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PREFACE

Recent advances in wireless and mobile technologies make communication
possible anywhere and anytime with any device ranging from smartphones,
tablets, to vehicles. We can envision a wide range of applications where the
deployment of these ad hoc networks is key; for example, in remote locations
coordinating the evacuation and rescue of people where the infrastructure is
nonexistent or destroyed due to a disaster, assisting drivers or alerting them
of a danger ahead. We can also think of the deployment, as a complimentary
network, in dense areas to alleviate the already congested cellular network.
Through these few cases we can already glimpse the importance of mobile
ad hoc networks.

The specific features of ad hoc networks make it a very timely research
topic since reusing existing protocols tailored for other type of networks are
impossible or inefficient. As a consequence, their redefinition, redesign, and
optimization are needed in order to create new optimal architectures.

Providing efficient and accurate communication protocols, topology man-
agement, or mobility models, to answer the aforementioned challenges, are
difficult optimization problems. This book demonstrates how metaheuristics
and, more precisely, evolutionary algorithms (EAs), can provide low-cost
operations in the optimization process and allow the designer to put some
intelligence or sophistication in his design. EAs have extensively proved
their ability to solve complex, real-world problems, thanks to their capa-
bility to provide accurate (and possibly optimal) solutions in a reasonable
time. Despite huge research potential, these nature-inspired algorithms are
still seldom applied to solve problems in mobile ad hoc networks. In many
cases, engineers do not use them or do not use them properly because of a
lack of know-how. We focus on explaining how to identify, model, and solve
such problems using advanced and cutting edge evolutionary algorithms.

The book is targeted to a wide audience, such as novel researchers look-
ing for emerging research lines, senior researchers facing real problems,
and parts of the book can be used in undergraduate or Ph.D. courses on
optimization, advanced search techniques, multi-objective optimization, and
mobile networks. Readers will find a highly self-contained book, with uni-
formly designed contents, chapters that can be accessed independently, and
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xiv PREFACE

up-to-date/current topics in traditional research as well as in current lines in
the world of mobile networks.

Researchers in the field of mobile networks will find highly interesting
content in the book, addressing several examples on how to identify and solve
problems in their research fields using advanced EAs. Additionally, the book
will be of great interest for the optimization community, since researchers
will find very interesting comparisons of three important kinds of EAs on
a bench of complex, real-world problems, both single- and multi-objective
ones. Finally, this book is highly recommended for engineers working on the
design and standardization different kinds of mobile networks.

B. Dorronsoro
P. Ruiz

G. Danoy
Y. Pigné

P. Bouvry
Luxembourg
April 2014
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INTRODUCTION TO MOBILE
AD HOC NETWORKS

The first wireless communication network between computers was created in
1970 by Norman Abramson at the University of Hawaii, the AlohaNet [11].
It was composed of seven computers distributed over four islands that were
able to communicate with a central node on Oahu using radio communica-
tion. Additionally, the most well-known random-access protocol, ALOHA,
was also developed and presented at that time [12]. The ALOHA channel
is used nowadays in all major mobile networks (2G and 3G), as well as in
almost all two-way satellite data networks [58].

Thanks to the reduction in the cost and size of the hardware needed, the
wireless technology widely extends in our everyday life. The huge number of
devices that provide wireless technology nowadays, as well as the increasing
number of people that not only carry a device with wireless capabilities but
actually use it, make the field of wireless technology a key topic in research.

The current mobile wireless networks consist of wireless nodes that are
connected to a central base station. When a device moves to a different

Evolutionary Algorithms for Mobile Ad Hoc Networks, First Edition. Bernabé Dorronsoro,
Patricia Ruiz, Grégoire Danoy, Yoann Pigné, and Pascal Bouvry.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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4 INTRODUCTION TO MOBILE AD HOC NETWORKS

geographical area, it must connect to a different base station in order to con-
tinue with the service. This means that two nodes located in the same region
cannot communicate unless there is a base station associated to that area.
Researchers envisioned a possibility for communicating devices where the
fixed infrastructure was not available, that is, remote or disaster areas. This
kind of network is called an ad hoc network.

The term ad hoc has been extensively used during the last decade. Accord-
ing to the American Heritage Dictionary of the English Language, it has two
different meanings: (1) form for or concerned with one specific purpose and
(2) improvised and often impromptu. These two definitions of the term ad
hoc describe the purpose of a new kind of network that emerged with the
wireless technology.

Definition 1 Ad hoc Network. It is a decentralized and self-configuring
network spontaneously created between neighboring devices with communi-
cation capabilities, without relying on any existing infrastructure.

In an ad hoc network, all devices may also act as routers and forward
packets to enable communication between nodes that are not in range. Two
nodes are said to be in range when they are able to receive and properly
decode packets sent by the other node.

Some examples where the deployment of an ad hoc network can be used
and actually can be very useful are relief in disaster areas, battlefield deploy-
ment, sensing areas, social events (like a concert), and the like. In those cases,
devices can create a temporary network for a specific purpose, that is, an
ad hoc network. When devices are mobile, they are called mobile ad hoc
networks.

Ad hoc networks suffer from the typical drawbacks of wireless net-
works such as interference, time-varying channels, low reliability, limited
transmission range, and so forth. Additionally, ad hoc networks have spe-
cific characteristics that make their deployment very challenging. Next, we
describe the main ones:

1. Decentralization: nodes locally execute the algorithms and take all
decisions by themselves:

2. Self-organization: nodes must be able to create, join, and manage an
ad hoc network by their own means.

3. Limited network resources: the medium is shared between all devices
in range.

4. Energy limitations: devices rely on battery.
5. Dynamism: nodes move, appear and disappear from the network.
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10 m

BAN LAN MAN WAN

Coverage in m

1 m 500 m 20–50 km Range

PAN

Figure 1.1. Classification of ad hoc networks in terms of the coverage area.

6. Heterogeneity: any kind of device with wireless capabilities may be
able to join the network.

7. Scalability: nodes can join or leave the network at any time, therefore
the number of nodes composing it is unpredictable.

8. Multihop: in order to communicate two remote nodes, devices have to
also act as routers forwarding packets not intended for themselves.

9. Security: the lack of central authority, the changing topology, and
the vulnerability of the channel makes difficult guaranteeing secure
communications.

Chlamtac et al. [20] presented a classification of ad hoc networks in terms
of the coverage of the devices (see Fig. 1.1). They can be differentiated into
five different classes, explained below.

• Body area network (BAN) is a communication network (usually wire-
less) composed of small wearable nodes (earphones, microphones) that
provides connectivity between those devices. It is also extended to small
sensor nodes implanted in the human body that collect information about
the patient’s health and send it to an external unit. The range needed is
just to cover the human body (i.e., 1–2 m).

• Personal area network (PAN) enables the communication of mobile
devices carried by individuals, like smart phones, PDAs, and the like
to other devices. The range varies with the technology used, from 10
to 100 m.

• Local area network (LAN) interconnects computer nodes with periph-
eral equipment at high data transfer in a predefined area such as an
office, school, or laboratory. The communication range is restricted to
a building or a set of buildings, between 100 and 500 m.

• Metropolitan area network (MAN) spans a city or a large campus. It
usually interconnects different LANs. The size is variable, covering up
to tens of kilometers.
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6 INTRODUCTION TO MOBILE AD HOC NETWORKS

• Wide area network (WAN) covers a large geographical area. It can relay
data between different LANs or over long distances.

Both MAN and WAN still need much more work to become a reality in a
near future. There are many challenges that are not solved yet like communi-
cation beyond line of sight, identification of devices, routing algorithms, and
the like that keep researchers working on the topic [35, 38, 39, 68].

Apart from this classification, the ad hoc networking field has three well-
defined research lines: (1) mobile ad hoc networks, (2) vehicular ad hoc
networks, and (3) sensor networks. The first one is defined as an ad hoc net-
work where devices do move and includes all personal devices like smart
phones, PDAs, laptops, and gaming devices. When devices move at high
speeds, without energy restrictions and the network is able to use road side
units for communicating, we are talking about vehicular ad hoc networks.
Finally, in sensor networks devices are generally meant to acquire data from
the environment and report it to a central node or gateway. The next sections
give a more detailed view of these three types of ad hoc networks.

1.1 MOBILE AD HOC NETWORKS

Mobile ad hoc networks, also called MANETs, are ad hoc networks where
the devices that make up the network are mobile. Khan [43] extended
the previously mentioned AlohaNet including repeaters, authentication, and
coexistence with other possible systems in the same band. This new system
was called the packet radio network, PRNET [43]. The PRNET project of the
Defense Advanced Research Projects Agency, DARPA, started in 1973 and
evolved through the years (1973–1987) to be a robust, reliable, operational
experimental network. The MANETs were first defined in PRNET project.
In Jubin and Tornow [41], a detailed description of PRNET is presented and
in [40] PRNET is defined as a mobile ad hoc network.

Initially, MANETs were mainly developed for military applications, spe-
cially for creating communication networks on the battlefield. In the middle
of 1991, when the first standard was defined (IEEE 802.11 [69]), and the
first commercial radio technologies appeared, the great potential of ad hoc
networks outside the military domain was envisioned. Apart from the mili-
tary scenarios, all the previously mentioned applications for ad hoc networks
(if we consider moving devices) are considered in this section. However,
there are many applications like emergency services, multiuser gaming,
e-commerce, information services, mobile office, that extend the cellular
network.

Advances in the technology made possible Internet connection in portable
devices. Mobile phones evolved to smart phones with large screens, cameras,
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Figure 1.2. Cisco forecasts of mobile data traffic up to 2016.

GPS, bluetooth, high-speed data access, and a friendly operating system.
At the end of 2013, the number of mobile devices will exceed the world’s
population, and by 2017 there will be 1.4 mobile devices per capita [52].
Moreover, as many people (not only industry) focused on developing appli-
cations for those smart phones, social networks such as Facebook or Twitter
appeared. The former has, on average, 1.11 billion monthly active users as
of March 2013 [64]. The latter has 140 million active users and 340 million
Tweets a day [65] just after 6 years. No one could have predicted the amazing
growth of social networking. Actually, those applications are not only used
in computers but also in smart phones and tablets, increasing the mobile data
traffic. It is expected that in 2016 the mobile data traffic will be more than
eight times higher than in 2012, and only 0.3% of this traffic will be due to
VoIP (voice over IP) [52]. Figure 1.2 shows the growth of mobile data, envi-
sioning a 78% increase in the compound annual growth rate (CAGR) from
2011 to 2016.

With such numbers, the cellular network will be soon saturated. To alle-
viate this problem, part of the mobile data traffic can be delivered by a
complementary network. This mechanism is known as 3G Offloading. There
are studies that present mobile ad hoc networks as this complementary
network [14, 56].

Some of the main characteristics of mobile ad hoc networks that make
their design challenging are mentioned below:

1. The lack of any infrastructure forces the node to perform network setup,
management, self-healing, neighbor discovery, and the like.
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16 INTRODUCTION TO MOBILE AD HOC NETWORKS

decisions must be taken in order to balance the performance of the sen-
sor network and the resource utilization. For example, gathering sensed
data from a higher number of nodes will give more accurate results, but
more communication resources are needed (i.e., energy).

2. Low Latency: Depending on the application, the data gathered can be
already out of date in high latency networks. The delay the raw sensed
data experiences from its acquisition until its utilization can be crucial
depending on the application (e.g., patient monitoring).

3. Scalability: The number of nodes deployed in an area can vary from
tens to thousands of sensors. Thus, algorithms used must be able to
provide the desired performance regardless of the size of the network.

4. Reliability: Sensor nodes can fail due to the battery lifetime or
because of extreme environmental conditions. Therefore, the algo-
rithms designed must be resilient to failures and the network self-
healing.

5. Deployment: Optimal distribution of the sensor over a spatial area is
necessary.

There are some important differences between mobile ad hoc networks
and sensor networks and also between their applications, which makes no
straightforward reuse of algorithms and protocols of MANETs in sensor net-
works. The suitability of those algorithms must be checked before their actual
implementation. We now mention some of those differences:

• In ad hoc networks the terminals are smart with high capacity, while in
sensor they are simple, and the capacity rate in most of the applications
is very low (few bytes).

• Unlike in ad hoc networks, in sensors not all the nodes act as routers.
• Although energy is considered a key feature, capacity is the most rele-

vant characteristic that must be taken into consideration when designing
an ad hoc network; while in sensor networks the energy is the most
important restriction that must be always considered in their design [19].

In sensors, communications protocols must be designed that consider the
energy restrictions. Indeed, the energy consumption needed for transmitting
data is much bigger than the one needed for processing the data. However,
the signal processing must not be neglected from the energy consumption as
processing data sometimes can take much longer than transmitting the data
and, therefore, consumes more than the transceiver in idle mode. Addition-
ally, when the sleep mode is assumed in sensors, suitable synchronization is
needed in order to have efficient communication between nodes.
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SENSOR NETWORKS 17

As each sensor must sense, process, and communicate using a limited
amount of energy, a cross-layer design that takes into consideration all these
requirements (communication protocols, signal, and data processing) will
provide some benefits.

Unlike MANETs or VANETs, sensors are being used in some real-
world applications. Thus, there exist many different technologies for sensors
depending on the necessities of the targeted application. Next, we introduce
some of the most well-known technologies and standards that are available
at the time of this writing.

1.3.1 IEEE 1451

The National Institute of Standards and Technology (NIST) [6] is devel-
oping a family of smart transducer interface standards IEEE 1451 that
describes a set of open, common, network-independent communication inter-
faces for connecting transducers (sensors or actuators) to microprocessors,
instrumentation systems, and control/field networks. The key feature of these
standards is the definition of Transducer Electronic Data Sheets (TEDS).
TEDS is a memory device attached to the transducer, that stores trans-
ducer identification, calibration, correction data, measurement range, and
manufacture-related information. The goal of 1451 is to allow the access of
transducer data through a common set of interfaces whether the transducers
are connected to systems or networks via a wired or wireless means [51].

