next, its size is limited 
by this logic. Figure 20.14(a) illustrates the case that the child is dominated by 
one or more of the archived individuals; in this case, the child is not added to 
the archive. Figure 20.14(b) illustrates the case that the child dominates one or 
more archived individuals; in this case, the child replaces the dominated individuals. 
Figure 20.14(c) illustrates the case that the child and the archive are nondominated 
with respect to each other, and the child is in the same e-box as one of the archived 
individuals; in this case, the child replaces the archived individual that is in the 
same e-box if the child is closer to the origin of the objective function space. Finally, 
Figure 20.14(d) illustrates the case that the child and the archive are nondominated 
with respect to each other and the child does not share the same e-box as any of the 
archived individuals; in this case, the child is added to the archive, which increases 
the size of the archive by one. 
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Figure 20.14 The e-MOEA logic for adding a child to the archive. The empty circles 
are archived individuals, the solid circle is a child individual, and the grid in the objective 
function space defines e boxes. In case (a), the child is not added to the archive. In case (b), 
the child replaces the individuals that it dominates, which in this figure decreases the archive 
size by one. In case (c), the child replaces the individual that is in the same e-box, provided 
that the child is closer to the origin of the /1//2 plane. In case (d), the child is added to the 
archive, and the size of the archive increases by one. 

Figure 20.15 outlines the e-MOEA. We could experiment with several variations 
on this algorithm. For example, usually we use tournament selection with a tour-
nament size of two to select the parent x from P ; however, we could use any other 
selection method. Usually we randomly select the parent a from the archive A; 
again, we could use any other selection method. The recombination method that 
we use to create the child could be any method from Section 8.8. If we use multiple-
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parent recombination, then we need to decide how many parents to choose from P 
and how many to choose from A. 

Initialize a population of candidate solutions P = {XJ} for j G [1, N] 
Copy the nondominated individuals from P to the archive A 
While not (termination criterion) 

Select one parent x from P and one parent a from A 
Create a child c by recombining x and a 
Dp 4— {x e P : c dominates x} 
\ϊΌΡφ$ then 

Replace a random x G Dp with c 
End if 
DA «- {a £ A : c dominates a} 
If DA φ 0 then 

Add c to A 
Remove DA from A 

else if Equation (20.38) is satisfied then 
Add cto A 
Remove a from A 

else if (c is nondominated with respect to A) and (B(c) φ Β(α) for all a) then 
Add c to A 

End if 
Next generation 

Figure 20.15 The above pseudocode outlines the e-MOEA for solving an optimization 
problem with k objectives. 

20.4.3 The Nondominated Sorting Genetic Algorithm (NSGA) 

NSGA was proposed in [Srinivas and Deb, 1994] and is based on ideas from [Gold-
berg, 1989a]. NSGA assigns the cost of each individual based on how dominant it 
is. First we copy all individuals to a temporary population T. Then we find all 
nondominated individuals in T; these individuals, which we denote as the set B, are 
assigned the lowest cost value. Next we remove B from T and find all nondominated 
individuals in the reduced set T. These individuals are assigned the second-lowest 
cost value. We repeat this process, obtaining a cost for each individual that is based 
on its level of nondomination. Figure 20.16 outlines NSGA. 

Figure 20.16 shows that we begin with a population of N individuals, usually 
generated randomly. At each generation, we compute the value of all k cost function 
values for all N individuals. We copy the individuals to a temporary population T. 
We assign all individuals that are nondominated a cost value of 1. We remove all 
of those individuals from T, find all the individuals in the reduced set T that are 
nondominated, and assign them a cost value of 2. We repeat this process until all 
individuals have been assigned a cost value based on their level of domination. We 
then use the cost values φ(-) in Figure 20.16 to perform selection, and we recombine 
the individuals in P using any desired EA and any desired recombination method. 
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Finally we mutate the child population, replace the parents with the children, and 
continue to the next generation. 

NSGA is sometimes criticized for its inefficiency due to the inner loop for the cal-
culation of the cost φ(-) in Figure 20.16. But for real-world problems, the function 
evaluations /;(·) comprise the overriding computational burden, and the nondomi-
nation loop of NSGA adds a trivial amount of computational overhead. 

Initialize a population of candidate solutions P = {XJ} for j G [1, TV] 
While not (termination criterion) 

Temporary population T <— P 
Nondomination level c *- 1 
While \T\ > 0 

B <— nondominated individuals in T 
Cost φ(χ) <r- c for all x G B 
Remove B from T 
c <- c + 1 

Next nondomination level 
C <— N children created from recombining the individuals in P 
Probabilistically mutate the children in C 
P^-C 

Next generation 

Figure 20.16 Outline of the nondominated sorting genetic algorithm (NSGA) for solving 
an optimization problem with k objectives. We use the cost function values φ{χ^) to select 
parents for recombination. 

NSGA-II 

NSGA-II is a modification of NSGA [Deb et al., 2002a]. NSGA-II computes the cost 
of an individual x by taking into account not only the individuals that dominate 
it, but also the individuals that it dominates. For each individual, we also compute 
a crowding distance by finding the distance to the nearest individuals along each 
objective function dimension. We use the crowding distance to modify the fitness 
of each individual. NSGA-II does not use an archive, but instead uses a (μ + λ) 
evolution strategy approach to implement elitism (see Chapter 6). 

NSGA sets the crowding distance of each individual x equal to its average dis-
tance to its nearest neighbors along each objective function dimension. For example, 
suppose that we have N individuals in the NSGA. Further suppose that individual 
x has the objective function vector 

f(x) = lh(x),---,fk(x)}. (20.39) 

For each objective function dimension, we find the closest larger value and the 
closest smaller value in the population, as follows: 
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/ · (x) = max[fi(y) such that fi(y) < fi(x)] 

ff(x) = mm[fi(y) such that fi(y) > /»(x)]. 
y 

We then compute the crowding distance of x as 

k 

ΦΟ = Ε(^(*)-/Γ(Ζ))· 

(20.40) 

(20.41) 

Individuals that are in more crowded regions of the objective function space tend to 
have a smaller crowding distance. Individuals at the extreme values of the objective 
function space have an infinite crowding distance: 

d(x) = oo for x G \ arg min fi (y) U arg max fi (y) for all i G [1 ,*]}■ (20.42) 

The crowding distance corresponds to half of the perimeter of the largest hyper-
cube, called a cuboid in [Deb et al., 2000], whose boundaries do not extend beyond 
the objective function space coordinates of the nearest neighbors of x in each di-
mension. Figure 20.17 illustrates the hypercube in a two-dimensional objective 
function space, which is a rectangle.2 In Figure 20.17, the nearest neighbors of x 
in the f\ direction are A and C, and the nearest neighbors of x in the fi direction 
are A and B. 
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Figure 20.17 Illustration of the crowding distance calculation in NSGA-II. The crowding 
distance of x is obtained as half the perimeter of the largest hypercube (which is a rectangle 
in two-dimensional space) whose boundaries do not extend beyond the objective function 
space coordinates of the nearest neighbors of x. 

Now that each individual in the population has a crowding distance, we use it 
as a secondary sorting parameter for obtaining the rank of each individual. As in 
the NSGA algorithm of Figure 20.16, we rank each individual on the basis of its 

2Contrary to [Deb et al., 2000], the hypercube is not the largest one that encloses x without 
including any other points. As seen from Figure 20.17, that definition would give a different 
hypercube and would generally result in different NSGA-II performance. 
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nondomination level, but we also include a more fine-grained ranking level on the 
basis of crowding distance. That is, x is ranked better than y if φ(χ) < 4>{y), or 
if φ(χ) = φ(^) and d(x) > d{y). Whereas NSGA uses φ(χ) to select parents for 
recombination in Figure 20.16, NSGA-II instead uses the ranks described above to 
select parents for recombination. 

20.4.4 The Multi-Objective Genetic Algorithm (MOGA) 

MOGA was introduced in [Fonseca and Fleming, 1993]. Like NSGA, it assigns cost 
values on the basis of domination, but MOGA approaches cost assignment from the 
opposite direction. Whereas NSGA assigns the cost of x based on how many levels 
of individuals need to be removed from the population before x is nondominated, 
MOGA assigns the cost of x based on how many individuals dominate it. We assign 
the same cost to all nondominated individuals. For each dominated individual x, we 
assign its cost based on how many individuals dominate it, and also based on how 
many individuals are near it. Similar to the use of crowding distance in NSGA-II, 
this encourages diversity in the population. 

In MOGA, x is ranked better than y (that is, φ(χ) < φ{ν)) if it is dominated by 
fewer individuals in the population P (that is, d(x) < d(y)),3 or if it is dominated 
by the same number of individuals and there are fewer individuals near x than 
there are near y in the objective function space (that is, s(x) < s(y)). This ranking 
approach can be expressed as follows. 

d{x) = \xf £ P : x' dominates x\ 

s(x) = \xf£P:\\f(x)-f(x')\\<a\ 

φ(χ) < φ(ν) if {d(x) < d(y), or d{x) = d{y) and s(x) < s(y)} (20.43) 

where σ is a user-defined sharing parameter and || · || is some distance metric. 
Sharing can also be automatically implemented so that the user does not need to 
define the sharing parameter [Ahn and Ramakrishna, 2007]. Figure 20.18 gives an 
outline of MOGA. As with the other MOEAs described in this chapter, we could 
implement many variations in Figure 20.18, such as various recombination methods 
and various elitism approaches. 

20.4.5 The Niched Pareto Genetic Algorithm (NPGA) 

NPGA was proposed in [Horn et al., 1994], It is similar to NSGA and MOGA 
in its assignment of cost on the basis of domination. NPGA is an attempt to 
reduce the computational effort of NSGA and MOGA. We randomly select two 
individuals from the population, x\ and X2- We then randomly select a subset S 
of the population, which is typically around 10% of the population. If one of the 
individuals x\ or #2 is dominated by any of the individuals in 5 , and the other 
is not, then the nondominated individual, denoted as r, wins the tournament and 
is selected for recombination. If both individuals x\ and #2 are dominated by at 
least one individual in S, or both individuals are not dominated by any individuals 
in 5 , then we use fitness sharing to decide the tournament winner; that is, the 

3Note the change in terminology from NSGA-II; d(x) is crowding distance in NSGA-II, but dom-
ination level in MOGA. 
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Initialize a population of candidate solutions P = {XJ} for j G [1,N] 
While not (termination criterion) 

Use Equation (20.43) to find the rank (f)(xj) for each Xj G P 
C <— N children created from recombining the individuals in P 
Probabilistically mutate the children in C 
P+-C 

Next generation 

Figure 20.18 Outline of the multi-objective genetic algorithm (MOGA) for solving 
an optimization problem with k objectives. We use the ranks <t>(xj) to select parents for 
recombination. 

individual that is in the least crowded region of the objective function space wins 
the tournament. This selection process can be described as follows: 

\y G S:yyXi\ for i G [1,2] 
Crowding distance of X{ for i G [1,2] ( (di = 0) and (d2 > 0), or 

(di > 0) and (d2 > 0) and (si < s2), or , . 
(di = 0) and (d2 = 0) and (Sl < s2)

 K } 

y x2 otherwise. 

di is the number of individuals that dominate x^ Si is the crowding distance of x^ 
and T is the individual (either x\ or x2) that we finally select for recombination. 
The crowding distance Si could be computed with a method from Section 8.6.3.1, 
or it could use Equation (20.43), or it could be any other calculation that quantifies 
the crowdedness of x\ and x2. The crowding distance is smaller for individuals 
that are in more crowded regions of the search space or the objective function 
space. The use of crowding distance in NPGA encourages diversity; like other such 
algorithms, this makes it especially suitable for multi-modal problems, or problems 
in which the user is interested in finding good potential solutions in widely separated 
regions of the function space or search space. Note that the crowding distance of 
Equation (20.44)) could be computed in either function space or search space, 
depending on the priorities of the user. 

Figure 20.19 gives an outline for NPGA. NPGA, with its randomly-selected 
population subset S in Equation (20.44), was the first MOEA to save computa-
tional effort by reducing the number of individuals involved in the ranking process 
[Coello Coello, 2009]. As with the other MOEAs in this chapter, we could customize 
Figure 20.19 to include elitism, an archive, various recombination strategies, or var-
ious selection strategies. 

di = 

Si = 
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Initialize a population of candidate solutions P = {XJ} for j G [1, N] 
While not (termination criterion) 

While \R\ < N 
Randomly select two individuals x\ and x<i from P 
Randomly select a population subset S C P 
Use Equation (20.44) to select r from {#ι, £2} 
R *- {P, r} 

End while 
Recombine the individuals in R to obtain iV children 
Randomly mutate the children 
P <— children 

Next generation 

Figure 20.19 Outline of the niched Pareto genetic algorithm (NPGA) for solving an 
optimization problem with k objectives. 

20.4.6 The Strength Pareto Evolutionary Algorithm (SPEA) 

SPEA was the first MOEA to explicitly use elitism [Zitzler and Thiele, 1999], 
[Zitzler et al., 2004]. Of course, any of the previously-discussed MOEAs can be 
implemented with elitism, but for some reason most of them did not incorporate 
elitism when originally introduced. Elitism is usually a common sense option in both 
single-objective and multi-objective EAs. Also, elitism is theoretically necessary to 
guarantee convergence in MOEAs [Rudolph and Agapie, 2000]. However, if a user-
preference-based approach is used in an MOEA and the preferences change over 
time, then elitism may result in a degradation of performance [Zitzler et al., 2000]. 
This is similar to the drawbacks of elitism for dynamic optimization problems, 
where fitness functions are time varying (see Chapter 21). 

SPEA works by maintaining all nondominated individuals that are found during 
the learning process in an archive. Whenever we find a nondominated individual we 
copy it to the archive. We assign a strength value S (a) to each archived individual 
a based on how many individuals in the population that a dominates: 

n. λ \x G {P} such that a >- x\ _ .. . / n n . r , 
S (a) = l J — L for all a G A . (20.45) 

where P is the set of candidate solutions, N is the size of P , and A is the archive 
set. Note that S (a) G [0,1). For each individual x in P , we find the set a(x) of all 
archived individuals that dominate it. We then compute the raw cost of x, denoted 
as R(x), as the sum of the strengths of the individuals in a(x): 

R(x) = 1 + ] T S(y), for all x G P 
yea(x) 

where a(x) = {y G A : y >- x}. (20.46) 
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Adding one in the above equation ensures that R(x) > 1, which in turn ensures 
that R(x) > S(a) for all x G P and all a £ A. Note that if x has a low raw cost, 
then x is a high-performing individual.4 

Figure 20.20 illustrates strength and raw cost calculations for an archive size 
|i4| = 3 and a population size \P\ = 6. Figure 20.20 shows the strength values of 
the Pareto front points as the normalized number of individuals that they dominate. 
The figure also shows the raw cost value of each dominated point as 1 plus the sum 
of the strengths of the Pareto front points that dominate it. Note that the raw cost 
values become larger as the individuals move farther away from the Pareto front 
(that is, as the individuals are dominated by more Pareto front points). Also, note 
the dominated individual toward the upper left of the figure with the raw cost 9/7, 
and compare it with the two dominated individuals at the lower right with the raw 
cost values 10/7. The individuals in the lower right have a higher raw cost because 
they are in a more crowded region of objective function space. Since they are in a 
crowded area, the strength of the Pareto front point that dominates them is larger, 
which results in their raw cost being higher. 

12/7 

9/7 

10/7 13/7 

• · 
3 * 10/7 #10/7 

3/7 X 
> 

AW 

Figure 20.20 Illustration of SPEA strength and raw cost calculations for a two-objective 
minimization problem. The Pareto front individuals are marked with the symbol x, and 
their strength values are shown beside them. The non-Pareto-front individuals are shown as 
filled circles, and their raw cost values are shown beside them. 

As mentioned above, at each generation, all individuals in {P, ^4} that are non-
dominated are added to the archive A. However, this can result in unbounded 
growth of the archive. SPEA handles this potential problem with a clustering 
method [Zitzler and Thiele, 1999]. If the archive has \A\ individuals, we begin by 
defining each individual as a cluster. We then merge the two closest clusters into 
a single cluster so that the cluster count of A is reduced by one. We repeat this 
process until the archive contains NA clusters, which is the desired archive size. 
Finally, we retain only one point from each cluster, usually the one that is closest 
to the cluster center. 
4The SPEA literature often refers to R(x) as raw fitness, but we use the terminology raw cost to 
be consistent with the intuition that low cost is good and low fitness is bad. 

ΛΜ 
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SPEA2 

An improved version of SPEA, denoted as SPEA2, proposes some improvements 
to the original algorithm [Zitzler et al., 2001]. First, we assign a strength value 
S (a) not only to the individuals in the archive, but also to the individuals in the 
population: 

S (a) = \xe {P, A} such that a >- x\ for all a G {P, A}. (20.47) 

We also see from comparing the above equation with Equation (20.45) that we do 
not normalize the strength values. 

Second, we calculate the raw cost of each individual in P slightly differently by 
summing the strengths of the dominating individuals in both the population and 
the archive: 

R(x) = γ^ S (y), for all x G P 
yea(x) 

where a(x) = {y <E{P,A} :yy x). (20.48) 

We also see from comparing the above equation with Equation (20.46) that we do 
not add one in the raw cost calculations. 

Third, we modify the raw cost of each x G P based on how many individuals 
it is near; that is, we penalize the cost of individuals that are near many other 
individuals in objective function space. We do this by finding the distance between 
f(x) and / (y ) , for all x G P , and for all y G {P, ^4} such that y ^ x. This distance 
metric can be any vector norm that the user thinks is appropriate, although we 
usually use the Euclidean norm. For each x G P we sort the distances between it 
and each y G {P, ^4} in increasing order, so we have an ordered distance list for 
each x with ( |P| + \A\) elements. We then select the j-th element in the distance 
list, which gives the distance between x and its j - t h nearest neighbor, denoted as 
&j(x). We can use various strategies to select j ; for example, some researchers have 
had good success with j = y/\P\ + |-A|, but others simply set j = 1 [Zitzler et al., 
2004]. We define the density of x as 

D{x) = — i — 
σά{χ) + 

where we choose the constant 7 in the denominator to ensure that D(x) < 1. The 
original SPEA2 paper suggests 7 = 2 [Zitzler et al., 2001] Finally, we obtain the 
modified cost of x by adding the raw cost to the density: 

C{x) = R{x) + D(x). (20.50) 

Since all nondominated individuals have a raw cost value of 0, as seen from Equa-
tion (20.48), and since D(x) < 1 for all x, we see that all nondominated individuals 
have a cost C{x) < 1. 

The fourth modification of SPEA2 involves controlling the archive size. In SPEA 
there is not a lower bound on the archive size, but in SPEA2 the archive size 
is maintained at a constant value. If at any point during the SPEA2 process 
the archive size becomes too small, we add the lowest-cost individuals from the 
population, even though they are dominated, to the archive until the archive size 

(20.49) 
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reaches the desired value. SPEA uses a clustering method to reduce the archive 
size in case it becomes too large, but SPEA2 uses a different approach. In SPEA2, 
if the archive size becomes too large we remove individuals by finding the distance 
from each x e A to its nearest neighbor in objective function space: 

Anin(a) = min 
y 

^2(fi(x) - fi(y))2 where y G A and y φ χ 
li=l 

for x G A (20.51) 

This gives us |^4| values of Dm-m(x), where \A\ is the archive size. Next we use D 
to denote the set of individuals that have the smallest ΙΛηΐη^) value: 

D = {x: Dmin(x) < Dmin(y) for all y G A}. (20.52) 

D will have at least two individuals in it, since the distance between any two 
individuals x and y is the same as the distance between y and x. Among all 
individuals in D we find the individual, denoted as xmm, that is the nearest to any 
archived individual not in D: 

Zmin = arg mm 
k 

m i n y V / i ( x ) - fi(y))2 where y G A and y £ D 
y t - f 

(20.53) 

We remove xmm from the archive, which reduces the archive size by one. If |J4| 
is too large, we repeat Equations (20.51)-(20.53), removing one individual during 
each iteration, until the archive reaches the desired size. 

The fifth and final modification of SPEA2 is that only members of A participate 
in selection and recombination to create the population at the next generation. The 
literature includes several variations and modifications of SPEA and SPEA2, but 
Figure 20.21 outlines the basic algorithm. 

Figure 20.21 includes the SPEA principles, but leaves many details to the cre-
ativity of the researcher. Here we clarify a few points about Figure 20.21 and 
mention several possibilities for modifications. 

• The reader needs to choose the population size TV and the archive size NA-
Usually NA < N. 

• The statement "Copy nondominated individuals from P to A" indicates that 
all individuals x G P need to be compared with all individuals y G {P, A}. 
Any individual x that is nondominated by all individuals y is copied to A. 
However, this statement leaves unanswered the question of whether or not 
to remove the nondominated individuals from P. Since the nondominated 
individuals are in A, it might not make sense to keep them as duplicates in 
P. But this raises a follow-on question about the population size of P. If 
we remove nondominated individuals from P , then should we replace them 
with some other individuals? We could leave P in a reduced state and always 
create N children regardless of the size of P , or we could replace the nondom-
inated individuals that that we remove from P with some randomly-created 
individuals. 
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TV = population size 
NA = maximum archive size 
Initialize a population of candidate solutions P = {XJ} for j G [1, TV] 
Initialize the archive A as the empty set 
While not (termination criterion) 

Copy nondominated individuals from P to A: 
A +- {A U {x G P : $ {y G {P, A} : y y x)} 

Remove dominated individuals from A 
While \A\ > NA 

Use a clustering method (SPEA), or Equations (20.51)-(20.53) (SPEA2), 
to remove an individual from A 

End while 
If SPEA2 then 

While \A\ < NA 

Add the lowest-cost non-duplicate individual from P to A: 
A <l·- {A, (arg min^ C{x) such that x £ P,x £ A} 

End while 
End if 
Use Equation (20.46) (SPEA), or Equation (20.50) (SPEA2), 

to calculate the cost of each individual in P 
Select parents from {P, A} (SPEA), or from A (SPEA2) 
Use a recombination method to create children C from the parents 
Probabilistically mutate the child population C 
Use a replacement method to replace individuals in P with individuals in C 

Next generation 

Figure 20.21 Outline of the strength Pareto evolutionary algorithm (SPEA and SPEA2). 

• 

• 

• 

The loop "While \A\ > 7V^" removes individuals from crowded regions of 
objective function space in case the archive is too large. SPEA and SPEA2 
each have their own methods for accomplishing this, and the reader can un-
doubtedly find other methods with which to experiment. 

The loop "While \A\ < NA" adds low-cost individuals to the archive in case 
it is too small, but only for SPEA2. In SPEA, this step is omitted; that is, 
\A\ does not have a lower bound. 

The statement "Select parents from {P,A} (SPEA), or from A (SPEA2)" 
leaves a lot of room for flexibility. We can use any type of selection for this 
step (see Section 8.7). The success of SPEA and SPEA2 strongly depends on 
the implementation of this statement. 

The statement "Use a recombination method to create children C from the 
parents" also leaves a lot of room for flexibility. We can use any of the EAs 
discussed in this book, and any type of recombination (see Section 8.8), to 
create children. As with selection, the success of SPEA and SPEA2 strongly 
depends on the implementation of recombination. 
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• The statement "Use a replacement method to replace individuals in P with 
individuals in C" can be implemented in several different ways. If \C\ = \P\ 
we can simply replace P with C. If \C\ < \P\ we can select the best N 
individuals from C U P to replace P , or we can select N individuals from 
C U P using a fitness-proportionate algorithm. If \C\ > \P\ we can select 
the best N individuals from C, or the best N individuals from C U P, or we 
can select N individuals from either C o r C U P using a fitness-proportionate 
algorithm. 

■ EXAMPLE 20.7 

This example illustrates SPEA2 archive pruning as described in Equations (20.51)-
(20.53). Figure 20.22 shows an archive of nondominated individuals in a two-
dimensional objective function space. Suppose that we need to reduce the 
archive size from the eight individuals shown to five individuals. First we find 
the individuals that are closest to each other, which are individuals / and g 
in the figure. We remove g because it is closer to its next-nearest neighbor 
(h) than / is to its next-nearest neighbor (e). Now that we have removed 
g, we find the next two individuals that are closest to each other, which are 
d and e in the figure. We remove d because it is closer to its next-nearest 
neighbor (c) than e is to its next-nearest neighbor ( / ) . After removing d, we 
find the next two individuals that are closest to each other, which are a and 
b. We remove b because it is closer to its next-nearest neighbor (c) than a 
is to its next-nearest neighbor (c). We now have reduced the archive size to 
five individuals as desired. Note that this method always retains the extreme 
individuals in the archive (a and h in this example). 

a 

V 

Ve 
f« 

—— > 

Figure 20.22 Example 20.7: This figure illustrates how an archive of nondominated 
solutions is reduced to fewer individuals in SPEA2. In this figure, adapted from [Zitzler 
et al., 2004], the archive size is reduced from eight to five individuals by removing g, d, and 
b in that order. 

ΛΜ 

D 
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EXAMPLE 20.8 

The SPEA2 approach for limiting the archive size might result in the deteri-
oration of the Pareto front approximation. Figure 20.23 shows an example of 
how this could happen. Figure 20.23(a) shows a Pareto front approximation 
containing four points. If we want to keep the archive size equal to three, 
then we discard point c since it is the most crowded individual. At some later 
generation, however, the EA might find the nondominated solution e, which 
it adds to the archive as shown in Figure 20.23(b). Now, since individual b is 
the most crowded individual in Figure 20.23(b), SPEA2 removes b from the 
archive while retaining e. We see that, in hindsight, we should have retained 
c in the population since it dominates the new archive point e. This indicates 
that although the SPEA2 distance approach may be a good method for prun-
ing a set of individuals, it might be better to never discard nondominated 
individuals [Zitzler et al., 2004]. 

ΛΜ ΛΜ 

(a) 
Λ(χ) (b) ΛΜ 

Figure 20.23 Example 20.8: This figure illustrates how the SPEA2 archive pruning 
process might inadvertently damage the Pareto front approximation. Individual c is 
discarded from the archive due to its crowdedness, and individual e is added to the archive 
later even though it would have been dominated by c, if c had been retained. 

In SPEA, SPEA2, and any other MOEA that includes an archive, we can use the 
archive in a few different ways. First, we could simply use it to store nondominated 
solutions; this approach provides the highest degree of segregation between the 
MOEA population and its archive. Second, we could copy individuals from the 
archive to the child population at the end of each generation; this approach allows 
some interaction between the population and the archive. Third, we could allow 
the archive to participate in the selection process so that not only the population, 
but also the archive, is involved in recombination; this approach, which SPEA and 
SPEA2 use, provides the highest degree of interaction between the population and 
the archive. 
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20.4.7 The Pareto Archived Evolution Strategy (PAES) 

PAES was introduced in [Knowles and Corne, 2001] and is motivated by the (1+1) 
evolution strategy (see Chapter 6). At each generation a single individual produces 
a single child using mutation. Each time a parent produces a child, we add the 
child to the archive if it is not dominated by any of the individuals in the archive. 
If the archive size exceeds a threshold, then we prune the archive by removing 
the individual that has the smallest crowding distance (that is, the individual that 
is in the most crowded region of the search space or objective function space). 
The original PAES uses grids in objective function space to compute the crowding 
distance. This is similar to the e boxes of e-MOEA (see Section 20.4.2). It is also 
similar to the clustering approach of [Parks and Miller, 1998], which does not add 
individuals to the archive unless they are sufficiently different from the individuals 
currently in the archive. Figure 20.24 shows an outline of a general PAES. 

NA — upper bound on archive size 
Randomly generate a population of candidate solutions P = {XJ} for j E [1, N] 
Initialize the archive A as the empty set 
While not (termination criterion) 

Select a parent x from P 
Mutate x 
If x is not dominated by any individuals in A then 

Add x to A: A<- {AUx} 
End if 
If |A| > NA then 

Compute a crowding distance s(a) for all a G A 
Oimin ̂ a r g m i n a s ( a ) 
Remove a m i n from A 

End if 
Next generation 

Figure 20.24 Outline of the Pareto archived evolution strategy (PAES). s(a) is the 
crowding distance of a, and is small for individuals in crowded regions of the search space 
or objective function space. 

20.5 MULTI-OBJECTIVE BIOGEOGRAPHY-BASED OPTIMIZATION 

This section shows how biogeography-based optimization (BBO), which is discussed 
in Chapter 14, can be combined with some of the previously-discussed MOE A ap-
proaches of this chapter. The combination of the BBO approach with various 
MOEA approaches results in several multi-objective biogeography-based optimiza-
tion (MOBBO) algorithms. We then present a comparative study of these MOBBO 
algorithms on some standard multi-objective benchmark problems. This section 
could serve as a template for the extension of any other EA to multi-objective 
optimization. 
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20.5.1 Vector Evaluated BBO 

In this section we discuss how to combine BBO with VEGA (Section 20.3.2). Recall 
that Figure 20.8 presents VEGA for a /c-objective optimization problem. Since BBO 
is based on migration, we propose basing multi-objective BBO immigration on the 
ki-th objective function value of each individual, where ki is a random objective 
function index at the i-th migration trial. We then propose basing emigration on 
the ke-th objective function value of each individual, where ke is also a random 
objective function index. This results in the vector evaluated biogeography-based 
optimization (VEBBO) algorithm of Figure 20.25. 

Initialize a population of candidate solutions P = {XJ} for j G [1, N] 
While not (termination criterion) 

Compute the cost fi(xj) for each objective i and for each individual Xj G P 
rji 4- rank of Xj with respect to i-th objective function, j G [1, N], i G [1, k) 

Immigration rates Xji <— Tji Σσ=ι rQi ^or 3 ^ \\·> -̂ 1» * ^ l· ^] 
Emigration rates μ^ 4- 1 — Xji for j G [1, N], i G [1, k] 
For each individual Xj, where j G [1, N] 

For each independent variable s G [l,n] 
ki i- rand(l,/c) = uniformly distributed integer 
r <- rand(0,1) 
If r < Xj^ then perform immigration 

ke <— rand(l,/c) = uniformly distributed integer 
Probabilistically select emigrant xe , where 

Pv(xe = xm) = Mm,fce/ E^Li Μς,/ee for m G [1, N] 
Xj(s) <r- xe(s) 

End immigration 
Next independent variable 

Next individual Xj 
Probabilistically mutate the population P 

Next generation 
Ps <— nondominated elements of P 

Figure 20.25 Outline of vector evaluated biogeography-based optimization (VEBBO) for 
solving an n-dimensional optimization problem with k objectives. At each generation, the 
best individual Xb with respect to the i-th objective value has rank ru — 1, and the worst 
individual xw has rank rWi = N. 

20.5.2 Nondominated Sorting BBO 

Now we discuss how to combine BBO with NSGA (see Section 20.4.3). Recall that 
Figure 20.16 presents NSGA. To modify Figure 20.16 for BBO, we only need to 
change the recombination statement, "C «- N children created from recombining 
..." to a BBO migration operation. This results in the nondominated sorting 
biogeography-based optimization (NSBBO) algorithm of Figure 20.26. 
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Immigration rates Xj <— 4>(XJ) I J2q=i Φ(χς) f° r 3 € [1>-N] 
Emigration rates ßj <— 1 — Xj for j G [1, N] 
For each individual Xj, where j G [l,N] 

For each independent variable 5 G [l,n] 
r <- rand(0,1) 
If r < Xj then 

Probabilistically select emigrant xe , where 
Pr(x e = xm) = ßmj Y,Nq=1 μς for m e [1, N] 

Xj(s) <-xe(s) 
End immigration 

Next independent variable 
Next individual Xj 
Child population C <— {XJ} 

Figure 20.26 Outline of the migration portion of nondominated sorting biogeography-
based optimization (NSBBO) for solving an optimization problem with n independent 
variables, k objectives, and a population size of N. This pseudo-code replaces the line 
"C «— N children created from recombining" in Figure 20.16. 

20.5.3 Niched Pareto BBO 

This section proposes a simple way to combine BBO with NPGA (see Section 20.4.5). 
Recall that Figure 20.19 presents NPGA. Similar to the NSBBO algorithm of the 
previous section, to modify Figure 20.19 for BBO we only need to change the 
recombination statement "Recombine the individuals in R" to a BBO migration 
operation. Since NPGA already selects the individuals in R on the basis of non-
domination, we can simply use equal migration rates for each individual in R to 
select migration operations. This results in the niched Pareto biogeography-based 
optimization (NPBBO) algorithm of Figure 20.27. 

At this point we mention that we could combine the MOBBO algorithms dis-
cussed in this section with all of the possible BBO variations discussed in Chap-
ter 14. For example, we could use emigration-based BBO rather than immigration-
based BBO. We could use nonlinear migration curves. We could use blended mi-
gration. We could migrate groups of independent variables rather than one at a 
time (see Section 14.5). We could use a temporary population for migration so that 
we do not change any of the emigrating individuals until all of the migrations are 
completed. In general, all of the BBO extensions, variations, and hybridizations 
discussed in the literature could be combined with all of the MOBBO approaches 
discussed in this section to obtain many MOBBO algorithms. We could also make 
such efforts using any of the other EAs discussed in this book. An especially fruitful 
research direction would be to extend the many new EAs that have been recently 
introduced, including those discussed in Chapter 17, to multi-objective optimiza-
tion. 
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For each individual Xj G R, where j G [1, N] 
For each independent variable s £ [l,n] 

r <- rand(0,1) 
If r < l/N then 

Probabilistically select emigrant xe , where 
Pr(x e = xm) = l/N for m <E [l, AT] 

Xj(s) «- xe(s) 
End immigration 

Next independent variable 
Next individual Xj 
Child population «— {x^} 

Figure 20.27 Outline of the migration portion of niched Pareto biogeography-based 
optimization (NPBBO) for solving an optimization problem with n independent variables, k 
objectives, and a population size of N. This pseudo-code replaces the line "Recombine the 
individuals in R to obtain N children" in Figure 20.19. 

20.5.4 Strength Pareto BBO 

This section proposes a method for combining BBO with SPEA or SPEA2 (see 
Section 20.4.6). Recall that Figure 20.21 presents SPEA and SPEA2. To modify 
Figure 20.21 for BBO, we need to change the "Select parents" statement and the 
"Use a recombination method" statement. We can do this by calculating migration 
rates with the raw cost of Equation (20.46) for SPEA, or with the modified cost of 
Equation (20.50) for SPEA2. We can then implement BBO migration using these 
rates. In this section we take the SPEA approach in which parents can be selected 
from both the population P and the archive A. This results in the strength Pareto 
biogeography-based optimization (SPBBO) algorithm of Figure 20.28. 

20.5.5 Multi-Objective BBO Simulations 

Here we present simulation results for the MOBBO algorithms presented in the 
previous subsections. For each algorithm we use a population size of 100 and a 
generation limit of 1000. We use a mutation rate of 1% per independent variable 
per generation, and we use uniform mutation centered at the middle of the search 
domain (see Section 8.9). We check the population for duplicates every 100 genera-
tions and replace any duplicates that we find with randomly-generated individuals 
(see Section 8.6.1). 

We incorporate elitism in VEBBO, NSBBO, and NPBBO by examining the pop-
ulation at each generation for nondominated individuals. If we find nondominated 
individuals, we replace the worst individuals in the population (in terms of nondom-
ination level as shown in Figure 20.16) with two randomly chosen nondominated 
individuals from the previous generation. 

We do not use elitism with SPBBO because SPBBO stores nondominated indi-
viduals in the archive (see Figure 20.28). For SPBBO, when we move nondominated 
individuals from the population P to the archive A, we replace those individuals 
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Use Equation (20.45) to calculate the strength S(a) of each individual a £ A 
Calculate the cost R(a) <— 1 — S(a) for each a e A 
Use Equation (20.46) to calculate the cost R(x) of each individual x G P 

Immigration rates: Xj «— R(XJ) I ]CL=1 R(xq) for all Xj G P 

Emigration rates: μ̂ - «— 1 — R{XJ) I Σ ΐ = ι R(xq) f° r all xj £ {^ ^ } 
For each individual Xj G F 

For each independent variable se [l,n] 
r <- rand(0,1) 
If r < Xj then 

Probabilistically select emigrant xe, where 

Pr(x e = xm) = μ^Ι Σς=Ί + | Α | Ν f o r ^m G {P, A} 
Xj(s) <- xe(s) 

End immigration 
Next independent variable 

Next individual Xj 

Figure 20.28 Outline of the migration portion of strength Pareto biogeography-based 
optimization (SPBBO) for solving an optimization problem with n independent variables. 
This pseudo-code replaces the six lines starting with "Use Equation (20.46)" and ending 
with "Use a replacement method" in Figure 20.21. Note that immigration occurs in the 
individuals in F, while emigration occurs from the individuals in P U A. 

in P with randomly-generated individuals so that \P\ is maintained at 100. We do 
not use a lower bound on \A\, but we limit the maximum value of |J4| to 100 by 
using a simple clustering algorithm as described in Section 20.4.6. 

We test the four MOBBO algorithms on some of the unconstrained multi-
objective benchmarks of Appendix C.3, each with 10 dimensions, and selected 
because of their variety. We use problem U01 because of its convex Pareto front; 
problem U04 because of its concave Pareto front; problem U06 because of its dis-
continuous Pareto front; and problem U10 because it has three objectives (the other 
benchmarks that we test have only two objectives). 

We evaluate the performance of the algorithms with two metrics: the reference-
point hypervolume S' of Equation (20.22), and the normalized reference-point hy-
pervolume S'n of Equation (20.23). These metrics do not take into account diversity, 
but they do take into account the closeness of the approximated Pareto front to 
the true Pareto front. The reference-point hypervolume S' also takes into account 
the number of points in the approximated Pareto front. 

Table 20.1 shows the results, averaged over 10 Monte Carlo simulations. We see 
that, in general, SPBBO performs the best. However, for the discontinuous U06 
function, VEBBO performs the best in terms of total hypervolume, while NSBBO 
performs the best in terms of normalized hypervolume. That is, VEBBO finds the 
best combination of Pareto front quality and quantity, while NSBBO finds the best 
quality. For the more complex U10 function, although SPBBO finds the best total 
hypervolume, NSBBO finds better quality Pareto front points. In summary, we can 
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say that SPBBO generally performs the best because of its archive, but there are 
no guarantees that it will perform the best for any specific problem. 

U01 U04 U06 U10 

VEBBO 

NSBBO 

NPBBO 

SPBBO 

Hyper 
Norm 

Hyper 
Norm 

Hyper 
Norm 

Hyper 
Norm 

(8.02, 
(1.28, 

(5.76, 
(1.26, 

(9.23, 
(1.18, 

(13.87, 
(0.90, 

8.93) 
1.98) 

8.01) 
1.69) 

18.78) 
2.02) 

33.10) 
2.24) 

(2.73, 2.51) 
(0.19, 0.18) 

(3.27, 3.51) 
(0.21, 0.22) 

(2.95, 3.05) 
(0.15, 0.15) 

(4.48, 4.60) 
(0.22, 0.22) 

(63.53, 59.99) 
(21.18, 19.95) 

(56.51, 48.44) 
(21.94, 20.09) 

(57.92, 48.31) 
(20.01, 20.09) 

(14.82, 18.33) 
(3.47, 4.08) 

(299.68, 
(76.72, 

(373.51, 
(101.40, 

(419.96, 
(58.65, 

(934.29, 
(90.65, 

444.24) 
103.07) 

599.38) 
118.89) 

577.28) 
57.33) 

3884.32) 
108.08) 

Table 20.1 Multi-objective BBO results on four 10-dimensional benchmark 
functions. The table shows the relative hypervolume, and normalized relative 
hypervolume, using linear BBO migration (the first number in each pair) and using 
sinusoidal migration (the second number in each pair). The best performance for each 
benchmark with respect to relative hypervolume and normalized relative hypervolume 
is shown in boldface font. See Section 14.4.1 for a discussion of linear migration vs. 
sinusoidal migration in BBO. 

20.6 CONCLUSION 

This chapter is not intended to provide a complete exposition of the subject of 
MOE As, but has only covered some of the most popular MOE As and associated 
ideas. Many other MOE As have been proposed, and new ones are continually 
appearing in the literature. MOEA books include [Sakawa, 2002], [Collette and 
Siarry, 2004], [Coello Coello et al., 2007], [Deb, 2009], and [Tan et al., 2010]. Also, 
swarm-based approaches such as particle swarm optimization (see Chapter 11) are 
becoming popular for MOPs [Banks et al., 2008]. 

[Coello Coello, 2006] gives an interesting, high-level, historical view of MOEAs. 
The earliest technical survey on MOEAs is [Fonseca and Fleming, 1995], and addi-
tional surveys are provided in [Coello Coello, 1999], [Van Veldhuizen and Lamont, 
2000], [Zitzler et al., 2004], and [Konak et al., 2006]. Although some of these pa-
pers are quickly aging due to the rapid expansion of MOEA research, they are all 
still very helpful and full of useful insights into the fundamental issues related to 
MOEAs. 

We have seen in this chapter that diversity is an important consideration in 
MOEAs. Some approaches for increasing diversity include fitness sharing, grids, 
clustering, crowding, entropy, and mating restriction [Fonseca and Fleming, 1995]. 
Diversity can be an important consideration in single-objective EAs also, as dis-
cussed in Section 8.6. All of the diversity-seeking mechanisms of that section can 
be applied to the MOEAs discussed in this chapter. 

Some important topics for future MOEA research include the following. 
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• Automatic on-line adaptation of MOEA tuning parameters; 

• Hybridization of MOE As with local search strategies; 

• MOE As that can provide good performance with few function evaluations; 

• MOEAs for many objectives (more than just two or three); 

• The incorporation of user preferences in MOEAs; 

• Conceptually new approaches to MOEA design that do not rely on standard 
Pareto ranking methods; and 

• MOEA theory and mathematical models. 

We discuss a few of these topics in the following paragraphs. 
The second topic listed above, the incorporation of local search strategies in 

MOEAs, is an important topic. In particular, MOEAs can be hybridized with 
derivative-based algorithms (or other local search methods) to fine-tune the opti-
mization results. Such algorithms are called memetic algorithms because they in-
volve (at least implicitly) the use of problem-specific information in the hybridized 
algorithm. Memetic strategies seem to be used a lot in single-objective optimization 
[Ong et al., 2007], but they have not yet been used much in MOPs, although there 
are a few exceptions [Jaszkiewicz and Zielniewicz, 2006]. 

The problem of expensive fitness function evaluations for MOPs is important 
because those types of fitness functions often arise in real-world problems, and 
because MOPs often require many more fitness function evaluations than single-
objective problems. Section 21.1 discusses expensive fitness functions in general, 
but there is also research on EAs that are specifically designed for MOPs with 
expensive fitness functions [Chafekar et al., 2005], [Eskandari and Geiger, 2008], 
[Knowles, 2005], [Santana-Quintero et al., 2010]. [Goh and Tan, 2007] discusses 
MOEAs for problems with noisy fitness function evaluations. 

The design of MOEAs for many objectives (10 or more) is also an important 
area for future research. Some results have been published in this area, but the 
more challenging problem is not necessarily the approximation of the Pareto set 
but rather how to help human decision makers choose a solution from an MOEA's 
Pareto set approximation. Some research on many-objective problems emphasizes 
their special challenges [Fleming et al., 2005], but other research shows that it is 
actually easier to find a good Pareto set approximation for problems with many 
objectives [Schütze et al., 2011]. After some thought, this makes intuitive sense 
because the more conflicting objectives that we have, the more likely it is that 
some random candidate solution will give good performance on at least one of those 
objectives. [Van Veldhuizen and Lamont, 2000] shows that the more objectives we 
add to an MOP, the larger the Pareto set becomes. 

However, even though a Pareto set approximation may be easier to find with 
more objectives, it will also require more candidate solutions. For example, if we 
suppose that 10 candidate solutions can give a good Pareto set approximation for a 
two-objective problem, then we probably need at least 100 individuals in the two-
objective MOEA. This means that we might need 10fc individuals for a fc-objective 
MOP, which means that we need, for example, 100,000 individuals for a relatively 
small five-objective MOP. So the problem with many-objective problems is not the 
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theoretical difficulty of approximating the Pareto set, but the practical difficulties 
of computational effort, and of approximating high-dimensional surfaces with only 
a few points. [Schütze et al., 2011] provides a good review of current research on 
many-objective problems. 

This leads us to the issue of user preferences. We often have predefined pref-
erences when we solve an MOP. For example, we may assign greater importance 
to certain objectives than others, or we may assign greater importance to certain 
combinations of objectives. The user is not always interested in obtaining the en-
tire Pareto set. If we could somehow incorporate user preferences into an MOEA, 
then we could guide the evolution to a user-preferred region of the search space or 
objective space. We would then be able to reduce the MOEA population size for 
many-objective problems since we would not need to approximate the entire Pareto 
set. Another approach for dealing with many-objective problems is to simply re-
duce the number of objectives, since such problems often have objectives that are 
correlated with each other [Lopez Jaimes et al., 2009]. 

Pareto set approximation is difficult enough, but even if an EA can obtain a good 
approximation, how can a human decision maker choose from among the large set of 
potential solutions? Some of the MOEAs discussed in this chapter incorporate user 
preferences (see Section 20.3.1), but we have not dealt explicity with this topic. The 
first attempt to incorporate user preferences in an MOEA was proposed in [Tanaka 
and Tanino, 1992]. Since then, many other approaches have been proposed; see 
[Thiele et al., 2009] for a good review. 

Theoretical results for MOEAs are sparse, and so there is a lot of room for con-
tributions in this area. [Rudolph and Agapie, 2000] provides a preliminary Markov 
model for MOEAs, and a few other researchers have studied MOEA theory [Zitzler 
et al., 2010], but compared to single-objective EAs theoretical studies for MOEAs 
are sparse. 

Finally, the reader who is interested in additional MOEA results and research 
should note that Carlos Coello Coello maintains an exhaustive and useful web-
based bibliography of papers related to multi-objective evolutionary optimization. 
His bibliography included 4861 references as of August 2012 [Coello Coello, 2012b]. 



PROBLEMS 

PROBLEMS 559 

Written Exercises 

20.1 Given a set of points and a MOP, is it always true that one point dominates 
the others? 

20.2 Does every MOP have a Pareto set? 

20.3 Figure 20.1 shows a sketch of a Pareto front for a MOP in which we desire 
to minimize both objectives. Sketch and explain a sample convex Pareto front for 
a MOP in which we desire to: (a) minimize f\ and maximize /^; (b) maximize f\ 
and minimize J2\ (c) maximize both fi and /2. 

20.4 Consider the following points and objective function values for a multi-
objective minimization problem: 

/ i (* ( 1 ) ) = 1, MxW) = 1, 
/ i (* ( 2 ) ) = l, / 2 (* ( 2 ) ) = 2, 
/i(*<3>) = 2, f2(x^) = 1, 
/ i ( s< 4 >)=2 , h{x{i)) = 2. 

a) Which point dominates all the others? 
b) Which point does x^ and x^ dominate? 
c) Which point is nondominated? 
d) Which point is Pareto optimal? 

20.5 Consider the points in Problem 20.4. For what values of e do x^2\ x^\ 
and χ(4) additively e-dominate χ^Ί For what values of e do they multiplicatively 
e-dominate χ^Ί 

20.6 Give an example of two points in a two-dimensional, two-objective min-
imization problem such that one point does not multiplicatively e-dominate the 
other point for any value of e. 

20.7 Give an example of two Pareto fronts P\ and P2, both having the same 
number of points, for which the union of the P2 hypervolumes is greater than that 
of Pi , but the intersection of the P2 hypervolumes is less than that of Pi . 

20.8 Consider the following four-point Pareto front approximation / ( # ) , and 
three-point Pareto front approximation / (y ) , to a two-objective minimization prob-
lem: 

/ i ( x ( 1 ) ) = 3 , f2(x
w) = 4, /i(2/ (1)) = l, /2(2/(1)) = 3 

/ i ( x ( 2 ) ) = 3 , /2(x<2») = 3, /i(2/2>) = 4, /2(2/(2>) = 3 
h(x^) = 2, f2(x^) = 2, MyW) = 4, /2(2/(3)) = l 
/ i ( i ( 4 ) ) = 5, / 2 (* ( 4 ) ) = 2. 

What is the coverage of x relative to yl What is the coverage of y relative to 
xl According to the relative coverage values, which Pareto front approximation is 
better? 
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20.9 Why do we need to assume that all of the objectives are non-negative in the 
product aggregation method of Equation (20.26)? 

20.10 Explain the difference between elitism and an archive. 

20.11 What is the largest number of individuals that can be stored in the archive 
of an e-MOEA with two objectives, where / i G [0, /i,max] for i G [1,2]? What about 
one with three objectives? 

20.12 Figure 20.17 illustrates a rectangle that we can use for the crowding dis-
tance calculation in NSGA-IL Suppose we instead use the rectangle that is the 
largest one that encloses x without including any other points. Sketch that rectan-
gle. 

20.13 Consider two points x and y in a two-dimensional objective function space. 
Suppose the NSGA-II crowding distance d\ (x) is calculated using the nearest neigh-
bors of x in each dimension, and the crowding distance d2(x) is calculated using 
the largest rectangle that encloses x without including any other points. Does 
d\(x) < di(y) imply that G?2(X) < ^2(2/)? 

20.14 Consider Figure 20.29, which illustrates individuals in a population and 
archive for a two-objective maximization problem using SPEA [Zitzler and Thiele, 
1999]. What are the raw cost values of each individual in the population, and the 
strength values of each individual in the archive? 

4 

X 

X 

Figure 20.29 Problem 20.14: The circles are the individuals in the population, and the 
exes are the individuals in the archive. 

20.15 Suppose we have three individuals in a two-objective minimization prob-
lem: 

/ i ( * i ) = 3, / 2 (* i ) = 4, 
/ i (* 2 ) = 4, / 2 ( s 2 ) = 3, 
/ i0 r 3 ) = 2, / 2 (x 3 ) = 2. 

What are the VEBBO ranks roi in Figure 20.25? 
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20.16 How many references are listed on Carlos Coello Coello's web site "List of 
References on Evolutionary Multiobjective Optimization"? 

Computer Exercises 

20.17 Use exhaustive search with a search domain resolution of 0.01 to find the 
Pareto set and Pareto front to the problem 

min[cos(xi + £2), sin(xi — X2)} 

where the search domain for each dimension is [Ο,π]. 

20.18 Use the weighted sum approach to reduce the two objectives of Prob-
lem 20.17 to a single objective. For what values of the weights w\ and W2 does the 
solution of the single objective problem equal the Pareto front of the two-objective 
problem? 

20.19 Run the gender-based EA of Figure 20.11 on a multi-objective problem. 
Test performance with the following variations: (a) allowing only one parent per 
subpopulation vs. allowing two parents per subpopulation; (b) allowing each child 
to be a member of only one subpopulation vs. allowing each child to be a member 
of more than one subpopulation; (c) replacing duplicate individuals each generation 
vs. not replacing duplicate individuals. 





CHAPTER 21 

Expensive, Noisy, and Dynamic Fitness 
Functions 

Evolutionary algorithms often have to solve optimization problems in the presence of 
a wide range of uncertainties. 

—Yaochu Jin and Jürgen Branke [Jin and Branke, 2005] 

Anyone who worked on evolutionary algorithms before 1970 was ahead of his 
time. About a dozen individuals made fundamental contributions to EAs during 
those early years, and each of them could reasonably be dubbed "the father of 
evolutionary algorithms," or at least one of the fathers.1 But all of this early 
work on evolutionary algorithms foundered to some extent because of the lack of 
computer resources. The EAs in the 1960s had to be very small and simple to run 
in a reasonable period of time. The computing power in the 1960s was simply not 
adequate to carry EA research or practice very far. 

During the 1970s computing resources began to be more accessible and powerful, 
and by the 1980s EA research had rebounded from its doldrums to become an active 
area of investigation. A search of INSPEC, a computerized database of research 
articles in the area of computers and engineering, shows exactly one publication 
in the 1970s in the area of GAs, 37 publications in the 1980s, 7924 publications 

*As far as I know, there were not any females working on EAs during those almost-prehistoric 
times. The fact that EAs has multiple fathers and no mothers seems appropriate in view of the 
flexibility of its biological foundations. 

Evolutionary Optimization Algorithms, First Edition. By Dan J. Simon 563 
©2013 John Wiley & Sons, Inc. 
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in the 1990s, and 35440 publications in the first decade of the 21st century.2 The 
computing technology of today is sufficiently powerful so that anyone can write EA 
software on a desktop PC to solve interesting and challenging problems. 

Mainframe computers in the 1960s topped out at clock speeds of 10 MHz. A 
typical desktop PC in the early 21st century has a clock speed close to 10 GHz, and 
even faster than that if we consider multiple cores. We have seen a three-order-of-
magnitude increase in computational power from 1960 to 2010, but EAs can still 
take several days to run to completion. This is one reason why there is a strong 
emphasis in EA research on parallelization. But parallelization entails its own set 
of problem-specific challenges. 

Overview of the Chapter 

This chapter discusses how to reduce the computational cost of EAs. In the real 
world, cost function evaluations can be very computationally expensive. The bench-
mark functions that we have used so far in this book are simple, and we can evaluate 
them in a matter of milliseconds. But in the real world a cost function could take 
several days to evaluate, and in such cases we cannot afford to run an EA that 
requires thousands of function evaluations. Section 21.1 discusses how to handle 
expensive cost functions. 

Related issues that we encounter in the real world include time-varying cost 
function evaluations, and noisy cost functions. Cost functions can change with time 
due to the dynamic and often unpredictable nature of our world, and so Section 21.2 
discusses ways to handle dynamic optimization problems. Finally, cost functions 
are often noisy due to the lack of precision that is available in many problems, or 
due to the inherent ambiguity in determining the quality of a candidate solution, 
and so Section 21.3 discusses ways to handle noisy optimization problems. 

21.1 EXPENSIVE FITNESS FUNCTIONS 

In many real-world problems, a single fitness evaluation can require computation 
or experiments that take minutes, hours, days, or even longer. Here we discuss 
how to reduce the time for fitness evaluation to make EAs computationally less 
demanding. 

Anyone who has worked with EAs for real-world applications knows from first-
hand experience that fitness function evaluation is the most time-consuming aspect 
of the algorithm. This is not always the case for benchmarks or academic prob-
lems, but it is almost always the case for real-world problems. John Koza goes so 
far as to say that the computational effort required for fitness function calculation 
"is usually so great that it will rarely pay to give any consideration at all to any 
other aspect of the run" [Koza, 1992, Appendix H]. We find a similar statement in 
[Banzhaf et al., 1998, Section 11.1]: "Almost all of the time consumed by a GP run 
is spent performing fitness evaluations." Real-world problems often involve fitness 
functions that include one or more of the following characteristics [Knowles, 2005]. 

INSPEC is a large, but not exhaustive, research database. Therefore, the numbers here provide 
a lower bound for the number of publications. 
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• A single fitness function evaluation requires minutes, hours, or days. This 
is especially true for fitness functions that must be evaluated experimentally 
rather than through simulation. Many of the earliest EAs were implemented 
in experimental systems because of the lack of simulation resources [Rechen-
berg, 1998], [Rechenberg, 1973]. 

• Fitness function evaluations cannot be parallelized. This is especially true 
for fitness functions that must be evaluated experimentally and with limited 
resources. For example, some optimization problems require experimental 
setups that are unique, that require extensive human interaction, or that 
are financially expensive. Sometimes we need human experts to evaluate the 
fitness of candidate solutions. Some fitness functions cannot be quantified, 
and instead require subjective evaluations by human experts. This is the case, 
for example, when generating algorithms that create music or art [Nierhaus, 
2010]. 

• The number of fitness function evaluations is limited by time or some other 
resource constraints. This is the case for problems that must be solved by a 
certain deadline, problems for which the EA must run in real time, or fitness 
functions that must be evaluated experimentally by professionals with unique 
skills and full schedules. 

Some ways to reduce the computational effort required for fitness function eval-
uations include the following. 

• Do not recompute the cost of individuals that have already been evaluated. 
In many EAs, certain individuals may survive unchanged from one generation 
to the next. Individuals that are duplicated from generation i to generation 
i + 1 do not have to be re-evaluated at generation 2 + 1; we already know their 
cost values, assuming that the problem is not dynamic. 

This idea can be extended to keep track of all candidate solution vectors and 
their associated cost values as they are encountered during the entire EA. Af-
ter each generation we store each individual and its cost value in an archive. 
If we have a fixed population of N individuals, then after T generations we 
will have an archive with NT individuals (minus duplicates). The archive 
is not involved in the evolutionary process; we use it only to avoid unneces-
sary cost evaluations. Every time we need to evaluate a cost, we first look 
through the archive to see if that specific individual has been evaluated in the 
past. After many generations, the archive could grow to be quite large, and 
searching through the archive before each cost evaluation could be expensive. 
But, depending on the problem, this search process might still be much less 
expensive than a cost evaluation. 

• Fitness function evaluations can be truncated if it is seen that they perform 
very well or very poorly [Gathercole and Ross, 1997]. If we are halfway 
through a fitness function evaluation for an individual and we see that the 
individual is performing very well, then we can prematurely exit the evalua-
tion routine, assign its fitness a high approximate value and save half of the 
computational effort for that evaluation. Similarly, if we are halfway through 
a fitness function evaluation and we see that the individual is performing very 
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poorly, then we can prematurely exit the evaluation routine, assign its fitness 
a low approximate value, and again save half of the computational effort. 

• If we need to perform cost function evaluations on a large set of test cases, then 
we can approximate the cost with a subset of the test cases. For example, 
suppose that we want to minimize f(x) = Σί=1 fi{x) with respect to x. 
That is, the fitness function is a composite of several sub-fitness-functions. 
This is often the case when we want to optimize a function across several 
different operating regions. For example, we might want to optimize robot 
tracking performance for several different initial conditions and for several 
different tasks. One way to approach this is to minimize fi(x) with the first 
T generations. Then we can minimize fi(x)+f2(x) for the next T generations. 
Then we can minimize fi(x) + f2(x) + fs(x) for the next T generations. We 
continue this process until we finally minimize Σΐ=ι fi(x) during generations 
(M — 1)T through MT. Another approach is to minimize the combination 
of a random selection of fi(x) functions, gradually increasing the number of 
instances as the generation count increases. This approach is called stochastic 
sampling [Banzhaf et al., 1998, Section 10.1.5], and is similar to lexicographic 
ordering (see Section 20.3.3) and the e-constraint method (see Section 20.3.4) 
in multi-objective optimization. 

• If fitness function evaluations are conducted on computers, then standard 
methods of speeding up software execution can be used. These methods in-
clude preallocating arrays, using the optimized features of specific program-
ming languages (for example, array operations rather than loops in MAT-
LAB), reducing computer precision, using lookup tables for complicated func-
tions, and disabling graphics and output operations. 

In the remainder of this section we discuss some ways to approximate fitness 
functions (Section 21.1.1), how the transformation of a fitness function can improve 
approximation performance (Section 21.1.2), how to use fitness function approxi-
mations in an evolutionary algorithm (Section 21.1.3), when to use multiple fitness 
function approximations in an EA (Section 21.1.4), the danger of overfitting a fit-
ness function approximation (Section 21.1.5), and how to assess the quality of a 
fitness function approximation (Section 21.1.6). 

21.1.1 Fitness Function Approximation 

We can create fitness function models to reduce fitness function evaluation effort. 
We can also use fitness function models to improve EA performance even if compu-
tational effort is not a bottleneck. We refer to such models as surrogates, response 
surfaces, or meta-models [Shi and Rasheed, 2010]. We use the term surrogate be-
cause a fitness model can be viewed as a temporary replacement for the more exact 
fitness evaluation. We use the term meta-model because often the fitness evaluation 
is itself only an approximation (for example, a simulation that models a physical 
process), and so a fitness function model is a reduced-order model of a higher-order 
model. 

Suppose that we have a fitness function f(x) that we have evaluated on M 
individuals {xi}. We can use those M fitness function values to estimate the fitness 
at any point in the search space. We expect that the fitness estimate will have 
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errors; after all, if the estimate were perfect, then we would never need to perform 
additional evaluations. However, even if the fitness estimate has errors, the errors 
might be small enough to make the estimate useful. Figure 21.1 illustrates the 
essential idea of fitness estimation. We generate an estimate f(x) on the basis of 
known fitness function values f(xi). 

Fitness 
Evaluations/(χ,) Estimation 

Algorithm 

Approximate Fitness 
Function f(x) 

Figure 21.1 Fitness function estimation. We use exact fitness function values {f{xi)} 
to approximate f(x) for x £ {xi}. 

Fitness function approximation to reduce EA computational effort dates back to 
the 1960s [Dunham et al., 1963], when computational resources were much more 
scarce than today. Since then, researchers have tried many different algorithms for 
the estimation algorithm in Figure 21.1. In fact, we could try any approximation 
or interpolation algorithm. Approaches include the k-nearest neighbor algorithm, 
radial basis functions, neural networks, fuzzy logic, clustering, decision trees, poly-
nomial models, kriging models, Fourier series, Taylor series, NK models, Gaussian 
process models, and support vector machines [Jin, 2005], [Shi and Rasheed, 2010]. 
We do not discuss the details of these approaches in this book, but suffice it to say 
that virtually any approximation algorithm can be used for EA fitness approxima-
tion. 

One of the simplest estimation algorithms that we can use in Figure 21.1 is 
to approximate the fitness of an individual as the fitness of the nearest neighbor 
that has been evaluated. This approach is called fitness imitation and reduces to a 
piecewise constant approximation of the fitness landscape. Figure 21.2 illustrates 
fitness imitation. 

y2 
o 

I 

* 3 

Figure 21.2 Fitness imitation in a two-dimensional search space. Individuals y\ and 
2/2 have been evaluated with the fitness function routine or experiment, and so their fitness 
values are precisely known. Individuals xi, X2, and X3 have not been evaluated. We can 
approximate their fitness values by assigning each one to the nearest evaluated fitness; that 
is, f(Xl) = /(2/1) and f(x2) = /(</2) and f(x3) = f(y3). 

