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Preface 

The original Handbook of Evolutionary Computation (Back et a1 1997) was 
designed to fulfil1 the need for a broad-based reference book reflecting the 
important role that evolutionary computation plays in a variety of disciplines- 
ranging from the natural sciences and engineering to evolutionary biology and 
computer sciences. The basic idea of evolutionary computation, which came 
onto the scene in the 195Os, has been to make use of the powerful process of 
natural evolution as a problem-solving paradigm, either by simulating it (‘by 
hand’ or automatically) in a laboratory, or by simulating i t  on a computer. As 
the history of evolutionary computation is the topic of one of the introductory 
sections of the Handbook, we will not go into the details here but simply mention 
that genetic algorithms, evolution strategies, and evolutionary programming are 
the three independently developed mainstream representatives of evolutionary 
computation techniques, and genetic programming and classifier systems are the 
most prominent derivative methods. 

In the 1960s, visionary researchers developed these mainstream methods of 
evolutionary computation, namely J H Holland ( 1  962) at Ann Arbor, Michigan, 
H J Bremermann (1962) at Berkeley, California, and A S Fraser (1957) at 
Canberra, Australia, for genetic algorithms, L J Fogel (1962) at San Diego, 
California, for evolutionary programming, and I Rechenberg ( 1965) and H 
P Schwefel (1965) at Berlin, Germany, for evolution strategies. The first 
generation of books on the topic of evolutionary compuation, written by 
several of the pioneers themselves, still gives an impressive demonstration of 
the capabilities of evolutionary algorithms, especially if one takes account of 
the limited hardware capacity available at that time (see Fogel et a1 (1966), 
Rechenberg ( I  973), Holland ( 1975), and Schwefel ( 1977)). 

Similar in some ways to other early efforts towards imitating nature’s 
powerful problem-solving tools, such as artificial neural networks and fuzzy 
systems, evolutionary algorithms also had to go through a long period of 
ignorance and rejection before receiving recognition. The great success that 
these methods have had, in extremely complex optimization problems from 
various disciplines, has facilitated the undeniable breakthrough of evolutionary 
computation as an accepted problem-solving methodology. This breakthrough 
is reflected by an exponentially growing number of publications in the field, 
and an increasing interest in corresponding conferences and journals. With 
these activities, the field now has its own archivable high-quality publications in 
which the actual research results are published. The publication of a considerable 
amount of application-specific work is, however, widely scattered over different 

... 
X l l l  
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xiv Preface 

disciplines and their specific conferences and journals, thus reflecting the general 
applicability and success of evolutionary computation methods. 

The progress in the theory of evolutionary computation methods since 
1990 impressively confirms the strengths of these algorithms as well as their 
limitations. Research in this field has reached maturity, concerning theoretical 
and application aspects, so i t  becomes important to provide a complete reference 
for practitioners, theorists, and teachers in ii variety of disciplines. The 
original Hcrridbook of E\vliitioriary Computation was designed to provide such 
a reference work. I t  included complete, clear, and accessible information. 
thoroughly describing state-of-the-art evolutionary computation research and 
application in a comprehensive style. 

These new volumes, based in the original Handbook, but updated, are 
designed to provide the material in units suitable for coursework as well as 
for individual researchers. The first volume. E\diitionur.~ Computation I :  
Basic Afgoritlzms arid Operators, provides the basic information on evolutionary 
algorithms. In addition to covering all paradigms of evolutionary computation in 
detail and giving an overview of the rationale of evolutionary computation and 
of its biological background, this volume also offers an in-depth presentation 
of basic elements of evolutionary computation models according to the types 
of representations used for typical problem classes (e.g. binary, real-valued, 
permutations, finite-state machines, parse trees). Choosing this classification 
based on representation, the search operators mutation and recombination 
(and others) are straightforwardly grouped according to the semantics of the 
data they manipulate. The second volume, Eivlutionary Compiitatiori 2: 
Acf\mc.ed Algorithms arid Operutors, provides information on additional topics 
of major importance for the design of an evolutionary algorithm, such as 
the fitness evaluation, constraint-handling issues, and population structures 
(including all aspects of the parallelization of evolutionary algorithms). This 
volume also covers some advanced techniques (e.g. parameter control, meta- 
evolutionary approaches, coevolutionary algorithms, etc) and discusses the 
efficient implementation of evolutionary algorithms. 

Organizational support provided by Institute of Physics Publishing makes it 
possible to prepare this second version of the Huricfbook. In particular, we would 
like to express our gratitude to our project editor, Robin Rees, who worked with 
us on editorial and organizational issues. 

Thomas Back, David B Fogel and Zbigniew Michalewicz 
August I999 

References 

Back T, Fogel D B and Michalewicr Z I997 Huti(lhook E\dutiotiury Cotnpiitutioti 
(Bristol: Institute of Physics Publishing and New York: Oxford University Press) TEAM LRN



References xv 

Bezdek J C 1994 What is computational intelligence ? Cornpurationul Intelligence: 
Imitating Life ed J M Zurada, R J Marks I1 and C J Robinson (New York: IEEE 
Press) pp 1-12 

Bremermann H J 1962 Optimization through evolution and recombination Self 
Organizing Systems ed M C Yovits, G T Jacobi and G D Goldstine (Washington, 
DC: Spartan Book) pp 93-106 

Fogel L J 1962 Autonomous automata Industrial Research 4 14-9 
Fogel L J, Owens A J and Walsh M J 1966 Artijicial Intelligence through Simulated 

Fraser A S 1957 Simulation of genetic systems by automatic digital computers: I .  

Holland J H 1962 Outline for a logical theory of adaptive systems J .  ACM 3 297-314 
-1975 Adaptation in Natural and Artijicial Systems (Ann Arbor, MI: University of 

Michigan Press) 
Rechenberg I 1965 Cybernetic solution path of an experimental problem Royal Aircrufr 

Establishment Library Translation No 1122 (Farnborough, UK) 
Rechenberg I 1973 Evolutionsstrategie: Optimierung technischer Systenie nach 

Prinzipien der hiologischen Evolution (Stuttgart: Frommann-Holzboog) 
Schwefel H-P 1965 Kybernetische Evolution als Strategie der experimentellen 

Forschung in der Stromungstechnik Diplomarbeit Hermann Fottinger Institut fur 
Stromungstechnik, Technische Universitat, Berlin 

- I977 Numerische Optimierung von Computer-Modellen mittels der Ei~olution.\strcite- 
gie Interdisciplinary Systems Research vol 26 (Basel: Birkhauser) 

Evolution (New York: Wiley) 

Introduction Austral. J.  Biol. Sci. 10 pp 484-91 

TEAM LRN



This page intentionally left blank 

TEAM LRN



List of Contributors 

Peter J Angeline (Chapters 19-21, 32, 33) 
Senior Scientist, Natural Selection, Inc., Vestal, NY,  USA 
e-mai 1 : angeli ne @ nat ural-selec tion.com 

Thomas Back (Chapters 7, 15, 32, Glossary) 
Associate Professor of Computer Science, Leiden University The Netherlands; and 

Manugirrg Director and Senior Research Fellow: Center for Applied Systems 
An a ly .s is, lrzfo rma ti k Cen trum Dortmund, Ge rmarry 

e-mail: baeck@Isl I .informatik.uni-dortmund.de 

Wolfgang Banzhaf (Chapter 30) 
Prc$e.ssor c$ Computer Science, University of Dortmund, Germany 
e-mail: banzhaf@ Is 1 I .infonnatik.uni-dortmund.de 

David Beasley (Chapter 2) 
Sofhure Engineer, Praxis PLC, Deloitte and Touche Consulting Group, Bath, United 

e-mail: dabley @ praxis.co.uk 
Kingdom 

Tobias Blickle (Chapter 24) 
Electrical Engineer, Institute TIK, ETH Zurich, Swit:erlund 
e-mail: blickle@tik.ee.ethz.ch 

Lashon B Booker (Chapter 33) 
Principal Scientist, Artijicial Intelligence Technical Center, The MITRE Corporation, 

e-mail: booker@mitre.org 
McLean, VA, USA 

Kalyanmoy Deb (Chapters 14, 22) 
Associate Professor of Mechanical Engineering, Indian Institute of Technology, 

e-mail: deb@iitk.ernet.in 
Kanpur, India 

Kenneth De Jong (Chapters 6, 28) 

A 

Professor of Computer Science, George Mason University, Fui$m-, VA, USA 
e-mail: kdejong @ grnu.edu 

E Eiben (Chapter 33) 
Leiden Institute ($Advanced Computer Science, Leiden Uniiiersity, The Netherlands; 

e-mail: gusz@cs.leidenuniv.nl and gusz@cs.vu.nl 
and Faculty of Sciences, Vrije Universireit Amsterdam, The Netherlands 

xvii TEAM LRN



xviii List of Contributors 

Larry J Eshelman (Chapter 8) 
Priricipul Meniber cf Reseurch St& Philips Reseurch, Briarc-lcfl Munor, NY, USA 
e-mail: Ije@philabs.philips.com 

David B Fogel (Chapters 1 .  4, 6, 16, 18, 20, 21, 27, 32-34, Glossary) 
E.rec-uti\v Vice President cind Chief Scientist, Nuturd Selec*tion Inc.., Lu Jollu, CA, 

e-mail: dfogel@natural-selection.com 
USA 

John Grefenstette (Chapters 23, 25) 
Heclcl oj' the Muchine Lecirning Section, Ncc vy Center fo r  Applied Reseurch in 

A rt iJic*iul In tell ig ence , Nu r ~ i  1 Reseu rch La bo ra to n, Wus h ing ton, DC, USA 
e-mail: gref@ aic.nrl .navy.mil 

Peter J B Hancock (Chapter 29) 
Lec*turer in Psyc.hology, University of Stirling, United Kingdom 
e-mail: pjh@psych.stir.ac.uk 

Kenneth E Kinnear Jr (Chapter 1 1 )  
Chief' Technicul Oficer, Ackripti,!e Coniputing Technology, Boxhoro, MA, USA 
e-mail: kinnear@adapt.com 

Samir W Mahfoud (Chapter 26) 
Vice President oj' Reseurch und Soft\vure Engineering, Adrunced In\~estment 

e-mail: sam@ait-tech.com 
Technology, Clenntwter, FL, USA 

Zbigniew Michalewicz (Chapters 13, 3 1 )  
Prcfessor cf Coniputer Science, Uniiv?r.sity cf North Curolina, Charlotte, USA: and 

lnstitiite ( f  Computer Science, Polish Amderny oj' Sciences, Wursuw?, Polund 
e-mail: Lbyszek@uncc.edu 

Raymond C Paton (Chapter 5 )  
Lwturer in Coniputer Science, Unir*ersih* cf Liverpool, United Kingdom 
e - mai 1 : r .c . pa ton @ c sc .I i v . ac . u k 

V William Port0 (Chapter 10) 
Senior Stuf Scientist, Nutiirul Selection Inc., ki Jollcc, CA, USA 
e-mail: bporto@natural-selection.com 

Gunter Rudolph (Chapter 9) 
Senior Res eu rch Fello N', Cen ter for  Applied Sys terns Anu Iys is, li$o rniu tik Cen truni 

Dortmund, Germuny 
e-mail: rudolph@ icd.de 

Jayshree Sarma (Chapter 28) 
Computer Science Rextrrcher, Ceorge Mason Uni\)ersity, Fuirjbx, VA, USA 
e-mail: jsarma@gmu.edu 

TEAM LRN



List of Contributors xix 

Martin Schutz (Chapter 34) 
Computer Scirritist, Sjxtems Anctlysis Research Group, Utiil'c)rs ity of Dortntwicl. 

e-mail: schuetz@Is 1 I .informatik.uni-dortmund.de 
Ge rmiriy 

Hans-Paul Schwefel (Chapters 3, 6) 
Chair of Sys term Arici l j~s  is, ctrid Professor of Conipiitrr Science, Utiiiytjrs it\. of 

Dorttmtrici, Gernicrnj'; cirid Director, Ceriter .for Applied Sjxtotm Aiiulj?$is, 
Infonncitik Ceritriirn Dorrniund, Gerniutij? 

e-mail: schwefel @Is 1 I .informatik.uni-dortmund.de 

Robert E Smith (Chapter 12) 
Senior Resecirr-h Fc4lo~~,  lntrlligent Coniputitig Sutetns Cetitrr, Conipictrr Stirdios 

a t i d  A4utheniiitic.s F w u l t ~ ,  Uiii\vr.sih of the West of Eii,q/urid. Bvi.sto1, Uiiitcd 
Kingdom 

rs m i t h 0 btc . u we. ac . u k 

Darrell Whitley (Chapters 17, 32, 33) 
Professor cf Conipirter Science, Colomdo State Utii~vrsity, Fort Collitis, CO, USA 
e-mail: whitley@cs.colostate.edu 

TEAM LRN



This page intentionally left blank 

TEAM LRN



Glossary 

Thornas Back and David B Fogel 

Bold text within definitions indicates terms that are also listed elsewhere in this 
glossary. 

Adaptation: This denotes the general advantage in ecological or physiological 
efficiency of an individual in contrast to other members of the population, 
and it also denotes the process of attaining this state. 

Adaptive behavior: The underlying mechanisms to allow living organisms, 
and, potentially, robots, to adapt and survive in uncertain environments 
(cf adaptation). 

Adaptive surface: Possible biological trait combinations in a population of 
individuals define points in a high-dimensional sequence space, where each 
coordinate axis corresponds to one of these traits. An additional dimension 
characterizes the fitness values for each possible trait combination, resulting 
in a highly multimodal fitness landscape, the so-called adaptive surface or 
adaptive topography. 

Allele: An alternative form of a gene that occurs at a specified chromosomal 
position (locus). 

Artificial life: A terminology coined by C G Langton to denote the '. . . study 
of simple computer generated hypothetical life forms, i.e. life-as-i t-could- 
be.' Artificial life and evolutionary computation have a close relationship 
because evolutionary algorithms are often used in artificial life research 
to breed the survival strategies of individuals in a population of artificial 
life forms. 

Automatic programming: The task of finding a program which calculates a 
certain input-output function. This task has to be performed in automatic 
programming by another computer program (cf genetic programming). 

Baldwin effect: Baldwin theorized that individual learning allows an organism 
to exploit genetic variations that only partially determine a physiological 
structure. Consequently, the ability to learn can guide evolutionary 
processes by rewarding partial genetic successes. Over evolutionary 
time, learning can guide evolution because individuals with useful genetic 
variations are maintained by learning, such that useful genes are utilized 
more widely in the subsequent generation. Over time, abilities that 
previously required learning are replaced by genetically determinant 
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xxii G 10s sary 

\y\tem\. The guiding effect of learning on evolution is referred to as 
the Baldwin effect. (See crlso Sectiori 34. I . )  

Behavior: The response of an organism to the pre3ent environmental stimulus. 
The collection of behaviors of an organism defines the fitness of the 
organism to its present environment. 

Boltzmann selection: The Boltzmann selection method transfers the proba- 
bilistic acceptance criterion of simulated annealing to evolutionary algo- 
rithms. The method operates by creating an offspring individual from two 
parents and accepting improvements (with respect to the parent's fitness) 
in  any case and deteriorations according to an exponentially decreasing 
t'unction of an exogeneous 'temperature' parameter. (See c i l s o  Chapter 26. 

Building block: Certain forms of recombination in evolutionary algorithms 
attempt to bring together building blocks, shorter pieces of an overall 
\olution, in the hope that together these blocks will lead to increased 
performance. (See crl.co Suction 26.3. ) 

Central dogma: The fact that, by means of translation and transcription 
proces\e\, the genetic information is passed from the genotype to the 
phenotype (i.e. from DNA to RNA and to the proteins). The dogma 
implies that behaviorally acquired characteristics of an individual are not 
inherited to its off\pring (cf Lamarckism). 

Chromatids: The two identical parts of a duplicated chromosome. 
Chromosome: Rod-shaped bodies in the nucleus of eukaryotic cells, which 

contain the hereditary units or genes. 
Classifier systems: Dynamic, rule-based systems capable of learning by 

examples and induction. Classifier systems evolve a population of 
production rule\ (in the \o-called Michigan approach, where an individual 
corresponds to a single rule) or a population of production rule bases 
( in  the so-called Pittsburgh approach, where an individual represents a 
complete rule base) by means of an evolutionary algorithm. The rules 
are often encoded by a ternary alphabet. which contains a 'don't care' 
symbol fxilitating a generalization capability of condition or action parts 
of a rule, thus allowing for an inductive learning of concepts. In the 
Michigan approach, the rule fitness (its strength) is incrementally updated 
at each generation by the 'bucket brigade' credit assignment algorithm 
based on the reward the system obtains from the environment, while in the 
Pittsburgh approach the fitness of a complete rule base can be calculated 
by testing the behavior of the individual within its environment. 

Codon: A group of three nucleotide bases within the DNA that encodes a single 
amino acid or start and \top information for the transcription process. 

Coevolutionary system: In  coevolutionary systems, different populations 
interact with each other in a way such that the evaluation function of one 
population may depend on the state of the evolution process in the other 
population( s). TEAM LRN
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Comma strategy: The notation (p ,  A) strategy describes a selection method 
introduced in evolution strategies and indicates that a parent population 
of p individuals generates h > p offspring and the best out of these h 
offspring are deterministically selected as parents of the next generation. 
(See also Section 25.4.) 

Computational intelligence: The field of computational intelligence is 
currently seen to include subsymbolic approaches to artificial intelligence. 
such as neural networks, fuzzy systems, and evolutionary computation, 
which are gleaned from the model of information processing in natural 
systems. Following a commonly accepted characterization, a system is 
computationally intelligent if it deals only with numerical data, does not use 
knowledge in the classical expert system sense, and exhibits computational 
adaptivity, fault tolerance, and speed and error rates approaching human 
performance. 

Convergence reliability: Informally, the convergence reliability of an 
evolutionary algorithm means its capability to yield reasonably good 
solutions in the case of highly multimodal topologies of the objective 
function. Mathematically, this is closely related to the property of global 
convergence with probability one, which states that, given infinite running 
time, the algorithm finds a global optimum point with probability one. 
From a theoretical point of view, this is an important property to justify 
the feasibility of evolutionary algorithms as global optimization methods. 

Convergence velocity: In the theory of evolutionary algorithms, the 
convergence velocity is defined either as the expectation of the change 
of the distance towards the optimum between two subsequent generations, 
or as the expectation of the change of the objective function value between 
two subsequent generations. Typically, the best individual of a population 
is used to define the convergence velocity. 

Crossover: A process of information exchange of genetic material that occurs 
between adjacent chromatids during meiosis. 

Cultural algorithm: Cultural algorithms are special variants of evolutionary 
algorithms which support two models of inheritance, one at the 
microevolutionary level in terms of traits, and the other at the 
macroevolutionary level in terms of beliefs. The two models interact via 
a communication channel that enables the behavior of individuals to alter 
the belief structure and allows the belief structure to constrain the ways in 
which individuals can behave. The belief structure represents ‘cultural’ 
knowledge about a certain problem and therefore helps in solving the 
problem on the level of traits. 

Cycle crossover: A crossover operator used in order-based genetic 
algorithms to manipulate permutations in a permutation preserving way. 
Cycle crossover performs recombination under the constraint that each 
element must come from one parent or the other by transferring element TEAM LRN
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cycles between the mates. The cycie crmsover operator preserves absolute 
positions of the elements of permutations. (See also Section 33.3.) 

Darwinism: The theory of evolution, proposed by Darwin, that evolution 
comes about through random variation (mutation) of heritable charac- 
teristics, coupled with natural selection, which favors those species for 
further survival and evolution that are best adapted to their environmental 
conditions. (See also Chapter 4 . )  

Deception: Objective functions are called deceptive if the combination of good 
building b!ocks by means of recombination !eads to a reduction of fitness 
rather than an increase. 

Deficiency: A form of mutation that involves a terminal segment loss of 
chromosome regions. 

Defining length: The defining length of a scheiiia is the maximum distance 
between specified positions within the schema. The larger the defining 
length of "a schema, the higher becomes its disruption probability by 
crossover. 

Deletion: A form of mutation that involves an internal segment loss of a 
chromosome region. 

Deme: An independent subpopulation in the migration model of parallel 
evolutionary algorithms. 

Diffusion model: The diffusion model denotes a massively parallel 
implementation of evolutionary algorithms, where each individual is 
realized as a single process being connected to neighboring individuals, 
such that a spatial individual structure is assumed. Recombination 
and selection an: restricted to the neighborhood of an individual, such 
that information is locally preserved and spreads only slowly over the 
population. 

Dipioid: In diploid organisms, each body ce!! carries two sets of chromosomes; 
that is, each chromosome exists in two homologous fGrrns, one of which 
is phenotypically realized. 

Discrete recombination: Discrete recombination works on  two vectors of 
object variables by performing an exchange of the corresponding object 
variables with probability one half (other settings of the exchange 
probability are in principle possible) (cf uniform crossover). (See c i l so  
Section 33.2.) 

DNA: Deoxyribonucleic acid, a double-stranded macromolecule of helical 
structure (comparable to a spiral staircase). Both single strands are linear, 
unbranched nucleic acid molecules built up from alternating deoxyribose 
(sugar) and phosphate molecules. Each deoxyribose part is coupled to 
a nucleotide base, which is responsible for establishing the connection 
to the other strand of the DNA, The four nucleotide bases adenine (A), 
thymine (T), cytosine ( C )  and guanine (G) are thc alphabet of the genetic 
information. The sequences of these bases i n  the DNA molecuie determines 
the building p l a ~  of any organism. TEAM LRN
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Duplication: A form of mutation that involves the doubling of a certain region 
of a chromosome at the expense of a corresponding deficiency on the other 
of two homologous chromosomes. 

Elitism: Elitism is a feature of some evolutionary algorithms ensuring that the 
maximum objective function value within a population can never reduce 
from one generation to the next. This can be assured by simply copying 
the best individual of a population to the next generation, if none of the 
selected offspring constitutes an improvement of the best value. 

Eukaryotic cell: A cell with a membrane-enclosed nucleus and organelles 
found in animals, fungi, plants, and protists. 

Evolutionary algorithm: See evolutionary computation. 
Evolutionary computation: This encompasses methods of simulating evolu- 

tion, most often on a computer. The field encompasses methods that com- 
prise a population-based approach that relies on random variation and se- 
lection. Instances of algorithms that rely on evolutionary principles are 
called evolutionary algorithms. Certain historical subsets of evolutionary 
algorithms include evolution strategies, evolutionary programming, and 
genetic algorithms. 

Evolutionary operation (EVOP): An industrial management technique pre- 
sented by G E P Box in the late fifties, which provides a systematic way 
to test alternative production processes that result from small modifications 
of the standard parameter settings. From an abstract point of view, the 
method resembles a ( I  + A) strategy with a typical setting of h = 4 and 
h = 8 (the so-called 22 and 23 factorial design), and can be interpreted as 
one of the earliest evolutionary algorithms. 

Evolutionary programming: An evolutionary algorithm developed by 
L J Fogel at San Diego, CA, in the 1960s and further refined by D B Fogel 
and others in the 1990s. Evolutionary programming was originally 
developed as a method to evolve finite-state machines for solving time 
series prediction tasks and was later extended to parameter optimization 
problems. Evolutionary programming typically relies on variation operators 
that are tailored to the problem, and these often are based on a single parent; 
however, the earliest versions of evolutionary programming considered the 
possibility for recombining three or more finite-state machines. Selection 
is a stochastic tournament selection that determines p individuals to 
survive out of the p parents and the p (or other number of) offspring 
generated by mutation. Evolutionary programming also uses the self- 
adaptation principle to evolve strategy parameters on-line during the 
search (cf evolution strategy). (See also Chapter 10.) 

Evolution strategy: An evolutionary algorithm developed by I Rechenberg 
and H-P Schwefel at the Technical University of Berlin in the 1960s. The 
evolution strategy typically employs real-valued parameters, though i t  has 
also been used for discrete problems. Its basic features are the distinction 
between a parent population (of size p )  and an offspring population (of TEAM LRN
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size h 2 p) ,  the explicit emphasis on normally distributed mutations, 
the utilization of different forms of recombination, and the incorporation 
of the self-adaptation principle for strategy parameters; that is. those 
parameters that determine the mutation probability density function are 
evolved on-line, by the same principles which are used to evolve the object 
variables. (See nlso Chapter Y.) 

Exon: A region of codons within a gene that is expressed for the phenotype 
of an organism. 

Finite-state machine: A transducer that can be stimulated by a finite alphabet 
of input symbols, responds in a finite alphabet of output symbols, and 
possesses some finite number of different internal states. The behavior 
of the finite-state machine is specified by the corresponding input-output 
symbol pairs and next-state transitions for each input symbol, taken over 
every state. In evolutionary programming, finite-state machines are 
historically the first structures that were evolved to find optimal predictors 
of the environmental behavior. (See also Chcipter 18.) 

The propensity of an individual to survive and reproduce in a 
particular environment. In evolutionary algorithms, the fitness value 
of an individual is closely related (and sometimes identical) to the 
objective function value of the solution represented by the individual, 
but especially when using proportional selection a scaling function is 
typically necessary to map objective function values to positive values 
such that the best-performing individual receives maximum fitness. 

Fuzzy system: Fuzzy systems try to model the the fact that real-world 
circumstances are typically not precise but ‘fuzzy’. This is achieved by 
generalizing the idea of a crisp membership function of sets by allowing 
for an arbitrary degree of membership in the unit  interval. A fuzzy set 
is then described by such a generalized membership function. Based on 
membership functions, linguistic variables are defined that capture real- 
world concepts such as ‘low temperature‘. Fuzzy rule-based systems then 
allow for knowledge processing by means of fuzzification, fuzzy inference, 
and defuzzitication operators which often enable a more realistic modeling 
of real-world situations than expert systems do. 

Gamete: A haploid germ cell that fuses with another in fertilization to form 
a zygote. 

Gene: A unit of codons on the DNA that encodes the synthesis for a protein. 
Generation gap: The generation gap characterizes the percentage of the 

population to be replaced during each generation. The remainder of the 
population is chosen (at random) to survive intact. The generation gap 
allows for gradually shifting from the generation-based working scheme 
towards the extreme of just generating one new individual per ‘generation‘, 
the so-called steady-state selection algorithm. (See c i l so  Clzcipter 28.) 

Genetic algorithm: An evolutionary algorithm developed by J H Holland 
and his students at Ann Arbor, MI, in  the 1960s. Fundamentally equivalent 

Fitness: 

TEAM LRN
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procedures were also offered earlier by H J Bremermann at UC Berkeley 
and A S Fraser at the University of Canberra, Australia in the 1960s and 
1950s. Originally, the genetic algorithm or adaptive plan was designed 
as a formal system for adaptation rather than an optimization system. 
Its basic features are the strong emphasis on recombination (crosso\,er), 
use of a probabilistic selection operator (proportional selection), and the 
interpretation of mutation as a background operator, playing a minor 
role for the algorithm. While the original form of genetic algorithms 
(the canonical genetic algorithm) represents solutions by binary strings, 
a number of variants including real-coded genetic algorithms and order- 
based genetic algorithms have also been developed to make the algorithm 
applicable to other than binary search spaces. (See also Chapter 8.) 

Genetic code: The translation process performed by the ribosomes essentially 
maps triplets of nucleotide bases to single amino acids. This (redundant) 
mapping between the 43 = 64 possible codons and the 20 amino acids is 
the so-called genetic code. 

Genetic drift: A random decrease or increase of biological trait frequencies 
within the gene pool of a population. 

Genetic programming: Derived from genetic algorithms, the genetic 
programming paradigm characterizes a class of evolutionary algorithms 
aiming at the automatic generation of computer programs. To achieve this, 
each individual of a population represents a complete computer program in 
a suitable programming language. Most commonly, symbolic expressions 
representing parse trees in (a subset of) the LISP language are used to 
represent these programs, but also other representations (including binary 
representation) and other programming languages (including machine code) 
are successfully employed. (See also Chapter / /.) 

Genome: The total genetic information of an organism. 
Genotype: The sum of inherited characters maintained within the entire 

reproducing population. Often also the genetic constitution underlying a 
single trait or set of traits. 

Global optimization: Given a function f : M + R, the problem of 
determining a point x* E M such that f(x*) is minimal (i.e. .f’(x*) 5 
f(x) Vx E M )  is called the global optimization problem. 

Global recombination: In  evolution strategies, recombination operators 
are sometimes used which potentially might take all individuals of a 
population into account for the creation of an offspring individual. 
Such recombination operators are called global recombination (i.e. global 
discrete recombination or global intermediate recombination). 

Gradient method: Local optimization algorithms for continuous parameter 
optimization problems that orient their choice of search directions according 
to the first partial derivatives of the objective function (its gradient) are 
called gradient strategies (cf hillclimbing strategy). TEAM LRN
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Gray code: A binary code for integer values which ensures that adjacent 
integers are encoded by binary strings with Hamming distance one. 
Gray codes play an important role in the application of canonical genetic 
algorithms to parameter optimization problems, because there are certain 
situations in which the use of Gray codes may improve the performance of 
an evolutionary algorithm. 

Hamming distance: For two binary vectors, the Hamming distance is the 
number of different positions. 

Haploid: Haploid organisms carry one set of genetic information. 
Heterozygous: Diploid organisms having different alleles for a given trait. 
Hillclimbing strategy: Hillclimbing methods owe their name to the analogy 

of their way of searching for a maximum with the intuitive way a sightless 
climber might feel his way from a valley up to the peak of a mountain 
by steadily moving upwards. These strategies follow a nondecreasing path 
to an optimum by a sequence of neighborhood moves. In the case of 
multimodal landscapes, hillclimbing locates the optimum closest to the 
starting point of its search. 

Homologues: Chromosomes of identical structure, but with possibly different 
genetic information contents. 

Homozygous: Diploid organisms having identical alleles for a given trait. 
Hybrid method: Evolutionary algorithms are often combined with classical 

optimization techniques such as gradient methods to facilitate an efficient 
local search in the final stage of the evolutionary optimization. The 
resulting combinations of algorithms are often summarized by the term 
hybrid methods. 

Implicit parallelism: The concept that each individual solution offers partial 
information about sampling from other solutions that contain similar 
subsections. Although it was once believed that maximizing implicit 
parallelism would increase the efficiency of an evolutionary algorithm, 
this notion has been proved false in several different mathematical 
developments (See no-free-lunch theorem). 

Individual: A single member of a population. In evolutionary algorithms, 
an individual contains a chromosome or genome, that usually contains at 
least a representation of a possible solution to the problem being tackled 
(a single point in the search space). Other information such as certain 
strategy parameters and the individual's fitness value are usually also 
stored in each individual. 

Intelligence: The definition of the term intelligence for the purpose of clarifying 
what the essential properties of artificial or computational intelligence 
should be turns out to be rather complicated. Rather than taking the usual 
anthropocentric view on this, we adopt a definition by D Fogel which 
states that intelligence is the capability of a system to adapt its behavior to 
meet its goals in a range of environments. This definition also implies that TEAM LRN
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evolutionary algorithms provide one possible way to evolve intelligent 
systems. 

Interactive evolution: The interactive evolution approach involves the human 
user of the evolutionary algorithm on-line into the variation-selection 
loop. By means of this method, subjective judgment relying on human 
intuition, esthetical values, or taste can be utilized for an evolutionary 
algorithm if a fitness criterion can not be defined explicitly. Furthermore, 
human problem knowledge can be utilized by interactive evolution to 
support the search process by preventing unnecessary, obvious detours from 
the global optimization goal. (See also Chapter 30.) 

Intermediate recombination: Intermediate recombination performs an aver- 
aging operation on the components of the two parent vectors. (See also 
Section 33.2.) 

Intron: A region of codons within a gene that do not bear genetic information 
that is expressed for the phenotype of an organism. 

Inversion: A form of mutation that changes a chromosome by rotating an 
internal segment by 180' and refitting the segment into the chromosome. 

Lamarckism: A theory of evolution which preceded Darwin's. Lamarck 
believed that acquired characteristics of an individual could be passed to its 
offspring. Although Lamarckian inheritance does not take place in nature, 
the idea has been usefully applied within some evolutionary algorithms. 

Locus: A particular location on a chromosome. 
Markov chain: A Markov process with a finite or countable finite number of 

states. 

Markov process: A stochastic process (a family of random variables) such 
that the probability of the process being in a certain state at time k depends 
on the state at time k - 1 ,  not on any states the process has passed earlier. 
Because the offspring population of an evolutionary algorithm typically 
depends only on the actual population, Markov processes are an appropriate 
mathematical tool for the analysis of evolutionary algorithms. 

Meiosis: The process of cell division in diploid organisms through which germ 
cells (gametes) are created. 

Metaevolution: The problem of finding optimal settings of the exogeneous 
parameters of an evolutionary algorithm can itself be interpreted as an 
optimization problem. Consequently, the attempt has been made to use 
an evolutionary algorithm on the higher level to evolve optimal strategy 
parameter settings for evolutionary algorithms, thus hopefully finding a 
best-performing parameter set that can be used for a variety of objective 
functions. The corresponding technique is often called a metaevolutionary 
algorithm. An alternative approach involves the self-adaptation of strategy 
parameters by evolutionary learning. 

Migration: The transfer of an individual from one subpopulation to another. TEAM LRN



xxx Glossary 

Migration model: The migration model (often also referred to as the island 
model) is one of the basic models of parallelism exploited by evolutionary 
algorithm implementations. The population is no longer panmictic, 
but distributed in to several independent su bpopu I at ions (so-called demes ), 
which coexist (typically on different processors, with one subpopulation 
per processor) and may mutually exchange information by interdeme 
migration. Each of the subpopulations corresponds to a conventional 
(i.e. sequential) evolutionary algorithm. Since selection takes place 
only locally inside a population, every deme is able to concentrate on 
different promising regions of the search space, such that the global 
search capabilities of migration models often exceed those of panmictic 
populations. The fundamental parameters introduced by the migration 
principle are the exchange frequency of information, the number of 
individuals to exchange, the selection strategy for the emigrants, and the 
replacement strategy for the immigrants. 

Monte Carlo algorithm: See uniform random search. 
( p .  A) strategy: See comma strategy. 
( p  + A) strategy: See plus strategy. 
Multiarmed bandit: Classical analysis of schema processing relied on an 

analogy to sampling from a number of slot machines (one-armed bandits) 
in order to minimize expected losses. 

Multimembered evolution strategy: All variants of evolution strategies that 
use a parent population size of 1-1 > I and therefore facilitate the utilization 
of recombination are summarized under the term multimembered evolution 
strategy . 

Multiobjective optimization: In multiobjective optimization, the simultaneous 
optimization of several, possibly competing, objective functions is required. 
The family of solutions to a multiobjective optimization problem is 
composed of all those elements of the search space sharing the property that 
the corresponding objective vectors cannot be all simultaneously improved. 
These solutions are called Pareto optimal. 

Multipoint crossover: A crossover operator which uses a predefined number 
of uniformly distributed crossover points and exchanges alternating 
segments between pairs of crossover points between the parent individuals 
(cf one-point crossover). 

Mutation: A change of the genetic material, either occurring in the germ path 
or in the gametes (generative) or in body cells (somatic). Only generative 
mutations affect the offspring. A typical classification of mutations 
distinguishes gene mutations (a particular gene is changed), chromosome 
mutations (the gene order is changed by translocation or inversion. 
or the chromosome number is changed by deficiencies, deletions, or 
duplications), and genome mutations (the number of chromosomes or 
genomes is changed). In evolutionary algorithms, mutations are either 
modeled on the phenotypic level (e.g. by using normally distributed TEAM LRN
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variations with expectation zero for continuous traits) or on the genotypic 
level (e.g. by using bit inversions with small probability as an equivalent 
for nucleotide base changes). (See nlso Chnptcv- 32. ) 

Mutation rate: The probability of the occurrence of a mutation during DNA 
replication. 

Natural selection: The result of competitive exclusion as organisms f i l l  the 
available finite resource space. 

Neural network: Artificial neural networks try to implement the data 
processing capabilities of brains on a computer. To achieve this (at least in 
a very simplified form regarding the number of procecsing units and their 
interconnectivity), simple units (corresponding to neurons) are arranged i n  
a number of layers and allowed to communicate via weighted connections 
(corresponding to axons and dendrites). Working (at least principally) in 
parallel. each unit of the network typically calculates a weighted sum of 
its inputs, performs some internal mapping of the result, and e\.entually 
propagates a nonzero value to its output connection. Though the artificial 
models are strong simplifications of the natural model, impressive results 
have been achieved in a variety of application fields. 

Niche: Adaptation of a species occurs with respect to any major kind of 
environment, the adaptive zone of this species. The set of possible 
environments that permit survival of a species is called its (ecological) 
niche. 

Niching methods: In evolutionary algorithms, niching methods aim at the 
formation and maintenance of stable subpopulations (niches) within a single 
population. One typical way to achieve this proceeds by means of fitness 
sharing techniques. 

No-free-lunch theorem: This theorem proves that when applied across all 
possible problems, all algorithms that do not resample points from the 
search space perform exactly the same on average. This result implies that 
it is necessary to tune the operators of an evolutionary algorithm to the 
problem at hand in order to perform optimally, or even better than random 
search. The no-free-lunch theorem has been extended to apply to certain 
subsets of all possible problems. Related theorems have been developed 
indicating that 

Object variables: The parameters that are directly involved in the calculation 
of the objective function value of an individual. 

Off-line performance: A performance measure for genetic algorithms, giving 
the average of the best fitness values found in a population over the course 
of the search. 

115 success rule: A theoretically derived rule for the deterministic adjustment 
of the standard deviation of the mutation operator in  a ( 1  + I )  evolution 
strategy. The 1/5 success rule reflects the theoretical result that, in  order to 
maximize the convergence velocity, on average one out of five mutations TEAM LRN
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should cause an improvement with respect to the objective function value. 
(See cilso Chapter 9.) 

One-point crossover: A crossover operator using exactly one crossover point 
on the genome. 

On-line performance: A performance measure giving the average fitness over 
all tested search points over the course of the search. 

Ontogenesis: The development of an organism from the fertilized zygote until 
its death. 

Order: The order of a schema is given by the number of specified positions 
within the schema. The larger the order of a schema, the higher becomes 
its probability of disruption by mutation. 

Order-based problems: A class of optimization problems that can be 
characterized by the search for an optimal permutation of specific items. 
Representative examples of this class are the traveling salesman problem 
or scheduling problems. In principle, any of the existing evolutionary 
algorithms can be reformulated for order-based problems, but the first 
permutation applications were handled by so-called order-based genetic 
algorithms, which typically use mutation and recombination operators 
that ensure that the result of the application of an operator to a permutation 
is again a permutation. 

Order crossover: A crossover operator used in order-based genetic 
algorithms to manipulate permutations in a permutation preserving way. 
The order crossover (OX) starts in a way similar to partially matched 
crossover by picking two crossing sites uniformly at random along the 
permutations and mapping each string to constituents of the matching 
section of its mate. Then, however, order crossover uses a sliding motion 
to f i l l  the holes left by transferring the mapped positions. This way, 
order crossover preserves the relative positions of elements within the 
permutation. (See also Section 33.3.) 

Order statistics: Given A independent random variables with a common 
probability density function, their arrangement in nondecreasing order 
is called the order statistics of these random variables. The theory of 
order statistics provides many useful results regarding the moments (and 
other properties) of the members of the order statistics. In the theory 
of evolutionary algorithms, the order statistics are widely utilized to 
describe deterministic selection schemes such as the comma strategy and 
tournament selection. 

Panmictic population: A mixed population, in which any individual may 
be mated with any other individual with a probability that depends only 
on fitness. Most conventional evolutionary algorithms have panmictic 
populations. 

Parse tree: The syntactic structure of any program in computer programming 
languages can be represented by a so-called parse tree, where the internal 
nodes of the tree correspond to operators and leaves of the tree correspond TEAM LRN
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to constants. Parse trees (or, equivalently, S-expressions) are the 
fundamental data structure in genetic programming, where recombination 
is usually implemented as a subtree exchange between two different parse 
trees. (See also Chapter 19.) 

Partially matched crossover: A crossover operator used to manipulate 
permutations in a permutation preserving way. The partially matched 
crossover (PMX) picks two crossing sites uniformly at random along the 
permutations, thus defining a matching section used to effect a cross through 
position-by-position exchange operations. (See also Section 33.3.) 

Penalty function: For constraint optimization problems, the penalty function 
method provides one possible way to try to achieve feasible solutions: the 
unconstrained objective function is extended by a penalty function that 
penalizes infeasible solutions and vanishes for feasible solutions. The 
penalty function is also typically graded in the sense that the closer a 
solution is to feasibility, the smaller is the value of the penalty term for 
that solution. By means of this property, an evolutionary algorithm is 
often able to approach the feasible region although initially all members of 
the population might be infeasible. 

Phenotype: The behavioral expression of the genotype in a specific 
environment. 

Phylogeny : The evolutionary relationships among any group of organisms. 
Pleiotropy: The influence of a single gene on several phenotypic features of 

an organism. 
Plus strategy: The notation ( p  + A) strategy describes a selection method 

introduced in evolution strategies and indicates that a parent population 
of p individuals generates h p offspring and all p + h individuals 
compete directly, such that the p best out of parents and offspring are 
deterministically selected as parents of the next generation. 

Polygeny: The combined influence of several genes on a single phenotypical 
characteristic. 

Population: A group of individuals that may interact with each other, for 
example, by mating and offspring production. The typical population 
sizes in evolutionary algorithms range from one (for ( 1  + 1 )  evolution 
strategies) to several thousands (for genetic programming). 

Prokaryotic cell: A cell lacking a membrane-enclosed nucleus and organelles. 
Proportional selection: A selection mechanism that assigns selection 

probabilities in proportion to the relative fitness of an individual. (See 
also Chapter 23.) 

Protein: A multiply folded biological macromolecule consisting of a long chain 
of amino acids. The metabolic effects of proteins are basically caused by 
their three-dimensional folded structure (the tertiary structure) as well as 
their symmetrical structure components (secondary structure), which result 
from the amino acid order in the chain (primary structure). TEAM LRN
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Punctuated crossover: A crossover operator to explore the potential for self- 
adaptation of the number of crossover points and their positions. To 
achieve this, the vector of object variables is extended by a crossover 
mask, where a one bit indicates the position of a crossover point in  
the object variable part of the individual. The crossover mask itself is 
subject to recombination and mutation to allow for a self-adaptation of the 
crossover operator. 

Rank-based selection: In rank-based selection methods, the selection 
probability of an individual does not depend on its absolute fitness as in 
case of proportional selection, but only on its relative fitness in comparison 
with the other population members: its rank when all individuals are 
ordered in increasing (or decreasing) order of fitness values. (See NISO 
Chapter 25. ) 

Recombination: See crossover. 
RNA: Ribonucleic acid. The transcription process in the cell nucleus 

generates a copy of the nucleotide sequence on the coding strand of the 
DNA. The resulting copy is an RNA molecule, a single-stranded molecule 
which carries information by means of the necleotide bases adenine, 
cytosine, guanine, and uracil (U) (replacing the thymine in the DNA). 
The RNA molecule acts as a messenger that transfers information from the 
cell nucleus to the ribosomes, where the protein synthesis takes place. 

Scaling function: A scaling function is often used when applying proportional 
selection, particularly when needing to treat individuals with non-positive 
evaluations. Scaling functions typically employ a linear, logarithmic, or 
exponential mapping. (See also Chapter 23.) 

Schema: A schema describes a subset of all binary vectors of fixed length 
that have similarities at certain positions. A schema is typically specified 
by a vector over the alphabet (0, 1, #}. where the ## denotes a ‘wildcard’ 
matching both zero and one. 

A theorem offered to describe the expected number of 
instances of a schema that are represented in the next generation of an 
evolutionary algorithm when proportional selection is used. Although 
once considered to be a ‘fundamental’ theorem, mathematical results show 
that the theorem does not hold in general when iterated over more than one 
generation and that it may not hold when individual solutions have noisy 
fitness evaluations. Furthermore, the theorem cannot be used to determine 
which schemata should be recombined in future generations and has little 
or no predictive power. 

Segmented crossover: A crossover operator which works similarly to 
multipoint crossover, except that the number of crossover points is not 
fixed but may vary around an expectation value. This is achieved by a 
segment switch rate that specifies the probability that a segment will end 
at any point in the string. 

Schema theorem: 

TEAM LRN



GI 0s sary xxxv 

Selection: The operator of evolutionary algorithms, modeled after the 
principle of natural selection, which is used to direct the search process 
towards better regions of the search space by giving preference to 
individuals of higher fitness for mating and reproduction. The most widely 
used selection methods include the comma and plus strategies, ranking 
selection, proportional selection, and tournament selection. (See also 
Chapters 22-30.) 

Self-adaptation: The principle of self-adaptation facilitates evolutionary 
algorithms learning their own strategy parameters on-line during the 
search, without any deterministic exogeneous control, by means of 
evolutionary processes in the same way as the object variables are 
modified. More precisely, the strategy parameters (such as mutation rates, 
variances, or covariances of normally distributed variations) are part of 
the individual and undergo mutation (recombination) and selection as the 
object variables do. The biological analogy consists in the fact that some 
portions of the DNA code for mutator genes or repair enzymes; that is, 
some partial control over the DNA’s mutation rate is encoded in the DNA. 

Sharing: Sharing (short for fitness sharing) is a niching method that derates the 
fitnesses of population elements according to the number of individuals in 
a niche, so that the population ends up distributed across multiple niches. 

Simulated annealing: An optimization strategy gleaned from the model of 
thermodynamic evolution, modeling an annealing process in order to reach 
a state of minimal energy (where energy is the analogue of fitness in 
evolutionary algorithms). The strategy works with one trial solution and 
generates a new solution by means of a variation (or mutation) operator. 
The new solution is always accepted if it represents a decrease of energy, 
and it is also accepted with a certain parameter-controlled probability if 
it represents an increase of energy. The control parameter (or strategy 
parameter) is commonly called temperature and makes the thermodynamic 
origin of the strategy obvious. 

The most 
common cause of speciation is that of geographical isolation. If a 
subpopulation of a single species is separated geographically from the 
main population for a sufficiently long time, its genes will diverge (either 
due to differences in selection pressures in different locations, or simply 
due to genetic drift). Eventually, genetic differences will be so great 
that members of the subpopulation must be considered as belonging to a 
different (and new) species. 

Species: A population of similarly constructed organisms, capable of 
producing fertile offspring. Members of one species occupy the same 
ecological niche. 

Steady-state selection: A selection scheme which does not use a generation- 
wise replacement of the population, but rather replaces one individual 
per iteration of the main recombine-mutate-select loop of the algorithm. 

Speciation: The process whereby a new species comes about. 
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Usually, the worst population member is replaced by the result of 
recombination and mutation, if the resulting individual represents a fitness 
improvement compared to the worst population member. The mechanism 
corresponds to a (p  + 1) selection method in evolution strategies (cf plus 
strategy). 

Strategy parameter: The control parameters of an evolutionary algorithm 
are often referred to as strategy parameters. The particular setting of 
strategy parameters is often critical to gain good performance of an 
evolutionary algorithm, and the usual technique of empirically searching for 
an appropriate set of parameters is not generally satisfying. Alternatively, 
some researchers try techniques of metaevolution to optimize the strategy 
parameters, while in evolution strategies and evolutionary programming 
the technique of self-adaptation is successfully used to evolve strategy 
parameters in the same sense as object variables are evolved. 

Takeover time: A characteristic value to measure the selective pressure of 
selection methods utilized in evolutionary algorithms. It gives the 
expected number of generations until, under repeated application of 
selection as the only operator acting on a population, the population is 
completely filled with copies of the initially best individual. The smaller 
the takeover time of a selection mechanism, the higher is its emphasis on 
reproduction of the best individual, i.e. its selective pressure. 

Tournament selection: Tournament selection methods share the principle of 
holding tournaments between a number of individuals and selecting the 
best member of a tournament group for survival to the next generation. 
The tournament members are typically chosen uniformly at random, and 
the tournament sizes (number of individuals involved per tournament) are 
typically small, ranging from two to ten individuals. The tournament 
process is repeated p times in order to select a population of p members. 
(See also Chapter 24 . )  

Transcription: The process of synthesis of a messenger RNA (mRNA) 
reflecting the structure of a part of the DNA. The synthesis is performed 
in the cell nucleus. 

Translation: The process of synthesis of a protein as a sequence of amino 
acids according to the information contained in the messenger RNA and 
the genetic code between triplets of nucleotide bases and amino acids. The 
synthesis is performed by the ribosomes under utilization of transfer RNA 
molecules. 

Two-membered evolution strategy: The two-membered or ( 1  + I )  evolution 
strategy is an evolutionary algorithm working with just one ancestor 
individual. A descendant is created by means of mutation, and selection 
selects the better of ancestor and descendant to survive to the next 
generation (cf plus strategy). 

Uniform crossover: A crossover operator which was originally defined to 
work on binary strings. The uniform crossover operator exchanges each TEAM LRN
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bit with a certain probability between the two parent individuals. The 
exchange probability typically has a value of one half, but other settings 
are possible (cf discrete recombination). (See also Section 33.3. ) 

A random search algorithm which samples the 
search space by drawing points from a uniform distribution over the search 
space. In contrast to evolutionary algorithms, uniform random search does 
not update its sampling distribution according to the information gained 
from past samples, i.e. it is not a Markov process. 

Uniform random search: 

Zygote: A fertilized egg that is always diploid. 
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1 
Introduction to evolutionary computation 

David B Fogel 

1.1 Introductory remarks 

As a recognized field, evolutionary computation is quite young. The term 
itself was invented as recently as 1991, and it represents an effort to bring 
together researchers who have been following different approaches to simulating 
various aspects of evolution. These techniques of genetic algorithms (Chapter 7), 
evolution strategies (Chapter 8), and evolutionary programming (Chapter 9) have 
one fundamental commonality: they each involve the reproduction, random 
variation, competition, and selection of contending individuals in a population. 
These form the essential essence of evolution, and once these four processes are 
in place, whether in nature or in a computer, evolution is the inevitable outcome 
(Atmar 1994). The impetus to simulate evolution on a computer comes from at 
least four directions. 

1.2 Optimization 

Evolution is an optimization process (Mayr 1988, p 104). Darwin ( 1  859, ch 6) 
was struck with the ‘organs of extreme perfection’ that have been evolved, one 
such example being the image-forming eye (Atmar 1976). Optimization does not 
imply perfection, yet evolution can discover highly precise functional solutions 
to particular problems posed by an organism’s environment, and even though 
the mechanisms that are evolved are often overly elaborate from an engineering 
perspective, function is the sole quality that is exposed to natural selection, and 
functionality is what is optimized by iterative selection and mutation. 

It is quite natural, therefore, to seek to describe evolution in terms of an 
algorithm that can be used to solve difficult engineering optimization problems. 
The classic techniques of gradient descent, deterministic hill climbing, and 
purely random search (with no heredity) have been generally unsatisfactory when 
applied to nonlinear optimization problems, especially those with stochastic, 
temporal, or chaotic components. But these are the problems that nature has 
seemingly solved so very well. Evolution provides inspiration for computing 
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the solutions to problems that have previously appeared intractable. This was a 
key foundation for the efforts in evolution strategies (Rechenberg 1965, 1994, 
Schwefel 1965, 1995). 

1.3 Robust adaptation 

The real world is never static, and the problems of temporal optimization are 
some of the most challenging. They require changing behavioral strategies 
in light of the most recent feedback concerning the success or failure of the 
current strategy. Holland (1973, under the framework of genetic algorithms 
(formerly called reproductive plans), described a procedure that can evolve 
strategies, either in the form of coded strings or as explicit behavioral rule bases 
called classifier systems (Chapter I2), by exploiting the potential to recombine 
successful pieces of competing strategies, bootstrapping the knowledge gained 
by independent individuals. The result is a robust procedure that has the potential 
to adjust performance based on feedback from the environment. 

1.4 Machine intelligence 

Intelligence may be defined as the capability of a system to adapt its behavior to 
meet desired goals in a range of environments (Fogel 1995, p xiii). Intelligent 
behavior then requires prediction, lor adaptation to future circumstances requires 
predicting those circumstances and taking appropriate action. Evolution has 
created creatures of increasing intelligence over time. Rather than seek to 
generate machine intelligence by replicating humans, either in the rules they 
may follow or in their neural connections, an alternative approach to generating 
machine intelligence is to simulate evolution on a class of predictive algorithms. 
This was the foundation for the evolutionary programming research of Fogel 
(1962, Fogel et a1 1966). 

1.5 Biology 

Rather than attempt to use evolution as a tool to solve a particular engineering 
problem, there is a desire to capture the essence of evolution in a computer 
simulation and use the simulation to gain new insight into the physics of natural 
evolutionary processes (Ray 1991) (see also Chapter 4). Success raises the 
possibility of studying alternative biological systems that are merely plausible 
images of what life might be like in some way. It also raises the question of what 
properties such imagined systems might have in common with life as evolved on 
Earth (Langton 1987). Although every model is incomplete, and assessing what 
life might be like in other instantiations lies in the realm of pure speculation, 
computer simulations under the rubric of artificial life have generated some 
patterns that appear to correspond with naturally occurring phenomena. TEAM LRN
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1.6 Discussion 

The ultimate answer to the question ‘why simulate evolution?’ lies in the lack 
of good alternatives. We cannot easily germinate another planet, wait several 
millions of years, and assess how life might develop elsewhere. We cannot 
easily use classic optimization methods to find global minima in functions when 
they are surrounded by local minima. We find that expert systems and other 
attempts to mimic human intelligence are often brittle: they are not robust to 
changes in the domain of application and are incapable of correctly predicting 
future circumstances so as to take appropriate action. In contrast, by successfully 
exploiting the use of randomness, or in other words the itsefd use c,furzc.er?ainty. 
‘all possible pathways are open’ for evolutionary computation (Hofstadter 1995, 
p 1 IS). Our challenge is, at least in some important respects, to not allow our 
own biases to constrain the potential for evolutionary computation to discover 
new solutions to new problems in fascinating and unpredictable ways. However, 
as always, the ultimate advancement of the field will come from the careful 
abstraction and interpretation of the natural processes that inspire it.  
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2 
Possible applications of evolutionary 
computation 

David Beasley 

2.1 Introduction 

Applications of evolutionary computation (EC) fall into a wide continuum of 
areas. For convenience, in this chapter they have been split into five broad 
categories: 

0 planning 
0 design 
0 simulation and identification 
0 control 
0 classification. 

These categories are by no means meant to be absolute or definitive. They 
all overlap to some extent, and many applications could rightly appear in more 
than one of the categories. 

A number of bibliographies where more extensive information on EC 
applications can be found are listed after the references at the end of this chapter. 

2.2 Applications in planning 

2.2. I Routing 

Perhaps one of the best known combinatorial optimization problems is the 
traveling salesman problem or TSP (Goldberg and Lingle 1985, Grefenstette 
1987, Fogel 1988, Oliver et a1 1987, Miihlenbein 1989, Whitley er a1 1989, 
Fogel 1993a, Homaifar et a1 1993). A salesman must visit a number of cities, 
and then return home. In which order should the cities be visited to minimize 
the distance traveled? Optimizing the tradeoff' between speed and accuracy of 
solution has been one aim (Verhoeven et a1 1992). 

A generalization of the TSP occurs when there is more than one salesman 
(Fogel 1990). The vehic-le routing problem is similar. There is a fleet of vehicles, 
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all based at the same depot. A set of customers must each receive one delivery. 
Which route should each vehicle take for minimum cost? There are constraints, 
for example, on vehicle capacity and delivery times (Blanton and Wainwright 
1993, Thangia et a1 1993). 

Closely related to this is the transportation problem, in which a single 
commodity must be distributed to a number of customers from a number of 
depots. Each customer may receive deliveries from one or more depots. What 
is the minimum-cost solution? (Michalewicz 1992, 1993). 

Planning the path which a robot should take is another route planning 
problem. The path must be feasible and safe (i.e. it must be achievable within the 
operational constraints of the robot) and there must be no collisions. Examples 
include determining the joint motions required to move the gripper of a robot 
arm between locations (Parker et a1 1989, Davidor I99 I ,  McDonnell et a1 1992). 
and autonomous vehicle routing (Jakob et a1 1992, Page et a1 1992). In  unknown 
areas or nonstatic environments, on-line planninghavigating is required, in 
which the robot revises its plans as it travels. 

2.2.2 Scheduling 

Scheduling involves devising a plan to carry out a number of activities over a 
period of time, where the activities require resources which are limited, there 
are various constraints and there are one or more objectives to be optimized. 

Job shop scheduling is a widely studied NP-complete problem (Davis 1985, 
Biegel and Davern 1990, Syswerda 1991, Yamada and Nakano 1992). The 
scenario is a manufacturing plant, with machines of different types. There are 
a number of jobs to be completed, each comprising a set of tasks. Each task 
requires a particular type of machine for a particular length of time, and the tasks 
for each job must be completed in a given order. What schedule allows all tasks 
to be completed with minimum cost? Husbands (1993) has used the additional 
biological metaphor of an ecosystem. His method optimizes the sequence of 
tasks in each job at the same time as it builds the schedule. In real job shops 
the requirements may change while the jobs are being carried out, requiring that 
the schedule be replanned (Fang et a1 1993). In the limit, the manufacturing 
process runs continuously, so all scheduling must be carried out on-line, as in 
a chemical flowshop (Cartwright and Tuson 1994). 

Another scheduling problem is to devise a timetable for a set of examinations 
(Corne et a1 1994), university lectures (Ling 1992), a staff rota (Easton and 
Mansour 1993) or suchlike. 

In computing, scheduling problems include efficiently allocating tasks to 
processors in a multiprocessor system (Van Driessche and Piessens 1992, 
Kidwell 1993, Fogel and Fogel 1996), and devising memory cache replacement 
policies (Altman et a1 1993). TEAM LRN
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2.2.3 Packing 

Evolutionary algorithms (EAs) have been applied to many packing problems, the 
simplest of which is the one-dimensional zero-one knapsack problem. Given a 
knapsack of a certain capacity, and a set of items, each with a particular size and 
value, find the set of items with maximum value which can be accommodated 
in the knapsack. Various real-world problems are of this type: for example, the 
allocation of communication channels to customers who are charged at different 
rates. 

There are various examples of two-dimensional packing problems. When 
manufacturing items are cut from sheet materials (e.g. metal or cloth), it is 
desirable to find the most compact arrangemerit of pieces, so as to minimize 
the amount of scrap (Smith 1985, Fujita et a1 1993). A similar problem arises 
in the design of layouts for integrated circuits--how should the subcircuits be 
arranged to minimize the total chip area required (Fourman 1985, Cohoon and 
Paris 1987, Chan et a1 1991)? 

In three dimensions, there are obvious applications in which the best way of 
packing objects into a restricted space is required. Juliff (1993) has considered 
the problem of packing goods into a truck for delivery. 

2.3 Applications in design 

The design of filters has received considerable attention. EAs have been used 
to design electronic or digital systems which implement a desired frequency 
response. Both finite impulse response (FIR) and infinite impulse response 
(IIR) filter structures have been employed (Etter et a1 1982, Suckley 1991, Fogel 
199 1 ,  Fonseca et a1 1993, Ifeachor and Harris 1993, Namibar and Mars 1993, 
Roberts and Wade 1993, Schaffer and Eshelman 1993, White and Flockton 1993, 
Wicks and Lawson 1993, Wilson and Macleod 1993). EAs have also been used 
to optimize the design of signal processing systems (San Martin and Knight 
1993) and in integrated circuit design (Louis and Rawlins 1991, Rahmani and 
Ono 1993). The unequal-area facility layout problem (Smith and Tate 1993) 
is similar to integrated circuit design. It involves finding a two-dimensional 
arrangement of ‘departments’ such that the distance which information has to 
travel between departments is minimized. 

EC techniques have been widely applied to artificial neural networks, both in 
the design of network topologies and in the search for optimum sets of weights 
(Miller et a1 1989, Fogel et a1 1990, Harp and Samad 199 1, Baba 1992, Hancock 
1992, Feldman 1993, Gruau 1993, Polani and Uthmann 1993, Romaniuk 1993, 
Spittle and Horrocks 1993, Zhang and Muhlenbein 1993, Port0 et a1 1995). They 
have also been applied to Kohonen feature map design (Polani and Uthmann 
1992). Other types of network design problems have also been approached, for 
example, in telecommunications (Cox e f  nl 1991, Davis and Cox 1993). TEAM LRN
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There have been many engineering applications of EC: structure design, 
both two-dimensional, such as a plane truss (Lohmann 1992, Watabe and Okino 
1993), and three-dimensional, such as aircraft design (Bramlette and Bouchard 
199 1 ), actuator placement on space structures (Furuya and Haftka 1993), linear 
accelerator design, gearbox design, and chemical reactor design (Powell and 
Skolnick 1993). In relation to high-energy physics, the design of Monte Carlo 
generators has been tackled. 

In order to perform parallel computations requiring global coordination, 
EC has been used to design cellular automata with appropriate communication 
mechanisms . 

For 
example, an EA can be used to search for challenging fault scenarios for an 
autonomous vehicle controller. 

There have also been applications in testing and fault diagnosis. 

2.4 Applications in simulation and identification 

Simulation involves taking a design or model for a system, and determining how 
the system will behave. In some cases this is done because we are unsure about 
the behavior (e.g. when designing a new aircraft). In other cases, the behavior 
is known, but we wish to test the accuracy of the model. 

EC has been applied to difficult problems in chemistry and biology. Roosen 
and Meyer (1992) used an evolution strategy to determine the equilibrium of 
chemically reactive systems, by determining the minimum free enthalpy of the 
compounds involved. The determination of the three-dimensional structure of 
a protein, given its amino acid sequence, has been tackled (Lucasius et a1 
1991). Lucasius and Kateman (1992) approached this as a sequenced subset 
selection problem, using two-dimensional nuclear magnetic resonance spectrum 
data as a starting point. Others have searched for energetically favorable protein 
conformations (Schulze-Kremer 1992, Unger and Moult 1993), and used EC to 
assist with drug design (Gehlhaar et a1 1995). EC has been used to simulate 
how the nervous system learns in order to test an existing theory. Similarly, EC 
has been used in order to help develop models of biological evolution. 

In the field of economics, EC has been used to model economic interaction 
of competing firms in a market. 

Identification is the inverse of simulation. It involves determining the design 
of a system given its behavior. 

Many systems can be represented by a model which produces a single-valued 
output in response to one or more input signals. Given a number of observations 
of input and output values, system identification is the task of deducing the 
details of the model. Flockton and White (1993) concern themselves with 
determining the poles and zeros of the system. 

One reason for wanting to identify systems is so that we can predict the 
output in response to a given set of inputs. EC may also employed to fit 
equations to noisy, chaotic medical data, in order to predict future values. TEAM LRN
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Janikow and Cai (1992) similarly used EC to estimate statistical functions for 
survival analysis in clinical trials. In a similar area, Manela et ul (1993) used 
EC to fit spline functions to noisy pharmaceutical fermentation process data. 

EC may also be used to identify the sources of airborne pollution, given data 
from a number of monitoring points in an urban area-the source apportionment 
problem. In electromagnetics, Tanaka et a1 (1993) have applied EC to 
determining the two-dimensional current distribution in a conductor, given its 
external magnetic field. Away from conventional system identification, an EC 
approach has been used to help with identifying criminal suspects. This system 
helps witnesses to create a likeness of the suspect, without the need to give an 
explicit description. 

2.5 Applications in control 

There are two distinct approaches to the use of EC in control: off-line and 
on-line. The off-line approach uses an EA to design a controller, which is then 
used to control the system. The on-line approach uses an EA as an active 
part of the control process. Therefore, with the off-line approach there is 
nothing evolutionary about the control process itself, only about the design 
of the controller. 

Some researchers (Fogel et a1 1966, DeJong 1980) have sought to use the 
adaptive qualities of EAs in order to build on-line controllers for dynamic 
systems. The advantage of an evolutionary controller is that it can adapt to 
cope with systems whose characteristics change over time, whether the change is 
gradual or sudden. Most researchers, however, have taken the off-line approach 
to the control of relatively unchanging systems. 

Fonseca and Fleming (1993) used an EA to design a controller for a gas 
turbine engine, to optimize its step response, and a control system has been 
used to optimize combustion in multiple-burner furnaces and boiler plants. 
EC has also been applied to the control of guidance and navigation systems 
(Krishnakumar and Goldberg 1990, 1992). 

Hunt (1992b) has tackled the problem of synthesizing LQG (linear- 
quadratic-Gaussian) and H ,  (H-infinity) optimal controllers. He has also 
considered the frequency domain optimization of controllers with fixed structures 
(Hunt  1992a). 

Two control problems which have been well studied are balancing a pole 
on a movable cart (Fogel 1995), and backing up a trailer truck to a loading 
bay from an arbitrary starting point (Abu Zitar and Hassoun 1993). In robotics, 
EAs have been developed which can evolve control systems for visually guided 
behaviors. They can also learn how to control mobile robots (Kim and Shim 
1995), for example, controlling the legs of a six-legged ‘insect’ to make it crawl 
or walk (Spencer 1993). Almhssy and Verschure (1992) modeled the interaction 
between natural selection and the adaptation of individuals during their lifetimes TEAM LRN
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to develop an agent with a distributed adaptive control framework which learns 
to avoid obstacles and locate food sources. 

2.6 Applications in classification 

As described in Chapter 12, a significant amount of EC research has concerned 
the theory and practice of classifier systems (CFS) (Booker 1985, Holland 
1985, 1987, Holland et a1 1987, Robertson 1987, Wilson 1987, Fogarty 1994). 
Classifier systems are at the heart of many other types of system. For example, 
many control systems rely on being able to classify the characteristics of their 
environment before an appropriate control decision can be made. This is true 
in many robotics applications of EC, for example, learning to control robot arm 
motion (Pate1 and Dorigo 1994) and learning to solve mazes (Pipe and Carse 
1994). 

An important aspect of a classifier system, especially in a control application, 
is how the state space is partitioned. Many applications take for granted 
a particular partitioning of the state space, while in others, the appropriate 
partitioning of the state space is itself part of the problem (Melhuish and Fogarty 
I 994). 

Game playing is another application for which classification plays a key 
role. Although EC is often applied to rather simple games (e.g. the prisoner’s 
dilemma (Axelrod 1987, Fogel 1993b)), this is sometimes motivated by more 
serious applications, such as military ones (e.g. the two-tanks game (Fairley and 
Yates 1994) and air combat maneuvering. 

EC has been hybridized with feature partitioning and applied to a range of 
tasks (Guvenir and Sirin 1993), including classification of iris flowers, prediction 
of survival for heart attack victims from echocardiogram data, diagnosis of heart 
disease, and classification of glass samples. In linguistics, EC has been applied 
to the classification of Swedish words. 

In economics, Oliver (1993) has found rules to reflect the way in which 
consumers choose one brand rather than another, when there are multiple criteria 
on which to judge a product. A fuzzy hybrid system has been used for financial 
decision making, with applications to credit evaluation, risk assessment, and 
insurance underwriting. 

In biology, EC has been applied to the difficult task of protein secondary- 
structure determination, for example, classifying the locations of particular 
protein segments (Handley 1993). It has also been applied to the classification 
of soil samples (Punch et a1 1993). 

In image processing, there have been further military applications, 
classifying features in images as targets (Bala and Wechsler 1993, Tackett 1993), 
and also non-military applications, such as optical character recognition. 

Of increasing importance is the efficient storage and retrieval of information, 
including the generation of equifrequency distributions of material, to improve 
that efficiency. EC has also been employed to assist with the representation and TEAM LRN
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storage of chemical structures, and the retrieval from databases of molecules 
containing certain substructures (Jones er a1 1993). The retrieval of documents 
which match certain characteristics is becoming increasingly important as more 
and more information is held on-line. Tools to retrieve documents which contain 
specified words have been available for many years, but they have the limitation 
that constructing an appropriate search query can be difficult. Researchers are 
now using EAs to help with query construction (Yang and Korfhage 1993). 

2.7 Summary 

EC has been applied in a vast number of application areas. In some cases it has 
advantages over existing computerized techniques. More interestingly, perhaps, 
i t  is being applied to an increasing number of areas in which computers have 
not been used before. We can expect to see the number of applications grow 
considerably in the future. Comprehensive bibliographies in many different 
application areas are listed after the References. 
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Further reading 

This article has provided only a glimpse into the range of applications for 
evolutionary computing. A series of comprehensive bibliographies has been 
produced by J T Alander of the Department of Information Technology and 
Production Economics, University of Vaasa, as listed below. 

Art and Music: Indexed Bibliography of' Genctic Algorithms in Art and Music 
Report 94- 1 -ART (ftp.uwasa.fi/cs/report94- I/gaARTbib.ps.Z) 

Chemistry and Physics: Indexed Bibliogruphy of Genetic Algorithms in 
Chemistn and Physics Report 94- I -CHEMPHYS (ftp.uwasa.fi/cs/report94- 
1 /gaCHEMPHY Sbib.ps.Z) 

Control: bzdesecl Bihliogruphy of Genetic Algorithms in Control. Report 94- I - 
CONTROL (ftp.uwasa.fi/cs/report94- I /gaCONTKOLbib.ps.Z) 

1 . Computer Aided Design: Indexed Bibliography of Genetic Algorithms in Computrr 
Aided Design Report 94- I -CAD (ftp.uwasa.fi/cs/report94- 1 /gaCADbib.ps.Z) 

2. Computer Science: Indexed Bihliogruphy of Genetic Algorithrns in Computer 
Science Report 94- I -CS (ftp.uwasa.fi/cs/report94- I/gaCSbib.ps.Z) 

3. Economics: Indexed Bihliogruphy of Genetic Algorithms in Economics Report 94- 
1 -ECO ( ftp.uwasa. fi/cs/report94- 1 /gaECObi b.ps.Z) 

4. Electronics and VLSI Design and Testing: Inde=ced Bibliography of Genetic 
Algorithms in Electronics mid VLSI Design und Testing Report 94- I -VLSI 
(ftp.uwasa.fi/cs/report94- I /gaVLSIbib.ps.Z) 

5.  Engineering: Indexed Bibliography of Genetic Algorithms in Engineering Report 
94- 1 -ENG (ftp.uwasa.fi/cs/report94- I/gaENGbib.ps.Z) 

6. Fuzzy Systems: Indexed Bibliography of Genetic Algorithms und Fuzzy Systerns 
Report 94- I -FUZZY (ftp.uwasa.fi/cs/report94- l/gaFUZZYbib.ps.Z) 
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3 
Advantages (and disadvantages) of 
evolutionary computation over other 
approaches 

Ham-Paul Schwefel 

3.1 No-free-lunch theorem 

Since. according to the no-free-lunch (NFL) theorem (Wolpert and 
Macready 1996), there cannot exist any algorithm for solving all (e.g. opti- 
mization) problems that is generally (on average) superior to any competitor, 
the question of whether evolutionary algorithms (EAs) are inferiodsuperior to 
any alternative approach is senseless. What could be claimed solely is that 
EAs behave better than other methods with respect to solving a specific class 
of problems-with the consequence that they behave worse for other problem 
classes. 

The NFL theorem can be corroborated in the case of EAs versus many 
classical optimization methods insofar as the latter are more efficient in solving 
linear, quadratic, strongly convex, unimodal, separable, and many other special 
problems. On the other hand, EAs do not give up so early when discontinuous, 
nondifferentiable, multimodal, noisy, and otherwise unconventional response 
surfaces are involved. Their effectiveness (or robustness) thus extends to a 
broader field of applications, of course with a corresponding loss in efficiency 
when applied to the classes of simple problems classical procedures have been 
specifically devised for. 

Looking into the historical record of procedures devised to solve optimization 
problems, especially around the 1960s (see the book by Schwefel ( I995)), when 
a couple of direct optimum-seeking algorithms were published, for example, in 
the Cornpiiter Joirrrzcrl, a certain pattern of development emerges. Author A 
publishes a procedure and demonstrates its suitability by means of tests using 
some test functions. Next, author B comes along with a counterexample showing 
weak performance of A's algorithm in the case of a certain test problem. Of 
course, he also presents a new or modified technique that outperforms the older 
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one(s) with respect to the additional test problem. This game could in principle 
be played ad infiniturn. 

A better means of clarifying the scene ought to result from theory. This 
should clearly define the domain of applicability of each algorithm by presenting 
convergence proofs and efficiency results. Unfortunately. however, i t  is possible 
to prove abilities of algorithms only by simplifying them as well as the situations 
to which they are confronted. The huge remainder of questions must be 
answered by means of (always limited) test series, and even that cannot tell 
much about an actual real-world problem-solving situation with yet unanalyzed 
features, that is, the normal case in applications. 

Again unfortunately, there does not exist an agreed-upon test problem 
catalogue to evaluate old as well as new algorithms in a concise way. I t  is 
doubtful whether such a test bed will ever be agreed upon, but efforts in that 
direction would be worthwhile. 

3.2 Conclusions 

Finally, what are the truths and consequences? First, there will always remain a 
dichotomy between efficiency and general applicability, between reliability and 
effort of problem-solving, especially optimum-seeking, algorithms. Any specific 
knowledge about the situation at hand may be used to specify an adequate 
specific solution algorithm, the optimal situation being that one knows the 
solution in advance. On the other hand, there cannot exist one method that solves 
all problems effectively as well as efficiently. These goals are contradictory. 

If there is already a traditional method that solves a given problem, EAs 
should not be used. They cannot do it better or with less computational effort. 
In particular, they do not offer an escape from the curse of dimensionality-the 
often quadratic, cubic, or otherwise polynomial increase in instructions used as 
the number of decision variables is increased, arising, for example, from matrix 
manipulation. 

To develop a new solution method suitable for a problem at hand may be 
a nice challenge to a theoretician, who will afterwards get some merit for his 
effort, but from the application point of view the time for developing the new 
technique has to be added to the computer time invested. In that respect, a 
nonspecialized, robust procedure (and EAs belong to this class) may be, and 
often proves to be, worthwhile. 

A warning should be given about a common practice-the linearization or 
other decomplexification of the situation in order to make a traditional method 
applicable. Even a guaranteed globally optimal solution for the simplified task 
may be a long way off and thus greatly inferior to an approximate solution to 
the real problem. 

The best one can say about EAs, therefore, is that they present a 
methodological framework that is easy to understand and handle, and is either 
usable as a black-box method or open to the incorporation of new or old TEAM LRN



22 
approaches 

Advantages (and disadvantages) of evolutionary computation over other 

recipes for further sophistication, specialization or hybridization. They are 
applicable even in dynamic situations where the goal or constraints are moving 
over time or changing, either exogenously or self-induced, where parameter 
adjustments and fitness measurements are disturbed, and where the landscape is 
rough, discontinuous, multimodal, even fractal or cannot otherwise be handled 
by traditional methods, especially those that need global prediction from local 
surface analysis. 