IEEE 1451 allows the sensors to have capabilities for self-identification,
self-description, self-diagnosis, self-calibration, location awareness, time
awareness, data processing, reasoning, data fusion, alert notification,
standard-based data formats, and communication protocols [60]. It also pro-
vides plug-and-play capability. The definition of TEDS is the key feature that
can be seen as an identification card that contains specific data of the trans-
ducer (including manufacturer information) allowing the sensor to connect
to different networks.

1.3.2 IEEE 802.15.4

In 2003, the original standard of the IEEE for low-rate personal area net-
works (LR-PAN), IEEE 802.15.4, was approved. Unlike IEEE 1451, it only
defines the two bottom layers of the OSI model considering very low power
consumption, low complexity, and low cost. After this standard, the improved
version was approved in 2006 (IEEE 802.15.4b), and in 2007 location capa-
bilities were added in IEEE 802.15.4a. In order to make it compatible with the
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bands available in China and Japan, in 2009, 802.15.4c and 802.15.4d were
approved. Recently, in 2011, IEEE 802.15.4 was extended, the ambiguities
removed, and improvements included [70].

The network can have two different topologies: (1) star and (2) peer-to-
peer. Moreover, two types of devices are defined: (1) full-function device
(FFD) and (2) reduced-function device (RFD). The FFD has all network
functionalities, while the RFD has low resources and is capable of very
simple applications. There must exist at least one FFD for coordinating the
network (PAN coordinator). In the star topology nodes can only communi-
cate with the PAN coordinator, while in the peer-to-peer configuration any
two nodes in range can connect, and they are able to self-organize, which is
the basis for an ad hoc sensor network.

IEEE 802.15.4 serves as the low layers of many different specifications
like ZigBee, 6LoWPAN, Wireless HART, ISA-SP100, and MiWi. We will
now briefly consider some of these.

1.3.3 ZigBee

ZigBee is a standard-based network protocol created by the ZigBee
Alliance [2]. It is based on the 802.15.4 standard and defines layer 3 and
above in the OSI model. It was designed with for purpose of creating a net-
work with low rate and low power capabilities that still covers a long area and
that gives extra features like security. In ZigBee there are two possible access
modes: beacon and nonbeacon. If the beaconing is not enabled, any node
can transmit data whenever the channel is free. When beacons are enabled,
the PAN coordinator assigns a time slot to every device for transmitting and
sends beacon signals to synchronize all devices under its control.

Three different topologies are considered in ZigBee: (1) star, (2) cluster
tree, and (3) mesh. The cluster tree topology is similar to the star, but there
exists the possibility that other nodes rather than the PAN coordinator are
able to communicate with each other. Unlike in the first two, in the mesh
network any node can communicate with any other in range. Beaconing is
not allowed in this latter topology.

The ZigBee Alliance offers two specification: ZigBee and ZigBee RF4CE.
The former is intended for mesh networks offering all the features of ZigBee
such as self-configuring, self-healing, and so forth. Additionally, two feature
sets are available: ZigBee and ZigBee PRO (being low power consumption
and a large network of thousands of devices). The latter aims at providing
simple device-to-device topology, thus reducing the cost and the complexity.
For a more detailed description of the ZigBee technology refer to [15, 31].
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1.3.4 6LoWPAN

The idea of having all devices IP-enabled connected to the Internet and all the
Internet services monitoring and controlling those devices is called Internet
of Things and was first mentioned in 1999 [17]. It envisions trillions of nodes
working under the Internet protocol IPv6. The problem arose when dealing
with low power, low bandwidth, or battery-dependent devices, what is called
the wireless embedded Internet.

The IPv6 [low-power wireless personal area networks (6LoWPAN)]
working group of IETF defines a set of standards for adapting IPv6 to those
resource-limited devices. In Shelby and Bormann [59], we find a formal
definition: 6LoWPAN standards enable the efficient use of IPv6 over low-
power, low-rate wireless networks on simple embedded devices through an
adaptation layer and the optimization of related protocols.

The IPv6 header is compressed and some functionalities are simplified,
so that IPv6 packets can be transmitted over an IEEE 802.15.4 network.
In this case, the topology considered is a mesh.

At the time of this writing several proposals were available. A more
detailed explanation of them can be found in Yibo et al. [71].

1.3.5 Bluetooth

In 1994, engineers at Ericsson invented Bluetooth, founding the Bluetooth
Special Interest Group (SIG) [61] in 1998 to expand and promote the concept.
But it was not until 1999 when the first specification was published.

The main idea of Bluetooth is to enable wireless information transfer
between electronic devices via short-range ad hoc radio connections in a
wireless personal area network. It allowed the design of low-power, small-
size, low-cost radios that can be embedded in existing portable devices.
In [32] the Bluetooth radio system and its ad hoc capabilities are presented.

Bluetooth works in master–slave mode, where the master is able to com-
municate with up to seven devices at the same time. The ad hoc network
formed by the master device and the slaves connected using Bluetooth
technology make up a called a piconet.

From its creation, different versions of Bluetooth were released. At the
time of writing this, the last published version is Bluetooth v4.0, which
includes classic Bluetooth technology, Bluetooth low-energy technology,
and Bluetooth high-speed technology, which can be used combined or
separately [67].

In their early stages, although being similar technologies focusing on
short-range wireless communication, Bluetooth and ZigBee were aiming at
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different objectives. ZigBee had lower power consumption and was able to
support larger networks, while Bluetooth had higher bit rates, what clearly
differentiated the application fields for each of them. While Bluetooth was
used for mobile devices and peripherals, ZigBee focused on home automa-
tion and medical sensors. Lately, Bluetooth v4.0 includes Bluetooth low
energy (BLE), aimed also at very low power applications.

1.3.6 Wireless Industrial Automation System

Both ISA100 or ISA-100.11a [9, 36] and WirelessHART [22] are specific for
the process automation and manufacturing industries.

WirelessHART, the first specification for wireless field instruments, was
released by the Highway Addressable Remote Transducer (HART) Commu-
nication Foundation (HCF) [5] in 2007.

ISA-100.11a was started by the International Society of Automation
(ISA) [37] in 2008, and it was intended to provide reliable and secure wireless
operation for noncritical monitoring, alerting, supervisory control, open-loop
control, and closed-loop control applications.

There are many differences between the two standards. In WirelessHART,
all field devices and adapters are routers capable of forwarding packets to
and from other devices in the network, enabling a mesh network topology.
In the case of ISA100.11a, a node can have router capabilities or not, which
means that not all devices are able to allow a new node to join the network.
On the one hand, in WirelessHART there are a few optional parameters mak-
ing it less flexible than ISA100.11a, which has a complex specification with
many parameters. On the other hand, the lack of flexibility makes easier the
interoperability between different devices in WirelessHART. Additionally,
as WirelessHART is an extension of the HART protocol, it is limited to this
communication protocol. However, ISA100.11a is able to tunnel many dif-
ferent protocols, even supporting IPv6 using 6LoWPAN. For a more detailed
comparison between both protocols refer to [53].

1.4 CONCLUSION

As previously mentioned in this chapter, the design and implementation of
ad hoc networks is complex. There are many challenging aspects in ad hoc
networks, some of them are specific for VANETs or sensors, but many oth-
ers are common for any ad hoc network like changing topology, limited
resources, network partitioned, energy constraints, scalability, and the like.
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It was not mentioned before, but the design of algorithms for this kind
of networks is based on simulations. Creating a real mobile ad hoc network
for testing purposes is very unrealistic. For handling every device a person
is needed (as devices do move), which makes it unlikely to be able to test
a network with a high number of devices. Moreover, in order to reproduce
the experiments, the same mobility patterns at exactly the same time as well
as the same conditions must be given. Therefore, it is necessary to rely on
simulations. The accuracy of the simulations directly impacts on the real
performance of the designed protocol.

In this book, we try to overcome some of the problems of ad hoc networks
that were mentioned above using metaheuristics. In Chapter 6, the optimiza-
tion of the network resources used by a broadcasting algorithm is presented.
The optimal configuration of an energy-efficient broadcast protocol restrict-
ing the communication latency is studied in Chapter 7. Chapter 8 reveals
some hints for overcoming network partitioning. And finally, a mechanism
for creating realistic simulations is explained in Chapter 9.
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INTRODUCTION TO
EVOLUTIONARY ALGORITHMS

Different approaches exist in optimization. As presented in Fig. 2.1, those
methods can be classified into two main classes: exact and approximate.
Exact methods ensure finding the optimal solution to the problem but are non-
polynomial (NP) time algorithms for NP-complete problems. When tackling
real-world optimization problems like in mobile ad hoc networks, their com-
plexity and high computational demand are such that exact methods are not
adapted. We therefore focus on the class of approximate methods, and more
precisely evolutionary algorithms (EAs), which are population-based meta-
heuristics able to obtain acceptable solutions in reasonable time. However,
based on the famous “no free lunch theorem” [37], none of these algorithms
will outperform all the others on all classes of problems. In this book, we
thus propose to use and analyze the performance of several EAs on different
problems from the mobile ad hoc networks domain.

This chapter is organized as follows. Section 2.1 provides some intro-
duction of basic optimization concepts. Section 2.2 then proposes a brief

Evolutionary Algorithms for Mobile Ad Hoc Networks, First Edition. Bernabé Dorronsoro,
Patricia Ruiz, Grégoire Danoy, Yoann Pigné, and Pascal Bouvry.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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Exact methods

Optimization methods
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programming
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Branch and
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Branch and
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metaheuristics
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algorithms
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intelligence
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algorithms

Evolutionary
programming

Evolution
strategies

Genetic
programming

Differential
evolution

Approximation algorithms

Figure 2.1. Optimization methods taxonomy (adapted from [34]).

introduction to EAs. In Section 2.3, a detailed description of the main com-
ponents of EAs is given. The different types of EAs used in the experimental
chapters of this book are presented according to their population struc-
ture, starting with panmictic EAs in section 2.4 and followed by structured
population EAs in Section 2.5. Multi-objective optimization (i.e., the opti-
mization of multiple conflicting objectives) basic concepts and techniques
are described in Section 2.6. Finally Section 2.7 concludes this introductory
chapter on EAs.

2.1 OPTIMIZATION BASICS

This section proposes elementary notions and formal definitions of some
basic optimization concepts. First of all, a global optimization problem can
be defined as follows:

Definition 2 (Optimization Problem) An optimization problem consists in
finding the best elements s∗ from the set of solutions to the problem (aka. the
search space) S, according to some quality criteria F = {f1, f2, . . . , fn}.

Each quality criterion, also named objective function, assigns a real value
to each solution s ∈ S, indicating its quality, and is defined as

f : S → R. (2.1)

Considering the case where a single criterion f if optimized, also referred
to as single-objective optimization, the objective is to find a global optimum
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element s∗, minimum or maximum depending on the problem. The global
optimum can be formulated as follows:

Definition 3 (Global Optimum) Assuming a minimization problem, a solu-
tion s∗ ∈ S is a global optimum of an objective function f if

f (s∗) ≤ f (s) ∀s ∈ S. (2.2)

It is worth noting that even in single-objective optimization several optimal
solutions might exist.

When dealing with metaheuristics, a definition of the closeness of solu-
tions, referred to as neighborhood, is necessary to move from one solution to
another in the search space. The choice of this neighborhood structure will
influence the performance of the algorithm.

Definition 4 (Neighborhood) A neighborhood function N : S → 2S defines
for each solution s ∈ S the set of neighbors N(s) ∈ S.

A solution s′ ∈ S is said to be in the neighborhood of s if it belongs
to N(s).

For hard optimization problems like the ones tackled in this book, a
solution might be optimal only in its neighborhood or in some predefined
neighborhood but not the global optimum, that is, in the complete search
space. Optimization algorithms might thus get trapped in so-called local
optimum, defined as:

Definition 5 (Local Optimum) A solution s ∈ S is a local optimum, for a
given neighborhood function N, if it is better than all its neighbors:

f (s) ≤ f (s′) ∀s′ ∈ N(s). (2.3)

The difference between local and global optimum is illustrated in Fig. 2.2.

2.2 EVOLUTIONARY ALGORITHMS

Since the middle of the 20th century and the emergence of computers, the
idea of mimicking some of the nature’s mechanisms to create artificial intel-
ligence (AI) has attracted many researchers to computer science. Indeed,
many fields of research have emerged following these principles. Among
them, “evolutionary algorithms” (EAs) propose to use nature-inspired evolv-
ing strategies for solving complex problems. More precisely, EAs are based
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f(x)

x

Global optimum

Local optima

Figure 2.2. Local vs. global optimum.

on the Darwinian theory of evolution [8], which describes the capacity of
biological systems to modify their genetic material to adapt to a changing
environment and ensure their survival.

Evolutionary Algorithms are iterative heuristics that evolve a set of can-
didate solutions, represented as individuals that are grouped in a population.
Pseudocode 2.1 presents an EA. Initial solutions are typically generated at
random (line 2) and their quality, referred to as fitness, is evaluated using
some objective function (line 3). This population of solutions is then iter-
atively evolved by the EA using different genetic operators such as the
selection operator to choose parent individuals (line 5) followed by genetic
variation operators (line 6) like the recombination (also named crossover)
and mutation operators. These stochastic variation operators produce new
solutions, that is, offsprings, which are in turn evaluated (line 7). The new
population is then composed of a subset of the parent and offspring individ-
uals selected with some replacement strategy (line 8). This iterative process
is called generation and stops after some termination condition is met (e.g.,
predefined number of iterations). The best individual found is finally returned
by the algorithm (line 9). An illustration of the EA functioning is provided
in Fig. 2.3.