One aspect of Figure 21.1 that could be important is how to update the fitness 
estimate / ( · ) as new data becomes available. We would like the fitness estimation 
algorithm to be recursive so that we can update / ( · ) with minimal effort each time 
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new fitness information becomes available. However, if we think that the fitness 
landscape might be dynamic, then we might want the estimation algorithm to 
discount old values of fitness data in its generation of / ( · ) . When we update a 
fitness approximation using new data, we call it online surrogate updating. 

Another approach to fitness approximation involves assigning the fitness of an 
EA child on the basis of its parents' fitness values. This is called fitness inheritance 
[Smith et al., 1995]. We can approximate a child's fitness as the average of its 
parents' fitness values, or as a weighted average that depends on how similar it 
is to each parent. We can easily generalize this idea for EAs that use any num-
ber of parents for each child. We can also extend this idea by approximating a 
child's fitness as the weighted average of the fitness values of the entire population, 
again depending on how similar it is to each evaluated individual in the popula-
tion [Sastry et al., 2001]. We can also use more sophisticated fitness inheritance 
ideas, such as taking into account the correlations between independent variables 
and fitness values [Pelikan and Sastry, 2004]. [Ducheyne et al., 2003] concluded that 
fitness inheritance is effective only for relatively simple problems. In particular, for 
multi-objective problems, fitness inheritance is effective only if the Pareto front is 
continuous and convex. 

21.1.1.1 Polynomial Models The piecewise constant approximation of fitness im-
itation is a good starting point because it shows us how to extend fitness approxi-
mation to higher order polynomials. For example, we could approximate fitness as 
the linear function 

f(x) = α(0) + Σ a(k)x(k) (21.1) 
k=l 

where n is the problem dimension, and x(k) is the k-th element of individual x. This 
is a simple example of a polynomial model, and is also called a response surface. 
We can calculate the a(k) values by solving the following problem: 

M / 

a0 + y^a(k)xj(k) 
k=l 

(21.2) 

where M is the number of individuals for which we have exact fitness values, Xi 
is the z-th individual for which we have an exact fitness value, and Xi(k) is the 
k-th element of X{. The minimization in Equation (21.2) is taken over the (n + 1) 
parameters a(k) for k G [0, n]. We can solve Equation (21.2) with a recursive least 
squares algorithm [Simon, 2006, Chapter 3]. In this way, as we obtain additional 
fitness values (M = 1, M = 2, and so on), only minimal computational effort is 
required to update the solution of Equation (21.2). 

We can write a model that is more accurate than the linear one of Equation (21.1) 
as follows: 

n n 
f(x) = o(0) + Σ a(k)x(k) + ^ a(j, k)x(j)x(k). (21.3) 

k=l j,k=l 

This is a quadratic model with (n2 + n + 1) parameters. It can still be solved with 
recursive least squares because it is linear with respect to the model parameters 
a(k) and a(j,k). Once we understand the idea of polynomial modeling, we can 
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experiment with various model forms such as 

f{x) = a(0) + Σ α^)9(Φ)) + Σ a^ kMxU), <k)) (21·4) 
j,k=l fc=l 

where g(-) and h(·) can be any functions, linear or nonlinear. For instance, if we 
have some reason to believe that, for our particular optimization problem, fitness 
might be nicely represented by trigonometric functions, we could use sine and cosine 
terms for g(-). 

We might want to use methods other than least squares to approximate a fitness 
model. For instance, instead of finding a model that solves Equation (21.2), we 
might prefer to find a model that solves 

mm max 
{a(k)} i 

f(xi) ao + y^a(k)xj(k) 
fe=l 

(21.5) 

where the minimization is again taken over the (n + 1) parameters a(k). Figure 21.3 
shows the difference between minimizing the sum of the squares of the estimation 
errors and minimizing the maximum estimation error. The least squares criterion of 
Equation (21.2) is attractive because it is easy to solve analytically, but a min-max 
criterion might be more robust because it finds the approximation that results in the 
smallest worst-case error. The min-max approximation will sacrifice approximation 
errors in easy-to-fit areas of the search space in order to reduce approximation errors 
in more challenging areas of the search space. 

Figure 21.3 Least-mean-square straight-line approximation compared to min-max 
approximation. The least squares approximation can be solved analytically, but the min-max 
approximation might be more robust. 

21.1.1.2 Design and Analysis of Computer Experiments Design and analysis of com-
puter experiments (DACE) is a stochastic approximation method that includes di-
agnostic tests to measure the goodness of the approximation [Jones et al., 1998]. 
Given M fitness function evaluations f(xi) for n-dimensional vectors x^, we assume 
that the fitness function can be approximated as 

f(x) = μ + β(χ) (21.6) 

where μ is a constant (but not necessarily the mean of the evaluated fitness functions 
f(xi)), and e(x) is a correction term. DACE assumes that the correction term e(x) 



5 7 0 CHAPTER 21: EXPENSIVE, NOISY, AND DYNAMIC FITNESS FUNCTIONS 

is Gaussian with a mean of μ and a variance of σ1 for all x\ that is, the probability 
density function (PDF) of f(x) is 

PDF(/ (x) ) = 
1 

σν2π 
exp - ( / ( s ) - / * ) 2 

2σ2 (21.7) 

However, DACE also makes the important assumption that the e(x) terms are not 
independent for different values of x; that is, correction terms should be similar 
for values of x that are similar. DACE assumes that the correlation coefficient p^ 
between f{xi) and f(xj) can be expressed as follows: 

^klxiW-Xjik)]" 
fc=l 

Pij = Coir(f(xi),f(xj)) = exp(-dij) (21.8) 

where Xi(k) is the k-th element of the i-th candidate solution, pk G [1, 2] and 0fc > 0 
are model parameters, and dij > 0 is a distance metric. We see that for small dij, 
Xi and Xj have a correlation that is close to 1. For large dij, Xi and Xj have a 
correlation that is close to 0. Given M fitness function evaluations, we collect them 
in a vector and parameterize them as shown in Equation (21.6): 

/ (* ) = [ / ( S i ) · · · f(XM) } T 

= μ1Μ + [ e(xi) ■■■ e(xM) (21.9) 

where 1 M is the M-element column vector in which each element is equal to 1. 
Note that we use the notation f(x) to represent the fitness of a single candidate 
solution x, and also to represent the M-element vector containing the M fitnesses 
of {xi}; the meaning should be clear from the context. The Gaussian PDF of the 
M fitness functions of Equation (21.9) is then given as 

P D F ( / ( i ) ) 
1 

(2π)Μ/2 |6*|1/2 exp 
{ί(χ)-μΙΜ)τΟ-ι(ί(χ)-μΙΜ) (21.10) 

where C is the covariance matrix of f(x). Recall that the covariance dj between 
two random variables f(xi) and f(xj) that have the same variance σ2 is given as 
follows [Simon, 2006, Chapter 2]: 

^ i ■ PijO- (21.11) 

Therefore, Equation (21.10) can be written as 

PDF( / (x) ) = 
( 2 π ) Μ / 2 σ Μ | Α | 1 / 2 exp 

{}{χ)-μΙΜ)ΤΚ-\ί{χ)~μΐΜ) 
2σ2 

(21.12) 
where R is the correlation matrix; the element in the z-th row and j - t h column of 
R is equal to p^. 

Given a set of candidate solutions [xi] and a vector of fitness evaluations / ( # ) , 
we can find the μ and σ values that provide the best fit between the measured f(x) 
value and the assumed parametric form of / ( # ) . Equation (21.12) gives the PDF 
of / ( x ) , which is proportional to the likelihood of obtaining a specific f(x) given 
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its assumed random nature. Therefore, to find the best fit between the assumed 
parametric form of f(x) and the measured values of f(x), we want to find the μ 
and σ values that maximize PDF( / (x) ) in Equation (21.12). First we consider 
maximization with respect to μ. We can maximize PDF(/ (x) ) with respect to μ 
by minimizing the negative of the exponential argument with respect to μ. Taking 
the partial derivative of the negative of the exponential argument with respect to 
μ and setting it equal to 0 gives 

3{ί{χ)-μ\ΜΥΒΓ\ί{χ)-μΐΜ) 
θμ 

= 0 (21.13) 

where we are ignoring the 2σ2 term in the denominator of Equation (21.12) since 
it is independent of μ. Solving Equation (21.13) gives 

-2fT{x)R-llM + 2 / i l ^ i r 1 l M 

μ = 

= o 
fT(x)R~1lM 

IT
MR~1IM 

(21.14) 

Taking the partial derivative of Equation (21.12) with respect to σ2 gives 

dPDF(/ (x) ) 
da2 

1 
2^2 

(f(x) - μϊΜ)τΚ-1(/(χ) - μ1Μ) 
-M 

Setting the above equation equal to 0 gives 

2 (/(χ)-μ1Μ)Τη-\ί(χ)-μΐΜ) 
M 

PDF( / (x) ) . 

(21.15) 

(21.16) 

Equations (21.14) and (21.16) give the optimal values of μ and σ for fitness function 
approximation using DACE. 

Now consider our M fitness function evaluations f(x) of candidate solutions {xi}. 
Suppose that the fitness functions are correlated as shown in Equation (21.8). Sup-
pose that we obtain another fitness function evalution /(#*) for another candidate 
solution x*. We augment the fitness function vector to obtain the (M + l)-element 
vector 

f(x)=[fT(x) fix') f · (21.17) 

We can write the new correlation matrix as 

R 
R (21.18) 

where r is the vector of correlations between the M fitness function evaluations 
f(x) and the additional fitness function evaluation f(x*). We want to maximize 
the PDF of Equation (21.12) with respect to / (x*) , which will give us the estimate 
of the form of Equation (21.6) that best fits the new data / (#*) . This is called a 
maximum-likelihood estimate. We can maximize the PDF of Equation (21.12) by 
maximizing 

(f(x)-μlM)τR-1(f(x)-μlM) = f(x) - μΪΜ 
/ ( * * ) - μ 

R f(x) - μ1Μ 

/ ( * * ) - μ 
(21.19) 
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with respect to f(x*). We can use results from the matrix inversion lemma deriva-
tion [Simon, 2006, Chapter 1] to show that 

R~' = 
R r 1 

1 - rTR~ 

R^+R^rrTR-1 -R-
-rTR~l 1 (21.20) 

Substituting this into Equation (21.19) gives 

(/(s*) - μ)2 - 2rTR-\f{x) - μ! Μ ) ( / (**) - μ) 
1 - rTR~lr 

+ terms without f(x*). (21.21) 

Since we want to maximize this expression with respect to / (x*) , we take the 
derivative with respect to f(x*) and set it equal to zero to obtain 

2(/(x*) - μ) -2rTR-\f{x) - μ1Μ) 

l-rTR~lr 
= 0. 

Solving for /(#*) gives 

f{x*) = μ + r1 R-\f(x) - μΙΜ). 

(21.22) 

(21.23) 

This equation shows how we can use an existing model to approximate the fitness 
value of a new point x*. The mean square error of the approximation is derived in 
[Jones et al., 1998] as 

s2(x*) = σ2 l - r 1 R-Yr + 
( 1 - l ^ Ä - V ) 2 

iT
MR-liM 

(21.24) 

A couple of lines of algebra easily shows that s(x) = 0 at the sampled data points 
(see Problem 21.3) [Jones et al., 1998]. 

We can use the mean square error to determine suitable sampling points for 
additional fitness evaluations. There are two areas in the search space where we 
might be especially interested in obtaining additional fitness evaluations. First, we 
might be interested in sampling (that is, computing f(x)) near the minimum of the 
fitness approximation in the hope of finding a better solution to the optimization 
problem. Second, we might be especially interested in sampling in regions where 
s(x) is large because we have a lot of uncertainty in those regions of the search 
space. Figure 21.4 illustrates this idea. Sampling additional fitness values near 
the minimum of the approximation is an exploitation strategy because it involves 
searching in areas where we already have good results. Sampling additional fitness 
values in regions of high mean square error is an exploration strategy because 
it involves searching in areas where we have little information about the fitness 
function. 

Choosing sample points to increase modeling accuracy is called active learning. 
Active learning usually means we choose the sample points in a learning algorithm 
to optimize some cost function. In the DACE scenario described above we can 
choose sample points to reduce the maximum mean square error. Neural network 
training methods often include active learning [Settles, 2010]. 

We can obtain additional fitness function accuracy by estimating the optimal 
values of {pk} and {0^} from Equation (21.8). We do this by substituting Equa-
tions (21.14) and (21.16) into Equation (21.12), which gives us an expression for 
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PDF(/ (x) ) that depends only on {p^} and {9k}. We then maximize this expression 
with respect to {pk} and {9k}, which gives us an estimate of the optimal correla-
tion coefficients pij, which are the elements of R. We then use this value of R in 
Equations (21.14) and (21.16) to obtain the best estimates for μ and σ. Any time 
we get a new candidate solution #*, we use Equation (21.23) to approximate its 
fitness. 

Figure 21.4 The solid line in the top figure represents a function, and the dashed line 
represents an approximation to it. The curve in the bottom figure represents the mean 
square error of Equation (21.24). We might be tempted to improve our approximation by 
sampling additional function values near the minimum of the approximation, but in this case 
we should sample where the error is highest because that is where the function minimum 
occurs. 

■ EXAMPLE 21.1 

We use DACE to estimate the two-dimensional Branin benchmark function 

f(x) = (x (2) - (5 / (4π 2 ) )x( l ) 2 +5a: ( l ) /π -6) 2 - f l0 ( l - l / (8π) )cos(x( l ) ) - l ·10 (21.25) 

where x(l) and x(2) are the two components of a candidate solution (n = 
2). The domain of the function is x(l) G [-5,10] and x(2) G [0,15]. First 
we have to decide which sample points to use. Here we arbitrarily decide 
to use 25 sample points that are evenly distributed in the two-dimensional 
search domain (M = 25). Next we use the fmincon function in MATLAB to 
maximize Equation (21.12) with respect to {pk} and {#&}, which gives 

pi = 1.6194, p2 = 2 
0i = 0.020816, 02 = 0.00018011. (21.26) 

Next we use Equation (21.23) to approximate f(x) on a fine grid. Figure 21.5 
shows the results. We see that the approximation captures the essential shape 
of the Branin function pretty well, and most importantly it captures the 
function's multimodal characteristic. 

D 
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-5 0 5 10 

Figure 21.5 Example 21.1 results. The top figure shows the contour plot of the Branin 
function. The bottom figure shows 25 uniformly-distributed sample points, and the DACE-
based approximation of the Branin function. 

Example 21.1 used uniform sampling, but other sampling methods might give 
better approximation results. One popular method is Latin hypercube sampling. 
This method divides a domain into intervals in each dimension, and then places 
sample points in such a way that each interval in each dimension contains only one 
sample point. This approach to sampling can sometimes capture the unpredictable, 
unknown nature of a function better than uniform sampling. Figure 21.6 illustrates 
the difference between uniform sampling and Latin hypercube sampling. 

(a) (b) 

Figure 21.6 The figure on the left shows uniform sampling of four points in a search 
domain. The figure on the right shows Latin hypercube sampling. Note that there is only 
one point in each row, and only one point in each column. Several different arrangements of 
points have this characteristic, and so Latin hypercube sampling is non-unique. 

■ EXAMPLE 21.2 

We use DACE with Latin hypercube sampling to estimate the two-dimensional 
Branin function of Example 21.1. We arbitrarily decide to use 21 sample 
points (M = 21). Next we use MATLAB's fmincon function to maximize 
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Equation (21.12) with respect to {pk} and {9k}, which gives 

Pi = 1, 
0i = 0.028227, 

P2 = 2 
<92 = 0.0013912. (21.27) 

Next we use Equation (21.23) to approximate f(x) on a fine grid. Figure 21.7 
shows the results. Comparing Figures 21.5 and 21.7, it appears that Latin 
hypercube sampling gives a better approximation than uniform sampling. In 
fact, the RMS approximation error of the DACE approximation of Exam-
ple 21.1, which uses uniform sampling, is 24.9, while the RMS approximation 
with Latin hypercube sampling is 14.3. Even with fewer sample points Latin 
hypercube sampling gives an approximation error that is almost 50% better 
than uniform sampling. We see that the sampling method can have a signif-
icant effect on DACE approximation results. Also, the method that we use 
to maximize Equation (21.12) to find optimal {pk} and {#&} values can have 
significantly affect DACE, although we do not give any examples here. 
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Figure 21.7 Example 21.2 results. The top figure shows the contour plot of the Branin 
function. The bottom figure shows the 21 sample points, which were obtained using Latin 
hypercube sampling, and the DACE-based approximation of the Branin function. 

DACE is a generalization of the kriging algorithm. The kriging algorithm is 
an approximation method that was named after Daniel Gerhardus Krige, who de-
veloped it for geological applications [Krige, 1951]. Although it is named after a 
person, kriging is usually spelled with a lower-case "k." Kriging is the same as 
DACE, except that in kriging Equation (21.8) is replaced with 

dij = Σθι< \xi(k) -Xj(k)\2 

k=l 

Pij = Corr(/(xi) , f{xj)) = exp(-dij). (21.28) 
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That is, pk in Equation (21.8) is replaced with the constant 2 [Chung et al., 2003]. 

21.1.2 Approximating Transformed Functions 

Sometimes fitness approximation methods do not perform well. For example, the 
DACE method of Equation (21.23) requires a matrix inverse, which may not exist. 
If the inverse does not exist, we can instead use the pseudo-inverse [Golan, 2007]. 
However, the main point here is that the basis functions that we use to approximate 
a fitness function may not be suitable for the shape of that fitness function. For 
example, if we use a Fourier series to approximate a function with irregular behavior 
and with sharp edges, then we cannot expect good approximation performance at 
all points in the function domain. In such cases we can transform the original fitness 
function and then find an approximation to the transformed function. For instance, 
suppose that we have evaluated a fitness function at M sample points {xi}. If the 
approximation does not perform well, we can try transforming the fitness function 
samples f(xi) by taking their natural log: 

L(xi) = \og{f{xi)). (21.29) 

We then find an approximation to L(x) by using the sample points L(xi). We 
denote the approximation as L(x). We then invert the transformation to find the 
approximation for the original function: 

f(x)=exp(L(x)). (21.30) 

■ EXAMPLE 21.3 

We use the DACE method of Section 21.1.1.2 on the Goldstein-Price function 
[Floudas and Pardalos, 1990]: 

a = l + (x(l) + x(2) + l ) 2 x 
(19 - 14x(l) + 3x(l) 2 - Ux(2) + 6x(l)x(2) + 3x(2)2) 

b = 30 + (2x(l) - 3x(2))2 x 
(18 - 32x(l) + 12:r(l)2 + 48a; (2) - 36x(l)x(2) + 27x(2)2) 

f(x) = ab (21.31) 

where x(l) and x(2) are in the domain [—2,2]. This function is very flat near 
its minimum, which occurs at x*(l) — 0 and x*(2) — 1. The function min-
imum is /* = 3. The flat region defeats the DACE approximation method 
because the sample points are highly correlated in the flat region, which means 
some of the columns in R are comprised almost entirely of ones, which means 
that R is nearly singular. We might be able to overcome this problem by use 
a pseudo-inverse of R instead of the regular inverse of R. Instead we choose 
in this example to take the natural log of the sample points as shown in Equa-
tion (21.29). This greatly changes the shape of the function; it spreads apart 
values of f(x) that are small but close together, and brings together values 
of f(x) that are large, thus compressing the total range of the function while 
separating function values that are similar. We then use DACE to approxi-
mate L(x), and then we calculate the approximation of the original function 



SECTION 21.1: EXPENSIVE FITNESS FUNCTIONS 5 7 7 

as shown in Equation (21.30). This simple modification to the approxima-
tion process gives us a decent approximation, as shown in Figure 21.8. The 
approximation does not look great, but at least it results in an invertible R 
matrix, and it also captures the large flat region in the middle of the domain. 

Figure 21.8 Example 21.3 results. The top figure shows the contour plot of the Goldstein-
Price function. The bottom figure shows 21 sample points that were obtained using Latin 
hypercube sampling, and the DACE-based approximation of the function. 

D 

21.1.3 How to Use Fitness Approximations in Evolutionary Algorithms 

Once we have a fitness approximation algorithm, we have several options for how 
to use it in an EA [Jin, 2005]. First, we could simply replace a fixed fraction r 
of fitness evaluations with fitness approximations. Assuming that fitness function 
evaluation is the dominant computational effort in the EA, this would reduce the 
computational effort from E to (l — r)E. However, this idea should not be taken too 
far. If we replace too many fitness evaluations with approximations, then the EA 
will take longer to converge, and our attempt at computational savings might be 
counterproductive. In the extreme case, if we replace all fitness evaluations with ap-
proximations, then r = 1. The computational effort could indeed be approximately 
zero in that case, but the EA would never converge to a useful result. 

Another option is to create extra children each generation, and use their ap-
proximate fitness values to decide which ones to keep for the next generation. We 
call this idea evolution control, or model management. If we evaluate some indi-
viduals with the exact fitness function and other individuals with the approximate 
fitness function, we call it individual evolution control [Shi and Rasheed, 2010]. 
We can use various methods to decide which individuals to evaluate exactly and 
which ones to evaluate approximately. For instance, we could randomly decide 
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which type of evaluation to use on each individual. We could also choose to use 
exact fitness evaluations only on individuals with good approximate fitness each 
generation. Individuals whose fitness we evaluate with the exact fitness function 
are called controlled individuals. 

If we evaluate all individuals in certain generations with the exact fitness func-
tion, and all individuals in certain generations with the approximate fitness func-
tion, we have generation-based evolution control. We can use various methods to 
decide which generations to evaluate exactly, and which ones to evaluate approx-
imately. For instance, we could deterministically decide to evaluate only every 
k-th generation with the exact fitness function, where k is a user-defined control 
parameter. Alternatively, we could randomly decide which type of evaluation to 
use at each generation. We could also use approximate fitness evaluations until we 
detect convergence (for example, the best individual has not improved for a certain 
number of generations, or the standard deviation of the population has fallen be-
low some threshold), and then evaluate the next generation with the exact fitness 
function. After that, we would go back to approximate fitness evaluations. Gener-
ations in which we evaluate all individuals with the exact fitness function are called 
controlled generations. 

Researchers have proposed several varieties of evolution control, including the 
dynamic approximate fitness based hybrid EA (DAFHEA) [Bhattacharya, 2008], 
which is illustrated in Figure 21.9. 

N = population size 

Create Nc random individuals 
Evaluate the fitness of the Nc individuals 
Use the Nc fitness values to create a fitness approximation / ( · ) 
Keep the best AT individuals for the initial population 
While not (termination criterion) 

Use an EA to create Nc children 
Use / ( · ) to approximate the fitness of the children 
Save the N best children (according to / ( · ) ) for the next generation 
If it is time for a new approximation then 

Compute the fitness f(xi) for each individual Xi 
Use the fitness values to update / ( · ) 

End if 
Next generation 

Figure 21.9 Outline of the dynamic approximate fitness based hybrid EA (DAFHEA). 

DAFHEA typically implements elitism although this is not depicted in Fig-
ure 21.9. We could try several variations with Figure 21.9. For instance, we could 
try values other than 5N for JVC. We could try various algorithms for fitness ap-
proximation, although the original DAFHEA used support vector machines. We 
could try various methods to decide when it is time for a new approximation. Some 
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common criteria for this decision are a fixed number of generations, or generating 
a new approximation when the EA meets some convergence criteria. 

Also, we could use trust regions [Betts, 2009] to decide when to generate a new 
approximation. Trust region methods are based on comparisons of approximate 
fitness values to actual fitness values. If the approximate fitness values are close 
to the actual values, then the approximation is good so we can increase the time 
between generating new approximations. However, if the approximate fitness values 
are not close to the actual values, then the approximation is poor, so we need to 
decrease the time between generating new approximations. Suppose that G is the 
number of generations between computations of a new fitness approximation. Every 
generation we have TVC children in Figure 21.9. We calculate exact fitness values 
of TVe of the children, and compare their approximated fitness values with their 
exact fitness values. If the RMS difference exceeds a given threshold T+, then we 
decrease G. If it falls below a given threshold T~, we increase G. We use T+ > T~ 
(strict inequality) to prevent chattering in G. We need to tune the values of T + 

and T~ to obtain a good tradeoff between reduced computational effort (large G) 
and reasonably accurate fitness approximations (small G). We also need to tune 
TVe in this approach. 

Figure 21.9 is fairly general. To be more specific, we can use fitness approxima-
tion to decide which TV of the TVC initial individuals to keep in the initial population. 
This is called informed initialization, in which case we might want to base the fitness 
approximation on something other than the exact fitness evaluations of the TVC ini-
tial individuals. For example, we can construct a fitness approximation algorithm 
off-line before the EA begins execution. 

We can also use fitness approximation in Figure 21.9 only for crossover (if our 
underlying EA is a GA), or only for migration (if our underlying EA is BBO), or 
only for a recombination algorithm that depends on the EA we are using. In this 
case we perform recombination (crossover, or migration, or some other EA-specific 
recombination method) to create many children (more than TV), but we only keep 
the best TV children, based on their approximate fitness values. This would be 
called, for example, informed crossover, or informed migration. 

We can also use fitness approximation in Figure 21.9 only for mutation in the 
particular EA that we are using. In this case we create many (more than TV) 
mutated versions of the TV children, but we only keep the best TV versions, based 
on their approximate fitness values. This is called informed mutation and is similar 
to the idea in Section 16.4 of implementing opposition-based learning only for the 
least fit individuals in a population. 

We could try various algorithms for updating / ( · ) at the end of DAFHEA de-
pending on how much information we want to retain from the previous approx-
imation. This could depend on how dynamic we believe the fitness function is. 
We could use multiple fitness approximation models and switch back and forth be-
tween the models depending on how accurate they are. This is similar to multiple 
model approximation as discussed in the next section. However, in the next section 
we focus on purposely combining low-accuracy models with high-accuracy models 
in our EA. Here we could try to use multiple models in an attempt to find the 
highest-accuracy model. 

Finally, we can slightly modify Figure 21.9 so that we use the fitness approxima-
tion only to decide which children to keep for the next generation. This is called 
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the informed operator approach [Rasheed and Hirsh, 2000] and is illustrated in 
Figure 21.10. 

N = population size 
NC±-5N 
Create Nc random individuals 
Evaluate the fitness of the Nc individuals 
Use the Nc fitness values to create a fitness approximation / ( · ) 
Keep the best N individuals for the initial population 
While not (termination criterion) 

Use an EA to create Nc children 
Use / ( · ) to approximate the fitness of the children 
Save the N best children (according to / ( · ) ) for the next generation 
Compute the fitness f(xi) for each child Xi 
Use the fitness values to update / ( · ) 

Next generation 

Figure 21.10 Outline of the informed operator algorithm. 

21.1.4 Multiple Models 

We can perform approximate cost function evaluations during the early generations, 
and perform more accurate evaluations during later generations. This is similar to 
the idea of using a subset of test cases for cost function evaluation, which we 
discussed above, but here we use the same number of test cases while performing 
less accurate evaluations during the early EA generations. As a specific example, 
suppose that the cost function evaluation involves solving a Riccati equation: 

P = FPFT - FPHT(HPHT + R)-lHPFT + Q. (21.32) 

This type of equation often arises in control and estimation problems, and so is 
likely to appear in EAs that are trying to optimize a controller or estimator [Simon, 
2006]. Given known square matrices F , Q, and # , and the possibly non-square 
matrix H, we need to solve for the square matrix P. The performance of a control 
or estimation algorithm is often proportional to the trace of P. A Riccati equation 
solver can be computationally expensive, but we can use approximate methods to 
obtain estimates of the solution [Emre and Knowles, 1987]. During the early EA 
generations we can use rough approximations for the solution of Equation (21.32), 
and during later generations we can use more accurate approximations. 

Figure 21.11 illustrates this process. An EA with a low-accuracy fitness model 
runs for 7\ generations. After T\ generations, the EA population is used to initialize 
the next EA, which uses a medium-accuracy model and runs for Ti generations. 
After that EA concludes, its final population is used to initialize the final EA, which 
uses a high-accuracy model and runs for T3 generations. This can be extended to as 
many model accuracy levels as desired. With this approach we need to take special 
care that each EA is initialized with a diverse population. We can accomplish this 
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by taking measures to ensure that each EA population is sufficiently diverse before 
it migrates to the next highest level of fitness function approximation. We can 
also accomplish this by migrating only a few individuals from the lower-accuracy 
EA to the higher-accuracy EA, and initializing the rest of the higher-accuracy EA 
population in a way that achieves diversity. 

Low-
Accuracy EA 

Medium-

Accuracy EA 

High- 1 

Accuracy EA 
Optimal 
Solution 

Γ, generations T2 generations 73 generations 

Figure 21.11 Multiple model fitness approximation. EAs with different levels of fitness 
function approximation run sequentially. 

A more tightly integrated approach to multiple model optimization runs EAs 
with different levels of fitness function approximations in parallel. In this ap-
proach, individuals migrate between parallel EAs at specified frequencies [Sefrioui 
and Périaux, 2000]. This approach, called hierarchical evolutionary computation, 
includes a couple of different options. First, we could migrate individuals from EAs 
with higher-accuracy approximations, to EAs with lower-accuracy approximations, 
as shown in Figure 21.12. Second, we could migrate individuals back and forth 
between EAs with similar levels of fitness approximations as shown in Figure 21.13. 
Hierarchical EAs can be used with as many model accuracy levels as desired. 

1 / l 
Medium-

Accuracy EA 

High-
Accuracy EA 

y \ 

s ^ 
\ 

Low-
Accuracy EA 

Figure 21.12 Hierarchical EA. This model migrates individuals from EAs with higher-
accuracy fitness function approximations to EAs with lower-accuracy approximations. 
Migration occurs at user-defined frequencies as indicated by the switches in the figure. 

Low-
Accuracy EA 

Medium-

Accuracy EA 

High-

Accuracy EA 

Figure 21.13 Hierarchical EA. This model migrates individuals between EAs with similar 
levels of fitness function approximations. Migration occurs at user-defined frequencies as 
indicated by the switches in the figure. 

Another approach to using multiple models is to generate multiple models that 
can be used in various combinations for any individual x. For example, suppose 
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that we have evaluated the fitness of M individuals {xi}. We could use a clustering 
algorithm to divide {x^ in C clusters. Then we could create a fitness approximation 
model for each of the C clusters. This gives us fk(x) for k G [1,C]. Now when 
we want to approximate the fitness of an individual x, we can take one of several 
approaches. For instance we could approximate f(x) as fk(x), where index k is 
the cluster that is closest to x [Chung and Alonso, 2004]. Alternatively we could 
approximate / (x ) as a weighted combination of /&(#), where the weights sum to 1 
and are functions of how far x is from each cluster. 

21.1.5 Overfitting 

Overfitting can be be a problem in some fitness approximation approaches. The EA 
designer always needs to be leery of overfitting when using fitness approximation 
methods. Overfitting is often a problem in neural networks unless the engineer 
makes an intentional effort to avoid it [Krogh, 2008]. Figure 21.14 shows an example 
of overfitting for the simple problem of fitting a curve to a set of data points. Even 
though the higher-order polynomial in the figure matches the data better than 
the lower-order polynomials, the higher-order polynomial does not generalize very 
well. We could say that it memorizes the data points while not providing good 
performance in between the data points. Often we need to accept a higher fitting 
error at the data points in order to obtain better generalization performance. 

7 

6 
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1 

0 

Figure 21.14 This figure shows an example of overfitting. A linear function and a 
quadratic function seem to fit the data pretty well. A quadratic function matches the data 
perfectly but includes large oscillations, which indicates that it does not generalize well. 

Overfitting can be alleviated with ensemble techniques. An ensemble is a set of 
individually trained fitness approximations whose predictions are combined when 
estimating fitness values for previously unencountered points in the search space 
[Opitz and Maclin, 1999], [Lim et al., 2010]. 
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21.1.6 Evaluating Approximation Methods 

Once we have a function approximation, we need to verify that it gives good results 
before we rely on it in an EA. We should always start by checking the approximation 
values at the sample points (that is, the points we used to create the approximation). 
Many approximation methods automatically output functions f(x) that exactly 
match the true function f(x) at the M sample points {xi}; that is, f(x) = f(x) for 
x £ {%i}- However, we should still check this to verify that we implemented the 
approximation algorithm correctly. 

One method for assessing the accuracy of an approximation method is to choose 
a few additional sample points beyond those that we used for building our approx-
imation. Say we choose Q additional sample points {xi}, called test points, where 
i G [ M + 1 , M+Q]. We then evaluate the function and the approximation at the test 
points to see how well the approximation works. We measure RMS approximation 
error as 

, M+Q 

£RMS = ^ Σ ( / (*<)-/(*i))2 (21-33) 

and we measure worst-case approximation error as 

£max = . , max ^ \f(xi) - f{xi)l (21.34) 

We can use either metric to assess the quality of an approximation method depend-
ing on our priorities and our specific problem. 

Another method, which is called cross validation or rotation estimation [Geisser, 
1993], allows us to assess approximation quality without using additional sample 
points. As above, suppose that we have M sample points and M function values 
f(xi). In cross validation, we compute an approximation using all sample points 
except for the k-th one, and we call this approximation fk(x)- We thus compute 
M approximations, with each one leaving out one sample point. This gives us M 
approximations fk(x) for k G [1,M], where each approximation uses a unique set 
of (M — 1) sample points. We then evaluate each approximation at the sample 
point that we did not use when we constructed it. That is, we evaluate fk(xk) for 
k G [1, M]. As above, we measure RMS or worst-case approximation error as 

1 M 

i=l 

£max = max \f(xi) - fi(xi)\- (21.35) 
iE[l,M] 

After we use cross validation to convince ourselves that our approximation approach 
is correct, we use all M data points to find the function approximation f(x) that 
we will use in our EA. 

We can use other metrics for evaluating the quality of a fitness approximation 
method if we have the resources to compare the approximate fitness values with the 
exact fitness values. These metrics include comparing the number of individuals 
that are selected for recombination when using the true fitness values versus the 
approximate fitness values; the ranks of the individuals that are incorrectly selected 
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when using the approximate fitness values; correlations between true and approx-
imate fitness values; and correlations between true and approximate fitness ranks 
[Jin et al., 2003]. 

The preceding sections discussed several different ways to approximate fitness 
functions. There are also many other methods that we have not discussed, and 
each method includes several variations and tuning parameters. It is not easy to 
define the "best" fitness function approximation method. In addition to the RMS 
and maximum error metrics of Equation (21.35), there are several criteria that we 
need to consider when evaluating fitness function approximation methods. 

• How accurate is the approximation method for the given problem? 

• Regardless of the accuracy of the approximation method, how well does an 
EA perform when using the approximation method? Note that the relative 
performance of different EAs might vary with different methods. For example, 
EA # 1 might perform the best with approximation method A, while EA # 2 
might perform the best with approximation method B. 

• How much does an approximation method reduce computational effort? 

• How complex is the approximation method? This affects the maintainability, 
extendability, and portability of the code. How easy is the code to mod-
ify (maintainability)? How easy is it to add new functions or features (ex-
tendability)? How easy is it to port to other computing platforms or other 
optimization problems (portability)? 

Elitism 

Finally, we note that expensive fitness functions may be an exception to the rule of 
always using elitism in our EAs. Up to this point we have generally recommended 
elitism to save the best individual(s) each generation. However, EAs with few func-
tion evaluations may perform better without elitism than with elitism [Torregosa 
and Kanok-Nukulchai, 2002]. This is because when the population size is small, or 
the number of evaluations is small, exploration becomes relatively more important 
than exploitation. Non-elitist EAs can allow for increased exploration. 

21.2 DYNAMIC FITNESS FUNCTIONS 

Fitness functions often change with time; that is, they are nonstationary. Some-
times they change because the environment of a fitness evaluation experiment 
changes with time. For example, if we are trying to tune a robot controller, the 
environment or task of the robot could change with time. The robot parameters 
itself could also change with time as the sensors and electromechanical components 
age. Sometimes the requirements of the customer or client change with time - that 
is, people change their minds about what they want. Sometimes constraints change 
with time because resources are consumed or replenished. This section discusses 
how to use EAs to track a dynamic optimum. 
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EXAMPLE 21.4 

This example does not illustrate a dynamic EA, but simply illustrates the ef-
fect on EA performance of dynamics in an optimization benchmark function. 
We use the simplified dynamic benchmark function generator of Figure C.24, 
and we use the Ackley function as the basis function. We insert dynamics into 
the function every 100 generations (that is, update = 100 generations in Fig-
ure C.24), and we use a problem dimension of 10. We run BBO (Chapter 14) 
with a population size of 50 and an elitism parameter of 2, and we replace 
duplicate individuals each generation with randomly-generated individuals. 
Figure 21.15 shows the performance BBO on the stationary Ackley function 
and the dynamic Ackley function, averaged over 20 Monte Carlo simulations. 
Performance is identical for the first 100 generations. But we see that for the 
dynamic function, BBO essentially has to start over every 100 generations 
because the function changes so drastically. This example illustrates the need 
for methods in EAs that can intelligently handle dynamic changes in the cost 
function. 

25 
■ Dynamic Cost Function 
• Stationary Cost Function 

100 200 300 
Generation 

400 

Figure 21.15 Example 21.4: This figure shows BBO performance on the 10-dimensional 
stationary and dynamic Ackley functions, averaged over 20 Monte Carlo simulations. 
Dynamics are inserted into the dynamic version of the benchmark every 100 generations, 
which causes BBO to lose all of the evolutionary progress that it made up to that point. 

The first challenge in dynamic optimization is detecting a change in the fitness 
function landscape. We can detect such a change by using some marker individuals 
and evaluating their fitness values each generation. If their fitness values change 
significantly (beyond what would be expected from noise) from one generation 
to the next, then we can infer that the fitness landscape has changed; that is, 
the optimization problem has changed. But the use of markers is not a foolproof 
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method. Detection of a landscape change is not an either-or proposition. The 
landscape may change at the marker locations while remaining fixed at the optimal 
point. Conversely, the landscape could change at the optimal point while remaining 
fixed at the marker locations. These difficulties are illustrated in Figure 21.16. 

fix) 

^\J-' 
fix) 

Figure 21.16 Detecting the change in a dynamic fitness function. The dashed line in 
each graph is the original fitness function, and the solid line is the new fitness function. The 
three points xi, X2, and X3 are markers that we use to detect a fitness function change. 
The figure on the left shows that the even though the fitness of the markers has drastically 
changed, the optimum has not changed. The figure on the right shows the converse: even 
though the fitness of the markers has not changed, the optimum has changed dramatically. 

After we detect a change in the fitness landscape, we can take one of several 
approaches to track the changing optimum. One possibility is to completely replace 
the old population with a new random population and restart the evolutionary 
optimization process. This is an extreme measure that does not reuse any of the 
information from the previous optimization process. This might be appropriate if 
the fitness landscape has changed drastically enough that the previous population 
does not contain any useful information about the new landscape. This essentially 
entails running a new EA on a new optimization problem. 

However, for most practical problems, there is some resemblance between the 
old fitness landscape and the new landscape. That is, the fitness landscape changes 
gradually rather than drastically. In this case, we want to explore the new land-
scape while also exploiting the results of the EA's progress on the old landscape. 
For instance, we could retain most of the old population, but seed it with some new 
individuals in our attempt to explore the new landscape. We could also temporarily 
increase the mutation level to temporarily increase exploration. This approach is 
called hypermutation [Cobb and Grefenstette, 1993]. The number of new individu-
als that we introduce in the population, the amount by which we increase mutation, 
and the number of generations for which we increase mutation, all control the bal-
ance between exploration and exploitation. This balance determines how adaptable 
the EA is to new landscapes, and how much it relies on its past results. 

In the following sections we discuss several dynamic EA approaches, includ-
ing the predictive EA (Section 21.2.1), immigrant-based EAs (Section 21.2.2), and 
memory-based EAs (Section 21.2.3). We also discuss the challenge of evaluating 
the performance of EAs on dynamic optimization problems (Section 21.2.4). 
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21.2.1 The Predictive Evolutionary Algorithm 

One approach to dynamic optimization is to combine a forecasting technique with 
the EA. This gives an algorithm called the predictive EA [Hatzakis and Wallace, 
2006]. If an EA is running and its optimum is changing with time in a predictable 
way, then we can presumably create a model for how it is changing with time. 
Then when a change in the landscape is detected, we can use that model to seed 
new population members. The key condition here is that the optimum must be 
changing "in a predictable way." If this condition is not satisfied, then we may 
as well re-seed the entire population with a randomly initialized population and 
simply restart the EA. Figure 21.17 illustrates the basic idea of the predictive EA, 
and Figure 21.18 shows an example of the dynamic evolution of an EA optimum. 

Initialize the EA population 
X* <-0 
While not (termination criterion) 

Run an EA for T generations, or 
until a change in the fitness landscape is detected 

Denote the best individual in the EA as x* 
X* <-{X*,z*} 
Extrapolate the sequence X* to estimate the new optimum x* 
Create a subpopulation S of individuals that are near x* 
Replace some of the individuals in the EA population with S 

Next generation 

Figure 21.17 Outline of a predictive evolutionary algorithm for dynamic optimization. 
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Figure 21.18 Example of the progression of an EA optimum in a two-dimensional space, 
and its predicted value. x*(T), x*(2T), x*(3T), and x*(4T) are the EA optima after T, 2T, 
3T, and 4T generations. x*(5T) is the predicted optimum that is used to seed the next EA. 

Several implementation details in Figure 21.17 are left to the EA designer. For 
instance, if we run for a constant number of generations T between extrapolations, 
how should we decide the value of T? How can we detect a change in the fitness 
landscape? If we use marker individuals, how many should we use? If we use too 
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few markers, we may miss a change. But if we use too many markers, we may waste 
time on unnecessary fitness function evaluations. 

How can we use the set X* in Figure 21.17 to estimate the new optimum? That 
is, what kind of extrapolation algorithm should we use? How can we create the 
subpopulation S that is near £*? We could simply set S equal to the one-element 
set {x*}. Another possibility is to set S equal to a set of M mutated versions of 
£*, where M is a user-defined constant. Yet another option is to set S equal to a 
deterministic set of M individuals in a hypercube or hypersphere surrounding x*. 
If we keep track of the accuracy of our x* prediction from one EA execution to the 
next, we could use it to determine the size of the hypervolume. If we find that x* 
is consistently accurate, then we can use an S with a small cardinality and with a 
small hypervolume. If we find that x* is consistently inaccurate, then we should 
increase the cardinality of S and its hypervolume. In fact, we could use this idea 
to adapt ively adjust the cardinality and hypervolume of S. Finally, we have to 
decide which individuals in the old population to replace with S in Figure 21.17. 
Common options are to either replace the worst individuals in the old population, 
or to replace randomly-selected individuals in the population. 

21.2.2 Immigrant Schemes 

There may be situations when we cannot detect changes in the fitness function, 
or when the fitness function is changing almost continuously. In this case we can 
continually introduce new individuals into the population in an attempt to make 
the EA robust to fitness landscape changes. Such algorithms are called immigrant 
schemes [Yu et al., 2009]. There are two basic approaches to immigrant schemes. 
A direct immigrant scheme uses the individuals in the population to create new 
individuals. This is similar to standard recombination and mutation algorithms, 
which use a parent population to create a child population. For example, a direct 
immigrant scheme could mutate or recombine elite individuals from the current or 
past generation to create new individuals. An indirect immigrant scheme creates 
new individuals based on a model of the population. For example, we could use a 
PBIL-type algorithm to model the population (see Section 13.2.3) and then create 
new individuals based on the model. 

After we decide to use either a direct or indirect immigrant scheme, we need to 
decide the following. 

1. How should we generate new individuals? We could generate a set of indi-
viduals Xe based on elites, as mentioned above. We could also generate a 
set of random individuals Xr. If we think the fitness landscape might be 
changing drastically, we could generate a set of dual individuals Xd, which 
are the same as the opposite individuals of Chapter 16. Finally, we could use 
a combination of these three options. If we keep track throughout the EA 
of how well each of these types of individuals perform, we could adapt the 
number of Xe, Xr, and Xd individuals that we introduce each generation [Yu 
et al., 2009]. 

2. How many new individuals should we introduce to the population? Most 
researchers introduce about 0.27V or 0.37V new individuals, where N is the 
population size. If we can detect the amount or frequency of change in the 
fitness landscape, we could adjust the replacement rate accordingly. For in-
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stance, if we detect a large change in the fitness landscape, we might want to 
introduce more new individuals. 

Which individuals in the population should we replace with the new individ-
uals? One common answer to this question is to replace randomly-selected 
individuals. Another answer is to replace the worst individuals. One point to 
remember here is that new individuals might not be very fit in the population, 
but their fitness might improve with time as the landscape changes. There-
fore, we might want to keep track of an age factor that prevents individuals 
from being replaced until after they exceed a certain age [Tinos and Yang, 
2005]. 

N = population size 
rr = proportion of random individuals to create each generation 
re = proportion of elite-based individuals to create each generation 
rd = proportion of dual individuals to create each generation 
Create TV initial individuals {xi} 
Evaluate the fitness of the TV individuals 
While not (termination criterion) 

Use a recombination/mutation method to evolve {x^ for the next generation 
Evaluate the fitness of the individuals {xi} 
X «— {Nrr randomly generated individuals} 
X «— X U {Nre mutations of the elites} 
I ( - I U {Nrd dual individuals} 
Evaluate the fitness of the individuals in X 
Replace individuals in {x^ with individuals from X 
Adapt τγ, re , and r^ based on the performance of the new individuals 

Next generation 

Figure 21.19 Outline of an immigrant-based EA for dynamic optimization. 

Figure 21.19 gives an overview of an immigrant-based EA for dynamic optimiza-
tion. However, it leaves a lot of room for decisions by the EA designer. 

1. What values should we use for τγ, r<£, and r e? As implied earlier, a commonly 
used value for the total replacement proportion rr is around 0.2 or 0.3. We 
usually start with the same number of random, dual, and elite replacement 
individuals so that rr « r<i « r e « r r / 3 . 

2. Should we adapt τγ, r^, and r e? We can adapt them to try to improve EA 
performance, as shown in Figure 21.19, but this makes our algorithm more 
complicated. [Yu et al., 2009] suggests an adaptation scheme like the following. 
Each generation we evaluate the fitness of the new individuals. If the group 
of random individuals performs better than the group of dual individuals and 
elite individuals, then we make the following assignments: 
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rd <- max( r m i n , r d -a) 

re <- max( r m i n , r e -a) 

rr <- rT-rd-re (21.36) 

where a controls the speed of adaptation, rmm defines the minimum propor-
tion of each type of new individual to create each generation, and the constant 
TT defines the total proportion of new individuals to create each generation. 
[Yu et al., 2009] uses a « 0.02 and rmm = 0.04. If the group of dual indi-
viduals or elite individuals performs best, then we rewrite Equation (21.36) 
accordingly to increase the number of high-performing individual types that 
are created during the next generation, and to decrease the number of the 
other types. This adaptation approach raises the question, How do we de-
cide which type of new individuals perform the "best" ? We could decide on 
the basis of the best random individual, the best dual individual, and the 
best elite-based individual; or we could decide on the basis of the average 
performance of the entire group of random individuals, dual individuals, and 
elite-based individuals. 

3. Which individuals in the population {xi} should we replace with the new 
individuals? We already mentioned this issue briefly. [Yu et al., 2009] replaces 
the worst individuals, but we could also replace randomly-selected individuals, 
or a combination of the worst and random individuals. Also, we could group 
the original population {x^} with the replacement population X and use a 
stochastic selection mechanism to choose the best N individuals. We could 
use any of the selection mechanisms discussed in Section 8.7.1. 

4. Last but not least, we mention that we need to choose a recombination and 
mutation method to evolve {xi} for the next generation in Figure 21.19. We 
could use any EA for recombination, and we could use any of the mutation 
methods discussed in Section 8.9. 

■ EXAMPLE 21.5 

In this example we evaluate BBO performance on the same dynamic Ackley 
function of Example 21.4. We can detect a change in the fitness function be-
cause we save two elite individuals each generation, so the population's best 
cost should decrease each generation. If the best cost increases, then we infer 
that the cost function has changed.3 We try two different ways of adapt-
ing to a change in the cost function: first, we reinitialize the population to 
randomly-generated individuals; second, we use the direct immigrant scheme 
of Figure 21.19. Figure 21.20 shows BBO performance averaged over 20 Monte 
Carlo simulations for these two restart options. We see that a random restart 
performs better than the immigrant scheme. The dynamic change in the cost 
function is so random (a rotation of the bias vector) that replacing only 30% 
of the population is not drastic enough to outperform a random restart. 

This is not a foolproof scheme. A cost function change could result in a decrease of the best cost 
in the population. However, if the best cost decreases from one generation to the next, then we 
should not complain too much, even if our fitness-function-change detection algorithm fails. 
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Figure 21.20 Example 21.5 results. This figure shows BBO performance on the 10-
dimensional dynamic Ackley function, averaged over 20 Monte Carlo simulations. When the 
cost function changes via a rotation of the bias vector every 100 generations, we either 
randomly reinitialize the entire population, or replace 30% of the population with the 
immigrant scheme of Figure 21.20. Since the cost function dynamics are so random, random 
restart outperforms the immigrant scheme. 

D 

EXAMPLE 21.6 

In this example we again evaluate BBO performance on the dynamic Ackley 
function. However, in this example a dynamic change in the cost function does 
not consist of a rotation of the bias vector; instead it consists of a perturbation 
of the bias vector by a random amount: 

0(t) <- 6>( i - l ) + 0 . 1 ( x m a x - x m i n 

θ(ί) <- m in (0 (£ ) ,x m a x -x* ) 
6(t) «— max(0(i),£min — x*) 

)p{t-i) 

(21.37) 

where [#min,#max] defines the search space, x* is the optimizing value of the 
unbiased cost function, and p(t — 1) is a random number taken from a zero-
mean, unity-variance Gaussian distribution. See Appendix C.4 for additional 
discussion of the above parameters. The above sequence of assignments en-
sures that the optimum of f(x — 0(t)) is within the search domain. For the 
Ackley function, x* = 0, but Equation (21.37) applies equally well to any 
other benchmark. Equation (21.37) shows that the bias vector 9(t) changes 
according to a Gaussian distribution with a standard deviation that is equal 
to 10% of the range of the search space. This moderate change in the cost 
function might be more realistic than the less structured bias vector change 
of Example 21.5. In this example we try three different options for adapt-
ing to a change in the cost function: (1) we reinitialize the population to 
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randomly-generated individuals; (2) we use the direct immigrant scheme of 
Figure 21.19 with r r , re , and r<i each equal to 10% of the population size, and 
we use new individuals to replace the worst individuals each generation; (3) 
we ignore the cost function dynamics and do not make any change to the pop-
ulation. Figure 21.21 shows BBO performance averaged over 20 Monte Carlo 
simulations for these three options. We see that a random restart performs 
the worst. This is because the dynamic change in the cost function has some 
structure, so replacing the entire population results in a loss of the informa-
tion that evolved over the previous 100 generations. Figure 21.21 shows that 
the immigrant scheme and the "ignore" option both perform about the same. 

■ Random 

None 

• Immigrants 

400 

Figure 21.21 Example 21.6 results. This figure shows BBO performance on the 10-
dimensional dynamic Ackley function, averaged over 20 Monte Carlo simulations. When the 
cost function changes via a moderate perturbation of the bias vector every 100 generations, 
we either randomly reinitialize the entire population, replace 30% of the population with the 
immigrant scheme of Figure 21.19, or simply do nothing. Since the cost function change is 
relatively structured, random restart performs the worst. 

D 

We would generally expect the immigrant approach to perform better than the 
"ignore" approach. We might be able to improve the performance of the immigrant 
scheme by adapting the r r , re , and r^ parameters as illustrated in Equation (21.36), 
which we did not do in the above example. We also note that the comparison shown 
in Figure 21.21 is not completely fair because the comparison between the three 
algorithms is made for the same number of generations. The random restart al-
gorithm requires N fitness function evaluations each time the function changes, 
the immigrate algorithm requires 0.3N fitness function evaluations each time the 
function changes, and the "ignore" option does not require any fitness function 
evaluations when the function changes. However, the function changes only once 
each 100 generations. So even though a rigorous comparison between the three 
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approaches should be made on the basis of function evaluations rather than gener-
ations, the difference in the number of function evaluations is close enough in this 
example that we ignore it. 

21.2.3 Memory-Based Approaches 

Sometimes a cost function changes among a finite set of functions. For example, 
suppose that we need to optimize a control process in a manufacturing plant. The 
parameters of the manufacturing process may change periodically as the plant man-
ager changes the task, or replaces machine parts. These changes result in a change 
of the cost function, but the changes are not random. The changes are determinis-
tic, but the details of these changes may not be available to the controller and the 
optimization process. In cases like these, we might want to keep track of previous 
optimal solutions and insert them into the population when we detect a change in 
the cost function. 

Explicit memory-based approaches store good individuals in an archive [Wold-
esenbet and Yen, 2009]. Whenever a cost function change is detected, individuals 
are retrieved from the archive and inserted into the population. If the cost func-
tion changes to a previously-encountered function, the individuals from the archive 
will be good solutions and the EA will converge very quickly to the new optimum. 
Figure 21.22 illustrates this approach. The figure provides only a basic outline 
and does not address some important details. The following questions provide rich 
opportunities for additional research. 

1. How many individuals should we store in the archive when a change is de-
tected? 

2. How large should we allow the archive to grow? Figure 21.22 does not in-
clude an upper limit on its size. In practice, we might want to try to detect 
the "operating point" of the problem. If the operating point is the same as 
a previously-encountered operating point, then elites will have already been 
saved to the archive for that operating point, and we will not want to save cur-
rent elites to the archive unless they are better than the previously-archived 
values. For example, suppose that after a change is detected in / ( · ) , we search 
the archive and find that the current elite set is similar to previously-stored 
individuals. We might then infer that the problem the EA just solved is 
the same as a previously-solved problem, so there would be no need to save 
current elites in the archive unless they are better than the archive. 

3. How can we detect a change in / ( · )? We discussed this at the beginning of 
Section 21.2. 

4. When we detect a change in / ( · ) , which individuals in the population should 
be replaced with archived individuals? Which archived individuals should be 
inserted into the population? 

21.2.4 Evaluating Dynamic Optimization Performance 

Evaluating dynamic optimization performance is different than evaluating station-
ary optimization performance. When evaluating stationary optimization perfor-
mance, we usually look at the population of the last generation to see how well 
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an EA performed. However, when evaluating dynamic optimization performance, 
the fitness function changes from one generation to the next. Therefore, looking 
at only the last generation does not give a good overall indication of EA perfor-
mance. Instead we need to look at the performance across all generations [Yu 
et al., 2009]. Two common metrics for dynamic optimization problems are mean 
best performance /&, and mean average performance fa: 

1 G 

Jb = ~p / j Ji,b 
i—1 

1 G 

fa = rY,ha (21-38) 

where G is the number of generations, / ^ is the best fitness during the z-th gen-
eration, and fiya is the average fitness during the i-th generation. These quantities 
give us good metrics with which to compare dynamic optimization performance be-
tween different EAs. If we run several Monte Carlo simulations, then we will have 
an additional level of averaging: we will average fa and fa over the Monte Carlo 
simulations. We discuss performance evaluation in more detail in Appendix B.2.2. 

Create the initial population {xi} 
Archive A <- 0 
While not (termination criterion) 

Use a recombination/mutation method to evolve {xi} for the next generation 
Evaluate the fitness of the individuals {xi} 
Store the best individuals from {xi} in the elite set E 
If a change is detected in / ( · ) then 

Replace some of the individuals in the population {x^} 
with individuals from the archive A 

Store the elite set E in the archive A 
End if 

Next generation 

Figure 21.22 Outline of an explicit memory-based approach for dynamic optimization. 
This algorithm is especially suitable for fitness functions that are periodic with time, or that 
are equal to one of a finite set of fitness functions. 

21.3 NOISY FITNESS FUNCTIONS 

Fitness function evaluations in EAs are often accompanied by noise. For example, 
sensor inaccuracies can cause noise in experimental fitness function evaluations. 
Also, if we measure fitness function values with simulation software, then approx-
imation errors in our software could cause noise in fitness function evaluations. 
Ingo Rechenberg, the inventor of the evolution strategy, was probably the first to 
investigate the effects of noise on EAs [Rechenberg, 1973]. 
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A noisy fitness function evaluation could result in a high fitness being mistakenly 
assigned to a low-fitness individual. Conversely, it could result in a low fitness being 
mistakenly assigned to a high-fitness individual. Figure 21.23 illustrates the PDF 
of two noisy but unbiased fitness functions f(x\) and / (a^) · We see that the true 
value of f(x\) is 0 and the true value of f(x2) is 4, but the evaluations are noisy. 
Therefore, x\ might have an evaluated fitness that is actually greater than that of 
X2. This situation would result in an inaccurate assessment of the relative fitness 
values of x\ and X2, which could result in an EA selecting the wrong individual for 
recombination. That is, noise can deceive an EA. 
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0.05 

0 

Figure 21.23 This figure depicts the PDFs of two fitness functions. X2, which has a true 
value of 4, is more fit than xi, which has a true value of 0. But depending on the noise that 
is realized during fitness function evaluation, the EA might think that x\ is more fit than 
#2- This could result in incorrect selection for the next generation. 

When we have noisy fitness function evaluations, we cannot be sure which in-
dividual is best. Suppose that we have two individuals x\ and X2, two true fit-
ness values ft(xi) and ft{x2) (depicted, for example, as 0 and 4 in Figure 21.23), 
and two noisy fitness function evaluations f(x\) and /(#2)· Because of the noise, 
f(x\) > f{x2) does not necessarily imply that ft(xi) > ft{%2)· However, if we 
know the PDFs of f{x\) and /(a^)? then we can calculate the probability that 
ft{x\) > ft(%2) given specific values of f(x\) and /(#2)· We will not go through 
the mathematics here, but we can perform the calculations using standard meth-
ods from probability theory [Grinstead and Snell, 1997], [Mitzenmacher and Upfal, 
2005]. Note that during EA execution we will not have the PDF of the noisy fitness 
function since we will not know the true fitness function (the presumed mean of the 
noisy fitness function). However, we might know the PDF of the true fitness func-
tion. This situation is analogous to that shown in Figure 21.23 except that instead 
of treating the noisy fitness function as a random variable with a mean equal to the 
true fitness function, we can treat the true fitness function as a random variable 
with a mean equal to the noisy evaluated fitness function value. 
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This section discusses three methods for dealing with noisy fitness functions. 
Section 21.3.1 discusses the resampling approach, Section 21.3.2 discusses the fitness 
estimation approach, and Section 21.3.3 discusses the Kaiman EA, which uses a 
Kaiman filter to estimate fitness function values. 

21.3.1 Resampling 

resampling One simple approach to reduce noise is to resample the fitness function. 
If we evaluate a fitness function for a given individual TV times, and the noise 
values of those TV samples are independent, then the variance of the average fitness 
function decreases by a factor of TV [Grinstead and Snell, 1997], [Mitzenmacher and 
Upfal, 2005]. Suppose that the evaluated fitness g(x) of a candidate solution x is 
given by 

g{z) = f{x) + w (21.39) 

where f(x) is the true fitness, and w is zero-mean noise with a variance of σ2 . This 
means that the measured fitness value g(x) has a mean of f(x) and a variance of 
σ2 . If we take TV independent measurements {&(#)}, then each measurement gi{x) 
has a variance of σ2, the best estimate of the true fitness is 

1 N 

and the variance of f(x) is σ2/Ν. Figure 21.24 illustrates this idea. The average 
of a set of TV noisy fitness function evaluations is TV times as accurate as a single 
evaluation. 

However, the resampling strategy is completely valid only if the fitness function 
evaluation noise is independent from one sample to the next. For instance, suppose 
that we measure the fitness of candidate solutions with noisy instrumentation. If 
the instrumentation noise is time-correlated with itself from one sample time to 
the next, then averaging TV samples does not reduce the variance by a factor of TV. 
In this case, the amount by which the variance is reduced depends on the noise 
correlation from one sample to the next. 

If we have TV fitness evaluations {gi(x)} of a candidate solution x, then we can 
find an estimate σ2 of the variance σ2 of the fitness estimate as follows: 

1 N 

N ■ 1 

a2 = 
N ^ Σ (/>)-<?;(*))'· (21-41) 

Intuitively, it seems that the equation for σ2 should have TV instead of (TV — 1) in 
the denominator, but the (TV — 1) term is preferred because it gives an unbiased 
estimate of the variance [Simon, 2006, Problem 3.6]. We can use Equation (21.41) to 
see how many times we have to sample a noisy fitness function to achieve a desired 
variance in our fitness value estimate (see Problem 21.7). The desired variance is 
user-defined and depends on the particular problem. As TV —» oo, the variance goes 
to 0 and our fitness value estimate becomes error-free. 
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Figure 21.24 This figure illustrates the resampling strategy for noisy fitness function 
evaluations. The solid line shows the PDF of a noisy fitness function. The dashed line shows 
the PDF of the average of four fitness function evaluations. Both have a mean of zero, but 
the averaged evaluation has a variance that is 1/4 that of a single evaluation. The averaged 
evaluation is likely to be much closer to its mean than a single evaluation. 

Some researchers suggest resampling a fixed number of times for each candidate 
solution. But this ignores the possibility that the fitness evaluation noise may 
not be the same for all candidate solutions [Di Pietro et al., 2004]. This could 
be the case, for example, if fitness evaluation is performed with sensors whose 
noise is proportional to the signal that they measure [Arnold, 2002]. In this case, 
Equation (21.39) is replaced with 

g(x) = f{x) + w(x). (21.42) 

That is, the fitness evaluation noise depends on the specific candidate solution that 
is being evaluated. In that case, sampling a fixed number of times for each x would 
be inefficient because it would result in different accuracies for different candidate 
solutions. But we can still use Equation (21.41) to decide how many times to sample 
each candidate solution. 

