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Preface to the Second Edition

The response of the multiobjective optimization community to our first edi-
tion in 2002 was extremely enthusiastic. Many have indicated their use of our
monograph to gain insight to the interdisciplinary nature of multiobjective op-
timization employing evolutionary algorithms. Others are appreciative for our
providing them a foundation for associated contemporary multiobjective evo-
lutionary algorithm (MOEA) research. We appreciate these warm comments
along with readers’ suggestions for improvements. In that vein, we have sig-
nificantly extended and modified our previous material using contemporary
literature resulting in this new edition, which is extended into a textbook. In
addition to new classroom exercises contained in each chapter, the MOEA
discussion questions and possible research directions are updated.

The first edition presented an organized variety of MOEA topics based on
fundamental principles derived from single-objective evolutionary algorithm
(EA) optimization and multiobjective problem (MOP) domains. Yet, many
new developments occurred in the intervening years. New MOEA structures
were proposed with new operators and therefore better search techniques.
The explosion of successful MOEA applications continues to be reported in
the literature. Statistical testing methods for evaluating results now offers
improved analysis of comparative techniques, innovative metrics, and better
visualization tools. The continuing development of MOEA activity in the-
ory, algorithmic innovations, and MOEA practice calls for these new concepts
to be integrated into our generic MOEA text. Note that the continuing im-
provement (speed, memory, etc.) of computer hardware provides computa-
tional platforms that permit larger search spaces to be addressed at higher
efficiencies using both serial and parallel processing. This phenomenon, in
conjunction with user-friendly software interfacing tools, permits an increas-
ing number of scientists and engineers to explore the use of MOEAs in their
particular multiobjective problem domains.

With this new edition, we continue to provide an interdisciplinary com-
puter science and computer engineering text that considers other academic
fields such as operations research, industrial engineering, and management
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science. Examples from all these disciplines, as well as all engineering areas
in general, are discussed and addressed as to their fundamental unique prob-
lem domain characteristics and their solutions using MOEAs. An expanded
reference list is included with suggestions of further reading for both the stu-
dent and practitioner. As in the previous edition, this book addresses MOEA
development and applications issues through the following features:

e The text is meant to be both a textbook and a self-contained reference.
The book provides all the necessary elements to guide a newcomer in the
design, implementation, validation, and application of MOEAs in either
the classroom or the field.

e Researchers in the field benefit from the book’s comprehensive review of
state-of-the-art concepts and discussions of open research topics.

e The book is also written for graduate students in computer science, com-
puter engineering, operations research, management science, and other
scientific and engineering disciplines, who are interested in multiobjective
optimization using evolutionary algorithms.

e The book is also for professionals interested in developing practical applica-
tions of evolutionary algorithms to real-world multiobjective optimization
problems.

e FEach chapter is complemented by discussion questions and several ideas
meant to trigger novel research paths. Supplementary reading is strongly
suggested for deepening MOEA understanding.

o Key features include MOEA classifications and explanations, MOEA ap-
plications and techniques, MOEA test function suites, and MOEA perfor-
mance measurements.

e We created a website for this book at:

http://www.cs.cinvestav.mx/~emoobook

which contains considerable material supporting this second edition. This
site contains all the appendices of the book (which have been removed
from the original monograph due to space limitations), as well as public-

domain software, tutorial slides, and additional sources of contemporary
MOEA information.

This new synergistic text is markedly improved from the first edition. New
material is integrated providing more detail, which leads to a realignment of
material. Old chapters were modified and a new one was added. As before,
the various features of MOEAs continue to be discussed in an innovative
and unique fashion, with detailed customized forms suggested for a variety
of applications. The flow of material in each chapter is intended to present
a natural and comprehensive development of MOEAs from basic concepts to
complex applications.

Chapter 1 presents and motivates MOP and MOEA terminology and the
nomenclature used in successive chapters including a lengthy discussion on the
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impact of computational limitations on finding the Pareto front along with
insight to MOP/MOEA building block (BB) concepts.

In Chapter 2, MOEA developmental history has proceeded in a number
of ways from aggregated forms of single-objective Evolutionary Algorithms
(EAs) to true multiobjective approaches such as MOGA, MOMGA, NPGA,
NSGA, NSGA-II, PAES, PESA, PESA-II, SPEA, SPEA2 and their exten-
sions. Each MOEA is presented with historical and algorithmic insight. Being
aware of the many facets of historical multiobjective problem solving provides
a foundational understanding of the discipline. Various MOEA techniques,
operators, parameters and constructs are compared. Contemporary MOEA
development emphasizes new MOP variable representation, and novel MOEA
structures and operators. In addition, constraint-handling techniques used
with MOEAs are also discussed. A comprehensive comparison of contempo-
rary MOEAs provides insight to an individual algorithm’s advantages and
disadvantages.

In Chapter 3, a new chapter, both coevolutionary MOEAs and hybridiza-
tions of MOEAs with local search procedures (the so-called memetic MOEAS)
are covered. A variety of MOEA implementations within each of these two
types of approaches (i.e., coevolution and hybrids with local search mecha-
nisms) are presented, summarized, categorized and analyzed.

Chapter 4 offers a detailed development of contemporary MOP test suites
ranging from numerical functions (unconstrained and with side constraints)
and generated functions to discrete N P-Complete problems and real-world
applications. Our website contains the algebraic description as well as the
Pareto fronts (and, if generated by enumeration, the Pareto optimal set as
well) of many of the proposed test functions. This knowledge leads to an
understanding and ability to select appropriate MOEA test suites based upon
a set of desired comparative characteristics.

MOEA performance comparisons are presented in Chapter 5 using many
of the test function suites discussed in Chapter 4. Also included is an exten-
sive discussion of possible comparative metrics and presentation techniques.
The selection of key algorithmic parameter values (population size, crossover
and mutation rates, etc.) is emphasized. A limited set of MOEA results are
related to the design and analysis of efficient and effective MOEAs employing
these various MOP test suites and appropriate metrics. The chapter has been
expanded to include new testing concepts such as attainment functions, elabo-
rated dominance relations, and “quality” Pareto compliant indicator analysis.
A wide spectrum of empirical testing and statistical analysis techniques are
provided for the MOEA user.

Although MOEA theory is still relatively limited, Chapter 6 presents a
contemporary summary of known results. Topics addressed in this chapter in-
clude MOEA convergence to the Pareto front, Pareto ranking, fitness sharing,
mating restrictions, stability, running time analysis, and algorithmic complex-

ity.
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It is of course unrealistic to present every generic MOP application, thus,
Chapter 7 attempts to group and classify the multitude of various contem-
porary MOEA applications via representative examples. This limited com-
pendium with an extensive reference listing provides the reader with a start-
ing point for their own application and research. Specific MOEA operators
as well as encodings adopted in many MOEA applications are integrated for
algorithmic understanding.

In Chapter 8, research and development of parallel MOEAs is classified and
analyzed. The three foundational paradigms (master-slave, island, and diffu-
sion) are defined. Using these three structures, many contemporary MOEA
parallel developments are algorithmically compared and analyzed in terms
of advantages and disadvantages for different computational architectures.
Some general observations about the current state of parallel and distributed
MOEAs are also included.

Chapter 9 discusses and compares the two main schools of thought re-
garding multi-criteria decision making (MCDM): Outranking approaches and
Multi-Attribute Utility Theory (MAUT). Aspects such as the operational atti-
tude of the Decision Maker (DM), the different stages at which preferences can
be incorporated, scalability, transitivity and group decision making are also
discussed. However, the main emphasis is in describing the most representative
research regarding preference articulation into MOEAs. This comprehensive
review includes brief descriptions of the approaches reported in the literature
as well as an analysis of their advantages and disadvantages.

Chapter 10 discusses multiobjective extensions of other search heuristics.
The main techniques covered include Tabu search, scatter search, simulated
annealing, ant system, distributed reinforcement learning, artificial immune
systems, particle swarm optimization and differential evolution.

New examples are integrated throughout the second edition. New algo-
rithms are addressed with special emphasis on the spectrum of MOEA oper-
ators and how they are implemented in contemporary and historic MOEAs.
Part of the focus is on classifying MOEAs as to implicit or explicit BB types.
Other classification features such as probabilistic vs. stochastic are investi-
gated. References are updated to include the current state-of-the-art MOEAs
and applications.

Class exercises are integrated into all chapters for pedagogical purposes.
Discussion questions within every chapter are updated and expanded. The
suggested and focused research ideas from the first edition are brought up-to-
date and continue to emphasize the current state-of-the-art horizon.

To profit from the book, one should have at least single-objective EA
knowledge and experience. Also, some mathematical knowledge is appropri-
ate in order to understand symbolic functions as well as theoretical MOEA
aspects. This knowledge includes basic linear algebra, calculus, probability
and statistics. This second edition may be used in the classroom at the senior
undergraduate or graduate level depending upon the instructor’s purpose. As
a class, we suggest that all material could fill a two semester course or with
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careful selection of topics, a one-semester course. Also, the material in the
revised text can be effectively employed by practitioners in many fields.

In support of this text, one can find up-to-date MOEA reference listings
of journal papers, conference papers, MOP software, and MOEA software at
the Evolutionary Multiobjective Optimization (EMOO) Repository internet
web site http://delta.cs.cinvestav.mx/~ccoello/EMO0. This site is con-
tinually updated to support the MOEA community and our text. If you have
a contribution, please send it to ccoello@cs.cinvestav.mx.

Creating a book such as this requires the efforts of many people. The
authors thank Matthew Johnson, Michael Putney, Jesse Zydallis, Tony Kadro-
vach, Giovani Gomez-Estrada, Dragan Cvetkovié¢, José Alfredo Lépez, Nareli
Cruz-Cortés, Gregorio Toscano-Pulido, Luis Gerardo de la Fraga, and many
others for their assistance in generating computational results and reviewing
various aspects of the material. We also thank all those researchers who sent
us some of their research papers and theses to enrich the material contained
in this edition.

We express our sincere appreciation to Professors David E. Goldberg and
John R. Koza for including this book as a volume in their Genetic and Evo-
lutionary Computation book series, published by Springer.

Also, it has been a pleasure working with Springer’s professional editor-
ial and production staff. We particularly thank Melissa Fearon and Valerie
Schofield for their prompt and kind assistance at all times during the devel-
opment of this book.

We also want to thank other primary MOEA researchers not only for
their innovative papers but for various conversations providing more in-
sight to developing better algorithms. Such individuals include David Corne,
Tomoyuki Hiroyasu, Kalyanmoy Deb, Marco Laumanns, Jiirgen Branke,
Sanaz Mostaghim, Nirupam Chakraborti, Alfredo G. Herndndez-Diaz, Julidn
Molina, Rafael Caballero, Peter Fleming, Carlos Fonseca, Xavier Gandibleux,
Yaochu Jin, Kay Chen Tan, Jeffrey Horn, Hisao Ishibuchi, Piero Bonis-
sone, Jonathan Fieldsend, Marco Farina, Arturo Herndndez-Aguirre, Lyn-
don While, Evan J. Hughes, Rajeev Kumar, Shigeru Obayashi, Joshua D.
Knowles, J. David Schaffer, lan Parmee, El-Ghazali Talbi, Herndn Aguirre,
Oliver Schiitze, Lothar Thiele, and Eckart Zitzler.

The authors also express their gratitude to Antonio Nebro, Enrique Alba,
Margarita Reyes-Sierra, Luis V. Santana-Quintero, Ricardo Landa-Becerra,
Mario A. Ramirez-Morales, Emanuel Téllez-Enriquez, Richard Day, Charles
Haag, and Mark Kleeman for their valuable help at different stages of the
development of this second edition. Without their help, this book would had
never been finished. Carlos A. Coello Coello also states that his contribution
to this book was developed using the computing facilities of the Department
of Computer Science of the Centro de Investigacién y de Estudios Avanzados
from the Instituto Politécnico Nacional (CINVESTAV-IPN) with support pro-
vided by CONACyT (the Mexican council of science and technology) to the
first author through project no. 45683-Y, which was also greatly appreciated.
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Last but not least, we owe a debt of gratitude to our wives for their en-
couragement, understanding, and exemplary patience.

We hope that the new edition continues to represent not only a compre-
hensive introduction to MOEAs, but also the contemporary state-of-the-art
in MOEA structures, applications, testing and theory.

Carlos A. Coello Coello
Gary B. Lamont

David A. Van Veldhuizen
Spring 2007



Foreword to the Second Edition

Researchers and practitioners alike are increasingly turning to search, opti-
mization, and machine-learning procedures based on natural selection and
natural genetics to solve problems across the spectrum of human endeavor.
These genetic algorithms and techniques of evolutionary computation are
solving problems and inventing new hardware and software that rival hu-
man designs. The Springer Series on Genetic and Evolutionary Computation
publishes research monographs, edited collections, and graduate-level texts in
this rapidly growing field. Primary areas of coverage include the theory, imple-
mentation, and application of genetic algorithms (GAs), evolution strategies
(ESs), evolutionary programming (EP), learning classifier systems (LCSs) and
other variants of genetic and evolutionary computation (GEC). The series also
publishes texts in related fields such as artificial life, adaptive behavior, artifi-
cial immune systems, agent-based systems, neural computing, fuzzy systems,
and quantum computing as long as GEC techniques are part of or inspiration
for the system being described.

This is the second (revised and extended) edition of an encyclopedic vol-
ume on the use of the algorithms of genetic and evolutionary computation
for the solution of multi-objective problems. Multi-objective evolutionary al-
gorithms (MOEAs) are now even more popular than in 2002, when the first
edition of this book was published. Researchers and practitioners remain to
find an irresistible match between the population available in most genetic
and evolutionary algorithms and the need in multi-objective problems to ap-
proximate the Pareto trade-off curve or surface.

The authors have kept the remarkable job that distinguished the first edi-
tion in collecting, organizing, and interpreting the burgeoning literature of
MOEAs in a form that should be welcomed by novices and old hands alike.
The volume starts with an extraordinarily thorough introduction, including
short vignettes and photographs of many of the pioneers of multi-objective
optimization. It continues with as complete a discussion of the many vari-
eties of MOEAs as appears anywhere in the literature. This second edition
now adds a new chapter fully devoted to coevolutionary and memetic (i.e.,
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hybrids with local search mechanisms) MOEAs. A discussion of MOEA test
suites surveys the important topic of test landscapes and is followed with im-
portant chapters on empirical testing and MOEA theory. Such chapters have
been considerably extended with respect to the first edition, adding material
on state-of-the-art test functions and performance measures (and their lim-
itations), as well as the new developments on the theoretical foundations of
MOEAs. Practitioners will especially welcome the thorough survey of real-
world MOEA applications, which clearly indicates the growing interest in this
field. There is also an ample discussion on parallelization, and a thorough
review of mechanisms to incorporate user’s preferences in a MOEA (an area
called multi-criteria decision making). The final chapter of special topics dis-
cusses multi-objective extensions of other methods in soft computation such
as simulated annealing, ant colony optimization, and artificial immune sys-
tems. These chapters have also been considerably extended and refurbished
to reflect the many new developments that have arisen in this field since the
publication of the first edition of this book. With about 200 extra pages, a
considerable number of new problems and research ideas at the end of each
chapter and additional supporting material available through a website, this
second edition aims to be adopted as a textbook, while preserving much of its
monograph nature.

If you enjoyed the first edition of this book, then you will certainly benefit
even more from this second edition. If you still do not know this book, then, I
urge you to run—don’t walk—to your nearest on-line or off-line book purveyor
and click, signal, or otherwise buy this important addition to our literature.

David E. Goldberg

Consulting Editor

University of Illinois at Urbana-Champaign
deg@uiuc.edu

Urbana, Illinois, USA

May 2007
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1

Basic Concepts

Everything has been said before, but since nobody listens we have to
keep going back and beginning all over again.

André Gide

1.1 Introduction

Problems with multiple objectives arise in a natural fashion in most disci-
plines and their solution has been a challenge to researchers for a long time.
Despite the considerable variety of techniques developed in Operations Re-
search (OR) and other disciplines to tackle these problems, the complexities
of their solution calls for alternative approaches.

The use of evolutionary algorithms (EAs) to solve problems of this nature
has been motivated mainly because of the population-based nature of EAs
which allows the generation of several elements of the Pareto optimal set in a
single run. Additionally, the complexity of some multiobjective optimization
problems! (MOPs) (e.g., very large search spaces, uncertainty, noise, disjoint
Pareto curves, etc.) may prevent use (or application) of traditional OR MOP-
solution techniques.

This book is organized in such a way that its contents provides a gen-
eral overview of the field now called evolutionary multiobjective optimization
(EMO), which refers to the use of evolutionary algorithms of any sort (i.e., ge-
netic algorithms [581], evolution strategies [1460], evolutionary programming
[499] or genetic programming [905]) to solve multiobjective optimization prob-
lems. In fact, we also cover in this book other metaheuristics that have been
used to solve multiobjective optimization problems (e.g., particle swarm op-
timization [840], artificial immune systems [1161], cultural algorithms [1357],

! Note that the terms “multi-objective” and “multiobjective” are used interchange-
ably throughout this book.
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differential evolution [1525, 1294], ant colony [406], tabu search [572], scatter
search [938], and memetic algorithms [661], among others).

Multiobjective optimization problems are attacked today using EAs by en-
gineers, computer scientists, biologists, and operations researchers alike. This
book should therefore be of interest to the many disciplines that have to deal
with multiobjective optimization problems. At the end of each chapter, we
include a section called “Future Explorations”, which contains class exercises,
class software projects, discussion questions, and possible research directions.
Such material aims to provide support for teaching a course, and also delin-
eates some possible topics for developing masters and PhD theses.

This chapter presents the basic terminology and nomenclature for use
throughout the rest of the book. Furthermore, a historical overview of mul-
tiobjective optimization is also provided, together with a short introduction
to evolutionary algorithms. Additionally, we also provide a brief description
of the most representative mathematical programming techniques that have
been proposed to solve multiobjective optimization problems, including a pos-
sible classification of them.

Chapter 2 provides an overview of the different multi-objective evolution-
ary algorithms (MOEASs) currently available. These techniques go from a sim-
ple linear aggregating function to the most popular MOEAs based on Pareto
ranking (e.g., MOGA [504], NPGA [709], NSGA [1509], PAES [886], NSGA-II
[374], SPEA [1782], SPEA2 [1775] and e-MOEA [372, 373]). Other issues such
as chromosomal representations, constraint-handling techniques and the use
of secondary populations are also addressed.

Chapter 3 discusses both coevolutionary MOEAs and hybridizations of
MOEAs with local search procedures (the so-called memetic MOEAs). A va-
riety of MOEA implementations within each of these two types of approaches
(i-e., coevolution and hybrids with local search mechanisms) are presented,
summarized, categorized and analyzed.

Chapter 4 presents a detailed development of MOP test suites ranging
from numerical functions (both unconstrained and with side constraints) and
generated functions to discrete N P-Complete problems and real-word ap-
plications. Discussions provide understanding of the MOP domain, and an
ability to select appropriate MOEA test suites based upon a set of desired
characteristics.

MOEA performance comparisons are presented in Chapter 5. Also, an ex-
tensive discussion of possible comparison metrics and presentation techniques
are presented. This includes a brief treatment of some recent findings regard-
ing the limitations of unary performance metrics. Results are related to the
design and analysis of efficient and effective MOEAs.

Chapter 6 summarizes the (still scarce) MOEA theoretical results found
in the literature.

Although it is unrealistic to present every MOP application, Chapter 7 at-
tempts to group and classify the wide variety found in the literature. Problem



1.2 Definitions 3

domain characteristics are presented for each generic application and issues
such as genetic operators and encodings are also briefly discussed.

Chapter 8 classifies and analyzes the existing research on parallel MOEAs.
The three foundational paradigms (master-slave, island, and diffusion) are
discussed, and some general observations about the current state of this area
(including its limits and most promising directions) are also presented.

Chapter 9 describes the most representative research regarding the incor-
poration of preferences articulation into MOEAs. The review is very com-
prehensive and includes brief descriptions of the approaches reported in the
literature as well as an analysis of their advantages and disadvantages.

Chapter 10 discusses multiobjective extensions of other metaheuristics
used for optimization. The main techniques covered include tabu search, scat-
ter search, simulated annealing, the ant colony, particle swarm optimization,
differential evolution, artificial immune systems, cultural algorithms and dis-
tributed reinforcement learning.

The remainder of this chapter is organized as follows. Section 1.2 contains
very important concepts such as Pareto optimum, ideal vector, Pareto optimal
set, and Pareto front, among others. Section 1.3 aims to put in practice some
of the concepts previously covered with an example. Section 1.4 discusses gen-
eral search and optimization techniques both deterministic and random, and
it places evolutionary computation within its appropriate historical context.
For those not familiar with evolutionary computation, Section 1.5 offers a
short introduction that concludes with a formal definition of an evolutionary
algorithm.

Section 1.6 contains a short review of the origins of multiobjective opti-
mization. Then, a taxonomy of the several multiobjective optimization tech-
niques proposed in the OR literature is provided in Section 1.7. Some repre-
sentative a priori, a posteriori and interactive approaches are also discussed
in this section.

Finally, Section 1.8 contains some of the main motivations for using evo-
lutionary algorithms to solve multiobjective optimization problems, as well as
some more of the formal notation that is used throughout this book.

Readers who are familiar both with EAs and multiobjective optimization
concepts, may want to skip most of this chapter (except for Section 1.2 on
nomenclature and the Discussion Questions at the end of the chapter).

1.2 Definitions

In order to develop an understanding of MOPs and the ability to design
MOEAs to solve them, a series of formal non-ambiguous definitions are re-
quired. These definitions provide a precise set of symbols and formal relation-
ships that permit proper analysis of MOEA structures and associated testing
and evaluation. Moreover, they are related to the primary goals for a MOEA:



4 1 Basic Concepts

e Preserve nondominated points in objective space and associated solution
points in decision space.

e Continue to make algorithmic progress towards the Pareto Front in objec-
tive function space.

e Maintain diversity of points on Pareto front (phenotype space) and/or of
Pareto optimal solutions - decision space (genotype space).

e Provide the decision maker (DM) “enough” but limited number of Pareto
points for selection resulting in decision variable values.

In order to understand these objectives of multiobjective optimization and
their attainment, we start the discussion with single-objective optimization
problems.

1.2.1 Single-Objective Optimization

The single-objective optimization problem as presented in Definition 1 con-
tinues to be addressed by many search techniques including numerous evolu-
tionary algorithms.

Definition 1 (General Single-Objective Optimization Problem) : A
general single-objective optimization problem is defined as minimizing
(or mazimizing) f(x) subject to g;(x) < 0, i = {1,...,m}, and h;(x) =

0, j=A{1,...,p} x € 2. A solution minimizes (or maximizes) the scalar f(x)
where x is a n-dimensional decision variable vector x = (x1,...,x,) from
some universe 2. O

Observe that g;(x) < 0 and hj;(x) = 0 represent constraints that must
be fulfilled while optimizing (minimizing or maximizing) f(x). {2 contains all
possible x that can be used to satisfy an evaluation of f(x) and its constraints.
Of course, x can be a vector of continuous or discrete variables as well as f
being continuous or discrete.

The method for finding the global optimum (may not be unique) of any
function is referred to as Global Optimization. In general, the global min-
imum of a single objective problem is presented in Definition 2 [72]:

Definition 2 (Single-Objective Global Minimum Optimization) :
Given a function f: 2 CR™ — R, 2 # (), for x € 2 the value f* £ f(x*) >
—o0 s called a global minimum if and only if

vx e 2: f(x*) < f(x). (1.1)

x* is by definition the global minimum solution, f is the objective function, and
the set {2 is the feasible region of x. The goal of determining the global min-
imum solution(s) is called the global optimization problem for a single-
objective problem. |

Although single-objective optimization problems may have a unique opti-
mal solution, MOPs (as a rule) present a possibly uncountable set of solutions,



1.2 Definitions 5

which when evaluated, produce vectors whose components represent trade-offs
in objective space. A DM then implicitly chooses an acceptable solution (or
solutions) by selecting one or more of these vectors.

1.2.2 The Multiobjective Optimization Problem

The Multiobjective Optimization Problem (also called multicriteria op-
timization, multiperformance or vector optimization problem) can then be
defined (in words) as the problem of finding [1218]:

“a vector of decision variables which satisfies constraints and optimizes
a vector function whose elements represent the objective functions.
These functions form a mathematical description of performance cri-
teria which are usually in conflict with each other. Hence, the term
“optimize” means finding such a solution which would give the values
of all the objective functions acceptable to the decision maker.”

Decision Variables

The decision variables are the numerical quantities for which values are to
be chosen in an optimization problem. These quantities are denoted as x;,
i=1,2,...,n.

The vector x of n decision variables is represented by:

Z1
T2

In

This can be written more conveniently as:

X = [xl,:vg,...,xn]T, (1.3)

where T indicates the transposition of the column vector to the row vector.

Constraints

In most optimization problems there are always restrictions imposed by the
particular characteristics of the environment or available resources (e.g., phys-
ical limitations, time restrictions, etc.). These restrictions must be satisfied in
order to consider a certain solution acceptable. All these restrictions in gen-
eral are called constraints, and they describe dependences among decision
variables and constants (or parameters) involved in the problem. These con-
straints are expressed in form of mathematical inequalities:
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gi(x) <0 i=1,....,m (1.4)

or equalities:

hix)=0 j=1....p (1.5)

Note that p, the number of equality constraints, must be less than n,
the number of decision variables, because if p > n the problem is said to be
overconstrained, since there are no degrees of freedom left for optimizing
(i.e., in other words, there would be more unknowns than equations). The
number of degrees of freedom is given by n — p. Also, constraints can be
explicit (i.e., given in algebraic form) or implicit, in which case the algorithm
to compute g;(x) for any given vector x must be known.

Commensurable vs. Non-Commensurable

In order to know how “good” a certain solution is, it is necessary to have some
criteria to evaluate it. These criteria are expressed as computable functions of
the decision variables,? called objective functions. In real-world problems,
some functions are in conflict with others, and some must be minimized while
others are maximized. These objective functions may be commensurable
(measured in the same units) or non-commensurable (measured in different
units). The multiple objectives being optimized almost always conflict, placing
a partial, rather than total, ordering on the search space. In fact, finding the
global optimum of a general MOP is an N P-Complete problem [72].

Attributes, Criteria, Objectives, and Goals

In OR, it is a common practice to differentiate among attributes, criteria,
objectives and goals (e.g., [1036]). Attributes are often thought of as differen-
tiating aspects, properties or characteristics of alternatives or consequences.
Criteria generally denote evaluative measures, dimensions or scales against
which alternatives may be gauged in a value or worth sense. Objectives are
sometimes viewed in the same way, but may also denote specific desired levels
of attainment or vague ideals. Goals usually indicate either of the latter no-
tions. A distinction commonly made in OR is to use the term goal to designate
potentially attainable levels, and objective to designate unattainable ideals.
The convention adopted in this book is the same assumed by several re-
searchers (see for example [706] and [489]) of using the terms objective, criteria,
and attribute interchangeably to represent an MOP’s goals or objectives (i.e.,
distinct mathematical functions) to be achieved. The terms objective space or
objective function space are also used to denote the coordinate space within
which vectors resulting from evaluating an MOP’s solutions are plotted.

2 Tt is assumed that all functions used in this book are computable.
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The objective functions are designated: f1(x), f2(x),..., fr(x), where k is
the number of objective functions in the MOP being solved. Therefore, the
objective functions form a vector function f(x) which is defined by:

fi(x)
f2(x)

fk&X)

This can be written more conveniently as:

f(X) = [fl(x)a f2(x)’ .- "fk(x)]T

The set of all n-tuples of real numbers denoted by R" is called Euclidean
n-space. Two Euclidean spaces are considered in MOPs:

e The n-dimensional space of the decision variables in which each coordinate
axis corresponds to a component of vector x.

e The k-dimensional space of the objective functions in which each coordi-
nate axis corresponds to a component vector f(x).

Every point in the first space represents a solution and gives a certain
point in the second space, which determines a quality of this solution in terms
of the objective function values.

1.2.3 Multiobjective Optimization Problem

The mathematical definition of a multiobjective problem (MOP) is important
in providing a foundation of understanding between the interdisciplinary na-
ture of deriving possible solution techniques (deterministic, stochastic); i.e.,
search algorithms. The following discussions present generic MOP mathemat-
ical and formal symbolic definitions.

The single objective formulation is extended to reflect the nature of mul-
tiobjective problems where there is not one objective function to optimize,
but many. Thus, there is not one unique solution but a set of solutions. This
set of solutions are found through the use of Pareto Optimality Theory [428].
Note that multiobjective problems require a decision maker to make a choice
of x;* values. The selection is essentially a tradeoff of one complete solution
x over another in multiobjective space.