Different EAs following this template have been proposed and further
developed in the last decades (see Fig. 2.1). These include evolution strate-
gies (ES) first proposed by Rechenberg [29] and Schwefel [31], evolutionary
programming (EP) introduced by Fogel [17], and genetic algorithm (GA)
developed by Holland [22], among others. Genetic programming (GP) was
then created in the 1980s by Cramer [7] and Koza [23], and differential
evolution (DE) at the end of the 1990s by Storn and Price [32]. These EAs
differ by the solution encoding used and the number and order of genetic
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Pseudocode 2.1 Evolutionary Algorithm
1: //Algorithm parameters in ‘EA’
2: InitializePopulation(EA.pop);
3: Evaluation(EA.pop);
4: while ! StopCondition() do
5: EA.Pop′ ← ParentsSelection(EA.Pop);
6: EA.Pop′ ← ApplyVariationOperators(EA.Pop′);
7: Evaluation(EA.Pop′);
8: EA.Pop ← SelectNewPopulation(EA.Pop,EA.Pop′);
9: Return best solution

10: end while

Initial population

Selection

Crossover

Mutation

Termination
condition

Replacement

Yes

No

Stop

Genetic variation

Population
evaluation

=?

Fitness
evaluation

=?

Figure 2.3. EA Functioning.

operators applied (lines 4 and 5 of Pseudocode 2.1). For instance, a GA uses a
sequence composed of selection–crossover–mutation while ES use selection
and mutation.

Since their introduction, EAs have been successfully applied to many
optimization problems, from continuous test functions to real-world com-
binatorial problems.
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2.3 BASIC COMPONENTS OF EVOLUTIONARY ALGORITHMS

Different components are specific to EAs and shared between all the existing
variants previously mentioned. These include solution representation, selec-
tion strategy, and variation operators. Such components have to be carefully
defined in order to efficiently apply EAs. The following subsections provide
some detailed information on these components.

2.3.1 Representation

One of the first and fundamental steps when using an evolutionary algorithm
is to define the encoding of solutions to the problem. Indeed, it has been
shown that representation has a drastic influence on the algorithm’s perfor-
mance, both in terms of its convergence and solution quality [30]. This is
also linked to the fact that genetic operators are dependent on the chosen
encoding. In biological terms, the encoding is defined as the genotype, while
the phenotype defines the solution itself. Many different representations have
been proposed in the literature, from simple linear ones as binary encoding
or permutation to complex nonlinear ones like trees. Specific encodings can
also be of variable lengths or use a different phenotype to genotype mappings
(e.g., one solution is represented by many encodings).

2.3.2 Fitness Function

In evolutionary computation, the fitness function f (x) represents the objective
of the problem. It is used to assign a value to an individual, that is, it measures
the quality of the genotype in the phenotype space. It permits sorting the
solutions in the population based on their performance, which is later used
in the selection and replacement processes. The fitness function is problem
dependent, and its definition is crucial as it is responsible for guiding the
search to good solutions.

2.3.3 Selection

The selection operator is the first genetic operator involved in the EA process.
It stochastically chooses individuals to be included in the mating pool. As
already mentioned, it is a fitness-dependent strategy that drives the search to
better solutions. In brief, the best individuals have a higher chance of being
selected; however, to keep diversity in the population and prevent premature
convergence to local optima, the worst individuals should still be possibly
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chosen. Many different selection operators exist. We here list a few prominent
ones:

• Roulette wheel selection: Simplest selection scheme, also called stochas-
tic sampling with replacement. The chance of a chromosome to get
selected is proportional to its fitness, that is, it is equal to its fitness
divided by the total population fitness. One disadvantage is that fittest
individuals will be assigned a high probability and thus might lead to
premature convergence of the algorithm.

• Tournament selection: The tournament operator selects m individuals at
random and inserts the best individual among the m in the mating pool.
The value of m is usually comprised between 1 and 5, and the process has
to be repeated N times for a population of size N. A variant called soft
tournament exists in which the winner is accepted with some predefined
probability.

• Rank selection: The rank selection operator assigns a rank to each indi-
vidual in the population depending on its fitness, ranging from 1 for the
worst individual to N−1 for the best individual. The selection probability
is then linearly assigned based on the individuals’ rank value.

2.3.4 Crossover

The crossover operation, also named recombination, produces an offspring
by mixing the genetic material of two or more parent individuals with some
probability pc (typically between 0.6 and 1). The objective is to combine the
genes of both parents in order to produce better offspring. Crossover mostly
depends on the representation used, and a large body of work has been spent
on proposing novel operators. We here focus on the most known ones and
illustrate them on binary representation (of individuals of size 10).

• One-point crossover: One-point crossover is also referred to as single-
point crossover (SPX). One position is selected uniformly at random
within the chromosome length, and the genes of the two parents are
exchanged at this point to create two offsprings. Figure 2.4 shows an
example of a one-point crossover recombining two binary chromosomes,
the crossover point being represented by the vertical line between the
fourth and fifth genes.

• Two-point crossover: Two-point crossover (DPX) is one instantiation
of n-point crossover where n = 2. Two positions are selected uniformly
at random to exchange the genetic material of the parents and produce
two offsprings. Figure 2.5 shows an example of a two-point crossover
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1

1

0 0 1 0 1 0 0 1 0 0

0 1 1 1 0 1 1 0 1

1 0 1 0 1 1 0 1

0 1 1 1 0 0 1 0 0

00

Parent 1

Parent 2

Offspring 1

Offspring 2

Figure 2.4. One-point crossover.

1

1

0

0 0 1 0 1 0 0 1 0 0

0 1 1 1 0 1 1 0 1

0 1 0 1 0 1 1 0 1

0 1 1 1 0 0 1 0 0

Parent 1

Parent 2

Offspring 1

Offspring 2

Figure 2.5. Two-point crossover.

1

Parent 1

Parent 2

1

Mask 1

Mask 2

1

1

0 0 1 0 1 0 0 1 0 0

0 1 1 1 0 1 1 0 1

0 1 1 0 0 0 1 1 0 1

0 0 1 1 1 0 0 1 0

0 1 1 0 1 0 1 1 1

1 0 1 1 0 0 0 0 0

Offspring 1

Offspring 2

Figure 2.6. Uniform crossover.

recombining two binary chromosomes, the two crossover points being
represented by the two vertical lines.

• Uniform crossover: Uniform crossover (UX) [33] does not assume any
specific crossing point(s), but instead each gene of the offspring is
randomly chosen from one of the parents. Both parents thus equally con-
tribute to the offsprings generation. Figure 2.6 illustrates an example of
the uniform crossover for binary individuals of size 10. For each gene
position, offspring 1 is composed of gene of parent 1 if the mask 1 value
is 1 or from parent 2 if mask gene value is 0. Usually offspring 2 is
created using the inverse mask.

2.3.5 Mutation

The mutation operator is used to introduce some small changes in the indi-
vidual in order to prevent converging prematurely to local optima. It typically



�

�

“Bouvry-Drv-1” — 2014/4/2 — 14:23 — page 35 — #9
�

�

�

�

�

�

BASIC COMPONENTS OF EVOLUTIONARY ALGORITHMS 35

0 0 1 0 1 0 0 1 0 0

1 0 1 0 1 1 0 0

Parent

Offspring 00

Figure 2.7. Bit-flip mutation.

modifies each gene of the individual with some constant low probability pm,
usually between 0.001 and 0.01 (but it can also be dependent on the solution
vector size, for example, pm=1/chromosome length). If a binary encoding is
used, as shown in Fig. 2.7, mutation can be defined as a change of a 1 into a
0 and vice versa, which is known as bit-flip mutation.

2.3.6 Replacement

Once an offspring individual is obtained after genetic variation and eval-
uated using the fitness function, it is inserted in the fixed-size population
using some replacement strategy. Two main strategies exist: the generational
replacement in which all parents are replaced by the offsprings in every gen-
eration and the steady-state replacement where only one parent is replaced
by one offspring (e.g., replace worst) in every generation.

Using μ and λ to represent, respectively, the number of parents and the
number of offsprings, the generational strategy is named (μ, λ) with μ = λ

and the steady-state (μ + λ) with λ = 1.

2.3.7 Elitism

Elitism consists in copying the current best individual (or set of best indi-
viduals) directly in the offspring population. It permits ensuring that the
best fitness (or average, depending on the level of elitism) can only improve
from one generation to another. However, it can also induce some premature
convergence if diversity is lost too fast.

2.3.8 Stopping Criteria

Since EAs are iterative algorithms, the typical stopping criterion, also
referred to as termination condition, is a fixed number of iterations, that is,
number of generations or fitness evaluations. Another criterion can be to stop
the EA after some predefined amount of time. Finally, some more complex
criteria might also be used, such as stopping if the population diversity is
below some threshold or if there is no improvement of the best individual for
some predefined number of iterations.
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2.4 PANMICTIC EVOLUTIONARY ALGORITHMS

Panmictic evolutionary algorithms are chronologically the first EAs and also
the simplest ones. In such EAs, individuals are grouped into a single struc-
tureless population, also referred to as panmixia. Individuals can thus mate
with any other individual in the population. In this section, we will describe
two panmictic EAs used in the experimental chapters, the generational EA
and the steady-state EA.

2.4.1 Generational EA

The generational EA (genEA), also referred as “standard evolutionary algo-
rithm,” is the most known EA [22]. As mentioned in Section 2.3.6, its
generational property comes from the way new individuals, that is, off-
springs, are inserted in the population (cf. line 8 of Pseudocode 2.1). During
the breeding loop, the offsprings obtained after selection and variation oper-
ations (crossover and/or mutation) are inserted in an auxiliary population
that will become the current population once full (possibly using some elitist
criterion), that is, it is a (μ, λ)-EA, with μ = λ.

2.4.2 Steady-State EA

As previously mentioned, the steady-state evolutionary algorithm (ssEA)
[36] differs from the generational model in the way individuals are inserted
in the population. Contrary to the genEA, which uses an auxiliary popula-
tion filled with the generated offsprings, in the ssEA, the offspring is directly
inserted back in the population using some replacement strategy, for instance
“replace worst individual.” The population is thus updated asynchronously
while it is synchronous in the generational EA [it is a (μ+1)-EA].

2.5 EVOLUTIONARY ALGORITHMS WITH STRUCTURED
POPULATIONS

One main issue in EAs is their premature convergence. Indeed, panmictic
EAs can rapidly converge to local optima and thus never reach the global
optimum. This is mainly due to a too fast propagation of “good” indi-
viduals in the population, which prevents the algorithm from visiting new
regions of the search space. Indeed, good individuals can rapidly overtake the
population since they can mate with any other individual in such structureless
populations.
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Several solutions have been proposed to overcome these drawbacks, one
of them being EAs with structured populations. Two main models have been
developed in the last decades, a fine-grained model and a coarse-grained
model. The former structures the population at the individual level (individ-
uals can only interact with some neighboring individuals), while the latter
splits the population into interacting subpopulations that evolve in parallel.

The following two sections provide details on a fine-grained model,
the cellular evolutionary algorithm (cEA), and a coarse-grained model, the
cooperative coevolutionary evolutionary algorithm (CCEA).

2.5.1 Cellular EAs

Cellular evolutionary algorithms [2] still consider a single population, but as
opposed to the panmictic EAs, it is a structured one. Individuals are typically
placed on a 2-D toroidal mesh and can only mate with individuals belonging
to their neighborhood. The population topology thus introduces “isolation by
distance,” that is, the further two individuals are from each other, the longer it
will take them to receive mutual information. The information is then slowly
propagated on the population grid thanks to the overlapping neighborhoods,
which ensures a better diversity preservation than panmictic EAs. The diffu-
sion speed can be controlled by the neighborhood radius. Indeed, the bigger
the overlap, the faster the information will spread in the population [3].

Examples of neighborhoods are presented in Fig. 2.8 in increasing radius
size order: linear 5, compact 9, and diamond 13 (from left to right). Some
overlapping neighborhoods are illustrated as dashed line shapes and dashed
line center individual.

Cellular EAs, thus, bring additional parameters that have been vastly stud-
ied, such as the influence of neighborhood size and shape [12], the population
ratio (width/height), and the dynamic adaptation of the ratio [4]. However,
the algorithm presented in [13] uses adaptive mechanisms for both of them,
removing these two parameters from the cellular GA (CGA) configuration.

D13C9L5

Figure 2.8. Examples of cellular EA neighborhoods (from left to right): linear 5, compact

9, and diamond 13.
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Cellular EAs have proven to perform well on a very large set of complex
problems ranging from the well-known vehicle routing problem (VRP) [1]
or satisfiability problem (SAT) [18], to bioinformatics problems like the
DNA fragment assembly [11].

2.5.2 Cooperative Coevolutionary EAs

In order to deal with complex problems or problems with no explicit fit-
ness function, researchers referred again to natural processes through the
exploitation of the coevolutionary paradigm. The so-called coevolutionary
algorithms (CEAs) [24] consider the evolution of different species evolving
subsets of solutions and that interaction mutually influences their evolution.
The concept of coevolution also dates from Darwin’s Origin of Species even
if it is often attributed to Ehrlich and Raven’s study on butterflies and host
plants [14].

Instead of evolving a population of similar individuals representing a
global solution as in classical EAs, CEAs consider the coevolution of sub-
populations of individuals representing different species. Each subpopulation
typically runs a genetic algorithm. The specificity of coevolution comes
from the fact that the fitness of an individual is dependent on its interaction
with other individual(s). These interactions can be either positive or neg-
ative according to their influence on the population. Negative interactions
mean that the success of one species implies the failure of other species;
this is competitive coevolution. Positive interactions mean that the success of
one species is conditioned to the success of other species; this is cooperative
coevolution.

In this book only the cooperative model will be considered and more pre-
cisely the CCEA from Potter and De Jong [26], which is the most prominent
one. Since its introduction in 1994, this cooperative coevolutionary frame-
work has been used to solve many problems, for example, learning [27, 28],
function optimization [25], and real-world optimization [15] problems.

In the CCEA, each decision variable of the global solution vector is
evolved in parallel in a separate subpopulation using an EA (originally a GA).
In order to evaluate complete solutions on the global problem, all subpopu-
lations cooperate by exchanging representatives of their respective species
(subpopulations). However, subpopulations do not interbreed, which means
that representatives are not inserted in the destination subpopulation, con-
trary to other coarse-grained models like the island model [5]. The fitness
of a partial solution is then equal to the fitness of the obtained assem-
bled individual (i.e., received representatives combined with current partial
solution). This credit assignment method stimulates cooperation between
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Figure 2.9. Cooperative coevolutionary EA from the perspective of species number

one [26].

species as it measures to which extent a partial solution cooperates in solving
the problem.