There exist EA versions for multiple criterion decision making (MCDM) 
and many different parallel computing architectures. Almost forgotten today is 
their applicability in experimental (non-computing) situations. 

Sometimes striking is the fact that even obviously wrong parameter settings 
do not prevent fairly good results: this certainly can be described as robustness. 
Not yet well understood, but nevertheless very successful are those EAs which 
self-adapt some of their internal parameters, a feature that can be described as 
collective learning of the environmental conditions. Nevertheless, even self- 
adaptation does not circumvent the NFL theorem. 

In this sense, and only in this sense, EAs always present an intermediate 
compromise; the enthusiasm of their inventors is not yet taken into account 
here, nor the insights available from the analysis of the algorithms for natural 
evolutionary processes which they try to mimic. 
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4 
Principles of evolutionary processes 

David B Fogel 

4.1 Overview 

The most widely accepted collection of evolutionary theories is the neo- 
Darwinian paradigm. These arguments assert that the vast majority of the 
history of life can be fully accounted for by physical processes operating on 
and within populations and species (Hoffman 1989, p 39). These processes 
are reproduction, mutation, competition, and selection. Reproduction is an 
obvious property of extant species. Further, species have such great reproductive 
potential that their population size would increase at an exponential rate if 
all individuals of the species were to reproduce successfully (Malthus 1826, 
Mayr 1982, p 479). Reproduction is accomplished through the transfer of an 
individual’s genetic program (either asexually or sexually) to progeny. Mutation, 
in a positively entropic system, is guaranteed, in that replication errors during 
information transfer will necessarily occur. Competition is a consequence of 
expanding populations in a finite resource space. Selection is the inevitable 
result of competitive replication as species f i l l  the available space. Evolution 
becomes the inescapable result of interacting basic physical statistical processes 
(Huxley 1963, Wooldridge 1968, Atmar 1979). 

Individuals and species can be viewed as a duality of their genetic program, 
the genotype (Section 5.2), and their expressed behavioral traits, the phenofype. 
The genotype provides a mechanism for the storage of experiential evidence, 
of historically acquired information. Unfortunately, the results of genetic 
variations are generally unpredictable due to the universal effects of pleiotropy 
and polygeny (figure 4.1) (Mayr 1959, 1963, 1982, 1988, Wright 1931, 1960, 
Simpson 1949, p 224, Dobzhansky 1970, Stanley 1975, Dawkins 1986). 
Pleiotropy is the effect that a single gene may simultaneously affect several 
phenotypic traits. Polygeny is the effect that a single phenotypic characteristic 
may be determined by the simultaneous interaction of many genes. There are no 
one-gene, one-trait relationships in naturally evolved systems. The phenotype 
varies as a complex, nonlinear function of the interaction between underlying 
genetic structures and current environmental conditions. Very different genetic 
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Figure 4.1. Pleiotropy is the effect that a single gene may simultaneously affect several 
phenotypic traits. Polygeny is the effect that a single phenotypic characteristic may 
be determined by the simultaneous interaction of many genes. These one-to-many and 
many-to-one mappings are pervasive in natural systems. As a result, even small changes 
to a single gene may induce a raft of behavioral changes in the individual (after Mayr 
1963 ). 

structures may code for equivalent behaviors, just as diverse computer programs 
can generate similar functions. 

Selection directly acts only on the expressed behaviors of individuals and 
species (Mayr 1988, pp 477-8). Wright (1932) offered the concept of adaptive 
topography to describe the fitness of individuals and species (minimally, isolated 
reproductive populations termed demes). A population of genotypes maps to 
respective phenotypes (sensir Lewontin 1974), which are in turn mapped onto 
the adaptive topography (figure 4.2). Each peak corresponds to an optimized 
collection of phenotypes, and thus to one of more sets of optimized genotypes. 
Evolution probabilistically proceeds up the slopes of the topography toward 
peaks as selection culls inappropriate phenotypic variants. 

Others (Atmar 1979, Raven and Johnson 1986, pp 400-1) have suggested 
that i t  is more appropriate to view the adaptive landscape from an inverted 
position. The peaks become troughs, 'minimized prediction error entropy wells' 
(Atmar 1979). Searching for peaks depicts evolution as a slowly advancing, 
tedious, uncertain process. Moreover, there appears to be a certain fragility to 
an evolving phyletic line; an optirnized population might be expected to quickly 
fall of the peak under slight perturbations. The inverted topography leaves an 
altogether different impression. Populations advance rapidly down the walls of 
the error troughs until their cohesive set of interrelated behaviors is optimized, TEAM LRN
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Figure 4.2. Wright’s adaptive topography, inverted. An adaptive topography, or adaptive 
landscape, is defined to represent the fitness of all possible phenotypes (generated by the 
interaction between the genotypes and the environment). Wright ( 1932) proposed that as 
selection culls the last appropriate existing behaviors relatiLrc to others in  the population. 
the population advances to areas of higher fitness on the landscape. Atniar (1979) and 
others have suggested viewing the topography from an inverted perspective. Populations 
advance to areas of lower behavioral error. 

at which point stagnation occurs. If the topography is generally static, rapid 
descents will be followed by long periods of stasis. If, however, the topography 
is in continual flux, stagnation may never set in. 

Viewed in this manner, evolution is an obvious optimizing problem- 
solving process (not to be confused with a process that leads to perfection). 
Selection drives phenotypes as close to the optimum as possible, gi\ren initial 
conditions and environment constraints. However the environment is continually 
changing. Species lag behind, constantly evolving toward a new optimum. N o  
organism should be viewed as being perfectly adapted to its enLrironment. The 
suboptimality of behavior is to be expected in any dynamic environment that 
mandates tradeoffs between behavioral requirements. However selection never 
ceases to operate, regardless of the population’s position on the topography. 

Mayr (1988, p 532) has summarized some of the more salient characteristics 
of the neo-Darwinian paradigm. These include: 

The individual is the primary target of selection. 
Genetic variation is largely a chance phenomenon. Stochastic processes 
play a significant role in evolution. 
Genotypic variation is largely a product of recombination and ’only 
ultimately of mutation’. 
‘Gradual’ evolution may incorporate phenotypic discontinuities. 
Not all phenotypic changes are necessarily consequences of crd hoc natural 
select ion. 
Evolution is a change in adaptation and diversity. not merely a change in 
gene frequencies. 
Selection is probabilistic, not deterministic. 

These characteristics form a framework for evolutionary computation. TEAM LRN
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5 
Principles of genetics 

Raymond C Paton 

5.1 Introduction 

The material covers a number of key areas which are necessary to understanding 
the nature of the evolutionary process. We begin by looking at some basic ideas 
of heredity and how variation occurs in interbreeding populations. From here 
we look at the gene in more detail and then consider how i t  can undergo change. 
The next section looks at aspects of population thinking needed to appreciate 
selection. This is crucial to an appreciation of Darwinian mechanisms of 
evolution. The chapter concludes with selected references to further information. 
In order to keep this contribution within its size limits, the material is primarily 
about the biology of higher plants and animals. 

5.2 Some fundamental concepts in genetics 

Many plants and animals are produced through sexual means by which the 
nucleus of a male sperm cell fuses with a female egg cell (ovum). Sperm and 
ovum nuclei each contain a single complement of nuclear material arranged as 
ribbon-like structures called chromosomes. When a sperm fuses with an egg 
the resulting cell, called a zygote, has a double complement of chromosomes 
together with the cytoplasm of the ovum. We say that a single complement 
of chromosomes constitutes a haploid set (abbreviated as n )  and a double 
complement is called the diploid set (2rz). Gametes (sex cells) are haploid 
whereas most other cells are diploid. The formation of gametes (gametogenesis) 
requires the number of chromosomes in the gamete-forming cells to be halved 
(see figure 5.1). 

Gametogenesis is achieved through a special type of cell division called 
meiosis (also called reduction division). The intricate mechanics of meiosis 
ensures that gametes contain only one copy of each chromosome. 

A genotype is the genetic constitution that an organism inherits from its 
parents. In a diploid organism, half the genotype is inherited from one parent and 
half from the other. Diploid cells contain two copies of each chromosome. This 

27 TEAM LRN



28 Principles of genetics 

Figure 5.1. A common life cycle model. 

rule is not universally true when it comes to the distribution of sex chromosomes. 
Human diploid cells contain 46 chromosomes of which there are 22 pairs and 
an additional two sex chromosomes. Sex is determined by one pair (called 
the sex chromosomes); female is X and male is Y. A female human has the 
sex chromosome genotype of XX and a male is XY. The inheritance of sex is 
summarized in figure 5.2. The members of a pair of nonsex chromosomes are 
said to be homologous (this is also true for XX genotypes whereas XY are not 
homologous). 

Figure 5.2. Inheritance of sex chromosomes. 

Although humans have been selectively breeding domestic animals and 
plants for a long time, the modern study of genetics began in the mid-19th 
century with the work of Gregor Mendel. Mendel investigated the inheritance TEAM LRN
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of particular traits in peas. For example, he took plants that had wrinkled 
seeds and plants that had round seeds and bred them with plants of the same 
phenotype (i.e. observable appearance), so wrinkled were bred with wrinkled and 
round were bred with round. He continued this over a number of generations 
until round always produced round offspring and wrinkled, wrinkled. These 
are called pure breeding plants. He then cross-fertilized the plants by breeding 
rounds with wrinkles. The subsequent generation (called the FI hybrids) was 
all round. Then Mendel crossed the F1 hybrids with each other and found that 
the next generation, the F2 hybrids, had round and wrinkled plants in  the ratio 
of 3 (round) : I (wrinkled). 

such as: 
Mendel did this kind of experiment with a number of pea characteristics 

color of cotyledons 
color of flowers 

yellow or green 
red or white 

color of seeds 
length of stem 

graybrown or white 
tall or dwarf. 

In each case he found that the the Fl hybrids were always of one form and 
the two forms reappeared in the F2. Mendel called the form which appeared in 
the F1 generation dominant and the form which reappeared in the F2 recessive 
(for the full text of Mendel’s experiments see an older genetics book, such as 
that by Sinnott et nl (1958)). 

A modern interpretation of inheritance depends upon a proper understanding 
of the nature of a gene and how the gene is expressed in the phenotype. The 
nature of a gene is quite complex as we shall see later (see also Alberts et nl 
1989, Lewin 1990, Futuyma 1986). For now we shall take i t  to be the functional 
unit of inheritance. An allele (allelomorph) is one of several forms of a gene 
occupying a given locus (location) on a chromosome. Originally related to pairs 
of contrasting characteristics (see examples above), the idea of observable unit 
characters was introduced to genetics around the turn of this century by such 
workers as Bateson, de Vries, and Correns (see Darden 1991). The concept of 
a gene has tended to replace allele in general usage although the two terms are 
not the same. 

How can the results of Mendel’s experiments be interpreted? We know 
that each parent plant provides half the chromosome complement found in its 
offspring and that chromosomes in the diploid cells are in pairs of homologues. 
In the pea experiments pure breeding parents had homologous chromosomes 
which were identical for a particular gene; we say they are homozygous for 
a particular gene. The pure breeding plants were produced through self- 
fertilization and by selecting those offspring of the desired phenotype. As round 
was dominant to wrinkled we say that the round form of the gene is R (’big 
r’) and the wrinkled r (‘little r’). Figure 5.3 summarizes the cross of a pure 
breeding round (RR) with a pure breeding wrinkled (rr). TEAM LRN



Figure 5.3. A simple Mendelian experiment. 

We see the appearance of the heterozygote (in this case Rr) in the F1 
generation. This is phenotypically the same as the dominant phenotype but 
genotypically contains both a dominant and a recessive form of the particular 
gene under study. Thus when the heterozygotes are randomly crossed with 
each other the phenotype ratio is three dominant : one recessive. This is called 
the rnonohybrid ratio (i.e. for one allele). We see in Mendel’s experiments 
the independent segregation of alleles during breeding and their subsequent 
independent as sortmen t in offspring . 

In the case of two genes we find more phenotypes and genotypes appearing. 
Consider what happens when pure breeding homozygotes for round yellow seeds 
(RRYY) are bred with pure breeding homozygotes for wrinkled green seeds 
(rryy). On being crossed we end up with heterozygotes with a genotype of 
RrYy and phenotype of round yellow seeds. We have seen that the genes 
segregate independently during meiosis so we have the combinations shown in 
figure 5.4. 

R r Y  y 

genes segregate 
independently 

RY Ry rY ry 

Figure 5.4. Genes segregating independently 

Thus the gametes of the heterozygote can be of four kinds though we assume 
that each form can occur with equal frequency. We may examine the possible 
combinations of gametes for the next generation by producing a contingency 
table for possible gamete combinations. These are shown in figure 5.5. TEAM LRN
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Figure 5.5. Genotype and phenotype patterns in F2. 

We summarize this set of genotype combinations in the phenotype table 
(figure 5.5(b)). The resulting ratio of phenotypes is called the dihybrid ratio 
(9:3:3:1). We shall consider one final example in this very brief summary. 
When pure breeding red-flowered snapdragons were crossed with pure breeding 
white-flowered plants the F1 plants were all pink. When these were selfed the 
population of offspring was in the ratio of one red : two pink : one white. This 
is a case of incomplete dominance in the heterozygote. 

It has been found that the Mendelian ratios do not always apply in breeding 
experiments. In some cases this is because certain genes interact with each 
other. Epistasis occurs when the expression of one gene masks the phenotypic 
effects of another. For example, certain genotypes (cyanogenics) of clover can 
resist grazing because they produce low doses of cyanide which makes them 
unpalatable. Two genes are involved in cyanide production, one which produces 
an enzyme which converts a precursor molecule into a glycoside and another 
gene which produces an enzyme which converts the glycoside into hydrogen 
cyanide (figure 5.6(a)). If two pure breeding acyanogenic strains are crossed 
the heterozygote is cyanogenic (figure 5.6(b)). 

Figure 5.6. Cyanogenic clover: cyanide production and cyanogenic hybrid. TEAM LRN
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When the cyanogenic strain is selfed the genotypes are as summarized 
in figure 5.7(a).  There are only two phenotypes produced, cyanogenic and 
acyanogenic, as summarized in figure 5.7(b). 

So far we have followed Mendel’s laws regarding the independent 
segregation of genes. This independent segregation does not occur when genes 
are located on the same chromosome. During meiosis homologous chromosomes 
(i.e. matched pairs one from each parental gamete) move together and are seen 
to be joined at the centromere (the clear oval region in figure 5.8). 

In this simplified diagram we show a set of genes (rectangles) in which those 
on the top are of the opposite form to those on the bottom. As the chromosomes 
are juxtaposed they each are doubled up so that four strands (usually called 
chromatids) are aligned. The close proximity of the inner two chromatids and 
the presence of enzymes in the cellular environment can result in breakages and 
recombinations of these strands as summarized in figure 5.9. 

The result is that of the four juxtaposed strands two are the same as 
the parental chromosomes and two, called the recombinants, are different. 
This crossover process mixes up the genes with respect to original parental 
chromosomes. The chromosomes which make up a haploid gamete will be 
a random mixture of parental and recombinant forms. This increases the 
variability between parents and offspring and reduces the chance of harmful TEAM LRN
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recessives becoming homozygous. 

5.3 The gene in more detail 

Genes are located on chromosomes. Chromosomes segregate independently 
during meiosis whereas genes can be linked on the same chromosome. The 
conceptual reasons why there has been confusion are the differences in 
understanding about gene and chromosome such as which is the unit of heredity 
(see Darden 1991). The discovery of the physicochemical nature of hereditary 
material culminated in the Watson-Crick model in 1953 (see figure 5.10). The 
coding parts of the deoxyribonucleic acid (DNA) are called bases; there are 
four types (adenine, thymine, cytosine, and guanine). They are strung along 
a sugar-and-phosphate string, which is arranged as a helix. Two intertwined 
strings then form the double helix. The functional unit of this code is a triplet 
of bases which can code for a single amino acid. The genes are located along 
the DNA strand. 

Figure 5.10. Idealization of the organization of chromosomes in a eukaryotic cell. (A 
eukaryotic cell has an organized nucleus and cytoplasmic organelles.) 

Transcription is the synthesis of ribonucleic acid (RNA) using the DNA 
template. It is a preliminary step in the ultimate synthesis of protein. A gene 
can be transcribed through the action of enzymes and a chain of transcript is 
formed as a polymer called messenger RNA (mRNA). This mRNA can then be TEAM LRN
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translated into protein. The translation process converts the mRNA code into a 
protein sequence via another form of RNA called transfer RNA (tRNA). In this 
way, genes are transcribed so that mRNA may be produced, from which protein 
molecules (typically the ‘workhorses’ and structural molecules of a cell) can be 
formed. This flow of information is generally unidirectional. (For more details 
on this topic the reader should consult a molecular biology text and look at the 
central dogma of molecular biology, see e.g. Lewin 1990, Alberts et a1 1989.) 

Figure 5.1 1 provides a simplified view of the anatomy of a structural gene, 
that is, one which codes for a protein or RNA. 

Figure 5.11. A simplified diagram of a structural gene. 

That part of the gene which ultimately codes for protein or RNA is preceded 
upstream by three stretches of code. The enhancer facilitates the operation of 
the promoter region. which is where RNA polymerase is bound to the gene in 
order to initiate transcription. The operator is the site where transcription can 
be halted by the presence of a repressor protein. Exons are expressed in the 
final gene product (e.g. the protein molecule) whereas introns are transcribed 
but are removed from the transcript leaving the fragments of exon material to 
be spliced. One stretch of DNA may consist of several overlapping genes. For 
example, the introns in one gene may be the exons in another (Lewin 1990). 
The terminator is the postexon region of the gene which causes transcription 
to be terminated. Thus a biological gene contains not only code to be read 
but also coded instructions on how it should be read and what should be read. 
Genes are highly organized. An operon system is located on one chromosome 
and consists of a regulator gene and a number of contiguous structural genes 
which share the same promoter and terminator and code for enzymes which 
are involved in specific metabolic pathways (the classical example is the Lac 
operon, see figure 5.12). 

Operons can be grouped together into higher-order (hierarchical) regulatory 
genetic systems (Neidhart et crl 1990). For example, a number of operons 
from different chromosomes may be regulated by a single gene known as a 
regulon. These higher-order systems provide a great challenge for change in a 
genome. Modification of the higher-order gene can have profound effects on 
the expression of structural genes that are under its influence. TEAM LRN
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Figure 5.12. A visualization of an operon. 

5.4 Options for change 

We have already seen how sexual reproduction can mix up the genes which 
are incorporated in a gamete through the random reassortment of paternal 
and maternal chromosomes and through crossing over and recombination. 
Effectively though. the gamete acquires a subset of the same genes as the 
diploid gamete-producing cells; they are just mixed up. Clearly, any zygote that 
is produced will have a mixture of genes and (possibly) some chromosomes 
which have both paternal and maternal genes. 

There are other mechanisms of change which alter the genes themselves 
or change the number of genes present in a genome. We shall describe a 
mutation as any change in the sequence of genomic DNA. Gene mutations 
are of two types: point mutation. in which a single base is changed, and 
frameshift mutation, in which one or more bases (but not a multiple of three) 
are inserted or deleted. This changes the frame in which triplets are transcribed 
into RNA and ultimately translated into protein. In addition some genes are 
able to become transposed elsewhere in a genome. They ‘jump’ about and 
are called transposons. Chromosome changes can be caused by deletion (loss 
of a section), duplication (the section is repeated), inversion (the section is in 
the reverse order), and translocation (the section has been relocated elsewhere). 
There are also changes at the genome level. Ploidy is the term used to describe 
multiples of a chromosome complement such as haploid ( n ) ,  diploid (212), and 
tetraploid (4n). A good example of the influence of ploidy on evolution is among 
such crops as wheat and cotton. Somy describes changes to the frequency of 
particular chromosomes: for example, trisomy is three copies of a chromosome. 

5.5 Population thinking 

So far we have focused on how genes are inherited and how they or their 
combinations can change. In order to understand evolutionary processes 
(Chapter 4) we must shift our attention to looking at populations (we shall not 
emphasize too much whether of genes. chromosomes, genomes, or organisms). 
Population thinking is central to our understanding of models of evolution. 

The Hardy-Weinberg theorem applies to frequencies of genes and genotypes 
in a population of individuals, and states that the relative frequency of each gene TEAM LRN
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remains in equilibrium from one generation to the next. For a single allele. if 
the frequency of one form is p then that of the other (say 4 )  is I - p .  The three 
genotypes that exist with this allele have the population proportions of 

p z  + 2 p y  + y 2  = I .  

This equation does not apply when a mixture of four factors changes the relative 
frequencies of genes in a population: mutation, selection, gene flow, and random 
genetic drift (drift). Drift can be described as the effect of the sampling of a 
population on its parents. Each generation can be thought of as a sample of its 
parents' population. In that the current population is a sample of its parents, 
we acknowledge that a statistical sampling error should be associated with gene 
frequencies. The effect will be small in large populations because the relative 
proportion of random changes will be a very small component of the large 
numbers. However, drift in a small population will have a marked effect. 

One factor which can counteract the effect of drift is differential migration 
of individuals between populations which leads to gene flow. Several models of 
gene flow exist. For example, migration which occurs at random among a group 
of small populations is called the island model whereas in the stepping stone 
model each population receives migrants only from neighboring populations. 
Mutation, selection, and gene flow are deterministic factors so that if fitness. 
mutation rate, and rate of gene flow are the same for a number of populations 
that begin with same gene frequencies, they will attain the same equilibrium 
composition. Drift is a stochastic process because the sampling effect on the 
parent population is random. 

Sewall Wright introduced the idea of an adaptive landscape to explain how 
a population's allele freyuencies might evolve over time. The peaks on the 
landscape represent genetic compositions of a population for which the mean 
fitness is high and troughs are possible compositions where the mean fitness 
is low. As gene frequencies change and mean fitness increases the population 
moves uphill. Indeed, selection will operate to increase mean fitness so, on 
a multipeaked landscape, selection may operate to move populations to local 
maxima. On a fixed landscape drift and selection can act together so that 
populations may move uphill (through selection) or downhill (through drift). 
This means that the global maximum for the landscape could be reached. These 
ideas are formally encapsulated in Wright's ( 1968-1 978) shifring htr1ciiic.e theory 
of evolution. Further information on the relation of population genetics to 
evolutionary theory can be studied further in the books by Wright (1968-1978), 
Crow and Kimura (1970) and Maynard Smith (1989). 

The change of gene frequencies coupled with changes in the genes 
themselves can lead to the emergence of new species although the process 
is far from simple and not fully understood (Futuyma, 1986, Maynard Smith 
1993). The nature of the species concept or (for some) concepts which is 
central to Darwinism is complicated and will not be discussed here (see e.g. 
Futuyma 1986). Several mechanisms apply to promote speciation (Maynard TEAM LRN
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Smith 1993): geographical or spatial isolation, barriers preventing formation of 
hybrids, nonviable hybrids, hybrid infertility, and hybrid breakdown-in which 
post-F1 generations are weak or infertile. 

Selectionist theories emphasize invariant properties of the system: the system 
is an internal generator of variations (Changeux and Dehaene 1989) and diversity 
among units of the population exists prior to any testing (Manderick 1994). We 
have seen how section operates to optimize fitness. Darden and Cain (1987) 
summarize a number of common elements in selectionist theories as follows: 

0 a set of a given entity type (i.e. the units of the population) 

0 a particular property ( P )  according to which members of this set vary 

0 an environment in which the entity type is found 

0 a factor in the environment to which members react differentially due to 
their possession or nonpossession of the property (P)  

0 differential benefits (both shorter and longer term) according to the 
possession or nonpossession of the property ( P ) .  

This scheme summarizes the selectionist approach. In addition, Maynard 
Smith ( 1989) discusses a number of selection systems (particular relevant 
to animals) including sexual, habitat, family, kin, group, and synergistic 
(cooperation). A very helpful overview of this area of ecology, behavior, 
and evolution is that by Sigmund (1993). Three selectionist systems in the 
biosciences are the neo-Darwinian theory of evolution in a population, clonal 
selection theory applied to the immune system, and the theory of neuronal 
group selection (for an excellent summary with plenty of references see that by 
Manderick ( 1994)). 

There are many important aspects of evolutionary biology which have 
had to be omitted because of lack of space. The relevance of neutral 
molecular evolution theory (Kimura 1983) and nonselectionist approaches (see 
e.g. Goodwin and Saunders 1989, Lima de Faria 1988, Kauffman 1993) has not 
been discussed. In addition some important ideas have not been considered, such 
as evolutionary game theory (Maynard Smith 1989, Sigmund 1993), the role of 
sex (see e.g. Hamilton et a1 1990), the evolution of cooperation (Axelrod 1984), 
the red queen (Van Valen 1973, Maynard Smith 1989), structured genomes, for 
example, incorporation of regulatory hierarchies (Kauffman 1993, Beaumont 
1993, Clarke et al 1993), experiments with endosymbiotic systems (Margulis 
and Foster 199 I ,  Hilario and Gogarten 1993), coevolving parasite populations 
(see e.g. Collins 1994; for a biological critique and further applications see 
Sumida and Hamilton I994), inheritance of acquired characteristics (Landman 
I99 I ) ,  and genomic imprinting and other epigenetic inheritance systems (for a 
review see Paton 1994). There are also considerable philosophical issues which 
must be addressed in this area which impinge on how biological sources are 
applied to evolutionary computing (see Sober 1984). Not least among these is 
the nature of adaptation. TEAM LRN
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A history of evolutionary computation 

Kenneth De Jong, David B Fogel and Ham-Paul 
Sch wefel 

6.1 Introduction 

No one will ever produce a completely accurate account of a set of past events 
since. as someone once pointed out, writing history is as difficult as forecasting. 
Thus we dare to begin our historical summary of evolutionary computation 
rather arbitrarily at a stage as recent as the mid- 1950s. 

At that time there was already evidence of the use of digital computer 
models to better understand the natural process of evolution. One of the first 
descriptions of the use of an evolutionary process for computer problem solving 
appeared in the articles by Friedberg (1958) and Friedberg ef a1 (1959). This 
represented some of the early work in machine learning and described the use 
of an evolutionary algorithm for uutomcrtic proqrmimirig, i.e. the task of finding 
a program that calculates a given input-output function. Other founders in the 
field remember a paper of Fraser (1957) that influenced their early work, and 
there may be many more such forerunners depending on whom one asks. 

In the same time frame Brernermann presented some of the first attempts 
to apply simulated evolution to numerical optimization problems involving both 
linear and convex optimization as well as the solution of nonlinear simultaneous 
equations (Bremermann 1962). Bremermann also developed some of the 
early evolutionary algorithm (EA) theory, showing that the optimal mutation 
probability for linearly separable problems should have the value of I/! in the 
case of t bits encoding an individual (Bremermann et ul 1965). 

Also during this period Box developed his evolutionary operation (EVOP) 
ideas which involved an evolutionary technique for the design and analysis of 
(industrial) experiments (Box 1957, Box and Draper 1969). Box's ideas were 
never realized as a computer algorithm, although Spendley et a1 (1962) used 
them as the basis for their so-called simplex design method. I t  is interesting to 
note that the REVOP proposal (Satterthwaite 1959a, b) introducing randomness 
into the EVOP operations was rejected at that time. 

TEAM LRN
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As is the case with many ground-breaking efforts, these early studies were 
met with considerable skepticism. However, by the mid-1960s the bases for 
what we today identify as the three main forms of EA were clearly established. 
The roots of evolutionary programming (EP) (Chapter 10) were laid by Lawrence 
Fogel in San Diego, California (Fogel et a1 1966) and those of genetic algorithms 
(GAS) (Chapter 8) were developed at the University of Michigan in Ann Arbor 
by Holland (1967). On the other side of the Atlantic Ocean, evolution strategies 
(ESs) (Chapter 9) were a joint development of a group of three students, Bienert, 
Rechenberg, and Schwefel, in Berlin (Rechenberg 1965). 

Over the next 25 years each of these branches developed quite independently 
of each other, resulting in unique parallel histories which are described in more 
detail in the following sections. However, in 1990 there was an organized effort 
to provide a forum for interaction among the various EA research communities. 
This took the form of an international workshop entitled Parallel Problem 
Solling fkom Nature at Dortmund (Schwefel and Manner I99 1 ). 

Since that event the interaction and cooperation among EA researchers from 
around the world has continued to grow. In the subsequent years special efforts 
were made by the organizers of ZCGA’91 (Belew and Booker 1991), EP’92 
(Fogel and Atmar 1992), and PPSN’92 (Manner and Manderick 1992) to provide 
additional opportunities for interaction. 

This increased interaction led to a consensus for the name of this new field, 
e\vlutionarv computation (EC), and the establishment in 1993 of a journal by the 
same name published by MIT Press. The increasing interest in EC was further 
indicated by the IEEE World Congress on Computationcll Intelligence ( WCCI) 
at Orlando, Florida, in June 1994 (Michalewicz et ml 1994), in which one of the 
three simultaneous conferences was dedicated to EC along with conferences on 
neural networks and fuzzy systems. 

That brings us to the present in which the continued growth of the field is 
reflected by the many EC events and related activities each year, and its growing 
maturity reflected by the increasing number of books and articles about EC. 

In order to keep this overview brief, we have deliberately suppressed many 
of the details of the historical developments within each of the three main EC 
streams. For the interested reader these details are presented in the following 
sections. 

6.2 Evolutionary programming 

Evolutionary programming (EP) was devised by Lawrence J Fogel in 1960 
while serving at the National Science Foundation (NSF). Fogel was on leave 
from Convair, tasked as special assistant to the associate director (research), 
Dr Richard Bolt, to study and write a report on investing in basic research. 
Artificial intelligence at the time was mainly concentrated around heuristics 
and the simulation of primitive neural networks. I t  was clear to Fogel that 
both these approaches were limited because they model humans rather than TEAM LRN
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the essential process that produces creatures of increasing intellect: evolution. 
Fogel considered intelligence to be based on adapting behavior to meet goals 
i n  a range of environments. In turn, prediction was viewed as the key 
ingredient to intelligent behavior and this suggested a series of experiments on 
the use of simulated evolution of tinite-state machines (Chapter 18) to forecast 
nonstationary time series with respect to arbitrary criteria. These and other 
experiments were documented in a series of publications (Fogel 1962, 1963, 
Fogel ef t i i  1965, 1966, and many others). 

Intelligent behabior was viewed as requiring the composite ability to ( i )  
predict one’s environment, coupled with ( i i )  a translation of the predictions 
into ii suitable response in light of the given goal. For the sake of generality. 
the en~~ironnient was described as a sequence of symbols taken from a finite 
alphabet. The evolutionary problem was detined as evolving an algorithm 
(essentially a program) that would operate on the sequence of symbols thus far 
obser\,ed in such a manner so as to produce an output symbol that is likely t o  
maximize the algorithm’s performance in light of’both the next symbol to appear 
i n  the environment and a well-defined payoff function. Finite-state machines 
pro\fidt.d a useful representation for the required behavior. 

A population of finite-state machines is 
exposed to the enbironment, that is, the sequence of symbols that have been 
observed up to the current time. For each parent machine. as each input symbol 
is offered to the machine, each output symbol is compared with the next input 
symbol. The worth of this prediction is then measured with respect to the payoff 
function (e.g. all-none, absolute error, squared error, or any other expression of 
the meaning of the symbols). After the last prediction is made. a function of the 
payoff for each symbol (e.g. average payoff per symbol) indicates the fitness of 
the machine. 

Offspring machines are created by randomly mutating each parent machine. 
Each parent produces offspring (this was originally implemented as only a single 
offspring simply for convenience). There are five possible modes of random 
mutation that naturally result from the description of the machine: change an 
output symbol. change a state transition, add a state, delete a state. or change 
the initial state. The deletion of a state and change of the initial state are 
only allowed when the parent machine has more than one state. Mutations are 
chosen with respect to a probability distribution, which is typically uniform. The 
number of mutations per offspring is also chosen with respect to a probability 
distribution or may be fixed ( i  priori. These offspring are then evaluated over the 
existing environment in the same manner as their parents. Other mutations, such 
;is majority logic mating operating on three or more machines, were proposed 
by Fogel et cil (1966) but not implemented. 

The machines that provide the greatest payoff are retained to become parents 
of the next generation. (Typically, half the total machines were saved so that the 
parent population remained at a constant size.) This process is iterated unt i l  an 
actual prediction of the next symbol (as yet unexperienced) in the environment 

The proposal was as follows. 
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is required. The best machine generates this prediction, the new symbol is added 
to the experienced environment, and the process is repeated. Fogel (1964) (and 
Fogel et nl ( I  966)) used ‘nonregressive’ evolution. To be retained, a machine 
had to rank in the best half of the population. Saving lesser-adapted machines 
was discussed as a possibility (Fogel et cil 1966, p 21) but not incorporated. 

This general procedure was successfully applied to problems in prediction. 
identification, and automatic control (Fogel et nl 1964, 1966, Fogel 1968) and 
was extended to simulate coevolving populations by Fogel and Burgin (1969). 
Additional experiments evolving finite-state machines for sequence prediction. 
pattern recognition, and gaming can be found in the work of Lutter and 
Huntsinger ( I969), Burgin ( 1969), Atmar ( 1976). Dearholt ( 1 9 7 6 ~  and 
Takeuchi ( 1980). 

In the mid-1980s the general EP procedure was extended to alternative 
representations including ordered lists for the traveling salesman problem (Fogel 
and Fogel 1986), and real-valued vectors for continuous function optimization 
(Fogel and Fogel 1986). This led to other applications in route planning 
(Fogel 1988, Fogel and Fogel 1988), optimal subset selection (Fogel 1989), 
and training neural networks (Fogel et a1 1990), as well as comparisons to other 
methods of simulated evolution (Fogel and Atmar 1990). Methods for extending 
evolutionary search to a two-step process including evolution of the mutation 
variance were offered by Fogel et nl (1991, 1992). Just as the proper choice of 
step sizes is a crucial part of every numerical process, including optimization, the 
internal adaptation of the mutation variance(s) is of utmost importance for the 
algorithm’s efficiency. This process is called self-adaptation or autoadaptation 
in the case of no explicit control mechanism, e.g. if the variances are part of 
the individuals’ characteristics and underlie probabilistic variation in a similar 
way as do the ordinary decision variables. 

In the early 1990s efforts were made to organize annual conferences on EP, 
these leading to the first conference in 1992 (Fogel and Atmar 1992). This 
conference offered a variety of optimization applications of EP in robotics 
(McDonnell et a1 1992, Andersen er a1 1992). path planning (Larsen and 
Herman 1992, Page et a1 1992), neural network design and training (Sebald 
and Fogel 1992, Porto 1992, McDonnell 1992), automatic control (Sebald et nl 
19921, and other fields. 

First contacts were made between the EP and ES communities just 
before this conference, and the similar but independent paths that these two 
approaches had taken to simulating the process of evolution were clearly 
apparent. Members of the ES community have participated in all successive 
EP conferences (Back et a1 1993, Sprave 1994, Back and Schiitz 1995, Fogel et 
(11 1996). There is less similarity between EP and GAS, as the latter emphasize 
simulating specific mechanisms that apply to natural genetic systems whereas 
EP emphasizes the behavioral, rather than genetic, relationships between parents 
and their offspring. Members of the GA and GP communities have, however, 
also been invited to participate in the annual conferences, making for truly TEAM LRN
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interdiwiplinary interaction (see e.g. Altenberg 1994, Land and Belew 1995, 
Koza and Andre 1996). 

Since the early 1990s. efforts i n  EP have diversified in many directions. 
Application\ in training neural networks have received considerable attention 
( w e  e.g. English 1994, Angeline st d 1994, NlcDonnell and Waagen 1994, 
Porto et 111 199.5). while relatively less attention ha\ been devoted to evolving 
furry \ystems (Haffner and Sebald 1993, Kim and Jeon 1996). Image processing 
applications can be found in the articles by Bhattacharjya and Roysam (1994). 
Brotherton et tr l  ( 1994). Rizki et til (1995), and others. Recent efforts to use 
EP in medicine hace been offered by Fogel et cil (1995) and Gehlhaar et trl 

( 1995 1. Efforts \tudying and comparing methods of self-adaptation can be 
found in the articles by Saralanan et crl ( 1995). Angeline er al ( 1996). and 
other\. Mathematical analyse\ of EP have been summarized by Fogel (1995). 

To offer a summary, the initial efforts of L J Fogel indicate some of the 
early attempts to ( i )  use simulated cvolution to perform prediction, ( i i )  include 

ariable-length encodings, ( i i i )  use representation\ that take the form of a 
\equence of instructions. ( i v )  incorporate a population of candidate solutions, and 
( b  ) coevolve evolutionary programs. Moreover, Fogel ( 1963, 1964) and Fogel 
et trl (1966) offered the early recognition that natural evolution and the human 
endeavor of the scientific method are essentially \imilar processes, a notion 
recently echoed by Cell-Mann ( 1994). The initial prescription3 for operating 
on tinite-state machines have been extended to arbitrary representations. 
mutation operators, and selection methods, and techniques for self-adapting the 
t ' b  olutionary search hake been proposed and implemented. The population sire 
need not be kept constant and there can be a variable number of offjpring 
per parent, much like the ( p  + A )  methods (Section 25.4) offered in ESs. In 
contra\t to these methods, selection is often made probabilistic in EP, giving 
les\er-\coring solutions \ome probability of surviving as parents into the next 
generation. In  contrast to GAS, no effort is made in EP to support (some \ay 
maximim) schema processing. nor is the use of random variation comtrained 
to emphasize \pecitic mechanisms of genetic transfer, perhaps providing greater 
\ ersatility to tackle specific problem domains that are unsuitable for genetic 
operator\ wch a\ cros\over. 

6.3 Genetic algorithms 

The first glimpses of the ideas underlying genetic algorithms (GAs) are found in 
Holland's paper\ in the early 1960s (see e.g. Holland 1962). In them Holland \et 
o u t  a broad and ambitious agenda for understanding the underlying principles 
of adaptive sy\tems--\ystems that are capable of self-modification in re,pon\e 
to their interactions with the environments in which they must function. Such a 
theorq of adaptive \y\tem\ jhould facilitate both the understanding of complex TEAM LRN
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forms of adaptation as they appear in natural systems and our ability to design 
robust adaptive artifacts. 

In Holland’s view the key feature of robust natural adaptive systems 
was the successful use of competition and innovation to provide the ability 
to dynamically respond to unanticipated events and changing environments. 
Simple models of biological evolution were seen to capture these ideas nicely via 
notions of survival of the fittest and the continuous production of new offspring. 

This theme of using evolutionary models both to understand natural adaptive 
systems and to design robust adaptive artifacts gave Holland’s work a somewhat 
different focus than those of other contemporary groups that were exploring the 
use of evolutionary models in the design of efficient experimental optimization 
techniques (Rechenberg 1965) or for the evolution of intelligent agents (Fogel 
et a1 1966), as reported in the previous section. 

By the mid-1960s Holland’s ideas began to take on various computational 
forms as reflected by the PhD students working with Holland. From the outset 
these systems had a distinct ‘genetic’ flavor to them in the sense that the 
objects to be evolved over time were represented internally as ‘genomes‘ and the 
mechanisms of reproduction and inheritance were simple abstractions of familiar 
population genetics operators such as mutation, crossover, and inversion. 

Bagley’s thesis (Bagley 1967) involved tuning sets of weights used in the 
evaluation functions of game-playing programs, and represents some of the 
earliest experimental work in the use of diploid representations. the role of 
inversion, and selection mechanisms. By contrast Rosenberg’s thesis (Rosenberg 
1967) has a very distinct flavor of simulating the evolution of a simple 
biochemical system in which single-celled organisms capable of producing 
enzymes were represented in diploid fashion and were evolved over time to 
produce appropriate chemical concentrations. Of interest here is some of the 
earliest experimentation with adaptive crossover operators. 

Cavicchio’s thesis (Cavicchio 1970) focused on viewing these ideas as a form 
of adaptive search, and tested them experimentally on difficult search problems 
involving subroutine selection and pattern recognition. In his work we see 
some of the early studies on elitist (section 28.4) forms of selection and ideas 
for adapting the rates of crossover and mutation. Hollstien‘s thesis (Hollstien 
1971) took the first detailed look at alternate selection and mating schemes. 
Using a test suite of two-dimensional fitness landscapes, he experimented with 
a variety of breeding strategies drawn from techniques used by animal breeders. 
Also of interest here is Hollstien’s use of binary string encoding of the genome 
and early observations about the virtues of Gray codings. 

In parallel with these experimental studies, Holland continued to work on 
a general theory of adaptive systems (Holland 1967). During this period he 
developed his now famous schema analysis of adaptive systems, relating i t  to 
the optimal allocation of trials using k-armed bandit models (Holland 1969). 
He used these ideas to develop a more theoretical analysis of his reproductive 
plans (simple GAS) (Holland 1971, 1973). Holland then pulled all of these TEAM LRN
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ideas together in his pivotal book AdnptLition in h'oturul mid Artijcicil Systems 
(Holland 1975). 

Of interest was the fact that many of the desirable properties of these 
algorithms being identified by Holland theoretically were frequently not 
observed experimentally. I t  was not difficult to identify the reasons for this. 
Hampered by a lack of computational resources and analysis tools, most of 
the early experimental studies involved a relatively small number of runs using 
small population sizes (generally less than 20). I t  became increasingly clear 
that many of the observed deviations from expected behavior could be traced 
t o  the well-known phenomenon in population genetics of genetic dr i f ,  the loss 
of genetic diversity due to the stochastic aspects of selection, reproduction, and 
the like in small populations. 

By the early 1970s there was considerable interest in understanding better 
the behavior of implementable GAS. In particular, i t  was clear that choices 
of population size, representation issues, the choice of operators and operator 
rates all had significant effects of the observed behavior of GAS. Frantz's thesis 
(Frantz 1972) reflected this new focus by studying in detail the roles of crossover 
and inversion in populations of size 100. Of interest here is some of the earliest 
experimental work on mu1 ti poin t crossover operators. 

De Jong's thesis (De Jong 1975) broaded this line of study by analyzing 
both theoretically and experimentally the interacting effects of population size. 
crossover, and mutation on the behavior of a family of GAS being used to 
optimize a fixed test suite of functions. Out of this study came a strong sense that 
even these simple GAS had significant potential for solving difficult optimization 
pro b 1 ems. 

The mid-1970s also represented a branching out of the family tree of GAS 
as other universities and research laboratories established research activities in 
this area. This happened slowly at first since initial attempts to spread the word 
about the progress being made in GAS were met with fairly negative perceptions 
from the artificial intelligence (AI) community as a result of early overhyped 
work in areas such as self-organizing systems and perceptrons. 

Undaunted, groups from several universities including the University of 
Michigan, the University of Pittsburgh, and the University of Alberta organized 
an Aikiptii'e Systerns Worksliop in the summer of 1976 in Ann Arbor, Michigan. 
About 20 people attended and agreed to meet again the following summer. This 
pattern repeated itself for several years, but by 1979 the organizers felt the 
need to broaden the scope and make things a little more formal. Holland, De 
Jong, and Sampson obtained NSF funding for Ail 1)zterdisi~iplincir~ Workshop iiz 
,4ticiptii*e S~stems, which was held at the University of Michigan in the summer 
of I98 1 (Sampson I98 I ). 

By this time there were several established research groups working on GAS. 
At the University of Michigan, Bethke, Goldberg, and Booker were continuing 
to develop GAS and explore Holland's classifier systems (Chapter 12) as part 
of  their PhD research (Bethke 1981, Booker 1982, Goldberg 1983). At the TEAM LRN
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University of Pittsburgh, Smith and Wetzel were working with De Jong on 
various CA enhancements including the Pitt approach to rule learning (Smith 
1980, Wetzel 1983). At the University of Alberta, Brindle continued to look 
at optimization applications of GAS under the direction of Sampson (Brindle 
1981). 

The continued growth of interest in GAS led to a series of discussions and 
plans to hold the first Ziiterrzatiorzal Conference on Gerietic. Algorithms (ICGA) in  
Pittsburgh, Pennsylvania, in 1985. There were about 75 participants presenting 
and discussing a wide range of new developments in both the theory and 
application of GAS (Grefenstette 1985). The overwhelming success of this 
meeting resulted in agreement to continue ZCGA as a biannual conference. Also 
agreed upon at ZCGA '85 was the initiation of a moderated electronic discussion 
group called CA List. 

The field continued to grow and mature as reflected by the ICGA conference 
activities (Grefenstette 1987, Schaffer 1989) and the appearance of several books 
on the subject (Davis 1987, Goldberg 1989). Goldberg's book, in particular, 
served as a significant catalyst by presenting current GA theory and applications 
in a clear and precise form easily understood by a broad audience of scientists 
and engineers. 

By 1989 the ZCGA conference and other CA-related activities had grown 
to a point that some more formal mechanisms were needed. The result was 
the formation of the International Society for Genetic Algorithms (ISGA), an 
incorporated body whose purpose is to serve as a vehicle for conference funding 
and to help coordinate and facilitate CA-related activities. One of its first acts of 
business was to support a proposal to hold a theory workshop on the Foiimiutioiis 
of Genetic. Algorithms (FOGA) in Bloomington, Indiana (Rawlins 199 1 ). 

By this time nonstandard GAS were being developed to evolve complex. 
nonlinear variable-length structures such as rule sets, LISP code, and neural 
networks. One of the motivations for FOGA was the sense that the growth of 
CA-based applications had driven the field well beyond the capacity of existing 
theory to provide effective analyses and predictions. 

Also in 1990, Schwefel hosted the first PPSN conference in Dortmund, 
which resulted in the first organized interaction between the ES and CA 
communities. This led to additional interaction at ICGA '91 in San Diego which 
resulted in an informal agreement to hold ICGA and PPSN in alternating years, 
and a commitment to jointly initiate a journal for the field. 

It was felt that in order for the journal to be successful. it must have broad 
scope and include other species of EA. Efforts were made to include the EP 
community as well (which began to organize its own conferences in 1992). and 
the new journal Evolutionary Computatioiz was born with the inaugural issue in 
the spring of 1993. 

The period from 1990 to the present has been characterized by tremendous 
growth and diversity of the CA community as reflected by the many conference 
activities (e.g. ICGA and FOGA), the emergence of new books on GAS. TEAM LRN
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and a growing list of journal papers. New paradigms such as messy GAS 
(Goldberg et a1 1991) and genetic programming (Chapter 1 1 )  (Koza 1992) 
were being developed. The interactions with other EC communities resulted 
in considerable crossbreeding of ideas and many new hybrid EAs. New GA 
applications continue to be developed, spanning a wide range of problem areas 
from engineering design problems to operations research problems to automatic 
programming. 

6.4 Evolution strategies 

In 1964, three students of the Technical University of Berlin, Bienert. 
Rechenberg, and Schwefel, did not at all aim at devising a new kind of 
optimization procedure. During their studies of aerotechnology and space 
technology they met at an Institute of Fluid Mechanics and wanted to construct 
a kind of research robot that should perform series of experiments on a flexible 
slender three-dimensional body in a wind tunnel so as to minimize its drag. The 
method of minimization was planned to be either a one variable at a time or 
a discrete gradient technique, gleaned from classical numerics. Both strategies, 
performed manually, failed, however. They became stuck prematurely when 
used for a two-dimensional demonstration facility, a joint plate-its optimal 
shape being a flat plate-with which the students tried to demonstrate that it 
was possible to find the optimum automatically. 

Only then did Rechenberg (1965) hit upon the idea to use dice for random 
decisions. This was the breakthrough-on 12 June 1964. The first version 
of an evolutionary strategy (ES), later called the ( I  + I )  ES, was born, with 
discrete, binomially distributed mutations centered at the ancestor’s position, 
and just one parent and one descendant per generation. This ES was first tested 
on a mechanical calculating machine by Schwefel before it was used for the 
experimerirum criicis, the joint plate. Even then, it took a while to overcome 
a merely locally optimal S shape and to converge towards the expected global 
optimum, the flat plate. Bienert (1967), the third of the three students, later 
actually constructed a kind of robot that could perform the actions and decisions 
automatically. 

Using this simple two-membered ES, another student, Lichtfulj ( 1965). 
optimized the shape of a bent pipe. also experimentally. The result was rather 
unexpected, but nevertheless obviously better than all shapes proposed so far. 

First computer experiments, on a Zuse 223, as well as analytical 
investigations using binomially distributed integer mutations, had already been 
performed by Schwefel (1965). The main result was that such a strategy can 
become stuck prematurely, i.e. at ‘solutions’ that are not even locally optimal. 
Based on this experience the use of normally instead of binomially distributed 
mutations became standard in most of the later computer experiments with real- 
kalued variables and in theoretical investigations into the method’s efficiency, 
but not however in experimental optimization using ESs. In 1966 the little ES TEAM LRN
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community was destroyed by dismissal from the Institute of Fluid Mechanics 
('Cybernetics as such is no longer pursued at the institute!'). Not before 1970 
was it found together again at the Institute of Measurement and Control of the 
Technical University of Berlin, sponsored by grants from the German Research 
Foundation (DFG). Due to the circumstances, the group missed publishing its 
ideas and results properly, especially in English. 

In the meantime the often-cited two-phase nozzle optimization was 
performed at the Institute of Nuclear Technology of the Technical University 
of Berlin, then in an industrial surrounding, the AEG research laboratory 
(Schwefel 1968. Klockgether and Schwefel 1970), also at Berlin. For a hot- 
water flashing flow the shape of a three-dimensional convergent-divergent (thus 
supersonic) nozzle with maximum energy efficiency was sought. Though in this 
experimental optimization an exogenously controlled binomial-like distribution 
was used again, it was the first time that gene duplication and deletion were 
incorporated into an EA, especially in a ( I  + I ) ES. because the optimal length 
of the nozzle was not known in advance. As in case of the bent pipe this 
experimental strategy led to highly unexpected results, not easy to understand 
even afterwards, but definitely much better than available before. 

First Rechenberg and later Schwefel analyzed and improved their ES. For the 
( 1 + 1 ) ES, Rechenberg, in his Dr.-Ing. thesis of 197 I ,  developed. on the basis of 
two convex n-dimensional model functions, a convergence rate theory for I I  >> 1 
variables. Based on these results he formulated a $ success rule for adapting 
the standard deviation of mutation (Rechenberg 1973). The hope of arriving at 
an even better strategy by imitating organic evolution more closely led to the 
incorporation of the population principle and the introduction of recombination, 
which of course could not be embedded in the ( I  + I ) ES. A first multimembered 
ES, the ( p  + I )  ES-the notation was introduced later by Schwefel-was also 
designed by Rechenberg in his seminal work of 1973. Because of its inability 
to self-adapt the mutation step sizes (more accurately, standard deviations of the 
mutations), this strategy was never widely used. 

Much more widespread became the ( p  + A )  ES and ( p , A )  ES, both 
formulated by Schwefel in his Dr.-Ing. thesis of 1974-197s. I t  contains 
theoretical results such as a convergence rate theory for the ( I  + A )  ES and 
the ( I ,  A )  ES (A > I ) ,  analogous to the theory introduced by Rechenberg 
for the ( 1  + 1 )  ES (Schwefel 1977). The mriltirneniher-ed ( p  > I ) ESs arose 
from the otherwise ineffective incorporation of mutatable mutation parameters 
(variances and covariances of the Gaussian distributions used). Self-adaptation 
was achieved with the ( p ,  A) ES first, not only with respect to the step sizes. 
but also with respect to correlation coefficients. The enhanced ES version with 
correlated mutations, described already in an internal report (Schwefel I974), 
was published much later (Schwefel 1981) due to the fact that the author left 
Berlin in 1976. A more detailed empirical analysis of the on-line self-adaptation 
of the internal or strategy parameters was first published by Schwefel in 1987 
(the tests themselves were secretly performed on one of the first small instruction TEAM LRN
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rnultiple data (SIMD) parallel machines (CRAY I )  at the Nuclear Research 
Centre (KFA) Julich during the early 1980s wi th  a first parallel version of 
the multimenibered ES with correlated mutations). It was in this work that the 
notion of ,\elf-trtkrptcitioii by cwllec'ti\v letimiiig first came up. The importance of 
recombination (for object as well as strategy parameters) and soft selection (or 
/ i  > I ) was clearly demonstrated. Only recently has Beyer ( 1995a. b )  delicered 
the theoretical background to that particularly important issue. 

I t  may be worth mentioning that in the beginning there were strong objection\ 
against increasing h as well as p beyond one. The argument against A > 1 
was that the exploitation of the current knowledge was unneceswily delayed. 
and the argument against p > 1 was that the wrvival of inferior members of 
the population would unnecessarily slow down the evolutionary progress. The 
hint that h successors could be evaluated in parallel did not convince anybody 
since parallel computers were neither available nor expected in the near future. 
The two-membered ES and the very similar creeping random search method of 
Rastrigin ( 1965) were investigated thoroughly with respect to their convergence 
and convergence rates also by Matyas ( 1965) i n  Czechoslovakia, Born ( 1978) 
on the Eastern side of the Berlin ball ( !), and Rappl ( 1984) in Munich. 

Since this early work many new results hJve been produced by the ES 
community consisting of the group at Berlin (Rechenberg, since 1972) and that 
at Dortmund (Schwefel. since 1985). In particular, strategy variants concerning 
other than only real-valued parameter optimization. i.e. real-world problems, 
were invented. The first use of an ES for binary optimization using multicellular 
individuals was presented by Schwefel (1975). The idea of using several 
\ubpopulations and niching mechanisms for global optimization was propagated 
by Schwefel in 1977; due to a lack of computing resources. however, it could 
not be tested thoroughly at that time. Rechenberg (1978) invented a notational 
scheme for such nested ESs. 

Beside these nonstandard approaches there now exists a wide range of 
other ESs, e.g. seceral parallel concepts (Hoffmeister and Schwefel 1990, 
Lohmann 199 1 ,  Rudolph I99 I ,  1992, Sprave 1994, Rudolph and Sprave 1995). 
ESs for multicriterion problems (Kursawe 199 1 ,  1992). for mixed-integer tasks 
(Lohmann 1992. Rudolph 1994. Back and Schutz 1995), and even for problems 
wi th  a variable-dimensional parameter space (Schutz and Sprave I996), and 
variants concerning nonstandard step size and direction adaptation schemes (\ee 
e.g. Matyas 1967, Stewart et trl 1967, Furst et t i l  1968, Heydt 1970, Rappl 1984, 
Ostermeier et crl  1994). Comparisons between ESs, GAS, and EP may be found 
in the articles by Back et cil (1991, 1993). It was Back ( 1996) who introduced 
a common algorithmic scheme for all brands of' current EAs. 

Omitting all these other useful nonstandard 13%-a commented collection of 
literature concerning ES applications was made at the University of Dortmund 
(Back et 111 1992)-the history of ESs is closed with a mention of three recent 
books by Rechenberg ( 1994), Schwefel (1995), and Back ( 1996) as well as 
three recent contributions that may be seen as written tutorial\ (Schwefel and TEAM LRN
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Rudolph 1995, Back and Schwefel 1995, Schwefel and Bick 1995), which on 
the one hand define the actual standard ES algorithms and on the other hand 
present some recent theoretical results. 
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7 
Introduction to evolutionary algorithms 

Thornas Back 

7.1 General outline of evolutionary algorithms 

Since they are gleaned from the model of organic evolution, all basic instances 
of evolutionary algorithms share a number of common properties, which are 
mentioned here to characterize the prototype of a general evolutionary algorithm: 

(0 

( i i )  

( i i i )  

Evolutionary algorithms utilize the collective learning process of a 
population of individuals. Usually, each individual represents (or encodes) 
a search point in the space of potential solutions to a given problem. 
Additionally, individuals may also incorporate further information; for 
example, strategy parameters (Sections 16.2 and 32.2) of the evolutionary 
algorithm. 
Descendants of individuals are generated by randomized processes intended 
to model mutation (Chapter 32) and recombination (Chapter 3 3 )  . Mutation 
corresponds to an erroneous self-replication of individuals (typically, 
small modifications are more likely than large ones), while recombination 
exchanges information between two or more existing individuals. 
By means of evaluating individuals in their environment, a measure of 
quality or fitness value can be assigned to individuals. As a minimum 
requirement, a comparison of individual fitness is possible, yielding a binary 
decision (better or worse). According to the fitness measure, the selection 
process favors better individuals to reproduce more often than those that 
are relatively worse. 

These are just the most general properties of evolutionary algorithms. and 
the instances of evolutionary algorithms as described in the following chapters 
use the components in various different ways and combinations. Some basic 
differences in the utilization of these principles characterize the mainstream 
instances of evolutionary algorithms; that is, genetic algorithms (Chapter 8), 
evolution strategies (Chapter 9) , and evolutionary programming (Chapter 10) . 
See D B Fogel ( I  995) and Back (1996) for a detailed overview of similarities 
and differences of these instances and Back and Schwefel (1993) for a brief 
comparison. 

59 
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Genetic algorithms (originally described by Holland (1962, 1975) at Ann 
Arbor, Michigan, as so-called adaptive or reproductive plans) emphasize 
recombination (crossover) (Chapter 33) as the most important search 
operator and apply mutation (Chapter 32) with very small probability 
solely as a 'background operator.' They also use a probabilistic selection 
operator (proportional selection) (Chapter 23) and often rely on a binary 
representation (Chapter IS) of individuals. 
Evolution strategies (developed by Rechenberg ( 1965, 1973) and Schwefel 
( 1965, 1977) at the Technical University of Berlin) use normally distributed 
mutations to modify real-valued vectors (Chapter 16) and emphasize 
mutation (Section 32.2) and recombination (Section 33.2) as essential 
operators for searching in the search spacs and in the strategy parameter 
space at the same time. The selection operator (Chapter 25) is deterministic. 
and parent and offspring population sizes usually differ from each other. 
Evolutionary programming (originally developed by Lawrence J Fogel 
(1962) at the University of California in  San Diego, as described in 
Fogel er c d  (1966) and refined by David B Fogel (1992) and others) 
emphasizes mutation and does not incorporate the recombination of 
individuals. Similarly to evolution strategies, when approaching real- 
valued optimization problems, evolutionary programming also works with 
normally distributed mutations and extends the evolutionary process to the 
strategy parameters. The selection operator (Section 27.1 ) is probabilistic. 
and presently most applications are reported for search spaces involving 
real-valued vectors, but the algorithm was originally developed to evolve 
tinite-state machines (Chapter 18) . 

In addition to these three mainstream methods, which are described in 
detail in the next three chapters, genetic programming, classifier systems, and 
hybridizations of evolutionary algorithms with other techniques are considered 
in chapters 11-13. respectively. As an introductory remark, we only 
mention that genetic programming applies the evolutionary search principle to 
automatically develop computer programs in suitable languages (Chapter 10) 
(often LISP, but others are possible as well), while classifier systems search 
the space of production rules (or sets of rules) of the form ' IF  <condition> 
THEN <action>'. 

A variety of different representations of individuals and corresponding 
operators are presently known in evolutionary algorithm research, and it is the 
aim of Chapters 14-34 to present all these in detail. Here, we will use these 
chapters as a construction kit to assemble the basic instances of evolutionary 
algorithms. 

As a general framework for these basic instances, we define I to denote an 
arbitrary space of individuals a E I ,  and F : I -+ R to denote a real-valued 
fitness function of individuals. Using p and h to denote parent and offspring 
population sizes, P ( r )  = ( a ,  ( t ) ,  . . . , a J r ) )  E 1'' characterizes a population at 
generation t . Selection, mutation, and recombination are described as operators TEAM LRN
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s : I *  + I i L ,  r n  : I “  + I * ,  and r : Ii‘ + Ik  that transform complete 
populations. By describing all operators on the population level (though this 
is counterintuitive for mutation), a high-level perspective is adopted, which is 
sufficently general to cover different instances of evolutionary algorithms. For 
mutation, the operator can of course be reduced to the level of single individuals 
by defining rn through a multiple application of a suitable operator nz’ : I + I 
on individuals. 

These operators typically depend on additional sets of parameters @I,, 
and (3,. which are characteristic for the operator and the representation of 
individuals. Additionally, an initialization procedure generates a population of 
individuals (typically at random, but an initialization with known starting points 
should of course also be possible), an evaluation routine determines the fitness 
values of the individuals of a population, and a termination criterion is applied 
to determine whether or not the algorithm should stop. 

Putting all this together, a basic evolutionary algorithm reduces to the simple 
recombination-mutation-selection loop as outlined below: 

Input: @, A, 8,, 8,, (-I,, , (4, 
Output: 

I t t o ;  
2 P ( t )  t initialize(p); 
3 F ( t )  +- evaluate( P ( t ) ,  p) ;  
4 while ( i ( P ( t ) ,  0,) # true) do 
5 P’( t )  t recombine(P(t), 0,); 
6 P”(r)  t mutate(P’(t), ( E n l ) ;  
7 F ( t )  t evaluate(P”(t), A); 
8 
9 t t t + l ;  

After initialization of t (line 1 )  and the population P ( t )  of size p (line 2) as 
well as its fitness evaluation (line 3), the while-loop is entered. The termination 
criterion i might depend on a variety of parameters, which are summarized 
here by the argument 0,. Similarly, recombination (line 5 ) ,  mutation (line 
6), and selection (line 8) depend on a number of algorithm-specific additional 
parameters. While P ( t )  consists of p individuals, P ’ ( t )  and P”( t )  are assumed 
to be of size K and A,  respectively. Of course, h = K = 1-l is allowed and 
is the default case in genetic algorithms. The setting K = p is also often 
used in evolutionary programming (without recombination), but it depends on 
the application and the situation is quickly changing. Either recombination 
or mutation might be absent from the main loop. such that K = p (absence 
of recombination) or K = h (absence of mutation) is required in these cases. 
The selection operator selects p individuals from P ” ( t )  according to the fitness 
values F ( t ) ,  t is incremented (line 9), and the body of the main loop is repeated. 

U*, the best individual found during the run, or 
P * ,  the best population found during the run. 

P ( t  + 1 )  +- select(P”(t), F ( t ) ,  p ,  (-1,); 

od 
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The input parameters of this general evolutionary algorithm include the 
population sizes p and h as well as the parameter sets ( ~ 1 ~ .  (LOT,  and (4, 
of the basic operators. Notice that we allow recombination to equal the identity 
mapping; that is, P ” ( r )  = P’(r )  is possible. 

The following sections of this chapter present the common evolutionary 
algorithms as particular instances of the general scheme. 
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Further reading 

The introductory section to evolutionary algorithms certainly provides the right 
place to mention the most important books on evolutionary computation and its 
subdisciplines. The following list is not intended to be complete, but only to 
guide the reader to the literature. 
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in connection with genetic algorithms. TEAM LRN
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Genetic algorithms 

Larry J Eshelman 

8.1 Introduction 

Genetic algorithms (GAS) are a class of evolutionary algorithms first proposed 
and analyzed by John Holland ( 1975). There are three features which distinguish 
GAS, as first proposed by Holland, from other evolutionary algorithms: ( i )  
the representation used-bitstrings (Chapter 15); (ii) the method of selection- 
proportional selection (Chapter 23)  ; and (iii) the primary method of producing 
variations-crossover (Chapter 33). Of these three features, however, it 
is the emphasis placed on crossover which makes GAS distinctive. Many 
subsequent GA implementations have adopted alternative methods of selection, 
and many have abandoned bitstring representations for other representations 
more amenable to the problems being tackled. Although many alternative 
methods of crossover have been proposed, in almost every case these variants 
are inspired by the spirit which underlies Holland’s original analysis of GA 
behavior in terms of the processing of schemata or building blocks. It should be 
pointed out, however, that the evolution strategy paradigm (Chapter 9) has added 
crossover to its repertoire, so that the distinction between classes of evolutionary 
algorithms has become blurred (Bick et a1 1991). 

We shall begin by outlining what might be called the canonical GA, similar 
to that described and analyzed by Holland (1975) and Goldberg (1987). We 
shall introduce a framework for describing GAS which is richer than needed 
but which is convenient for describing some variations with regard to the 
method of selection. First we shall introduce some terminology. The individual 
structures are often referred to as chromosomes. They are the genotypes that 
are manipulated by the GA. The evaluation routine decodes these structures 
into some phenotypical structure and assigns a fitness value. Typically, but not 
necessarily, the chromosomes are bitstrings. The value at each locus on the 
bitstring is referred to as an allele. Sometimes the individuals loci are also 
called genes. At other times genes are combinations of alleles that have some 
phenotypical meaning, such as parameters. 
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8.2 Genetic algorithm basics and some variations 

An initial population of individual structures P ( 0 )  is generated (usually ran- 
domly) and each individual is evaluated for fitness. Then some of these individ- 
uals are selected for mating and copied (select-repro) to the mating buffer C ( r ) .  
In Holland’s original GA, individuals are chosen for mating probabilistically, 
assigning each individual a probability proportional to its observed performance. 
Thus, better individuals are given more opportunities to produce offspring (re- 
production with emphasis). Next the genetic operators (usually mutation and 
crossover) are applied to the individuals in the mating buffer, producing off- 
spring C’(t) .  The rates at which mutation and crossover are applied are an 
implementation decision. If the rates are low enough. it is likely that some of 
the offspring produced will be identical to their parents. Other implementation 
details are how many offspring are produced by crossover (one or two), and 
how many individuals are selected and paired in the mating buffer. In Hol- 
land’s original description, only one pair is selected for mating per cycle. The 
pseudocode for the genetic algorithm is as follows: 

begin 
t = 0; 
initialize P(t); 
evaluate structures in P(t); 
while termination condition not satisfied do 
begin 

t = t + l ;  
select-repro c(t) from P(t-1); 
recombine and mutate structures in C(t) 
forming Cy(t); 
evaluate structures in C’ (t) ; 
select-replace P(t) from C’(t) and P(t-1); 

end 
end 

After the new offspring have been created via the genetic operators the two 
populations of parents and children must be merged to create a new population. 
Since most GAS maintain a fixed-sized population M ,  this means that a total 
of M individuals need to be selected from the parent and child populations to 
create a new population. One possibility is to use all the children generated 
(assuming that the number is not greater than M )  and randomly select (without 
any bias) individuals from the old population to bring the new population up 
to size M .  If only one or two new offspring are produced, this in effect means 
randomly replacing one or two individuals in the old population with the new 
offspring. (This is what Holland’s original proposal did.) On the other hand, if 
the number of offspring created is equal to M ,  then the old parent population is TEAM LRN
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completely replaced by the new population. 
There are several opportunities for biasing selection: selection for 

reproduction (or mating) and selection from the parent and child populations 
to produce the new population. The GAS most closely associated with Holland 
do all their biasing at the reproduction selection stage. Even among these 
GAS, however, there are a number of variations. If reproduction with emphasis 
is used, then the probability of an individual being chosen is a function of 
its observed fitness. A straightforward way of doing this would be to total 
the fitness values assigned to all the individuals in the parent population and 
calculate the probability of any individual being selected by dividing its fitness 
by the total fitness. One of the properties of this way of assigning probabilities is 
that the GA will behave differently on functions that seem to be equivalent from 
an optimization point of view such as y = c i x ’  and y = ux2 + h. If the h value 
is large in comparison to the differences in the value produced by the ux2 term, 
then the differences in the probabilities for selecting the various individuals in 
the population will be small, and selection pressure will be very weak. This often 
happens as the population converges upon a narrow range of values. One way 
of avoiding this behavior is to scale the fitness function, typically to the worst 
individual in the population (De Jong 1975). Hence the measure of fitness used 
in calculating the probability for selecting an individual is not the individual‘s 
absolute fitness, but its fitness relative to the worst individual in the population. 

Although scaling can eliminate the problem of not enough selection 
pressure, often GAS using fitness proportional selection suffer from the opposite 
problem-too much selection pressure. If an individual is found which is much 
better than any other, the probability of selecting this individual may become 
quite high (especially if scaling to the worst is used). There is the danger 
that many copies of this individual will be placed in the mating buffer, and 
this individual (and its similar offspring) will rapidly take over the population 
(premature convergence). One way around this is to replace fitness proportional 
selection with ranked selection (Whitley 1989). The individuals in the parent 
population are ranked. and the probability of selection is a linear function of 
rank rather than fitness, where the ‘steepness’ of this function is an adjustable 
parameter. 

Another popular method of performing selection is tournament selection 
(Goldberg and Deb 1991). A small subset of individuals is chosen at random, 
and then the best individual (or two) in this set is (are) selected for the mating 
buffer. Tournament selection, like rank selection, is less subject to rapid takeover 
by good individuals, and the selection pressure can be adjusted by controlling 
the size of the subset used. 

Another common variation of those GAS that rely upon reproduction 
selection for their main source of selection bias is to maintain one copy of 
the best individual found so far (De Jong 1975). This is referred to as the 
elitist strategy (Section 28.4). I t  is actually a method of biased parent selection, 
where the best member of the parent population is chosen and all but one TEAM LRN
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of the M members of the child population are chosen. Depending upon the 
implementation, the selection of the child to be replaced by the best indiLidual 
from the parent population may or may not be biased. 

A number of CA variations make use of biased replacement selection. 
Whitley‘s GENITOR, for example, creates one child each cycle, selecting the 
parents using ranked selection, and then replacing the worst member of the 
population with the new child (Whitley 1989). Syswerda’s steady-state CA 
creates two children each cycle, selecting parents using ranked selection, and 
then stochastically choosing two individuals to be replaced. with a bias towards 
the worst individuals in the parent population (Syswerda 1989). Eshelman‘s 
CHC uses unbiased reproductive selection by randomly pairing all the members 
of the parent population, and then replacing the worst individuals of the parent 
population with the better individuals of the child population. ( I n  effect. the 
offspring and parent populations are merged and the best M (population size) 
individuals are chosen.) Since the new offspring are only chosen by CHC if 
they are better than the members of the parent population. the selection of both 
the offspring and parent populations is biased (Eshelman I99 1 ). 

These methods of replacement selection, and especially that of CHC, 
resemble the (1-1 +A) ES method of selection (Section 25.4) sometimes originally 
used by evolution strategies (ESs) (Back et (11 1991). From j1 parents h 
offspring are produced; the p parents and A. offspring are merged; and the 
best j i  individuals are chosen to form the new parent population. The other 
ES selection method, ( p ,  A )  ES (Section 25.4), places all the bias in the child 
selection stage. In this case, j i  parents produce h offspring ( E ,  > j i) ,  and the best 
p offspring are chosen to replace the parent population. Muhlenbein’s breeder 
CA also uses this selection mechanism (Muhlenbein and Schlierkamp-Voosen 
1993). 

Often a distinction is made between generational and stmdj~-state GAS 
(Section 28.3). Unfortunately, this distinction tends to merge two properties that 
are quite independent: whether the replacement strategy of the GA is biased 
or not and whether the C A  produces one (or two) versus many (usually M )  
offspring each cycle. Syswerda’s steady-state CA, like Whitley’s GENITOR, 
allows only one mating per cycle and uses a biased replacement selection, 
but there are also GAS that combine multiple matings per cycle with biased 
replacement selection (CHC) as well as a whole class of ESs ( ( p  + E , )  ES). 
Furthermore, the GA described by Holland (1975) combined a single mating per 
cycle and unbiased replacement selection. Of these two features, it would seem 
that the most significant is the replacement strategy. De Jong and Sarma (1993) 
found that the main difference between GAS allowing many matings versus few 
matings per cycle is that the latter have a higher variance in performance. 

The choice between a biased and an unbiased replacement strategy, on the 
other hand, is a major determinant of CA behavior. First, if biased replacement 
is used in combination with biased reproduction, then the problem of premature 
convergence is likely to be compounded. (Of course this will depend upon TEAM LRN
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other factors, such as the size of the population, whether ranked selection is 
used, and, if so, the setting of the selection bias parameter.) Second, the obvious 
shortcoming of unbiased replacement selection can turn out to be a strength. On 
the negative side, replacing the parents by the children, with no mechanism for 
keeping those parents that are better than any of the children, risks losing, 
perhaps forever, very good individuals. On the other hand, replacing the 
parents by the children can allow the algorithm to wander, and i t  may be 
able to wander out of a local minimum that would trap a GA relying upon 
biased replacement selection. Which is the better strategy cannot be answered 
except in the context of the other mechanisms of the algorithm (as well as the 
nature of the problem being solved). Both Syswerda’s steady-state GA and 
Whitley’s GENITOR combine a biased replacement strategy with a mechanism 
for eliminating children which are duplicates of any member in the parent 
population. CHC uses unbiased reproductive selection, relying solely upon 
biased replacement selection as its only source of selection pressure, and uses 
several mechanisms for maintaining diversity (not mating similar individuals and 
seeded restarts), which allow it to take advantage of the preserving properties 
of a deterministic replacement strategy without suffering too severely from its 
shortcomings. 

8.3 Mutation and crossover 

All evolutionary algorithms work by combining selection with a mechanism for 
producing variations. The best known mechanism for producing variations is 
mutation, where one allele of a gene is randomly replaced by another. In other 
words, new trial solutions are created by making small, random changes in the 
representation of prior trial solutions. If a binary representation is used, then 
mutation is achieved by ‘flipping’ bits at random. A commonly used rate of 
mutation is one over the string length. For example, if the chromosome is one 
hundred bits long, then the mutation rate is set so that each bit has a probability 
of 0.01 of being flipped. 

Although most GAS use mutation along with crossover, mutation is 
sometimes treated as if it were a background operator for assuring that the 
population will consist of a diverse pool of alleles that can be exploited by 
crossover. For many optimization problems, however, an evolutionary algorithm 
using mutation without crossover can be very effective (Mathias and Whitley 
1994). This is not to suggest that crossover never provides an added benefit, 
but only that one should not disparage mutation. 

The intuitive idea behind crossover is easy to state: given two individuals 
who are highly fit, but for different reasons, ideally what we would like to 
do is create a new individual that combines the best features from each. Of 
course, since we presumably do not know which features account for the good 
performance (if  we did we would not need a search algorithm). the best we can 
do is to recombine features at random. This is how crossover operates. It treats TEAM LRN
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these features as building blocks scattered throughout the population and tries to 
recombine them into better individuals via crossover. Sometimes crossover will 
combine the worst features from the two parents, in which case these children 
will not survive for long. But sometimes it will recombine the best features from 
two good individuals, creating even better individuals, provided these features 
are compatible. 