The resampling strategy can require many samples to achieve a desired variance. 
This might not be feasible for expensive fitness functions. Therefore, we might need 
to combine resampling with one of the fitness function approximation methods 
discussed in Section 21.1.1. Resampling can also be reduced by performing it only 
for the best individuals in the population. We might not know which individuals 
are best on the basis of a single fitness function evaluation, but we can at least get 
an idea, and we can reserve the computational effort that is required for resampling 
for the best individuals in the population [Branke, 1998]. 

Another approach for deciding how many times to resample is based on the fitness 
inheritance idea that we discussed in Section 21.1.1 [Bui et al., 2005]. Suppose that 
several parents {pi} produce a child x. Suppose further that the i-th parent has 
estimated fitness value g{pi) and standard deviation σ(ρι). Before we evaluate the 

i ' * ' 

0 
fitness 
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fitness of the child, we can use fitness inheritance to obtain estimates of its fitness 
f(x) and its standard deviation σ(χ). We then evaluate the fitness of the child 
once. If its fitness evaluation g(x) falls within ±3σ(χ) of f(x), then we accept g(x) 
as valid. Otherwise, we infer that g(x) is very noisy, and so we pursue a resampling 
strategy to reduce the noise. This approach is counterintuitive in some ways. It 
indicates that the larger the value of the parents' noise, the more likely we are 
to accept the evaluation of the child. Intuitively, we expect the converse to be 
true; that is, the noisier the parents' fitness values, the more likely we should be to 
resample the child's fitness [Syberfeldt et al., 2010]. 

One approach for reducing the number of fitness evaluations is to resample only a 
few times at the beginning of the EA, and more often as the EA progresses [Syber-
feldt et al., 2010]. This makes sense because the EA search is usually relatively 
coarse at the beginning of the optimization process. During the early generations 
the EA is trying to find the general neighborhood of the optimal solution; during 
later generations the EA is trying to converge to more accurate solutions. We need 
precise fitness function values only when the EA begins to converge toward the end 
of the optimization process. That is, precision is relevant only if accuracy is good 
(see Problem 21.8) [Taylor, 1997]. 

Many resampling strategies assume that the fitness noise is normally distributed. 
This is true for many noise phenomena in measurement and computing, but not for 
all. Many resampling strategies that have been published in the research literature 
need to be rederived if the noise is not Gaussian. 

21.3.2 Fitness Estimation 

Equation (21.41) shows a simple averaging method to estimate fitness on the basis 
of noisy samples. However, we can also use more involved probabilistic methods. 
For example, [Sano and Kita, 2002] assumes that individuals x\ and X2 that are 
close to each other in the search space have similar fitness values: 

f(Xl)~N(f(x2),kd). (21.43) 

That is, the fitness of x\ is a Gaussian random variable with a mean of f{x2) and 
a variance of kd, where k is an unknown parameter and d is the distance between 
x\ and X2. If the fitness evaluation g(x\) has a variance of σ2, then 

g(xi)~N(f{x2),kd + a2). (21.44) 

With these assumptions, we can use maximum-likelihood calculations to estimate 
the fitness of x\ and x2 given noisy evaluations of x\ and x2. That is, we use not 
only the noisy evaluations of an individual to estimate its fitness, but we also use 
the noisy evaluations of its neighbors [Branke et al., 2001]. 

21.3.3 The Kaiman Evolutionary Algorithm 

The Kaiman EA is designed for problems with noisy and expensive fitness function 
evaluations. The Kaiman EA, which was originally proposed in the context of 
genetic algorithms, is an approach to keep track of the uncertainty in fitness values 
and to allocate fitness evaluations accordingly [Stroud, 2001]. 
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A Kaiman filter is an optimal estimator for the states of a linear dynamic system 
[Simon, 2006]. The Kaiman EA assumes that the fitness of a given individual x 
is constant. We further assume that fitness evaluation noise is not a function of 
x. With these assumptions, we can use a reduced and simplified scalar form of the 
Kaiman filter to keep track of the uncertainty in each fitness estimate. We denote 
the variance of a single fitness function evaluation as R. We denote the variance of 
the fitness estimate of an individual x after k fitness function evaluations as Pk(x)· 
We denote the value of the fc-th fitness function evaluation of x as gk (x). Finally, 
we denote our estimate of the fitness of x after k fitness function evaluations as 
/fc(x). With this notation we can use Kaiman filter theory to write 

ί („\ t f„\ . Pk(x)(9k+i{x) - fk(x)) 
Pk{x) + R 

for k = 0,1,2, · · ·. We initialize Po(x) = oo for all x, which gives 

h(x) = 9\{x) 
Pi (x) - R. (21.46) 

That is, our estimate / i (x) after the first fitness function evaluation g\ (x) is simply 
equal to that first evaluation. Also, the uncertainty P\{x) in our fitness estimate 
after the first evaluation is simply equal to the uncertainty in the evaluation. 

Equation (21.45) shows that each time we evaluate the fitness of x, we modify 
our estimate f(x) based on the the previous estimate, its uncertainty, and the most 
recent fitness function evaluation result g(x). Equation (21.45) shows that 

lim fk+i(x) = fk(x) 
Pfc(x)->0 

lim fk+i(x) = i/fc+iW· (21.47) 
Pfc(x)->oo 

In other words, if we are completely certain of the fitness of x (that is, Pk(x) = 0), 
then further evaluations of the fitness of x will not change our estimate of its 
fitness. On the other hand, if we are completely uncertain of the fitness of x (that 
is, Pk(x) -^ oo), then we will set our estimate of its fitness equal to the next fitness 
function evaluation result. 

Equation (21.45) also shows that each time we evaluate the fitness of x, our 
uncertainty P(x) in its value decreases (that is, our confidence in its estimated 
value increases). Equation (21.45) shows that 

Hm Α + ι ( χ ) = 9k+i(x) 

\imPk+1(x) = 0 

lim fk+i{x) = fk(x) 

Jim Pk+1(x) = Pk(x). (21.48) 

These results agree with intuition. If the fitness function noise variance R is 0, 
then the fitness function evaluation is perfect so our estimate is simply equal to 
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the fitness function evaluation result, and the uncertainty in our fitness function 
estimate is 0. On the other hand, if the fitness function noise variance R is infinite, 
then the noise is so large that fitness function evaluations do not provide us with any 
information. In this case, additional fitness function evaluations do not change our 
estimate of the fitness function value, and neither do they reduce our uncertainty 
in its value. 

The Kaiman EA keeps track of the fitness function estimate fk(x) and vari-
ance Pk{x) for each individual x from one fitness function evaluation to the next 
(k = 1,2, · · ·) . We allocate a user-defined fraction F of the available evaluations 
to generate and evaluate new individuals. We initialize our fitness estimate and 
variance for each new individual as described in Equation (21.46). We use the frac-
tion (1 — F) of the available evaluations to re-evaluate existing individuals. In this 
case, we update our fitness estimate and variance as described in Equation (21.45). 
Each time we have enough resources for a fitness function evaluation, we generate a 
random number r that is uniformly distributed on [0,1]. If r < F then we perform 
EA recombination and mutation to generate a new individual, and then we evaluate 
its fitness; otherwise, we re-evaluate an existing individual. 

When it is time to re-evaluate an existing individual, we consider two guiding 
principles. First, we can generate more information by re-evaluating individuals 
whose fitness estimate variance is high. Second, we can generate more useful infor-
mation by re-evaluating individuals whose estimated fitness is high. That is, we do 
not care too much about obtaining a high precision in the estimate of low-fitness 
individuals, because we are probably not interested in recombining them for future 
EA generations. [Stroud, 2001] therefore suggests the following strategy to selecting 
an individual xs for re-evaluation: 

/ <— mean of the population's estimated fitness values 
σ <— standard deviation of the population's estimated fitness values 

xs <- argmax{P(x) : f(x) > f - σ} (21.49) 

where we have omitted the subscript k on f(x) and P(x); we use the most recently-
updated values of f(x) and P(x) for each individual x in Equation (21.49). The 
equation shows that among all individuals whose estimated fitness is greater than 
one standard deviation below the mean, we select the one with the largest uncer-
tainty for re-evaluation. This strategy assumes that f(x) is fitness, so that larger 
f(x) is better. 

We see a lot of room for additional development of the Kaiman EA. For instance, 
how can we extend it to dynamic optimization problems? How can we decide the 
optimal new-individual fraction F? Is there some way to adapt F based on perfor-
mance? How can we extend the Kaiman EA to more general filtering paradigms, 
such as #οο filtering [Simon, 2006]? 

21.4 CONCLUSION 

Surveys of EA fitness approximation are given in [Ong et al., 2004], [Jin, 2005], 
[Knowles and Nakayama, 2008], and [Shi and Rasheed, 2010]. A collection of papers 
related to EAs for problems with expensive fitness function evaluations is available 
in [Tenne and Goh, 2010]. Books about dynamic EAs include [Branke, 2002], 
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[Morrison, 2004], [Yang et al., 2010], and [Simöes, 2011]. Jürgen Branke maintains 
a web site devoted to EAs for dynamic optimization [Branke, 2012]. 

Fitness approximation is not the only way to handle expensive fitness functions. 
We can also use grid computing, which entails the use of distributed computing re-
sources that combine to solve a single problem [Melab et al., 2006], [Lim et al., 2007]. 
Other time-saving approaches for expensive fitness functions include multiple cores 
for parallelization using a single computer, cluster computing, cloud computing, or 
other forms of distributed processing [Tomassini and Vanneschi, 2009], [Tomassini 
and Vanneschi, 2010]. 

Surveys of EAs in uncertain environments are given in [Jin and Branke, 2005] and 
[Nguyen et al., 2012]. "Uncertain environments" in this context includes expensive 
fitness functions, dynamic fitness functions, and noisy fitness functions, which are 
the main topics of this chapter. However, [Jin and Branke, 2005] also discusses 
robustness, which is measure of EA solution quality in the presence of variations in 
either the decision vector or the problem parameters [Eiben and Smit, 2011]. 

Consider robustness with respect to parameter variations. Many fitness functions 
can be written as f(x,p), where x is the decision vector and p is a parameter vector. 
For example, if we are trying to optimize a robot control algorithm, p might refer 
to some of the physical design parameters of the robot. When we optimize /(x,p), 
"robustness" refers to the quality of f(x,p + Δρ), where Δρ represents parameter 
variations. In general, a good solution is often not a robust solution [Keel and 
Bhattacharyya, 1997]. Figure 21.25 illustrates this situation. The minimum cost 
is attained at x = xi, but at this value of x the cost function is very sensitive to 
parameter variations. We can obtain a suboptimal cost at x = X2, which gives 
a worse cost but much better robustness with respect to parameter variations. 
Depending on the expected amount of parameter variation, #2 might be preferable 
to x\. 

We can also consider robustness with respect to decision vector variations. In 
this case, when we optimize /(x), "robustness" refers to the quality of f(x + Δχ), 
where Ax represents decision vector variations. When we find an optimal decision 
vector x, the decision vector that we implement in our solution may vary because of 
implementation issues, manufacturing uncertainties, and other issues. Figure 21.26 
illustrates this situation. The minimum cost is attained at x = xi, but at this 
value of x the cost function is very sensitive to variations in x. We can obtain a 
suboptimal cost at x = X2, which gives a worse cost but much better robustness 
with respect to variations in x. Depending on the expected amount of variation, 
X2 might be preferable to x\. We have not discussed robustness in this chapter, 
but it is an important issue in real-world problems, and [Jin and Branke, 2005] and 
[Branke, 2002, Chapter 8] give a good overview. 

As EAs are applied to more and more real-world problems, EA research efforts 
may begin to shift toward more of the topics discussed in this chapter, including 
expensive fitness functions, dynamic fitness functions, and noisy fitness functions. 
Some interesting areas of future research include EAs for problems that have more 
than one of these features. For example, we have discussed algorithms for handling 
dynamic fitness functions and algorithms for handling noisy fitness functions, but 
how could we combine those algorithms to handle fitness functions that are both 
dynamic and noisy? Another interesting question is how to allocate a budget of 
K fitness evaluations to obtain the best results from an EA. Note that "best" in 
this context could be interpreted in several ways. For example, we could search 
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for the best strategy in terms of optimizing the expected EA result, or in terms of 
optimizing the worst-case EA result, or in terms of optimizing the best-case-minus-
three-sigma result, or some combination. 

A*2>P) 

Figure 21.25 The above figure shows cost as a function of parameter value p, where p* 
is the nominal parameter value, x = x\ gives the best cost at p = p*, but is not robust. 
x = χ2 gives a worse cost but provides much better robustness with respect to parameter 
variations. 

Figure 21.26 The above figure shows cost as a function of independent variable x. We 
see that x — x\ gives the best cost but is not robust, x = X2 gives a worse cost but provides 
much better robustness with respect to variations in x. 
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PROBLEMS 

Written Exercises 

21.1 Consider a one-dimensional function comprised of the following three points 
(*,</): (1,3), (2,1), and (3,4). 

a) What is the linear least-mean-square fit to this function? What is the 
RMS error and min-max error of this approximation? 

b) What is the linear min-max fit to this function? What is the RMS error 
and min-max error of this approximation? 

21.2 Derive Equation (21.16). 

21.3 The text states that s(x) in Equation (21.24) is zero at the sampled data 
points. Prove it. (Hint: If x* is one of the sampled data points, then r is one of 
the columns of R.) 

21.4 How many possible Latin hypercube sampling arrangements exist for an 
M x M two-dimensional grid? 

21.5 Suppose the noisy fitness evaluation of x\ is uniform between —2 and 2. 
Suppose the noisy fitness evaluation of x<i is uniform between —1 and 3. What is 
the probability that the noisy fitness evaluation of x\ is greater than that of £2? 

21.6 Prove the following statement from Section 21.3.1: "If we evaluate a fitness 
function for a given individual N times, and the noise values of those N samples 
are independent, then the variance of the average fitness function decreases by a 
factor of N.n 

21.7 Suppose you have the following 10 noisy fitness function evaluations of a 
given individual: 

[101, 102, 98, 97, 99, 103, 104, 101, 97, 98]. 

How many fitness evaluations will you need to average to obtain a variance of 5? 

21.8 What is the difference between precision and accuracy? Give both an ex-
planation and an example. 

21.9 Suppose we use a Kaiman EA to estimate the fitness of individual x. Sup-
pose that our fitness estimate f(x) = 10 with uncertainty variance = 1. Suppose 
that we obtain a new fitness measurement g(x) = 11 with uncertainty variance = 
3. What is the new fitness estimate and its uncertainty variance? 

Computer Exercises 

21.10 Repeat Example 21.1 and 21.2 for the two-dimensional Ackley function 
with each independent variable in the domain [—3, +3]. 
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21.11 Use Equation (21.38) to evaluate the performance of the three dynamic 
EA approaches of Example 21.6. 

21.12 Write a computer program to experimentally confirm that the average of 
N noisy terms has a variance that is 1/iV times the variance of each noisy term. 

21.13 Simulate Examples 21.5 and 21.6 while keeping track of the following pro-
portions: 

pr = how often the random individuals R are the best of the new individuals 
pe = how often the mutated elites E are the best of the new individuals 
Pd = how often the dual individuals D are the best of the new individuals 

where best is defined in terms of average cost. That is, after you create new random 
individuals R, new mutated elite individuals E, and new dual individuals D, how 
often is the average cost of R better than both the average cost of E and the average 
cost of D, and so on? Use a high enough generation count so that you can collect 
enough data to make reasonably certain conclusions. 



PART V 

APPENDICES 





APPENDIX A 

Some Practical Advice 

Good advice is always certain to be ignored, but that's no reason not to give it. 
—Agatha Christie 

This appendix provides some practical advice for EA researchers and practition-
ers. What should we do if our EA does not work? How can we make our EA work 
better? How can we learn to be successful EA researchers? What should we focus 
on in our research? The book A Field Guide to Genetic Programming has a lot 
of good practical advice [Poli et al., 2008, Chapter 13]. That advice is specific for 
genetic programming, but much of it is general enough to apply to any other type 
of EA also, and so we borrow some of their ideas in this appendix. 

A.l CHECK FOR BUGS 

Many students and beginning researchers expect their code, and others' code, to 
run the first time. There is no bug-free code. All code has bugs. We need to 
understand our software well enough so that we can find problems in the code, 
or problems with how we are using the code. That means that we need to step 
through our code, one line at a time, and inspect variables with a debugger. We 
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need to understand what values are being loaded into what variables, and why. We 
need to do this even if the code seems to run the first time. Just because the code 
runs does not mean that it works. 

This is not to say that off-the-shelf programs do not work. It is not to say 
that we need to understand everything about every computer program that we use. 
But production software is qualitatively different than research and engineering 
software. If production software does not work then we can usually see the results of 
the malfunction, and we can take creative measures to work around those problems 
(for example, reboot, or experiment with a different sequence of button clicks to 
obtain desired results). 

However, if research software does not work, then we usually need to fix the soft-
ware ourselves. To do that, we need to understand the software. More importantly, 
even if the software appears to work, it might not be working correctly. If we do 
not understand the software, then we will never be sure that it is working correctly 
and we will never be able to really trust our results. 

There are no shortcuts in EA research (or in any other engineering research). 
It is always better to write our own software. If we want to use someone else's 
software, then we must study the code and understand the code. Otherwise we will 
probably get what we pay for, especially if the software is free. 

A.2 EVOLUTIONARY ALGORITHMS ARE STOCHASTIC 

Evolutionary algorithms are stochastic. This means that they will not give the 
same results every time they run. If we run an EA 10 different times to try to solve 
a problem, and it does not work any of those 10 times, we might naively conclude 
that the EA does not work or that the problem is not solvable. However, if the EA 
has a 20% chance of solving the problem, then there is a 10% chance that it will 
fail 10 times in a row. 

Conversely, if we run an 10 different times and it succeeds 10 times in a row, we 
might naively conclude that the EA works every time. However, if the EA has 20% 
chance of failing, then there is a 10% chance that it will succeed 10 times in a row. 
A good understanding of probability theory is needed to thoroughly understand 
the stochastic nature of EAs, all that it implies. 

A.3 SMALL CHANGES CAN HAVE BIG EFFECTS 

Something as innocuous as changing the way that duplicate individuals are han-
dled, or small changes in the mutation rate, or changing the selection method, can 
drastically change the operation of an EA. We must never assume that a small 
change is insignificant. That means that when we obtain good results, we must be 
careful to save the EA settings that gave us those results. We should even save the 
random number seed so that we can reproduce our results (see Appendix B.2.3). If 
we get good results and we start fiddling with parameter settings to improve per-
formance, we might lose our good results forever if we forget the parameter settings 
that we used to get the good results. 
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A.4 BIG CHANGES CAN HAVE SMALL EFFECTS 

In contrast to the above point, sometimes an EA is insensitive to large changes in 
parameter settings. This is usually good if the EA is performing well because it 
means the EA is robust to that parameter. But insensitivity to parameter changes 
is bad if the EA is performing poorly. If the EA is performing poorly, it might be 
because the problem is too difficult for the EA, or because the problem has not been 
formulated in a way that is amenable to the EA. We are not guaranteed that an 
EA can give us good results, so we must not assume that the EA will be successful 
if we can just find the right parameter settings. Here is where we must balance 
our perseverance with the possibility that we might be wasting our time. However, 
most of us err on the side of too little perseverance rather than too much. 

A.5 POPULATIONS HAVE LOTS OF INFORMATION 

If our EA is not working well, then we should study the population at various 
generations. The makeup of the population can give us a lot of information. If 
we see that the population is converging to a single candidate solution, then we 
know that we need to deal with duplicate individuals more carefully. If we see 
that individuals that recombine are not improving, then we know that we need to 
modify our recombination strategy. If we keep track of mutations, then we know 
if we are mutating too much or too little, or too frequently or too infrequently. If 
we see that the population is not improving after the first few generations, then we 
know that we need more exploration and less exploitation. The number of details 
about EA behavior that we can glean from studying our EA population is limited 
only by our creativity and perseverance. 

A.6 ENCOURAGE DIVERSITY 

This is related to the above point. We need to be aware of the diversity (or lack 
thereof) in our population. If our population does not have enough diversity, then 
it will probably not perform well. We need to do whatever is required to encourage 
diversity while not preventing the exploitation of good candidate solutions. We 
need to remember that we only need to find one, or a few, good solutions to have 
a successful EA. Greater diversity increases our chances for success. 

A.7 USE PROBLEM-SPECIFIC INFORMATION 

The better we understand our problem, the better solution we will be able to 
find. An EA is typically a model-free optimizer, which means that we do not 
need to incorporate any problem-specific information into the EA. However, if we 
do incorporate problem-specific information, then we can almost certainly find a 
better solution than we could otherwise. An EA is a good global optimizer, but a 
local search method like hill climbing or gradient descent can improve the results of 
an EA to such an extent that it proves the difference between failure and success. 
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A.8 SAVE YOUR RESULTS OFTEN 

Computer disk space is cheap. We should save our problem settings, old versions 
of our software, results, and intermediate results. This means that we need to be 
organized so that we can efficiently wade through all of our stored programs and 
data to find what we need without wasting too much time. 

EA runs are often computationally expensive. This means that we might need to 
run for days or weeks to get good results. An efficient and organized way of doing 
this is to run the EA for a day, save our results, and then begin the EA again with 
the new population seeded with the previous results. This allows the EA to take 
advantage of previously discovered good candidate solutions while still running for 
long periods of time. 

A.9 UNDERSTAND STATISTICAL SIGNIFICANCE 

We need to understand the statistical significance of our experimental results. That 
means that we need to understand statistics and the no free lunch theorem (see 
Appendix B). It also means that we need to test our EA results on a validation set 
of data. An EA can be used to find a good solution to an optimization problem, but 
it may be just as important to test the performance of the solution on data that has 
not been used during training. For example, we might use an EA to find parameters 
that optimize a classifier, and we have some test data that we use for our fitness 
function evaluation. However, if we stop there, then we have done nothing more 
than show that the classifier can memorize the training data. The real test of the 
classifier is to see how well it performs on data that it has not yet seen. This data 
is called the validation set. There are several ways to divide data into training data 
and validation data. We do not discuss those ideas in this book except for a short 
discussion in Section 21.1.6, but it is important that we understand the basic ideas 
of validation [Hastie et al., 2009]. 

A.10 WRITE WELL 

If we do the best EA research in the world but we do not communicate it to others, 
then the research is worthless. Research is performed to be communicated. The 
great English scientist Michael Faraday said, "Work, finish, publish" [Beveridge, 
2004, page 121], implying that the research process is not complete until the results 
are published. Technical writing is a skill that is sorely lacking in today's students, 
engineers, and researchers. We will be better professionals if we can write better. 
Learning to write better is not a mysterious process. We learn to write better just 
like we learn to do anything better: we study good writing and we practice writing. 

A . l l EMPHASIZE THEORY 

Too much EA research today involves tweaking parameters and hybridizing EAs 
with other optimization algorithms. Given all of the EAs that are available today, 
all of their tuning parameters, and all of the other non-evolutionary optimization 
algorithms that are available, there is a virtually infinite number of ways that EAs 
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can be modified, combined, and tuned to get better performance on benchmarks. 
But that type of research does not really advance the state-of-the-art. That type 
of research is extremely incremental and short-sighted in nature, and does not 
provide any insight beyond its immediate results. Most EAs are sorely lacking in 
theoretical support and mathematical analysis. If we could emphasize theory and 
mathematics a little bit more in our research, we could start to make a difference 
in our fundamental understanding of EAs. A single good theory paper is worth a 
dozen parameter-tuning papers. 

A.12 EMPHASIZE PRACTICE 

Too much EA research today focuses on benchmarks. But if we want our research 
to make a difference in the world, then we need to collaborate with industry and 
solve problems that are important to practicing engineers and other professionals. 
Our EAs could spend the remainder of their existence optimizing benchmarks while 
never seeing the outside of a university. But that is not why EAs exist, or why EAs 
were invented in the first place [Fogel et al., 1966], [Fogel, 1999]. They were invented 
to solve real-world problems and to make a contribution to society. Benchmarks 
are important but they are a means to an end, with the end being the development 
of EAs for eventual application in the real world. Let us not confuse the means for 
the end, and let us not forget our ultimate goal in EA research. 





APPENDIX B 

The No Free Lunch Theorem and 

Performance Testing 

One might expect that there are pairs of search algorithms A and B such that A 
performs better than B on average ... One of the main results of this paper is that 
such expectations are incorrect. 

—David Wolpert and William Macready [Wolpert and Macready, 1997, page 67] 

There are three kinds of lies: lies, damned lies, and statistics. 
—Mark Twain [Twain, 2010, page 228] 

This appendix discusses two distinct but related issues. This is a critically im-
portant chapter for EA students and researchers to read and understand. It is an 
appendix because it is not directly related to EAs, and because we need to under-
stand EAs and simulations before reading this appendix, but its relegation to the 
appendix does not lessen its importance. 

Section B.l discusses the no free lunch (NFL) theorem from a intuitive, non-
mathematical aspect. The NFL theorem tells us that all algorithms perform equally 
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well, under certain conditions. Section B.2 discusses how EA simulation results are 
often presented in a misleading way, and how they can instead be correctly pre-
sented. Section B.3 contains a note on the relationship between the methodologies 
used in this book and the research guidelines discussed in this appendix. 

B.l THE NO FREE LUNCH THEOREM 

The NFL theorem, which was first formalized by David Wolpert and William 
McReady [Wolpert and Macready, 1997], is surprising: 

All optimization algorithms perform equally well when averaged over all pos-
sible problems. 

This means that, in general, no optimization algorithm is better than any other, 
and none is worse than any other. Note that the NFL theorem is more than a 
conjecture, or general statement, or rule of thumb; it is a mathematical theorem. 
For specific types of problems, certain algorithms will work better than others. But 
the NFL theorem should prevent us from making unsubstantiated claims about our 
favorite algorithm; it should encourage us to be more modest in our claims. 

Technically, the NFL theorem only applies to discrete optimization problems. 
However, all real-world fitness functions are eventually discretized. After all, we 
define candidate solutions and measure fitness with digital computers. Therefore, 
for all practical purposes, the word "discrete" can be removed from the NFL theo-
rem. 

Intuitively, we expect that some optimization algorithms are better, on average, 
than other algorithms. For example, consider algorithm A, which is a hill descend-
ing algorithm similar to the algorithms described in Section 2.6; and algorithm # , 
which is a random number generator. Suppose that both algorithms are trying to 
find the minimum of some function f(x). If f(x) = x2, then hill descending will 
usually do much better than random search. However, random search will some-
times, just by chance, generate a number that is very close to the minimum, and it 
will do better than A on those occasions. 

We could argue that there are an infinite number of smooth functions that are 
similar to f(x) — x2, and hill descending will perform quite well on such functions, 
while random search will usually not perform very well. However, there are also an 
infinite number of irregular functions for which random search will actually perform 
better than hill descending, as illustrated by the following example. 

■ EXAMPLE 2.1 

Consider the discrete function in Figure B.l. This particular function has a 
search space size of 10 and was generated randomly. We can implement a hill 
descending algorithm to find the minimum of this function. We initialize the 
search at a random point in the search space, and the algorithm examines 
neighboring values to decide which direction to proceed with its search. If 
the algorithm gets stuck in a local, non-global minimum x e {4,7,10}, then 
it restarts at a random initial value. It takes the hill descending algorithm an 
average of about 19 function evaluations to find the minimum, while it takes 
random search an average of exactly 10 function evaluations. The reason hill 
descending takes so long is that it has to start at x £ [1,3] to find the global 
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minimum; otherwise it will converge to a local minimum, and it will have to 
reinitialize with a new random starting point. Any starting point other than 
x G [1,3], will result in the hill descending algorithm wasting time in a local 
neighborhood that will not lead to the global minimum. 

1 r — , , , , , , , P-n 

0.8 

0.6l· 

0.4 

0.2 

1 2 3 4 5 6 7 8 9 10̂  
x 

Figure B.l Example 2.1: For this minimization problem, a hill descending algorithm 
requires an average of 19 function evaluations to find the global minimum at x = 1, while 
random search requires an average of only 10 function evaluations. 

D 

There are an infinite number of irregular functions like the one shown in Fig-
ure B.l for which random search will perform better than hill descending. For 
every regular function for which hill descending performs better, we can find a 
corresponding irregular function for which random search performs better. We see 
that, averaged over all possible functions, hill descending and random search both 
perform equally well. 

It may not be surprising that an irregular function like the one in Figure B.l 
can be minimized more effectively with random search than with a hill descending 
algorithm. What is more surprising is that the NFL theorem asserts that a hill 
climbing algorithm performs just as well as a hill descending algorithm, on average, 
for function minimization. If we want to find the minimum of a function, should 
we use a hill descending algorithm or a hill climbing algorithm? Common sense 
tells us to use a hill descending algorithm if we want to find a minimum. However, 
the NFL theorem tells us that a hill climbing algorithm will perform just as well, 
averaged over all possible functions, as illustrated by the following example. 
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EXAMPLE 2.2 

Consider the discrete function shown in Figure B.2. This can be considered 
a deceptive function because local changes in the cost function lead us to 
expect that the minimum should be at one of the extreme values of x. A 
hill descending algorithm uses local information in its search, and therefore 
will usually get stuck a t x = l o r r r = l l , and will then have to start over. 
The only time the hill descending algorithm will succeed is if it is initialized 
at x G [5,7]. On the other hand, a hill climbing algorithm will always climb 
to x = 5 if starts at x < 5, and it will always climb to x — 7 if it starts 
at x > 7. After it reaches x = 5 or x = 7, it will stumble into the global 
minimum at the next iteration as it searches for the ascending direction. The 
hill climbing algorithm will never require more than 6 function evaluations to 
find the global minimum. The hill descending algorithm requires an average 
of about 16 function evaluations, random search requires an average of 11 
function evaluations, and hill climbing requires an average of only 5 function 
evaluations to find the global minimum. We can concoct an infinite number of 
functions with the same topology as the function shown in Figure B.2. Even 
though it goes against our common sense to use a hill climbing algorithm to 
minimize a function, we see that hill climbing performs just as well as hill 
descending, averaged over all possible functions. 
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Figure B.2 Example 2.2: For this minimization problem, a hill descending algorithm 
requires an average of 16 function evaluations to find the global minimum at x = 6, random 
search requires an average of 11 function evaluations, and hill climbing requires an average 
of only 5 function evaluations. Hill climbing is better at minimization than hill descending 
for this minimization problem. 

D 
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■ EXAMPLE 2.3 

Consider a finely-tuned GA that is programmed to solve some difficult real-
world optimization problem. We would think that the GA should do better 
than a random person randomly guessing solutions. But suppose that you 
walk out on the street and ask the first person that you meet to pick a num-
ber. The number that the person picks is the solution to some optimization 
problem. In fact, that number is the solution to an infinite number of opti-
mization problems. The specific problem that we are trying solve is hopefully 
better attacked with a G A than with a random number generator. But aver-
aged over all possible problems, random guessing is just as good as a GA. 

The NFL theorem can be clarified by asking very simple questions about the set 
of all possible functions, the set of all possible optimization algorithms, and the set 
of all possible behaviors of optimization algorithms [Whitley and Watson, 2005]. 
This approach to understanding the NFL theorem is illustrated by the following 
example. 

■ EXAMPLE 2.4 

Consider a simple minimization problem which has the domain x G [1,3]. 
Suppose that we initialize all search algorithms to a; = 1. There are an 
infinite number of functions such that / ( l ) > / (2) > / (3) , and there are an 
equally infinite number of functions such that / ( l ) > / (3) > / (2 ) . Therefore, 
there is a one-to-one correspondence between the number of functions that 
are minimized at x = 3 and the number of functions that are minimized at 
x = 2. 

Now consider the set of all optimization algorithms A that examine x — 2 
as their first step (after initialization) in the search process. Denote by Ä the 
set of all optimization algorithms that examine x = 3 as their first step. Since 
there is a one-to-one correspondence between the number of functions that 
are minimized at x = 3 and the number of functions that are minimized at 
x = 2, we see that Ä will find the minimum before A for exactly half of all 
possible functions, while A will find the minimum before Ä for the other half 
of all possible functions. 

The above discussions do not comprise a proof of the NFL theorem; they are 
more like explanations or illustrations, and they give us an intuitive sense for why 
the NFL theorem is true. Rigorous mathematical proofs are presented in [Radcliffe 
and Surry, 1995] and [Wolpert and Macready, 1997]. The NFL theorem can be 
stated in various ways, many of which are equivalent. Among other essentially 
equivalent statements, the NFL theorem asserts the following [Schumacher et al., 
2001]. 

• All optimization algorithms perform equally well when averaged over all pos-
sible problems (as stated at the beginning of this appendix). 
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• For any two optimization algorithms A and £?, if the performance of A on 
problem / is given by V(A, / ) , then there exists a problem g such that 
V(A,/) = V(B,g). This statement tells us that no matter how well al-
gorithm A performs on some problem, there is another algorithm B that 
performs equally well on some other problem. Conversely, no matter how 
poorly algorithm B performs on some problem, there is some other problem 
for which algorithm A performs just as poorly. 

• An algorithm that achieves performance that is better than random search is 
like a perpetual motion machine [Schaffer, 1994]. This is called the Law of 
Conservation of Generalization Performance. 

• It is futile to attempt to design an optimization algorithm that is better 
than random search, unless you can incorporate problem-specific information 
in the algorithm [English, 1999]. This is called the Law of Conservation of 
Information. 

• In the absence of problem-specific information, we must assume that all pos-
sible solutions are equally likely [Dembski and Marks, 2009b]. This is called 
Bernoulli's Principle of Insufficient Reason. 

The NFL theorem should give us some balance in our claims. For example, suppose 
that we develop a new algorithm, or develop an improved version of some algorithm, 
and we want to show that it is better than other algorithms so that we can publish 
our results. Suppose that we have a set of benchmark functions F. We use F 
to denote the complement of F; that is, F is the set of all functions other than 
F. If our favorite algorithm, algorithm A, performs better than algorithm B on a 
set of benchmark functions F , then the NFL theorem assures us that algorithm B 
performs better on F. 

Up until now, we have not talked about how to quantify performance. There are 
many ways to measure the performance of an algorithm. For example: 

• Performance can be measured by the best solution obtained after a certain 
number of generations and a certain number of simulations. This can be 
called the best of the best. 

• Performance can be measured by the average of the best solutions obtained 
by a certain number of simulations, each of which run for a certain number 
of generations. This can be called the average of the best. 

• Performance can be measured by computing the average fitness of all indi-
viduals in the population after a certain number of generations, and finding 
the best of these averages after a certain number of simulations. This can be 
called the best of the average. 

• Performance can be measured by computing the average fitness of all individ-
uals in the population after a certain number of generations, and finding the 
average of these averages after a certain number of simulations. This can be 
called the average of the average. 

• Performance can be measured by the standard deviation of the best solu-
tions found after a certain number of generations and a certain number of 
simulations. 
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• Any of the above performance measures can be combined in any way to form 
hybrid performance measures. 

• Any of the above performance measures can be averaged over several prob-
lems. 

It seems that there are as many ways to quantify performance as there are opti-
mization problems. In fact, there are an infinite number of both. 

This brings us to another important feature of the NFL theorem: the NFL the-
orem applies regardless of how we measure performance. Sometimes an algorithm 
is touted as being more robust than other algorithms. The term robustness might 
mean that the algorithm has good performance over a wide variety of functions, 
or that the algorithm is relatively insensitive to fitness function evaluation noise, 
fitness function parameter variations, or algorithm parameter variations. The NFL 
theorem assures us that all algorithms are equally robust. Conversely, it also tells 
us that all algorithms are equally specialized [Schumacher et al., 2001]. If algorithm 
A is more robust than algorithm B on function set F , then algorithm B is more 
robust than algorithm A on function set F. 

We see that in some ways the NFL theorem is nonintuitive. But if we look at 
it in other ways, it is highly intuitive. Given this second, intuitive, perspective of 
the NFL theorem, it is not surprising that it shows up in the literature long before 
its formal proofs in the mid-1990s. For example, Gregory Rawlins wrote [Rawlins, 
1991, page 7]: 

... it is sometimes suggested that G As are universal in that they can be used 
to optimize any function. These statements are true in only a very limited 
sense; any algorithm satisfying one of these claims can expect to do no better 
than random search over the space of all functions. 

Reactions to the NFL theorem from optimization researchers has varied. Some 
say that the NFL theorem is not of any practical interest because of its condition, 
"averaged over all possible problems." In the real world (as opposed to the world 
of mathematical theory), we are not interested in all possible problems, but we 
are rather interested in problems that arise in practical applications. Real-world 
problems are not usually random or deceptive, but rather have some structure. This 
means that a hill descending algorithm will perform better than random search or 
a hill climbing algorithm on real-world minimization problems; and, in fact, that is 
what we usually observe. This gives the yin to the NFL theorem's yang: 

Not all optimization algorithms perform equally well when averaged over all 
problems of interest. 

But this does not mean that the NFL theorem is irrelevant to practicing engi-
neers. The NFL theorem provides a solid foundation for what we think we know 
intuitively. That is, to find a good solution to an optimization problem, we need 
to incorporate problem-specific knowledge into our search algorithm. This is how 
we "pay for lunch" and obtain better performance than, say, random search. If we 
know that good solutions to a given problem tend to cluster together (that is, the 
search space has some regularity), then we know that recombination will tend to 
perform well. If we have a problem that has a less regular search space, then we 
know that mutation will be more important. 

For example, suppose that we are trying to find proportional-integral-derivative 
(PID) control parameters to optimize the performance of a control system. We 
could design a search that calculates gradient information (that is, the sensitivity 
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of the performance to the PID parameters), and that uses that information in 
its search. This means that we are incorporating problem-specific information in 
our search. This PID tuning algorithm avoids the NFL theorem because gradient 
information is not available for almost all functions. We are paying for lunch with 
our gradient information, so we have moved outside of the realm of the NFL theorem 
and our EA will probably do better than random search. Another way of stating 
this is to say that the NFL theorem views the optimization process as a blind 
search without any problem-specific information incorporated into the search. But 
effective real-world search algorithms are not blind; that is, they do incorporate 
problem-specific information [Culberson, 1998]. 

Another example is inversion in the traveling salesman problem (see Section 18.4.1). 
Multiple applications of inversion guarantee a tour without crossed edges. There-
fore, inversion spends most of its time on tours that are better than average. 

The NFL theorem also tells us, indirectly, why problem representation is impor-
tant (see Section 8.3). If a problem's search space has a regular structure, then we 
should represent that problem in a way that preserve's the regularity of the search 
space; then we can obtain good results with a structured search. If we represent a 
problem in such a way that the representation does not have any structure, then 
we might as well use a random search. 

Whitley and Watson give the following practical implications of the NFL theorem 
[Whitley and Watson, 2005]. 

• The design of an optimization algorithm entails a tradeoff between generality, 
and effectiveness for a specific problem. An algorithm that works well on 
a wide range of benchmarks may not work well for a particular real-world 
problem. Conversely, an algorithm that works poorly on standard benchmarks 
may give good results for a real-world problem. Simple algorithms often give 
good results; complicated algorithms can be designed to give better results 
for a given problem. We have to decide how much time and effort we want 
to expend to tune our algorithm for a given problem, and how important it 
is to achieve a marginally better optimization result. 

• If we incorporate problem-specific information in our optimization algorithm, 
we should be able to get better results than we would get with a more general 
algorithm (as long as we use the problem-specific information correctly). This 
is an example of a general principle that engineers and scientists have observed 
for a long time. Performance and generality trade off with each other. Tools 
and algorithms that are designed to work on a wide variety of problems end 
up not performing well on any problems. 

• The representation of the optimization problem can have a significant effect 
on the performance of an optimization algorithm. There are an infinite num-
ber of ways to represent any optimization problem. Choosing an appropriate 
representation can require a lot of work before the algorithm is even imple-
mented, but it can pay high dividends in the long run (see Section 8.3). 

• Do not assume that an optimization algorithm that works well on bench-
marks will work well on real-world problems; likewise, do not assume that an 
algorithm that works poorly on benchmarks will work poorly on real-world 
problems. This implication of the NFL theorem casts doubt on the practical 
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importance of most EA papers due to their emphasis on benchmark problems, 
and their lack of emphasis on real-world problems. 

Current research in the area of NFL theorems includes finding function sets over 
which the NFL theorem does not hold. Recall that the NFL theorem holds over 
all possible optimization problems; it does not hold over all sets of optimization 
problems. For example, a hill descending algorithm will clearly do better than 
random search at solving problems with a single minimum. Less intuitive is the 
result that the NFL theorem does not hold over the set of functions that can be 
described by polynomials of a single variable with bounded complexity [Christensen 
and Oppacher, 2001]. Also, the NFL theorem does not hold over certain types of 
co-evolutionary problems [Wolpert and Macready, 2005]. 

Finding other functional sets over which the NFL theorem does not hold, and 
finding algorithms that provide a free lunch over those sets, could have important 
implications for the design of practical optimization algorithms. These questions 
are related to issues such as function compressibility, problem description length, 
and the distinction between infinite sets of functions and finite sets of functions 
(that is, permutation closures) [Schumacher et al., 2001], [Lattimore and Hutter, 
2011]. 

B.2 PERFORMANCE TESTING 

This section discusses some issues that are related to statistics and the presentation 
of EA simulation results in theses, dissertations, and technical papers. Anyone who 
publishes or studies EA research needs to have a clear grasp of the ideas of this 
section. This section shows how we can reduce the bias in the presentation of our 
results. It also shows us how to recognize the bias in the results of others. Perhaps 
most importantly, it emphasizes that we need to have a healthy skepticism of others 
when we read their research papers, and a healthy skepticism of ourselves when we 
document our own research results. 

Section B.2.1 gives an overview of some of the problems that we commonly see 
in EA research papers. Section B.2.2 shows how authors often present simulation 
results to make any point that they want; that is, how they present results in 
a misleading way (hopefully unintentionally). It also shows how we can instead 
present simulation results in clear and honest way. Section B.2.3 makes a few im-
portant points about the random number generators that we use in our simulations. 
Section B.2.4 reviews the t-test, which can tell us if differences between two sets 
of simulation results are statistically significant. Section B.2.5 reviews the F-test, 
which can tell us if differences between more than two sets of simulation results are 
statistically significant. 

B.2.1 Overstatements Based on Simulation Results 

Mark Twain's quote at the beginning of this chapter, the book How to Lie with 
Statistics [Huff and Geis, 1993], and this section, all tell us essentially the same 
things about EA research. When we see EA results in a paper or a book, there is 
always some bias. The bias may be intentional or it may be unintentional; it may 
be explicit or it may be implicit; it may be obvious or it may be subtle; it may 
be insignificant or it may lead to entirely wrong conclusions; but there is always 
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some bias. When we read a paper and draw conclusions from EA results, we must 
remember that we would draw different conclusions if the author had chosen to 
present a different set of results, or even if he had chosen to present the same 
results in a different way. 

Given the NFL theorem, which states that all optimization algorithms perform 
equally well when averaged over all possible optimization problems, it seems futile 
to test our algorithms on benchmark problems. As Darrell Whit ley wrote, "Prom a 
theoretical point of view, comparative evaluation of search algorithms is a danger-
ous, if not dubious, enterprise" [Whitley and Watson, 2005, page 333]. If we write 
a paper about optimization algorithm A and show that it performs better than 
algorithm B on a set of benchmark functions F, then the NFL theorem assures us 
that B performs better than A on the set of functions F. 

However, this should not discourage us too much. If the point of our paper is 
to show the superiority of A over B on the set F , then the paper has succeeded. 
Remember that the NFL theorem does not say that all algorithms perform equally 
well over all problem sets F; it says that all algorithms perform equally well when 
averaged over all possible problems. This means that algorithm A might indeed 
perform better than B for specific problems, or for specific types of problems. 

This indicates that benchmarking is a worthwhile effort, but that we have to keep 
the NFL theorem in mind to modulate the conclusions that we draw. A typical EA 
paper demonstrates that A performs better than B on the set of benchmarks F , 
and then concludes something like: 

We therefore see that A is better than B for function optimization. 
Claims like this are clearly and fundamentally incorrect in view of the NFL theorem. 
But typical EA papers do include statements like that in the abstract, introduction, 
and conclusion. A more modest claim would be: 

We therefore see that A is better than B for optimizing functions that have 
the characteristics of the problems that we examined in this paper. 

However, typical EA papers that present benchmark performance do not make 
any effort to examine the characteristics of the benchmarks. What is it about the 
benchmark set F that makes A perform better than ΒΊ Does A perform better than 
B because the functions in F are differentiable, or because they are multimodal, or 
because they have continuous second derivatives, or because they are constrained, 
or for some other of a million possible reasons? Questions like this are difficult to 
answer and so they are usually ignored. Therefore, an even better (that is, more 
modest) claim in an EA paper would be: 

We therefore see that A is better than B for optimizing the functions that we 
examined in this paper. 

This claim is better because it does not make any attempt to generalize beyond the 
empirical results presented in the paper. In other words, it does not try to claim 
too much. However, even this claim is probably too much because of the many 
ways that algorithms can be tuned and implemented. 

Another NFL-related danger of presenting benchmark results is that the bench-
mark functions may not be in the same class as interesting, real-world problems. 
We assume that most EA researchers are interested in the eventual application of 
their research to real-world problems. If an EA paper demonstrates good perfor-
mance for algorithm A on the set of benchmarks F , what does that have to do 
with the real world? Actually, in view of the NFL theorem, it may indicate that 
A performs poorly on real-world problems. After all, if A performs better on the 
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set F , which includes only benchmark problems but no real-world problems, then 
B will perform better on the set F , which includes (among others) all real-world 
problems. The constant race to obtain better performance on benchmark problems 
is leading us to a set of algorithms that have been fine-tuned for good benchmark 
performance but that may be useless in engineering applications. As John Hooker 
writes, "The tail wags the dog as problems begin to design algorithms" [Hooker, 
1995]. 

In view of this discussion, it seems that EA papers should place more emphasis 
on applications and less emphasis on benchmarks. Sometimes it is difficult to get 
a paper accepted for publication if it does not include results from the currently-
fashionable set of benchmark functions. However, this over-reliance on standard 
benchmarks gives us a false confidence. It is rare to see a real application in an 
EA journal today unless it is in a special "applications" issue of the journal. But 
in view of the NFL theorem, applications in EA papers should be the rule rather 
than the exception. It is only by testing EA performance on real-world problems 
that we can have any confidence that the EA will be useful. 

B.2.2 How to Report (and How Not to Report) Simulation Results 

This section shows how authors often present simulation results in a misleading 
way (hopefully unintentionally), and how they can present results to communicate 
whatever message the author desires. It also shows, using very little statistical 
background, how simulation results can be presented in a more clear and honest 
way. We defer a more rigorous discussion of statistics to Section B.2.4. 

Suppose that we want to compare the performance of evolutionary algorithms 
A and B on some benchmark. Suppose that we run algorithms A and B on some 
benchmark problem. Each algorithm runs for T generations. At each generation 
we measure the cost / m i n of the best individual in the entire population. This gives 
us a set of data that looks like the following: 

Algorithm A: fA,min = {/AO, / A I , / A 2 , · · ·, ÎAT} 

Algorithm B: fB,mm = {/BO, / B I , / B 2 , · · · , ÎBT} (B.1) 

where /40 and JBO are the cost values of the best individual after initialization, and 
fAi and fßi are the cost values of the best individual after the z-th generation. The 
performance of algorithm A can be quantified by the cost of the best individual 
that it found during the T generations: 

Algorithm A metric: min /ΑΪ> (B-2) 
ie[o,T] 

Assuming that we are using elitism, JAÎ is monotonically nonincreasing, so 

Algorithm A metric: min f^i = /AT- (B-3) 
i€[0,T] 

If we run algorithms A and ß o n a given benchmark and we want to see which 
algorithm performs best, we can simply compare }AT and JBT- We might conclude 

A is better than B if fAT < fBT 1 ^ ^ ReasQn[ng ( B 4 ) 

JAT ) B is better than A if JBT < , 
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As noted above, this reasoning is not valid. We must not use flawed logic like that 
shown in Equation (B.4). Of primary importance is the fact that EAs are stochastic; 
that is, they depend on the output of a random number generator. Therefore, in 
general, a given EA will produce different results each time it runs. If we run the 
experiment once we might conclude that algorithm A is best, but if we run it again 
we might conclude that algorithm B is best. This is why it is critically important 
to run multiple simulations when comparing EAs, and to use the results from all 
of the simulations when comparing algorithms. Using multiple simulations, each 
seeded with a different random number seed, is called a Monte Carlo simulation, 
Monte Carlo experiment, or Monte Carlo method [Robert and Casella, 2010]. 

So now suppose that we have grasped the concept of Monte Carlo simulation. 
We therefore run algorithms A and B on some problem, and we run the algorithms 
M times each, where M is the number of Monte Carlo simulations. Each time we 
run a simulation we get a different result for JAT and /BT- We use the notation 
fATk and fßTk to denote the cost of algorithms A and B at the end of the T-th 
generation of the k-th Monte Carlo simulation. We can write our simulation data 
as follows: 

Algorithm A results: { / A T I , / A T 2 , ' " , IATM} 

Algorithm B results: { / B T I , IBT2, · · · , ÎBTM}· (B.5) 

Now we can do a few different things with these results. First, we can compare the 
average performance of the two algorithms: 

1 M 

fA = M Σ fATk 

k=l 

TB 
1 M 

Γ Τ Σ > ™ . (Β.6) M , 
fe=l 

Second, we can compare the variance of the performance of the two algorithms:1 

1 M 

M-
fc=l 

M 

o% 
M ^YUfBTk-h)2· (B.7) 

fc=l 

Third, we can compare the best-case performance of the two algorithms: 

/A,best = min fATk 
fc€[l,M] 

/ß.best = min / B T * . (B.8) 
fce[i,M] 

Fourth, we can compare the worst-case performance of the two algorithms: 

/A, worst = m a x fATk 
fc€[l,M] 

/ß,worst = max fBTk- (B.9) 
fc€[l,M] 

1 Intuitively we expect that the denominator in Equation (B.7) should be M instead of M — 1. 
However, using M — 1 in the denominator gives a better estimate of the variance [Simon, 2006, 
Problem 3.6]. 
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Each of these metrics quantifies a different type of performance. The average cost 
values of Equation (B.6) tell us how good the algorithms perform on average. The 
variances of Equation (B.7) tell us the consistency of the performance of the al-
gorithms. The best-case cost values of Equation (B.8) tell us which algorithm we 
can expect to give the best results if we run it multiple times. The worst-case cost 
values of Equation (B.9) tell us which algorithm we can expect to give the best 
results if we can only run the algorithm once and we happen to seed the random 
number generator in such a way that we get unusually bad performance. [Eiben 
and Smit, 2011] presents some additional discussion of EA performance metrics. 

Suppose that we run algorithms A and B on a benchmark problem. We run the 
algorithms M times each, and we calculate the following metrics: 

f_A = 14, σΑ — 4, f_A,best = 7, /A,worst = 23 , „ v 
fB = 16, σ% = 3, /ß,best = 6, /ß,worst = 25. 

Any of the following statements could appear in a paper that we write about this 
experiment. 

1. Algorithm A obtains an average minimum cost of 14, while algorithm B 
obtains an average minimum cost of 16. This shows that algorithm A performs 
better. 

2. Algorithm A has a variance of 4, while algorithm B has a variance of 3. This 
shows that algorithm B is more robust. 

3. Algorithm A obtained a best cost of 7, while algorithm B obtained a best 
cost of 6. This shows that algorithm B performs better. 

4. Algorithm A obtained a cost that was never worse than 23, while algorithm B 
obtained a cost that was never worse than 25. This shows that algorithm A 
performs better. 

None of these statements are exactly false, but they show how we interpret statistics 
according to preconceived ideas. That is, we are not objective. We tend to present 
results in a way that favors whichever algorithm agrees with our bias. 

Consider the first statement above. It is indeed true that, on average, algo-
rithm A performs better that algorithm B. However, why did we choose to include 
that statement in our paper instead of statements 2 or 3? Furthermore, how sig-
nificant is the improved performance that is noted in statement 1? Algorithm A 
performs only 2 units better than algorithm B, which is within the standard de-
viations of the algorithms. Figure B.3 shows a plot of the mean and the standard 
deviations of the algorithms. The figure on the left implies that algorithm A is 
significantly better than algorithm £?, but the figure on the right shows that the 
improved performance is not as impressive as we might otherwise think. Any given 
simulation of the algorithms could easily result in algorithm B outperforming algo-
rithm A if they performed one standard deviation differently than their averages. 

Box plots are a nice way to plot EA performance results. Box plots include 
five pieces of data for each algorithm: the smallest result, the lower quartile, the 
median, the upper quartile, and the largest result of the M Monte Carlo simulations 
[McGill et al., 1978]. The lower quartile is the value that is greater than 25% of 
all results, the median is the value that is greater than 50% of all results, and the 
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upper quartile is the value that is greater than 75% of all results.2 The MATLAB® 
Statistics Toolbox has a boxplot function to create box plots. Figure B.4 shows 
an example of a box plot. Box plots show a lot of relevant information in a single 
graph. They show median results, they show typical results as the middle 50%, and 
they show extreme results. This makes box plots a concise and informative way to 
present results and to compare algorithms. 

O 

CO 
o 
O T I 

H—* 
B 

Figure B.3 The means (left figure), and the means and standard deviations (right figure), 
of the performance of two hypothetical algorithms. The figure on the left makes algorithm A 
look more impressive than the figure on the right. 
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Figure B.4 Typical box plot showing performance results of two hypothetical algorithms. 
Each box shows the middle 50% of the set of results for an algorithm. The line inside each 
box shows the median result. The lines above and below each box (connected by dashed 
lines to each box) show the maximum and minimum results. 

However, there are not any foolproof ways to prevent bias in the presentation 
of simulation results. For example, suppose that we run some simulations for algo-

2Note that box plots contain five quartiles: the 0%, the 25%, the 50%, the 75%, and the 100% 
quartiles. The 0% quartile is the minimum value, the 50% quartile is the median value, and the 
100% quartile is the maximum value. 
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rithms A and B, and that we collect five quartile values for each set of simulations. 
Suppose that we do this for six benchmark functions. Our results might look some-
thing like Table B.l . We see that algorithm A (the current state of the art) performs 
better on benchmark functions 1,2, and 3, while algorithm B (our newly proposed 
algorithm) performs better on benchmarks 4, 5, and 6. What should we do in this 
situation? We have spent many months developing, refining, coding, debugging, 
and testing our new algorithm. Furthermore, we need publications to get our grad-
uate degree, or to get tenure and funding. Many researchers in this situation are 
tempted to write a paper that includes benchmarks 4, 5, and 6, and that omits the 
results from benchmarks 1,2, and 3. 

F\ F2 F3 F4 F5 FQ 

Algorithm A 13 21 16 45 24 33 
Algorithm B 16 30 22 36 17 28 

Table B . l Sample simulation results for two algorithms on six benchmarks. The 
hypothetical numbers are the mean values of a set of Monte Carlo simulations. 
Algorithm A is the state of the art, and algorithm B is the researcher's newly 
developed algorithm. Given these results, many researchers will choose to publish data 
from benchmarks 4, 5, and 6, and will omit the results from benchmarks 1, 2, and 3. 

These types of practices are unethical. Of all the widespread practices in research 
and publishing today, this is not nearly the worst, but most of us would agree that it 
is dishonest. However, ethics is not always black-and-white. This situation occurs 
in modulated forms far more frequently than the obvious selective presentation 
illustrated in Table B.l. For instance, if we obtain preliminary results that do not 
speak well of our research, it is easy to convince ourselves that those results are 
suspect for some reason,3 and to then obtain more extensive results using only the 
benchmarks that speak well of our research. 

Peer review standards encourage this subtle form of dishonesty. If a newly pro-
posed algorithm, or variation of an existing algorithm, does not give better results 
than the state of the art, it is often dismissed and rejected from being published. 
This occurs even though the state of the art has, by definition, evolved over many 
decades, while new algorithms are, by definition, in their infancy and have not yet 
had a chance to mature. Proposals and papers during the 1960s that were related 
to genetic algorithm research were routinely rejected because G As were not yet as 
good as established optimization approaches. A criticism that was levied in 1966 is 
typical: "Everything you have suggested [for genetic algorithm research] can be put 
much more clearly and sharply in terms of tree searches" [Fogel, 1999, page xi]. The 
research establishment is ostensibly open to new ideas, but like any establishment, 
we tend to draw in on ourselves and discourage those who think outside the box. 

Instead of encouraging incremental results and insisting on continuous improve-
ments in benchmark results, peer reviewers should instead encourage novelty and 

3Perhaps we are unsure of the mathematical formulation of the benchmark. Perhaps the bench-
mark takes too much CPU time and we want to focus on faster benchmarks. Perhaps the bench-
mark is not as popular as others. Perhaps the benchmark has some characteristics that convince 
us that it is atypical. We can find many reasons to exclude any benchmark, if we look hard 
enough. 
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creativity, because we cannot predict which new algorithms or technologies will 
make an impact in the future. Also, in view of the NFL theorem, peer reviewers 
should not just encourage, but should insist on authors discussing the shortcomings 
and drawbacks of their proposed algorithms. Authors should not feel pressured to 
hide negative results, but should be required to publicize negative results in the 
interest of openness and transparency. 

Success Rate 

One common performance metric in EAs is success rate [Suganthan et al., 2005], 
[Liang et al., 2006], [Mallipeddi and Suganthan, 2010]. That is, given some bench-
mark cost function f(x) with known minimum /*, we conduct M simulations of our 
EA, each for a specific number of function evaluations F m a x . We consider a given 
simulation a success if it finds some individual x such that f(x) < f* + e, where e 
is a positive success threshold. The success rate S is the percentage of simulations 
that are successful. 

This metric has become so popular that many editors and reviewers will not 
publish a paper without it. However, there are a few problems with this performance 
metric. First, the choice of e is arbitrary and can have a significant effect on the 
apparent merits of two competing algorithms. If e = e\ then algorithm A might 
outperform algorithm B, but if e = €2 φ ei then algorithm B might outperform 
algorithm A. Second, the number of function evaluations F m a x is arbitrary and 
can also have an effect on the apparent merits of two competing algorithms. If 
F m a x = F\ then algorithm A might outperform algorithm B, but if F m a x = F2 φ F\ 
then algorithm B might outperform algorithm A. Third, the number of simulations 
M needs to be unrealistically large to obtain a confident estimate of the success 
rate S. We might use M = 20 and find S = 30%, and then come back the next 
day and run 20 more simulations and find S — 40%. We might need to use a 
very large value of M to obtain a reasonably small standard deviation in 5 , but 
such large values of M might require many days or weeks for data collection [Clerc, 
2012b]. When success rate is reported in publications, it is never accompanied by 
the standard deviation of success rate, and this negates its usefulness as a metric. 

Population Size 

For a given problem, EA # 1 might perform best with population size JVi, while 
EA # 2 might perform best with population size AT2. Therefore, when we compare 
two EAs, we might first need to tune each EA separately to find their optimal 
population sizes. On the other hand, the purpose of our comparison might be to 
see which EA performs best with a given population size. In this case we should 
use the same population size for both EAs. For instance, EA performance with 
small population sizes might be an important research topic. So the question of 
what population sizes to use when comparing EAs is not clear cut, but depends on 
the purpose of the comparison. 

B.2.3 Random Numbers 

To obtain valid EA simulation results, it is essential to clearly understand random 
number generators. The random number generator can have a significant influence 
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on EA performance. The quality of an EA solution is not necessarily correlated 
with the quality of the random number generator in the EA [Clerc, 2012b]. For 
some problems and some EAs better random number generation leads to better 
EA performance, while for other problems and other EAs worse random number 
generation leads to better EA performance. 

Most random numbers are not really random. In fact, the definition and exis-
tence of randomness are subject to some dispute. Random number generators in 
computers do not generate truly random numbers; they generate pseudorandom 
numbers. Pseudo-random numbers appear to be random, but they are not really 
random because they are generated with deterministic algorithms. 

The rest of this section focuses on MATLAB for the sake of illustration, but it can 
easily be generalized to any other programming environment. Consider MATLAB's 
rand function, which returns a random number that is uniformly distributed on the 
open interval (0,1). Suppose we begin a MATLAB session using MATLAB Version 
7.13.0.564 (R2011b) on a 32-bit Windows XP computer. If we use rand to generate 
five random numbers, we obtain the numbers 

0.8147, 0.9058, 0.1270, 0.9134, 0.6324. (B.l l ) 

This looks pretty random. But if we log off the computer, come back the next 
day, start MATLAB again, and use rand to again generate five random numbers, 
we obtain the exact same numbers as those shown above! Suddenly the numbers 
do not appear to be very random. This is because MATLAB uses a deterministic 
algorithm to generate pseudo-random numbers, and that algorithm has the same 
initial state each time MATLAB begins. 

This fact has important implications for EA testing. Suppose we turn on our 
computer, run an EA, and obtain the performance result /χ. Now suppose we log 
off, come back the next day, log on, start MATLAB, and run the EA again. We 
will obtain exactly the same result because the random numbers that we generate 
in our EA for selection, mutation, and other purposes, will be exactly the same 
as the previous day. Although an EA is stochastic and hence should theoretically 
give a different result each time it runs, in practice it will give the same result from 
one day to the next because it relies on a pseudo-random number generator that 
returns numbers that are not truly random, and that is initialized to the same state 
each time MATLAB begins. 

Now suppose that we turn on the computer, run the EA, and obtain the result 
/ i . We leave MATLAB running, come back the next day, and run the EA again. 
This time we will, in general, obtain a different result. This is because we did not 
reinitialize the random number generator by restarting MATLAB. So the second 
time we run the EA, MATLAB will generate a different string of random numbers 
than the first time we run the EA. 