More precisely, multiobjective problems (MOPs) are those problems where
the goal is to optimize k objective functions simultaneously. This may in-
volve the maximization of all £ functions, the minimization of all k functions
or a combination of maximization and minimization of these k functions. A
MOP global minimum (or maximum) problem is formally defined in Defini-
tion 3 [1626]:
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Definition 3 (General MOP [1626, 277, 265]) : A general MOP is
defined as minimizing (or mazimizing) F(x) = (f1(x),..., fx(x)) subject to
gi(x) <0, i={1,...,m}, and hj(x) =0, j ={1,...,p} x € 2. An MOP
solution minimizes (or maximizes) the components of a vector F(x) where x is
a n-dimensional decision variable vector x = (21,...,xy) from some universe
0. It is noted that g;(x) < 0 and h;(x) = 0 represent constraints that must be
fulfilled while minimizing (or mazimizing) F(x) and 2 contains all possible x
that can be used to satisfy an evaluation of F(x). a

Thus, a MOP consists of k objectives reflected in the k objective functions,
m + p constraints on the objective functions and n decision variables. The k
objective functions may be linear or nonlinear and continuous or discrete in
nature. The evaluation function, F' : {2 — A, is a mapping from the vector of
decision variables (x = x1,...,%,) to output vectors (y = ay,...,ax). [1626].
Of course, the vector of decision variables x; can also be continuous or discrete.

Ideal Vector

Definition 4 (Ideal Vector) : Let

«0() — [a:(l)(i),xg(i) ’xg(i)]T

PR

be a vector of variables which optimizes (either minimizes or mazimizes) the
ith objective function f;(z). In other words, the vector x°") € (2 is such that

£i(x°@) = opt f;(x) (1.7)
ref2

Then, the vector

0 = [ {)v S""vflg]T (18)

(where f? denotes the optimum of the ith function) is ideal for an MOP,
and the point in R™ which determined this vector is the ideal (utopical) solu-
tion, and is consequently called the ideal vector. O

In other words, the ideal vector contains the optimum for each separately
considered objective achieved at the same point in R”™.

Convexity and Concavity

Definition 5 (Convexity) : A function ¢(x) is called convex over the
domain of R if for any two vectors x1 and x5 € R,

d(0x1 + (1 — 0)x2) < 0¢(x1) + (1 — 0)p(x2) (1.9)

where 0 is a scalar in the range 0 < 0 < 1. |
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A convex function cannot have any value larger than the function values
obtained by linear interpolation between ¢(x1) and ¢(x3).

If the reverse inequality of the equation (5) holds, the function is concave.
Thus ¢(x) is concave if —¢(x) is convex. Linear functions are convex and
concave at the same time.

A set of points (or region) is defined as a convex set in n-dimensional
space if, for all pairs of two points x; and x5 in the set, the straight-line
segment joining them is also entirely in the set. Thus, every point x, where

x=0x1+(1-0)xy 0<6<1 (1.10)

is also in the set. So, for example, the sets shown in Figure 1.1 are convex,
but the sets shown in Figure 1.2 are not.

B!

T

|
|
|
|
|
=

Fig. 1.1. Two examples of convex sets.

Fig. 1.2. Two examples of non-convex sets.
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Pareto Terminology

Having several objective functions, the notion of “optimum” changes, because
in MOPs, the aim is to find good compromises (or “trade-offs”) rather than
a single solution as in global optimization. The notion of “optimum” most
commonly adopted is that originally proposed by Francis Ysidro Edgeworth
[425] and later generalized by Vilfredo Pareto [1242]. Although some authors
call this notion the Edgeworth-Pareto optimum (see for example [1517]), the
most commonly accepted term is Pareto optimum. The formal definition is
provided next.

Definition 6 (Pareto Optimality [1626, 277, 265]) : A solution x € {2
is said to be Pareto Optimal with respect to (w.r.t.) £2 if and only if (iff)
there is no x' € 2 for which v = F(x') = (fi(x’),..., fx(x")) dominates
u = F(x) = (fi(x),..., fr(x)). The phrase Pareto Optimal is taken to mean
with respect to the entire decision variable space unless otherwise specified. O

efficiency

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
cost

Fig. 1.3. An example of a problem with two objective functions: cost and effi-
ciency. The Pareto front or trade-off surface is delineated by a curved line.

In words, this definition says that x* is Pareto optimal if there exists
no feasible vector x which would decrease some criterion without causing a
simultaneous increase in at least one other criterion (assuming minimization).

The concept of Pareto Optimality is integral to the theory and the solving
of MOPs. Additionally, there are a few more definitions that are also adopted
in multiobjective optimization [1626]:
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Definition 7 (Pareto Dominance [1626, 277, 265]) : A vector u =

(u1,...,ux) is said to dominate another vector v.= (vy,...,vg) (denoted by
u =X v) if and only if u is partially less than v, ie., Vi € {1,...,k}, u; <
vi/\EIie{l,...,k}:ui<vi. O

Definition 8 (Pareto Optimal Set [1626, 277, 265]) : For a given
MOP, F(x), the Pareto Optimal Set, P*, is defined as:

Pri={xeR|-3Ix' €2 Fx') X F(x)}. (1.11)

O
Pareto optimal solutions are those solutions within the genotype search
space (decision space) whose corresponding phenotype objective vector com-
ponents cannot be all simultaneously improved. These solutions are also
termed nomn-inferior, admissible, or efficient solutions, with the entire set rep-
resented by P*. Their corresponding vectors are termed nondominated; se-
lecting a vector(s) from this vector set (the Pareto front set PF™) implicitly
indicates acceptable Pareto optimal solutions, decision variables or genotypes.
These solutions may have no apparent relationship besides their membership
in the Pareto optimal set. They form the set of all solutions whose asso-
ciated vectors are nondominated; Pareto optimal solutions are classified as
such based on their evaluated functional values.

Definition 9 (Pareto Front [1626, 277, 265]) : For a given MOP, F(x),
and Pareto Optimal Set, P*, the Pareto Front PF* is defined as:

PF*:={u=F(x)|xec P} (1.12)

O
When plotted in objective space, the nondominated vectors are collectively
known as the Pareto front. Again, P* is a subset of some solution set. Its
evaluated objective vectors form PF*, of which each is nondominated with
respect to all objective vectors produced by evaluating every possible solution
in £2. In general, it is not easy to find an analytical expression of the line
or surface that contains these points and in most cases, it turns out to be
impossible. The normal procedure to generate the Pareto front is to compute
many points in {2 and their corresponding f({2). When there is a sufficient
number of these, it is then possible to determine the nondominated points and
to produce the Pareto front. A sample Pareto front is shown in Figure 1.3.
Note that PFy,.. is used throughout this book interchangeably with PF*.3
Although single-objective optimization problems may have a unique opti-
mal solution, MOPs usually have a possibly uncountable set of solutions on

3 The MOEA literature uses a variety of symbolic notation, but, in contrast, this
book has adopted the forms Py and PFie, which are more understandable
and precise, and used more in current practice as related to the computational
domain.
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a Pareto front. Each solution associated with a point on the Pareto front is a
vector whose components represent trade-offs in the decision space or Pareto
solution space.

The MOP’s evaluation function, f : 2 — A, maps decision variables
(x = 21,...,@,) to vectors (y = aq,...,a;). This situation is represented
in Figure 1.4 for the case n = 2, m = 0, and k¥ = 3. This mapping may or
may not be onto some region of objective function space, dependent upon the
functions and constraints composing the particular MOP.

A
A Fy
X, N
Q=I{xeR'}
\ F
> Fs
X5
"Decision Variable Space" "Objective Function Space"

Fig. 1.4. MOP Evaluation Mapping

Note that the DM is often selecting solutions via choice of acceptable
objective performance, represented by the Pareto front. Choosing an MOP
solution that optimizes only one objective may well ignore solutions, which
from an overall standpoint, are “better.” The Pareto optimal set contains
those better solutions. Identifying a set of Pareto optimal solutions is thus key
for a DM’s selection of a “compromise” solution satisfying the objectives as
“best” possible. Of course, the accuracy of the decision maker’s view depends
on both the true Pareto optimal set and the set presented as Pareto optimal.

Weak and Strict Pareto Optimality

Definition 10 (Weak Pareto Optimality) : A point x* € §2 is a weakly
Pareto optimal if there is no x € 2 such that f;(x) < fi(x*), for i =
1.k 0

Definition 11 (Strict Pareto Optimality) : A point x* € (2 is a strictly
Pareto optimal if there is no x € 2, x # x* such that f;(x) < fi(x*), for
i=1,... k. O
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Kuhn-Tucker Conditions

Definition 12 (Kuhn-Tucker Conditions for Noninferiority) : If
a solution x to the general MOP is noninferior, then there exist w; > 0,
1=1,2,...,k (w, is strictly positive for some r = 1,2,...,k), and \; > 0,
1=1,2,...,m, such that [910]:

x e (1.13)
XNigi(x) =0 i=1,2....m (1.14)
and

m

k
Zlefl(x) —Z/\ngi(X) =0 (1.15)
1=1 i=1

O
These conditions are necessary for a noninferior solution, and when all
of the f;(x) are concave and {2 is a convex set, they are sufficient as well.

MOP Global Minimum

Defining an MOP’s global optimum is not a trivial task as the “best” compro-
mise solution is really dependent on the specific preferences (or biases) of the
(human) decision maker. Solutions may also have some temporal dependences
(e.g., acceptable resource expenditures may vary from month to month). Thus,
there is no universally accepted definition for the MOP global optimization
problem. However, an MOP’s global optimum is defined to substantiate the
material presented in further chapters.

Pareto optimal solutions are those which when evaluated, produce vectors
whose performance in one dimension cannot be improved without adversely
affecting another. The Pareto front PF* determined by evaluating P* is fixed
by the defined MOP and does not change. Thus, P* represents the “best”
solutions available and allows the definition of an MOP’s global optimum.

Definition 13 (MOP Global Minimum) : Given a function £ : 2 C
R" — RF, Q# 0, k> 2, for x € 2 the set PF* £ f(x}) > (—o0,...,—00) is
called the global minimum if and only if

vx e R: f(xF) < f(x) . (1.16)

Then, x¥, i = 1,...,n is the global minimum solution set (i.e., P*), f
s the multiple objective function, and the set {2 is the feasible region. The
problem of determining the global minimum solution set is called the MOP
global optimization problem. O



14 1 Basic Concepts
1.2.4 Definition of MOEA Progress

The generic Pareto definitions presented before can lead to confusion in dis-
cussing the algorithmic progress of a MOEA’s complex structure. To prevent
possible inconsistencies in discussions of MOEAs, Van Veldhuizen [1626] de-
veloped Pareto terminology to clarify MOEA computational progress. For
example, at any given generation of a MOEA, a “current” set of Pareto so-
lutions (with respect to the current MOEA generational population) exists
and is termed Peyprent (t), where t represents the current generation number.
Because of the manner in which Pareto optimality is defined, Peyrrent(t) is
generally a non-empty solution set [1626].

Many MOEASs use a secondary population which is referred to as an archive
or an external archive, in order to store nondominated solutions found through
the generational process [1628, 1626]. Since this secondary population contains
Pareto solutions generated up to a certain generation, each time another point
is considered for addition to the secondary population, the point must be ana-
lyzed for nondominance with respect to the points currently in the secondary
population. This secondary population is denoted Pypown (t) by definition.
Additionally, Pypown (0) is defined as the empty set () and Pgyown alone as
the final set of Pareto optimal solutions returned by the MOEA at termina-
tion [1626, 1790].

Different secondary population storage strategies exist; the simplest is
when Pypown (t) is updated at each generation (i.e., Peyrrent (t) U Prnown (t —
1)). At any given time, Pgpouwn () is thus the set of Pareto solutions currently
found by the MOEA through generation t. Of course, the true Pareto solution
set (termed P*) is defined in the computational domain as Py, which is
usually a subset of P*. Both are not explicitly known a priori for problems
of any difficulty. P is defined by the functions composing an MOP and the
given computational domain limits.

Pevrrent (1) Prnown (t), and Py.e are sets of MOEA genotypes where each
set’s phenotypes form a computational Pareto front set. The associated
Pareto front terms for each of these solution sets are defined respectively
as PFoyrrent (t)y PFinown (t), and PFy.. . Thus, when using a computational
MOEA to solve MOPs, the implicit assumption is that one of the following
holds at termination: Prnown = Pirue, OF Prnown C Pirye , Over some norm
(Euclidean, RMS, etc.). On the other hand, the limits of the computational
domain (finite storage, finite word-length) cause discussion inconsistencies in
these set notations as presented in the following section. Observe that various
MOEA researchers use a less precise notation referring only to the “approxi-
mated” Pareto front or Pareto solution.

1.2.5 Computational Domain Impact

The theory of computation implies that only a countable number of MOP
solutions can be computed. Also, the reality of having computers with finite
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word-length indicates that the accuracy of generated MOP solutions is lim-
ited. Note of course that numerical analysis techniques can be employed to
define associated error bounds if interested. Now, one could assume that the
theoretical P* and PF* are sets of values represented with infinite word-
length. Due to the computation domain (computer) strictly using these sets
as the goal set of Pareto optimal solutions, P* and associated optimal vectors
PF*, it is impossible for most MOEAs to converge to the optimal solutions.*
As developed by Day [344], this phenomenon is due to the computational lim-
itation gap between using an uncountable infinite set (theoretical values) and
countable/finite set (computational values). The form of these sets is related
respectively to infinite word-length and finite word-length for representing de-
cision variables x, and associated objective vectors, F'(x). With this approach,
MOEA results and analysis can be better compared to other multiobjective
solution techniques.

We use a more precise computational terminology to distinguish between
the real-world’s computational model, the formal mathematical world’s rep-
resentation of solutions, and the aforementioned Py, PFirue s Prnown , and
P Flnown when solving MOPs. The three cases for each computational set are
related to the relationships found in Table 1.1, which lists the three types
of theoretical relationships between P* and PF* set cardinality that must
be addressed as related to specific MOP characteristics. Note that countable
includes finite.

Table 1.1: Relationships between the P* and PF* set size.

|P*| |PF*|  Mappings of sets having size 1, #°, and %
1. Countable — Countable {1—=1),(n—1),("—n)}
2. Uncountable — Countable {(i— 1), (t — n), (i —7n)}
3. Uncountable — Uncountable {(ia — 1)}

P* and PF* of course represent the theoretical goal sets for a MOEA
search algorithm. However, as indicated before, they may not be computation-
ally achievable in any circumstance. Any goal set having an uncountable |PF™|
cannot be solved by a Turing Machine because the machine can only generate
a countable number of optimal solutions; thus, #3 conditions in Table 1.1
reflect an MOP that cannot be optimally solved by a digital computer.
When |P*| is uncountable infinite, the MOP reflected in #2 can be computa-
tionally solved only under certain problem domain circumstances. Finally, if

* Examples of finite |P*| and [PF*| are found in NP-complete problems where the
decision variables take on a finite number of values and the associated multi-
objective functions likewise only have a finite number of values (usually integer).
Further examples are found in deceptive MOPs. This situation is not true for
continuous functions of continuous variables.

® fi represents a countable/infinite or finite set.

6 {i represents an uncountable set.
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the set of values contained in P* and PF* are subsets of computational num-
bers,” then the MOP relationship of #1 can be solved by digital computers
with finite word-length and finite storage. Therefore, when defining the goal
set, it is important to define a set that the MOEA can converge to; i.e., the
goal sets referred to as Py and PFypye -

Pirue: This term is given as the MOP’s computational true Pareto Optimal
Set (decision variables). Under the following conditions Py is a subset of
P* assuming that the decision variable values are computational numbers
(finite word-length representations).

All computational

numbers in P*, Prye € P*
1. < and |P*| finite

At least one non-computational

number in P*, Pirye € P*
2. Ptrue Z P
3. Ptrue g P*
PFyre: This term is given as the MOP’s computationally true Pareto
Front set (objective values). Under the following conditions PFin.is a
subset of PF* due to the discrete finite word-length decision variables
and associated P Fj,own vectors.

All computational

numbers in PF*, with P* — PF* PFy...C PF*
1. ¢ and [PF*| finite

At least one non-computational

number in PF*, PFy . £ PF*
2. PFyy. < PF*
3. PFyye € PF*
Ppnown (t): This term defines the Pareto solution set best found by the
MOEA (finite word-length decision variables) at generation ¢. Py, oun often
does NOT represent the true Pareto Optimal Set; instead, it only repre-
sents the best set found by a computational MOEA for a particular MOP.
PFlnown (t): This term, PFypoun , defines a Pareto Front set found by the
MOEA at generation t. In general, it may be an intermediate Pareto Front
set relative to the MOEA process (i.e. objective values at the current gen-
eration are probably not as good as objective values in the final generation
Pareto Front set P Fjpoun found by the MOEA).

Again, a NP-complete problem with finite cardinality of the P* Pareto

Solution and PF™ points falls under the set inclusion principle in these de-
scriptions. In this situation, MOEA effectiveness can be explicitly measured
as to the obtainment of these points. However, because the MOEA process

" These values must be a computational number; otherwise, a digital computer

could not represent the goal sets. A computational number is a number that can
be represented or generated within a digital computer with finite word-length.
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may never reach P Fy,,qn for continuous functions, we can define a positive
error distance from this computational possibility as e. This provides for a
different performance model in the next section for development of Pareto
optimal front test metrics.

1.2.6 Pareto Epsilon Model

Considering the fact that in computational domain (finite word length and
Turing machine definition), one may never be able to reach the “optimal”
Pareto front, the concept of being within a “small” value of the Pareto front is
appropriate. Moreover, one can only generate a finite number of points on the
Pareto front even though a countable or uncountable number of points exist.
The following definitions extend the previous definitions to provide a method
of modeling these phenomena. In other words, in the cases where Py € P*,
P,y and PFy,.. are in the proximity® of P* and PF™ respectively.

Definition 14 (Pareto epsilon (€¢) Dominance) : A wvector u =
(u1,...,ux) is said to epsilon-dominate another vector v.= (v1,...,vx) (de-
noted by u = v) if for some € > 0 w; is partially less than v; + €, ie.,
Vie{l,....k}, u; <(v;+e)ATie{l,....k}:u; < (v; + €) where e >0. O

Definition 15 (Pareto epsilon (e¢) Optimality) : A solution x € (2 is
said to be Pareto epsilon Optimal with respect to {2 if and only if there is no
x' € 2 for which v.= F(x') = (f1(x),..., fr(x")) epsilon dominates u =
F(x) = (fi(x),..., fu(x)). The phrase Pareto epsilon Optimal is taken
to mean with respect to the entire decision variable space unless otherwise
specified. O

Definition 16 (Pareto epsilon (e¢) Optimal Set) : For a given MOP,
F(x), the Pareto epsilon Optimal Set, P*, is defined as:

Pri={xe|-3x e F') 2 F(x)}. (1.17)
O

Definition 17 (Pareto epsilon (€) Front) : For a given MOP, F(x), and
Pareto epsilon Optimal Set, P, the Pareto epsilon Front (PF?) is defined as:

PF! = {u=F(x) = (i), i(0) [ x P} (L18)
O

Definition 18 (Pareto Front width distribution) : The width of the
Pareto front created by the Pareto epsilon Dominance factor is described by the

8 Distance of optimal solutions and associated Pareto front vectors to the theoret-
ical true depends upon finite word-length restriction and characteristics of the
problem domain. The distance can be defined as e.
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Pareto front width distribution. By placing 3D Gaussian distributions (Parzon
Windows) on each wvector on a Pareto epsilon front, a distribution can be
tllustrated having a multidimensional Gaussian Distribution Characteristics.
See Definition 14 for understanding of Pareto epsilon dominance. a

The following terminology is used to distinguish between the real-world’s
and mathematical-world’s representation of solutions and associated Pareto
epsilon front vectors when solving MOPs. In the cases where Pf,.,,, € P7,
Py ... and PFj,,. are in the proximity of P and PF} respectively. The three

true
cases listed under each term are related to the relationships found in Table 1.1.

®  P{ ue: This term is given as the MOP’s computational true Optimal epsilon
Set (decision variables). Under the following conditions Py, is a subset

of P because the decision variables for the MOP must be discrete.

All computational numbers in P.*, Pf,.,.. C P.*
1. { At least one non-computational

number in P.*, Pfe L P”
2 Pf’rue Z ,P *
true g P
e PF Erue This term is given as the MOP’s computationally true Pareto

epsilon Front set (objective values). Under the following conditions PF%,.,,,
is a subset of PF* due to making the decision variables and objective
vectors of the MOP discrete within the computer.
All computational numbers in PF.*, PF;,.,. C PF*
1. ¢ At least one non-computational
number in PF.*, PF5,... L PF”
2. PFi,, € PF’
3. PFtruPZ’Pfe*

o  Pf own: This term defines Pareto epsilon Optimal Set found by the MOEA
(decision variables). P5,, .., often times does not represent the true Pareto
epsilon Optimal Set; instead, it should represent the best Pareto epsilon
Optimal Set found by a MOEA for a particular MOP.

o PPy own: This term defines the Pareto epsilon Front set found by the
MOEA. PF,,, ., may be an intermediate Pareto epsilon Front for the
MOEA (i.e. a set that is not as good as the final Pareto epsilon Front set

found by the MOEA).

1.2.7 Decision Maker Impact

Solutions on the Pareto Optimal Front PJF* represent optimal solutions in
the sense that improving the value in one dimension of the objective function
vector leads to a degradation in at least one other dimension of the objective
function vector. This is also true for PFlpown - This requires the decision
maker to make a tradeoff decision when presented with a large finite number
of points on PFj,0wn - There exists a difference in terminology between an
acceptable compromise solution and a Pareto Optimal Solution [510]. The
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decision maker typically chooses only a few points in PFl,own, as generated
by Pinown - The associated Pareto Optimal solutions, u € PFyown ©, are then
the “acceptable” (by the decision maker) compromise solutions. The decision
makers base their solution choice on which solutions take into account the
non-modelled human’s preference. The human preference factor can require
engineers and scientists to attempt to find a large number of the points in
PFlpnown , since all points may not be weighted equally by the decision maker.

1.3 An Example

To illustrate the application of the previous concepts, one example that has
been studied by several researchers [1322, 241] is as follows:

y

455"

Fig. 1.5. A two-bar plane truss.

The goal is to optimize the two-bar symmetric plane truss shown in
Figure 1.5. The design variables are the cross-sectional areas of the two bars.
The problem is formulated as follows:

o f1(x) = 2phxay/1 + 22
Minimize _ Ph(14+a2)15(1424)05 (1.19)
f2 <X) - 2vV2Ex3 o

subject to:



20 1 Basic Concepts

P(1 14 2%)%
g1(x) = (L+z)(1 +27) —09<0 (1.20)
2\/531‘1.%‘2

P(—x1 + 1)(1 +23)%°
2422129

where f1(x) is the structural weight of the truss, f2(x) is the displacement
of joint 3 (in Figure 1.5), and ¢;(x) and g2(x) are stress constraints of the
members.

In the previous expressions, 1 = x/h, £3 = A/Amin, E= Young’s modu-
lus, and p= density of material. It is assumed that: p = 0.283 1b/in3, h = 100
in, P =10*1b, E = 3x 107 Ib/in%, 0y = 2 x 10* Ib/in%, A,;,, = 1 in?, and the
lower (1) and upper (u) bounds of the design variables are: x(ll):O.l, xgl):().f),
2{"=2.25 and 2{"=2.5.

The true Pareto front of this problem (obtained through an enumerative
approach) is shown in Figure 1.6. Once the Pareto front of the problem has
been found, the DM is presented the set of Pareto optimal solutions generated
and then chooses a point (or points) from this set.

gg(X) = — 0o S 0 (121)

0.09 -
0.08 -
0.07 -
0.06 -
L 0.05
0.04 -
0.03 |-

0.02 -

0.01 1 1 1 1 1 1 1 1 ]
20 40 60 80 100 120 140 160 180 200

F

1

Fig. 1.6. True Pareto front of the two-bar truss problem.
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1.4 General Optimization Algorithm Overview

For the purposes of this book, general search and optimization techniques
are classified into three categories: enumerative, deterministic, and stochastic
(random). Although an enumerative search is deterministic a distinction is
made here as it employs no heuristics. Figure 1.7 shows common examples of
each type.

Gilobal
Search & Optimization
: ! l
Enumerative | | Deterministic | | Stochastic |
_l Greedy | _| Random Search/Walk |
| HinCimbing | | || Simulated Annealing |
_l Branch & Bound | _| Monte Carlo |
_l Depth-First | _l Tabu Search |
_l Breadth-First | _| Evolutionary Computation |
- Best-First
(A*,Z%, ..) | Mathematical Programming |
Calculus-Based

Fig. 1.7. Global Optimization Approaches

Enumerative schemes are perhaps the simplest search strategy. Within
some defined finite search space each possible solution is evaluated. However,
it is easily seen that this technique is inefficient or even infeasible as search
spaces become large. As many real-world problems are computationally in-
tensive, some means of limiting the search space must be implemented to find
“acceptable” solutions in “acceptable” time [1101]. Deterministic algorithms
attempt this by incorporating problem domain knowledge. Many of these are
considered graph/tree search algorithms and are described as such here.

Greedy algorithms make locally optimal choices, assuming optimal sub-
solutions are always part of the globally optimal solution [170, 729]. Thus,
these algorithms fail unless that is not the case. Hillclimbing algorithms search
in the direction of steepest ascent from the current position. These algorithms
work best on unimodal functions, but the presence of local optima, plateaus, or
ridges in the fitness (search) landscape reduce algorithm effectiveness [1407].
Greedy and hillclimbing strategies are irrevocable. They repeatedly expand a
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node, examine all possible successors (then expanding the “most promising”
node), and keep no record of past expanded nodes [1264].

Branch and bound search techniques need problem specific heuristics/de-
cision algorithms to limit the search space [541, 1264]. They compute some
bound at a given node which determines whether the node is “promising;”
several nodes’ bounds are then compared and the algorithm branches to the
“most promising” node [1172]. Basic depth-first search is blind or uninformed
in that the search order is independent of solution location (except for search
termination). It expands a node, generates all successors, expands a successor,
and so forth. If the search is blocked (e.g., it reaches a tree’s bottom level) it
resumes from the deepest node left behind [1264]. Backtracking is a depth-first
search variant which “backtracks” to a node’s parent if the node is determined
“unpromising” [1172]. Breadth-first search is also uninformed. It differs from
depth-first search in its actions after node expansion, where it progressively
explores the graph one layer at a time [1264]. Best-first search uses heuristic
information to place numerical values on a node’s “promise”; the node with
highest promise is examined first [1264]. A*, Z*, and others are popular best-
first search variants selecting a node to expand based both on “promise” and
the overall cost to arrive at that node.? Finally, calculus-based search methods
at a minimum require continuity in some variable domain for an optimal value
to be found [53].

Greedy and hill-climbing algorithms, branch and bound tree/graph search
techniques, depth- and breadth-first search, best-first search, and calculus-
based methods are all deterministic methods successfully used in solving a
wide variety of problems [170, 581, 1172]. However, many MOPs are high-
dimensional, discontinuous, multimodal, and/or N P-Complete. Deterministic
methods are often ineffective when applied to N P-Complete or other high-
dimensional problems because they are handicapped by their requirement for
problem domain knowledge (heuristics) to direct or limit search [500, 541,
581, 1101] in these exceptionally large search spaces. Problems exhibiting one
or more of these above characteristics are termed irregular [942].

Because many real-world scientific and engineering MOPs are irregular,
enumerative and deterministic search techniques are then unsuitable. Sto-
chastic search and optimization approaches such as Simulated Annealing (SA)
[861], Monte Carlo methods [1217], Tabu search [572], and Evolutionary Com-
putation (EC) [581, 1100, 72] were developed as alternative approaches for
solving these irregular problems. Stochastic methods require a function as-
signing fitness values to possible (or partial) solutions, and an encode/decode
(mapping) mechanism between the problem and algorithm domains. Although
some are shown to “eventually” find an optimum most cannot guarantee the

9 Note that there has been work regarding the extension of search algorithms such
as A® for multiobjective cases (see for example [1523, 335, 1051]). Such topic,
although called “Multiobjective Heuristic Search”, will not be covered in this
book, since we focus only on stochastic techniques.
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optimal solution. They in general provide good solutions to a wide range of
optimization problems which traditional deterministic search methods find
difficult [581, 729].