Figure 2.9 presents the general architecture of Potter’s cooperative coevo-
lutionary framework and the way each evolutionary algorithm computes the
fitness of its individuals by combining them with selected representatives
from all the other species.

2.6 MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

The previous sections focused on the optimization of problems with one
objective, also referred to as single-objective optimization. However, most
of real-world problems (e.g., in finance, industry, bioinformatics, etc.) are
inherently multi-objective problems (MOPs), involving several conflicting
objectives. For instance, a car manufacturer would like to minimize its
vehicles fuel consumption while maximizing their performance.

The main difference when optimizing multiple conflicting objectives
comes from the fact that a single optimal solution for all objectives cannot be
found. Consequently, the optimal solution is a set of so-called Pareto optimal
solutions (or Pareto optimal set), which cannot be improved on one objective
without decreasing their quality on one or more other objective(s).

The target in multi-objective optimization is to help decision makers
(DMs) in finding the Pareto solution that best fits their requirements. This
interaction with the DM is called multicriteria decision making (MCDM)
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and can intervene a priori, using the DM problem knowledge to assign pref-
erences on the objectives before the optimization, be interactive with the DM
feedback provided to the algorithm at runtime on the found Pareto solutions,
or a posteriori where the DM chooses its preferred solutions from the final
Pareto optimal set. MCDM is a different field of research and will not be
further discussed in this book. The interested reader may refer to [35] for
additional information.

Multi-objective optimization has thus become an important research
domain in the last decades in which algorithms must be developed to tackle
ever increasing problem sizes in reasonable time. Such constraints stimulated
the usage and development of many multi-objective metaheuristics, includ-
ing a large amount of multi-objective EAs [6, 10], which aim at finding the
best possible approximation of the Pareto optimal set. New metrics have to be
used to assess the quality of the obtained solutions (i.e., fronts), both in terms
of their convergence (i.e., distance to the optimal Pareto front) and diver-
sity, to avoid their nonuniform distribution and thus potentially miss some
parts of the information. A detailed description of the metrics used for the
multi-objective problems tackled in this book is provided in Chapter 5.

2.6.1 Basic Concepts in Multi-Objective Optimization

This section presents definitions of basic concepts in multi-objective opti-
mization. More precisely, the concepts of multi-objective problem (MOP),
dominance, Pareto optimal set, and Pareto front are defined. In the following,
we assume, without loss of generality, the minimization of all the objectives.
A general multi-objective optimization problem can therefore be formally
defined as follows:

Definition 6 (MOP) Find a vector x∗ =
[
x∗

1, x∗
2, . . . , x∗

n

]
that satisfies the

m inequality constraints gi (x) ≥ 0, i = 1, 2, . . . , m, the p equality con-
straints hi (x) = 0, i = 1, 2, . . . , p, and minimizes the vector function f (x) =
[f1(x), f2(x), . . . , fk(x)], where x = [x1, x2, . . . , xn] is the vector of decision
variables.

The set of all values satisfying the constraints given by the MOP defines
the feasible region � of the problem, and any point x ∈ � is a feasible
solution.

As previously mentioned, in multi-objective optimization, it is not trivial
to decide whether one solution is better than another one or not, because it
could be better for several objectives but worse for some other ones. There-
fore, we say that a solution dominates another if it is better or equal for every
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objective and strictly better for at least one of them. Two solutions are said to
be nondominated if neither dominates the other. We mathematically define
the concept of dominance as:

Definition 7 (Dominance) A vector u = (u1, . . . , uk) is said to dominate
v = (v1, . . . , vk) (denoted by u � v) if and only if u is partially less than
v, that is, ∀i ∈ {1, . . . , k} , ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi.

The goal of multi-objective optimization is to find the set of nondominated
solutions to the problem, called the Pareto optimal set, and mathematically
defined as:

Definition 8 (Pareto Optimal Set) For a given MOP f(x), the Pareto opti-
mal set is defined as P∗ = {x∗ ∈ �|¬∃x′ ∈ �, f(x′) � f(x∗)}.

Finally, the projection of the Pareto optimal set in the objectives domain is
called the Pareto front:

Definition 9 (Pareto Front) For a given MOP f(x) and its Pareto optimal
set P∗, the Pareto front is defined as PF∗ = {f(x), x ∈ P∗}.

Figure 2.10 presents an example of Pareto front in the biobjective case.
Because the exact (or optimal) Pareto front might contain a large number

of solutions, a good multi-objective algorithm should look for a Pareto front
with a limited number of solutions, and it should be as close as possible to
the optimal Pareto front. Additionally, these solutions should be uniformly

Infeasible space

Dominated solutionsPareto front
Pareto solutions

f1

f2

Figure 2.10. Example of Pareto front in the biobjective case.
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spread along the Pareto front; otherwise information would be lost for the
decision maker.

We briefly classify the main existing techniques to solve MOPs. We first
may distinguish between hierarchical or simultaneous approaches.

2.6.2 Hierarchical Multi-Objective Problem Optimization

Hierarchical multi-objective problem optimization, also called lexicographic
ordering in the specialized literature [16], relies on an ordering of the dif-
ferent criteria. The problem is then transformed into a set of monoobjective
problems, starting from the highest priority objective, providing thus a sin-
gle solution to the problem. The next objectives are then optimized in the
given priority order without worsening the value of the higher priority ones.
Lexicographic optimization can be formalized as follows:

min fi(x)

s.t. fj(x) ≤ fj(x
∗
j ), i = 1, . . . , k, j = 1, 2, . . . , i − 1, if i > 1 (2.4)

with i the position of the considered function in the preference order, and
fj(x∗

j ) the optimum found for the jth objective in the jth iteration. A simple
illustration of the lexicographic ordering functioning in a biobjective case is
provided in Fig. 2.11 (left-hand side). Empty circles represent solutions that
are first optimizing f1, the objective with highest priority. Once f1 has been
optimized, the algorithm optimizes the second objective, f2. The black circle
represents the solution provided by the algorithm.

The main drawback of this technique is that a predefined ordering of
objectives is required. This is not always easy, and may bias the search and,
therefore, the obtained result and the performance of the algorithm.

Lexicographic

f1

f2
Weighted sum

f1

f2

w1f1(x) * w2f2(x)

Epsilon constraint

ε1+= δ
f1

f2

ε1 ...

Figure 2.11. Example of multi-objective techniques (from left to right): lexicographic

ordering, weighted sum, and ε-constraint.
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2.6.3 Simultaneous Multi-Objective Problem Optimization

The alternative to lexicographic ordering is to optimize the criteria at the
same time. Several approaches have been proposed, the main ones being (1)
function aggregation, (2) ε constraint, and (3) Pareto dominance.

In the function aggregation technique [19], also referred to as secular-
ization technique, the multicriteria problem is transformed into a single-
objective one by aggregating the criteria into one single weighted function:

f (x) =
k∑

i=1

wifi(x), x ∈ �. (2.5)

This method is commonly used in the literature because of its easy imple-
mentation, but it still provides a single solution and does not work in concave
regions of the Pareto front, regardless of the weights used [9]. Addition-
ally, knowledge on the problem is required a priori since the solution found
by the algorithm is biased by the weights used in the function aggregation.
Figure 2.11 (middle) presents an example of the function aggregation tech-
nique for a biobjective case, that is, the unique solution found with specific
weights (w1, w2).

The ε-constraint technique [21] is based on the optimization of one of the
objectives, defined as the primary one, while considering the other objectives
as constraints bound by some allowable levels εj:

min fi(x) s.t. fj(x) ≤ εj, x ∈ �. (2.6)

The problem is thus reduced to a type of single-objective problem fi con-
strained by some upper bound εj on the other objectives. This bound is
iteratively increased by some predefined constant δ. In practice, it will be
difficult to set accurate values for the constraints, that is, to set δ that will still
allow finding feasible solutions. Indeed since a single solution can be found
in the defined interval, it is necessary to choose a δ small enough to find
solutions but not too small to prevent wasting iterations in empty regions of
the objective space. Figure 2.11 (right-hand side) illustrates the ε constraint
functioning with a specific δ value that permits one to find three out of the
four Pareto solutions, represented as black circles.

In the Pareto dominance technique, all the criteria are tackled as inde-
pendent functions, and the algorithm is optimizing all of them at the same
time. Originally introduced by Goldberg [20], it uses the concept of domi-
nance presented in Section 2.6.1. Several different dominance-based ranking
schemes exist, the three main ones being: (1) dominance rank, which
returns the number of solutions that dominate the considered solution, (2)
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f2 5

2 2

2
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Figure 2.12. Example of dominance-based ranking techniques (from left to right):

dominance rank, dominance count, and dominance depth.

dominance count is based on the number of solutions dominated by the
considered solution, and (3) dominance depth relies on a division of the popu-
lation of solutions in different dominance levels (i.e., nonoverlapping fronts),
a solution being assigned the depth of the front to which it belongs. Exam-
ples of these three dominance-based ranking techniques are illustrated on a
simple biobjective case in Fig. 2.12. In the dominance rank case (left-hand
side), the gray cube emphasizes the five solutions that dominate the black cir-
cle solution, respectively, the four solutions that are dominated by the black
circle solution in the dominance count case (middle). The right-hand side
represents the three ranks obtained with the dominance depth technique.

In contrast to the previously mentioned methods, the output of this tech-
nique is a set of nondominated solutions, and not only one single solution.
The objective of metaheuristics based on the Pareto dominance technique
is to look for the best approximation of the front, both in terms of conver-
gence (i.e., distance to the optimal front) and diversity (i.e., best solution
spread). The accuracy of the Pareto front approximation is measured using
some quality indicators that are further described in Chapter 5.

Three out of the four mobile ad hoc network problems tackled in
this book are multi-objective. In Chapters 6 and 7, respectively, dealing
with broadcasting protocol and energy management optimization, a Pareto
dominance-based approach is used. Chapter 8 focused on topology manage-
ment optimization considers a function aggregation technique.

2.7 CONCLUSION

This introductory chapter on evolutionary algorithms has provided the basic
background required to understand EAs origins, concept, and functioning.
Two types of EAs, panmictic and structured populations EAs, which are
applied and compared on the different mobile ad hoc optimization problems
in the next chapters, have been detailed.
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Information has been provided on the type of optimization algorithms
applied and compared to the four different mobile ad hoc optimization
problems, that is, panmictic and structured populations EAs for single- and
multi-objective optimization.

More precisely, multi-objective EAs using the Pareto dominance tech-
nique are used in Chapters 6 and 7 for, respectively, optimizing the perfor-
mance of a broadcasting algorithm and of the adaptive enhanced distance-
based broadcasting algorithm. The third problem considering the optimiza-
tion of small-world properties of a vehicular network using backbone-
connected devices is tackled using single-objective EAs with a function
aggregation technique. Finally, the last problem focusing on the optimization
of the realism of a vehicular mobility model is achieved with single-objective
EAs.
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3
SURVEY ON OPTIMIZATION

PROBLEMS FOR MOBILE
AD HOC NETWORKS

As mentioned in Chapter 1, communication networks have highly impacted
present-day society. Thirty years ago, no one could envision the incred-
ible success and the participation of mobile phones and their successors
(PDAs, tablets, smartphones, etc.) in our everyday life. To mirror this ubiq-
uity, the next-generation networks are envisioned to provide information
and communication services between any device at any time.

Technology in networking is evolving faster than information systems;
tiny devices are already provided with communication capabilities. But the
existing communication systems are not appropriate or efficient for such
heterogeneous networks. Self-organization mechanisms able to handle het-
erogeneity, the dynamic nature, resource constraints, scalability, failures, and
the like are needed.

It is possible to find similarities when analyzing biological systems: self-
organization, recovering from failures, collaborative behavior, minimization
resources, finding stability, and so forth. Most of these systems achieved this

Evolutionary Algorithms for Mobile Ad Hoc Networks, First Edition. Bernabé Dorronsoro,
Patricia Ruiz, Grégoire Danoy, Yoann Pigné, and Pascal Bouvry.
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behavior after evolving for millions years. Thus, many researchers are devel-
oping algorithms inspired by nature in order to efficiently tackle different
problems. For example, they have been widely applied for network design
and optimization in the literature [28].

In this chapter, we give an overview of the most relevant works that
apply metaheuristics to address some of the problems we can find in ad hoc
networks. We focus on the most relevant challenges, which are listed next.

Energy Efficiency. Nodes depend on battery life, therefore, reducing the
energy consumption will increase the network lifetime. There are different
approaches for reducing the energy consumption of a node: decreasing the
transmission power, turning devices into sleep mode, reducing the number of
communications or the number of forwarded messages, and the like.

Broadcast. A node sends a message to all nodes in the network. As there
is no central structure, guaranteeing full coverage is not possible. Therefore,
the main goal is to cover as many nodes as possible relying on multihop for-
warding. The problem is that, if all nodes resend all received packets, it leads
to the congestion of the network. That is known as the broadcast storm prob-
lem [82]. Additionally, in terms of the energy consumption, it is not efficient
that a node resends all the received messages, as one of the main consuming
operation is communication.

Routing. A node sends a packet to a destination. As there is no central
station or infrastructure in the network, if the destination is not within the
source range, intermediate nodes must act as routers and forward the packet.
The length of the route found directly impacts on energy consumption and
network resources, as well as the maintenance of the routes, route failures,
and so forth.

Network Connectivity. Devices do move, and the channel varies in
time, so that distant nodes might not be always connected. Maintaining con-
nectivity within the whole network so that there is always a path between any
two nodes provides more robustness and resilience to failures.

Clustering. Nodes are grouped into clusters, and each cluster has a clus-
ter head responsible for the main operations. This approach reduces the
network overhead, increasing the system capacity.