Suppose that the representation is the classical bitstring representation: 
individual solutions in our population are represented by binary strings of zeros 
and ones of length L .  A GA creates new individuals via crossover by choosing 
two strings from the parent population, lining them up, and then creating two 
new individuals by swapping the bits at random between the strings. (In some 
GAS only one individual is created and evaluated, but the procedure is essentially 
the same.) Holland originally proposed that the swapping be done in segments, 
not bit by bit. In particular, he proposed that a single locus be chosen at random 
and all bits after that point be swapped. This is known as one-point crossover. 
Another common form of crossover is two-point crossover which involves 
choosing two points at random and swapping the corresponding segments from 
the two parents defined by the two points. There are of course many possible 
variants. The best known alternative to one- and two-point crossover is i i i ~ l f o r i ? ~  

crosso\’er. Uniform crossover randomly swaps individual bits between the two 
parents (i.e. exchanges between the parents the values at loci chosen at random). 

Following Holland, GA behavior is typically analyzed in terms of schemata. 
Given a space of structures represented by bitstrings of length L .  schemata 
represent partitions of the search space. If the bitstrings of length L are 
interpreted as vectors in a L-dimensional hypercube, then schemata are 
hyperplanes of the space. A schema can be represented by a string of L symbols 
from the set 0, I , #  where # is a ‘wildcard’ matching either 0 or 1 .  Each string 
of length L may be considered a sample from the partition defined by a schema 
if i t  matches the schema at each of the defined positions (i.e. the non-# loci). 
For example, the string 01 1001 instantiates the schema 01##0#. Each string, in 
fact, instantiates 2L  schemata. 

Two important schema properties are order and defining length. The order of 
a schema is the number of defined loci (i.e. the number of non-# symbols). For 
example the schema #01##1### is an order 3 schema. The defining length is 
the distance between the loci of the first and last defined positions. The defining 
length of the above schema is four since the loci of the first and last defined 
positions are 2 and 6. 

From the hyperplane analysis point of view, a GA can be interpreted as 
focusing its search via crossover upon those hyperplane partition elements that 
have on average produced the best-performing individuals. Over time the search 
becomes more and more focused as the population converges since the degree of 
variation used to produce new offspring is constrained by the remaining variation 
in the population. This is because crossover has the property that Radcliffe refers 
to as respect-if two parents are instances of the same schema, the child will TEAM LRN
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also be an instance (Radcliffe 1991). If a particular schema conveys high fitness 
values to its instances, then the population is likely to converge on the defining 
bits of this schema. Once it so converges, all offspring will be instances of this 
schema. This means that as the population converges, the search becomes more 
and more focused on smaller and smaller partitions of the search space. 

I t  is useful to contrast crossover with mutation in this regard. Whereas 
mutation creates variations by flipping bits randomly, crossover is restricted to 
producing variations at those loci on which the population has not yet converged. 
Thus crossover, and especially bitwise versions of crossover, can be viewed as 
a form of adaptive mutation, or convergence-controlled variation (CCV). 

The standard explanation of how GAS operate is often referred to as the 
building block hypothesis. According to this hypothesis, GAS operate by 
combining small building blocks into larger building blocks. The intuitive idea 
behind recombination is that by combining features (or building blocks) from 
two good parents crossover will often produce even better children; for example, 
a mother with genes for sharp teeth and a father with genes for sharp claws will 
have the potential of producing some children who have both features. More 
formally, the building blocks are the schemata discussed above. 

Loosely interpreted, the building block hypothesis is another way of asserting 
that GAS operate through a process of CCV. The building block hypothesis, 
however, is often given a stronger interpretation. In particular, crossover is 
seen as having the added value of being able to recombine middle-level building 
blocks that themselves cannot be built from lower-level building blocks (where 
level refers to either the defining length or order, depending on the crossover 
operator). We shall refer to this explanation i i s  to how GAS work as the strict 
building block hypothesis (SBBH), and contrast it with the weaker convergence- 
controlled variation hypothesis (CCVH). 

To differentiate these explanations, it is useful to compare crossover with 
an alternative mechanism for achieving CCV. Instead of pairing individuals 
and swapping segments or bits, a more direct method of generating CCVs is 
to use the distribution of the allele values in the population to generate new 
offspring. This is what Syswerda’s bitwise simulated crossover (BSC) algorithm 
does (Syswerda 1993). In effect, the distribution of allele values is used to 
generate a vector of allele probabilities, which in turn is used to generate a 
string of ones and zeros. Baluja’s PBIL goes one step further and eliminates 
the population, and simply keeps a probability vector of allele values, using an 
update rule to modify it based on the fitness of the samples generated (Baluja 
1995). 

The question is, if one wants to take advantage of CCV with its ability to 
adapt, why use crossover, understood as involving pairwise mating, rather than 
one of these poolwise schemes? One possible answer is that the advantage is 
only one of implementation. The pairwise implementation does not require any 
centralized bookkeeping mechanism. In other words, crossover (using pairwise 
mating) is simply nature’s way of implementing a decentralized version of CCV. TEAM LRN
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A more theoretically satisfying answer is that pairwise mating is better able 
to preserve essential linkages among the alleles. One manifestation of this is 
that there is no obvious way to implement a segment-based version of poolwise 
mating, but this point also applies if we compare poolwise mating with only 
crossover operators that operate at the bit level, such as uniform crossover. If 
two allele values are associated in some individual, the probability of these 
values being associated in the children is much higher for pairwise mating than 
poolwise. To see this consider an example. Suppose the population size is 
100, and that an individual of average fitness has some unique combination of 
allele values, say all ones in the first three positions. This individual will have 
a 0.01 probability (one out of 100)  of being selected for mating, assuming i t  is 
of average fitness. If uniform crossover is being used, with a 0.5 probability 
of swapping the values at each locus, and one offspring is being produced per 
mating, then the probability of the three allele values being propagated without 
disruption has a lower bound of 0.125 (0.5'). This is assuming the worst-case 
scenario that every other member in the population has all zeros in the first 
three positions (and ignoring the possibility of mating this individual with a 
copy of itself). Thus, the probability of propagating this schema is 0.00125 
(0.01 * 0.125). On the other hand, if BSC is being used, then the probability 
of propagating this schema is much lower. Since there is only one instance of 
this individual in the population, there is only one chance in 100 of propagating 
each allele and only 0.O00001 (0.01') of propagating all three. 

Ultimately, one is faced with a tradeoff: the enhanced capability of pairwise 
mating to propagate difficult-to-find schemata is purchased at the risk of 
increased hitchhiking; that is, the population may prematurely converge on bits 
that do not convey additional fitness but happen to be present in the individuals 
that are instances of good schemata, According to both the CCVH and the 
SBBH, crossover must not simply preserve and propagate good schemata, but 
must also recombine them with other good schemata. Recombination, however, 
requires that these good schemata be tried in the context of other schemata. 
In order to determine which schemata are the ones contributing to fitness, we 
must test them in many different contexts, and this involves prying apart the 
defining positions that contribute to fitness from those that are spurious, but the 
price for this reduced hitchhiking is higher disruption (the breaking up of the 
good schemata). This price will be too high if the algorithm cannot propagate 
critical, highly valued, building blocks or, worse yet, destroys them in the next 
crossover cycle. 

This tradeoff applies not only to the choice between poolwise and pairwise 
methods of producing variation, but also to the choice between various methods 
of crossover. Uniform crossover, for example, is less prone to hitchhiking than 
two-point crossover, but is also more disruptive, and poolwise mating schemes 
are even more disruptive than uniform crossover. In Holland's original analysis 
this tradeoff between preserving the good schemata while performing vigorous 
recombination is downplayed by using a segment-based crossover operator such TEAM LRN
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as one- or two-point crossover and assuming that the important building blocks 
are of short defining length. Unfortunately, for the types of problem to which 
GAS are supposedly ideally suited-those that are highly complex with no 
tractable analytical solution-there is no a priori reason to assume that the 
problem will, or even can, be represented so that important building blocks will 
be those with short defining length. To handle this problem Holland proposed an 
inversion operator that could reorder the loci on the string, and thus be capable 
of finding a representation that had building blocks with short defining lengths. 
The inversion operator, however, has not proven sufficiently effective in practice 
at recoding strings on the fly. To overcome this linkage problem, Goldberg has 
proposed what he calls messy GAS, but, before discussing messy GAS, it will 
be helpful to describe a class of problems that illustrate these linkage issues: 
deceptive problems. 

Deception is a notion introduced by Goldberg (1987). Consider two 
incompatible schemata, A and B .  A problem is deceptive if the average fitness of 
A is greater than B even though B includes a string that has a greater fitness than 
any member of A. In practice this means that the lower-order building blocks 
lead the GA away from the global optimum. For example, consider a problem 
consisting of five-bit segments for which the fitness of each is determined as 
follows (Liepins and Vose 1991). For each one the segment receives a point, 
and thus five points for all ones, but for all Term it receives a value greater 
than five. For problems where the value of the optimum is between five and 
eight the problem is fully deceptive (i.e. all relevant lower-order hyperplanes 
lead toward the deceptive attractor). The total fitness is the sum of the fitness 
of the segments. 

It should be noted that i t  is probably a mistake to place too much emphasis on 
the formal definition of deception (Grefenstette 1993). What is really important 
is the concept of being misled by the lower-order building blocks. Whereas 
the formal definition of deception stresses the average fitness of the hyperplanes 
taken over the entire search space, selection only takes into account the observed 
average fitness of hyperplanes (those in the actual population). The interesting 
set of problems is those that are misleading in that manipulation of the lower- 
order building blocks is likely to lead the search away from the middle-level 
building blocks that constitute the optimum solution, whether these middle-level 
building blocks are deceptive in the formal sense or not. In the above class of 
functions, even when the value of the optimum is greater than eight (and so 
not fully deceptive), but still not very large, e.g. ten, the problem is solvable 
by a GA using segment-based crossover, very difficult for a GA using bitwise 
uniform crossover, and all but impossible for a poolwise-based algorithm like 
BSC. 

As long as the deceptive problem is represented so that the loci of the 
positions defining the building blocks are close together on the string. i t  meets 
Holland’s original assumption that the important building blocks are of short 
defining length. The GA will be able to exploit this information using one- or TEAM LRN
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two-point crossover-the building blocks will have a low probability of being 
disrupted, but will be vigorously recombined with other building blocks along 
the string. If, on the other hand, the bits constituting the deceptive building 
blocks are maximally spread out on the chromosome, then a crossover operator 
such as one- or two-point crossover will tend to break up the good building 
blocks. Of course, maximally spreading the deceptive bits along the string is 
the extreme case, but bunching them together is the opposite extreme. 

Since one is not likely to know enough about the problem to be able 
to guarantee that the building blocks are of short defining length, segmented 
crossover loses its advantage over bitwise crossover. It is true that bitwise 
crossover operators are more disruptive, but there are several solutions to 
this problem. First, there are bitwise crossover operators that are much less 
disruptive than the standard uniform crossover operator (Spears and De Jong 
1991, Eshelman and Schaffer 1995). Second, the problem of preservation can 
often be ameliorated by using some form of replacement selection so that good 
individuals survive until they are replaced by better individuals (Eshelman and 
Schaffer 1995). Thus a disruptive form of crossover such as uniform crossover 
can be used and good schemata can still be preserved. Uniform crossover will 
still make it difficult to propagate these high-order, good schemata once they 
are found, but, provided the individuals representing these schemata are not 
replaced by better individuals that represent incompatible schemata, they will 
be preserved and may eventually be able to propagate their schemata on to 
their offspring. Unfortunately, this proviso is not likely to be met by any but 
low-order deceptive problems. Even for deceptive problems of order five, the 
difficulty of propagating optimal schemata is such that the suboptimal schemata 
tend to crowd out the optimum ones. 

Perhaps the ultimate GA for tackling deceptive problems is Goldberg’s 
messy GA (mGA) (Goldberg et a1 1991). Whereas in more traditional GAS 
the manipulation of building blocks is implicit, mGAs explicitly manipulate 
the building blocks. This is accomplished by using variable-length strings that 
may be underspecified or overspecified; that is, some bit positions may not be 
defined, and some positions may have conflicting specifications. This is what 
makes mGAs messy. 

They consist of a set of 
position-value pairs. Overspecified strings are evaluated by a simple conflict 
resolution strategy such as first-come-first-served rules. Thus, (( 1 0) (2 1 )  ( 1  1 )  
( 3  0)) would be interpreted as 010, ignoring the third pair, since the first position 
has already been defined. Underspecified strings are interpreted by filling in the 
missing values using a competitive template, a locally optimal structure. For 
example, if the locally optimal structure, found by testing one bit at a time, is 
11 I ,  then the string (( 1 0) ( 3  0)) would be interpreted by filling in the value 
for the (missing) second position with the value of the second position in the 
template. The resulting 010 string would then be evaluated. 

The inner loop consists of 

These strings constitute the building blocks. 

mGAs have an outer and an inner loop. TEAM LRN
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three phases: the initialization, primordial, and juxtaposition phases. In the 
initialization phase all substrings of length k are created and evaluated, i.e. all 
combinations of strings with k defining positions (where k is an estimate of the 
highest order of deception in the problem). As was explained above the missing 
values are filled in using the competitive template. (As will be explained below, 
the template for the k level of the outer loop is the solution found at the k - 1 
level.) 

In the primordial phase, selection is applied to the population of individuals 
produced during the initialization phase without any operators. Thus the 
substrings that have poor evaluations are eliminated and those with good 
evaluations have multiple copies in the resulting population. 

In  the juxtapositional phase selection in conjunction with cut and splice 
operators is used to evolve improved variations. Again, the competitive template 
is used for tilling in missing values, and the first-come-first-served rule is used 
for handling overspecified strings created by the splice operator. The cut and 
splice operators act much like one-point crossover in  a traditional GA, keeping 
in mind that the strings are of variable length and may be underspecified or 
overspeci fied. 

The outer loop is over levels. I t  starts at the level of k = I ,  and continues 
through each level until it reaches a user-specified stopping criterion. At each 
level, the solution found at the previous level is used as the competitive template. 

One of the limitations of mGAs as originally conceived is that the 
initialization phase becomes extremely expensive as the mGA progresses up 
the levels. A new variant of the mGA speeds up the process by eliminating the 
need to process all the variants in the initialization stage (Goldberg rt cil 1993). 
The initialization and primordial phases of the original mGA are replaced by a 
'probabilistically complete initialization' procedure. This procedure is divided 
into several steps. During the first step strings of nearly length L are evaluated 
(using the template to f i l l  in  the missing values). Then selection is applied to 
these strings without any operators (much as was done in  the primordial phase 
of the original mGA, but for only a few generations). Then the algorithm enters 
a filtering step where some of the genes in the strings are deleted. and the 
shortened strings are evaluated using the competitive template. Then selection 
is applied again. This process is repeated until the resulting strings are of 
length k .  Then the mGA goes into the juxtaposition stage like the original 
mGA. By replacing the original initialization and primordial stages with stepwise 
filtering and selection. the number of evaluations required is drastically reduced 
for problems of significant size. (Goldberg ct cil (1993) provide analytical 
methods for determining the population and filtering reduction constants.) This 
new version of the mGA is very effective at solving loosely linked deceptive 
problems, i.e. those problems where the defining positions of the deceptive 
segments are spread out along the bitstring. 

mGAs were designed to operate according to the SBBH, and deceptive 
problems illustrate that there are problems where being able to manipulate TEAM LRN
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building blocks can provide an added value over CCV. It still is an open 
question, however, as to how representative deceptive problems are of the types 
of real-world problem that GAS might encounter. No doubt, many difficult 
real-world problems have deceptive or misleading elements in them. If they did 
not, they could be easily solved by local search methods. However it does not 
necessarily follow that such problems can be solved by a GA that is good at 
solving deceptive problems. The SBBH assumes that the misleading building 
blocks will exist in the initial population, that they can be identified early in the 
search before they are lost, and that the problem can be solved incrementally 
by combining these building blocks, but perhaps the building blocks that have 
misleading alternatives have little meaning until late in the search and so cannot 
be expected to survive in the population. 

Even if the SBBH turns out not to be as useful an hypothesis as originally 
supposed, the increased propagation capabilities of pairwise mating may give a 
GA (using pairwise mating) an advantage over a poolwise CCV algorithm. To 
see why this is the case i t  is useful to define the prototypical individual for a 
given population: for each locus we assign a one or a zero depending upon which 
value is most frequent in the population (randomly assigning a value if they are 
equally frequent). Suppose the population contains some maverick individual 
that is quite far from the prototypical individual although i t  is near the optimum 
(as measured by Hamming distance) but is of only average fitness. Since an 
algorithm using a poolwise method of producing offspring will tend to produce 
individuals that are near the prototypical individual, such an algorithm is unlikely 
to explore the region around the maverick individual. On the other hand, a GA 
using pairwise mating is more likely to explore the region around the maverick 
individual, and so more likely to discover the optimum. Ironically, pairwise 
mating is, in this respect, more mutation-like than poolwise mating. While 
pairwise mating retains the benefits of CCV, it less subject to the majoritarian 
tendencies of poolwise mating. 

8.4 Representation 

Although GAS typically use a bitstring representation, GAS are not restricted 
to bitstrings. A number of early proponents of GAS developed GAS that use 
other representations, such as real-valued parameters (Davis 199 1 ,  Janikow 
and Michalewicz I99 1, Wright 1991 ; see Chapter I6), permutations (Davis 
1985, Goldberg and Lingle 1985, Grefenstette et a1 1985; see Chapter 17), and 
treelike hierarchies (Antonisse and Keller 1987; see Chapter 19). Koza’s genetic 
programming (GP) paradigm (Koza 1992; see Chapter I I ) is a GA-based method 
for evolving programs, where the data structures are LISP S-expressions, and 
crossover creates new LISP S-expressions (offspring) by exchanging subtrees 
from the two parents. TEAM LRN
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In the case of combinatorial problems such as the traveling salesman problem 
(TSP), a number of order-based or sequencing crossover operators have been 
proposed. The choice of operator will depend upon one’s goal. If the goal is to 
solve a TSP, then preserving adjacency information will be the priority, which 
suggests a crossover operator that operates on common edges (links between 
cities shared by the two parents) (Whitley er a1 1989). On the other hand, 
if the goal is to solve a scheduling problem, then preserving relative order is 
likely to be the priority, which suggests an order preserving crossover operator. 
Syswerda’s order crossover operator (Syswerda I99 1 ), for example, chooses 
several positions at random in the first parent, and then produces a child so that 
the relative order of the chosen elements in the first parent is imposed upon the 
second parent. 

Even if binary strings are used, there is still a choice to be made as to 
which binary coding scheme to use for numerical parameters. Empirical studies 
have usually found that Gray code is superior to the standard power-of-two 
binary coding (Caruana and Schaffer 1988), at least for the commonly used 
test problems. One reason is that the latter introduces Hamming cliffs-two 
numerically adjacent values may have bit representations that are many bits apart 
(up to L - I ). This will be a problem if there is some degree of gradualness in the 
function, i.e. small changes in the variables usually correspond to small changes 
in the function. This is often the case for functions with numeric parameters. 

As an example, consider a five-bit parameter, with a range from 0 to 3 1 .  If 
it is encoded using the standard binary coding, then 15 is encoded as 01 1 1  I ,  
whereas 16 is encoded as 10000. In order to move from 15 to 16, all five 
bits need to be changed. On the other hand, using Gray coding, 15 would be 
represented as 01000 and 16 as I 1000, differing only by 1 bit. 

When choosing an alternative representation, it is critical that a crossover 
operator be chosen that is appropriate for the representation. For example, if 
real-valued parameters are used, then a possible crossover operator is one that 
for each parameter uses the parameter values of the two parents to define an 
interval from which a new parameter is chosen (Eshelman and Schaffer 1993). 
As the GA makes progress it will narrow the range over which it searches for 
new parameter values. 

If, for the chosen representation and crossover operator, the building blocks 
are unlikely to be instantiated independently of each other in the population, 
then a GA may not be appropriate. This problem has plagued finding crossover 
operators that are good for solving TSPs. The natural building blocks, it would 
seem, are subtours. However, what counts as a good subtour will almost 
always depend upon what the other subtours are. In other words, two good, 
but suboptimal solutions to a TSP may not have many subtours (other than 
very short ones) that are compatible with each other so that they can be spliced 
together to form a better solution. This hurdle is not unique to combinatorial 
problems. 

Given the importance of the representation, a number of researches have TEAM LRN
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suggested methods for allowing the GA to adapt its own coding. We noted 
earlier that Holland proposed the inversion operator for rearranging the loci 
in the string. Another approach to adapting the representation is Shaefer's 
ARGOT system (Shaefer 1987). ARGOT contains an explicit parameterized 
representation of the mappings from bitstrings to real numbers and heuristics 
for triggering increases and decreases in resolution and for shifts in  the ranges 
of these mappings. A similar idea is employed by Schraudolph and Belew 
( 1  992) who provide a heuristic for increasing the resolution triggered when the 
population begins to converge. Mathias and Whitley ( 1994) have proposed 
what they call delta coding. When the population converges, the numeric 
representation is remapped so that the parameter ranges are centered around 
the best value found so far, and the algorithm is restarted. There are also 
heuristics for narrowing or extending the range. 

There are also GAS with mechanisms for dynamically adapting the rate 
at which CA operators are used or which operator is used. Davis, who has 
developed a number of nontraditional operators, proposed a mechanism for 
adapting the rate at which these operators are applied based on the past success 
of these operators during a run of the algorithm (Davis 1987). 

8.5 Parallel genetic algorithms 

All evolutionary algorithms, because they maintain a population of solutions, 
are naturally parallelizable. However, because GAS use crossover, which is a 
way of sharing information, there are two other variations that are unique to 
GAS (Cordon and Whitley 1993). The first, most straightforward, method is 
to simply have one global population with multiple processors for evaluating 
individual solutions. The second method, often referred to as the island 
model (alternatively, the migration or coarse-grain model), maintains separate 
subpopulations. Selection and crossover take place in each subpopulation in 
isolation from the other subpopulations. Every so often an individual from one 
of the subpopulations is allowed to migrate to another subpopulation. This way 
information is shared among subpopulations. 

The third method, often referred to as the neighborhood model (alternatively, 
the diffusion or fine-grain model), maintains overlapping neighborhoods. The 
neighborhood for which selection (for reproduction and replacement) applies is 
restricted to a region local to each individual. What counts as a neighborhood 
will depend upon the neighborhood topology used. For example, if the 
population is arranged upon some type of spherical structure, individuals might 
be allowed to mate with (and forced to compete with) neighbors within a certain 
radius. TEAM LRN
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8.6 Conclusion 

Although the above discussion has been in the context of GAS as potential 
function optimizers, i t  should be pointed out that Holland's initial GA work was 
in the broader context of exploring GAS as adaptive systems (De Jong 1993). 
GAS were designed to be a simulation of evolution, not to solve problems. Of 
course, evolution has come up with some wonderful designs, but one must not 
lose sight of the fact that evolution is an opportunistic process operating in an 
environment that is continuously changing. Simon has described evolution as 
a process of searching where there is no goal (Simon 1983). This is not to 
question the usefulness of GAS as function optimizers, but only to emphasize 
that the perspective of function optimization is somewhat different from that of 
adaptation, and that the requirements of the corresponding algorithms will be 
somewhat different. 
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Evolution strategies 

Giinte r Rudolph 

9.1 The archetype of evolution strategies 

Minimizing the total drag of three-dimensional slender bodies in a turbulent 
flow was, and still is, a general goal of research in institutes of hydrodynamics. 
Three students (Peter Bienert, Ingo Rechenberg, and Hans-Paul Schwefel) 
met each other at such an institute, the Hermann Fottinger Institute of the 
Technical University of Berlin, in 1964. Since they were fascinated not only 
by aerodynamics, but also by cybernetics, they hit upon the idea to solve the 
analytically (and at that time also numerically) intractable form design problem 
with the help of some kind of robot. The robot should perform the necessary 
experiments by iteratively manipulating a flexible model positioned at the outlet 
of a wind tunnel. An experimenturn crucis was set up with a two-dimensional 
foldable plate. The iterative search strategy-first performed by hand, a robot 
was developed later on by Peter Bienert-was expected to end up with a flat 
plate: the form with minimal drag. But i t  did not, since a one-variable-at-a-time 
as well as a discrete gradient-type strategy always got stuck in a local minimum: 
an S-shaped folding of the plate. Switching to small random changes that were 
only accepted in the case of improvements-an idea of Ingo Rechenberg- 
brought the breakthrough, which was reported at the joint annual meeting of 
WGLR and DGRR in Berlin, 1964 (Rechenberg 1965). The interpretation of 
binomially distributed changes as mutations and of the decision to step back or 
not as selection (on 12 June 1964) was the seed for all further developments 
leading to evolution strategies (ESs) as they are known today. So much about 
the birth of the ES. 

I t  should be mentioned that the domain of the decision variables was not fixed 
or even restricted to real variables at that time. For example, the experimental 
optimization of the shape of a supersonic two-phase nozzle by means of 
mutation and selection required discrete variables and mutations (Klockgether 
and Schwefel 1970) whereas first numerical experiments with the early ES on 
a Zuse 2 23 computer (Schwefel 1965) employed discrete mutations of real 
variables. The apparent fixation of ESs to Euclidean search spaces nowadays 
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is probably due to the fact that Rechenberg (1973) succeeded in analyzing the 
simple version in Euclidean space with continuous mutation for several test 
problems. 

Within this setting the archetype of ESs takes the following form. An 
individual a consisting of an element X E R“ is mutated by adding a normally 
distributed random vector 2 - N ( 0 ,  I t , )  that is multiplied by a scalar (T > 0 ( I t l  
denotes the unit matrix with rank n ) .  The new point is accepted if i t  is better than 
or equal to the old one, otherwise the old point passes to the next iteration. The 
selection decision is based on a simple comparison of the objective function 
values of the old and the new point. Assuming that the objective function 
f’ : R” + R is to be minimized, the simple ES, starting at some point Xo E R”, 
is determined by the following iterative scheme: 

where t E NJO denotes the iteration counter and where (2, : t 3 0) is a sequence 
of independent and identically distributed standard normal random vectors. 

The general algorithmic scheme (9.1) was riot a novelty: Schwefel (1995, 
pp 94-5), presents a survey of forerunners and related versions of (9.1) since 
the late 1950s. Most methods differed in the mechanism of adjusting the 
parameter U,,  that is used to control the strength of the mutations (i.e. the 
length of the mutation steps in n-dimensional space). Rechenberg’s solution to 
control parameter 0, is known as the 1 / 5  success rule: Increase 0, if the relative 
frequency of successful mutations over some period in the past is larger than 
1/5, otherwise decrease U,.  Schwefel (1995, p I 12), proposed the following 
implementation. Let t E N be the generation (or mutation) counter and assume 
that t 2 Ion .  

( i )  If t mod vz = 0 then determine the number s of successful mutations that 
have occurred during the steps t - Ion to t - 1 .  

( i i )  If s < 2rz then multiply the step lengths by the factor 0.85. 
( i i i )  If s > 2n then divide the step lengths by the factor 0.85. 

First ideas to extend the simple ES (9.1) can be found in the book by Rechenberg 
(1973, pp 78-86). The population consists of / A  > I parents. Two parents are 
selected at random and recombined by multipoint crossover and the resulting 
individual is finally mutated. The offspring is added to the population. The 
selection operation chooses the I-( best individuals out of the I-( + 1 in total to 
serve as parents of the next iteration. Since the search space was binary, this ES 
was exactly the same evolutionary algorithm as became known later under the 
term steady-state genetic algorithm (Section 28. I ) .  The usage of this algorithmic 
scheme for Euclidean search spaces poses the problem of how to control the 
step length control parameter 0,. Therefore, the ‘steady-state’ ES is no longer 
in use. TEAM LRN
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9.2 Contemporary evolution strategies 

The general algorithmic frame of contemporary ESs is easily presented by the 
symbolic notation introduced by Schwefel ( 1  977). The abbreviation ( p  + A) ES 
denotes an ES that generates h offspring from p parents and selects the p best 
individuals from the p + h individuals (parents and offspring) in total. This 
notation can be used to express the simple ES by ( I  + I ) ES and the ‘steady- 
state’ ES by ( p  + 1) ES. Since the latter is not in use i t  is convention that the 
abbreviation ( p  + A) ES always refers to an ES parametrized according to the 
relation I 5 p 5 h < 30. 

The abbreviation (p ,  A) ES denotes an ES that generates h offspring from 
p parents but selects the p best individuals only from the h offspring. As a 
consequence, h must be necessarily at least as large as p. However, since the 
parameter setting p = h represents nothing more than a random walk, i t  is 
convention that the abbreviation (p ,  A) ES always refers to an ES parametrized 
according to the relation 1 5 p < h < 00. 

Apart from the population concept contemporary ESs differ from early ESs in 
that an individual consists of an element x E R” of the search space plus several 
individual parameters con trolling the individual mu tation distribution. Usual I y, 
mutations are distributed according to a multivariate normal distribution with 
zero mean and some covariance matrix C that is symmetric and positive definite. 
Unless matrix C is a diagonal matrix, the mutations in each coordinate direction 
are correlated (Schwefel 1995, p 240). It was shown in Rudolph ( 1992) that a 
matrix is symmetric and positive definite if and only if i t  is decomposable via 
C = (ST)‘ST where S is a diagonal matrix with positive diagonal entries and 

(9.2) 
r = l  ] = / + I  

is an orthogonal matrix built by a product of 11 ( n  - 1)/2 elementary rotation 
matrices R,, with angles wx E (0, 2 n  3. An elementary rotation matrix R , , ( w )  
is a unit matrix where four specific entries are replaced by r r r  = rJJ = cosw 
and r r I  = -rjj = - sinw. 

As a consequence, n ( n  - 1)/2 angles and ri scaling parameters are sufficient 
to generate arbitrary correlated normal random vectors with zero mean and 
covariance matrix C = (ST)’ST via 2 = T’S’N, where N is a standard normal 
random vector (since matrix multiplication is associative, random vector 2 can 
be created in O(n2)  time by multiplication from right to left). 

There remains, however, the question of how to choose and adjust these 
individual strategy parameters. The idea that a population-based ES could be 
able to adapt a, individually by including these parameters in the mutation- 
selection process came up early (Rechenberg 1973, pp 132-7). Although first 
experiments with the ( p  + 1 )  ES provided evidence that this approach works in 
principle, the first really successful implementation of the idea of self-adaptation 
was presented by Schwefel (1977) and it is based on the observation that a TEAM LRN
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surplus of offspring (i.e. A > p )  is a good advice to establish self-adaptation of 
individual parameters. 

To start with a simple case let C = a’ I,,. Thus, the only parameter to be 
self-adapted for each individual is the step length control parameter a .  For 
this purpose let the the genome of each individual be represented by the tuple 
(X,  0 )  E R” x R+, that undergoes the genetic operators. Now mutation is a 
two-stage operation: 

where t = 1z-I’’  and Z, is a standard normal random variable whereas 2 is 
a standard normal random vector. This scheme can be extended to the general 
case with iz (U + 1)/2 parameters. 

( i )  Let w E (0, 2nj’“”-”’‘ denote the angles that are necessary to build the 
orthogonal rotation matrix T(w) via (9.2). The mutated angles o:‘+)~ are 
obtained by 

( 1 )  ( 1 )  = (w, + qZ : i ’ )  mod 2n 

where cp > 0 and the independent random numbers Z:;) with i = 
1, . . . , 12 ( n  - 1)/2 are standard normally distributed. 

( i i )  Let a E IQ denote the standard deviations that are represented by 
the diagonal matrix S(0) = diag(a‘”, . . . , ol’l)). The mutated standard 
deviations are obtained as follows. Draw a standard normally distributed 
random number Z,. For each i = 1 ,  . . . , I I  set 

where ( T .  1 1 )  E R$ and the independent random numbers Z:’ are standard 
normally distributed. Note that 2, is drawn only once. 

( i i i )  Let X E R” be the object variables and 2 be a standard normal random 
vector. The mutated object variable vector is given by 

According to Schwefel (1995) a good heuristic for the choice of the constants 
appearing in the above mutation operation is 

but recent extensive simulation studies (Kursawe 1996) revealed that the above 
recommendation is not the best choice-especially in the case of multimodal 
objective functions i t  seems to be better to use weak selection pressure ( p / A  not 
too small) and a parametrization obeying the relation r > 11.  As a consequence, 
a final recommendation cannot be given here, yet. TEAM LRN
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As soon as ,U > 1 ,  the decision variables as well as the internal strategy 
parameters can be recombined with usual recombination operators. Notice 
that there is no reason to employ the same recombination operator for the 
angles, standard deviations, and object variables. For example, one could 
apply intermediate recombination (Chapter 33) to the angles as well as standard 
deviations and uniform crossover to the object variables. With this choice 
recombination of two parents works as follows. Choose two parents (X, U.  w )  
and (X‘, U ’ ,  0’) at random. Then the preliminary offspring resulting from the 
recombination process is 

0 + O’ (O + w’)  mod 4n 

2 
ux + (I - U)X’, - 

2 ’  

where I is the unit  matrix and U is a random diagonal matrix whose diagonal 
entries are either zero or one with the same probability. Note that the angles 
must be adjusted to the interval ( 0 , 2 n ] .  
After these preparations a sketch of a contemporary ES can be presented: 

Generate ,U initial parents of the type (X, 0, w )  and determine their objective 
function values f ( X ) .  
repeat 

do A times: 
Choose p 2 2 parents at random. 
Recombine their angles, standard deviations, and object variables. 
Mutate the angles, standard deviations, and object variables of the 
preliminary offspring obtained via recombination. 
Determine the offspring’s objective function value. 
Put the offspring into the offspring population. 

end do 
Select the ,U best individuals either from the offspring population 
or from the union of the parent and offspring population. 
The selected individuals represent the new parents. 

until some stopping criterion is satisfied. 

It should be noted that there are other proposals to adapt ul .  In the case 
of a ( I ,  A )  ES with A = 3 k and k E N, Rechenberg (1994, p 47) devised 
the following rule: Generate k offspring with U ~ ,  k offspring with CO, and k 
offspring with U , / C  for some c > 0 ( c  = 1.3 is recommended for I I  5 100, for 
larger n the constant c should decrease). 

Further proposals, that are however still in an experimental state, try 
to derandomize the adaptation process by exploiting information gathered in 
preceding iterations (Ostermeier et al 1995). This approach is related to 
(deterministic) variable metric (or quasi-Newton) methods, where the Hessian 
matrix is approximated iteratively by certain update rules. The inverse of the 
Hessian matrix is in fact the optimal choice for the covariance matrix C. A 
large variety of update rules is given by the Oren-Luonherger c-lnss (Oren and TEAM LRN



86 Evolution strategies 

Luenberger 1974) and it might be useful to construct probabilistic versions of 
these update rules, but it should be kept in mind that ESs are designed to tackle 
difficult nonconvex problems and not convex ones: the usage of such techniques 
increases the risk that ESs will be attracted by local optima. 

Other ideas that have not yet achieved a standard include the introduction 
of an additional age parameter K for individuals in order to have intermediate 
forms of selection between the ( p  + A )  ES with K = cc and the ( p ,  A )  ES 
with K = 1 (Schwefel and Rudolph 1995), as well as the huge variety of ESs 
whose population possesses a spatial structure. Since the latter is important for 
parallel implementations and applies to other evolutionary algorithms as well 
the description is omitted here. 

9.3 Nested evolution strategies 

The shorthand notation ( p  f A )  ES was extended by Rechenberg (1978) to the 
expression 

[ p‘ t A’ ( p  t A ) y  17‘ ES 

with the following meaning. There are p’ populations of p parents. These are 
used to generate (e.g. by merging) A’ initial populations of p individuals each. 
For each of these A’ populations a ( p  t A )  ES is run for y generations. The 
criterion to rank the A’ populations after termination might be the average fitness 
of the individuals in each population. This scheme is repeated y ’  times. The 
obvious generalization to higher levels of nesting is described by Rechenberg 
(1994), where i t  is also attempted to develop a shorthand notation to specify the 
parametrization completely. 

This nesting technique is of course not limited to ESs: other evolutionary 
algorithms and even mixtures of them can be used instead. In fact, the somewhat 
artificial distinction between ESs, genetic algorithms, and evolutionary programs 
becomes more and more blurred when higher concepts enter the scene. Finally, 
some fields of application of nested evolutionary algorithms will be described 
briefly. 

9.3. I Alterriati\ie method to corztrol internal parameters 

Herdy (1992) used A’  subpopulations, each of them possessing its own different 
and fixed step size 0 .  Thus, there is no step size control at the level of 
individuals. After y generations the improvements (in terms of fitness) achieved 
by each subpopulation is compared to each other and the best p’ subpopulations 
are selected. Then the process repeats with slightly modified values of 0. Since 
subpopulations with a near-optimal step size will achieve larger improvements, 
they will be selected (i.e. better step sizes will survive), resulting in an alternative 
method to control the step size. TEAM LRN
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9.3.2 Mixed-integer optimization 

Lohmann ( 1992) considered optimization problems in which the decision 
variables are partially discrete and partially continuous. The nested approach 
worked as follows. The ESs in the inner loop were optimizing over the 
continuous variables while the discrete variables were held fixed. After 
termination of the inner loop, the evolutionary algorithm in the outer loop 
compared the fitness values achieved in the subpopulations, selected the best 
ones, mutated the discrete variables and passed them as fixed parameters to the 
subpopulations in the inner loop. 

It should be noted that this approach to mixed-integer optimization may 
cause some problems. In essence, a GauB-Seidel-like optimization strategy is 
realized, because the search alternates between the subspace of discrete variables 
and the subspace of continuous variables. Such a strategy must fail whenever 
simultaneous changes in discrete and continuous variables are necessary to 
achieve further improvements. 

9.3.3 Minimax optimization 

Sebald and Schlenzig ( 1  994) used nested optimization to tackle minimax 
problems of the type 

min{max{f(x, y ) ) }  
X € X  .EY 

where X E R" and Y 
follows: 

R"'. Equivalently, one may state the problem as 

min{g(x) : x E X }  where g(x) = max{f(x. y )  : y E Y ) .  

The evolutionary algorithm in the inner loop maximizes f ( x .  y)  with fixed 
parameters x,  while the outer loop is responsible for minimize g(.u)ing over the 
set X .  

Other applications of this technique are imaginable. An additional aspect 
touches the evident degree of independence of executing the evolutionary 
algorithms in the inner loop. As a consequence, nested evolutionary algorithms 
are well suited for parallel computers. 
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10 
Evolutionary programming 

V William Porto 

10.1 Introduction 

Evolutionary programming (EP) is one of a class of paradigms for simulating 
evolution which utilizes the concepts of Darwinian evolution to iteratively 
generate increasingly appropriate solutions (organisms) in light of a static or 
dynamically changing environment. This is in sharp contrast to earlier research 
into artificial intelligence research which largely centered on the search for 
simple heuristics. Instead of developing a (potentially) complex set of rules 
which were derived from human experts, EP evolves a set of solutions which 
exhibit optimal behavior with regard to an environment and desired payoff 
function. In a most general framework, EP may be considered an optimization 
technique wherein the algorithm iteratively optimizes behaviors, parameters, or 
other constructs. As in all optimization algorithms, it is important to note that 
the point of optimality is completely independent of the search algorithm, and 
is solely determined by the adaptive topography (i.e. response surface) (Atmar 
1992). 

In its standard form, the basic evolutionary program utilizes the four main 
components of all evolutionary computation (EC) algorithms: initialization, 
variation, evaluation (scoring), and selection. At the basis of this, as well as 
other EC algorithms, is the presumption that, at least in  a statistical sense, 
learning is encoded phylogenically versus ontologically in each member of 
the population. ‘Learning’ is a byproduct of the evolutionary process as 
successful individuals are retained through stochastic trial and error. Variation 
(e.g. mutation) provides the means for moving solutions around on the search 
space, preventing entrapment in local minima. The evaluation function directly 
measures fitness, or equivalently the behavioral error, of each member in the 
population with regard to the environment. Finally, the selection process 
probabilistically culls suboptimal solutions from the population, providing an 
efficient method for searching the topography. 

The basic EP algorithm starts with a population of trial solutions which are 
initialized by random, heuristic, or other appropriate means. The size of the 
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population, p,  may range over a broadly distributed set, but is in general larger 
than one. Each of these trial solutions is evaluated with regard to the specified 
fitness function. After the creation of a population of initial solutions, each 
of the parent members is altered through application of a mutation process; 
in strict EP, recombination is not utilized. Each parent member i generates 
A, progeny which are replicated with a stochastic error mechanism (mutation). 
The fitness or behavioral error is assessed for al l  offspring solutions with the 
selection process performed by one of several general techniques including: ( i )  
the best p solutions are retained to become the parents for the next generation 
(elitist, see Section 28.4), or ( i i )  p of the best solutions are statistically retained 
( tournament, see Chapter 24), or ( i i i )  proportional-based selection (Chapter 23). 
In most applications, the size of the population remains constant, but there is no 
restriction in the general case. The process is halted when the solution reaches 
a predetermined quality, a specified number of iterations has been achieved, or 
some other criterion (e.g. sufficient convergence) stops the algorithm. 

EP differs philosophically from other evolutionary computational techniques 
such as genetic algorithms (GAS) (Chapter 8) in a crucial manner. EP is a 
top-down versus bottom-up approach to optimization. I t  is important to note 
that (according to neo-Darwinism) selection operates only on the phenotypic 
expressions of a genotype; the underlying coding of the phenotype is only 
affected indirectly. The realization that a sum of optimal parts rarely leads 
to an optimal overall solution is key to this philosophical difference. GAS 
rely on the identification, combination, and survival of ‘good’ building blocks 
(schemata) iteratively combining to form larger ‘better’ building blocks. In a 
GA, the coding structure (genotype) is of primary importance as it contains 
the set of optimal building blocks discovered through successive iterations. 
The building block hypothesis is an implicit assumption that the fitness is a 
separable function of the parts of the genome. This successively iterated local 
optimization process is different from EP, which is an entirely global approach 
to optimization. Solutions (or organisms) in an EP algorithm are judged solely 
on their fitness with respect to the given environment. No attempt is made 
to partition credit to individual components of the solutions. In EP (and in 
evolution strategies (ESs), see Chapter 9), the variation operator allows for 
simultaneous modification of all variables at the same time. Fitness, described 
in terms of the behavior of each population member, is evaluated directly, and is 
the sole basis for survival of an individual in the population. Thus, a crossover 
operation designed to recombine building blocks is not utilized in the general 
forms of EP. 

10.2 History 

The genesis of EP (Section 6.2) was motivated by the desire to generate an 
alternative approach to artificial intelligence. Fogel ( 1962) conceived of using 
the simulation of evolution to develop artificial intelligence which did not TEAM LRN
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rely on heuristics, but instead generated organisms of increasing intellect over 
time. Fogel (1964, Fogel et 01 1966) made the observation that intelligent 
behavior requires the ability of an organism to make correct predictions within 
its environment, while being able to translate these predictions into a suitable 
response for a given goal. This early work focused on evolving finite-state 
machines (Chapter 18; see the articles by Mealy (1955), and Moore (1957) for 
a discussion of these automata) which provided a most generic testbed for this 
approach. A finite-state machine (figure 10.1) is a mechanism which operates 
on a finite set (i.e. alphabet) of input symbols, possesses a finite number of 
internal states, and produces output symbols from a finite alphabet. As in all 
finite-state machines, the corresponding input-output symbol pairs and state 
transitions from every state define the specific behavior of the machine. 

1 /6 

Figure 10.1. A simple finite-state machine diagram. Input symbols are shown to the 
left of the slash. Output symbols are to the right of the slash. The finite-state machine 
is presumed to start in state A. 

In a series of experiments (Fogel et 01 1966), an environment was simulated 
by a sequence of symbols from a finite-length alphabet. The problem was 
defined as follows: evolve an algorithm which would operate on the sequence of 
symbols previously observed in a manner that would produce an output symbol 
which maximizes the benefit to the algorithm in light of the next symbol to 
appear in the environment, relative to a well-defined payoff function. 

EP was originally defined by Fogel (1964) in the following manner. A 
population of parent finite-state machines, after initialization, is exposed to the 
sequence of symbols (i.e. environment) which have been observed up to the 
current time. As each input symbol is presented to each parent machine, the 
output symbol is observed (predicted) and compared to the next input symbol. 
A predefined payoff function provides a means for measuring the worth of each 
prediction. After the last prediction is made, some function of the sequence of 
payoff values is used to indicate the overall fitness of each machine. Offspring TEAM LRN
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machines are created by randomly mutating each parent machine. As defined 
above, there are five possible resulting modes of random mutation for a finite- 
state machine. These are: ( i )  change an output symbol; ( i i )  change a state 
transition; ( i i i )  add a state; (iv) delete an existing state; and ( v )  change the 
initial state. Other mutations were proposed but results of experiments with 
these mutations were not described by Fogel et nl (1966). To prevent the 
possibility of creating null machines, the deletion of a state and the changing of 
the initial state were allowed only when a parent machine had more than one 
state. 

Mutation operators are chosen with respect to a specified probability 
distribution which may be uniform, or another desired distribution. The number 
of mutation operations applied to each offspring is also determined with respect 
to a specified probability distribution function (e.g. Poisson) or may be fixed CI 
priori .  Each of the mutated offspring machines is evaluated over the existing 
environment (set of input-output symbol pairs) in the same manner as the parent 
mac hi nes. 

After offspring have been created through application of the mutation 
operator(s) on the members of the parent population, the machines providing 
the greatest payoff with respect to the payoff function are retained to become 
parent members for the next generation. Typically, one offspring is created for 
each parent, and half of the total machines are retained in order to maintain a 
constant population size. The process is iterated until it is required to make an 
actual prediction of the next output symbol in the environment, which has yet 
to be encountered. This is analogous to the presentation of a naive exemplar to 
a previously trained neural network. Out of ths entire population of machines, 
only the best machine, in terms of its overall worth, is chosen to generate the new 
output symbol. Fogel originally proposed selection of machines which score in 
the top half of the entire population, i.e. a nonregressive selection mechanism. 
Although discussed as a possibility to increase variance, the retention of lesser- 
quality machines was not incorporated in these early experiments. 

Since the topography (response surface) is changed after each presentation 
of a symbol, the fitness of the evolved machines must change to reflect the 
payoff from the previous prediction. This prevents evolutionary stagnation as 
the adaptive topography is experiencing continuous change. As is evidenced 
in nature, the complexity of the representation is increased as the finite-state 
machines learn to recognize more subtle features in the experienced sequence 
of symbols. 

Fogel (see Fogel 1964, Fogel et crl 1966) used EP on a series of successively 
more difficult prediction tasks. These experiments ranged from simple two- 
symbol cyclic sequences, eight-symbol cyclic sequences degraded by addition TEAM LRN
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Figure 10.2. A plot showing the convergence of EP on finite-state machines evolved to 
predict primeness of numbers. 

of noise, and sequences of symbols generated by other finite-state machines to 
nonstationary sequences and sequences taken from the article by Flood ( 1962). 

In one example, the capability for predicting the 'primeness'. i.e. whether or 
not a number is prime, was tested. A nonstationary sequence of symbols was 
generated by classifying each of the monotonically increasing set of integers 
as prime (with symbol 1 )  or nonprime (with symbol 0). The payoff function 
consisted of an all-or-none function where one point was provided for each 
correct prediction. No points or penalty were assessed for incorrect predictions. 
A small penalty term was added to maximize parsimony, through the subtraction 
of 0.01 multiplied by the number of states in the machine. This complexity 
penalty was added due to the limited memory available on the computers at 
that time. After presentation of 719 symbols, the iterative process was halted 
with the best machine possessing one state, with both output symbols being 
zero. Figure 10.2 indicates the prediction score achieved in this nonstationary 
environment. Because prime numbers become increasingly infrequent (Burton 
1976), the asymptotic worth of this machine, given the defined payoff function, 
approaches 100%. 

After initial, albeit qualified, success with this experiment, the goal was 
altered to provide a greater payoff for correct prediction of a rare event. Correct 
prediction of a prime was worth one plus the number of nonprimes preceding i t .  
For the first 150 symbols, 30 correct predictions were made (primes predicted 
as primes), 37 false positives (nonprimes predicted as primes), and five primes 
were missed. On predicting the 151st through 547th symbols there were 65 
correct predictions of primes, and 67 false positives. Of the first 35 prime TEAM LRN
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numbers, five were missed, but of the next 65 primes, none were missed. Fogel 
et crl (1966) indicated that the machines demonstrated the capability to quickly 
recognize numbers which are divisible by two and three as being nonprime, 
and that some capability to recognize divisibility by five as being indicative 
of nonprimes was also evidenced. Thus, the machines generated evidence of 
learning a definition of primeness without prior knowledge of the explicit nature 
of a prime number, or any ability to explicitly divide. 

Fogel and Burgin ( 1969) researched the use of EP in game theory. In 
a number of experiments, EP was consistently able to discover the globally 
optimal strategy in simple two-player, zero-sum games involving a small number 
of possible plays. This research also showed the ability of the technique to 
outperform human subjects in more complicated games. Several extensions were 
made to the simulations to address nonzero-sum games (e.g. pursuit evasion.) 
A three-dimensional model was constructed where EP was used to guide an 
interceptor towards a moving target. Since the target was, in most circumstances, 
allowed a greater degree of maneuverability, the success or failure of the 
interceptor was highly dependent upon the learned ability to predict the position 
of the target without CI priori knowledge of the target’s dynamics. 

A different aspect of EP was researched by Walsh et er1 (1970) where EP 
was used for prediction as a precursor to automatic control. This research 
concentrated on decomposing a finite-state machine into submachines which 
could be executed in parallel to obtain the overall output of the evolved system. 
A primary goal of this research was to maximize parsimony in the evolving 
machines. In these experiments, finite-state machines containing seven and 
eight states were used as the generating function for three output symbols. The 
performance of three human subjects was compared to the evolved models when 
predicting the next symbol in the respective environments. In these experiments, 
EP was consistently able to outperform the human subjects. 

The basic EP paradigm may be described by the following EP algorithm: 

TEAM LRN
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where: 
U'  is an individual member in the population 
p 3 I is the size of the parent population 
h > 1 is the size of the offspring population 
P ( t )  := { a ; ( t ) ,  ah(t). . . . , ~ ~ ~ ( t ) )  is the population at time t 
CD : Z -+ '31 is the fitness mapping 
m(..),,, is the mutation operator with controlling parameters 
.s(-), is the selection operator 3 s(-), : (Z* U I / ' + * )  + 1'' 
Q E {Vr, P ( t ) }  is a set of individuals additionally accounted for in the 
selection step, i.e. parent solutions. 

Other than on initialization, the search space is generally unconstrained; 
constraints are utilized for generation and initialization of starting parent 
solutions. Constrained optimization may be addressed through imposition of 
the requirement that ( i )  the mutation operator (Section 32.4) is formulated to 
only generate legitimate solutions (often impossible) or ( i i )  a penalty function 
is applied to offspring mutations lying outside the constraint bounds in such 
a manner that they do not become part of the next generation. The objective 
function explicitly defines the fitness values which may be scaled to positive 
values (although this is not a requirement, i t  is sometimes performed to alter 
the range for ease of implementation). 

In early versions of EP applied to continuous parameter optimization (Fogel 
1992) the mutation operator is Gaussian with a zero mean and variance obtained 
for each component of the object variable vector as the square root of a linear 
transform of the fitness value cp(z). 

( i )  

(ii) 

( i i i )  

x, ( k  + 1 )  := X f  ( k )  + JBf (k)cp(.r, ( k )  + YI )  + N (0. 1 )  

where z ( k )  is the object variable vector, is the proportionality constant, and 
y is an offset parameter. Both B and y must be set externally for each problem. 
N ,  (0, 1 )  is the ith independent sample from a Gaussian distribution with zero 
mean and unit  variance. 

Several extensions to the finite-state machine formulation of Fogel et a1 
( 1966) have been offered to address continuous optimization problems as well 
as to allow for various degrees of parametric self-adaptation (Fogel 199 I a. 1992, 
1995). There are three main variants of the basic paradigm, identified as follows: 

original EP, where continuous function optimization is performed without 
any self-adaptation mechanism; 
continuous EP where new individuals in the population are inserted directly 
without iterative generational segmentation (i.e. an individual becomes part 
of the existing (surviving) population without waiting for the conclusion of 
a discrete generation; this is also known as steady-state selection (Section 
28.3) in GAS and ( p  + 1 )  selection (Chapter 9) in ES); 
self-adaptive EP, which augments the solution vectors with one or more 
parameters governing the mutation process (e.g. variances, covariances) TEAM LRN
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to permit self-adaptation of these parameters through the same iterative 
mutation, scoring, and selection process. In addition, self-adaptive EP may 
also be continuous in the sense of (ii) above. 

The original EP is an extension of the formulation of Fogel et a1 (1966) 
wherein continuous-valued functions replace the discrete alphabets of finite- 
state machines. The continuous form of EP was investigated by Fogel and Fogel 
(1993). To properly simulate this algorithmic variant, i t  is necessary to insert 
new population members by asynchronous methods (e.g. event-driven interrupts 
in a true multitasking, real-time operating system). Iterative algorithms running 
on a single central processing unit  (CPU) are much more prevalent. since they 
are easier to program on today’s computers, hence most implementations of EP 
are performed on a generational (epoch-to-epoch) basis. 

Self-adaptive EP is an important extension of the algorithm in that it 
successfully overcomes the need for explicit user-tuning of the parameters 
associated with mutation. Global convergence may be obtained even in the 
presence of suboptimal parameterization, but available processing time is most 
often a precious resource and any mechanism for optimizing the convergence 
rate is helpful. As proposed by Fogel (1992, 1995). EP can self-adapt the 
variances for each individual in the following way: 

. r , (k  + 1 )  := . r , ( k )  + u , ( k )  t N,(O, 1 )  

~ , ( k  + 1 )  := ~ , ( k )  + [ a u , ( k ) ] ’ ”  * N,(O, 1 ) .  

The variable (T ensures that the variance U ,  remains nonnegative. Fogel 
(1992) suggests a simple rule wherein Vu, (k )  5 0, u , ( k )  is set to 6,  a value 
close to but not identically equal to zero (to allow some degree of mutation). 
The sequence of updating the object variable .U, and variance U ,  was proposed to 
occur in opposite order from that of ESs (Back and Schwefel 1993, Rechenberg 
1965, Schwefel 1981 ). Gehlhaar and Fogel (1096) provide evidence favoring 
the ordering commonly found in ES. 

Further development of this theme led Fogel (1991a, 1992) to extend the 
procedure to alter the correlation coefficients between components of the object 
vector. A symmetric correlation coefficient matrix P is incorporated into 
the evolutionary paradigm in addition to the self-adaptation of the standard 
deviations. The components of P are initialized over the interval [ -  1 ,  11 
and mutated by perturbing each component, again, through the addition of 
independent realizations from a Gaussian random distribution. Bounding 
limits are placed upon the resultant mutated variables wherein any mutated 
coefficient which exceeds the bounds [ - I .  I ]  is reset to the upper or loher 
limit, respectively. Again, this methodology is similar to that of Schwefel 
(1981 ), as perturbations of both the standard deviations and rotation angles 
(determined by the covariance matrix P) allow adaptation to arbitrary contours 
on the error surface. This self-adaptation through the incorporation of correlated TEAM LRN
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mutations across components of each parent object vector provides a mechanism 
for expediting the convergence rate of EP. 

Fogel ( 1988) developed different selection operators which utilized 
tournament competition (Chapter 24) between solution organisms. These 
operators assigned a number of wins for each solution organism based on a 
set of individual competitions (using fitness scores as the determining factor) 
among each solution and each of the q competitors randomly selected from the 
total population. 

10.3 Current directions 

Since the explosion of research into evolutionary algorithms in the late 1980s 
and early 199Os, EP has been applied to a wide range of problem domains with 
considerable success. Application areas in the current literature include training, 
construction, and optimization of neural networks, optimal routing ( in  two, three, 
and higher dimensions), drug design, bin packing, automatic control, game 
theory, and optimization of intelligently interactive behaviors of autonomous 
entities, among many others. Beginning in 1992, annual conferences on EP have 
brought much of this research into the open where these and other applications 
as well as basic research have expanded into numerous interdisciplinary realms. 

Notable within a small sampling of the current research is the work in neural 
network design. Early efforts (Port0 1989, Fogel et nl 1990, McDonnell 1992, 
and others) focused on utilizing EP for training neural networks to prevent 
entrapment in local minima. This research showed not only that EP was well 
suited to training a range of network topologies, but also that it  was often more 
efficient than conventional (e.g. gradient-based) methods and was capable of 
finding optimal weight sets while escaping local minima points. Later research 
(Fogel 1992, Angeline et a1 1994, McDonnell and Waagen 1993) involved 
simultaneous evolution of both the weights and structure of feedforward and 
feedback networks. Additional research into the areas of using EP for robustness 
training (Sebald and Fogel 1992), and for designing fuzzy neural networks for 
feature selection, pattern clustering, and classification (Brotherton and Simpson 
1995) have been very successful as well as instructive. 

EP has been also used to solve optimal routing problems. The trawling 
salesman problem (TSP), one of many in the class of nondeterministic- 
polynomial-time- (NP-) complete (see Aho et a1 1974) problems, has been 
studied extensively. Fogel ( 1988, 1993) demonstrated the capability of EP to 
address such problems. A representation was used wherein each of the cities 
to be visited was listed in order, with candidate solutions being permutations 
of this listing. A population of random tours is scored with respect to their 
Euclidean length. Each of the tours is mutated using one of many possible 
inversion operations (e.g. select two cities in the tour at random and reverse the 
order of the segment defined by the two cities) to generate an offspring. All of 
the offspring are then scored, with either elitist or stochastic competition used to TEAM LRN
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cull lower-scoring members from the population. Optimization of the tours was 
quite rapid. In one such experiment with 1000 cities uniformly distributed, the 
best tour (after only 4 x 10’ function evaluations) was estimated to be within 
5-75? of the optimal tour length. Thus, excellent solutions were obtained after 
searching only an extremely small portion of the total potential search space. 

EP has also been utilized in a number of medical applications. For 
example, the issue of optimizing drug design was researched by Gehlhaar P t  

ul (1995). EP was utilized to perform a conformational and position search 
within the binding site of a protein. The search space of small molecules 
which could potentially dock with the crystallographically determined binding 
site was explored iteratively guided by a database of crystallographic protein- 
ligand complexes. Geometries were constrained by known physical ( i n  three 
dimensions) and chemical bounds. Results demonstrated the efficacy of this 
technique as it was orders of magnitude fater  in finding suitable ligands than 
previous hands-on methodologies. The probability of successfully predicting the 
proper binding modes for these ligands was estimated at over 95% using nominal 
values for the crystallographic binding mode and number of docks attempted. 
These studies have permitted the rapid development of several candidate drugs 
which are currently in clinical trials. 

The issue of utilizing EP to control systems has been addressed widely 
(Fogel and Fogel 1990, Fogel 1991a, Page P t  cil 1992, and many others). 
Automatic control of fuzzy heating, ventilation, and air conditioning (HVAC) 
controllers was addressed by Haffner and Sebald (1993). In this study, a 
nonlinear, multiple-input. multiple-output (MIMO) model of a HVAC system 
was used and controlled by it fuzzy controller designed using EP. Typical fuzzy 
controllers often use trial and error methods to determine parameters and transfer 
functions, hence they can be quite time consuming with a complex MIhlO 
HVAC system. These experiments used EP to design the membership functions 
and values (later studies were extended to find rules as well a s  responsibilities 
of the primary controller) to automate the tuning procedure. EP worked in 
an overall search space containing 76 parameters, 10 controller inputs, seven 
controller outputs. and 80 rules. Simulation results demonstrated that EP was 
quite effective at choosing the membership functions of the control laboratory 
and corridor pressures in the model. The synergy of combining EP with fuzzy 
set constructs proved quite fruitful in reducing the time required to design a 
stable, functioning HVAC system. 

Game theory has always been at the forefront of artificial intelligence 
research. One interesting game, the iterated prisoner’s dilemma, has been 
studied by numerous investigators (Axelrod 1987. Fogel I99 I b, Harrald and 
Fogel 1996, and others). In this two-person game, each player can choose 
one of two possible behavioral policies: defection or cooperation. Defection 
implies increasing one’s own reward at the expense of the opposing player, 
while cooperation implies increasing the reward for both players. If the game 
is played over a single iteration, the dominant move is defection. If  the players‘ TEAM LRN
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strategies depend on the results of previous iterations, mutual cooperation may 
possibly become a rational policy, whereas if the sequence of strategies is not 
correlated, the game degenerates into a series of single plays with defection 
being the end result. Each player must choose to defect or cooperate on each 
trial. Table 10. I describes a general form of the payoff function in the prisoner's 
dilemma. 

Table 10.1. A general form of the payoff matrix for the prisoner's dilemma problem. y I  
is the payoff to each player for mutual cooperation. y2 is the payoff' for cooperating when 
the other player defects. y3 is the payoff for defecting when the other player cooperates. 
y4 is the payoff to each player for mutual defection. Entries (U, p )  indicate pajof't's to 
players A and B, respectively. 

Player B 
C D 

In addition, the payoff matrix defining the game is subject to the following 
constraints (Rapoport 1966): 

Both neural network approaches (Harrald and Fogel 1996) and finite-state 
machine approaches (Fogel 1991 b) have been applied to this problem. Finite- 
state machines are typically used where there are discrete choices between 
cooperation and defection. Neural networks allow for a continuous range of 
choices between these two opposite strategies. Results of these preliminary 
experiments using EP, in general, indicated that mutual cooperation is more 
likely to occur when the behaviors are limited to the extremes (the finite- 
state machine representation of the problem), whereas in the neural network 
continuum behavioral representation of the problem, i t  is easier to slip into a 
state of mutual defection. 

Development of interactively in tell igen t be haviors was investigated by Foge 1 
et a1 (1996). EP was used to optimize computer-generated force (CGF) 
behaviors such that they learned new courses of action adaptively as changes 
in the environment (i.e. presence or absence of opposing side forces) were 
encountered. The actions of the CGFs were created at the response of an event 
scheduler which recognized significant changes in the environment as perceived 
by the forces under evolution. New plans of action were found during these 
event periods by invoking an evolutionary program. The iterative EP process 
was stopped when time or CPU limits were met, and relinquished control of the TEAM LRN
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simulated forces back to the CGF simulator after transmitting newly evolved 
instruction sets for each simulated unit. This process proved quite successful 
and offered a significant improvement over other rule-based systems. 

10.4 Future research 

Important research is currently being conducted into the understanding of the 
convergence properties of EP, as well as the basic mechanisms of different 
mutation operators and selection mechanisms. Certainly of great interest is the 
potential for self-adaptation of exogeneous parameters of the mutation operation 
(meta and Rmeta-EP), as this not only frees the user from the often difficult 
task of parameterization, but also provides a built-in, automated mechanism for 
providing optimal settings throughout a range of problem domains. The number 
of application areas of this optimization technique is constantly growing. EP. 
along with the other EC techniques, is being used on previously untenable. often 
NP-complete, problems which occur quite often in commercial and military 
pro b I e m s. 
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11 
Derivative methods in genetic 
programming 

Kenneth E Kinnear, Jr 

1 1.1 Introduction 

This chapter describes the fundamental concepts of genetic programming (GP) 
(Koza 1989, 1992). Genetic programming is a form of evolutionary algorithm 
which is distinguished by a particular set of choices as to representation, 
genetic operator design, and fitness evaluation. When examined in isolation, 
these choices define an approach to evolutionary computation (EC) which is 
considered by some to be a specialization of the genetic algorithm (GA). When 
considered together, however, these choices define a conceptually different 
approach to evolutionary computation which leads researchers to explore new 
and fruitful lines of research and practical applications. 

11.2 Genetic programming defined and explained 

Genetic programming is implemented as an evolutionary algorithm in which 
the data structures that undergo adaptation are executable computer programs. 
Fitness evaluation in genetic programming involves executing these evolved 
programs. Genetic programming, then, involves an evolution-directed search of 
the space of possible computer programs for ones which, when executed, will 
produce the best fitness. 

In short, genetic programming breeds computer programs. To create the 
initial population a large number of computer programs are generated at random. 
Each of these programs is executed and the results of that execution are used 
to assign a fitness value to each program. Then a new population of programs, 
the next generation, is created by directly copying certain selected existing 
programs, where the selection is based on their fitness values. This population 
is filled out by creating a number of new offspring programs through genetic 
operations on existing parent programs which are selected based, again, on their 
fitness. Then, this new population of programs is again evaluated and a fitness 
is assigned to each program based on the results of its evaluation. Eventually 
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this process is terminated by the creation and evaluation of a 'correct' program 
or the recognition of some other specific termination criteria. 

More specifically, at the most basic level, genetic programming is defined 
as a genetic algorithm with some unusual choices made as to the representation 
of the problem, the genetic operators used to modify that representation, and 
the fitness evaluation techniques employed. 

I I .2 .  I A .speciali:eci representation: executable programs 

Any evolutionary algorithm is distinguished by the structures used to represent 
the problem to be solved. These are the structures which undergo transformation, 
and in which the potential solutions reside. 

Originally, most genetic algorithms used linear strings of bits (Chapter 15) 
as the structures which evolved (Holland 197S), and the representation of the 
problem was typically the encoding of these bits as numeric or logical parameters 
of a variety of algorithms. The evolving structures were often used as parameters 
to human-coded algorithms. In addition, the bitstrings used were frequently of 
fixed length, which aided in the translation into parameters for the algorithms 
involved. 

More recently, genetic algorithms have appeared with real-valued numeric 
sequences used as the evolvable structures, still frequently used as parameters to 
particular algorithms. In recent years, many genetic algorithm implementations 
have appeared with sequences which are of variable length, sometimes based 
on the order of the sequences, and which contain more complex and structured 
information than parameters to existing algorithms. 

The representation used by genetic programming is that of an executable 
program. There is no single form of executable program which is used by 
all genetic programming implementations, although many implementations use 
a tree-structured representation (Chapter 19) highly reminiscent of a LISP 
functional expression. These representations are almost always of a variable 
size, though for implementation purposes a maximum size is usually specified. 

Figure 1 1 . 1  shows an example of a tree-structured representation for a 
genetic programming implementation. The specific task for which this is a 
reasonable representation is the learning of a Boolean function from a set 
of inputs. This figure contains two different types of node (as do most 
genetic programming representations) which are called functions and terminals. 
Terminals are usually inputs to the program, although they may also be constants. 
They are the variables which are set to values external to the program itself prior 
to the fitness evaluation performed by executing the program. In this example 
dO and dl  are the terminals. They can take on binary values of either zero or 
one. 

Functions take inputs and produce outputs and possibly produce side-effects. 
The inputs can be either a terminal or the output of another function. In the 
above example, the functions are AND, OR, and NOT. Two of these functions TEAM LRN
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Figure 11.1. Tree-structured representation used in genetic programming. 

are functions of two inputs, and one is a function of one input. Each produces 
a single output and no side effect. 

The fitness evaluation for this particular indi\liditril is determined by the 
effectiveness with which it will produce the correct logical output for all of the 
test cases against which i t  is tested. 

One way to characterize the design of a representation for an application 
of genetic programming to a particular problem is to view i t  as the design of 
a language, and this can be a useful point of view. Perhaps i t  is more useful, 
however, to view the design of a genetic programming representation as that 
of the design of a virtual machine-since usually the execution engine must 
be designed and constructed as well as the representation or language that is 
executed. 

The representation for the program (i.e. the definition of the functions and 
terminals) must be designed along with the virtual machine that is to execute 
them. Rarely are the programs evolved in genetic programming given direct 
control of the central processor of a computer (although see the article by 
Nordin (1994)). Usually, these programs are interpreted under control of a 
virtual machine which defines the functions and terminals. This includes the 
functions which process the data, the terminals that provide the inputs to the 
programs, and any control functions whose purpose is to affect the execution 
flow of the program. 

As part of this virtual machine design task, it is important to note that the 
output of any function or the value of any terminal may be used as the input to 
any function. Initially, this often seems to be a trivial problem, but when actually 
performing the design of the representation and virtual machine to execute that 
representation, it frequently looms rather large. Two solutions are typically used 
for this problem. One approach is to design the virtual machine, represented by 
the choice of functions and terminals, to use only a single data type. In this way, 
the output of any function or the value of any terminal is acceptable as input to 
any function. A second approach is to allow more than one data type to exist TEAM LRN
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in the virtual machine. Each function must then be defined to operate on any of 
the existing data types. Implicit coercions are performed by each function on 
its input to convert the data type that i t  receives to one that i t  is more normally 
defined to process. Even after handling the data type problem, functions must 
be defined over the entire possible range of argument values. Simple arithmetic 
division must be defined to return some value even when division by zero is 
attempted. 

I t  is important to note that the definition of functions and the virtual machine 
that executes them is not restricted to functions whose only action is to provide 
a single output value based on their inputs. Genetic programming functions 
are often defined whose primary purpose is the actions they take by virtue of 
their side-effects. These functions rnust return some value as well, but their real 
purpose is interaction with an environment external to the genetic programming 
system. 

An additional type of side-effect producing function is one that implements 
a control structure within the virtual machine defined to execute the genetically 
evolved program. All of the common programming control constructs such as 
if-then+lse, while-do, for, and others have been implemented as evolvable 
control constructs within genetic programming systems. Looping constructs 
must be protected in such a way that they will never loop forever. and usually 
have an arbitrary limit set on the number of loops which they will execute. 

As part of the initialization of a genetic programming run, a large number of 
individual programs are generated at random. This is relatively straightforward, 
since the genetic programming system is supplied with information about the 
number of arguments required by each function, as well as all of the available 
terminals. Random program trees are generated using this information, typically 
of a relatively small size. The program trees will tend to grow quickly to be 
quite large in the absence of some explicit evolutionary pressure toward small 
size or some simple hard-coded lirnits to growth. 

The second specific design approach that distinguishes genetic programming 
from other types of genetic algorithm is the design of the genetic operators. 
Having decided to represent the problem to be solved as a population of 
computer programs, the essence of an evolutionary algorithm is to evaluate 
the fitness of the individuals in the population and then to create new members 
of the population based in some way on the individuals which have the highest 
fitness in the current population. 

In genetic algorithms, recombination is typically the key genetic operator 
employed, with some utility ascribed to mutation as well. In this way, 
genetic programming is no different from any other genetic algorithm. Genetic 
algorithms usually have genetic material organized in a linear fashion and 
the recombination, or crossover, algorithm defined for such genetic material TEAM LRN
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is quite straightforward (see Section 33.1). The usual representation of 
genetic programming programs as tree-structured combinations of functions and 
terminals requires a different form of recombination algorithm. A major step in 
the invention of genetic programming was the design of a recombination operator 
which would simply and easily allow the creation of an offspring program tree 
using as inputs the program trees of two individuals of generally high fitness as 
parents (Cramer 1985, Koza 1989, 1992). 

In any evolutionary algorithm it is vitally important that the fitness of the 
offspring be related to that of the parents, or else the process degenerates into 
one of random search across whatever representation space was chosen. It 
is equally vital that some variation, indeed heritable variation, be introduced 
into the offspring’s fitness, otherwise no improvement toward an optimum is 
possible. 

/ 

Figure 11.2. Recombination in genetic programming. 

The tree-structured genetic material usually used in genetic programming 
has a particularly elegant recombination operator that may be defined for it. 
In figure 11.2, there are two parent program trees, (a)  and (b). They are to 
be recombined through crossover to create an offspring program tree ( c ) .  A 
subtree is chosen in each of the parents, and the offspring is created by inserting 
the subtree chosen from (6) into the place where the subtree was chosen in 
(a) .  This very simply creates an offspring program tree which preserves the 
same constraints concerning the number of inputs to each function as each TEAM LRN
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parent tree. In practice i t  yields a offspring tree whose fitness has enough 
relationship to that of its parents to support the evolutionary search process. 
Variations in this crossover approach are easy to imagine, and are currently the 
subject of considerable active research in the genetic programming community 
(D'haeseleer 1994, Teller 1996). 

Mutation (Chapter 3 2 )  is a genetic operator mhich can be applied to a \ingle 
parent program tree to create an offspring tree. The typical mutation operator 
used selects a point inside a parent tree, and generates a new random subtree 
to replace the selected subtree. This random subtree i \  uwally generated by the 
\ame procedure used to generate the initial population of program trees. 

Finally, then, the last detailed distinction between genetic programming and a 
more usual implementation o f  the genetic algorithm is that of the assignment of 
a fitness value for a individual. 

I n  genetic programming, the representation of the individual is a program 
which. when executed under control of a defined virtual machine, implements 
some algorithm. I t  may do this by returning some value (as would be the case 
for a system t o  learn a specitic Boolean function) or i t  might do this through the 
performance of some task through the use of functions which have side-effects 
that act on a simulated (or even the real) world. 

The results of the program's execution are evaluated in some way, and this 
evaluation represents the fitness of the individual. This fitness is used to drive 
the selection process for copying into the next generation or for the selection of 
parents to undergo genetic operations yielding offspring. Any selection operator 
from those presented in Chapters 22-33 can be used. 

There is certainly a desire to evolve programs using genetic programming 
that are 'general', that is to say that they will not only correctly process the 
fitness cases on which they are evolved, but will process correctly any fitness 
cases which could be presented to them. Clearly, in the cases where there are 
intinitely many possible cases, such as evolving a general sorting algorithm 
(Kinnear 1993), the ekdutionary process can only be driven by a \ a y  limited 
number of fitness cases. Many of the lessons from machine learning on the 
tradeoffs between generality and performance on training cases have been 
helpful to genetic programming researchers, particularly those from decision 
tree approaches to machine learning (Iba et (11 1994). 

11.3 The development of genetic programming 

LISP was the language in which the ideas which led to genetic programming 
were first dekeloped (Cramer 1985, Koza 1989, 1992). LISP has always been 
one of the preeminent language choices for implementation where programs 
need to be treated as data. In this case, programs are data while they are being TEAM LRN
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evolved, and are only considered executable when they are undergoing fitness 
evaluation. 

As genetic programming itself evolved in LISP, the programs that were 
executed began to look less and less like LISP programs. They continued to be 
tree structured but soon few if any of the functions used in the evolved programs 
were standard LISP functions. Around I992 many people implemented genetic 
programming systems in C and C++, along with many other programming 
languages. Today, other than a frequent habit of printing the representation 
of tree-structured genetic programs in a LISP-like syntax, there is no particular 
connection between genetic programming and LISP. 

There are many public domain implementations of genetic programming in 
a wide variety of programming languages. For further details, see the reading 
list at the end of this section. 

11.4 The value of genetic programming 

Genetic programming is defined as a variation on the theme of genetic 
algorithms through some specific selections of representation, genetic operators 
appropriate to that representation, and fitness evaluation as execution of that 
representation in a virtual machine. Taken in isolation, these three elements 
do not capture the value or promise of genetic programming. What makes 
genetic programming interesting is the conceptual shift of the problem being 
solved by the genetic algorithm. A genetic algorithm searches for something, 
and genetic programming shifts the search from that of parameter discovery 
for some existing algorithm designed to solve a problem to a search for a 
program (or algorithm) to solve the problem directly. This shift has a number 
of ramifications. 