A random search is the simplest stochastic search strategy, as it simply
evaluates a given number of randomly selected solutions. A random walk is
very similar, except that the next solution evaluated is randomly selected us-
ing the last evaluated solution as a starting point [1646]. Like enumeration,
though, these strategies are not efficient for many MOPs because of their fail-
ure to incorporate problem domain knowledge. Random searches can generally
expect to do no better than enumerative ones [581, pg. 5.

SA is an algorithm explicitly modeled on an annealing analogy, where, for
example, a liquid is heated and then gradually cooled until it freezes. Where
hill-climbing chooses the best move from some node SA picks a random one. If
the move improves the current optimum it is always executed, else it is made
with some probability p < 1. This probability exponentially decreases either
by time or with the amount by which the current optimum is worsened [1407,
407]. If water’s temperature is lowered slowly enough it attains a lowest-energy
configuration; the analogy for SA is that if the “move” probability decreases
slowly enough the global optimum is found.

In general, Monte Carlo methods involve simulations dealing with stochas-
tic events; they employ a pure random search where any selected trial solution
is fully independent of any previous choice and its outcome [1460, 1217]. The
current “best” solution and associated decision variables are stored as a com-
parator. Tabu search is a meta-strategy developed to avoid getting “stuck” on
local optima. It keeps a record of both visited solutions and the “paths” which
reached them in different “memories.” This information restricts the choice
of solutions to evaluate next. Tabu search is often integrated with other opti-
mization methods [572, 1460].

EC is a generic term for several stochastic search methods which compu-
tationally simulate the natural evolutionary process. As a recognized research
field EC is young, although its associated techniques have existed for about
forty five years [497]. EC embodies the techniques of genetic algorithms (GAs),
evolution strategies (ESs), and evolutionary programming (EP), collectively
known as EAs [496]. These techniques are loosely based on natural evolu-
tion and the Darwinian concept of “Survival of the Fittest” [581]. Common
between them are the reproduction, random variation, competition, and se-
lection of contending individuals within some population [496]. In general, an
EA consists of a population of encoded solutions (individuals) manipulated by
a set of operators and evaluated by some fitness function.

Each solution’s associated fitness determines which survive into the next
generation. Although sometimes considered equivalent, the terms EA and EC
are used separately in this book to preserve the distinction between EAs and
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other EC techniques (e.g., genetic programming (GP) [905, 89] and learning
classifier systems [953, 183]).1°

MOP complexity and the shortcomings of deterministic search methods
also drove creation of several optimization techniques by the Operations Re-
search (OR) community. These methods (whether linear or nonlinear, deter-
ministic or stochastic) can be grouped under the rubric mathematical program-
ming. These methods treat constraints as the main problem aspect [1460]. Lin-
ear programming is designed to solve problems in which the objective function
and all constraint relations are linear [681]. Conversely, nonlinear program-
ming techniques solve some MOPs not meeting those restrictions but require
convex constraint functions [1460]. It is noted here that many problem do-
main assumptions must be satisfied when using linear programming, and that
many real-world scientific and engineering problems may only be modeled by
nonlinear functions [681, pp. 138,574]. Finally, stochastic programming is used
when random-valued parameters and objective functions subject to statistical
perturbations are part of the problem formulation. Depending on the type of
variables used in the problem, several variants of these methods exist (i.e.,
discrete, integer, binary, and mixed-integer programming) [1460].

1.5 EA Basics

The following presentation defines basic EA structural terms and concepts;'!
the described terms’ “meanings” are normally analogous to their genetic coun-
terparts. A structure or individual is an encoded solution to some problem.
Typically, an individual is represented as a string (or string of strings) corre-
sponding to a biological genotype. This genotype defines an individual organ-
ism when it is expressed (decoded) into a phenotype. A genotype is composed
of one or more chromosomes, where each chromosome is composed of sepa-
rate genes which take on certain values (alleles) from some genetic alphabet.
A locus identifies a gene’s position within the chromosome. Thus, each indi-
vidual decodes into a set of parameters used as input to the function under
consideration. Finally, a given set of chromosomes is termed a population.
These concepts are pictured in Figure 1.8 (for both binary and real-valued
chromosomes) and in Figure 1.9.

Just as in nature, Evolutionary Operators (EVOPs) operate on an EA’s
population attempting to generate solutions with higher and higher fitness.
The three major EVOPs associated with EAs are mutation, recombination,
and selection. Illustrating this, Figure 1.10 shows bitwise mutation on an en-
coded string where a ‘1’ is changed to a ‘0’, or vice versa. Figure 1.11 shows

10 Although GP and learning classifier systems may be classified as EA techniques,
several researchers consider them conceptually different approaches to EC [860].

' There is no shortage of introductory EA texts. The general reader is referred to
Goldberg [581], Michalewicz [1100], Mitchell [1114], Fogel [496] or Eiben & Smith
[435]. A more technical presentation is given by Béck [72].
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Locus
(Position)
12345678910
1/0/1]1[1]1]0/0]1]|0] -- Chromosome (String) Lo'c.us
1lol1]o]olo[1]1][1]0] -- Chromosome (String) (Position)
olo[1[1][1]1[1]0]0]0 2 3
0[1]0/0]1|0]1]1[1]1 4.3852 0.5837 8.3853
Population {21111101001.0.01110 e 63964 | 55495 | 1.0937
0|11 10T 01000 b 1.0937 8.3853 9.3856
1[0[0/0[OJT[1[1]1]1 L] . . .
1/0/1/1/0/0[0[1]0]1 6.3964 1.0645 0.5837
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Fig. 1.8. Generalized EA Data Structure and Terminology

single-point crossover (a form of recombination) operating on two parent bi-
nary strings; each parent is cut and recombined with a piece of the other.
Above-average individuals in the population are selected (reproduced) to be-
come members of the next generation more often than below-average individ-
uals. The selection EVOP effectively gives strings with higher fitness a higher
probability of contributing one or more children in the succeeding generation.
Figure 1.12 shows the operation of the common roulette-wheel selection (a
fitness proportional selection operator) on two different populations of four
strings each. Each string in the population is assigned a portion of the wheel
proportional to the ratio of its fitness and the population’s average fitness.

Real-valued chromosomes also undergo these same EVOPs although im-
plemented differently. All EAs use some subset or variation of these EVOPs.
Many variations on the basic operators exist; these are dependent upon prob-
lem domain constraints affecting chromosome structure and alleles [72].

An EA requires both an objective and fitness function, which are funda-
mentally different. The objective function defines the EA’s optimality con-
dition (and is a feature of the problem domain) while the fitness function
(in the algorithm domain) measures how “well” a particular solution satisfies
that condition and assigns a corresponding real-value to that solution. How-
ever, these functions are in principle identical [72, pg. 68] (e.g., in numerical
optimization problems).

Many other selection techniques are implemented by EAs, e.g., tournament
and ranking [72, 583]. Tournament selection operates by randomly choosing
some number ¢ individuals from the generational population and selecting
the “best” to survive into the next generation. Binary tournaments (¢ = 2)
are probably the most common. Ranking assigns selection probabilities solely
on an individual’s rank, ignoring absolute fitness values. Two other selection
techniques noted in detail are the (u+A) and (u, \) selection strategies, where
1 represents the number of parent solutions and A the number of children.
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Fig. 1.9. Key EA Components

Mutation Point

Parent: ‘ ‘ ‘ ‘

Fig. 1.10. Bitwise Mutation

Offspring:

The former selects the p best individuals drawing from both the parents and
children, the latter selects p individuals from the child population only.
Why is the choice of EA selection technique so important? Two conflicting
goals are common to all EA search: exploration and exploitation. Béck also
offers the analogous terms of convergence reliability and velocity, large and
small genotypic diversity, and “soft” and “hard” selection [72, pg. 165]. No
matter the terminology, one goal is achieved only at the expense of another.
An EA’s selective pressure is the control mechanism determining the type of
search performed. Béck’s analysis shows a general ordering of selection tech-
niques (listed in order of increasing selective pressure): Proportional, linear
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Crossover Point
Parent 1:
Parent 2: t I j
Offspring 1: ’ { l
Offspring 2:
String | Fitness B String | Fitness -
S1 12 Sl 20
S2 12 s1 s2 S2 10 s1
S3 12 \ S3 5
S4 12 | \ S4 5 |
mean 12 | mean 10 |

Equal Fitness Unequal Fitness

Fig. 1.12. Roulette Wheel Selection

ranking, tournament, and (u, A) selection [72, pg. 180]. Finally, an EA’s deci-
sion function determines when execution stops. Table 1.2 highlights the major
differences between the three major EC instantiations.

It is beyond the scope of this book to provide an in-depth analysis of
general EVOPs and EA components. Interested readers are directed to the
Handbook of Evolutionary Computation [73], which is probably the most
comprehensive collection of articles discussing EC, its instantiations, and ap-
plications.

Although much room for creativity exists when selecting and defining EA
instantiations (e.g., genetic representation and specific EVOPs), careful con-
sideration must be given to the mapping from problem to algorithm domains.
“Improper” representations and/or operators may have detrimental effects
upon EA performance (e.g., Hamming cliffs [72, pg. 229]). Although there is
no unique combination guaranteeing “good” performance [498, 1708], choos-
ing wisely may well result in more effective and efficient implementations.
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Table 1.2: Key EA Implementation Differences

EA Type Representation EVOPs
EP Real-values Mutation and (p + )
selection alone
ES Real-values and Mutation,
strategy parameters recombination,
and (u+ N)
or (u, \) selection
GA Historically binary; Mutation,
Real-values now recombination,
common and selection

To formally define an EA, its general algorithm is described in mathemati-
cal terms, allowing for exact specification of various EA instantiations. In this
framework, each EA is associated with a non-empty set I called the EA’s in-
dividual space. Each individual a € I normally represents a candidate solution
to the problem being solved by the EA. Individuals are often represented as
a vector (a) where the vector’s dimensions are analogous to a chromosome’s
genes. The general framework leaves each individual’s dimensions unspecified;
an individual (a) is simply that and is modified as necessary for the particular
EA instance.

When defining (generational) population transformations Béck denotes
the resulting collection of u individuals via I*, and denotes population trans-
formations by the following relationship: T : I* — I, where p € N [72].
However, some EA variants obtain resulting populations whose size is not
equal to their predecessors. Thus, this general framework represents a popu-
lation transformation via the relationship 7" : I* — [ “/, indicating succeeding
populations may contain the same or different numbers of individuals. This
framework also represents all population sizes, evolutionary operators, and
parameters as sequences [1092]. This is due to the fact that different EAs use
these factors in slightly different ways. The general algorithm thus recognizes
and explicitly identifies this nuance. Having discussed the relevant background
terminology, an EA is then defined as [1092] [72, pg. 66]:

Definition 19 (Evolutionary Algorithm) : Let I be a non-empty set (the
individual space), {1V }ien a sequence in Z+ (the parent population sizes),
{u’(i)}ieN a sequence in Zt (the offspring population sizes), ® : I — R a
fitness function, v : |2 (I")D — {true, false} (the termination criterion),
x € {true, false}, r a sequence {rD} of recombination operators () : x® —

T (Qﬁi),T i ),I“/m)), m a sequence {m(i)} of mutation operators m® :
X%) — T (Q%),T (I“/m,l“ ), s a sequence {s(i)} of selection operators
s@ XD X T(I,R) — T (Q@, T (( Ju““+xw>> , JW“’)), 6 € XV (the

7(1)
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recombination parameters ), o%) e x{¥) (the mutation parameters), and ol €

x{ (the selection parameters). Then the algorithm shown in Figure 1.13 is
called an Evolutionary Algorithm. |

t:=0;
initialize P(0) := {a1(0),...,a,(0)} € 1",
while (¢({P(0),...,P(t)}) # true) do
recombine: P'(t) := Tg;t) (P(®));
mutate: P"(t) := mng;) (P'(t));

select:
if x
then P(t + 1) := s(;)g) (P (1)
() ’ 7z .
else P(t+1) := S(egt),qs)(P (t) U P(t));
fi
t:=t+1;

od

Fig. 1.13. Evolutionary Algorithm Outline

1.6 Origins of Multiobjective Optimization

Multiobjective optimization theory is not as recent as we might think. In fact,
some authors (see for example [1516]) indicate that multiobjective optimiza-
tion is an inherent part of economic equilibrium and, in consequence, it can
be traced back to 1776 in which Adam Smith’s treatise The Wealth of Nations
was published.

The general concept of economic equilibrium is often attributed to Léon
Walras. However, William Stanley Jevons, Carl Menger, Francis Ysidro Edge-
worth and Vilfredo Pareto also did very important work in this regard in the
period between 1874 and 1906.

Closely related to multiobjective optimization is also the theory of psy-
chological games and the notion of game strategy (based on analyzing the
psychology of the adversary), which is attributed to Félix Edouard Emile
Borel.

The so-called Game Theory dates back to the work done by Borel in 1921.
However, most historians tend to attribute the origins of game theory to a
paper from the Hungarian mathematician John von Neumann, which was
orally presented in 1926 and published in 1928.

In 1944, John von Neumann and Oskar Morgenstern mentioned that an

43

optimization problem in the context of a social exchange economy was “a
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peculiar and disconcerting mixture of several conflicting problems” that was
“nowhere dealt with in classical mathematics” [1664]. Unfortunately, they did
not discuss this problem any further in their book and no real contribution in
this regard was made until the 1950s.

In 1951, Tjalling C. Koopmans edited a book called Activity Analysis of
Production and Allocation [897], where the concept of “efficient” vector was
first used in a significant way.'?

1.6.1 Mathematical Foundations

The origins of the mathematical foundations of multiobjective optimization
can be traced back to the period that goes from 1895 to 1906 [1516]. Dur-
ing that period, Georg Cantor [200, 201] and Felix Hausdorff [667] laid the
foundations of infinite dimensional ordered spaces. Cantor also introduced
equivalence classes and stated the first sufficient conditions for the existence
of a utility function. Hausdorff also gave the first example of a complete or-
dering. However, it was the concept of vector mazimum problem introduced
by Harold W. Kuhn and Albert W. Tucker [910] which made multiobjective
optimization a mathematical discipline on its own. The so-called “proper ef-
ficiency” in the context of multiobjective optimization was also formulated in
this seminal paper that can be considered as the first serious attempt to derive
a theory in this area. This same direction was later followed by Kenneth J.
Arrow et al. [61] who used the term “admissible” instead of “efficient” points.

However, multiobjective optimization theory remained relatively undevel-
oped during the 1950s, and the subject was scarcely covered by only a few
authors (see for example [895, 896, 689, 696, 864, 821]).

Probably the most important research outcome of the 1950s was goal pro-
gramming, introduced by Abraham Charnes and William Wager Cooper [229]
based on an earlier paper [228].

It was until the 1960s that the foundations of multiobjective optimization
were consolidated and taken seriously by pure mathematicians when Leonid
Hurwicz [728] generalized the results of Kuhn & Tucker to topological vector
spaces.

1.6.2 Early Applications

In the 1960s, however, multiobjective public investment problems became
more common and “trade-off” became a favorite term used by managers,
planners, and decision makers [289]. So, this area arose in a natural fashion
in mathematical economics, and many techniques were developed by systems
analysts and decision theorists for private and public sector problems, by con-
trol theorists for engineering (guidance and design) problems, and by water

12 This monograph played a significant role in bringing the Nobel Prize to Koopmans
in 1975 [1519].
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resource economists and systems analysts for water resource planning prob-
lems. There was also some renewed interest in Kuhn and Tucker’s vector
maximum theory during the early 1960s, as it is reflected in papers by Zadeh
[1746], Klinger [870] and Da Cunha & Polak [324].

The application of multiobjective optimization to domains outside eco-
nomics began with the work by Koopmans [897] in production theory and
with the work of Marglin [1065] in water resources planning. The first en-
gineering application reported in the literature was a paper by Lofti Zadeh
in the early 1960s [1746]. However, the use of multiobjective optimization
became generalized until the 1970s [1513, 289, 288].

Good reviews of existing mathematical programming techniques for mul-
tiobjective optimization can be found in a wide variety of sources [1384, 159,
1036, 1015, 289, 1519, 489, 1704, 732, 1515, 733, 1220, 461, 992, 1111, 428].

1.7 Classifying Techniques

There have been several attempts to classify the many multiobjective opti-
mization techniques currently in use. First of all, it is quite important to
distinguish two stages in which the solution of a multiobjective optimization
problem can be divided: the optimization of the several objective functions
involved and the process of deciding what kind of “trade-offs” are appropriate
from the decision maker perspective (the so-called multicriteria decision mak-
ing process). In this section, some of the many techniques available for these
two stages of a multiobjective optimization problem, are discussed, analyzing
some of their advantages and disadvantages.

Cohon and Marks [289] proposed one of the most popular classifications
of techniques within the Operations Research community:

1. Generating techniques (a posteriori articulation of preferences).

2. Techniques which rely on prior articulation of preferences (non-interactive
methods).

3. Techniques which rely on progressive articulation of preferences (interac-
tion with the decision maker).

Other classifications are obviously possible (see for example [416]). How-
ever, the classification proposed by Cohon & Marks [289] has been adopted
for the purposes of this book, because it focuses the classification on the way
in which each technique handles the two problems of searching and making
(multicriterion) decisions [1631, 706]:

1. A priori Preference Articulation: make decisions before searching
(decide = search).

2. A posteriori Preference Articulation: search before making decisions
(search = decide).
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3. Progressive Preference Articulation: integrate search and decision
making (decide < search).

In the following subsections, some of the most representative Operations
Research techniques are described, indicating how they fit within these three
groups.

1.7.1 A priori Preference Articulation

Following Cohon & Marks’ classification [289], this group of techniques in-
cludes those approaches that assume that either a certain desired achievable
goals or a certain pre-ordering of the objectives can be performed by the
decision maker prior to the search.

Global Criterion Method

In this method, the aim is to minimize a function which defines a global
criterion which is a measure of how close the decision maker can get to the
ideal vector f. The most common form of this function is [1217]

fx) = zk: (fo_fff(x))p (1.22)

i=1
where k is the number of objectives.

For this formula Boychuk and Ovchinnikov [159] have suggested p = 1,
and Salukvadze [1420] has suggested p = 2, but other values of p can also be
used. Obviously, the results differ greatly depending on the value of p chosen.
Thus, the selection of the best p is an issue in this method, and it could also
be the case that any p could produce an unacceptable solution.

Another possible measure of ‘closeness to the ideal solution’ is a family of
L,-metrics defined as follows

k 1/p
Ly(f) = [Z Fi fi(x)!pl ; 1<p<oo (1.23)
i=1
In general, relative deviations of the form
fio — fi(w)
o (1.24)

are preferred over absolute deviations, because they have a substantive mean-
ing in any context. The relevant L, metrics are

f) = filx)
£

p11/P
] , 1<p< (1.25)
=1

Lp(f) = lz
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The value of p indicates the type of distance: for p = 1, all deviations from
fi are taken into account in direct proportion to their magnitudes, which
corresponds to ‘group utility’ [1742, 419]. For 2 < p < oo, the larger deviations
carry greater weight in L,; for p = oo, the largest deviation is the only one
taken into consideration, which leads to a purely ‘individual utility’ (min-max
criterion), in which all weighted deviations are equal.

Koski [904] has suggested L,-metrics with a normalized vector objective
function of the form

fi(x) — ggl{}fi (%)

maue () — min . (x)

filx) =

(1.26)

In this case, the values of every normalized function are limited to the
range [0,1].

Using the global criterion method one non-inferior solution is obtained. If
certain parameters w; are used as weights for the criteria, a required set of
non-inferior solutions can be found. Duckstein [416] calls this method com-

promise programming, and his L,-metric is'3
k P 1/p

fi(x) = f7

i—1 7 max 7

where w; are the weights, f; max is the worst value obtainable for criterion ;
fi(x) is the result of implementing decision x with respect to the ith criterion.

The displaced ideal technique [1752] which proceeds to define an ideal
point, a solution point, another ideal point, etc. is an extension of compromise
programming.

Another variation of this technique is the method suggested by Wierzbicki
[1703, 1705] in which the global function has a form such that it penalizes the
deviations from the so-called reference objective. Any reasonable or desirable
point in the space of objectives chosen by the decision maker can be considered
as the reference objective.

Let £7 = [f7, f2,..., fr]7 be a vector which defines this point. Then the
function which is minimized has the form

k k
P, ) = = S (filx — f1)2 + 0> (max(0, filx — f1)%)  (1.28)

i=1 =1

where o > 0 is a penalty coefficient which in this method can be chosen as
constant.

Minimizing (1.28) for the assumed point f” a non-inferior solution which
is close to this point can be obtained. If for different points f” the procedure
is carried out, some representation of non-inferior solutions can be found.

13 Metrics for MOEA evaluation are discussed in Chapter 4.
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More information on this method can be found in [1217, 1751, 1753].

Goal Programming

Charnes and Cooper [229] and Ijiri [742] are credited with the development
of the goal programming method for a linear model, and played a key role in
applying it to industrial problems. As mentioned before, this was one of the
earliest techniques specifically designed to deal with multiobjective optimiza-
tion problems.

In this method, the DM has to assign targets or goals that wishes to
achieve for each objective. These values are incorporated into the problem
as additional constraints. The objective function then tries to minimize the
absolute deviations from the targets to the objectives. The simplest form of
this method may be formulated as follows [416]:

k
min Z |fi(x) — T;|, subject tox € 2 (1.29)
i=1

where T; denotes the target or goal set by the decision maker for the ith
objective function f;(x), and {2 represents the feasible region. The criterion,
then, is to minimize the sum of the absolute values of the differences between
target values and actually achieved values. A more general formulation of the
goal programming objective function is a weighted sum of the pth power of the
deviation |f;(x) — T;| [630]. Such a formulation has been called generalized
goal programming [738, 739)].

Looking again to equation (1.29), the objective function is nonlinear and
the simplex method can be applied only after transforming this equation into
a linear form, thus reducing goal programming to a special type of linear
programming. In this transformation, new variables d;r and d; are defined
such that [229]:

i = %{Ifi(X)—EIHfi(x)—Ti]}, (1.30)

47 = ${15:60 ~ T - [, ~ T}, (1.31)

Adding and subtracting these equations, the following equivalent linear
formulation may be found:

k
min Zo =Y (df +d;), (1.32)

i=1

subject to



1.7 Classifying Techniques 35

x €
fix)—df +d; =T, (1.33)
df,d- >0, i=1,....k

1?7

Since it is not possible to have both under- and overachievements of the
goal simultaneously, then at least one of the deviational variables must be
zero. In other words:

df-d7 =0 (1.34)

Fortunately, this constraint is automatically fulfilled by the simplex method
because the objective function drives either d;” or d; or both variables simul-
taneously to zero for all .

Sometimes it may be desirable to express preference for over- or under-
achievement of a goal. Thus, it may be more desirable to overachieve a targeted
reliability figure than to underachieve it. To express preference for deviations,
the DM can assign relative weights wj and w; to positive and negative devia-
tions, respectively, for each target 7;. If a minimization problem is considered,
choosing the w;" to be larger than w; would be expressing preference for un-
derachievement of a goal.

In addition, goal programming provides the flexibility to deal with cases
that have conflicting multiple goals. Essentially, the goals may be ranked in
order of importance to the problem solver. That is, a priority factor, p; (i =
1,..., k) is assigned to the deviational variables associated with the goals. This
is called “lexicographic ordering” by some authors (see for example [1111]).
These factors p; are conceptually different from weights, as it is explained, for
example, in [579]. The resulting optimization model becomes

k
min So = Y pi(wdf +w; d;), (1.35)
=1
subject to
x € {2
filx)—df +d; =T, (1.36)

df,d- >0, i=1,....k

7 YWy
Note that this technique yields a nondominated solution if the goal point

is chosen in the feasible domain [416].
More information on this method can be found in [230, 976, 975, 738, 807].

Goal-Attainment Method

In this approach, a vector of weights w1, wa, . . . , wy, relating the relative under-
or over-attainment of the desired goals must be elicited from the decision
maker in addition to the goal vector by, bs, ..., b for the objective functions
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f1, f2,- .-, frx- To find the best-compromise solution z*, the following problem
is solved [550, 551]:

Minimize « (1.37)
subject to:
g;(x)<0; j=1,2,....m
where « is a scalar variable unrestricted in sign and the weights wq, wo, ..., wg

are normalized so that

k
D fwi| =1 (1.39)
i=1
If some w; = 0 (i = 1,2,...,k), it means that the maximum limit of

objectives f;(x) is b;.

It can be easily shown [240] that the set of nondominated solutions can
be generated by varying the weights, with w; > 0 (: = 1,2,...,k) even for
nonconvex problems. The mechanism by which this method operates is il-
lustrated in Figure 1.14. The vector b is represented by the decision goal of
the DM, who also decides the direction of w. Given vectors w and b, the
direction of the vector b + « - w can be determined, and the problem stated
by equation (1.37) is equivalent to finding a feasible point on this vector in
objective space which is closest to the origin. It is obvious that the optimal
solution of equation (1.37) is the first point at which b + « - w intersects the
feasible region in the objective space (denoted by F' in Figure 1.14). Should
this point of intersection exist, it would clearly be a nondominated solution.

It should be pointed out that the optimum value of « informs the DM of
whether the goals are attainable or not. A negative value of o implies that
the goal of the decision maker is attainable and an improved solution is then
to be obtained. Otherwise, if @ > 0, then the DM’s goal is unattainable.

For more information on this method, refer to [240, 1321].

Lexicographic Method

This is a peculiar method in which the aggregations performed are not scalar.
In this method, the objectives are ranked in order of importance by the deci-
sion maker (from best to worst). The optimum solution x* is then obtained
by minimizing the objective functions, starting with the most important one
and proceeding according to the order of importance of the objectives.

Let the subscripts of the objectives indicate not only the objective function
number, but also the priority of the objective. Thus, fi(x) and f;(x) denote
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Fig. 1.14. Goal-attainment method with two objective functions.

the most and least important objective functions, respectively. Then the first
problem is formulated as

Minimize fi(x) (1.40)
subject to

g;i(x)<0; j=1,2,...,m (1.41)

and its solution x7 and f; = f(x}) is obtained. Then the second problem is
formulated as

Minimize fo(x) (1.42)

subject to

9i(x) <0; j=1,2....m (1.43)
fi(x) = f1 (1.44)
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and the solution of this problem is obtained as x5 and f5 = fa(x3). This
procedure is repeated until all k& objectives have been considered. The ith
problem is given by

Minimize f;(x) (1.45)

subject to
gi(x)<0; j=1,2,....,m (1.46)
ix)=f (=12,...;i—1 (1.47)

The solution obtained at the end, i.e., xj, is taken as the desired solution
x* of the problem.
More information on this method may be found in [1321, 1429].

Min-Max Optimization

The idea of stating the min-max optimum and applying it to multiobjective
optimization problems was taken from game theory, which deals with solving
conflicting situations. The min-max approach to a linear model was proposed
by Jutler [811] and Solich [1503]. It has been further developed by Osyczka
[1216], Rao [1320] and Tseng & Lu [1606].

The min-max optimum compares relative deviations from the separately
attainable minima. Consider the ith objective function for which the relative
deviation can be calculated from

() = i) = 17 (1.48)
£
or from
"y = i) = ) (1.49)

“ =)

It should be clear that for equations (1.48) and (1.49) it is necessary to
assume that for every i € I (I =1,2,...,k) and for every x € £2, f;(x) # 0.

If all the objective functions are going to be minimized, then equation
(1.48) defines function relative increments, whereas if all of them are going
to be maximized, it defines relative decrements. Equation (1.49) works con-
versely.

Let z(x) = [21(X),...,2(X),...,2(x)]T be a vector of the relative in-
crements which are defined in R¥. The components of the vector z(x) are
evaluated from the formula

Vierzi(x) = max {z(x), z (x)} (1.50)

Now the min-max optimum can be defined as follows [1217]:
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A point x* C 2 is min-max optimal, if for every x € 2 the following
recurrence formula is satisfied:
Step 1:

v1(x*) = min{z;(x)} (1.51)
€L yer
and then I; = {i1}, where 41 is the index for which the value of z;(x) is
maximal.
If there is a set of solutions X; C {2 which satisfies Step 1, then
Step 2:

*) = mi f 1.52
) = mip (s (5000 ) (1.52)
and then Iy = {i1,i2}, where iy is the index for which the value of z;(x) in
this step is maximal.
If there is a set of solutions X,._1 C {2 which satisfies step » — 1 then
Step r:

o) = i (e (00) ) (1.53)
and then I,. = {I,_1,i,}, where 4, is the index for which the value of z;(x) in
the rth step is maximal.
If there is a set of solutions X;_1 C 2 which satisfies Step k — 1, then
Step k:

vp(x*) = min z(x) forieland i ¢ I3 (1.54)
x€Xk-1
where vy (x*),...,vp(x*) is the set of optimal values of fractional deviations

ordered non-increasingly.