Node Deployment. In sensor network it is important to minimize the
number of nodes needed for covering a concrete area and maximizing at the
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same time the network lifetime. An efficient node allocation is crucial for the
efficiency of the network.

Selfish Behavior. Due to the lack of infrastructure, multihop communi-
cation is needed for the proper operation of the network. However, nodes are
battery limited, and acting as routers will only decrease their capabilities with
no reward. Selfish nodes are not motivated to collaborate in the forwarding
process and drop all packets that are not intended for themselves.

Security. Malicious nodes can perturb the network by compromising its
integrity or the availability of a resource. Intrusion detection systems are used
to prevent those attacks.

Quality of Service. Ad hoc networks usually face adverse conditions
such as fading, interferences, packet losses, abrupt bandwidth changes, and
so forth. Therefore, providing Quality of Service (QoS) is challenging.

3.1 TAXONOMY OF THE OPTIMIZATION PROCESS

This chapter presents some of the most relevant works that use nature-
inspired algorithms for solving some of the above-mentioned challenges in
ad hoc networking. We classify them in terms of execution mode, information
needed, and platform executing the algorithm.

3.1.1 Online and Offline Techniques

The literature reveals two different approaches when applying metaheuristics
for solving problems in mobile ad hoc networks: online and offline tech-
niques. As explained in [12, 119], the main difference between them lies on
the moment when the optimization algorithm is applied.

Online metaheuristics approaches are used for correcting behaviors or
making decisions during runtime, trying to find the best next step. They can
be implemented either in the (constrained) network node(s) or in a central
unit, but usually require intensive computation. However, the second option
contradicts ad hoc networks essence.

Offline metaheuristics approaches are executed beforehand. The main goal
is to find the best possible configuration, settings, decisions, and the like that
will be later used during runtime. The algorithm stops after performing a pre-
defined number of generations or when the optimal value is found (in case it
is known). The quality of the solutions found is usually tested by simulation,
thus, it directly depends on the modeling of the system. However, there is a
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compromise between the accuracy of the model and the optimization time.
These offline metaheuristic approaches are useful when the system does not
need to adapt to changes during runtime.

3.1.2 Using Global or Local Knowledge

Considering the information used during the optimization process, it is possi-
ble to differentiate between algorithms that use information about the whole
network or just local information gathered in the vicinity of the nodes.

It is said that algorithms use global knowledge when information on
the complete network is required. Depending on the targeted problem, this
approach can be irrelevant as it is not realistic for nodes to access informa-
tion about all devices in a network that is spontaneously created without any
infrastructure.

However, when the optimization algorithm only requires local informa-
tion, or information that can be gathered by itself, it is said to use local
knowledge. This local information does not only concern the node itself but
also information from neighboring nodes obtained by exchanging beacons,
messages, or just by eavesdropping the channel.

It is not conceivable to design an online optimization process running on
a decentralized MANET where global knowledge such as the position of
nodes is required. However, offline optimization is useful, for instance, in the
case of node placement optimization for the deployment of a static sensor
network, as it is straightforward to use the knowledge of the whole area in
the optimization process. Therefore, the use of global knowledge does not
seem appropriate for online techniques in the optimization of mobile ad hoc
networks, while it might make sense for offline algorithms.

3.1.3 Centralized and Decentralized Systems

A centralized system is considered when a central unit optimizes the whole
system using global knowledge, or the different network nodes optimize
locally a part of the problem but send the information to the central unit (or
decision maker), which will decide in terms of the information gathered from
all the nodes. It requires significant coordination between the components as
well as communication overhead and delays. Additionally, the whole system
depends on the central unit for the proper functioning, therefore, a failure on
this unit implies the failure of the complete system.

On the contrary, when each node locally executes an optimization algo-
rithm and, according to the results obtained, the node modifies its own
behavior, it is called a decentralized system.
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In MANETs, the use of centralized systems at runtime is not realistic as
the existence of the central unit is contrary to the essence of ad hoc networks.

3.2 STATE OF THE ART

Next, we are reviewing the literature in bio-inspired algorithms applied to
solve problems in ad hoc networks. We briefly present some of the most rele-
vant works and classify them according to the taxonomy presented above,
and also in terms of the challenges tackled and the techniques used for
solving them.

3.2.1 Topology Management

Considering that nodes are able to change their transmission power, topol-
ogy control is about deciding the transmission range that provides a desired
property to the network (e.g., connectivity). The main goals of topology con-
trol are to reduce nodes’ energy consumption and increase the capacity and
extend the lifetime of the network. For a more detailed explanation, please
refer to [94]. Different techniques have been applied for achieving those
objectives, like turning devices into sleep mode, power allocation, or node
deployment. Next, we are reviewing some works addressing these challenges.

3.2.1.1 Sleep Mode. In sensor networks, in order to save energy and
extend the lifetime of nodes, and thus the network lifetime, there are some
approaches that consider turning off some nodes for a period of time. There
always exist two different sets of nodes, a set that is active and gathering the
data and a set of sleeping nodes. Efficient synchronization and scheduling is
needed when using this technique.

Finding the minimal set of active sensors that covers a targeted area while
maintaining the rest in sleeping mode is the NP-complete problem addressed
in [56]. The multi-objective genetic algorithm Non-dominated Sorting
Genetic Algorithm-II (NSGA-II) is used in order to maximize the coverage
(the targeted area) and minimize the cost, that is, the number of nodes. They
use an offline and centralized approach that requires global knowledge.

Ferentinos and Tsiligiridis [30, 31] authors used a genetic and a memetic
algorithm, respectively, for optimizing seven different objectives in an
aggregative function. The main goal is the minimization of some energy-
related parameters and the maximization of sensing points’ uniformity,
subject to some connectivity constraints and the spatial density requirement.
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Decisions about the set of active nodes, the role of cluster heads or the
transmission range of the active nodes are given by the algorithms. They
are implemented repeatedly over different network configurations, provid-
ing then a dynamic sequence of operation modes. They run offline in a
centralized way using global knowledge.

An ant colony optimization-based method, mc-ACO, is used in [120] for
prolonging the network lifetime by dividing sensors in two layers. The first
layer is the activated set of nodes, and the second layer is the successor
set, which are in sleep mode until an active sensor runs out of battery. A
genetic algorithm is proposed in [50] for the same problem, which focuses
on finding the maximal number of disjoint cover sets. Both algorithms were
compared in [120] and the results show which mc-ACO performs better
for the studied cases. The two approaches are centralized and offline using
global knowledge.

In [40], a routing protocol based on ant colonies for MANETs is presented.
One of the main characteristics is that nodes turn to sleep mode when the
value of the pheromone reaches a predefined threshold. When the node is
in sleep mode, it only processes packets that are destined to it. This rout-
ing protocol based on ants runs online, is decentralized, and uses only local
knowledge.

3.2.1.2 Power Allocation. The most straightforward approach for
reducing the energy consumption of a device is reducing the transmission
power. However, this cannot be done without considering the impact on other
aspects of the network, such as its connectivity.

It is usually assumed that networks are homogeneous, where all nodes use
the same transmission range, the same energy consumption, and the same
battery life. But it could also be possible to consider that nodes can adjust
their transmission power according to their neighbor’s location, so that the
network is still connected but the node can save energy.

We will next present some works that try to find the best possible
assignments for the transmission ranges using bioinspired algorithms.

An improved adaptive particle swarm optimization (PSO) algorithm for
solving the joint opportunistic power and rate allocation in static wireless ad
hoc networks, in which all links share the same frequency band, is proposed
in [42]. The goal is to find a configuration that maximizes the sum of all
source utilities while minimizing the total power consumption for all links. It
is an offline and centralized algorithm that uses global knowledge.

Both linear programming and genetic algorithms are used in [114] to
decide the transmission range of the nodes in static networks, so that the
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overall energy consumption is optimized, subject to some QoS constraints.
It is an offline and centralized technique that uses global knowledge.

A reversed engineered approach is used in [85]. First, near-optimal
networks using a GA are created, local features of those networks are dis-
covered, and then local adaptive rules are obtained. Once all the nodes have
been deployed and have selected an operating radius based on the heuristic,
the local rules are applied to the nodes so that a heterogeneous network char-
acterized by low short paths and congestion is obtained. The GA is executed
offline, centralized, and has global knowledge (nodes are assumed to know
their global position).

Differential evolution and PSO algorithms are used in [121, 122], respec-
tively, to optimize the power allocation for parallel interference cancellation
in wireless code division multiple-access (CDMA) system. CDMA is not
specific to ad hoc networks, but it is an access channel method suitable
for them. The maximum number of users can be increased using the tech-
nique proposed instead of the uniform power distribution. It is an offline and
centralized optimization that uses global knowledge.

A memetic algorithm is used in [64] for tackling the minimum energy
network connectivity problem in wireless sensor networks. It uses a genetic
algorithm with a problem-specific light-weighted local search that looks
for strongly connected networks (they propose a repair method to apply to
nonstrongly connected networks), with the minimum overall energy con-
sumption. The targeted networks are static and node positions are known. It
runs offline on the sink of the sensor network, which distributes the solution
to the sensors using either multihop broadcasting or direct communicating
broadcasting. Therefore, it is an offline and centralized approach that uses
global knowledge.

Some authors are considering the joint problem of node location and trans-
mission range assignment at the same time. A multi-objective evolutionary
algorithm based on decomposition (MOEA/D) is proposed in [65] to solve
the deployment and power assignment problem in static WSN by maximizing
the coverage and lifetime of the network. They propose problem-specific evo-
lutionary operators that adapt to the requirements of the specific subproblems
into which the original problem is decomposed. It first obtains the Pareto
front and Pareto set and then choose the best network topology depending on
the scenario. The same algorithm is applied to the k-connected deployment
and power assignment problem in [63] for optimizing the network cover-
age and lifetime, while maintaining a connectivity constraint in small-scale
dense WSN. A hybridization of the same MOEA/D with a problem-specific
local search is presented in [62]. All works propose centralized and offline
approaches that use global knowledge.
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Nowadays, most devices have more than one communication interface,
therefore, using a combination of the available interfaces for extending the
connectivity of the network has been already addressed in the literature.
In [21, 26], the authors focus on the network connectivity and propose the
use of bypass links through hybrid networks to optimize it. Different GAs
(coevolutionary, cellular, panmictic) were used to find the most appropriate
devices to connect in order to maximize connectivity (high clustering coef-
ficient and low characteristic path length) and to minimize the number of
bypass links used (aggregated function). Later, in [27], the same concept was
used for vehicular ad hoc networks. Some nodes were selected for connect-
ing to a distant device using other kinds of technology. All the approaches
are centralized and offline using global knowledge.

3.2.1.3 Node Deployment. One of the first steps in the design of
wireless sensor networks is to arrange the location of nodes to maximize
the coverage of a targeted area. An efficient deployment of sensor nodes is
crucial for covering the targeted area while at the same time maintaining the
connectivity, reducing the communication cost, and improving the resource
management for extending the network lifetime.

A genetic algorithm is presented in [43] for the topological design of
ad hoc networks with static and mobile nodes for collaborative transport
applications. ns-2 is used as fitness function. They try to find the best
node’s position and speed to maximize the communication distances. The
optimization process is centralized, offline, and requires global knowledge.

In many sensor networks, nodes can be differentiated into sensors and
actuators. The latter should collect and process the data from the sensors
nodes, among other functionalities. In [67], a genetic algorithm is used to
find the location and the minimum number of actors that cover all the sensors.
This approach is centralized and offline, using global knowledge.

A new multi-objective optimization algorithm MOEA/DFD for node
deployment in wireless sensor networks is presented in [96]. It looks for the
optimal arrangement that maximizes the area of coverage and the network
lifetime, minimizes the energy consumption, and the number of deployed
sensor nodes while maintaining connectivity between each sensor and the
sink node for proper data transmission. It introduces the concept of fuzzy
Pareto dominance for comparing solutions. It is compared to a wide number
of other state-of-the-art algorithms, outperforming all of them. It is an offline
and centralized approach that uses global knowledge.

A multi-objective PSO is presented in [83] that tries to optimize both cov-
erage and lifetime of the network, while considering connectivity as a con-
straint. The algorithm outperforms NSGA-II in terms of the three considered
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metrics: (1) the size of dominance space, (2) the set coverage metric, and
(3) the nonuniformity of the Pareto front. Additionally, a fuzzy-based mech-
anism is used to find out the best compromised solutions. Another PSO for
node deployment in sensor networks is presented in [7]. Both approaches are
centralized, offline, and use global knowledge.

We should also consider the possibility of an autonomous distribution of
the nodes of the targeted area when nodes are mobile. In [74], the problem
of the optimal sensor deployment in WSN is addressed with a glowworm
swarm optimization algorithm. The goal is to enhance the global coverage
in a self-organized way (sensors are able to move). Nodes emit luciferin
and its intensity depends on the distance to its neighboring nodes. Sensors
are attacked and move to neighbors with higher intensity. This method was
proposed for unknown deployment environment, and/or dynamically chang-
ing ones. The bioinspired distributed algorithm is run online. It needs global
knowledge as nodes calculate the distance with neighbors.

A distributed and scalable genetic algorithm that also uses traditional and
evolutionary game theory for self-spreading autonomous nodes uniformly
over a dynamic area is proposed in [70]. Initially, nodes are placed in a
small section simulating a common entry, and the goal is to completely
cover the targeted area with a uniform node distribution. Once the location
of nodes conform a stable topology, there is no incentive to change the loca-
tion in the future. It is a decentralized approach that runs online, using local
knowledge.

Different GAs are studied and compared to hill climbing and random walk
in order to obtain a uniform distribution of nodes over a geographical area
in [107]. Each node contains a mobile agent running a GA, which decides the
next direction and speed of the node. It is an online and distributed approach
that uses local knowledge.

The literature reveals that PSO algorithms have been extensively used
in wireless sensor networks for determining the position of the mini-
mum number of nodes that provides the coverage, connectivity, and energy
desired [68]. A couple of the works mentioned in [68] also consider the
mobility of the sensors. In both cases [73, 110], the optimization criterion
is to maximize the coverage using a centralized approach with global knowl-
edge. Li et al. [73] consider a PSO and borrow the crossover and mutation
operator from a GA, while [110] combines a coevolutionary algorithm with
the PSO.