If we want to generate the same string of random numbers, we can use the 
MATLAB rng(seed) function to reinitialize the random number generator to the 
given integer seed.4 This initializes the random number generator so that it begins 
in the given state and thus generates the same sequence of random numbers from 
one execution to the next. For instance, the MATLAB commands 

4Function rng was introduced around the year 2011. Earlier versions of MATLAB provide other 
functions to initialize the random number generator. 
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rng(489) 

rand, rand, rand, rand, rand (B-12) 

generate the random numbers 0.9780, 0.8578, 0.0599, 0.0894, 0.4774, no matter 
when the commands are performed, and no matter how long MATLAB has been 
running beforehand. With this approach we can create identical EA results from 
one simulation to the next even though EA results are intrinsically stochastic. 
Sometimes an EA bug or result shows up only under special circumstances. To 
re-create the bug or result, we need to initialize the random number generator with 
the same seed. That is why it is always a good idea to keep track of the initial 
random number generator seed each time we run an EA. Keeping track of the seed 
allows us to precisely reproduce results, which greatly expedites debugging. 

If we want to generate a different string of random numbers each time we run 
our EA, we can again use the MATLAB rng function, but instead provide it with 
a random seed. For example, an integer that represents the current date and time 
is pretty random, and so using the date and time as a seed results in a different 
sequence of random numbers each time we run MATLAB. The MATLAB command 
clock returns a six-element vector containing the current year, month, day, hours, 
minutes, and seconds. So the MATLAB commands 

Seed = sum(100*clock); 

rng(Seed); 

rand, rand, rand, rand, rand (B.13) 

generate a different sequence of random numbers each time we execute them. With 
this approach, we can create randomly-varying EA results from one simulation to 
the next, even though we run our simulation the first thing in the morning after we 
start MATLAB. This approach also allows us to keep track of the random number 
seed so that we can record it and use it later in case we need to debug our code. 

Now suppose that we want to perform a simple comparison of two EAs. The first 
random process in our EAs is the generation of the initial population. So we run the 
first EA and obtain some results. We then run the second EA and obtain different 
results. However, if we do not reinitialize the random number generator between 
simulations, the two EAs will start with entirely different initial populations. This 
may give an unfair advantage to one EA. If we want to more fairly compare different 
EAs, they should start with the same initial population. We could do this with the 
following command sequence: 

Seed = sum(clock); 

rng(Seed); 

EA1; 

rng(Seed); 

EA2; (B.14) 

This sequence ensures that the random number generator is initialized identically 
for both EAs, so both EAs will begin with the same random population, assuming 
that the random population is created the same way in EA1 and EA2. 
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B.2.4 T-Tests 

The t-test was invented in 1908 by William Sealy Gösset, an Irish chemist who 
used it to monitor the quality of beer for the brewery where he worked [Box, 1987]. 
He published the method under the pen name "Student" because his employer did 
not want its competitors to know that they were using statistical methods. The 
t-test has many applications, but in this section we restrict our discussion to a very 
specific application related to the interpretation of EA experiments, and we present 
its use without any derivations. Standard statistics books include additional details 
and derivations of the t-test [Salkind, 2007]. 

The basic question that the t-test answers is, How can we tell if two sets of 
experimental results are significantly different? When we say significantly different 
here, we do not mean how large the difference is; we instead refer to the question of 
whether or not the difference is fundamental, or if it is instead due to random fluc-
tuations. For instance, suppose that we measure the performance of two students 
on two separate quizzes during a course: 

Student A: 69%, 84% 
Student B: 66%, 83%. (B.15) 

Student A had a higher score than student B on both quizzes. But we would 
probably not conclude that there was a difference between the two students; we 
would attribute the superior performance of student A to chance, and we would 
hypothesize that the two students have essentially identical performance and ability. 
But now suppose that we have 10 quizzes on which to base our judgment: 

Student A: 69, 84, 75, 93, 92, 88, 68, 74, 89, 81% 
Student B: 66, 83, 72, 88, 95, 83, 71, 71, 84, 80%. (B.16) 

Student A had a higher score eight times out of 10. Now we would start to suspect 
that student A really is a better performer than student B, and that their differences 
in performance are not simply due to random variations. The differences are not 
large but it appears that they are statistically significant. But how can we quantify 
the probability that this hypothesis is true or false? In particular, what is the 
probability that we would obtain the results of Equation (B.16) if students A and B 
were equal performers? That is, what is the probability that the differences in the 
results of Equation (B.16) are simply due to random variations? This is exactly 
the question that the t-test answers. The hypothesis that the differences in the 
results of students A and B are simply due to random variations is called the null 
hypothesis. Note that if students A and B are equal performers and we give each 
student 10 quizzes, then it is equally likely that either student A or B performs 
better most of the time. 

Now we return to the problem of analyzing EA simulation results. Suppose that 
we run algorithms A and B on some optimization problem. We know the impor-
tance of Monte Carlo simulations, so we run each algorithm M times and compute 
the average performance and variance of each algorithm as shown in Equations (B.6) 
and (B.7): 

Algorithm A: Mean = / ^ , Variance = σ\ 

Algorithm B: Mean = / # , Variance = σ2
Β. (B-17) 
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What is the probability that we obtain these results if the performance of algorithms 
A and B is fundamentally identical? This is the question that the t-test answers. 
The t-test statistic is defined as 

t = \ÎA - ÎB\ / ß lgx 

y/(o\ + o%)/M' 

We see that t measures the difference between the outcomes of algorithms A and B. 
If there is a big difference between JA and / # , then t will be large. However, if σΛ or 
σΒ are large, then that indicates that there is a large variation in the performance 
of algorithm A or Z?, which dilutes the effect of a large difference between JA and 
/ # , and which makes t small. Large M tends to make t large since a large number 
of experiments is a more reliable indicator of performance than a small number of 
experiments. 

After we compute the t-test statistic, we compute a quantity called the degrees 
of freedom: 

d={M-m<:,%? (BI9) 

The degrees of freedom indirectly tells us how large t needs to be to give us a 
specified level of confidence that there is a statistically significant difference in the 
performance of algorithms A and B. 

After we compute t and d, we look in a t-test table to find the probability that 
the difference in the performance of algorithms A and B is due to random variation 
rather than a fundamental difference between the two algorithms. These probabil-
ities are called p-values. Table B.2 shows some t-test values. More complete tables 
can be found in statistics books or on the internet. To approximate values between 
the coordinates in the table, we can use any reasonable interpolation method. We 
can also use t-test functions in statistical software, including MATLAB, Microsoft 
Excel®, and many other software packages. 

■ EXAMPLE 2.5 

Suppose we run algorithms A and B on some optimization problem. We run 
each algorithm six times (M = 6) and obtain the following results, which are 
written in the format of Equation (B.5): 

Algorithm A: {fATk} = {30.02, 29.99, 30.11, 29.97, 30.01, 29.99} 
Algorithm B: {fBTk} = {29.89, 29.93, 29.72, 29.98, 30.02, 29.98}. (B.20) 

To estimate the probability of obtaining these differences simply due to ran-
dom variation and not due to any fundamental difference between the perfor-
mance of the two algorithms, we first calculate the mean and variance of the 
results as shown in Equations (B.6), (B.7), and (B.17): 

fA = 30.015, σ\ = 0.0497 
JB = 29.920, σ% = 0.1079. (B.21) 

Next we use Equations (B.18) and (B.19) to compute the t-test statistic and 
the degrees of freedom: 

t = 1.959, d = 7.0306. (B.22) 
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Finally we look in Table B.2 and see that for d = 7.0306, the t-test statistic is 
equal to 1.959 at a p-value of about 9%. This means that if the performance 
of algorithms A and B is fundamentally equivalent, there is a 9% probability 
that we would get the results shown in Equation (B.20). Equivalently, we 
can say that if the performance of algorithms A and B is equivalent, there 
is a 91% probability that we would see smaller variations that those shown 
in Equation (B.5). Whether these probabilities are significant enough for us 
to conclude that the algorithms are fundamentally different is a qualitative 
judgment. 

D 

There are several assumptions that underlie the t-test discussion of this section. 

1. First, we assume that algorithm A could be either better or worse than al-
gorithm B, so we use the two-sided t-test in this section. That is why the 
caption of Table B.2 indicates that it is for two-sided t-tests. The column 
headings (that is, the p-values) of Table B.2 would change if we wanted to 
run one-sided t-tests, but one-sided tests are generally not relevant for the 
analysis of EA experiments. 

2. The t-test assumes that each experiment's results follows a Gaussian distribu-
tion. That is, if we run many simulations for algorithm A and plot the results 
in a histogram, we will see a Gaussian curve; the same assumption applies 
to algorithm B also. Since the limiting values in a Gaussian distribution are 
±oo, there are no computer simulations or physical experiments that are truly 
Gaussian. But many processes can be approximated quite well with Gaussian 
distributions. The central limit theorem assures us that many experiments 
and simulations have results that are nearly Gaussian [Grinstead and Snell, 
1997], so Gaussianity is a reasonable assumption. However, verifying that 
our process really is Gaussian is a separate problem. In general, it is safe to 
assume Gaussianity in the absence of evidence to the contrary. 

3. The t-test assumes that we have only two sets of data. If we have more than 
two sets of data - for instance, results from algorithms A, B, and C - then 
we cannot use pair-wise t-tests on the pairs A/B, A/C, and B/C to test for 
statistically significant differences. We discuss this in more detail below in 
Section B.2.5. 

4. This section assumes that the two sample sizes are the same; that is, we run 
M experiments for both algorithms A and B. If we have a different number 
of experiments for the two algorithms, then we need to slightly modify the 
equations of this section. 
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50% 40% 30% 20% 10% 5% 2% 1% 0.5% 0.1% 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
50 
60 
80 

1.000 
0.816 
0.765 
0.741 
0.727 
0.718 
0.711 
0.706 
0.703 
0.700 
0.697 
0.695 
0.694 
0.692 
0.691 
0.690 
0.689 
0.688 
0.688 
0.687 
0.686 
0.686 
0.685 
0.685 
0.684 
0.684 
0.684 
0.683 
0.683 
0.683 
0.681 
0.679 
0.679 
0.678 

1.376 
1.061 
0.978 
0.941 
0.920 
0.906 
0.896 
0.889 
0.883 
0.879 
0.876 
0.873 
0.870 
0.868 
0.866 
0.865 
0.863 
0.862 
0.861 
0.860 
0.859 
0.858 
0.858 
0.857 
0.856 
0.856 
0.855 
0.855 
0.854 
0.854 
0.851 
0.849 
0.848 
0.846 

1.963 
1.386 
1.250 
1.190 
1.156 
1.134 
1.119 
1.108 
1.100 
1.093 
1.088 
1.083 
1.079 
1.076 
1.074 
1.071 
1.069 
1.067 
1.066 
1.064 
1.063 
1.061 
1.060 
1.059 
1.058 
1.058 
1.057 
1.056 
1.055 
1.055 
1.050 
1.047 
1.045 
1.043 

3.078 
1.886 
1.638 
1.533 
1.476 
1.440 
1.415 
1.397 
1.383 
1.372 
1.363 
1.356 
1.350 
1.345 
1.341 
1.337 
1.333 
1.330 
1.328 
1.325 
1.323 
1.321 
1.319 
1.318 
1.316 
1.315 
1.314 
1.313 
1.311 
1.310 
1.303 
1.299 
1.296 
1.292 

6.314 
2.920 
2.353 
2.132 
2.015 
1.943 
1.895 
1.860 
1.833 
1.812 
1.796 
1.782 
1.771 
1.761 
1.753 
1.746 
1.740 
1.734 
1.729 
1.725 
1.721 
1.717 
1.714 
1.711 
1.708 
1.706 
1.703 
1.701 
1.699 
1.697 
1.684 
1.676 
1.671 
1.664 

12.71 
4.303 
3.182 
2.776 
2.571 
2.447 
2.365 
2.306 
2.262 
2.228 
2.201 
2.179 
2.160 
2.145 
2.131 
2.120 
2.110 
2.101 
2.093 
2.086 
2.080 
2.074 
2.069 
2.064 
2.060 
2.056 
2.052 
2.048 
2.045 
2.042 
2.021 
2.009 
2.000 
1.990 

31.82 
6.965 
4.541 
3.747 
3.365 
3.143 
2.998 
2.896 
2.821 
2.764 
2.718 
2.681 
2.650 
2.624 
2.602 
2.583 
2.567 
2.552 
2.539 
2.528 
2.518 
2.508 
2.500 
2.492 
2.485 
2.479 
2.473 
2.467 
2.462 
2.457 
2.423 
2.403 
2.390 
2.374 

63.66 
9.925 
5.841 
4.604 
4.032 
3.707 
3.499 
3.355 
3.250 
3.169 
3.106 
3.055 
3.012 
2.977 
2.947 
2.921 
2.898 
2.878 
2.861 
2.845 
2.831 
2.819 
2.807 
2.797 
2.787 
2.779 
2.771 
2.763 
2.756 
2.750 
2.704 
2.678 
2.660 
2.639 

127.3 
14.09 
7.453 
5.598 
4.773 
4.317 
4.029 
3.833 
3.690 
3.581 
3.497 
3.428 
3.372 
3.326 
3.286 
3.252 
3.222 
3.197 
3.174 
3.153 
3.135 
3.119 
3.104 
3.091 
3.078 
3.067 
3.057 
3.047 
3.038 
3.030 
2.971 
2.937 
2.915 
2.887 

636.6 
31.60 
12.92 
8.610 
6.869 
5.959 
5.408 
5.041 
4.781 
4.587 
4.437 
4.318 
4.221 
4.140 
4.073 
4.015 
3.965 
3.922 
3.883 
3.850 
3.819 
3.792 
3.767 
3.745 
3.725 
3.707 
3.690 
3.674 
3.659 
3.646 
3.551 
3.496 
3.460 
3.416 

100 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 2.871 3.390 

Table B.2 Two-sided t-test table. Each row corresponds to a degree of freedom d, 
and each column corresponds to a p-value probability. The numbers in the table show 
the t values for the given degrees of freedom d and the given p-value probability that 
differences between two sets of experiments are entirely due to random variation. 
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Many people misinterpret t-test results. As we noted earlier in this section, the 
t-test gives the probability that our results would be obtained if the performance 
of algorithms A and B were fundamentally equivalent. We can write this as 

p = Fr(R = r\A = B). (B.23) 

In words, the p-value is equal to the probability that the results R are equal to the 
obtained values r, given that the performance of algorithms A and B is equivalent.5 

Here we correct some common misunderstandings about the p-value. 

1. p Φ Pr(^4 = B). That is, the p-value is not equal to the probability that the 
performance of the algorithms is equivalent. 

2. 1 — p φ Pr(A φ Β). This is very similar to the above statement. That is, we 
can not use the p-value to derive the probability that the performance of the 
algorithms is different. 

3. p Φ Ρτ{Α = B\R = r ) . That is, the p-value is not equal to the probability 
that the performance of the algorithms is equivalent, given the results that 
we obtained. From Bayes' theorem [Grinstead and Snell, 1997] we know that 

Pr(A = B\R = r) = *L* = r\A = B)P«A = B) 
Pr(R = r) 

ρΡτ(Α = Β) 
Pr(R = r) ' 

(B.24) 

So Pr(^4 = B\R — r ) , which is the probability that the performance of algo-
rithms A and B is equivalent given the results that we observed, is directly 
proportional to the p-value. But if we want to compute a numerical value for 
Ρτ(Α = B\R = r ) , we need to know not only p, but we also need to know 
Pr(^4 = B) (that is, the a-priori probability that the performance of the two 
algorithms is equivalent), and Px{R = r) (that is, the a-priori probability that 
we obtained the results that we obtained). 

4. p φ PT(R = r) . That is, the p-value is not equal to the a-priori probability of 
obtaining the results that we obtained. As Equation (B.23) shows, p is equal 
to the a-posterior probability of obtaining the results that we observed, given 
that the performance of the algorithms is equivalent. 

5. Suppose that p is a small number, so we conclude from Equation (B.24) that 
A φ B. Then (1—p) is not equal to the probability that a second experiment 
would give the same conclusion. 

6. The p-value does not tell us quantitatively how different the two algorithms 
perform. However, the p-value does have a positive correlation with the mag-
nitude of the difference, so a larger p-value indicates a larger difference. 

It may seem like nitpicking to obsess about the details of the meaning of the p-
value, but there can be large differences between the true meaning of the p-value 
and the common but false interpretations noted above [Johnson, 1999], [Schervish, 
1996], [Sterne and Smith, 2001]. 

5Note that the notation A = B does not mean that the two algorithms are equivalent, but rather 
that their performances are equivalent. 
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B.2.5 F-Tests 

We can use the F-test, like the t-test, for a variety of tasks. This section discusses 
one simple application of the F-test that is particularly useful for analyzing EA 
results. As with the t-test, we restrict our discussion of the F-test to a very specific 
application related to the interpretation of EA experiments, and we present its use 
without any derivations. 

Suppose that we test algorithms 1, 2, and 3 on an optimization problem. We 
want to use the results to judge whether there is a statistically significant difference 
between the three algorithms. As mentioned in the previous section, we can not 
simply perform pair-wise t-tests on algorithms 1 and 2, 1 and 3, and then 2 and 3. 
As a simple intuitive explanation for why pair-wise t-testing does not work, suppose 
that we roll a fair, six-sided die. We know that we have a 1/6 « 17% chance of 
rolling a 1. Now suppose that we roll the die three times. We have a probability of 
1 — (5/6)3 « 42% of rolling a 1 on at least one of those throws. The probability that 
an event happens after one trial, is not the same as the probability that it happens 
after more than one trial. The t-test gives us the probability of observing certain 
differences between two algorithms given that the performance of two algorithms 
is identical. However, if we perform the test more than once, then the probability 
of obtaining those differences increases. 

Now that we know we cannot use the t-test, let us discuss how to use the F-test. 
Suppose that we run G separate algorithms on some optimization problem. These 
separate algorithms could actually be the same algorithm but with G different pa-
rameter settings (for example, G different mutation rates). We run each algorithm 
M times, and compute the average performance and the variance of each algorithm 
as shown in Equations (B.6) and (B.7): 

Mean = fg, Variance = σ2
9 for g G [1,G]. (B.25) 

What is the probability that we obtain these results if the performance of the G 
algorithms is fundamentally identical? That is, what is the probability that these 
results are not due to any fundamental difference between the G algorithms, but 
are simply due to random experimental variations? This is the question that the 
F-test answers. The F-statistic is calculated as 

1 G 

f = QZ^fa 
0=1 

1 G 

Sw = ~οΣσ29 

0=1 

F = Sb/Sw (B.26) 

where / is the average performance metric of all algorithms, Sw is the within-group 
variance and measures the average variance of the algorithms, 5& is the between-
group variance and measures the variance of the performance of all algorithms, and 
F is the F-statistic. We see that a large difference beteen the performance of the 
algorithms corresponds to a large F. 
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After we compute the F-statistic, we compute quantities that are called the 
numerator degree of freedom Dn and the denominator degree of freedom Dd' 

Dn = G-I 

Dd = G ( M - l ) . (B.27) 

The degrees of freedom indirectly tell us how large F needs to be to give us a 
specified level of confidence that there is a statistically significant difference in the 
performance of the algorithms. 

After we compute F , Dn, and Ζ^, we look in an F-test table to find the proba-
bility that the difference in the performance of the G algorithms is due to random 
variation rather than a fundamental difference between two or more of the algo-
rithms. Since we have two degree-of-freedom parameters (Dn and Dd), we need 
a separate table for each probability level. Tables B.3 and B.4 show some F-test 
thresholds for probability values of 5% and 1%. More complete tables can be found 
in statistics books or on the internet. To approximate values between the coordi-
nates in the tables, we can use any reasonable interpolation method. We can also 
use F-test functions in statistical software, including MATLAB, Microsoft Excel®, 
and many other software packages. 

Note that the F-statistics in Tables B.3 and B.4 decrease with Dn and Dd-
That is, as the number of groups G and the number of Monte Carlo experiments 
M increase, we require smaller differences between the algorithms' performance 
metrics to conclude that those differences are not simply due to random variations. 
For example, consider Table B.3 with Dn = Dd = 3. If F = 9.27 there is a 5% 
probability that the observed differences are due to random variation. If F > 9.27 
there is a less than 5% probability that the observed differences are due to random 
variation, so there is a greater than 95% probability that the observed differences 
are not due random variation. Compare this with Dn = Dd = 5. In this case, 
if F = 5.05 there is a 5% probability that the observed differences are due to 
random variation. If F > 5.05 there is a less than 5% probability that the observed 
differences are due to random variation, so there is a greater than 95% probability 
that the observed differences are not due random variation. 
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Dn = l 2 3 4 5 6 7 8 

Dd = 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

161.47 
18.51 
10.12 
7.70 
6.60 
5.98 
5.59 
5.31 
5.11 
4.96 

199.49 
18.99 
9.55 
6.94 
5.78 
5.14 
4.73 
4.45 
4.25 
4.10 

215.74 
19.16 
9.27 
6.59 
5.40 
4.75 
4.34 
4.06 
3.86 
3.70 

224.50 
19.24 
9.11 
6.38 
5.19 
4.53 
4.12 
3.83 
3.63 
3.47 

230.07 
19.29 
9.01 
6.25 
5.05 
4.38 
3.97 
3.68 
3.48 
3.32 

234.00 
19.32 
8.94 
6.16 
4.95 
4.28 
3.86 
3.58 
3.37 
3.21 

236.77 
19.35 
8.88 
6.09 
4.87 
4.20 
3.78 
3.50 
3.29 
3.13 

238.95 
19.37 
8.84 
6.04 
4.81 
4.14 
3.72 
3.43 
3.22 
3.07 

Table B.3 F-test table for 5% probability. Each row corresponds to a denominator 
degree of freedom Dd, and each column corresponds to a numerator degree of freedom 
Dn. The numbers in the table show the F values that allow us to conclude that there 
is a 5% or less probability that differences between multiple sets of experiments are 
entirely due to random variation. 

Dn = l 2 3 4 5 6 7 

Dd = l 
2 
3 
4 
5 
6 
7 
8 
9 

10 

4063.25 
98.50 
34.11 
21.19 
16.25 
13.74 
12.24 
11.25 
10.56 
10.04 

4992.22 
98.99 
30.81 
17.99 
13.27 
10.92 
9.54 
8.64 
8.02 
7.55 

5404.03 
99.15 
29.45 
16.69 
12.05 
9.77 
8.45 
7.59 
6.99 
6.55 

5636.51 
99.26 
28.70 
15.97 
11.39 
9.14 
7.84 
7.00 
6.42 
5.99 

5760.41 
99.30 
28.23 
15.52 
10.96 
8.74 
7.46 
6.63 
6.05 
5.63 

5889.88 
99.34 
27.91 
15.20 
10.67 
8.46 
7.19 
6.37 
5.80 
5.38 

5889.88 
99.34 
27.67 
14.97 
10.45 
8.25 
6.99 
6.17 
5.61 
5.20 

Table B.4 F-test table for 1% probability. Each row corresponds to a denominator 
degree of freedom Dd, and each column corresponds to a numerator degree of freedom 
Dn. The numbers in the table show the F values that allow us to conclude that there 
is a 1% or less probability that differences between multiple sets of experiments are 
entirely due to random variation. 

■ EXAMPLE 2.6 

Suppose we run algorithms A, B, and C on some optimization problem. We 
run each algorithm four times (M = 4) and obtain the following results, which 
are written in the format of Equation (B.5): 

Algorithm A: {fATk} = {4, 5, 3, 2} 
Algorithm B: {fBTk} = {6, 4, 4, 5} 
Algorithm C: {fCTk} = {5, 7, 6, 6}. (B.28) 
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To estimate the probability of obtaining these differences simply due to ran-
dom variation and not due to any fundamental difference between the per-
formance of the three algorithms, we first calculate the mean and variance of 
the results as shown in Equations (B.6), (B.7), and (B.25): 

SA = 3.50, σ\ = 1.67 
fB = 4.75, σ\ = 0.92 
Se = 6.00, σΐ = 0.67. (B.29) 

Next we use Equation (B.26) to compute the F-statistic: 

/ = 4.75 
Sw = 1.08 
Sb = 6.25 
F = 5.77. (B.30) 

Next we use Equation (B.27) to compute the degrees of freedom: 

Dn = 2 
Dd = 9. (B.31) 

Now we look in Table B.3, which is the 5% F-test table, and we see that for 
these degree-of-freedom values the F-statistic is 4.25. Our F-statistic is 5.77, 
so if the performance of algorithms A, B, and C is fundamentally equivalent, 
the probability is less than 5% that we would get the results shown in Equa-
tion (B.28). Equivalently, we can say that if the performance of algorithms A, 
B, and C is equivalent, the probability is more than 95% that we would see 
smaller variations that those shown in Equation (B.28). We can also look in 
Table B.4, which is the 1% F-test table, to see that for Dn = 2 and Da = 9, 
the F-statistic is equal to 8.02. Our F-statistic is 5.77, so if the performance 
of algorithms A, B, and C is fundamentally equivalent, the probability is 
greater than 1% that we would see the differences shown in Equation (B.28). 
Equivalently, we can say that if the performance of algorithms A, J5, and C 
is equivalent, the probability is less than 99% that we would see smaller vari-
ations that those shown in Equation (B.28). Combining these results with 
simple linear interpolation, we conclude 

F = 4.25 gives p = 5% 
F = 8.02 gives p = 1% 

therefore, F = 5.77 gives p « 3.4%. (B.32) 

That is, if the performance of algorithms A, JB, and C is fundamentally equiv-
alent, the probability is about 3.4% that we would see the differences shown 
in Equation (B.28). At this point we can perform pair-wise t-tests, or simpler 
tests, to see where the algorithm differences lie. Equation (B.29) shows that 
algorithm C appears to be significantly different than algorithms A and B, so 
we can conclude that the 3.4% F-test probability is mostly due to algorithm C. 

D 
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Like the t-test, the F-test assumes that each experiment's results follows a Gaus-
sian distribution. Unlike the t-test, F-test results can be greatly affected by non-
normal distributions, so F-test results may not be valid if the Gaussian assumption 
is violated. In these cases we can use non-parametric tests, which do not assume 
that the data follows any particular probability distribution function. Many non-
parametric statistical tests are available to the EA researcher [Good and Hardin, 
2009], [Kanji, 2006], including the commonly-used Wilcoxon test [Corder and Fore-
man, 2009]. 

B.3 CONCLUSION 

The astute reader will notice that this book violates many of the principles discussed 
in this appendix. For instance, when comparing various algorithms and EA vari-
ations in this book, we did not perform any statistical testing. This inconsistency 
is purposeful, and is not due to laziness, hypocrisy, or time pressure. We could 
have easily included statistical tests in this book. But the purpose of this book is 
primarily instruction rather than research. Therefore, the chapters are not laid out 
or presented in a way that is suitable for a journal or research monograph. If we 
had adhered to peer-review standards in this book, then it would have been overly 
full of technical and numerical details that would have obscured the simplicity of 
the algorithms and results. 

The overall goal of this book is to provide a simple, broad, down-to-earth, basic 
education in the area of EAs. The specific goal of this appendix is to encourage 
researchers and peer reviewers to think more carefully about standards in EA re-
search. Some additional resources that provide excellent guidelines for conducting 
EA experiments and reporting results include [Barr et al., ] and [Crepinsek et al., 
2013]. 



APPENDIX C 

Benchmark Optimization Functions 

. . . algorithms can become customized for a particular set of test problems; this is 
troubling if the test problems do not represent the types of problems that evolutionary 
algorithms are best suited for in practice. 

—Darrell Whitley [Whitley et al., 1996] 

This appendix presents some standard benchmark optimization problems that 
can be used to compare optimization algorithms. We use x — [ # i , . . . ,x n] to rep-
resent the n-dimensional domain of the function, and f(x) to represent the scalar 
function value. 

Appendix C.l presents unconstrained optimization benchmarks, Appendix C.2 
presents constrained optimization benchmarks, and Appendix C.3 presents multi-
objective optimization benchmarks, for which f(x) is a vector. Appendix C.4 
presents dynamic optimization benchmarks, Appendix C.5 presents noisy optimiza-
tion benchmarks, and Appendix C.6 presents traveling salesman benchmarks. 

Some optimization algorithms are naturally biased toward certain types of search 
spaces. Because of this, it is important to modify the benchmarks in this appendix 
by incorporating offsets and rotation matrices in the problem. We discuss this 
important point in Appendix C.7. 

Evolutionary Optimization Algorithms, First Edition. By Dan J. Simon 641 
©2013 John Wiley & Sons, Inc. 
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Benchmarks are useful and important for obtaining comparative results between 
different EAs. But in the final analysis, it is more interesting and useful to test 
optimization algorithms on problems that have applications in the real world. 

C.l UNCONSTRAINED BENCHMARKS 

The problem is to minimize f(x) over all x. We use x* to represent the optimizing 
value of #, and f(x*) is the minimum value of / ( # ) : 

x* = a rgmin / (x ) . ( C l ) 
X 

Many of the benchmarks that we present in this section are from [Back, 1996], [Cai 
and Wang, 2006], and [Yao et al., 1999]. Detailed information about the uncon-
strained benchmarks and evaluation metrics for EA competitions at the 2005 IEEE 
Congress on Evolutionary Computation can be found in [Suganthan et al., 2005], 
and [Ali et al., 2005] also includes many unconstrained benchmarks. [Floudas et al., 
2010] is an entire book that is devoted to the definition of unconstrained optimiza-
tion benchmarks. We restrict the benchmarks presented here to those functions 
that can be defined for any number of dimensions n. Many other benchmarks have 
been proposed, including some with a fixed number of dimensions. But we think 
that it is more interesting to test optimization algorithms on benchmarks whose di-
mensionality can be varied so that performance can be explored as a function of the 
number of dimensions. The domains that we specify in the following subsections 
are common, but researchers have also used many other domains. 

C.l . l The Sphere Function 

The sphere function is given as 

M = i>? 
x* = 0 

/(**) = 0 (C.2) 

where Xi G [—5.12,+5.12]. This is called function 1 in Ken De Jong's thesis 
[De Jong, 1975], and it is Problem 1.1 and Problem 2.17 in [Schwefel, 1995]. Fig-
ure C.l shows a plot of f(x) in two dimensions. This is a very simple optimization 
problem, and almost any reasonable algorithm should be able to find its minimum 
accurately, but it provides a good preliminary test for optimization algorithms. It 
also provides a good benchmark for comparison between algorithms, because many 
optimization problems are approximately quadratic near their minimum. 
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Figure C.l The two-dimensional sphere function. 

C.1.2 The Ackley Function 

The Ackley function is given as 

f(x) = 20 + e - 20 exp ( -0 .2 ] P x2Jn ) - exp ( ]T(cos 2πχ»)/η 
i=l 

x* = 0 

f(x*) = o (C.3) 

where Xi G [—30,+30]. This benchmark was proposed in [Ackley, 1987b]. Fig-
ure C.2 shows a plot of f(x) in two dimensions. Its many local minima make it a 
challenge for optimization algorithms. 

*HM& 

Figure C.2 The two-dimensional Ackley function. 
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C.1.3 The Ackley Test Function 

The Ackley test function is given as 

n - l 

f(x) = Σ 3(cos(2^) + sin(2x i + i)) + e x p ( - 0 . 2 ) ^ χ \ + a??+1 (C.4) 

where Xi G [—30,+30]. Note that x* and f(x*) are not known for this problem. 
This benchmark is similar to the Ackley function with its many hills and valleys, 
as shown in Figure C.3. 

Figure C.3 The two-dimensional Ackley test function. 

C.1.4 The Rosenbrock Function 

The Rosenbrock function is given as 

n - l 

f{x) = £ [ l00(x i + 1 - z 2 ) 2 + (xi - l)2] 
i=l 

x* = [1 , · · · ,1] 
/ (**) = 0 (C.5) 

where xi G [—2.048, +2.048]. This benchmark was proposed in [Rosenbrock, 1960], 
it is called Function 2 in De Jong's thesis [De Jong, 1975], and it is Problem 2.4, 2.24, 
and 2.25 in [Schwefel, 1995]. Figure C.4 shows a plot of f(x) in two dimensions. It 
has a long, narrow, banana-shaped valley that makes it a challenge for optimization 
algorithms. 
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Figure C.4 The two-dimensional Rosenbrock function. 

C.1.5 The Fletcher Function 

The Fletcher function, also called the Fletcher-Powell function, is given as 

f{x) = f ^ - i f c ) 2 

i=l 
n 

Ai = 7_^(ûij sinaj + b^ cosctj) 
i=l 

n 

Bi = 2Ζ(α*3 S m X3 + bij COS xj ) 
i = l 

α^ G [-ττ,π], ζ<Ξ{1, · · · ,η} 

Û ijf 5 Oij t -100,100], i , i € {!,·· · ,«} 

/ (**) = 0 (C.6) 

where x^ G [—π, +π] . This benchmark was proposed in [Fletcher and Powell, 1963] 
and is called Problem 2.13 in [Schwefel, 1995]. Figure C.5 shows a plot of f(x) in 
two dimensions for specific values of α^, 6^, and α^. This function is interesting 
because it changes with each realization of α^, bij, and α^. These parameters are 
often set with a uniform random number generator. 
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Figure C.5 The two-dimensional Fletcher function. 

C.1.6 The Griewank Function 

The Griewank function, which is sometimes spelled Griewangk, is given as 

n n 

f(x) = 1 + Σ 2^/4000 - f | cos (xi/Vtj 

x* = 0 
fix*) = 0 (C.7) 

where Xi G [—600,+600]. This benchmark is discussed in [Back et al., 1997a, 
Section B2.7]. Figure C.6 shows a plot of f(x) in two dimensions. This function 
has many local optima, and the product term in f(x) causes a lot of interdependence 
among the components of x. 

Figure C.6 The two-dimensional Griewank function. 
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C.1.7 The Penalty # 1 Function 

The penalty # 1 function is given as 
s n—1 N n 

f(x) = -\l0sm2(nx1) + ly(xi-l)
2[l + 10sm2(nxi+1)} + {xn-l)

2\+'yui 

!

k(xi — a)171 Xi > a 
0 —a < xi < a 

k(—Xi — a)m Xi < —a 
Vi = 1 + (Xi + l ) / 4 
x* = [1 , · · · , ! ] 

/(x*) = 0 (C.8) 

where x^ G [—50, +50]. This benchmark is given in [Yao et al., 1999]. Values for /c, 
a, and m are not given but we usually use k = 100, a = 10, and m = 4. Figure C.7 
shows a plot of f(x) in two dimensions. This function only has one minimum, 
but the function is very shallow at the minimum, so it is a challenge to find the 
minimum with high accuracy. 

Figure C.7 The two-dimensional penalty #1 function. 

C.1.8 The Penalty # 2 Function 

The penalty # 2 function is given as 

m 10sin2(37r:r1) + 
n , 

Y^ui + v.ih 
i=l ^ 

n—1 x 

Y^(xi - 1)2[1 + sin2(37^+1 )] + (xn - 1)2[1 + sin2(27nrn)] I 
i=l ' 

x* = [1 , . . . ,1] 
f(x*) = 0 (C.9) 

where Xi G [—50, +50], and Ui is given in Equation (C.8). This benchmark is given 
in [Yao et al., 1999]. Like the penalty # 1 function, values for /c, a, and m are not 
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given but we usually use k — 100, a — 5, and m = 4. Figure C.8 shows a plot 
of f(x) in two dimensions. Like the penalty # 1 function, the penalty # 2 function 
only has one minimum, but the function is very shallow at the minimum, so it is a 
challenge to find the minimum with high accuracy. 

Figure C.8 The two-dimensional penalty #2 function. 

C.1.9 The Quartic Function 

The quartic function is given as 

fix) = j^ixi 
i=l 

X* = 0 

f(x*) = 0 (C.10) 

where X{ G [—1.28,+1.28]. Noise is often added to f(x), but that does not change 
the argument of the minimum. This benchmark is called function 4 in De Jong's 
thesis [De Jong, 1975], and it is also given in [Yao et al., 1999]. The quartic function 
can also be written with Xi raised to the second instead of the fourth power, in which 
case it is called the hyper-ellipsoid function, or the weighted sphere function [Ros 
and Hansen, 2008]. However, sometimes the hyper-ellipsoid function is written as 
follows [Yao and Liu, 1997]: 

n 

/(x) = £ 2 X 2 . (C.ll) 

Figure C.9 shows a plot of f(x) in two dimensions. Like the penalty functions, the 
quartic function only has only one minimum, but the function is very shallow at 
the minimum, so it is a challenge to find the minimum with high accuracy. 
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Figure C.9 The two-dimensional quartic function. 

C.1.10 The Tenth Power Function 

The tenth power function is given as 

ft) = i>10 

x* = 0 

f(x*) = 0 (C.12) 

where Xi G [—5.12,+5.12]. This benchmark was proposed in [Schwefel, 1995] as 
Problem 2.23, and is also given in [Yao et al., 1999]. Figure C.10 shows a plot 
of f(x) in two dimensions. Like the quartic and penalty functions, the the tenth 
power function only has only one minimum, but the function is very shallow at the 
minimum, so it is a challenge to find the minimum with high accuracy. 

Figure C.10 The two-dimensional tenth power function. 
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C . l . l l The Rastrigin Function 

The Rastrigin function is given as 

n 

f(x) = 10n + Σ x1 - 1 0 cos(27TXi) 
i=l 

x* = 0 

f(x*) = 0 (C.13) 

where Xi £ [—5.12,+5.12]. This benchmark was proposed in [Rastrigin, 1974], 
and is also given in [Yao et al., 1999]. Figure C. l l shows a plot of f(x) in two 
dimensions. The Rastrigin function looks similar to the Griewank function. The 
number of local minima in the Rastrigin function increases exponentially with n 
[Beyer and Schwefel, 2002]. 

Figure C . l l The two-dimensional Rastrigin function. 

C.1.12 The Schwefel Double Sum Function 

The Schwefel double sum function, also called Schwefel's ridge function [Price et al., 
2005], Schwefel 1.2, and the quadric function, is given as 

t = l \j=l ) 

x* = 0 
/ ( * ' ) = 0 (C.14) 

where Xi e [—65.536,+65.536]. This benchmark is also called the rotated hyper-
ellipsoid function [Ros and Hansen, 2008]. It was proposed in [Schwefel, 1995] as 
Problem 1.2 and Problem 2.9, and is also given in [Yao et al., 1999]. It is a quadratic 
function whose condition number is proportional to n2 . Figure C.12 shows a plot 
of f(x) in two dimensions. 
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Figure C.12 The two-dimensional Schwefel double sum function. 

C.1.13 The Schwefel Max Function 

The Schwefel max function, also called the Schwefel 2.21 function, is given as 

f(x) = max(12*1 : i G {1 , · · · , η} ) 

x* = 0 

fix') = 0 (C.15) 

where Xi G [—100,+100]. This benchmark was proposed in [Schwefel, 1995], and is 
also given in [Yao et al., 1999]. It is nondifferentiable. Figure C.13 shows a plot of 
f(x) in two dimensions. 

Figure C.13 The two-dimensional Schwefel max function. 
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C.1.14 The Schwefel Absolute Function 

The Schwefel absolute function, also called the Schwefel 2.22 function, is given as 

n n 

six) = Σ Ν Ι + ΠΙ** 
ί=1 i=l 

x* = 0 
/(**) = 0 (C.16) 

where Xi G [—10, +10]. This benchmark was proposed as Problem 2.22 in [Schwefel, 
1995], and is also given in [Yao et al., 1999]. It is nondifferentiable. Figure C.14 
shows a plot of f(x) in two dimensions. 

Figure C.14 The two-dimensional Schwefel absolute function. 

C.1.15 The Schwefel Sine Function 

The Schwefel sine function, also called the Schwefel 2.26 function, is given as 

six) = - Σ XiSin \/\Xi\ 

x* = [420.9687, · · ·, 420.9867] 
/ ( x *) = -12965.5 (C.17) 

where x^ G [—500,+500]. This benchmark was proposed in [Schwefel, 1995] as 
Problems 2.3 and 2.26, and is also given in [Yao et al., 1999]. It has many local 
minima. Figure C.15 shows a plot of f(x) in two dimensions. 



APPENDIX C.I: UNCONSTRAINED BENCHMARKS 653 

Figure C.15 The two-dimensional Schwefel sine function. 

C.1.16 The Step Function 

The step function is given as 

m 
X* 

/(**) 

= 

= 
= 

y^ (floor (#, 

0 
0 

+ 0.5)) 

(C.18) 

where Xi G [—100,+100], and where the floor function returns the smallest inte-
ger less than or equal to its argument. This benchmark is called function 3 in 
De Jong's thesis [De Jong, 1975], and it is also given in [Yao et al., 1999]. It is not 
differentiable, and it has many plateaus. Figure C.16 shows a plot of f(x) in two 
dimensions. 

Figure C.16 The two-dimensional step function. 
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C.1.17 The Absolute Function 

The absolute function is given as 

m = 5><ι 
x* = 0 

/(**) = 0 (C.19) 

where x{ G [-10, +10]. This benchmark is Problem 2.20 in [Schwefel, 1995]. It is 
not differentiate. Figure C.17 shows a plot of f(x) in two dimensions. 

f 

Figure C.17 The two-dimensional absolute function. 

C.1.18 Shekel's Foxhole Function 

Shekel's foxhole function is given as 

x* = 

1 ^ 1 

-32] -32, 

1 (C.20) 

where Xi G [—65.536, +65.536], and where α^ is the element in the zth row and j t h 
column of a. For two dimensions (n = 2), a is given as 

a = 

bo 

bi 

b0 ■ ■■ b0 

h ■■■ b5 

= [ - 3 2 - 1 6 0 16 32 ] 

= (16(i - 1) - 32) [ 1 1 1 i i ] (C.21) 

This benchmark is called function 5 in De Jong's thesis [De Jong, 1975], and it is 
also given in [Yao et al., 1999]. It has multiple local minima, not all of which are 
the same value, and it has a steep drop to its minimum, as shown by its plot in 
Figure C.18. Additional rows can be augmented to a if n > 2 citeBersini. 
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Figure C.18 The two-dimensional Shekel foxhole function. 

C.1.19 The Michalewicz Function 

The Michalewicz function is given as 

f(x) = - ^ s i n £ i s i n 2 m ( ù ^ / 7 r ) (C.22) 

where Xi G [0, π], and m is a parameter that controls the difficulty of the search. 
Note that x* and f(x*) are not known for this problem. This benchmark is given 
in [Michalewicz, 1996]. It has long narrow valleys with a sudden drop-off to the 
minimum, as shown by its plot in Figure C.19. 

Figure C.19 The two-dimensional Michalewicz function with m = 10. 

C.I.20 The Sine Envelope Function 

The sine envelope function is given as 

/ ( * ) ■ E sin2 y/xi + Xi+i - 0.5 
< = 1 ( 0 . 0 0 1 ( ^ + χ?+1) + 1)2 

(C.23) 
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where X{ G [—100, +100]. Note that x* and /(#*) are not known for this problem. 
This benchmark, also called the SchaefFer function [Cheng et al., 2008], has many 
valleys and local minima, as shown by its plot in Figure C.20. 

1 i ? 

Figure C.20 The two-dimensional sine envelope function. 

C.1.21 The Eggholder Function 

The eggholder function is given as 

n - l 

f{x) = - Σte+i + 47)sin V W i + *i/2 + 47| + Xi sin y/\Xi - xi+1 - 47| (C.24) 

where Xi G [—512,+512]. Note that x* and f{x*) are not known for this problem. 
This benchmark is given in [Wu and Chow, 2007]. Its two-dimensional plot is shown 
in Figure C.21. 

Figure C.21 The two-dimensional eggholder function. 
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Cl .22 The Weierstrass Function 

The Weierstrass function is given as 

f(x) = Σ Σ [ßfc cos ( 2 7 r 6 f c (^+° · 5 ) ) ] f - n Σ ta* c08^)] 
i=l I fc=0 J fc=0 

x* = 0 

/(**) = 0 (C.25) 
where Xi G [—5,+5], a = 0.5, 6 = 3, and /cmax = 20. This benchmark is given in 
[Liang et al., 2005]. It has the interesting property that as n —> oo, it is continuous 
everywhere but differentiable nowhere, and it is nonmonotonic everywhere. A plot 
of the two-dimensional Weierstrass function is shown in Figure C.22. 

Figure C.22 The two-dimensional Weierstrass function. 

C.2 CONSTRAINED BENCHMARKS 

A constrained optimization problem involves the minimization of f(x) over all x 
such that x G T G 1ln, where T is the feasible set and n is the problem dimension. 
We use x* to represent the optimizing value of x, and f(x*) is the constrained 
minimum of / (# ) : 

x* = arg min / (x ) 
X 

such that gi{x) < 0 for i G [l,ra] and hj(x) = 0 for j G [l,p]. (C.26) 

This problem includes (m + p) constraints, m of which are inequality constraints 
and p of which are equality constraints. Many problems of this form have long and 
involved forms for / ( x ) , gi(x), and hj(x), and it thus requires a lot of space simply 
to write the problem. Therefore, we only show simple constrained benchmarks 
in this section, while giving references where some longer and more complicated 
benchmarks can be found. 

Constrained benchmark functions are given in [Araujo et al., 2009], [Coello Coello, 
2000a], [Coello Coello, 2002], [Deb, 2000], [Mezura-Montes and Coello Coello, 2005], 
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and [Runarsson and Yao, 2000]. Detailed information about the constrained bench-
marks and evaluation metrics for EA competitions at the 2006 and 2010 IEEE 
Congress on Evolutionary Computation can be found in [Liang et al., 2006] and 
[Mallipeddi and Suganthan, 2010]. Note that [Floudas and Pardalos, 1990] is an en-
tire book that is devoted to the definition of constrained optimization benchmarks. 
Constrained multi-objective benchmarks can be found in [Deb et al., 2001]. 

The constrained benchmarks in this section are all taken from [Mallipeddi and 
Suganthan, 2010] and were used in a constrained EA competition at the 2010 
Congress on Evolutionary Computation (CEC). In the problem statements below 
we use Oi to refer to a random offset and we use M to refer to a random rotation 
matrix (see Section C.7). 

C.2.1 The C01 Function 

The C01 function is given as 

f/Vl _ 1 ΣΓ=ι c o s 4 zi -2 ΠΓ=ιCQs2 * 1 
n 

gi(x) = 0.75-TJzi<0 

n 

i=l 

Xi <E [0,10] (C.27) 

where zi = Xi — Oi for i G [1, n]. 

C.2.2 The C02 Function 

The C02 function is given as 

f(x) = max 2̂  
i 

1 n 

g1 (x) = 10 - - Σ {zi - 10 cos(27r*i) + 10) < 0 
n i = i 

1 n 

92[x) = -J2 (zf - 10cos(2^i) + 10) - 15 < 0 
i=l 

1 n 

h(x) = - V (yf - 10 cos(27ryi) + 10) - 20 = 0 
n *-^ 

Xi e [-5.12,+5.12] (C.28) 

where zi = Xi — Oi and yi — Zi— 0.5 for i G [1, n]. 
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C.2.3 The C03 Function 

The C03 function is given as 

n - l 

/(*) = Σ [I00(zf - zi+1)
2 + (z, - l)2] 

i=l 

n - l 

h{x) = Σ& - zi+1)
2 = 0 

i=l 

Xi G [-1000,1000] (C 

where Zi = Xi — 0{ for i G [1, n]. 

C.2.4 The C04 Function 

The C04 function is given as 

f(x) = max Z{ 

1 n 

h\ (x) = - y Zi cos y/\zï\ = 
77. *—^ 

0 
n ·. 
n / 2 - 1 

M*) = Σ (* i -*+l ) 2 =0 
i = l 

z = n / 2 + l 
n 

i = l 

a?i G [-50,50] (C 

where Zi = Xi — Oi for i G [l ,n]. 

C.2.5 The C05 Function 

The C05 function is given as 

f(x) = maxzj 

1 n 

M*) = - ] £ [ - * sin (vfëî)] =0 i=\ 

1 n 

M*0 = - Σ [~Zi cos ( ° - 5 > / N ) ] = ° 
ΐ = 1 

a;. € [-600,600] (C 

where z\ = Xi — Oi for i G [1, n]. 
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C.2.6 The C06 Function 

The C06 function is given as 

f(x) = maxzi 
i 

Vi = (Zi + 483.6106156535)M - 483.6106156535 
1 n 

hl^ = ;̂ Σ [~̂ sin
 (>/N)J = o 

i=\ 

1 n h2(x) = - Σ [~Vicos (°-5v1^i)] = o 
Xi G [-600,600] 

where Z{ — Xi — Oi for % G [1,n]. 

C.2.7 The C07 Function 

The C07 function is given as 

(C.32) 

f{x) = ] T [ l 0 0 ( 2 2 - ^ + 1 ) 2 + ( ^ - l ) 2 ] 

0.1 U.± ^ 2 — 3 exp g(x) — 0.5 — exp 

Xi G [-140,140] 

where yi = Xi — Oi and Zi — Xi — Oi + 1 for i G [1,n). 

C.2.8 The C08 Function 

The C08 function is given as 

f(x) = £[l00(^-^+ 1)2 + (^-l)2] 

1 n 

-V]cos(0. l2 / i ) + exp(l) < 0 

(C.33) 

0.1 — 3 exp 
1 n 

- V c o s ( O . l ^ ) 
T7. * ■* 

g(x) = 0.5 — exp 

Xi G [-140,140] 

where yi = (xi — Oi)M and Zi = Xi — Oi + 1 for i G [1, n] 

+ exp(l) < 0 

(C.34) 
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C.2.9 The C09 Function 

The C09 function is given as 

/(*) - ^2[l00(zf-zl+1)
2 + (zt-l)

2] 

h(x) = Y^ysmy/\y~\=0 

Xi G [-500,500] (C 

where yi — x% — oi and zi — Xi + 1 — o\ for i G [1,n]. 

C.2.10 The C10 Function 

The C10 function is given as 

f{x) = Σ [l00(zf - zi+1)
2 + (Zi - l)2] 

i = l 
n 

h(x) = ^yisinV\yï\ = Q 
i=l 

x G [-500,500] (C 

where yi = (x{ — Oi)M and z^ = Xi + 1 — Oi for i G [1, n]. 

C.2.11 The C l l Function 

The Cll function is given as 

/(*) = ^E[-^cos(2^] 
1=1 

h{x) = Σ [100^2 -2/i+i)2 + ( î / « - l ) 2 ] = 0 

a?» G [-100,100] (C 

where ^ = #; + 1 — Oi and Zi = (xi — Oi)M for i G [1, n]. 
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C.2.12 The C12 Function 

The C12 function is given as 

m = Σ Zi am y/\Zi\ 

h(x) = ] T > ? - * + 1 ) 2 = 0 
i=l 
n-1 

g(x) = ^ [ ^ - 1 0 0 c o s ( 0 . 1 ^ ) + 10] < 0 
i=l 

Xi G [-1000,1000] 

where zi = Xi — Oi for i G [1,n]. 

C.2.13 The C13 Function 

The C13 function is given as 
i n 

f(x^ = n Σ lZi Sin " l̂l 
i=l 

»w - " Σ > © * ° 
p3(x) = 7 5 - 5 0 

Xi G [-500,500] 

where Zi = Xi — Oi for i G [1,n]. 

C.2.14 The C14 Function 

The C14 function is given as 

esäö-n~(3)+' <o 

f(x) = Σ [l00(z2 - z i + 1)2 + (* - l)2] 
i = l 
n 

ΟΊ(Χ) = Σ [~̂ cos >/NJ ~n - ° 
i = l 

n 

g2(x) = Σ [y*cos \ / N | - n < 0 
i = l 

n 

^ W = Σ [yi s i n Vlîfcï] - 10n < 0 
i=l 

a:» G [-1000,1000] 

(C.38) 

(C.39) 

(C.40) 



APPENDIX C.2: CONSTRAINED BENCHMARKS 

where yi — x% — Oi and Zi = Xi — ο% + 1 for i G [1, n]. 

C.2.15 The C15 Function 

The C15 function is given as 

f(x) = J2[l00(zf-zi+1)
2 + (Zi-l)

2] 

n 

0i (χ) = Σ [~^cos >/Ν] ~n - ° 
i=l 

n 

9ϊ(χ) = Σ Fcos vT^îj ~n - ° 
z = l 

n 

03 0*0 = ] P [î/i sin v7!^!] - 10n < 0 

x̂  G [-1000,1000] (C 

where yi — (xi — Oi)M and z\ — Xi — Oi + 1 for i G [1, n]. 

C.2.16 The C16 Function 

The C16 function is given as 

z = l ι = 1 x v ' 

n 

9l(x) = γ^ [ζϊ ~ lOOcos(^i) + 10] < 0 
i=l 

n 

g2(x) = Y[zi<0 
i=l 

n 

hi (x) = Σ Π sin V^kïï] = ° 
z = l 

n 

/̂ fa) = Σ \~zs[n \ / N I = ° 
i=l 

Xi G [-10,10] (C 

where ζι — χ\ — 0{ for i G [1, n]. 
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C.2.17 The C17 Function 

The C17 function is given as 

f(X) = £ > - 2 < + 1 ) 2 

i = l 
n 

9l{x) = Y[zi<0 
i=l 

n 

i = l 
n 

h(x) = ^ 2 i s i n ( 4 v 1 ^ ) = 0 

Xi e [-10,10] (C.43) 

where Zi = X{ — 0{ for % G [1, n]. 

C.2.18 The C18 Function 

The C18 function is given as 

f(X) = ]C(2<-*i+l)2 

i = l 

1 n 

#(χ) = ~ Σ [~Zi sin v^kïTj = 
1 n 

/i(x) = - 5Z Uisin y/W\\ = ° 

Xi G [-50,50] (C.44) 

where Zi = Xi — o* for i G [1, n]. 

C.2.19 Summary of Constrained Benchmarks 

Here we give a summary of the 18 CEC 2010 benchmarks presented above. The 
estimated ratio p between the size of the feasible set and the size of the search 
space indicates how difficult it is to satisfy the constraints (see Equation (19.53)). 
Table C.l summarizes the 18 constrained benchmarks. 
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Function Ne N{ p (n = 10) p (n = 30) 

C01 
C02 
C03 
C04 
C05 
C06 
C07 
C08 
C09 
CIO 
C l l 
C12 
C13 
C14 
C15 
C16 
C17 
C18 

0 
1 
1 
4 
2 
2 
0 
0 
1 
1 
1 
1 
0 
0 
0 
2 
1 
1 

2 
2 
0 
0 
0 
0 
1 
1 
0 
0 
0 
1 
3 
3 
3 
2 
2 
1 

0.997689 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.505123 
0.379512 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.003112 
0.003210 
0.000000 
0.000000 
0.000000 

1.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.503725 
0.375278 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.006123 
0.006023 
0.000000 
0.000000 
0.000000 

Table C.I Summary of 18 CEC 2010 constrained optimization benchmarks. Ne is 
the number of equality constraints, Ni is the number of inequality constraints, and p is 
the ratio of the size of the feasible set to the size of the search space for the 
10-dimensional and 30-dimensional versions of each problem. 

C.3 MULTI-OBJECTIVE BENCHMARKS 

A multi-objective optimization problem (MOP) involves the minimization of f(x) 
over all x, where f(x) is a vector, and x is the n-dimensional decision vector. Vector 
minimization is undefined in the normal sense of the word, and so we define the 
Pareto set Ps and the Pareto front Pf in Section 20.1. We can then pose an MOP 
as the problem of finding the "best" possible Ps and Pf. We can define "best" in 
a number of different ways as we discuss in Section 20.2. 

Detailed information about the multi-objective benchmarks and evaluation met-
rics for EA competitions at the 2007 and 2009 IEEE Congress on Evolutionary Com-
putation can be found in [Huang et al., 2007] and [Zhang et al., 2009]. Additional 
multi-objective benchmark problems can be found in [Zitzler et al., 2000]. Con-
strained multi-objective benchmarks can be found in [Deb et al., 2001]. Approaches 
for designing new multi-objective test problems can be found in [Deb et al., 2002b] 
and [Zhang et al., 2009]. The literature proposes many multi-objective benchmarks 
and new ones continually appear in the literature. In this section we only show the 
unconstrained MOPs from the CEC 2009 competition [Zhang et al., 2009]. The 
reader can find additional multi-objective benchmarks (both constrained and un-
constrained) in the references above. The dimension of the independent variable in 
the benchmarks below is variable, but the CEC 2009 competition used n = 30. 
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C.3.1 Unconstrained Multi-Objective Optimization Problem 1 

This two-objective problem is defined as 

/ l W xi + —— ^ P [XJ - sin (6πχι + J7r/n)]2 

\Ji jeJi 
2 

/2(x) = 1 - yfi[ + j y r ^ [XJ - sin (6πχι + jn/n)]2 

\J: 1 j € J 2 

where the sets J\ and J2 are defined as 

J i = ϋ G [2, ra] : j is odd} 
^2 = {j G [2,n] : j is even}. 

The search space is 

xi e [0,1] 
Xj G [-1,1] for j G [2, n]. 

/Γ € [0,1] 

/2* = l-yffi. 

x\ e [0,1] 
x* = sin (6πχι + jn/n) for j E [2,n]. 

C.3.2 Unconstrained Multi-Objective Optimization Problem 2 

This two-objective problem is defined as 

The Pareto front is 

The Pareto set is 

/ l X\ + 
\Ji 

y) 
jeJi 

9 

\J2 j € J 2 

(C.45) 

(C.46) 

(C.47) 

(C.48) 

(C.49) 

(C.50) 

where 3\ and J2 are the same as in Unconstrained MOP 1, and yj is defined as 

_ j Xj- [0.3xf 
Vj ~ \ Xj- [0.3x1 

The search space is 

I cos (24πχι + Aj-π/η) + 0.6xi 
-^ cos (247ra;i + 4jn/n) + 0.6a;! 

cos (6πα:ι + jir/n) if j G J i 
sin (6πΐι + ^π/η) i f j e J 2 . 

(C.51) 

The Pareto front is 

xi € [0,1] 
Xj € [-1,1] for j € [2,n]. 

/1 € [0,1] 

/a = 1-VÏÏ-

(C.52) 

(C.53) 
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The Pareto set is 

x{ e [0,1] (C.54) 
* _ ί [° ·3(^ϊ)2 c o s (24π^ϊ + 4j7r/n) + 0.6x^1 cos (6πχ{ + jn/n) if j e Jx 

Xj ~ \ [0.3(xl)2 cos (24πχΙ + Ajir/n) + 0.6xf] sin (βπα^ + J7r/n) if j <E J2 . 

C.3.3 Unconstrained Multi-Objective Optimization Problem 3 

This two-objective problem is defined as 

/ i = xi + ΛΙ 
4 Σ ^2 - 2 Πcos (20^π/ ν^)+2 

jGJi jGJi 

Λ = ι - ν ^ + ^ 4 Σ *£ - 2 Π cos (2°2W\/i) + 2 (C.55) 
je^2 j€ J 2 

where J i and J2 are the same as in Unconstrained MOP 1, and yj is defined as 

Vi = Xj - I^[l+30-2)/(„-2)] for . e [ 2 j n ] ( c 5 6 ) 

The search space is 

The Pareto front is 

The Pareto set is 

Xj e [-1,1] for je [ l ,n]. 

/1 € [0,1] 

xî G [0,1] 

x* = (x*f-W+W-*V(n-2)UoTJe[2,n]' 

C.3.4 Unconstrained Multi-Objective Optimization Problem 4 

This two-objective problem is defined as 

2 v ^ 
h = χι+ιΓΤ l^hM 

(C.57) 

(C.58) 

(C.59) 

\Ji jeJi 

2 v-^ 
h = 1 - v ^ ï + 7 7 7 2^h{yj) \M 

(C.60) 

(C.61) 
j € J 2 

where J i and J2 are the same as in Unconstrained MOP 1, yj is defined as 

V3 — x3 ~ s m {6πχι + JTT/ÎT) for j e [2, n] (C.62) 

and h(-) is defined as 

h{t) = \t\ 
1 _1_ e2|t | * (C.63) 
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The search space is 

xi € [0,1] 

Xj e [-2,2] for j e [2, n]. (C.64) 

The Pareto front is 

fî e [o,i] 
Î2 = 1 - ( / Γ ) 2 · (C.65) 

The Pareto set is 

x\ e [0,1] 
x* = sin (6πχ{ + jir/n) for j G [2,n]. (C.66) 

C.3.5 Unconstrained Multi-Objective Optimization Problem 5 

This two-objective problem is defined as 

Λ = xi+(J^ + €ysm(2Nnx1)\ + j^^h(yj) (C.67) 

(C.68) 
jeJ2 

where J\ and J2 are the same as in Unconstrained MOP 1, N is an integer (N = 10 
in the CEC 2009 competition), e is a positive real number (e = 0.5 in the CEC 2009 
competition), y3 is defined as 

V3 — xj ~ s m (^πχι + jn/n) for j G [2, n] (C.69) 

and h(·) is defined as 
h(t) = 2t2 - COS(4TT£) + 1. (C.70) 

The search space is 

xi e [0,1] 
Xj e [-1,1] for j e [2,n]. (C.71) 

The Pareto front contains (27V + 1) discrete points: 

Uli, Î2Ù = (*/(2ΛΓ), 1 - i/{2N)) for i € [1 ,2N+1]. (C.72) 

The Pareto set also contains (27V +1) discrete points, but they cannot be expressed 
analytically and so we do not show them here. 

C.3.6 Unconstrained Multi-Objective Optimization Problem 6 

This two-objective problem is defined as 

/ i = x i + m a x j o , 2 ( — -l· e) sin(2Nnx1)W zx 

h = 1 - x i + m a x i o , 2 f — + e J sin (27V^!) 1 + 2:2 (C.73) 
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where N is an integer (N = 2 in the CEC 2009 competition), e is a positive real 
number (e = 0.1 in the CEC 2009 competition), Zi is defined as 

* = TTT ( 4 Σ y2i - 2 Π cos (2°2/W\/l) + 2 ) for t G [1,2] (C.74) 

the sets J i and J2 are the same as in Unconstrained MOP 1, and yj is defined as 

V3 = xj ~ s m (^πχι + jn/ri) for j G [2, n]. (C.75) 

The search space is 

xi e [0,1] 
Xj 6 [-1,1] for J E [2,n]. (C.76) 

The Pareto front contains one discrete point (0,1), and the following N disconnected 
segments: 

/i = U 
r2i-l 2i 

2N *2N 

Î2 = I - / 1 * · (C.77) 

The Pareto set consists of discrete points, but they cannot be expressed analytically 
and so we do not show them here. 