This optimum can be described in words as follows. Knowing the extremes
of the objective functions which can be obtained by solving the optimization
problems for each criterion separately, the desirable solution is the one which
gives the smallest values of the relative increments of all the objective func-
tions.

The point x* € 2 which satisfies the equations of Steps 1 and 2 may be
called the best compromise solution considering all the criteria simultaneously
and on equal terms of importance. It should be noticed that even when these
equations look quite complicated, in many optimization models, only the first
step of this process is necessary to determine the optimum.

Multiattribute Utility Theory

Von Neumann and Morgenstern [1664] developed an axiomatic utility theory
to measure individual or group preferences. Utility theory assumes that an
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individual can choose among the alternatives available in such a manner that
the satisfaction derived from the choice made is as large as possible. This,
of course, implies the individual is aware of the alternatives available and is
capable of evaluating them. Moreover, relative to a vector of objectives it is
assumed all information pertaining to the various levels of the objectives can
be captured by an individual’s utility function. In effect, an individual’s
utility function is a formal, mathematical representation of the individual’s
preference structure. Multiattribute utility functions, which may be assessed
as first proposed in [835, 1315, 122, 836] integrate the objective functions into
the preference structure. The highest degree of utility with respect to all the
objectives is obtained by maximizing the utility function.

Oppenheimer [1213] distinguishes two approaches to utility maximization:
the global and the local approaches.

The global approach [834] refers to the above expected utility maxi-
mization, and ‘may force the decision maker to fit a function not truly repre-
senting’ the preference function. Nevertheless, the global approach is taken in
most multiattribute utility models.

In the local approach [556], the above-mentioned problem of locking
the decision maker into a given risk attitude is avoided by using a sequence of
local linear approximations to the utility function. To each step pertains a trial
solution representing an improvement over its predecessor, so that eventually,
the sequence reaches its optimum.

The main drawback of this approach is that the DM has to spend a lot
of time building single-attribute utility functions. Then, the DM has to make
sure that the ‘corner utilities’ are assessed; the latter makes it possible to
combine the single attribute utilities u;(z;) into one function u(x).

To illustrate the assessment task, let four attributes, x1,z2,z3, and x4,
be, respectively, the weight W, probabilities of failure (1 — r) = py, cost
k, and deflection A of a structure. The first task is to assess the function
ui(x;), 1 =1,2,3,4; this can be best done by means of lotteries of the type:

Kmin
0.5
K, ~
0.5 Kpaz

In words, given a lottery in which maximum cost k4, and minimum cost
kmin may be obtained with equal probability 0.5 (for example), which value k.
would the DM accept as a ‘certainty equivalent’? Furthermore, if the axioms
of von Neumann and Morgenstern are satisfied, it can be proved [1665] that
a utility function u(-) exists, leading to the equation:

u(ke) = 0.5u(kmaz) + 0.5u(kmin) (1.55)

Utility functions are defined within a positive linear transformation and
one usually sets u(kmaz) = 0 and u(knin) = 1 so that u(k.) = 0.5. This proce-
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dure is continued in the intervals (kmaz, ke ); (Ke, kmin), and overlapping inter-
vals, until a satisfactory piecewise-linear approximation of the utility function
is obtained.

If the attributes W, 1 — r, k and A are mutually utility independent, the
function u(x) is given by [836]:

k
1+ ku(x) = [ 11+ kksui(2:)] (1.56)
i=1
Verification of the utility independence hypothesis, assessment of the
ki (i = 1,2,3,4), and consistency check require a further series of lotter-
ies. However, even when a lot of effort is required to construct u(x), it may
be worth it in large and costly systems [416].
For more information on this method, refer to [559, 909].

Surrogate Worth Trade-Off

This method, proposed in [631], is a variant of the trade-off method in which
objective trade-offs are used as the information carrier and the DM responds
by expressing a degree of preference over the prescribed trade-offs by assigning
numerical values to each surrogate worth function. These functions are used to
construct a single objective problem. First, the set of strictly nondominated or
efficient solutions is generated, say by any multiobjective optimization tech-
nique (normally, the e-constraint technique is used). Then a search along the
efficient boundary is performed using a surrogate worth function. Note the dif-
ference between this method, which stays on the Pareto optimum boundary,
and compromise programming or game theory, in which the Pareto optimum
set is approached, respectively, from the infeasible and the feasible regions.

The trade-off function for any two objectives evaluated at a given efficient
solution x is:

_ 0filx)
9f;(x)
As can be seen from equation (1.57), this method can only be applied

when all the objective functions are differentiable.

The surrogate worth function, Wj;, ¢ # 7, 4,5 = 1,2,...,n, is defined
as a function of the desirability of the trade-off A;; on a scale. For example,
if a scale ranging from —10 to +10 is used, a (—10) would indicate that A;;
marginal units of objective i are worth very much less than one marginal unit
of objective j, a (+10) means the opposite, and a zero indicates an even trade-
off. The best solution is found when all surrogate worth functions are equal
to zero. A complete description of this technique can be found in [630], and
an abbreviated version, in [579].

The main advantage of this technique resides in its sound theoretical basis
and on its several applications reported in the literature [629, 628, 330, 1209).

T;5(x) (1.57)
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On the other hand, computational requirements are non-trivial, and much
input is required from the DM.

In general, it can said that the trade-off methods have two main disadvan-
tages [1217]:

They cannot be used to solve non-convex problems, and

they allow a satisfactory solution to be found only in a certain region of
Pareto optimal solutions, but do not provide a general outlook on the
possible range of objectives, and thus the final decision is influenced by
the starting point chosen.

ELECTRE

This technique (in its different versions) is applicable to problems that have a
discrete predefined set of alternatives in which some of the evaluation criteria
are non-quantifiable, i.e., the criteria can only be ranked ordinally or, with
additional information, on a ratio or interval scale.

ELECTRE I (elimination and (et) choice translating algorithm) was de-
veloped by Benayoun et al. [117]. This technique was improved by Roy [1384]
and it has been applied, for example, to water-related problems [336, 419, 417].
The idea is to choose those systems which are preferred for at least a plurality
of the criteria and yet do not cause an unacceptable level of discontent for
any one criterion. This methodology leans on three concepts: concordance,
discordance, and threshold values.

The concordance between any two systems ¢ and j is a weighted measure
of the number of criteria for which action 4 is preferred to action j (denoted
i > 7) or for which action 4 is equal to action j (denoted i ~ j) and is given
as:

ZkeA(i,j) w(k)

Ypw(k)
where w(k) is the weight of criterion k, k= 1,..., K, and A(4,j) = {k|i =
j}. The weights, which are given by the DM, reflect a set of preferences.
Concordance may be considered as the weighted percentage of criteria for
which one action is preferred to another. Note that, by construction, 0 <
C(i,j) < 1.

Determination of the discordance between ¢ and j requires that an inter-
val scale common to each criterion be defined. The scale is used to compare
the discomfort caused between the ‘worst’ and the ‘best’ criterion value for
each pair of alternatives. A range may be chosen where the ‘best’ rating would
be assigned the highest value of the range and the ‘worst’ rating would receive
the lowest value of the range. Each criterion, however, can have a different
range to reflect the ‘leeway’ available for that criterion [416]. The problem of
applying a ratio scale to an ordinal criterion presents theoretical difficulties
which are fully addressed in [1753, 1362]. Essentially, evaluations of the type

C(i,j) = (1.58)
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(a, b, ¢, d) may be assigned in an analogous way in which grades are assigned
to students. The discordance index is defined as:
max (Z(]a k) - Z(Za k))

. k=1,K
D(i,j) =

I (1.59)
where Z(j,k) is the evaluation of alternative j with respect to criterion k,
and R* is the largest of the K criterion scales. Again, by construction, 0 <

D(i,j) < 1.
(3)
@

@ ‘
®
O o

Fig. 1.15. Example of an ELECTRE graph. Each node corresponds to a non-
dominated alternative. The arrows indicate preferences. Therefore it can said that
alternative 1 is preferred to alternative 2, alternative 4 is preferred to alternative 5,
etc.

To synthesize both, the concordance and discordance matrices, threshold
values (p, q) between zero and one, are defined by the DM. Using a geometric
representation, the preference relationships define a transitive and complete
graph (G) for each criterion, in which nodes are alternatives and arcs are
directed as the preference sign . In the case of i ~ j, one arc is drawn from ¢
to j and another from j to i. The arc set A of the composite graph (I") which
synthesizes both concordance and discordance relationships, is given by:

a(i,j) € A< (C(i,j) > p) N (D(i,j) < q) (1.60)

Figure 1.15 shows an example of the type of graph that ELECTRE I uses.
In choosing the value of p, the problem solver specifies how much ‘concordance’
is wanted: p = 1 corresponds to full concordance, which means that 7 should
be preferred or equivalent to j in terms of all criteria. By choosing ¢, the
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amount of tolerable ‘discordance’ is specified: ¢ = 0 means no discordance. It
is possible that some choices of p and ¢ may eliminate all alternative systems.
If this is the case, the values of p and/or ¢ must be restated. It is also possible
for cycles to occur in the composite graph (I') of ELECTRE I. In such cases
the nodes along the cycle are collapsed into one new node, which is equivalent
to assigning the same ranking to those systems.

The preference graph (I") of ELECTRE I thus yields a partial ordering of
the alternative systems. On the other hand, ELECTRE II [1384, 417], may
be used to obtain a complete ordering, as in [418]. Brieflyy ELECTRE II is
based on two preference graphs representing the strong preferences (high p and
low ¢) and the weak preferences (lower p and higher ¢). The weak preferences
can be viewed as lower bounds on system performance that the DM is willing
to accept. ELECTRE III [1390] uses a credibility index, which is modelled
by a fuzzy number. This index is used to associate a value to the outranking
relation. In ELECTRE IV [1390], no weights are assigned to the criteria. In
this version, four indices of credibility may be assigned to the values of the
outranking relations. There are two other versions of ELECTRE: one called
ELECTRE TRI, which is customized for a sorting decision problem (it
uses conjunctive and disjunctive techniques to assign different alternatives to
different categories), and ELECTRE IS, which really consists of ELECTRE
I plus the use of discriminating thresholds [1390]. The fact that most of the
information about some versions of ELECTRE (for example, versions IIT and
IV) is available only in French has certainly limited its use [1386, 1488, 1390]

ELECTRE has been applied to a substantial number of practical problems
with a predetermined finite set of alternatives evaluated in terms of ordinal
(quantitative or qualitative) criteria, and could be most useful to solve mul-
tiobjective optimization problems that have those characteristics, since the
technique is robust, simple, requires little input from the DM, and usually
leads to plausible results.

The technique, however, has also been criticized. Brans & Vincke [168]
criticize the ELECTRE methods precisely because of the parameters that
they require. They argue that even though some of these parameters have
a real economic meaning and can, therefore, be fixed clearly, some others
(such as concordance discrepancies and discrimination thresholds) playing an
essential role in the procedures only have a technical character and their in-
fluence on the results is not always well understood. Moreover, in some of the
ELECTRE methods, the notion of “degree of credibility” is rather difficult
for practitioners [168].

More information on this method can be found in [1142, 1143, 1383, 1384,
1389, 579, 1390, 1658, 487].
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PROMETHEE

The PROMETHEE methods (Preference Ranking Organization METHod for
Enrichment Evaluations) belong to the family of outranking methods (i.e.,
ELECTRE) introduced by B. Roy. These methods include two phases [169]:

e The construction of an outranking relation on the different criteria or
objectives of the problem.

e The exploitation of this relation in order to give an answer to the multi-
criteria optimization problem.

In the first phase, a valued outranking relation based on a generalization
of the notion of criterion is considered: a preference index is defined and a
valued outranking graph, representing the preferences of the DM (six types
of functions are used to express these preferences), is obtained.

The exploitation of the outranking relation is realized by considering for
each action a leaving and an entering flow in the valued outranking graph:
a partial preorder (PROMETHEE I) or a complete preorder (PROMETHEE
IT) on the set of possible actions can be proposed to the DM in order to solve
the decision problem.

In the PROMETHEE methods, Brans proposes an approach that is “very
simple and easy to understand by the decision maker” according to him. This
method is based on extensions of the notion of criterion. These extended
criteria can be easily built by the DM because they represent the natural
notion of intensity of preference, and the parameters to be fixed (maximum
two) have a real economic meaning.

More information on this method may be found in [168, 337, 420, 1063,
169, 167].

More recently, Huylenbroeck [730] proposed the so-called Conflict Analy-
sis Model, that combines the preference function approach of ELECTRE and
PROMETHEE with the conflict analysis test of a method called ORESTE
(this technique provides an outranking relation by using as its input ordinal
evaluations of the alternatives and the ranking of the criteria as a function
of their relative importance) [1381, 1261]. Also, Martel et al. [1076] pro-
posed a technique called PAMSSEM (Procédure d’Agrégation Multicritére de
type Surclassement de Synthese pour Evaluations Mixtes), which is based on
ELECTRE and PROMETHEE, and can handle non deterministic and fuzzy
criteria evaluations [937]. Finally, there is another technique called NAIADE
(Novel Approach to Imprecise Assessment and Decision Environments) [1148],
which uses a distance operator to obtain pairwise comparisons of the alterna-
tives available to the DM. These comparisons are modelled as fuzzy numbers.
The aggregation procedure used by this technique produces incoming and
outgoing flows as in PROMETHEE.
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1.7.2 A Posteriori Preference Articulation

These techniques do not require prior preference information from the DM.
Some of the techniques included in this category are among the oldest mul-
tiobjective optimization approaches proposed. The reason is that the main
idea of these approaches follows directly from the Kuhn-Tucker conditions for
noninferior solutions [289].

Linear Combination of Weights

Zadeh [1746] was the first to show that the third of the Kuhn-Tucker condi-
tions for noninferior solutions implies that these noninferior solutions might be
found by solving a scalar optimization problem in which the objective function
is a weighted sum of the components of the original vector-valued function.
That is, the solution to the following problem is, in general, noninferior:

k
min Y w; fi(x) (1.61)
=1
subject to:

x €N (1.62)

where w; > 0 for all ¢ and is strictly positive for at least one objective.
The noninferior set and the set of noninferior solutions can be generated by
parametrically varying the weights w; in the objective function. This was
initially demonstrated by Gass and Saaty [546] for a two-objective problem.

Note that the weighting coefficients do not reflect proportionally the rel-
ative importance of the objectives, but are only factors which, when varied,
locate points in the Pareto optimal set. For the numerical methods that can
be used to seek the minimum of equation (1.61), this location depends not
only on w; values, but also on the units in which the functions are expressed.

The e-Constraint Method

This method also follows directly from the Kuhn-Tucker conditions for non-
inferior solutions. Equation (1.15) can be rewritten as:

k m
w,V fr(x) + Z wV fi(x) — Z AiVgi(x) =0 (1.63)
1=1, I#r i=1
Since only relative values of the weights are of significance, the rth objec-
tive can be selected so that w, = 1. The previous condition defined in equation
(1.63) then becomes:
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k

Vi) Y lef(x)fZ)\ng,;(x):() (1.64)

=1, l#r

This rewritten condition allows the second term to be interpreted as a
weighted sum of the gradients of k — 1 lower-bound constraints, since there is
a plus sign before the summation. This interpretation implies that noninferior
solutions can be found by solving:

min f,.(x) (1.65)

subject to:

filx) <e forl=1,2,....,k andl #r (1.66)

where ¢; are assumed values of the objective functions that must not be ex-
ceeded.

The idea of this method is to minimize one (the most preferred or primary)
objective function at a time, considering the other objectives as constraints
bound by some allowable levels ¢;. By varying these levels ¢;, the noninferior
solutions of the problem can be obtained.

It is important to be aware of the fact that a preliminary analysis is re-
quired to identify proper starting values for ¢;. To get adequate ¢; values,
single-objective optimizations are normally carried out for each objective func-
tion in turn by using mathematical programming techniques.

This method, also known as trade-off method, because of its main con-
cept of trading a value of one objective function for a value of another function,
is further explained in [1217, 1019, 211, 733].

1.7.3 Progressive Preference Articulation

These techniques normally operate in three stages [289]: (1) find a nondomi-
nated solution, (2) get the reaction of the DM regarding this nondominated
solution, and modify the preferences of the objectives accordingly, and (3)
repeat the two previous steps until the DM is satisfied or no further improve-
ment is possible.

Probabilistic Trade-Off Development Method

The main motivation of this method (also known as PROTRADE) was to
be able to handle risk in the development of the objective trade-offs, and at
the same time being able to accommodate the preferences of the DM in a
progressive manner [577).

In this case, it is assumed that our multiobjective optimization problem
has a probabilistic objective function and probabilistic constraints [576]. Ac-
cording to a 12-step algorithm, an initial solution is found using a surrogate
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objective function, then a multiattribute utility function is formed leading to
a new surrogate objective function and a new solution. The solution is checked
to see if it is satisfactory to the decision maker. The process is repeated until
a satisfactory solution is reached, as described in [578, 579].

The results of the multiobjective optimization provide not only levels of at-
tainment of the objective function elements (as in the goal attainment method
[550]), but also the probabilities of reaching those levels. The technique is in-
teractive, which means that the DM formulates a preference function in a
progressive manner, after a trial process [416].

One interesting aspect of this approach is that the DM actually ranks
objectives in order of importance (a multi-attribute utility function is used
to assist the DM in the articulation of preferences) at the beginning of the
process, and later uses pairwise comparisons to reconcile these preferences
with the “real” (observed) behavior of the attributes. This allows not only
an interactive participation of the DM, but it also allows to gain knowledge
about the trade-offs of the problem.

More information on this method may be found in [577, 579].

STEP Method

This method (also known as STEM) is an iterative technique based on the
progressive articulation of preferences. The basic idea is to converge toward
the ‘best’ solution in the min-max sense, in no more than k steps, being k
the number of objectives. This technique, which is mostly useful for linear
problems, starts from an ideal point and proceeds in six steps, as summarized
by Cohon [288]:

1. Construct a table of marginal solutions (strictly nondominated if unique),
by optimizing each objective function separately.
2. Compute, for each objective:

afi) = O =mE) |5~ (1.67)

j=1

where
M (i) = max f;(x), m(i) = min f;(x), and ¢(i,j) = cost coefficient of ith
linear objective.
Let the iteration index k=0
3. Compute [](¢) = a(i)/ > a(i) and solve the min-max problem. Call the
solution z(k).
4. Show the solution to the DM:
a) if satisfied, STOP;
b) if not satisfied and k < p — 1, go to Step 5;
c) if not satisfied and k > p— 1, STOP. A different procedure or at least
a redefinition of the problem is required.
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5. The DM selects an objective satisfied by the solution and determines
the amount by which it can be decreased in order to improve the other
objectives. If this cannot be done, some other approach is again required.

6. Define a new constraint relaxing the objective selected in Step 5. Set
a(i) = 0 for that objective, increment k by one, and go to Step 3.

One criticism to this technique is the fact that it assumes that a best-com-
promise solution does not exist if it is not found after the k steps that the
iterative process above described was executed. This does not give any clue
to the DM of what to do [289]. Another problem is that it does not explicitly
capture the trade-offs between the objectives. The weights in no way reflect a
value judgment on the part of the DM. They are artificial quantities, generated
by the analyst to reflect deviations from an ideal solution, which is itself an
artificial quantity. This definition of the weights serves to obscure rather than
capture the normative nature of the multiobjective optimization problems
[289].

More details of this technique may be found in [289, 1547, 116].

Sequential Multiobjective Problem Solving Method

This method (also known as SEMOPS) was proposed by Monarchi et al. [1121]
and it basically involves the DM in an interactive fashion in the search for a
satisfactory course of action.

A surrogate objective function is used based on the goal and aspiration
levels of the DM. The goal levels are conditions imposed on the DM by external
forces, and the aspiration levels are attainment levels of the objectives which
the DM personally desires to achieve. One would say, then, that goals do not
change once they are stated, but that the aspiration levels may change during
the iteration process. The development of the algorithm is summarized as
follows [579]:

The decision problem consists of k goals, n decision variables, and a feasi-
ble region (2. Associated with each of the goals is an objective function which
can be used to predict goal attainment or nonattainment. The set of all p
objective functions is written as z = (21, 29, ..., 2k), and it is used to judge
how well the k goals have been achieved. The range of the ith element of z is
denoted by Az; = [z;L, ziu], which is not necessarily defined by the maximum
and minimum values of the ith objective function. It is required that {2 be con-
tinuous and that all objective and constraint functions be at least first-order
differentiable. Thus the constraint or objective functions may be nonlinear.
Nondimensionality is achieved by transforming z;(x) into y;(x) with a range
of values in the interval [0, 1] such that

Z; (X) — ZiL
i(x) = ——— 1.68
() = L (1.65)
Similarly, let AL = (ALy, ALs,..., ALy) denote the vector of aspiration
levels. Then, the transformation
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AL; — 2
Ay = ST AL (1.69)
Ziu = %l
can be used to define A; with values in the range [0, 1].
Monarchi [1120] suggests the use of the following transformations:
1. At most
zi(x) _ yi(x)
. < AL' . — = 1.
zi(x) < ALy; d; AL A (1.70)
2. At least
AL; A;
zi(x)  yi(x)
3. Equals
L[ AL; | zi(x) L[ A wi(x)
zi(x) 2 Ll(x) ALi] 2 [yl(x) + A; (1.72)

4. Within an interval

AL; AL, )
ALiL S Zz(X) S AL’LU’ di = |: U :| |: iL Zl(X)

1.
AL;;, + ALy Zz(X) ALiU:| ( 73)

In each instance, values of d; < 1 imply that the ith objective is satisfied.
It is also noted that, except for the first type, the d; are nonlinear functions
of the ith objective.

Operationally, SEMOPS is a three-step procedure involving setup, itera-
tion, and termination. Setup involves structuring a principal problem and a
set of auxiliary problems with a surrogate objective function. The iteration
step involves cycling between an optimization phase (by the analyst), and an
evaluation phase (by the DM) until a satisfactory solution is reached, if it
exists. The procedure terminates when either a satisfactory solution is found,
or the DM concludes that none of the nondominated solutions obtained are
satisfactory and gives up in the search.

For the first iteration, then, the principal problem and set of k auxiliary
problems shown below are solved:

Principal problem

k
min 51 = Y _d; (1.74)
=1

subject to
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x € {2 (1.75)

and the set of auxiliary problems, [ =1,2,..., k.

k
min sy = Y d; (1.76)
i=1,i#£l

subject to

x €N (1.77)

zZl (X) Z AL[ (178)

The resulting solutions are used in the evaluation process to assist the DM
to determine the “direction of change” for the next iteration.

More information on this method can be found in [1121, 579).

Other methods that also rely on the progressive articulation of preferences
have been proposed in [864, 1433, 1043, 114].

1.8 Using Evolutionary Algorithms

The potential of evolutionary algorithms for solving multiobjective optimiza-
tion problems was hinted as early as the late 1960s by Rosenberg in his PhD
thesis [1375]. Rosenberg’s study contained a suggestion that would have led
to multiobjective optimization if he had carried it out as presented. His sug-
gestion was to use multiple properties (nearness to some specified chemical
composition) in his simulation of the genetics and chemistry of a population
of single-celled organisms. Since his actual implementation contained only one
single property, the multiobjective approach could not be shown in his work.

The first actual implementation of what it is now called a multi-objective
evolutionary algorithm (or MOEA, for short) is credited to David Schaffer,
who proposed the Vector Evaluation Genetic Algorithm (VEGA), in 1984 (in
his PhD thesis [1439]). VEGA was mainly aimed for solving problems in ma-
chine learning [1439, 1440, 1441]. There is, however, a (rarely mentioned) ear-
lier attempt to use a genetic algorithm to solve a multi-objective optimization
problem which dates back from 1983 (see [764]).

Schaffer’s work was presented at the First International Conference on Ge-
netic Algorithms [1440]. Interestingly, his simple unconstrained two-objective
functions became the usual test suite to validate most of the evolutionary mul-
tiobjective optimization techniques developed during several of the following
years [1509, 709].

Evolutionary algorithms seem particularly suitable to solve multiobjective
optimization problems, because they deal simultaneously with a set of possible
solutions (the so-called population). This allows to find several members of
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the Pareto optimal set in a single “run” of the algorithm, instead of having to
perform a series of separate runs as in the case of the traditional mathematical
programming techniques [261]. Additionally, evolutionary algorithms are less
susceptible to the shape or continuity of the Pareto front (e.g., they can easily
deal with discontinuous or concave Pareto fronts), whereas these two issues are
a real concern for mathematical programming techniques. Also, while many
optimization approaches from those described in Section 1.4 were developed
for searching intractably large spaces, traditional MOP solution techniques
generally assume small, enumerable search spaces [706]. More simply, some
MOP solution approaches focus on search and others on multi-criteria deci-
sion making (MCDM). MOEAs are then very attractive MOP solution tech-
niques because they address both search and multiobjective decision making.
Additionally, they have the ability to search partially ordered spaces for sev-
eral alternative trade-offs. Many researchers have successfully used MOEAs
to find good solutions for complex MOPs (see Chapter 7).

A MOEA’s defining characteristic is the set of multiple objectives being si-
multaneously optimized. Otherwise, a task decomposition clearly shows little
structural difference between the MOEA and its single-objective EA counter-
parts. The following definition and figures explain this relationship.

Definition 20 (Multiobjective Evolutionary Algorithm) : Let & :
I — RE, (k > 2, a multiobjective fitness function). If this multiobjective
fitness function is substituted for the fitness function in Definition 1.13 then
the algorithm shown in Figure 1.13 is called a Multiobjective Evolutionary
Algorithm. a
Figures 1.16 and 1.17 respectively show a general EA’s and MOEA’s task
decomposition. The major differences are noted as follows. By definition, Task
2 in the MOEA case computes k (where k > 2) fitness functions. In addition,
because MOEAs expect a single fitness value with which to perform selection,
additional processing is sometimes required to transform MOEA solutions’
fitness vectors into a scalar (Task 2a). Although the various transformation
techniques vary in their algorithmic impact (see Section 6.3.8 from Chapter 6)
the remainder of the MOEA is structurally identical to its single-objective
counterpart. However, this does not imply the differences are insignificant.

General EA Tasks

1. Initialize Population IZO,O’E
2. Fitness Evaluation

3. Recombination

4. Mutation

O OO

Sequential Decomposition

Fig. 1.16. Generalized EA Task Decomposition
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General MOEA Tasks

1. Initialize Population
2. Fitness Evaluation
2a. Vector/Fitness Transformation Loop
3. Recombination // \
4. Mutation
5. Selection

DO OO @ O

Sequential Decomposition

Fig. 1.17. MOEA Task Decomposition

1.8.1 Pareto Notation

A MOEA'’s algorithmic structure can easily lead to confusion (e.g., multi-
ple, unique populations) when identifying or using Pareto concepts. In fact,
MOEA researchers have erroneously used Pareto terminology in the literature
suggesting a more precise notation is required. During MOEA execution, a
“current” set of Pareto optimal solutions (with respect to the current MOEA
generational population) is determined at each EA generation and termed
Pyrrent(t), where t represents the generation number. Many MOEA imple-
mentations also use a secondary population storing nondominated solutions
found through the generations [1628, 1626] (see also Section 2.2.4 from Chap-
ter 2). Because a solution’s classification as Pareto optimal depends upon
the context within which it is evaluated (i.e., the given set of which it is a
member), corresponding vectors of this set must be (periodically) tested and
solutions whose associated vectors are dominated removed.

This secondary population is named Pyy,pun (t). This term is also annotated
with ¢ to reflect its possible changes in membership during MOEA execution.
Prrown (0) is defined as the empty set () and Pyyoun alone as the final set of
solutions returned by the MOEA at termination. Different secondary popula-
tion storage strategies exist; the simplest is when Ppyprent (t) is added at each
generation (i.e., Peyrrent (t) U Prpown (t — 1)). At any given time, Pipown (1)
is thus the set of Pareto optimal solutions yet found by the MOEA through
generation t. Of course, the true Pareto optimal set (termed Py..e) is not
explicitly known for problems of any difficulty. Py, is implicitly defined by
the functions composing an MOP; it is fixed and does not change. Because
of the manner in which Pareto optimality is defined Piyrent(t) is always a
non-empty solution set (see Theorem 1 in Chapter 6).
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Pewrrent(t), Prnown, and Py, are sets of MOEA genotypes;'4 each set’s cor-
responding phenotypes form a Pareto front.'® The associated Pareto front for
each of these solution sets is called PF yrrent(t), PFinown, and PFy.,e. Thus,
when using a MOEA to solve MOPs, the implicit assumption is that one of
the following holds: Prnown = Ptrues Prnown C Pirue, OF {Wj € PFlpown,u; €
PFirye | Vi, Vj min[distance(u;,u;)] < €}, where distance is defined over
some norm (Euclidean, RMS, etc.).