Dengiz et al. [24] use a PSO algorithm for connectivity management in
MANETs by defining some agents that move around to improve the net-
work. They propose to optimize the movements and locations of these agents.
The connectivity is measured using a maximum flow formulation. It is a
centralized and online approach that requires global knowledge.
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3.2.2 Broadcasting Algorithms

Broadcast is a communication protocol that consist of sending one message
to all other nodes composing the network. It is one of the most important
low-level operation as many other applications and even other protocols rely
on this service. In mobile ad hoc networks, guaranteeing full coverage is not
possible due to the network partitions, collisions, mobility, varying channel,
and so forth. Additionally, as mentioned in the introduction of the chapter,
it is associated with the broadcast storm problem [82], thus, many works are
focusing on efficiently addressing this problem.

In [37], an ant colony algorithm (ACO) was used to minimize the total
energy consumption and the lifetime of a protocol for energy efficient Broad-
casting in wireless sensor networks based on Ant colony system Optimization
Algorithm (BAOA). Ge et al. [37] consider a stationary multihop wireless
network where the location of every node is known so that each sensor is
able to estimate the distance to any node. This distance is the weight of the
corresponding edge. The path of each ant is stored in a tabu list, and the
pheromone on every path is updated in terms of the number of ants that tra-
versed it. The goal is to find a path where source and destination are the same
node and that passes through all other nodes in the network. It is an online
and decentralized approach that uses global knowledge.

The minimum energy broadcast (MEB) is a NP-hard problem [14]. It
is defined as finding the tree rooted at the source node that minimizes the
total energy used to cover all nodes in the network. Different optimization
techniques have been applied to solve this problem in static wireless ad hoc
networks. PSO [49], GAs [113], Ant Colony Optimization (ACO) [45, 46],
evolutionary local search [111], Iterated Local Search (ILS) [58], or hybrid
GAs [100] are some examples. In all cases, the approaches are centralized,
offline, and use global knowledge.

In [2], the authors use the Elitist Simulated Binary Evolutionary Algorithm
(ESBEA), a multi-objective genetic algorithm that applies binary mech-
anisms to real numbers. It optimizes the performance of a probabilistic
broadcast strategy for every node according to their local network density
for an efficient broadcast in vehicular ad hoc networks. Four objectives are
defined, focusing on the minimization of the channel utilization and the
broadcasting time. The ns-2 simulator is used to evaluate the fitness function.
Abdou et al. [2] do not provide enough details of the simulation procedure,
thus, there is no information about working with local or global knowledge,
but the approach is centralized and offline.

GrAnt, a greedy ACO (ACO with a greedy transition rule) is proposed
in [108] for finding the most promising forwarders from a node’s social
connectivity in delay-tolerant networks. The algorithm calculates the degree
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centrality, the betweenness utility, and the social proximity using global
knowledge (the total number of nodes in the network) for characterizing
the connectivity of nodes. It outperforms two state-of-the-art protocols:
PROPHET and Epidemic in the studied scenarios. It is an online and
decentralized approach that uses global knowledge.

Another NP-hard problem it is possible to find in the literature is the min-
imum power symmetric connectivity. It is defined as finding a spanning tree
that minimizes the energy used to connect all nodes of the wireless network
using bidirectional links. Wolf et al. [112] proposed an iterated local search
that outperforms the state of the art. A genetic algorithm is used in [113] for
finding the minimum power broadcast problem in wireless ad hoc networks. It
outperforms the well-known Broadcast Incremental Power (BIP) algorithm.
These two approaches are also centralized, offline, and use global knowledge.

3.2.3 Routing Protocols

In ad hoc networks, a packet that is sent from a source node to an intended
destination that is not in range must be relayed by intermediary nodes to be
delivered. This is known as multihop communication. Routing algorithms are
in charge of finding a reliable route between any source and destination. The
lack of central infrastructure, the changing topology, the limited resources,
and the decentralized nature of ad hoc networks make routing a challenging
service.

There are mainly two different approaches in routing algorithms: (1)
proactive and (2) reactive. The former approach periodically exchanges
topology information, thus maintaining routing tables that are available
immediately. The drawback of this approach is the cost of maintaining such
routing tables, specially if the topology is highly changeable. The reactive
strategy only establishes a route when it is needed. Some hybrid approaches
have also been proposed with characteristics from both reactive and proactive
strategies. A survey on routing algorithms can be found in [13].

As it is a challenging problem in ad hoc networking, the literature reveals
many works trying to efficiently route a packet to the destination by means of
bioinspired algorithms. There is a big community proposing routing protocols
based on ant colony optimization algorithms. The reason is that it can be exe-
cuted online with local knowledge, making it directly applicable to real ad hoc
networks. There are different surveys on ant-based routing algorithms; some
of them can be found in [54, 57, 86, 99, 101]. An extensive survey for swarm
intelligence-based routing protocols in sensor networks is presented in [92].

Next, we briefly mention some of the most relevant routing protocols
in the literature that are based on ants. Ant-AODV is proposed in [79]. It
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combines AODV with a distributed topology discovery mechanism based on
ants, providing low end-to-end delay. The Ad hoc Network Routing Based on
Ants (ANRBA) is another ant-based algorithm that selects the routing paths
based on the node status and the network link [33]. It is shown to outper-
form AODV in MANETs. The Ant Routing Algorithm for Mobile Ad-hoc
networks (ARAMA) [53] is also an ACO for MANETs that pursues fare
resource usage across the network. FACO [38] presents a fuzzy ACO that
uses fuzzy logic to take decisions according to several considered routing
parameters. A routing algorithm, called Distributed Ant Routing (DAR) for
critical connectivity based in ants in presented in [87]. DAR outperforms
AODV in terms of signaling load and convergence time. Two novel routing
algorithms for data networks with dynamic topology based on ants are pro-
posed in [103]. Robust routing is achieved in [32] using routing history. A
distributed and autonomic ant-based algorithm for efficient routing to maxi-
mize the WSN lifetime is proposed in [22]. It uses information on battery life
to update routing tables. Yet other ant-based routing algorithms are the self-
organised Emergent Ad hoc Routing Algorithm (EARA) [76], Mobile Ants
Based Routing (MABR) [44], and Adaptive swarm-based distributed routing
(Adaptive-SDR) [59].

HOPNET is presented in [109], a hybrid routing algorithm for MANETs
based on ACO and zone routing framework of bordercasting (ZRP). It
is compared versus AODV and AdHocNet (not based on zone routing
framework), showing a better performance both for low and high mobil-
ity and a remarkably higher scalability. AntHocNet is presented in [15], a
hybrid ACO-based routing algorithm for MANETs that combines proactive
and reactive behavior. The hybridization of dynamic MANET on-demand
(DYMO) protocol with ACO to design MAR-DYMO (mobility-aware ant
colony optimization routing DYMO) as a routing protocol for Vehicular Ad
Hoc Networks (VANETs) is proposed in [19]. It was validated against other
protocols (AODV and DYMO) on an idealistic urban scenario. A combi-
nation of ACO and zone-based hierarchical link state (ZBHLS) protocol is
proposed in [4].

There are some works dealing with swarm intelligence based on bees. For
instance, BeeSensor and BeeAdHoc [29, 93] are bee-inspired power-aware
routing protocols that outperform other state-of-the-art routing protocols. The
Nature Inspired Scalable Routing (NISR) protocol [39] is a scalable routing
protocol combining both ant and bee intelligence. Bees are in charge of find-
ing new routes to the destination and their quality, while ants are in charge of
updating the pheromone path. They are all online approaches that use local
knowledge.

In the literature, we can find other metaheuristics for the routing prob-
lem in ad hoc networks. All these approaches are centralized and offline
techniques that use global knowledge for optimizing the protocol. A genetic
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algorithm is proposed in [9] for routing in MANETs with different QoS con-
siderations (delay time, transmission success rate, and communication cost).
They consider a multi-objective problem that is solved using the multidi-
vision group model that evolves solutions in the domains of the different
objectives separately. There are some limitations on the network changes:
They can only occur after some period of stability.

Another GA is used in ad hoc underwater acoustic networks in [102]. It
maximizes the network lifetime. Each node sends a table to the master node
(sink) with the ID and the required power level of every neighbor. The master
node gives all this information to the GA, which computes the optimal routes.
The final optimized routing tree is sent to the nodes.

In [118], both NSGA-II and MODE (multi-objective differential evolu-
tion) algorithms are applied for finding optimal routes in fully connected ad
hoc networks. Yetgin et al. [118] focus on minimizing two objectives: energy
consumed and end-to-end delay. It is assumed global knowledge so that the
source node can evaluate the cost of each potential route to the destination.
Results showed that MODE finds solutions closer to the true Pareto front than
NSGA-II and also converges faster.

Different approaches of genetic algorithms are studied in [115] for finding
the shortest path in mobile ad hoc networks. Several immigrants and/or mem-
ory schemes are integrated into the GAs. It adds individuals to an already
evolved population and memory schemes to reuse stored useful information
from previous generations (best individuals in this case). In this work, two
approaches are tackled: (1) the elite from the previous generation is used for
creating the immigrants, and (2) apart from the elite, additional random indi-
viduals are created and introduced in the population. Both immigrant and
memory schemes enhance the performance of GAs for finding the shortest
path in MANETs.

3.2.3.1 Multipath Routing. Due to the mobility of the nodes and the
variability of the quality of the shared medium, the path obtained by rout-
ing algorithms between a source and a destination can usually fail. Multipath
routing consists in finding several routes from source to destination, so that
the routing service is more robust, providing reliability of data transmission,
load balance (congested nodes), energy conservation (for nodes that are rout-
ing most of the packets), QoS, and so forth. For a more detailed explanation,
please refer to [81].

Next, we collect some of the most relevant works focusing on multipath
routing in ad hoc networks.

Similarly to the previously mentioned routing algorithms, many works use
ant-colony-inspired algorithms to find multiple paths between a source and a
destination. They are all online, decentralized, and using local knowledge.
A multipath dynamic source routing algorithm (MP-DSR) is hybridized
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in [5] with ACO for better performance. An efficient energy aware multi-
path routing protocol based on ant colony optimization is presented in [80].
The authors validate their protocol versus Energy-Aware Ant-Based Routing
(EAAR) AODV, AntHocNet, and Minimum-Maximum Battery Cost Rout-
ing (MMBCR). A Probabilistic Emergent Routing Algorithm (PERA) based
on ACO that finds several paths that are used as backup of the best ones
is presented in [8]. Another ant-based routing protocol, Ant-Colony-Based
Routing Algorithm (ARA) is proposed in [41]. It is a reactive protocol that
broadcasts ants on demand, thus reducing the overhead. Its performance is
compared to AODV and DSR. Liu and Feng [75] proposed Ant Based Multi-
cast Routing (AMR), an on-demand routing protocol that combines swarm
intelligence and node-disjoint multipath routing for achieving robustness. It
is compared to DSR and Ant-based Distributed Routing Algorithm (ADRA),
outperforming both of them in terms of the packet delivery ratio, end-to-end
delay, and routing load.

A novel swarm intelligence algorithm, based on the behavior of termites,
is proposed in [88] for dynamic routing in MANETs, to minimize the load
of nodes using alternative paths. An optimized version of the protocol was
recently proposed and validated versus AODV in [48]. As well as ant colony
optimization algorithms, Opt-Termite is also an online and decentralized
technique that uses local knowledge.

Genetic algorithms have also been applied to the multipath routing prob-
lem. In [69], a new hybrid protocol, Genetic Zone Routing Protocol (GZRP)
that uses both proactive and reactive behavior for finding routes is presented.
It is an extension of the zone routing protocol (ZRP), and it uses a genetic
algorithm for providing a set of alternative routes to the destination. This
approach is centralized, offline, and requires global knowledge.

3.2.3.2 Multicast Routing. It is an important network service, con-
sisting of the optimal delivery of information from a source node to a number
of destinations or a group. In [10], a complete review of the state of the art
is given, as well as a taxonomy of the different kinds of protocols. It is an
NP-complete problem, and its scalability becomes a very important issue
when increasing the network size.

The use of a GA to solve the dynamic QoS multicast problem in MANETs
is proposed in [16]. The GA quickly adapts to the tracked topology changes
and adapts the solutions accordingly, producing high-quality ones. Another
GA for multicast routing was presented in [18]. Both are centralized and
offline approaches requiring global knowledge.

This problem has also been addressed in vehicular ad hoc networks too.
Bitam and Mellouk [11] present a multicast routing protocol with QoS con-
siderations. The protocol implements an EA (BLA–bees life algorithm) that
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assumes global knowledge to look for the optimal multicast tree for every
node. They work on a static network and it is centralized and offline.

A decentralized multicast routing algorithm that uses local knowledge
online is proposed in [51]. The protocol adapts to the topology variations
and satisfying some multimedia QoS requirements using PSO in the devices.
The packets priority schedule at every node is also considered and optimized
with the PSO. Thus, every device executes two PSOs using local information,
one for the multicast and the other one for the schedule.

Multicast routing has been extensively addressed by means of the span-
ning tree. All the approaches found are centralized, offline, and using global
knowledge. Both [116] and [117] construct a multicast tree for dealing with
multicast routing. Both use a genetic algorithm for obtaining near-optimal
routes on demand. The second approach adds QoS by considering multiple
constraints. Another approach that uses a GA for optimizing the spanning
tree is proposed in [6]. A hybrid discrete PSO presented in [1] also looks for
the multicast tree. An aggregate function is used to optimize the packet deliv-
ery ratio (PDR), network routing load (NRL), and end-to-end delay (E2ED).
Another multi-objective approach was presented in [20] that guarantees
some QoS.