C.3.7 Unconstrained Multi-Objective Optimization Problem 7 

This two-objective problem is defined as 

1 ' jeJi 

1 2 | j € J 2 

where J\ and J2 are the same as in Unconstrained MOP 1, and y3 is defined as 

Vu — xj ~~ s m (6 π + 3Έ/η) ^ΟΓ 3 Ξ [2? n]· (C.79) 

The search space is 

xi e [0,1] 
Xj G [-1,1] for j G [2,n]. (C.80) 

The Pareto front is 

fi e [0,1] 

/2* = 1 - / Γ - (C.81) 

The Pareto set is 

x\ 6 [0,1] 
a;* = 8 ΐ η ( 6 π χ ι + ί ' π / η ) for j € [2,n]. (C.82) 
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C.3.8 Unconstrained Multi-Objective Optimization Problem 8 

This three-objective problem is defined as 

/ i = cos (0.5xi7r) COS (0.5X27T) 4- 7-77 / [XJ — 2a?2 sin (2πχ\ + jn/ri)] 
| J i 1 ^ 

9 
fi = cos (Ο.δχχπ) sin (0.5x2^) + 77-7 /_] [#j — 2^2 sin (2πχ\ + J7r/n)] 

| J 2 1 j € J 2 

2 
/ 3 = sin (0.5χιπ) + τ τ τ V ( ^ - 2x2 sin (2π:τι + jn/n)}2 (C.83) 

where the sets J i , J2, and J3 are defined as 

J i = {j G [3, n] : j — 1 is a multiple of 3} 
J2 = Ü G [ 3 , n ] 
</3 - Ü € [ 3 , n ] 

The search space is 

j — 2 is a multiple of 3} 
j is a multiple of 3}. (C.84) 

xi e [0,1] 
X2 e [0,1] 
Xj G [-2,2] for j G [3, n]. (C.85) 

The Pareto front is 

(/Γ, Î2 , /3*) such that /* G [0,1], /2* G [0,1], /3* G [0,1], and 

(/Γ)2 + ( / ί )2 + (/3*)2 = 1- (C.86) 

The Pareto set is 

i j e [0,1] 
sj € [0,1] 
Xj = 2χ2 sin (2πχΐ + J7r/n) for j G [3,n]. (C.87) 

C.3.9 Unconstrained Multi-Objective Optimization Problem 9 

This three-objective problem is defined as 

/ i = 0.5 [max | θ , ( l + e) ( l - 4 (2xj - l ) 2 ) } + 2zi] x2 + zi 

/ 2 = 0.5 [max {θ, ( l + e) ( l - 4 (2xi - l ) 2 ) } - 2m + 2] z 2 + z2 

h = 1 - X2 + 7T7 V [ij - 2x2 sin (2τπη + jir/n)}2 (C.88) 
| J 3 1 j € J 3 

where e is a positive real number (e = 0.1 in the CEC 2009 competition), Zi is 
defined as 

2 
Zi = m Σ fo ~2x2 sin (27rai + W « ) ] 2 for i e t1'2] (c-89) 
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and the sets J i , J2, and J3 are the same as in Unconstrained MOP 8. The search 
space is 

xi e [0,1] 
X2 e [0,1] 
Xj G [-2,2] for j G [3, n}. (C.90) 

The Pareto front has two sections: the first section is 

fî e [0,1] 
/ ί G [0,(1-/3)/4] 
n = 1 - / 1 - / 3 (eel) 

and the second section is 

n e [0,1] 
/1 e [3(i-/3)/4,i] 

Î2 = I - /1- /3 · (C92) 

The Pareto set is 

xî G [0,0.25] U [0.75,1] 
* ; G [0,1] 
x* = 2^2 sin (2πχι + jn/n) for j G [3, n]. (C.93) 

C.3.10 Unconstrained Multi-Objective Optimization Problem 10 

This three-objective problem is defined as 

9 

/1 = cos (0.5#i7r) COS (0.5X2TT) + T J T ] P [4y| - cos (8π^·) + l] 
| e / l | j € J i 

9 
/ 2 = cos (0.5zi7r) sin (0.5χ2π) + —— ] P [ 4 ^ - cos (Siryj) + l] 

1 2 ' j € J 2 

/ 3 - sin (0.5χιπ) + τ | τ ^ [4y? - cos (8τπ/,·) + l] (C.94) 
1 3 | jeJ3 

where the sets J i , J2, and J3 are the same as in Unconstrained MOP 8, and yj is 
defined as 

V3 = XJ ~ 2χ2 sin (2πχχ + jn/n) for j G [3,n]. (C.95) 

The search space, Pareto front, and Pareto set are the same as in Unconstrained 
MOP 8. 
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C.4 DYNAMIC BENCHMARKS 

Researchers have suggested various dynamic benchmark problems over the years 
[Branke, 1999]. Some constrained dynamic problems are given in [Nguyen and Yao, 
2009], and some multi-objective dynamic problems are given in [Ray et al., 2009a]. 
Several combinatorial dynamic benchmarks have been suggested [Yang, 2008a], 
including dynamic knapsack and traveling salesman problems [Branke et al., 2006], 
[Mavrovouniotis and Yang, 2011]. But we restrict our discussion here to continuous 
dynamic benchmarks. 

This section summarizes the optimization problems in [Li et al., 2008], which 
contains the continuous benchmarks and evaluation metrics that were used for the 
dynamic optimization competition at the 2009 IEEE Congress on Evolutionary 
Computation (CEC 2009). The dynamic benchmarks are based on some of the 
unconstrained problems of Appendix C.l. The dynamic benchmarks include off-
sets and rotation matrices (see Appendix C.7), the incorporation of time-varying 
functions, and the summing (or "composition" ) of several such functions. We give 
a complete description of the CEC 2009 dynamic benchmarks in Section C.4.1, and 
then we suggest a highly simplified version of the benchmarks in Section C.4.2. 

C.4.1 The Complete Dynamic Benchmark Description 

Consider one of the the n-dimensional functions f(x) of Section C.l. First we 
normalize the magnitude of the benchmark. We do this to make sure that the time-
varying function that we add later has the desired relative effect. We normalize the 
magnitude of the benchmark by scaling it as follows: 

f'(x) = ^βΞΪ ; where C = 2000. (C.96) 
/max 

The constant C is chosen to give the same magnitude to all scaled benchmarks so 
that the effect of the time-varying component that we add later will have the same 
impact on all scaled benchmarks. 

Now we discuss the determination of / m a x in Equation (C.96). For the dynamic 
benchmarks we typically use a baseline function f(x) that generally increases as x 
increases. Although many of the functions of Section C.l have a lot of local peaks 
and valleys, many of the functions are close to their maximum when each element 
of x is at its maximum value. Therefore, the quantity / m a x in Equation (C.96) is 
estimated as 

/max « / (XmaxQ) (C.97) 

where Q is the rotation matrix that we discuss below, and xmax is defined element-
by-element: 

*£ — [ %1 ' ' ' %n J Wnere Xi t [3?i,miri)2'i,maxJ 

? 3?max = [ 3?l,max ' ' ' *^n,max J · ^v^.yoj 

Next we shift f'(x) to obtain f'(x — 0), where Θ is a random n-element bias 
vector. Each element of the bias vector is uniformly distributed in such a way 
that the optimum of f'(x — Θ) is uniformly distributed on the domain of x. For 
instance, suppose that we are using the Ackley function as the baseline function. 
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The domain of the Ackley function is Xi G [—30,30] for i G [l ,n]. The optimum 
of the unbiased Ackley function is located at x\ — 0 for % G [l ,n]. Therefore, each 
element of Θ should be uniformly distributed on [—30,30] for all i. That way, each 
element of the optimizing value of f'{x — Θ) is uniformly distributed on [—30,30]. 
This helps ensure an even playing field when comparing different EAs, as discussed 
in Appendix C.7.1. 

Next we rotate the scaled and shifted benchmark to obtain / ' ( ( # — 0)Q), where Q 
is a random orthogonal rotation matrix. This is an additional step to help ensure an 
even playing field when comparing different EAs, as discussed in Appendix C.7.2. 
Note that Q is also used in Equation (C.97) to approximate / m a x · 

Next we add a time-varying function φ(ί) to obtain f'((x — 6)Q) + <j>(t). The 
function φ{ί) can be modified from one generation to the next as follows: 

φ(ί) <- ψ(ί~1) + Αφ 

φ(ί) <- min(0(t) ,0m a x) 
<t>(t) <- max(0(*),0m i n) (C.99) 

where t is the function update iteration number (not necessarily the EA generation 
number), and 0min and 0 m a x define the minimum and maximum allowable values 
of φ(ί). The variation Αφ can take several forms. We first discuss dynamics that 
are referred to in [Li et al., 2008], [Li and Yang, 2008] as small-step dynamics: 

small step: Αφ — a</>ranger(£ — 1)φ3 (C.IOO) 

where a is a constant, 0 range is the allowable range of 0(t), φ8 is a constant that 
defines the severity of the φ{ί) change, and r(t — 1) is a random number uniformly 
distributed on [—1,1]. [Li et al., 2008] uses 

0.04 
5 
10 
100 

(C.101) 

The initial value of φ(ί) at t — 0 is a random number taken from a uniform distri-
bution between 0min and 0 m a x . We see from Equations (C.99)-(C101) that with 
small-step dynamics, φ(ί) changes by no more than 18 each generation. We see 
from Equation (C.96) that f'(x) G [-2000,2000] (approximately). Therefore, the 
maximum change in φ(ί) in one generation relative to the maximum value of f'(x) 
is 18/2000 = 0.9% for the small-step change. 

Note that Equation (C.99) does not apply at each generation; it only applies 
once in a while. [Li et al., 2008] suggests that Equation (C.99) be implemented 
once every 10,000 function evaluations, and that the EA run for a total of 600,000 
function evaluations. In addition, we use the rotation matrix Q to rotate Θ (the 
bias vector) every 10,000 function evaluations: 

a 

φ8 

ψηιιη 

r m a x 

grange 

0(t) «- 0(t - l)Q. (C.102) 
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Finally, we generate m of these scaled, shifted, rotated, time-varying functions, and 
add them together to obtain a dynamic composition function: 

m 

Ρ{χ,1) = Σνί\ί\{χ-Θ&)Μί) + φί{ί)] (C.103) 
i=l 

where each wi is a weighting value defined by performing the following four state-
ments in order: 

Wi <_ 6 χ ρ , _ ,Σ^-Μ*)) 2 ) 
2 \ \ l / 2 " 

2n 

Wmax <- m a x { ^ } 

Wi 
( wi if Wi = wmax 

I Wi(l-w^ 

3 = 1 WJ 

) if Wi + Wmax 

(C.104) 

for i e [l,ra]. Note that Wi G [0,1], and as x gets farther from Θι (the optimum 
of the i-th shifted function), Wi decreases. [Li et al., 2008] uses m = 10. Each 
9i(t) vector in Equation (C.103) is a random n-element vector that is rotated every 
10,000 function evaluations, and 9ik(t) in Equation (C.104) is the fc-th element 
of θι(ί). Each Qi matrix is a random but time-invariant n x n rotation matrix, 
and each </>i(t) function is a random scalar function defined by Equation (C.100) 
and updated every 10,000 function evaluations. Each of the m functions that are 
summed in Equation (C.103) has a different time-varying component. Therefore, 
when we add these m functions together, we obtain a composite function whose 
minimizing value might change from one generation to the next. 

Summing up the results in the above paragraphs, we obtain the algorithm of 
Figure C.23 for generating a dynamic benchmark function. 

Figure C.23 describes the definition of dynamic benchmark functions for small-
step dynamics. [Li et al., 2008] and [Li and Yang, 2008] suggest a total of six types 
of dynamics. 

1. Small-step dynamics are summarized above in Equations (C.99)-(C101). 

2. Large-step dynamics are described as follows: 

large step: Δφ = 0range [a sign(r(i - 1)) + ( a m a x - a)r(t - 1)] φ3 (C.105) 

where r(t — 1) is a random number uniformly distributed on [—1,1]. The only 
new constant in the above equation is a m a x , which [Li et al., 2008] sets as 

c w = 0.1. (C.106) 

We see from Equations (C.101), (C.105), and (C.106) that with large-step 
dynamics, φ(ί) changes by no more than 45 in a single generation. We see 
from Equation (C.96) that f'(x) e [-2000,2000] (approximately). Therefore, 
the maximum change in φ(ί) in one generation relative to the maximum value 
of f'(x) is 45/2000 = 2.25% for the large-step change. 
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Begin initialization 
/ ( · ) = baseline function from Section C.l 
[^min^max] = n-dimensional search domain 
x* = n-dimensional optimizing value of f(x) 
^update = number of function evaluations between dynamic updates 

(Typically £;u p d a t e = 10,000) 
m = number of functions to combine in benchmark (typically m = 10) 
For i = 1 to m 

Generate random rotation matrix Qi (see Section C.7.2) 
Generate random bias vector 0i such that x* + 9i G [xmin>#max] 

Next i 

/ m a x ~ J \%maxW) 

C = 2000 
Function definition: f'{x) — Cf(x)/fmax 

0(0) <- C/[0min ,0max] 
E <- 0 = number of function evaluations 

End initialization 
When we're ready to evaluate the benchmark function for a candidate solution x 

Use Equation (C.104) to calculate Wi for i G [l,ra] 
£<l·- E + l 
If (E mod update) = 0 then 

Use Equations (C.99)-(C101) to update </>i(t) for i G [l,m] 
Use Equation (C.102) to update 6i(t) for i G [l, m] 

End if 
Use Equation (C.103) to evaluate the candidate solution x 

Next benchmark evaluation 

Figure C.23 Function definition for an n-dimensional dynamic function based on the 
standard benchmark /(·) with small-step dynamics. (E mod ^update) is the remainder after 
the integer division E/Enpd&te> 

3. Random dynamics are described as follows: 

random: Αφ = </>ap(t - 1) (C.107) 

where p(t — 1) is a random number taken from a zero-mean, unity-variance 
Gaussian distribution. Since a Gaussian random number is unbounded, φ(ί) 
can change from its minimum to its maximum value (or vice versa) in a single 
generation. However, 99.7% of the time, the change in φ(ϊ) will be within 3σ, 
which is 30 s = 15. With random dynamics the 3σ change in φ(ί) in one 
generation relative to the maximum value of f'{x) is 15/2000 = 0.75%. 

4. Chaotic dynamics are described as follows: 

φ(ί - 1) - φηΰ 
chaotic: φ{ί) = A [φ(ί - 1) - 0min] 1 - (C.108) 
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where r(t — 1) is a random number uniformly distributed on [—1,1]. The only 
new constant in the above equation is A, which [Li et al., 2008] defines as 

A = 3.67. (C.109) 

5. Recurrent dynamics are described as follows: 

♦ AU\ A, ■ Grange [8ίη(2π(^-1)/Ρ + Q + l] 
recurrent: φ(ι) = 0min H — - — - — — — - i . (C.110) 

These are the only deterministic dynamics defined in [Li et al., 2008]. The 
only new constants in the above equation are P (the period) and ζ (the initial 
phase), which [Li et al., 2008] defines as 

P = 12£'Update 
C = ί/[0,2π] (C . l l l ) 

where update is the number of function evaluations between dynamic up-
dates, and U[0,2π] is a random number uniformly distributed between 0 and 

27Γ. 

6. Noisy recurrent dynamics are described as follows: 

♦ AU\ Λ , Grange [8ίη(2π(^-1)/Ρ + Q + l] , 

noisy recurrent: φ(ί) = 0 m i n + s_J—i— L + pap(t - 1). 
(C.112) 

where p(t — 1) is a random number taken from a zero-mean, unity-variance 
Gaussian distribution. The only new constant in the above equation is p s , 
the severity of the noisy dynamics, which [Li et al., 2008] defines as 

p8 = 0.8. (C.113) 

We can modify Figure C.23 to implement any of the above types of dynamics. 
We only need to change one line in Figure C.23 to change the type of dynamics. 
We modify the line that says, "Use Equations (C.99)-(C101) to update φι(ί) for 
i e [ l ,m]." 

1. If we want small-step dynamics, we implement Figure C.23 as written. 

2. If we want large-step dynamics, we use Equation (C.105) to update φΐ(ί). 

3. If we want random dynamics, we use Equation (C.107) to update φΐ(ϊ). 

4. If we want chaotic dynamics, we use Equation (C.108) to update φί(ί). 

5. If we want recurrent dynamics, we use Equation (C.110) to update φι(ί). 

6. If we want noisy recurrent dynamics, we use Equation (C.112) to update φΐ(ί). 

[Li et al., 2008] suggests five different functions to use as basis functions / ( · ) 
in Figure C.23: the sphere function (Section C. l . l ) , the Rastrigin function (Sec-
tion C . l . l l ) , the Weierstrass function (Section C.1.22), the Griewank function (Sec-
tion C.1.6), and the Ackley function (Section C.1.2). Note that each of these func-
tions in their original, unshifted versions has the optimizing solution x* — 0. 
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C.4.2 A Simplified Dynamic Benchmark Description 

Figure C.23 shows that there are several interacting dynamics in the benchmark 
functions, including the weights {wi} which are themselves functions of the candi-
date solution x, the dynamic variables 0i(i), and the dynamic bias variables 9i{t). 
However, it seems that the essence of the dynamics can be captured by the bias 
variables; the other variables provide only second-order effects. Furthermore, there 
is no need to add multiple functions together to obtain a function with a lot of 
dynamics; in other words, we can use m = 1 in Figure C.23 and still obtain good 
dynamic benchmarks. This results in Figure C.24, which is a simple but effective 
dynamic benchmark function generator. 

Finally, we mention that we could use methods other than Equation (C.102) 
to update the bias 9{t). Equation (C.102) consists of a rotation of 9(t) around 
the origin of the search space. However, there are many other reasonable ways 
to update 9{t). We could change 9{t) in some other predictable way (linearly or 
periodically, for example), or we could generate a random 9(t) at each dynamic 
change. We could use different methods for changing 9{t) to represent dynamics in 
specific real-world problems. 

Begin initialization 
/ ( · ) = baseline function from Section C.l 
[^min^max] = n-dimensional search domain 
x* = n-dimensional optimizing value of f(x) 
^update = number of function evaluations between dynamic updates 
Generate random rotation matrix Q (see Section C.7.2) 
Generate random bias 9 such that x* + 9 e [xmin,^max] 

End initialization 
When we're ready to evaluate the benchmark function for a candidate solution x 

E <r- E+l 
If (E mod Update) = 0 then 

Use Equation (C.102) to update 9(t) 
End if 
Use F(x,t) = f((x — 9{t))Q) to evaluate the candidate solution x 

Next benchmark evaluation 

Figure C.24 Simplified function definition for an n-dimensional dynamic function based 
on the standard benchmark /(·) . 

C.5 NOISY BENCHMARKS 

Noisy benchmark problems for EAs are easy to generate. We simply take a stan-
dard, non-noisy benchmark function and add noise. We can add various types of 
noise: noise with statistics that are independent of the given candidate solution 
#, as shown in Equation (21.39); noise with statistics that somehow vary with x, 
as shown in Equation (21.42); Gaussian noise; uniform noise; or any other type of 
noise that we want to use with our EA. 
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C.6 TRAVELING SALESMAN PROBLEMS 

The TSPLIB web site has a collection of over 100 TSP benchmarks [Reinelt, 2008]. 
The simplest TSP in the collection is the Ulysses 16 benchmark, which is based on 
16 cities that the legendary Greek king Ulysses visited in the Mediterranean during 
his journeys [Grötschel and Padberg, 2001]. The largest TSP on the web site is 
a programmable logic array problem with 85,900 nodes. The Center for Discrete 
Mathematics & Theoretical Computer Science maintains a web site with large-scale 
TSP benchmarks, the largest of which contains over 20 million nodes [Demetrescu, 
2012]. 

Each TSP is defined by a file with the extension TSP - for example, ULYSSES. TSP. 
A TSP file includes the coordinates of each city's latitude and longitude in the 
format DDD.MM, where DDD specifies degrees and MM specifies minutes. The TSP file 
also specifies the "edge weight type" of the problem, either EUC_2D or GE0, which 
indicates how to calculate distances between cities. 

For EUC_2D problems, we need to calculate the Euclidean distance D(i,k) between 
cities i and k as follows: 

AB = Bi-Bk 

AL = Li- Lk 

D(i,k) = round yj AB2 + AL2 (C.114) 

where Bi and Li are the latitude and longitude of city i, and the round function 
rounds to the nearest integer. Rounding is not strictly necessary, but it is tradition-
ally performed for TSPLIB problems, and so we may want to use rounding for fair 
comparisons between different TSP algorithms and previously published results. 

For GE0 problems, we need to calculate the geographical distance between cities 
i and k assuming that the Earth is a perfect sphere: 

qi = cos(Li - Lk) 

q2 = cos(Bi - Bk) 

q3 = cos(Bi + Bk) 

D(i,k) = LÄarccos{[(l + 9 i ) 9 2 - ( l - 9 i ) ( Z 3 ] / 2 } + lJ (C.115) 

where R — 6378.388 km is the radius of the Earth, and the floor function |_*J 
returns the largest integer that is less than or equal to its argument. The floor 
function and the addition of 1 at the end of the D{i,k) calculation are not necessary 
in general, but are used in the standard geographical distance calculation in the 
TSPLIB benchmarks to round up to the nearest integer. 

Derivation of Geographical Distance 

We can derive Equation (C.115) by first converting latitude and longitude to Carte-
sian coordinates, which gives the coordinates of city i as 

Xi — R cos Bi cos Li 

yi = R cos Bi sin Li 

Zi = Rs'mBi. (C.116) 
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We obtain similar equations for the Cartesian coordinates ar ,̂ y^, and Zk of the k-th 
city. Now remember that we can write the dot product between two vectors A and 
B as 

AB = \A\-\B\cœ6 (C.117) 

where Θ is the angle between the vectors. Therefore, we can write the dot product 
between the vectors that define city i and city h as 

R cos Bi cos Li 
R cos Bi sin Li 

R sin Bi 

R cos Bk cos Lk 
R cos Bk sin Lk 

R sin Bk 
= R2cos6 (C.118) 

where Θ is the angle between cities i and k. Dividing both sides by R2 and expanding 
the above equation gives 

cos Bi cos Li cos Bk cos Lk + cos Bi sin Li cos Bk sin Lk + sin Bi sin Bk = cos # 
(C.119) 

which can be simplified to 

cos Bi cos Bk(cos Li cos Lk H- sin Ζ^ sin L^) + sin Bi sin £?& = cos Θ. (C.120) 

We can use standard trigonometric identities to write the above equation as 

- [cos(Bi + Bk) + cos(Bi - Bk)] cos(L^ - Lfc)+ 

1 ;cos(£i - £fc) - c o s ^ + £fc)] - cos (9. (C.121) 

Solving for Θ gives 

Θ = arccos i - [qi(q2 + ç3) + 42 - Qs] \ · (C.122) 

Two points on a sphere of radius R that are separated by an angle of Θ have 
a distance between them on the surface of the sphere of R6, which gives Equa-
tion (C.115).1 

Other Distance Metrics 

Other distance metrics can be also found at [Reinelt, 2008], including three-dimensional 
Euclidean distance; Manhattan distance, which assumes that a route follows roads 
that are laid out on an orthogonal grid; maximum distance, which measures distance 
along the coordinate that requires the farthest travel distance; pseudo-Euclidean 
distance, which is the same as Equation (C.114) except that instead of rounding 
to the nearest integer we round to the next highest integer; and finally, a special 
distance function that is related to x-ray crystallography. 

■"̂ This calculation is based on Jasper Spaans's web site at http://jsp.vsl9.net/lr/sphere-
distance.php. 
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Other Combinatorial Problems 

Both symmetric and asymmetric TSPs can be found at [Reinelt, 2008]. The web 
site also includes related types of problems, including the following. 

1. The sequential ordering problem is an asymmetric TSP that has precedence 
constraints [Dorigo and Stiitzle, 2004]. That is, given n cities, find the tour 
that results in the shortest distance while requiring that city im be visited 
before city fcm for m £ [1, M], where M is the number of constraints. 

2. The capacitated vehicle routing problem includes (n — 1) nodes and one de-
pot [Toth and Vigo, 2002]. The problem is to use trucks to make required 
deliveries from the depot to the nodes, assuming that each node has a spe-
cific delivery demand and that all trucks have identical capacities. Each tour 
begins at the depot, makes deliveries to a certain number of nodes, and then 
returns to the depot. The cost function could be the total distance traveled 
by all trucks or the total time required to make the deliveries. 

3. The Hamiltonian path problem is the problem of discovering a path that visits 
each node of a graph exactly once [Balakrishnan, 1997]. The Hamiltonian 
cycle problem includes the additional requirement that the path returns to 
its starting point. Figure C.25 shows an example of two Hamiltonian path 
problems. The connected graph on the left has a Hamiltonian path: the path 
1—>·3-»2—»5—»4 is a solution. However, the graph on the right does not 
have a Hamiltonian path. In the figure on the right we can find a path that 
visits all nodes once, but the path will also visit some nodes more than once 
(for example, 5 - » 2 - > 3 - » l - > > 3 - > > 4 ) . 

LU LU LU 

u ÈHÏ1 OLHÏ 
Figure C.25 Two connected graphs, 
the one on the right does not. 

The one on the left has a Hamiltonian path but 

C.7 UNBIASING THE SEARCH SPACE 

In this section we return to the discussion of continuous optimization problems. 
Some EAs naturally perform well on certain benchmarks simply because of the co-
incidental alignment of the quirks of the benchmarks with the quirks of the EAs. 
This does not speak well of the performance of the EAs; it only indicates that the 
features of many artificial benchmarks are not representative of real-world prob-
lems. This section discusses the use of offsets and rotation matrices in optimization 
benchmarks to make them more challenging and more realistic. 
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C.7.1 Offsets 

Some EAs are naturally biased toward certain types of search spaces. For example, 
we saw in Section 16.2 that certain types of opposition-based learning (OBL) tend 
to move candidate solutions closer to the center of the search domain. Therefore, 
OBL naturally performs well on problems whose solution is near the center of 
the search space. However, this good performance by OBL is misleading; it is an 
artificial side effect of the fact that many benchmarks have solutions near the center 
of the search space. Another example is differential evolution (DE), which modifies 
candidate solutions on the basis of difference vectors. DE will therefore perform 
well on constrained problems whose feasible regions all lie parallel to each other. 
Again, this good performance by DE may be misleading; it is an artificial side 
effect of the fact that many benchmarks have parallel feasible regions. Many of the 
benchmarks in this appendix have solutions that are precisely at the center of the 
search space. It is not fair to use such benchmarks to evaluate EA performance. 

Sometimes, although not always, we can directly see that an algorithm is biased 
and more easily finds a solution point when it lies at the center of the search space 
[Clerc, 2012b]. For example, we can run our algorithm on the two-dimensional 
problem with the search space x\ G [—1,+1] and x<i G [—Ι,+Ι] and with the cost 
function f(x) — 1 for all x, and plot the population in the two-dimensional search 
domain after many generations. If the algorithm is unbiased then the distribution 
will be uniform. However, for many algorithms the distribution will be more dense 
around the point x = (0,0). In that case we can conclude that the algorithm is 
biased. The density difference may be not visible, though, so the only safe way to 
evaluate optimization algorithms is to never use cost functions whose solution is at 
the center of the search domain (or even on a diagonal, in fact). 

We can modify biased benchmarks and make them unbiased by adding offsets 
to the independent variables of the problem [Liang et al., 2005], [Suganthan et al., 
2005]. Consider the sphere function of Equation (C.2), repeated here: 

1=1 

with the optimum x* = 0. If the search space is X{ G [—C, C] for all z, then the 
optimum is at the center of the search space. We therefore modify Equation (C.123) 
as follows: 

n 

f(x) = J2{xi - Oi)2 where ot ~ U[-C,C] for i G [l ,n]. (C.124) 
i = l 

We could also use a distribution other than the uniform distribution to generate Oj, 
but we generally limit Oi to the domain [—C, C] to ensure that the global optimum 
of Equation (C.124) lies in the search space. The shifted sphere function of Equa-
tion (C.124) has the same shape as the original sphere function, but its solution is 
located at a random point in the search space. This helps ensure that no particular 
EA has an unfair advantage during benchmark evaluation. Figure C.26 shows a 
shifted version of the sphere function. 

When comparing EAs on the shifted sphere function, we should run several 
Monte Carlo simulations, each with a different shift. This approach, outlined in 
Figure C.27, allows us to determine the best EA for sphere-like functions while 
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avoiding bias that is due to the location of the optimum. After completing the loop 
in Figure C.27 we will have M results for the first EA, M results for the second EA, 
and so on. We can compare the performances of the EAs by taking the average of 
each set of M results, or by taking the best, or the worst, or any other measure, 
depending on what quantity is of most interest (see Appendix B.2). 

Figure C.26 The figure on the left is the original, unshifted two-dimensional sphere 
function. The figure on the right is the same function shifted along both independent 
variables. 

P = number of EAs to evaluate 
M — number of Monte Carlo simulations 
For j = 1 to M 

Generate a random Oi for i G [l,n] 
For p = 1 to P 

Evaluate the p-th EA's performance on f(x — o) 
Next EA 

Next Monte Carlo simulation 

Figure C.27 Outline of a Monte Carlo simulation for the evaluation of EA performance 
on n-dimensional shifted problems. The bias that is due to the location of the optimum has 
been removed. 

C.7.2 Rotation Matrices 

The search process of some EAs is naturally biased towards searches along a sin-
gle independent variable. For example, a mutation or hill climbing strategy that 
changes one independent variable at a time searches along a single dimension of 
the problem each iteration. These types of optimization algorithms perform well 
on problems whose gradients are parallel to the independent variables. However, 
this good performance may be misleading; it is an artificial side effect of the fact 
that many benchmarks have gradients that are parallel to the unit vectors of the 
search space. Many of the benchmarks in this appendix have such gradients. It is 
not fair to use such benchmarks to evaluate EA performance. 

Because of this, it is important to modify benchmarks by incorporating rotation 
matrices in the problem [Salomon, 1996], [Suganthan et al., 2005]. Consider the 
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Schwefel max function of Equation (C.15), repeated here for ease of reference: 

f(x) = m a x ( | x i | : i e { l , - - , n } ) (C.125) 
i 

where our objective is to minimize f(x). A search process that simply decreases 
one element of x at a time will perform quite well on this problem. Such a simple 
search process might also perform well on real-world problems, but there are many 
real-world problems that require a more sophisticated search strategy. We therefore 
modify Equation (C.125) as follows: 

f(x) — max (\yi\ : i G { 1 , . . . , n}) where y = xQ. (C.126) 
i 

The n-element vectors x and y are row vectors, and Q is an n x n rotation matrix. 
A rotation matrix is a matrix which, when multiplied by a vector, rotates that 
vector in its n-dimensional domain [Golan, 2007]. A rotation matrix is equivalent 
to an orthogonal matrix, and an orthogonal matrix is defined as a matrix whose 
transpose is equal to its determinant, and whose determinant is equal to 1: 

Q-1 = Q T , and \Q\ = 1. (C.127) 

A random rotation matrix can be generated with QR decomposition [Golan, 2007]. 
QR decomposition entails finding an orthogonal matrix Q and an upper triangular 
matrix R such that QR = D for a given matrix D. Any real square matrix D 
has a QR decomposition. If we generate an n x n matrix D with random entries 
and find its QR decomposition, then the Q matrix is equal to a random rotation 
matrix. Therefore, we can generate a random nxn rotation matrix Q in MATLAB 
as follows: 

D = randn(n); 
[Q,Ä] = QR(£>); 

where randn(n) is a MATLAB function that generations an n x n matrix with each 
entry taken from a Gaussian distribution with a mean of zero and variance of one, 
and QR is MATLAB's QR decomposition function. Other linear algebra libraries 
and software packages have similar functions. The shifted Schwefel max function 
of Equation (C.126) has the same shape as the original Schwefel max function but 
is rotated with respect to the origin of the search space. Therefore, the gradient of 
the objective function is no longer parallel to the independent variable dimensions. 
This helps ensure that no particular EA has an unfair advantage during benchmark 
evaluation. Figure C.28 shows the Schwefel max function rotated by a few degrees 
in the counterclockwise direction (looking down on the plot). 

When comparing EAs on the rotated Schwefel max function, we should run sev-
eral Monte Carlo simulations, each with a different rotation matrix. This approach 
is similar to that shown in Figure C.27 and is outlined in Figure C.29. This ap-
proach allows us to determine the best EA performance while avoiding the bias that 
may be present due to the parallel nature of the gradient of the original function. 
After completing the loop in Figure C.29 we will have M results for the first EA, 
M results for the second EA, and so on. We can compare the performances of 
the EAs by taking the average of each set of M results, or by taking the best, or 
the worst, or any other measure, depending on what quantity is of most interest 
(see Appendix B.2). We can combine the logic of Figures C.27 and C.29 to obtain 
benchmark comparisons on functions f((x — o)Q) that are both shifted and rotated. 
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Figure C.28 The figure on the left is the two-dimensional Schwefel max function. The 
figure on the right is the same function rotated a few degrees in the counterclockwise 
direction. 

P = number of EAs to evaluate 
M = number of Monte Carlo simulations 
For j = 1 to M 

Generate a random rotation matrix Q 
For p — 1 to P 

Evaluate the p-th EA's performance on f(xQ) 
Next EA 

Next Monte Carlo simulation 

Figure C.29 Outline of a Monte Carlo simulation for the evaluation of EA performance 
on rotated problems. The bias that is due to parallel alignment of the gradient with the 
coordinate system has been removed. 



REFERENCES 

Aarts, E. and Korst, J. (1989). Simulated Annealing and Boltzmann Machines: A 
Stochastic Approach to Combinatorial Optimization and Neural Computing. John Wiley 
&; Sons. 

Aarts, E., Lenstra, J., and van Laarhoven, P. (2003). Simulated annealing. In Aarts, 
E. and Lenstra, J., editors, Local Search in Combinatorial Optimization, pages 91-120. 
Princeton University Press. 

Ackley, D. (1987a). A Connectionist Machine for Genetic Hillclimbing. Kluwer Academic 
Publishers. 

Ackley, D. (1987b). An empirical study of bit vector function optimization. In Davis, L., 
editor, Genetic Algorithms and Simulated Annealing, pages 170-215. Pi tman Publishing. 

Adami, C. (1997). Introduction to Artificial Life. Springer. 

Adler, F. and Nuernberger, B. (1994). Persistence in patchy irregular landscapes. The-
oretical Population Biology, 45(l):41-75. 

Aguirre, A., Rionda, S., Coello Coello, C , Lizârraga, G., and Mezura-Montes, E. (2004). 
Handling constraints using multiobjective optimization concepts. International Journal 
for Numerical Methods in Engineering, 59(15): 1989-2017. 

Ahn, C. and Ramakrishna, R. (2007). Multiobjective real-coded Bayesian optimiza-
tion algorithm revisited: Diversity preservation. Genetic and Evolutionary Computation 
Conference, London, England, pages 593-600. 

Akat, S. and Gazi, V. (2008). Particle swarm optimization with dynamic neighborhood 
topology: Three neighborhood strategies and preliminary results. IEEE Swarm Intelli-
gence Symposium, St. Louis, Missouri, pages 1-8. 

Alami, J. and El Imrani, A. (2008). Using cultural algorithm for the fixed-spectrum 
frequency assignment problem. Journal of Mobile Communication, 2(1): 1-9. 

Evolutionary Optimization Algorithms, First Edition. By Dan J. Simon 685 
©2013 John Wiley & Sons, Inc. 



686 REFERENCES 

Alami, J., El Imrani, A., and Bouroumi, A. (2007). A multipopulation cultural algorithm 
using fuzzy clustering. Applied Soft Computing, 7(2):506-519. 

Alexander, R. (1996). Optima for Animals. Princeton University Press. 

Ali, M., Khompatraporn, C , and Zabinsky, Z. (2005). A numerical evaluation of several 
stochastic algorithms on selected continuous global optimization test problems. Journal 
of Global Optimization, 31(4):635-672. 

Allenson, R. (1992). Genetic algorithms with gender for multi-function optimisation. 
Technical report, Edinburgh Parallel Computing Centre. EPCC-SS92-01. 

Altenberg, L. (1994). Emergent phenomena in genetic programming. Conference on 
Evolutionary Programming, San Diego, California, pages 233-241. 

Anderson, M. and Oates, T. (2007). A review of recent research in metareasoning and 
metalearning. AI Magazine, 28(1):7-16. 

Andre, D., Bennett, F., and Koza, J. (1996). Discovery by genetic programming of a 
cellular automata rule that is better than any known rule for the majority classification 
problem. Genetic Programming Conference, Palo Alto, California, pages 28-31. 

Angeline, P. (1996a). An investigation into the sensitivity of genetic programming to the 
frequency of leaf selection during subtree crossover. Genetic Programming Conference, 
Palo Alto, California, pages 21-29. 

Angeline, P. (1996b). Two self-adaptive crossover operators for genetic programming. 
In Angeline, P. and Kinnear, K., editors, Advances in Genetic Programming: Volume 2, 
pages 89-110. The MIT Press. 

Angeline, P. (1997). Subtree crossover: Building block engine or macromutation? Ge-
netic Programming Conference, Palo Alto, California, pages 9-17. 

Applegate, D., Bixby, R., Chvatal, V., and Cook, W. (2007). The Traveling Salesman 
Problem. Princeton University Press. 

Araujo, M., Wanner, E., Guimaräes, F., and Takahashi, R. (2009). Constrained opti-
mization based on quadratic approximations in genetic algorithms. In Mezura-Montes, 
E., editor, Constraint-Handling in Evolutionary Optimization, pages 193-217. Springer. 

Arnold, D. (2002). Noisy Optimization with Evolution Strategies. Kluwer Academic 
Publishers. 

Ashlock, D. (2009). Evolutionary Computation for Modeling and Optimization. Springer. 

Aström, K. and Wittenmark, B. (2008). Adaptive Control. Dover Publications. 

Atashpaz-Gargari, E. and Lucas, C. (2007). Imperialist competitive algorithm: An al-
gorithm for optimization inspired by imperialistic competition. IEEE Congress on Evo-
lutionary Computation, Singapore, pages 4661-4667. 

Auger, A., Bader, J., Brockhoff, D., and Zitzler, E. (2012). Hypervolume-based multi-
objective optimization: Theoretical foundations and practical implications. Theoretical 
Computer Science, 425:75-103. 

Axelrod, R. (1997). The dissemination of culture: A model with local convergence and 
global polarization. Journal of Conflict Resolution, 41(2):203-226. 

Axelrod, R. (2006). The Evolution of Cooperation: Revised Edition. Basic Books. First 
published in 1984. 

Back, T. (1996). Evolutionary Algorithms in Theory and Practice. Oxford University 
Press. 

Back, T., Fogel, D., and Michalewicz, Z. (1997a). Handbook of Evolutionary Computation. 
Taylor and Francis. 



REFERENCES 687 

Back, T., Hammel, U., and Schwefel, H. (1997b). Evolutionary computation: Comments 
on the history and current state. IEEE Transactions on Evolutionary Computation, 
1(1):3-17. 

Back, T. and Schwefel, H.-P. (1993). An overview of evolutionary algorithms for param-
eter optimization. Evolutionary Computation, 1(1): 1-23. 

Baker, J. (1987). Reducing bias and inefficiency in the selection algorithm. International 
Conference on Genetic Algorithms and Their Application, Cambridge, Massachusetts, 
pages 14-21. 

Balakrishnan, V. (1997). Schaum's Outline of Graph Theory. McGraw-Hill, 13th edition. 

Balasubramaniam, P. and Kumar, A. (2009). Solution of matrix Riccati differential 
equation for nonlinear singular system using genetic programming. Genetic Programming 
and Evolvable Machines, 10(l):71-89. 

Ball, W. and Coxeter, H. (2010). Mathematical Recreations and Essays. Dover, 13th 
edition. 

Baluja, S. (1994). Population-based incremental learning. Technical report, Carnegie 
Mellon University. CMU-CS-94-163. 

Baluja, S. and Caruana, R. (1995). Removing the genetics from the standard genetic 
algorithm. 12th International Conference on Machine Learning, Tahoe City, California, 
pages 38-46. 

Baluja, S. and Davies, S. (1998). Fast probabilistic modeling for combinatorial op-
timization. Conference on Artificial Intelligence/Innovative Applications of Artificial 
Intelligence, pages 469-476. 

Bandyopadhyay, S., Saha, S., Maulik, U., and Deb, K. (2008). A simulated annealing-
based multiobjective optimization algorithm: AMOSA. IEEE Transactions on Evolu-
tionary Computation, 12(3):269-283. 

Banks, A., Vincent, J., and Anyakoha, C. (2007). A review of particle swarm optimiza-
tion. Par t I: Background and development. Natural Computing, 6(4):467-484. 

Banks, A., Vincent, J., and Anyakoha, C. (2008). A review of particle swarm optimiza-
tion. Par t II: Hybridisation, combinatorial, multicriteria and constrained optimization, 
and indicative applications. Natural Computing, 7(1): 109-124. 

Bankston, J. (2005). Gregor Mendel and the Discovery of the Gene. Mitchell Lane 
Publishers. 

Banzhaf, W. (1990). The "molecular" traveling salesman. Biological Cybernetics, 64(1):7-
14. 

Banzhaf, W., Nordin, P., Keller, R., and Francone, F. (1998). Genetic Programming. 
Morgan Kauffman Publishers. 

Barr, R., Golden, B., Kelly, J., Resende, M., and Stewart, W. Designing and reporting 
on computational experiments with heuristic methods. Journal of Metaheuristics, 1(1). 

Barricelli, N. (1954). Esempi numerici di processi di evoluzione. Methodos, 6:45-68. The 
English translation of the title is Numerical models of evolutionary processes. 

Bastürk, B. and Karaboga, D. (2006). An artificial bee colony (ABC) algorithm for 
numeric function optimization. IEEE Swarm Intelligence Symposium, Indianapolis, In-
diana. 

Becerra, R. and Coello Coello, C. (2004). A cultural algorithm with differential evolution 
to solve constrained optimization problems. In Lemaitre, C , Reyes, C , and Gonzalez, 
J., editors, Advances in Artificial Intelligence - IBERAMIA 2004■' ^th Ibero-American 
Conference on AI, Puebla, Mexico, November 22-26, 2004, pages 881-890. Springer. 



688 REFERENCES 

Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. Princeton University 
Press. 

Benatchba, K., Admane, L., and Koudil, M. (2005). Using bees to solve a data-mining 
problem expressed as a max-sat one. In Mira, J. and Alvarez, J., editors, Artificial 
Intelligence and Knowledge Engineering Applications: A Bioinspired Approach, pages 
212-220. Springer. 

Bernstein, D. (2006). Optimization r us. IEEE Control Systems Magazine, 26(5):6-7. 

Betts, J. (2009). Practical Methods for Optimal Control and Estimation Using Nonlinear 
Programming. Society for Industrial h Applied Mathematics, 2nd edition. 

Beveridge, W. (2004). The Art of Scientific Investigation. Blackburn Press. 

Beyer, H.-G. (1998). On the dynamics of EAs without selection. Foundations of Genetic 
Algorithms, Amsterdam, The Netherlands, pages 5-26. 

Beyer, H.-G. (2010). The Theory of Evolution Strategies. Springer. 

Beyer, H.-G. and Deb, K. (2001). On self-adaptive features in real-parameter evolutionary 
algorithms. IEEE Transactions on Evolutionary Computation, 5(3):250-269. 

Beyer, H.-G. and Schwefel, H.-P. (2002). Evolution strategies: A comprehensive intro-
duction. Natural Computing, l ( l ) :3-52. 

Beyer, H.-G. and Sendhoff, B. (2008). Covariance matrix adaptation revisited: The 
CMSA evolution strategy. In Rudolph, G., Jansen, T., Lucas, S., Poloni, C., and Beume, 
N., editors, Parallel Problem Solving from Nature - PPSN X, pages 123-132. Springer. 

Bhattacharya, M. (2008). Reduced computation for evolutionary optimization in noisy 
environment. Genetic and Evolutionary Computation Conference, Atlanta, Georgia, 
pages 2117-2122. 

Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer. 

Bishop, J. (1989). Stochastic searching networks. First IEE Conference on Artificial 
Neural Networks, London, England, pages 329-331. 

Biswas, A., Dasgupta, S., Das, S., and Abraham, A. (2007a). A synergy of differential 
evolution and bacterial foraging optimization for global optimization. Neural Network 
World, 17(6):607-626. 

Biswas, A., Dasgupta, S., Das, S., and Abraham, A. (2007b). Synergy of PSO and 
bacterial foraging optimization - A comparative study on numerical benchmarks. In 
Corchado, E., Corchado, J., and Abraham, A., editors, Innovations in Hybrid Intelligent 
Systems, pages 255-263. Springer. 

Blum, C. (2005a). Ant colony optimization: Introduction and recent trends. Physics of 
Life Reviews, 2(4):353-373. 

Blum, C. (2005b). Beam-ACO - Hybridizing ant colony optimization with beam search: 
An application to open shop scheduling. Computers & Operations Research, 32(6): 1565-
1591. 

Blum, C. (2007). Ant colony optimization: Introduction and hybridizations. Seventh 
International Conference on Hybrid Intelligent Systems, Kaiserlautern, Germany, pages 
24-29. 

Blum, C. and Dorigo, M. (2004). The hypercube framework for ant colony optimization. 
IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 34(2) : 1161— 
1172. 

Bonabeau, E., Theraulaz, G., and Dorigo, M. (1999). Swarm Intelligence: From Natural 
to Artificial Systems. Oxford University Press. 



REFERENCES 689 

Bonacich, P., Shure, G., Kahan, J., and Meeker, R. (1976). Cooperation and group size 
in the n-person prisoners' dilemma. The Journal of Conflict Resolution, 20(4):687-706. 

Boslaugh, S. and Watters, P. (2008). Statistics in a Nutshell. O'Reilly Media. 

Bosman, P. and Thierens, D. (2003). The balance between proximity and diversity in 
multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computa-
tion, 7(2):174-188. 

Box, G. (1957). Evolutionary operation: A method for increasing industrial productivity. 
Journal of the Royal Statistical Society, Series C (Applied Statistics), 6(2):81-101. 

Box, J. (1987). Guinness, Gösset, Fisher, and small samples. Statistical Science, 2(1):45-
52. 

Branke, J. (1998). Creating robust solutions by means of evolutionary algorithms. In 
Eiben, A., Back, T., Schoenauer, M., and Schwefel, H.-P., editors, Parallel Problem 
Solving from Nature - PPSN V, pages 119-128. Springer. 

Branke, J. (1999). Efficient fitness estimation in noisy environments. Memory en-
hanced evolutionary algorithms for changing optimization problems, Washington, District 
of Columbia, pages 1875-1882. 

Branke, J. (2002). Evolutionary Optimization in Dynamic Environments. Kluwer Aca-
demic Publishers. 

Branke, J. (2012). Evolutionary Algorithms for Dynamic Optimization Problems 
(EvoDOP). h t t p : / / p e o p l e . a i f b . k i t . edu/jbr/EvoDOP. 

Branke, J., Orbayi, M., and Uyar, S. (2006). The role of representations in dynamic 
knapsack problems. In Rothlauf, F., editor, Applications of Evolutionary Computing, 
pages 764-775. Springer. 

Branke, J., Schmidt, C , and Schmec, H. (2001). Efficient fitness estimation in noisy envi-
ronments. Genetic and Evolutionary Computation Conference, San Francisco, California, 
pages 243-250. 

Bratton, D. and Kennedy, J. (2007). Defining a standard for particle swarm optimization. 
IEEE Swarm Intelligence Symposium, Honolulu, Hawaii, pages 120-127. 

Bremermann, H., Rogson, M., and Salaff, S. (1966). Global properties of evolution pro-
cesses. In Pattee, H., Edlsack, E., Fein, L., and Callahan, A., editors, Natural Automata 
and Useful Simulations, pages 3-41. Spartan Books. 

Brest, J. (2009). Constrained real-parameter optimization with e-self-adaptive differ-
ential evolution. In Mezura-Montes, E., editor, Constraint-Handling in Evolutionary 
Optimization, pages 73-93. Springer. 

Brest, J., Zamuda, A., Boskovic, B., Maucec, M., and Zumer, V. (2009). Dynamic 
optimization using self-adaptive differential evolution. IEEE Congress on Evolutionary 
Computation, Trondheim, Norway, pages 415-422. 

Bringmann, K. and Friedrich, T. (2010). An efficient algorithm for computing hypervol-
ume contributions. Evolutionary Computation, 18(3):383-402. 

Bui, L., Abbass, H., and Essam, D. (2005). Fitness inheritance for noisy evolutionary 
multi-objective optmization. Genetic and Evolutionary Computation Conference, Wash-
ington, District of Columbia, pages 779-785. 

Bureerat, S. and Sriworamas, K. (2007). Population-based incremental learning for mul-
tiobjective optimisation. In Saad, A., Dahal, K., Sarfraz, M., and Roy, R., editors, Soft 
Computing in Industrial Applications, pages 223-232. Springer. 

Burke, E. (2003). High-Tech Cycling. Human Kinetics, 2nd edition. 



690 REFERENCES 

Cai, C. and Wang, Y. (2006). A multiobjective optimization-based evolutionary algo-
rithm for constrained optimization. IEEE Transactions on Evolutionary Computation, 
10(6):658-675. 
Cakir, B., Altiparmak, F., and Dengiz, B. (2011). Multi-objective optimization of a 
stochastic assembly line balancing: A hybrid simulated annealing algorithm. Computers 
& Industrial Engineering, 60(3):376-384. 

Carlisle, A. and Dozier, G. (2001). An off-the-shelf PSO. Particle Swarm Optimization 
Workshop, Indianapolis, Indiana, pages 1-6. 
Carlson, S. and Shonkwiler, R. (1998). Annealing a genetic algorith over constraints. 
IEEE International Conference on Systems, Man, and Cybernetics, San Diego, Califor-
nia, pages 3931-3936. 
Cerny, V. (1985). Thermodynamical approach to the travelling salesman problem: An ef-
ficient simulation algorithm. Journal of Optimization Theory and Applications, 45(1):41-
51. 
Chafekar, D., Shi, L., Rasheed, K., and Xuan, J. (2005). Multiobjective GA optimization 
using reduced models. IEEE Transactions on Systems, Man, and Cybernetics - Part C: 
Applications and Reviews, 35(2):261-265. 

Chen, S. and Montgomery, J. (2011). Selection strategies for initial positions and ini-
tial velocities in multi-optima particle swarms. Genetic and Evolutionary Computation 
Conference, Dublin, Ireland, pages 53-60. 
Chen, Y.-L. and Liu, C.-C. (1994). Multiobjective VAr planning using the goal-
attainment method. IEE Proceedings on Generation, Transmission and Distribution, 
141(3):227-232. 

Cheng, C , Wang, W., Xu, D., and Chau, K. (2008). Optimizing hydropower reservoir 
operation using hybrid genetic algorithm and chaos. Water Resources Management, 
22(7):895-909. 
Choi, S. and Moon, B. (2003). Normalization in genetic algorithms. Genetic and Evolu-
tionary Computation Conference, Chicago, Illinois, pages 862-873. 
Chow, C. and Liu, C. (1968). Approximating discrete probability distributions with 
dependence trees. IEEE Transactions on Information Theory, IT-14(3):462-467. 
Christensen, S. and Oppacher, F. (2001). What can we learn from no free lunch? A first 
a t tempt to characterize the concept of a searchable function. Genetic and Evolutionary 
Computation Conference, San Francisco, California, pages 1219-1226. 

Chuan-Chong, C. and Khee-Meng, K. (1992). Principles and Techniques in Combina-
torics. World Scientific. 
Chuang, C.-L. and Jiang, J.-A. (2007). Integrated radiation optimization: Inspired by the 
gravitational radiation in the curvature of space-time. IEEE Congress on Evolutionary 
Computation, Singapore, pages 3157-3164. 

Chung, H.-S. and Alonso, J. (2004). Multiobjective optimization using approximation 
model-based genetic algorithms. 10th AIAA/ISSMO Symposium on Multidisciplinary 
Analysis and Optimization, Albany, New York. 
Chung, H.-S., Choi, S., and Alonso, J. (2003). Supersonic business jet design using a 
knowledge-based genetic algorithm with an adaptive, unstructured grid methodology. 
21st AIAA Applied Aerodynamics Conference, Orlando, Florida. 
Clement, P. (1959). A class of triple-diagonal matrices for test purposes. SIAM Review, 
l ( l ) :50-52. 

Clerc, M. (1999). The swarm and the queen: Towards a deterministic and adaptive 
particle swarm optimization. In IEEE Congress on Evolutionary Computing, pages 1951-
1957. 



REFERENCES 691 

Clerc, M. (2004). Discrete particle swarm optimization, illustrated by the traveling 
salesman problem. In Onwubolu, G. and Babu, R., editors, New Optimization Techniques 
in Engineering, pages 219-239. Springer. 

Clerc, M. (2006). Particle Swarm Optimization. John Wiley & Sons. 

Clerc, M. (2012a). Particle Swarm Optimization, h t t p : / / c l e r c . m a u r i c e . f r e e . f r / p s o . 

Clerc, M. (2012b). Randomness matters. Technical report, h t t p : / / c l e r c . m a u r i c e . 
f r e e . f r / p s o . 

Clerc, M. and Kennedy, J. (2002). The particle swarm - Explosion, stability, and conver-
gence in a multidimensional complex space. IEEE Transactions on Evolutionary Com-
putation, 6(l):58-73. 

Clerc, M. and Poli, R. (2006). Stagnation analysis in particle swarm optimisation or 
what happens when nothing happens. Technical report, University of Essex, h t t p : 
/ / c l e r c . m a u r i c e . f r e e . f r / p s o . 

Cobb, H. and Grefenstette, J. (1993). Genetic algorithms for tracking changing environ-
ments. International Conference on Genetic Algorithms, Urbana-Champaign, Illinois, 
pages 523-530. 

Coello Coello, C. (1999). A comprehensive survey of evolutionary-based multiobjective 
optimization techniques. Knowledge and Information Systems, l(3):269-308. 

Coello Coello, C. (2000a). Constraint-handling using an evolutionary multiobjective 
optimization technique. Civil Engineering and Environmental Systems, 17(4):319-346. 

Coello Coello, C. (2000b). Use of a self-adaptive penalty approach for engineering opti-
mization problems. Computers in Industry, 41 (2): 113-127. 

Coello Coello, C. (2002). Theoretical and numerical constraint-handling techniques used 
with evolutionary algorithms: A survey of the state of the art. Computer Methods in 
Applied Mechanics and Engineering, 191 (11-12): 1245-1287. 

Coello Coello, C. (2006). Evolutionary multi-objective optimization: A historical view 
of the field. IEEE Computational Intelligence Magazine, l ( l ) :28-36. 

Coello Coello, C. (2009). Evolutionary multi-objective optimization: Some current re-
search trends and topics that remain to be explored. Frontiers of Computer Science in 
China, 3(l):18-30. 

Coello Coello, C. (2012a). List of references on constraint-handling techniques used with 
evolutionary algorithms, www.cs .c inves tav .mx/~cons t ra in t . 

Coello Coello, C. (2012b). List of references on evolutionary multiobjective optimization, 
www.lania.mx/~ccoello/EM00/EM00bib.html. 

Coello Coello, C. and Becerra, R. (2002). Constrained optimization using an evolutionary 
programming-based cultural algorithm. In Parmee, I., editor, Adaptive Computing in 
Design and Manufacture V, pages 317-328. Springer. 

Coello Coello, C. and Becerra, R. (2003). Evolutionary multiobjective optimization using 
a cultural algorithm. Swarm Intelligence Symposium, Indianapolis, Indiana, pages 6-13. 

Coello Coello, C , Lamont, G., and Van Veldhuizen, D. (2007). Evolutionary Algorithms 
for Solving Multi-Objective Problems. Springer. 

Coello Coello, C. and Mezura-Montes, E. (2011). Constraint-handling in nature-inspired 
numerical optimization: Past, present and future. Swarm and Evolutionary Computation, 
1(4):173-194. 

Coit, D. and Smith, A. (1996). Penalty guided genetic search for reliability design 
optimization. Computers and Industrial Engineering, 30(4):895-904. 



692 REFERENCES 

Coit, D., Smith, A., and Täte, D. (1996). Adaptive penalty methods for genetic op-
timization of constrained combinatorial problems. INFORMS Journal on Computing, 
8(2):173-182. 

Collard, P. and Aurand, J. (1994). DGA: An efficient genetic algorithm. 11th European 
Conference on Artificial Intelligence, Amsterdam, The Netherlands, pages 487-492. 

Collard, P. and Gaspar, A. (1996). "Royal-road" landscapes for a dual genetic algorithm. 
12th European Conference on Artificial Intelligence, Budapest, Hungary, pages 213-217. 

Collette, Y. and Siarry, P. (2004). Multiobjective Optimization: Principles and Case 
Studies. Springer. 

Colorni, A., Dorigo, M., and Maniezzo, V. (1991). Distributed optimization by ant 
colonies. European Conference on Artificial Life, Paris, Prance, pages 134-142. 

Corder, G. and Foreman, D. (2009). Nonparametric Statistics for Non-Statisticians. John 
Wiley & Sons. 

Cordon, O., Herrera, F., de Viana, F., and Moreno, L. (2000). A new ACO model 
integrating evolutionary computation concepts: The best-worst ant system. From Ant 
Colonies to Artificial Ants: Second International Workshop on Ant Algorithms, Brussels, 
Belgium, pages 22-29. 

Corfman, K. and Lehmann, D. (1994). The prisoner's dilemma and the role of information 
in setting advertising budgets. Journal of Advertising, 23(2):35-48. 

Courant, R. (1943). Variational methods for the solution of problems of equilibrium and 
vibrations. Bulletin of the American Mathematical Society, 49( l ) : l -23 . 

Cover, T. and Thomas, J. (1991). Elements of Information Theory. Wiley-Interscience. 

Cramer, N. (1985). A representation for the adaptive generation of simple sequential 
programs. International Conference on Genetic Algorithms and Their Application, Pi t ts-
burgh, Pennsylvania, pages 183-187. 

Crepinsek, M., Liu, S.-H., and Mernik, L. (2012). A note on teaching-learning-based 
optimization algorithm. Information Sciences, 212:79-93. 

Crepinsek, M., Liu, S.-H., and Mernik, M. (2013). Replication and comparison of compu-
tational experiments in applied evolutionary computing: Common pitfalls and guidelines 
to avoid them. Information Sciences, submitted for publication. 

Culberson, J. (1998). On the futility of blind search. Evolutionary Computation, 
6(2):109-127. 

Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or The 
Preservation of Favoured Races in the Struggle for Life. John Murray, Albemarle Street. 

Darwin, C , Neve, M., and Messenger, S. (2002). Autobiographies. Penguin Classics. 

Das, S., Biswas, A., Dasgupta, S., and Abraham, A. (2009). Bacterial foraging optimiza-
tion algorithm: Theoretical foundations, analysis, and applications. In Abraham, A., 
Hassanien, A.-E., Siarry, P., and Engelbrecht, A., editors, Foundations of Computational 
Intelligence - Volume 3: Global Optimization, pages 23-56. Springer. 

Das, S. and Suganthan, P. (2011). Differential evolution: A survey of the state-of-the-art. 
IEEE Transactions on Evolutionary Computation, 15(1):4-31. 

Das, S., Suganthan, P., and Coello Coello, C. (2011). Guest editorial: Special issue on 
differential evolution. IEEE Transactions on Evolutionary Computation, 15( l ) : l -3 . 

Dasgupta, S., Das, S., Abraham, A., and Biswas, A. (2009). Adaptive computational 
chemotaxis in bacterial foraging optimization: An analysis. IEEE Transactions on Evo-
lutionary Computation, 13(4) :919-941. 



REFERENCES 693 

Davis, L. (1985). Job shop scheduling with genetic algorithms. International Conference 
on Genetic Algorithms and Their Application, Pittsburgh, Pennsylvania, pages 136-140. 

Davis, L. and Steenstrup, M. (1987). Genetic algorithms and simulated annealing: An 
overview. In Davis, L., editor, Genetic Algorithms and Simulated Annealing, pages 1-11. 
Pi tman Publishing. 

Davis, T. and Principe, J. (1991). A simulated annealing like convergence theory for the 
simple genetic algorithm. International Conference on Genetic Algorithms, San Diego, 
California, pages 174-181. 

Davis, T. and Principe, J. (1993). A Markov chain framework for the simple genetic 
algorithm. Evolutionary Computation, l(3):269-288. 

De Bonet, J., Isbell, C , and Viola, P. (1997). MMIC: Finding optima by estimating 
probability densities. In Mozer, M., Jordan, M., and Petsche, T., editors, Advances in 
Neural Information Processing Systems 9, pages 424-430. MIT Press. 

de Franca, F., Coelho, G., Von Zuben, F., and Attux, R. (2008). Multivariate ant colony 
optimization in continuous search spaces. In Genetic and Evolutionary Computation 
Conference, pages 9-16. 

de Garis, H. (1990). Genetic programming: Building artificial nervous systems with 
genetically programmed neural network modules. Seventh International Conference on 
Machine Learning, Austin, Texas, pages 132-139. 

De Jong, K. (1975). An Analysis of the Behaviour of a Class of Genetic Adaptive Systems. 
PhD thesis, University of Michigan. 

De Jong, K. (1992). Genetic algorithms are NOT function optimizers. Second Workshop 
on Foundations of Genetic Algorithms, Vail, Colorado, pages 5-17. 

De Jong, K. (2002). Evolutionary Computation. The MIT Press. 