1.8.2 MOEA Classification

Many successful MOEA approaches are predicated upon previously imple-
mented mathematical MOP solution techniques. As seen in Section 1.6, the
OR field proposed several methods well before 1985 [289, 732, 1522]. Their
Multiple Objective Decision Making (MODM) problems are closely related to
design MOPs. These problems’ common characteristics are a set of quantifi-
able objectives, a set of well-defined constraints, and a process of obtaining
trade-off information between the stated objectives (and possibly also between
stated or non-stated non-quantifiable objectives) [732].

Various MODM techniques are commonly classified from a DM’s point
of view (i.e., how the DM performs search and decision making). Cohon &
Marks [289] further distinguish methods between two types of DM: a single
DM/group or multiple DMs with conflicting decisions. Here, it has been con-
sidered that the DM is either a single DM or a group, but a group united in
its decisions.

Because the set of solutions a DM is faced with are often “compromises”
between the multiple objectives some specific compromise choice(s) must be
made from the available alternatives. Thus, the final MOP solution(s) results
from both optimization (by some method) and decision processes. MOEA-
based MOP solution techniques are classified here as many OR researchers
do, defining three variants of the decision process [289, 732] where the final
solution(s) results from a DM’s preferences being made known either before,
during, or after the optimization process. Thus, the same classification of
techniques described in Section 1.7 from this chapter has been adopted for
MOEA-based MOP solution techniques.

Basic techniques below this top level of the MODM hierarchy may be com-
mon to several algorithmic research fields. However, the discussion is limited
to implemented MOEA techniques. A hierarchy of the known MOEA tech-
niques is shown in Figure 1.18 where each is classified by the different ways
in which the fitness function and/or selection is treated.

4 Horn [706] uses Poniine, Pofftine, and Pactuar instead of Peurrent (t), Prnown, and Prrye.
The notation presented here is more precise, allowing for each set’s generational
specification.

15 Note that when describing MOEAs, genotype refers to decision variable space,
whereas phenotype refers to objective function space.
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Existing MOEA Solution Techniques

A Priori Progressive A Posteriori

(Before) (During) (Generating)

Aggregation (Ordering) Interactive Independent Sampling

Cooperative Search

Aggregation (Scalarization) t

-- Ranking
-- Multiplicative -- Ranking and Niching
-- Target Vector -- Demes
-- Minimax -- Elitist

Hybrid Selection

Fig. 1.18. MOEA Solution Technique Classification

1.9 Summary

This chapter contains the basic definitions and formal notation that are
adopted throughout this book. Formal definitions of the general multiobjec-
tive optimization problem and the concept of Pareto optimum are provided.
Other related concepts such as Pareto optimal set, ideal vector, Pareto front,
weak and strict Pareto optimality are also introduced. After that, some in-
troductory material on evolutionary computation is discussed, as well as a
short historical review of the origins of multiobjective optimization and a
taxonomy of approaches suggested by operations researchers to tackle these
types of problems. Several representative approaches from this taxonomy are
also described and criticized. This chapter ends with a short discussion on
the main motivation to use evolutionary algorithms to solve MOPs together
with a description of the Pareto notation and MOEA classification adopted
throughout this book.
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Class Exercises

1.

Enumerate the main advantages and limitations of mathematical pro-
gramming techniques for multiobjective optimization.

. Most mathematical programming techniques operate only with a single

solution at a time. Do you think that there would be any advantages if
a set of solutions was manipulated at a time instead of only one? Would
that require any changes in the mathematical programming algorithms
that you are familiar with? Discuss.

Sketch an algorithm to generate nondominated solutions and execute by
hand. Discuss possible ways of improving the computational efficiency of
this algorithm (see for example [120, 361]).

Discuss the main components of an evolutionary algorithm. Indicate its
potential advantages and disadvantages as an optimizer.

Indicate possible situations in which an a priori preference articulation
scheme would be preferred over an a posteriori scheme and vice versa.
Do you think that interactive approaches (i.e., those using a progressive
preference articulation scheme) are a better choice (in the general case)
than either a priori or a posteriori approaches? Discuss.

Class Software Projects

1.

Implement goal programming using any single-objective optimization
technique you wish (see for example [1324]). Test your implementation
with the example presented in Section 1.3. How efficient is this technique
at finding the true Pareto front of this problem? How much parameter-
setting is involved in the process? How many times do you need to run
the program to produce a reasonably good Pareto front?

Implement a simple genetic algorithm (see [581] for implementation de-
tails), and apply it to a single-objective optimization problem. Justify your
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choice of encoding (of decision variables), and genetic operators (i.e., type
of crossover and mutation). Then, consider a problem with two objective
functions, such as the one discussed in Section 1.3. Use a simple linear
combination of weights (see Section 1.7.1) to solve this problem with your
genetic algorithm. What problems do you see with this approach when
attempting to generate the Pareto front of a problem? Suggest a way of
keeping “diversity” in the population (i.e., avoid that the entire population
converges to a single point). Do you consider this approach appropriate to
deal with any number of objectives? One of the main reasons why the use
of a simple linear combination of weights is not recommended, is because
it can be proved that this approach cannot generate concave portions of
the Pareto front regardless of the weights used (see for example [329)]).
Do you consider this as a major drawback in the sort of multiobjective
optimization problems that you wish to solve?

Use the same genetic algorithm implemented in the previous problem, and
now couple it with compromise programming (see Section 1.7.2). This ap-
proach uses a nonlinear combination of weights. Do you see any advantage
in doing this with respect to the use of a linear combination of weights?
Does compromise programming have the same problems than a simple lin-
ear combination of weights? What extra information does the approach
require? Is it difficult to obtain it?

Repeat the two previous questions, but using a multi-membered evolu-
tion strategy. Justify your choice of recombination operator and selection
scheme (plus or comma). See [1460] for implementation details.

Choose a set of five mathematical programming techniques used for mul-
tiobjective optimization (see for example [1111]), and implement them.
Then test them using two of the (unconstrained) test functions presented
in Chapter 4. Plot the Pareto fronts obtained and compare (graphically)
your results with respect to the true Pareto fronts of each test function
(obtained by enumeration). What advantages and disadvantages (if any)
do you see in these methods? Do they present any limitations? Discuss.

Discussion Questions

1.

An obvious problem with multiobjective optimization techniques is that
they could generate the same element of the Pareto optimal set several
times. Investigate possible ways of dealing with this problem. See for ex-
ample:

Michael A. Rosenman and John S. Gero, “Reducing the Pareto optimal
set in multicriteria optimization”, Engineering Optimization, Vol. 8, pp.
189-206, 1985.

What are the main differences between the multiobjective optimization
techniques used for combinatorial optimization problems and those used
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for numerical optimization? What is the role of local search in the first
class of problems? See for example [429, 430, 431, 532, 879, 1615].

. Read:

W. Stadler, “Initiators of Multicriteria Optimization”, In J. Jahn and
W. Krabs, editors, Recent Advances and Historical Development of Vector
Optimization, pages 3—47. Springer-Verlag, Berlin, 1986.

What areas of research are identified by Stadler in this paper? Describe
briefly each of them. Do you think that these research areas are still rea-
sonably active nowadays?

. Read:

Dylan F. Jones and Mehrdad Tamiz, “Goal Programming in the Period
1990-2000”, in Matthias Ehrgott and Xavier Gandibleux (editors), Multi-
ple Criteria Optimization. State of the Art Annotated Bibliographic Sur-
veys, pp. 129-170, Kluwer Academic Publishers, 2002.

Explain with your own words the following variants of goal programming:
a) Weighted Goal Programming

b) Lexicographic Goal Programming

¢) Tchebycheff Goal Programming

. Several authors (see for example [416, 841]) have proposed the following
criteria to classify multiobjective optimization techniques:

e marginal vs. non-marginal difference between alternatives

e quantitative vs. ordinal qualitative criteria

e prior vs. progressive articulation of preferences

e interactive vs. non-interactive

Investigate each of these criteria and classify the approaches discussed in
this chapter based on them.

. Investigate what is the “nadir objective vector” and indicate how can
be estimated. Can you find in the specialized literature a multiobjective
optimization technique that uses this concept? Can you think of some
possible applications for the nadir objective vector?

. Discuss the GUESS method described by Buchanan [182]. Provide its
algorithm and indicate its advantages and disadvantages. Discuss some
possible applications of this technique.

. Look at your local library for some papers on mathematical programming
techniques used for multiobjective optimization. Analyze the sort of test
functions normally used to validate results and discuss the methodology
adopted by operational researchers. Discuss.

. Investigate what is the chi-square distribution. If it is assumed that there
are several elements of the Pareto optimal set of a problem available (ob-
tained, perhaps, by enumeration), how could you use a chi-square dis-
tribution to measure the effectiveness of a multiobjective optimization
technique?
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10.

11.

12.

13.

Further Explorations

Fliege & Svaiter [492] proposed steepest descent methods for uncon-
strained multiobjective optimization and a “feasible descent direction”
method for constrained problems. Discuss the requirements of the ap-
proach and its possible implementation difficulties. What are the main
advantages provided by this sort of approach? Discuss.

Read the survey on nonlinear multiobjective programming by Tanino &
Kuk [1573] and discuss the following issues:

e Optimality conditions

e Duality (both Lagrange and Conjugate)

e Stability and sensitivity analysis

Read about interactive nonlinear multiobjective optimization procedures
(see for example [1110, 1111]). Discuss at least two approaches not covered
in this chapter (for example, light beam search [785, 786] and the reference
direction approach [902]).

An active application domain in which a considerable amount of work has
been done in the last few years is multicriteria scheduling (see for example
[1588]). Choose a particular type of multicriteria scheduling problem and
discuss its definition, complexity and modeling.
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MOP Evolutionary Algorithm Approaches

An algorithm must be seen to be believed.

Donald Knuth

2.1 Introduction

Both researchers and practitioners in science, engineering, government, and
industry certainly have a strong interest in knowing state-of-the-art multi-ob-
jective optimization techniques. For researchers, this is the normal procedure
to trigger new and original algorithmic contributions. For practitioners, this
knowledge allows them to choose the most appropriate algorithm(s) for their
specific multi-objective problem (MOP) domain application. From the deci-
sion maker’s (DM) perspective, it is desired that only a “few” solutions are
available for ease of decision. Thus, as presented in Chapter 1, one is at-
tempting to optimize a vector objective function possibly with constraints
resulting in trade-offs between the multiple objectives. This chapter employs
the various generic mathematical definitions defined in Chapter 1 for dis-
cussing multi-objective evolutionary algorithm (MOEA) design.! Tt is desired
that an MOEA generates MOP solutions in Py, which provide a trade-off
of performance (efficiency, effectiveness) for specific system model objectives
(cost/profit, constraints, etc.) that may mutually conflict. For example, the
classical multiobjective knapsack problem (profit and weight) and drug devel-
opment (cost vs. effectiveness) represent vectors of two objectives. Maximizing
one objective such as profit usually does not optimize another such as relia-
bility. Many contemporary real-world MOP applications for the practitioner’s

! Note that some MOEA researchers and practitioners use the phrase “Multi-
Objective Optimization Problem” (MOOP) and “Multi-Objective Optimization”
(MOO) to associate with the field, instead of MOP and MOEA.
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and researcher’s critical analysis are discussed in Chapter 7 and [277] with
many examples reflected in the current MOEA literature.?

Since Evolutionary Algorithms and MOEAs in particular can encode in-
dividual solutions in numerous straightforward representations (chromosome
data structures) as well as directly compute associated objective values, they
have a considerable robust advantage over traditional MOP search techniques
(see Chapter 1). That is, traditional techniques may impose restrictions or
complex mappings on the problem domain or algorithm domain mathemati-
cal model in order to solve the problem. Of course, the No Free Lunch Theorem
(NFL) [1708] implies that a MOEA is not a universal robust solution tech-
nique for all MOPs. But, MOEAs generally can easily be guided by problem
domain information, not having to modify the problem domain model for use
with MOEAs. Then, the search process is easier to develop, understand and
test in its native form for a given application [1102].

Achieving the exact Pareto front of an arbitrary problem is usually quite
difficult. Nevertheless, reasonably good approximations of PF}.,. are gener-
ally acceptable within limited computational time (see Chapter 1 for associ-
ated notation). MOEAs by definition attempt to find these acceptable but
approximate Pareto fronts and Pareto optimal solutions within some implicit
or explicit error measure (see Chapter 5).

This chapter addresses the many issues involved in MOP domain and
MOEA domain integration from a design perspective. In particular, historic
and generally used (MOEA) approaches such as the NSGA [1509, 374], PAES
[886], SPEA [1782, 1775], and the MOMGA [1626, 1629, 1790] are detailed and
analyzed. In the discussion of various MOEAs, each algorithm is catalogued
by recording key elements of its approach, and classified using the structure
defined in Chapter 1. The chapter also presents a generic MOEA algorithmic
formulation based upon basic evolutionary operators. Related to this generic
form, an analysis of currently known MOEA algorithmic design research is
given. Many relevant meta-level topics are addressed, highlighting MOEA
design concerns which have limited treatment in the literature. For example,
discussed are dominance operator differences, diversity operator variations,
population structures, impact of MOEA fitness function characteristics, lack
of MOEA theory, MOEA chromosomal representations, utility of explicit vs.
implicit building block approaches, and other selected topics.

Fundamental MOEA techniques and MOEA design goals along with a
generic MOEA structure are presented in Section 2.2. Specific MOEA pseudo
code and associated performance is discussed in Section 2.3. Constraint-
handling techniques are briefly discussed in Section 2.4. Critical MOEA ele-
ments are described in Section 2.5. This leads to Section 2.6 which recapitu-

2For an up-to-date list of references on  evolutionary  multi-
objective  optimization, visit the EMOO repository located at:
http://delta.cs.cinvestav.mx/~ccoello/EMO0 with a mirror at:
http://www.lania.mx/"ccoello/EMO0
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lates general MOEA design principles. Section 2.7 presents a summary of the
contents of this chapter.

2.2 MOEA Techniques

This section discusses the development of MOEAs and associated techniques
and as such is concerned with issues such as the variety of MOEA design
efforts, practicality of the various operator techniques, fitness functions and
chromosomal representations. EAs, in general are considered as metaheuris-
tic problem solvers—top-level general strategies which guide other lower-level
heuristics® to search for feasible solutions in difficult domains—search land-
scapes. This treatment of major MOEA research issues provides the interested
researcher and practitioner with tools and techniques of the field and their evo-
lution. The following incomplete historical list of EA algorithms for solving
MOPs reflects different algorithmic frameworks as well as fitness function and
chromosomal representations:

Vector Evaluated GA (VEGA) [1439, 1440, 1441]

Lexicographic Ordering GA [518]

Vector Optimized Evolution Strategy (VOES) [934]

Weight-Based GA (WBGA) [636]

Multiple Objective GA (MOGA) [504]

Niched Pareto GA (NPGA, NPGA 2) [708, 709, 453)

Nondominated Sorting GA (NSGA, NSGA-II) [1509, 363, 374]
Distance-based Pareto GA (DPGA) [1225, 1224]

Thermodynamical GA (TDGA) [863]

Strength Pareto Evolutionary Algorithm (SPEA, SPEA2) [1782, 1775]
Multi-Objective Messy GA (MOMGA-LILIII) [1626, 1629, 1790, 1788,
342, 345, 343

Pareto Archived ES (PAES) [885, 886)

Pareto Envelope-based Selection Algorithm (PESA, PESA II) [301, 299]
Micro GA-MOEA (uGA, uGA?) [283, 284, 1507]

Multi-Objective Bayesian Optimization Algorithm (mBOA) [956, 1265]

It is also noted here that although David Schaffer is credited with the
“invention” of the first MOEA in the mid-1980s, other researchers also deserve
credit for their contributions during those years. Mainly, it is important to
emphasize the early attempt by Ito et al. [764] to use a genetic algorithm to
solve a multi-objective optimization problem, which precedes Schaffer’s work.
Additionally, it is also important to mention the work by Fourman [518], who
presented different MOEA implementations at the same conference where
Schaffer’s work was introduced.

3 Heuristic : a problem-solving technique in which the most appropriate local so-
lution or partial solution is selected using comparative rules.
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The idea of using Pareto-based fitness assignment was first proposed by
Goldberg [581] to solve the problems of Schaffer’s approach [1440]. He sug-
gested the use of nondominated ranking and selection to move a population
toward the Pareto front in a multiobjective optimization problem. The basic
idea is to find the set of strings in the population that are Pareto nondomi-
nated by the rest of the population. These strings are then assigned the highest
rank and eliminated from further contention. Another set of Pareto nondomi-
nated strings are determined from the remaining population and are assigned
the next highest rank. This process continues until the population is suitably
ranked. Goldberg also suggested the use of some kind of niching technique to
keep the GA from converging to a single point on the front [368]. A niching
mechanism such as sharing [587] would allow the GA to maintain individu-
als all along the nondominated frontier. A variety of MOEAs extended these
ideas and are discussed next in more detail.
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Fig. 2.1. Statistics of the number of publications per year related to evolutionary
multiobjective optimization (up to early 2007)

Not until the mid 1990s is there a noticeable increase in published MOEA
research. The sheer number of contemporary conference and journal publica-
tions and books indicates an active contemporary MOEA research community
(see Figure 2.1 and the EMOO repository [266]).
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As noted in Section 1.8.2 from Chapter 1, MOEA approaches have been
classified into three major categories. These categories and the specific tech-
niques they embody are:

A Priori Techniques: Lexicographic, linear fitness combination, and nonlinear
fitness combination.

Progressive Techniques: Progressive techniques or interactive computational
steering.

A Posteriori Techniques: Independent sampling, criterion selection, aggrega-
tion selection, Pareto-based selection, Pareto rank- and niche-based se-
lection, Pareto deme-based selection, Pareto elitist-based selection, and
hybrid selection.

In general, the multiobjective approach to solving MOPs generates “par-
tial orders” of solutions leading to possible multitudes of trade-off solutions
in objective space. Note that for single-objective optimization, a “total or-
der” exists. For MOEAs, the concept of dominance is addressed again with
reflection on strict partial orders of points in objective space.

Note that with MOPs, an explicit set of objective functions is not required,
but only the relative fitness of each solution in a neighborhood and a selec-
tion mechanism. Examples of this phenomenon are found in single-objective
optimization using simulated annealing [861] and tabu search [572].

There are fundamentally three MOP solution techniques; optimize only
the highest priority objective, use an aggregated weight sum of all the ob-
jectives, or employ a multiobjective algorithm to find the entire Pareto front
(all nondominated points, PFy,. ). Within each of these techniques, there is
a multitude of operators that may search from edge to edge of the objective
space, move statistically forward towards the Pareto front from an initial set
of individuals, or randomly generate and test points. Finding MOP solutions
in Py can vary from decision maker priority to attempting to find all solu-
tions. The essence of multi-criteria optimization is to find the Pareto front.
How does one exploit the objective landscape, different search operators, eval-
uate with metrics the results, and provide a small number of solutions to the
DM? The following subsections expand on generic MOP solution approaches
with critical analysis of the various techniques as an attempt to answer these
questions.

2.2.1 A Priori Techniques

By definition, these a priori techniques require a decision maker (DM) to de-
fine the MOP objective relative importance prior to search. This is usually
reflected in the weights associated with the aggregated sum of the objectives.
In essence, the preferences of the DM are modelled to evaluate and compare
solutions in this multicriteria decision making (MCDM) problem. In real-world
scientific and engineering problems, it is a non-trivial task to find the one solu-
tion of interest to the DM. The ramifications of “bad” objective prioritization
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choices are easy to understand: the decision maker’s “weight” (no matter how
defined) could be greater than necessary as more “acceptable” solutions are
missed. Optimizing mostly profit could lead to poor quality or reliability, not
a good compromise. No matter the optimization algorithm used, this is an
inescapable consequence of a priori MOEA techniques, which are examined
for each sub-technique. These sub-techniques evolve from the general concept
of a single scaled function such as represented in a weighted sum of objectives.

A priori techniques can be divided in the following major approaches:

Lexicographic ordering
Linear aggregating functions
Nonlinear aggregating functions

Other approaches include achievement scaling functions [1702, 1707] and
the e-constraint method [961, 1318] which also map the MOP to a single-
objective optimization problem.

Lexicographic ordering

In this method, the DM is asked to rank the objectives in order of importance.
The optimum solution is then obtained by minimizing the objective functions
in sequence, starting with the most important one and proceeding according to
the assigned order of importance of the objectives. It is also possible to select
randomly an objective to be optimized at each generation if the priority is
unknown [518].

Crriticism of lexicographic ordering - Selecting randomly an objective is
equivalent to a weighted combination of objectives, in which each weight is
defined in terms of the probability that each objective has of being selected.
However, the use of tournament selection with this approach (as Fourman
[518] did) makes an important difference with respect to other techniques such
as the Vector Evaluated Genetic Algorithm (VEGA) [1440]. This is because
the pairwise comparisons of tournament selection make scaling information
negligible [505, 507]. This means that this approach may be able to depict
concave trade-off surfaces, although that really depends on the distribution
of the population and on the problem itself. Its main weakness is that this
approach tends to favor more certain objectives when many are present in
the problem, because of the randomness involved in the process. This has the
undesirable consequence of making the population converge to a particular
part of the Pareto front rather than to delineate it completely [260]. The main
advantage of this approach is its simplicity and computational efficiency. These
two properties make it highly competitive with other non-Pareto approaches
such as a weighted sum of objectives or VEGA.

Lexicographic techniques have not found favor with MOEA researchers, as
only a few implementations are reported in the specialized literature (see for
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example [526, 440]). This may be due to the fact that this technique explores
objective space unequally, in the sense that priority is given to solutions per-
forming well in one objective over another(s). Or, in other words, one objective
is optimized at all costs.

The lexicographic technique appears most suitable only when the impor-
tance of each objective (in comparison to the others) is clearly known. Of
course, trade-offs do exist. On the one hand, any reported solutions are Pareto
optimal (by definition and with respect to all solutions evaluated). On the
other hand, when is such an “all costs” goal necessary or even appropriate?
If one objective is to be optimized regardless of the others’ expense, it seems
more appropriate to instead use a single objective EA which does not incur
the additional overhead of a MOEA.

Linear aggregating functions

The typical form of linear aggregating functions is to compute fitness using;:

k
fitness = min Z w; fi(x) (2.1)
i=1
where w; > 0 and ¢ = 1...k are the weighting coefficients representing the
DM’s relative importance of the k objective functions of the MOP. It is usually
assumed for normalization that

> wi=1 (2.2)

The linear fitness combination technique is a popular scalarizing approach
despite its identified shortfalls [329], probably due to its simplicity. In Fig-
ure 2.2, observe that one of the equal slope parallel (minimization) lines indi-
cates that the search process finds a single Pareto front point A at minimum
cost, but only if it is on the convex hull of the Pareto front. Although point
B may be found, it is not retained since a smaller aggregate objective func-
tion value is found at point A. Observe that different weights reflect different
slopes and intersect the points on the convex hull at different points on P Fyye
Thus, the linear aggregating algorithm usually does not find all Pareto front
points of interest. These points are defined as non-supported points since they
are not on the convex hull of the Pareto front. The variation of weights for a
specific MOP can cause large or a very small variation in the number or value
of points found on P Fypye -

Another scalarizing approach is the weighted Tchebycheff model which
can find the non-supported points on the Pareto front (i.e., not limited by
the convex hull). This search approach uses a reference point, f*. This refer-
ence point must be beyond the ideal point where each component is less than
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F,

F,

Fig. 2.2. Linear aggregating technique for a bi-objective example with a priori
selection of weights, wiz1 + waxs.

F,

F,

Fig. 2.3. Tchebycheff technique for a bi-objective example with a priori selection
of weights, wix1 + waxa.
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the minimum value of the i*” objective. The weighted Tchebycheff model is
reflected in equation (2.3).

fitness = min max;[w;|f;(x) — 7] (2.3)

where w; > 0 and ¢ = 1...k. In Figure 2.3, the reference point is the origin.
With this technique, assuming that the reference point is properly defined,
Pareto points can be found on PFy.,. for appropriate sets of weights in the
aggregated objective function. In an attempt to find the appropriate set of
weights, a sampling process can be employed.

Criticism of linear aggregating functions - A basic weighted sum MOEA is
both easy to understand and implement. The fitness combination technique is
also computationally efficient. If the problem domain is “easy” and a sense of
each objective’s relative worth is known and can be quantified, or even if the
time available for search is short, this may be a suitable method to discover an
acceptable MOP solution. However, this technique has a major disadvantage
due to certain MOP characteristics. Fonseca and Fleming [510] explain that
for any positive set of weights and fitness function @, the returned global opti-
mum is always a Pareto optimal solution (with regard to all others identified
during search). However, if PF},,. is nonconvex, optima in that portion of the
front can not be found via this method. This is proved using geometry by
Das & Dennis [329]. Thus, blindly using this technique guarantees that some
solutions in Py, cannot be found when it is applied to certain MOPs. Also
note that despite their popularity in the past, linear aggregating functions are
nowadays significantly less common than Pareto-based approaches.

Nonlinear aggregating functions

Nonlinear aggregation techniques (e.g., a multiplication of the objective func-
tions) are not very popular in the literature. This may be due to the over-
head involved in determining appropriate probability of acceptance or util-
ity functions, and to the various conditions which these objective functions
must meet [836]. This additional overhead may not justify resulting solutions’
“quality.”

Target vector approaches are somewhat more popular than multiplicative
approaches, and they may be particularly useful if the DM can specify goals
that he/she desires to achieve. The evolutionary algorithm in this case, tries
to minimize the difference between the current solution generated and the
vector of desirable goals (different metrics can be used for this purpose). Al-
though target vector approaches can be considered as another aggregating
approach, they are normally considered separately, because some of target-
vector approaches can generate (under certain conditions) concave portions
of the Pareto front, whereas approaches based on linear combination of weights
cannot.
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The most popular target vector approaches are hybrids with: Goal Pro-
gramming [359, 1702, 1422], Goal Attainment [1707, 1748], and the min-max
algorithm [636, 267].

Criticism of nonlinear aggregating functions - Multiplicative approaches
are simple and efficient, but they may be troublesome, since the definition of
a good nonlinear aggregation function may prove to be more difficult than
defining a linear aggregating function.

The same applies to target-vector approaches, which require the definition
of goals to be achieved. The computation of these goals normally requires
some extra computational effort and can lead to additional problems. Wilson
and MacLeod [1707] found that goal attainment could generate, under certain
circumstances, a misleading selection pressure. For instance, if there are two
candidate solutions which are the same in one objective function value but
different in the other, they still have the same goal-attainment value for their
two objectives, which means that for an evolutionary algorithm neither of
them is better than the other.

An additional problem with target-vector approaches is that they yield a
nondominated solution only if the goals are chosen in the feasible domain, and
such condition may certainly limit their applicability. Furthermore, just as in
all a priori techniques, specifying exact goals or weights before search may
unnecessarily limit the search space and therefore “miss” desirable solutions.

Note that despite their drawbacks, there are certain problems (particularly,
in multiobjective combinatorial optimization problems) in which nonlinear
aggregating functions (e.g., based on Tchebycheff weights) can provide very
good approximations of the Pareto optimal set (even outperforming Pareto-
based approaches) [784, 776, 779, 777, 778, 780, 782, 783, 781].

General Criticism of a priori Techniques

It appears that the a priori MOEA techniques considered are in general not
desirable for general use, except for nonlinear aggregating functions which can
be advantageous in certain types of problems (namely in multiobjective com-
binatorial optimization problems), as discussed in the previous section. If a
DM is spending resources to search for MOP solutions, it is reasonable to ex-
pect optimal (or “good”) solutions. Since these a priori techniques arbitrarily
limit the search space they may not be able to find all the available solutions
in Py . Additionally, implementing “more” effective MOEAs might not be
as difficult and involves less overhead than imagined.

2.2.2 Progressive Techniques

The fact that there is a relatively small number of cited interactive search
efforts in the MOEA literature is surprising (see for example [91]). One would
think that no matter what MOP solution technique is implemented, close in-
teraction between the DM and “searchers” can only increase the efficiency
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(or “desirability”) of discovered solutions. It is understandable that a DM’s
time and effort is at a premium. At least to some level, though, more interac-
tion certainly implies “better” results. Although either a priori or a posteriori
techniques may be used interactively, the latter are more suited to MOPs be-
cause they offer a set of solutions rather than just one. There is a limit to
how much information a DM can process at one time, but surely some greater
number of choices beyond one or two is generally more advantageous.