0 This conceptualization of evolving computer programs is powerful in part 
because i t  can change the way that we think about solving problems. 
Through experience, it has become natural to think about solving 
problems through a process of human-oriented program discovery. Genetic 
programming allows us to join this approach to problem solving with 
powerful EC-based search techniques. 

An example of this is a variation of genetic programming called 
stack genetic programming (Perkis 1994), where the program is a variable- 
length linear string of functions and terminals, and the argument passing 
is defined to be on a stack. The genetic operators in a linear system 
such as this are much closer to the traditional genetic algorithm operators, 
but the execution and fitness evaluation (possibly including side-effects) is 
equivalent to any other sort of genetic programming. The characteristics of 
stack genetic programming have not yet been well explored but it is clear 
that it has rather different strengths and weaknesses than does traditional 
genetic programming. TEAM LRN
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Many of the approaches to simulation of adaptive behavior involve 
simple programs designed to control ariirncits . The conceptualization of 
evolving computer programs as presented by genetic programming fits well 
with work on evolving adaptive entities (Reynolds 1994, Sims 1994). 
There has been a realization that not only can we evolve programs that are 
built from human-created functions and terminals, but that the functions 
from which they are built can evolve as well. Koza’s invention of 
automatically defined functions (ADFs) (Koza 1994) is one such example 
of this realization. ADFs allow the definitions of certain subfunctions to 
evolve even while the functions that call them are evolving. For certain 
classes of problems, ADFs result in considerable increases in performance 
(Koza 1994, Angeline and Pollack 1993, Kinnear 1994). 
Genetic programming is capable of integrating a wide variety of existing 
capabilities, and has potential to tie together several complementary 
subsystems into an overall hybrid system. The functions need not be simple 
arithmetic or logical operators, but could instead be fast Fourier transforms, 
GMDH systems, or other complex building blocks. They could even be 
the results of other evolutionary computation algorithms. 
The genetic operators that create offspring programs from parent programs 
are themselves programs. These programs can also be evolved either as 
part of a separate process, or in a coevolutionary way with the programs on 
which they operate. While any evolutionary computation algorithm could 
have parameters that affect the genetic operators be part of the evolutionary 
process, genetic programming provides a natural way to let the operators 
(defined as programs) evolve directly (Teller 1996, Angeline 1996). 
Genetic programming naturally enhances the possibility for increasingly 
indirect evolution. As an example of the possibilities, genetic programming 
has been used to evolve grammars which, when executed, produce the 
structure of an untrained neural network. These neural networks are then 
trained. and the trained networks are then evaluated on a test set. The results 
of this evaluation are then used as the fitnesses of the evolved grammars 
(Gruau 1993). 

This last example is a step along the path toward modeling embryonic 
development in genetic programming. The opportunity exists to evolve 
programs whose results are themselves programs. These resulting programs 
are then executed and their values or side-effects are evaluated-and become 
the fitness for the original evolving, program creating programs. The analogy 
to natural embryonic development is clear, where the genetic material, the 
genotype, produces through development a body, the phenotype, which then 
either does or does not produce offspring, the fitness (Kauffman 1993). 

Genetic programming is valuable in part because we find it natural to 
examine issues such as those mentioned above when we think about evolutionary 
computation from the genetic programming perspective. TEAM LRN
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12 
Learning classifier systems 

Robert E Smith 

12.1 Introduction 

The learning classifier system (LCS) (Goldberg 1989, Holland et ul 1986) is 
often referred to as the primary machine learning technique that employs genetic 
algorithms (GAS). It is also often described as ii production system framework 
with a genetic algorithm as the primary rule discovery method. However, the 
details of LCS operation vary widely from one implementation to another. In 
fact, no standard version of the LCS exists. In many ways, the LCS is more 
of a concept than an algorithm. To explain details of the LCS concept, this 
article will begin by introducing the type of machine learning problem most 
often associated with the LCS. This discussion will be followed by a overview 
of the LCS, in its most common form. Final sections will introduce the more 
complex issues involved in LCSs. 

12.2 Qpes of learning problem 

To introduce the LCS, it will be useful to describe types of machine learning 
problem. Often, in the literature, machine learning problems are described in 
terms of cognitive psychology or animal behavior. This discussion will attempt 
to relate the terms used in machine learning to engineering control. 

Consider the generic control problem shown in figure 12.1. In this 
problem, inputs from an external control system, combined with uncontrollable 
disturbances from other sources, change the state of the plant. These changes 
in state are reflected in the state information provided by the plant. Note that, 
in general, the state information can be incomplete and noisy. 

Consider the supen7ised learning problem shown in figure 12.2 (Barto 1990). 
In this problem, an inverse plant model (or teacher) is available that provides 
errors directly in terms of control actions. Given this direct error feedback, the 
parameters of the control system can be adjusted by means of gradient descent, 
to minimize error in control actions. Note that this is the method used in the 
neural network backpropagation algorithm. 
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Figure 12.2. A supervised learning problem. 

Nob consider the reiizfbrceinerzt learriirzg problem shown in figure 12.3 
(Barto 1990). Here, no inverse plant model is available. However, a critic 
is available that indicates error in the state information from the plant. Because 
error is not directly provided in terms of control actions. the parameters of the 
controller cannot be directly adjusted by methods such as gradient descent. 

Figure 12.3. A reinforcement learning problem. 

The remaining discussion will consider the control problem to operate as a 
Markov decision problem. That is, the control problem operates in discrete time 
steps. the plant is always in one of a finite number of discrete states, and a finite, 
discrete number of control actions are available. At each time step, the control TEAM LRN



I I6 Learning classifier systems 

action alters the probability of moving the plant from the current state to any 
other state. Note that deterministic environments are a specific case. Although 
this discussion will limit itself to discrete problems, most of the points made 
can be related directly to continuous problems. 

A characteristic of many reinforcement learning problems is that one may 
need to consider a sequence of control actions and their results to determine 
how to improve the controller. One can examine the implications of this by 
associating a rerturd or cost with each control action. The error in state in 
figure 12.3 can be thought of as a cost. One can consider the long-term effects 
of an action formally as the expected, iriJitiite-lzori,7cti discmmted cvst: 

h'c, 

where 0 5 h 5 1 is the discount parameter, and c, is the cost of the action 
taken at time t .  

To describe a strategy for picking actions, consider the following approach: 
for each action 14 associated with a state i ,  assign a value Q ( i ,  U ) .  A 'greedy' 
strategy is to select the action associated with the best Q at every time step. 
Therefore, an optimum setting for the Q-values is one in which a 'greedy' 
strategy leads to the minimum expected, infinite-horizon discounted cost. Q- 
learning is a method that yields optimal Q-values in restricted situations. 
Consider beginning with random settings for each Q-value, and updating each 
Q-value on-line as follows: 

where min Q ( j ,  L i f t ] )  is the minimum Q available in state j ,  which is the state 
arrived in after action uf is taken in state i (Barto et a1 1991, Watkins 1989). 
The parameter ac is a learning rate parameter that is typically set to a small 
value between zero and one. Arguments based on dyncimic progr~rmmitzg and 
Bellmcui opfirnality show that if each state-action pair is tried an infinite number 
of times, this procedure results in optimal Q-values. Certainly, i t  is impractical 
to try every state-action pair an infinite number of times. With finite exploration, 
Q-values can often be arrived at that are approximately optimal. Regardless of 
the method employed to update a strategy in a reinforcement learning problem, 
this exploration-exploitation dilemma always exists. 

Another difficulty in the Q-value approach is that it requires storage of 
a separate Q-value for each state-action pair. In a more practical approach, 
one could store a Q-value for a group of state-action pairs that share the 
same characteristics. However, it is not clear how state-action pairs should 
be grouped. In  many ways, the LCS can be thought of as a GA-based technique 
for grouping state-action pairs. TEAM LRN
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12.3 Learning classifier system introduction 

Consider the following method for representing a state-action pair in a 
reinforcement learning problem: encode a state in binary, and couple it to an 
action, which is also encoded in binary. In other words, the string 

0 1 1 0 / 0 1 0  

represents one of 16 states and one of eight actions. This string can also be 
seen as a rule that says ‘IF in state 0 1 1 0, THEN take action 0 1 0’. In an 
LCS, such a rule is called a classifier. One can easily associate a Q-value, or 
other performance measures, with any given classifier. 

Now consider generalizing over actions by introducing a ‘don’t care’ 
character (#) into the state portion of a classifier. In other words, the string 

# 1 1 # / 0 1 0  

is a rule that says ‘IF in state 0 1 1 0 OR state 0 1 1 1 OR state 1 1 1 0 OR 
state 1 1 1 1, THEN take action 0 1 0’. The introduction of this generality 
allows an LCS to represent clusters of states and associated actions. By using 
the genetic algorithm to search for such strings, one can search for ways of 
clustering states together, such that they can be assigned joint performance 
statistics, such as Q-values. 

Note, however, that Q-learning is not the most common method of credit 
assignment in LCSs. The most common method is called the bucket brigade 

Figure 12.4. The structure of an LCS. TEAM LRN
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tr lgorihi  for updating a classifier performance statistic called sfrengtk. Details 
of the bucket brigade algorithm will be introduced later in this section. 

The structure of a typical LCS is shown in figure 12.4. This is what is 
known as a .stimirlus-r~.spoiz.~~ LCS, since no internal messages are used as 
memory. Details of internal message posting in LCSs will be discussed later. 
In this system, detectors encode state information from an environment into 
binary messages, which are matched against a list of rules called classifiers. 
The classifiers used are of the form 

IF (condition) THEN (action). 

The operational cycle of this LCS is: 

( i )  Detectors post environmental messages on the message list. 
( i i )  All classifiers are matched against all messages on the message list. 
( i i i )  Fully matched classifiers are selected to act. 
( i v )  A conflict resolution (CR) mechanism narrows the list of active classifiers 

to e 1 i m i nate contradictory act ions. 
( v )  The message list is cleared. 
(v i )  The CR-selected classifiers post their messages. 
(v i i )  Effectors read the messages from the list, and take appropriate actions in 

the environment. 
(v i i i )  I f  a reward (or cost) signal is received. i t  is used by a credit allocation 

(CA) system to update parameters associated with the individual classifiers 
(such as the traditional strength measure, Q-like values, or other measures 
(Booker 1989, Smith I99 1 )). 

12.4 ‘Michigan’ and ‘Pitt’ style learning classifier systems 

There are two methods of using the genetic algorithm in LCSs. One is for each 
genetic algorithm population member to represent an entire set of rules for the 
problem at hand. This type of LCS is typified by Smith’s LS-I which was 
developed at the University of Pittsburgh. Often, this type of LCS is called 
the ‘Pitt’ approach. Another approach is for each genetic algorithm population 
member to represent a single rule. This type of LCS is typified by the CS- 
1 of Holland and Reitman (1978), which was developed at the University of 
Michigan, and is often called the ‘Michigan’ approach. 

In the ‘Pitt’ approach, crossover and other operators are often employed 
that change the number of rules in any given population member. The ‘Pitt‘ 
approach has the advantage of evaluating a complete solution within each 
genetic algorithm individual. Therefore, the genetic algorithm can converge to a 
homogeneous population, as in an optimization problem, with the best individual 
located by the genetic algorithm search acting as the solution. The disadvantage 
is that each genetic algorithm population member must be completely evaluated 
as a rule set. This entails a large computational expense, and may preclude 
on-line learning in many situations. TEAM LRN
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In the 'Michigan' approach, one need only evaluate a single rule set, that 
comprised by the entire population. However, one cannot use the usual genetic 
algorithm procedures that will converge to a homogeneous population, since one 
rule is not likely to solve the entire problem. Therefore, one must c.oe\wlr?e a 
set of cooperative rules that jointly solve the problem. This requires a genetic 
algorithm procedure that yields a diverse population at steady state, in  a fashion 
that is similar to sharing (Deb and Goldberg 1989, Goldberg and Richardson 
1987), or other multimodal genetic algorithm procedures. I n  some cases simply 
dividing reward between similar classifiers that fire can yield sharing-like effects 
(Horn et a1 1994). 

12.5 The bucket brigade algorithm (implicit form) 

As was noted earlier, the bucket brigade algorithm is the most common form of 
credit allocation for LCSs. In the bucket brigade, each classifier has a strength, 
S ,  which plays a role analogous to a @value. The bucket brigade operates as 
follows: 

( i )  Classifier A is selected to act at time t .  
( i i )  Reward I-,  is assigned in response to this action. 
(iii) Classifier B is selected to act at time t + 1 .  
(iv) The strength of classifier A is updated as follows: 

s:+' = S ~ < I  -a> + a  [r,  + ( A s B ) J .  

( v )  The algorithm repeats. 

Note that this is the implicit form of the bucket brigade, first introduced by 
Wilson (Goldberg 1989, Wilson 1985). 

Note that this algorithm is essentially equivalent to Q-learning, but with one 
important difference. In this case, classifier A's strength is updated with the 
strength of the classifier that actually acts (classifier B). In Q-learning. the Q- 
value for the rule at time t is updated with the best (2-valued rule that matches 
the state at time t + 1 ,  whether that rule is selected to act at time r + I or not. 
This difference is key to the convergence properties associated with Q-learning. 
However, i t  is interesting to note that recent empirical studies have indicated 
that the bucket brigade (and similar procedures) may be superior to Q-learning 
in some situations (Rummery and Niranjan 1994, Twardowski 1993). 

A wide variety of variations of the bucket brigade exits. Some include a 
variety of taxes, which degrade strength based on the number of times a classifier 
has matched and fired and the number of generations since the classifier's 
creation. or other features. Some variations include a variety of methods for 
using classifier strength in conflict resolution through strength-based biddirtg 
procedures (Holland et a1 1986). However, how these techniques fit into the 
broader context of machine learning, through similar algorithms such as Q- 
learning, remains a topic of research. TEAM LRN



I20 Learning classifier systems 

In many LCSs, strength is used as fitness in the genetic algorithm. However, 
a promising recent study indicates that other measures of classifier utility may 
be more effective (Wilson 1995). 

12.6 Internal messages 

The LCS discussed to this point has operated entirely in stimulus-response 
mode. That is, it possesses no internal memory that influences which rule 
tires. In a more advanced form of the LCS. the action sections of the rule 
are internal messages that are posted on the message list. Classifiers have a 
condition that matches environmental messages (those which are posted by the 
environment) and a condition that matches internal messages (those posted by 
other classifiers). Some internal messages will cause effectors to fire (causing 
actions in the environment), and others simply act as internal memory for the 
LCS. 

The operational cycle of a LCS with internal memory is as follows: 

Detectors post environmental messages on the message list. 
All classifiers are matched against all messages on the message list. 
Fully matched classifiers are selected to act. 
A conflict resolution (CR) mechanism narrows the list of active classifiers 
to eliminate contradictory actions, and to cope with restrictions on the 
number of messages that can be posted. 
The message list is cleared. 
The CR-selected classifiers post their messages. 
Effectors read the messages from the list, and take appropriate actions in 
the environment. 

(v i i i )  If a reward (or cost) signal is received, i t  updates parameters associated 
with the individual classifiers. 

In  LCSs with internal messages, the bucket brigade can be used in its 
original, explicit form. In this form, the next rule that acts is ‘linked’ to the 
previous rule through an internal message. Otherwise, the mechanics are similar 
to those noted above. Once classifiers are linked by internal messages, they can 
form rrdr drtrirzs that express complex sequences of actions. 

12.7 Parasites 

The possibility of rule chains introduced by internal messages, and by ‘payback’ 
credit allocation schemes such as the bucket brigade or @learning, also 
introduces the possibility of rule parasites. Simply stated, parasites are rules that 
obtain fitness through their participation in ;1 rule chain or a sequence of LCS TEAM LRN
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actions, but serve no useful purpose in the problem environment. In some cases, 
parasite rules can prosper, while actually degrading overall system performance. 

A simple example of parasite rules in LCSs is given by Smith (1994). In this 
study, a simple problem is constructed where the only performance objective is 
to exploit internal messages as internal memory. Although fairly effective rule 
sets were evolved in this problem, parasites evolved that exploited the bucket 
brigade, and the existing rule chains, but that were incorrect for overall system 
performance. This study speculates that such parasites may be an inevitable 
consequence in systems that use temporal credit assignment (such as the bucket 
brigade) and evolve internal memory processing. 

12.8 Variations of the learning classification system 

As was stated earlier, this article only outlines the basic details of the LCS 
concept. I t  is important to note that many variations of the LCS exist. These 
include: 

Variations in representation and matching proceditres. The { I , 0, #I  
representation is by no means defining to the LCS approach. For instance. 
Valenzuela-Rendon ( 199 1 )  has experimented with a fuzzy representation 
of classifier conditions, actions, and internal messages. Higher-cardinality 
alphabets are also possible. Other variations include simple changes 
in the procedures that match classifiers to messages. For instance, 
sometimes partial matches between messages and classifier conditions 
are allowed (Booker 1982, 1985). In other systems, classifiers have 
multiple environmental or internal message conditions. In some suggested 
variations, multiple internal messages are allowed on the message list at 
the same time. 

Variations in credit assignment. As was noted above, a variety of credit 
assignment schemes can be used in LCSs. The examination of such 
schemes is the subject of much broader research in the reinforcement 
learning literature. Alternate schemes for the LCS prominently include 
epochnl techniques, where the history of reward (or cost) signals is recorded 
for some period of time, and classifiers that act during the epoch are updated 
simultaneously. 

Variatioizs in discovery operators. In addition to various versions of the 
genetic algorithm, LCSs often employ other discovery operators. The most 
common nongenetic discovery operators are those which create new rules 
to match messages for which no current rules exist. Such operators are 
often called create, colwing,  or guessing operators (Wilson 1985). Other 
covering operators are suggested that create new rules that suggest actions 
not accessible in the current rule set (Riolo 1986, Robertson and Riolo 
1988). TEAM LRN
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12.9 Final comments 

As was stated in section 12.1, the LCS remains a concept, more than a specitic 
algorithm. Therefore, some of the details discussed here are necessarily sketchy. 
However, recent research on the LCS is promising. For a particularly clear 
examination of a simplified LCS, see a recent article by Wilson (1994). This 
article also recommends clear ak'enues for LCS research and development. 
Interesting LCS applications are also appearing in the literature (Smith and 
Dike 1995). 

Given the robust character of evolutionary computation algorithms, the 
machine learning techniques suggested by the L,CS concept indicate a powerful 
avenue of future evolutionary computation application. 
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Hybrid methods 

Zbign ie w Michale w icz 

There is some experimental evidence (Davis 1991, Michalewicz 1993) that the 
enhancement of evolutionary methods by some additional (problem-specific) 
heuristics, domain knowledge, or existing algorithms can result in a system 
with outstanding performance. Such enhanced systems are often referred to as 
hjhrid e v ol u t i on ary systems. 

Several researchers have recognized the potential of such hybridization of 
evolutionary systems. Davis ( 199 1, p 56) wrote: 

When I talk to the user, I explain that niy plan is to hybridize the 
genetic algorithm technique and the current algorithm by employing 
the following three principles: 

0 Use the Cirrrent Encoding. Use the current algorithm's encoding 
technique in the hybrid algorithm. 

0 Hybridix Where Possible. Incorporate the positive features of the 
current algorithm in the hybrid algorithm. 

0 Acicipt the Getietir- Opt-utors. Create crossover and mutation 
operators for the new type of encoding by analogy with bit 
string crossover and mutation operators. Incorporate domain- 
based heuristics as operators as well. 

[. . . I  I use the term hybrid genetic algorithm for algorithms created by 
applying these three principles. 

The above three principles emerged as a result of countless experiments of 
many researchers, who tried to 'tune' their evolutionary algorithms to some 
problem at hand, that is, to create 'the best' algorithm for a particular class 
of problems. For example, during the last 15 years, various application- 
specific variations of evolutionary algorithms have been reported (Michalewicz 
1996); these variations included variable-length strings (including strings whose 
elements were ij4tzeti-else rules), richer structures than binary strings, and 
experiments with modified genetic operators to meet the needs of particular 
applications. Some researchers (e.g. Grefenstette 1987) experimented with 
incorporating problem-specific knowledge into the initialization routine of an 
evolutionary system; if a (fast) heuristic algorithm provides individuals of the 

124 
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initial population for an evolutionary system, such a hybrid evolutionary system 
is guaranteed to do no worse than the heuristic algorithm which was used for 
the initialization. 

Usually there exist several (better or worse) heuristic algorithms for a given 
problem. Apart from incorporating them for the purpose of initialization, some 
of these algorithms transform one solution into another by imposing a change 
in the solution’s encoding (e.g. 2-opt step for the traveling salesman problem). 
One can incorporate such transformations into the operator set of evolutionary 
system, which usually is a very useful addition. 

Note also (see Chapters I4 and 3 I ) that there is a strong relationship between 
encodings of individuals in the population and operators, hence the operators 
of any evolutionary system must be chosen carefully in accordance with the 
selected representation of individuals. This is a responsibility of the developer 
of the system; again, we would cite Davis (1991, p 58): 

Crossover operators, viewed in the abstract are operators that combine 
subparts of two parent chromosomes to produce new children. The 
adopted encoding technique should support operators of this type, but 
it is up to you to combine your understanding of the problem, the 
encoding technique, and the function of crossover in order to figure 
out what those operators will be. [...I 

The situation is similar for mutation operators. We have decided 
to use an encoding technique that is tailored to the problem domain; 
the creators of the current algorithm have done this tailoring for 
us. Viewed in the abstract, a mutation operator is an operator that 
introduces variations into the chromosome. [...I these variations can 
be global or local, but they are critical to keeping the genetic pot 
boiling. You will have to combine your knowledge of the problem, 
the encoding technique, and the function of mutation in a genetic 
algorithm to develop one or more mutation operators for the problem 
domain. 

Very often hybridization techniques make use of local search operators, 
which are considered as ‘intelligent mutations’. For example, the best 
evolutionary algorithms for the traveling salesman problem use 2-opt or 3-opt 
procedures to improve the individuals in the population (see e.g. Muhlenbein ef 

a1 1988). It is not unusual to incorporate gradient-based (or hill-climbing) 
methods as ways for a local improvement of individuals. I t  is also not 
uncommon to combine simulated annealing techniques with some evolutionary 
algorithms (Adler 1993). 

The class of hybrid evolutionary algorithms described so far consists 
of systems which extend evolutionary paradigm by incorporating additional 
features (local search, problem-specific representations and operators, and 
the like). This class also includes also so-called morphogenic evolutionary 
techniques (Angeline 1995), which include mappings (development functions) TEAM LRN
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between representations that evolve (i.e. evolved representations) and 
representations which constitutes the input for the evaluation function (i.e. 
evaluated representations). However, there is another class of evolutionary 
hybrid methods, where the evolutionary algorithm acts as a separate component 
of a larger system. This is often the case for various scheduling systems, where 
the evolutionary algorithm is just responsible for ordering particular items. This 
is also the case for fuzzy systems, where the evolutionary algorithms may control 
the membership function, or of neural systems, where evolutionary algorithms 
may optimize the topology or weights of the network. 
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14 
Introduction to representations 

Kalyanrnoy Deb 

14.1 Solutions and representations 

Every search and optimization algorithm deals with solutions, each of which 
represents an instantiation of the underlying problem. Thus, a solution must 
be such that it can be completely realized in practice; that is, either it can 
be fabricated in a laboratory or in a workshop or it can be used as a control 
strategy or it can be used to solve a puzzle, and so on. In most engineering 
problems, a solution is a real-valued vector specifying dimensions to the key 
parameters of the problem. In control system problems, a solution is a time- 
or frequency-dependent functional variation of key control parameters. In game 
playing and some artificial-intelligence-related problems, a solution is a strategy 
or an algorithm for solving a particular task. Thus, it is clear that the meaning 
of a solution is inherent to the underlying problem. 

As the structure of a solution varies from problem to problem, a solution 
of a particular problem can be represented in a number of ways. Usually, a 
search method is most efficient in dealing with a particular representation and 
is not so efficient in dealing with other representations. Thus, the choice of an 
efficient representation scheme depends not only on the underlying problem but 
also on the chosen search method. The efficiency and complexity of a search 
algorithm largely depends on how the solutions have been represented and how 
suitable the representation is in the context of the underlying search operators. 
In some cases, a difficult problem can be made simpler by suitably choosing a 
representation that works efficiently with a particular algorithm. 

In a classical search and optimization method, all decision variables are 
usually represented as vectors of real numbers and the algorithm works on 
one vector of solution to create a new vector of solution (Deb 1995. Reklaitis 
et a1 1983). Different EC methods use different representation schemes 
in their search process. Genetic algorithms (GAS) have been mostly used 
with a binary string representing the decision variables. Evolution strategy 
and evolictionary programming studies have used a combination of real- 
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valued decision variables and a set of strategy parameters as a solution vector. 
In genetic programming, a solution is a LISP code representing a strategy or 
an algorithm for solving a task. In permutation problems solved using an 
EC method, a series of node numbers specifying a complete permutation is 
commonly used as a solution. In the following subsection, we describe a number 
of important representations used in EC studies. 

14.2 Important representations 

In most applications of GAS, decision variables are coded in binary strings 
of 1s and OS. Although the variables can be integer or real valued, they are 
represented by binary strings of a specific length depending on the required 
accuracy in the solution. For example, a real-valued variable x, bounded in 
the range (c i ,  h )  can be coded in five-bit strings with the strings (00000) and 
(11111) representing the real values ci and h, respectively. Any of the other 
30 strings represents a solution in the range ( a ,  h) .  Note that, with five bits, 
the maximum attainable accuracy is only (h  - a)/(2' - 1). Binary coding is 
discussed further in Chapter 15. Although binary string coding has been most 
popular in GAS, a number of researchers prefer to use Gray coding to eliminate 
the Hamming cliff problem associated with binary coding (Schaffer et nl 1989). 
In Gray coding, the number of bit differences between any two consecutive 
strings is one, whereas in binary strings this is not always true. However, as 
in the binary strings, even in Gray-coded strings a bit change in any arbitrary 
location may cause a large change in the decoded integer value. Moreover, 
the decoding of the Gray-coded strings to the corresponding decision variable 
introduces an artificial nonlinearity in the relationship between the string and 
the decoded value. 

The coding of the variables in string structures make the search space discrete 
for GA search. Therefore, in solving a continuous search space problem, 
GAS transform the problem into ;i discrete programming problem. Although 
the optimal solutions of the original continuous search space problem and the 
derived discrete search space problem may be marginally different (with large 
string lengths), the obtained solutions are usually acceptable in most practical 
search and optimization problems. Moreover, since GAS work with a discrete 
search space, they can be conveniently used to solve discrete programming 
problems, which are usually difficult to solve using traditional methods. 

The coding of the decision variables in strings allows GAS to exploit the 
similarities among various strings in a population to guide the search. The 
similarities in string positions are represented by ternary strings (with 1, 0, and 
*, where a * matches a 1 or a 0) known as schema. The power of GA search 
is considered to lie in the implicit parallel schema processing. 

Although string codings have been mostly used in GAS, there have been 
some studies with direct recil-\~ilued vectors in GAS (Deb and Agrawal 1995. 
Chaturvedi et ell 1995, Eshelman and Schaffer 1993, Wright 1991). In those TEAM LRN
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applications, decision variables are directly used and modified genetic operators 
are used to make a successful search. A detailed discussion of the real-valued 
vector representations is given in Chapter 16. 

In evolution strategy (ES) and evolutionary programming (EP) studies, a 
natural representation of the decision variables is used where a real-valued 
solution vector is used. The numerical values of the decision variables are 
immediately taken from the solution vector to compute the objective function 
value. In both ES and EP studies, the crossover and mutation operators are used 
variable by variable. Thus, the relative positioning of the decision variables in 
the solution vector is not an important matter. However, in recent studies of 
ES and EP, in addition to the decision variables, the solution vector includes a 
set of strategy parameters specifying the variance of search mutation for each 
variable and variable combinations. For n decision variables, both methods use 
an additional number between one and n(n  + 1)/2 such strategy parameters, 
depending on the degree of freedom the user wants to provide for the search 
algorithm. These adaptive parameters control the search of each variable, 
considering its own allowable variance and covariance with other decision 
variables. We discuss these representations in Section 16.2. 

In permutation problems, the solutions are usually a vector of node identifiers 
representing a permutation. Depending on the problem specification, special care 
is taken in creating valid solutions representing a valid permutation. In these 
problems, the absolute positioning of the node identifiers is not as important as 
the relative positioning of the node identifiers. The representation of permutation 
problems is discussed further in Chapter 17. 

In early EP works, finite-state machines were used to evolve intelligent 
algorithms which were operated on a sequence of symbols so as to produce an 
output symbol which would maximize the algorithm’s performance. Finite-state 
representations were used as solutions to the underlying problem. The input 
and output symbols were taken from two different finite-state alphabet sets. A 
solution is represented by specifying both input and output symbols to each link 
connecting the finite states. The finite-state machine tran forms a sequence of 
input symbols to a sequence of output symbols. The finite-state representations 
are discussed in Chapter 18. 

In genetic programming studies, a solution is usually a LISP program 
specifying a strategy or an algorithm for solving a particular task. Functions 
and terminals are used to create a valid solution. The syntax and structure of 
each function are maintained. Thus, if an OR function is used in the solution, 
at least two arguments are assigned from the terminal set to make a valid OR 
operation. Usually, the depth of nestings used in any solution is restricted to 
a specified upper limit. In recent applications of genetic programming, many 
special features are used in representing a solution. As the iterations progress, 
a part of the solution is frozen and defined as a metafunction with specified 
arguments. We shall discuss these features further in Chapter 19. 

As mentioned earlier, the representation of a solution is important in the TEAM LRN
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working of a search algorithm, including evolutionary algorithms. In EC studies, 
although a solution can be represented in a number of ways, the efficacy of a 
representation scheme cannot be judged alone; instead it depends largely on the 
chosen recombination operators. In the context of schema processing and the 
building block hypothesis, i t  can be argued that a representation that allows good 
yet important combinations of decision variables to propagate by the action of the 
search operators is likely to perform well. Radcliffe (1993) outlines a number of 
properties that a recombination operator must have in order to properly propagate 
good building blocks. Kargupta et c d  (1992) have shown that the success of 
GAS in solving a permutation problem coded by three different representations 
strongly depends on the appropriate recombination operator used. Thus, the 
choice of a representation scheme must not be made alone, but must be made 
in conjuction with the choice of the search operators. Guidelines for a suitable 
representation of decision variables are discussed in Chapter 20. 

14.3 Combined representations 

In many search and optimization problems, the solution vector may contain 
different types of variable. For example, in a mixed-integer programming 
problem (common to many engineering and decision-making problems) some 
of the decision variables could be real valued and some could be integer valued. 
In an engineering gear design problem, the number of teeth in a gear and the 
thickness of the gear could be two important design variables. The former 
variable is an integer variable and the latter is a real-valued variable. If 
the integer variable is coded in five-bit binary strings and the real variable 
is coded in real numbers, a typical mixed-string representation of the above 
gear design problem may look like (10011 23 .5 ) ,  representing 19 gear teeth 
and a thickness of 23.5 mm. Sometimes, the variables could be of different 
types. In a typical civil engineering truss structure problem, the topology of 
the truss (the connectivity of the truss members represented as presence or 
absence of members) and the member cross-sectional areas (real valued) are 
usually the design decision variables. These combined problems are difficult 
to solve using traditional methods, simply because the search rule in those 
algorithms does not allow mixed representations. Although there exists a number 
of mixed-integer programming algorithms such as the branch-and-bound method 
or the pencilfy .fitnc*tion method, these algorithms treat the discrete variables 
as real valued and impose an artificial pressure for these solutions to move 
towards the desired discrete values. This is achieved either by adding a set of 
additional constraints or by penalizing infeasible solutions. These algorithms, in 
general, require extensive computations. However, the string representation of 
variables in GAS and the flexibility of using a discrete probability distribution 
for creating solutions in ES and EP studies allow them to be conveniently 
used to solve such combined problems. In these problems, a solution vector 
can be formed by concatenating substrings or numerical values representing TEAM LRN



References 131 

or specifying each type of variable, as depicted in the above gear design 
problem representation. Each part of the solution vector is then operated by 
a suitable recombination and mutation operator. In the above gear design 
problem representation using GAS, a binary crossover operator may be used for 
the integer variable represented by the binary string and a real-coded crossover 
can be used for the continuous variable. Thus, the recombination operator 
applied to these mixed representations becomes a collection of a number of 
operators suitable for each type of variable (Deb 1997). Similar mixed schemes 
for mutation operators need also to be used for such combined representations. 
These representations are discussed further in Chapter 26. 
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15 
Binary strings 

Thornas Back 

The classical representation used in so-called canonical genetic algorithms 
consists of binary vectors (often called bitstrings or binary strings) of fixed length 
t ;  that is, the individual space I is given by I = (0, I }' and individuals a E I are 
denoted as binary vectors a = (al, . . . , a t )  E (0, I ] '  (see the book by Goldberg 
( 1989)). The mutation operator (Section 32.1) then typically manipulates these 
vectors by randomly inverting single variables CL, with small probability, and 
the crossover operator (Section 33. I ) exchanges segments between two vectors 
to form offspring vectors. 

This representation is often well suited to problems where potential 
solutions have a canonical binary representation, i.e. to so-called pseudo-Boolean 
optimization problems of the form f' : (0, I ) '  -+ R. Some examples of such 
combinatorial optimization problems are the maximum-independent-set problem 
in graphs, the set covering problem, and the knapsack problem, which can be 
represented by binary vectors simply by including (excluding) a vertex, \et. 
or item i in (from) a candidate solution when the corresponding entry ( I ,  = 1 
( ( I ,  = 0). 

Canonical genetic algorithms, however, also emphasize the binary 
representation in the case of problems f' : S -+ R where the search space S 
fundamentally differs from the binary vector space (0, I } ' .  The most prominent 
example of this is given by the application of canonical genetic algorithms for 
continuous parameter optimization problems f' : R" + R as outlined by Holland 
( 1975) and empirically investigated by De Jong (1975). The mechanism\ of 
encoding and decoding between the two different spaces (0, I } '  and R" then 
require us to restrict the continuous space to finite intervals [U,, U , ]  for each 
variable s, E R, to divide the binary vector into I I  segments of ( i n  most 
cases) equal length t , ,  such that t = t i t t ,  and to interpret a subsegment 
( c J , , - ~ ) ~ , + I ,  . . . , q t ,  ) ( i  = I ,  . . . , U )  as the hinary encoding of the variable 
x, . Decoding then either proceeds according to the standard binary decoding 
function r' : (0, I } '  --+ [U,. q ] ,  where (see Back 1996) 

(15.1) 

I32 
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or by using a Gray code interpretation of the binary vectors, which ensures that 
adjacent integer values are represented by binary vectors with Hamming distance 
one (i.e. they differ by one entry only). For the Gray code, equation ( 1  5. I )  is 
extended by a conversion of the Gray code representation to the standard code, 
which can be done for example according to 

where @ denotes addition modulo two. 
It is clear that this mapping from the representation space I = (0. I } '  to 

the search space S = n:=l[~,, U , ]  is injective but not surjective. i.e. not all 
points of the search space are represented by binary vectors, such that the 
genetic algorithm performs a grid search and, depending on the granularity 
of the grid, might fail to locate an optimum precisely (notice that t', and the 
range [U,,  U , ]  determine the distance of two grid points in dimension i according 
to Ax, = ( U ,  - ~ , ) / ( 2 ' ~  - I)). Moreover, both decoding mappings given by 
equations (15.1) and (15.2) introduce additional nonlinearities to the overall 
objective function f '  : {0, 1 ) '  + R, where f ' (a )  = ( f  o x :=, r ' ) (u) ,  and 
the standard code according to equation (15.1) might cause the problem f '  to 
become harder than the original optimization problem .f (see the work of Back 
(1993, 1996, ch 6) for a more detailed discussion). 

While parameter optimization is still the dominant field where canonical 
genetic algorithms are applied to problems in which the search space is 
fundamentally different from the binary space (0, I} ' ,  there are other examples 
as well, such as the traveling salesman problem (Bean 1993) and job shop 
scheduling (Nakano and Yamada 199 1). Here, rather complex mappings from 
(0, 1 ) '  to the search space were defined-to improve their results, Yamada and 
Nakano ( 1992) later switched to a more canonical integer representation space, 
giving a further indication that the problem characteristics should determine the 
representation and not vice versa. 

The reasons why a binary representation of individuals in genetic algorithms 
is favored by some researchers can probably be split into historical and schema- 
theoretical aspects. Concerning the history, i t  is important to notice that Holland 
(1975, p 21) does not define adaptive plans to work on binary variables (alleles) 
a, E (0, I} ,  but allows arbitrary but finite individual spaces I = A I  x . . . x A t ,  
where A, = {a , , ,  . . . , a,,, }. Furthermore, his notion of schemata (certain 
subsets of I characterized by the fact that all members-so-called instances 
of a schema-share some similarities) does not require binary variables either, 
but is based on extending the sets A, defined above by an additional 'don't 
care' symbol (Holland 1975, p 68). For the application example of parameter 
optimization, however, he chooses a binary representation (Holland 1975, pp 57, 
70), probably because this is the canonical way to map the continuous object 
variables to the discrete allele sets A, defined in his adaptive plans, which in turn TEAM LRN
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are likely to be discrete because they aim at modeling the adaptive capabilities 
of natural evolution on the genotype level. 

Interpreting a genetic algorithm as an algorithm that processes schemata, 
Holland (1975, p 7 I )  then argues that the number of schemata available under 
a certain representation is maximized by using binary variables; that is, the 
maximum number of schemata is processed by the algorithm if ci, E (0, I ) .  
This result can be derived by noticing that, when the cardinality of an alphabet 
A for the allele values is k = ( A ( ,  the number of different schemata is ( k  + I ) '  
(i.e. 3' in the case of binary variables). For binary alleles, 2' different solutions 
can be represented by vectors of length t ,  and in order to encode the same 
number of solutions by a k-ary alphabet, a vector of length 

In 2 e '= c-- 
I n k  

( I  5.3) 

is needed. Such a vector, however, is an instance of ( k +  I ) t '  schemata, a number 
that is always smaller than 3' for k > 2; that is, fewer schemata exist for an 
alphabet of higher cardinality, if the same number of solutions is represented. 

Goldberg ( 1989, p 80) weakens the general requirement for a binary alphabet 
by proposing the so-called principle of minimal alphabets, which states that 'The 
user should select the smallest alphabet that permits a natural expression of the 
problem' (presupposing, however, that the binary alphabet permits a natural 
expression of continuous parameter optimization problems and is no worse 
than a real-valued representation (Goldberg 199 I )). Interpreting this strictly, 
the requirement for binary alphabets can be dropped, as many practitioners 
(e.g. Davis 199 1 and Michalewicz 1996) who apply (noncanonical) genetic 
algorithms to industrial problems have already done, using nonbinary, problem- 
adequate representations such as real-valued vectors (Chapter 16), integer lists 
representing permutations (Chapter 17), finite-state machine representations 
(Chapter 18), and parse trees (Chapter 19). 

At present, there are neither clear theoretical nor empirical arguments that 
a binary representation should be used for arbitrary problems other than those 
that have a canonical representation as pseudo-Boolean optimization problems. 
From an optimization point of view, where the quality of solutions represented 
by individuals in a population is to be maximized, the interpretation of genetic 
algorithms as schema processors and the corresponding implicit parallelism and 
schema theorem results are of no practical use. From our point of view, the 
decoding function r : (0, I} '  + S that maps the binary representation to the 
canonical search space a problem is defined on plays a much more crucial role 
than the schema processing aspect, because, depending on the properties of r, 
the overall pseudo-Boolean optimization problem f '  = f o r might become 
more complex than the original search problem f : S + R. Consequently, 
one might propose the requirement that, if a mapping between representation 
space and search space is used at all, i t  should be kept as simple as possible TEAM LRN
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and obey some structure preserving conditions that still need to be formulated 
as a guideline for finding a suitable encoding. 
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Real-valued vectors 

David B Fogel 

16.1 Object variables 

When posed with a real-valued function optimization problem of the form ‘find 
the vector x such that F ( x )  : R” -+ R is minimized (or maximized)’, evolution 
strategies (Back and Schwefel 1993) and evolutionary programming (Fogel 
1995, pp 75-84, 136-7) typically operate directly on the real-valued vector 
x (with the components of x identified as object parameters). In contrast, 
traditional genetic algorithms operate on a coding (often binary) of the vector 
x (Goldberg 1989, pp 80-4). The choice to use a separate coding rather than 
operating on the parameters themselves relies on the fundamental belief that 
i t  is useful to operate on subsections of a problem and try to optimize these 
subsections (i.e. building blocks) in isolation, and then subsequently recombine 
them so as to generate improved solutions. More specifically, Goldberg ( 1989, 
p 80) recommends 

The user should select a coding so that short, low-order schemata are 
relevant to the underlying problem and relatively unrelated to schemata 
over other fixed positions. 

The user should select the smallest 
expression of the problem. 

alphabet that permits a natural 

Although the smallest alphabet generates he greatest implicit parallelism, there 
is no empirical evidence to indicate that binary codings allow for greater 
effectiveness or efficiency in solving real-valued optimization problems (see 
the tutorial by Davis (1991, p 63) for a commentary on the ineffectiveness of 
binary codings). 

Evolution strategies and evolutionary programming are not generally 
concerned with the recombination of building blocks in a solution and do not 
consider schema processing. Instead, solutions are viewed in their entirety, and 
no attempt is made to decompose whole solutions into subsections and assign 
credit to these subsections. 

I36 
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With the belief that maximizing the number of schemata being processed 
is not necessarily useful, or may even be harmful (Fogel and Stayton 1994), 
there is no compelling reason in a real-valued optimization problem to act 
on anything except the real values of the vector x themselves. Moreover, 
there has been a general trend away from binary codings within genetic 
algorithm research (see e.g. Davis 199 1 ,  Belew and Booker I99 1 ,  Forrest 
1993, and others). Michalewicz (1992, p 82) indicated that for real-valued 
numerical optimization problems, floating-point representations outperform 
binary representations because they are more consistent and more precise and 
lead to faster execution. This trend may reflect a growing rejection of the 
building block hypothesis as an explanation for how genetic algorithms act as 
optimization procedures. 

With evolution strategies and evolutionary programming, the typical method 
for searching a real-valued solution space is to add a multivariate zero-mean 
Gaussian random variable to each parent involved in the creation of offspring 
(see Section 32.2). In consequence, this necessitates the setting of the covariance 
matrix for the Gaussian perturbation. If the covariances between parameters 
are ignored, only a vector of standard deviations in each dimension is required. 
There are a variety of methods for setting these standard deviations. Section 32.2 
offers a variety of procedures for mutating real-valued vectors. 

16.2 Object variables and strategy parameters 

I t  has been recognized since 1967 (Rechenberg 1994, Reed et cil 1967) that 
i t  is possible for each solution to possess an auxiliary vector of parameters 
that determine how the solution will be changed. Two general procedures 
for adjusting the object parameters via Gaussian mutation have been proposed 
(Schwefel 1981, Fogel et a1 1991) (see Section 32.2). In each case, a vector 
of strcrfegy parameters for self-adaptation is included with each solution and 
is subject to random variation. The vector may include covariance or rotation 
information to indicate how mutations in each parameter may covary. Thus the 
representation consists of two or three vectors: 

where x is the vector of object parameters (XI ,  . . . . x,]), U is the vector of 
standard deviations, and (U is the vector of rotation angles corresponding to 
the covariances between mutations in each dimension, and may be omitted if 
these covariances are set to be zero. The vector c may have 1 1  components 
(01, . . . , U,,)  where each entry corresponds to the standard deviation in the 
ith dimension, i = 1 ,  . . . . 1 2 .  The vector CT may also degenerate to a scalar 
(T in  which case this single value is used as the standard deviation in all 
dimensions. Intermediate numbers of standard deviations are also possible, 
although such implementation is uncommon (this also applies to the rotation TEAM LRN
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angles a ) .  Very recent efforts by Ostermeier et a1 (1994) offer a variation on 
the methods of Schwefel ( I98 1) and further study is required to determine the 
general effectiveness of this new technique (see Section 32.2). 

Recent efforts in genetic algorithms have also included self-adaptive 
procedures (see e.g. Spears 1995) and these may incorporate similar real-valued 
coding for variation operators including crossover and point mutations, on both 
real-valued or binary or otherwise coded object parameters. 
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17 
Permutations 

Darrell Whitley 

17.1 Introduction 

To quote Knuth (1973), ‘A permutation of a finite set is an arrangement of its 
elements into a row.’ Given n unique objects, n !  permutations of the objects 
exist. There are various prcperties of permutations that are relevant to the 
manipulation of permutation representations by evolutionary algorithms, both 
from a representation point of view and from an analytical perspective. 

As researchers began to apply evolutionary algorithms to applications that are 
naturally represented as permutations, it became clear that these problems pose 
different coding challenges than traditional parameter optimization problems. 
First, for some types of problem there are multiple equivalent solutions. When 
a permutation is used to represent a cycle, as in the traveling salesman problem 
(TSP), then all shifts of the permutation are equivalent solutions. Furthermore, 
all reversals of a permutation are also equivalent solutions. Such symmetries 
can pose problems for evolutionary algorithms that rely on recombination. 

Another problem is that permutation problems cannot be processed using 
the same general recombination and mutation operators which are applied to 
parameter optimization problems. The use of a permutation representation may 
in fact mask very real differences in the underlying combinatorial optimization 
problems. An example of these differences is evident in the description of 
classic problems such as the TSP and the problem of resource scheduling. 

The traveling salesman problem is the problem of visiting each vertex (i.e. 
city) in a full connected graph exactly once while minimizing a cost function 
defined with respect to the edges between adjacent vertices. In simple terms, 
the problem is to minimize the total distance traveled while visiting all the cities 
and returning to the point of origin. The TSP is closely related to the problem 
of finding a Hamiltonian circuit in an arbitrary graph. The Hamiltonian circuit 
is a set of edges that form a cycle which visits every vertex exactly once. 
It is relatively easy to show that the problem of finding a set of Boolean 
values that yield an evaluation of ‘true’ for a three-conjunction normal form 
Boolean expression is directly polynomial-time reducible to the problem of 

I39 
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finding a Hamiltonian circuit in a specific type of graph (Cormen ef (11 1990). 
The Hamiltonian circuit problem in turn is reducible to the TSP. A11 of these 
problems have a nondeterministic polynomial-time (NP) solution but have no 
known polynomial-time solution. These problems are also members of the set 
of hardest problems in NP. and hence are NP complete. 

Permutations are also important for scheduling applications, variants of 
which are also often NP complete. Some scheduling problems are directly 
related to the TSP. Consider minimizing setup times between a set of N jobs. 
where the function Setup(A, B )  is the cost of switching from job A to job B. If 
Setup(A, B )  = Setup(B, A) this is ii variant of the symmetric TSP, except that 
the solution may be a path instead of a cycle through the graph (i.e. it visits 
every Lwtex. but does not necessarily return to the origin.) The TSP and setup 
minimization problem may also be nonsymmetric: the cost of going from L'ertex 
A t o  B inay not be equal to  the cost of going from vertex B to A. 

Other types of scheduling problem are different from the TSP. Assume that 
one must schedule service times for a set of customers. If this involves access 
to  a critical resource, then those customers that are scheduled early may have 
access to resources that are unavailable to later customers. If one is scheduling 
appointments, for example, later customers will have less choice with respect 
to which time slots are available to them. In  either case, access to limited 
resources is critical. We would like to optimize the match between resources 
and customers. This could allow us to give more customers what they want in 
terms of resources, or the goal might be to increase the number of customers 
who can be serlriced. In either case, permutations over the set of customers 
can be used as a priority queue for scheduling. While there are various classic 
problems i n  the scheduling literature, the term re.soiirct~ .sc.hetfirling is used here 
to refer to scheduling applications where resources are consumed. 

Permutations are also sometimes used to represent multisets. A multiset is 
also sometimes referred to as a l m g ,  which is analogous to a set except that a 
bag inay contain multiple copies of identical elements. In sets. the duplication 
of elements is not significant. so that 

However, in  the following multiset, 

M = (a, a, b, b ,  b, c ,  d ,  e ,  e ,  f ,  f )  

there are two a's, three b*\ ,  one c, one d, two e's and two f ' s ,  and duplicates 
are significant. In xheduling applications that map jobs to machines, i t  may 
be necessary to xhedule two jobs of type a, three jobs of type b, and so on. 
Note that i t  is not necessary that all jobs of  type a be scheduled contiguously. 
While M in  the above illu\tration contains 1 1 elements. there are not I 1 ! unique 
permutations. Rather, the number of unique permutations is given by 

1 I !  

A. ? ' 3 !  ._ I ! I  ! 2 ! 2 !  TEAM LRN
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and in general 
n !  

nl !n2!n3!.  . . 
where n is the number of elements in the multiset and n ,  is the number of 
elements of type i (Knuth 1973). Radcliffe (1993) considers the application of 
genetic and evolutionary operators when the solution is expressed as a set or 
multiset (bag). 

Before looking in more detail at the relationship between permutations and 
evolutionary algorithms, some general properties of permutations are reviewed 
that are both interesting and useful. 

17.2 Mapping integers to permutations 

The set of n !  permutations can be mapped onto the set of integers in various 
ways. Whitley and Yoo (1995) give the following algorithm which converts an 
integer X into the corresponding permutation. 

Choose some ordering of the permutation which is defined to be sorted. 
Sort and index the N elements ( N  3 I )  of the permutation from I to N .  
Pick an index X for a specific permutation such that 0 5 X < N ! .  
If X = 0, pick all remaining elements in the sorted permutation list in the 
sequence in which they occur and stop. 
IF X < ( N  - I ) !  pick the first element of the remaining list; GOTO (vi). 
Otherwise, continue. 
FindY suchthat(Y-I)(N-I)! 5 X < Y(N-l)!. The Ythelementofthe 
sort list is the next element of the permutation. X = X - ( Y  - 1 ) ( ( N  - I ) ! ) .  
Delete the chosen element from the list of sorted elements; N = N - 1 ;  
GOTO (iii). 

This algorithm can also be inverted to map integers to permutations. For 
permutations of length three this generates the following correspondance: 

X = 0 indexes 123 X = 3 indexes 231 
X = 1 indexes 132 X = 4 indexes 312 
X = 2 indexes 213 X = 5 indexes 321. 

17.3 The inverse of a permutation 

One important property of a permutation is that i t  has a well-defined h\*erse 
(Knuth 1973). Let ala2 . .  .a,, be a permutation of the set { 1 , 2 , .  . . , n } .  This 
can be written in a two-line form 

1 2 3 . . .  I ?  

al a2 a3 . . .  at1 

The inverse is obtained by reordering both rows such that the second row is 
transformed into the sequence 123. . . n;  the reordering of the first that occurs as TEAM LRN
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a consequence of reordering the second row yields the inverse of permutation 
L I I L I ~ ( ~ ~  . . . ~ 1 , ~ .  The inverse is denoted U ; C I ~ L I . ;  . . . Knuth ( 1973) gives the 
following example of a permutation, 5 9 1 8 2 6 4 7 3, and shows that its 
inverse can be obtained as follows: 

59 1826473 ( i23456789 ) = ( ) 
which yields the inverse 3 5 9 7 1 6 8 4 2. Knuth also points out that UJ = k 
if and only if ~ i k  = j .  The inverse can be used as part of a function for 
mapping permutations to a canonical form, which in turn makes i t  easier to 
model problems with permutation representations. 

17.4 The mapping function 

When modeling evolutionary algorithms it is often useful to compute a 
transmission function r l . /  ( k )  which yields the probability of recombining strings 
i and j and obtaining an arbitrary string k .  Whitley and Yoo (1995) explain how 
to compute the transmission function for a single string k and then to generalize 
the results to all other strings. In this case, the strings represent permutations 
and the remapping function, denoted @, functions as follows: 

The computation Y = A @ X  behaves as follows. Let any permutation 
X be represented by x 1 . v ~ ~ ~  . . . x f , .  Then C I I L ~ ~ N ~  . . . N,, @ X I X ~ . T ~  . . . x,, yields 
Y = ylyzy3,. . yf, where yr  = j when CI, = .vJ. Thus, (3421 03124)  yields 
(1432) since ( U I  = 3 = -1-1) + (?I = I ) .  Next, (112 = 4 = -1-4) j (yz = 4), 
((43 = 2 = .r3) + (y3 = 3) .  and (u4 = 1 = x 2 )  j ('4 = 2). This mapping 
function is analogous to the bitwise addition (mod 2) used to reorder the vector 
s for binary strings. However, note that A @ X  # X @ A .  Furthermore, for 
permutation recombination operators it is not genrrolly true that r , . ]  = r J , [ .  

This allows one to compute the transmission function with respect to a 
canonical permutation, in this case 1234, and generalize this mapping to all other 
permutations. This mapping can be achieved by simple element substitution. 
First, the function r can be generalized as follows: 

where U!, x. y ,  and z are variables representing the elements of the permutation 
(e.g. U' = 3,  .v = I ,  y = 2, 2 = 4). If ul.ryr: now represents the canonically 
ordered permutation 1234, 
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We can also relate this mapping operator to the process of finding an inverse. 
The permutations in the expression 

r3421,1342(3 124) = r1-$32.7143 ( 1234) 

are included as rows in 
expression to the terms 
each of the terms in the 

an array. To map the left-hand side of the preceding 
in the right-hand side, first compute the inverses for 
left-hand side: 

( 3421 ) = ( 1234 ) 
1234 4312 

3124 ( 1234 ) = ( ii?: ) *  
Collect the three inverses into a single array. We also then add 1 2 3 4 to the 
array and inverse the permutation 2 3 I 4, at the same time rearranging all the 
other permutations in the array: 

4312 [ 1423 1 = ( i!: 
2314 
I234 3124 

This yields the permutations 1432, 2143, and 1234 which represent the 
desired canonical form as i t  relates to the notion of substitution into a symbolic 
canonical form. One can also reverse the process to find the permutations p ,  
and p, in the following context: 

17.5 Matrix representations 

When comparing the TSP to the problem of resource scheduling, in one case 
adjacency is important (the TSP) and in the other case relative order is important 
(resource scheduling). One might also imagine problems where absolute position 
is important. One way in which the differences between adjacency and relative 
order can be illustrated is to use a matrix representation of the information 
contained in a permutation. 

When we discuss adjacency in the TSP, we typically are referring to a 
symmetric TSP: the distance of going from city A to B is the same as going 
from B to A. Thus, when we define a matrix representing a tour. there will be 
two edges in every row of the matrix, where a row-column entry of 1 represents 
an edge connecting the two cities. Thus, the matrices for the tours [A  B C D E 
F] and [C D E B F A] (left and right, respectively) are as follows: TEAM LRN
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A B C D E F  A B C D E F  
A 0 1 0 0 0 1  A 0 0 1 0 0 1  
B 1 0 1 0 0 0  B 0 0 0 0 1 1  
c 0 1 0 1 0 0  c 1 0 0 1 0 0  
D 0 0 1 0 1 0  D 0 0 1 0 1 0  
E 0 0 0 1 0 1  E 0 1 0 1 0 0  
F 1 0 0 0 1 0  F 1 1 0 0 0 0  

One thing that is convenient about the matrix representation is that it is 
easy to extract information about where common edges occur. This can also be 
expressed in the form of a matrix, where a zero or one respectively is placed in 
the matrix where there is agreement in the two parent structures. If the values 
in the parent matrices conflict, we will place a ## in the matrix. Using the two 
above structures as parents, the following common information is obtained: 

A B C D E F  
A 0 # # 0 0 1  
B # O # O # #  
c # # 0 1 0 0  
D 0 0 1 0 1 0  
E 0 # 0 1 0 #  

F 1 # 0 0 # 0  

This matrix can be interpreted in the following way. If we convert the 
# symbols to * symbols, then (in the notation typically used by the genetic 
algorithm community) a hyperplane is defined in this binary space in which 
both of the parents reside. If a recombination operator is applied, the offspring 
should also reside in this same subspace (this is the concept of respect, as used 
by Radcliffe ( I99 1 ); note mutation can still be applied after recombination). 

This matrix representation does bring out one feature rather well: the 
common subtour information can automatically and easily be extracted and 
passed on to the offspring during recombination. 

The matrix defining the common hyperplane information also detines those 
offspring that represent a recombination of the information contained in the 
parent structures. In fact, any assignment of 0 or 1 bits to the locations 
occupied by the # symbols could be considered valid recombinations, but not 
all ctrejeasible solutioris t o  the TSP, because not all recombinations result in a 
Hamiltonian circuit. We would like to have an offspring that is not only a valid 
recombination, but also a feasible solution. 

The matrix representation can also make explicit relative order information. 
Consider the same two parents: [A B C D E F] and [C D E B F A]. Relative order 
can be represented as follows. Each row will be the relative order information 
for a particular element of a permutation. The columns will be all permutation 
elements in some canonical order. If A is the first element in a permutation, 
then a one will be placed in every column (except column A; the diagonal will 
again be zero) to indicate A precedes all other cities. This representation is 
given by Fox and McMahon ( 1991). Thus, the matrices for [ A  B C D E F] and 
[C D E B F A] are as follows (left and right, respectively): TEAM LRN
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A B C D E F  A B C D E F  
A 0 1 1 1 1 1  A 0 0 0 0 0 0  
B 0 0 1 1 1 1  B 1 0 0 0 0 1  
c 0 0 0 1 1 1  c 1 1 0 1 1 1  
D 0 0 0 0 1 1  D 1 1 0 0 1 1  
E 0 0 0 0 0 1  E 1 1 0 0 0 1  
F 0 0 0 0 0 0  F 1 0 0 0 0 0  

In this case, the lower triangle of the matrix flags im*ei-sioiis. which should 
not be confused with an iniierse. If u I c i z ( i l  . . . ci,, is a permutation of the 
canonically ordered set 1 ,  2, 3, . . . , 11 then the pair ( ( I , ,  N , )  is an iiilvrsioii i f  
i < j and u, > CI, (Knuth 1973). Thus, the number of I bits in the lower 
triangles of the above matrices is also a count of the number of inLrersions 
(which should also not be confused with the itilvrsioiz operator used in simple 
genetic algorithms, see Holland 1975, p 106, Goldberg 1989, p 166). 

The common information can also extracted as before. This produces the 
following matrix: 

A B C D E F  
A O # # # # #  
B # 0 # # # 1  
c # # 0 1 1 1  
D # # 0 0 1 1  
E # # 0 0 0 1  
F # O O O O O  

Note that this binary matrix is again symmetric around the diagonal, except 
that the lower triangle and upper triangle have complementary bit values. Thus 
only N ( N  - 1)/2 elements are needed to represent relative order information. 

There have been few studies of how recombination crossover operators 
generate offspring in this particular representation space. Fox and McMahon 
( 199 1 ) offer some work of this kind and also define several operators that work 
directly on these binary matrices for relative order. 

While matrices may not be the most efficient form of implementation, they 
do provide a tool for better understanding sequence recombination operators 
designed to exploit relative order. It is clear that adjacency and relative order 
relationships are different and are best expressed by different binary matrices. 
Likewise, absolute position information also has a different matrix representation 
(for example, rows could represent cities and the columns represent positions). 
Cycle crossover (Section 33.3.6; see Starkweather et crl 1991, Oliver er 01 1987) 
appears to be a good absolute position operator, although i t  is hard to find 
problems in the literature where absolute position is critical. 

17.6 Alternative representations 

Let P be an arbitrary permutation and P, be the j t h  element of the permutation. 
One notable alternative representation of a permutation is to define some 
canonical ordering, C ,  over the elements in the permutation and then define TEAM LRN
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a vector of integers, I ,  such that the integer in position j corresponds to the 
position in which element CJ appears in P .  Such a vector I can then serve as 
a representation of a permutation. More precisely, 

To illustrate: 
C = U  h c d e j g h 

I = 6 2 5 3 8 7 1 4 which represents P = g h d It  c CI j e.  

This may seem like a needless indirection, but consider that I can 
be generalized to allow a larger number of possible values than there are 
permutation elements. I can also be generalized to allow all real values 
(although for computer implementations the distinction is somewhat artificial 
since all digital representations of real values are discrete and finite). We 
now have a parameter-based presentation of the permutation such that we can 
generate random vectors I representing permutations. If the number of values 
for which elements in I are defined is dramatically larger than the number of 
elements in the permutation, then duplicate values in randomly generated vectors 
will occur with very small probability. 

This representation allows a permutation problem to be treated as if i t  were 
a more traditional parameter optimization problem with the constraint that no 
two elements of vector I should be equal, or that there is a well defined way 
to resolve ties. Evolutionary algorithm techniques normally used for parameter 
optimization problems can thus be applied to permutation problems using this 
representation. 

This idea has been independently invented on a couple of occasions. The 
first use of this coding method was by Steve Smith of Thinking Machines. A 
version of this coding was used by the ARGOT Strategy (Shaefer 1987) and the 
representation was picked up by Syswerda (1989) and by Schaffer er ul (1989) 
for the TSP. More recently, a similar idea was introduced by Bean (1994) under 
the name random keys.  

17.7 Ordering schemata and other metrics 

Goldberg and Lingle (1985) built on earlier work by Franz (1972) to describe 
similarity subsets between different permutations. Franz’s calculations were 
related to the use of inversion operators for traditional genetic algorithm binary 
representations. The use of inversion operators is very much relevant to the 
topic of permutations, since in order to apply inversion the binary alleles must be 
tagged in some way and inversion acts in the space of all possible permutations 
of allele orderings. Thus, 

((6 0 )  ( 3  1) (2 0 )  ( 8  1) (1 0 )  (5 1) (7 0 )  (4 0 ) )  

is equivalent to TEAM LRN
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( (1  0 ) ( 2  0)(3 1) (4  0 )  ( 5  1) (6  0 )  (7 0 ) ( 8  1)) 

which represents the binary string 00101001 in a position-independent fashion 
(Holland 1975). 

Goldberg and Lingle were more directly concerned with problems where 
the permutation was itself the problem representation, and. in particular, they 
present early results for the TSP. They also introduced the partially mapped 
crossover (PMX) operator and the notion of ordering .wlienint(r, or o-sclieniotci. 
For o-schemata, the symbol ! acts as a wild card match symbol. Thus, the 
template 

! ! l !  ! 7 3 !  

represents all permutations with a one as the third element. a seven as the 
sixth element, and a three as the seventh element. Given o selected positions 
in a permutation of length I ,  there are ( I  - o)! permutations that match an o- 
schemata. One can also count the number of possible o-schema. There are 
clearly (:)) ways to choose o fixed positions; there are also (,:) ways to pick the 
permutation elements that f i l l  the slots, and o! ways of ordering the elements 
(i.e. the number of permutations over the chosen combination of subelements). 
Thus, Goldberg (1989, Goldberg and Lingle 1985) notes that the total number 
of o-schemata, no,, can be calculated by 

Note that in this definition of the o-schemata, relative order is not accounted for. 
In other words, if relative order is important then all of the following shifted 
o-schemata, 

1 ! ! 7 3 !  ! !  
! 1 ! ! 7 3 ! !  
! ! 1 ! ! 7 3 !  
! ! !  l !  ! 7 3  

could be viewed as equivalent. Such schemata may or may not ‘wrap around‘. 
Goldberg discusses o-schemata which have an absolute fixed position (o- 
schemata, type a) and those with relative position which are shifts of il specified 
template (0-schemata, type r). 

This work on o-schemata predates the distinctions between relative 
order permutation problems, absolute position problems, and adjacency-based 
problems. Thus, o-schemata appear to be better for understanding resource 
scheduling applications than for the TSP. In subsequent work, Kargupta et 
nl (1992) attempt to use ordering schemata to construct deceptive functions 
for ordering problems-that is, problems where the average fitness values of 
the o-schemata provide misleading information. Note that such problems are 
constructed to mislead simple genetic algorithms and may or may not be difficult 
with respect to other types of algorithm. (For a discussion of deception see TEAM LRN
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the article by Goldberg ( 1987) and Whitley (1991) and for another perspective 
see the article by Grefenstette (1993).) The analysis of Kargupta et ul ( 1  992) 
considers PMX. a uniform ordering crossover operator (UOX), and a relative 
ordering crossover operator (ROX). 

An alternative way of constructing relative order problems and of 
comparing the similarity of permutations is given by Whitley and Yoo 
(1995). Recall that a relative order matrix has a I bit in position ( X ,  Y )  if 
row element X appears before column element Y in a permutation. Note 
that the matrix representation yields a unique binary representation for each 
permutation. Using this representation one can also define the Hamming 
distance between two permutations PI and P2; Hamming distance is denoted 
by HD(index(P1 ), index(P2)), where the permutations are represented by their 
integer index. In the following examples, the Hamming distance is computed 
with respect to the lower triangle (i.e. i t  is a count of the number of 1 bits in 
the lower triangle): 

A B C D  

B D C A  

D C B A  

A B C D  

A I 0 1 1 1  
B l O O l l  HD(0,O) = 0 
C l O O O l  
D I 0 0 0 0  

- - - - - - - - - 

A B C D  

A I 0 0 0 0  
B I l O l l  HD(0,ll) = 4 
c l  1 0 0 0  
D 1 1 0 1 0  

- - - - - - - - - 

A B C D  

A I O O O O  
B J l 0 0 0  HD(0,23) = 6 
C l l l O O  
D l l l l O  

- - - - - - - - - 

Whitley and Yoo (1995) point out that this representation is not perfect. 
Since 2"') > N ! ,  certain binary strings are undefined. For example, consider 
the following upper triangle: 

1 1 1  
0 1  
0 

Element 1 occurs before 2, 3, and 4, which poses no problem, but 2 occurs 
after 3, 2 occurs before 4, and 4 occurs before 3. Using > to denote relative 
order, this implies a nonexistent ordering such that TEAM LRN
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3 > 2 > 4  but 4 > 3  

Thus, not all matrices correspond to permutations. Nevertheless, the binary 
representation does afford a metric in the form of Hamming distance and 
suggests an alternative way of constructing deceptive ordering problems, since 
once a binary representation exists several methods for constructing misleading 
problems could be employed. Deb and Goldberg ( 1  992) explain how to construct 
trap functions. Whitley ( I99 1) also discusses the construction of deceptive 
binary functions. 

While the topic of deception has been the focus of some controversy 
(cf Grefenstette 1993), there are few tools for understanding the difficulty or 
complexity of permutation problems. Whitley and Yoo found that simulation 
results failed to provide clear evidence that deceptilre functions built using o- 
schema fitness averages really were misleading or difficult for simple genetic 
algorithms. 

Aside from the fact that many problems with permutation-based 
representations are known to be NP complete problems, there is little work which 
characterizes the complexity of specific instances of these problems, especially 
from a genetic algorithm perspective. One can attempt to estimate the size 
and depth of basins of attraction, but such methods must presuppose the use 
of a particular search methods. The use of different local search operators can 
induce different numbers of local optima and different sized basins of attraction. 
Changing representations can have the same effect. 

17.8 Operator descriptions and local search 

Section 32.3, on mutation for permutations, also provides information on local 
search operators, the best known of which is 2-opt. Information on the most 
commonly used forms of recombination for permutation-based representations is 
found in Section 33.3. For a general discussion of permutations, see the books by 
Niven ( 1  965) and Knuth (1973). Whitley and Yoo (1995) present methods for 
constructing infinite-population models for simple genetic algorithms applied 
to permutation problems which can be easily converted into finite-population 
Markov models. 
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18 
Finite-state representations 

David B Fogel 

18.1 Introduction 

A finite-state machine is a mathematical logic. It is essentially a computer 
program: i t  represents a sequence of instructions to be executed, each depending 
on a current state of the machine and the current stimulus. More formally, a 
finite-state machine is a 5-tuple 

A4 = ( Q ,  t, p ,  S ,  O )  

where Q is a finite set, the set of states, t is a finite set, the set of input symbols, 
p is a finite set, the set of output symbols, s : Q x t --+ Q is the next state 
function, and o : Q x t + p is the next output function. 

Any 5-tuple of sets and functions satisfying this definition is to be interpreted 
as the mathematical description of a machine that, if given an input symbol .r 
while i t  is in state q ,  will output the symbol o(y,  .r) and transition to state s ( q .  x). 
Only the information contained in the current state describes the behavior of the 
machine for a given stimulus. The entire set of states serves as the 'memory' of 
the machine. Thus a finite-state machine is a transducer that can be stimulated 
by a finite alphabet of input symbols, that can respond in a finite alphabet 
of output symbols, and that possesses some finite number of different internal 
states. The corresponding input-output symbol pairs and next-state transitions 
for each input symbol, taken over every state, specify the behavior of any finite- 
state machine, given any starting state. For example, a three-state machine is 
shown in figure 18.1. The alphabet of input symbols are elements of the set 
{0, I ] ,  whereas the alphabet of output symbols are elements of the set {a, /3, y ]  
(input symbols are shown to the left of the slash, output symbols are shown to 
the right). The finite-state machine transforms a sequence of input symbols into 
a sequence of output symbols. Table 18.1 indicates the response of the machine 
to a given string of symbols, presuming that the machine is found in state C. 
It is presumed that the machine acts when each input symbol is perceived and 
the output takes place before the next input symbol arrives. 
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Figure 18.1. A three-state finite machine. Input symbols are shown to the left of the 
slash. Output symbols are to the right of the slash. Unless otherwise specified, the 
machine is presumed to start in state A .  (After Fogel et nl 1966, p 12). 

Table 18.1. The response of the tinite-state machine shown in figure 18.1 to a string of 
symbols. In this example, the machine starts in state C .  

Present state C B C A A B 
Input symbol 0 1 1 I 0 I 
Next state B C A A B C  
Output symbol 6 a! y 6 6 a! 

18.2 Applications 

Finite-state representations are often convenient when the required solutions to 
a particular problem of interest require the generation of a sequence of symbols 
having specific meaning. For example, consider the problem offered by Fogel 
et cil (1966) of predicting the next symbol in a sequence of symbols taken from 
some alphabet A (here, T = p = A ) .  A population of finite-state machines is 
exposed to the environment, that is, the sequence of symbols that have been 
observed up  to the current time. For each parent machine, as each input symbol 
is offered to the machine, each output symbol is compared with the next input 
symbol. The worth of this prediction is then measured with respect to the 
given payoff function (e.g. all-none, absolute error, squared error, or any other 
expression of the meaning of the symbols). After the last prediction is made, 
a function of the payoff for each symbol (e.g. average payoff per symbol) 
indicates the fitness of the machine. Offspring machines are created through 
mutation (Section 32.4) and/or recombination (Section 33.4). The machines that 
provide the greatest payoff are retained to become parents of the next generation. 
This process is iterated unt i l  an actual prediction of the next symbol (as yet TEAM LRN
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C,DID 

D , CIC Legend 

I,= Stan State 
C = Cooperate 

D = Delecl 

Figure 18.2. A finite-state machine evolved in prisoner’s dilemma experi- 
ments detailed by Fogel (1995b, p 215). The input symbols form the set 
((C. C). (C, D), (D, C), (D, D)} and the output symbols form the set (C, D ] .  The 
machine also has an associated first move indicated by the arrow; here the machine 
cooperates initially then proceeds into state 6. 

inexperienced) in the environment is required. The best machine generates this 
prediction, the new symbol is added to the experienced environment, and the 
process is repeated. 

There is an inherent versatility in such a procedure. The payoff function 
can be arbitrarily complex and can possess temporal components; there is 
no requirement for the classical squared-error criterion or any other smooth 
function. Further, it is not required that the predictions be made with a one-step TEAM LRN
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look ahead. Forecasting can be accomplished at an arbitrary length of time into 
the future. Multivariate environments can be handled, and the environmental 
proces5 need not be stationary because the simulated evolution will adapt to 
changes in the transition statistics. 

For example, Fogel ( 1991, 1993, 199Sa) has used finite-state machines to 
describe behaviors in the iterated prisoner's dilemma. The input alphabet mas 
selected as the set ((C. C ) ,  (C. D ) .  ( D ,  C),  (0 ,  D ) }  where C corresponds to a 
move for cooperation and D corresponds to a move for defection. The ordered 
pair ( X ,  Y )  indicates that the machine played X in the last move, while it5 

opponent played Y .  The output alphabet was the set ( C ,  D }  and corresponded 
to the next move of the machine based on the previous pair of move\ and the 
current state of the machine (see figure 18.2). 

For 
example, Jefferson et trl (1991 ). Angeline and Pollack ( 1993), and others 
employed a finite-state machine to describe the behavior of a simulated ant 
on a trail placed on a grid. The input alphabet was the set (0, I ) ,  where 0 
indicated that the ant did not see a trail cell ahead and I indicated that it did see 
such a cell ahead. The output alphabet was { M ,  L .  R ,  N }  where M indicated 
a move forward, L indicated a turn to the left without moving, R indicated a 
turn to the right without moving, and N indicated a condition to do nothing. 
The task was to evolve a finite-state machine that would generate a sequence of 
moves to traverse the trail in  the shortest number of time steps. 

Other applications of' finite-state representations have been offered. 
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Parse trees 

Peter J Angeline 

When an executable structure such as a program or a function is the object of 
an evolutionary computation, representation plays a crucial role in determining 
the ultimate success of the system. If a traditional, syntax-laden programming 
language is chosen to represent the evolving programs, then manipulation by 
simple evolutionary operators will most likely produce syntactically invalid 
offspring. A more beneficial approach is to design the representation to ensure 
that only syntactically correct programs are created. This reduces the ultimate 
size of the search space considerably. One method for ensuring syntactic 
correctness of generated programs is to evolve the desired program‘s parse 
tree rather than an actual, unparsed, syntax-laden program. Use of the parse 
tree representation completely removes the ‘syntactic sugar’ introduced into 
a programming language to ensure human readability and remove parsing 
ambiguity. 

Cramer (1985), in the first use of a parse tree representation in a 
genetic algorithm, described two distinct representations for evolving sequential 
computer programs based on a simple algorithmic language and emphasized the 
need for offspring programs to remain syntactically correct after manipulation 
by the genetic operators. To accomplish this, Cramer investigated two encodings 
of the language into fixed-length integer representations. 