De Jong, K., Fogel, D., and Schwefel, H.-P. (1997). A history of evolutionary compu-
tation. In Back, T., Fogel, D., and Michalewicz, Z., editors, Handbook of Evolutionary 
Computation, pages A2.3:l-12. Oxford University Press. 

de Oca, M. and Stützle, T. (2008). Convergence behavior of the fully informed parti-
cle swarm optimization algorihtm. Genetic and Evolutionary Computation Conference, 
Atlanta, Georgia, pages 71-78. 

Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer 
Methods in Applied Mechanics and Engineering, 186(2-4) :311-338. 

Deb, K. (2009). Multi-Objective Optimization using Evolutionary Algorithms. John Wiley 
& Sons. 

Deb, K. and Agrawal, R. (1995). Simulated binary crossover for continuous search space. 
Complex Systems, 9(2): 115-148. 

Deb, K. and Agrawal, S. (1999). A niched-penalty approach for constraint handling 
in genetic algorithms. International Conference on Artificial Neural Nets and Genetic 
Algorithms, Portoroz, Slovenia, pages 235-242. 

Deb, K., Agrawal, S., Pra tap , A., and Meyarivan, T. (2000). A fast elitist non-dominated 
sorting genetic algorithm for multi-objective optimization: NSGA-II. In Schoenauer, M., 
Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J., and Schwefel, H.-P., editors, 
Parallel Problem Solving from Nature - PPSN VI, pages 849-858. Springer. 

Deb, K. and Goldberg, D. (1989). An investigation of niche and species formation in 
genetic function optimization. International Conference on Genetic Algorithms, Fairfax, 
Virginia, pages 42-50. 



694 REFERENCES 

Deb, K., Mohan, M., and Mishra, S. (2005). Evaluating the e-domination based multi-
objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. 
Evolutionary Computation, 13(4): 501-525. 

Deb, K., Pra tap , A., Agarwal, S., and Meyarivan, T. (2002a). A fast and elitist multiob-
jective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 
6(2):182-197. 
Deb, K., Pra tap, A., and Meyarivan, T. (2001). Constrained test problems for multi-
objective evolutionary optimization. In Zitzler, E., Deb, K., Thiele, L., Coello Coello, C , 
and Corne, D., editors, Evolutionary Multi-Criterion Optimization: First International 
Conference, EMO 2001, pages 284-298. Springer. 

Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2002b). Scalable multi-objective 
optimization test problems. World Congress on Computational Intelligence, Honolulu, 
Hawaii, pages 825-830. 

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann. 

Deep, K. and Thakur, M. (2007). A new crossover operator for real coded genetic 
algorithms. Applied Mathematics and Computation, 188(1):895-911. 

del Valle, Y., Venayagamoorthy, G., Mohagheghi, S., Hernandez, J . - C , and Harley, R. 
(2008). Particle swarm optimization: Basic concepts, variants and applications in power 
systems. IEEE Transactions on Evolutionary Computation, 12(2): 171-195. 

Delahaye, J.-P. and Mathieu, P. (1995). Complex strategies in the iterated prisoner's 
dilemma. In Albert, A., editor, Chaos and Society, pages 283-292. IOS Press. 

Delsuc, F. (2003). Army ants trapped by their evolutionary history. Public Library of 
Science Biology, l(2):e37. 

Dembski, W. and Marks, R. (2009a). Bernoulli's principle of insufficient reason and 
conservation of information in computer search. IEEE Conference on Systems, Man and 
Cybernetics, San Antonio, Texas, pages 2647-2652. 

Dembski, W. and Marks, R. (2009b). Conservation of information in search: Measuring 
the cost of success. IEEE Transactions on Systems, Man, and Cybernetics - Part A: 
Systems and Humans, 39(5): 1051-1060. 

Dembski, W. and Marks, R. (2010). The search for a search: Measuring the informa-
tion cost of higher level search. Journal of Advanced Computational Intelligence and 
Intelligent Informatics, 14(5):475-486. 

Demetrescu, C. (2012). 9th DIMACS Implementation Challenge - Shortest Paths, www. 
d i s . u n i r o m a l . i t / c h a l l e n g e 9 . 

Deneubourg, J.-L., Aron, S., Goss, S., and Pasteeis, J. (1990). The self-organizing 
exploratory pattern of the Argentine ant. Journal of Insect Behavior, 3(2): 159-168. 

DePaulo, B., Kashy, D., Kirkendol, S., Wyer, M., and Epstein, J. (1996). Lying in 
everyday life. Journal of Personality and Social Psychology, 70(5):979-995. 

Devroye, L. (1978). Progressive global random search of continuous functions. Mathe-
matical Programming, 15(l):330-342. 

Di Pietro, A., While, L., and Barone, L. (2004). Applying evolutionary algorithms to 
problems with noisy, time-consuming fitness functions. IEEE Congress on Evolutionary 
Computation, Portland, Oregon, pages 1254-1261. 

Dominguez, J. and Pulido, G. (2011). A comparison on the search of particle swarm 
optimization and differential evolution on multi-objective optimization. IEEE Congress 
on Evolutionary Computation, New Orleans, Louisiana, pages 1978-1985. 

Doran, R. (2007). The gray code. Journal of Universal Computer Science, 13(11):1573-
1597. 



REFERENCES 695 

Dorigo, M., Birattari, M., and Stützle, T. (2006). Ant colony optimization: Artificial ants 
as a computational intelligence technique. IEEE Computational Intelligence Magazine, 
l(4):28-39. 

Dorigo, M. and Gambardella, L. (1997a). Ant colonies for the traveling salesman problem. 
BioSystems, 43(2):73-81. 

Dorigo, M. and Gambardella, L. (1997b). Ant colony system: A cooperative learning 
approach to the traveling salesman problem. IEEE Transactions on Evolutionary Com-
putation, l ( l ) :53-66. 

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant system: Optimization by a colony 
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics - Part B: 
Cybernetics, 26(1):29-41. 

Dorigo, M. and Stützle, T. (2004). Ant Colony Optimization. The MIT Press. 

Dorigo, M. and Stützle, T. (2010). Ant colony optimization: Overview and recent ad-
vances. In Gendreau, M. and Potvin, J.-Y., editors, Handbook of Metaheuristics, pages 
227-263. Springer. 

Droste, S., Jansen, T., and Wegener, I. (2002). On the analysis of the (1+1) evolutionary 
algorithm. Theoretical Computer Science, 276(1-2):51-81. 

Du, D., Simon, D., and Ergezer, M. (2009). Biogeography-based optimization combined 
with evolutionary strategy and immigration refusal. IEEE Conference on Systems, Man, 
and Cybernetics, San Antonio, Texas, pages 1023-1028. 

Duan, Q., Gupta, V., and Sorooshian, S. (1993). Shuffled complex evolution approach 
for effective and efficient global minimization. Journal of Optimization Theory and Ap-
plications, 76(3):501-521. 

Duan, Q., Sorooshian, S., and Gupta, V. (1992). Effective and efficient global optimiza-
tion for conceptual rainfall-runoff models. Water Resources Research, 28(4): 1015-1031. 

Ducheyne, E., De Baets, B., and De Wulf, R. (2003). Is fitness inheritance useful for real-
world applications? Second International Conference on Evolutionary Multi-Criterion 
Optimization, Faro, Portugal, pages 31-42. 

Dueck, G. (1993). New optimisation heuristics: The great deluge algorithm and the 
record-to-record travel. Journal of Computational Physics, 104(86):86-92. 

Dueck, G. and Scheuer, T. (1990). Threshold accepting: A general purpose optimization 
algorithm appearing superior to simulated annealing. Journal of Computational Physics, 
90(1):161-175. 

Dunham, B., Pridshal, D., Pridshal, R., and North, J. (1963). Design by natural selection. 
Synthese, 15(2):254-259. 

Durham, W. (1992). Coevolution: Genes, Culture, and Human Diversity. Stanford 
University Press. 

Dyson, G. (1998). Darwin Among the Machines. Basic Books. 

Eberhart , R. and Kennedy, J. (1995). A new optimizer using particle swarm theory. 
International Symposium on Micro Machine and Human Science, Nagoya, Japan, pages 
39-43. 

Eberhart , R. and Shi, Y. (2000). Comparing inertia weights and constriction factors in 
particle swarm optimization. IEEE Congress on Evolutionary Computation, San Diego, 
California, pages 84-88. 

Eberhart , R. and Shi, Y. (2001). Particle swarm optimization: Developments, applica-
tions and resources. IEEE Congress on Evolutionary Computation, Seoul, Korea, pages 
81-86. 



696 REFERENCES 

Edgeworth, F. (1881). Mathematical Physics. Kegan Paul. 

Ehrgott, M. (2005). Multicriteria Optimization. Springer. 

Ehrnborg, C. and Rosén, T. (2009). The psychology behind doping in sport. Growth 
Hormone & IGF Research, 19(4):285-287. 

Eiben, A. (2000). Multiparent recombination. In Back, T., Fogel, D., and Michalewicz, 
Z., editors, Evolutionary Computation 1: Basic Algorithms and Operators, pages 289-
307. Institute of Physics Publishing. 

Eiben, A. (2001). Evolutionary algorithms and cnstraint satisfaction: Definitions, survey, 
methodology, and research directions. In Kallel, L., Naudts, B., and Rogers, A., editors, 
Theoretical Aspects of Evolutionary Computating, pages 13-30. Springer. 

Eiben, A. (2003). Multiparent recombination in evolutionary computing. In Ghosh, A. 
and Tsutsui, S., editors, Advances in Evolutionary Computing, pages 175-192. Springer-
Verlag. 

Eiben, A. and Back, T. (1998). Empirical investigation of multiparent recombination 
operators in evolution strategies. Evolutionary Computation, 5(3):347-365. 

Eiben, A. and Schippers, C. (1996). Multi-parent's niche: n-ary crossovers on nk-
landscapes. In Ebeling, W., Rechenberg, I., Schwefel, H.-P., and Voigt, H.-M., editors, 
Parallel Problem Solving from Nature - PPSN IV, pages 319-328. Springer. 

Eiben, A. and Smit, S. (2011). Parameter tuning for configuring and analyzing evolu-
tionary algorithms. Swarm and Evolutionary Computation, 1(1): 19-31. 

Eiben, A. and Smith, J. (2010). Introduction to Evolutionary Computing. Springer. 

Elbeltagi, E., Hegazy, T., and Grierson, D. (2005). Comparison among five evolutionary-
based optimization algorithms. Advanced Engineering Informatics, 19(l):43-53. 

Ellis, T. and Yao, X. (2007). Evolving cooperation in the non-iterated prisoner's dilemma: 
A social network inspired approach. IEEE Congress on Evolutionary Computation, Sin-
gapore, pages 736-743. 

Elton, C. (1958). Ecology of Invasions by Animals and Plants. Chapman & Hall. 

Emre, E. and Knowles, G. (1987). A Newton-like approximation algorithm for the steady-
state solution of the Riccati equation for time-varying systems. Optimal Control Appli-
cations and Methods, 8(2): 191-197. 

Engelbrecht, A. (2003). Computational Intelligence. John Wiley L· Sons. 

English, T. (1999). Some information theoretic results on evolutionary optimization. 
IEEE Congress on Evolutionary Computation, Washington, District of Columbia, pages 
788-795. 

Ergezer, M. (2011). Oppositional biogeography-based optimization. Technical report, 
Cleveland State University. Doctoral dissertation proposal, unpublished. 

Ergezer, M. and Simon, D. (2011). Oppositional biogeography-based optimization for 
combinatorial problems. IEEE Congress on Evolutionary Computation, New Orleans, 
Louisiana, pages 1496-1503. 

Ergezer, M., Simon, D., and Du, D. (2009). Oppositional biogeography-based optimiza-
tion. IEEE Conference on Systems, Man, and Cybernetics, San Antonio, Texas, pages 
1035-1040. 

Erol, O. and Eksin, I. (2006). New optimization method: Big bang-big crunch. Advances 
in Engineering Software, 37(2): 106-111. 

Eshelman, L., Caruana, R., and Schaffer, J. (1989). Biases in the crossover landscape. 
International Conference on Genetic Algorithms, Fairfax, Virginia, pages 10-19. 



REFERENCES 697 

Eshelman, L. and Schaffer, J. (1993). Real-coded genetic algorithms and interval 
schemata. In Whitley, D., editor, Foundations of Genetic Algorithms 2, pages 187-202. 
Morgan Kaufmann. 

Eskandari, H. and Geiger, C. (2008). A fast Pareto genetic algorithm approach for solving 
expensive multiobjective optimization problems. Journal of Heuristics, 14(3):203-241. 

Eusuff, M. and Lansey, K. (2003). Optimization of water distribution network design 
using the shuffled frog leaping algorithm (SFLA). Journal of Water Resources Planning 
and Management, 129(3):210-225. 

Eusuff, M., Lansey, K., and Pasha, F. (2006). Shuffled frog-leaping algorithm: A memetic 
meta-heuristic for discrete optimization. Engineering Optimization, 38(2): 129-154. 

Evans, M., Hastings, N., and Peacock, B. (2000). Statistical Distributions. Wiley-
Interscience. 

Farmani, R. and Wright, J. (2003). Self-adaptive fitness formulation for constrained 
optimization. IEEE Transactions on Evolutionary Computation, 7(5):445-455. 

Fausett, L. (1994). Fundamentals of Neural Networks. Prentice Hall. 

Fealy, M. (2006). The Great Pawn Hunter Chess Tutorial. AuthorHouse. 

Feoktistov, V. (2006). Differential Evolution: In Search of Solutions. Springer. 

Fernandes, M., Martins, T., and Rocha, A. (2009). Fish swarm intelligent algorithm for 
bound constrained global optimization. International Conference on Computational and 
Mathematical Methods in Science and Engineering, Gijon, Spain. 

Fish, F. (1995). Kinematics of ducklings swimming in formation: Consequences of posi-
tion. Journal of Experimental Zoology, 273(1):1-11. 

Fleming, P., Purshouse, R., and Lygoe, R. (2005). Many-objective optimization: An 
engineering design perspective. In Coello Coello, C., Hernandez Aguirre, A., and Zitzler, 
E., editors, Evolutionary Multi-Criterion Optimization, pages 14-32. Springer. 

Fletcher, R. and Powell, M. (1963). A rapidly convergent descent method for minimiza-
tion. The Computer Journal, 6(2): 163-168. 

Floudas, C. and Pardalos, P. (1990). A Collection of Test Problems for Constrained 
Global Optimization Algorithms. Springer. 

Floudas, C., Pardalos, P., Adjiman, C., Esposito, W., Gümüs, Z., Harding, S., Klepeis, 
J., Meyer, C., and Schweiger, C. (2010). Handbook of Test Problems in Local and Global 
Optimization. Springer. 

Fogel, D. (1988). An evolutionary aproach to the traveling salesman problem. Biological 
Cybernetics, 60(2): 139-144. 

Fogel, D. (1990). A parallel pocessing approach to a multiple traveling salesman prob-
lem using evolutionary programming. Fourth Annual Parallel Processing Symposium, 
Fullerton, California, pages 318-326. 

Fogel, D., editor (1998). Evolutionary Computation: The Fossil Record. Wiley-IEEE 
Press. 

Fogel, D. (2000). What is evolutionary computation? IEEE Spectrum, 37(2):26-32. 

Fogel, D. (2006). George Friedman - Evolving circuits for robots. IEEE Computational 
Intelligence Magazine, l(4):52-54. 

Fogel, D. and Anderson, R. (2000). Revisiting Bremermann's genetic algorithm: I. Si-
multaneous mutation of all parameters. IEEE Congress on Evolutionary Computation, 
San Diego, California, pages 1204-1209. 

Fogel, L. (1999). Intelligence through Simulated Evolution: Forty Years of Evolutionary 
Programming. John Wiley L· Sons. 



698 REFERENCES 

Fogel, L., Owens, A., and Walsh, M. (1966). Artificial Intelligence through Simulated 
Evolution. John Wiley & Sons. 

Fonseca, C. and Fleming, P. (1993). Genetic algorithms for multiobjective optimiza-
tion: Formulation, discussion and generalization. International Conference on Genetic 
Algorithms, Urbana-Champaign, Illinois, pages 416-423. 

Fonseca, C. and Fleming, P. (1995). An overview of evolutionary algorithms in multiob-
jective optimization. Evolutionary Computation, 3(1): 1-16. 

Formato, R. (2007). Central force optimization: A new metaheuristic with applications 
in applied electromagnetics. Progress in Electromagnetics Research, 77:425-491. 

Formato, R. (2008). Central force optimization: A new nature inspired computational 
framework for multidimensional search and optimization. In Krasnogor, N., Nicosia, G., 
Pavone, M., and Pelta, D., editors, Nature Inspired Cooperative Strategies for Optimiza-
tion (NICSO 2007), pages 221-238. Springer. 

Forsyth, R. (1981). BEAGLE - A Darwinian approach to pat tern recognition. Kyber-
netes, 10(3): 159-166. 

Fourman, M. (1985). Compaction of symbolic layout using genetic algorithms. Interna-
tional Conference on Genetic Algorithms, Pittsburgh, Pennsylvania, pages 141-153. 

Fox, B. and McMahon, M. (1991). Genetic operators for sequencing problems. In Rawl-
ins, G., editor, Foundations of Genetic Algorithms, pages 284-300. Morgan Kaufmann 
Publishers. 

Francçis, 0 . (1998). An evolutionary strategy for global minimization and its Markov 
chain analysis. IEEE Transactions on Evolutionary Computation, 2(3):77-90. 

Fraser, A. (1957). Simulation of genetic systems by automatic digital computers: I. In-
troduction. Australian Journal of Biological Sciences, 10(3):484-491. 

Friedberg, R. (1958). A learning machine: Par t I. IBM Journal of Research and Devel-
opment, 2(1):2-13. 

Friedberg, R., Dunham, B., and North, J. (1958). A learning machine: Par t II. IBM 
Journal of Research and Development, 3(3):282-287. 

Friedman, G. (1998). Selective feedback computers for engineering synthesis and nervous 
system analogy. In Fogel, D., editor, Evolutionary Computation: The Fossil Record, pages 
30-84. Wiley-IEEE Press. 

Furuta, H., Maeda, K., and Watanabe, E. (1995). Application of genetic algorithm to aes-
thetic eesign of bridge structures. Computer-Aided Civil and Infrastructure Engineering, 
10(6):415-421. 

Galinier, P., Hamiez, J.-P., Hao, J.-K., and Porumbel, D. (2013). Recent advances in 
graph vertex coloring. In Zelinka, L, Snâsel, V., and Abraham, A., editors, Handbook of 
Optimization, ebooks . com. 

Gallagher, M., Wood, I., Keith, J., and Sofronov, G. (2007). Bayesian inference in 
estimation of distribution algorithms. IEEE Congress on Evolutionary Computation, 
Singapore, pages 127-133. 

Gambardella, L. and Dorigo, M. (1995). Ant-Q: A reinforcement learning approach to 
the traveling salesman problem. Twelfth International Conference on Machine Learning, 
Tahoe City, California, pages 252-260. 

Gandomi, A. and Alavi, A. (2012). Krill herd: A new bio-inspired optimization algorithm. 
Communications in Nonlinear Science and Numerical Simulation, 17( 12) :4831-4845. 

Gathercole, C. and Ross, P. (1994). Dynamic training subset selection for supervised 
learning in genetic programming. In Davidor, Y., Schwefel, H.-P., and Männer, R., 
editors, Parallel Problem Solving from Nature - PPSN HI, pages 312-321. Springer. 



REFERENCES 699 

Gathercole, C. and Ross, P. (1997). Small populations over many generations can beat 
large populations over few generations in genetic programming. Second Annual Confer-
ence on Genetic Programming, Palo Alto, California, pages 111-118. 

Geem, Z., editor (2010a). Harmony Search Algorithms for Structural Design Optimiza-
tion. Springer. 

Geem, Z., editor (2010b). Music-Inspired Harmony Search Algorithm. Springer. 

Geem, Z. (2010c). Recent Advances in Harmony Search Algorithm. Springer. 

Geem, Z., Kim, J.-H., and Loganathan, G. (2001). A new heuristic optimization algo-
rithm: Harmony search. Simulation, 76(2):60-68. 

Geisser, S. (1993). Predictive Inference. Chapman h Hall. 

Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the 
bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 6(6):721-741. 

Gendreau, M. (2003). An introduction to tabu search. In Glover, F. and Kochenberger, 
G., editors, Handbook of Metaheuristics, pages 37-54. Springer. 

Gendreau, M. and Potvin, J.-Y. (2010). Tabu search. In Gendreau, M. and Potvin, J.-Y., 
editors, Handbook of Metaheuristics, pages 41-59. Springer. 

Giraldeau, L.-A. and Caraco, T. (2000). Social Foraging Theory. Princeton University 
Press. 

Glover, F. and Laguna, M. (1998). Tabu Search. Springer. 

Glover, F . and McMillan, C. (1986). The general employee scheduling problem: An 
integration of MS and AI. Computers and Operations Research, 13(5):563-573. 

Goh, C. and Tan, K. (2007). An investigation on noisy environments in evolutionary mul-
tiobjective optimization. IEEE Transactions on Evolutionary Computation, 11(3):354-
381. 

Golan, J. (2007). The Linear Algebra a Beginning Graduate Student Ought to Know. 
Springer. 

Goldberg, D. (1989a). Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison Wesley. 

Goldberg, D. (1989b). Messy genetic algorithms: Motivation, analysis, and first results. 
Complex Systems, 3(5):493-530. 

Goldberg, D. (1991). Real-coded genetic algorithms, virtual alphabets, and blocking. 
Complex Systems, 5(2): 139-167. 

Goldberg, D. and Lingle, R. (1985). Alleles, loci, and the traveling salesman prob-
lem. International Conference on Genetic Algorithms and Their Application, Pit tsburgh, 
Pennsylvania, pages 154-159. 

Gomez, J., Barrera, J., Rojas, J., Macias-Samano, J., Liedo, J., Cruz-Lopez, L., and 
Badii, M. (2005). Volatile compounds released by disturbed females of Cephalonomia 
stephanoderis (Hymenoptera: Bethylidae): A parasitoid of the coffee berry borer Hy-
pothenemus hampei (Coleoptera: Scolytidae). Florida Entomologist, 88(2): 180-187. 

Gonzalez, C , Lozano, J., and Larranaga, P. (2000). Analyzing the PBIL algorithm by 
means of discrete dynamical systems. Complex Systems, 12(4):465-479. 

Gonzalez, C , Lozano, J., and Larranaga, P. (2001). The convergence behavior of the 
PBIL algorithm: A preliminary approach. In Kurkova, V., Steele, N., Neruda, R., 
and Kârny, M., editors, Artificial Neural Nets and Genetic Algorithms, pages 228-231. 
Springer-Ver lag. 



700 REFERENCES 

Gonzalez, C., Lozano, J., and Larranaga, P. (2002). Mathematical modeling of discrete 
estimation of distribution algorithms. In Larranaga, P. and Lozano, J., editors, Estima-
tion of Distribution Algorithms, pages 147-163. Kluwer Academic Publishers. 

Good, P. and Hardin, J. (2009). Common Errors in Statistics. John Wiley & Sons, 3rd 
edition. 

Goss, S., Aron, S., Deneubourg, J., and Pasteeis, J. (1989). Self-organized shortcuts in 
the Argentine ant. Naturwissenschaften, 76(12):579-581. 

Gotelli, N. (2008). A Primer of Ecology. Sinauer Associates. 

Gray, R. (2011). Entropy and Information Theory. Springer. 

Greene, M. and Gordon, D. (2007). Structural complexity of chemical recognition 
cues affects the perception of group membership in the ants Linephithema humile and 
Aphaenogaster cockerelli. Journal of Experimental Biology, 210(5):897-905. 

Grefenstette, J., Gopal, R., Rosmaita, B., and Van Gucht, D. (1985). Genetic algorithms 
for the TSP. International Conference on Genetic Algorithms and Their Application, 
Cambridge, Massachusetts, pages 160-165. 

Gregory, R. and Karney, D. (1969). A Collection of Matrices for Testing Computational 
Algorithms. John Wiley & Sons. 

Grieco, J. (1988). Realist theory and the problem of international cooperation: Analysis 
with an amended prisoner's dilemma model. The Journal of Politics, 50(3):600-624. 

Grinstead, C. and Snell, J. (1997). Introduction to Probability. American Mathematical 
Society. 

Grötschel, M. and Padberg, M. (2001). The optimized odyssey. AIROnews, 6(2): 1-7. 

Guntsch, M. and Middendorf, M. (2002). Applying population based ACO to dynamic 
optimization problems. Third International Workshop on Ant Algorithms, Brussels, Bel-
gium, pages 111-122. 

Gustafson, S. and Burke, E. (2006). Speciating island model: An alternative parallel 
evolutionary algorithm. Parallel and Distributed Computing, 66(8): 1025-1036. 

Gutierrez, A., Lanza, M., Barriuso, I., Valle, L., Domingo, M., Perez, J., and Baster-
rechea, J. (2002). Comparison of different PSO initialization techniques for high di-
mensional search space problems: A test with FSS and antenna arrays. 5th European 
Conference on Antennas and Propagation, Rome, Italy, pages 965-969. 

Gutin, G. and Punnen, A., editors (2007). The Traveling Salesman Problem and Its 
Variations. Springer. 

Gutjahr, W. (2000). A graph-based ant system and its convergence. Future Generation 
Computer Systems, 16(9):873-888. 

Gutjahr, W. (2008). First steps to the runtime complexity analysis of ant colony opti-
mization. Computers & Operations Research, 35(9) :2711-2727. 

Hadj-Alouane, A. and Bean, J. (1993). A genetic algorithm for the multiple choice 
integer program. Technical report, Department of Industrial &; Operations Engineering, 
University of Michigan. h t t p : / / i o e . e n g i n . u m i c h . e d u / t e c h r p r t / p d f / T R 9 2 - 5 0 . p d f . 

Hadj-Alouane, A. and Bean, J. (1997). A genetic algorithm for the multiple choice integer 
program. Operations Research, 45(1):92-101. 

Hajela, P. and Lin, C.-Y. (1997). Genetic search strategies in multicriterion optimal 
design. Structural and Multidisciplinary Optimization, 4(2):99-107. 

Hamida, S. and Schoenauer, M. (2000). An adaptive algorithm for constrained optimiza-
tion problems. In Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, 



REFERENCES 701 

J., and Schwefel, H.-P., editors, Parallel Problem Solving from Nature - PPSN VI, pages 
529-538. Springer. 

Hamida, S. and Schoenauer, M. (2002). ASCHEA: New results using adaptive segre-
gational constraint handling. IEEE Congress on Evolutionary Computation, Honolulu, 
Hawaii, pages 884-889. 

Hamilton, W. (1971). Geometry for the selfish herd. Journal of Theoretical Biology, 
31(2):295-311. 

Hansen, N. (2010). The CMA evolution strategy: A comparing review. In Lozano, J., 
Larranga, P., Inza, I., and Bengoetxea, E., editors, Towards a New Evolutionary Com-
putation: Advances on Estimation of Distribution Algorithms, pages 75-102. Springer. 

Hansen, N., Müller, S., and Koumoutsakos, P. (2003). Reducing the time complexity 
of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). 
Evolutionary Computation, 11(1): 1-18. 

Hansen, N. and Ostermeier, A. (2001). Completely derandomized self-adaptation in 
evolution strategies. Evolutionary Computation, 9(2): 159-195. 

Hanski, I. (1999). Habitat connectivity, habitat continuity, and metapopulations in dy-
namic landscapes. Oikos, 87(2):209-219. 

Hanski, I. and Gilpin, M. (1997). Metapopulation Biology. Academic Press. 

Hao, J.-K. and Middendorf, M., editors (2012). Evolutionary Computation in Combina-
torial Optimization. Springer. 

Harding, S. (2006). Animate Earth. Chelsea Green Publishing Company. 

Harik, G. (1995). Finding multimodal solutions using restricted tournament selection. 
International Conference on Genetic Algorithms, Pittsburgh, Pennsylvania, pages 24-31. 

Harik, G. (1999). Linkage learning via probabilistic modeling in the ECGA. Technical 
report, Illinois Genetic Algorithms Laboratory, University of Illinois. IlliGAL Report No. 
99010. 

Harik, G., Lobo, F., and Goldberg, D. (1999). The compact genetic algorithm. IEEE 
Transactions on Evolutionary Computation, 3(4):287-297. 

Harik, G., Lobo, F., and Sastry, K. (2010). Linkage learning via probabilistic modeling 
in the extended compact genetic algorithm (ecga). In Pelikan, M., Sastry, K., and Cantu-
Paz, E., editors, Scalable Optimization via Probabilistic Modeling, pages 39-62. Springer. 

Harrald, P. and Fogel, D. (1996). Evolving continuous behaviors in the iterated prisoner's 
dilemma. Biosystems, 37(1-2): 135-145. 

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning. 
Springer, 2nd edition. 

Hastings, A. and Higgins, K. (1994). Persistence of transients in spatially structured 
models. Science, 263(5150):1133-1136. 

Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their 
applications. Biometrika, 57(1):97-109. 

Hatzakis, I. and Wallace, D. (2006). Dynamic multi-objective optimization with evolu-
tionary algorithms: A forward-looking approach. Genetic and Evolutionary Computation 
Conference, Seattle, Washington, pages 1201-1208. 

Haupt, R. and Haupt, S. (2004). Practical Genetic Algorithms. John Wiley &; Sons, 2nd 
edition. 

Hauptman, A., Elyasaf, A., Sipper, M., and Karmon, A. (2009). GP-Rush: Using ge-
netic programming to evolve solvers for the rush hour puzzle. Genetic and Evolutionary 
Computation Conference, Montreal, Canada, pages 955-962. 



702 REFERENCES 

Hauptman, A. and Sipper, M. (2007). Evolution of an efficient search algorithm for the 
mate-in-n problem in chess. European Conference on Genetic Programming, Valencia, 
Spain, pages 78-89. 

He, S., Wu, Q., and Saunders, J. (2009). Group search optimizer: An optimization 
algorithm inspired by animal searching behavior. IEEE Transactions on Evolutionary 
Computation, 13(5):973-990. 

Heinrich, B. (2002). Why We Run. Harper Perennial. 

Helwig, S. and Wanka, R. (2008). Theoretical analysis of initial particle swarm behavior. 
In Rudolph, G., Jansen, T., Lucas, S., Poloni, C., and Beume, N., editors, Parallel 
Problem Solving from Nature - PPSN X, pages 889-898. Springer. 

Henderson, D., Jacobson, S., and Johnson, A. (2003). The theory and practice of simu-
lated annealing. In Glover, F. and Kochenberger, G., editors, Handbook of Metaheuristics, 
pages 287-320. Springer. 

Herrera, F., Lozano, M., and Verdegay, J. (1998). Tackling real-coded genetic algorithms: 
Operators and tools for behavioural analysis. Artificial Intelligence Review, 12(4) :265-
319. 

Hofmeyr, S. and Forrest, S. (2000). Architecture for an artificial immune system. Evo-
lutionary Computation, 8(4):443-473. 

Holland, J. (1975). Adaptation in Natural and Artificial Systems. The University of 
Michigan Press. 

Hölldobler, B. and Wilson, E. (1990). The Ants. The Belknap Press of Harvard University 
Press. 

Hölldobler, B. and Wilson, E. (1994). Journey to the Ants. The Belknap Press of Harvard 
University Press. 

Hölldobler, B. and Wilson, E. (2008). The Superorganism: The Beauty, Elegance, and 
Strangeness of Insect Societies. W. W. Norton & Company. 

Homaifar, A., Qi, C., and Lai, S. (1994). Constrained optimization via genetic algorithms. 
Simulation, 62(4):242-253. 

Hooker, J. (1995). Testing heuristics: We have it all wrong. Journal of Heuristics, 
l ( l ) :33-42. 

Horn, J., Nafpliotis, N., and Goldberg, D. (1994). A niched Pareto genetic algorithm for 
multiobjective optimization. IEEE Conference on Evolutionary Computation, Orlando, 
Florida, pages 82-87. 

Home, E. and Jaeger, R. (1988). Territorial pheromones of female red-backed salaman-
ders. Ethology, 78(2): 143-152. 

Horoba, C. and Neumann, F. (2010). Approximating Pareto-optimal sets using diversity 
strategies in evolutionary multi-objective optimization. In Coello Coello, C , Dhaenens, 
C , and Jourdan, L., editors, Advances in Multi-Objective Nature Inspired Computing, 
pages 23-44. Springer. 

Houck, C , Joines, J., and Kay, M. (1995). A genetic algorithm for function optimization: 
A Matlab implementation. Technical report, North Carolina State University. 

Hsiao, Y.-T., Chuang, C.-L., Jiang, J.-A., and Chien, C.-C. (2005). A novel optimization 
algorithm: Space gravitational optimization. IEEE International Conference on Systems, 
Man and Cybernetics, Waikoloa, Hawaii, pages 2323-2328. 

Hu, T., Harding, S., and Banzhaf, W. (2010). Variable population size and evolution 
acceleration: A case study with a parallel evolutionary algorithm. Genetic Programming 
and Evolvable Machines, l l (2):205-225. 



REFERENCES 703 

Huang, H. and Wang, F . (2002). Fuzzy decision-making design of chemical plant us-
ing mixed-integer hybrid differential evolution. Computers and Chemical Engineering, 
26(12):1649-1660. 

Huang, V., Qin, A., Deb, K., Zitzler, E., Suganthan, P., Liang, J., Preuss, M., and 
Huband, S. (2007). Problem definitions for performance assessment on multi-objective 
optimization algorithms. Technical report. www.ntu.edu.sg/home/EPNSugan/index_ 
f i l e s / cec -benchmark ing .h tm. 

Huff, D. and Geis, I. (1993). How to Lie with Statistics. W. W. Norton & Company. 

Iba, H. and de Garis, H. (1996). Extending genetic programming with recombinative 
guidance. In Angeline, P. and Kinnear, K., editors, Advances in Genetic Programming: 
Volume 2, pages 69-88. The MIT Press. 

Igelnik, B. and Simon, D. (2011). The eigenvalues of a tridiagonal matrix in biogeography. 
Applied Mathematics and Computation, 218(1): 195-201. 

Ingber, L. (1996). Adaptive simulated annealing: Lessons learned. Control and Cyber-
netics, 25(l):33-54. 

Ito, K., Akagi, S., and Nishikawa, M. (1983). A multiobjective optimization approach 
to a design problem of heat insulation for thermal distribution piping network systems. 
Journal of Mechanisms, Transmissions, and Automation in Design, 105(2):206-213. 

Jaszkiewicz, A. and Zielniewicz, P. (2006). Pareto memetic algorithm with path relinking 
for bi-objective traveling salesperson problem. European Journal of Operational Research, 
193(3) :885-890. 

Jayalakshmi, G., Sathiamoorthy, S., and Rajaram, R. (2001). A hybrid genetic algo-
rithm - A new approach to solve traveling salesman problem. International Journal of 
Computational Engineering Science, 2(2):339-355. 

Jefferson, D., Collins, R., Cooper, C , Dyer, M., Flowers, M., Korf, R., Taylor, C , and 
Wang, A. (2003). Evolution as a theme in artificial life: The genesys/tracker system. In 
Langton, C , Taylor, C , Farmer, J., and Rasmussen, S., editors, Artificial Life II, pages 
549-578. Westview Press. 

Jensen, T. and Toft, B. (1994). Graph Coloring Problems. John Wiley & Sons. 

Jin, Y. (2005). A comprehensive survey of fitness approximation in evolutionary compu-
tation. Soft Computing, 9(1):3-12. 

Jin, Y. and Branke, J. (2005). Evolutionary optmization in uncertain environments - A 
survey. IEEE Transactions on Evolutionary Computation, 9(3):303-317. 

Jin, Y., Hüskin, M., and Sendhoff, B. (2003). Quality measures for approximate models in 
evolutionary computation. Genetic and Evolutionary Computation Conference, Chicago, 
Illinois, pages 170-173. 

Jofré, P., Reisenegger, A., and Fernandez, R. (2006). Constraining a possible time vari-
ation of the gravitational constant through "gravitochemical heating" of neutron stars. 
Physical Review Letters, 97(13):131102. 

Johnson, D. (1999). The insignificance of statistical significance testing. Journal of 
Wildlife Management, 63(3):763-772. 

Joines, J. and Houck, C. (1994). On the use of non-stationary penalty functions to 
solve nonlinear constrained optimization problems with GA's. IEEE World Congress on 
Computational Intelligence, Orlando, Florida, pages 579-584. 

Jones, D., Schonlau, M., and Welch, W. (1998). Efficient global optimization of expensive 
black-box functions. Journal of Global Optimization, 13(4):455-492. 

Joslin, D. and Clements, D. (1999). Squeaky wheel optimization. Journal of Artificial 
Intelligence Research, 10:353-373. 



704 REFERENCES 

Kanji, G. (2006). 100 Statistical Tests. Sage Publications. 

Karaboga, D. and Akay, B. (2009). A comparative study of artificial bee colony algorithm. 
Applied Mathematics and Computation, 214(1):108-132. 

Karaboga, D. and Bastürk, B. (2007). A powerful and efficient agorithm for numer-
ical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global 
Optimization, 39(3):459-471. 

Karaboga, D. and Bastürk, B. (2008). On the performance of artificial bee colony (ABC) 
algorithm. Applied Soft Computing, 8(l):687-697. 

Karaboga, D., Gorkemli, B., Ozturk, C , and Karaboga, N. (2013). A comprehensive 
survey: Artificial bee colony (ABC) algorithm and applications. Artificial Intelligence 
Review, in print. 

Kaveh, A. and Talatahari, S. (2010). A novel heuristic optimization method: Charged 
system search. Ada Mechanica, 213(3-4):267-289. 

Kazarlis, S. and Petridis, V. (1998). Varying fitness functions in genetic algorithms: 
Studying the rate of increase of the dynamic penalty terms. In Eiben, A., Back, T., 
Schoenauer, M., and Schwefel, H.-P., editors, Parallel Problem Solving from Nature -
PPSN V, pages 211-220. Springer. 

Keel, L. and Bhattacharyya, S. (1997). Robust, fragile, or optimal? IEEE Transactions 
on Automatic Control, 42(8): 1098-1105. 

Kemeny, J., Snell, J., and Thompson, G. (1974). Introduction to Finite Mathematics. 
Prentice-Hall. 

Kennedy, J. (1998). Thinking is social: Experiments with the adaptive culture model. 
Journal of Conflict Resolution, 42(l):56-76. 

Kennedy, J. and Eberhart , R. (1997). A discrete binary version of the particle swarm 
algorithm. IEEE Conference on Systems, Man, and Cybernetics, Orlando, Florida, pages 
4104-4109. 

Kennedy, J. and Eberhart , R., editors (2001). Swarm Intelligence. Morgan Kaufmann. 

Kern, S., Müller, S., Hansen, N., Bûche, D., Ocenasek, J., and Koumoutsakos, P. (2004). 
Learning probability distributions in continuous evolutionary algorithms - A comparative 
review. Natural Computing, 3(1):77-112. 

Keynes, R., editor (2001). Charles Darwin's Beagle diary. Cambridge University Press. 

Khare, V., Yao, X., and Deb, K. (2003). Performance scaling of multi-objective evolu-
tionary algorithms. In Fonseca, C , Fleming, P., Zitzler, E., Thiele, L., and Deb, K., 
editors, Evolutionary Multi-Criterion Optimization: Second International Conference, 
EMO 2003, pages 376-390. Springer. 

Khatib, W. and Fleming, P. (1998). The stud G A: A mini revolution? In Eiben, A., 
Back, T., Schoenauer, M., and Schwefel, H.-P., editors, Parallel Problem Solving from 
Nature - PPSN V, pages 683-691. Springer. 

Kim, D. (2006). Memory analysis and significance test for agent behaviours. Genetic 
and Evolutionary Computation Conference, Seattle, Washington, pages 151-158. 

Kim, H.-S. and Cho, S.-B. (2000). Application of interactive genetic algorithm to fashion 
design. Engineering Applications of Artificial Intelligence, 13(6):635-644. 

Kinnear, K. (1993). Evolving a sort: Lessons in genetic programming. International 
Conference on Neural Networks, San Francisco, California, pages 881-888. 

Kinnear, K. (1994). Alternatives in automatic function definition: A comparison of 
performance. In Kinnear, K., editor, Advances in Genetic Programming, pages 119-141. 
MIT Press. 



REFERENCES 705 

Kirk, D., editor (2004). Optimal Control Theory. Dover. 

Kirkpatrick, S., Gelatt, C , and Vecchi, M. (1983). Optimization by simmulated anneal-
ing. Science, 220(4598):671-680. 

Kjellström, G. (1969). Network optimization by random variation of component values. 
Ericsson Technics, 25(3):133-151. 

Kleidon, A. (2004). Amazonian biogeography as a test for Gaia. In Schneider, S., Miller, 
J., Crist, E., and Boston, P., editors, Scientists Debate Gaia, pages 291-296. MIT Press. 

Knowles, J. (2005). ParEGO: A hybrid algorithm with on-line landscape approximation 
for expensive multiobjective optimization problems. IEEE Transactions on Evolutionary 
Computation, 10(l):50-66. 

Knowles, J. and Corne, D. (2001). Approximating the nondominated front using the 
Pareto archived evolution strategy. Evolutionary Computation, 8(2): 149-172. 

Knowles, J. and Nakayama, H. (2008). Meta-modeling in multiobjective optimization. 
In Branke, J., Deb, K., Miettinen, K., and Slowinski, R., editors, Multiobjective Opti-
mization, pages 245-284. Springer. 

Konak, A., Coit, D., and Smith, A. (2006). Multi-objective optimization using genetic 
algorithms: A tutorial. Reliability Engineering and System Safety, 91(9):992-1007. 

Kondoh, M. (2006). Does foraging adaptation create the positive complexity-stability 
relationship in realistic food-web structure? Journal of Theoretical Biology, 238(3) :646-
651. 

Koza, J., editor (1992). Genetic Programming: On the Programming of Computers by 
Means of Natural Selection. The MIT Press. 

Koza, J., editor (1994). Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. The MIT Press. 

Koza, J. (1997). Classifying protein segments as transmembrane domains using ge-
netic programming and architecture-altering operations. In Back, T., Fogel, D., and 
Michalewicz, Z., editors, Handbook of Evolutionary Computation, pages G6.1:1-5. Ox-
ford University Press. 

Koza, J. (2010). Human-competitive results produced by genetic programming. Genetic 
Programming and Evolvable Machines, l l (3-4):251-284. 

Koza, J., Al-Sakran, L., and Jones, L. (2008). Automated ab initio synthesis of complete 
designs of four patented optical lens systems by means of genetic programming. Artificial 
Intelligence for Engineering Design, Analysis and Manufacturing, 22(3):249-273. 

Koza, J., Bennett, F., Andre, D., and Keane, M., editors (1999). Genetic Program-
ming III: Darwinian Invention and Problem Solving. Morgan Kaufmann. 

Koza, J., Keane, M., Streeter, M., Mydlowec, W., Yu, J., and Lanza, G., editors (2005). 
Genetic Programming IV: Routine Human-Competitive Machine Intelligence. The MIT 
Press. 

Koziel, S. and Michalewicz, Z. (1998). A decoder-based evolutionary algorithm for con-
strained parameter optimization problems. In Eiben, A., Back, T., Schoenauer, M., and 
Schwefel, H.-P., editors, Parallel Problem Solving from Nature - PPSN V, pages 231-240. 
Springer. 

Koziel, S. and Michalewicz, Z. (1999). Evolutionary algorithms, homomorphous map-
pings, and constrained parameter optimization. Evolutionary Computation, 7(1): 19-44. 

Krause, J. and Ruxton, G., editors (2002). Living in Groups. Oxford University Press. 

Krige, D. (1951). A statistical approach to some basic mine valuation problems on the 
Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South 
Africa, 52(6): 119-139. 



706 REFERENCES 

Krishnanand, K. and Ghose, D. (2009). Glowworm swarm optimization for simultaneous 
capture of multiple local optima of multimodal functions. Swarm Intelligence, 3(2) :87-
124. 

Krogh, A. (2008). What are artificial neural networks? Nature Biotechnology, 6(2): 195-
197. 

Kursawe, F. (1991). A variant of evolution strategies for vector optimization. In Schwefel, 
H.-P. and Männer, R., editors, Parallel Problem Solving from Nature - PPSN I, pages 
193-197. Springer. 

Kvasnicka, V., Pelikan, M., and Pospichal, J. (1996). Hill climbing with learning (an 
abstraction of genetic algorithm). Neural Network World, 6(5):773-796. 

Lam, A. and Li, V. (2010). Chemical-reaction-inspired metaheuristic for optimization. 
IEEE Transactions on Evolutionary Computation, 14(3):381-399. 

Lampinen, J. (2002). A constraint handling approach for the differential evolution al-
gorithm. IEEE Congress on Evolutionary Computation, Honolulu, Hawaii, pages 1468-
1473. 

Langdon, W. (2000). Size fair and homologous tree genetic programming crossovers. 
Genetic Programming and Evolvable Machines, l ( l -2) :95-119. 

Langdon, W. and Poli, R., editors (2002). Foundations of Genetic Programming. 
Springer. 

Larranaga, P. (2002). A review on estimation of distribution algorithms. In Larranaga, 
P. and Lozano, J., editors, Estimation of Distribution Algorithms: A New Tool for Evo-
lutionary Computation, pages 57-100. Kluwer Academic Publishers. 

Larranaga, P., Etxeberria, R., Lozano, J., and Pena, J. (1999a). Optimization by learning 
and simulation of Bayesian and Gaussian networks. Technical report, University of the 
Basque Country, h t t p : / / c i t e s e e r x . i s t . p s u . e d u / v i e w d o c / s u m m a r y ? d o i = 1 0 . 1 . 1 . 4 1 . 
1895. 

Larranaga, P., Etxeberria, R., Lozano, J., and Pena, J. (2000). Combinatorial opti-
mization by learning and simulation of Bayesian networks. Sixteenth Conference on 
Uncertainty in Artificial Intelligence, Stanford, California, pages 343-352. 

Larranaga, P., Karshenas, H., Bielza, C , and Santana, R. (2012). A review on probabilis-
tic graphical models in evolutionary computation. Journal of Heuristics, 18(5):795-819. 

Larranaga, P., Kuijpers, C , Murga, R., Inza, I., and Dizdarevic, S. (1999b). Genetic al-
gorithms for the travelling salesman problem: A review of representations and operators. 
Artificial Intelligence Review, 13(2): 129-170. 

Larranaga, P. and Lozano, J., editors (2002). Estimation of Distribution Algorithms: A 
New Tool for Evolutionary Computation. Kluwer Academic Publishers. 

Latané, B., Nowak, A., and Liu, J. (1994). Measuring emergent social phenomena: 
Dynamism, polarization, and clustering as order parameters of social systems. Behavioral 
Science, 39( l ) : l -24. 

Lattimore, T. and Hutter, M. (2011). No free lunch versus Occam's razor in supervised 
learning. Solomonoff 85th Memorial Conference, Melbourne, Australia. 

Laumanns, M., Thiele, L., and Zitzler, E. (2003). Running time analysis of evolutionary 
agorithms on vector-valued pseudo-Boolean functions. IEEE Transactions on Evolution-
ary Computation, 8(2):170-182. 

Lawler, E., Lenstra, J., Rinnooy Kan, A., and Shmoys, D., editors (1985). The Traveling 
Salesman Problem. John Wiley h Sons. 



REFERENCES 707 

Le Riche, R., Knopf-Lenoir, C , and Haftka, R. (1995). A segregated genetic algorithm 
for constrained structural optimization. International Conference on Genetic Algorithms, 
Pittsburgh, Pennsylvania, pages 558-565. 

Lee, K. and Geem, Z. (2006). A new meta-heuristic algorithm for continuous engineer-
ing optimization: Harmony search theory and practice. Computer Methods in Applied 
Mechanics and Engineering, 194(36-38):3902-3933. 

Leguizamon, G. and Coello Coello, C. (2009). Boundary search for constrained nu-
merical optimization problems. In Mezura-Montes, E., editor, Constraint-Handling in 
Evolutionary Optimization, pages 25-49. Springer. 

Lehman, J. and Stanley, K. (2011). Abandoning objectives: Evolution through the search 
for novelty alone. Evolutionary Computation, 19(2): 189-223. 

Lenton, T. (1998). Gaia and natural selection. Nature, 394(6692) :439-447. 

Li, C. and Yang, S. (2008). A generalized approach to construct benchmark problems 
for dynamic optimization. In Li, X., editor, Simulated Evolution and Learning, pages 
391-400. Springer. 

Li, C., Yang, S., Nguyen, T., Yu, E., Yao, X., Jin, Y., Beyer, H.-G., and Suganthan, P. 
(2008). Benchmark generator for CEC'2009 competition on dynamic optimization. Tech-
nical report, www.ntu.edu.sg/home/EPNSugan/index_files/cec-benchmarking.htm. 

Li, X., Shao, Z., and Qian, J. (2003). An optimizing method based on autonomous 
animats: Fish-swarm algorithm. Systems Engineering - Theory & Practice, 22(11):32-
38. 

Li, Y., Zhang, S., and Zeng, X. (2009). Research of multi-population agent genetic 
algorithm for feature selection. Expert Systems with Applications, 36(9): 11570-11581. 

Liang, J., Runarsson, T., Mezura-Montes, E., Clerc, M., Suganthan, P., Coello Coello, 
C , and Deb, K. (2006). Problem definitions and evaluation criteria for the CEC 2006 
special session on constrained real-parameter optimization. Technical report, www.ntu. 
edu.sg/home/EPNSugan/index_files/cec-benchmarking .htm. 

Liang, J., Suganthan, P., and Deb, K. (2005). Novel composition test functions for 
numerical global optimization. Swarm Intelligence Symposium, Pasadena, California, 
pages 68-75. 

Lim, D., Jin, Y., Ong, Y.-S., and Sendhoff, B. (2010). Generalizing surrogate-assisted 
evolutionary computation. IEEE Transactions on Evolutionary Computation, 14(3):329-
355. 

Lim, D., Ong, Y.-S., Jin, Y., Sendhoff, B., and Lee, B.-S. (2007). Efficient hierarchical 
parallel genetic algorithms using grid computing. Future Generation Computer Systems, 
23(4):658-670. 

Lima, C. and Lobo, F. (2004). Parameter-less optimization with the extended compact 
genetic algorithm and iterated local search. Genetic and Evolutionary Computation 
Conference, Seattle, Washington, pages 1328-1339. 

Lima, S. (1995). Back to the basics of anti-predatory vigilance: The group-size effect. 
Animal Behaviour, 49(1): 11-20. 

Lis, J. and Eiben, A. (1997). A multi-sexual genetic algorithm for multiobjective opti-
mization. IEEE International Conference on Evolutionary Computation, Indianapolis, 
Indiana, pages 59-64. 

Löbbing, M. and Wegener, I. (1995). The number of knight's tours equals 
33,439,123,484,294 - counting with binary decision diagrams. Electronic Journal of Com-
binatorics, 3(1):5. 



708 REFERENCES 

Lohn, J., Hornby, G., and Linden, D. (2004). An evolved antenna for deployment on 
NASA's space technology 5 mission. In O'Reilly, U.-M., Riolo, R., Yu, G., and Worzel, 
W., editors, Genetic Programming Theory and Practice II, pages 301-315. Kluwer Aca-
demic Publishers. 

Lomolino, M. (2000a). A call for a new paradigm of island biogeography. Global Ecology 
and Biogeography, 9(1): 1-6. 

Lomolino, M. (2000b). A species-based theory of insular zoogeography. Global Ecology 
and Biogeography, 9(l):39-58. 

Lopez Jaimes, A., Coello Coello, C., and Urias Barrientos, J. (2009). Online objec-
tive reduction to deal with many-objective problems. 5th International Conference on 
Evolutionary Multi-Criterion Optimization, Nantes, France, pages 423-437. 

Lovelock, J. (1990). Hands up for the Gaia hypothesis. Nature, 344(6262): 100-102. 

Lovelock, J., editor (1995). Gaia. Oxford University Press. 

Lozano, J., Larranaga, P., Inza, I., and Bengoetxea, E., editors (2006). Towards a 
New Evolutionary Computation: Advances on Estimation of Distribution Algorithms. 
Springer. 

Lukasik, S. and Zak, S. (2009). Firefly algorithm for continuous constrained optimization 
tasks. 1st International Conference on Computational Collective Intelligence, Wroclaw, 
Poland, pages 97-106. 

Lundy, M. and Mees, A. (1986). Convergence of an annealing algorithm. Mathematical 
Programming, 34(1): 111-124. 

Ma, H. (2010). An analysis of the equilibrium of migration models for biogeography-based 
optimization. Information Sciences, 180(18):3444-3464. 

Ma, H., Ni, S., and Sun, M. (2009). Equilibrium species counts and migration model 
tradeoffs for biogeography-based optimization. IEEE Conference on Decision and Con-
trol, Shanghai, China, pages 3306-3310. 

Ma, H. and Simon, D. (2010). Biogeography-based optimization with blended migration 
for constrained optimization problems. Genetic and Evolutionary Computation Confer-
ence, Portland, Oregon, pages 417-418. 

Ma, H. and Simon, D. (2011a). Analysis of migration models of biogeography-based 
optimization using markov theory. Engineering Applications of Artificial Intelligence, 
24(6):1052-1060. 

Ma, H. and Simon, D. (2011b). Blended biogeography-based optimization for constrained 
optimization. Engineering Applications of Artificial Intelligence, 24(3):517-525. 

Ma, H. and Simon, D. (2013). Variations of biogeography-based optimization and markov 
analysis. Information Sciences, 220:492-506. 

Ma, H., Simon, D., and Fei, M. (2013). On the statistical mechanics approximation of 
biogeography-based optimization. Submitted for publication. 

MacArthur, R. (1955). Fluctuations of animal populations and a measure of community 
stability. Ecology, 36(3):533-536. 

MacArthur, R. and Wilson, E. (1963). An equilibrium theory of insular zoogeography. 
Evolution, 17(4):373-387. 

MacArthur, R. and Wilson, E. (1967). The Theory of Island Biogeography. Princeton 
University Press. 

Mahfoud, S. (1992). Crowding and preselection revisited. Technical report, Illinois 
Genetic Algorithms Laboratory, University of Illinois. IlliGAL Report No. 92004. 



REFERENCES 709 

Mahfoud, S. (1995a). A comparison of parallel and sequential niching methods. Inter-
national Conference on Genetic Algorithms, Pittsburgh, Pennsylvania, pages 136-143. 

Mahfoud, S. (1995b). Niching methods for genetic algorithms. Technical report, Illinois 
Genetic Algorithms Laboratory, University of Illinois. IlliGAL Report No. 95001. 

Mahnig, T. and Mühlenbein, H. (2000). Mathematical analysis of optimization meth-
ods using search distributions. Genetic and Evolutionary Computation Conference, Las 
Vegas, Nevada, pages 205-208. 

Malisia, A. (2008). Improving the exploration ability of ant-based algorithms. In 
Tizhoosh, H. and Ventresca, M., editors, Oppositional Concepts in Computational In-
telligence, pages 121-142. Springer. 

Mallipeddi, R. and Suganthan, P. (2010). Problem definitions and evaluation crite-
ria for the CEC 2010 competition on constrained real-parameter optimization. Techni-
cal report, Nanyang Technological University. www.ntu.edu.sg/home/EPNSugan/index_ 
f i l e s / cec -benchmark ing .h tm. 

Maniezzo, V., Gambardella, L., and de Luigi, F. (2004). Ant colony optimization. In 
Onwubolu, G. and Babu, R., editors, New Optimization Techniques in Engineering, pages 
101-122. Springer. 

Margulis, L. (1996). Gaia is a tough bitch. In Brockman, J., editor, The Third Culture: 
Beyond the Scientific Revolution, pages 129-151. Touchstone. 

Marriott, K. and Stuckey, P. (1998). Programming with Constraints: An Introduction. 
The MIT Press. 

Mavrovouniotis, M. and Yang, S. (2011). Ant colony optimization with immigrants 
schemes in dynamic environments. In Schaefer, R., Cotta, C., Kolodziej, J., and Rudolph, 
G., editors, Parallel Problem Solving from Nature - PPSN XI, pages 371-380. Springer. 

May, R. (1973). Stability and Complexity in Model Ecosystems. Princeton University 
Press. 

McCann, K. (2000). The diversity-stability debate. Nature, 405(6783):228-233. 

McConaghy, T., Palmers, P., Gielen, G., and Steyaert, M. (2008). Genetic programming 
with reuse of known designs for industrially scalable, novel circuit design. In Riolo, R., 
Soûle, T., and Worzel, B., editors, Genetic Programming Theory and Practice V, pages 
159-184. Springer. 

McGill, R., Tukey, J., and Larsen, W. (1978). Variations of box plots. The American 
Statistician, 32(1):12-16. 

McNab, B. (2002). The Physiological Ecology of Vertebrates. Cornell University. 

McTavish, T. and Restrepo, D. (2008). Evolving solutions: The genetic algorithm and 
evolution strategies for finding optimal parameters. In Smolinski, T., Milanova, M., 
and Hassanien, A., editors, Applications of Computational Intelligence in Biology, pages 
55-78. Springer. 

Mehrabian, R. and Lucas, C. (2006). A novel numerical optimization algorithm inspired 
from weed colonization. Ecological Informatics, l(4):355-366. 

Melab, N., Cahon, S., and Talbi, E.-G. (2006). Grid computing for parallel bioinspired 
algorithms. Journal of Parallel and Distributed Computing, 66(8):1052-1061. 

Mendes, R., Kennedy, J., and Neves, J. (2004). The fully informed particle swarm: 
Simpler, maybe better. IEEE Transactions on Evolutionary Computation, 8(3):204-210. 

Metropolis, N. (1987). The beginning of the Monte Carlo method. Los Alamos Science, 
15:125-130. 



710 REFERENCES 

Metropolis, N., Rosenblut h, A., Rosenblut h, M., Teller, A., and Teller, E. (1953). Equa-
tions of state calculations by fast computing machines. The Journal of Chemical Physics, 
21(6):1087-1092. 

Meuleau, N., Peshkin, L., Kim, K.-E., and Kaelbling, L. (1999). Learning finite-state 
controllers for partially observable environments. Conference on Uncertainty in Artificial 
Intelligence, Stockholm, Sweden, pages 427-436. 

Meuleau02, N. and Dorigo, M. (2002). Ant colony optimization and stochastic gradient 
descent. Artificial Life, 8(2): 103-121. 

Mezura-Montes, E. and Coello Coello, C. (2005). A simple multimembered evolution 
strategy to solve constrained optimization problems. IEEE Transactions on Evolutionary 
Computation, 9(1): 1-17. 

Mezura-Montes, E. and Coello Coello, C. (2008). Constrained optimization via mul-
tiobjective evolutionary algorithms. In Knowles, J., Corne, D., and Deb, K., editors, 
Multiobjective Problem Solving from Nature, pages 53-75. Springer. 

Mezura-Montes, E. and Palomeque-Oritiz, A. (2009). Parameter control in differential 
evolution for constrained optimization. IEEE Congress on Evolutionary Computation, 
Trondheim, Norway, pages 1375-1382. 

Mezura-Montes, E., Reyes-Sierra, M., and Coello Coello, C. (2008). Multi-objective op-
timization using differential evolution: A survey of the state-of-the-art. In Chakraborty, 
U., editor, Advances in Differential Evolution, pages 173-196. Springer. 

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs. 
Springer. 

Michalewicz, Z. and Attia, N. (1994). Evolutionary optimization of constrained problems. 
Third Annual Conference on Evolutionary Programming, San Diego, California, pages 
98-108. 

Michalewicz, Z., Dasgupta, D., Riche, R. L., and Schoenauer, M. (1996). Evolutionary 
algorithms for constrained engineering problems. Computers & Industrial Engineering, 
30(4):851-870. 

Michalewicz, Z. and Janikow, C. (1991). Handling constraints in genetic algorithms. 
International Conference on Genetic Algorithms, Breckenridge, Colorado, pages 151— 
157. 

Michalewicz, Z. and Nazhiyath, G. (1995). Genocop III: A co-evolutionary algorithm 
for numerical optimization problems with nonlinear constraints. IEEE Conference on 
Evolutionary Computation, Perth, Western Australia, pages 647-651. 

Michalewicz, Z. and Schoenauer, M. (1996). Evolutionary algorithms for constrained 
parameter optimization problems. Evolutionary Computation, 4(1): 1-32. 

Michiels, W., Aarts, E., and Korst, J. (2007). Theoretical Aspects of Local Search. 
Springer. 

Milinski, H. and Heller, R. (1978). Influence of a predator on the optimal foraging 
behavior of sticklebacks. Nature, 275(5681):642-644. 

Miller, J. and Smith, S. (2006). Redundancy and computational efficiency in Cartesian 
genetic programming. IEEE Transactions on Evolutionary Computation, 10(2): 167-174. 
2006. 

Mitchell, M. (1998). An Introduction to Genetic Algorithms. The MIT Press. 

Mitzenmacher, M. and Upfal, E. (2005). Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press. 



REFERENCES 7 1 1 

Morales, A. and Quezada, C. (1998). A univeral eclectic genetic algorithm for constrained 
optimization. Sixth European Congress on Intelligent Techniques and Soft Computing, 
Aachen, Germany, pages 518-522. 

Morrison, R. (2004). Designing Evolutionary Algorithms for Dynamic Environments. 
Springer. 

Mühlenbein, H., Mahnig, T., and Ochoa, A. (1999). Schemata, distributions and graph-
ical models in evolutionary optimization. Journal of Heuristics, 5(2):215-247. 

Mühlenbein, H. and Paaß , G. (1996). Prom recombination of genes to the estimation 
of distributions: I. Binary parameters. In Voigt, H.-M., Ebeling, W., Rechenberg, L, 
and Schwefel, H.-P., editors, Parallel Problem Solving from Nature - PPSN IV, pages 
178-187. Springer. 