Incorporating DM preferences within and through an interactive search
and decision making process may benefit all those involved. Do researchers
and/or practitioners feel they don’t have the time? Or is it the DM who
balks at the additional effort? Real-world applications should surely use this
interactive process as the economic implications can be quite significant. In
fact, several MOEAs [504, 454, 317, 1346, 719, 598] are able to explicitly
incorporate DM preferences within search (see Chapter 9).

General Criticism of Progressive Techniques

The main problem with progressive techniques is that the DM normally has
to define goals or a scheme of preferences to bias the search, and this requires
an interactive process that may be difficult and inefficient when nothing about
the problem is known. Also, under certain circumstances, there might be con-
tradictions in the preferences defined (e.g., when dealing with group prefer-
ences). However, when it is desirable to constrain the search within a certain
region of interest (something common in complex real-world problems), an
interactive process is perhaps the best choice. The main issues here have to
do with the way in which the preferences from the DM are incorporated into
the MOEA. Any proposal in this direction has to deal with a set of issues
such as scalability and intransitivities, among others (see Chapter 9).

2.2.3 A Posteriori Techniques

A posteriori techniques are explicitly seeking Pjie and PFype . Thus, the
emphasis is now to perform a search as widespread as possible, as to generate
as many different elements of the Pareto optimal set as possible. The decision
making process will now take place after completing the search. The following
a posteriori sub-techniques are examined next:

Independent sampling techniques
Criterion selection techniques
Aggregation techniques (linear, nonlinear)
e-constraint technique

Pareto sampling techniques
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Independent Sampling Techniques

Various independent sampling approaches generally have reduced effective-
ness. This sort of technique uses some fitness combination technique where
the weights assigned to each objective are varied over a number of separate
MOEA runs. The difference with respect to a priori linear aggregating func-
tion is therefore the variability of the weights along the evolutionary process.
This variation can allow the generation of larger portions of the Pareto front.
But, these points are in most cases not uniformly placed along the Pareto
front. Because one does not know a priori a proper selection of weights, the
“ideal” uniform distribution of Pareto front points is seldom generated. Again,
variations in weights may generate points on P Fy.,. close together or at far
distances. If these points could be generated using a different approach, then
the inverse mapping to the weights would provide the DM with an explicit
weighted numerical tradeoff among the objectives, which is a very valuable
piece of information. The MOEA techniques discussed generally attempt to
generate PFy.,. , but not directly related to the independent sampling weights
since finding the inverse mapping is very difficult.

Criticism of independent sampling techniques - The main advantage of this
type of technique is its relative simplicity and its efficiency (no Pareto ranking
procedure is required). This approach may have limited utility if a low number
of objectives is being considered (i.e., two or three). For example, assume a
MOEA using a linear fitness combination Tchebycheff approach. If each ob-
jective’s weight varies from 0 to 1 by 0.05 increments, only 21 MOEA runs are
necessary to explore the possible weight combinations and give some picture of
PFlnown - However, even varying the weights at this coarse resolution results
in the required number of runs combinatorially increasing with the number
of objectives. Thus, its overall usefulness seems quite limited especially as the
arbitrary weight combinations may well prevent discovery of some solutions
in Py, and also in view of other techniques’ strengths. Note however, that
this type of approach may be useful to approximate the Pareto front in certain
types of problems (e.g., multiobjective combinatorial optimization problems).
This is because in certain cases (particularly with convex Pareto fronts) they
may produce competitive results with respect to MOEAs based on Pareto
ranking at a lower computational cost (see for example [1507]).

Criterion Selection Techniques

The Vector Evaluated Genetic Algorithm (VEGA), which was proposed by
David Schaffer [1439, 1440, 1441] is normally considered the first implementa-
tion of a MOEA. The vector is by definition the vector of k objective functions
of the MOP. The VEGA approach is an example of a criterion or objective
selection technique where a fraction of each succeeding populations is selected
based on separate objective performance. The specific objectives for each frac-
tion are randomly selected at each generation. VEGA tends to converge to
solutions close to local optima with regard to each individual objective.
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Fig. 2.4. Schematic of VEGA’s selection mechanism. It is assumed that the popu-
lation size is M and that there are k objective functions.

The VEGA concept is that, for a problem with k objectives, k sub-
populations of size M /k each would be generated (assuming a total population
size of M). Each sub-population uses only one of the k objective functions for
fitness assignment. The proportionate selection operator is used to generate
the mating pool. These sub-populations are then shuffled together to obtain
a new population of size M, on which the GA would apply the crossover and
mutation operators in the usual way. Shuffling is done prior to sub-population
partitioning in order to reduce positional population bias. This process is il-
lustrated in Figure 2.4. The complexity of VEGA is clearly the same as the
single-objective GA.

Schaffer realized that the solutions generated by VEGA were nondomi-
nated in a local sense, because their nondominance was limited to the current
population. And, while a locally dominated individual is also globally dom-
inated, the converse is not necessarily true [1440]. An individual that is not
dominated in one generation may become dominated by an individual who
emerges in a later generation. Also, Schaffer noted a problem that in genet-
ics is known as “speciation” (i.e., one could have the evolution of “species”
within the population which excel on different aspects of performance). This
problem arises because this technique selects individuals that excel in one di-
mension of performance, without considering other dimensions. The potential
danger is that one could have individuals with what Schaffer called “middling”
performance? in all dimensions, which could be very useful for compromise
solutions, but that would not survive under this selection scheme, since they
are not in the extreme for any dimension of performance (i.e., they do not

4 By “middling,” Schaffer meant an individual with acceptable performance, per-
haps above average, but not outstanding for any of the objective functions.
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produce the best value for any objective function, but only moderately good
values for all of them). Speciation is undesirable because it is opposed to our
goal of finding a compromise solution. Schaffer suggested some heuristics to
deal with this problem. For example, one could use a heuristic selection prefer-
ence approach for nondominated individuals in each generation, to protect the
“middling” chromosomes. Also, crossbreeding among the “species” could be
encouraged by adding some mate selection heuristics instead of using the ran-
dom mate selection of the traditional GA (i.e., the use of mating restrictions).
Per the discussion, VEGA uses a localized criterion for ranking as depicted in
Figure 2.5.

@ rondominated

(O dominated

F,

Fig. 2.5. VEGA'’s criterion-based ranking mechanism.

Norris & Crossley [1190] and Crossley et al. [310] believe this technique
reduces the diversity of any given PF yrent (t). They implemented elitist se-
lection to ensure P Fly,oun (t) endpoints (or in other words, PFlpouwn (t)’s ex-
trema) survive between generations. Otherwise, the MOEA converges to a
single design rather than maintaining a number of alternatives. In other at-
tempts to preserve diversity in PFeyprent (t) they also employ a VEGA variant.
Here, “k”-branch tournaments (where k is the number of MOP objectives) al-
low each solution to compete once in each of k tournaments, where each set
of tournaments selects %th of the next population [805].

Criticism of criterion selection techniques - VEGA is very simple and easy
to implement, since only the selection mechanism of a traditional GA has to
be modified. One of its main advantages is that, despite its simplicity, this sort
of approach can generate several solutions in one run of the MOEA. However,
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note that the shuffling and merging of all the sub-populations that VEGA per-
forms corresponds to averaging the fitness components associated with each of
the objectives [587]. Since Schaffer uses proportional fitness assignment [581],
these fitness components are in turn proportional to the objectives themselves
[507]. Therefore, the resulting expected fitness corresponds to a linear com-
bination of the objectives where the weights depend on the distribution of
the population at each generation as shown by Richardson et al. [1360]. This
means that VEGA has the same problems than the aggregating approaches
previously discussed (i.e., it is not able to generate concave portions of the
Pareto front). Nevertheless, VEGA has been found useful in other domains
such as constraint-handling, where its biased behavior can be of great help
[1543, 275, 274]. Note that these algorithmic developments were in part based
upon consideration of the computational hardware performance at the time.
Other variations and extensions of the VEGA concept included the Vector
Optimized Evolution Strategy (VOES) by Kursawe [934]. His approach of
course was based on an evolution strategy along with a fitness evaluation pro-
cess similar to VEGA. It also employed a diploid chromosome scheme with
preservation of nondominated solutions using an elitist approach. The WBGA
(weight-based genetic algorithm) proposed by Hajela and Lin [636] is related
to VEGA’s sampling approach, but it uses a set of weights (each individual
is assigned a vector containing such weights). These vectors remain diverse
across the population through niching and appropriately selected subpopula-
tions that are evaluated for different objectives in a way analogous to VEGA.
Again, this MOEA is simple, but the use of weighted vectors has the same
disadvantages as the independent sampling approach.

Aggregation Selection Techniques

Aggregation selection MOEAs incorporate a variety of techniques to solve
MOPs such as weighted sums [751], constraint and objective combinations
[1017], and hybrid search approaches [358]. However, rather than using static
weight combinations for the objectives throughout a MOEA run, the weights
are varied between generations and/or each function evaluation. Sometimes
the weights are assigned randomly, sometimes they are functions of the par-
ticular solution being evaluated, and in other cases are encoded in the chro-
mosome as genes where evolutionary operators (EVOPs) act upon them, too.

Criticism of aggregation selection techniques - As with the criterion selec-
tion techniques, aggregation selection approaches can generate a set of solu-
tions in a single run of a MOEA. Thus, Pxyown and P Fyy o, may be reasonable
approximations to Py, and PFy.,. , and have required only one MOEA run.
These methods are not without their disadvantages, however. When using
the weighted sum technique, it is known that certain members of PF}.,. may
be missed [329]. Furthermore, both the constraint/objective combination and
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hybrid search approaches have significant overhead (e.g., solving a linear sys-
tem of equations to determine an appropriate hyperplane [1764]).

e-Constraint Techniques

The e-constraint technique is based upon selecting a primary objective func-
tion and then bounding the others with a separate allowable e-constraint (must
be known a priori). The e-constraints are then changed in order to generate
another point on the Pareto front (phenotype) and so forth resulting in finding
elements in the Pareto optimal set (genotype). Non-uniformity in the distri-
bution of the Pareto front points usually occurs. Examples of this approach
can be seen in [1507, 1318, 925, 961].

Crriticism of e-constraint technique: Easy to implement, but extensive com-
putation effort is required to generate P Fy,own -

Pareto Sampling Techniques

The disadvantages of aggregation selection techniques make evident that a
fitness assignment or selection technique able to “easily” find all members of
Pirye and PFpe is desired. Pareto sampling offers this capability, or at least
the realistic objective of finding Pkyown and P Fipown -

Pareto sampling refers to techniques that use the MOEA’s population ca-
pability to generate several elements of the Pareto optimal set in a single
stochastic computational run. Figure 2.6 presents a two objective conceptual
understanding of Pareto optimality. Again, one must relate the graphical de-
finition of dominated and nondominated points in objective space and the
corresponding solutions in variable space. Because of the strict partial or-
der, various points in the objective space can not be compared to each other
with regard to dominance. The intent of many MOEAs of course is to move
the nondominated points toward P F}.,. generating a “good” distribution of
points on PFpouwn -

Criticism of A Posteriori Techniques

These techniques attempt to exploit the population capabilities of evolution-
ary algorithms to produce a set of elements of the Pareto optimal set in a
single run. This can be done either by using a cooperative mechanism (as
in VEGA [1440]) or by incorporating directly the concept of Pareto domi-
nance into the selection mechanism of an EA (the most usual way to tackle
MOPs with EAs). Scalability is, however, an issue when using Pareto sampling
techniques, as indicated before. Also, other types of techniques may be par-
ticularly useful within certain specific domains and therefore the importance
of knowing about their existence.

Although the No Free Lunch (NFL) theorems [1708] indicate that there
is no “best” MOEA, certain MOEAs have been experimentally shown to be
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Fig. 2.6. The concept of Pareto optimality as related to nondominance in a maxi-
mization MOP

more likely effective (robust) than others for specific MOP benchmarks and
certain classes of real-world problems.

2.2.4 Generic MOEA Goals and Operator Design

The basic algorithm design concept is to use Pareto-based fitness assignment
to identify nondominated vectors from a MOEA’s current population. Re-
garding this and our previous discussion, the four high-level primary goals of
such algorithms for solving MOPs are:

Goal 1. Preserve nondominated points (elitism vs. non-elitism)
with PFcurrent - PFknown

Goal 2. Progress or guide P Fyyoun towards PFipe

Goal 3. Generate and maintain diversity of: points on the Pareto Front,
P Flnown (phenotype) and/or Pareto optimal solutions Pgyewn (genotype)

Goal 4. Provide the decision maker (DM) with a limited number of P F;,oun
points!

Thus, a MOEA should guide the search towards PFj.,., generate and
maintain a diversity of P Flpown points, and prevent loss of “good” solutions
through archiving. The design of an idealized or generic Pareto-based Mul-
tiobjective Evolutionary Algorithm would consist of the following meta-level
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general procedures:

Step 0: Define the MOP; determine the mathematical form of F(z) =
[f1(x), f2(x), ... fx(x)] and the chromosome representation of x. Define con-
straints (dynamic, static, linear, nonlinear, etc.). Integrate the “model” into
a specific MOEA algorithmic search process.

Step 1: The MOEA generates the Pareto front, PFy,own (hard part); deter-
mine the nondominated sets, generation to generation, via populations. Con-
verge “close” to the true computational Pareto front, PF}.. ; note that what
we obtain is an approximation of such a true Pareto front! This is the cur-
rently known nondominated population, PF o rent - Execute this same MOEA
process for a certain (given) number of generations or until some metric meets
some (predefined) threshold.

Step 2: The MOEA attempts to generate a uniform distribution across the
known Pareto front, PFj,own , at the end of each generation.

Step 3: Select several of the “Optimal” points on the Pareto front, PFyp,own ,
for DM consideration.

Step 4: Determine the associated Pareto Optimal set, Pgpown ; implement
decision variable values (i.e., our approximation of the Pareto optimal set) as
selected by the DM.

Step 5: Visualize algorithm processing and results as appropriate for improv-
ing MOEA performance (i.e., efficiency and effectiveness).

Of course, the integration of a specific MOP with selected MOEA soft-
ware requires insight not only into the problem domain, but into the MOEA
operator implementations as well. This a priori MOP and MOEA analysis
helps support the specific detailed design and implementation; the objective
being execution of a MOEA that has a high probability of finding a “good”
PFrpown - A spectrum of MOEAS includes numerous operators which are listed
as follows according to their support of the four primary MOEA Goals:

Goal 1. Preserve nondominated points

e Dominance-Based ranking - fitness assignment

e Non-Pareto vs Pareto approaches

e Archiving + elitism of chromosome population
Goal 2. Progress towards points on P Fyqye
Convergence to true computational Pareto front, PF..
Generating nondominated phenotype points
Explicit/Non-Explicit building block manipulation
Qualitative and Quantitative performance metrics and visual compar-
isons

e Probabilistic MOEA models; local search incorporation, etc.
Goal 3. Maintain diversity of: points on P Fyown and/or on Prpown

e Diversity preservation

e Niching/fitness sharing and crowding on Pareto front (variations)

e Uniform/Diverse nondominated P Fypouwn
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Goal 4. Provide the DM a limited number of PFrouwn
points!

Given the generic MOEA Pareto-based operators, specific variations and
aspects of these concepts are presented. Also, MOEAs implementing such
detailed operators are referenced.

Dominance-Based Ranking

The dominance relation (or operator), as described in Chapter 1 relates two
solutions; therefore, it is a binary operator. The result of this operation for two
individual solutions in objective function space has two possibilities: 1) one
solution dominates another or 2) the solutions do not dominate each other.
There exist various mathematical binary relationships for dominance opera-
tors: “reflexive” which the dominance operator is not, “symmetric” which is
not, “antisymmetric” which it is not, but it is “transitive.” Thus, the domi-
nance operator is ordered since it is not reflexive. It is not a partial order but
a strict partial order. Then, by definition, given a point in objective function
space, it could be dominated or not dominated by another point, but it could
also be “incomparable” to other points. With this insight, the concept of the
Pareto front and Pareto optimal solution are defined in Chapter 1, together
with their associated sets. And, a generic algorithm for generating these sets
can be formulated as done in Section 2.2.4.

Regarding the generation and selection of the Pareto optimal set, an or-
dering technique is required. When using an evolutionary algorithm for gen-
erating such Pareto optimal set, the fitness values are n tuples (considering n
objectives). A scaling technique is required over the tuples via a strict partial
order, so that nondominated solutions are generated. Thus, various ranking
methods have been suggested in the specialized literature. Such methods es-
sentially sort the individuals in objective function space before selection. Each
member of the list of possible points (individuals) in objective function space
is assigned a rank relative to one of the following dominance definitions:

e dominance rank: How many individuals is an individual dominated by
(plus 1)?
dominance count: How many individuals does an individual dominate?
e dominance depth: At which “front” is an individual located? “Sort.”

Computationally implementing one of these ranking approaches in a spe-
cific MOEA design is, of course, straightforward. However, given a particular
problem domain, performance (efficiency and effectiveness) can have consid-
erable variance. This is due in no small measure to the structure of the fitness
landscape being searched! The result of the dominance ranking (see Figure 2.7)
is a strict partial ordered list which is used for sorting the points before em-
ploying a desired selection operator. As an example of dominance count see
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Fig. 2.8. Dominance count with grouping of equal counts for sorting.
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Figure 2.8, which imposes a different partial order. In both cases, the dif-
ferent “ranks” are shown within the dotted regions. The “sorting” is based
upon “rank depth” and, of course, is different for the two different dominance
relationships. The computational order in all cases is usually O(N?). Specific
MOEA examples of dominance ranking use are:

MOGA, NPGA [504, 709]: dominance rank

NSGA /NSGA-II [1509, 374]: dominance depth

SPEA /SPEAZ2 [1782, 1775]: dominance count and dominance rank
MOMGA /MOMGA-II [1626, 1790]: dominance rank

General Diversity Preservation

Another goal of MOEA design is to provide a diversity of PFynown OF Prnown
points to the DM that have a somewhat uniform distribution across the known
Pareto front. Various techniques are available for maintaining diversity in a
MOEA, including the Weight Vector Approach, the Fitness Sharing/Niching
Approach, Crowding/Clustering, Restricted Mating, and Relaxed Dominance,
all of which are discussed next:

e Weight Vector Approach: In this case, a vector set in fitness/objective
space is used to attempt to diversify points of the Pareto front surface
(i.e., the aim is, of course, to generate a uniform distribution of P Fypouwn )-
By changing the weights, different directions are defined, in order to bias
the search, and to move solutions away from its neighbors. Weight vector
approaches have been found very effective for certain types of applications
(for example, multi-objective combinatorial optimization [323, 1617, 1152,
535, 762]).

e Fitness Sharing/Niching Approach: In this approach, the size (or ra-
dius) of a neighborhood (or niche) is controlled through the o4pqre value
(niche radius). Then, one must count how many solutions are located
within the same niche, and the fitness is decreased proportionally to the
number of individuals sharing the same neighborhood [587, 368]. This aims
to promote the generation of solutions in the least populated regions of
the search space (see Figure 2.9). Note the following:

— The definition of the o4p4re parameter is critical.

— In order to apply a fitness sharing function, it is necessary to measure
distances [1554, 1769]. Such distances can be measured in genotype or
phenotype space.

— Several MOEAs (e.g., MOGA [504], the NSGA [1509]) adopted this
approach, with algorithms O(N?). However, not all of them applied
fitness sharing in the same space (MOGA [504] applied fitness sharing
in objective function space, whereas the NSGA [1509] applied it in
decision variable space).
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Fig. 2.9. A graphical illustration of fitness sharing

Note that when using niching, it is also possible to adopt different topolo-
gies for defining neighborhoods. For example, one could use a grid, and
associate the value of ogpqre to the size of the squares that define such
grid (see Figure 2.10). In this example, within each grid square, a desired
maximum of one point is kept (the reduction to one point is usually based
upon random selection, but other criteria are possible).

The density estimation may be based on several criteria, such as the fol-

lowing:

— Kernel approach: The density estimator is based on the sum of f
values, where f is a function of the distance (vector) measured either
in genotypic or in phenotypic space (e.g., MOGA [504] and the NPGA
[709]).

— Nearest neighbor approach: The density estimator is based on the
volume of the hyper-rectangle defined by the nearest neighbors (e.g.,
the NSGA-II [374] and SPEA2 [1775]).

— Histogram approach: The density estimator is based on the number
of solutions that lie within the same hyper-box (e.g., PAES [886] and
PESA [301]).

Crowding/Clustering: In this case, we select the surviving solutions

according to a region crowdedness metric measured in objective function

space (see Figure 2.11). This is an idea similar to fitness sharing, but more
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Fig. 2.10. A graphical illustration of a niching scheme based on the use of a grid

Fig. 2.11. A graphical illustration of crowding
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efficient, which algorithms such as the NSGA-IT [374] have adopted. It is
also possible to use clustering techniques for the same purpose [1775].

2
S I r I r |
1 | 1 | :
o 1 | 1 | !
1 | 1 | !
der-------- b1 AR fmmmm-- oo !
| 3 1 3 :
1 ‘e | | |
' © o7 } 1 !
S e IR R IR |
| | | | |
| 13 | | |
| |® 4 | | |
28t - i 777777777 Qr,@,,i: 77777777777777777 3
| . 6e |
|  so i
| | 1
R R T R L LTl TETE !
| | |
| | 1
| | |
| | e

i | i | : fl
€ 2¢e 3¢ 4e 5¢

Fig. 2.12. An example of the use of e-dominance in an external archive. Solution
1 dominates solution 2, therefore solution 1 is preferred. Solutions 3 and 4 are
incomparable. However, solution 3 is preferred over solution 4, since solution 4 is
the closer to the lower left-hand corner represented by point (2¢,2¢). Solution 5
dominates solution 6, therefore solution 5 is preferred. Solution 7 is not accepted
since its box, represented by point (2¢,3¢) is dominated by the box represented by
point (2¢,2¢).

e Relaxed forms of dominance: Use a certain solution x even though
it is worse than some solution y in regards to a particular objective
(value comparison in objective function space). This relaxation may be
compensated by an improvement in other objectives (see for example
[470, 471, 798, 1138, 892]).

Laumanns et al. [959] proposed a relaxed form of Pareto dominance called
e-dominance. The main use of this concept in MOEAs has been to filter
solutions in an external archive. By using e-dominance, we define a set of
boxes of size € and only one nondominated solution is retained for each box
(e.g., the one closest to the lower left-hand corner). This is illustrated in
Figure 2.12, for a bi-objective case. The use of e-dominance, as proposed in
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[959] and illustrated in Figure 2.12, guarantees that the retained solutions
are nondominated with respect to all solutions generated during the run.

o Restricted Mating: This is quite similar to Crowding/Clustering, but
in this case diversity is preserved through the avoidance of certain recom-
binations. When this approach is adopted, there is normally a parameter
(0mate) which defines the minimum distance that must separate two indi-
viduals so that they can mate. It can be used either in serial [1021] or in
parallel/distributed implementations [1157].

MOEA Populations

Defining MOEA population structures is directly related to the sets Pppouwn and
Peyrrent - Usually, Prpown is an archival set always updated to retain the best
solutions found so far. P.yrent , Of course, is the set of current generation non-
dominated solutions. The use is these two populations or sets can be treated
differently as to their use as parents at the beginning of each generation. These
sets are generally defined as generational (primary or main) and secondary
(archival or external) populations.®

As Horn [706] indicates, any practical MOEA implementation must include
a secondary population composed of all nondominated solutions found so far
(Prnown (t)). This is due to the MOEA’s stochastic nature which does not
guarantee that desirable solutions, once found, remain in the generational
population until MOEA termination. This is analogous to elitism but it is
emphasized that it is a separate population. The question is then how to
best utilize this additional population. Is it simply a repository, continually
added to and periodically culled of dominated solutions? Or is it an integrated
component of the MOEA? Although several researchers indicate their use of
secondary populations only a few explain its use in their implementation. As
there is no consensus for its “best” use, some of its incarnations are presented
next.

A straightforward implementation stores Peyrrent (t) at the end of each
MOEA generation (i.e., Peyrrent (t) U Prnown (t — 1)). This set must be pe-
riodically culled since a solution’s designation as Pareto optimal is always
dependent upon the set within which it is evaluated. How often the popula-
tion is updated is generally a matter of choice, but as determination of Pareto
optimality is an O(kM?) algorithm (where k refers to the number of objectives
and M to the population size), it should probably not be performed arbitrar-
ily. As this population’s size grows comparison time may become significant.
This implementation does not feed solutions from Pppewn (t) back into the
MOEA'’s generational population.

® Note that it is also possible to use a single population in a MOEA (see for example,
the NSGA-II [374], in which a plus selection mechanism with an implicit elitist
strategy is adopted). However, we will only discuss here the use of two populations
because this is the most common practice in the current literature.
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Conversely, other published algorithms actively involve Py, oun in MOEA
operation. For example, Zitzler and Thiele’s [1781, 1780, 1782, 1770] SPEA
stores
P.yrrent (t) in a secondary population and then culls dominated solutions.
Solutions from both the MOEA’s generational and secondary populations
then participate in binary tournaments selecting the next generation. If the
number of solutions in Py,own (1) exceeds a given maximum, the population
is reduced by clustering which attempts to generate a representative solution
subset while maintaining the original set’s ( Pgpown (t)’s) characteristics. SPEA
also uses Py own () in computing the main population’s solutions’ fitness; this
effectively results in a larger generational population.

Todd and Sen [1591] also insert nondominated solutions from Py o (1)
into the mating population to maintain diversity, as do Ishibuchi and Mu-
rata [750, 752, 751] and Cieniawski et al. [255]. These implementations never
reduce the size of Pypoun (t) except when removing dominated solutions. Parks
and Miller [1247, 1244, 1245] implement an archive of Pareto optimal solu-
tions. However, solutions in Peyprent () are not always archived; the process
occurs only if a solution is sufficiently “dissimilar” from those already resident.
Thus, this also is a form of clustering. If a new solution is added, any archive
members no longer Pareto optimal are removed. Like SPEA, the next genera-
tion’s members are selected from both Pypeun (t) and the current generational
population.

Some researchers use secondary populations not composed of Pareto op-
timal solutions. Bhanu and Lee [130] apply a MOEA to adaptive image seg-
mentation; their secondary population is actually a training database from
which GA population members are selected. Viennet et al. [1651] use separate
GAs to optimize each of the MOP’s k functions independently; these “addi-
tional” populations are later combined and nondominated solutions removed
to provide Prpnown -

A secondary population (of some sort) is a MOEA necessity. Because the
MOEA is attempting to build up a (discrete) picture of a (possibly continuous)
Pareto front, this is probably a case where at least initially, too many solutions
are better than too few. It intuitively seems that a secondary population might
also be useful in adding diversity to the current generation and in exploring
“holes” in the known front, although how to effectively and efficiently use
Prypown in this way is unknown. Again, it is suggested to experiment directly
comparing various secondary population implementations.

Several researchers have studied different aspects of secondary populations
in the last few years. See for example [877, 485, 1454, 959, 127, 672].

A Generic MOEA Algorithm

In general, based upon the MOEA Goals, an effective MOEA should incor-
porate the following generic operations assuming operations on complete in-
dividuals:
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e An initialization phase generating N individuals in a population P and
evaluating fitness. Individual gene encoding from the problem domain
could be binary, integer or real.

e Remove Pareto dominated individuals from P based upon scalar multi-
objective function evaluations such as Pareto ranking; P — P?.

o Use a density estimator to limit the number of individuals in P? that lie
on “small” regions of the current P Fyoun OF Prpown - Techniques include
niching, sharing, & crowding with associated parameter values. The re-
duced niche count keeps the population at a “reasonable” computational
number.

e Perform evolutionary operations (recombination, mutation, etc.) to gen-
erate new individuals using appropriate parameter values; P* — P%. To
select individuals for recombination one can use ranking, binary tourna-
ment selection, or proportional selection, for example.

o Select individuals for the next generation (population P¥*) one could oper-
ate on [P%] or [P?|J P¥] using ranking. P is, of course, Puyrent - Various
selection operators such as binary tournament selection with replacement
or elitism can be employed as well for limiting the size of P¥. Elitism in
the objective domain seems to generate better results since “good” indi-
viduals are retained.

o If a termination predicate condition is not met, such as maximum number
of generations or convergence criteria, set P to P as Peyrrent -

e Remove Pareto dominated and infeasible individuals from P%® or repair
infeasible individuals. Set P¥ to P as Pyrrent -

e Retain an archive of nondominated and feasible individuals by storing P
in an archive P™. As the new population P% is merged with the archive,
the nondomination operator is applied to the merged combination. The
P™ archive contains Piyown and associated PFipown -

e Local search operations in hybrid or memetic MOEAs can also provide
good performance by exploring limit regions in objective space [879]; i.e.,
only moving towards specific regions on the Pareto front.