Cramer (1985) first represented a program as an ordered collection of 
statements. Each statement consisted of N integers; the first integer identified 
the command to be executed and the remainder specified the arguments 
to the command. If the command required fewer than N - I arguments. 
then the trailing integers in the statement were ignored. Depending on the 
syntax of the statement’s command, an integer argument could identify a 
variable to be manipulated or a statement to be executed. Consequently, 
even though the program was stored as a sequence it implicitly encoded an 
execution tree that could be reconstructed by replacing all arguments referring 
to program statements with the actual statement. Cramer (1985) noted that 
this representation was not suitable for manipulation by genetic operators and 
occasionally resulted in infinite loops when two auxiliary statements referred to 
each other. 
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The second representation for simple programs reviewed by Cramer (1985) 
alleviated some of the deficiencies of the first by making the implicit tree 
representation explicit. Instead of evolving a sequence of statements with 
arguments that referred to other statements, this representation replaces these 
arguments with the actual statement. For instance, an encoded program would 
have the form (0 ( 3  5 )  ( I  3 ( 1  4 (4 5 ) ) ) )  where a matching set of parentheses 
denotes a single complete statement. Note that in the language used by Cramer 
(1985), a subtree argument does not return a value to the calling statement but 
only designates a command to be executed. 

Probably the best known use of the parse tree representation is that by Koza 
( 1992), an example of which is shown in  figure 19.1. The only difference 
between the representations used in genetic programming (Koza 1992) and the 
explicit parse tree representation (Cramer 1985) is that the subtree arguments in 
genetic programming return values to their calling statements. This provides 
a direct mechanism for the communication of intermediate values to other 
portions of the parse tree representation and fortifies a subtree as an independent 
computational unit .  The variety of problems investigated by Koza (1992) 
demonstrates the flexibility and applicability of this representational paradigm. 

An appealing aspect of the parse tree representation is its natural recursive 
definition, which allows for dynamically sized structures. All parse tree 
representations investigated to date have included an associated restriction on 
the size of the evolving programs. Without such a restriction, the natural 
dynamics of evolutionary systems would continually increase the size of the 
evolving programs, eventually swamping the available computational resources. 
Size restrictions take on two distinct forms. Depth limitation restricts the 
size of evolving parse trees based on a user-defined maximal depth parameter. 
Node limitation places a limit on the total number of nodes available for an 
individual parse tree. Node limitation is the preferred method of the two 
since it encodes fewer restrictions on the structural organization of the evolving 
programs (Angeline 1996). 

In a parse tree representation, the primitive language-the contents of 
the parse tree-determines the power and suitability of the representation. 
Sometimes the elements of this language are taken from existing programming 
languages, but typically it is more prudent to design the primitive language so 
that i t  takes into consideration as much domain-specific knowledge as available. 
Failing to select language primitives tailored to the task at hand may prevent 
the acquisition of solutions. For instance, if the objective is to evolve a function 
that has a particular periodic behavior, it is important to include base language 
primitives that also have periodic behavior, such as the mathematical functions 
sin s and cos x. 

Due to the acyclic structure of parse trees, iterative computations are often 
not naturally represented. It is often difficult for an evolutionary computation to 
correctly identify appropriate stopping criteria for loop constructs introduced 
into the primitive language. To compensate, the evolved function often is TEAM LRN
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evaluated within an implied ‘repeat until done’ loop that reexecutes the evolved 
function until some predetermined stopping criterion is satisfied. For instance, 
Koza ( I  992) describes evolving a controller for an artificial ant for which the 
fitness function repeatedly applies its program until a total of 400 commands 
are executed or the ant completes the task. Numerous examples of such implied 
loops can be found in the genetic programming literature (e.g. Koza 1992, 
pp 147, 329, 346, Teller 1994, Reynolds 1994, Kinnear 1993). 

Often i t  is necessary to include constants in the primitive language, especially 
when mathematical expressions are being evolved. The general practice is to 
include as a potential terminal of the language a special symbol that denotes a 
constant. When a new individual is created and this symbol is selected to be a 
terminal, rather than enter the symbol into the parse tree, a numerical constant 
is inserted drawn uniformly from a user-defined range (Koza 1992). Figure 19.1 
shows a number of numerical constants that would be inserted into the parse 
tree in this manner. 

if - I t - 0  

0 
0 + % 

/ \  / \  / \  ,-, 0.1467 s l n  ,*, c i s  , if - I t - 0  , , 
dO d3 d2 dl Sin 0.547 sin dl 

I dO 
0.9765 

1.075 

Figure 19.1. An example parse tree representation for a complex numerical function. The 
function if-It-0 is a numerical conditional that returns the value of its second argument 
if its first argument evaluates to a negative number and otherwise returns the value of 
its third argument. The function ’3- denotes a protected division operator that returns a 
value of 1.0 if the second argument (the denominator) is zero. 

Typically, the language defined for a parse tree representation is syntactically 
homogenous, meaning that the return values of all functions and terminals are 
the same computational type, (e.g. integer). Montana (1995) has investigated the 
evolution of multityped parse trees and shown that extra syntactic considerations 
do not drastically increase the complexity of the associated genetic operators. 
Koza ( 1992) also investigates constrained parse tree representations. 

Given the recursive nature of parse trees, they are a natural representation TEAM LRN
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in which to investigate issues concerning induction of modular structures. 
Currently, three methods for inducing modular parse trees have been proposed. 
Angeline and Pollack (1994) add two mutation operators to their Genetic 
Program Builder (GLIB) system, which dynamically form and destroy modular 
components out of the parse tree. The mmprr.ss mutation operation, which bears 
some resemblance to the erzr~cipsulcite operator of Koza ( 1992), selects a subtree 
and makes it a new representational primitive in the language. The e-rpcinci 
mutation operation reverses the actions of the compress mutation by selecting a 
compressed subtree in the individual and replacing i t  with the original subtree. 
Angeline and Pollack (1994) claim that the natural evolutionary dynamics of the 
genetic program automatically discover effective modularizations of the evolving 
programs. Rosca and Ballard ( 1996) with their Adaptive Representation method 
use a set of heuristics to evaluate the usefulness of all subtrees in the population 
and then create subroutines from the ones that are most useful. Koza (1994) 
describes a third method for creating modular programs, called automatically 
defined functions ( ADFs) (see Chapter 1 I ), which allow the user to determine the 
number of subroutines to which the main program can refer. During evolution, 
the definitions of both the main routine and all of its subroutines are evolved 
in parallel. Koza and Andre (1996) have more recently included a number of 
mutations to dynamically modify various aspects of ADFs in order to reduce 
the amount of prespecification required by the user. 
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Guidelines for a suitable encoding 

David B Fogel and Peter J Angeline 

In any evolutionary computation application to an optimization problem, the 
human operator determines at least four aspects of the approach: representation, 
variation operators, method of selection, and objective function. It could be 
argued that the most crucial of these four is the objective function because i t  
defines the purpose of the operator in quantitative terms. Improperly specifying 
the objective function can lead to generating the right answer to the wrong 
problem. However it should be clear that the selections made for each of 
these four aspects depend in part on the choices made for all the others. For 
example, the objective function cannot be specified in the absence of a problem 
representation. The choice for appropriate representation, however, cannot 
be made in the absence of anticipating the variation operators, the selection 
function, and the mathematical formulation of the problem to be solved. Thus, 
an iterative procedure for adjusting the representation and search and selection 
procedures in light of a specified objective function becomes necessary in many 
applications of evolutionary computation. This section focuses on selecting the 
representation for a problem, but i t  is important to remain cognizant of the 
interdependent nature of these operations within any evolutionary computation. 

There have been proposals that the most suitable encoding for any problem 
is a binary encoding (Chapter IS) because it maximizes the number of 
schemata being searched implicitly (Holland 1975, Goldberg 1989), but there 
have been many examples in the evolutionary computation literature where 
alternative representations have provided for algorithms with greater efficiency 
and optimization effectiveness when compared with identical problems (see 
e.g. the articles by Biick and Schwefel (1993) and Fogel and Stayton (1994) 
among others). Davis ( 1991) and Michalewicz (1996) comment that in many 
applications real-valued (Chapter 16) or other representations may be chosen to 
advantage over binary encodings. There does not appear to be any general 
benefit to maximizing implicit parallelism in evolutionary algorithms, and, 
therefore, forcing problems to f i t  binary representation is not recommended. 

The close relationship between representation and other facets of 
evolutionary computation suggests that, in many cases, the appropriate choice of 
representation arises from the operator's ability to visualize the dynamics of the 
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resulting search on an adaptive landscape. For example, consider the problem 
of finding the minimum of the quadratic surface 

3 3  

f ( x ,  y )  = x- + J- x, ?' E R. 
Immediately, it is easy to visualize this function as shown in figure 20.1. 
If an evolutionary approach to the problem were to be taken, an intuitive 
representation suggested by the surface is to operate on the real values of 
(x, J) directly (rather than recoding these values into some other alphabet). 
Accordingly, a reasonable choice of variation operator would be the imposition 
of a continuous random perturbation to each dimension (x, y )  (perhaps a 
zero-mean Gaussian perturbation as is common in evolution strategies and 
evolutionary programming). This would be followed by a hard selection against 
all but the best solution in the current population, given that the function is 
strongly convex. With even slight experience, the resulting population dynamics 
of this approach can be visualized without executing a single line of code. In 
contrast, for this problem other representational choices and variation operators 
(e.g. mapping the real numbers into binary and then applying crossover operators 
to the binary encoding) are contrived, difficult to visualize, and appear more 
likely to be ineffectual (see Schraudolph and Belew 1992, Fogel and Stayton 
1994). 

Figure 20.1. A quadratic bowl in two dimensions. The shape of the response surface 
suggests a natural approach for optimization. The intuitive choice is to use real-valued 
encodings and continuous variation operators. The shape of a response surface can be 
useful in suggesting choices for suitable encodings. 

Thus, the basic recommendation for choosing a suitable encoding is that 
the representation should be suggested from the problem at hand. If a traveling TEAM LRN
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salesman problem is to be investigated, obvious natural choices for the encoding 
are a l i \ t  of cities to be visited in order, or a corresponding list of edges. For 
ii di\crete-\ymbol time-series prediction problem, finite-state machines (Chapter 
18)may be especially appropriate. For continuous time-series prediction, other 
model forms (e.g. neural networks, ARMA, or Box-Jenkins) appear better 
wited. In non\tationary environments, that is, fitness functions that are dynamic 
rather than \tatic. i t  is often necessary to include some form of memory in 
the representation. Diplodic representations-representations that include two 
alleles per gene-have been used to model cyclic environments (Goldberg and 
Smith 1987, Ng and Wong 1995). The most natural choice for representation 
is a wbjective choice, and i t  will differ across investigator$, although, like 
a witable scientific model, a suitable representation should be as complex a\ 
neceswry (and no more so) and should 'explain' the phenomena inve\tigated, 
which here means that the rewlting search should be viwalimble or imaginable 
to some extent. 
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0 ther representations 

Peter J Angeline and David B Fogel 

21.1 Mixed-integer structures 

Many real-world applications suggest the use of representations that are hybrids 
of the canonical representations. One common instance is the simultaneous use 
of discrete and continuous object variables, with a general formulation of the 
global optimization problem as follows (Back and Schutz 1995): 

min{f’(z. d) lz E M ,  R” 1 M ,  d E N ,  Z”,’ 2 N ]  

Within evolution strategies and evolutionary programming, the common 
representation is simply the real-integer vector pair (i.e. no effort is made to 
encode these vectors into another representation such as binary). Sections 32.6 
and 33.6 offer methods for mutating and recombining the abokve representations. 

Mixed representations also occur in the application of evolutionary 
algorithms to neural networks or fuzzy logic systems, where real-world 
parameters are used to define weights or shapes of membership functions and 
integer values are used to define the number of nodes and their connections, or 
the number of membership functions (see e.g. Fogel 1995. Angeline et a1 1994, 
McDonnell and Waagen 1994, Haffner and Sebald 1993). 

21.2 Introns 

In  contrast to the above hybridization of different forms of representation, 
another ‘nontraditional’ approach has involved the inclusion of noncoding 
regions (introns) within a solution (see e.g. Levenick 1991, Golden et cil 1995. 
Wu and Lindsay 1995). Solutions are represented in the form 

SI )intronl.rz(intronI . . . IintronI.r,, 

where there are 11 components to vector x. Introns have been hypothesized to 
allow for greater efficiency in  recombining building blocks (see Section33.6). 
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In the standard genetic algorithm representation, the semantics of an allele 
value (how the allele is interpreted) is usually tied to its position in the fixed- 
length ri-ary string. For instance, in a binary string representation, each position 
signifies the presence or absence of a specific feature in the genome being 
decoded. The difficulty with such a representation is that with positions in 
the string representation that are semantically linked but separated by a large 
number of intervening positions in the string crossover has a high probability 
of disrupting beneficial settings for these two positions. Goldberg et crl ( 1989) 
describe a representation for a genetic algorithm that embodies one approach to 
addressing this problem. In their messy genetic algorithm (mGA). each allele 
value is represented as a pair of values, one specifying the actual allele value 
and one specifying the position the allele occupies. Messy GAS are defined to be 
of variable length, and Goldberg et ~ r l  (1989) describe appropriate methods for 
resolving underdetermined or overdetermined genomes. In  this representation i t  
is important to note that the semantics are literally carried along with the allele 
value in the form of the allele's string position. 

21.3 Diploid representations 

Diploid representations. representations that include multiple allele values for 
each position in the genome, hace been offered as mechanisms for modeling 
cyclic environments. In a diploid representation, a method for determining 
which allele value for a gene will be expressed is required to adjudicate 
when the allele values do not agree. Building on earlier investigations (see 
e.g. Bagley 1967, Hollstein 1971, Brindle 1981), Goldberg and Smith (1087) 
demonstrate that an evolving dominance map allows quicker adaptation to 
cyclical environment changes than either a haploid representation or a diploid 
repre5entation using a tixed dominance mapping. Goldberg and Smith (1087) 
use a triallelic representation from Hollstein ( 1971): I ,  i ,  and 0. Both I and I 

map to the allele value of ' l ' ,  while 0 maps to the allele value of '0' with 1 
dominating both i and 0 and 0 dominating i. Thus, the dominance of a 1 over 
a 0 allele value could be altered via mutation by altering the value to an i .  Ng 
and Wong ( 1995) extend the multiallele approach to dominance computLdion 
by adding a fourth value for a recessive 0. Thus 1 dominates 0 and o while 0 
dominates i and o. When both allele values for a gene are dominant or reces4ve. 
then one of the two values is chosen randomly to be the dominant value. Ng 
and Wong (1995) also suggest that the dominance of all of the component5 in 
the genome should be reversed when the fitne5s value of an individual falls by 
20% or more between generations. 
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22 
Introduction to selection 

Kalyanmoy Deb 

22.1 Working mechanisms 

Selection is one of the main operators used in evolutionary algorithms. The 
primary objective of the selection operator is to enzplzasize better solutions 
in a population. This operator does not create any new solution, instead i t  
selects relatively good solutions from a population and deletes the remaining, 
not-so-good, solutions. Thus, the selection operator is a mix of two different 
concepts-reproduction and selection. When one or more copies of a good 
solution are reproduced, this operation is called reproduction. Multiple copies 
of a solution are placed in a population by deleting some inferior solutions. 
This concept is known as selection. Although some EC studies use both these 
concepts simultaneously, some studies use them separately. 

The identification of good or bad solutions in a population is usu;dly 
accomplished according to a solution’s fitness. The essential idea is that a 
solution having a better fitness must have a higher probability of selection. 
However, selection operators differ in the way the copies are assigned to 
better solutions. Some operators sort the population according to fitness and 
deterministically choose the best few solutions. whereas some operators assign 
a probability of selection to each solution according to fitness and make a copy 
using that probability distribution. In the probubilistic selection operator, there 
is some finite, albeit small, probability of rejecting a good solution and choosing 
a bad solution. However. a selection operator is usually designed in a way so 
that the above is a low-probability event. There is, of course, an advantage of 
allowing this stochasticity (or flexibility) in the evolutionary algorithms. Due 
to a small initial population or an improper parameter choice or in solving a 
complex nonlinear fitness function, the best few individuals in a finite population 
may sometimes represent a suboptimal region. If a deterministic selection 
operator is used, these seemingly good individuals in the population will be 
emphasized and the population may finally converge to a wrong solution. 
However, if a stochastic selection operator is used, diversity in the population 
will be maintained by occasionally choosing not-so-good solutions. This event 
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may prevent EC algorithms from making a hasty decision in converging to a 
wrong solution. 

In the following, we present a pseudocode for the selection operator and 
then discuss briefly some of the popular selection operators. 

22.2 Pseudocode 

Some EC algorithms (specifically, genetic algorithms (GAS) and genetic 
prograininiiig (GP)) usually apply the selection operator first to select good 
solutions and then apply the recombination and mutation operators on these 
good solutions to create a hopefully better set of solutions. Other EC algorithms 
(specifically, evolution strategies (ES) and adiitioiiury progrcinirnirzg (EP)) 
prefer using the recombination and mutation operator first to create a set of 
solutions and then use the selection operator to choose a good set of solutions. 
The selection operator in ( p  + A )  ES and EP techniques chooses the offspring 
solutions from a combined population of parent solutions and solutions obtained 
after recombination and mutation. In the case of EP, this is done statistically. 
However, the selection operator in ( p ,  A )  ES chooses the offspring solutions 
only from the solutions obtained after the recombination and mutation operators. 
Since the selection operators are different in different EC studies, it is difficult 
to present a common code for all selection operators. However, the following 
pseudocode is a generic for most of the selection operators used in EC studies. 

The parameters ,U and A are the numbers of parent solutions and offspring 
solutions after recombination and mutation operators, respectively. The 
parameter q is a parameter related to the operator‘s selective pressure, a matter 
we discuss later in this section. The population at iteration t is denoted by 
P ( t )  = {a, ,  az, . . .} and the population obtained after the recombination and 
mutation operators is denoted by f ‘ ( t )  = {a‘, , a>, . . .}. Since GAS and GP 
techniques use the selection operator first, the population P ‘ ( t )  before the 
selection operation is an empty set, with no solutions. The fitness function 
is represented by F ( t ) .  

Input: p, A, q ,  P ( t )  E Z”, P’( t )  E Z E b ,  F ( t )  

Output: P”( t )  = {a’,’, ay.. . 

1 

2 

for i t I to ,U 

return({a’,’(r), . . . , a;:(t) 
a:’(t) t S\election(P(t), 

E Z’L 

Detailed discussions of some of the selection operators are presented in the 
subsequent sections. Here, we outline a brief introduction to some of the popular 
selection schemes, mentioned as Ssclcction in the above pseudocode. 

In the proportionate selection operator, the expected number of copies a 
solution receives is assigned proportionally to its fitness. Thus, a solution having 
twice the fitness of another solution receives twice as many copies. The simplest TEAM LRN
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form of the proportionate selection scheme is known as the roulette-whcel 
selection, where each solution in the population occupies an area on the roulette 
wheel proportional to its fitness. Then, conceptually, the roulette wheel is spun 
as many times as the population size, each time selecting a solution marked 
by the roulette-wheel pointer. Since the solutions are marked proportionally to 
their fitness, a solution with a higher fitness is likely to receive more copies 
than a solution with a low fitness. There exists a number of variations to this 
simple selection scheme, which are discussed in Chapter 23. However, one 
limitation of the proportionate selection scheme is that since copies are assigned 
proportionally to the fitness values, negative fitness values are not allowed. 
Also, this scheme cannot handle minimization problems directly. (Minimization 
problems must be transformed to an equivalent maximization problem in order 
to use this operator.) Selecting solutions proportional to their fitness has two 
inherent problems. If a population contains a solution having exceptionally 
better fitness than the rest of the solutions in the population, this so-called 
.sirpur.volirtiori will occupy most of the roulette-wheel area. Thus, most spinning 
of the roulette wheel is likely to choose the same supersolution. This may cause 
the population to lose genetic diversity and cause the algorithm to prematurely 
converge to a suboptimal solution. The second inherent difficulty may arise 
later in a simulation run, when most of the population members have more or 
less the same fitness. In this case, the roulette wheel is marked almost equally 
for each solution in the population and every solution becomes equally likely 
to be selected. This has the effect of a random selection. Both these inheient 
difficulties can be avoided by using a sculing scheme, where every solution 
fitness is linearly mapped between a lower and an upper bound before marking 
the roulette wheel (Goldberg 1989). This allows the selection operator to assign 
a controlled number of copies, thereby eliminating both the above problems of 
too large and random assignments. We discuss this scaling scheme further in the 
next section. Although this selection scheme has been mostly used with GAS 
and GP applications, in principle it can also be used with both multimembcred 
ES and EP techniques. 

In the toitrriciment selection operator, both the scaling problems mentioned 
above are eliminated by playing tournaments among a specified number of parent 
solutions according to fitness of solutions. In a tournament of y solutions, the 
best solution is selected either deterministically or probabilistically. After the 
tournament is played, there are two options-either all participating y solutions 
are replaced into the population for the next tournament or they are not replaced 
until a certain number of tournaments have been played. In its simplest form 
(called the binary tournament selection), two solutions are picked and the bctter 
solution is chosen. One advantage of this selection method is that this schzme 
can handle both minimization and maximization problems without any structural 
change in the fitness function. Only the solution having either the highest or 
the lowest objective function value need to be chosen depending on whether 
the problem is a maximization or a minimization problem. Moreover, i t  has TEAM LRN
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no restriction on negative objective function values. An added advantage of 
this scheme is that it is ideal for a parallel implementation. Since only a few 
solutions are required to be compared at a time without resorting to calculation 
of the population average fitness or any other population statistic, all solutions 
participating in a tournament can be sent to one processor. Thus, tournaments 
can be played in parallel on multiple processors and the complete selection 
process may be performed quickly. Because of these properties, tournament 
selection is fast becoming a popular selection scheme in most EC studies. 
Tournament selection is discussed in detail in Chapter 24. 

The r-nnkirzg selection operator is similar to proportionate selection except 
that the solutions are ranked according to descending or ascending order of 
their fitness values depending on whether i t  is a maximization or minimization 
problem. Each solution is assigned a ranked fitness based on its rank in 
the population. Thereafter, copies are allocated with the resulting selection 
probabilities of the solutions calculated using the ranked fitness values. Like 
tournament selection, this selection scheme can also handle negative fitness 
values. There exists a number of other schemes based on the concept of the 
ranking of solutions; these are discussed in Chapter 25. 

In the Boltmnnri selection operator, a modified fitness is assigned to each 
solution based on a Boltzmann probability distribution: F, = 1 /(  1 +exp( F, / T ) ) ,  
where T is a parameter analogous to the temperature term in the Boltzmann 
distribution. This parameter is reduced in a predefined manner in successiFfe 
iterations. Under this selection scheme, a solution is selected based on the 
above probability distribution. Since a large value of T is used initially. almost 
any solution is equally likely to be selected, but, as the iterations progress, the 
parameter T becomes small and only good solutions are selected. We discuss 
this selection scheme further in Chapter 26. 

In the ( p  + A )  ES, the selection operator selects p best solutions 
deterministically from a pool of all p parent solutions and A offspring 
solutions. Since all parent and offspring solutions are compared, if performed 
deterministically, this selection scheme guarantees preservation of the best 
solution found in any iteration. 

On the other hand, in the ( p ,  A) ES, the selection operator chooses p 
best solutions from A (usually A > p )  offspring solutions obtained by the 
recombinatior! and mutation operators. Unlike the ( p  + A )  ES selection scheme, 
the best solution found in any iteration is not guaranteed to be preserved 
throughout a simulation. However, since many offspring solutions are created in 
this scheme, the search is more exhaustive than that in the ( p  + A )  ES scheme. 
In most applications of the ( p ,  A )  ES selection scheme, a deterministic selection 
of best p solutions is adopted. 

In modern variants of the EP technique, a slightly different selection scheme 
is used. In a pool of parent (of size p )  and offspring solutions (of size the same 
as the parent population size), each solution is first assigned a score depending 
on how many solutions it is better than from a set of random solutions (of size TEAM LRN
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ei) chosen from the pool. The complete pool is then sorted in descending order 
of this score and the first p solutions are chosen deterministically. Thus, this 
selection scheme is similar to the ( p  + p )  ES selection scheme with a tournament 
selection of q tournament size. Back et cil ( 1994) analyzed this selection scheme 
as a combination of ( p  + p )  ES and tournament selection schemes, and found 
some convergence characteristics of this operator. 

Goldberg and Deb (1991 ) have compared a number of popular selection 
schemes in terms of their convergence properties, selective pressure, takeover 
times, and growth factors, all of which are important in the understanding of 
the power of different selection schemes used in GA and GP studies. Similar 
studies have also been performed by Back et er1 (1994) for selection schemes 
used in ES and EP studies. A detailed discussion of some analytical as well as 
experimental comparisons of selection schemes is presented in Chapter 29. In 
the following section, we briefly discuss the theory of selective pressure and its 
importance in choosing a suitable selection operator for a particular application. 

22.3 Theory of selective pressure 

Selection operators are characterized by a parameter known as the .wImi\v~ 
prussiire, which relates to the takeover time of the selection operator. The 
takeover time is defined as the speed at which the best solution in the initial 
population would occupy the complete population by repeated application of the 
selection operator alone (Back 1994. Goldberg and Deb 1991). If the takeover 
time of a selection operator is lctrge (that is, the operator takes a large number 
of iterations for the best solution to take over the population), the selective 
pressure of the operator is smcill, and vice versa. Thus, the selective pressure or 
the takeover time is an important parameter for successful operation of an EC 
algorithm (Back 1994, Goldberg et crl 1993). This parameter gives an idea of 
how greedy the selection operator is in  terms of making the population uniform 
with one particular solution. If a selection operator has a large selective pressure, 
the population loses diversity in the population quickly. Thus. in order to awid 
premature convergence to a wrong solution, either a large population is required 
or highly disruptive recombination and mutation operators are needed. However. 
a selection operator with a small selection pressure makes a slow convergence 
and permits the recombination and mutation operators enough iterations to 
properly search the space. Goldberg and Deb ( 1991) have calculated takeover 
times of a number of selection operators used i n  GAS and GP studies and Back 
( 1994) has calculated the takeover time for a number of selection operators used 
in ES, EP, and GA studies. The former study has also introduced two other 
parameters-early and late growth rate-characterizing the selection operators. 

The growth rate is defined as the ratio of the number of the best solutions 
in two consecutive iterations. Since most selection operators have different 
growth rates as the iterations progress, two different growth rates-early and 
late growth rates-are defined. The early growth rate is calculated initially, TEAM LRN
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when the proportion of the best solution in the population is negligible. The 
late growth rate is calculated later, when the proportion of the best solution in 
the population is large (about 0.5). The early growth rate is important, especially 
if a quick near-optimizer algorithm is desired, whereas the late growth rate can 
be a useful measure if precision in the final solution is important. Goldberg 
and Deb (1991) have calculated these growth rates for a number of selection 
operators used in GAS. A comparison of different selection schemes based on 
some of the above criteria is given in Chapter 29. 

The above discussion suggests that, for a successful EC simulation. the 
required selection pressure of a selection operator depends on the recombination 
and mutation operators used. A selection scheme with a large selection pressure 
can be used, but only with highly disruptive recombination and mutation 
operators. Goldberg et cil ( 1993) and later Thierens and Goldberg ( 1993) ha\ie 
found functional relationships between the selective pressure and the probabilit)? 
of crossover for successful working of selectorecombinative GAS. These studies 
show that a large selection pressure can be used but only with a large probability 
of crossover. However. if a reasonable selection pressure is used, GAS ~ . ' o rk  
successfully for a wide variety of crossover probablities. Similar studies can 
also be performed with ES and EP algorithms. 
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23 
Proportional selection and sampling 
algorithms 

J o  h I i G refe I i stet te 

23.1 Introduction 

Selection (Chapter 22)  is the process of choosing individuals for reproduction in 
an evolutionary algorithm. One popular form of selection is called proportiomil 

.se/ec’tioir. As the name implies. this approach involves creating a number 
of offspring in proportion to an individual’s fitness. This approach was 
proposed and analyzed by Holland ( 1975) and has been used widely in many 
i 111 p It. me n ta t ion s of e v 0111 t i onary algorithms . 

B e s i de s h ii v i n g s o  me i n te re s t i n g mat hem at i c a I properties , pro portion a 1 
selection proLrides a naturril counterpart in artificial evolutionary systems to the 
umal practice in population genetics of defining an individual’s fitness in terms 
of its number of offspring. 

For clarity of discussion, i t  is convenient to decompose the selection process 
into distinct steps, namely: 

( i )  map the objective function to fitness. 
( i i )  create a probability distribution proportional to fitness, and 
( i i i )  draw samples from this distribution. 

The tirst three sections o f  this article discuss these steps. The final section 
discusses some results in  the theory of proportional selection. including the 
schema theorem and the impact of the fitness function, and two characterizations 
of selective pressure. 

23.2 Fitness functions 

The ecduation process of indictiduals in  an evolutionary algorithm begins with 
the user-defined ohjjec-ti\-e , t i i i i ( * t i o i i ,  
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where A ,  is the object variable space. The objective function typically measures 
some cost to be minimized or some reward to be maximized. The definition of 
the objective function is, of course, application dependent. The characterization 
of how well evolutionary algorithms perform on different classes of objective 
functions is a topic of continuing research. However, a few general design 
principles are clear when using an evolutionary algorithm. 

( i )  The objective function must reflect the relevant measures to be optimized. 
Evolutionary algorithms are notoriously opportunistic, and there are several 
known instances of an algorithm optimizing the stated objectii e function. 
only to have the user realize that the objective function did not actually 
represent the intended measure. 

( i i )  The objective function should exhibit some regularities over the space 
defined by the selected representation. 

( i i i )  The objective function should provide enough information to dri\fe the 
selective pressure of the evolutionary algorithm. For example, ’needle-in- 
a-haystack’ functions, i.e. functions that assign nearly equal calue to every 
candidate solution except the optimum, should be avoided. 

The jitness fiiriction 
@ : A , + I R +  

maps the raw scores of the objective function to a non-negative interval. The 
fitness function is often a composition of the objecti\ye function and a scaling 
function g: 

where cc,(t) E A , .  Such a mapping is necessary if the goal is to minimize 
the objective function, since higher fitness values correspond to lower objectiLre 
values in this case. For example, one fitness function that might be used when 
the goal is to minimize the objective function is 

W 4 ( t ) )  = g ( . f ( l N ) ) )  

@ ( a m )  = .finax - . f ( G ( t ) )  

where fmax is the maximum value of the objective function. 
maximum value of the objective function is unknown, an alternatiLre is 

If the global 

@ ( U & ) )  = .fmax(t) - . f (W))  

where . fnlax(t)  is the maximum observed value of the objective function up to 
time t .  There are many other plausible alternatives, such as 

1 
@(a, ( t )>  = 

1 + f (W))  - .fi,,l”(t) 

where &“(t )  is the minimum observed value of the objective function up to 
time t .  For maximization problems, this becomes 

1 
@ ( a m )  = 

1 + .fmax(t) - f ( % ( t ) )  

Note that the latter two fitness functions yield a range of (0, 1 1 .  TEAM LRN
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23.2. I Fitrirss sculirig 

As an evolutionary algorithm progresses, the population often becomes 
dominated by high-performance individuals with a narrow range of objective 
values. In this case, the fitness functions described above tend to assign similar 
fitness values to all members of the population, leading to a loss in the selective 
pressure toward the better individuals. To address this problem, fitriexs s(u1iizg 
methods that accentuate small differences in objective values are often used in 
order to maintain a productive level of selective pressure. 

One approach to fitness scaling (Grefenstette 1986) is to define the fitness 
function as a time-varying linear transformation of the objective value, for 
ex amp 1 e 

@ ( c l ; ( t ) )  = q f ’ ( l l ; ( t ) )  -- B ( t )  

where a is + I  for maximization problems and - 1 for minimization problems, 
and p ( t )  represents the worst value seen in the last few generations. Since p ( t )  
generally improves over time, this scaling method provides greater selection 
pressure later in the search. This method is sensitive, however, to ‘lethals‘. 
poorly performing individuals that may occasionally arise through crossover or 
mutation. Smoother scaling can be achieved by defining p ( t )  as a recency- 
weighted running average of the worst observed objective values, for example 

where 6 is an update rate of, say, 0.1, and fMOr,,(t) is the worst objective value 
in the population at time t .  

Sigizitr w r l i r i g  (Goldberg 1989) is based on the distribution of objective 
kralues within the current population. I t  is defined as follows: 

where ~ f ( t )  is the mean objective value of the current population, a,.(r) is the 
(sample) standard deviation of the objective values in  the current population, 
and c s  is a constant, say c. = 2. The idea is that f ’ ( t )  -cat (I) represents the Icast 
acceptable objective value for any reproducing individual. As the population 
improves, this statistic tracks the improvement, yielding a level of seleclive 
pressure that is sensitive to the spread of performance values in the population. 

Fitness scaling methods based on power laws have also been proposed A 
fixed transformation of the form 

. 

where k is a problern-dependent parameter, is used by Gillies (1985). BoIt:intriiri 

selc~c-fion (de la M a ~ a  and Tidor 1993) is a power-law-based scaling method that TEAM LRN
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draws upon techniques used in simulated annealing. The fitness function is a 
time-varying transformation given by 

where the parameter T can be used to control the level of selective pressure 
during the course of the evolution. I t  is suggested by de la Maza and Tidor 
(1993) that, if T decreases with time as in a simulated annealing procedure, 
then a higher level of selective pressure results than with proportional selection 
without fitness scaling. 

23.3 Selection probabilities 

Once the fitness values are assigned, the next step in proportional selection is 
to create a probability distribution such that the probability of selecting a gi\.en 
individual for reproduction is proportional to the individual's fitness. That is, 

23.4 Sampling 

In  an incremental, or steady-state, algorithm. the probability distribution can 
be used to select one parent at a time. This procedure is commonly called 
the roirlette \ t h e 1  sampling algorithm, since one can think of the probability 
distribution as defining a roulette wheel on which each slice has a width 
corresponding to the individual's selection probability, and the sampling can 
be envisioned as spinning the roulette wheel and testing which slice ends up at 
the top. The pseudocode for this is shown below: 

Input: probability distribution Pr 
Output: 1 1 ,  the selected parent 

1 roulette wheel (Pr): 
2 I 1  + 1 ;  
3 sum t Pr(n); 
4 
5 

sample U - U ( 0 ,  I ) ;  
while sum < 14 do 

12 t ( n  + I ) ;  
sum t sum + Pr(n); 

od 
6 return ( n ) ;  
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In a generational algorithm, the entire population is replaced during each 
generation, \o the probability distribution is sampled p times. This could be 
implemented by p independent calls to the roulette wheel procedure, but such an 
implementation may exhibit a high variance in the number of offspring assigned 
to each individual. For example, it is possible that the individual with the largtjt 
selection probability may be assigned no offspring in a particular generation. 
Baker ( 1987) developed an algorithm called .stochcr.stic urii\*er..\crl strmpling (SUS) 
that exhibits less variance than repeated calls to  the roulette wheel algorithm. 
The idea is to make a single draw from a uniform distribution, and use this 
to determine how many offspring to assign to all parents. The pseudocode for 
sus follows: 

Input: a probability distribution, Pr; the total number of children 
to assign, A.  
Output: c = ( ( - 1 ,  . . . , c-,, ), where 
t o  individual c l , ,  and 

is the number of children assigned 
= A. 

1 SUS(Pr,A): 
3 

3 sum +- 0.0; 
-5 
5 C’, +- 0: 
6 
7 
8 
9 

sample 11 - U ( O ,  i): 
for i = 1 to p do 

sum +- sum + Pr(i); 
while 11 < sum do 

( ’ f  +- c’, + 1 : 
11 + 11 4- ;; 

od 
od 

10 return c; 

Note that the pseudocode allows for any number h > 0 of children to 
be \pecitied. If  h = I .  SUS behaves like the roulette wheel function. For 
generational algorithm\, SUS is usually invoked with h = p. 

In  can he shown that the expected number of offspring that SUS assign\ to 
indikidual i i \  A Pr(i), and that on each invocation of the procedure, SUS assigns 
either LA Pr(i)J or [A Pr(i)l  offspring to individual i. Finally, SUS is optimdly 
efficient, making a \in& pa\\ over the individual3 to assign all off9pring. 

23.5 Theory 

The section presents some results from the theory of proportional selection. 
First. the schema theorem is described, following by a discussion of the effects TEAM LRN
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of the fitness function on the allocation of trials t o  schemata. The selectice 
pressure of proportional selection is characterized i n  two ~ ' a y s .  First. the 
selection differential describes the effects of selection on the mean population 
fitness. Second, the takeover time describes the convergence rate of population 
toward the optimal individual, in the absence of other genetic operators. 

In the above description, Prprop(i) is the probability of selecting indi\,idual i for 
reproduction. In a generational evolutionary algorithm, the entire population is 
replaced, so the expected number of offspring of indi\ridual i is 1-1 Pr,,,,,,(i). This 
value is called the tov-get sampl ing  rate, tsr(tr, , t )  of the indii idual (Grefenatette 
199 I ). For any selection algorithm, the allocation of offspring to indi\iduals 
induces a corresponding allocation to hyperplanes reprewnted by the indicvidual\: 

where ( I ,  E H and n z (  H ,  r )  denotes the number of representatikw of hyperplane 
H in  population P ( r ) .  In the remainder of this di\cu\sion. b e   ill refer to 
tsr( H .  r )  as the tril;qet scrmpliq rate of H at time t .  

For proportional selection, we have 

where Q, is the fitness function and & ( t )  denotes the average titness of the 
individuals in P ( t ) .  The most important feature of proportional selection is 
that i t  induces the following target sampling rates for all hyperplanes i n  the 
population : 

r t i (  H . t )  tsr(ir,, t )  
tsr(H. t )  = 

(23.1) 

where @ ( H ,  t )  is simply the average fitness of the representatiies of H i n  P ( t ) .  
This result is the heart of the schema theorem (Holland 1975), which has been 
called the jiulckri?iei~rcIl tlzeoreni of genetic u l g o r i t h s  (Goldberg 1 989 ). TEAM LRN
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Schenitr thuor-em. In a genetic algorithm using a proportional selection 
algorithm, the following holds for each hyperplane H represented in P ( t ) :  

where M (  H,  t ) is the expected number of representatives of hyperplane H in  
P ( t ) .  and lldl\r(H, I )  i \  the probability of disruption due to genetic operators 
\uch as crossover and mutation. 

Holland provides an analysis of the disruptive effects of various genetic 
operator\, and shows that hyperplanes with \hart defining lengths, for example. 
haLe a small chance of disruption due to one-point crossover and mutation 
operators. Others have extended this analysis to many varieties of genet ic 
operator\. 

The main thrust of the \chema theorem 1s that trials are allocated i i i  

p ~ i i - u l l t ~ l  t o  a large number of hyperplane\ (i.e. the one\ with \hart definition 
length\) according to the sampling rate ( 2 3 .  I ), with minor di\ruption from the 
recombination operator,. Over succeeding generation\, the number of trial\ 
a 1 1 oc ;it ed to e x tan t short - de ti n i t i on - I e n g t h h y pe rp 1 Line s w i t h pe r \ i s te n t 1 y a bo\ e - 
aberage oherved fitness is expected to grow rapidly, while trial\ to thaw Miith 

belou -average ob\er\ied fitness generally decline rapidly. 

In his early analysis of genetic algorithms. Holland implicitly assumes a 
nonnegative fitness and does not explicitly address the problem of mapping from 
the objectikte function to fitness in  his brief discussion of function optimization 
(Holland 1975. ch 3). Consequently, many of the schema analysis results in the 
literature use the symbol .f’ to refer to the fitriess and not to obje(.ti\v J i i i z c* t io i i  

\Aues. The methods mentioned above for mapping the objective function to the 
fitness L.ii1ut.s must be kept in  mind when interpreting the schema theorem. For 
example, consider two genetic algorithms that both L I S ~  proportional selection 
but that differ in  that one L W S  the fitness function 

and the other uses the fitness function 

where y # 0. Then for any hyperplane H represented in a given population 
P ( t ) ,  the target sampling rate for H in the first algorithm is 
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while the target sampling rate for H in the second algorithm is 

Even though both genetic algorithms behave according to the schema theorem. 
they clearly allocate trials to hyperplane H at different rates, and thus produce 
entirely different sequences of populations. The relationship between the schema 
theorem and the objective function becomes even more complex if the fitness 
function Q> is dynamically scaled during the course of the algorithm. Clearly. 
the allocation of trials described by schema theorem depends on the precise 
form of the fitness function used in the evolutionary algorithm. And of course, 
crossover and mutation will also interact with selection. 

23.5.3 Selectiori diferentinl 

Drawing on the terminology of selective breeding, Miihlenbein and Schlierkamp- 
Voosen (1993) define the selection differential S ( t )  of a selection method as the 
difference between the mean fitness of the selected parents and the mean fitness 
of the population at time t .  For proportional selection. they show that the 
selection differential is given by 

where cri(t)  is the fitness variance of the population at time t .  From this 
formula, i t  is easy to see that, without dynamic fitness scaling, an evolutionary 
algorithm tends to stagnate over time since cri(t)  tends to decrease and & ( t )  
tends to increase. The fitness scaling techniques described above are intended 
to mitigate this effect. In addition, operators which produce random variation 
(e.g. mutation) can also be used to reduce stagnation in the population. 

23.5.4 Takeoiler time 

Tckeolvr tirize refers to the number of generations required for an evolutionary 
algorithm operating under selection alone (i.e. no other operators such as 
mutation or crossover) to converge to a population consisting entirely of 
instances of the optimal individual, starting from a population that contains a 
single instance of the optimal individual. Goldberg and Deb (1991) show that, 
assuming Q> = f ,  the takeover time r in  a population of size p for proportional 
selection is 

p lnp -  1 
t] = 

c 
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c 

for .f.(x) = exp(ox). Goldberg and Deb compare these results with several other 
selection mechanisms and show that the takeover time for proportional selection 
(without fitness scaling) is larger than for many other selection methods. 
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24 
Tournament selection 

Tobias Blickle 

24.1 Working mechanism 

In tournament selection a group of q individuals is randomly chosen from 
the population. They may be drawn from the population with or without 
replacement. This group takes part in a tourrzanzent; that is, a winning individual 
is determined depending on its fitness value. The best individual having the 
highest fitness value is usually chosen deterministically though occasionally a 
stochastic selection may be made. In  both cases only the winner is inserted 
into the next population and the process is repeated h times to obtain a 
new population. Often, tournaments are held between two individuals (binary 
tournament). However, this can be generalized to an arbitrary group size 4 
called toitninment six. 

The following description assumes that the individuals are drawn with 
replacement and the winning individual is deterministically selected. 

Input: Population P ( r )  E I ~ ,  tournament size y E { 1,2. . . . , A] 
Output: Population after selection P(t ) ’  
I tournament(q, U I ,  . . . , a ~ ) :  
2 for i t I to h do 
3 a: t best fit individual from 4 randomly chosen 

individuals from { a , ,  . . . , U * ] ;  

od 
4 return {a’, , . . . , ail. 

Tournament selection can be implemented very efficiently and has the time 
complexity O(h)  as no sorting of the population is required. However, the 
above algorithm leads to high variance in the expected number of offspring as 
h independent trials are carried out. 

Tournament selection is translation and scaling invariant (de la Maza and 
Tidor 1993). This means that a scaling or translation of the fitness value does 
not affect the behavior of the selection method. Therefore, scaling techniques 
as used for proportional selection are not necessary, simplifying the application 
of the selection method. 
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Furthermore, tournament selection is well suited for parallel evo1ution;u-y 
algorithms. In most selection schemes global calculations are necessary to 
compute the reproduction rates of the individuals. For example, in proportional 
selection the mean of the fitness values in  the population is required, and in 
ranking selection and truncation selection a sorting of the whole population is 
necessary. However, in tournament selection the tournaments can be performed 
independently of each other such that only groups of 4 individuals need to 
communicate. 

24.2 Parameter settings 

y = 1 corresponds to no selection at all (the individuals are randomly picked 
from the population). Binary tournament is equivalent to linear ranking selection 
with ’1- = 1 /A (Blickle and Thiele 199Sa), where r1- gives the expected number 
of offspring of the worst individual. With increasing 4 the selection pressure 
increases (for a quantitative discussion of selection pressure see below). For 
many applications in genetic programming values 4 E {6, . . . . 10) have been 
recommended. 

24.3 Formal description 

Tournament selection has been well studied (Goldberg and Deb 1991, Biick 
1994, 1995, Blickle and Thiele 1995a, b, Miller and Goldberg 1995). The 
following description is based on the fitness distribution of the population. 

Let y (  P )  denote the number of unique fitness values in the population. 
Then p( P )  = ( p b l ( p ) ,  p f 2 ( p ) ,  . . . . pb,, , , , (p))  E [O, 1 1 ~ ” ”  is the fitness distribution 
of the population P ,  with F l ( P )  < F ? ( P )  < + . .  < F y ( p , ( P ) .  p l , ( p ,  
gives the proportion of individuals with fitnesc value F , ( P )  in the population 
P .  Furthermore the cumulative fitness distribution is denoted by R(Pr = 
( R j , ( p ) ,  R b I ( p j .  . . . ,  Rb,l,,l(p)) E [O. R I . , , ~ )  gives the number of’ 
individuals with fitness value F , ( P )  or less in the population P ,  i.e. R l , ( p ,  = 

With these definitions, the selection operator s can be viewed as an operator 
on fitness distributions (Blickle and Thiele 199%). The expected fitness 
distribution after tournament selection with tournament size 4 is .srour(q) : 

Ry”” t-+ Ry“’, sr,, , ,(4)(p(P)) = (pL l (p , ,  

E;:; P / , ( P )  and R W )  := 0- 

. . . . p;,(,,)). where 

(24.1) 

The expected number of occurrences of an individual with fitness value 
F, ( P )  is given by p L , ( p , / p b l ( p ) .  Consequently, stochastic universal sampling 
(Baker 1987) (see Chapter 23) can also be used for tournament selection. This 
almost completely reduces the usually high variance in the expected number of TEAM LRN
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offspring. However, the time complexity of the selection algorithm increases to 
O(h  In A) as calculation of the fitness distribution is required. 

For the analytical analysis it is advantageous to use continuous fitness 
distributions. The continuous form of (24.1) is given by 

p ’ ( F )  = 4 p ( F )  ( R ( F ) ) 4 +  (24.2) 

where p ( F )  is the continuous form of p ( P ) ,  R ( F )  = p(s )dx  is the 
cumulative continuous fitness distribution and F o ( P )  < F 5 F , , , p , (P)  the 
range of the distribution function p ( F ) .  

24.4 Properties 

24.4. I Conc*ateriation of toiiniamerzts 

An interesting property of tournament selection is the concatenation of several 
selection phases. Assuming an arbitrary population with a fitness distribution 
p ,  tournament selection with tournament size y~ is applied followed by 
tournament selection with tournament size qz on the resulting population and 
no recombination in between. The obtained expected fitness distribution is the 
same as if only a single tournament selection with tournament size y ~ y ’  were 

Blickle and Thiele 199%): applied to the initial distribution 

stour(42) (stour(4 

24.4.2 Takeolvr time 

The takeover time was introduced by Goldberg and Deb (1991 ) to describe the 
selection pressure of a selection method. The takeover time T* is the number of 
generations needed under pure selection for a initial single best-fit individual to 
f i l l  up the whole population. The takeover time can. for example, be calculated 
combining (24.1) and (24.3) as follows. Only the best individual is considered 
and its expected proportion pie,, after tournament selection can be obtained as 
pic\t = 1 - (1  - 1 /A)Y,  which is a special case of (24. I )  using = 1 /A and 
Rb,-\[ = I .  Performing t such tournaments subsequently with no recombination 
in between leads to $best = 1 - ( 1  - I/h)qr by repeatedly applying (24.3). 
Goldberg and Deb (1991) solved this equation for t and gave the following 
approximation for the takeover time: 

(24.4) 

Figure 24.1 shows the dependence of the takeover time on the tournament size 
4 .  For scaling purposes an artificial population size of h = e is assumed, such 
that (24.4) simplifies to t:,,,(q) I /  Inq. TEAM LRN
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24.4.3 Selection intensity 

The selection intensity is another measure for the strength of selection which 
is borrowed from population genetics. The selection irrturzsity S is the change 
in the average fitness of the population due to selection divided by the mean 
variance of the population before selection 0 ,  that is, S = ( U *  - u)/a, with 
1 1  average fitness before selection. and U *  average fitness after selection. To 
eliminate the dependence of the selection intensity on the initial distribution 
one usually assumes a Gaussian-distributed initial population (Muhlenbein and 
Schlierkamp-Voosen 1993). Under this assumption, the selection intensity of 
tournament selection is determined by 

The dependence of the selection intensity on the tournament size is shown 
in figure 24.1. 

1.5 

, q  
5 10 15 20 25 3 3  

Figure 24.1. The selection intensity S, the loss of diversity 0,  and the takeover time r*  
(for h = e) of tournament selection in  dependence cm the tournament size 4. 

The known exact solutions of the integral equation (24.5) are given in 
table 24.1. These values can also be obtained using the results of the order 
statistics theory (Back 1995). The following formula was derived by Blickle 
and Thiele (199%) and approximates the selection intensity with a relative error 
of less than 1 %  for tournament sizes of y > 5:  
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Table 24.1. Known exact values for the selection intensity of tournament selection. 

4 4 1 2  3 

24.4.4 Loss of di\qersitji 

During every selection phase bad individuals are replaced by copies of better 
ones. Thereby a certain amount of 'genetic material' contained in the bad 
individuals is lost. The loss of diversity 8 is the proportion of the population 
that is not selected for the next population (Blickle and Thiele 199%). Baker 
( 1989) introduces a similar measure called 'reproduction rate, RR'. RR gives the 
percentage of individuals that is selected to reproduce, hence RR = 100( 1 - 0 ) .  

For tournament selection this value computes to (Blickle and Thiele 199%) 

I t  is interesting to note that the loss of diversity is independent of the initial 
fitness distribution @. Furthermore, a relatively moderate tournament size of 
y = 5 leads to a loss of diversity of almost 50% (see figure 24.1). 
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25 
Rank-based selection 

John Grefenstette 

25.1 Introduction 

Selection is the process of choosing individuals for reproduction or survival in 
an evolutionary algorithm. Rank-based selectiorz or rcinking means that only 
the rank ordering of the fitness of the individuals within the current population 
determines the probability of selection. 

As discussed in Chapter 23, the selection process may be decomposed into 
distinct steps: 

( i )  Map the objective function to fitness. 
( i i )  Create a probability distribution based on fitness. 
( i i i )  Draw samples from this distribution. 

the fitness function @. All that is needed is 
Ranking simplifies step ( i ) ,  the mapping from the objective function .f’ to 

@ ( a ; )  = 6 f ( c i ; )  

where 6 is + 1 for maximization problems and - I for minimization problems. 
Ranking also eliminates the need for fitness scaling (see Section 23.1 ), since 

selection pressure is maintained even if the objective function values within the 
population converge to a very narrow range, as often happens as the population 
evolves. 

This section discusses step (ii), the creation of the selection probability 
distribution based on fitness. The final step ( i i i )  is independent of the selection 
method, and the stochastic universal sampling algorithm (see Section 23.4) is 
an appropriate sampling procedure. 

Besides its simplicity, other motivations for using rank-based selection 
include: 

( i )  Under proportional selection, a ‘super’ individual, i.e. an individual with 
vastly superior objective value, might completely take over the population 
in a single generation unless an artificial limit is placed on the maximum 

187 
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number of offspring for any individual. Ranking help5 prevent premature 
convergence due to '\uper' individuals, since the best indiv idual is alw2,ys 
as\igned the same selection probability, regardless of it\ objective value. 

( i i )  Ranking may be a natural choice for problems in which i t  is difficult 
to precisely specify an objective function, e.g. if the objective function 
inL olves a person's wbjective preference for alternative solutions. For 
wch problems i t  may make little sense to pay too much attention to ihe 
exact \ d u e \  of the objective function, if exact values exkt at all. 

The following sections describe various form\ of linear and nonlinear ranking 
algorithm\. The final section presents some of the theory of rank-ba\ed \election. 

25.2 Linear ranking 

Lirwcrr. r-cirikirig assigns a selection probability to each individual that is 
proportional to the individual's rank (where the rank of the least tit is defined 
to be zero and the rank of the most fit is defined to be p - I ,  given a population 
of size p) .  For a generational algorithm, linear ranking can be implemented 
by specifying a single parameter, firallk, the expected number of offspring to be 
allocated to the best individual during each generation. The selection probability 
for individual i is then defined as follows: 

where (Yra[,h is the number of offspring allocated to the worst individual. The 
sum of the selection probabilities is then 

I t  follows that (;Yranh = 2 -prank, and 1 5 Prarlh 5 2. That is, the expected number 
of offspring of the best individual is no more than twice that of the population 
average. This shows how ranking can avoid premature convergence caused by 
'super' individuals. 

25.3 Nonlinear ranking 

Nonlirzecrr rmzkhg assigns selection probabilities that are based on each 
individual's rank, but are not proportional to the rank. For example, the selecLion 
probabilities might be proportional to the square of the rank: 

. a + [rank(i)'/(p - l)'](b - a )  
Prsq-ranh ( 1  = TEAM LRN
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where c = (/3 - a)p(2p - 1)/6(p - 1 )  + pa is a normalization factor. This 
version has two parameters, a and /3, where 0 < a < /3, such that the selection 
probabilities range from a /c  to P/c .  

Even more aggressive forms of ranking are possible. For example, one could 
assign selection probabilities based on a geometric distribution: 

a ( l  - a ) / l - l - ~ a l ~ h ( / )  
Prgcorn-rank = 

This distribution arises if selection occurs as a result of independent Bernoulli 
trials over the individuals in rank order, with the probability of selecting the next 
individual equal to a,  and was introduced in the GENITOR system (Whitley 
and Kauth 1988, Whitley 1989). 

Another variation that provides exponential probabilities based on rank is 

(25 .  I ) 

for a suitable normalization factor c. Both of the latter methods strongly bias 
the selection toward the best few individuals in the population, perhaps at the 
cost of premature convergence. 

25.4 ( p ,  A), ( p  + A) and threshold selection 

The ( p ,  A) and ( p  + h )  methods used in evolution strategies (see Chapter 
9 and Schwefel 19773 are deterministic rank-based selection methods. In 
( p ,  h )  selection, h = k p  for some k > 1 .  The process is that k offspring 
are generated from each parent in the current population through mutation or 
possibly recombination, and the best p offspring are selected for retention. This 
method is similar to the technique called beam senrdz in artificial intelligence 
(Shapiro 1990). Experimental studies indicate that a value of k 7 is optimal 
(Schwefel 1987). 

In ( p  + A )  selection, the best p individuals are selected from the union of the 
p parents and the h offspring. Thus, ( p  +h)  is an elitist method, since i t  always 
retains the best individuals unless they are replaced by superior individuals. 
According to Back and Schwefel (1993), the ( p .  A )  method is preferable to 
( p  + A), since i t  is more robust on probabilistic or changing environments. 

The ( p ,  A )  method is closely related to methods known as threshold selection 
or truncation selection in the genetic algorithm literature. In threshold selection 
the best T p  individuals are assigned a uniform selection probability, and the 
rest of the population is discarded: 

0 if rank(i) < ( I  - T ) p  [ 1/TP otherwise. Prthrc\h-ranh ( i )  = 

The parameter T is the called the threshold, where 0 < T 5 1 .  According to 
Miihlenbein and Schlierkamp-Voosen (1993), T should be chosen in the range 
0.1-0.5. TEAM LRN
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Threshold selection is essentially a (p ’ ,  A )  method, with p’ = T p  and 
h = p ,  except that threshold selection is usually implemented as a probabilistic 
procedure using the distribution Prrh[csh-l.a[,k, while systems using ( p ,  A )  are 
usually deterministic. 

25.5 Theory 

The theory of rank-based selection has received less attention than the 
proportional selection method, due in part to the difficulties in applying the 
schema theorem to ranking. The next subsection describes the issues that arise 
in the schema analysis of ranking, and shows that ranking does exhibit a form 
of implicit parallelism. Characterizations of the selective pressure of ranking 
are also described, including its fertility rate, selective differential, and takeover 
time. Finally, a simple substitution result is mentioned. 

25.5. I Ruliking und implicit purullelisrn 

The use of rank-based selection makes it difficult to relate the schema theorem 
to the original objective function, since the mean observed rank of a schema is 
generally unrelated to the mean observed objective value for that schema. As 
a result, the relative target sampling rates (see Section 23.5.1) of two schemata 
under ranking cannot be predicted based on the mean objective values of the 
schemata, in contrast to proportional selection. For example, consider the 
following case: 

where 
U I ,  U - I ,  (1s E HI ~ 2 . ~ 3  E Hz.  

Assume that the goal is to maximize the objective function f .  Even though 
~ ( H I )  = 20 > 10 = f ‘ ( H z ) ,  ranking will assign a higher target sampling rate 
to H: than to H I .  

However, ranking does exhibit a weaker form of implicit parcrllu1i.m. 
meaning that it allocates search effort in a way that differentiates among a 
large number of competing areas of the search space on the basis of a limited 
number of explicit evaluations of knowledge structures (Grefenstette 199 1 ). The 
following definitions assume that the goal is to maximize the objective funcrion. 

- 

A fitness function @ is called monotoriic- it‘ 

@ ( [ I ,  ) 5 @(q ) * f<./ 1 I f ( L 1 , ) .  

That is, a monotonic fitness function does not reverse the sense of any pairwise 
ranking provided by the objective function. A fitness function is called strict& 
morrototiic if i t  is monotonic and 
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A strictly monotonic fitness function preserves the relative ranking of apy two 
individuals in the search space with distinct objective function values. Since 
@(a,) = S f ( a ; ) ,  ranking uses a strictly monotonic fitness function by definition. 

Likewise, a selection algorithm is called momtonic if 

where tsr(a) is the target sampling rate, or expected number of offspring, for 
individual U .  That is, a monotonic selection algorithm is one that respects 
the s i r n ~ i i ~ a l - ~ , f - t h e - ~ t f e . ~ f  principle. A selection algorithm is called stric-tly 
rnomtonic if i t  is monotonic and 

@((a,) < @ ( u J )  + tsr(u,) < tsr(u,). 

A strictly monotonic selection algorithm assigns a higher selection probability to 
individuals with better fitness values. Linear ranking selection and proportional 
selection are both strictly monotonic, whereas threshold selection is monotonic 
but not strict, since it may assign the same number of offspring to individuals 
with different fitness values. 

Finally, an evolutionary algorithm is called admissi6le if its fitness function 
and selection algorithm are both monotonic. An evolutionary algorithm is sfricf 
iff its fitness function and selection algorithm are both strictly monotonic. 

Now, consider two arbitrary subsets of the solution space, A and B.  
sorted by objective function value. By definition, B partially doniiiinfes A 
( A  -i B )  at time t if each representative of B is at least as good as the 
corresponding representative of A. The following theorem (Grefenstette I99 I ) 
partially characterizes the implicit parallelism exhibited by ranking (any many 
other selection methods): 

Implicit parallelism c$ admissible evolutionary algorithms. In any admissible 
evolutionary algorithm, if (A + B )  then tsr(A) 5 tsr(B). Furthermore, in any 
strict evolutionary algorithm, if (A + B )  then tsr(A) < tsr(B). 

One illustration of this result to rank-based selection is shown in figure 25.1. 
Let A be the set of points in the space with objective function values between 
the dotted lines. Let B be the set of points in the space with objective values 
above the region between the dotted lines. Then, in any population that contains 
points from both set A and set B ,  the number of offspring allocated to B by any 
strict evolutionary algorithm grows strictly faster than the number allocated to 
set A ,  since any subset of B dominates any subset of A .  This example illustrates 
implicit parnllelism because it holds no matter where the dotted lines are drawn. 
This result holds not only for rank-based selection, but for any fitness function 
and selection algorithm that satisfy the requirement of admissibility. TEAM LRN
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Figure 25.1. Two regions defined by range of objective values. 

25.5.2 Fertility rate 

The <fertilih rate .F of a selection method is the proportion of the population that 
is expected to have at least one offspring as a result of the selection process. 
Other terms that have been used for this include fertility factor (Baker 1985, 
1987), reproductive rate (Baker, 1989), and diversity (Blickle and Thiele, 1995). 

Baker (1987, 1989) shows that, for linear ranking, the fertility rate obeys 
the following formula: 

B - 1  . F = I - -  
4 

where ,tl is the number of offspring allocated to the best individual, 1 5 
So F ranges in value from 1 (if 

5 2. 
= 1 )  to 0.75 (if ,tl = 2) for linear ranking. 

25.5.3 Selection diflerential 

Drawing on the terminology of selective breeding, Muhlenbein and Schlierkamp- 
Voosen (1993) define the selection diferential S ( t )  of a selection method as the 
difference between the mean fitness of the selected parents and the mean fitness 
of the population at time t .  If the fitness values are normally distributed the 
selection differential for truncation selection is approximately 

where ap is the standard deviation of the fitness values in the population, and 
I is a value called the selection intensity. Back (1995) quantifies the selection 
intensity for general ( p ,  A) selection as follows: 
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where ZI:A are order statistics based in the fitness of individuals in  the current 
population. That is, I is the average of the expectations of the p best samples 
taken from iid normally distributed random variables Z .  This analysis shows 
that I is approximately proportional to A / p ,  and experimental studies confirm 
this relationship (Back 1995, Miihlenbein and Schlierkamp-Voosen 1993). 

25.5.4 Takeover time 

Takeo/ier tirne refers to the number of generations required for an evolutionary 
algorithm operating under selection alone (i.e. no other operators such as 
mutation or crossover) to converge to a population consisting entirely of 
instances of the optimal individual, starting from a population that contains 
a single instance of the optimal individual. According to Goldberg and Deb 
(1991), the approximate takeover time t in a population of size p for rank- 
based selection is 

In p + h ( l n  p )  

In 2 
t =  

for linear ranking with prank = 2 and 

for linear ranking with 1 < prank < 2. 

25.5.5 Sitbstitutinrz theorem 

One interesting feature of rank-based selection is that it is clearly less sensitive 
to the objective function than proportional selection. As a result, i t  possible 
to make the following observation about evolutionary algorithms that use rank- 
based selection: 

Substitictiorz theorem. Let EA be an evolutionary algorithm that uses rank- 
based selection, along with any forms of mutation and recombination that 
are independent of the the objective values of individuals. If EA optimizes 
an objective function f then EA also optimizes the function <q 2 f ,  for any 
monotonically increasing g. 

Prm$ For any monotonically increasing function g. the composition g c .f’ 
induces the same rank ordering of the search space as f .  I t  follows that a rank- 
based algorithm EA produces an identical sequence of populations for objective 
functions .f and g o f, assuming that mutation and recombination in EA are 
independent of the the objective values of individuals. Since f and ,q c .f’ have 
the same optimal solutions, the result follows. TEAM LRN
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For example. a rank-based evolutionary algorithm that optimizes a giken 
function f ( x )  in t steps will also optimize the function (J ' (x))"  in t steps. for 
any even 11 > 0. 
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26 
Boltzmann selection 

Sarnir W Mahfoud 

26.1 Introduction 

Boltzmann selection mechanisms thermodynamically control the selection 
pressure in an evolutionary algorithm (EA), using principles from siriiirlcifed 
m i r m i l i t i g  (SA) (Kirpatrick et N I  1983). Boltzmann selection mechanisms can 
be used to indefinitely prolong an EA's search, in order to locate better final 
solutions. 

In EAs that employ Boltzmann selection mechanisms, i t  is often impossible 
to separate the selection mechanism from the rest of the EA. I n  fact. the 
mechanics of the recombination and neighborhood operators are critical to the 
generation of the proper temporal population distributions. Therefore, most 
of the following discusses Boltmarzii EAs rather than Boltzmann selection 
mechanisms in isolation. 

Boltzmann EAs represent parallel extensions of the inherently serial SA. In 
addition, theoretical proDfs of asymptotic, global convergence for SA carry over 
to certain Boltzmann selection EAs (Mahfoud and Goldberg 1995). 

The heart of Boltzmann selection mechanisms is the Bolt;niiruri triul, a 
competition between current solution i and alternative solution j ,  in  which 
i wins with logistic probability 

(26.1 ) 

where T is temperature and .f; is the energy, cost. or objective function value 
(assuming minimization) of solution i .  Slight variations of the Boltzmann trial 
exist, but all variations essentially accomplish the same thing when iterated (the 
winner of a trial becomes solution i for the next trial): at fixed T ,  given a 
sufficient number of Boltzmann trials, a Boltzmann distribution arises among 
the winning solutions (over time). The intent of the Boltzmann trial is that at 
high T ,  i and j win with nearly equal probabilities, making the system fluctuate 
wildly from solution to solution; at low T ,  the better of the two solutions nearly 
always wins, resulting in a relatively stable system. 

I95 
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Several types of Boltzmann algorithm exist, each designed for slightly 
different purposes. Boltzmann toiirrzcmeiit selec'tiorz (see Chapter 24 and 
Goldberg 1990, Mahfoud 1993) is designed to give the population tz ic-hirzg 
capabilities (Mahfoud 1995), but is not able to significantly slow the population'\ 
convergence. (Con\vrgeric.e refers to a population's decrease in diversity over 
time, as measured by an appropriatc diversity measure.) Whether any Boltzm;inn 
EA is capable of performing effective niching remains an open question. 

The Boltzmann selection method of de la Maza and Tidor ( 1993) scales the 
fitnesses of population elements, following fitness assignment, according to the 
Boltzmann distribution. I t  is designed to control the convergence of traditional 
selection. 

Pcrrdlel rec.ot?zhiticiti\le sitizitlatecl crrztiecilitig (PRSA) (Mahfoud and Goldberg 
1992, 1995) allows control of EA convergence, achieves a true parallelizat ion 
of SA, and inherits SA's convergence proofs. PRSA is the Boltzmann EA 
discussed in the remainder of this section. 

26.2 Simulated annealing 

SA is an optimization technique. analogous to the physical process of annealing. 
SA starts with a high temperature T and any initial state. A neighborhood 
operator is applied to the current state i to yield state j .  If f )  < j;, j becomes the 
current state. Otherwise j becomes the current state with probability e' 'I-'! ' 8 '  '. 
( I f  j does not become the current state. i remains the current state.) The 
application of the neighborhood operator and the probabilistic acceptance 01 the 
newly generated state are repeated either for a fixed number of iteration.;, or 
until a quasi-equilibrium is reached. The entire above-described procedure is 
performed repeatedly, each time starting from the current i and from a lower T .  

At any given T ,  a sufficient number of iterations always leads to equilibrium, 
at which point the temporal distribution of accepted states is stationary. ('This 
stationary distribution is Boltzmann.) The SA algorithm, as described abov?. is 
called the Metropolis erlgoritfzm. What distinguishes the Metropolis algorithm 
is the criterion by which the newly generated state is accepted or rejected. An 
alternative criterion is that of equation (26.1 ). Both criteria lead to a Boltzniann 
distribution. 

The key to achieving good performance with SA, as well as to proving 
global convergence, is that a stationary distribution must be reached at each 
temperature, and cooling (lowering T )  must proceed sufficiently slowly. 

26.3 Working mechanism for parallel recombinative simulated annealing 

PRSA is a population-level implementation of' simulated annealing. Instead of 
processing one solution at a time, it processes an entire population of solutions in 
parallel, using a recombination operator (typically crossover, see Chapter 33 I and 
a neighborhood operator (typically rrzictcition, see Chapter 32). The combination TEAM LRN
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of crossover and mutation produces a population-level neighborhood operator 
whose action on the entire population parallels the action of SA‘s neighborhood 
operator on a single solution. (See figure 26.1.) I t  is interesting to note that 
without crossover, PRSA would be equivalent to running p independent SAS, 
where p is population size. Without mutation, PRSA’s global convergence 
proofs would no longer hold. 

PRSA works by pairing all population elements, at random, for crossoFfer 
each generation. After crossover and mutation, children compete against their 
parents in Boltzmann trials. Winners advance to the next generation. 

In the Boltzmann trial step, many competitions are possible between two 
children and two parents. One possibility, double nc’c’el,tc~iic.e/~eje~,t;oii. allows 
both parents to compete as a unit against both children: the sum of the 
two parents’ energies should be substituted for .f; in equation (26.1); the 
sum of the two childrens’ energies, for fJ. A second possibility, sirigle 
ac.c.eptnnc,e/rejec.tion, holds two competitions, each time pitting one child against 
one parent. There are several possible single acceptance/rejection competitions. 
For instance, each parent can always compete against the child formed from 
its own right end and the other parent’s left end (assuming single-point 
crossover). Other possibilities and their consequences are outlined by Mahfoud 
and Goldberg (1995). 

26.4 Pseudocode for a common variation of parallel recombinative 
simulated annealing 

The pseudocode at the top of the next page describes a common variation 
of PRSA that employs single acceptance/rejection competitions, a static 
stopping criterion, and random-without replacement-pairing of population 
elements for recombination. The cooling schedule is set by the two functions 
initialize-temperature() and adjust-temperature(). These two functions. as well 
as initialize-population(), are shown without arguments, because their arguments 
depend upon the type of cooling schedule and initialization chosen by the 
user. The function random() simply returns a pseudorandom real number on 
the interval (0, 1). 

26.5 Parameters and their settings 

PRSA allows the use of any recombination and neighborhood operators. I t  
performs minimization by default; maximization can be accomplished by 
reversing the sign of all objective function values. Population size ( p )  remains 
constant from generation to generation. The number of generations the algorithm 
runs can either be fixed, as in the pseudocode, or dynamic, determined by a user- 
specified stopping or convergence criterion that is perhaps tied to the cooling 
schedule. 
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Input: g-number of generations to run, p-population size 
Output: P(g)-the final population 

P (0) c initialize-population() 
T ( 1 )  c initialize-temperature() 
for t +- 1 to g do 

P ( t )  t shuffle(P(t - I ) )  
for i t 0 to p / 2  - I do 

PI +- W J + l ( t )  
P2 +- a2,+2(t) 
{c l ,  c . 2 )  t recombine(p1, p z )  

(9; t neighborhood(c.1) 
ci t neighborhood(c.2) 
if random() > [ I  + e ” ( ” l ) - ~ ( ‘ ~ ) l ’ ~ ( f ) l - l  then a z , + ~ ( t )  t c’, fi 
if random() > [ I + el f(/’>)-!(‘;)I/r(f) ] - I  then U ? ~ + Z ( ~ )  +- c$ fi 

od 
T ( t  + 1 )  t adjust-temperature() 

od 

PRSA requires a user to select a population size, a type of competition, 
recombination and neighborhood operators, and a cooling schedule. Prior 
research offers some guidelines (Mahfoud and Goldberg 1992, 1995). A good 
rule of thumb for population size is to choose as large a population size as 
system limitations and time constraints allow. In general, smaller populations 
require longer cooling schedules. The type of competition previously employed 
is single acceptancehejection, in which each parent competes against the child 
formed from its own right end and the other parent’s left end (under single-point 
crossover). 

Appropriate recombination and neighborhood operators are problem specific. 
For example, in optimization of traditional binary encodings, one might employ 
single-point crossover and mutation; in permutation problems, permutation- 
based crossover and inversion would be more appropriate. 

Many styles of cooling schedule exist, but their discussion is beyond the 
scope of this section. Several studies contain thorough discussions of cooling 
(Aarts and Korst 1989, Azencott 1992, Ingber and Rosen 1992, Romeo and 
Sangiovanni-Vincentelli I99 1 ). Perhaps the simplest type of cooling schedule 
is to start at a high T ,  and to periodically lower T through multiplicatiori by 
a positive constant such as 0.95. At each T ,  a number of generations are 
performed. In general, the more generations performed at each T and the higher 
the multiplicative constant, the better the end result. TEAM LRN
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i 

26.6 Global convergence theory and proofs 

I I 

A : B  C : D  
1 1 

The most straightforward global convergence proof for any variation of PRSA 
shows that the variation is a special case of standard SA. This results in the 
transfer of SA‘s convergence proof to the PRSA variant. Details of PRSA’s 
convergence proofs are given by Mahfoud and Goldberg (1995). 

The variation of PRSA that we consider employs selection of parents with 
replacement, and double acceptanceh-ejection. No population element may be 
selected as both parents. (Self-mating is disallowed.) 

Many authors have taken the viewpoint that SA is essentially an EA with 
a population size of one. Our proof takes the opposite viewpoint. showing an 
EA (PRSA) to be a special case of SA. To see this, concatenate all strings of 
the PRSA population in a side-by-side fashion to form one superstring. Define 
the fitness of this superstring to be the sum of the individual fitnesses of its 
component substrings (the former population elements). Let cost be the negated 
fitness of this superstring. The cost function will reach a global minimum only 
when each substring is identically at a global maximum. Thus, to maximize all 
elements of the former population, PRSA can search for a global minimum for 
the cost function assigned to its superstring. 

Our chosen 
variation of PRSA, as displayed graphically in figure 26.1, is now a special case 
of SA, in which the crossover-plus-mutation neighborhood operator is applied 
to selected portions of the superstring to generate new superstrings. Crossover- 
plus-mutation’s net effect as a population-level neighborhood operator is to 
swap two blocks of the superstring, and then probabilistically flip bits of these 
swapped blocks and of two other blocks (the other halves of each parent). 

Consider the superstring as our structure to be optimized. 

j 
I I 

C’ : B’ A’ : D‘ 
1 1 

Figure 26.1. The population, after application of crossover and mutation (step 1 ), 
transitions from superstring i to superstring j .  After a Boltzmann trial (step 2), either 
i or j becomes the current population. Individual population elements are represented 
as rectangles within the superstrings. Blocks A, B, C, and D represent portions of 
individual population elements, prior to crossover and mutation. Crossover points are 
shown as dashed lines. Blocks A‘, B’, C’, and D’ result from applying mutation to A, B. 
C, and D. 

As a special case of SA, the chosen variation of PRSA inherits the 
global convergence proof of SA, provided the population-level neighborhood TEAM LRN
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operator meets certain conditions. According to Aarts and Korst (1989), two 
conditions on the neighborhood generation mechanism are sufficient to guarantee 
asymptotic global convergence. The first condition is that the neighborhood 
operator must be able to move from any state to a globally optimal state in a finite 
number of transitions. The presence of mutation satisfies this requirement. The 
second condition is symmetry. I t  requires that the probability at any temperature 
of generating state y from state .r is the same as the probability of generating 
state .r from state 3. Symmetry holds for common crossover operators such as 
single-point, multipoint, and uniform crossover (Mahfoud and Goldberg 199s ). 
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27 
Other selection methods 

David B Fogel 

27.1 Introduction 

In addition to the methods of selection presented in other sections of this 
chapter, other procedures for selecting parents of successive generations are of 
interest. These include the tournament selection typically used in eLtolutionary 
programming (Fogel 1995, p 137), soft brood selection offered within research 
in genetic programming (Altenberg 1994a, b), disruptive selection (Kuo and 
Hwang 1993). Boltzmann selection (de la Maza and Tidor 1993). nonlinear 
ranking selection (Michalewicz I996), competitive selection (Hillis 1992, 
Angeline and Pollack 1993, Sebald and Schlenzig 1994), and the use of lifespan 
(Back 1996). 