3.2.4 Clustering Approaches

Clustering lies in arranging the network into groups, introducing some hier-
archy into the network, so that some nodes have a special role (usually
known as cluster heads), controlling the neighboring devices. It offers advan-
tages such as making routing tables more stable, higher-layer protocols more
scalable, extending the network lifetime, and the like. However, the way
nodes are grouped or the selection of the cluster heads is not trivial. Indeed,
clustering is an NP-complete problem. Next, we review some works using
metaheuristics to solve this problem.

A genetic algorithm is proposed in [60] for finding an optimized cluster-
ing for energy-efficient routing in static WSN and, therefore, extend network
lifetime, its stability period, its throughput (number of packets sent from
cluster heads to sink nodes), and the total energy left in the network. The
obtained protocol is compared to Low Energy Adaptive Clustering Hierarchy
(LEACH), Stable Election Protocol (SEP), and Hierarchical Cluster-Based
routing (HCR), another GA for clustering [52], clearly outperforming all of
them. It is a centralized, offline approach that uses global knowledge.

Another genetic algorithm is used in [84] for finding the optimal cluster
configuration in a sensor network. Additionally, a protocol for maximiz-
ing the network lifetime is presented and an upper bound is obtained. This
approach runs offline in a centralized manner and uses global knowledge.
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Liu et al. [77] proposed a modified version of the LEACH protocol using
Chaos-PSO. Chaotic motion is included in the traditional PSO in order to
avoid getting into local optima. Unlike LEACH, the proposed algorithm con-
siders the residual energy of the nodes and the distance of the cluster head to
the sink. It is an online approach that uses global knowledge. Another online
approach is found in [61] that uses a reduced complexity GA for obtaining
the optimal number of clusters and cluster heads in a sensor network using
global knowledge.

There are some works dealing with clustering in mobile ad hoc networks.
For example, [17] proposes a number of GAs for the dynamic load balanced
clustering problem in MANETs, that is, to find a clustering such that the size
of all clusters is balanced. They use static topologies in which some nodes
appear/disappear at every change (so nodes do not move), and the frequency
of topology changes is given by the GA (i.e., every 20 generations). It is a
centralized and offline algorithm with global knowledge.

In [106], a GA is used to optimize the number of clusters in a mobile ad
hoc network. It first uses the weighted clustering algorithm (WCA) as initial
information in order to evolve to a better configuration. It is a centralized
and offline technique that uses global knowledge. A similar work was later
presented in [55] using a decentralized PSO. In this work, the number of
nodes depending on a cluster head is restricted in order to ensure efficient
access to the shared medium. Nodes are divided into groups and four nodes
of each group run the PSO. These are offline techniques that make use of
global knowledge.

3.2.5 Protocol Optimization

Due to the unpredictable and changing topology of mobile ad hoc networks,
communication protocols usually rely on some parameters that adapt their
behavior to the current circumstances. The performance of the protocol is
highly sensitive to small changes in the set of those configuration parame-
ters. Therefore, fine tuning them for optimally configuring a communication
protocol is a complex and critical task. Additionally, due to the drawbacks
present in MANETs there is not a single goal to be satisfied but several like
network resources, QoS, energy used, and so forth.

Some researchers are using metaheuristics for finding the optimal config-
uration of the parameters conforming a specific protocol. Next, we consider
some of the most relevant works on this topic.

A multi-objective approach to find optimal configurations of the Delayed
Flooding with Cumulative Neighbourhood (DFCN) broadcasting protocol
accounting for network use, coverage, and time is proposed in [3]. It uses
a custom simulator (madhoc [47]) for evaluating the fitness function over a
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set of different networks. It is a centralized and offline approach that uses
local knowledge. Different optimization algorithms have been applied to
solve this broadcast algorithm using different hybridizations. For example,
in [34] a multi-objective particle swarm optimization (MOPSO) combined
with evolution strategy with the Non-dominated Sorting Genetic Algorithm-
II (NSGA-II), referred to as ESN is used. In [72], a team evolutionary
algorithm uses three algorithms of the state of the art for configuring the
DFCN broadcast algorithm. The three algorithms that cooperate are Strength
Pareto Evolutionary Algorithm (SPEA). Strength Pareto Evolutionary Algo-
rithm 2 (SPEA2) and NSGA-II. A different approach is used in [71], where
a hybrid algorithm that combines a parallel island-based scheme with a
hyperheuristic approach is proposed.

Several evolutionary algorithms are used for optimizing the parameters
of the Optimized Link State Routing (OLSR) protocol for vehicular ad hoc
networks in [36, 104, 105]. They consider different objectives in a weighted
fitness function. In both [36, 104], PSO, GA, DE, and Simulated Anneal-
ing (SA) are applied for finding the best configuration parameters, while
in [105] a parallel genetic algorithm that tries to reduce the power consump-
tion is used. All the proposed techniques are offline, centralized, and use local
knowledge.

The optimal configuration of the AODV routing protocol is optimized
in [35]. Different optimization algorithms are used: PSO, DE, GA, ES, and
SA for finding all the configuration parameters in a specific VANET scenario
in terms of the packet delivery ratio, the normalized routing load, and the
average end-to-end delay of a data packet.

Finding the optimal configuration set of the Enhanced Distance Based
Broadcasting Algorithm (EDB) using a multi-objective evolutionary algo-
rithm that focuses on maximizing the coverage while reducing the network
resources and the broadcast time was proposed in [90]. The quality of the
solution is evaluated on different networks using ns3. In [89], an adap-
tive energy efficient dissemination algorithm is optimized in order to find
the most scalable configuration. Both approaches are centralized and offline
using local knowledge.

3.2.6 Modeling the Mobility of Nodes

Creating test beds for mobile ad hoc networks is not only costly but also
very difficult. Reproducible experiments are needed for designing and testing
protocols, as well as large-scale networks for studying the scalability. For
small static networks, a test bed could be feasible, but not for large-scale
mobile ad hoc networks.
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Because of all the previously mentioned difficulties, most of the existing
works in the literature rely on simulation. Therefore, the accuracy of the sim-
ulation is crucial for obtaining the real behavior of the algorithm studied. As
will be mentioned in Chapter 4, the realism of the simulator chosen for the
experiments is very important. There are many signal propagation models
already implemented, however, modeling the mobility is still flawed.

In vehicular ad hoc networks, devices move at high speeds, on roads, one
after the other. Addressing real mobility patterns has been tackled by [98]. It
uses real data obtained from counters on the road (number of cars) and infor-
mation about the most attractive places in Luxembourg for accomplishing a
realistic traffic simulator. A genetic algorithm is used to improve the accu-
racy of the mobility model obtained. This technique is offline, centralized,
and uses local knowledge.

Traffic routing is addressed in [66] by means of a modified ACO, where
ants stop being attracted by the edges that would be most probably chosen
by the other ants. Vehicles are prevented from choosing potential congested
roads, thus alleviating traffic jams. It uses an online technique that requires a
priori knowledge.

3.2.7 Selfish Behaviors

Most of the nodes in ad hoc networks run on batteries, therefore, acting as
a router and relying messages to other nodes is battery consuming. Thus,
dropping all the messages that are not intended for the node itself and saving
energy is tempting. This is known as selfish behavior, and it is a real threat
in ad hoc networks where cooperation between nodes for forwarding packets
on behalf of others is crucial. Some researchers are solving this problem by
equipping nodes with a reputation management system, where each node of
the network is rated in terms of its own experience and reputation data from
other nodes.

In [97], a genetic algorithm is used for finding good strategies in network
cooperation. Nodes that do not cooperate are not able to use the network for
their own purposes. The proposed strategy obtained with the GA enforces
a high level of cooperation between nodes. It is a centralized and offline
technique that uses local knowledge.

A service-based negotiation mechanism is presented in [25] to encourage
node cooperation in ad hoc networks. The model uses a GA for generating the
offer or counteroffer considering the opponent’s offer for obtaining a quick
agreement. The algorithm is run online in every negotiation agent, using local
knowledge.
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3.2.8 Security Issues

In mobile ad hoc networks, the lack of central authority, the changing topol-
ogy, and the vulnerability of the channel makes difficult guaranteeing secured
communications. The deployment of security mechanisms is needed.

In [95], genetic programming and grammatical evolution is used for
evolving intrusion detection programs in MANETs. It uses evolutionary com-
putation techniques for evolving intrusion detection rules of two types of
known attacks in routing algorithms. The rules obtained will be executed
online and locally. As intrusion detection systems are resource consuming,
a multi-objective algorithm, SPEA2, is used for obtaining optimal trade-
off between intrusion detection and power consumption. It minimizes the
energy consumption while maximizes the coverage and exposure of the
sensor nodes. Both are centralized and offline approaches that use global
knowledge.

Localizing the intruder (malicious node) in wireless ad hoc networks is
achieved using anchor points in [23]. A node detecting an intrusion triggers
the localization estimation algorithm, and sends messages to calculate the
distance. The anchor points use a GA for locating the intruder given the sig-
nal strength inputs. It is a centralized and online approach that uses global
knowledge.

3.2.9 Other Applications

A lossy compression algorithm for sensor networks is presented in [78]. As
sensors are battery limited and radio communication is, generally, power
consuming, the goal is to reduce the data transmitted as much as possible.
There is always a trade-off between the compression rate and the informa-
tion loss. For that, the well-known multi-objective evolutionary algorithm,
NSGA-II, is used to obtain a set of optimal solutions with different trade-
offs among the information entropy, the complexity, and the signal-to-noise
ratio (SNR). Therefore, the user can decide the most suitable combination
depending on the application. It is an offline and centralized approach that
uses global knowledge.

In MANETs, packet losses are not due only to congestion as it used to
be in wired networks. A middleware that allows an adaptive behavior of the
application layer according to the network conditions while still maintaining
QoS in adverse situations is presented in [91]. It uses a genetic algorithm for
finding the best values of the parameters that conform the middleware, as the
best moment to trigger the adaptation process. It is a centralized approach
that runs offline using global knowledge.
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3.3 CONCLUSION

In this chapter, we have presented an overview of the most relevant exist-
ing literature that uses bioinspired algorithms to solve optimization problems
in ad hoc networks. We classified them in terms of the who, when, and
how the optimization process occurred. The who means whether the opti-
mization algorithm runs in a central unit that gives a global output, that is,
centralized, or in a decentralized fashion where each node locally executes
an optimization algorithm.

The when refers to the moment the optimization algorithm is executed.
It can be executed during the runtime (online), thus being able to modify the
behavior of the node, or offline and a priori in order to find the best possible
configuration or behavior before hands.

The how implies the knowledge required for an efficient optimization. If
the algorithm requires global information about the network, that is, global
knowledge, it only uses the information locally available at the node.

In Fig. 3.1, a classification of the works that were previously described is
shown. As we can see, we could not find any work that executes the optimiza-
tion algorithm offline in a decentralized manner. That is normal as there is no

Centralized
local

Offline

Online

Centralized
global

Decentralized
global

Decentralized
local

Protocol optimization Broadcasting
Clustering
Routing
Multipath routing
Multicast routing

Mobility
Selfishness
Security
Others

Topology Ctrl: Power allocation
Topology Ctrl: Node deployment
Topology Ctrl: Connectivity

Topology Ctrl: Sleep mode

Figure 3.1. Classification of the described works.
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need of decentralization if the algorithm is not run locally on every node. We
did not find either any algorithm that is executed online, but using a central
unit with local knowledge, as it makes no sense to use a central unit that only
uses local information.

From the figure, we can see that most of the works are based on a cen-
tralized and offline approach that uses global knowledge. However, most of
the works dealing with routing or multipath routing are using a decentralized
and online technique that uses local knowledge (generally, ACO). Regarding
the optimization of protocols, they all follow the same approach by optimiz-
ing offline in a central structure but using local knowledge, as usually the
network is not known, and indeed, the topology is changing.
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MOBILE NETWORKS
SIMULATION

An overview of mobile ad hoc networks was presented in Chapter 1, which
classifies them as MANETs, VANETs, and sensor networks. These net-
works, as well as classical networks, require communication services like
data routing. Yet, routing protocols designed for classical networks are
revealed to be useless in infrastructure-less communication systems. Mobile
ad hoc networks need dedicated algorithms taking into account different con-
straints such as the overhead of transmitted data [58], the quality of the
communication links [37], or the geographical motion of the stations [48].

Mobile networks are, by nature, distributed over a rather large envi-
ronment. They usually constitute an uncontrolled setup where devices are
managed by their owners. This makes very difficult the design, validation,
and optimization of protocols for such networks. Consequently, researchers
need to rely on different mechanisms for evaluating, validating, and optimiz-
ing any protocols designed for these networks. The existing mechanisms are
creating testbeds, or simulations.

Evolutionary Algorithms for Mobile Ad Hoc Networks, First Edition. Bernabé Dorronsoro,
Patricia Ruiz, Grégoire Danoy, Yoann Pigné, and Pascal Bouvry.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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Testbeds are experimental networks that allow researchers to run experi-
ments in real devices. However, they present many drawbacks that usually
prevent researchers from using them. Among these drawbacks, we can high-
light the high cost related to their creation, the difficulty of monitoring
them, the small number of nodes involved, the limited mobility of devices,
the lack of reproducibility, and the like. Additionally, the few testbeds that
are available for research purposes (like the C-VET test bed [31]) do not
scale well.

The obvious solution that ensures low cost and scalability is simulation.
Mobile network simulation requires simulating both wireless communication
and mobility. Then, the question of the accuracy of simulation compared to
real-life networks is raised. In a wireless network, the simulation of some
components is straightforward. Indeed, high layers of the Open Systems
Interconnection (OSI) stack are easily simulated or emulated because they are
already computer programs. However, the physical layer is a key and com-
plicated issue for simulation, as wireless communication depends on signal
propagation, which is a hard physical phenomenon to model. Existing models
are bounded to a trade-off between accuracy and computation time.

Regarding the simulation of the mobility of devices, different mobility
models must be considered according to our needs, as devices carried by
people do not have the same mobility patterns as cars moving on a road,
for instance. For providing efficient and realistic models, some mobility
simulators require real data as input.