Examples of MOEAs using archiving are PAES [886], SPEA [1782],
SPEA2 [1775], the microGA [284], MOMGA [1632], MOMGA-II [1790], and
MOMGA-IIT [341]. Considering algorithm efficiency, one should evaluate com-
plexity of proposed MOEAs and order them in terms of complexity as a func-
tion of population size. An analysis of MOEA complexity is presented in
Section 6.3.8.

As implied in the list of possible MOEA operators, most MOEAs follow
a pattern of initializing a population of individuals, then executing a gen-
erational loop with evolutionary operators, ranking individuals and keeping
nondominated solutions in an archive filtered for diversity. Figure 2.13 is a
meta-level Generic MOEA pseudo code representation of this concept. Ob-
serve that feasibility operations are not included since they could be embedded
in the generational loop or outside the loop at the end. The vast majority of
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MOEA algorithmic structures adhere to this generic structure, the differences
being in the specific operator details as shown in the MOEA pseudo codes
of Section 2.3. Applying possible MOEA operator insight then results in a
variety of Multi-Objective Evolutionary Algorithm (MOEAs) designs as pre-
sented in Section 2.3. In the next section, we address the issues of individual
MOEA performance, and we provide an understanding of specific operator
utility.

Initialize population P and P

Evaluate Objective F'(x) values over population

Assign Rank Based on Pareto Dominance

Compute Niche Count

Assign Shared Fitness or Crowding

While not terminal condition (number of generations or other)
Selection of “good” individuals from P — P¥
Recombination, mutation of individuals in P* — P*
Evaluate Objective Values of Children P
Rank (P union P%) — P based on Pareto Dominance
Compute Niche Count
Assign Shared Fitness or Crowding
Reduce P* — P
Copy P — P™ based on Pareto Dominance

End While

Fig. 2.13. Generic MOEA Pseudo code

2.3 Structures of Various MOEAs

Various historical MOEAs are presented noting that many continue to be
modified and improved in newer versions. Most generational MOEAs implic-
itly process building blocks (BBs) while a few others such as the MOMGA
[1632] explicitly process BBs. As indicated, BB structures are different on
different vectors in the objective space (phenotype space). This situation is
reflected in different goal performances for various MOEAs on a given MOP.

2.3.1 Multi-Objective Genetic Algorithm (MOGA)

Carlos M. Fonseca and Peter J. Fleming [504] proposed a variation of Gold-
berg’s technique called “Multi-Objective Genetic Algorithm” (MOGA), in
which the rank of a certain individual corresponds to the number of chro-

mosomes in the current population by which it is dominated. Consider, for
(t)

example, an individual x; at generation ¢, is dominated by p;” individuals in
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the current generation; thus, an individual is assigned a rank by the following
rule: rank(x;,t) =1 +p§t) [504]. Figure 2.14 shows a variety of dominated
points. Figure 2.15 represents the MOGA dominance based assignment based
upon fitness.

F,

E,

Fig. 2.14. MOGA fitness domination; raw fitness is the number of dominating
solutions as shown in the picture

The pseudo code of MOGA is shown in Figure 2.16 with the more formal
algorithmic pseudo code in Algorithm 1.6 Note that the first edition of this
book uses the more generic pseudo code form [287]. Observe that N refers to
the population size, g is the specific generation, f;(xz) is the j'th objective
function, xy, is the k’th individual, P’ the population.

All nondominated MOGA individuals are assigned rank 1, while domi-
nated ones are penalized according to the population density of the corre-
sponding region of the trade-off surface.

Fitness assignment is performed in the following way [504]:

1. Sort population according to rank.

6 Observe that we generally use the algorithmic pseudo code template for additional
MOEA descriptions. This is done in order to present a more precise algorithmic
description that is useful for understanding and implementation. Also with the
two example pseudo code descriptions, one can transform one to the other quickly
for pedagogical presentation.
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FZ

@ nondominated

O dominated

Fig. 2.15. MOGA’s Dominance Fitness Assignment

Initialize Population
Evaluate Objective Values
Assign Rank Based on Pareto Dominance
Compute Niche Count
Assign Linearly Scaled Fitness
Assign Shared Fitness
For i = 1 to number of Generations
Selection via Stochastic Universal Sampling
Single Point Crossover
Mutation
Evaluate Objective Values
Assign Rank Based on Pareto Dominance
Compute Niche Count
Assign Linearly Scaled Fitness
Assign Shared Fitness
End Loop

Fig. 2.16. MOGA Pseudo code

2. Assign fitness to individuals by interpolating from the best (rank 1) to
the worst (rank n < N”) in the way proposed by David E. Goldberg [581]
according to some function, usually linear, but not necessarily.
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Algorithm 1 MOGA algorithm

1: procedure MOGA(N”, g, fr(x)) > N members evolved g generations to solve
Jr(x)

Initialize Population P’

2

3 Evaluate Objective Values

4: Assign Rank based on Pareto Dominance
5: Compute Niche Count

6: Assign Linearly Scaled Fitness

7 Shared Fitness

8 for i=1 to g do

9: Selection via Stochastic Universal Sampling
10: Single Point Crossover

11: Mutation

12: Evaluate Objective Values

13: Assign Rank Based on Pareto Dominance
14: Compute Niche Count

15: Assign Linearly Scaled Fitness

16: Assign Shared Fitness

17: end for

18: end procedure

3. Average the fitnesses of individuals with the same rank, so that all of them
will be sampled at the same rate. This procedure keeps the global pop-
ulation fitness constant while maintaining appropriate selective pressure,
as defined by the function used.

As Goldberg and Deb [583] indicate, this type of blocked fitness assignment
is likely to produce a large selection pressure that might produce premature
convergence. To avoid that, Fonseca and Fleming [504] use a niche-formation
method to distribute the population over the Pareto-optimal region, but in-
stead of performing sharing on the parameter values, they use sharing on the
objective function values [1509]. Note that MOGA has been also hybridized
with neural networks in an attempt to improve its performance [413].

2.3.2 Nondominated Sorting Genetic Algorithm (NSGA)

N. Srinivas and Kalyanmoy Deb [1509] proposed another variation of Goldberg’s
approach called the “Nondominated Sorting Genetic Algorithm” (NSGA).

The Nondominated Sorting Genetic Algorithm (NSGA) is another modifi-
cation to the ranking procedure originally proposed by Goldberg [1508]. The
pseudo code for this MOEA is given in Figure 2.17 and Algorithm 2.

This NSGA algorithm is based on several layers of classifications of the
individuals. Before selection is performed, the population is ranked on the
basis of nondomination: all nondominated individuals are classified into one
category (with a dummy fitness value, which is proportional to the popula-
tion size, to provide an equal reproductive potential for these individuals).
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Initialize Population
Evaluate Objective Values
Assign Rank Based on Pareto Dominance in Each “Wave”
Compute Niche Count
Assign Shared Fitness
Fori=1to G
Selection via Stochastic Universal Sampling
Single Point Crossover
Mutation
Evaluate Objective Values
Assign Rank Based on Pareto Dominance in Each “Wave”
Compute Niche Count
Assign Shared Fitness
End Loop

Fig. 2.17. NSGA Pseudo code

Algorithm 2 NSGA-I algorithm

1: procedure NSGA-I(N’, g, f;(xx)) > A’ members evolved g generations to
solve fi(x)

2: Initialize Population P’

3: Evaluate Objective Values

4: Assign Rank Based on Pareto dominance in Each Wave
5: Compute Niche Count

6: Assign Shared Fitness

T for i=1 to g do

8: Selection via Stochastic Universal Sampling

9: Single Point Crossover
10: Mutation
11: Evaluate Objective Values
12: Assign Rank Based on Pareto dominance in Each Wawve
13: Compute Niche Count
14: Assign Shared Fitness

15: end for
16: end procedure

To maintain the diversity of the population, these classified individuals are
shared with their dummy fitness values. Then this group of classified individ-
uals is ignored and another layer of nondominated individuals is considered.
The process continues until all individuals in the population are classified.
Stochastic remainder proportionate selection is adopted for this technique.
Since individuals in the first front have the maximum fitness value, they al-
ways get more copies than the rest of the population. This allows for a better
search of the PF, 0w, regions and results in convergence of the population
toward such regions. Sharing, by its part, helps to distribute the population
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over this region (i.e., the Pareto front of the problem). As a result, one might
think that this MOEA converges rather quickly; however, a computational
bottleneck occurs with the fitness sharing mechanism. The NSGA was rel-
atively successful during several years (see for example [1692, 145, 1340]),
although several comparative studies of the time [260, 1626] indicated that
it was outperformed by both MOGA [504] and NPGA [709]. The NSGA was
also a highly inefficient algorithm because of the way in which it classified
individuals.

Deb et al. [363, 374] have proposed an improved version of the NSGA
algorithm, called NSGA-II. The pseudo code of the NSGA-II is shown in
Algorithm 3.

Algorithm 3 NSGA-IT algorithm

1: procedure NSGA-II(N', g, fu(xx)) >N’ members evolved g generations to
solve fr(x)

2: Initialize Population P’

3: Generate random population - size N’

4: Evaluate Objective Values

5: Assign Rank (level) Based on Pareto dominance - sort

6: Generate Child Population

7 Binary Tournament Selection

8: Recombination and Mutation

9: for i = 1to g do
10: for each Parent and Child in Population do
11: Assign Rank (level) based on Pareto - sort
12: Generate sets of nondominated vectors along PFxpown
13: Loop (inside) by adding solutions to next generation starting from

the first front until N’ individuals found determine crowding distance between
points on each front

14: end for

15: Select points (elitist) on the lower front (with lower rank) and are outside
a crowding distance

16: Create next generation

17: Binary Tournament Selection

18: Recombination and Mutation

19: end for
20: end procedure

The nondominated sorting algorithm-II (NSGA-II) is a generic non-explicit
BB MOEA applied to multiobjective problems (MOPs)-based on the original
design of NSGA. As shown in Figure 2.18, it builds a population of competing
individuals, ranks and sorts each individual according to nondomination level,
applies Evolutionary Operations (EVOPs) to create new pool of offspring, and
then combines the parents and offspring before partitioning the new combined
pool into fronts. The NSGA-II then conducts niching by adding a crowding
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distance to each member. It uses this crowding distance in its selection op-
erator to keep a diverse front by making sure each member stays a crowding
distance apart. This keeps the population diverse and helps the algorithm to
explore the fitness landscape. This MOEA is currently used in most MOEA
comparisons. It has also been used as a foundation for other algorithm designs
like the multiobjective BOA [845].

Non—dominated sorting Crowding distance sorting
P
t+1
FI 777777777777777777777777777777 -
P E | I p— -

Fig. 2.18. Flow diagram that shows the way in which the NSGA-II works. P; is
the parents population and @Q; is the offspring population at generation t. F} are
the best solutions from the combined populations (parents and offspring). F5 are
the second best solutions and so on.

2.3.3 Niched-Pareto Genetic Algorithm (NPGA)

Jeffrey Horn and his colleagues [708, 709] proposed a tournament selection
MOEA based on Pareto dominance defined as the Niched-Pareto Genetic
Algorithm (NPGA) The pseudo code of the NPGA is shown in Algorithm 4
[708]. Two individuals randomly chosen are compared against a subset from
the entire population (typically, around 10% of the population). If one of
them is dominated (by the individuals randomly chosen from the population)
and the other is not, then the nondominated individual wins. When both
competitors are either dominated or nondominated (i.e., there is a tie), the
result of the tournament is decided through fitness sharing [587]. This is a
generational MOEA with implicit BB manipulation.

Horn et al. [708, 709] also suggested a form of fitness sharing in the ob-
jective domain, with a metric combining both the objective and the decision
variable domains, leading to what the authors called equivalent class sharing.
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Algorithm 4 NPGA algorithm

1: procedure NPGA(N, g, fi(x)) > AN’ members evolved g generations to solve
Jr(x)

2 Initialize Population P

3 Evaluate Objective Value

4 for i=1 to g do

5: Specialized Binary Tournament Selection

6 Begin

7 if Only Candidate 1 dominated then

8: Select Candidate 2

9: else if Only Candidate 2 dominated then
10: Select Candidate 1

11: else if Both are Dominated or Nondominated then
12: Perform specialized fitness sharing

13: Return Candidate with lower niche count
14: end if

15: End

16: Single Point Crossover

17: Mutation

18: Evaluate Objective Values

19: end for
20: end procedure

Erickson et al. [453] proposed the NPGA 2, which uses Pareto ranking
but keeps tournament selection (solving ties through fitness sharing as in the
original NPGA). The pseudo code of the NPGA 2 is shown in Algorithm 5.
Niche counts in the NPGA 2 are calculated using individuals in the partially
filled next generation, rather than using the current generation. This is called
continuously updated fitness sharing, as proposed by Oei et al. [1205].

2.3.4 Pareto Archived Evolution Strategy (PAES)

The Pareto Archived Evolution Strategy (PAES) was designed and imple-
mented by Joshua D. Knowles and David W. Corne [886]. The conceptual
approach is quite simple as shown in the pseudo code of Algorithm 6.

PAES consists of a (141) evolution strategy (i.e., a single parent that gen-
erates a single offspring) in combination with a historical archive that records
some of the nondominated solutions previously found. This archive is used as
a reference set against which each mutated individual is being compared. This
is analogous to the tournament competitions held with the NPGA [709]. PAES
also uses a novel approach to keep diversity, which consists of a crowding pro-
cedure that divides objective space in a recursive manner. Each solution is
placed in a certain grid location based on the values of its objectives (which
are used as its “coordinates” or “geographical location”). A map of such grid
is maintained, indicating the number of solutions that reside in each grid loca-
tion. Since the procedure is adaptive, no extra parameters are required (except
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Algorithm 5 NPGA 2 algorithm

1: procedure NPGA 2(N, g, fr(x)) > A’ members evolved g generations to
solve fr(x)

2: Initialize Population P’

3: Evaluate Objective Values

4

5

for i=1 to g do
Specialize Binary Tournament Selection using rank as domination

degree

6: Begin

T if Only Candidate 1 dominated then

8: Select Candidate 2

9: else if Only Candidate 2 dominated then
10: Select Candidate 1

11: else if Both are dominated or nondominated then
12: Perform specialized fitness sharing

13: Return Candidate with lower niche count
14: end if

15: End
16: Single Point Crossover
17: Mutation
18: Evaluate Objective Values

19: end for
20: end procedure

Algorithm 6 PAES algorithm

1: procedure PAES(fx(x))
2: repeat

3: Initialize Single Population parent, C, and add to archive, A
4: Mutate C to produce child C’ and evaluate fitness

5: if C = C’' then

6: discard C’

7 else if C = C’ then

8: replace C with C’; and add C to A

9: else if Jevcs (C” = C') then

10: discard C’

11: else

12: apply test (C,C’, A) to determine which becomes the new current so-

lution and whether to add C’ to A

13: end if
14: until termination criteria is met

15: end procedure

for the number of divisions of the objective space). Furthermore, the proce-
dure has a lower computational complexity than traditional niching methods
[886]. Figure 2.19 shows a graphical illustration of PAES’ adaptive grid. The
adaptive grid of PAES and some other issues related to external archives (also
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Fig. 2.19. Graphical illustration of the adaptive grid used by PAES.

called “elite” archives) have been studied both from an empirical and from a
theoretical perspective (see for example [877, 491]).

Other implementations of PAES were also proposed, namely (14+X)-ES and
(1t + \)-ES. However, these were deemed to not improve overall performance.
A memetic” version of PAES, called M-PAES was developed as a follow-up
to this algorithm [873]. PAES is a convergent implicit BB MOEA.

2.3.5 Strength Pareto Evolutionary Algorithm (SPEA)

The Strength Pareto Evolutionary Algorithm (SPEA) was introduced by
Eckart Zitzler and Lothar Thiele [1782]. This approach was conceived as a
way of integrating different MOEAs. The pseudo code of SPEA is shown in
Algorithm 7. SPEA uses an external archive containing nondominated solu-
tions previously found (the so-called external nondominated set). At each gen-
eration, nondominated individuals are copied to the external nondominated
set. For each individual in this external set, a strength value is computed. This
strength is similar to the ranking value of MOGA [504], since it is proportional
to the number of solutions to which a certain individual dominates. In SPEA,
the fitness of each member of the current population is computed according to

7 A memetic algorithm donotes the use of local search heuristic with a population-
based strategy. The word memetic has its roots in the word meme - which was
introduced in 1990 by Richard Dawkins in his book “The Selfish Gene” [340]. See
Chapter 10 for more details on multi-objective memetic algorithms.
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Algorithm 7 SPEA algorithm

1: procedure SPEA(N, g, fr(x))

2 Initialize Population P’

3 Create empty external set E' (|E'| < |[P'])

4: for i:=1 to g do

5: E' =E UND(P') > Copy members evaluating to be nondominated of P

to E

6: E' = ND(E) > Keep only member evaluating to nondominated vectors
in B

7 Prune E’ (using clustering) if max capacity of E is exceeded

8: Viepr Evaluate(P’;) > Evaluate fitness for all member of E' and P’
9: Vier: Evaluate(E’;)

10: MP — T(P' UE) > Use binary tournament selection with

11: > replacement to select individuals from P’ 4+ E’
12: > (multiset union) until the mating pool is full
13: Apply crossover and mutation on MP

14: end for
15: end procedure

the strengths of all external nondominated solutions that dominate it. The fit-
ness assignment process of SPEA considers both closeness to the true Pareto
front and even distribution of solutions at the same time. Thus, instead of
using niches based on distance, Pareto dominance is used to ensure that the
solutions are properly distributed along the Pareto front. Although this ap-
proach does not require a niche radius, its effectiveness relies on the size of
the external nondominated set. In fact, since the external nondominated set
participates in the selection process of SPEA, if its size grows too large, it
might reduce the selection pressure, thus slowing down the search. Because of
this, the authors decided to adopt a technique that prunes the contents of the
external nondominated set so that its size remains below a certain threshold.
The approach adopted for this sake was a clustering technique called average
linkage method [1132].

There is also a revised version of SPEA (called SPEA2) whose pseudo code
is shown in Algorithm 8 [1775]. SPEA2 has three main differences with respect
to its predecessor [1775]: (1) it incorporates a fine-grained fitness assignment
strategy which takes into account for each individual the number of individuals
that dominate it and the number of individuals to which it dominates; (2) it
uses a nearest neighbor density estimation technique which guides the search
more efficiently, and (3) it has an enhanced archive truncation method that
guarantees the preservation of boundary solutions.

The SPEA2 and NSGA-II are two of the most prominent MOEAs used
when comparing a newly designed MOEA. Prevalent in these two MOEAs
is the fact that they are implicit BB builders and they rely heavily on their
density estimator mechanisms.
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Algorithm 8 SPEA?2 algorithm

1: procedure SPEA2(N', g, fi(x))

2:

Initialize Population P’
Create empty external set E’
for i=1 to g do
Compute fitness of each individual in P’ and E’

Copy all individual evaluating to nondominated vectors P’ and E’ to E’
Use the truncation operator to remove elements from F when the capacity

of the file has been extended

If the capacity of E’ has not been exceeded then use dominated individuals

in P’ to fill E/

Perform binary tournament selection with replacement to fill the mating

pool
10:
11:
12:

Apply crossover and mutation to the mating pool
end for

end procedure

Forn=1tok
Perform Partially Enumerative Initialization
Evaluate Each Pop Member’s Fitness (w.r.t. k& Templates)
// Primordial Phase
For i = 1 to Maximum Number of Primordial Generations
Perform Tournament Thresholding Selection
If (Appropriate Number of Generations Accomplished)
Then Reduce Population Size
Endif
End Loop
/[ Juztapositional Phase
For i = 1 to Maximum Number of Juxtapositional Generations
Cut-and-Splice
Evaluate Each Pop Member’s Fitness (w.r.t. k& Templates)
Perform Tournament Thresholding Selection
and Fitness Sharing
Pknoum (t) - Pcu'rrent (t) @] Pknown (t - 1)
End Loop
Update k£ Competitive Templates
(Using Best Value Known in Each Objective)
End Loop

Fig. 2.20. MOMGA Pseudo code

2.3.6 Multiobjective Messy Genetic Algorithm (MOMGA)

The Multiobjective Messy Genetic Algorithm (MOMGA) was proposed by
David A. Van Veldhuizen and Gary B. Lamont [1632] as an attempt to extend
the messy GA [354] to solve multiobjective optimization problems. The pseudo
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Algorithm 9 MOMGA algorithm

1: procedure MOMGA (N, g, fr(x))
for ¢ = 1 to epoch do

3 > PEI Phase
4 Perform Partially Enumerative Initialization

5: Evaluate each population member’s fitness w.r.t.k templates
6 > Primordial Phase
7 for i = 1 to Max Primordial Generations do

8 Perform Tournament Thresholding Selection

9: if Appropriate number of generations accomplished then
10: Reduce Population Size
11: end if
12: end for
13: > Juxtapositional Phase
14: for i = 1 to Max Juxtapositional Generations do
15: Cut-and-Slice
16: Evaluate Each Population member’s fitness w.r.t.k templates
17: Perform Tournament Thresholding Selection and Fitness Sharing
18: Prnown(t) = Peurrent(t) U Prnown(t — 1)
19: end for
20: Update k templates > Using best known value in each objective

21: end for
22: end procedure

code of the MOMGA is shown in Figure 2.20 and in Algorithm 9. MOMGA
consists of three phases: (1) Initialization Phase, (2) Primordial Phase, and
(3) Juxtapositional Phase. In the Initialization Phase, MOMGA produces
all building blocks of a certain specified size through a deterministic process
known as partially enumerative initialization. The Primordial Phase performs
tournament selection on the population and reduces the population size if
necessary. In the Juxtapositional Phase, the messy GA proceeds by building up
the population through the use of the cut and splice recombination operator.

A revised version of MOMGA (called MOMGA-IT) has been proposed by
Zydallis et al. [1790]. In this case, the authors extended the fast-messy GA
[584]. The pseudo code of the MOMGA-II is shown in Figure 2.21. The fast-
messy GA consists also of three phases: (1) Initialization Phase, (2) Building
Block Filtering, and (3) Juxtapositional Phase. Its main difference with re-
spect to the original messy GA is in the two first phases. The Initialization
Phase utilizes probabilistic complete initialization which creates a controlled
number of building block clones of a specified size. The Building Block Filter-
ing Phase reduces the number of building blocks through a filtering process
and stores the best building blocks found. This filtering is accomplished
through a random deletion of bits alternated with tournament selection be-
tween the building blocks that have been found to yield a population of “good”
building blocks. The Juxtapositional Phase is the same as in the MOMGA.
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This approach is obviously an explicit BB technique. Also, the MOMGA-III
improves the MOMGA by restructuring the code into an object-oriented form
as well as adding better ways of exploring the objective space [341].

Forn=1tok
Perform Probabilistically Complete Initialization
Evaluate Each Pop Member’s Fitness (w.r.t. k& Templates)
// Building Block Filtering Phase
For i = 1 to Mazimum Number of BBF Generations
If (BBF Required Based Off of Input Schedule)
Then Perform Building Block Filtering (BBF)
Else
Perform Tournament Thresholding Selection
Endif
End Loop
// Juztapositional Phase
For i = 1 to Mazimum Number of Juxtapositional Generations
Cut-and-Splice
Evaluate Each Pop Member’s Fitness (w.r.t. k Templates)
Perform Tournament Thresholding Selection
and Fitness Sharing
P/moum (t) = Pcm"rent (t) U Pk'nuwn(t - 1)
End Loop
Update k Competitive Templates
(Using Best Value Known in Each Objective)
End Loop

Fig. 2.21. MOMGA-II Pseudo code

2.3.7 Pareto Envelope-based Selection Algorithm (PESA)

The Pareto Envelope-based Selection Algorithm (PESA) is suggested by
Corne et al. [301]. The pseudo code for the method is given in Algorithm 10.
PESA consists of a small internal population and a larger external population.
A hyper-grid division of phenotype space is used to maintain selection diver-
sity (application of a crowding measure) as the MOEA runs. Furthermore, this
crowding measure is used to allow solutions into the external population via
an archive of solutions evaluating to nondominated vectors. A revised version
of this MOEA is called PESA-II [299]. The difference between the PESA-I
and II is that in the second, selection is region-based and the subject of selec-
tion is now a hyperbox, not just an individual (i.e., it first selects a hyperbox,
and then it selects an individual within that hyperbox). The motivation be-
hind this approach is to reduce the computational cost associated with Pareto
ranking [299]. Finally, these MOEAs are convergent implicit BB MOEAs.
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Algorithm 10 PESA algorithm

1: procedure PESA (N, fi(x))
2: Initialize Population P’; of size N” Randomly

3: Evaluate each member of P’;

4: Initialize the external population P’. to the empty set

5: repeat

6: Incorporate individuals evaluating to nondominated vectors from P’; into
P,

7. Delete the current contents of P’;

8: repeat

9: With probability p., select two parents from P’ > pe is the
probability of crossover

10: Produce a single child via crossover

11: Mutate the child created in the previous step

12: With probability (1 — p.), select one parent

13: Mutate the selected parent to produce a child

14: until P’; is filled

15: until termination criteria is met

16: Return(P’.) > Return the members of P, as the result

17: end procedure

2.3.8 The Micro-Genetic Algorithm for Multiobjective
Optimization

This approach was introduced by Carlos A. Coello Coello & Gregorio Toscano
Pulido [283, 284, 285]. A micro-genetic algorithm is a GA with a small popu-
lation and a reinitialization process. The way in which the micro-GA works is
illustrated in Figure 2.22. First, a random population is generated. This ran-
dom population feeds the population memory, which is divided in two parts:
a replaceable and a non-replaceable portion. The non-replaceable portion of
the population memory never changes during the entire run and is meant to
provide the required diversity for the algorithm. In contrast, the replaceable
portion experiences changes after each cycle of the micro-GA.

The population of the micro-GA at the beginning of each of its cycles
is taken (with a certain probability) from both portions of the population
memory so that there is a mixture of randomly generated individuals (non-
replaceable portion) and evolved individuals (replaceable portion). During
each cycle, the micro-GA undergoes conventional genetic operators. After the
micro-GA finishes one cycle, two nondominated vectors are chosen® from the
final population and they are compared with the contents of the external
memory (this memory is initially empty). If either of them (or both) remains
as nondominated after comparing it against the vectors in this external mem-
ory, then they are included there (i.e., in the external memory). This is the

8 This is assuming that there are two or more nondominated vectors. If there is
only one, then this vector is the only one selected.
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Fig. 2.22. Diagram that illustrates the way in which the micro-GA for multiobjec-
tive optimization works [284].

historical archive of nondominated vectors. All dominated vectors contained
in the external memory are eliminated.

The micro-GA uses then three forms of elitism: (1) retain nondominated
solutions found within the internal cycle of the micro-GA, (2) use a replaceable
memory whose contents is partially “refreshed” at certain intervals, and (3)
replace the population of the micro-GA by the nominal solutions produced
(i.e., the best solutions found after a full internal cycle of the micro-GA).

Although the micro-GA is a very efficient MOEA, its main drawback is
that it requires a high number of parameters. This motivated the develop-
ment of the micro-GA? (also called uGA?) [1597], which uses online adap-
tation. The way of which the uGA? works is illustrated in Figure 2.23. One
of the main features of the new approach is the use of a parallel strategy
to adapt the crossover operator (i.e., several micro-GAs are executed in par-
allel). First, the initial crossover operator to be used by each micro-GA is
selected. The three crossover operators available are: 1) SBX [362], 2) two-
point crossover, and 3) a hybrid crossover operator proposed by the authors of
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Fig. 2.23. Diagram that illustrates the way in which the uGA? works.

this MOEA [1597]. The behavior of this crossover operator depends on the dis-
tance between each variable of the corresponding parents: if the variables are
closer than the mean variance of each variable, then intermediate crossover
is performed; otherwise, a recombination that emphasizes solutions around
the parents is applied. These crossover operators were selected because they
exhibited the best overall performance in an extensive set of experiments that
the authors of this approach conducted. Once the crossover operator has been
selected, the population memories of the internal micro-GAs are randomly
generated. Then, all the internal micro-GAs are executed, each one using one
of the crossover operators available (this is a deterministic process). The non-
dominated vectors found by each micro-GA are compared against each other
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and the contribution of each crossover operator is ranked with respect to its
effectiveness to produce nondominated vectors. At this point, the crossover
operator which exhibits the worst performance is replaced by the one with the
best performance. The external memory stores the globally nondominated so-
lutions, and the new population memories (of every internal micro-GA) are
filled using this external memory. The new external memories of the micro-GA
are identical to this external memory. When all these processes are completed,
convergence is checked. For this sake, it is assumed that convergence has been
reached when none of the internal micro-GAs can improve the solutions previ-
ously reached. The rationale here is that if no new solutions have been found
within a certain (reasonably large) amount of time, it is fruitless to continue
the search.