27.2 Tournament selection 

The tournament selection typically performed in evolutionary programming 
allows for tuning the degree of stringency of the selection imposed. Rather 
than selecting on the basis of each solution’s fitness or error in light of the 
objective function at hand, selection is made on the basis of the number of ,tim 
earned in a competition. Each solution is made to compete with some number, 
4 ,  of randomly selected solutions from the population. In each pairing, if the 
first solution’s score is at least as good as the randomly selected opponent, the 
first solution receives a win. Thus up to 4 wins can be earned. This competition 
is conducted for all solutions in the population and selection then chooses the 
best subset of a given size from the population based on the number of wins 
each solution has earned. For y = 1 ,  the procedure yields essentially a random 
walk with very low selection pressure. For 4 = x, the procedure becomes 
selection based on objective function scores (with no probabilistic selection). 
For practical purposes. 4 3 10 is often considered relatively hard selection, and 
y in the range of three to five is considered soft. Soft selection allows for lower 
probabilities of becoming trapped at local optima for periods of time. 

20 I 
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27.3 Soft brood selection 

Soft brood selection holds a tournament (see Chapter 24) between members of 
a brood of two parents. The winner of the tournament is considered to be the 
offspring contributed by the mating. Soft brood selection is intended to shield 
the recombination operator from the costs of producing deleteriou\ offspring. 
I t  cull\ such offspring, essentially testing for their viability before being placed 
into competition with the remainder of the population. (For further details m 
the effects of \oft brood \election on wbexpressions in tree {tructures. \ee the 
article by Altenberg ( 1994a).) 

27.4 Disruptive selection 

Disruptive selection can be used to select against individuals with moder;tte 
values ( in  contrast to stabilizing selection which acts against extreme values, or 
directional selection which acts to increase or decrease values). Kuo and Hwang 
(1993) suggested a fitness function of the form 

where .f‘(z) is the objective value of the solution z and f ( t )  is the mean of all 
solutions in the population at time t .  Thus a solution’s fitness increases with 
its distance from the mean of all current solutions. The idea is to distribute 
more search effort to both the extremely good and extremely bad solutions. The 
utility of this method is certainly very problem dependent. 

27.5 Boltzmann selection 

Boltzmann selection (as offered by de la Maza and Tidor 1993) proceeds as 

where X is a population of solutions, U ( X )  is the problem dependent objective 
function, F , ( . )  is the fitness function for the ith solution in X .  U , ( . )  is the 
objective function evaluated for the i th  solution in X ,  and T is a variable 
temperature parameter. De la Maza and Tidor ( 1993) suggest that this method 
of assigning fitness proportional selection converges faster than traditional 
proportional selection. BZck ( 1994). however, describes this as a ‘misleading 
name for yet another scaling method for proportional selection’. 

27.6 Nonlinear ranking selection 

Nonlinear ranking selection (Michalewicz 1996, pp 60-1) is a variant of linear 
ranking selection. Recall that for linear ranking selection. the probability of a 
solution with a given rank being selected can be set as 

P(rank) = 4 - (rank - 1)r TEAM LRN
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where q is a user-defined parameter. For each lower rank. the probability of 
being selected is reduced by a factor of r - .  The requirement that the sum of all 
the probabilities for each ranked solution must be equal to unity implies that 

4 = r-(popsize - 1 ) /2  + 1 /popsize 

where popsize is the number of solutions in the population. This relationship 
can be made nonlinear by setting: 

P(rank) = y (  I - 4)r3111.-' 

where y E (0, I )  and does not depend on popsize; larger ~ralues of 4 imply 
stronger selective pressure. Back ( 1994) notes that this nonlinear ranking method 
fails to sum to uni ty  and can be made practically identical to tournament selection 
under the choice of 4. 

27.7 Competitive selection 

Competitive selection is implemented such that the fitness of a solution is 
determined by its interactions with other members of the population, or other 
members of a jointly evolving but separate population. Hillis (1992) used this 
concept to evolke corting networks in which a population of sorting network\ 
competed against a population of various permutation\; the networhs mere 
scored in light of how well they sorted the permutation\ and the permutation\ 
were scored in light of how well they could defeat the sorting netmforhs. 
Angeline and Pollack (1993) used a similar idea to evolke programs to play 
tic-tac-toe. Sebald and Schlenzig ( I  994) used evolutionary programming 
on competing populations to generate suitable blood pre\sure controller\ for 
simulated patients undergoing cardiac surgery (i.e. controllers were scored on 
how well they maintained the patient's blood pressure while patient\ were scored 
on how well they defeated the controllers). Fogel and Burgin (1969) describe 
experiments in which competing evolutionary programs played a prisoner's 
dilemma game using finite-state machines, but insufficient detail is provided 
to allow for replication of the results. Axelrod (1987). and others. offered 
an apparently similar procedure for evolving rule sets describing alternatii e 
behaviors in the iterated prisoner's dilemma. 

27.8 Variable lifespan 

Finally, Back (1996) notes that the concept of a variable lifespan has been 
incorporated into the ( p .  A )  selection of evolution strategies by Schwefel and 
Rudolph ( 1995) by allowing the parents to survive some number of generations. 
When this number is one generation, the method is the familiar comma strategy: 
at infinity, the method becomes a plus strategy. TEAM LRN
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28 
Generation gap methods 

Jayshree Sarrna and Kenneth De Jorzg 

28.1 Introduction 

The concept of a generation gap is linked to the notion of riorio,.er-ltrpl,iriS and 
o\verlappiizg populations. In a nonoverlapping model parents and offspring nei er 
compete with one another, i.e. the entire parent population is always replaced by 
the offspring population, while in an overlapping system parents and offspring 
compete for survival. The term generation gap refers to the amount of o\erlap 
between parents and offspring. The notion of a generation gap i \  closely related 
to selection algorithms and population management issues. 

A selection algorithm in an evolutionary algorithm (EA) involves two 
elements: (i)  a selection pool and (ii) a selection distribution over that pool. 
A selection pool is required for reproduction selection as well as for deletion 
selection. The key issue in both these cases is 'what does the pool contain urhen 
parents are selected and when survivors are selected'?'. 

In the selection for the reproduction phase, parents are selected to produce 
offspring and the selection pool consists of the current population. Hou the 
parents are selected for reproduction depends on the individual EA paradigm. 

In the selection for the deletion phase, a decision has to be made as to 
which individuals to select for deletion to make room for the new offspring. 
In nonoverlapping systems the entire selection pool consisting of the current 
population is selected for deletion: the parent population (,U) is always replaced 
by the offspring population (A). In overlapping models, the selection pool for 
deletion consists of both parents and their offspring. Selection for deletion is 
performed on this combined set and the actual selection procedure varies in each 
of the EA paradigms. 

Historically, both evolutionary programming and evolution strategies 
had overlapping populations while the canonical genetic algorithms used 
nonoverlapping populations. 

TEAM LRN
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28.2 Historical perspective 

In  ektolutionary programming (Fogel ut ~ i l  1966), each individual produces one 
offspring and the best half from the parent and offspring populations are selected 
to form the new population. This is an overlapping system as the parents and 
their offspring constantly compete with each other for survival. 

In  evolution strategies (Schwefel 198 I ) ,  the ( p  + A) and the ( p ,  A) models 
correspond to the overlapping and nonoverlapping populations respectively. In 
the (1-1 + h )  system parents and offspring compete for survival and the best p 
are selected. In the ( p ,  A) model the number of offspring produced is generally 
far greater than the parents. The offspring are then ranked according to fitness 
and the best ,Y are selected to replace the parent population. 

Genetic algorithms are based on the two reproductive plans introduced and 
analyzed by Holland (1975). In the first plan, R I ,  at each time step a single 
individual was selected probabilistically using payoff proportional selection to 
produce a single offspring. To make room for this new offspring, one individual 
from the current population was selected for deletion using a uniform random 
distribution. 

In the second plan. R,!, at each time step all individuals were 
deterministically selected to produce their expected number of offspring. The 
selected parents were kept in a temporary storage location. When the process of 
recombination was completed. the offspring produced replaced the entire current 
population. Thus in R,I. individuals were guaranteed to produce their expected 
number of offspring (within probabilistic roundoff). 

At that time, from a theoretical point of view, the two plans were viewed 
as generally equivalent. However, because of practical considerations relating 
to the overhead of recalculating selection probabilities and severe genstic 
drift (allele loss) in small populations, most early researchers favored the R,, 
approach. 

The earliest attempt at evaluating the properties of R I  and R,, plans was 
a set of empirical studies (De Jong 1975) in which a parameter G, called the 
,qrtierdoti g u p ,  was defined to introduce the notion of overlapping generations. 
The generation gap parameter controls the fraction of the population to be 
replaced in each generation. Thus. G = 1 (replacing the entire population) 
corresponded to R,, and G = l /p  (replacing a single individual) represented 
RI.  

These early studies (De Jong 1975) suggested that any advantages that 
overlapping populations might have were offset by the negative effects of 
genetic drift (allele loss). The genetic drift was caused by the high variance 
in expected lifetimes and expected number of offspring, mainly becausc at 
that time, generally, modest population sizes were used ( p  I. 100). These 
negative effects were shown to increase in severity as G was reduced. These 
studies also suggested the advantages of an irnplicit generation overlap. That 
is, using the optimal crossover rate of 0.6 and optimal mutation rate of 0.001 TEAM LRN
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(identified empirically for the test suite used) meant that approximately 40% of 
the offspring were clones of their parents, even for G = 1 .  A later empirical 
study by Grefenstette ( 1986) confirmed the earlier results that a larger generation 
gap value improved performance. 

However. early experience with classifier systems (e.g. Holland and Reitman 
1978) yielded quite the opposite behavior. In classifier systeiiir only a w h e t  of  
the population is replaced each time step. Replacing a small number of classifiers 
was generally more beneficial than replacing a large number or possibly all of 
them. Here the poor performance observed as the generation gap L alue increased 
was attributed to the fact that the population ar a whole represented a Gngle 
solution and thus could not tolerate large changes i n  i t \  content. 

In recent years, computing equipment with increased capacity is easily 
available and this effectively removes the reason for preferring the RJ approach. 
The desire to solve more complex problems using genetic algorithms has 
prompted researchers to develop an alternative to the generational sy stem called 
the 'steady state' approach, in which typically parents and offspring do coexist 
(see e.g. Syswerda 1989, Whitley and Kauth 1988). 

28.3 Steady state and generational evolutionary algorithms 

Steady state EAs are systems in which usually only one or two offspring Lire 
produced in each generation. The selection pool for deletion can consist of the 
parent population only or can be possibly augmented by the offspring produced. 
The appropriate number of individuals are selected for deletion. based on some 
distribution. to make room for these new offspring. Generational systems are 
so named because the entire population is replaced every generation by the 
offspring population: the lifetime of each individual in  the population is only 
one generation. This is the same as the rzono\~er.l~rl,l,irz~~ population systems, 
while the steady state EA is an oivr.lnppirzg population system. 

One can conceptually think of a steady state model in evolutionary 
programming and evolution strategies. For example, from a parent population of 
,Y individuals, a single offspring can be formed by recombination and mutation 
and can then be inserted into the population. A recent study of the steady state 
evolutionary programming performed by Fogel and Fogel ( 1995) concluded that 
the generational model of evolutionary programming may be more appropriate 
for practical optimization problems. The first example of the steady state 
evolutionary strategies is the ( p  + 1) approach introduced by Rechenberg ( 1973) 
which had a parent population greater than one ( p  > I ) .  All the parents were 
then allowed to participate in the reproduction phase to create one offspring. 
The (,Y + I )  model was not used as it was not feasible to selfadapt the step sizes 
(Back et nl 1991). 

An early example of the steady state model of genetic algorithms is the RI 
model defined by Holland ( 1975) in which the selection pool for deletion consists 
only of the parent population and a uniform deletion strategy is used. The RJ TEAM LRN
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Figure 28.2. The mean and variance of the growth curves of the best in a nonoverlapping 
system (population size, 50; G = 1). 

approach is the generational genetic algorithm. Theoretically, the two systems 
(overlapping systems using uniform deletion and nonoverlapping systems) are 
considered to be similar in expectation for infinite populations. However, there 
can be high variance in the expected lifetimes and expected number of offspring 
when small finite populations are used. 

This variance can be highlighted by keeping everything in the two systems 
constant and changing only one parameter, viz., the number of offspring 
produced. Figures 28.1 and 28.2 illustrate the average and variance for the 
growth curve of the best in  two systems, producing and replacing only a single 
individual each generation in one and replacing the entire population each 
generation in the other. A population size of 50 was used, the best occupied 
10% of the initial population, and the curves are averaged over 100 independent 
runs. Only payoff proportional selection, reproduction, and uniform deletion 
were used to drive the systems to a state of equilibrium. Notice that in the 
overlapping system (figure 28.1) the best individuals take over the population TEAM LRN
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only about 80% of the time and the growth curve, exhibit much higher variance 
when compared to the nonoverlapping population (figure 28.2). 

This high variance for small generation gap values causes more genetic 
drift (allele loss). Hence, with smaller population sizes, the higher variance in  
a steady state system makes it easier for alleles to disappear. Increasing the 
population size is one way to reduce the the variance (see figure 28.3) and thus 
offset the allele loss. In summary, the main difference between the generational 
and steady state systems is higher genetic drift in the latter especially when 
small population sizes are used with low generation gap values. (See the article 
by De Jong and Sarma (1993) for more details.) 

Figure 28.3. The mean and variance of the grouth curve5 of the best in an overlapping 
5ystem (population w e ,  200; G = 1/200) 

So far we have assumed that there is an uniform distribution on the 
selection pool used for deletion, but most researchers using a steady state 
genetic algorithm generally use a distribution other than the standard uniform 
distribution. Syswerda (1991) shows how the growth curves can change when 
different deletion strategies, such as deleting the least fit, exponential ranking 
of the members in the selection pool. and reverse fitness, are used. Peck and 
Dhawan ( 1  995) demonstrate an improvement in the ideal growth behavior of 
the steady state system when uniform deletion is changed to a first-in-first- 
out (FIFO) deletion strategy. An early model of a steady state (overlapping) 
system is GENITOR (Whitley and Kauth 1988, Whitley 1989) which not only 
uses ranking selection (Chapter 23) instead of proportional selection (Chapter 
25) on the selection pool for reproduction but also uses deletion of the worst 
member as the deletion strategy. The GENITOR approach exhibited significant 
performance improvement over the standard generational approach. 

Using a deletion scheme other than a uniform deletion changes the selection 
pressure. The selection pressure induced by the different selection schemes can 
vary considerably. Both these changes can alter the exploration-exploitation 
balance. Two different studies have shown that improved performance in a 
steady state system, like GENITOR. is due to higher growth rates and changes TEAM LRN
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in the exploration-exploi tation balance caused by using different selection and 
deletion strategies and is not due to the use of an overlapping model (Goldbeig 
and Deb 1991, De Jong and Sarma 1993). 

28.4 Elitist strategies 

The cycle of birth and death of individuals is very much linked to the 
management of the population. Individuals that are born have an associated 
lifetime. The expected lifetime of an individual is typically one generation, but 
in some EA systems i t  can be longer. We now explore this issue in more detail. 

Elitist strategies l ink the lifetimes of individuals to their fitnesses. Elitist 
strategies are techniques to keep good solutions in the population longer than 
one generation. Though all individuals in a population can expect to have a 
lifetime of one generation, individuals with higher fitness can have a longer 
lifetime when elitist strategies are used. 

As stated earlier, the selection pool for deletion is comprised of both the 
parents and the offspring populations in the overlapping system. This combined 
population is usually ranked according to fitness and then truncated to form the 
new population. This method ensures that most of the current individuals with 
higher fitness survive into the next generation, thus extending their lifetime. In 
the (j i  + A) evolution strategies, a very strong elitist policy is in effect as the 
top ji are always kept. I n  eLvlutionary programming. a stochastic tournamcnt 
is used to select the survivors, and hence the elitist policy is not quite as strong 
as in the evolution strategy case. In the ( p .  A) evolution strategies there is no 
elitist strategy to preserve the best parents. 

Unlike evolution strategies and evolutionary programming, where there is 
postselection of survivors based on fitness, in generational genetic algorithms 
there is only preselection of parents for reproduction. Recombination operators 
are applied to these parents to produce new offspring, which are then subject 
to mutation. Since all parents are replaced each generation by their offspring, 
there is no guarantee that the individuals with higher fitness will survive into 
the next generation. An elitist strategy in generational genetic algorithms is 
ii way of ensuring that the lifetime of the very best individual is extended 
beyond one generation. Thus, unlike evolutionary programming and evolution 
strategies. where more than just the best individual survive, in  generational 
genetic algorithms generally only the best individual survives. Steady si.ate 
genetic algorithms which use deletion schemes other than uniform random 
deletion have an implicit elitist policy and so automatically extend the lifetime 
of the higher-fitness individuals in the population. 

I t  should be noted that the elitist strategies were deemed necessary when 
genetic algorithms are used as function optimizers and the goal  is to find a 
global optimal solution (De Jong 1993). Elitist strategies tend to make the 
search more exploitative rather than explorative and may not work for problems 
in which one is required to tind multiple optimal solutions. TEAM LRN
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A comparison of selection mechanisms 

Peter J B Hancock 

29.1 Introduction 

Selection provides the driving force behind an evolutionary algorithm. Without 
it, the search would be no better than random. This section explores the pros 
and cons of a variety of different methods of performing selection. Selection 
methods differ in two main ways: the way they aim to distribute reproductive 
opportunities across members of the population, and the accuracy with which 
they achieve their aim. The accuracy may differ because of sampling noise 
inherent in some selection algorithms. There are also other differences that may 
be signiticant. such as time complexity and suitability for parallel processing. 
Crucially for some applications, they also differ in their ability to deal with 
evaluation noise. 

There have been a number of comparisons of different selection methods 
by a mixture of analysis and simulation, usually on deliberately simplified 
tasks. Goldberg and Deb ( 1991 ) considered a system with just two fitness 
levels, and studied the time taken for the fitter individuals to take over the 
population under the action of selection only, verifying their analysis with 
simulations. Hancock ( 1994) extended the simulations to a wider range of 
selection algorithms. and added mutation as a source of variation, to compare 
effective growth rates. The effects of adding noise to the evaluation function 
were also considered. Syswerda ( 199 1 ) compared generational and incremental 
models on a ten-level takeover problem. Thierens and Goldberg (1994) derived 
analytical results for rates of growth for a bit counting problem, where the 
approximately normal distribution of fitness values allowed them to include 
recombination in their analysis. Back ( 1994) compared takeover times for all 
the major selection methods analytically and reported an experiment on a 30- 
dimensional sphere problem. B2ck ( 1995) compared tournament and ( / L ,  A) 
selection more closely. Blickle and Thiele (1995a, b) undertook a dehiled 
analytical comparison of a number of selection methods (note that the second 
paper corrects an error in the first). Other studies include those of Biick and 
Hoffmeister ( 1991), de la Maza and Tidor (1993) and Pal ( 1994). 
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It would be useful to have some objective measure(s) with which to compare 
selection methods. A general term is selection pressure. The meaning of 
this is intuitively clear, the higher the selection pressure, the faster the rate of 
convergence, but it has no strict definition. Analysis of selection methods has 
concentrated on two measures: takeover time and selection intensity. Takeover 
time is the number of generations required for one copy of the best string to 
reproduce so as to f i l l  the population, under the effect only of selection (Goldberg 
and Deb 1991). Selection intensity is defined in terms of the average fitness 
before and after selection, .T and fsc, ,  and the fitness variance CJ: 

This captures the notion that it is harder to produce a given step in average 
fitness between the population and those selected when the fitness variance is 
low. However, both takeover time and selection intensity depend on the fitness 
functions, and so theoretical results may not always transfer to a real problem. 
There is an additional difficulty because the fitness variance itself depends on 
the selection method, so different methods configured to have the same selection 
intensity may actually grow at different rates. 

Most of the selection schemes have a parameter that controls either the 
proportion of the population that reproduces or the distribution of reproductive 
opportunities, or both. One aim in what follows will be to identify some 
equivalent parameter settings for different selection methods. 

29.2 Simulations 

A number of graphs from simulations similar to those reported by 
Hancock ( 1  994) are shown here, along with some analytical and experimental 
results from elsewhere. The takeover simulation initializes a population of I00 
randomly, with rectangular distribution, in the range 0- 1 ,  with the exception 
that one individual is set to 1.  The rate of takeover of individuals with the value 
I under the action of selection alone is plotted. Results reported are averaged 
over 100 different runs. The simulation is thus similar to that used by Goldberg 
and Deb (1991), but the greater range of fitness values allows investigation of 
the diversity maintained by the different selection methods. Since some of them 
produce exponential takeover in such conditions, a second set of simulations 
makes the problem slightly more realistic by adding mutation as a source of 
variation to be exploited by the selection procedures. This growth simulation 
initializes the population in the range 0-0.1. During reproduction, mutation with 
a Gaussian distribution, mean 0, standard deviation 0.02, is added to produce the 
offspring, subject to remaining in the range 0 - 1 .  Some plots show the value of 
the best member of the population after various numbers of evaluations, again 
averaged over 100 different runs. Other plots show the growth of the worst 
value in the population, which gives an indication of the diversity maintained in TEAM LRN
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the population. Some selection methods are better at preserving such diversity: 
other things being equal, this seems likely to improve the quality of the overall 
search (Muhlenbein and Schlierkamp-Voosen 1095, Blickle and Thiele 199%). 

I t  should be emphasized that fast convergence on these tasks is not 
necessarily good: they are deliberately simple in an effort to illustrate some 
of the differences between selection methods and the reasons underlying them. 
Good selection methods need to balance exploration and exploitation. Before 
reporting results, we shall consider a number of more theoretical points of 
similarities and differences. 

29.3 Population models 

There are two different points in the population cycle at which selection may 
be implemented. One approach, typical of genetic algorithms (GAS). is to 
choose individuals from the population for reproduction, usually in some way 
proportional to their fitness. These are then acted on by the chosen genztic 
operators to produce the next generation. The other approach, more typical of 
evolution strategies (ESs) and evolutionary programming (EP), is to allow all 
the members of the population to reproduce, and then select the better memhers 
of the extended population to go through to the next generation. This difference, 
of allowing all members to reproduce, is sometimes flagged as one of the key 
differences in approach between EWEP and GAS. In fact the two approaches 
may be seen as equivalent once running, differing only in what is called the 
population. If the extended population typical of the ES and EP approach is 
labeled \imply the population, then i t  may be seen that, as with the first approxh. 
the best individuals are selected for reproduction and used to generate the new 
(extended) population. Looked at this way, it is the traditional GA approach that 
allows all members of the population at least some chance of reproduction, where 
the methods that use truncation selection restrict the number that are allowed 
to breed. There remains, however, a difference in philosophy: the traditional 
CA approach is reproduction according to fitness, while the truncation selection 
typical of the ES, EP, and breeder GA is more like survival of the fittest. There 
will al\o be a difference at startup, with ES/EP initializing p individuals, while 
an equivalent CA initializes + A. 

29.4 Equivalence: expectations and reality 

A number of pairs of the common selection algorithms turn  out to be. in  some 
respects, equivalent. The equivalence, usually in expected outcome, can hide 
differences due to sampling errors, or behavior in the presence of noise, that 
may cause significant differences in practice. This section considers some of 
these similarities and differences. in  order to reduce the number that need be 
considered in detail in Section 29.5. TEAM LRN
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29.4. I Tournament selection and ranking 

Goldberg and Deb (1991) showed that simple binary tournament selection (TS) 
(see Chapter 24) is equivalent to linear ranking (Section 25.2) when set to give 
two offspring to the top-ranked string (prank = 2). However, this is only in 
expectation: when implemented the obvious way, picking each fresh pair of 
potential parents from the population with replacement, tournament selection 
suffers from sampling errors like those produced by roulette wheel sampling, 
precisely because each tournament is performed separately. A way to reduce 
this noise is to take a copy of the population and choose pairs for tournament 
from it  without replacement. When the copy population is exhausted, another 
copy is made to select the second half of the new population (Goldberg ct cr l  
1989). This method ensures that each individual participates in exactly two 
tournaments, and will not fight itself. It does not eliminate the problem, since. 
for example, an average individual, that ought to win once, may pick better or 
worse opponents both times, but it will at least stop several copies of any one 
being chosen. 

The selection pressure generated by tournament selection may be decreased 
by making the tournaments stochastic. The equivalence, apart from sampling 
errors, with linear ranking remains. Thus TS with a probability of the better 
string winning of 0.75 is equivalent to linear ranking with rtjrank = 1.5. The 
selection pressure may be increased by holding tournaments among more than 
two individuals. For three, the best will expect three offspring, while an 
average member can expect 0.75 (it should win one quarter of its expected 
three tournaments). The assignment is therefore nonlinear and Back ( 1994) 
shows that, to a first approximation, the results are equivalent to exponential 
nonlinear ranking, where the probability of selection of each rank i, starting at 
i = 1 for the best, is given by (s - l)(s'-')/(d' - l ) ,  where s is typically in the 
range 0.9-1 (Blickle and Thiele 199%). (Note that the probabilities as specified 
by Michalewicz (1992) do not sum to unity (Back 1994).) More precisely, 
they differ in that TS gives the worst members of the population no chance to 
reproduce. Figure 29.1 compares the expected number of offspring for each rank 
in a population of 100. The difference results in a somewhat lower population 
diversity for TS when run at the same growth rate. 

Goldberg and Deb (1991) prefer TS to linear ranking on account of its 
lower time complexity (since ranking requires a sort of the population), and 
Back (1994) argues similarly for TS over nonlinear ranking. However, time 
complexity is unlikely to be an issue in serious applications, where the evaluation 
time usually dominates all other parts of the algorithm. The difference is in any 
case reduced if the noise-reduced version of TS is implemented, since this 
also requires shuffling the population. For global population models, therefore, 
ranking, with Baker's sampling procedure (Baker I987), is usually preferable. 
TS may be appropriate in incremental models, where only one individual is 
to be evaluated at a time, and in parallel population models. I t  may also be TEAM LRN
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0 25  5 0  75 I00 
Rank of individual 

Figure 29.1. Expected number o!  otfspring against rank for  tournament selection U. ith 
tournament s i x  3 and exponential rank selection with J = 0.972. 

appropriate in,  for instance, game playing applications, where the evaluation 
itself consists of individuals playing each other. 

Freisleben and Hiirtfelder (1993) compared a number of selection schemes 
using a meta-level GA. that adjusted the parameters of the GA used to tackle 
their problem. Tournament selection was chosen in preference to rank selection, 
which at first sight seems odd, since the only difference is added noise. A 
possible explanation lies in the nature of their task, which was learning the 
weights for a neural net simulation. This is plagued with symmetry problems 
(e.g. Hancock 1992). The GA has to break the symmetries and decide on 
just one to make progress. I t  seems possible that the inaccuracies inherent in 
tournament selection faci I i tated this symmetry breaking, with one individual 
having an undue advantage, and thereby taking over the population. Noise is 
not always undesirable. though there may be more controlled ways to achit:ve 
the same result. 

29.4.2 Iric+remetitcil cirici generational models 

There is apparently a large division between incremental and generational 
reproduction models. However, Syswerda ( 1991 ) shows that an incremeiital 
model where the deletion is at random produces the same expected result 
as a generational model with the same rank selection for reproduction. 
Again, however, this analysis overlooks sampling effects. Precisely because 
incremental models generate only one or two offspring per cycle, they suffer 
the roulette wheel sampling error. Figure 29.2 shows the growth rate for hest 
and worst in the population for the two models with the same selection pressure 
(best expecting 1.2 offspring). The incremental model grows more slowly. yet 
loses diversity more rapidly, an effect characteristic of this kind of sampling TEAM LRN
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error. Incremental models also suffer in the presence of evaluation noise (see 
Section 29.6). 

Generational, hest 

U Generational, worst 

Incremental, hest 

Incremental, worst 

Evaluations 

Figure 29.2. The growth rate in the presence of mutation of the best and worst in the 
population for the incremental model with random deletion and the generational model. 
both with linear rank selection for reproduction, PrClnh = 1.2. 

The very highest selection pressure possible from an evolutionary system 
would arise from an incremental system, where only the best member of the 
population is able to reproduce, and the worst is removed if the new string is an 
improvement. Since the rest of the population would thus be redundant. this is 
equivalent to a ( 1 + 1 ) ES, the dynamics of which are well investigated (Schwefel 
1981). 

Some GA workers allow only the top few members of the population to 
reproduce (Nolfi et nl 1990, Muhlenbein and Schlierkamp-Voosen 1993). This 
is often called truncation selection, and is equivalent to the ES ( p ,  A) approach 
subject only to a difference in what is called the population (see Section 29.3). 

EP uses a form of tournament selection where all members of the extended 
population y + h compete with c. others, chosen at random with replacement. 
Those y that amass the most wins then reproduce by mutation to form the next 
extended population. This may be seen as a rather softer form of truncation 
selection, converging to the same result as a ( p  + y) ES as the size of c’ 

increases. The value of c does not directly affect the selection pressure, only 
the noise in the selection process. 

The EP selection process may be softened further by making the tournaments 
probabilistic. One approach is to make the probability of the better individual 
winning dependent on the relative fitness of the pair: p ,  = j ; / ( . f ;  + f , )  (Fogel TEAM LRN
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1988). Although intuitively appealing, this has the effect of reducing selection 
pressure as the population converges and can produce growth curves remarkahly 
similar to unscaled fitness proportional selection (FPS; Hancock 1994). 

29.5 Simulation results 

29.5. I Fitness proportiorial selestiori 

Simple FPS suffers from sensitivity to the distribution of fitness values in the 
population, as discussed in Chapter 23. The reduction of selection pressure as 
the population converges may be countered by moving baseline techniques, such 
as windowing and sigma scaling. These are still vulnerable to undesirable loss 
of diversity caused by a particularly fit individual, which may produce many 
offspring. Rescaling techniques are able to limit the number of offspring given 
to the best, but may still be affected by the overall spread of fitness values, .And 
particularly by the presence of very poor individuals. 

Figure 29.3 compares takeover and growth rates of FPS and some of the 
baseline adjustment and rescaling methods. The simple takeover rates for the 
three adjusted methods are rather similar for these scale parameters, with linear 
scaling just fastest. Simple FPS is so slow it does not really show on the 
same graph: i t  reaches only  80% convergence after 40000 evaluations on this 
problem. The curves for growth in the presence of mutation are all rather 
alike: the presence of the mutation maintains the range of fitness values in the 
population, giving simple FPS something to work on. Note, however, that i t  
still starts off relatively fast and slows down towards the end: probably the 
opposite of what is desirable. The three scaled versions are still similar, but 
note that the order has reversed. Windowing and sigma scaling now grow more 
rapidly precisely because they Fail to limit the number of offspring to especially 
good individuals. A fortuitous mutation is thus better exploited than in the 
more controlled linear scaling, which leads to the correct result in this simple 
hill-climbing task, but may not in a more complex real problem. 

29.5.2 Rcrrrkirig 

Goldberg and Deb (1991) show that the expected growth rate for linear ranking 
is proportional to the value of prank, the number of offspring given to the best 
individual. For exponential scaling, the selection pressure is proportiond to 
1 - s .  This makes available a wide range of selection pressures, defined by the 
value of s, illustrated in figure 29.4. The highest takeover rate available with 
linear ranking (prank = 2 )  is also shown. Exponential ranking can go faster with 
smaller values of s (see table 29. I ). Note the logarithmic x-axis on this plot. 

With exponential ranking, because of the exponential assignment curve, poor 
individuals do rather better than with linear ranking, at the expense of those more 
in the middle o f  the range. One result of this is that, for parameter settings that TEAM LRN
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give similar takeover times, exponential ranking loses the worse values in the 
population more slowly, which may help preserve diversity in practice. 

29.5.3 Evolution strategies 

The selection pressure generated by the ES selection methods have been 
extensively analyzed, sometimes under the title of truncation selection (see 
e.g. Back 1994). Selection pressure is dependent on the ratio of ,Y to A (see 
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Figure 29.3. (a) The takeover rate for FPS, with windowing, sigma, and 
(b) Growth rates in the presence of mutation. 
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Figure 29.4. The takeover rate for exponential rank selection for a number of values of 
s, together with that for linear ranking, prank = 2. TEAM LRN
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table 29.1). One simulation result is shown, in figure 29.5, to make clear 
the selection pressure achievable by ( p ,  A) selection, and indicate its poteniial 
susceptibility to evaluation noise, discussed further below. 

I I 1 I 

Noise free 

U I , l 00  

+ 10. I00 

2 5 , 1 0 0  

With evaluation n o i x  

__)__ I .100  

+ 10,100 

& 25.100 
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Figure 29.5. The growth rate in the presence of mutation for ES ( p ,  A) selection \vith 
and without evaluation noise, for h = 100 and p = 1, 10. and 25 .  

29.5.4 Itm-ementul models 

Goldberg and Deb (1991) show that the Genitor incremental model develops 
a very high growth rate, compared to that typical of GAS. This is mostly 
due to the method of deletion, in which the worst member of the population 
is eliminated (cf the ES truncation approach). As a consequence, the value 
of prank used in the linear ranking to select parents has little effect on the 
takeover rate. Even with prank = I (i.e. a random choice of parents), kill-worst 
converges in around 900 evaluations (cf about 3000 for the scaled FPS variants 
in figure 29.3(a)). Increasing prank to its maximum of 2.0 only reduces this to 
around 600 evaluations. 

There are a number of ways to decide which of the population should be 
removed (Syswerda 1991), such as killing the oldest (also known as FIFO 
deletion (De Jong and Sarma 1993)); one of the ri  worst; by inverse rank; or 
simply at random. The various deletion strategies radically affect the behavior 
of the algorithm. As discussed above, random deletion resembles a generational 
model. Kill oldest also produces much softer selection than kill-worst, producing 
takeover rates similar to generational models with the same selection preswre 
(see figure 29.6). However, the incremental model starts more quickly and ends 
more slowly than the generational one. 

Syswerda ( 199 I )  prefers kill-by-inverse-rank. In his simulations, this 
produces results similar to kill-worst, but he is using a high inverse selection TEAM LRN
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Figure 29.6. The takeover rates for the generational model and the kill-oldest incremental 
model, both using linear ranking for selection. 
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Figure 29.7. Growth rates in the presence of mutation for incremental kill-by-inverse- 
rank (kr) and generational linear ranking (rl) for various values of Drank. 

pressure (exponential ranking with s = 0.9). A more controlled result is given 
by selecting for reproduction from the top and for deletion from the bottom using 
ranking with the same, more moderate value of prank. Using linear ranking, the TEAM LRN
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growth rate changes more rapidly than prank. This is because an increase in p u n k  

has two effects: increasing the probability of picking one of the better members 
of the population at each step, and increasing the number of steps for which 
they are likely to remain in the population, by decreasing their probability of 
deletion. Figure 29.7 compares growth rates in the presence of mutation for 
kill-by-rank incremental and equivalent generational models. It may be seen 
that the generational model with prank = 1.4 and the incremental model with 
prank = 1.2 produce very similar results. Another matched pair at lower gronth 
rates is generational with prank = 1.2 and incremental with prank = 1.13 (not 
shown). 

One of the arguments in favor of incremental models is that they allow 
good new individuals to be exploited at once, rather than having to wait a 
generation. It might be thought that any such gain would be rather slight, since 
although a good new member could be picked at once, it is more likely to 
have to wait several iterations at normal selection pressures. There is also the 
inevitable sampling noise to be overcome. De Jong and Sarma (1993) claim 
that there is actually no net benefit, since adding new fit members has the 
effect of increasing the average fitness, thus reducing the likelihood of them 
being selected. However, this argument applies only to takeover problems: 
when reproduction operators are included the incremental approach can generate 
higher growth rates. Figure 29.8 compares the growth of an incremental kill- 
oldest model with a generational model using the same selection scheme. The 
graph also shows one of the main drawbacks of the incremental models: their 
sensitivity to evaluation noise, to be discussed in the following section. 

29.6 The effects of evaluation noise 

Hancock (1994) extended the growth simulations to study the effects of adding 
evaluation noise. A Gaussian random variable, mean zero, standard deviation 
0.2, was added to each underlying true value for use in selection. The true value 
was used for reproduction. It proved necessary to add this much noise-ten 
times the standard deviation of the ‘signal’ mutation-to bring about significant 
reduction in growth rates for the generational selection models. 

The sensitivity of the different selection algorithms to evaluation noise is 
largely dependent on whether they retain parents for further reproduction. Fully 
generational models are relatively immune, while most incremental models and 
those like the ( p  + A) ES that allow parents to compete for retention fare 
much worse, because individuals receiving a fortuitously good evaluation will 
be kept. The exception for incremental models is kill-oldest, which maintains the 
necessary turnover. Figure 29.8 shows the comparison. Kill oldest deteriorates 
only a little more than the generational model in the presence of noise, while 
kill-worst, which grows much the fastest in the absence of noise, almost fails 
completely. TEAM LRN
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Figure 29.8. Growth in the presence of mutation, with and without evaluation noise, for 
the generational model with linear ranking and incremental models with kill-worst and 
kill-oldest, all using prank = 1.2 for selection. 

Within generational models, there are differences in noise sensitivity. 
Figure 29.9 compares the growth rates for linear ranking and sigma-scaled FPS, 
with and without noise. It may be seen that the scaled FPS deteriorates less. 
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Figure 29.9. Growth in the presence of mutation, with and without evaluation noise, for 
the generational model with linear ranking, prank = 1.8, and sigma-scaled FPS, s = 4. TEAM LRN
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This is caused by sigma scaling’s inability to control superfit individuals. A 
genuinely good individual, that happens to receive a helpful boost from the 
noise, may be given many offspring by sigma scaling, but will be limited to 
prank, in this case 1.8, by ranking. As before, rapid convergence is beneficial in  
this simple task, but is unlikely to be so in general. 

The ES ( p ,  A) method can achieve extremely high selection pressures, when 
it becomes sensitive to evaluation noise in a manner similar to incremental 
models (figure 29.5). In this case, the problem is that too many reproductions 
are given to a few strings, whose rating may be overestimated by the noise. 
Figure 29.5 shows a clear turnaround: as the selection pressure is increased, 
performance in noise becomes worse. 

One approach to countering the effects of noise is to perform two 
or more evaluations per string, and average the results. Fitzpatrick and 
Grefenstette (1988) investigated this and concluded that it is better to evaluate 
only once and proceed with the next generation. A possibly more efficient 
method is to reevaluate only the apparently fitter individuals. Candidates 
may be chosen as for reproduction, e.g. by rank. However, experiments 
with incremental kill-by-rank indicated that the extra evaluations did not pay 
their way, with convergence taking only a little less than twice as many 
evaluations in total (Hancock 1994). Hammel and Back (1994) compared the 
effects of reevaluation with an equivalent increase in the population size and 
showed that reevaluations lead to a better final result. Indeed, on Rastrigan’s 
function, increasing the population size resulted in  a deterioration of convergence 
performance. Taken together, these results suggest a strategy of evaluating only 
once initially, and keeping the population turning over, but then starting to 
reevaluate as the population begins to converge. Hammel and Back suggest 
an alternative possibility of incorporating reevaluation as a parameter to be 
optimized by the evolutionary system itself. 

29.7 Analytic comparison 

Blickle and Thiele (199%) perform an extensive analysis of several selection 
schemes, deriving the dependence of selection intensity on the selection 
parameters under the assumption of a normal distribution of fitness. Their 
results, which reassuringly agree with the simulation results here, are shown 
in an adapted form in table 29.1. They also consider selection variance, 
confirming that methods such as ES selection that disallow weakest strings 
from reproduction reduce the population variance more rapidly than those that 
allow weak strings some chance. Of the methods considered, exponential 
rank selection gives the highest fitness variance, for the reasons illustrated in 
figure 29. I .  Their conclusion is that exponential rank selection is therefore 
probably the ‘best’ of the schemes that they consider. TEAM LRN
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Table 29.1. Parameter settings that give equivalent selection intensities for ES (EL, A). 
TS, and linear and exponential ranking, adapted and extended from Blickle and 
Thiele (199%). Under tournament size, p refers to the probability of the better string 
winning. 

I ES , u / A  Tournament size prank, Lin rank .s, Exp rank, A = 100 

0.1 I 
0.34 
0.56 
0.84 
1.03 
1.16 
1.35 
I .54 
1.87 

0.94 
0.80 
0.66 
0.47 
0.36 
0.30 
0.22 
0.15 
0.08 

2, p = 0.6 
2, p = 0.8 
2 
3 
4 
5 
7 

10 
20 

1.2 
1.6 
2.0 

0.996 
0.988 
0.979 
0.966 
0.955 
0.945 
0.926 
0.900 
0.809 

29.8 Conclusions 

The choice of a selection mechanism cannot be made independently of 
other aspects of the evolutionary algorithm. For instance, Eshelman ( 199 1 ) 
deliberately combines a conservative selection mechanism with an explorative 
recombination operator in his CHC algorithm. Where search is largely driven by 
mutation, it may be possible to use much higher selection pressures. typical of 
the ES approach. If the evaluation function is noisy, then most incremental 
models and others that may retain parents are likely to suffer. Certainly. 
selection pressures need to be lower in the presence of noise, and, of the 
incremental models, kill-oldest fares best. Without noise, incremental methods 
can provide a useful increase in exploitation of good new individuals. Care 
is needed in the choice of method of deletion: killing the worst provides high 
growth rates with little means of control. Killing by inverse rank or killing 
the oldest offers more control. Amongst generational models, the ES ( p ,  A) 
and exponential rank selection methods give the biggest and most controllable 
range of selection pressures, with the ES method probably most suited to 
mutation-driven, high-growth-rate systems, and ranking better for slower, more 
explorative searches, where maintenance of diversity is important. 
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Interactive evolution 

Wougang Banzhaf 

30.1 Introduction 

The basic idea of interactive evolution (IE) is to involve a human user on-line 
in the variation-selection loop of the evolutionary algorithm (EA). This is to be 
seen in contrast to the conventional participation of the user prior to running 
the EA by defining a suitable representation of' the problem (Chapters 14-21), 
the fitness criterion for evaluation of individual solutions, and corresponding 
operators (Chapters 31-34) to improve fitness quality. In the latter case, the 
user's role is restricted to passive observation during the EA run. 

The minimum requirement for IE is the definition of a problem 
representation, together with a determination of population parameters only. 
Search operators of arbitrary kind as well as selection according to arbitrary 
criteria might be applied to the representation by the user. The process is much 
more comparable to the creation of a piece of art, for example, a painting, 1han 
to the automatic evolution of an optimized problem solution. In IE, the user 
assumes an active role in the search process. At the minimum level, tht: IE 
system must hold present solutions together with variants presently generJted 
or considered. 

Usually. however, automatic means of variation (i.e. evolutionary sedrch 
operators using random events) are provided with an IE system. In the present 
context we shall require the existence of automatic means of variation by 
operators for mutation (Chapter 32) and recombination (Chapter 33) of solutions 
which are to be defined prior to running the EA. 

30.2 History 

Dawkins (1986) was the first to consider an elaborate IE system. The evolution 
of biomorphs, as he called them, by IE in a system that he had originally intended 
to be useful for the design of treelike graphical forms has served as a prototype 
for many systems developed subsequently. Starting with the contributions of 
Sims (1991) and the book of Todd and Lathani (1992), computer art developed 
into the present major application area of IE. 
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IE of grammar-based structures has also been considered (Nguyen and Huang 
1994, McCormack 1994). Raw image data have been used more recently for 
the purpose of evolving forms (Graf and Banzhaf 1995a). 

30.3 The problem 

The problem IE is trying to address has been encountered in all varieties of EAs 
that make use of automatic evolution: the existence of nonexplicit conditions, 
that is. conditions that are not formalizable. 

The absence of a human user in steering and controlling the process of 
evolution sometimes leads to unnecessary detours from the goal of global 
optimization. In most of these cases, human intervention into the search 
and selection process would advance the search rather quickly and allow 
faster convergence onto the most promising regions of the fitness landscape, 
or, sometimes, escape from a local optimum. Hence, a mobilization of 
human knowledge can be achieved by allowing the user to participate in 
the process. 
Many design processes require subjective judgment relying on human 
intuition, aesthetical values, or taste. In such cases. the fitness criterion 
cannot be formulated explicitly, but can only be applied on a comparative 
case-by-case basis. Direct human participation in IE allows for machine- 
supported evolution of designs that would otherwise be completely manual. 

Thus, IE can be used (i) to accelerate EAs and ( i i )  in some areas to enable 
application of EAs altogether. 

30.4 The interactive evolution approach 

Selection in a standard IE system, as opposed to that in an automatic evolution 
system, is based on user action. It is typically the selection step that is subjugated 
to human action, although in less frequent cases the variation process might also 
be done by hand. 

The standard algorithm for IE (following the notation in the introduction)is 
presented at the top of the next page. As in an automatic evolution system, 
there are parameters that are required to be fixed n priori : p ,  A, (-IL, (-I,,, , (-Ir, (-I,. 
There are, however, also parameters subject to change, (HI;,,, (-I:, (-I:, depending 
on the user interaction with the IE system. Both parameter sets together 
determine the actual effect of mutation, recombination, and selection operators. 

A simple variation of the standard algorithm shown overleaf is to allow 
for population parameters to be also the subject of user interaction with the 
system. For example, some systems (Graf and Banzhaf 199Sa) consider growing 
populations and a variable number of variants. 

A more complicated variant of the standard algorithm would add a sorting 
process of variants according to a predefined fitness criterion. One step further TEAM LRN
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Input: p ,  A, 0,, o,, er, 0, 
U*, the individual last selected during the run, or 
P * ,  the population last selected during the run. 

Output: 

I t t o ;  
2 P ( t )  t initialize(p); 
3 
4 Input: O:, O& 
5 P’( t )  t recombine( P ( t ) ,  Or, 0;); 
6 P”(t )  t mutate(P’(t), (HI,, O&>; 
7 output: P”( t )  
8 Input: 
9 
10 t + t + l ;  

while ( i ( P ( t ) ,  0,) # true) do 

P ( t  + 1 )  +- select(P”(t), p ,  @I,, 0:); 

od 

is to allow this sorting process to result in a preselection in order to present 
a smaller number of variants for the interactike selection step. Both methods 
help the user to concentrate his or her selective action on the most promising 
variants according to this predefined criterion. 

This algorithm is formulated as follows: 

Output: 

1 t t o ;  
2 P ( r )  c initialize(p); 
3 
4 Input: O:, @I; 
5 P’(r )  t recombine(P(t), Or, (HI:); 
6 
7 F ( t )  t evaluate(P”(t), A) ;  
8 P”’(r) t sort(P”(t), 0,); 
9 
10 output: P””(t) 
I 1  Input: (3; 
12 
13 t c t f l ;  

Input: p ,  A, q. +I‘>1. e m ,  o,, o r ,  O S  

U*, the individual last selected during the run, or 
P*,  the population last selected during the run. 

while ( l ( P ( t ) .  0,) # true) do 

P ” ( t )  t mutate(P’(t), O m ,  0;); 

P””(t) t select(P”’(t), F ( t ) ,  p ,  q ,  0,); 

P ( t  + I )  t select(P””(t), p ,  OS, 0;); 

od 

The newly added parameter @Io is used here to specify the predefined order 
of the result after evaluation according to the predefined criterion. As before, 
the GII):-parameters are used to specify the user interaction with the system. q 
is the parameter stating how many of the automatically generated and ordered 
variants are to be presented to the user. If p + A = q in a ( p  + A)-strategy, or TEAM LRN
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A = r,~ in a (p ,  A)-strategy, all variants will be presented for interactive selection. 
If, however, p + h > q and h > r , ~  respectively, solutions would be preselected 
and we speak of a hybrid evolution system (having elements of automatic as 
well as interactive evolution). Other parameters are used in the same way as in 
the standard algorithm. 

30.5 Difficulties 

The second, more complicated version of IE requires a predefined fitness 
criterion, in addition to user action. This trades one advantage of IE systems for 
another: the absence of any requirement to quantify fitness for a small number 
of variants to be evaluated interactively by the user. 

Interactive systems have one serious difficulty, especially in connection 
with the automatic means of variation that are usually provided: whereas the 
generation of variants does not necessarily require human intervention, selection 
of variants does call the attention of the user. Due to psychological constraints, 
however, humans can normally select only from a small set of choices. IE 
systems are thus constrained to present only of the order of ten choices at each 
point in time from which to choose. Also in sequence, only a limited number 
of generations can be practically inspected by a user before the user becomes 
tired. 

It is emphasized that this limitation must not mean that the generation of 
variants has to be restricted to small numbers. Rather the variants have to be 
properly ordered at least, for a presentation of a subset that can be handled 
interactively . 

30.6 Application areas 

An application of IE may be roughly divided into two parts: 

(i) structural evolution by discrete combination of predefined elements and 
(i i )  parametric evolution of genes coding for quantifiable features of the 

phenotype. 

All application use these parts to various degrees. 
In the first part, one has to define the structure elements that might be 

combined into a correct genotype. Examples are symbolic expressions coding 
for appearance of points in an image plane (Sims 1991) or elementary geometric 
figures such as cone and cube (Todd and Latham 1992). In the second part, 
parameters have to be used to further specify features of these structural 
elements. Together, this information constitutes the genotype of the future 
design hopefully to be selected by a user. In a process called expression this 
genotype is then transformed into an image or three-dimensional form that can 
be displayed as a phenotype for the selection step. 

Table 30.1 gives an overview of the presently used IE systems. The reader 
is advised to consult details with the sources given in the reference list. TEAM LRN
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Table 30.1. An overview of different IE systems. 

Application Genotypic elements Phenotype Source 

Lifelike structures 
Textures. images 

Animation 

Person tracking 

Images. sculptures 

Dynamical systems 

I mages, animation 

Airplane design 

Images, design 

line drawing parameters 
math. functions, image 
processing operations 
math. functions, image 
processing operations 
(position of) facial parts 

geometric forms and 
visually defined 
graphical elements 
CA rules, differential 
equations 
rules, parameters of 
L-systems 
structural elements, 
e.g. wings, body 
tiepoints of bitmap 
images 

biomorphs 
(s. y ,  :) pixel 
values 
( A .  y ,  :) pixel 
values 
face images 

3D rendering of‘ 
grown objects 

system behavior 

rendered objects 

airplane drawings 

bilmap images 

Dawkins (1986) 
Sims (1991) 

Sims (1991) 

Caldwell and 
Johnston ( I90 1 ) 
Todd and 
Latham ( 1992) 

Sims (1992) 

McCormac k 
(1994) 
Nguyen and 
Huang ( 1994) 
Graf and 
BanLhaf ( I 99Sa) 

Figure 30.1 illustrates some results with runs in different IE systems. 
Within the process of genotype-phenotype mapping a (recursive) 

developmental process is sometimes applied (Dawkins 1986, Todd and Latham 
1992) whose results are finally displayed as the image for selection. 

30.7 Further developments and perspectives 

As of now, the means to generate a small group of variants from which to 
choose interactively are still not very good. For example, one could imagine a 
tool for categorizing variants into a number of families of similar design and 
then present only one representative from each family. In this way, a Ixge 
population of variants could be used in the background which is invisible to the 
user but might have beneficial effects in the course of evolution. 

Another very interesting area of research is to assign 11 posteriori effective 
fitness values to members of the population, depending on user action. An 
individual which is selected more often would be assigned a higher fitness than 
an individual which is not. This might result in at least a crude measure of’ the 
nonquantifiable fitness measures that lie at the heart of IE. One might even adjust 
the effect the operators have on the population, based on what is observed in 
the course of evolution directed by the user. In this way, an ‘intelligent’ system 
could be created, that is able to learn from actions of the user how to varj the 
population in order to arrive at good designs. 

Another direction of research is to look into involving the user not (only) in 
the selection process, but in  the variation process. Quite often, humans would TEAM LRN
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Figure 30.1. Samples of evolved objects: ( U )  dynamical system, cell structure (Sims 
1992, @ MIT Press); ( 6 )  artwork by Mutator (Todd and Latham 1992, with permission 
of the authors); (c) hybrid car model (Graf and Banzhaf 1995b, @ IEEE Press). 

have intuitive ideas for improvement of solutions when observing an automatic 
evolutionary process taking its steps. These ideas might be used to cut short 
the search routes an automatic algorithm is following. For this purpose, a user 
might be allowed to intervene in the process at appropriate interrupt times. 

Finally, all sensory inputs could be used for IE. The systematic variation of 
components of a chemical compound that specifies an odor, for example, could 
be used to evolve a nice smelling perfume. Taste could as well be subject to 
interactive evolutionary tools, as could other objects if appropriately mapped to 
our senses (for instance by virtual reality tools). 

With the advent of interactive media in the consumer market, production-on- 
demand systems might one day include an interactive evolutionary design device 
that allows the user not only to customize a product design before it goes into 
production, but also to generate his or her own original design that has never 
been realized before and usually will never be produced again. This would open 
up the possibility of evolutionary product design by companies which track their 
customers’ activities and then distribute the best designs they discover. 
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Further reading 

This section is intended to give an overview of presently available work in IE 
and modeling methods which might be interesting to use. 

1. PrusinkiewicL P and Lindenmayer A I99 1 The Algorithmic Beuutj, ofPlunts (Berlin: 
Springer) 

An informative introduction to L-systems and their use in computer graphics. 

2. Koza J R 1992 Genetic Programming (Cambridge, MA: MIT Press) 

A book describing methods to evolve computer code, mainly in the form of LISP- 
type S-expressions. 

3. Caldwell C and Johnston V 1991 Tracking a criminal suspect through 'face-space' 
with a genetic algorithm Proc. Int. Con$ on Genetic Algorithms (Sun Diego, CA, 
July 1991) ed R K Belew and L B Booker (San Mateo, CA: Morgan Kaufmann) 
pp 416-21 

Very interesting work containing one of the more profane applications of IE. 
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(Urbanu-Champaign, IL, July I993) ed S Forrest (San Mateo, CA: Morgan 
Kaufmann) p 627 

This contribution discusses new ideas on design using simple style elements for IE. 
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Dissertation, Carnegie Mellon University 

Informed discussion of different aspects of using genetic algorithms for de>ign 
purposes. 
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Introduction to search operators 

Zbignie w Michalew icz 

Any evolutionary system processes a population of individuals, P ( t )  = 
{a: ,  . . . , U ; ] }  ( t  is the iteration number), where each individual represents a 
potential solution to the problem at hand. As discussed in Chapters 14-2 I ,  many 
possible representations can be used for coding individuals; these representations 
may vary from binary strings to complex data structures I .  

Each solution a: is evaluated to give some measure of its fitness. Then a 
new population (iteration t + 1) is formed by selecting the more-fit individuals 
(the selection step of the evolutionary algorithm, see Chapters 22-30). Some 
members of the new population undergo transformations by means of ‘genetic’ 
operators to form new solutions. There are unary transformations m, (mutation 
type), which create new individuals by a (usually small) change in a single 
individual (m, : I -+ I ) ,  and higher-order transformations c, (crossover, or 
recombination type), which create new individuals by combining parts from 
several (two or more, up to the population size p )  individuals (cj  : I ‘  + I ,  
2 5 s 5 p ) .  

It  seems that, for any evolutionary computation technique, the representation 
of an individual in the population and the set of operators used to alter its genetic 
code constitute probably the two most important components of the system, 
and often determine the system’s success or failure. Thus, a representation of 
object variables must be chosen along with the consideration of the evolutionary 
computation operators which are to be used in the simulation. Clearly, the 
reverse is also true: the operators of any evolutionary system must be chosen 
carefully in accordance with the selected representation of individuals. Because 
of this strong relationship between representations and operators, the latter are 
discussed with respect to some (standard) representations. 

In general, Chapters 3 1-34 provide a discussion on many operators which 
have been developed since the mid-1960s. Chapter 32 deals with mutation 
operators. Accordingly, several representations are considered (binary strings, 
real-valued vectors, permutations, finite-state machines, parse trees, and others) 
and for each representation one or more possible mutation operators are 
discussed. Clearly, it is impossible to provide a complete overview of all 
mutation operators, since the number of possible representations is unlimited. 
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However. Chapter 32 provides a complete description of stcirrdcird mutation 
operators which have been developed for stcirrckrd data structures. 

Again. as for mutation 
operators, several representations are considered (binary strings, real-valued 
vectors, permutations, finite-state machines, parse trees, and others) and for 
each representation several possible recombination operators are discussed. 
Recombination operators exchange information between individuals arid 
are considered to be the main ‘driving force’ behind genetic algorithms. 
while playing no role in evolutionary programming. There are many 
important and interesting issues connected with recombination operators: the .;e 
include properties that recombination operators should have to be useful 
(these are outlined by Radcliffe ( 1993)), the number of parents involved 
in recombination process (Eiben et c i l  (1994) described experiments with 
multiparent recombination operators-so-called orgies). or the frequencies of 
recombination operators. 

Chapter 34 discusses some additional variations. These include the Bald& in 
effect, gene duplication and deletion, and knowledge-augmented operators. 

Chapter 33 deals with recombination operators. 
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Mutation operators 

Thomas Back (32.1)) David B Fogel (32.2, 32.4, 32.6)) 
Darrell Whitley (32.3) and Peter J Angeline (32.5, 32.6) 

32.1 Binary strings 

The mutation operator currently used in canonical genetic algorithms to 
manipulate binary vectors (also called binary strings or bitstrings, see Chapter 
IS) a = (a l ,  . . . , a t )  E I = (0, 1)‘ of fixed length f was originally introduced by 
Holland (1975, pp 109-1 1 )  for general finite individual spaces I = A I x . . . x A ( ,  
where A, = {a , , ,  . . . , a,,, ) .  According to his definition, the mutation operator 
proceeds by: 

determining the positions i l ,  . . . , ill (i, E { I ,  . . . . t } )  to undergo mutation 
by a uniform random choice, where each position has the same small 
probability p,,, of undergoing mutation, independently of what happens 
at other positions, and 
forming the new vector a’ = (a1 , . . . , a,, - 1  , u,’, , u,,  + I , . . . . a,,, - I , u,’,l . NI,,+ 1 . 
. . . , a t )  where al’ E A, is drawn uniformly at random from the set of 
admissible values at position i. 

The original value a, at a position undergoing mutation is riot excluded 
from the random choice of U,! E A , ;  that is, although the position is chosen for 
mutation, the corresponding value might not change at all. This occurs with 
probability 1 / [ A ,  1 ,  such that the effective (realized) mutation probability differs 
from prn by a nonneglectible factor of 1/2 if a binary representation is used. 

In order to avoid this problem, it is typically agreed on defining p,,, to be 
the probability of independently inverting each of the variables u, E {O, 1 ) .  such 
that the mutation operator m : (0, 1 ) ‘  .+ (0, I ) ‘  produces a new individual 
a’ = m(a) according to 

(32.1)  
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where 1.1 - c / ( [ O ,  I ) )  denotes a uniform random variable sampled anew for each 
i E ( I  , . . . ,  t ) .  

From a computational point of view, the straightforward implementation 
of equation (32.1) as a loop calling the random number generator for each 
position i is extremely inefficient. Since the random variable T describing the 
distances between two positions to be mutated has a geometrical distribution wi1.h 
P { T  = t }  = p,( I - P,,~)‘-’ and expectation E[T] = l / ~ , ? ~ ,  and a geometrical 
random number can be generated according to 

In( l  - U )  

- P m )  
(32.2) 

(where U - U([O,  I ) ) ) ,  equation (32.2) provides an efficient method to generate 
the offset to find the next position for mutation from the current one. If the 
actual position plus the offset exceeds the vector dimension l ,  it  ‘carries over’ 
to the next individual and, if all individuals of the actual population have been 
processed, to the next generation. 

Concerning the importance of mutation for the evolutionary search process, 
both Holland ( 1975, p I 1 1 ) and Goldberg (1989, p 14) emphasize that mutation 
just serves as a ‘background operator’, supporting the crossover operator 
(Section 33.1) by assuring that the full range of allele values is accessible 
to the search. Consequently, quite small values of p,,, E [O.OOl, 0.011 
were recommended for canonical genetic algorithms (see e.g. De Jong 1975, 
Grefenstette 1986, Schaffer et a1 1989) until recently, when both empirical and 
theoretical investigations clearly demonstrated the benefits of emphasizing the 
role of mutation as a search operator in these algorithms. More specifically, 
some of the important results include: 

( i )  empirical findings favoring an initially large mutation rate that 
exponentially decreases over time (Fogarty 1989), 

( i i )  the theoretical confirmation of the optimality of such an exponentially 
decreasing mutation rate for simple test functions (Hesser and Manner 1901, 
1992. Back 1996)’ and 

(iii) the knowledge of a lower bound p,,* = I / [  for the optimal mutation rate 
(Bremermann et nl 1966, Miihlenbein 1992, Back 1993). 

It is obvious from these results that not only for evolution strategies and 
evolutionary programming, but also for canonical genetic algorithms, mutation 
is an important search operator that cannot be neglected either in practical 
applications or in theoretical investigations of these algorithms. Moreover. i t  
is also possible to release the user of a genetic algorithm from the problem 
of finding an appropriate mutation rate control or fine-tuning a fixed value 
by transferring the strategy parameter self-adaptation principle from evolution 
strategies and evolutionary programming to genetic algorithms. TEAM LRN
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32.2 Real-valued vectors 

David B Fogel 

Mutation generally refers to the creation of a new solution from one and only 
one parent (otherwise the creation is referred to as a recombination (see Chapter 
33). Given a real-valued representation where each element in a population is an 
n-dimensional vector x E R”, there are many methods for creating new elements 
(offspring) using mutation. These methods have a long history, extending back 
at least to Bremermann (1962), Bremermann et a1 ( I965), and others. A variety 
of methods will be considered here. 

The general form of mutation can be written as 

2’ = m ( x )  (32.3) 

where x is the parent vector, m is the mutation function, and x’ is the resulting 
offspring vector. Although there have been some attempts to include mutation 
operators that do not operate on the specific values of the parents but instead 
simply choose z’ from a fixed probability density function (PDF) (Montana and 
Davis 1989), such methods lose the inheritance from parent to offspring that 
can facilitate evolutionary optimization on a variety of response surfaces. The 
more common form of mutation generates an offspring vector: 

x ’ = x + M  (32.4) 

where the mutation M is a random variable. M is often zero mean such that 
E ( z ’ )  = x; the expected difference between a parent and its offspring is zero. 

M can take different forms. For example, M could be the uniform random 
variable U ( a ,  b)“, where a and 6 are the lower and upper limits respectively. In 
this case, a is often set equal to -b. The result of applying this operator as M in 
equation (32.4) yields an offspring within a hyperbox z + U ( - h .  h)”. Although 
such a mutation is unbiased with respect to the position of the offspring within 
the hyperbox, the method suffers from easy entrapment when the parent vector 
x resides in a locally optimal well that is wider than the available step size. 
Davis ( 1989, 1991 b) offered a similar operator (known as creep) that has a 
fixed probability of altering each component of x up or down by a bounded 
small random amount. The only method for alleviating entrapment in such cases 
relies on probabilistic selection, that is, maintaining a probability for choosing 
lesser-valued solutions to become parents of the subsequent generations (see 
Chapter 27). In contrast, unbounded mutation operators do not require such 
selection methods to guarantee asymptotic global convergence (Fogel 1994. 
Rudolph 1994). 

The primary unbounded mutation PDF for real-valued vectors has been the 
Gaussian (or ‘normal’) (Rechenberg 1973, Schwefel 1981, Fogel et a1 1990, 
Fogel and Atmar 1990, Back and Schwefel 1993, Fogel and Stayton 1994, and TEAM LRN
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many others). The PDF is defined as 

When p = 0, the parameter (T offers the single control on the scaling of the 
PDF. It effectively generates a typical step size for a mutation. The use of zero- 
mean Gaussian mutations generates offspring that are ( i )  on average no different 
from their parents and ( i i )  increasingly less likely to be increasingly different 
from their parents. Saltations are not completely avoided such that any local 
optimum can be escaped from in a single iteration, yet they are not so common 
as to lose all inheritance from parent to offspring. 

Other density functions with similar characteristics have also been 
implemented. Yao and Liu (1996) proposed using Cauchy distributions to aid 
in escaping from local minima (the Cauchy distribution has a fatter tail than the 
Gaussian) and demonstrated that Cauchy mutations may offer some advantages 
across a wide testbed of problems. Montana and Davis (1989) examined the 
use of Laplace-distributed mutations but there is no evidence that the Laplace 
distribution is particularly better suited than Gaussian or Cauchy mutations for 
typical real-valued optimization problems. 

In the simplest version of evolution strategies or evolutionary programming. 
described as a ( 1 + 1 ) evolutionary algorithm, a single parent x creates a single 
offspring x’ by imposing a multivariate Gaussian perturbation with mean zero 
and standard deviation (T on the parent, then selects the better of the two trial 
solutions as the parent for the next iteration. The same standard deviation is 
applied to each component of the vector x during mutation. For some problems, 
the variation of (T (i.e. the step size control parameter in each dimension) c m  
be computed to yield an optimal rate of convergence. 

Let the convergence rate be defined as the ratio of the Euclidean distance 
covered toward the optimum solution to the number of trials required to achieve 
the improvement. Rechenberg ( 1973) calculated the convergence rates for two 
functions: 

i E (2,  . .  . , n ]  -b/2 5 x l  5 h / 2  

where x = (XI ,  . . . , , Y , ~ ) ~  E R”. Function f ’ l  is termed the corridor model 
and represents a linear function with inequality constraints. Improvement is 

inside a 
a simple 

accomplished by moving along the first axis of the search space 
corridor of width h. Function f 2  is termed the sphere model and is 
,I-dimensional quadratic bowl. 

Rechenberg ( 1973) showed that the optimum rates of convergence 
progress toward the optimum) are 

expected 

TEAM LRN
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on the corridor model, and 

a = 1.22411x11/n 

on the sphere model. That is, only a single step size control is needed for 
optimum convergence. Given these optimum standard deviations for mutation, 
the optimum probabilities of generating a successful mutation can be calculated 
as 

pyp' = (2e)-I * 0.184 
opt p3 = 0.270. 

Noting the similarity of these two values, 
following rule: 

Rechenberg (1973) proposed the 

The ratio of successful mutations to all muta ions should be l / S .  If this rati 
greater than 1/5, increase the variance; if it is less, decrease the variance. 

Schwefel (198 I )  suggested measuring the success probability on-line over 
trials (where there are 12 dimensions) and adjusting a at iteration t by 

a(t  - n ) 6  

a ( t  - 17) 

if p ,  < 0.2 
if p \  > 0.2 
if p\  = 0.2 

1 is 

O?? 

with 6 = 0.85 and p ,  equaling the number of successes in 1011 trials divided 
by 1017, which yields convergence rates of geometric order for both .f'l and .f? 

(Back et a1 1993; see the book by Back (1996) for corrections to the update 
rule offered by Back et a1 (1993)). 

The use of a single step size control parameter covering all dimensions 
simultaneously is of limited robustness. The optimization performance can be 
improved by using appropriate step sizes in each dimension. This is particularly 
evident when consideration is given to optimizing a vector of parameters each 
of different units of dimension (e.g. temperature and pressure). Determining 
appropriate settings for each of n step sizes poses a significant challenge to the 
human operator; as such, methods have been proposed for self-adapting the step 
sizes concurrent to the evolutionary search. 

The first efforts in self-adaptation date back at least to the article by Reed et (11 
(1967), but the two most common implementations in use currently derive from 
the work of Schwefel (1  98 I ) and Fogel et a1 ( 199 1 ). In each case, the vector of 
objective variables x is accompanied by a vector strategy parameters a where 
a, denotes the standard deviation to use when applying a zero-mean Gaussian 
mutation to that component in the parent vector. The strategy parameters are 
updated by slightly different methods according to Schwefel ( I98 I ) and Fogel 
er crl (1991). TEAM LRN
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Schwefel ( 198 I ) offered the procedure 

U,’ = U/ exp(roN(0, 1 )  + riv, (0, 1 ) )  

x,’ = x, + N ( 0 ,  U/’)  

where the constant T cx l/[2(n’/2)]’’2, ro cx l / (2n)’I2,  N ( 0 ,  I )  is a standard 
Gaussian random variable sampled once for all tz dimensions and N,(O, I )  is a 
standard Gaussian random variable sampled anew for each of the n dimensioris. 
The procedure offers a general control for all dimensions and an individualizcd 
control for each dimension (Schwefel (1981) also offered a simplitied method 
for self-adapting a single step size parameter a). The values of U ’  are, as shoum, 
log-normal perturbations of their parent’s vector U ,  

Fogel et nl ( I99 I ) independently offered the procedure 

where the parents’ strategy parameters are used to create the offspring‘s 
objective values before being mutated themselves, and the mutation of the 
strategy parameters is achieved using a Gaussian distribution scaled by x 
and the standard deviation for each dimension. This procedure also requires 
incorporating a rule such that if any component a/’ becomes negative it is reset 
to an arbitrary small value 6. 

Several comparisons have been conducted between these methods. 
Saravanan and Fogel (1994) and Saravanan et a/  (1995) indicated that ihe 
log-normal procedure offered by Schwefel ( 198 I )  generated generally superior 
optimization performance (statistically significant) across a series of standxd 
test functions. Angeline (1996a), in contrast, found that the use of Gaussian 
mutations on the strategy parameters generated better optimization performarice 
when the objective function was made noisy. Gehlhaar and Fogel (1906) 
indicated that mutating the strategy parameters before creating the offspring 
objective values appears to be more generally useful both in optimizing a set of 
test functions and in molecular docking applications. 

Both of the above methods for self-adaptation have been extended to 
include possible correlation across the dimensions. That is, rather than us(: n 
independent Gaussian random perturbations, a multivariate Gaussian mutat ion 
with arbitrary covariance can be applied. Schwefel (1981) described a method 
for incorporating rotation angles a such that new solutions are created by 

where /3 =: 0.0873 ( 5  ), i = I , .  . . , n and j = I , .  . . , n ( n  - l) /2,  although i t  is 
not necessary to include all possible pairwise correlations in the method. Fogel TEAM LRN
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et al (1 992) offered a similar method operating directly on the components of the 
covariance matrix but the method does not guarantee positive definite matrices 
for n > 2, and the conventional method for implementing correlated mutation 
relies on the use of rotation angles as described above. 

Another type of zero-mean mutation found in the literature is the so-called 
nonunifOrm mutation of Michalewicz (1996, pp I 1 I-2), where 

x,(t) + A ( t ,  ub, - X I @ ) )  

x, (1) - A @ ,  X, ( 1 )  - Ib,) 
if U < 0.5 
if u 2 0.5 

X,'(t) = 

where x ; ( t )  is the ith parameter of the vector x at generation t ,  s, E [Ib,. ub,], 
the lower and upper bounds, respectively, U is a random uniform U ( 0 ,  I ) ,  and 
the function A ( ? ,  y )  returns a value in the range [0, y ]  such that the probability 
of A ( r ,  y)  being close to zero increases as t increases, essentially taking smaller 
steps on average. Michalewicz et a1 (1994) used the function 

A(r ,  y )  = yu(1 - t / T ) "  

where T is a maximal generation number and h is a system parameter chosen 
by the operator to determine the degree of nonuniformity. 

There have been recent attempts to use nonzero-mean mutations on real- 
valued vectors. Ostermeier (1 992) proposed an evolution strategy where the 
Gaussian mutations applied to the objective vector x are controlled by a vector 
of expectations p as well as a vector of standard deviations 0 .  Ghozeil and 
Fogel (1996), following earlier work by Bremermann and Rogson (1964), have 
implemented a polar coordinate mutation in which new offspring are generated 
by perturbing the parent in a random direction (0) with a specified step size ( r ) .  

32.3 Permutations 

Darrell Whitley 

32.3. I Introduction 

Mutation operators can be used in a number of ways. Random mutation 
hillclimbing (Forrest and Mitchell 1993) is a search algorithm which applies 
a mutation operator to a single string and accepts any improving moves. Some 
forms of evolutionary algorithms apply mutation operators to a population of 
strings without using recombination, while other algorithms may combine the 
use of mutation with recombination. 

Any form of mutation which is to be applied to a permutation must yield 
a string which also represents a permutation. Most mutation operators for 
permutations are related to operators which have also been used in neighborhood 
local search strategies. Many of these operators thus can be applied in such as 
way that they reach a well-defined neighborhood of adjacent states. TEAM LRN
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32.3.2 2-0pt, 3-opt, and k-opt 

The most common form of mutation is 2-opt (Lin and Kernighan 1973). Given 
a sequence of elements 

A B C D E F G H  

the 2-opt operator selects two points along the string, then reverses the segment 
between the points. Note that if the permutation is viewed as a circuit as in the 
traveling salesman problem (TSP), then all shifts of a sequence of N elements 
are equivalent. It follows that once two cut points have been selected in this 
circular string, it does not matter which segment is reversed; the effect is the 
same. 

The 2-opt operator can be applied to all pairs of edges in N ( N  - I ) /2 steps. 
This is analogous to one iteration of local search over all variables in a parameter 
optimization problem. If a full iteration of 2-opt to all pairs of edges fails to 
find an improving move, then a local optimum has been reached. 

G 

Figure 32.1. A graph. 

2-opt is classically associated with the Euclidean TSP. Consider the graph 
in figure 32.1. If this is interpreted as a Euclidean TSP, then reversing the 
segment [C D E F] or the segment [G H A B] results in a graph where none of 
the edges cross and which has lower cost than the graph where the edges cross. 
Let {A, B, . . . , 2)  be a set of vertices and (a, b) be the edge between vertices A 
and B.  If vertices {B, C, F, G} in figure 32.1 are connected by the set of edges 
((b,c), (b,f), (b,g), (c,f), (c,g) (f,g)), then two triangles are formed when B 
is connected to F and C is connected to G. To illustrate, create a new graph 
by placing a new vertex X at the point where the edges (b,f)  and (c,g) cross. 
In the new graph in Euclidean space, the distance represented by edge ( ( 7 , ~ )  

must be less than edges (b, x)  + (x,  c), assuming B, C, and X are not on a line; 
likewise, the distance represented by edge (f, g) must be less than edge (f, x )  + 
(x,g). Thus, reversing the segment [C D E F] will always reduce the cost of 
the tour due to this triangle inequality. For the TSP this leads to the general 
principle that multiple applications of 2-opt will always yield a tour that has no 
crossed edges. TEAM LRN
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One can also look at reversing more than two segments at a time. The 
3-opt operator cuts the permutation into three segments and then looks at all 
possible ways of reordering these segments. There are 3 !  = 6 ways to order the 
segments and each segment can be placed in a forward or reverse order. This 
yields up to 23 * 6 = 48 possible new reorderings of the original permutation. 
For the symmetric TSP, however, all shifted arrangements of the three segments 
are equal and all reversed arrangements of the three segments are equal. Thus, 
the 3!  orderings are all equivalent. (By analogy, note that there is only one 
possible Hamiltonian circuit tour between three cities.) This leaves only 23 = 8 
ways of placing each of the segments in a forward or reverse direction, each 
of which yields a unique tour. Thus, for the symmetric TSP, the cost to test 
one 3-opt move is eight times greater than the cost of testing one 2-opt move. 
For other types of scheduling problem, such as resource allocation, reversals 
and shifts of the complete permutation are not necessarily equivalent and the 
cost of a 3-opt move may be up to 48 times greater than that of a 2-opt move. 
Also note that there are ( y )  ways to break a permutation up into combinations 
of three segments compared to (1) ways of breaking the permutation into two 
segments. Thus, the set of all possible 3-opt moves is much larger than the set 
of possible 2-opt moves. This further increases the cost of performing one pass 
of 3-opt over all possible ways of partitioning a permutation into three segments 
compared to a pass of 2-opt over all pairs of possible segments. 