Mühlenbein, H. and Schlierkamp-Voosen, D. (1993). Predictive models for the breeder 
genetic algorithm: I. Continuous parameter optimization. Evolutionary Computation, 
l ( l ) :25-49. 

Mühlenbein, H. and Schlierkamp-Voosen, D. (1997). The equation for response to selec-
tion and its use for prediction. Evolutionary Computation, 5(3):303-346. 

Mühlenbein, H. and Voigt, H.-M. (1995). Gene pool recombination for the breeder genetic 
algorithm. First Metaheuristics International Conference, Breckenridge, Colorado, pages 
19-25. 

Müller, S., Marchetto, J., Airaghi, S., and Kournoutsakos, P. (2002). Optimization based 
on bacterial chemotaxis. IEEE Transactions on Evolutionary Computation, 6(1): 16-29. 

Munroe, E. (1948). The Geographical Distribution of Butterflies in the West Indies. PhD 
thesis, Cornell University. 

Nemhauser, G. and Wolsey, L. (1999). Integer and Combinatorial Optimization. John 
Wiley & Sons. 

Neri, F . and Tirronen, V. (2010). Recent advances in differential evolution: A survey 
and experimental analysis. Artificial Intelligence Review, 33(1):61-106. 

Neshat, M., Adeli, A., Sepidnam, G., Sargolzaei, M., and Toosi, A. (2012). A review 
of artificial fish swarm optimization methods and applications. International Journal on 
Smart Sensing and Intelligent Systems, 5(1): 107-148. 

Neumann, F. and Witt , C. (2009). Runtime analysis of a simple ant colony optimization 
algorithm. Algorithmica, 54(2):243-255. 

Newton, M. (2004). Savage Girls and Wild Boys. Picador. 

Nguyen, T., Yang, S., and Branke, J. (2012). Evolutionary dynamic optimization: A 
survey of the state of the art. Swarm and Evolutionary Computation, 6:1-24. 

Nguyen, T. and Yao, X. (2009). Benchmarking and solving dynamic constrained prob-
lems. IEEE Congress on Evolutionary Computation, Trondheim, Norway, pages 690-697. 

Nierhaus, G. (2010). Algorithmic Composition: Paradigms of Automated Music Gener-
ation. Springer. 

Niknam, T. and Amiri, B. (2010). An efficient hybrid approach based on PSO, ACO and 
k-means for cluster analysis. Applied Soft Computing, 10(1):183-197. 

Nix, A. and Vose, M. (1992). Modeling genetic algorithms with Markov chains. Annals 
of Mathematics and Artificial Intelligence, 5(l):79-88. 

Noel, M. and Jannett , T. (2005). A new continuous optimization algorithm based on 
sociological models. American Control Conference, Portland, Oregon, pages 237-242. 

Noman, N. and Iba, H. (2008). Accelerating differential evolution using an adaptive local 
search. IEEE Transactions on Evolutionary Computation, 12(1): 107-125. 



712 REFERENCES 

Nordin, P., Francone, F., and Banzhaf, W. (1996). Explicitly defined introns and de-
structive crossover in genetic programming. In Angeline, P. and Kinnear, K., editors, 
Advances in Genetic Programming: Volume 2, pages 111-134. The MIT Press. 

Noren, S., Biedenbach, G., Redfern, J., and Edwards, E. (2008). Hitching a ride: The 
formation locomotion strategy of dolphin calves. Functional Ecology, 22(2):278-283. 

Nourani, Y. and Andresen, B. (1998). A comparison of simulated annealing cooling 
strategies. Journal of Physics A: Mathematical and General, 31(41):8373-8385. 

Okubo, A. and Levin, S. (2001). Diffusion and Ecological Problems. Springer. 

Oliver, I., Smith, D., and Holland, J. (1987). A study of permutation crossover operators 
on the traveling salesman problem. International Conference on Genetic Algorithms, 
Cambridge, Massachusetts, pages 224-230. 

Omran, M. (2008). Using opposition-based learning with particle swarm optimization and 
barebones differential evolution. In Lazinica, A., editor, Particle Swarm Optimization, 
pages 373-384. InTech. 

Omran, M., Engelbrecht, A., and Salman, A. (2009). Bare bones differential evolution. 
European Journal of Operational Research, 196(1): 128-139. 

Omran, M. and Mahdavi, M. (2008). Global-best harmony search. Applied Mathematics 
and Computation, 198(2):643-656. 

Omran, M., Simon, D., and Clerc, M. (2013). Linearized biogeography-based optimiza-
tion. Submitted for publication. 

O'Neill, M. and Ryan, C. (2003). Grammatical Evolution. Springer. 

Ong, Y., Nair, P., Keane, A., and Wong, K. (2004). Surrogate-assisted evolutionary 
optimization frameworks for high-fidelity engineering design problems. In Jin, Y., editor, 
Knowledge Incorporation in Evolutionary Computation, pages 307-332. Springer. 

Ong, Y.-S., Krasnogor, N., and Ishibuchi, H. (2007). Special issue on memetic algorithms. 
IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 37(1):2-5. 

Onwubolu, G. and Davendra, D., editors (2009). Differential Evolution: A Handbook for 
Global Permutation-Based Combinatorial Optimization. Springer. 

Opitz, D. and Maclin, R. (1999). Popular ensemble methods: An empirical study. Journal 
of Artificial Intelligence Research, 11:169-198. 

O'Reilly, U. and Oppacher, F. (1995). The troubling aspects of a building block hy-
pothesis for genetic programming. In Whitley, L. and Vose, M., editors, Foundations of 
Genetic Algorithms, Volume 3, pages 73-88. Morgan Kaufmann. 

Orvosh, D. and Davis, L. (1993). Shall we repair? Genetic algorithms, combinatorial op-
timization, and feasibility constraints. International Conference on Genetic Algorithms, 
Urbana-Champaign, Illinois, page 650. 

Otten, R. and van Ginneken, L. (1989). The Annealing Algorithm. Kluwer Academic 
Publishers. 

Palmer, C. and Kershenbaum, A. (1994). Representing trees in genetic algorithms. IEEE 
Conference on Evolutionary Computation, Orlando, Florida, pages 379-384. 

Pan, Q., Tasgetiren, M., and Liang, Y. (2008). A discrete differential evolution algorithm 
for the permutation flowshop scheduling problem. Computers & Industrial Engineering, 
55(4):795-816. 

Paquet, U. and Engelbrecht, A. (2003). A new particle swarm optimiser for linearly 
constrained optimisation. IEEE Congress on Evolutionary Computation, Canberra, Aus-
tralia, pages 227-233. 



REFERENCES 713 

Pardalos, P. and Mavridou, T. (1998). The graph coloring problem: A bibliographic 
survey. In Zhu, D.-Z. and Pardalos, P., editors, Handbook of Combinatorial Optimization, 
pages 331-395. Kluwer Academic Publishers. 

Paredis, J. (2000). Coevolutionary algorithms. In Back, T., Fogel, D., and Michalewicz, 
Z., editors, Evolutionary Computation 2, pages 224-238. Institute of Physics. 

Pareto, V. (1896). Cours d'Economie Politique. Guillaumin. 

Parks, G. and Miller, I. (1998). Selective breeding in a multiobjective genetic algorithm. 
In Eiben, A., Back, T., Schoenauer, M., and Schwefel, H.-P., editors, Parallel Problem 
Solving from Nature - PPSN V, pages 250-259. Springer. 

Passino, K. (2002). Biomimicry of bacterial foraging. IEEE Control Systems Magazine, 
22(3):52-67. 

Paul, T. and Iba, H. (2003). Optimization in continuous domain by real-coded estimation 
of distribution algorithm. In Abraham, A., Koppen, M., and Pranke, K., editors, Design 
and Application of Hybrid Intelligent Systems, pages 262-271. IOS Press. 

Pena, J., Robles, V., Larranaga, P., Herves, V., Rosales, F., and Pérez, M. (2004). 
GA-EDA: Hybrid evolutionary algorithm using genetic and estimation of distribution 
algorithms. In Orchard, B., Yang, C., and Ali, M., editors, Innovations in Applied 
Artificial Intelligence, pages 361-371. Springer. 

Pedersen, M. (2010). Good parameters for particle swarm optimization. Technical report, 
Hvass Laboratories, www. h v a s s - l a b s . org. 

Pedersen, M. and Chipperfield, A. (2010). Simplifying particle swarm optimization. 
Applied Soft Computing, 10(2):618-628. 

Pelikan, M. (2005). Hierarchical Bayesian Optimization Algorithm. Springer. 

Pelikan, M., Goldberg, D., and Cantu-Paz, E. (1999). BOA: The Bayesian optimization 
algorithm. Genetic and Evolutionary Computation Conference, Orlando, Florida, pages 
525-532. 

Pelikan, M., Goldberg, D., and Lobo, F. (2002). A survey of optimization by building and 
using probabilistic models. Computational Optimization and Applications, 21(l):5-20. 

Pelikan, M. and Mühlenbein, H. (1998). The bivariate marginal distribution algorithm. In 
Benitez, J., Cordon, O., Hoffmann, F., and Roy, R., editors, Advances in Soft Computing: 
Engineering Design and Manufacturing, pages 521-535. Springer. 

Pelikan, M. and Sastry, K. (2004). Fitness inheritance in the Bayesian optimization 
algorithm. Genetic and Evolutionary Computation Conference, Seattle, Washington, 
pages 48-59. 

Petroski, H. (1992). To Engineer Is Human: The Role of Failure in Successful Design. 
Vintage. 

Pétrowski, A. (1996). A clearing procedure as a niching method for genetic algorithms. 
IEEE Conference on Evolutionary Computation, Nagoya, Japan, pages 798-803. 

Pham, D., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., and Zaidi, M. (2006). The 
bees algorithm - A novel tool for complex optimisation problems. 2nd International 
Virtual Conference on Intelligent Production Machines and Systems, pages 454-459. 

Pincus, M. (1968a). A closed form solution of certain programming problems. Operations 
Research, 16(3):690-694. 

Pincus, M. (1968b). A Monte Carlo method for the approximate solution of certain types 
of constrained optimization problems. Operations Research, 18(6): 1225-1228. 

Pitcher, T. and Parrish, J. (1993). Functions of shoaling behaviour in teleosts. In Pitcher, 
T., editor, Behaviour of Teleost Fishes, pages 363-439. Chapman & Hall. 



714 REFERENCES 

Poli, R. (2003). A simple but theoretically-motivated method to control bloat in genetic 
programming. Sixth European Conference on Genetic Programming, Essex, England, 
pages 211-223. 

Poli, R. (2008). Dynamics and stability of the sampling distribution of particle swarm 
optimisers via moment analysis. Journal of Artificial Evolution and Applications, 2008. 
Article ID 761459, 10 pages, doi: 10.1155/2008/761459. 

Poli, R., Kennedy, J., and Blackwell, T. (2007). Particle swarm optimization: An 
overview. Swarm Intelligence, l ( l ) :33-57. 

Poli, R., Langdon, W., and McPhee, N. (2008). A Field Guide to Genetic Programming. 
Published via h t t p : / / l u l u . c o m and freely available at h t t p : / / w w w . g p - f i e l d - g u i d e . 
org .uk. 

Poli, R., McPhee, N., and Rowe, J. (2004). Exact schema theory and Markov chain 
models for genetic programming and variable-length genetic algorithms with homologous 
crossover. Genetic Programming and Evolvable Machines, 5(l):31-70. 

Poli, R., Rowe, J., and McPhee, N. (2001). Markov chain models for GP and variable-
length GAs with homologous crossover. Genetic and Evolutionary Computation Confer-
ence, San Francisco, California, pages 112-119. 

Poundstone, W. (1993). Prisoner's Dilemma. Anchor. 

Powell, D. and Skolnick, M. (1993). Using genetic algorithms in engineering design opti-
mization with non-linear constraints. International Conference on Genetic Algorithms, 
Urbana-Champaign, Illinois, pages 424-431. 

Preble, S., Lipson, M., and Lipson, H. (2005). Two-dimensional photonic crystals de-
signed by evolutionary algorithms. Applied Physics Letters, 86(6):061111. 

Price, K. (1997). Differential evolution versus the functions of the 2nd ICEO. IEEE 
Conference on Evolutionary Computation, Indianapolis, Indiana, pages 153-157. 

Price, K. (2013). Differential evolution. In Zelinka, I., Snâsel, V., and Abraham, A., 
editors, Handbook of Optimization, ebooks . com. 

Price, K. and Storn, R. (1997). Differential evolution: Numerical optimization made 
easy. Dr. Dobb's Journal, pages 18-24. 

Price, K., Storn, R., and Lampinen, J. (2005). Differential Evolution. Springer. 

PSC (2012). Particle Swarm Central, www.part icleswarm.info. 

Päun, G. (2003). Membrane computing. In Lingas, A. and Nilsson, B., editors, Funda-
mentals of Computation Theory, pages 177-220. Springer. 

Pyke, G. (1978). Optimal foraging in bumblebees and coevolution with their plants. 
Oecologia, 36(3):281-293. 

Qin, A., Huang, V., and Suganthan, P. (2009). Differential evolution algorithm with 
strategy adaptation for global numerical optimization. IEEE Transactions on Evolution-
ary Computation, 13(2):39-417. 

Qing, A. (2009). Differential Evolution: Fundamentals and Applications in Electrical 
Engineering. John Wiley &; Sons. 

Quammen, D. (1997). The Song of the Dodo: Island Biogeography in an Age of Extinc-
tion. Scribner. 

Quijano, N., Passino, K., and Andrews, B. (2006). Foraging theory for multizone tem-
perature control. IEEE Computational Intelligence Magazine, 1(4): 18-27. 

Rabanal, P., Rodriguez, I., and Rubio, F . (2007). Using river formation dynamics to 
design heuristic algorithms. In Akl, S., Calude, C , Dinneen, M., Rozenberg, G., and 
Wareham, H., editors, Unconventional Computation, pages 163-177. Springer. 



REFERENCES 715 

Radcliffe, N. and Surry, P. (1995). Fundamental limitations on search algorithms: Evolu-
tionary computing in perspective. In Van Leeuwen, J., editor, Computer Science Today: 
Recent Trends and Developments (Lecture Notes in Computer Science, No. 1000), pages 
275-291. Springer-Verlag. 

Rahnamayan, S., Tizhoosh, H., and Salama, M. (2008). Opposition-based differential 
evolution. IEEE Transactions on Evolutionary Computation, 12(l):64-79. 

Rao, R. and Patel, V. (2012). An elitist teaching-learning-based optimization algorithm 
for solving complex constrained optimization problems. International Journal of Indus-
trial Engineering Computations, 3(4):535-560. 

Rao, R. and Savsani, V. (2012). Mechanical Design Optimization Using Advanced Opti-
mization Techniques. Springer. 

Rao, R., Savsani, V., and Vakharia, D. (2011). Teaching-learning-based optimization: A 
novel method for constrained mechanical design optimization problems. Computer-Aided 
Design, 43(3):303-315. 

Rao, R., Savsani, V., and Vakharia, D. (2012). Teaching-learning-based optimization: A 
novel optimization method for continuous non-linear large scale problems. Information 
Sciences, 183(1): 1-15. 

Rashedi, E., Nezamabadi-pour, H., and Saryazdi, S. (2009). GSA: A gravitational search 
algorithm. Information Sciences, 179(13):2232-2248. 

Rashedi, E., Nezamabadi-pour, H., and Saryazdi, S. (2010). BGS A: Binary gravitational 
search algorithm. Natural Computing, 9(3):727-745. 

Rasheed, K. and Hirsh, H. (2000). Informed operators: Speeding up genetic-algorithm-
based design optimization using reduced models. Genetic and Evolutionary Computation 
Conference, Las Vegas, Nevada, pages 628-635. 

Rashid, M. and Baig, A. (2010). Improved opposition-based PSO for feedforward neural 
network training. International Conference on Information Science and Applications, 
Seoul, Korea, pages 1-6. 

Rastrigin, L. (1974). Extremal Control Systems. Nauka. In Russian. 

Rawlins, G., editor (1991). Foundations of Genetic Algorithms. Morgan Kaufmann 
Publishers. 

Ray, T., Isaacs, A., and Smith, W. (2009a). A memetic algorithm for dynamic multi-
objective optimization. In Goh, C.-K., Ong, Y.-S., and Tan, K., editors, Multi-Objective 
Memetic Algorithms, pages 353-367. Springer. 

Ray, T. and Liew, K. (2003). Society and civilization: An optimization algorithm based 
on the simulation of social behavior. IEEE Transactions on Evolutionary Computation, 
7(4):386-396. 

Ray, T., Singh, H., Isaacs, A., and Smith, W. (2009b). Infeasibility driven evolutionary al-
gorithm for constrained optimization. In Mezura-Montes, E., editor, Constraint-Handling 
in Evolutionary Optimization, pages 145-165. Springer. 

Rechenberg, I. (1973). Evolutionsstrategie - Optimierung Technischer Systeme nach 
Prinzipien der Biologischen Evolution. Frommann-Holzboog. The English translation of 
the title is Evolution strategy - Optimization of Technical Systems according to Principles 
of Biological Evolution. 

Rechenberg, I. (1998). Cybernetic solution path of an experimental problem. In Fogel, 
D., editor, Evolutionary Computation: The Fossil Record, pages 301-310. Wiley-IEEE 
Press. First published in 1964. 

Reeves, C. (1993). Modern Heuristic Techniques for Combinatorial Problems. John Wiley 
8z Sons. 



716 REFERENCES 

Reeves, C. and Rowe, J. (2003). Genetic Algorithms: Principles and Perspectives. Kluwer 
Academic Publishers. 

Reinelt, G. (2008). TSPLIB. h t t p : / / c o m o p t . i f i . u n i - h e i d e l b e r g . d e / s o f t w a r e / 
TSPLIB95. 

Reynolds, R. (1994). An introduction to cultural algorithms. Third Annual Conference 
on Evolutionary Computing, Madison, Wisconsin, pages 131-139. 

Reynolds, R. (1999). Cultural algorithms: Theory and applications. In Corne, D., Dorigo, 
M., Glover, F. , Dasgupta, D., Moscato, P., Poli, R., and Price, K., editors, New Ideas in 
Optimization, pages 367-378. McGraw-Hill. 

Reynolds, R., Ashlock, D., Yannakakis, G., Togelius, J., and Preuss, M. (2011). Tuto-
rials: Cultural algorithms: Incorporating social intelligence into virtual worlds. IEEE 
Conference on Computational Intelligence and Games, Seoul, South Korea, pages J1 - J5 . 

Reynolds, R. and Chung, C. (1997). Knowledge-based self-adaptation in evolutionary 
programming using cultural algorithms. IEEE International Conference on Evolutionary 
Computation, Indianapolis, Indiana, pages 71-76. 

Ritscher, T., Helwig, S., and Wanka, R. (2010). Design and experimental evaluation of 
multiple adaptation layers in self-optimizing particle swarm optimization. IEEE Congress 
on Evolutionary Computation, Barcelona, Spain, pages 1-8. 

Ritzel, B., Eheart, J., and Ranjithan, S. (1995). Using genetic algorithms to solve a mul-
tiple objective groundwater pollution containment problem. Water Resources Research, 
30(5): 1589-1603. 

Robert, C. and Casella, G. (2010). Monte Carlo Statistical Methods. Springer. 

Ronald, S. (1998). Duplicate genotypes in a genetic algorithm. IEEE World Congress 
on Computational Intelligence, Anchorage, Alaska, pages 793-798. 

Ros, R. and Hansen, N. (2008). A simple modification in CMA-ES achieving linear time 
and space complexity. In Rudolp, G., Jansen, T., Lucas, S., Poloni, C , and Beume, N., 
editors, Parallel Problem Solving from Nature - PPSN X, pages 296-305. Springer. 

Rosca, J. (1997). Analysis of complexity drift in genetic programming. Second Annual 
Conference on Genetic Programming, Palo Alto, California, pages 286-294. 

Rosenberg, R. (1967). Simulation of genetic populations with biochemical properties. PhD 
thesis, University of Michigan. 

Rosenbrock, H. (1960). An automatic method for finding the greatest or least value of a 
function. The Computer Journal, 3(3): 175-184. 

Rosenkrantz, D., Steams, R., and Lewis, P. (1977). An analysis of several heuristics for 
the traveling salesman problem. SI AM Journal on Computing, 6(3):563-581. 

Ross, T. (2010). Fuzzy Logic with Engineering Applications. John Wiley h Sons, 3rd 
edition. 

Rossi, F. , van Beek, P., and Walsh, T. (2006). Handbook of Constraint Programming. 
Elsevier. 

Rothlauf, F. and Goldberg, D. (2003). Redundant representations in evolutionary com-
putation. Evolutionary Computation, 11(4):381-415. 

Rubinstein, A. (1986). Finite automata play the repeated prisoner's dilemma. Journal 
of Economic Theory, 39(l):83-96. 

Rudlof, S. and Koppen, M. (1996). Stochastic hill climbing by vectors of normal distri-
butions. First Online Workshop on Soft Computing, Nagoya, Japan, pages 60-70. 



REFERENCES 717 

Rudolph, G. (1992). Parallel approaches to stochastic global optimization. In Joosen, 
W. and Milgrom, E., editors, Parallel Computing: From Theory to Sound Practice, pages 
256-267. IOS Press. 

Rudolph, G. and Agapie, A. (2000). Convergence properties of some multi-objective 
evolutionary algorithms. IEEE Congress on Evolutionary Computation, San Diego, Cal-
ifornia, pages 1010-1016. 

Rudolph, G. and Schwefel, H.-P. (2008). Simulated evolution under multiple criteria 
conditions revisited. IEEE World Congress on Computational Intelligence, Hong Kong, 
pages 249-261. 

Runarsson, T. and Yao, X. (2000). Stochastic ranking for constrained evolutionary 
optimization. IEEE Transactions on Evolutionary Computation, 4(3):284-294. 

Sakawa, M. (2002). Genetic Algorithms and Fuzzy Multiobjective Optimization. Springer. 

Salkind, N. (2007). Statistics for People Who (Think They) Hate Statistics. Sage Publi-
cations. 

Salomon, R. (1996). Reevaluating genetic algorithm performance under coordinate rota-
tion of benchmark functions. BioSystems, 39(3):263-278. 

Salustowicz, R. and Schmidhuber, J. (1997). Probabilistic incremental program evolu-
tion. Evolutionary Computation, 5(2)-.123-141. 

Sano, Y. and Kita, H. (2002). Optimization of noisy fitness functions by means of 
genetic algorithms using history of search with test of estimation. IEEE Congress on 
Evolutionary Computation, Honolulu, Hawaii, pages 360-365. 

Santana, R. (1998). Estimation of distribution algorithms with Kikuchi approximations. 
Evolutionary Computation, 13(l):67-97. 

Santana, R. (2003). A Markov network based factorized distribution algorithm for op-
timization. 14th European Conference on Machine Learning, Cavtat , Croatia, pages 
337-348. 

Santana, R. and Echegoyen, C. (2012). Matlab Toolbox for Estimation of Distribution 
Algorithms (MATEDA-2.0). www.sc .ehu.es /ccwbayes/members / rsantana/sof twaxe/ 
matlab/MATEDA.html. 

Santana, R., Larranaga, P., and Lozano, J. (2008). Adaptive estimation of distribution 
algorithms. In Cotta, C , Sevaux, M., and Sörensen, K., editors, Adaptive and Multilevel 
Metaheuristics, pages 177-197. Springer. 

Santana-Quintero, L., Montano, A., and Coello Coello, C. (2010). A review of tech-
niques for handling expensive functions in evolutionary multi-objective optimization. In 
Tenne, Y. and Goh, C.-K., editors, Computational Intelligence in Expensive Optimization 
Problems, pages 29-60. Springer. 

Sareni, B. and Krähenbühl, L. (1998). Fitness sharing and niching methods revisited. 
IEEE Transactions on Evolutionary Computation, 2(3):97-106. 

Sastry, K. and Goldberg, D. (2000). On extended compact genetic algorithm. Genetic 
and Evolutionary Computation Conference, Las Vegas, Nevada, pages 352-359. 

Sastry, K., Goldberg, D., and Pelikan, M. (2001). Don't evaluate, inherit. Genetic and 
Evolutionary Computation Conference, San Francisco, California, pages 551-558. 

Savicky, P. and Robnik-Sikonja, M. (2008). Learning random numbers: A Matlab 
anomaly. Applied Artificial Intelligence, 22(3):254-265. 

Savla, K., Frazzoli, E., and Bullo, F. (2008). Traveling salesperson problems for the 
Dubins vehicle. IEEE Transactions on Automatic Control, 53(6): 1378-1391. 



718 REFERENCES 

Sayadi, M., Ramezanian, R., and Ghaffari-Nasab, N. (2010). A discrete firefly meta-
heuristic with local search for makespan minimization in permutation flow shop schedul-
ing problems. International Journal of Industrial Engineering Computations, 1(1):1-10. 

Schaffer, C. (1994). A conservation law for generalization performance. 11th International 
Conference on Machine Learning, Boca Raton, Florida, pages 259-265. 

Schaffer, J. (1985). Multiple objective optimization with vector evaluated genetic algo-
rithms. International Conference on Genetic Algorithms and Their Application, Pi t ts-
burgh, Pennsylvania, pages 93-100. 

Schervish, M. (1996). P values: What they are and what they are not. The American 
Statistician, 50(3):203-206. 

Schmidhuber, J. (1987). Evolutionary principles in s elf-referential learning, or on learn-
ing how to learn: The meta-meta-... hook. PhD thesis, Technische Universität München. 

Schoenauer, M. and Michalewicz, Z. (1996). Evolutionary computation at the edge of 
feasibility. In Ebeling, W., Rechenberg, I., Schwefel, H.-P., and Voigt, H.-M., editors, 
Parallel Problem Solving from Nature - PPSN IV, pages 245-254. Springer. 

Schoenauer, M., Sebag, M., Jouve, F. , Lamy, B., and Maitournam, H. (1996). Evolution-
ary identification of macro-mechanical models. In Angeline, P. and Kinnear, K., editors, 
Advances in Genetic Programming, volume 2, pages 467-488. MIT Press. 

Schoenauer, M. and Xanthakis, S. (1993). Constrained GA optimization. International 
Conference on Genetic Algorithms, Urbana-Champaign, Illinois, pages 573-580. 

Schrijver, A. (2005). On the history of combinatorial optimization (till 1960). In Aardal, 
K., Nemhauser, G., and Weismantel, R., editors, Discrete Optimization, volume 12 of 
Handbooks in Operations Research and Management Science, pages 1-68. Elsevier. 

Schultz, T. (1999). Ants, plants and antibiotics. Nature, 398(6730):747-748. 

Schultz, T. (2000). In search of ant ancestors. Proceedings of the National Academy of 
Sciences, 97(26): 14028-14029. 

Schumacher, C., Vose, M., and Whitley, L. (2001). The no free lunch and problem 
description length. Genetic and Evolutionary Computation Conference, San Francisco, 
California, pages 565-570. 

Schütze, O., Lara, A., and Coello Coello, C. (2011). On the influence of the number of 
objectives on the hardness of a multiobjective optimization problem. IEEE Transactions 
on Evolutionary Computation, 15(4):444-454. 

Schwefel, H.-P. (1977). Numerische Optimierung von Computer-Modellen. Birkhauser. 
The English translation of the title is Evolutionary Strategy and Numerical Optimization. 

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. John Wiley & 
Sons. Translation of [Schwefel, 1977] along with some additional material. 

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. John Wiley & Sons. Expanded 
version of [Schwefel, 1981]. 

Schwefel, H.-P. and Mendes, M. (2010). 45 years of evolution strategies. SIGEVOlution, 
4(2):2-8. 

Sebag, M. and Ducoulombier, A. (1998). Extending population-based incremental learn-
ing to continuous search spaces. In Eiben, A., Back, T., Schoenauer, M., and Schwefel, 
H.-P., editors, Parallel Problem Solving from Nature - PPSN V, pages 418-427. Springer. 

Sefrioui, M. and Périaux, J. (2000). A hierarchical genetic algorithm using multiple 
models for optimization. In Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., 
Merelo, J., and Schwefel, H.-P., editors, Parallel Problem Solving from Nature - PPSN 
VI, pages 879-888. Springer. 



REFERENCES 719 

Selvakumar, A. and Thanushkodi, K. (2007). A new particle swarm optimization solu-
tion to nonconvex economic dispatch problems. IEEE Transactions on Power Systems, 
22(1):42-51. 

Seneta, E. (1966). Markov and the birth of chain dependence theory. International 
Statistical Review, 64(3):255-263. 

Settles, B. (2010). Active learning literature survey. Technical report, University of 
Wisconsin-Madison, www. c s . e m u . e d u / ~ b s e t t l e s / p u b / s e t t l e s . a c t i v e l e a r n i n g . p d f . 

Shah-Hosseini, H. (2007). Problem solving by intelligent water drops. IEEE Congress 
on Evolutionary Computation, Singapore, pages 3226-3231. 

Shakya, S. and Santana, R., editors (2012). Markov Networks in Evolutionary Compu-
tation. Springer. 

Shi, L. and Rasheed, K. (2010). A survey of fitness approximation methods applied in 
evolutionary algorithms. In Tenne, Y. and Goh, C.-K., editors, Computational Intelli-
gence in Expensive Optimization Problems, pages 3-28. Springer. 

Shi, Y. and Eberhart , R. (1999). Empirical study of particle swarm optimization. IEEE 
Congress on Evolutionary Computation, Washington, District of Columbia, pages 1945-
1950. 

Shibani, Y., Yasuno, S., and Ishiguro, I. (2001). Effects of global information feedback 
on diversity. Advances in Genetic Programming, 45(l):80-96. 

Simöes, A. (2011). Evolutionary Algorithms in Dynamic Optimization Problems. Lambert 
Academic Publishing. 

Simon, D. (2005). Research in the balance. IEEE Potentials, 24(2):17-21. 

Simon, D. (2006). Optimal State Estimation. John Wiley & Sons. 

Simon, D. (2008). Biogeography-based optimization. IEEE Transactions on Evolutionary 
Computation, 12(6):702-713. 

Simon, D. (2011a). A dynamic system model of biogeography-based optimization. Ap-
plied Soft Computing, 11 (8):5652-5661. 

Simon, D. (2011b). A probabilistic analysis of a simplified biogeography-based optimiza-
tion algorithm. Evolutionary Computation, 19(2): 167-188. 

Simon, D. (2012). Biogeography-Based Optimization Web Site. h t t p : / / e m b e d d e d l a b . 
csuohio.edu/BBO. 

Simon, D., Ergezer, M., and Du, D. (2009). Population distributions in biogeography-
based optimization algorithms with elitism. IEEE Conference on Systems, Man, and 
Cybernetics, San Antonio, Texas, pages 1017-1022. 

Simon, D., Ergezer, M., Du, D., and Rarick, R. (2011a). Markov models for biogeography-
based optimization. IEEE Transactions on Systems, Man and Cybernetics - Part B: 
Cybernetics, 41(l):299-306. 

Simon, D., Rarick, R., Ergezer, M., and Du, D. (2011b). Analytical and numerical 
comparisons of biogeography-based optimization and genetic algorithms. Information 
Sciences, 181(7):1224-1248. 

Singh, H., Ray, T., and Smith, W. (2010). Surrogate assisted simulated annealing (SASA) 
for constrained multi-objective optimization. IEEE Congress on Evolutionary Computa-
tion, Barcelona, Spain, pages 1-8. 

Smith, A. and Täte, D. (1993). Genetic optimization using a penalty function. Interna-
tional Conference on Genetic Algorithms, Urbana-Champaign, Illinois, pages 499-505. 

Smith, R., Dike, B., and Stegmann, S. (1995). Fitness inheritance in genetic algorithms. 
Symposium on Applied Computing, Nashville, Tennessee, pages 345-350. 



720 REFERENCES 

Smith, S. (1980). A Learning System Based on Genetic Adaptive Algorithms. PhD thesis, 
University of Pittsburgh. 

Sobotnik, J., Hanus, R., Kalinovâ, B., Piskorski, R., Cvacka, J., Bourguignon, T., and 
Roisin, Y. (2008). (E,E)-a-Farnesene, an alarm pheromone of the termite Prorhinotermes 
canalifrons. Journal of Chemical Ecology, 34(4):478-486. 

Socha, K. and Dorigo, M. (2008). Ant colony optimization for continuous domains. 
European Journal of Operational Research, 185(3): 1155-1173. 

Solnon, C. (2010). Ant Colony Optimization and Constraint Programming. John Wiley 
& Sons. 

Spears, W. and De Jong, K. (1997). Analyzing G As using Markov models with seman-
tically ordered and lumped states. In Belew, R. and Vose, M., editors, Foundations of 
Genetic Algorithms, volume 4, pages 85-100. Morgan Kaufmann. 

Srinivas, N. and Deb, K. (1994). Multiobjective optimization using nondominated sorting 
in genetic algorithms. Evolutionary Computation, 2(3):221-248. 

Stanley, K. and Miikkulainen, R. (2002). Evolving neural networks through augmenting 
topologies. Evolutionary Computation, 10(2):99-127. 

Stephens, D. and Krebs, J. (1986). Foraging Theory. Princeton University Press. 

Sterne, J. and Smith, G. (2001). Sifting the evidence - what 's wrong with significance 
tests? Physical Therapy, 81 (8): 1464-1469. 

Stone, L. (2009). Zebras. Lerner Publications Company. 

Storn, R. (1996a). Differential evolution design of an IIR-filter. IEEE Conference on 
Evolutionary Computation, Nagoya, Japan, pages 268-273. 

Storn, R. (1996b). On the usage of differential evolution for function optimization. 
Conference of the North American Fuzzy Information Processing Society, Berkeley, Cal-
ifornia, pages 519-523. 

Storn, R. and Price, K. (1996). Minimizing the real functions of the ICEC'96 contest by 
differential evolution. IEEE Conference on Evolutionary Computation, Nagoya, Japan, 
pages 842-844. 

Storn, R. and Price, K. (1997). Differential evolution - A simple and efficient heuristic for 
global optimization over continuous spaces. Journal of Global Optimization, 11(4):341-
359. 

Stroud, P. (2001). Kalman-extended genetic algorithm for search in nonstationary envi-
ronments with noisy fitness evaluations. IEEE Transactions on Evolutionary Computa-
tion, 5(l):66-77. 
Stiitzle, T. and Hoos, H. (2000). MAX-MIN ant system. Future Generation Computer 
Systems, 16(8):889-914. 

Su, C. and Lee, C. (2003). Network reconfiguration of distribution systems using im-
proved mixed-integer hybrid differential evolution. IEEE Transactions on Power Deliv-
ery, 18(3):1022-1027. 
Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y.-P., Auger, A., and Tiwari, S. 
(2005). Problem definitions and evaluation criteria for the CEC 2005 special session 
on real-parameter optimization. Technical report, w w w . i i t k . a c . i n / k a n g a l / p a p e r s / 
k2005005. pdf, www. n t u . edu. sg/home/EPNSugan/index_f i l e s / c ec -b en ch mark i n g . htm. 

Sun, J., Lai, C.-H., and Wu, X.-J. (2011). Particle Swarm Optimisation: Classical and 
Quantum Perspectives. CRC Press. 

Sverdlik, W. and Reynolds, R. (1993). Incorporating domain specific knowledge into 
version space search. Fifth International Conference on Tools with Artificial Intelligence, 
Boston, Massachusetts, pages 216-223. 



REFERENCES 721 

Syberfeldt, A., Ng, A., John, R., and Moore, P. (2010). Evolutionary optimisation of 
noisy multi-objective problems using confidence-based dynamic resampling. European 
Journal of Operational Research, 204(3):533-544. 

Syswerda, G. (1991). Schedule optimization using genetic algorithms. In Davis, L., 
editor, Handbook of Genetic Algorithms, pages 332-349. Van Nostrand Reinhold. 

Syswerda, G. (2010). Differential evolution research - trends and open questions. In 
Chakraborty, U., editor, Advances in Differential Evolution, pages 1-32. Springer. 

Szu, H. and Hartley, R. (1987). Fast simulated annealing. Physics Letters A, 122(3-
4):157-162. 

Takahama, T. and Sakai, S. (2009). Solving difficult constrained optimziation problems 
by the e constrained differential evolution with gradient-based mutation. In Mezura-
Montes, E., editor, Constraint-Handling in Evolutionary Optimization, pages 51-72. 
Springer. 

Tan, K., Khor, E., and Lee, T. (2010). Multiobjective Evolutionary Algorithms and 
Applications. Springer. 

Tanaka, M. and Tanino, T. (1992). Global optimization by the genetic algorithm in a 
multiobjective decision support system. International Conference on Multiple Criteria 
Decision Making, Taipei, Taiwan, pages 261-270. 

Tao, G. and Michalewicz, Z. (1998). Inver-over operator for the TSP. In Eiben, A., Back, 
T., Schoenauer, M., and Schwefel, H.-P., editors, Parallel Problem Solving from Nature 
- PPSN V, pages 803-812. Springer. 

Taylor, J. (1997). An Introduction to Error Analysis: The Study of Uncertainties in 
Physical Measurements. University Science Books, 2nd edition. 

Tenne, Y. and Goh, C.-K., editors (2010). Computational Intelligence in Expensive 
Optimization Problems. Springer. 

Teodorovic, D. (2003). Transport modeling by multi-agent systems: A swarm intelligence 
approach. Transportation Planning and Technology, 26(4):289-312. 

Tereshko, V. (2000). Reaction-diffusion model of a honeybee colony's foraging behaviour. 
In Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J., and Schwefel, 
H.-P., editors, Parallel Problem Solving from Nature - PPSN VI, pages 807-816. Springer. 

Tessema, B. and Yen, G. (2006). A self adaptive penalty function based algorithm for 
constrained optimization. IEEE Congress on Evolutionary Computation, Vancouver, 
Canada, pages 246-253. 

Thiele, L., Miettinen, K., Korhonen, P., and Molina, J. (2009). A preference-based 
evolutionary algorithm for multi-objective optimization. Evolutionary Computation, 
17(3) :411-436. 

Thomson, I. (2010). Culture Wars and Enduring American Dilemmas. The University 
of Michigan Press. 

Tilman, D., May, R., Lehman, C., and Nowak, M. (1994). Habitat destruction and the 
extinction debt. Nature, 371(3):65-66. 

Tinoco, J. and Coello Coello, C. (2013). hypDE: A hyper-heuristic based on differential 
evolution for solving constrained optimization problems. In Schütze, 0 . , Coello Coello, 
C , Tantar, A.-A., Tantar, E., Bouvry, P., Mora, P. D., and Legrand, P., editors, EVOLVE 
- A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation 
II, pages 267-282. Springer. 

Tinos, R. and Yang, S. (2005). Genetic algorithms with self-organized criticality for dy-
namic optimziation problems. IEEE Congress on Evolutionary Computation, Edinburgh, 
United Kingdom, pages 2816-2823. 



722 REFERENCES 

Tizhoosh, H. (2005). Opposition-based learning: A new scheme for machine intelligence. 
International Conference on Computational Intelligence for Modelling, Control and Au-
tomation, Vienna, Austria, pages 695-701. 

Tizhoosh, H., Ventresca, M., and Rahnamayan, S. (2008). Opposition-based computing. 
In Tizhoosh, H. and Ventresca, M., editors, Oppositional Concepts in Computational 
Intelligence, pages 11-28. Springer. 

Tomassini, M. and Vanneschi, L. (2009). Introduction: Special issue on parallel and dis-
tributed evolutionary algorithms, Par t I. Genetic Programming and Evolvable Machines, 
10(4):339-341. 

Tomassini, M. and Vanneschi, L. (2010). Guest editorial: Special issue on parallel and 
distributed evolutionary algorithms, Par t II. Genetic Programming and Evolvable Ma-
chines, 11 (2): 129-130. 

Torregosa, R. and Kanok-Nukulchai, W. (2002). Weight optimization of steel frames 
using genetic algorithm. Advances in Structural Engineering, 5 (2 ) :99- l l l . 

Toth, P. and Vigo, D., editors (2002). The Vehicle Routing Problem. The Society for 
Industrial and Applied Mathematics. 

Tripathi, P., Bandyopadhyay, S., and Pal, S. (2007). Multi-objective particle swarm 
optimization with time variant inertia and acceleration coefficients. Information Sciences, 
177(22) :5033-5049. 

Tsutsui, S. (2004). Ant colony optimisation for continuous domains with aggregation 
pheromones metaphor. Fifth International Conference on Recent Advances in Soft Com-
puting (RASC-04), Nottingham, United Kingdom, pages 207-212. 

Turing, A. (1950). Computing machinery and intelligence. Mind, 59(236):433-460. 

Turner, G. and Pitcher, T. (1986). Attack abatement: A model for group protection by 
combined avoidance and dilution. The American Naturalist, 128(2):228-240. 

Twain, M. (2010). Autobiography of Mark Twain, Volume 1. University of California 
Press. 

Tylor, E. (2009). Primitive Culture: Researches into the Development of Mythology, 
Philosophy, Religion, Art and Custom, volume 1. Cornell University Library. Originally 
published in 1871. 

Tylor, E. (2011). Researches into the Early History of Mankind and the Development of 
Civilization. University of California Libraries. Originally published in 1878. 

Ufuktepe, U. and Bacak, G. (2005). Applications of graph coloring. International Con-
ference on Computational Science and Applications, Singapore, pages 465-477. 

van Laarhoven, P. and Aarts, E. (2010). Simulated Annealing: Theory and Applications. 
Springer. 

Van Veldhuizen, D. and Lamont, G. (2000). Multiobjective evolutionary algorithms: 
Analyzing the state-of-the-art. Evolutionary Computation, 8(2): 125-147. 

Vavak, F. and Fogarty, T. (1996). Comparison of steady state and generational genetic 
algorithms for use in nonstationary environments. IEEE Conference on Evolutionary 
Computation, Nagoya, Japan, pages 192-195. 

Ventresca, M. and Tizhoosh, H. (2007). Simulated annealing with opposite neighbors. 
IEEE Symposium on Foundations of Computational Intelligence, Honolulu, Hawaii, pages 
186-192. 

Volk, T. (1997). Gaia's Body: Toward a Physiology of Earth. Springer. 

Vorwerk, K., Kennings, A., and Greene, J. (2009). Improving simulated annealing-based 
FPGA placement with directed moves. IEEE Transactions on Computer-Aided Design 
of Integrated Circuits and Systems, 28(2):179-192. 



REFERENCES 723 

Vose, M. (1990). Formalizing genetic algorithms. IEEE Workshop on Genetic Algorithms, 
Neural Networks, and Simulated Annealing Applied to Signal and Image Processing, Glas-
gow, Scotland. 

Vose, M. (1999). The Simple Genetic Algorithm: Foundations and Theory. MIT Press. 

Vose, M. and Liepins, G. (1991). Punctuated equilibria in genetic search. Complex 
Systems, 5(l):31-44. 

Vose, M. and Wright, A. (1998a). The simple genetic algorithm and the Walsh transform: 
Par t I, Theory. Evolutionary Computation, 6(3):253-273. 

Vose, M. and Wright, A. (1998b). The simple genetic algorithm and the Walsh transform: 
Par t II, The inverse. Evolutionary Computation, 6(3):275-289. 

Waghmare, G. (2013). Comments on "A note on teaching-learning-based optimization 
algorithm". Information Sciences, in print. 

Wallace, A. (2006). The Geographical Distribution of Animals (two volumes). Adamant 
Media Corporation. First published in 1876. 

Wang, H., Yang, S., Ip, W., and Wang, D. (2009). Adaptive primal-dual genetic algo-
rithms in dynamic environments. IEEE Transactions on Systems, Man, and Cybernetics 
- Part B: Cybernetics, 39(6): 1348-1361. 

Wedde, H., Farooq, M., and Zhang, Y. (2004). Beehive: An efficient fault-tolerant 
routing algorithm inspired by honey bee behavior. In Dorigo, M., Birattari, M., Blum, 
C , Gambardella, L., Mondada, F., and Stiitzle, T., editors, Ant Colony Optimization and 
Swarm Intelligence: J^th International Workshop, ANTS 2004, pages 83-94. Springer. 

Weiland, M. (2009). Sand: The Never-Ending Story. University of California Press. 

Welsch, R. and Endicott, K. (2005). Taking Sides: Clashing Views in Cultural Anthro-
pology. McGraw-Hill, 2nd edition. 

Wesche, T., Goertler, G., and Hubert, W. (1987). Modified habitat suitability index 
model for brown trout in southeastern Wyoming. North American Journal of Fisheries 
Management, 7(2):232-237. 

Wetzel, C. and Insko, C. (1982). The similarity-attraction relationship: Is there an ideal 
one? Journal of Experimental Social Psychology, 18(3):253-76. 

Whigham, P. (1995). A schema theorem for context-free grammars. IEEE Conference 
on Evolutionary Computation, Perth, Western Australia, pages 178-181. 

Whitley, D. (1989). The GENITOR algorithm and selection pressure: Why rank-based 
allocation of reproductive trials is best. International Conference on Genetic Algorithms, 
Fairfax, Virginia, pages 116-121. 

Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4(2):65-85. 

Whitley, D. (1999). A free lunch proof for gray versus binary encodings. Genetic and 
Evolutionary Computation Conference, Orlando, Florida, pages 726-733. 

Whitley, D. (2001). An overview of evolutionary algorithms: Practical issues and common 
pitfalls. Information and Software Technology, 43(14):817-831. 

Whitley, D., Rana, S., Dzubera, J., and Mathias, K. (1996). Evaluating evolutionary 
algorithms. Artificial Intelligence, 85(l-2):245-276. 

Whitley, D., Rana, S., and Heckendorn, R. (1998). The island model genetic algorithm: 
On separability, population size and convergence. Journal of Computing and Information 
Technology, 7(l):33-47. 

Whitley, D. and Watson, J. (2005). Complexity theory and the no free lunch theorem. 
In Burke, E. and Kendall, G., editors, Search Methodologies: Introductory Tutorials in 
Optimization and Decision Support Techniques, pages Chapter 11, 317-339. Springer. 



724 REFERENCES 

Whittaker, R. and Bush, M. (1993). Dispersal and establishment of tropical forst assem-
blages, Krakatoa, Indonesia. In Miles, J. and Walton, D., editors, Primary Succession 
on Land, pages 147-160. Blackwell Science. 

Wienke, D., Lucasius, C , and Kateman, G. (1992). Multicriteria target vector opti-
mization of analytical procedures using a genetic algorithm: Par t I. Theory, numerical 
simulations and application to atomic emission spectroscopy. Analytica Chimica Act, 
265(2):211-225. 

Wilson, P. and Macleod, M. (1993). Low implementation cost IIR digital filter design us-
ing genetic algorithms. IEE/IEEE Workshop on Natural Algorithms in Signal Processing, 
Chelmsford, England, pages 4 /1 -4 /8 . 

Winchester, S. (2008). The Day the World Exploded. Collins. 

Winston, P. and Horn, B. (1989). Lisp. Addison Wesley, 3rd edition. 

Woldesenbet, Y. and Yen, G. (2009). Dynamic evolutionary algorithm with variable 
relocation. IEEE Transactions on Evolutionary Computation, 13(3):500-513. 

Wolpert, D. and Macready, W. (1997). No free lunch theorems for optimization. IEEE 
Transactions on Evolutionary Computation, l ( l ) :67-82. 

Wolpert, D. and Macready, W. (2005). Coevolutionary free lunches. IEEE Transactions 
on Evolutionary Computation, 9(6): 721-735. 

Worden, L. and Levin, S. (2007). Evolutionary escape from the prisoner's dilemma. 
Journal of Theoretical Biology, 245(3):411-422. 

Wright, A., Poli, R., Stephens, C., Langdon, W., and Pulavarty, W. (2004). An esti-
mation of distribution algorithm based on maximum entropy. Genetic and Evolutionary 
Computation Conference, Seattle, Washington, pages 343-354. 

Wright, S. (1987). Primal-Dual Interior-Point Methods. Society for Industrial Mathe-
matics. 

Wu, J. and Vankat, J. (1995). Island biogeography theory and applications. In Nieren-
berg, W., editor, Encyclopedia of Environmental Biology, pages 317-379. Academic Press. 

Wu, S. and Chow, T. (2007). Self-organizing and self-evolving neurons: A new neural 
network for optimization. IEEE Transactions on Neural Networks, 18(2):385-396. 

Wyat t , T. (2003). Pheromones and Animal Behaviour: Communication by Smell and 
Taste. Cambridge University Press. 

Xinchao, Z. (2010). A perturbed particle swarm algorithm for numerical optimization. 
Applied Soft Computing, 10(1):119-124. 

Yang, C. and Simon, D. (2005). A new particle swarm optimization technique. Interna-
tional Conference on Systems Engineering, Las Vegas, Nevada, pages 164-169. 

Yang, C.-H., Tsai, S.-W., Chuang, L.-Y., and Yang, C.-H. (2011). A modified particle 
swarm optimization for global optimization. International Journal of Advancements in 
Computing Technology, 3(7): 169-189. 

Yang, S. (2003a). Non-stationary problem optimization using the primal-dual genetic 
algorithm. IEEE Congress on Evolutionary Computation, Canberra, Australia, pages 
2246-2253. 

Yang, S. (2003b). PDG A: The primal-dual genetic algorithm. International Conference 
on Hybrid Intelligent Systems, Melbourne, Australia, pages 214-223. 

Yang, S. (2008a). Genetic algorithms with memory- and elitism-based immigrants in 
dynamic environments. Evolutionary Computation, 16(3):385-416. 

Yang, S., Ong, Y.-S., and Jin, Y., editors (2010). Evolutionary Computation in Dynamic 
and Uncertain Environments. Springer. 



REFERENCES 725 

Yang, S. and Yao, X. (2005). Experimental study on population-based incremental 
learning algorithms for dynamic optimization problems. Soft Computing, 9(l l) :815-834. 

Yang, S. and Yao, X. (2008a). Population-based incremental learning with associative 
memory for dynamic environments. IEEE Transactions on Evolutionary Computation, 
12(5):542-561. 

Yang, S. and Yao, X. (2008b). Population-based incremental learning with associative 
memory for dynamic environments. IEEE Transactions on Evolutionary Computation, 
12(5):542-561. 

Yang, X.-S., editor (2008b). Nature-Inspired Metaheuristic Algorithms. Luniver Press. 

Yang, X.-S. (2009a). Cuckoo search via Levy flights. World Congress on Nature & 
Biologically Inspired Computing, Coimbatore, India, pages 210-214. 

Yang, X.-S. (2009b). Firefly algorithm, Levy flights and global optimization. In Ellis, R. 
and Petridis, M., editors, Research and Development in Intelligent Systems XXVI, pages 
209-218. Springer. 

Yang, X.-S. (2010a). Firefly algorithm, stochastic test functions and design optimisation. 
International Journal of Bio-Inspired Computation, 2(2):78-84. 

Yang, X.-S. (2010b). Firefly algorithms for multimodal optimization. In Watanabe, O. 
and Zeugmann, T., editors, Stochastic Algorithms: Foundations and Applications, pages 
169-178. Springer. 

Yang, X.-S. (2010c). A new metaheuristic bat-inspired algorithm. In Gonzalez, J., Pelta, 
D., Cruz, C , Terrazas, G., and Krasnogor, N., editors, Nature Inspired Cooperative 
Strategies for Optimization, pages 65-74. Springer. 

Yang, Z., Tang, K., and Yao, X. (2008). Large scale evolutionary optimization using 
cooperative coevolution. Information Sciences, 178(15) :2985-2999. 

Yao, X. and Liu, Y. (1997). Fast evolution strategies. In Angeline, P., Reynolds, R., 
McDonnell, J., and Eberhart , R., editors, Evolutionary Programming VI, pages 151-161. 
Springer. 

Yao, X., Liu, Y., and Lin, G. (1999). Evolutionary programming made faster. IEEE 
Transactions on Evolutionary Programming, 3(2):82-102. 

Yen, G. (2009). An adaptive penalty function for handling constraint in multi-objective 
evolutionary optimization. In Mezura-Montes, E., editor, Constraint-Handling in Evolu-
tionary Optimization, pages 121-143. Springer. 

Yoshida, H., Kawata, K., and Fukuyama, Y. (2001). A particle swarm optimization 
for reactive power and voltage control considering voltage security assessment. IEEE 
Transactions on Power Systems, 15(4): 1232-1239. 

Yu, X., Tang, K., Chen, T., and Yao, X. (2009). Empirical analysis of evolutionary 
algorithms with immigrants schemes for dynamic optimization. Memetic Computing, 
l ( l ) :3-24. 

Yuan, B., Orlowska, M., and Sadiz, S. (2007). On the optimal robot routing problem 
in wireless sensor networks. IEEE Transactions on Knowledge and Data Engineering, 
19(9):1251-1261. 

Zaharie, D. (2002). Critical values for the control parameters of differential evolution 
algorithms. International Conference on Soft Computing, Brno, Czech Republic, pages 
62-67. 

Zavala, A., Aguirre, A., and Diharce, E. (2009). Continuous constrained optimization 
with dynamic tolerance using the COPSO algorithm. In Mezura-Montes, E., editor, 
Constraint-Handling in Evolutionary Optimization, pages 1-23. Springer. 



726 REFERENCES 

Zhan, Z.-H., Zhang, J., Li, Y., and Chung, H. (2009). Adaptive particle swarm opti-
mization. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 
39(6):1362-1381. 

Zhang, J. and Sanderson, A., editors (2009). Adaptive Differential Evolution. Springer. 

Zhang, Q., Sun, J., and Tsang, E. (2005). An evolutionary algorithm with guided muta-
tion for the maximum clique problem. IEEE Transactions on Evolutionary Computation, 
9(2): 192-200. 

Zhang, Q., Zhou, A., Zhao, S., Suganthan, P., Liu, W., and Tiwari, S. (2009). Multiobjec-
tive optimization test instances for the CEC 2009 special session and competition. Tech-
nical report, www.ntu.edu.sg/home/EPNSugan/index_fi les/cec-benchmarking.htm. 

Zhu, Y., Yang, Z., and Song, J. (2006). A genetic algorithm with age and sexual features. 
International Conference on Intelligent Computing, Kunming, China, pages 634-640. 

Zimmerman, A. and Lynch, J. (2009). A parallel simulated annealing architecture for 
model updating in wireless sensor networks. IEEE Sensors Journal, 9(11):1503-1510. 

Zitzler, E., Deb, K., and Thiele, L. (2000). Comparison of multiobjective evolutionary 
algorithms: Empirical results. Evolutionary Computation, 8(2): 173-195. 

Zitzler, E., Laumanns, M., and Bleuler, S. (2004). A tutorial on evolutionary multiob-
jective optimization. In Gandibleux, X., Sevaux, M., Sörensen, K., and T'Kindt, V., 
editors, Metaheuristics for Multiobjective Optimisation, pages 3-38. Springer. 

Zitzler, E., Laumanns, M., and Thiele, L. (2001). SPEA2: Improving the strength Pareto 
evolutionary algorithm. EUROGEN 2001: Evolutionary Methods for Design, Optimisa-
tion and Control with Applications to Industrial Problems, Athens, Greece, pages 95-100. 

Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: A compara-
tive case study and the strength Pareto approach. IEEE Transactions on Evolutionary 
Computation, 3(4):257-271. 

Zitzler, E., Thiele, L., and Bader, J. (2010). On set-based multiobjective optimization. 
IEEE Transactions on Evolutionary Computation, 14(l):58-79. 

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C , and da Fonseca, V. (2003). Perfor-
mance assessment of multiobjective optimizers: An analysis and review. IEEE Transac-
tions on Evolutionary Computation, 7(2): 117-132. 

Zlochin, M., Birattari, M., Meuleau, N., and Dorigo, M. (2004). Model-based search for 
combinatorial optimization: A critical survey. Annals of Operations Research, 131(1-
4):373-395. 