The uG A? works in two stages: the first one starts with a conventional evo-
lutionary process and it concludes when the external memory of each slave
process is full or when at least one slave has reached convergence (as assumed
in the previous paragraph). The second stage is finished when global conver-
gence (i.e., when all of the slaves have converged) is reached. An interesting
aspect of the uGA? is that it attempts to balance between exploration and
exploitation by changing the priorities of the genetic operators. This is done
during each of the two stages previously described. During the first stage,
exploration is emphasized and during the second, exploitation is emphasized.
The stages are the following:

e Exploration stage: At this stage, mutation has more importance than
crossover so that the most promising regions of the search space can be
located. At this point, a low crossover rate is adopted and the mutation
operator is the main responsible of directing the search. The nominal con-
vergence (i.e., the internal cycle of the micro-GA) is also decreased, since
there is no interest in recombining solutions at this point.

e Exploitation stage: At this stage, the crossover operator has more im-
portance and therefore nominal convergence is increased to reach better
results.

2.3.9 Multiobjective Struggle GA (MOSGA)

The Multiobjective Struggle Genetic Algorithm (MOSGA) [46, 47] combines
the struggle crowding genetic algorithm [608] with a Pareto based rank-
ing scheme. The algorithm has the same pattern as the struggle algorithm
where two parents are chosen at random from the population, and the normal
crossover and mutation is performed to create a child. The child then com-
petes with the most similar individuals in the entire population. The child
replaces similar individuals if the child has a better ranking—counteracting
genetic drift. The ranking method employed is the same as that adopted in
MOGA [504].
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Algorithm 11 MOSGA [48]

1: procedure MOSGA (N, g, fi(x))
2: Initialize Population P’

3 repeat

4 for (i =1 to g) do

5: Randomly Select p parents from P’

6: Apply EVOPs to create a child

7 Calculate the rank of the child

8 Rank the entire population with the new child

9: Locate the most similar individual
10: if New child’s ranking is better than the similar individual then
11: Replace the similar individual with new child
12: Update the ranking of the entire population
13: end if
14: end for
15: until Stopping criterion is met

16: end procedure

Although this MOEA has the flavor of being a simple variation of MOGA,
the approach is devised to counteract genetic drift which is known to spoil
population diversity [46, 47]. An advancement to this algorithm is a technique
to assess the robustness of optimal solutions generated by the MOEA. Gen-
erational information is extracted from the MOEA to construct a response
surface and a good estimate of the robustness of the Pareto front. Again, this
algorithm is a generational MOEA and also an implicit BB MOEA.

2.3.10 Orthogonal Multi-Objective Evolutionary Algorithm
(OMOEA)

The Orthogonal Multi-Objective Evolutionary Algorithm (OMOEA) process
begins with a strict definition of the MOP constraints involved for a particular
problem to solve. These constraints are considered when Pareto dominance
is defined. The algorithm starts by defining a single niche in the decision
variable space x. This niche is recursively split into a group of sub-niches over
and over again until a stopping criteria is satisfied. This partitioning forces
a uniform search. The pseudo code for OMOEA is given in Algorithm 12
where P’ denotes the global population and ¥ denotes the set of all sub-niches
[1755, 1757].

Generally, this MOEA performs well; however, a couple of shortcomings
were found by its authors [1756]:

1. Strong interaction (high epistasis) between variables degrades the per-
formance of OMOEA in both precision and distribution of the PFr,0uwn
vectors.

2. As the number of objectives increases, the number of solutions increases
exponentially.
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Algorithm 12 OMOEA [1755, 1757]

1: procedure OMOEA I(N, fx(x)) > A’ members evolved until a specified
precision is found for fi(x)

2: Input decision space x as initial niche.

3: Evolve niches into P’z (1)

4: Split the niche into a group of War sub-niches.

5: Initialize P’ and ¥

6: P —Pan(l); & — Uy

7 gen=1

8: repeat

9: for (Each xf\‘? € x) do

10: Evolve Xj\s/) and yield Pﬁ?(l)

11: Split the niche into a group of War niches.
12: end for

13: U — O PP — U]P"f\sf)(l)

14: gen = gen + 1

15: until (current P’ does not reach the required precision, and the solution

number of P’ is not more than a critical value)
16: Output P’ as the satisfying close-to-Pareto-optimal set of MOP
17: end procedure

Algorithm 13 OMOEA-II [1756]

1: procedure OMOEA-II(V, fi(x))

2: Randomly create population Py with size N.

Counter t < 0

repeat
Apply Crossover Operator on P; resulting in P'; offspring o |[P;| = [P’
P, =P, UP,
Perform Selection on P”; resulting in Py
t=t+1

until Stopping Criteria Satisfied

10: Output P,

11: end procedure

©

These shortcomings listed above are not unheard of for MOEAs. As a
matter of principle, MOEA designers must recognize both of these problems
when developing a new MOEA. To address these limitations, the OMOEA-II
was proposed in [1756]. The modification to the OMOEA is to reduce the
size of the orthogonal array in order to exploit optimality within a relatively
small space. The pseudo code of the OMOEA-II is presented in Algorithm 13.
Finally, this is a convergent MOEA that implicitly seeks BBs.
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Algorithm 14 GENMOP algorithm

1: procedure GENMOP (N, g, fx(x))
2: Initialize Parent Population P, of size N’
Evaluate, Rank, Normalize and Save Parent Population
for i=1 to g do

Initialize Children and Mating Pool

Fill Mating Pool with Parents by Rank

for j = 1 to size(children pool) do

Statistically select EVOP (weighted section based on previous
good/bad children record)

9: Apply selected EVOP on Children and Mating Pool once
10: Store EVOP used with new child

11: end for

12: Mutate new Children

13: Evaluate new Children

14: Combine Parents with new Children into a new Parent Pool
15: Rank, Normalize and Save new Parent Pool

16: end for

17: end procedure

2.3.11 General Multiobjective Evolutionary Algorithm
(GENMOP)

The General Multiobjective Evolutionary Algorithm (GENMOP) is a gen-
eral MOEA designed at the US Air Force Institute of Technology (AFIT).
GENMOP employs numerous operators to select from when conducting evo-
lutionary operators (EVOPs). As the search progresses, it more often chooses
EVOPs that repeatedly produce better solutions. The algorithm works on the
supposition that operators that continuously produce better solutions will, in
the future, continue to produce good solutions. The pseudo code for GEN-
MOP is given in Algorithm 14. In addition to the pseudo code a program
flow/population growth diagram is presented in Figure 2.24 to illustrate the
flow population members throughout execution of the MOEA. GENMOP is
a generational implicit MOEA that can be used on generic problems because
it can adapt its operator use to those that provide better solutions.

Other techniques that have been adopted and have not been discussed in
this chapter are the following:

e Pareto deme-based selection: These are approaches in which Pareto
ranking is applied over several subpopulations that are distributed within
some sort of geographical structure. The main idea here is to distrib-
ute the effort of checking for nondominance by applying Pareto ranking
locally within each (presumably small) subpopulation of a (most likely
parallelized) MOEA. Then, an additional mechanism has to be used to
determine nondominance with respect to the entire population. However,
since normally only locally nondominated individuals participate in this
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Table 2.1. Summary of EVOPs, fitness, sharing, and representation for discussed

implicit BB MOEAs.

MOEA EVOPS|Fitness Sharing R or | Explicit or
{0,1} |Implicit BB
VEGA c+m Value of a single Phenotypic {0,1}] Implicit
objective Fitness oshare
MOGA c+m Linear interpolation |Phenotypic R Implicit
using Fonseca and Fitness oshare [{0,1}
Fleming’s Pareto
ranking [504]
NPGA c+m Tournament Phenotypic {0,1}| Implicit
Fitness osnare R
NPGA 2 |[c+m Rank Phenotypic {0,1}| Implicit
Dominance Continuously R
Update fit.
Technique
NSGA c+m Dummy fitness Genotypic {0,1}| Implicit
using Nondominated |(oshare - R
sorting Fitness)
NSGA-II [c+m Nondominated Phenotypic {0,1}| Implicit
sorting and R
crowding
SPEA c+m Strength value Phenotypic {0,1}| Implicit
based on R
dominance and
clustering
SPEA2 c+m Strength value Density {0,1}| Implicit
based on dominance |function R
and clustering
PAES m (141)single grid Phenotypic {0,1}| Implicit
(Hyperbox - R
sharing)
M-PAES |m (14+1)single grid Phenotypic {0,1}| Implicit
R
PESA c+m Pareto ranking Phenotypic {0,1}| Implicit
(Hyperbox -
sharing)
PESA-II  |[c+m Region-based Phenotypic {0,1}| Implicit
(Hyperbox -
sharing)
nGA c+m Pareto ranking Phenotypic {0,1}| Implicit
Grid-based
uGA? c+m Pareto ranking Phenotypic {0,1}| Implicit
Grid-based R
MOSGA [c+m Linear interpolation |[Phenotypic {0,1}] Implicit
using Fonseca and Fitness osnare
Fleming’s Pareto
ranking [504]
OMOEA |c Based on sub-niche Genotypic R Implicit
evolution
OMOEA-II|c Nondominated sorting|Phenotypic R Implicit
cluster distance
GENMOP |c4+m Pareto ranking Phenotypic R Implicit
Fitness osnare
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Fig. 2.24. Illustrated is the program flow of the GENMOP. Population of vari-
able length solutions and the evolution process while the algorithm progresses is
illustrated. GENMOP pseudo code can be found in Algorithm 14.

mechanism, the procedure is then more efficient than using the entire pop-
ulation of a traditional (sequential) MOEA [1382].

e Pareto elitist-based selection: The use of elitism in the context of
evolutionary multiobjective optimization has been addressed by several
researchers since the mid 1990s. Elitist selection refers to retaining intact
the best n individuals (n > 1) from the current generation to the next
one, without applying any operators to them. The use of elitism is known
to have great importance when using genetic algorithms to solve single-
objective optimization problems [1393]. However, the use of elitism in evo-
lutionary multiobjective optimization is still subject of research [964]. The
main idea here is to retain some of the highest ranked individuals in the
population (i.e., some nondominated vectors) and then fill the rest of the
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population using some other technique (in some cases, dominated vectors
are discarded).

e Hybrid Selection: These are approaches in which the population capa-
bility of a MOEA is exploited, but several selection mechanisms are used
along the evolutionary search process. These approaches normally attempt
to combine the best of several MOEAs, and combine their selection and/or
fitness assignment techniques alternatively at each certain number of gen-
erations (the choice of technique to be adopted can be also decided through
the use of an uncertainty management technique such as fuzzy logic).

2.3.12 Criticism to Pareto sampling techniques

The main weakness of Pareto ranking in general is that there is no efficient
algorithm to check for nondominance in a set of feasible solutions (the con-
ventional process is O(kM?) for each generation, where k is the number of
objectives and M is the population size). Therefore, any traditional algorithm
to check for Pareto dominance exhibits a serious degradation in performance
as the size of the population and the number of objectives are increased. Also,
Pareto ranking becomes inappropriate when dealing with a large number of
objectives, because in such cases, all the individuals in the population will
soon become nondominated. Additionally, the use of sharing requires to esti-
mate the value of the sharing factor, which is not easy, and the performance
of the method normally relies a lot on such value. Nevertheless, and despite
its possible disadvantages, Pareto ranking remains as the most popular selec-
tion scheme adopted by MOEASs, because of the several advantages that it
provides over (linear) aggregating functions.

Besides the general criticism expressed before, there are certain specific
comments that have been addressed in the past towards each of the approaches
previously discussed:

e MOGA : The main criticism towards MOGA has been that it performs

sharing on the objective value space, which implies that two different vec-
tors with the same objective function values cannot exist simultaneously
in the population under this scheme [1509, 357]. This is apparently un-
desirable, because these are precisely the kind of solutions that the user
normally wants. However, nothing in the algorithm precludes it from per-
forming sharing in parameter value space, and apparently this choice has
been taken in some of the applications reported in the literature (see Chap-
ter 7). Also, in its original version, MOGA is a non-elitist MOEA.
The main advantage of MOGA is that it is efficient and relatively easy to
implement [260, 1626]. Its main weakness is that, as all the other Pareto
ranking techniques, its performance is highly dependent on an appropriate
selection of the sharing factor. However, it is important to note that Fon-
seca and Fleming [504] have developed a good methodology to compute
such value for their approach.
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NSGA: Some researchers have reported that NSGA has a lower overall
performance than MOGA, and it seems to be also more sensitive to the
value of the sharing factor than MOGA [260, 1626]. Other authors [1781]
report that the NSGA performed quite well in terms of “coverage” of the
Pareto front (i.e., it spreads in a more uniform way the population over
the Pareto front) when applied to the 0/1 knapsack problem, but in these
experiments no comparisons with MOGA were provided. This is also a
non-elitist MOEA.

NSGA-II: The NSGA-IT is noticeably more efficient than its previous
version, but it also seems to have a questionable exploratory capability.
Although the algorithm tends to spread quickly and appropriately when
a certain nondominated region is found, it seems to have difficulties to
generate nondominated vectors that lie in certain (isolated) regions of
the search space [284]. There is also evidence of a notorious search bias
of the NSGA-II as the number of objectives increases [1775], although
some recent improvements have been introduced in order to deal with this
problem (see [912]).

PAES: Despite its efficiency, PAES does not perform well in Pareto fronts
that are disconnected. This is due to the fact that PAES is exploratory in
nature, and does not keep in the external file the nondominated individuals
of the extremes of objective function space. It also stagnates under certain
conditions (e.g., in the presence of several disjoint Pareto fronts) [284,
1775].

MOMGA, MOMGA-IT and MOMGA-III: Although messy GAs are
very powerful, their main drawbacks are related to the exponential growth
of their population as the size of the building blocks grows [1114]. Although
the fast-messy GA is a good alternative to deal with this problem, it does
not solve it completely.

Pareto deme-based selection techniques: To exploit better Pareto
deme-based selection techniques, it is desirable to use a parallel MOEA.
However, the use of parallelism introduces additional problems to take
into account (e.g., the cost of the communication topology adopted). See
Chapter 8 for a more detailed discussion of Parallel MOEAs.

Pareto elitist-based selection: The main criticism towards Pareto eli-
tist approaches is that they may not retain diverse enough populations
to find and retain a P Fjyyoun truly representative of PFy.,. , as they re-
tain only Peyrrent (t) between generational populations and discard all
other solutions. As more and more population members are contained
in Peyprent (t) the remaining solutions may not provide enough diversity
for effective further exploration. In other words, Pareto elitist approaches,
as in single-objective optimization, may introduce a large selection pres-
sure that could cause premature convergence. Therefore, care should be
taken of the number of nondominated individuals retained at each gener-
ation. Additionally, the use of an efficient approach to maintain diversity
is crucial to make effective this sort of technique.
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e Hybrid selection: Hybrid selection techniques may be advantageous in
certain cases (e.g. in multiobjective combinatorial optimization). However,
it is by no means obvious how to balance different selection strategies that
are applied to the same population. This normally requires an additional
mechanism (e.g., fuzzy logic) or additional parameters that may compli-
cate the use of the approach.

2.4 Constraint-Handling Techniques

Handling constraints within a MOEA is an important topic that deserves
special attention, particularly when dealing with real-world problems. Most
real-world MOPs have constraints that need to be incorporated into our search
engine in order to avoid convergence towards infeasible solutions. Constraints
can be “hard” (i.e., they must be satisfied) or “soft” (i.e., they can be relaxed)
and their proper handling has been a matter of research within single-objective
EAs [265].

Normally, the vector g(x) < 0 defines the set of MOP constraints (see Sec-
tion 1.2.2 from Chapter 1). Note that normally, only inequality constraints
(i.e., g(x)) are considered, because equality constraints can be easily trans-
formed into inequality constraints using, for example:

|h(x)| —e<0 (2.4)

where h(x) = 0 is an equality constraint that we aim to satisfy, and € is
the tolerance allowed (a very small value).

The most popular constraint-handling technique both for single-objective
and multi-objective EAs are penalty functions [1360]. Exterior penalty func-
tions are the most commonly used in the specialized literature, and their
general formulation is the following:

n

o(x)=Fx) £ | i xGi+ > ¢ x L (2.5)

i=1 j=1
where ¢(x) is the new (expanded) objective function to be optimized, G; and
L; are functions of the constraints g;(x) and h;(x), respectively, and r; and
c; are positive constants normally called “penalty factors”.
The most common form of G; and Lj is:
G; = max|0, g;(x)]” (2.6)
Lj = |h;(x)] (2.7)

where 0 and 7 are normally 1 or 2.
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Exterior penalties are usually preferred when using evolutionary algo-
rithms because they do not require an initial feasible solution (as required
by interior penalty functions). However, the definition of the penalty factors
used in a penalty functions is not straightforward. Ideally, the penalty should
be kept as low as possible, just above the limit below which infeasible solu-
tions are optimal (this is called, the minimum penalty rule [339, 968, 1490]).
This is due to the fact that if the penalty is too high or too low, then the
problem might become very difficult for an evolutionary algorithm to solve
[339, 968, 1361]. If the penalty is too high and the optimum lies at the bound-
ary of the feasible region, the EA will be pushed inside the feasible region
very quickly, and will not be able to move back towards the boundary with
the infeasible region. A large penalty discourages the exploration of the in-
feasible region since the very beginning of the search process. If, for example
there are several disjoint feasible regions in the search space, the EA will tend
to move to one of them, and will not be able to move to a different feasible
region unless such regions are very close from each other. On the other hand,
if the penalty is too low, a lot of the search time will be spent exploring the
infeasible region because the penalty will be negligible with respect to the
objective function [1489]. These issues are very important in EAs, because
many of the problems in which they are used have their optimum lying on the
boundary of the feasible region [1487, 1490].

The minimum penalty rule is conceptually simple, but it is not necessarily
easy to implement. The reason is that the exact location of the boundary
between the feasible and infeasible regions is unknown in many of the problems
for which EAs are intended (e.g., in many cases the constraints are not given
in algebraic form, but are the outcome generated by a simulator [281]).

It is known that the relationship between an infeasible individual and the
feasible region of the search space plays a significant role in penalizing such
an individual [1360]. However, it is not clear how to exploit this relationship
to guide the search in the most desirable direction. Summarizing, the main
problem with penalty functions is the definition of good penalty factors that
can guide properly the search towards the feasible region. This has triggered
a significant amount of research aiming to devise penalty functions that can
be easily generalized and that require minimum (or none) parameter tuning
(see for example [1404, 475, 1097]).

Note however, that penalty functions are not the only constraint-handling
technique available for EAs. Other authors have proposed alternative ap-
proaches based, for example, on repairing infeasible solutions in order to make
them feasible [1105]. This, however, may be computationally expensive.

Other authors have proposed the use of selection schemes that consider
feasible solutions to be superior to infeasible ones (see for example [1291,
360]). This sort of scheme can be easily extended for MOEAs by defining, for
example, a binary tournament selection with the three possible cases:
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1. If both solutions compared are feasible, use Pareto dominance to define
the winner, with the possibility of using a density estimator to break ties
(e.g., niche count or crowding distances).

2. If one solution is feasible and the other infeasible, select the feasible one.

3. If both solutions are infeasible, then select the one that is “least” infeasible
(e.g., the one with the lowest sum of constraint violation).

Note, however, that when adopting schemes of this sort is important to
keep in mind that it is important to preserve at least a few infeasible solutions
in the population in order to be able to converge to solutions that lie in the
boundary between the feasible and infeasible regions (see for example [1097]).

It is also possible to define a nondominated feasibility ranking technique
using a three individual comparison. In this case, a more elaborate set of rules
need to be generated to select the tournament winner [1329, 1330].

Despite the important volume of research on constraint-handling tech-
niques for evolutionary algorithms (see for example [1105, 265]), there is a
noticeable lack of emphasis on the development of techniques suitable for
MOPs. Most researchers assume that techniques used for single-objective EAs
are suitable for MOPs as well. This assumption is normally associated with
the relative lack of constrained MOPs found in the current literature (see
Chapter 4). However, the development of constraint-handling techniques that
properly exploit the properties of MOPs is still an open research area.

An interesting research area that has become increasingly popular in the
specialized literature is the use of multi-objective optimization concepts to
handle constraints in single-objective optimization problems (see [1098] for a
survey). The main idea is very intuitive: a constrained single-objective opti-
mization problem is transformed into an unconstrained MOP. From the ap-
proaches reported in the specialized literature, we can identify two main ways
of performing this transformation:

1. Bi-Objective Transformation: In this case, two objectives are consid-
ered: the first is the original objective function and the second one is the
sum of constraint violation. See for example [1542, 197, 1766, 1736, 1678,
1640].

2. Multi-Objective Transformation: In this case, the problem is trans-
formed into an unconstrained MOP, in which we will have m+1 objectives,
where m is the total number of constraints and the additional objective
is the original objective function of our (single-objective) optimization
problem. After performing this transformation, any MOEA can be ap-
plied to the new problem, and in fact, both population-based approaches
(see for example [1250, 264, 274, 990]) and Pareto-based approaches (see
for example [511, 262, 279, 50, 1335, 1333, 670, 1229, 797, 793]) have been
adopted for this sake. Note, however, that some additional mechanisms
are required to guide the search in a proper manner, since constraints
and objectives are conceptually different [670]. Thus, when performing
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this sort of transformation, it is normally irrelevant to attempt to further
optimize a constraint that is already satisfied. Conversely, a solution that
represents a good trade-off of the constraints, but remains infeasible, may
not be of interest in this case, whereas it would be acceptable in a truly
multi-objective problem.

It is important to keep in mind that, when applying these transformations,
the aim is to find a single solution (i.e., the constrained global optimum) and
not a set of them, as in traditional MOPs.

The main motivations for applying these transformations is to eliminate
the need of fine-tuning the penalty factors of a penalty function, and to ap-
proach the feasible region in a more efficient way (i.e., requiring a lower number
of fitness function evaluations) [1098].

The key for future research in this area is not only to adapt other MOEAs
to handle constraints, but to exploit domain knowledge as much as possible
(see for example [1329, 947]).

2.5 Critical MOEA Elements

This section contains a brief discussion of the most critical elements asso-
ciated with MOEAs, including their empirical validation, their theoretical
foundations, their fitness function types, their chromosomal representations,
and their problem domains.

2.5.1 MOEA Comparisons

MOEA researchers have shown evident concern in developing metrics and
performing quantitative comparisons of different techniques. In the origins
of evolutionary multiobjective optimization, such comparisons were mainly
visual and the test functions had only two or maybe three objectives and
a very few decision variables. The Pareto fronts considered were normally
convex and had a continuous shape.

Recently researchers have proposed experimental methodologies for gen-
eral MOEA comparative analysis [1781, 1626, 1790]. An extensive discussion
on this subject is presented in Chapter 5. Many MOEA publications lacking
a more thorough comparative analysis use real-world applications (see Chap-
ter 7). An argument can be made down the lines of “if it works, use it,”
but in general, using a test problem and/or an application’s results to judge
comprehensive MOEA usefulness is not conclusive.

2.5.2 MOEA Theory

Less than 1/40%" of published MOEA papers focus on underlying theoreti-
cal analyses of MOEAs. These papers focus mainly on MOEA parameters,
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behavior, and concepts (see Chapter 6 for a contemporary detailed discus-
sion on MOEA theory). They attempt to further define the nature and lim-
itations of Pareto optimality, the subsequent effects upon MOEA search to
determine the necessary conditions to ensure convergence, run-time analysis,
fitness landscape analysis, and discuss the characteristics and construction
of appropriate MOEA benchmark test function suites. However, this work,
although valuable, is evidently insufficient and much more effort in this direc-
tion is necessary. As Fonseca and Fleming [506] and Horn [706] have stated:
more effort is being spent designing and refining MOEA approaches than on
developing accompanying theory.

2.5.3 MOEA Fitness Functions

The catalogued research efforts provide various fitness function types used by
MOEAs. Table 2.2 lists several generic fitness function types, their identifying
characteristics, and examples of each drawn from the MOEA literature. These
listed types are not limited to MOEA applications nor are they the only ones
possible. Further examples can be found in [277] and Chapter 7. MOEAs offer
the exciting possibility of simultaneously employing different fitness functions
to capture desirable characteristics of the problem domain regardless of the
implemented MOEA technique.

The fitness functions employed appear limited only by the practitioner’s
imagination and particular application; several are identified and others must
surely exist. However, a fitness function’s effectiveness depends on its appli-
cation in appropriate situations (i.e., it measures some relevant feature of the
studied problem). The claim by many authors that their particular MOEA
implementations are successful imply the associated fitness functions are ap-
propriate for the given problem domains.

Finally, the catalogued efforts clearly show the non-commensurability and
independence of many fitness function combinations. For example, optimizing
a radio antenna design may involve electromagnetic (energy transmission), ge-
ometric (antenna shape), and financial (dollar cost) objectives. The proposed
antenna’s shape may have no meaningful impact on its cost. Also, these ob-
jectives may be measured in megawatts, feet, and euros! These are the factors
responsible for the partial ordering of the search space and the subsequent
need to develop appropriate MOEA fitness assignment procedures.

2.5.4 MOEA Chromosomal Representations

Theorems exist [498] showing that no intrinsic advantage is provided by any
given genetic representation. For any particular encoding and associated car-
dinality, equivalent evolutionary algorithms (in an input/output sense) can be
generated for each individual problem instance. Although certain gene repre-
sentations and EVOPs may be more effective and efficient in certain situations,
the theorems show that no choice of representation and/or EVOPs operating
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Table 2.2. MOEA Fitness Function Types

Category

Characteristic

Examples

Electromagnetic

Energy transfer or reflection

[1117]
[1627]
[472]

Economic

Production growth

[1470]
[607]
[84]

Entropy

Information content and (dis)order

[508]
[1532]
[1382]
[924]

Environmental

Environmental benefit or damage

[33]
[255]
[1607]
[414]

Financial

Direct monetary (or other) cost

(66]
[1325]
[598]
[1530]
[1443]

Geometrical

Structural relationships

[768]
[408]
[600]

Physical (Energy) Energy emission or transfer

[1702]
808
[1247]
[346]

Physical (Force)

Exerted force or pressure

[309]
[1202]
[1646]
[669]

Resources

Resource levels or usage

[78]
388
[1470]

Temporal

Timing relationships/Scheduling

504]
[750]
[1470]
[741]
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on one or two parents offers any capability which can not be duplicated by
another MOEA instantiation.

The NFL theorems® [1708] indicate that if an algorithm performs “well”
(on average) for some problem class then it must do worse on average over
the remaining problems. In particular, if an algorithm performs better than
random search on some problem class then it must perform worse than random
search on the remaining problems. So, although the NFL theorems imply
one MOEA may provide “better” results than another when applied to some
problem these other theorems show that that MOEA is not unique. Thus,
there appears to be more than one way to skin a cat (or MOP).

Genetic representation is then another MOEA component limited only
by the implementor’s imagination. The cited efforts indicate the most com-
mon representation is a binary string corresponding to some simple mapping
from the problem domain. Real-valued chromosomes are also often used in this
fashion. And, as in single-objective EAs, combinatorial optimization problems
often use a permutation ordering of jobs, tasks, etc. However, some represen-
tations are more intricate and therefore notable.

Some MOEAs employ arrays as genome constructs. For example, Baita et
al. use a matrix representation to store recessive information [78].19 Parks and
Chow also use matrices as these data structures are more natural representa-
tions of their respective problem domains’ decision variables [1244, 254]. The
Priifer encoding used by Gen et al. [553] uniquely encodes a graph’s spanning
tree and allows easy repair of any illegal chromosome. In the known multi-
objective Genetic Programming implementations (e.g., [55, 950, 1368, 683,
1408]), a program/program tree representation is used. No matter the repre-
sentation employed, it is again noted that any claims of “successful” MOEA
implementations imply the associated genetic encodings are appropriate for
the given problem domain.

2.5.5 MOEA Problem Domains

MOEAs operate on MOPs by definition. A more theoretical discussion of the
MOP domain is given in Chapter 4 and elsewhere [1630, 357]. The discussion
presented here is in more general terms. When implementing a MOEA it is
(implicitly) assumed that the problem domain (fitness landscape) has been ex-
amined, and a decision made t