One can also use k-opt, where the permutation is broken into k segments, 
but such an operator will obviously be very costly. 

32.3.3 Insert, s ~ u p ,  and scramble operators 

The TSP is sensitive to the adjacency of elements in a permutation, so that 
2-opt represents a minimal change from one Hamiltonian circuit to another. For 
resource scheduling applications the permutation represent a priority queue and 
reversing a segment of a permutation represents a major change in access to 
available resources. For example, think of the permutation as representing a 
line of people waiting to buy a limited supply of tickets for different seats on 
different trains. The relative order of elements in the permutation tends to be 
important in this case and not the adjacency of the individual elements. In this 
case, a 2-opt segment reversal impacts many customers and is far from a minor 
change. 

Radcliffe and Surry ( 1995) argue for representation-independent concepts of 
mutation and related forms of hillclimbers. Concerning desirable properties of 
a mutation operator, they state, ‘One nearly universal characteristic, however, 
is that they ensure . . . that the entire search space remains accessible from any 
population, and indeed from any individual. In most case mutation operators 
can actually move from any point in the search space to any other point directly, 
but the probability of making “large” moves is very much smaller than that of 
making “small” moves (at least with small mutation rates)’ (p 58). They also TEAM LRN
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suggest that a single mutation should represent a minimal change and look at 
different types of mutation operator for different representations of the TSP. 

For resource allocation problems, a more modest change than 2-opi is 
to merely select one element and to insert i t  at some other position in the 
permutation. Syswerda (1991) refers to a variant of this as position-based 
mutation and describes it as selecting two elements and then moving the second 
element before the first element. Position-based mutation appears to be less 
general than the insert operator, since elements can only be moved forward in 
position-based mutation. 

Similarly, one can select two elements and swap the positions of the two 
elements. Syswerda denotes this as order-based mutation. Note that if an 
element is moved forward or backward one position, this is equivalent to a 
swap of adjacent elements. One way in which swap can be used as a local 
search operator is to swap all adjacent elements, or perhaps also all pairs of 
elements. Finally, Syswerda also defines a scramble mutation operator that 
selects a sublist of permutation elements and randomly reorders (i.e. scrambles) 
the order of the subset while leaving the other elements in the permutation in 
the same absolute position. Davis (1991a) also reports on a scramble sutilist 
mutation operator, except that the sublist is explicitly composed of contiguous 
elements of a permutation. ( I t  is unclear whether Syswerda’s scramble operator 
is also meant to work on contiguous elements or not; an operator that selects 
a sublist of elements over random positions of the permutation is certainly 
possible.) 

For a problem that involved scheduling a limited number of flight simulators, 
Syswerda ( 199 I ,  p 342) reported that when applied individually, the order-based 
swap mutation operator yielded the best results when compared to position- 
based mutation and scramble mutation. In this case the swaps were selected 
randomly rather than being performed over a fixed well-defined neighborhood. 
Davis ( 199 1, p 8 I )  on the other hand reports that the scramble sublist mutation 
operator proved to be better than the swap operator on a number of applications. 

In conclusion, one cannot make a priori statements about the usefulness of 
a particular mutation operator without knowing something about the type of 
problem that is to be solved and the representation that is being used for that 
problem, but in general it is useful to distinguish between permutation problems 
that are sensitive to adjacency (e.g. the TSP) versus relative order (e.g. resource 
scheduling) or absolute position, which appears to be the least common. 

32.4 Finite-state machines 

David B Fogel 

Given a finite-state machine representation (Chapter 18) where each element in 
a population is defined by a 5-tuple 

M = ((3, T ,  P ,  S ,  n)  TEAM LRN
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where Q is a finite set, the set of states, T is a finite set, the set of input 
symbols, P is a finite set, the set of output symbols, s : Q x T -+ Q ,  the next 
state function, and o : Q x T -+ P ,  the next output function, 
there are various methods for mutating parents to create offspring. Following 
directly from the definition, five obvious modes of mutation present themselves: 
( i )  change an output symbol, (ii) change a state transition, ( i i i )  add a new state, 
(iv) delete a state, and (v) change the start state. Each of these will be discussed 
in turn. 

(i) Changing an output symbol consists of determining a particular state 4 E Q ,  
and then determining a particular symbol t E T .  For this pair ( q ,  t), 
identify the associated output symbol p E P and change it to a symbol 
chosen at random over the set P .  The probability mass function for 
selecting a new symbol is typically uniform over the possible symbols in 
P, but can be chosen to reflect nearness between symbols or other known 
relationships between the symbols. 

(ii) Changing a state transition consists of determining a particular state 41 E Q ,  
and then determining a particular symbol t E T .  For this pair (41, t), 
identify the associated next state q 2  and change it to a state chosen at 
random over the set Q. The probability mass function for selecting a new 
symbol is typically uniform over the possible states in Q. 

(iii) Adding a state can only be performed when the maximum size of the 
machine has not been exceeded. The operation is accomplished by 
increasing the set Q by one element. This new state must be properly 
defined by generating an associated output symbol p, and next state 
transition 4, for all input symbols i = 1 ,  . . . , IT( .  The generation is 
typically performed by selecting output symbols and next state transitions 
with equal probability across their respective sets. Optionally, the new state 
may also be forced to be connected to the preexisting states by redirecting 
a randomly selected state transition of a randomly chosen preexisting state 
to the new state. 

(iv) Deleting a state can be performed when the machine has at least two states. 
The operation is accomplished by decreasing the set Q by one element 
chosen at random (uniformly). All state transitions from other states that 
point to the deleted state must be redirected to the remaining states. This 
is often performed at random, with the new states selected with equal 
probability. 

(v)  Changing the start state can be performed when the machine has at least 
two states. The operation is accomplished by selecting a state q E Q to 
be the new starting state. Again, the selection is typically made uniformly 
over the available states. 

The mutation operation can be implemented with various probabilities 
assigned to each mode of mutation (Fogel and Fogel 1986), although many 
of the initial experiments in evolutionary programming used equal probabilities TEAM LRN
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(Fogel et nl 1966). Further, multiple mutations can be performed (see e.g. 
Fogel et al 1966), and macromutations can be defined over pairs or higher-order 
combinations of these primitive operations. Recent efforts by Fogel et nl ( 1994, 
1995) and Angeline et N I  ( 1996) have incorporated the use of self-adaptatiori in 
mutating finite-state machines. 

32.5 Parse trees 

Peter J Angelirie 

Standard genetic programming (Koza 1992), much as with traditional genztic 
algorithms, discounts mutation’s role during evolution, often to an extreme (i.e. 
a mutation rate of zero). In many genetic programs, no mutation operations are 
used, which forces population sizes to be quite large in order to ensure access 
to all the primitives in the primitive language throughout a run. 

In order to avoid unnecessarily large population sizes, Angeline ( I996b) 
defines four distinct forms of mutation for parse trees (Chapter 19). The grout 
mutation operator randomly selects a leaf from the tree and replaces it with a 
randomly generated new subtree (figure 32.2). The shrink mutation operdtor 
selects an internal node from the tree and replaces the subtree below it with 
a randomly generated leaf node (figure 32.3). The switch mutation operdtor 
selects an internal node from the parse tree and reorders its argument subtrees 
(figure 32.4). Finally, the c y l e  mutation operator selects a random node and 
replaces i t  with a new node of the same type (figure 32.5). If a leaf node is 
selected, then i t  is replaced by a leaf node. If an internal node is selected, thcm i t  
is replaced by a function primitive that takes an equivalent number of arguments. 
Note that the mutation operation defined by Koza (1992) is a combination of a 
shrink mutation followed by a grow mutation at the same position. 

Angeline (1996b) also defines a numerical terminal mutation that 
manipulates numerical terminals in a parse tree using the Gaussian mutations 
typically used in evolution strategies and evolutionary programming (see also 
Back 1996, Fogel 1995). In this mutation operation, a single numerical terminal 
in the parse tree is selected at random and a Gaussian random variable with a 
user-defined variance is added to its value. 

If the application of a mutation operation creates a parse tree that violates 
the size limitation criteria for the parse tree, typically the operation is revoked 
and the state of the parse tree prior to the operation is restored. In some cases, 
when a series of mutations are to be performed, as in Angeline (1996b), the 
complete set of mutations is executed prior to checking whether the mutated 
parse tree conforms to the imposed size restrictions. 

When evolving typed parse trees as in Montana (1993, mutation must also 
be sensitive to the return type of the manipulated node. In order to preserve 
the syntactic constraints, the return type of the node after mutation must be the 
same. This is accomplished by keeping track of the return types for the various TEAM LRN
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Figure 32.2. An illustration of the grow mutation operator applied to a Boolean parse 
tree. Given a parent tree to mutate, a terminal node is selected at random (highlighted) 
and replaced by a randomly generated subtree to produce the child tree. 

Figure 32.3. An illustration of the shrink mutation operator applied to a Boolean parse 
tree. Given a parent tree to mutate, an internal function node is selected at random 
(highlighted) and replaced by a randomly selected terminal to produce the child tree. 

Figure 32.4. An illustration of the switch mutation operator applied to a Boolean parse 
tree. Given a parent tree to mutate, an internal function node is selected, two of the 
subtrees below it are selected (highlighted in the figure) and their positions switched to 
produce the child tree. TEAM LRN
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Figure 32.5. An illustration of the cycle mutation operator applied to a Boolean parse 
tree. Given a parent tree to mutate, a single node, either a terminal or function, is selected 
at random (highlighted in the parent) and replaced by a randomly selected node with the 
same number of arguments to produce the child tree. 

primitives in the language and restricting mutation to return those primitives 
with the corresponding type. 

32.6 Other representations 

David B Fogel and Peter J Angeline 

Many real-world applications suggest the use of representations that are hybrids 
of the canonical representations. One common instance is the simultaneous use 
of discrete and continuous object variables, with a general formulation of the 
global optimization problem as follows (Back and Schiitz 1995): 

min{f(x, d ) ( x  E M ,  R" 2 M ,  d E N ,  2"" 1 N } .  

Within evolution strategies and evolutionary programming, the common 
representation is simply the real-integer vector pair (i.e. no effort is made to 
encode these vectors into another representation such as binary). 

The simple approach to mutating such a representation would be to embed 
the integers in the real numbers and use the standard methods of mutation (e.g. 
Gaussian random perturbation) found in evolution strategies and evolutionary 
programming. The results could be rounded to the integers when dealing with 
the elements in d. Back and Schiitz (1995) note, however, that, for a discrete 
optimization problem, the 'optimum point obtained by rounding the results of 
the continuous optimization might be different from the true discrete optimum 
point even for linear objective functions with linear constraints'. Back and 
Schiitz (1995) also note the potential problems in optimizing x and d separately 
(as in the work of Lohmann (1992) and Fogel (1991, 1993) among others) 
because there may be interdependences between the appropriate mutations to z 
and d. TEAM LRN
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Back and Schutz (1995) approach the general problem by including a vector 
of mutation strategy parameters pj E (0, 1)  and j = I ,  2, . . . , d,  where there are 
d components to the vector d.  (Alternatively, fewer strategy parameters could 
be used.) These strategy parameters are adapted along with the usual step size 
control strategy parameters for Gaussian mutation of the real-world vector x. 
The discrete strategy parameters are updated by the formula 

where y is set proportional to [2(d)1/2]-1/2. Actual mutation to the parameters 
in d can be accomplished using an appropriate random variable (e.g. uniform 
or Poisson). 

With regard to mutation in introns, because the introns are not coded into 
functional behavior (i.e. they do not affect performance in terms of the objective 
function), the manner in which they are mutated is irrelevant. 

In the standard genetic algorithm representation, the semantics of an allele 
value (how the allele is interpreted) are typically tied to its position in the 
fixed-length n-ary string. For instance, in a binary string representation, each 
position signifies the presence or absence of a specific feature in the genome 
being decoded. The difficulty with such a representation is that with positions 
in the string representation that are semantically linked, but separated by a large 
number of intervening positions in the string, crossover has a high probability 
of disrupting beneficial settings for these two positions. Goldberg et a1 (1989) 
describe a representation for a genetic algorithm that embodies one approach to 
addressing this problem. In their messy genetic algorithm (mGA), each allele 
value is represented as a pair of values, one specifying the actual allele value 
and one specifying the position the allele occupies. Messy GAS are defined to be 
of variable length, and Goldberg et a1 (1989) describe appropriate methods for 
resolving underdetermined or overdetermined genomes. In this representation it 
is important to note that the semantics are literally carried along with the allele 
value in the form of the allele’s string position. 

Diplodic representations, representations that include multiple allele values 
for each position in the genome, have been offered as mechanisms for modeling 
cyclic environments. In a diplodic representation, a method for determining 
which allele value for a gene will be expressed is required to adjudicate when the 
allele values do not agree. Building on earlier investigations (e.g. Bagley 1967, 
Hollstein 197 1 ,  Brindle 198 1 ), Goldberg and Smith ( 1987) demonstrate that 
an evolving dominance map allows quicker adaptation to cyclical environment 
changes than either a haploid representation or a diploid representation using 
a fixed dominance mapping. In the article by Goldberg and Smith (1987), a 
triallelic representation from the dissertation of Hollstein ( 197 1 )  is used: 1,  
i, and 0. Both 1 and i map to the allele value of ‘ I , ,  while 0 maps to the 
allele value of ‘0’ with 1 dominating both i and 0 and 0 dominating i. Thus, TEAM LRN
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the dominance of a I over a 0 allele value could be altered via mutation by 
altering the value to an i. Ng and Wong (1995) extend the multiallele approach 
to dominance computation by adding a fourth value for a recessive 0. Thus 1 
dominates 0 and o while 0 dominates i and 0. When both allele values for a 
gene are dominant or recessive, then one of the two values is chosen randomly 
to be the dominant value. Ng and Wong (1995) also suggest that the dominance 
of all of the components in the genome should be reversed when the fitnzss 
value of an individual falls by 20% or more between generations. 
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a n d A  E Eiben (33.7) 

33.1 Binary strings 

Lcrshon B Bnoker 

33. I .  I Introduction 

In biological systems (see section 5.4), crossing-over is a complex process 
that occurs between pairs of chromosomes. Two chromosomes are physically 
aligned, breakage occurs at one or more corresponding locations on eiich 
chromosome, and homologous chromosome fragments are exchanged before 
the breaks are repaired. This results in a recombination of genetic material 
that contributes to variability in the population. In evolutionary algorithms, this 
process has been abstracted into syntactic crossing-over (or crossover) operators 
that exchange substrings between chromosomes represented as linear strings 
of symbols. In this section we describe various approaches to implementing 
these computational recombination techniques. Note that, while binary strings 
(Chapter 15) are the canonical representation of chromosomes most often 
associated with evolutionary algorithms, crossover operators work the same 
way on all linear strings regardless of the cardinality of the symbol alphabet. 
Accordingly, the discussion in this section applies to both binary and nonbinary 
string representations. The obvious caveat is that the syntactic manipulations by 
crossover must yield semantically valid results. When this becomes a problem- 
for example, when the chromosomes represent permutations (see Chapter 17)- 
then other syntactic operations must be used. 

33. I .2 Principal mec.hanisms 

The basic crossover operation, introduced by Holland ( 1  975), is a three-step 
procedure. First, two individuals are chosen at random from the population 
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of 'parent' strings generated by the selection operator (see Chapters 22-30). 
Second, one or more string locations are chosen as breakpoints (or c'rosso\vr 
points) delineating the string segments to exchange. Finally. parent string 
segments are exchanged and then combined to produce two resultant 'offspring' 
individuals. The proportion of parent strings undergoing crossover during a 
generation is controlled by the crossover rate, pc  E [0, 11. which determines 
how frequently the crossover operator is invoked. Holland illustrates how to 
implement this general procedure by describing the simple one-point crossover 
operator. Given parent strings x and y, a crossover point is selected by randomly 
choosing an integer k - U (  1 ,  .C - 1): 

Two new resultant strings are formed by exchanging the parent substrings to the 
right of position k .  Holland points out that when the overall algorithm is limited 
to producing only one new individual per generation, one of the resultant strings 
generated by this crossover operator must be discarded. The discarded string is 
usually chosen at random. 

Holland's general procedure defines a family of operators that can be 
described more formally as follows. Given a space I of individual strings, 
a crossover operator is a mapping 

where m E Bt and 

if m, = 0 if m, = 0 
if mi = 1 a,  if in, = I .  

di = { " 
Although this formal description characterizes crossover as a binary operator, 
there are some implementations of crossover involving more than two parents 
(e.g. the multiparent uniform crossover operator described by Furuya and Haftka 
( 1993) and the scanning crossover and diagonal crossover operators described 
by Eiben et a1 (1995)). 

The binary string m is a mask computed for each invocation of the operator 
from the set of crossover points. This mask identifies which string segments 
will be exchanged during the crossover operation. Note that the mask m and its 
complement 1 - m = ( 1  - rnl . . . I - r n k )  generate the same (unordered) set of 
resultant strings. Another way to interpret the mask is as a specification of which 
parent provided the symbol at each position in a resultant string. A crossover 
operation can be viewed as the simultaneous occurrence of two recombination 
everzts, each producing one of the two offspring. The pair (m, 1 - m) can be 
used to designate these recombination events. Each symbol in a resultant string 
is either transmitted by the first parent (denoted in the mask by zero) or the TEAM LRN
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second parent (denoted by one). Consequently, the event generating string, c 
above is specified by m and the event generating d is specified by 1 - m. 

A simple pseudocode for implementing one of these crossover operators is: 

crossover(a, 6) : 
sample U E U ( 0 ,  I )  
if (U > p,) 
then return(a, b) 
fi 
c := a;  
d := 6; 
rn : = compute-mas k() ; 
for i := 1 to t! do 

if (m; = 1 )  
then 

U ;  := bi; 
n; := a; ;  

fi 
od 
return(c, d) ;  

Empirical studies have shown that the best setting for the crossover rate pc 
depends on the choices made regarding other aspects of the overall algorithm, 
such as the settings for other parameters such its population size and mutation 
rate, and the selection operator used. Some commonly used crossover rates 
are pc  = 0.6 (De Jong 1975), pc  E [0.45,0.95] (Grefenstette 1986), and 
p ,  E [0.75,0.95] (Schaffer et nl 1989). Techniques for adaptively modifying the 
crossover rate have also proven to be useful (Booker 1987, Davis 1989, Srinivas 
and Patnaik 1994, Julstrom 1995). The pseudocode shown above makes i t  clear 
that the differences between crossover operators are most likely to be found in 
the implementation of the compute-mask() procedure. The following examples 
of pseudocode characterize the way compute-mask() is implemented for the 
most commonly cited crossover operators. 

One-point crossover. A single crossover point is selected. This operator can 
only exchange contiguous substrings that begin or end at the endpoints of the 
chromosome. This is rarely used in practice. 

sample U E U (  1 ,  t! - 1) 
m := 0; 
f o r i : = u + l  t o l d 0  

od 
return m; 

m, = 1 ;  
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n-point crossover. This operator, first implemented by De Jong ( 1975), 
generalizes one-point crossover by making the number of crossover points a 
parameter. The value n = 2 designating two-point crossover is the choice 
that minimizes disruptive effects (see the discussion of disruption in Section 
33.1.3) and is frequently used in applications. There is no consensus about the 
advantages and disadvantages of using values n 3 3. Empirical studies on this 
issue (De Jong 1975, Eshelman et al 1989) are inconclusive. 

sample u1, .  . . , U,, E U ( l , l ) ,  u1 5 - . .  5 U,, 
if ( ( n  mod 2) = 1)  
then u,,+1 := t!; 

fi 
m := 0; 
for j := 1 to n step 2 do 

m, = 1 ;  
for i := U, + 1 to u,+l do 

od 
od 
return m; 

By convention (De Jong 1975), when n is odd an additional crossover point 
is assumed to occur at position l .  Note that many implementations select the 
crossover points without replacement-instead of with replacement as indicated 
here-to guarantee that the crossover points are distinct. Analysis of disruptive 
effects has shown that there are only small differences in the two approaches 
(see the discussion of disruption in Section 33. I .3) and no empirical differences 
in performance have been reported. 

Uniform crossover. This is an operator introduced by Ackley (1987a) but most 
often attributed to Syswerda (1989). (The basic idea can be traced to early 
work in mathematical population genetics, see Geiringer ( 1944)). The number 
of crossover points is not fixed in advance. Instead, the decision to insert 
a breakpoint is made independently at each string position. This operator is 
frequently used in applications. 

m := 0; 
for i := 1 to l do 

sample U E U ( 0 ,  1 )  

then m, = 1 ;  
fi 

od 
return m 

if (U 5 P d  
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The value p ,  = 0.5 first used by Ackley remains the standard setting for 
the crossover probability at each position, though it may be advantageous to 
use smaller values (Spears and De Jong 1991b). When p r  = 0.5, every binary 
string of length e is equally likely to be generated as a mask. In  this case, 
i t  is often more efficient to implement the operator by using a random integer 
sampled from U ( 0 ,  2' - I )  as the mask instead of constructing the mask one bit 
at a time. 

Punc~uated cro.sso\~er. Rather than computing the crossover mask directly, 
Schaffer and Morishima (1987) used a binary string of 'punctuation marks' 
to indicate the location of crossover points for a multipoint crossover operation. 
The extra information was appended to the chromosome so that the number 
and location of crossover points could be manipulated by genetic search. The 
resulting representation used by the punctuated crossover operator is a string of 
length 2.t, x = (A-, . . . .r[.r; . . .xi) ,  where x r  is the symbol at position i and .r( is a 
punctuation mark that is 1 if position i is a crossover point and 0 otherwise. The 
set of crossover points used in a recombination event under punctuated crossover 
is given by the union of the crossover points specified on each chromosome 

compute-mask(a, b)  
j := 0; 
for i := 1 to t / 2  do 
nil := j ;  
in: := j 

if ( ( c r j  = I )  or (h: = 1 ) )  
then j = 1 - j ;  
fi 

od 
return (m);  

Note that the symbol and punctuation mark associated with a chromosome 
position are transmitted together by the punctuated crossover operator. While 
the idea behind this operator is appealing, empirical tests of punctuated crossover 
were not conclusive and the operator is not widely used. 

In practice, various aspects of these operators are often modified to enhance 
performance. Consider, for example, the choice of retaining both resultant 
strings produced by crossover (a common practice) versus discarding one of 
the offspring. Holland ( 1975) described an implementation designed to process 
only one new individual per generation and, consequently, his algorithm discxds 
one of the offspring generated by crossover. Some implementations retain this 
feature even if they produce more than one new individual per generation. 
However, empirical studies (Booker 1982) have shown that retaining both TEAM LRN
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offspring can substantially reduce the loss of diversity in the population. Another 
widespread practice is to restrict the crossover points to those locations where 
the parent strings have different symbols. This so-called reduced surrogate 
technique (Booker 1987) improves the ability of crossover to produce offspring 
that are different from their parents. 

An implementation technique called shuffle crosso\’er was introduced by 
Eshelman et a1 (1989). The symbols in the parent strings are ‘shuffled’ by a 
permutation operator before crossover is invoked. The inverse permutation is 
applied to the offspring produced by crossover to restore the original symbol 
ordering. This method can be used to counteract the tendency in n-point 
crossover ( I ?  2 1) to disrupt sets of symbols that are widely dispersed on the 
chromosome more than i t  disrupts symbols which are close together (see the 
discussion of bias in Section 33.1.4). 

The crossover mechanisms described so far are all consistent with the 
simplest principle of Mendelian inheritance: the requirement that every gene 
carried by an offspring is a copy of a gene inherited from one of its parents. 
Radcliffe ( 199 1 ) points out that this conservation of genetic material during 
recombination is not a necessary restriction for artificial recombination operators. 
From the standpoint of conducting a robust exploration of the opportunities 
represented by the parent strings, it is reasonable to ask whether a crossover 
operator can generate all possible offspring having some combination of genes 
found in the parents. Given a binary string representation, the answer for one- 
point and n-point crossover is no while the answer for shuffle crossover and 
uniform crossover is yes. (To see this, simply consider the set of possible 
resultant strings for the parents 0 and 1.) For nonbinary strings, however, the 
only way to achieve this capability is to allow the offspring to have genes 
that are not carried by either parent. Radcliffe used this idea as the basis for 
designing the random respectful recombination operator. This operator generates 
a resultant string by copying the symbols at positions where the parents are 
identical, then choosing random values to fill the remaining positions. Note that 
for binary strings, random respectful recombination is equivalent to uniform 
crossover with p ,  = 0.5. 

33.1.3 Formal analysis 

Mathematical characteri,-atiorzs of crossorTer. Several characterizations of 
crossover operators have been formulated to facilitate the formal analysis 
of recombination and genetic algorithms. Geiringer ( 1944) characterized 
recombination in terms of the probability that sets of genes are transmitted 
from parents to offspring during a recombination event. The behavior of a 
crossover operator is then completely specified by the probability distribution 
it induces over the set of all possible recombination events. Geiringer’s study 
of these so-called recombination distributions includes a thorough analysis of TEAM LRN
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recombination acting on a population of linear chromosomes in the absence of 
select ion. 

In more detail, the recombination distribution associated with a crossover 
operator is defined as follows. Let Sr = { 1 ,  . . . , C} be the set of C numbers 
designating the loci in strings of length C .  The number of alleles allowed at 
each locus can be any arbitrary integer. For notational convenience we wil l  
identify a crossover mask m with the subset A 5 St which indicates the loci 
corresponding to the bit positions i where rn, = 1 .  The set A is simply another 
way to designate the recombination event specified by m. The complementary 
subset A' = St \ A designates the recombination event specified by 1 - m. 
The recombination distribution R is given by the probabilities R ( A )  for e x h  
recombination event. Clearly, under Mendelian segregation, R( A )  = R( A')  
since all alleles will be transmitted to one offspring or the other. It is also clear 
that xAcS, R ( A )  = 1.  We can therefore view recombination distributions as 
probability distributions over the power set 2" (Schnell 1961). The marginal 
recombination distribution R A ,  describing the transmission of the loci in A ,  is 
given by the probabilities 

R A ( B )  is the marginal probability of the recombination event in which one 
parent transmits the loci in B C A and the other parent transmits the loci in 
A \ B .  

Other mathematical characterizations of crossover operators are useful when 
the chromosomes happen to be binary strings. If the sum z @ y denotes 
component-wise addition in the group of integers modulo 2 and the product zy 
denotes bitwise multiplication, then the strings produced by a crossover operator 
with mask m are given by ma@(l-m)b and mb@(l-m)a. Liepins and Vose 
(1992) use this definition to show that a binary operator is a crossover operator 
if and only if the operator preserves schemata and commutes with addition and 
bitwise multiplication. Furthermore, they provide two characterizations of the 
set of chromosomes that can be generated by an operator given an initial pool 
of parent strings. Algebraically, this set is given by the mathematical closure 
of the parent strings under the crossover operator. Geometrically, the set is 
determined by projections defined in terms of the crossover masks associ(3ted 
with the operator. Liepins and Vose prove that these algebraic and geometric 
characterizations are equivalent. 

The dynamics of recombination. Geiringer used recombination distributions 
to examine how recombination without selection modifies the proportions of 
individuals in a population over time. Assume that each individual .r E 

{ 1, 2, . . . , k}' is a string of length C in a finite alphabet of k characters. We 
also assume in the following that B E A 5 5''. Let p ( ' ) ( z )  be the frequency TEAM LRN
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of individual 2 in a population at generation t ,  and p i ' ( z )  denote the marginal 
frequency of individuals that are identical to z at the loci in A .  That is, 

P ~ ' ( Z )  = ~ " ' ( y )  for each y satisfying yi = xi  Vi E A .  
21 

Geiringer derives the following important recurrence relations: 

p"+"(z)  = R ( A ) p " ' ( z ) p " ) ( y )  
A . x , y  

A SE is arbitrary 

xi = z ;  Vi E A' 

(33.1) 

[ B E A C Sc. are arbitrary subsets 

(33.3) 

These recurrence relations are equivalent, complete characterizations of how 
recombination changes the proportion of individuals from one generation to the 
next. Equation (33.1 ) has the straightforward interpretation that alleles appear 
in offspring if and only if they appear in the parents and are transmitted by 
a recombination event. Each term on the right-hand side of (33.1) is the 
probability of a recombination event between parents having the desired alleles at 
the loci that are transmitted together. A string z is the result of a recombination 
event A whenever the alleles of z at loci A come from one parent and the 
alleles at loci A' come from the other parent. The change in frequency of an 
individual string is therefore given by the total probability of all these favorable 
occurrences. Equation (33.2) is derived from (33.1) by collecting terms based 
on marginal recombination probabilities. Equation (33.3) is derived from (33.1) 
by collecting terms based on marginal frequencies of individuals. 

The last equation is perhaps the most significant, since it leads directly to a 
theorem characterizing the expected distribution of individuals in the limit. 

Theorem (Geiringer's theorem U). If t loci are arbitrarily linked, with the one 
exception of 'complete linkage', the distribution of transmitted alleles 'converges 
toward independence'. The limit distribution is given by 
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which is the product of the t marginal distributions of alleles from the initial 
popu M o n .  

This theorem tells us that, in the limit, random mating and recombination 
without selection lead to chromosome frequencies corresponding to the simple 
product of initial allele frequencies. A population in this state is said to be 
in lirzkcige eqiiilibriiirn or Robbins’ equilibrium (Robbins 19 18). This result 
holds for all recombination operators that allow any two loci to be separated by 
recombination. 

Note that Holland (1975) sketched a proof of a similar result for schetna 
frequencies and one-point crossover. Geiringer’s theorem applied to schemata 
gives us a much more general result. Together with the recurrence equations, 
this work paints a picture of ‘search pressure’ from recombination acting to 
reduce departures from linkage equilibrium for all schemata. 

Subsequent work has carefully analyzed the dynamics of this convergence 
to linkage equilibrium (Christiansen 1989). It has been proven, for example, 
that the convergence rate for any particular schema is given by the probability 
of the recombination event specified by the schema’s defining loci. In this 
view, an important difference between crossover operators is the rate at which, 
undisturbed by selective pressures, they drive schemata to their equilibrium 
proportions. These results from mathematical population genetics have oiily 
recently been applied to evolutionary algorithms (Booker 1993, Altenberg 1995). 

Disrupriorz una1ysi.s. Many formal studies of crossover operators focus 
specifically on the way recombination disrupts and constructs schemata. 
Holland’s (1975) original analysis of genetic algorithms derived a bound for 
the disruptive effects of one-point crossover. This bound was based on the 
probability t ( ( ) / ( t  - I )  that a single crossover point will fall within the 
defining length t ( c )  of a schema 6. Bridges and Goldberg (1987) subsequently 
provided an exact expression for the probability of disruption for one-point 
crossover. Spears and De Jong (1991a) generalized these results to provide 
exact expressions for the disruptive effects of n-point and uniform crossover. 

Recombination distributions provide a convenient framework for analyzing 
these disruptive effects (Booker 1993). The first step in this analysis is to 
derive the marginal distributions for one-point, n-point, and uniform crossover. 
Analyses using recombination distributions can be simplified for binary strings 
if we represent individual strings using index sets (Christiansen 1989). Each 
binary string II: can be represented uniquely by the subset A C SI using the 
convention that A designates the loci where x, = 1 and A’ designates the loci 
where s, = 0. In this notation St represents the string 1, M represents the string 
0, and A’ represents the binary complement of the string represented by A .  Index 
sets can greatly simplify expressions involving individual strings. Consider, for 
example, the marginal frequency ~ A ( I I : )  of individuals that are identical to 3: at TEAM LRN
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the loci in A.  The index set expression 

makes i t  clear that p A ( B )  involves strings having the allele values given by B 
at the loci designated by A.  Note that p f l ( B )  = 1 and p s , ( B )  = p ( B ) .  

With this notation we can also succinctly relate recombination distributions 
and schemata. If A designates the defining loci of a schema c and B A 
specifies the alleles at those loci, then the frequency of 6 is given by p , 4 ( B )  and 
the marginal distribution RA describes the transmission of the defining loci of 
6. In what follows we will assume, without loss of generality, that the elements 
of the index set A for a schema 6 are in increasing order so that the kth element 
A ( A )  is the locus of the kth defining position of c .  This means, in particular, 
that the outermost defining loci of c are given by the elements A " ,  and A , Q ~ , ,  
where O(6) is the order of 6. It will be convenient to define the following 
property relating the order of a schema to its defining length a(<). 

Dejinition. The kth cwnporient of defining length for schema 6, &, (<), is the 
distance between the kth and k + 1st defining loci, 1 5 k < O((),  with the 
convention that &(c) t - S(6) .  

Note that the defining length of a schema is equal to the sum of its defining 
length components: 

k =  1 

Given these preliminaries, we can proceed to describe the recombination 
distributions for specific crossover operators. 

One-point crossover. Assume exactly one crossover point in a string of 
length t ,  chosen between loci i and i + 1 with probability I/ ( t  - 1) for 
i = 1 , 2 .  . . . , l - 1.  The only recombination events with nonzero probability 
are S ,  = [1,x] and S: = [x + 1 ,  e - 13 for x = I ,  2 , .  . . , t - 1.  The probability 
of each event is 

1 

2( t  - I )  
RI(&.) = RI($) = ~ 

since each parent is equally likely to transmit the indicated loci. The marginal 
distribution 72; for an arbitrary index set A can be expressed solely in terms 
of these recombination events. We will refer to these events as the primary 
recombination events. 

( i )  

Now for any arbitrary event B 2 A there are two cases to consider: 

B = M. This corresponds to the primary recombination events S , ,  x < A ( l )  
and S : ,  x 3 A(o(6, ) .  There are t - 1 - 6(c)  such events. TEAM LRN
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(ii) B # 8. These situations involve the primary events S,r, A(1) 5 x < 
A(o(6)) .  The events B having nonzero probability are given by B, = 
{A(1 ) ,  . . . , A , , ) } ,  1 5 i < O(6). For each i ,  there are 6,(6)  corresponding 
primary events. 

The complete marginal distribution 

e - 1 - 6(6) 
2 ( [ -  1) 

R A ( B )  = W )  
2(e - 1) I 0 

is therefore given by 

if B = 8 or B = A 

if B = B , ,  1 5 i < O(c) 

otherwise. 

Note that if we restrict our attention to disruptive events, we obtain the 
familiar result 

n-point crossover. The generalization to n crossover points in a string of 
length e uses the standard convention (De Jong 1975) that when the number of 
crossover points is odd, a final crossover point is defined at position zero. We 
also assume that all the crossover points are distinct, which corresponds to the 
way multipoint crossover is often implemented. Given these assumptions, there 
are 2( ,:) nonzero recombination events if n is even or n = l ,  and 2( ';I) such 
events if n is odd. Since the n points are randomly selected, these events are 
equally likely to occur. 

We derive an expression for the marginal distributions in the same way as we 
proceeded for one-point crossover. First we identify the relevant recombination 
events, then we count them up and multiply by the probability of a single 
event. Identification of the appropriate recombination events begins with the 
observation (De Jong 1975) that crossover does not disrupt a schema whenever 
an even number of crossover points (including zero) fall between successive 
defining positions. We can use this to identify the configurations of crossover 
points that transmit all the loci in B C A and none of the loci in A \ B .  Given 
any two consecutive elements of A,  there should be an even number of crossover 
points between them if they both belong to B or A \ B .  Otherwise there should 
be an odd number of crossover points between them. This can be formalized 
as a predicate X, that tests these conditions for a marginal distribution RA 

1 
1 

0 otherwise. 

if n is even and {A , , , ,  A ( , - I ) }  n B = !d or { A ( , ) ,  A ( , -  I ) )  

if n is odd and [ A ( , ) ,  A([ - l ) }  n B # yl or { A ( , ) ,  A ( , -  I )  

where 2 5 i 5 O(6) X A ( B ,  n, i )  = 

TEAM LRN
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The recombination events can be counted by simply enumerating all possible 
configurations of crossover points and discarding those not associated with 
the marginal distribution. The following function NA computes this count 
recursively (as suggested by the disruption analysis of Spears and De Jong 
( I99 1 a)): 

Putting all the pieces together, we can now give an expression for the 
complete marginal distribution. 

Uniform crossover. The marginal distribution R;”” for parametrized uniform 
crossover with parameter p is easily derived from previous analyses (Spears and 
De Jong 1991 b). It is given by 

Figure 33.1 shows how the marginal probability of transmission for second- 
order schemata-2 R: ( A )  and 2 R:(o.”’, I A J  = 2-varies as a function of 
defining length. The shape of the curves depends on whether n is odd or 
even. Since the curves indicate the probability of transmitting schemata, the 
area above each curve can be interpreted as a measure of potential schema 
disruption. This interpretation makes it clear that two-point crossover is the best 
choice for minimizing disruption. Spears and De Jong (1991a) have shown that 
this property of two-point crossover remains valid for higher-order schemata. 

Note that these curves are not identical to the family of curves for 
nondisruptive crossovers given by Spears and De Jong. The difference is 
that Spears and De Jong assume crossover points are selected randomly with TEAM LRN
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Figure 33.1. Transmission probabilities for second-order schemata. The inset shows the 
behavior of these curves in the vicinity of the point L / 2 .  

replacement. This means that their measure P2.e,en is a polynomial function of 
the defining length having degree iz, with 17 identical solutions to the equation 
P.,,,,,, = 1/2 at the point !/2. The function R ; ( A ) ,  on the other hand, has 
iz distinct solutions to the equation 2R’:,(A) = 1/2 as shown in the upper 
right-hand corner of figure 33.1. This property stems from our assumption that 
crossover points are distinct and hence selected without replacement. 

Finally, regarding the construction of schema, Holland (1  989) has analyzed 
the expected waiting time to construct a new schema that falls in the intersection 
of two schemas already established in a population. He gives examples showing 
that the waiting time for one-point crossover to construct the new schema can 
be several orders of magnitude shorter than the waiting time for mutation. 
Thierens and Goldberg (1 993) also examine this property of recombination 
by analyzing so-called mixing events-recombination events in which building 
blocks from the parents are juxtaposed or ‘mixed’ to produce an offspring having 
more building blocks than either parent. Using the techniques of dimensional 
analysis they show that, given only simple selection and uniform crossover, 
effective mixing requires a population size that grows exponentially with the 
number and length of the building blocks involved. This indicates that additional 
mechanisms may be needed to achieve effective mixing in genetic algorithms. 

In order to effectively use any inductive search operator, it is important to 
understand whatever tendencies the operator may have to prefer one search 
outcome over another. Any such tendency is called an inductive bias. Random TEAM LRN
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search is the only search technique that has no bias. I t  has long been recognized 
that an appropriate inductive bias is necessary in order for inductive search to 
proceed efficiently and effectively (Mitchell 1980). Two types of bias have 
been attributed to crossover operators in genetic search: di.rtributinnn1 h i n s  and 
positiorzal bins (Eshelman et a1 1989). 

Distributional bias refers to the number of symbols transmitted during a 
recombination event and the extent to which some quantities might be more 
likely to occur than others. This bias is significant because i t  is correlated with 
the potential number of schemata from each parent that can be recombined by 
the crossover operator. An operator has distributional bias if the probability 
distribution for the number of symbols transmitted from a parent is not uniform. 
Both one-point and two-point crossover are free of distributional bias. The 
n-point ( 1 2  > 2)  crossover operators have a distributional bias that is well 
approximated by a binomial distribution with mean t / 2  for large i i .  Uniform 
crossover has a strong distributional bias, with the expected number of symbols 
transmitted given by a binomial distribution with expected value p ,  t .  More 
recently, Eshelman and Schaffer ( I  993) have emphasized the expected value of 
the number of symbols transmitted rather than the distribution of those numbers. 
The bias defined by this criterion, though clearly similar to distributional bias, 
is referred to as recmnbinati\,e bias. 

Positional bias characterizes how much the probability that a set of symbols 
will be transmitted intact during a recombination event depends on the relative 

2 L '  
' ' I 013pts ' ' 

01 pt 14pts 
03pts : 1 381s 
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v) 

d 1  0 7pts 1 opts 

1, 1/2 , "f;; l f 8  0 -a..  0 

0 0.5 1 1.5 2 

Distributional Bias 

Figure 33.2. One view of the crossover bias 'landscape' generated using quantitative 
measures derived from recombination distributions. TEAM LRN
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positions of those symbols on the chromosome. This bias is important because 
it indicates which schemata are likely to be inherited by offspring from their 
parents. It is also indicative of the extent to which these schemata will appear 
in new contexts that can help distinguish the genuine instances of co-adaptation 
from spurious linkage effects. Holland’s ( I  975 j analysis of one-point crossover 
pointed out that the shorter the defining length of a schema, the more likely it is 
to be transmitted intact during the crossover operation. Consequently, one-point 
crossover has a strong positional bias. Analyses of n-point crossover (Spears 
and De Jong 199 1 a) lead to a similar conclusion for those operators, though the 
amount of positional bias varies with n (Booker 1993). Uniform crossover has 
no positional bias, which is one of the primary reasons it is widely used. Note 
that shuffle crossover was designed to remove the positional bias from one-point 
and ri-point crossover. Eshelman and Schaffer ( 1993) have revised their view 
of positional bias, generalizing the notion to something they now call scherna 
bias. An operator has no schema bias if schemata of the same order are equally 
likely to be disrupted regardless of their defining length. 

Recombination distributions can be used to derive quantitative measures of 
crossover bias (Booker 1993). The overall bias ‘landscape’ for various crossover 
operators based on these measures is summarized in figure 33.2. 

33.2 Real-valued vectors 

Recombination acts on two or more elements in a population to generate at 
least one offspring. When the elements are real-valued vectors (Chapter I6), 
recombination can be implemented in a variety of forms. Many of these forms 
derive from efforts within the evolution strategies community because of their 
long involvement with continuous optimization problems. The simpler versions, 
however, have been popularized within research in genetic algorithms. 

For two parent real-valued vectors 21 and 22. each of dimension n, one-point 
crossover is performed by selecting a random crossover point k and exchanging 
the elements occurring after point k in 21 with those that occur after point k in 
21 (see figures 33.3 and 33.4). This operator can be extended to a two-point 
crossover in which two crossover points kl and k2 are selected at random and the 
segment in between these points is exchanged between parents (see figure 33 5 ) .  
Extensions to greater multiple-point crossover operators follow naturally. 

The one-point and two-point operators attempt to recombine vector 
segments. Alternatively, individual elements can be recombined without regard 
to longer segments in which they reside by using a uniform recombination 
operator. Given two parents 21 and 22, one or more offspring are created 
by randomly selecting each next element from either parent (see figure 33.6). 
Typically, each parent has an equal chance of contributing the next element. This 
procedure was offered early on by Reed et al(l967) and was reintroduced within TEAM LRN
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Parents 
21 = X l , l X l , 2  * * * X l , k X l , k + l  * * * X l . t l  

2 2  = x 2 .  I x 2 . 2  * * * X2.kX2.k+ I * * * x2.d 

Figure 33.3. For one-point crossover, two parents are chosen and a crossover point k 
is selected, typically uniformly across the components. Two offspring are created by 
interchanging the segments of the parents that occur from the crossover point to the ends 
of the string. 

- l y  v 

X 

Figure 33.4. A two-dimensional illustration of the potential offspring under a one-point 
crossover operator applied to real-valued parents. 

the genetic algorithm community by Syswerda (1989). A similar procedure is 
also used within evolution strategies and termed ‘discrete recombination’ (see 
below, and also see the uniform scan operator of Eiben er a1 (1994), which is 
applied to multiple parents). 

In contrast to the crossover type recombination operators that exchange 
information between parents, intermediate recombination operators attempt to 
average or blend components across multiple parents. A canonical version acts TEAM LRN
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Figure 33.5. For two-point crossover, two parents are chosen and two crossover points, 
k l  and k 2 ,  are selected, typically uniformly across the components. Two offspring are 
created by interchanging the \egments defined by the points kl and kz.  

Figure 33.6. For uniform crossover, each element of an offspring (here two offspring 
art' depicted) is selected from either parent. The example shows that the first element in 
both offspring were selected from the first parent. In some applications such duplication 
is not allowed. Typically each parent has an equal chance of contributing each elemcnt 
to an offspring. 

Offspring 

4 I I 

Parent 1 Parent 2 

* 

Figure 33.7. A geometrical interpretation of intermediate recombination applied to two 
parents in a single dimension. 

on two parents 21 and 22. and creates an offspring x' as the weighted averaze: 

where a is a number in [0, I ]  and i = 1 ,  . . . , n (figure 33.7). If a = 0.5, then 
the operation is a simple average at each component. Note that this operator 
can be extended to act on more than two parents (i.e. a multirecombination) by 
the operation 

XI' = aI.rIl + a?.r?, + . . . + a/(s/(r TEAM LRN
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subject to 

where there are k individuals involved in the multirecombination. This general 
procedure is also known as arithmetic crossoi'er (Michalewicz 1996, p 1 12) and 
has been described in various other terms in the literature. 

In a more generalized manner, recombination operators can take the 
following forms (Back et a1 1993, Fogel 1995, pp 146-7): 

E./ = I i = l , . . . , k  

(33.4) 
(33.5) 
(33.6) 
(33.7) 
(33.8) 

where S and T denote two arbitrary parents, I I  is a uniform random variable 
over [O. 11, and i and ,j index the components of a vector and the vector itself, 
respectively. The versions are no recombination (33.4). discrete recombination 
(or uniform crossover) (33.5), intermediate recombination (33.6), and (33.7) 
and (33.8) are the global versions of (33.5) and (33.6). respectively. extended 
to include more than two parents (up to as many as the entire population size). 

There are several other variations of crossover operators that have been 
applied to real-valued vectors. 

(i) 

(ii) 

( i i i )  

The heuristic crosso\'er of Wright ( 1994) takes the form 

where ii is a uniform random variable over [0, 11 and 21 and 2 2  are the 
two parent vectors subject to the condition that 21 is not worse than 21. 

Michalewicz (1996, p 129) noted that this operator uses values of the 
objective function to determine a direction to search. 
The simplex crossover of Renders and Bersini ( 1994) selects k > 2 parents 
(say the set J ) ,  determines the best and worst individuals within the selected 
group (say 21 and 22, respectively), computes the centroid of the group 
without 2 2  (say c)  and computes the reflected vector 2' (the offspring) 
obtained from the vector 22 as 

2' = c + ( c  - 2,). 

The geometricul crt,sso\~er of Michalewicz et a1 ( 1996) takes two parents 
21 and 22 and produces a single offspring 2' as 

2' = [ ( X I  lxzl)o.s, . . . , ( - T 1 , / S 2 , 1 ) o . s ] .  

This operator can be generalized to a multiparent version: 

TEAM LRN
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(iv) The jitness-based sc‘an of Eiben et a1 (1904) takes multiple parents arid 
generates an offspring where each component is selected from one of the 
parents with a probability corresponding to the parent’s relative fitness. If 
a parent has fitness f ( i ) ,  then the likelihood of selecting each individual 
component from that parent is f ( i ) /  f ( j ) ,  where j = I ,  . . . , k and there 
are k parents involved in the operator. 

( v )  The diagonal multiparent crossover of Eiben et a1 (1994) operates much 
like n-point crossover, except that in creating k offspring from k parents, 
c‘ >_ 1 crossover points are chosen and the first offspring is constructed to 
contain the first segment from parent 1 ,  the second segment from parent 2, 
and so forth. Subsequent offspring are similarly constructed from a rotation 
of segments from the parents. 

33.3 Permutations 

Dli rre 1 I Wh it1 ey 

33.3. I Iritroduc*tion 

An obvious attribute of permutation problems (see Chapter 17) is that simple 
crossover operators fail to generate offspring that are permutations. Consider the 
following example of simple one-point crossover, when one parent is denoted 
with capital letters and the other with lower-case letters: 

String 1: A B C D E F G H I 
\ /  
/ \  
String 2: h d a e i c f b g 

Offspriqg 1: A B C e 1 c f b g 
Offspring 2: h d a D E F G H I. 

Neither of the two offspring represents a legal permutation. Offspring 1 
duplicates elements B and C while omitting elements H and D .  Offspring 2 
has just the opposite problem: it duplicates H and D while omitting B and C. 

Davis (1985) and Goldberg and Lingle (1085) defined some of the first 
operators for permutation problems. One variant of Davis’s order crossover 
operator can be described as follows. 

Dailis’s order crossover. Pick two permutations for recombination. Denote the 
first parent as the cut string and the other the filler string. Select two crossoi’er 
points. Copy the sublist of permutation elements between the crossover points 
from the cut string directly to the offspring, placing them in the same absolute 
position. This will be referred to as the crossover section. Next, starting at the 
secorid crossoiler point,  find the next element in  the filler string that does not 
appear in the offspring. Starting at the second crossover point, place the element TEAM LRN
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from the filler string into the next available slot in the offspring. Continue 
moving the next unused element from the filler string to the offspring. When 
the end of the filler string (or the offspring) is reached, wrap around to the 
beginning of the string. When done in this way, Davis’s order crossover has 
the property that Radcliffe (1 994) describes as pure recombination: when two 
identical parents are recombined the offspring will also be identical with the 
parents. If one does not start copying elements from the filler string starting at 
the second crossover point, the recombination may not be pure. 

The following is an example of Davis’s order crossover, where dots 
represent the crossover points. The underscore symbol in the crossover section 
corresponds to empty slots in the offspring. 

Parent 1: A B . C D E F . G H I 
Crossover-section: - - C D E F - - - 

Parent 2: h d . a e i c . f b g 
Available elements in order: b g h a i 

Offspring: a i C D E F b g h. 

Note that the elements in the crossover section preserve relative order, 
absolute position, and adjacency from parent 1 .  The elements that are copied 
from the filler string preserve only the relative order information from the second 
parent. 

Partially mapped crossover (PMX).  Goldberg and Lingle ( 1985) introduced the 
partially mapped crossover operator (PMX). PMX shares the following attributes 
with Davis’s order crossover. One parent string is designated as parent 1 ,  the 
other as parent 2. Two crossover sites are selected and all of the elements in 
parent 1 between the crossover sites are directly copied to the offspring. This 
means that PMX also defines a crossover section in the same manner as order 
crossover. 

Parent 1: A B . C D E . F G 
Crossover-section: - - C D E - - 

Parent 2: c f . e b a . d g. 

The difference between the two operators is in how PMX copies elements 
from parent 2 into the open slots in the offspring after a crossover section has 
been defined. Denote the parents as P1 and P2 and the offspring as OS; let 
P1, denote the ith element of permutation PI. The following description of 
selecting elements from P2 to place in the offspring is based on the article by 
Whitley and Yoo (1995). 

For those elements between the crossover points in parent 2, if element P2, 
has already been copied to the offspring, take no action. In the example given 
here, element e in parent 2 requires no processing. We will consider the rest of 
the elements by considering the positions in which they appear in the crossover TEAM LRN
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section. If the next element at position P2, in parent 2 has not already bezn 
copied to the offspring, then find PI; = P2j; if position j has not been filled 
in the offspring then assign OSj = P2;. In the example given here, the next 
element in the crossover section of parent 2 is b which is in the same position as 
D in parent 1 .  Element D is located in parent 2 with index 6 and the offspring at 
OS6 has not been filled. Copy h to the offspring in the corresponding position. 
This yields 

Offspring: - - C D E b _ .  

A problem occurs when we try to place element A in the offspring. Element 
A in parent 2 maps to element E in parent 1 ;  E falls in position 3 in parent 
2, but position 3 has already been filled in the offspring. The position in the 
offspring is filled by C, so we now find element C in parent 2. The position 
is unoccupied in the offspring, so element A is placed in the offspring at the 
position occupied by C in parent 2. This yields 

Offspring: a - C D E b _ .  

All of the elements in parent 1 and parent 2 that fall within the crossover 
section have now been placed in the offspring. ‘The remaining elements can be 
placed by directly copying their positions from parent 2. This yields 

Offspring: a f C D E b g. 

33.3.2 Order arid positiori crossot-er 

Syswerda’s ( 199 1 ) order crossover-2 and position crossover are different from 
either PMX or Davis’s order crossover in that there is no contiguous block 
which is directly passed to the offspring. Instead several elements are randomly 
selected by absolute position. 

Order c*ros.sot~er-2. This operator starts by selecting K random positions in 
parent 2, where the parents are of length L .  The corresponding elements from 
parent 2 are then located in parent I and reordered so that they appear in the 
same relative order as they appear in parent 2. Elements in parent 1 that do not 
correspond to selected elements in parent 2 are passed directly to the offspring. 
For example, 

Parent 1: A B C D E F C 
Parent 2: C F E B A D C 
Selected Elements: * * * .  

The selected elements in parent 2 are F, B, and A. Thus, the relevant elements 
are reordered in parent 1. 

Reorder A B - - - F - from parent 1 which yields f b - - - a _ .  

All other elements are copied directly from parent I .  

( f b - - -  a - >  combined with ( -  - C D E - C> yields f b C D E a G. TEAM LRN
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Position crossover. Syswerda defines a second operator called position 
crossover. Using the same example that was used to illustrate Syswerda’s order 
crossover-2, first pick L - K elements from parent 1 which are to be directly 
copied to the offspring. These elements are copied by position. This yields 

- -  C D E - G .  

Next scan parent 2 from left to right and place place each element which 
does not yet appear in the offspring in the next available position. This yields 
the following progression: 

# # C D E # G = > f # C D E # G  
= > f b C D E # G  
= > f b C D E a G .  

Obviously, in this case the two operators generate exactly the same offspring. 
Jim Van Zant first pointed out the similarity of these two operators in the 
electronic newsgroup The Genetic Algorithm Digest. Whitley and Yoo ( 1995) 
show the two operators to be identical using the following argument. 

Assume there is one way to produce a target string S by recombining two 
parents. Given a pair of strings which can be recombined to produce string S. the 
probability of selecting the K key positions using order crossover-2 required to 

generate a specific string S is (:)-’, while for position crossover the probability 
of picking the L - K key elements that will produce exactly the same effect is 

( L f K ) - l .  Since (k)  = ( L f K )  the probabilities are identical. 
Now assume there are R unique ways to recombine two strings to generate a 

target string S. The probabilities for each unique recombination event are equal 
as shown by the argument in the preceding paragraph. Thus the sum of the 
probabilities for the various ways of ways of generating S are equivalent for 
order crossover-2 and position crossover. Since the probabilities of generating 
any string S are identical, the operators are identical in expectation. 

This also means that in practice there is no difference between using order 
crossover-2 and position crossover as long as the parameters of the operators 
are adjusted to reflect their complementary nature. If position crossover is used 
so that X% of the positions are initially copied to the offspring. then order 
crossover is identical if (100 - A’)% positions are selected as relative order 
positions. 

33.3.3 Uniform crossover 

Davis’ uniform crossover (Davis 1991, p 80) is identical to position crossover 
and order crossover-2, except that two offspring are generated. A bitstring 
is used to denote the selection of positions. Offspring 1 copies the elements 
directly from parent 1 in those positions in the bitstring marked by a ‘ 1 ’  bit. 
Offspring 2 copies the elements from parent 2 in those positions marked by ‘0’ 
bits. Both offspring then copy the remaining elements from the other parent in 
relative order. TEAM LRN
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33.3.4 Edge recombination 

Edge recombination was introduced as a specialized operator for the traveling 
salesman problem (TSP). The motivation behind this operator is that it should 
preserve the adjacency between permutation elements, since the cost of a tour in 
a TSP is directly related to the set of adjacency relationships (i.e. the distances 
between cities) that exists between permutation elements. The original edge 
recombination operator has gone through three revisions and enhancements over 
the years. First, the basic idea behind edge recombination is introduced. 

Since adjacency information directly translates into cost, the adjacency 
information from two parent strings is extracted and stored in an adjacency 
list called the edge table. The edge table really just combines the two 
tours into a single graph. Recombination occurs by building an offspring 
using the adjacency information stored in the edge table; in other words, 
it tries to find a new Hamiltonian circuit in the graph created by merging 
the two parent strings. Finding a Hamiltonian circuit in an arbitrary graph 
is itself a nondeterministic-polynomial-time (NP) complete problem and edge 
recombination must sometimes add edges not contained in the edge table in 
order to generate a legal tour. The various enhancements to edge recombination 
attempt to reduce the number of ‘foreign edges’ (edges not found in the edge 
table) that must be introduced into an offspring during recombination in order 
to maintain a feasible tour. 

In the original edge recombination operator, no information was maintained 
about common edges that were shared by both parents. As a result the operator 
sometimes failed to place an edge in the offspring that appeared in both parents, 
resulting in a kind of ‘mutation by omission’ (Whitley et a1 1991). To solve this 
problem, information about shared edges was added to the edge table. Edges 
shared by the two parents are marked with a + symbol. The algorithm can be 
described as follows. 

Consider the following tours as parents to be recombined: 

Parent 1 :  g d m h b j f i a k e c  
Parent 2: c e k a g b h i j f m d. 

An edge list is constructed for each city in the tour. The edge list for some city 
a is composed of all of the cities in the two parents that are adjacent to city a. 
If some city is adjacent to a in both parents, this entry is flagged (using a plus 
sign). Figure 33.8 shows the edge table which is the collective set of edge lists 
for all cities. 

The algorithm for edge recombination is as follows. 

( i )  Pick a random city as the initial current city. Remove all references to this 
city from the edge table. 

( i i )  Look at the adjacency list of the current city. If there is a common edge 
(flagged by +), go to that city next. (Unless the initial city is the current 
city, there can be only one common edge; if two common edges existed, TEAM LRN
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(iii) 

city 

I f 1 +j, m, i 1 I I I m I +d, f, h 1 
Figure 33.8. An edge table. 

one was used to reach the current city.) Otherwise from the cities on the 
current adjacency list pick the next city to be the one whose own adjacency 
list is shortest. Ties are broken randomly. Once a city is visited, references 
to the city are removed from the adjacency list of other cities and it is no 
longer reachable from other cities. 
Repeat step 2 until the tour is complete or a city has been reached that has 
no entries in its adjacency list. If not all cities have been visited, randomly 
pick a new city to start a new partial tour. 

Jsing the edge table in figure 33.8, city a is randomly chosen as the first 
in the tour. City k is chosen as the second city in the tour since the edge 

(a,k) occurs in both parent tours. City e is chosen from the edge list of city k 
as the next city in the tour since this is the only city remaining in k’s edge list. 
This procedure is repeated until the partial tour contains the sequence [a k e c]. 

At this point there is no deterministic choice for the fifth city in the 
tour. City c has edges to cities d and g, which both have two unused edges 
remaining. Therefore city d is randomly chosen to continue the tour. The 
normal deterministic construction of the tour then continues until position 7. At 
position 7 another random choice is made between cities f and h. City h is 
selected and the normal deterministic construction continues until we arrive at 
the following partial tour: [a k e c d m h b g]. 

In this situation, a failure occurs since there are no edges remaining in the 
edge list for city g. When a potential failure occurs during edge-3 recombination, 
we attempt to continue construction at a previously unexplored terminal point 
in the tour. 

A terminal is a city which occurs at either end of a partial tour, where all 
edges in the partial tour are inherited from the parents. The terminal is said to 
be live if that city still has entries in its edge list; otherwise it is said to be a dead 
terminal. Because city a was randomly chosen to start the tour in the previous 
example, it serves as a new terminal in the event of a failure. Conceptually this 
is the same as inverting the partial tour to build from the other end. 

When a failure occurs, there is at most one live terminal in reserve at the 
opposite end of the current partial tour. In fact, it is not guaranteed to be live, 
since the construction of the partial tour could isolate this terminal city. Once TEAM LRN
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both terminals of the current partial tour are found to be dead, a new partial 
tour must be initiated. Note that no local information is employed. 

We now continue construction of the partial tour [a k e c d m h b g]. The 
tour segment is reversed (i.e. [g b h m d c e k a]). Then city i is added to the 
tour after city a. The tour is then constructed in the normal fashion. In this 
case. there are no further failures. The final offspring tour is [g b h m d c e k 
a i f j]. The offspring produced has a single foreign edge (&-g].) 

When a failure occurs at both ends of the subtour, edge-3 recombination 
starts a new partial tour. However, there is one other possibility, which has 
been described as part of the edge-4 operator (Dzubera and Whitley 1994) but 
which has not been widely tested. 

Assume that the first partial tour has been constructed such that both ends 
of the construction lack a liile terminal by which to continue. Since only one 
partial tour has been constructed and since initially every city has at least two 
edges in the edge table, there must be edges internal to the current partial tour 
that represent possible edges to the terminal cities of the partial tour. The edge-4 
operator attempts to exploit this fact by inverting part of the partial tour so that a 
terminal city is reconnected to an edge which is both internal to the partial tour 
and which appeared in the original edge list of the terminal city. This will cause 
a previously visited city in the partial tour to move to a terminal position. If this 
newly created terminal has cities remaining in its (old) edge list, the offspring 
construction can continue. If it does not, one can look for other internal edges 
that will allow an inversion. Details on the edge-4 recornbination operator are 
given by Dzubera and Whitley (1994). 

If one is using just a recombination operator and a mutation operator, 
then edge recombination works very well as an operator for the TSP, at least 
compared to other recombination operators, but if one is hybridizing such that 
tours are being produced by recombination, then improved using 2-opt, then 
both the empirical and the theoretical evidence suggests that Muhlenbein’s MPX 
operator may be more effective (Dzubera and Whitley 1994). 

33.3.5 Maxima 1 p rese nu ti LY crossover 

Muhlenbein (1991, p 331) offers the following pseudocode for the maximal 
preservative crossover (MPX) operator. (Numbering of the pseudocode has 
been added for clarity.) 

PROC crossover( receiver, donor, offspring) 

Choose position 0 <= i < nodes and length blow <= k <= b,, randomly. 
Extract the string of edges from position i to position j = ( i  + k )  MOD 
nodes from the mate (donor). This is the crossover string. 
Copy the crossover string to the offspring. 
Add successively further edges until the offspring represents a valid tour. 
This is done in the following way. TEAM LRN
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(a) IF an edge from the receiver parent starting at the last city in the 

(b) THEN add this edge from the receiver 
(c) ELSE IF an edge from the donor starting at the last city in the 

(d) THEN add this edge from the donor 
(e) ELSE add that city from the receiver which comes next in the string; 

this adds a new edge, which we will mark as an implicit mutation. 

offspring is possible (does not violate a valid tour) 

offspring is possible 

The following example illustrates the MPX operator. 

Receiver: G D M H B J F I A K E C  
Donor : c e k a g b h i j f m d  
Initial segment: - - k a g - - - - - - _ .  

Note that G is connected to D in the receiver, and that element D through 
element I can be taken from the receiver without duplicating any of the elements 
already in the offspring. This produces the partial tour 

- -  k a g D M H B J F I. 

At this point, there is no edge in either parent that is connected to I and 
has that not been used. Here MPX skips cities in the receiver until i t  finds one 
which has not been used. In this case, 
added to the tour to yield 

E C k a g D M H B  J F I. 

Note that MPX does not transmit 
offspring as effectively as the various 
uses less lookahead to avoid a break in 
when it must introduce a new edge that 
to a nearby city in the tour rather than 

it reaches E. This causes E and C to be 

adjacency information from parents to 
edge recombination operators, since it 
the tour construction. At the same time, 
does not appear in either parent, i t  skips 
picking a random edge. Assuming that 

the tour is partially optimized (for example, if the tour has been improved via 
2-opt) then a city nearby in the tour should also be a city nearby in Euclidean 
space. This, coupled with the fact that an initial segment is copied from one of 
the parents, appears to give MPX an advantage when when combined with an 
operator such as 2-opt. Gorges-Schleuter ( 1989) implemented a variant of MPX 
that has some notable features that are somewhat like Davis's order crossover 
operator. A full description of Gorges-Schleuter's MPX is given by Dzubera 
and Whitley (1994). 

33.3.6 Cycle crossover 

The operators discussed so far are aimed at preserving adjacency information 
(such as edge recombination) or relative order information (such as Davis's 
uniform order-based crossover). Operators may also emphasize position. Cycle 
crossover partitions two parents into a set of cycles: a cycle is a subset of 
elements which is located on a corresponding subset of positions on both the TEAM LRN
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two parent strings. Consider the following example from Oliver et a1 (1987) 
where the permutation elements correspond to the alphabetic characters with 
numbers to indicate position: 

P a r e n t l :  h k c e f d b l a i  g j 
P a r e n t 2 :  a b c d e f g h i j  k 1 
P o s i t i o n s :  1 2 3 4 5 6 7 8 9 10 11 12. 

To find a cycle, pick a position from either parent. Starting with position 1 ,  
elements (h, a) belong to cycle 1 .  The elements (h,  a) also appear in positions 
8 and 9. Thus the cycle is expanded to include positions ( 1 ,  8, 9) and the new 
elements i and 1 are added to the corresponding subset. Elements i and I appear 
in positions 10 and 12, which also causes j to be added to the subset of elements 
in the cycle. Note that adding j adds no new elements, so the cycle terminates. 
Cycle I includes elements (h, a, i, I, j )  in positions ( I ,  8, 9, 10, 12). 

Note that element (c) in position 3 forms a unary cycle of one element. 
Aside from the unary cycle at element c (denoted U), Oliver et a1 note that 
there are three cycles between this set of parents: 

P a r e n t l :  h k c e f  d b l a i g j  
P a r e n t 2 :  a b c d e f  g h i  j k l  
Cycle Label: 1 2 U 3 3 3 2 1 1 1 2 1. 

Recombination can occur by picking some cycles from one parent and 
the remaining cycles from the alternate parent. Note that all elements in the 
offspring occupy the same positions as in one of the two parents. However, few 
applications seem to be position sensitive and cycle crossover is less effective at 
preserving adjacency information (as in the TSP) or relative order information 
(as in resource scheduling) compared to other operators. 

33.3.7 Merge crossover 

Blanton and Wainwright ( 1993) construct permutation recombination operators 
for multiple vehicle routing with time and capacity constraints. The follo\lring 
example of the merge crossover operator MXI uses a global precedence vector. 
Given any two elements in the permutation, the global precedence vector 
indicates which element has higher priority for processing. Elements which 
appear earlier in the vector have higher precedence. In vehicle routing each 
customer has a time window in which they must be served, which can be 
translated into a global precedence vector: for example, customer X should be 
served before customer Y because the time window for X closes before the time 
window for Y. The following example illustrates the operator: 

Parent 1 :  C F C B A H D I E J 
Parent 2:  E B C J D I C A F H 
Precedence: A B C D E F C H I J .  

A single offspring is constructed. In this case, starting at position 1, we 
compare C and E from the two parents; since C has higher precedence, it is TEAM LRN
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placed in the offspring. Because C has already been allocated a position in the 
offspring, the C which appears later in parent 2 is exchanged with the E in the 
initial position of parent 2. This yields 

Parent 1: C F G B A H D I E J 
Parent 2 :  C B G J D I <E> A F H 
Precedence: A B C D E F G H I J 

where the moved E element is bracketed: <E>.  Going to position 2, B has 
higher precedence than F, so B is kept in position 2. Also, elements F and B 
are exchanged in parent 1, which yields 

Parent 1: C B G <F> A H D I E J 
Parent 2 :  C B G J D I <E> A F H 
Precedence: A B C D E F G H I J .  

Note that one need not actually build a separate offspring, since both parents 
The resulting are in effect transformed into copies of the same offspring. 

offspring in the above example is 

Offspring: C B G F A H D E I J .  

The MX-2 operator is similar, except that when an element is added to the 
offspring it is deleted from both parents instead of being swapped. Thus, the 
process works as follows: 

Parent 1: C F G B A H D I E J 
Parent 2:  E B G J D I C A F H 
Precedence: A B C D E F G H I J. 

C is added to the offspring and deleted from both parents 

Parent 1: - F G B A H D I E J 
Parent 2:  E B G J D I - A F H 
Offspring: C .  

Instead of now moving to the second element of each permutation, the first 
remaining elements in the parents are compared: in this case, E and F are the 
first elements and E is chosen and deleted. The parents are now represented as 
follows: 

Parent 1: - F G B A H D I - J 
Parent 2 :  - B G J D I - A F H 
Offspring: C E .  

Element B is chosen to fill position 3 in the offspring, and the construction 
continues to produce the offspring 

Offspring: C E B F G A H D I J .  

Note that, over time, this class of operator will produce offspring that are 
closer to the precedence vectordven if no selection is applied. TEAM LRN
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33.3.8 Some other operators 

Other interesting operators have been introduced over the years for permutation 
problems. Fox and McMahon (1991) introduced an intersection operator that 
extracts features common to both parents. Eshelman (1991) used a similar 
strategy to build a recombination operator that extracts all common subtours 
for the TSP, and assigns all other elements using local search (2-opt) over an 
otherwise random assignment. Fox and McMahon also constructed a union 
operator. In this case, each permutation is converted into a binary matrix 
representation and the offspring is the logical-or of the matrices representing 
the parents. 

Radcliffe and Surry (1995) have also introduced new operators for the TSP, 
largely by looking at different representations and then defining appropriate 
operators with respect to the representations. These representations include the 
permutation representation, the undirected edge representation, the directed edge 
representation, and the corner representation. 

33.4 Finite-state machines 

David B Fogel 

Recombination can be applied to logical structures such as finite-state machines. 
There have been a variety of proposals to accomplish this in the literature. Recall 
that a finite-state machine (Chapter 18) is a 5-tuple: 

M = ( Q ,  T ,  P ,  S, 01 

where Q is a finite set, the set of states, T is a finite set, the set of input 
symbols, P is a finite set, the set of output symbols, s : Q x T -+ Q, the 
next state function, and o : Q x T --+ P ,  the next output function. Perhaps the 
earliest proposal to recombine finite-state machines in simulated evolution can 
be found in the work of Fogel (1964) and Fogel et a/ (1966, pp 21-3). The 
following extended quotation (Fogel et a1 1966, p 21) may be insightful: 

The recombination of individuals of opposite sex appears to benefit 
natural evolution. By analogy, why not retain worthwhile traits that 
have survived separate evolution by combining the best surviving 
machines through some genetic rule; mutating the product to yield 
offspring? Note that there is no need to restrict this mating to the 
best two surviving ‘individuals’. In fact, the most obvious genetic 
rule, majority logic, only becomes meaningful with the combination 
of more than two machines. 

Fogel et a1 (1966) suggested drawing a single state diagram which expresses 
the majority logic of an array of finite-state machines. Each state of the majority 
logic machine is the composite of a state from each of the original machines. TEAM LRN
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Figure 33.9. Three parent machines (top) are joined by a majority logic operator to 
form another machine (bottom). The initial state of each machine is indicated by a short 
arrow pointing to that state. Each state in the majority logic machine is a combination 
of the states of the three parent machines with the output symbol being chosen as the 
majority decision of two of the three parent machines. For example, the state BDF in 
the majority logic machine is determined by examining the states B, D, and F in each 
of the individual machines. For an input symbol of 0, all three states respond with a 
0, therefore this symbol is chosen for the output to an input of 0 in state BDF. For an 
input symbol of I ,  two of the three states respond with a 0, thus, this being the majority 
decision, this symbol is chosen for the output to an input of 1 in  state BDF. Note that 
several states of the majority logic machine are isolated from the start state and could 
never be expressed. 

Thus the majority machine may have a number of states as great as the product 
of the number of states in the original machines. Each transition of the majority 
machine is described by that input symbol which caused the respective transition 
in the original machines, and by that output symbol which results from the 
majority element logic being applied to the output symbols from each of the 
original machines (figure 33.9). If there are only two parents to recombine in 
this manner, the majority logic machine reduces to the better of the two parents. 

Zhou and Grefenstette ( 1  986) used recombination on finite-state automata 
applied to binary sequence induction problems. The finite-state automata were TEAM LRN
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defined in terms of a 5-tuple: 

where Q is a finite set of states, S is a finite input alphabet, qo E Q is the initial 
state, 6 is the transition function mapping the Cartesian product of Q and S into 
Q ,  and F is the set of final states, a subset of Q. The chosen representation 
was 

(XI ,  y1, FI), (x2, y2, F2), - * .  7 (x8- y8- F8) 

where each ( X I ,  Y , ,  F , )  represented the state i, X, and Y, corresponded to the 
destination state of the zero and one arrows from state i ,  respectively, and F, 
was a three-bit code where the first two bits were used to indicate whether or 
not there existed an arrow from state i, and the third bit showed whether the 
state i was a final state. The maximum number of states was set to eight. The 
details of how recombination was implemented on this representation are not 
obvious from the article by Zhou and Grefenstette (1986) but it is reasonable to 
infer that a simple one-point crossover operator was applied. 

Fogel and Fogel (1986) used recombination in a similar manner on finite- 
state machines by exchanging single states between machines (i.e. output symbol 
and next-state transitions for each input symbol for a particular state). Birgmeier 
(1996) also used a similar method implemented as uniform crossover between 
two machines by state. One offspring was produced from two parents by 
choosing each row in the transition table from either parent (with specific 
procedures for handling parents with differing numbers of states). Birgmeier 
(1996) also offered a new joining operator where the offspring’s size is the sum 
of the two parents’ number of states. Both the output and transition matrices 
from the two parents are juxtaposed in the offspring and some of the entries 
are randomly reset to point to a state in the other half, thus joining the new 
machines into one. 

33.5 Crossover: parse trees 

Peter J Angeline 

From an evolutionary computation view, crossover, in its most basic form, is an 
operator that exchanges representational material between two parent structures 
to produce offspring. Occasionally, it is important to introduce additional 
constraints on the crossover operation to ensure that the created children observe 
certain necessary constraints of the representation or problem environment. 