INDEX 

2-exchange mutation, 468 
2-opt mutation, 467 

X 
accuracy, 598, 603 
acronyms, xxiii 
active learning, 572 
adaptive cultural model, 387 
adaptive penalty method, 509 
adaptive segregational constraint handling, 

495, 516 
adjacency representation, 460, 479 
admissible point, 519 
admissible set, 519 
age factor, 589 
aggregation, 560 
all topology, 269 
allele, 45 
alternating edges crossover, 461 
ant-Q, 260 
ant colony optimization, 241 

ant-Q, 260 
ant colony system, 257 
ant system, 246 
approximated non-deterministic tree search, 

261 
beam ACO, 261 
best-worst ant system, 261 
candidate solution, 257 
continuous domains, 252 

convergence, 261 
elitism, 260 
exploration constant, 259 
hypercube, 261 
initial pheromone, 257 
local pheromone decay, 258 
local pheromone update, 257 
negative reinforcement, 262 
noisy fitness, 262 
opposition-based learning, 398 
population-based, 261 
pseudo-random proportional rule, 257 
rank-based ant system, 260 

ant colony system, 257 
ant system, 246 

best-worst, 261 
deposition constant, 248, 252 
elitism, 247, 252 
elitist, 260 
evaporation rate, 248 
heuristic sensitivity, 248, 264 
initial pheromone, 248 
initialization, 247 
local search, 252 
max-min, 255 
mutation, 247 
rank-based, 260 
tuning parameters, 248 

applications, 12 

727 



728 INDEX 

approximated non-determinist ic t ree search, 
261 

archive, 534, 537, 543-544, 560, 593 
expensive fitness functions, 565 
pruning, 547 

ar i thmet ic crossover, 212 
arity, 155 
Ar thur , Brian, 379 
artificial ant problem, 109, 381 

John Muir trail , 112 
Los Altos Hills trail , 112 
San Mateo trail, 112 
Sante Fe trail , 109, 115 

artificial bee colony, 435, 445 
differential evolution, 436, 446 
roulette-wheel selection, 436 

artificial fish school algorithm, 423 
artificial fish swarm algorithm, 423, 446 

chasing behavior, 424 
greedy selection, 426 
leaping behavior, 425 
particle swarm optimization, 426 
random behavior, 423 
searching behavior, 425 
swarming behavior, 424 

artificial immune system, 445 
artificial intelligence, 2 
artificial life, 2, 42, 445 
asymmetr ic traveling salesman problem, 247, 

680 
average of the average, 618 
average of the best, 618 

B 

bacterial chemotaxis model, 434, 445 
bacterial foraging optimization, 432, 446 

chemotaxis, 433 
cloning, 434 
differential evolution, 434 
dispersal, 434 
elimination, 434 
particle swarm optimization, 434 
reproduction, 433 

balance, 29 
Barricelli, Nils, 42, 444 
barrier function, 483 
bat-inspired algorithm, 445 
Bayes' theorem, 409 
Bayesian optimization algori thm, 340 
Bayesian optimization 

hierarchical, 341 
beam ant colony optimization, 261 
beam search, 261 
behavioral memory, 496 

multi-objective optimization, 533 
stochastic sampling, 497 

belief space, 381, 393, 395 
dynamic, 382 
inertia, 385 

benchmark, 622, 641 
bias, 25, 680 

bias vector, 672, 681 
combinatorial 

dynamic, 672 
composite, 674 
constrained, 509, 657 

dynamic, 672 
feasibility rat io, 664 
multi-objective, 665 

dynamic, 585, 590-591, 672 
chaotic, 675 
combinatorial , 672 
composition, 674 
constrained, 672 
knapsack, 672 
large-step, 674 
multi-objective, 672 
noisy recurrent, 676 
random, 675 
recurrent, 676 
simplified, 677 
small-step, 673-674 
traveling salesman, 672 

multi-objective, 555, 665 
constrained, 665 
dynamic, 672 

noisy, 677 
rotat ion matr ix , 672, 682 
traveling salesman, 678 

Berlin52, 249, 264, 470, 473 
Ulyssesl6, 415, 678 

unconstrained 
absolute, 654 
Ackley, 19, 51, 57, 98, 121, 129, 132, 185, 

189, 219, 229, 234, 236, 239-240, 253, 
256, 258-259, 279, 283, 292, 298, 301, 
304, 316, 319, 321, 333, 344, 349, 375, 
385, 446, 585, 590-591, 603, 643 

Ackley test , 644 
Branin, 573-574 
corridor, 122, 138 
deceptive, 80 
eggholder, 656 
Fletcher-Powell, 645 
Fletcher, 645 
foxhole, 654 
Goldstein-Price, 576 
Griewank, 98, 133, 404, 406-407, 646 
hyper-ellipsoid, 648 
Michalewicz, 655 
one-max, 61 , 79 
penal ty # 1 , 647 
penal ty # 2 , 647 
quadric, 650 
quart ic , 648 
Rastrigin, 30, 60, 291, 311, 650 
ridge, 650 
Rosenbrock, 180, 311, 446, 644 
rota ted hyper-ellipsoid, 650 
Schaeffer, 656 
Schwefel 1.2, 650 
Schwefel 2.21, 651 



INDEX 729 

Schwefel 2.22, 652 
Schwefel 2.26, 129, 286, 652 
Schwefel absolute, 652 
Schwefel double sum, 650 
Schwefel max, 651, 683 
Schwefel ridge, 650 
Schwefel sine, 652 
Shekel's foxhole, 654 
sine envelope, 655 
sphere, 62, 115, 125, 138, 291, 642 
step, 653 
tenth power, 649 
Weierstrass, 657 
weighted sphere, 648 

Bernoulli's Principle of Insufficient Reason, 618 
best-worst ant system, 261, 264 
best of the average, 618 
best of the best, 618 
bias vector, 672 
Bible, 1, 38, 241, 377, 421 
Bienert, Peter, 117 
big bang big crunch algorithm, 445 
bin packing problem, 477 
binomial coefficient, 74 
binomial distribution, 296, 310 
bio-inspired computing, 3 
biogeography-based optimization, 351 

constrained optimization, 509 
diversity, 353 
dynamic system model, 370 
elitism, 360 
emigration, 353 
evolution strategy, 375 
generational, 360 
genetic algorithms, 369 
habitat suitability index, 353 
immigration, 353 
initial immigration, 371 
Markov model, 370 
migration, 363, 392 

blended, 365 
linear, 359 
sinusoidal, 364 

multi-objective, 551 
mutation, 363 
opposition-based learning, 398 
partial emigration-based, 367 
partial immigration-based, 360, 366 
positive feedback, 371 
selection, 374 
selection pressure, 374 
statistical mechanics, 370 
steady-state, 360 
suitability index variable, 353 
total emigration-based, 367 
total immigration-based, 367 
web site, 352, 370 

biogeography, 354 
Amazon rainforest, 358 
archipelago, 371 
Bikini Atoll, 358 

distance effect, 371 
global warming, 358 
ice age, 358 
initial immigration, 371 
Krakatoa, 357 
migration 

time correlation, 373 
optimality of, 357 
positive feedback, 358 
predator and prey, 372 
probability, 354 
rank-based selection, 375 
reproductive value, 372 
resource competition, 373 
species mobility, 372 

bisexual crossover, 211 
bivariate marginal distribution algorithm, 335 
blended crossover, 213 
BLX-Q crossover, 213 
Boltzmann annealing, 225 
boundary search, 513 
box plot, 625 
Box, George, 42 
Bremermann, Hans-Joachim, 42 
brute force, 449 
bugs, 607 
building block, 338 

C 

candidate solution, 28, 44 
capacitated vehicle routing problem, 478, 680 
cardinality, 449 
catfish particle swarm optimization, 288 
Cauchy PDF, 232 
central force optimization, 438 
Cerny, Vlado, 223 
charged system search, 444 
chemical reaction optimization, 445 
chemotaxis, 433 
chi-square statistic, 336, 348 
choose function, 74 
chromosome, 45 
classic crossover, 461 
clearing, 196, 217 

niche set, 196 
clone, 61, 156, 434 
close-enough traveling salesman problem, 478 
cloud computing, 601 
cluster computing, 601 
cluster topology, 270 
clustering, 545, 551, 582 

diversity, 556 
fitness approximation, 567 

co-evolution, 384 
no free lunch, 621 

collective intelligence, 265 
combinatorial optimization, 449 

differential evolution, 305 
opposition-based learning, 413 

combining optimizers with mutual information 
trees, 329, 333 



730 INDEX 

communication, 610 
compact genetic algorithm, 318, 348-349 

extended, 337 
competition vs. cooperation, 378 
competitive learning, 322 
computer intelligence, 2 
constrained optimization, 238, 289, 309, 481 

adaptive penalty methods, 492 
adaptive segregational constraint handling, 

495 
behavioral memory, 496 
biogeography-based optimization, 509 
boundary search, 513 
co-evolutionary penalties, 489 
constraint difficulty, 511 
cultural algorithm, 383, 505 
dynamic methods, 487 
dynamic penalty methods, 490-491 

exponential, 491 
superiority of feasible points, 490 

eclectic evolutionary algorithm, 488 
elitism, 489, 510 
exponential dynamic penalty, 491 

superiority of feasible points, 491 
feasible set, 481 
Genocop, 502 
Genocop II, 503 
Genocop III, 503 
hybrid algorithms, 482 
infeasibility driven evolutionary algorithm, 

496 
infeasible set, 481 
multi-objective, 506, 513, 518, 531 
multimembered evolution strategy, 498 
niched-penalty approach, 498 
penalized cost function, 486 
penalty factors, 486 
penalty function approach, 482 
ranking, 506 

e-level comparisons, 508 
constraint order, 507 
maximum constraint violation, 507 

repair algorithms, 482 
segregated genetic algorithm, 492 
self-adaptive fitness formulation, 493 
self-adaptive penalty function, 494 
special operators, 482, 501 
special representations, 482, 499 
static methods, 486-487 
static penalty approach, 508 
stochastic ranking, 497 
superiority of feasible points, 487 

dynamic penalty methods, 490 
exponential dynamic penalty, 491 

traveling salesman problem, 516 
constraint difficulty, 511 
constraint programming, 512 
constraint satisfaction algorithms, 512 
continuous population based incremental 

learning, 343 

continuous univariate marginal distribution 
algorithm, 342 

contour matching, 296, 309 
control 

adaptive, 26 
controlled generations, 578 
convergence 

ant colony optimization, 261 
differential evolution, 302 
multi-objective optimization, 544 
random search, 261 

cooperation vs. competition, 378 
Correns, Carl, 39 
cost function, 13 
Courant, Richard, 483 
course outline, 8 
covariance matrix adaptation evolution 

strategy, 135 
covariance matrix self-adaptive evolution 

strategy, 135 
Cramer, Nichael, 142 
creation, 38 
cross entropy, 261 
cross validation, 583 
crossover, 45, 47, 51, 53, 56, 209 

arithmetic, 212 
bisexual, 211 
blended, 213 
BLX-Q, 213 
discrete, 209 
discrete sexual, 126 
dominant, 126 
flat, 212 
fuzzy, 213 
gender-based, 215 
gene pool recombination, 211 
global, 126 
global uniform, 211 
heuristic, 213 
intermediate global, 126 
intermediate sexual, 126 
inver-over, 415 
linear, 213 
matrix, 89 
multi-parent, 211 
multi-sexual, 211 
multiple-point, 210 
niching, 194, 371 
panmictic, 126 
probability, 79, 89, 156 
scanning, 211 
segmented, 210 
shuffle, 212 
simple, 209 
simulated binary, 213 
single-point, 209 
species-based, 194, 371 
tree-based, 146 
two-point, 210 
uniform, 210 

crowding, 197, 219 



INDEX 731 

crowding distance, 560 
crowding 

deterministic, 197 
distance, 540, 543, 551 
diversity, 556 
factor, 197 
standard, 197 

cuckoo search, 444 
cultural algorithm-influenced evolutionary 

program, 384 
cultural algorithm, 377 

adaptive cultural model, 387 
belief space, 381 
co-evolution, 384 
constrained optimization, 383, 505 
culture wars, 393 
diversity, 383 
generalized other model, 393 
mathematical model, 393 
multi-objective optimization, 394 
neighborhood size, 387, 396 
opposition-based learning, 417 
selection pressure, 389-390, 395 
stochastic information sharing, 389 
subcultures, 393 
traveling salesman problem, 389 
tuning parameters, 383 

cultural evolutionary programming, 384 
curse of dimensionality, 81 
cybernetic solution path, 118 
cycle crossover, 458, 471 

D 

Darwin, Charles, 36, 351-352 
Darwin, Robert, 36 
De Bonet, Jeremy, 324 
de Garis, Hugo, 142 
De Jong, Kenneth, 35, 43, 191, 197, 642, 644, 

648, 653-654 
de Vries, Hugo, 39 
death penalty approaches, 485 
decision trees, 567 
decision variable, 13 
decoders, 499 
deduction, 2 
delta function 

Kronecker, 328 
density, 546 
design and analysis of computer experiments, 

569 
Latin hypercube sampling, 574 
uniform sampling, 574 

determinant, 70 
deterministic crowding, 197 
differential evolution, 293, 681 

adaptation, 309 
artificial bee colony, 436, 446 
bacterial foraging optimization, 434 
base vector, 300 
binomial distribution, 296 
classic, 296 

combinatorial optimization, 305 
convergence, 302 
crossover, 294 
crossover rate, 295, 298, 311 
DE/best/1/bin, 298 
DE/best/1/L, 299 
DE/best/2/bin, 299 
DE/best/2/L, 299 
DE/rand/1/bin, 296-297 
DE/rand/1/either-or, 300 
DE/rand/1/L, 296, 310 
DE/rand/2/bin, 299 
DE/rand/2/L, 299 
DE/target-to-best/1/bin, 300 
DE/target/1/bin, 300 
DE/target/1/L, 300 
DE/target/2/bin, 300 
DE/target/2/L, 300 
difference vector, 294, 300 
discrete, 307, 310 
dither, 303 
elitism, 302, 310 
evolution strategy, 309-310 
genetic algorithm, 307 
hybridization, 309 
jitter, 303 
mixed-integer, 306, 310 
mutant, 310 
mutant vector, 294, 298, 310 
opposition-based learning, 398 
scale factor, 296, 302 
stepsize, 296, 311 
teaching-learning-based optimization, 441 
trial vector, 294 
tuning parameters, 296 
variations, 296 

diploidy, 39, 215 
directed initialization, 180 
discrete crossover, 209 
discrete sexual crossover, 126 
displacement mutation, 467 
dissimilarity threshold, 196 
distance cutoff, 196 
distance 

Euclidean, 678 
three-dimensional, 679 

geographical, 678 
Manhattan, 679 
maximum, 679 
pseudo-Euclidean, 679 
x-ray crystallography, 679 

diversity, 192, 353, 383, 470, 609 
diversity evolutionary multi-objective 

optimizer, 536 
diversity 

clearing, 196 
clustering, 556 
crowding, 197, 556 
entropy, 556 
fitness sharing, 195 
grids, 556 



732 INDEX 

mating restriction, 556 
multi-objective optimization, 523 
niching, 194 
restricted tournament selection, 197 
species-based crossover, 194 

dominant crossover, 126 
dominant genes, 40 
domination, 519, 559 
Dorigo, Martin, 243 
dual inheritance, 382 
dual learning, 416, 418 

adaptation speed, 417 
decision threshold, 417 
dynamic fitness, 588 
population based incremental learning, 417 
valid duals, 417 

Dubins traveling salesman problem, 478 
duplicate individuals, 157, 192, 217, 219, 469, 

471, 561 
dynamic approximate fitness based hybrid 

evolutionary algorithm, 578 
dynamic fitness, 584 

age factor, 589 
approximation, 568 
change detection, 585, 593 
dual learning, 588 
elitism, 588 
hy permutât ion, 586 
immigrant schemes, 588, 590, 592 
marker individuals, 585 
memory-based approaches, 593 
opposition-based learning, 588 
population based incremental learning, 588 
predictive evolutionary algorithm, 587 
reinitialization, 586, 590, 592 
stochastic selection, 590 

dynamic optimization, 347, 417 
performance evaluation, 593 
web site, 601 

dynamic penalty method, 509 
superiority of feasible points, 509 

dynamic system model, 82 
biogeography-based optimization, 370 
proportionality vector, 82 

dynamic topology, 269 

e-based multi-objective evolutionary 
algorithm, 537, 560 

e-box, 537 
e-constraint method, 533, 566 
e-dominance, 536 
e-level comparison, 509, 516 
€ box, 551 
e dominance, 522, 559 
Eckert, John, 41 
eclectic evolutionary algorithm, 509, 515 
Edgeworth, Francis, 520 
effective complexity, 164 
effective fitness, 164 
efficient point, 519 

eigenvalue, 70 
eigenvector, 70 
Einstein, 28 
El Farol, 379 
elitism, 157, 188, 217, 219, 237, 560 

biogeography-based optimization, 360 
constrained optimization, 489, 510 
differential evolution, 302 
dynamic fitness, 588 
estimation of distribution algorithms, 316, 

319 
evolution strategy, 125 
expensive fitness, 584 
multi-objective biogeography-based 

optimization, 554 
multi-objective optimization, 532 
particle swarm optimization, 269, 283 

elitist ant system, 248, 260 
email address of author, 4 
emigration, 353 
ensemble techniques, 582 
entropy, 224, 325, 348 

diversity, 556 
error function, 123 
estimation of Bayesian networks algorithm, 340 
estimation of distribution algorithms, 313 

adaptation, 347 
continuous optimization, 341 
elitism, 316, 319 
hybridization, 347 
particle filtering, 347 

estimation of Gaussian network algorithm, 347 
estimation of multivariate normal algorithm, 

347 
ethics, 627 
Euclidean distance, 678 
Euler, Leonhard, 449 
evolution control, 577 
evolution strategy, 96, 117, 191, 217, 223, 309 

(μ+λ), 128 
(μ+1), 125 
(μ,λ), 128 
(μ,κ,λ,ρ), 131 
(1+1), 118 
biogeography-based optimization, 375 
covariance matrix adaptation, 135 
covariance matrix self-adaptive, 135 
differential evolution, 310 
elitism, 125 
Markov model, 137 
multi-membered, 128 
multi-objective optimization, 540, 551 
mutation rate, 131 
self-adaptive, 131 
steady-state, 125 
two-membered, 118 

evolutionary algorithm 
bias, 25, 680 
performance evaluation 

dynamic fitness, 593 
robustness, 601 



INDEX 733 

stochasticity, 608, 624, 629 
stud, 207, 298 
theory, 610 

evolutionary computing, 2 
evolutionary programming, 95, 118, 180 

1/5 rule, 120, 122 
adaptive, 120 
continuous, 96 
convergence, 119 
cultural, 384 
discrete, 103 
harmony search, 440 
meta EP, 97 
mutation, 114 
mutation variance, 97 
tuning parameters, 119 

exhaustive search, 449, 561 
expensive fitness functions 

multi-objective optimization, 557 
expert systems, 2 
exploration vs. exploitation, 28, 227 
exponential dynamic penalty method, 509 

superiority of feasible points, 509 
extended compact genetic algorithm, 337 
exterior point methods, 485 

death penalty approaches, 485 
non-death penalty approaches, 485 

extinction of the worst, 125 

F-test, 636 
assumptions, 640 

factorized distribution algorithm, 340 
Faraday, Michael, 610 
feasible set, 481 
feedback, 27 
finite state machine, 95, 100, 381 

elevator, 114 
firefly algorithm, 431 

particle swarm optimization, 431, 446 
fitness, 13, 45, 50 

dynamic, 309, 384, 584 
effective, 164 
expensive, 181, 193, 302, 564 

approximation, 566 
archive, 565 
elitism, 584 
truncation, 565 

models, 566 
multi-objective, 262 
noisy, 262, 594 
nonstationary, 584 
scaling, 50, 201 

fitness approximation, 566, 598 
active learning, 572 
cloud computing, 601 
cluster computing, 601 
clustering, 567, 582 
controlled generations, 578 
cross validation, 583 
decision trees, 567 

design and analysis of computer 
experiments, 569 

dynamic, 568 
dynamic approximate fitness based hybrid 

evolutionary algorithm, 578 
evolution control, 577 
Fourier series, 567 
fuzzy logic, 567 
Gaussian process models, 567 
generation-based evolution control, 578 
grid computing, 601 
hierarchical evolutionary computation, 581 
individual evolution control, 577 
informed crossover, 579 
informed initialization, 579 
informed migration, 579 
informed mutation, 579 
informed operator approach, 580 
inheritance, 568 
k-nearest neighbor algorithm, 567 
kriging algorithm, 575 
kriging models, 567 
least mean square, 603 
min-max, 569, 603 
model management, 577 
multi-objective, 568 
multiple models, 580 
nearest neighbor, 567 
neural networks, 567 
NK models, 567 
online surrogate updating, 568 
overfitting, 582 
piecewise constant, 568 
polynomial, 568 
polynomial models, 567 
quadratic, 568 
radial basis functions, 567 
recursive least squares, 568 
response surface, 568 
RMS error, 583 
rotation estimation, 583 
support vector machines, 567 
Taylor series, 567 
test points, 583 
trust regions, 579 
validation, 583 
worst-case error, 583 

fitness function 
expensive, 510 
transformation, 576 

fitness imitation, 567 
fitness inheritance, 568 

resampling, 597 . 
fitness landscape, 19 
fitness landscape, see landscape 
fitness scaling 

sigma scaling, 202 
fitness sharing, 195, 217 
flat crossover, 212 
Fogel, David, 43 
Fogel, Lawrence, 43, 95, 103 



734 INDEX 

foraging, 432 
Forsyth, Richard, 142 
four-color theorem, 474 
Fourier series, 567 
Fourier transform, 92 
Fraser, Alexander, 42 
Friedberg, Richard, 142 
Friedman, George, 43 
fully informed particle swarm, 393 
fuzzy crossover, 213 
fuzzy logic, 2, 12, 43, 445 

fitness approximation, 567 

game theory 
baseball, 380 
courtship, 380 
El Farol, 379 
investments, 381 
prisoner's dilemma, 379 
research proposals, 381 

Gaussian adaptation, 445 
Gaussian mutation, 215, 439 
Gaussian PDF, 232 
Gaussian process models, 567 
gbest topology, 269 
Gelatt, Charles, 223 
gender-based crossover, 215 
gender-based evolutionary algorithm, 561 
gender-based multi-objective optimization, 534 
gene, 39, 45 
gene pool recombination, 211, 369 
generalized other model, 393 
generation-based evolution control, 578 
generation gap, 191, 217 
generational EA, 190 
genetic algorithm, 35, 49 

binary, 44 
biogeography-based optimization, 369 
children, 46 
compact, 318 

extended, 337 
continuous, 55, 219 
differential evolution, 307 
generation, 46 
harmony search, 439 
mating, 45 
opposition-based learning, 397 
parents, 46 
real-coded, 55 
stud, 208 

genetic programming, 141 
applications, 164, 166 
automatically defined functions, 164, 174 
bloat, 156, 163 
Cartesian, 173 
crossover 

headless chicken, 155 
effective complexity, 164 
effective fitness, 164 
fitness, 149 

fluff code, 163 
function modification, 151 
graph, 173 
hitchhiker code, 163 
ineffective code, 163 
initialization, 152 

full, 152 
grow, 152, 175 
ramped half-and-half, 152 

introns, 163 
invisible code, 163 
junk code, 163 
leaves, 145 
linear, 173 
Lisp, 176 
Markov model, 173 
mathematical model, 167 
meta, 174 
minimum description length, 164 
minimum time control, 158 
multi-objective optimization, 164 
mutation, 155 

collapse, 156 
expansion, 155 
hoist, 155, 175 
node replacement, 155 
permutation, 156, 175 
point, 155 
shrink, 155 
subtree, 155 

Occam's razor, 164 
over-selection, 201 
parsimony pressure, 164 
population size, 155 
Price's theorem, 173 
program depth, 157 
program size, 157 
protected function, 175 
roulette-wheel selection, 201 
schema, 167 
selection, 155 
stochastic sampling, 497 
subfitness, 149 
Tarpeian method, 164 
terminal set, 150 
termination criterion, 149 
tournament selection, 201 
tuning parameters, 155, 177 

genetics, 39 
Genocop, 502 
Genocop II, 503 
Genocop III, 503, 516 
genotype, 45 
geographical distance, 678 
geometric distribution, 310 
global crossover, 126 
global uniform crossover, 211 
global uniform recombination, 369, 439 
global warming, 358 
glowworm swarm optimization, 445 
goal attainment, 524, 530 



INDEX 735 

goal programming, 524 
Goldberg, David, 59, 318, 361 
Gösset, William Sealy, 631 
gradient descent, 180 
grammatical evolution, 445 
graph coloring problem, 473 

applications, 474 
greedy algorithm, 475 
scheduling problem, 476 
Sudoku, 479 
traveling salesman problem, 476 
weighted, 474 

gravitational search algorithm, 438, 445 
particle swarm optimization, 438-439, 446 

gray code, 217 
great deluge algorithm, 445 
greed, 71 
greedy graph coloring algorithm, 475, 479 
greedy initialization, 452 
greedy selection, 426 
grid computing, 601 
group search optimizer, 427, 446 

particle swarm optimization, 428 
producers, 427 
rangers, 428 
scroungers, 428 

H 

habitat suitability index, 353 
Hajela-Lin genetic algorithm, 532 
Hamiltonian path problem, 478, 680 
Hamming cliff, 184 
hard computing, 2 
hard constraints, 486 
Harik, Georges, 318 
harmony search, 439, 446 

evolutionary programming, 440 
genetic algorithm, 439 

Hastings, W. Keith, 224 
heuristic algorithms, 3 
heuristic crossover, 213, 462 
hierarchical Bayesian optimization, 341 
hierarchical evolutionary computation, 581 
hill climbing, 21, 71, 118, 682 

adaptive, 22, 32 
comparative evaluation, 24 
next ascent, 22 
random mutation, 22 
random restart, 23 
simple, 22 
steepest ascent, 22, 31 
stochastic, 22 
stochastic learning by vectors of normal 

distributions, 343 
with learning, 321 

history 
evolutionary algorithms, 563, 565 
genetic algorithms, 41 
genetics, 36 

Holland, John, 43, 67 
homework, 5 

solution manual, 5 
hybrid algorithms, 482 
hybrid evolutionary algorithm, 469 
hybridization, 238, 610 
hypercube ant colony optimization, 261 
hypermutation, 586 
hypervolume, 525, 559 

normalized, 526 
reference-point, 527 

normalized, 527 

I 

ice age, 358 
ideal point, 523 
immigrant schemes, 588 
immigration, 353 
imperialist competitive algorithm, 445 
incest, 51 
incremental univariate marginal distribution 

algorithm, 321 
independent variable, 13 
individual, 28, 44 
individual evolution control, 577 
induction, 2 
infeasibility driven evolutionary algorithm, 496 
infeasible set, 481 
information 

mutual, 329 
informed crossover, 579 
informed initialization, 579 
informed migration, 579 
informed mutation, 579 
informed operator approach, 580 
initialization, 180, 217 

directed, 180 
seeding, 154, 180 

insertion initialization, 455, 479 
insertion mutation, 467, 471 
insufficient reason, 408 
integrated radiation optimization, 438 
intelligence, 26 

adaptation, 26 
collective, 265 
communication, 27 
emergent, 27 
feedback, 28 
learning, 28 
swarm, 265 

intelligent water drops, 444 
interior point methods, 483 
intermediate global crossover, 126 
intermediate sexual crossover, 126 
intersection crossover, 465 
invasive weed optimization, 444 
inver-over crossover, 460, 471 
inversion mutation, 467, 471 
Isbell, Charles, 324 
isotropic mutation, 119 
iterated density estimation algorithms, 313 



736 

job shop scheduling problem, 477 
jumping ratio, 579 

K 

Kaiman evolutionary algorithm, 598, 603 
Kirkpatrick, Scott, 223 
knapsack problem, 477 

dynamic, 672 
knight's tour, 449 
Koza, John, 143, 564 
Krige, Daniel Gerhardus, 575 
kriging algorithm, 575 
kriging models, 567 
krill herd, 445 
Kronecker delta function, 328 
Kullback-Liebler divergence, 325 

Lamarckian inheritance, 504 
landscape, 19, 21, 55, 234, 567-568, 585, 588 
Latin hypercube sampling, 574, 603 
Law of Conservation of Generalization 

Performance, 618 
Law of Conservation of Information, 618 
law of large numbers, 88, 171 
lbest topology, 269 
learning from mistakes, 285 
least mean square approximation, 603 
leaves, 145 
lexicographic ordering, 532-533, 566 
linear crossover, 213 
linear particle swarm optimization, 269 
linear ranking, 205-206, 218-219 
Lisp, 143, 176 

crossover, 146 
prefix notation, 144 
s-expression, 144 
symbolic-expression, 144 
syntax tree, 145 
tree structure, 145 

Lobo, Fernando, 318 

M 

Mühlenbein, Heinz, 316 
Mac Arthur, Robert, 352 
machine learning, 3 
Manhattan distance, 679 
map coloring problems, 474 
marginal product model, 338 
marker individuals, 585 
Markov chain, 68 

first-order, 68 
fundamental limit theorem, 70 
probability matrix, 68 
stochastic matrix, 68 
transition matrix, 68, 72 

Markov model, 73, 76 
biogeography-based optimization, 370 

evolution strategy, 137 
genetic programming, 173 
multi-objective optimization, 558 

Markov network estimation of distribution 
algorithm, 341 

Markov network factorized distribution 
algorithm, 341 

Markov, Andrey, 64 
mating restriction 

diversity, 556 
MATLAB, 4, 566 

boxplot, 626 
fmincon, 573-574 
QR, 683 
rand, 629 
randn, 683 
rng, 629 

matrix representation, 464, 479 
matrix 

crossover, 89 
symmetric, 78 

Mauchly, John, 41 
max-min ant system, 255, 264 
maximization, 13 
maximum distance, 679 
mean average performance, 594 
mean best performance, 594 
medical diagnostics, 12 
membrane computing, 445 
memetic algorithms, 557 
Mendel, Gregor, 38 
Mendel, Johann, 38 
Menger, Karl, 451 
messenger problem, 449 
meta-model, 566 
metaheuristic, 3, 370 
metastability, 86 
Metropolis algorithm, 223 
Metropolis, Nicholas, 26, 223 
min-max fitness approximation, 569, 603 
minimization, 13 
minimum spanning tree problem, 477 
minimum time control, 158, 176 

bang bang control, 159 
switching curve, 159 

minimum 
global, 15, 30 
local, 15, 30 

mixing, 126 
model management, 577 
modesty, 614, 622 
Monte Carlo simulations, 26, 73, 624, 681, 683 
multi-criteria optimization, 518 
multi-membered evolution strategy, 128 
multi-modal problems, 543 
multi-objective biogeography-based 

optimization, 551 
elitism, 554 
niched Pareto, 553 
nondominated sorting, 552 
strength Pareto, 554 



INDEX 737 

vector evaluated, 552 
multi-objective genetic algorithm, 542 
multi-objective optimization, 238, 309, 347, 

517 
e-based, 537 
e-box, 537 
e-constraint method, 533 
€ dominance, 522 
adaptation, 557 
admissible point, 519 
admissible set, 519 
aggregation, 528 
archive, 534 
biogeography-based optimization, 551 
clustering, 545 
constrained, 506, 513, 518, 531 
convergence, 544 
coverage, 519 
crowding distance, 540 
cultural algorithm, 394 
density, 546 
diversity, 523, 532, 536, 543, 556 
domination, 519 
efficient point, 519 
elitism, 532, 543-544 
evolution strategy, 540, 551 
expensive fitness functions, 557 
fitness approximation, 568 
gender-based, 534 
goal attainment, 524 
goal programming, 524 
goals, 523 
Hajela-Lin genetic algorithm, 532 
hybridization, 557 
hypervolume, 525 
ideal point, 523 
lexicographic ordering, 532 
Markov model, 558 
multi-objective genetic algorithm, 542 
niched Pareto genetic algorithm, 542 
noisy fitness functions, 557 
nondominated point, 519 
nondominated set, 519 
nondominated sorting genetic algorithm, 

539 
noninferior point, 519 
Pareto archived evolution strategy, 551 
Pareto front, 519 
Pareto optimality, 519 
Pareto set, 519 
particle swarm optimization, 556 
product aggregation, 529 
raw cost, 544, 560 
relative coverage, 528 
self-adaptive penalty function, 495 
sharing parameter, 542 
simple, 535 
strength Pareto evolutionary algorithm, ! 
strength value, 544, 560 
superiority, 519 
target vector optimization, 524 

tournament selection, 532, 538, 542 
user preference, 557 
utopia point, 523 
vector evaluated genetic algorithm, 531 
weak domination, 519 
web site, 558, 561 
weighted sum approach, 528, 561 

multi-parent crossover, 211, 369 
multi-performance optimization, 518 
multi-sexual crossover, 211 
multimembered evolution strategy, 498 
multinomial theorem, 74, 76, 78 
multiple-point crossover, 210 
multiple model approximation, 579-580 
Munroe, Eugene, 352 
mutation, 49-50, 56, 214 

biogeography-based optimization, 363 
Gaussian, 215 
isotropic, 119 
tree-based, 146 
uniform, 214-215 

mutual information, 329, 348 
mutual information maximization for input 

clustering, 324, 333 

N 

n-coloring problem, 473 
natural selection, 35, 40 

positive feedback, 358 
nature-inspired computing, 3 
nearest-neighbor initialization, 452, 472, 479 

stochastic, 453 
nearest insertion initialization, 455 
nearest two-neighbor initialization, 453, 479 
negative reinforcement 

ant colony optimization, 262 
particle swarm optimization, 286, 392 

neighborhood size 
cultural algorithm, 387 

neural networks, 2, 12, 43, 322, 445 
fitness approximation, 567 
opposition-based learning, 397 
overfitting, 582 

niche count, 195 
dissimilarity threshold, 196 
distance cutoff, 196 
niche radius, 196 
sharing function, 195 

niche set, 196 
niched-penalty approach, 498, 509 
niched Pareto biogeography-based 

optimization, 553 
niched Pareto genetic algorithm, 542 
niching, 194, 371 
NK models, 567 
no free lunch, 174, 405, 610, 614 

co-evolution, 621 
noisy fitness, 594, 603 

fitness approximation, 598 
Kaiman evolutionary algorithm, 598 
multi-objective optimization, 557 



738 INDEX 

resampling, 596 
non-death penalty approaches, 485 
nondominated point, 519 
nondominated set, 519 
nondominated sorting biogeography-based 

optimization, 552 
nondominated sorting genetic algorithm, 

539-540 
nondominated sorting genetic algorithm II, 560 
noninferior point, 519 
nonstationary fitness, 584 
normalized hypervolume, 526 
normalized reference-point hypervolume, 527, 

555 
notation, 6 

objective function, 13 
online surrogate updating, 568 
operations research, 518 
opposition-based learning, 384, 397, 681 

adaptive, 417-418 
ant colony optimization, 398 
biogeography-based optimization, 398, 404 
combinatorial optimization, 413 
cultural algorithm, 417 
degree of opposition, 400 
differential evolution, 398, 403 
dual learning, 416 
dynamic fitness, 588 
fitness-based, 411-412 
fitness-based proportional, 413, 419 
fuzzy logic, 402 
genetic algorithms, 397 
initialization, 403 
jumping rate, 403, 415 
jumping ratio, 411, 415 
modulo opposite, 398, 418 
neural networks, 397 
opposition pressure, 411 
partial opposite, 399 
particle swarm optimization, 398 
probabilities, 408 
quasi opposite, 402, 419 
quasi reflected opposite, 402 
reflected opposite, 398, 419 
reinforcement learning, 397 
search for novelty, 417 
simulated annealing, 398 
super opposite, 402 
traveling salesman problem, 413, 480 

greedy opposite, 414 
type 1 opposition, 401 
type 2 opposition, 401 

optimal allocation of trials, 29 
optimality vs. stability, 357 
optimization 

combinatorial, 20, 449 
constrained, 15, 30, 289, 481 
discrete, 449 
examples, 11 

local, 180 
multi-objective, 16, 149, 517 
multimodal, 19, 193-194 

or-opt mutation, 467 
order-based crossover, 459, 471 
order crossover, 458, 471, 480 
ordinal representation, 463, 479 
over-selection, 201, 218 
overfitting, 582 

ensemble techniques, 582 
overstatements, 614, 621 
Owens, Alvin, 43, 95 

panmictic crossover, 126 
parallelization, 565 
Pareto archived evolution strategy, 551 
Pareto front, 18, 30-31, 519, 561 

concave, 529 
convex, 530 

Pareto optimality, 519 
Pareto set, 18, 31, 519, 559, 561 
Pareto set distance, 524 
Pareto, Vilfredo, 520 
partially matched crossover, 457, 471 
particle swarm optimization, 265 

acceleration, 289-290 
adaptation, 289 
artificial fish swarm algorithm, 426 
bacterial foraging optimization, 434 
catfish, 288 
combinatorial problems, 289 
constriction, 273 
constriction coefficient, 290, 292 
deterministic, 289 
elitism, 269, 283 
firefly algorithm, 431, 446 
fully informed, 282, 291, 317 
gravitational search algorithm, 438-439, 446 
group search optimizer, 428 
hybridization, 289 
inertia, 267 
inertia weight, 271 
initialization, 289 
interacting swarms, 289 
learning from mistakes, 285 
learning rates, 268 
linear, 269 
multi-objective optimization, 556 
mutation, 289 
negative reinforcement, 286, 290 
neighborhood size, 268, 291 
neighborhoods, 269, 290 
opposition-based learning, 398 
shuffled frog leaping algorithm, 429 
stability, 275, 290 
topology, 269, 289 
tuning parameters, 268 
velocity, 269 
velocity limiting, 270 
velocity update 



INDEX 739 

global, 279 
web site, 289 

path representation, 457, 479 
peer review, 627 
penalized cost function, 486 
penalty function approaches, 482-483 

exterior point, 485 
interior point, 483 

performance evaluation 
average of the average, 618 
average of the best, 618 
best of the average, 618 
best of the best, 618 
box plot, 625 
dynamic optimization, 593, 604 
mean average performance, 594 
mean best performance, 594 
success rate, 628 

phenotype, 45 
pheromone, 242, 244 

evaporation, 242, 244 
mathematical model, 245 

PID control, 619 
Pincus, Martin, 223 
polynomial models, 567 
polyploidy, 40, 215 
population-based ant colony optimization, 261 
population-based optimization, 2 
population, 44 

diversity, 192 
initial, 51, 180, 217 

seeding, 180 
uniformity, 192 
varying size, 215 

population based incremental learning, 321, 
349 

continuous, 343 
dual learning, 417 
dynamic fitness, 588 
learning rate, 345 
tuning parameters, 323, 343 

positive feedback, 244 
biogeography, 358 
natural selection, 358 

precision, 598, 603 
predators and prey, 265 
predictive evolutionary algorithm, 587 
premature convergence, 154, 192 
prerequisites, 5 
Price's selection and covariance theorem, 92 
Price's theorem 

genetic programming, 173 
Price, Kenneth V., 293 
prime numbers, 103 
principle of insufficient reason, 408 
prisoner's dilemma, 105, 379 

always cooperate, 105 
grim strategy, 106 
iterated, 105 
punish strategy, 106 
tit-for-tat, 106 

tit-for-two-tats, 106 
variations, 108 

probabilistic incremental program evolution, 
174 

probabilistic model-building genetic 
algorithms, 313 

probability 
law of large numbers, 83 
total probability theorem, 71 

problem-specific information, 112, 141, 150, 
166, 174, 405, 469, 472, 499, 502-503, 
509, 511, 557, 609, 618-620 

pruning, 547, 549, 551 
detrimental, 550 

pseudo-Euclidean distance, 679 
pseudo-random numbers, 629 
pseudo-random proportional rule, 257 
publication, 610 

Q 
Q-learning, 260 
Quammen, David, 351 
quartic polynomial, 14 

R 

random numbers, 628 
generator, 73 

random search, 617 
convergence, 261 

randomness, 27 
rank-based ant system, 260, 264 
rank-based selection, 203, 218 

biogeography-based optimization, 375 
rank weighting, 203 
real-world problems, 16, 29, 42, 163, 166, 182, 

193, 234, 254, 263, 293, 352, 370, 380, 
406, 411, 481, 488, 498, 501, 510, 512, 
517, 524, 540, 557, 564, 601, 611, 614, 
619-620, 622-623, 642, 677, 680, 683 

recessive genes, 40 
Rechenberg, Ingo,117, 594 
reciprocal exchange mutation, 468, 471 
recombination, 209 
record-to-record travel, 445 
recursion, 152 
recursion, see recursion 
recursive least squares 

fitness approximation, 568 
reference-point hypervolume, 527, 555 
reinforcement learning, 397 
reinitialization, 237, 239 
relative coverage, 528, 559 
repair algorithms, 482 
repeatability, 630 
representation, 50 

binary code, 183 
gray code, 183 
reflected binary code, 183 
worst-case problem, 185-187 

resampling, 596, 603 
fitness inheritance, 597 



740 INDEX 

response surface, 566, 568 
restricted tournament selection, 197 
Riccati equation, 580 
ring topology, 270 
river formation dynamics, 444 
robotics, 12, 44 
robustness, 601, 619 
rotation estimation, 583 
rotation matrix, 672 
roulette-wheel selection, 199, 206, 218, 436, 471 

genetic programming, 201 

S 

Samuel, Arthur, 142 
SBX, 213 
scanning crossover, 211, 369 
scheduling problem, 476 
schema, 64 

average fitness, 65 
counterexamples, 67 
crossover, 65 
defining length, 65, 167 
fragility, 171 
instance, 65 
length, 167 
mutation, 66 
order, 65, 167 
pessimistic theory, 173 
structure, 167 
theorem, 66 

Schwefel, Hans-Paul, 117 
search domain, 406 
search for novelty, 384 

opposition-based learning, 417 
segmented crossover, 210, 218 
segregated genetic algorithm, 492 
selection, 50, 199 

fitness-proportional, 46 
fitness-proportionate, 46 
linear ranking, 205 
over-selection, 201 
rank-based, 203 
rank weighting, 203 
roulette-wheel, 46, 48, 56, 60, 76, 97, 154, 

360 
roulette wheel, 60 
sigma scaling, 202 
square-rank, 204 
stochastic universal sampling, 199 
tournament, 97, 154, 207 

selection pressure, 199, 205, 217-219 
biogeography-based optimization, 374 
cultural algorithm, 389-390, 395 
tournament selection, 207 

self-adaptive fitness formulation, 493, 515 
self-adaptive penalty function, 494, 516 

multi-objective optimization, 495 
separable problems, 296, 298, 304, 370, 395 
sequential ordering problem, 478, 680 
sharing function, 195 
shifting mutation, 468 

shortcuts, lack thereof, 608 
shortest-edge initialization, 453, 479 
shuffle crossover, 212 
shuffled complex evolution, 429 
shuffled frog leaping algorithm, 429, 446 

particle swarm optimization, 429 
sigma scaling, 202, 218 
simple crossover, 209 
simple evolutionary multi-objective optimizer, 

535 
simulated annealing, 223 

acceptance probability, 227, 239 
candidate generation, 227, 237, 240 
cooling, 227 

dimension-dependent, 234, 236 
exponential, 228, 239 
inverse, 228, 239 
inverse linear, 232, 239 
linear, 227, 239 
logarithmic, 230, 239 

energy, 225 
opposition-based learning, 398 
reinitialization, 237 
temperature, 225-226 
tuning parameters, 226 

simulated binary crossover, 213 
single-point crossover, 209, 214, 218 
Smith, Stephen, 142 
society and civilization algorithm, 444 
soft computing, 2 
soft constraints, 486 
soft tournament, 218 
solution feature, 13 
solution manual, 5 
space gravitational optimization, 438 
special operators, 482, 501 
special representations, 482, 499 

decoders, 499 
speciating island model, 371 
speciation, 51 
species-based crossover, 194, 371 
square-rank selection, 204, 375 

biogeography-based optimization, 375 
square topology, 270 
squeaky wheel optimization, 445 
stability vs. optimality, 357 
standard crowding, 197 
static topology, 269 
stationary points, 14 
statistical mechanics, 225 

biogeography-based optimization, 370 
statistical significance, 610 

F-test, 636 
t-test, 631 
Wilcoxon test, 640 

statistics 
chi-square, 336 
first-order, 315, 321, 333 
second-order, 315, 324, 333, 335 

steady-state evolution strategy, 125 
steady-state evolutionary algorithm, 190, 217 



generation gap, 191 
stochastic diffusion search, 444 
stochastic gradient ascent, 261 
stochastic hill climbing with learning by 

vectors of normal distributions, 343 
stochastic initialization, 456 
stochastic ranking, 497, 509 
stochastic sampling, 497, 566 
stochastic universal sampling, 199, 218 
stochasticity, 608 
Storn, Rainer, 293 
strength Pareto biogeography-based 

optimization, 554 
strength Pareto evolutionary algorithm, 544 

560 
stud evolutionary algorithm, 207, 279, 375 

biogeography-based optimization, 375 
genetic algorithm, 208 

sub-population, 215 
success rate, 628 
Sudoku, 479 
suitability index variable, 353 
superiority of feasible points, 515 
superorganism, 241 
support vector machines, 567, 578 
surrogate model, 566 
survival of the fittest, 37, 40 
survival of the mediocre, 154 
swarm intelligence, 3, 265 

T 

t-test, 631 
assumptions, 633 
misinterpretations, 635 

tabu search, 422 
target vector optimization, 524 
Taylor series, 567 
teaching-learning-based optimization, 441, 

differential evolution, 441 
termination criterion, 49, 181 
theory, 610 
theory vs. practice, 161, 163 
three-dimensional Euclidean distance, 679 
threshold accepting, 445 
topology, 269 

all, 269 
cluster, 270 
dynamic, 269 
gbest, 269 
lbest, 269 
ring, 270 
square, 270 
static, 269 
von Neumann, 270 
wheel, 270 

total probability theorem, 409 
tournament selection, 207, 375, 498 

biogeography-based optimization, 375 
genetic programming, 201 
multi-objective optimization, 532 
restricted, 197 

INDEX 741 

selection pressure, 207 
soft, 207 
strict, 207 
tournament size, 207 

traveling salesman problem, 20, 31, 223, 246, 
451 

applications, 451 
asymmetric, 247, 451, 680 
Berlin52, 249 
close-enough, 478 
closed-path, 413 
constrained optimization, 516 
cost function, 451 
crossover, 457 

alternating edges, 461 
classic, 461 
cycle, 458 
heuristic, 462 
intersection, 465 
inver-over, 460 
order-based, 459 
order, 458 
partially matched, 457 
union, 466 

cultural algorithm, 389 
distance matrix, 452 
Dubins, 478 
dynamic, 672 
edge, 451 
graph coloring problem, 476 
initialization, 452 

greedy, 452 
insertion, 455 
nearest-neighbor, 452 
nearest two-neighbor, 453 
shortest-edge, 453 
stochastic, 456 

leg, 413, 451 
mutation, 467 

2-exchange, 468 
2-opt, 467 
displacement, 467 
insertion, 467 
inversion, 467 
or-opt, 467 
reciprocal exchange, 468 
shifting, 468 

open-path, 413 
opposition-based learning, 413 
path representation, 457 
proximity, 413 
relative proximity, 414 
representation, 457 

adjacency, 460 
matrix, 464 
ordinal, 463 

segment, 451 
selection, 468 
symmetric, 451 
total proximity, 414 
Ulyssesl6, 415, 678 



742 INDEX 

valid tour, 451 
web site, 470, 678, 680 

trust regions, 579 
TSPLIB, 470, 678, 680 
tuning parameters, 49, 59, 155, 177, 226, 248, 

610 
cultural algorithm, 383 
differential evolution, 296 
particle swarm optimization, 268 
population based incremental learning, 323, 

343 
Turing, Alan, 41, 142 
Twain, Mark, 621 
two-membered evolution strategy, 118 
two-point crossover, 210, 218 
Tylor, Edward, 378 

U 

Ulam, Stanislaw, 26 
Ulysses, 678 
uniform crossover, 210, 218, 369 
uniform mutation, 214-215, 439 
uniform population, 199 
union crossover, 466 
univariate marginal distribution algorithm, 

316, 333, 348-349 
continuous, 342 

user preference 
multi-objective optimization, 557 

Utopia point, 523 

V 

validation, 610 
Vecchi, Mario, 223 
vector evaluated biogeography-based 

optimization, 552, 560 
vector evaluated genetic algorithm, 531 
vector optimization, 518 
Verbeek, Rogier, 358 
Viola, Paul, 324 
von Neumann topology, 270 
von Neumann, John, 26, 41 
von Tschermak, Erich, 39 

W 

Wallace, Alfred, 37, 352 
Walsh transform, 92 
Walsh, Michael (Jack), 43, 95 
weak domination, 519 
web site 

biogeography-based optimization, 352, 370 
book, 4 
dynamic optimization, 601 
multi-objective optimization, 558 
particle swarm optimization, 289 
traveling salesman problem, 470, 678, 680 

weighted graph coloring problem, 474 
wheel topology, 270 
Whitley, Darrell, 622 
Wilcoxon test, 640 
Wilson, Edward, 352 
writing, 610 

X 

x-ray crystallography, 679 


	Cover
	Title Page
	Copyright Page
	SHORT TABLE OF CONTENTS
	DETAILED TABLE OF CONTENTS
	Acknowledgments
	Acronyms
	List of Algorithms
	PART I INTRODUCTION TO EVOLUTIONARY OPTIMIZATION
	1 Introduction
	1.1 Terminology
	1.2 Why Another Book on Evolutionary Algorithms?
	1.3 Prerequisites
	1.4 Homework Problems
	1.5 Notation
	1.6 Outline of the Book
	1.7 A Course Based on This Book

	2 Optimization
	2.1 Unconstrained Optimization
	2.2 Constrained Optimization
	2.3 Multi-Objective Optimization
	2.4 Multimodal Optimization
	2.5 Combinatorial Optimization
	2.6 Hill Climbing
	2.6.1 Biased Optimization Algorithms
	2.6.2 The Importance of Monte Carlo Simulations

	2.7 Intelligence
	2.7.1 Adaptation
	2.7.2 Randomness
	2.7.3 Communication
	2.7.4 Feedback
	2.7.5 Exploration and Exploitation

	2.8 Conclusion
	Problems


	PART II CLASSIC EVOLUTIONARY ALGORITHMS
	3 Genetic Algorithms
	3.1 The History of Genetics
	3.1.1 Charles Darwin
	3.1.2 Gregor Mendel

	3.2 The Science of Genetics
	3.3 The History of Genetic Algorithms
	3.4 A Simple Binary Genetic Algorithm
	3.4.1 A Genetic Algorithm for Robot Design
	3.4.2 Selection and Crossover
	3.4.3 Mutation
	3.4.4 GA Summary
	3.4.5 GA Tuning Parameters and Examples

	3.5 A Simple Continuous Genetic Algorithm
	3.6 Conclusion
	Problems

	4 Mathematical Models of Genetic Algorithms
	4.1 Schema Theory
	4.2 Markov Chains
	4.3 Markov Model Notation for Evolutionary Algorithms
	4.4 Markov Models of Genetic Algorithms
	4.4.1 Selection
	4.4.2 Mutation
	4.4.3 Crossover

	4.5 Dynamic System Models of Genetic Algorithms
	4.5.1 Selection
	4.5.2 Mutation
	4.5.3 Crossover

	4.6 Conclusion
	Problems

	5 Evolutionary Programming
	5.1 Continuous Evolutionary Programming
	5.2 Finite State Machine Optimization
	5.3 Discrete Evolutionary Programming
	5.4 The Prisoner's Dilemma
	5.5 The Artificial Ant Problem
	5.6 Conclusion
	Problems

	6 Evolution Strategies
	6.1 The (1+1) Evolution Strategy
	6.2 The 1/5 Rule: A Derivation
	6.3 The (μ+l) Evolution Strategy
	6.4 (μ + λ) and (μ, λ) Evolution Strategies
	6.5 Self-Adaptive Evolution Strategies
	6.6 Conclusion
	Problems

	7 Genetic Programming
	7.1 Lisp: The Language of Genetic Programming
	7.2 The Fundamentals of Genetic Programming
	7.2.1 Fitness Measure
	7.2.2 Termination Criteria
	7.2.3 Terminal Set
	7.2.4 Function Set
	7.2.5 Initialization
	7.2.6 Genetic Programming Parameters

	7.3 Genetic Programming for Minimum Time Control
	7.4 Genetic Programming Bloat
	7.5 Evolving Entities other than Computer Programs
	7.6 Mathematical Analysis of Genetic Programming
	7.6.1 Definitions and Notation
	7.6.2 Selection and Crossover
	7.6.3 Mutation and Final Results

	7.7 Conclusion
	Problems

	8 Evolutionary Algorithm Variations
	8.1 Initialization
	8.2 Convergence Criteria
	8.3 Problem Representation Using Gray Coding
	8.4 Elitism
	8.5 Steady-State and Generational Algorithms
	8.6 Population Diversity
	8.6.1 Duplicate Individuals
	8.6.2 Niche-Based and Species-Based Recombination
	8.6.3 Niching

	8.7 Selection Options
	8.7.1 Stochastic Universal Sampling
	8.7.2 Over-Selection
	8.7.3 Sigma Scaling
	8.7.4 Rank-Based Selection
	8.7.5 Linear Ranking
	8.7.6 Tournament Selection
	8.7.7 Stud Evolutionary Algorithms

	8.8 Recombination
	8.8.1 Single-Point Crossover (Binary or Continuous EAs)
	8.8.2 Multiple-Point Crossover (Binary or Continuous EAs)
	8.8.3 Segmented Crossover (Binary or Continuous EAs)
	8.8.4 Uniform Crossover (Binary or Continuous EAs)
	8.8.5 Multi-Parent Crossover (Binary or Continuous EAs)
	8.8.6 Global Uniform Crossover (Binary or Continuous EAs)
	8.8.7 Shuffle Crossover (Binary or Continuous EAs)
	8.8.8 Flat Crossover and Arithmetic Crossover (Continuous EAs)
	8.8.9 Blended Crossover (Continuous EAs)
	8.8.10 Linear Crossover (Continuous EAs)
	8.8.11 Simulated Binary Crossover (Continuous EAs)
	8.8.12 Summary

	8.9 Mutation
	8.9.1 Uniform Mutation Centered at xi(k)
	8.9.2 Uniform Mutation Centered at the Middle of the Search Domain
	8.9.3 Gaussian Mutation Centered at xi(k)
	8.9.4 Gaussian Mutation Centered at the Middle of the Search Domain

	8.10 Conclusion
	Problems


	PART III MORE RECENT EVOLUTIONARY ALGORITHMS
	9 Simulated Annealing
	9.1 Annealing in Nature
	9.2 A Simple Simulated Annealing Algorithm
	9.3 Cooling Schedules
	9.3.1 Linear Cooling
	9.3.2 Exponential Cooling
	9.3.3 Inverse Cooling
	9.3.4 Logarithmic Cooling
	9.3.5 Inverse Linear Cooling
	9.3.6 Dimension-Dependent Cooling

	9.4 Implementation Issues
	9.4.1 Candidate Solution Generation
	9.4.2 Reinitialization
	9.4.3 Keeping Track of the Best Candidate Solution

	9.5 Conclusion
	Problems

	10 Ant Colony Optimization
	10.1 Pheromone Models
	10.2 Ant System
	10.3 Continuous Optimization
	10.4 Other Ant Systems
	10.4.1 Max-Min Ant System
	10.4.2 Ant Colony System
	10.4.3 Even More Ant Systems

	10.5 Theoretical Results
	10.6 Conclusion
	Problems

	11 Particle Swarm Optimization
	11.1 A Basic Particle Swarm Optimization Algorithm
	11.2 Velocity Limiting
	11.3 Inertia Weighting and Constriction Coefficients
	11.3.1 Inertia Weighting
	11.3.2 The Constriction Coefficient
	11.3.3 PSO Stability

	11.4 Global Velocity Updates
	11.5 The Fully Informed Particle Swarm
	11.6 Learning from Mistakes
	11.7 Conclusion
	Problems

	12 Differential Evolution
	12.1 A Basic Differential Evolution Algorithm
	12.2 Differential Evolution Variations
	12.2.1 Trial Vectors
	12.2.2 Mutant Vectors
	12.2.3 Scale Factor Adjustment

	12.3 Discrete Optimization
	12.3.1 Mixed-Integer Differential Evolution
	12.3.2 Discrete Differential Evolution

	12.4 Differential Evolution and Genetic Algorithms
	12.5 Conclusion
	Problems

	13 Estimation of Distribution Algorithms
	13.1 Estimation of Distribution Algorithms: Basic Concepts
	13.1.1 A Simple Estimation of Distribution Algorithm
	13.1.2 Computations of Statistics

	13.2 First-Order Estimation of Distribution Algorithms
	13.2.1 The Univariate Marginal Distribution Algorithm (UMDA)
	13.2.2 The Compact Genetic Algorithm (cGA)
	13.2.3 Population Based Incremental Learning (PBIL)

	13.3 Second-Order Estimation of Distribution Algorithms
	13.3.1 Mutual Information Maximization for Input Clustering (MIMIC)
	13.3.2 Combining Optimizers with Mutual Information Trees (COMIT)
	13.3.3 The Bivariate Marginal Distribution Algorithm (BMDA)

	13.4 Multivariate Estimation of Distribution Algorithms
	13.4.1 The Extended Compact Genetic Algorithm (ECGA)
	13.4.2 Other Multivariate Estimation of Distribution Algorithms

	13.5 Continuous Estimation of Distribution Algorithms
	13.5.1 The Continuous Univariate Marginal Distribution Algorithm
	13.5.2 Continuous Population Based Incremental Learning

	13.6 Conclusion
	Problems

	14 Biogeography-Based Optimization
	14.1 Biogeography
	14.2 Biogeography is an Optimization Process
	14.3 Biogeography-Based Optimization
	14.4 BBO Extensions
	14.4.1 Migration Curves
	14.4.2 Blended Migration
	14.4.3 Other Approaches to BBO
	14.4.4 BBO and Genetic Algorithms

	14.5 Conclusion
	Problems

	15 Cultural Algorithms
	15.1 Cooperation and Competition
	15.2 Belief Spaces in Cultural Algorithms
	15.3 Cultural Evolutionary Programming
	15.4 The Adaptive Culture Model
	15.5 Conclusion
	Problems

	16 Opposition-Based Learning
	16.1 Opposition Definitions and Concepts
	16.1.1 Reflected Opposites and Modulo Opposites
	16.1.2 Partial Opposites
	16.1.3 Type 1 Opposites and Type 2 Opposites
	16.1.4 Quasi Opposites and Super Opposites

	16.2 Opposition-Based Evolutionary Algorithms
	16.3 Opposition Probabilities
	16.4 Jumping Ratio
	16.5 Oppositional Combinatorial Optimization
	16.6 Dual Learning
	16.7 Conclusion
	Problems

	17 Other Evolutionary Algorithms
	17.1 Tabu Search
	17.2 Artificial Fish Swarm Algorithm
	17.2.1 Random Behavior
	17.2.2 Chasing Behavior
	17.2.3 Swarming Behavior
	17.2.4 Searching Behavior
	17.2.5 Leaping Behavior
	17.2.6 A Summary of the Artificial Fish Swarm Algorithm

	17.3 Group Search Optimizer
	17.4 Shuffled Frog Leaping Algorithm
	17.5 The Firefly Algorithm
	17.6 Bacterial Foraging Optimization
	17.7 Artificial Bee Colony Algorithm
	17.8 Gravitational Search Algorithm
	17.9 Harmony Search
	17.10 Teaching-Learning-Based Optimization
	17.11 Conclusion
	Problems


	PART IV SPECIAL TYPES OF OPTIMIZATION PROBLEMS
	18 Combinatorial Optimization
	18.1 The Traveling Salesman Problem
	18.2 TSP Initialization
	18.2.1 Nearest-Neighbor Initialization
	18.2.2 Shortest-Edge Initialization
	18.2.3 Insertion Initialization
	18.2.4 Stochastic Initialization

	18.3 TSP Representations and Crossover
	18.3.1 Path Representation
	18.3.2 Adjacency Representation
	18.3.3 Ordinal Representation
	18.3.4 Matrix Representation

	18.4 TSP Mutation
	18.4.1 Inversion
	18.4.2 Insertion
	18.4.3 Displacement
	18.4.4 Reciprocal Exchange

	18.5 An Evolutionary Algorithm for the Traveling Salesman Problem
	18.6 The Graph Coloring Problem
	18.7 Conclusion
	Problems

	19 Constrained Optimization
	19.1 Penalty Function Approaches
	19.1.1 Interior Point Methods
	19.1.2 Exterior Methods

	19.2 Popular Constraint-Handling Methods
	19.2.1 Static Penalty Methods
	19.2.2 Superiority of Feasible Points
	19.2.3 The Eclectic Evolutionary Algorithm
	19.2.4 Co-evolutionary Penalties
	19.2.5 Dynamic Penalty Methods
	19.2.6 Adaptive Penalty Methods
	19.2.7 Segregated Genetic Algorithm
	19.2.8 Self-Adaptive Fitness Formulation
	19.2.9 Self-Adaptive Penalty Function
	19.2.10 Adaptive Segregational Constraint Handling
	19.2.11 Behavioral Memory
	19.2.12 Stochastic Ranking
	19.2.13 The Niched-Penalty Approach

	19.3 Special Representations and Special Operators
	19.3.1 Special Representations
	19.3.2 Special Operators
	19.3.3 Genocop
	19.3.4 Genocop II
	19.3.5 Genocop III

	19.4 Other Approaches to Constrained Optimization
	19.4.1 Cultural Algorithms
	19.4.2 Multi-Objective Optimization

	19.5 Ranking Candidate Solutions
	19.5.1 Maximum Constraint Violation Ranking
	19.5.2 Constraint Order Ranking
	19.5.3 ε-Level Comparisons

	19.6 A Comparison Between Constraint-Handling Methods
	19.7 Conclusion
	Problems

	20 Multi-Objective Optimization
	20.1 Pareto Optimality
	20.2 The Goals of Multi-Objective Optimization
	20.2.1 Hypervolume
	20.2.2 Relative Coverage

	20.3 Non-Pareto-Based Evolutionary Algorithms
	20.3.1 Aggregation Methods
	20.3.2 The Vector Evaluated Genetic Algorithm (VEGA)
	20.3.3 Lexicographic Ordering
	20.3.4 The ε-Constraint Method
	20.3.5 Gender-Based Approaches

	20.4 Pareto-Based Evolutionary Algorithms
	20.4.1 Evolutionary Multi-Objective Optimizers
	20.4.2 The ε-Based Multi-Objective Evolutionary Algorithm (e-MOEA)
	20.4.3 The Nondominated Sorting Genetic Algorithm (NSGA)
	20.4.4 The Multi-Objective Genetic Algorithm (MOGA)
	20.4.5 The Niched Pareto Genetic Algorithm (NPGA)
	20.4.6 The Strength Pareto Evolutionary Algorithm (SPEA)
	20.4.7 The Pareto Archived Evolution Strategy (PAES)

	20.5 Multi-Objective Biogeography-Based Optimization
	20.5.1 Vector Evaluated BBO
	20.5.2 Nondominated Sorting BBO
	20.5.3 Niched Pareto BBO
	20.5.4 Strength Pareto BBO
	20.5.5 Multi-Objective BBO Simulations

	20.6 Conclusion
	Problems

	21 Expensive, Noisy, and Dynamic Fitness Functions
	21.1 Expensive Fitness Functions
	21.1.1 Fitness Function Approximation
	21.1.2 Approximating Transformed Functions
	21.1.3 How to Use Fitness Approximations in Evolutionary Algorithms
	21.1.4 Multiple Models
	21.1.5 Overfitting
	21.1.6 Evaluating Approximation Methods

	21.2 Dynamic Fitness Functions
	21.2.1 The Predictive Evolutionary Algorithm
	21.2.2 Immigrant Schemes
	21.2.3 Memory-Based Approaches
	21.2.4 Evaluating Dynamic Optimization Performance

	21.3 Noisy Fitness Functions
	21.3.1 Resampling
	21.3.2 Fitness Estimation
	21.3.3 The Kaiman Evolutionary Algorithm

	21.4 Conclusion
	Problems


	PART V APPENDICES
	Appendix A: Some Practical Advice
	A.1 Check for Bugs
	A.2 Evolutionary Algorithms are Stochastic
	A.3 Small Changes can have Big Effects
	A.4 Big changes can have Small Effects
	A.5 Populations Have Lots of Information
	A.6 Encourage Diversity
	A.7 Use Problem-Specific Information
	A.8 Save your Results Often
	A.9 Understand Statistical Significance
	A.10 Write Well
	A.11 Emphasize Theory
	A.12 Emphasize Practice

	Appendix B: The No Free Lunch Theorem and Performance Testing
	B.1 The No Free Lunch Theorem
	B.2 Performance Testing
	B.2.1 Overstatements Based on Simulation Results
	B.2.2 How to Report (and How Not to Report) Simulation Results
	B.2.3 Random Numbers
	B.2.4 T-Tests
	B.2.5 F-Tests

	B.3 Conclusion

	Appendix C: Benchmark Optimization Functions
	C.1 Unconstrained Benchmarks
	C.1.1 The Sphere Function
	C.1.2 The Ackley Function
	C.1.3 The Ackley Test Function
	C.1.4 The Rosenbrock Function
	C.1.5 The Fletcher Function
	C.1.6 The Griewank Function
	C.1.7 The Penalty #1 Function
	C.1.8 The Penalty #2 Function
	C.1.9 The Quartic Function
	C.1.10 The Tenth Power Function
	C.1.11 The Rastrigin Function
	C.1.12 The Schwefel Double Sum Function
	C.1.13 The Schwefel Max Function
	C.1.14 The Schwefel Absolute Function
	C.1.15 The Schwefel Sine Function
	C.1.16 The Step Function
	C.1.17 The Absolute Function
	C.1.18 Shekel's Foxhole Function
	C.1.19 The Michalewicz Function
	C.1.20 The Sine Envelope Function
	C.1.21 The Eggholder Function
	C.1.22 The Weierstrass Function

	C.2 Constrained Benchmarks
	C.2.1 The C01 Function
	C.2.2 The C02 Function
	C.2.3 The C03 Function
	C.2.4 The C04 Function
	C.2.5 The C05 Function
	C.2.6 The C06 Function
	C.2.7 The C07 Function
	C.2.8 The C08 Function
	C.2.9 The C09 Function
	C.2.10 The C10 Function
	C.2.11 The Cll Function
	C.2.12 The C12 Function
	C.2.13 The C13 Function
	C.2.14 The C14 Function
	C.2.15 The C15 Function
	C.2.16 The C16 Function
	C.2.17 The C17 Function
	C.2.18 The C18 Function
	C.2.19 Summary of Constrained Benchmarks

	C.3 Multi-Objective Benchmarks
	C.3.1 Unconstrained Multi-Objective Optimization Problem 1
	C.3.2 Unconstrained Multi-Objective Optimization Problem 2
	C.3.3 Unconstrained Multi-Objective Optimization Problem 3
	C.3.4 Unconstrained Multi-Objective Optimization Problem 4
	C.3.5 Unconstrained Multi-Objective Optimization Problem 5
	C.3.6 Unconstrained Multi-Objective Optimization Problem 6
	C.3.7 Unconstrained Multi-Objective Optimization Problem 7
	C.3.8 Unconstrained Multi-Objective Optimization Problem 8
	C.3.9 Unconstrained Multi-Objective Optimization Problem 9
	C.3.10 Unconstrained Multi-Objective Optimization Problem 10

	C.4 Dynamic Benchmarks
	C.4.1 The Complete Dynamic Benchmark Description
	C.4.2 A Simplified Dynamic Benchmark Description

	C.5 Noisy Benchmarks
	C.6 Traveling Salesman Problems
	C.7 Unbiasing the Search Space
	C.7.1 Offsets
	C.7.2 Rotation Matrices



	References
	Topic Index