Parse tree representations (Chapter I9), as typically used in genetic 
programming (Koza 1992), require that the crossover operation produce 
offspring that are also valid parse trees. In order to remain a valid parse tree, 
the structure must have only terminals at the leaf positions of the tree and only 
function nodes at each of its internal positions. In addition, each function node TEAM LRN
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of the parse tree must have the correct number of subtrees below it, one for 
each argument that the function requires. 

Often in genetic programming, a simplification is made so that all functions 
and terminals in the primitive language return the same data type. This is 
referred to as the closure principle (Koza 1992). The effect is to reduce the 
number of syntactic constraints on the programs so that the complexity of the 
crossover operation is minimized. 

The recursive structure of parse tree representations makes the definition of 
crossover for tree representations that adhere to the above caveats surprisingly 
simple. Cramer (1985) initially defined the now standard subtree crossover 
for parse trees shown in figure 33.10. First, a random subtree is selected 
and removed from one of the parents. Note that this leaves a hole in the 
parent such that there exists a function that has a null value for one of its 
parameters. Next, a random subtree is extracted from the second parent and 
inserted at the point in the first parent where its subtree was removed. Now 
the hole in the first parent is again filled. The process is completed by 
inserting the subtree extracted from the first parent into the position in the 
second parent where its subtree was removed. As long as only complete 
subtrees are swapped between parents and the closure principle holds, this simple 
crossover operation is guaranteed to produce syntactically valid offspring every 
execution. 

Typically, when evolving parse tree representations, a user-defined limit on 
the maximum size of any tree in the population is provided. Subtree crossover 
will often increase the size of a given parent such that, over a number of 
generations, individuals in an unrestricted population may grow to swamp the 
available computational resources. Given a user-defined restriction on subtree 
size, expressed as a limit according to either the depth of a tree or the number of 
nodes it contains, crossover must enforce this limit. When a crossover operation 
is executed that creates one or more offspring that violate the size limitation, the 
crossover operation is invalidated and the offspring are restored to their original 
forms. What happens next is a matter of choice. Some systems will reject both 
children and revert back to selecting two new parents. Other systems attempt 
crossover repeatedly either until both offspring fall within the size limit or until 
a specified number of attempts is reached. Given the nature of the crossover 
operation, the likelihood of performing a valid crossover operation in a small 
number of attempts, say five, is fairly good. 

Koza ( 1992) popularized the use of subtree crossover for manipulating 
parse tree representations in genetic programming. The subtree swapping 
crossover of Koza (1992) shares much with the subtree crossover defined 
by Cramer (1985) with a few minor differences. The foremost difference is 
a bias introduced by Koza (1992) to limit the probability that a leaf node 
is selected as the subtree from a parent during crossover. The reasoning 
for this bias according to Koza (1992) is that, in most trees, the number 
of leaf nodes will be roughly equivalent to the number of nonleaf nodes. TEAM LRN
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Figure 33.10. An illustration of the crossover operator for parse trees. A subtree is 
selected at random from each parent, extracted, and exchanged to create two offspring 
trees. 

Consequently, the number of subtrees of depth one will be approximately 
the number of subtrees of depth greater than one. Merely swapping a leaf 
between parents to produce children half of the time will not tend to greatly 
advance the evolutionary process, so, during crossover in a genetic program, 
the probability that a leaf node is selected is controlled by a bias term called 
the leaf frequency. Typically, the leaf frequency is set at about 10%, meaning 
that 10% of the time when a subtree is selected a leaf node will be chosen 
in a parent while the rest of the time only nonleaf nodes will be chosen. 
Koza (1992) offers no empirical validation of this bias term or its assumed 
value. 

Often it is important to violate the closure principle and allow multiple 
types in the parse tree representation in order to more effectively solve a given 
problem. This implies that there are some functions such that they cannot be 
used as arguments to certain other functions. Crossover in such typed parse 
trees, as described by Montana (1995), proceeds much as in subtree crossover 
with one caveat to compensate for the additional constraint of multiple return 
types. First, a random node is selected in the first parent’s parse tree. The return 
type of the root of the subtree is determined and the selection of crossover points 
in the second parent is restricted to only those subtrees that have identical return 
types. This ensures that the syntactic constraints in both parents are upheld. TEAM LRN
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When evolving genetic programs using automatically defined functions 
(ADFs), Koza (1994) uses a slightly modified version of subtree crossover. 
When crossing two genetic programs with ADFs, if the crossover position in 
the first tree is selected to be within a particular subroutine then only crossover 
points in the corresponding subroutine in the second parent are considered. 
This is similar to the typed crossover of Montana (1995) except that, rather 
than restricting the crossover positions in the second parent based on the type 
of subtree extracted from the first, it restricts the selection using the functional 
origin of the initially selected subtree. 

33.6 Other representations 

Peter J Angeline and David B Fogel 

The use of recombination on the alternative mixed-integer representations, and 
those using introns, does not generally vary from the standard usage. All of 
the available options of discrete and intermediate recombination apply to the 
mixed-integer format offered by Back and Schiitz (1995). Introns are used 
with the belief that they will enhance the chances for crossover to recombine 
building blocks. Moreover, Wu and Lindsay ( I  995) suggest that the addition of 
introns can have an equivalent effect of varying crossover probabilities across 
a chromosome, and state ‘the advantages of the noncoding segment method 
including the fact that the genetic algorithm does not need to be modified to 
handle variable crossover probabilities and that crossover location calculations 
are much simpler’. 

33.7 Multiparent recombination 

A E Eiben 

33.7. I Introduction 

To make the following survey unambiguous we have to start with setting some 
conventions on terminology. The term population will be used for a multiset 
of individuals that undergoes selection and reproduction. This terminology 
is maintained in genetic algorithms, evolutionary programming, and genetic 
programming, but in evolution strategies all p individuals in a ( p ,  A )  or ( p  + A )  
strategy are called parents. We, however, use the term parents only for those 
individuals that are selected to undergo recombination. In other words, parents 
are those individuals that are actually used as inputs for a recombination 
operator; the arity of a recombination operator is the number of parents it uses. 
The next notion is that of a donor, being a parent that actually contributes to (at 
least one of) the alleles of the child(ren) created by the recombination operator. 
This contribution can be for instance the delivery of an allele, as in uniform TEAM LRN
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crossover in canonical genetic algorithms (GAS), or the participation in an 
averaging operation, as in intermediate recombination in evolutionary strategies 
(ESs). As an illustration consider a steady-state GA where 100 individuals 
form the population and two of them are chosen as parents to undergo uniform 
crossover to create one single offspring. If, by pure chance, the offspring only 
inherits alleles from parent 1, then parent I is a donor, and parent 2 is not. 

33.7.2 Miscellaneous operators 

We begin this survey with papers where the multiparent aspect has an incidetital 
character. By an incidental character we mean that the operator is defined and 
used in a specific application and has, for instance, a certain fixed arity, or, 
even if the definition is general and would allow comparison between different 
number of parents, this aspect is not given attention. 

The recombination mechanism of Kaufman ( 1967) is applied for evolving 
models for a given process, where a model is an array of a number of blocks, 
and models may differ in the numbers of blocks they contain. Recombination of 
four models to create one new model is defined as follows. The size of the child 
(the number of blocks) is equal to the size of each of its parents with probability 
0.25. The ith block of the child is chosen with equal probability from those 
parents that have at least i blocks. Let us note that there is an exception to this 
latter rule of choosing one of the parents’ blocks, but that exception has a pery 
problem-specific reason; therefore we rather present the general idea here. 

In an extensive study on bit vector function optimization, stochastic iterated 
genetic hill climbing (SIGH) is studied and compared with other techniques, such 
as GAS, iterated hill climbing, and simulated annealing ?(Ackley 1987b). SIGH 
applies a sophisticated probabilistic voting mechanism with time-dependent 
probability distributions (cooling), where rn ‘voters’ (m being the size of the 
population) determine the values of a new bitstring. SIGH is shown to be better 
than a GA with one-point and uniform crossover on four out of the six test 
functions and the overall conclusion is that it is ‘competitive in speed with a 
variety of existing algorithms’. 

In the introductory paper on the parallel GA ASPARAGOS (Miihlenhein 
1989), p-sexual lwting recombination is applied for the quadratic assignment 
problem. Let us remark that the name p-sexual is somewhat misleading, as 
there are no different genders and no restriction on having one representative of 
each gender for recombination. The voting recombination produces one child 
of p parents based on a threshold value U. It determines the ith allele of the 
child by comparing the ith alleles of the selected parent individuals. If the same 
allele is found more often than the threshold U, this allele is included in the 
child; other bits are filled in randomly. In the experiments the values p = 7 
and U = 5 are used and it ‘worked surprisingly well’, but comparison between 
this scheme and ordinary two-parent recombination was not performed. TEAM LRN
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An interesting attempt to combine GAS with the simplex method resulted in 
the ternary simplex crossob'er (Bersini and Seront 1992). If x '  , .I-', x7 are the 
three parents sorted in decreasing order of fitness, then the simplex crossover 
generates one child x by the following two rules. 

(i) 

( i i )  if x: # x,? then xt  = x;' with probability p and x, = 1 -x; with probability 

If x,] = x,? then x, = x,]; 

I - p .  

Using the value p = 0.8, the simplex GA performed better than the standard 
GA on the DeJong functions. The authors remark that applying a modified 
crossover on more than three parents 'is worth to try'. 

The problem of placing actuators on space structures is addressed by Furuya 
and Haftka ( 1993). The authors compare different crossovers: among others 
they use uniform crossover with two as well as with three parents in a GA 
using integer representation. Based on the experimental results they conclude 
that the use of three parents did not improve the performance. This might be 
related to another conclusion, indicating that for this problem mutation is an 
efficient operator and crossover might not be important. Uniform crossover 
with an arbitrary number of parents is also used by Aizawa ( 1  994) as part of a 
special schema sampling procedure in a GA, but the multiparent feature is only 
a side-effect and is not investigated. 

A so-called triadic crossover is introduced and tested by Ph1 (1994) for a 
multimodal spin-lattice problem. The triadic crossover is defined in terms of 
two parents and one extra individual, chosen randomly from the population. The 
operator creates one child; it takes the bits in positions where the first parent 
and the third individual have identical bits from this parent and the rest of the 
bits from the other parent. Clearly, the result is identical to the outcome of 
a voting crossover on these three individuals as parents. Although the paper 
is primarily concerned with different selection schemes, a comparison between 
triadic, one-point, and uniform crossover is made, where triadic crossover turned 
out to deliver the best results. 

33.7.3 Operators with undejined arity 

In the introduction to this section we defined the arity of a recombination 
operator as the number of parents it  uses. In some cases this number depends 
on the outcomes of random drawings; the operator is called without knowing 
in advance how many parents will be applied. In this section we treat three 
mechanisms of this kind. 

Global recombination in ESs allows the use of more than two recombinants 
(Back 1996, Schwefel 1995). In ES there are two basic types of recombination, 
intermediate and discrete recombination, both having a standard two-parent 
variant and a global variant. Given a population of 1-1 individuals global TEAM LRN
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recombination creates one offspring x by the following mechanism. 

global discrete recombination 

g lo ba 1 intermediate recom bina tion x: + X I  (x? - x: ) 
X I  = 

where the two parents xsi, sT (S,, T, E ( 1 ,  . . . , p } )  are redrawn for each i 
anew and so is the contraction factor x l .  The above definition applies to the 
object variables as well as the strategy parameter part; that is, for the mutation 
stepsizes (a) and the rotation angles (a). Observe that the multiparent character 
of global recombination is the consequence of redrawing the parents xsi , x T  for 
each coordinate i . Therefore, probably more than two individuals contribute 
to the offspring x,  but their number is not defined in advance. It is clear 
that investigations on the effects of different numbers of parents on algorithm 
performance could not be performed in the traditional ES framework. The option 
of using multiple parents can be turned on or off, that is, global recombination 
can be used or not, but the arity of the recombination operator is not tunable. 
Experimental studies on global versus two-parent recombination are possible, 
but so far there are almost no experimental results available on this subject. 
Schwefel (1995) notes that ‘appreciable acceleration’ is obtained by changing, to 
a bisexual from an asexual scheme (i.e., adding recombination using two parents 
to the mutation-only algorithm), but only a ‘slight further increase’ is obtained 
when changing from bisexual to multisexual recombination (i.e., using global 
recombination instead of the two-parent variant). Recall the remark on the name 
p-sexual voting. The terms bisexual and multisexual are not appropriate either 
for the same reason: individuals have no gender or sex, and recombination can 
be applied to any combination of individuals. 

Gene-pool recornbination (GPR) was introduced by Muhlenbein and Voigt 
(1996) as a multiparent recombination mechanism for discrete domains. It is 
defined as a generalization of two-parent recombination (TPR). Applying GPR 
is preceded by selecting a gene pool consisting of would-be parents. Applying 
GPR the two parent alleles of an offspring are randomly chosen for each locus 
with replacement from the gene pool and the offspring allele is computed ‘using 
any of the standard recombination schemes for TPR’. Theoretical analysis on 
infinite populations shows that GPR is mathematically more tractable than TPR. 
I f n  stands for the number of variables (loci), then the evolution with proportional 
selection and GPR is fully described by n equations, while TPR needs 2” 
equations for the genotypic frequencies. In practice GPR converges about 25% 
fdster than TPR for Onemax. The authors conclude that GPR separates the 
identification and the search of promising areas of the search space better; 
besides i t  searches more reasonably than does TPR. Voigt and Muhlenhein 
(1995) extend GPR to continuous domains by combining it with uniform fuzzy 
two-parent recombination (UFTPR) from Voigt et a1 ( 1995). The resulting 
uniform fuzzy gene-pool recombination (UFGPR) outperforms UFTPR on the 
spherical function in terms of realized heritability, giving it a higher convergence TEAM LRN
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speed. The convergence of UFGPR is shown to be about 25% faster than that 
of UFTPR. 

A very particular mechanism is the linkage e\d\ting genetic operator 
(LEGO) as defined by Smith and Fogarty (1996). The mechanism is designed 
to detect and propagate blocks of corresponding genes of potentially varying 
length during the evolution. Punctuation marks in the chromosomes denote 
the beginning and the end of each block and more chromosomes with the 
appropriately positioned punctuation marks are considered as donors of a whole 
block during the creation of a child. Although the multiparent feature is only a 
side-effect, LEGO is a mechanism where more than two parents can contribute 
to an offspring. 

33.7.4 Operators with tunable ar io  

Unary reproduction operators, such as mutation, are often called asexual, based 
on the biological analogies. Sexual reproduction traditionally amounts to 
two-parent recombination in evolutionary computation (EC), but the operators 
discussed in the previous section show that the sexual character of recombination 
can be intensified, in the sense that more than two parents can be recombined. 
Nevertheless, this intensification is not graded: the multiparent option can be 
turned on or off, but the extent of sexuality (the number of parents) cannot be 
tuned. In this section we consider recombination operators that make sexuality 
a graded, rather than a Boolean, feature by having an arity that can vary. In 
other words, the operators we survey here are called with a certain number of 
parents as input, and this number can be modified by the user. 

An early paper mentioning multiparent recombination is that of Bremermann 
et a1 (1966) on solving linear equations. It presents the definition of three 
different multiparent recombination mechanisms, called nz-tuple mating. Given 
m binary parent vectors X I ,  . . . , x m ,  the majority mating mechanism creates one 
offspring vector x by choosing 

if half or more of the parents have .rl = 0 
otherwise. 

x; = 

Another mating mechanism for rn binary parent vectors is called mating by 
crossing over. Describing it in contemporary terms, the mechanism works by 
selecting m - 1 crossover points (identical in each parent) and then composing 
one child by selecting exactly one segment from each parent. The third 
operator is called mating by averaging and it is defined for vectors of continuous 
variables. Quite naturally, the child x of parents X I ,  . , . , s"' is defined by 
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where E;:, A, = 1 .  Unfortunately, only very little is reported on the 
performance of these operators. It  is remarked that using majority mating and 
mating by crossing over the results were somewhat inconclusive; no definite 
benefit was obtained. Using mating by averaging, however, led to ‘spectaciilar 
effects’ within a linear programming scheme, but these effects are not specified. 

Sc*mziiing crossover has been introduced as a generalization and extension of 
uniform crossover in GAS creating one child from Y parents (Eiben 1991, Eiben 
et a1 1994). The name is based on the following general procedure scanning 
parents and thus building the child from left to right. Let x’,  . . . . x r  be the 
selected parents of length L and let s denote the child. 

procedure scanning : 

begin 

INITIALIZE position markers as il  := . . . = i ,  := 1;  

5% mark 1st position in each parent 

f o r i = I  t o i = L  

CHOOSE j E { I ,  . . . , r } ;  

.Tr : = .T * 

UPDATE position markers il  , . . . , i,; 
% i t h  allde cf.r is the i,  th allele ofxJ 

I /  ’ 

end 

The above procedure provides a general framework for a certain style of 
multiparent recombination, where the precise execution, hence the exact 
definition of the operator, depends on the mechanisms of CHOOSE and 
UPDATE. In the simplest case the UPDATE operation can shift the markers 
one position to the right; that is, i ,  := i ,  + I ,  j E { I ,  . . . , r } ,  can be used. This 
is appropriate for bitstrings, integer, and floating-point representation. Scanning 
can also be easily adapted to order-based representation, where each individual 
is a permutation, if the UPDATE operation shifts to the first allele which is not 
in the child yet: 

i ,  := min{k I k 2 i , ,  x i  @ { X I ,  . . . , x,,}} j E { I ,  . . . , r } .  

Observe that, because of the term k 2 i, above, a marker can remain at the 
same position after an UPDATE, and will only be shifted if the allele standing 
at  that position is included in the child. This guarantees that each offspring will 
be a permutation. 

Depending on the mechanism of choosing a parent (and thereby an allele) 
there are three different versions of scanning. The choice can be deterministic, 
choosing a parent containing the allele with the highest number of occurrences 
and breaking ties randomly (oc.c.itrrerzce-6ased sc*annirig). Alternatively it can 
be random, either unbiased, following a uniform distribution thus giving each 
parent an equal chance to deliver its allele (imfiwrn scanning), or biased bj the TEAM LRN
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fitness of the parents, where the chance of being chosen is fitness proportional 
(fitness-based scanning). Uniform scanning for r = 2 is the same as uniform 
crossover, although creating only one child, and it also coincides with discrete 
recombination in evolution strategies. The occurrence-based version is very 
much like the voting or majority mating mechanism discussed before. but 
without the threshold v or with v = [m/2J  respectively. The effect of the 
number of parents in scanning crossover has been studied in several papers. An 
overview of these studies is given in the next subsection. 

Diagorzal crossover has been introduced as a generalization of one-point 
crossover in GAS (Eiben et a1 1994). In its original form diagonal crossover 
creates r children from r parents by selecting r - 1 crossover points in the parents 
and composing the children by taking the resulting r chromosome segments from 
the parents ‘along the diagonals’. Later on, a one-child version was introduced 
(van Kemenade et a1 1995). Figure 33.1 1 illustrates both variants. I t  is easy to 
see that for r = 2 diagonal crossover coincides with one-point crossover, and in 
some sense it also generalizes traditional two-parent n-point crossover. To be 
precise, if we define ( r ,  s) segmentation crossover as working on r parents with 
J’ crossover points, diagonal crossover becomes its ( r ,  r - 1) version, its (2. n )  
variant coincides with n-point crossover, and one-point crossover is an instance 
of both schemes for ( r , s )  = (2, 1 )  as parameters. The effect of operator arity 
for diagonal crossovers will be also discussed in the next subsection. 

A recombination mechanism with tunable arity in ES is proposed by 
Schwefel and Rudolph (1995). The ( p ,  K ,  A, p )  ES provides the possibility 
of freely adjusting the number of parents (called ancestors by the authors). 
The parameter p stands for the number of parents and global recombination is 
redefined for any given set {XI ,  . . . , x P )  of parents as 

pary discrete recombination 
p / p intermediate recorn bination = { ; j / p ) c P  k = l  x,k 

where j E { 1 ,  . . . , p )  is uniform randomly chosen for each i independently. 
Let us note that, in the original paper, the above operators are called uniform 
crossover and global intermediate recombination respectively. We introduce 
the names pary discrete recombination and p / p  intermediate recombination 
respectively here for the sake of a consequent terminology. (A reason for 
using the tenn p / p  intermediate recombination instead of pary intermediate 
recombination is given below, in the paragraph discussing a paper by Eiben and 
Back (1997).) Observe that pary discrete recombination coincides with uniform 
scanning crossover, while p / p  intermediate recombination is a special case of 
mating by averaging. At this time there are no experimental results available 
on the effect of p within this framework. 

Related work in ESs also uses p as the number of parents as an independent 
parameter for recombination (Beyer 1995). For purposes of a theoretical analysis 
it is assumed that all parents are different, uniform randomly chosen from the 
population of p individuals. Beyer defines the p / p  intermediate recombination TEAM LRN
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Figure 33.11. Diagonal crossover (top) and its one-child version (bottom) for three 
parents. 

and pary discrete recombinations similarly to Schwefel and Rudolph (1995) 
and denotes them as intermediate ( p / p ~ )  recombination and dominant ( p / p ~ )  
recombination, respectively. The ( p / p ,  A) evolution strategy is studied on the 
spherical function for the special case of p = p. By this latter assumption it is 
not possible to draw conclusions on the effect of p, but the analysis shows that 
the optimal progress rate @* of the ( p / p ,  A) ES is a factor of p higher than 
that of the ( p ,  A )  ES, for both recombination mechanisms. Beyer hypothesizes 
that recombination has a statistical error correction effect, called genetic repair, 
and this effect can be improved by using more than two parents for creating 
offspring (Beyer 1996). TEAM LRN
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Another generalization of global intermediate recombination in evolution 
strategies is proposed by Eiben and Back (1997). The new operator is 
applied after selecting p parent individuals from the population of p,  and the 
resampling of two donors xsi and xT for each i takes only these p individuals 
into consideration. Note that this operator is also pary, just like the p / p  
intermediate recombination as defined above, but utilizes only two donors for 
each allele of the offspring. To express this difference, this operator is called 
p/2  intermediate recombination and the operator of Beyer ( 1995) and Schwefel 
and Rudolph ( 1  995) is called p / p  intermediate recombination. Observe, that 
the p / 2  intermediate recombination is a true generalization of the original 
intermediate recombination: the case of p = 2 coincides with local intermediate 
recombination, while for p = p ,  it is equal to global intermediate recombination. 

While intermediate recombination is based on taking the arithmetical average 
of the real-valued alleles of the parents, the geometrical average is computed by 
the geometrical crossover. Michalewicz et a1 ( I  996) present the definition for 
any ( k  2 2) number of parents, where the offspring of the parents {XI .  . . . , x k }  
is defined as 

<x:>"', , ( X y '  ( x y  . . . 

where n is the chromosome length and a1 + . . . + ak = I .  The experimental 
part of the paper is, however, based on the two-parent version, hence there are 
no results on the effect of using more than two parents with this operator. 

The same holds for the so-called sphere crossover (Schoenauer and 
Michalewicz 1997); the authors give the general definition for k parents, but 
the experiments are restricted to the two-parent version. In the general case the 
offspring of parents {XI,  . . . , x k }  is defined as 

33.7.5 The efSects of higher operator arities 

In recent years quite a few papers have studied the effect of operator arity on EA 
performance, some even in combination with varying selective pressure. Here 
we give a brief summary of these results, sorted by articles. 

The performance of scanning crossover for different numbers of parents is 
studied by Eiben et a1 (1994) in a generational GA with proportional selection. 
Bit-coded GAS for function optimization (DeJong functions FI-4 and a function 
from Michalewicz) as well as order-based GAS for graph coloring and the TSP 
are tested with different mechanisms to CHOOSE. In the bit-coded case more 
parents perform better than two; for the TSP and graph coloring two parents 
are advisable. Comparing different biases in choosing the child allele, on four 
out of the five numerical problems fitness-based scanning outperforms the other 
two and occurrence-based scanning is the worst operator. TEAM LRN
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Eiben et ul ( 1  995) investigate diagonal crossover, compared to the classical 
two-parent n-point crossover and uniform scanning in a steady-state GA with 
linear-ranked biased selection (b  = 1.2) and worst-fitness deletion. The test suite 
consists of two two-dimensional problems (F2 and a function from Michalewicz) 
and four scalable functions (after Ackley, Griewangk, Rastrigin, and Schwefel). 
The performance of diagonal crossover and n-point crossover shows a significant 
correspondence with r and n ,  respectively. The best performance is always 
obtained with high values, between 10 and 15, where 15 was the maximum 
tested. Besides, diagonal crossover is always better than n-point crossover using 
the same number of crossover points ( r  = n - I ) ,  thus representing the sanie 
level of disruptiveness. For scanning the relation between r and performance is 
less clear, although the best performance is achieved for more than two parents 
on five out of the six test functions. 

The interaction between selection pressure and the parameters r for diagonal 
crossover and n for n-point crossover is investigated by van Kemenade et ul 
(1995). A steady-state GA with tournament selection (tournament size between 
one and six) combined with random deletion and worst-fitness deletion was 
applied to the Griewangk and the Schwefel functions. The disruptiveness of 
both operators increases in parallel as the values for r and IZ are raised, but 
the experiments show that diagonal crossover consistently outperforms n-point 
crossover. The best option proves to be low selection pressure and high r in 
diagonal crossover combined with worst-fitness deletion. 

Motivated by the difficulties of characterizing the shapes of numerical 
objective functions, the effects of operator arity are studied on fitness landscapes 
with controllable ruggedness by Eiben and Schippers (1996). The NK 
landscapes of Kauffman (1993), where the level of epistasis, hence the 
ruggedness of the landscape, can be tuned by the parameter K ,  are used for this 
purpose. The multiple-child and the one-child version of diagonal crossover and 
uniform scanning are tested within a steady-state GA with linear-ranked biased 
selection ( h  = 1.2) and worst-fitness deletion for N = 100 and different values 
of K .  Two kinds of epistatic interaction, nearest-neighbor interaction ("1) and 
random-neighbor interaction (RNI), are considered. Similarly to earlier findings 
(Eiben er a1 1995), the tests show that the performance of uniform scanning 
cannot be related to the number of parents. The two versions of diagonal 
crossover behave identically, and for both operators there is a consequent 
improvement when increasing r .  However, as the epistasis (ruggedness of 
the landscape) grows from K = 1 to K = 5 the advantage of more parents 
becomes smaller. On landscapes with significantly high epistasis ( K  = 25)  
the relationship between operator arity and algorithm performance seems to 
diminish. We illustrate these observations with a figure showing the error 
(deviation of the best individual from the optimum) at termination for the case 
of NNI in figure 33.12. The final conclusions of this investigation can be very 
well related to works of Schaffer and Eshelman ( 1991 ), Eshelman and Schaffer 
(1993) and Hordijk and Manderick (1995) on the usefulness of (two-parent) TEAM LRN
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Figure 33.12. Illustration of the effect of the number of parents (horizontal axis) on the 
error at termination (vertical axis) on NK landscapes with NNI, N = 100, K = 1 (top), 
K = 25 (bottom). 

recombination. It seems that if and when crossover is useful, that is, on mildly 
epistatic problems, then multiparent crossover can be more useful than the two- 
parent variants. 

The results of an extensive study of diagonal crossover for numerical 
optimization in GAS are reported by Eiben and van Kemenade (1997). Diagonal 
crossover is compared to its one-offspring version and n-point crossover on a test TEAM LRN
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suite consisting of eight functions, monitoring the speed, that is, the total number 
of evaluations, the accuracy, that is, the median of the best objective function 
value found (all functions have an optimum of zero), and the success rate, th;it 
is, the percentage of runs where the global optimum is found. In most cases an  
increase of performance can be achieved by increasing the disruptivity of the 
crossover operator (using higher values of n for n-point crossover), and even 
more improvement is achieved if the disruptivity of the crossover operator and 
the number of parents is increased (using more parents for diagonal crossover). 
This study gives a strong indication that for diagonal crossover an advantageous 
multiparent effect does exist, that is, (i) using this operator with more than tmo 
parents increases GA performance and (ii) this improvement is not only the 
consequence of the increased number of crossover points. 

A recent investigation of Eiben and Back (1097) addresses the working of 
multiparent recombination operators in continuous search spaces, in particulz 
within ESs. This study compares p / 2  intermediate recombination, pary discrete 
recombination, which is identical to uniform scanning crossover, and diagonal 
crossover with one child. Experiments are performed on unimodal landscapes 
(sphere model and Schwefel’s double sum), multimodal functions with regularly 
arranged optima and a superimposed unimodal topology (Ackley, Griewangk, 
and Rastrigin functions) and on the Fletcher-Powell and the Langermarin 
functions that have an irregular, random arrangement of local optima. On 
the Fletcher-Powell function multiparent recombination does not increase 
evolutionary algorithm (EA) performance; besides for the unimodal double sum 
increasing operator arity decreases performance. Other conclusions seem to 
depend on the operator in question; the greatest consequent improvement on 
raising the number of parents is obtained for diagonal crossover. 

33.7.6 Conclusions 

The idea of applying more than two parents for recombination in an evolutionary 
problem solver occurred as early as the 1960s (Bremermann et a1 1966). Several 
authors have designed and applied recombination operators with higher arities 
for a specific task, or used an existing operator with an arity higher than two 
(Kaufman 1967, Muhlenbein 1989, Bersini and Seront 1992, Furuya and Haftka 
1993, Aizawa 1994, Pal 1994). Nevertheless, investigations explicitly devoted 
to the effect of operator arity on EA performance are still scarce; the study of the 
phenomenon of multiparent recombination has just begun. What would such a 
study mean? Similarly to the question of whether binary reproduction operators 
(crossover with two parents) have advantages over unary ones (using mutation 
only), it can be investigated whether or not using more than two parents is 
advantageous. In the case of operators with tunable arity this question can be 
refined and the relationship between operator arity and algorithm performance 
can be studied. I t  is, of course, questionable whether multiparent recombination 
can be considered as one single phenomenon showing one behavioral pattern. TEAM LRN
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The survey presented here discloses that there are (at least) three different types 
of multiparent mechanism with tunable arity: 

(0 

( i i )  

(iii) 

operators based on allele frequencies among the parents, such as majority 
mating, voting recombination, pary discrete recombination, or scanning 
crossover; 
operators based on segmenting and recombining the parents, such as mating 
by crossing over, diagonal crossover, or (r.  s) segmentation crossoLrer; 
operators based on numerical operations, in particular averaging of 
(real-valued) alleles, such as mating by averaging, p / p  intermediate 
recombination, p / 2  intermediate recombination. and geometrical and 
spherical crossover. 

A priori it cannot be expected that these different schemes show the same 
response to raising operator arities. There are also experimental results 
supporting differentiation among various multiparent mechanisms. For instance, 
there seems to be no clear relationship between the number of parents and 
the performance of uniform scanning crossover, while the opposite is true for 
diagonal crossover (Eiben and Schippers 1996). 

Another aspect multiparent studies have to take into consideration is the 
expected different behavior on different types of fitness landscape. As no 
single technique would work on every problem, multiparent mechanisms will 
have their limitations too. Some studies indicate that on irregular landscapes. 
such as NK landscapes with relatively high K values (Eiben and Schippers 
1996), or the Fletcher-Powell function (Eiben and Back 1997). they do not 
work. On the other hand, on the same Fletcher-Powell function Eiben and van 
Kemenade ( I  997) observed an advantage of increasing the number of parents for 
diagonal crossover in a GA framework using bit coding of variables, although 
they also found indications that this can be an artifact, caused simply by the 
increased disruptiveness of the operator for higher arities. Investigations on 
multiparent effects related to fitness landscape characteristics smoothly fit into 
the tradition of studying the (dis)advantages of two-parent crossovers under 
different circumstances (Schaffer and Eshelman 199 1 ,  Eshelman and Schaffer 
1993, Spears 1993, Hordijk and Manderick 1995). 

Let us also touch on the issue of practical difficulties when using multiparent 
recombination operators. Introducing operator ari ty as a new parameter implies 
an obligation of setting its value. Since so far there are no reliable heuristics for 
setting this parameter, finding good values may require numerous tests, prior 
to 'real' application of the EA. A solution may be based on previous work on 
adapting (Davis 1989) or self-adapting (Spears 1995) the frequency of applying 
different operators. Alternatively, a number of competing subpopulations could 
be used in the spirit of Schlierkamp-Voosen and Miihlenbein (1996). According 
to the latter approach each different arity is used within one subpopulation 
and subpopulations with greater progress, that is, with more powerful operators. 
become larger. A first assessment of this technique can be found in an article by TEAM LRN
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Eiben er al ( 1998a). Another recent result indicates the advantage of using more 
parents in the context of constraint satisfaction problems (Eiben et a1 1998b). 

Concluding this survey we can note the following. Even though there are 
no biological analogies of recombination mechanisms where more than two 
parent genotypes are mixed in one single recombination act, formally there is 
no necessity to restrict the arity of reproduction mechanisms to one (mutation) 
or two (crossover) in computer sirnulations. Studying the phenomenon of 
multiparent recombination has just begun, but there is already substantial 
evidence that applying more than two parents can increase the performancc 
of EAs. Considering multiparent recombination mechanisms is thus a sound 
design heuristic for practitioners and a challenge for theoretical analysis. 
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Russell W Anderson (34.1), David B Fogel (34.2) and 
Martin Schiitz (34.3) 

34.1 The Baldwin effect 

Russell W Andersont 

34.1.1 Interactions between learning and evolution 

In the course of an evolutionary optimization, solutions are often generated 
with low phenotypic fitness even though the corresponding genotype may be 
close to an optimum. Without additional information about the local fitnr:ss 
landscape, such genetic near misses would be overlooked under strong selection. 
Presumably, one could rank near misses by performing a local search and scoring 
them according to distance from the nearest optimum. Such evaluations itre 
essentially the goal of hybrid algorithms (Chapters 1 1-1 3, Balakrishnan and 
Honavar 1995), which combine global search using evolutionary algorithms 
and local search using individual learning algorithms. Hybrid algorithms can 
exploit learning either actively (via Lamarckian inheritance) or passively (via 
the Baldwin effect). 

Under Lamarckian algorithms, performance gains from individual learning 
are mapped back into the genotype used for the production of the next 
generation. This is analogous to Lamarckian inheritance in evolution;uy 
theory-whereby characters acquired during a parent’s lifetime are passed on to 
their offspring. Lamarckian inheritance is rejected as a biological mechanism 
under the modern synthesis, since it is difficult to envision a process by 
which acquired information can be transferred into the gametes. Nevertheless, 
the practical utility of Lamarckian algorithms has been demonstrated in some 
evolutionary optimization applications (Ackley and Littman 1994, Paechter et 
al 1995). Of course, these algorithms are limited to problems where a reverse 
mapping from the learned phenotype to genotype is possible. 

t This work was supported by the Public Health Foundation and the Kett Foundation. The aurhor 
wishes to thank David Fogel and Peter Turney for encouragement and comments. 
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However, even under purely Darwinian selection, individual learning 
influences evolutionary processes, but the underlying mechanisms are subtle. 
The ‘Baldwin effect’ is one such mechanism, whereby learning facilitates the 
assimilation of new genetic innovations (Baldwin 1896, Morgan 1896, Osborn 
1896, Waddington 1942, Hinton and Nowlan 1987, Maynard Smith 1987, 
Anderson 1995a, Turney et a1 1996). Learning allows an individual to complete 
and exploit partial genetic programs and thereby survive. In other words, 
learning guides evolution by assigning ‘partial credit’ for genetic near misses. 
Individuals with useful genetic variations are thus maintained by learning, and 
the corresponding genes increase in frequency in the subsequent generation. As 
genetic components necessary for a complex structure accumulate in the gene 
pool, functions that previously required supplemental learning are replaced by 
genetically determined systems. 

Empirical studies can quantify the benefits of incorporating individual 
learning into evolutionary algorithms (Belew 1989, French and Messinger 1994, 
Nolfi et a1 1994, Whitley et a1 1994, Cecconi et a1 1995). However, a theoretical 
treatment of the effects of learning on evolution can strengthen our intuition for 
when and how to implement such approaches. This section presents an overview 
of the principles underlying the Baldwin effect, beginning with a brief history of 
the elucidation and development in evolutionary biology. Computational models 
of the Baldwin effect are reviewed and critiqued. The Baldwin effect is then 
analyzed using standard quantitative genetics. Given reasonable assumptions of 
the effects of learning on fitness and its associated costs, this theoretical approach 
builds and strengthens conventional intuition about the effects of individual 
learning on evolution. Finally, issues concerning problem formulation, learning 
algorithms, and algorithmic design are discussed. 

34. I .2 The Baldwin effect in evolutionary biology 

Complex biological structures require the coordinated expression of several 
genes in order to function properly. Determining how such structures arise 
through evolution is problematic because it is often difficult to envision the 
evolutionary advantage offered by intermediate forms. Without additional 
developmental mechanisms, individuals with incomplete genetic programs 
would gain no evolutionary advantage over those devoid of any genetic 
components. 

Baldwin (1896), Osborn (1896), and Morgan (1896) proposed how 
individual learning can facilitate the evolution of complex genetic structures 
by protecting partial genetic innovations, or ‘ontogenetic variations’: ‘[learning] 
supplements such partial co-ordinations, makes them functional, and so keeps the 
creature alive’ (Baldwin 1896). Baldwin further proposed how this individual 
advantage of learning guides the process of evolution: ‘the variations which 
were utilized for ontogenetic adaptation in the earlier generation, being thus 
kept in existence, are utilized more widely in the subsequent generation’ TEAM LRN
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(Baldwin 1896). Over evolutionary time, abilities that were previously 
maintained by adaptive systems can be replaced by genetically determined 
systems (i.e. instincts). Waddington proposed an analogous interaction between 
developmental processes and evolution, whereby developmental adaptations 
‘guide’ or ‘canalize’ evolutionary change (Waddington 1942, Hinton and 
Nowlan 1987). Formal mathematical or analytical models quantifying the 
Baldwin effect did not appear in the literature until fairly recently. 

The model of Hinton and Nowlan. The first quantitative model demonstrating 
the Baldwin effect was constructed by Hinton and Nowlan (1987). They used a 
computer simulation to study the effects of individual learning on the evolution 
of a population of neural networks. They considered an extremely difficult 
problem, where a network conferred a fitness advantage only if it was fully 
functioning (all connections wired correctly). Each network was given 20 
possible connections, specified by 20 genes. 

Briefly consider the difficulty of finding this solution using a pure genetic 
algorithm. Under a binary genetic coding scheme (allelic values of either 
‘correct’ or ‘incorrect’), the probability of randomly generating a functional 
net is 2*’. Note that a net with 19 out of 20 correct connections is no better off 
than one with no correct connections. The corresponding fitness landscape has a 
singularity at the correct solution with no useful gradient information, analogous 
to a putting green (figure 34.1). Finding this solution by a pure genetic algorithm, 
then, is the evolutionary equivalent of a ‘hole in one’. Of course, given a large 
enough random population, an evolutionary algorithm could theoretically find 
this solution in one generation. 

Hinton and Nowlan modeled a modified version of this problem, where 
genes were allowed three alternative forms (alleles): present ( l) ,  absent (01. or 
‘plastic’ (?). Connections specified by plastic alleles could be varied by random 
trials during the individual’s life span. This allowed an individual to complete 
and exploit a partially hard-wired network. Hence, genetic near misses (e.g. 
19 out of 20 correct genes) could quickly learn the remaining connection(s) 
and differentially survive. The presence of plastic alleles, therefore, softened 
the fitness landscape (figure 34.1). Hinton and Nowlan described the effect 
of learning ability in their simulation as follows: ‘[learning] alters the shape 
of the search space in which evolution operates and thereby provides good 
evolutionary paths towards sets of co-adapted alleles’. The second aspect of the 
Baldwin effect (genetic assimilation) was manifested in the mutation of plastic 
alleles into genetically fixed alleles. 

Issues raised with computational models. Hinton and Nowlan’s paper is 
regarded as a landmark contribution to understanding the interactions between 
learning and evolution (Mitchell and Belew 1995) and has inspired a 
proliferation of modeling studies (Fontanari and Meir 1990, Ackley and Littman TEAM LRN
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Combinations of alleles 

Figure 34.1. Schematic representation of the fitness landscape in the model of Hinton 
and Nowlan. A two-dimensional representation of genome space in the problem 
considered by Hinton and Nowlan (1987). The horizontal axis represents all possible 
gene combinations, and the vertical axis represents relative fitness. Without learning, only 
one combination of alleles correctly completes the network; hence only one genotype has 
higher fitness, and no gradient exists. The presence of plastic alleles radically alters this 
fitness landscape. Assume a correct mutation occurs in one of the 20 genes. The advent 
of a new correct gene only partially solves the problem. Learning allows individuals 
close (in Hamming space) to complete the solution. Thus, these individuals will be 
slightly more fit than individuals with no correct genes. Useful genes will thereby be 
increased in subsequent generations. Over time, a large number of correct genes will 
accumulate in the gene pool, leading to a completely genetically determined structure. 

1991, 1994, Whitley and Gruau 1993, Whitley et a1 1994, Balakrishnan and 
Honavar 1995, Turney 1995, 1996, Turney et a1 1996). Considering the rather 
specific assumptions of their model, it is useful to contemplate which aspects 
of their results are general properties. Among the issues raised by this and 
subsequent studies are the degree of biological realism, the nature of the fitness 
landscape, the computational cost of learning, and the role of learning in static 
fitness landscapes. 

First, the model’s assumption of plastic alleles that can mutate into 
permanent alleles seems biologically spurious. However, the Baldwin effect 
can be manifested in the evolution of a biological structure regardless of 
the genetic basis of that structure or the mechanisms underlying the learning 
process (Anderson 1995a). The Baldwin effect is simply a consequence of 
individual learning on genetic evolution. Subsequent studies have demonstrated 
the Baldwin effect using a variety of learning algorithms. Turney (1995, 1996) 
has observed a Baldwin effect in a class of hybrid algorithms, combining a 
genetic algorithm (GENESIS) and an inductive learning algorithm, where the 
Baldwin effect was manifested in shifting biases in the inductive learner. French 
and Messinger (1994) investigated the Baldwin effect under various forms of 
phenotypic plasticity. Cecconi et al (1995) observed the Baldwin effect in a TEAM LRN
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GA+NN hybrid (a hybrid of a genetic algorithm and a neural network), as 
did Nolfi et a1 (1994) and Whitley and Gruau (1993). Unemi et a1 (1994) 
demonstrated the Baldwin effect in a GA+RL hybrid (GA and reinforcement 
learning; in particular, they studied Q-learning). Whitley et a f  (1994) studied 
the Baldwin effect with a hybrid of a GA and a simple hill climbing algorithm. 
Finally, it is interesting to note that genetic mechanisms closely analogous 
to the plastic alleles of Hinton and Nowlan may be in effect in evolutionary 
interactions between natural and adaptive antibodies (Anderson I99Sb. 199Oa). 
Nevertheless, it is difficult to see how this particular model could be generalized 
to learning in neural systems. 

Second, the model of Hinton and Nowlan assumed an extremely rugged 
fitness landscape. The assumption of an ‘all-or-nothing’ fitness landscape has 
apparently led some to assert that a nonlinear selection function is necessary for 
a Baldwin effect to occur (Hightower et a1 1996). This claim is not supported 
by rigorous analysis. Learning can alter the shape of any fitness landscape 
and therefore can affect evolutionary trajectories. For example, consider linear 
directional selection. If learning only serves to change the slope of the selection 
function, it will by definition affect its severity. 

Third, the observation that ‘learning facilitates evolution,’ has often been 
interpreted as ‘learning accelerates evolution’. Although several empirical 
studies have demonstrated increased convergence rates for hybrid algorithms 
(Parisi et a1 1991, Turney 1995, Ackley and Littman 1991, 1994, Balakrishnan 
and Honavar I99S), this more general claim is untenable under many conditions. 
Intuitively, learning can slow genetic change by protecting otherwise less 
optimal genotypes from selection. Furthermore. individual adaptive abilities can 
represent an enormous investment of resources (consider the cerebral cortex in 
man!). Since individual learning accrues a computational or biological cost, the 
costs und benejts of learning must be weighed before drawing such conclusions. 

Fourth, most current hybrid algorithm applications operate on a fixed 
problem, or static fitness landscape. An exception is a study by Unemi et 
crl (1994), which involves a simulated robot in a maze. They show that the 
ability to learn is initially beneficial, but it will eventually be selected out 01’ the 
gene pool, unless the maze changes dynamically with each new individual trial. 
Ultimately, learning has no selective advantage in fixed environments, since, 
presumably, once the optimal genotype is found, exploration away from this 
optimum only reduces fitness (Stephens 1993, Via 1993, Anderson 199Sa). The 
studies by Hinton and Nowlan ( 1987) and Fontanari and Meir (1990) corroborate 
this thesis: their simulations showed that as individuals arose with allelic 
combinations close to the optimum, the plastic alleles (representing the ability 
to learn) were selected out of the gene pool. In other words, the computational 
advantage of individual learning decreases over the course of an evolutionary 
optimization. Under these conditions, individual learning can only be maintained 
in a population subject to changing environmental conditions. A similar case 
has been made for phenotypic plasticity in general (West-Eberhard 1989, Steams TEAM LRN
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1989, Scheiner 1993, Via 1993) as well as for sexual versus asexual reproduction 
(Maynard-Smith 1978). 

34.1.3 Quantitative genetics models 

In order to make some of these issues more explicit, it is useful to study 
the Baldwin effect under the general assumptions of quantitative genetics. 
A quantitative genetics methodology for modeling the effects of learning on 
evolution was developed by Anderson (1995a), and the primary results of this 
analysis are reviewed in this section. The limitations of this theoretical approach 
are well known. For example, quantitative genetics assumes infinite population 
sizes. Also, complete analysis is often limited to a single quantitative character. 
Nevertheless, such analyses can provide a baseline intuition regarding the effects 
of learning and evolution. 

All essential elements of an evolutionary process subject to the Baldwin 
effect are readily incorporated into a quantitative genetics model. These 
elements include (i) a function for the generation of new genotypes through 
mutation and/or recombination, (ii) a mapping from genotype to phenotype, (iii) 
a model of the effects of learning on phenotype, and (iv) a selection function. 
In this section, this methodology is demonstrated for a simple, first-order model, 
where only the phenomenological effects of learning on selection are considered. 
More advanced models are discussed, which incorporate a model of the learning 
process, along with its associated costs and benefits. These analyses illustrate 
several underappreciated points: (i) learning generally slows genetic change, ( i i )  
learning offers no long-term selective advantage in fixed environments, and (iii) 
the effects of learning are somewhat independent of the mechanisms underlying 
the learning process. 

Learning as a phenotypic variance. For a first-order model, consider an 
individual whose genotype is a real-valued quantitative character subject to 
normal (Gaussian) selection: 

(34.1) 

where w,(g) represents selection as a function of genotype, ge represents the 
optimal genotype, and V , ( t )  is variance of selection as a function of time. A 
direct mapping from genotype to phenotype is implicitly assumed. 

What effect does learning have on this selection function? Learning allows 
an individual to modify its phenotype in response to its environment. Consider 
an individual whose genotype (g i )  is a given distance (Igi - gel) from the 
environmental optimum ( g e ) .  Regardless of the mechanisms underlying the 
learning process, the net effect of learning is to reduce the fitness penalty 
associated with this genetic distance. Because of its ability to learn, an 
individual with genotype gi has a probability of modifying its phenotype to TEAM LRN
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the environmental value g e  which is a function of the distance between these 
two values. A simple way to model this effect is to specify a phenotypic 
variance due to learning (Vl). This is equivalent to increasing the variance of 
selection. Thus, learning increases the width of the selection function such that 
V, is replaced by V,* = V, + Vl. 

Fixed selection, constant learning. Consider a population subject to selection 
with a fixed environmental optimum. For simplicity, let g e  = 0. Assume 
an initial Gaussian distribution of genotypes, &(g)  = N ( m ( t ) ,  V p ( t ) ) ,  where 
m ( t )  and V p ( t )  are the population mean and variance at time t .  Each round of 
selection changes the distribution of genotypes according to 

The population mean and variance after selection (m*,V,*) can now be 
expressed in the form of dynamic equations: 

(34.5) 

(34.6) 

Lastly, mutations are introduced in the production of the next generation of 
trials. To model this process, assume a Gaussian mutation function with mean 
zero and variance VM. A convolution of the population distribution with the 
mutation distribution has the effect of increasing the population variance: 

where 

(34.8) 

Hence, in a fixed environment the population mean m ( t )  will converge on 
the optimal genotype (Bulmer 1985), while a mutation-selection equilibrium 
variance occurs at 

vp + (v; + 4v, v y 2  v** = 
2 Peq (34.9) 

Inspection of equations ( 3 4 3 ,  (34.6), and (34.8) illustrates two important points. 
First, learning slows the convergence of both m*(t)  and V;(t). Second, once TEAM LRN
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convergence in the mean is complete, the utility of learning is lost, and learning 
only reduces fitness. 

In a more elaborate version of this model, called the critical learning period 
model (Anderson 1995a), a second gene is introduced to regulate the fraction of 
an individual’s life span devoted to learning (duration of the learning period). 
Specification of a critical learning period implicitly assigns cost associated with 
learning (the percent of life span not devoted to reproduction). Individuals are 
then selected for the optimal combination of genotype and learning investment. 
It is easily demonstrated that under these assumptions, learning ability is selected 
out of a population subject to fixed selection. 

Constant-velocity environments. Next, consider a simple case of changing 
selection-a constantly moving optimum, ge(t)  = 6 t ,  where 6 is defined as 
the environmental velocity. Let the difference between the population mean 
and the environmental optimum be defined as @ = m ( t )  - g , ( t ) .  The dynamic 
equation for @ is 

At equilibrium, @ * ( t )  = @ ( t ) ,  hence 

6 
v p  + v; 

@eq = ~ 

VP 

(34.10) 

(34.1 1 )  

where the equilibrium is expressed as a distance from the optimum. A similar 
result can be found in the article by Charlesworth (1993), in his analysis of 
the evolution of sex in a variable environment. The equilibrium population 
variance remains the same as in the case of a fixed environment. Substituting 
(34.9) yields 

Thus in an environment where the optimal phenotype is changing at constant 
rate, the population mean genotype converges on a constant ‘phase lag’ ( @ e q ) .  

Learning actually increases the phase lag by protecting suboptimal genotypes 
from selection. But this model assumes ZO, = 1,  so that only the relative 
magnitude of selection is accounted for. Strong selection without learning might 
actually lead to extinction in rapidly changing selection. Phenotypic variability 
(due to learning) has the effect of ‘shielding’ these marginal genotypes from 
selection (Wright 1931). 

As environmental conditions change, so will the selective advantage of 
learning. The relations derived in this analysis show which equilibria will be 
reached for an assumed phenotypic variability, but the model does not yield 
information on what would represent the optimal investment in learning. Hence, 
a complete model of the benefits of the Baldwin effect must incorporate the costs 
associated with learning. The best way to estimate these costs is to develop a 
model of the underlying learning process. TEAM LRN
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Models of learning. A reasonable question to ask is how sensitive are the 
effects of learning to the mechanisms underlying the learning process. The 
most direct (and exhaustive) method for investigating this question would be 
to construct a computer simulation to compare the effects of two learning 
processes in an evolutionary program. However, estimates of comparative 
performance can also be obtained using quantitative genetics models according 
to the following methodology. First, one must develop a model of the learning 
process. Next the effects of the learning process must be mapped onto the 
selection function. A simple approximation is to construct a probabilistic or 
phenomenological model of the effect of learning on phenotype. 

Under the critical learning period model (Anderson 1995a), learning consists 
of a series of independent trials conducted over a fraction of the individual’s 
life span, or learning period. This simple model incorporates two important 
considerations: the sequential nature of learning and a model of the cost 
associated with learning. Despite the more complicated assumptions, the 
dynamical response of this model to various forms of selection (fixed, random 
variation, and constant velocity j were qualitatively comparable to those derik ed 
for the simple additive variance model analyzed here. Longer learning periods 
increase the investment in (and cost of) learning: consequently, the amount 
of learning investment generally only increased with increased environmental 
variability. 

Other models of the learning process can be incorporated using the 
methodology outlined above. For example, under the critical learning period 
model, individuals were not allowed to benefit from successive trials within 
the learning period, nor were they allowed to begin exploitation of successful 
trials until after the learning period. Removing these two restrictions yields 
a seqiienricrl trial-and-error learning rule. Such a learning rule is a more 
appropriate model of the learning process in some systems, such as affinity 
maturation in the antibody immune system (Milstein 1990) or skill acquisition in 
neural systems (Bremermann and Anderson 199 1, Anderson 1996bj. For these 
initial models, including such details of individual learning was unwarranted, 
but any model of learning can be mapped onto a fitness function, although 
mapping a sequential trial-and-error learning rule onto a survival probability 
may be analytically more difficult. Often it turns out that this mapping masks 
the details of the underlying process (Anderson 1995aj. This suggests that the 
eflects of individual learning on evolution will be qualitatively the same. 

33.1.4 Conclusions 

Baldwin’s essential insight was that if an organism has the ability to learn, 
it can exploit genes that only partially determine a structure-increasing the 
frequencies of useful genes in subsequent generations. The Baldwin effect has 
also been demonstrated to be operative in hybrid evolutionary algorithms. These 
empirical investigations can be used to quantify the benefits of incorporating TEAM LRN
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individual learning into an evolutionary algorithm. Computation time is the 
obvious performance criterion; however, such comparisons are often limited 
to the particular application. Alternatively, phenomenological models can be 
used to generate reasonable estimates of performance expectations, deferring 
the arduous task of creating detailed computer simulations. 

The introduction of individual learning can radically alter fitness landscapes. 
This is especially true if the learning algorithm operates on phenotypes according 
to a fundamentally different process. Clearly, if the learning algorithm is 
identical to the genetic algorithm, no computational savings are likely to be 
manifest. 

Under certain conditions, learning slows genetic change by protecting 
suboptimal genotypes from selection. Thus, the benefits of individual 
learning will probably be accrued early in optimization, when the population 
is far from equilibrium, and learning will eventually impede algorithmic 
convergence. Accordingly, for optimizations on fixed fitness landscapes, 
a ‘variable-learning-investment’ strategy-where the computational resources 
applied toward learning are subject to change-should be considered (Saravanan 
et a1 1995, Anderson 1995a). 

34.2 Knowledge-augmented operators 

Daiid B Fogel 

Evolutionary computation methods are broadly useful because they are general 
search procedures. The canonical forms of the evolutionary algorithms do not 
take advantage of knowledge concerning the problem at hand. For example, in 
the canonical genetic algorithm (Holland 1975), a one-point crossover operator 
is suggested with a crossover point to be chosen randomly across the parents’ 
chromosomes. However it is generally accepted that the effectiveness of a 
particular search operator depends on at least three interrelated factors: ( i )  the 
chosen representation, (ii) the selection criterion, and ( i i i )  the objective function 
to be minimized or maximized, subject to the given constraints if  applicable. 
There is no single best search operator for all problems. 

Rather than rely on simple operators that may generate unacceptably 
inefficient performance on a particular problem at hand, the search operators 
can be tailored for individual applications. For example, in evolution strategies 
and evolutionary programming, when searching for the minimum of a quadratic 
surface, Rechenberg (1973) showed that the best choice for the standard 
deviation when using a zero mean Gaussian mutation operator was 

CT = 1.224 f (x)”’/II 

where f ( z )  is the quadratic function evaluated at the parent vector x, and ii 

is the dimensionality of the function. This choice of o incorporates knowledge TEAM LRN
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about the function being searched i n  order to provide the greatest expected rate 
of convergence. In this particular case, however, knowledge that the function is 
a quadratic surface indicates the use of search algorithms that can take greater 
advantage of the available gradient information (e.g. Newton-Gauss). 

There are other instances where incorporating domain-specific knowledge 
into a search operator can improve the performance of an evolutionary algorithm. 
In the traveling salesman problem, under the ob-jective function of minimizing 
the Euclidean distance of the circuit of cities, and a representation of simply m 
ordered listing of cities to be visited, Fogel (1988) offered a mutation operator 
which selected a city at random and placed it in the list at another randomly 
chosen position. This operator was not based on any knowledge about the 
nature of the problem. In contrast, Fogel (1993) offered an operator that instead 
inverted a segment of the listing (i.e. like a 2-opt of Lin and Kernighan (1976)). 
The inversion operator in the traveling salesman problem is a knowledge- 
augmented operator because it was devised to take advantage of the Euclidean 
geometry present in the problem. In the case of a traveling salesman’s tour, if 
the tour crosses over itself it is always possible to improve the tour by undoing 
the crossover (i.e. the diagonals of a quadrangle are always longer in sum than 
any two opposite sides). When the two cities just before and after the crossing 
point are selected and the listing of cities in between reversed, the crossing is 
removed and the tour is improved. Note that this use of inversion is appropriate 
in light of the traveling salesman problem, and no broader generality of its 
effectiveness as an operator is suggested, or can be defended. 

Domain knowledge can also be applied in the use of recombination. For 
example, again when considering the traveling salesman problem, Grefenstette et 
N I  (1985) suggested a heuristic crossover operator that could perform a degree 
of local search. The operator constructed an offspring from two parents by 
(i) picking a random city as the starting point, (ii) comparing the two edges 
leaving the starting cities in the parents and choosing the shorter edge, then (ii i)  

continuing to extend the partial tour by choosing the shorter of the two edges 
in the parents which extend the tour. If a cycle were introduced, a random 
edge would be selected. Grefenstette et a1 (1985) noted that offspring were 
on average about 10% better than the better parent when implementing this 
operator. 

In many real-world applications, the physics governing the problem suggests 
settings for search parameters. For example, in the problem of dockmg 
small molecules into protein binding sites, the intermolecular potential can be 
precalculated on a grid. Gehlhaar et a1 (1995) used a grid of 0.2 A, with each 
grid point containing the summed interaction energy between an atom at that 
point and all protein atoms within 6 A. This suggests that under Gaussian 
perturbations following an evolutionary programming or evolution strategy 
approach, a standard deviation of several hgstroms would be inappropriate 
(i.e. too large). 

Whenever evolutionary algorithms are applied to specific problems with the TEAM LRN
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intention of generating the best available optimization performance, knowledge 
about the domain of application should be considered in the design of the search 
operators (and the representation, selection procedures, and indeed the objective 
function itself). 

34.3 Gene duplication and deletion 

Martin Schiitz 

34.3.1 Historical review 

The idea of using operators such as gene duplication and deletion in the context 
of evolutionary algorithms (EAs) is as old as the algorithms themselves. 

Fogel et a1 (1966) seemed to be one of the first experimenting with variable- 
length genotypes. In their work they evolved finite-state machines of a varying 
number of states, therefore making use of operators such as addition and 
deletion. Typically, the ‘add a state’ operator was performed randomly, rather 
than a strict duplication. They also suggested a ‘majority logic’ operator that 
essentially created a machine in which each state was the composite of a state 
from each of the original machines; that is, this operator duplicated the majority 
logic vote at each state of multiple finite-state machines. Concerning engineering 
problems Schwefel (1968) was one of the first using gene duplication and 
deletion for solving the task of determining the internal shape of a two-phase jet 
nozzle with maximum thrust under constant starting conditions. Holland ( 1975, 
p 1 1  1) proposed the concepts of gene duplication and gene deletion in order to 
raise the computational power of EAs. 

34.3.2 Basic motivations for the use of gene duplication and deletion 

From these first attempts concerning variable-length genotypes until now many 
researchers have made use of gene duplication and deletion. Four different 
motivations may be classified. 

(i) Engineering applications. Many difficult optimization tasks arise from 
engineering applications in which variable-dimensional mixed-integer problems 
have to be solved. Often these problems are of dynamic nature: the optimum 
is time dependent. Additionally, in order to obtain a reasonable model of 
the system under consideration, a large number of constraints has to be 
respected during the optimization. Solving the given task frequently assumes 
the integration of expert (engineer) knowledge into the problem solving strategy: 
into particular genetic operators in the case of EAs. Many such constrained, 
variable-dimensional, mixed-integer, time-varying engineering problems and 
their solutions can be found in the handbook by Davis (1991) and in the 
proceedings of several conferences, such as the International Conference on TEAM LRN
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Evolutionary Computation (ICEC), Conference on Genetic Algorithms and 
Their Applications (ICGA), Conference on Evolutionary Programming (EP) and 
Parallel Problem Solving from Nature (PPSN). 

( i i )  Rtrisitig the c*ompirtatiotial pokver of EAs. As Goldberg et a1 ( 1989, p 49.3; 
see also Goldberg et cil 1990) state, ‘nature has formed its genotypes by 
progressing from simple to more complex life forms’, thereby using variable- 
length genotypes. He states that genetic algorithms (GAS) using variable-length 
genotypes, thus being able to use duplication and deletion operators, 

solve problems by combining relatively short, well-tested building 
blocks to form longer, more complex strings that increasingly cover 
all features of a problem. . . . Specifically, and more positively, we 
assert that allowing more messy strings and operators permits genetic 
algorithms to form and exploit tighter, higher performance building 
blocks than is possible with random, fixed codings and relatively slow 
reordering operators such as inversion. 

Transferring this idea to EAs in general hopefully leads to more efficient EAs. 

( i i i )  Extradimensional bypass. One additional motivation underpinning the 
usefulness of variable-dimensional genotype lengths is given by the 
extmdimerzsionul bypass thesis of Conrad ( 1993) (given more formally 
by Conrad and Ebeling ( 1992)), which states (maximization): 

As the number of dimensions increases the chance of our sitting on 
top of an isolated peak decreases, assuming that the space has random 
topographic features. The peaks will be transformed to saddlepoints. 
The rate of evolution will then depend on how long it takes to discover 
an uphill running pathway that requires a series of short steps and not 
on how long it  takes to make a long jump from one peak to another. 

For example, imagine an alpinist walking in a two-dimensional environment 
standing in front of a crater whose top he would like to reach. Even if he 
cannot see the highest peak, climbing the crater and walking on the border of 
the crater (extradimensional bypass) will lead him to the top. Walking in a one- 
dimensional space would complicate the task. This time the surface consists of 
two separated peaks (cut through the crater). If the alpinist climbs the first peak 
(eventually the higher one) he sees the highest peak but since one dimension 
is lost the desired path along the borderline of the crater does not exist. This 
time the alpinist has to descend into the valley in order to solve his task. ,4s 
one can recognize, introducing extra dimensions during the course of evolution 
may overcome the problem of becoming stuck in a local optimum or, to put it 
in other words, decrease the necessity of jumping from one basin of attraction 
to another. TEAM LRN
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(iv) ArtiJcial intelligence. Another important field in which variable- 
dimensional techniques have also been used is the domain of artificial 
intelligence (AI), especially machine learning (ML) and artijicial life (AL). 
Whereas in the field of ML (subordinated fields are, for example, genetic 
programming, classifier systems, and artificial neural networks) solving a 
possibly variable-dimensional optimization problem (depending on the actual 
subordinated field in mind) is one main objective, this aim plays a minor 
role in the AL field. AL research concentrates on computer simulations of 
simple hypothetical life forms and selforganizing properties emerging from 
local interactions within a large number of basic agents (life forms). A second 
objective of AL is the question of how to make the agents' behavior adaptive, 
thus often leading to agents equipped with internal rules or strategies determining 
their behavior. In order to learn/evolve such rule sets, learning strategies such 
as EAs are used. Since the number of necessary rules is not known a priori, 
a variable-dimensional problem instance arises. Despite the rule learning task, 
the modeling of the simple life forms itself makes use of variable-dimensional 
genotypes. 

34.3.3 Formal description of gene duplication and deletion 

From the preceding motivations one can see that solving variable-dimensional 
optimization problems with constraints forms one main task forcing the use of 
gene duplication and deletion. This sort of optimization (minimization) problem 
may be formalized as follows. 

Dejinition 34.3.1 (variable-dimensional minimization problem with constraints). 

Given f : D 2 X = UZ,G' + R, minimize f (2) subject to 

g ; ( z ) L O  V i E { l ,  . . . ,  m }  

h j ( z ) = O  V j  E { l ,  . . . ,  I }  

2 = ( x i , .  . . , Xnr )  E D C X n E N arbitrary but not fixed, 

f, g; ,  hj : X -+ R. 0 

gi are called inequality constraints and hj equality constraints. The main 
difference concerning a non-variable-dimensional optimization (minimization) 
problem is the fact that the dimension of the objective vector 2 may vary; that 
is, it is not fixed. As a consequence the parameter space X has to be formulated 
as the union of all parameter spaces G' of fixed sizes i .  In the context of EAs the 
gene space G ought not to be a vector space as usual in classical optimization 
(most often a Banach space, e.g. R"), thereby omitting all the comfortable 
properties Banach spaces have with respect to analysis. Instead, G might be 
I5, N, Z, Q, @, R or any other complex space (not in the strict mathematical TEAM LRN
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sense) representable by a complex data structure. The use of G is necessary 
because most duplication and deletion operators directly work on semantical 
entities represented by G. Davidor (1991a), for example, uses binary encoded 
vectors of triples (three angles) for representing a robot trajectory, thus G takes 
the form G = B‘ x B‘ x B‘. 

Until now we have presented motivations for the use of variable-length 
genotypes in the field of EAs. Unfortunately. nature gives no real hint at 
why using a variable-length genotype should be advantageous. A high degree 
of genepool diversity and a high flexibility to a changing environment may 
be one main benefit of non-fixed gene lengths, thus raising the evolutional 
powedadaptability of a population. One interesting fact nature offers is that 
gene duplication most often leads to viable individuals, whereas gene deletion 
does not (Futuyma 1986, p 78). (A brief and sufficient introduction into the 
concepts of neo-Darwinism, i.e. the synthetic theory of evolution, is given by 
Back (1996) and therefore omitted here. The more interested reader is referred 
to the book by Futuyma (1986).) 

Although nature offers a variety of schemes one central idea of how these 
operators may be formalized can be extracted from nature as well as from several 
approaches in the context of EAs. Whereas the general working mechanism of 
both operators is very simple, the different achievements concerning distinct 
applications may vary. In order not to focus on a special construction a 
more abstract view of both operators is presented here (sufficing in the present 
context). 

Imagine a genotype z = ( -XI,  . . . , x,) E X consisting of genes xi E G, i E 

I ,  . . . , n ( n  corresponds to the actual genotype length) from a gene space G. 
The deletion operator del may than be formalized as a function transforming a 
given individual a = (2, s )  E I by deleting a gene x,. If I = X x A, is the 
individual space, where A, is the strategy parameter space, which depends on 
the application and the EA, del has the form 

In most cases an application-dependent probability PdeI E (0, 1) is responsible 
for the decision of whether deletion should be applied or not. The position i 
fixing the gene which has to be deleted is usually uniformly chosen from the 
set { 1, . . . , n} .  Since deletion and duplication produce genotypes of different 
length it is important to notice that the dimension n varies from individual to 
individual. Returning to our example (Davidor 199 1 a), deletions occur only 
after a recombination ( p ,  = 1.0) and typically have a probability of 0.05. A 
deleted gene xi has the form xi E B’ x B‘ x B’, where each bit vector of length 
1 codes for an angle. 

Similar to deletion, the duplication operator is simple. Generally, instead 
of deletion, a gene is added to the genotype, such that the operator may be TEAM LRN
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formalized as follows: 

dup : I + I ,  with dup(a) = dup(x1, . . . , s,. . . . , x,,, s) 

= (X I ,  . . . , X I ,  XI ’ ,  . . . , s) = a’. 

Analogously to deletion a duplication probability Pdup E (0, 1 )  is used and the 
index i is usually uniformly chosen. Concerning the policy for introducing the 
new gene xf’ several policies may be distinguished, such as: 

0 Duplication. The gene x,! is a duplicate of x,, such that a’ has the form 

Related. The initialization of the new gene xf’ is context dependent: xf’ is 
generated with help the of the actual values of x ,  and .rr+l.  

0 Addition. x,’ is initialized at random. 

For example, Davidor ( 1  991 a) performs a duplication with a probability of 
0.06 only when a recombination takes place. Whereas the duplication and 
addition policy is intuitive the related policy may be further divided into two 
strategies. First, ‘the added arm-configuration is such that either its end-effector 
is positioned at the mid distance between the two adjacent end-effector positions, 
or its links have a mid metric value between the corresponding link positions 
in the adjacent arm-configurations’. 

Finally, both operators have to adapt the length of the parameter vector 
s E A,. Because this process depends on the form of A, details are omitted 
here. 

a’ = ( X I , .  . . , X I ,  x;, . . . , x,, s). 

0 

34.3.4 Problems arising when using variable-length genovpes 

Despite the fact that variable-length genotypes may enhance the computational 
power of EAs (see motivations (ii) and (iii)), the introduction of this new concept 
borrowed from nature leads to several problems. 

The role of positions in a variable-length genotype is destroyed: 
the assignment of corresponding genes xi on different ‘homologous’ 
chromosomes is not possible. In order to construct genetic operators which 
are able to generate interpretable individuals, thus being able to respect 
semantical blocks on the genotype, the ‘assignment problem’ has to be 
solved. 
In particular recombination is faced with the problem of finding the locus 
of corresponding genes. 
Whereas some authors introduced gene duplication and gene deletion 
operators ‘in order to improve the stability of the strings’ length’ (Davidor 
1991a, p 84) others waive these operators; that is, they believe that variable- 
dimensional recombination suffices for the stabilization of string lengths 
(see e.g. Harp and Samad 1991). TEAM LRN



324 Other operators 

34.3.5 Solutions 

The e i d u t i o n  program approach of Michalewicz ( 1992), i.e. combining 
the concept of evolutionary computation with problem-specific chromosome 
structures and genetic operators, may be seen as one main concept used to 
overcome the problems mentioned above. Although this concept is useful in 
practice, it prevents the conception of a more general and formalized view 
of variable-length EAs because there no longer exists ‘the EA’ using ‘the 
representation’ and ‘the set of operators’, Instead, for each application problzm 
a specialized EA exists. According to Lohmann (1992) and Kost (1993), 
for example. the formulation of operators such as gene duplication and 
deletion, used in their framework of structural evolution, is strongly application 
dependent, thus inhibiting a more formal, general concept of these operators. 
Davidor ( I  99 la, b) expressed the need for revised and new genetic operators 
for his variable-length robot trajectory optimization problem. In contrast to 
the evolution program approach, Schutz ( 1994) formulated an application- 
independent, variable-dimensional mixed-integer evolution strategy (ES), thus 
following the course of constructing a more general sort of ES. This offered 
Schutz the possibility to be more formal than other researchers. Unfortunately, 
this approach is restricted to a class of problems which can easily be mapped 
onto the mixed-integer representation he used. 

Because most work concerning variable-length genotypes uses the evolution 
program approach, a formal analysis of gene duplication and deletion is rarely 
found in the literature and is therefore omitted here. As a consequence, 
theoretical knowledge about the behavior of gene duplication and deletion is 
nearly unknown. Harvey ( 19931, for example, points out ‘that gene-duplication, 
followed by mutation of one of the copies, is potentially a powerful method for 
evolutionary progress‘. Most statements concerning nonstandard operators such 
as duplication and deletion have the same quality as Harvey’s: they are far from 
being provable. 

Because of the lack of theoretical knowledge we proceed by discussing 
some solutions used to circumvent the problems which arise when introducing 
variable-length genotypes. In the first place, we question how other researchers 
have solved the problem of noncomparable loci, i.e. the problem of respecting 
the semantics of loci. Mostly this ‘gene assignment’ problem is solved by 
explicitly marking semantical entities on the genotype. The form of the tagging 
varies from application to application and is carried out with the help of different 
representations. 

0 Davidor ( 199 la, b) used a binary encoded non-fixed-length vector of arm 
configurations, i.e. a vector of triples (three angles), for representing a robot 
trajectory, thus defining semantical blocks. 
The path of a mobile robot may be a variable-dimensional list of path nodes 
(triples consisting of the two Cartesian coordinates and a flag indicating 
whether a node is feasible or not). 

0 
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Harp and Samad (1991) implemented the tagging with the help of a special 
and more complex data structure representing the structure and actual 
weights of any feedforward net consisting of a variable number of hidden 
layers and a variable number of units. 

Goldberg et a1 ( I  989, 1990) extended the usual string representation of 
GAS by using a list of ordered pairs, with the first component of each tuple 
representing the position in the string and the second one denoting the 
actual bit value. Using genotypes of fixed length a variable dimension 
in the resulting messy GA was achieved by allowing strings not to 
contain full gene complement (underspecification) and redundant or even 
contradictionary genes (overspecification). 

Koza ( 1992, 1994) used rooted point-labeled trees with ordered branches 
(LISP expressions), thus having a genotype representing semantics very 
well. 

Lohmann ( 1992) circumvented the ‘assignment problem‘ using so-called 
structural evolution. The basic idea of structural evolution is the separation 
of structural and nonstructural parameters, thus leading to a ‘two-level’ ES: 
a multipopulation ES using isolation. While on the level of each population 
a parameter optimization, concerning a fixed structure, is carried out, on 
the population level several isolated structures compete with each other. In 
this way Lohmann was able to handle structural optimization problems with 
variable dimension: the dimension of the structural parameter space does 
not have to be constant. Since each ES itself worked on a fixed number 
of nonstructural parameters (here a vector of reals) no problem occurred on 
this level. On the structural level (population level) special genetic operators 
and a special selection criterion were formulated. The criticism concerning 
structural evolution definitively lies in the basic assumption that structural 
and nonstructural parameters can always be separated. Surely, many mixed- 
integer variable-dimensional problems are not separable. Secondly, on the 
structural level the well-known semantical problem exists, but was not discussed. 
Schutz (1  994) totally omitted a discussion concerning semantical problems 
arising from variable-length genotypes. 

If the genotype is sufficiently prepared, problems (especially) concerning 
recombination disappear, because the genetic operators may directly use the 
tagging in order to construct interpretable individuals. Another important idea 
when designing recombination operators for variable-length genotypes is pointed 
out by Davidor (1991a). He suggests a matching of parameters according to 
their genotypic character instead of to their genotypic position. Essentially, this 
leads to a matching on the phenotypic, instead of the genotypic level. Generally, 
Davidor points out: 

In a complex string structure where the number, size and position of 
the parameters has no rigid structure, i t  is important that the crossover TEAM LRN
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occurs between sites that control the same, or at least the most similar, 
function in the phenotypic space. 

In case of the (two-point) segregation crossover used in his robot trajectory 
optimization problem, crossing sites were specified according to the proximity 
of the end effector positions. 

One may remark that many ideas concerning the use of gene duplication ;ind 
deletion exist. Unfortunately, most thoughts have been extremely application 
oriented, that is, not formulated generally enough. Probably the construction of 
a formal frame will be very complicated in the fBce of the diversity of problems 
and solutions. 
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