This chapter gives a general overview of simulation techniques and tools
available to achieve mobile network simulation. As we will see, tools vary
with the kind of network we wish to simulate. The chapter is organized as
follows. Section 4.1 provides an overview of the signal propagation issues
and admitted models. In Section 4.2, network simulators are reviewed, while
the the state of the art of mobility simulators is presented in Section 4.3.
Finally, some conclusions are given in Section 4.4.

4.1 SIGNAL PROPAGATION MODELING

This section gives a general overview of the problem of modeling signal
propagation. Not intended to be exhaustive, this introduction is target-
ing a reader who is not yet used to mobile network simulation problems.
Researchers who are not familiar with this research field will find enough
information to get the general trends and issues dealing with signal propaga-
tion when trying to do mobile wireless simulation. For a broader and more
in-depth overview of the subject, the reader may refer to Chapter 2 of [68].
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Signal propagation depends on many factors. The power and characteris-
tics of transmitters and receivers, particularly the dimension of antennas, play
an important role. Communication protocols, depending on the frequency
range they operate, are highly influenced by the environment. Finally, the
environment itself will be the main actor in the signal transmission. All these
factors are ruled by a set of physical phenomena presented next.

4.1.1 Physical Phenomena

The main phenomena that alter signal propagation can be listed as follows.

Path Loss. Also called path attenuation, this phenomenon illustrates the
reduction of power density of the electromagnetic wave in space. On an open
area, without any other effect that could alter the signal, this attenuation is
proportional to the square of the distance from the transmitter. Figure 4.1
illustrates this density decay as the wave sphere propagates into space.

Reflection. This is the most common phenomenon met, after path loss,
in signal propagation. When the signal finds an obstacle of a different
medium, it then changes its direction to continue in the same medium, with
an angle that is opposed to the normal (right angle of the incident surface).
The obstacle can be the ground (which is still present in open areas), build-
ings, walls, ceilings, and the like. Figure 4.2 shows the phenomenon with
part of signal f0 being reflected to signal f1. From the receiver point of view,
in an open area, reflection is a strong component that is added to the original
signal coming from the direct line of sight (LOS).

Refraction. This phenomenon occurs when the signal wave reaches
another medium with an angle different than 90◦ or 0◦. The signal crosses

f 0

Figure 4.1. Signal attenuation (or path loss) phenomenon.
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f 0

f 2

f 1

Medium 1

Medium 2 θ2

θ0

Figure 4.2. Signal reflection and refraction phenomena.

the new medium with a different angle than its incidence angle because of the
variation in density or impedance between the two media. Figure 4.2 shows
the refraction of a signal with incident angle θ0 and refraction angle θ2 in
a denser medium. Refraction is indeed a physical phenomenon that impacts
radio waves, but it mostly happens between atmospheric layers and thus con-
cerns longer wavelength signals than the ones used in mobile networking.
Indeed, low frequencies (between 30 and 3000 kHz) are guided between
Earth and the ionosphere. Higher frequency bands like television signals
[VHF (30–300 MHz)] can benefit from tropospheric ducting (refraction).
Frequencies dealing with wireless networking are thus too high and have
too limited ranges for this kind of phenomenon to occur.

Diffraction. When reaching the edge of an obstacle, the signal has a ten-
dency to spread anew from this edge as if it were the origin of the signal.
The consequence from an observer’s point of view is a variation in the inci-
dent angle, which results in the creation of multiple paths from one sender
to one receiver. Contrary to refraction, diffraction is met at various scales. At
larger scales, the edge of a hill blocking a direct LOS between a transmitter
and a receiver may redirect part of the signal to the latter. At a lower scale,
the edge of a building in a urban environment may also bend the original
signal. Figure 4.3 shows how a signal f 0 bends when reaching an obstacle.
A possible secondary signal f 3 with a different angle arises from this edge.

Doppler Effect. This phenomenon is inherent to the movement of trans-
mitters and receivers. The mobility or actually the variation of distance
between transmitter and receiver is responsible for a shift in the frequency
of the original signal. As Fig. 4.4 illustrates, the perceived frequency will be
higher when the distance between a transmitter and a receiver is reducing and
lower in the opposite case.
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f 0

f 3

Figure 4.3. Signal diffraction phenomenon.

Figure 4.4. Doppler effect.

Scattering. Scattering is the effect produced by objects disturbing and
bending the signal’s original trajectory. Therefore, the phenomenon depends
on the frequency of the signal. The effect appears when an object’s diameter
is significantly smaller than the wavelength. In the range of frequencies we
are interested (wavelengths between 5 and 12 cm), insects, fog, clouds, or
even rain or snow can play a role, even though rain also produces refraction.
In terms of modeling, it is impossible to produce an analytical model for such
phenomenon, so it is considered with stochastic approaches.

Absorption. It is a comparable effect with scattering but at a sub-
molecular scale where electromagnetic energy is caught by electrons and
transformed into other forms of energy like heat. Again, this phenomenon,
if ever modeled in a simulator will refer to stochastic processes.

Multipath. It is not per se a physical phenomenon but rather a resul-
tant observation from the effect of other phenomena, especially reflection
and diffraction. Indeed, crowded environments like urban areas, with build-
ing and other massive objects obstructing the signal, produce reflection and
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Rf 0

f 0

f 3

f 1

Figure 4.5. Multipath effect in signal transmission.

diffraction. Figure 4.5 shows a possible set of paths taken by an initial signal
f 0. The receiver R will sense a mixture of subsignals from the direct LOS f 0,
a reflected component f 1 (from a large obstacle at the bottom of the figure),
and a diffracted signal f 3 against the edge of the upper obstacle.

Fading. Like multipath, fading is more a resultant observation of phys-
ical phenomena than a phenomenon itself. Fading illustrates the overall
alteration that an original signal may have suffered from a transmitter to a
receiver. The alteration occurs in terms of power density reduction but also
in delay or in frequency shifts. Fading can be the result of all the afore-
mentioned phenomena. Consequently, models that try to figure out fading
are usually based on stochastic approaches. Four kinds of fading are usually
identified:

• Flat fading happens with random and weak obstruction in open areas
with an LOS. It is preferably modeled with a normal random variable.

• Selective fading. When the bandwidth of the transmitted signal is
broader than the usable bandwidth of the physical channel, then a
frequency-dependent fading occurs. Bands of frequencies of a signal
will not be equally affected. Selective fading is observed as a slow
and repetitive disturbance with nulls (phase oppositions that cancel the
signal) and a stronger attenuation on some frequencies. This problem
is lessened with the use of modulation schemes that ensure a diversity
of frequencies are used to mitigate the effect.

• Slow fading illustrates attenuations and frequency shifts provoked by
large objects (buildings, hills, etc.). This kind of obstruction is also called
shadowing. It has a constant effect on the signal or at least it changes
in time at a lower scale than the operation time (e.g., the time needed
to receive a complete packet). Lognormal random variables are most
frequently used to model slow fading.

• Fast fading models physical phenomena that end up modifying the sig-
nal with a strong and fast variation over time. The scale of the signal may
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vary during the operation time and is in the order of the wavelength of the
signal. It is the result of multipath interference. Multipath fast fading can
be destructive or constructive for the signal and is usually good for the
final reception since higher values of the signal enhance the reception,
while short duration nulls can be ignored thanks to correction codes.
Fast fading is modeled with a Rayleigh distribution for builtup urban
environments with a non-LOS (NLOS) signal [64]. A Nakagami distri-
bution [55] with parameter m = 1 can also be used. Actually, Rayleigh
is a special case of Nakagami distribution where m = 1. When an LOS
dominates the signal, a Rician distribution is used [23]. Depending on
its parameters, a Weibull distribution can also be used [32].

4.1.2 Signal Propagation Models

In theory, the electromagnetic radiation created by a transmitter can be fully
qualified and computed at the receiver. Considering the environment is com-
pletely known as well as all the physical effects (reflection, diffraction,
Doppler effect, attenuation, etc.), an exact resolution of the received signal
can be provided. However, this is not an easy task. The technologies we are
interested in operate in different ranges of frequencies. For example, cel-
lular networks vary between 0.9, 1.9, or 5.8 GHz; Wi-Fi around 2.4 GHz,
or 5.9 GHz for WAVE. Thus, wavelengths in these signals range from 5 to
33 cm. This means that an accurate computation of multipath would require
the knowledge of the environment at the scale of a few centimeters, making
too complex the exact computation of electromagnetic fields of large areas.
Therefore, we rely on models that do some approximations and simplify this
computation.

A considerable number of models have been proposed for approximating
the signal transmission. Several categories can be established depending on
the type of model (analytic or stochastic), on the frequency at which they
operate (microwaves or low frequencies), or on the nature of the transmission
between transmitter and receiver (LOS or NLOS). Next, a brief survey of the
most common models that can fit (frequencies and environments) into the
mobile networking is presented.

Free Space. The simplest and most popular model for computing signal
propagation only considers the effect of the distance d between a transmitter
and a receiver. The free-space path loss model computes the attenuation of
the received signal at distance d considering LOS. No other phenomenon is
considered, only the amplitude of the signal is affected. The computed loss
is proportional to the square of the distance between transmitter and receiver
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and also proportional to the square of the frequency. This path loss (PL) is
given by the formula

PL =

(
4πdf

c

)2

, (4.1)

with d the distance in meters, f the frequency of the signal in hertz, and c the
speed of light in meters per second. This formula can also be expressed in
decibels (dB):

PL = 20 log10(d) + 20 log10(f ) + 20 log10

(
4π

c

)
. (4.2)

The Friis equation is a more accurate model that takes into account the
antennas’ characteristics. The attenuation is expressed in terms of input
power at the receiver’s antenna Pr in comparison to the output power at the
transmitter antenna Pt. The power received at reception is thus

Pr = PtGtGr

(
λ

4πd

)
, (4.3)

where Gt and Gr are, respectively, the gain of the transmitting and receiving
antennas, λ is the wavelength of the signal in meters, and d the distance in
meters between the two antennas. To sum up, the free-space path loss model
is an analytical model for outdoor, LOS, and long-distance signals.

Two-Ray Ground. This model is similar to the free-space model but
adds a second component to the LOS that represents the reflection on the
ground. For that, the height of both the transmitter ht and the receiver hr are
considered in the computation. The received power will thus be calculated as

Pr = PtGtGr

(
h2

t h2
r

d4

)
, (4.4)

with all parameters identical to those in Equation (4.3). In this one, the power
of the signal decreases with the fourth power of the distance d while the free-
space model follows the square of that distance. In addition, it does not take
into consideration the influence of the frequency of the original signal. The
two-ray ground path loss model is considered to be a better approximation
than the free-space model for long distances. Like the free-space path loss
model, the two-ray ground model is an analytical formula dedicated to LOS,
open outdoor areas.
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Okumura and Followers. The original model [56] is not specifically
appropriated to the range of frequencies in which we are interested in this
book since it is dedicated to the 150 to 1920 MHz band. However, the model
is usually extrapolated up to 3 GHz, allowing the inclusion of Wi-Fi bands. It
is dedicated to the signal attenuation met in urban areas. This model has been
constructed based on real measurements in the city of Tokyo. The real data
served to create curves of signal attenuation depending on distances. This
model computes a median path loss L composed of:

• A classical free-space attenuation
• The value of attenuation given by the computed curves from real data
• Some predefined factors that characterize the environment (obstacles,

water surfaces, etc.)

Based on the measurements carried out in the Okumura model, the Hata
model was developed [41]. It proposes a larger set of environments, that
is, open, suburban, and urban areas. The urban model integrates frequency
shifts, reflections, and scattering effects. In addition, the COST 231 project
[4] also proposed a more accurate model using real measures from the
Okumura model.

The Okumura model and its followers are based on both empirical data
and analytical formulas. They focus on various outdoor environments and
consider a number of physical phenomena. They are widely used in the field
of cellular communication. Unfortunately, they are difficult to adapt to Wi-Fi
or WAVE.

ITU Recommendations. The International Telecommunication Union
(ITU) is the United Nations specialized agency for information and commu-
nication technologies. This organization provides recommendations on the
use of such technologies for indoor and outdoor use. In [44], the organiza-
tion advertises guidance for indoor signal propagation on a wide range of
frequency bands. Based on real measurements, statistical propagation mod-
els are proposed. Common physical phenomena are investigated and specific
problems like frequency reuse between floors are tackled.

Log-Distance. Rappaport [60], proposes a statistical general approach
to take into account general fading phenomena, as well as various envi-
ronmental factors. The model estimates the received signal in terms of a
reference distance d0 from the transmitter. It also includes a statistical estima-
tion of the various frequency shifts and power loss with appropriate random
variables.
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The general formula computing the path loss PL expressed in decibels is:

PL = Pt − Pr = PL0 + 10γ log10
d

d0
+ X, (4.5)

where
Pt = transmission power
Pr = reception power
d = distance between transmitter and receiver

d0 = reference distance between transmitter and a reference point
PL0 = path loss in decibels of the reference point, which can be computed

with an analytical formula such as the free-space model shown in
equation (4.2)

γ = path loss exponent
X = random variable that takes into account unpredictable fading

Variable X varies according to the kind of fading that occurs. If only flat
fading is considered, a Gaussian variable with 0 mean is used to reflect
small LOS variations. When slow fading provoked by shadowing of high
buildings is considered, a lognormal random variable is used with a vari-
ance σ expressing the attenuation in decibels. Finally, when fast fading is
important, the result of multipath propagation is modeled with a Rayleigh
distribution [64] in urban environments with NLOS signals or with a
Nakagami distribution [55] with parameter m = 1. If the LOS dominates in
the signal, a Rician distribution [23] is used. A Weibull distribution can also
be used for indoor fast fading [32].

There are mainly two parameters in this model. First, the path loss
exponent γ and, second, the variance σ of the random variable. Recommen-
dations are given for those parameters depending on the environment (urban,
suburban, indoor, office, store, etc.).

The log-distance path loss model is probably the most used one in mobile
networks simulation because it fits well for both outdoor and indoor environ-
ments with more or less crowded areas where one can expect MANETs or
VANETs. The statistical approach is heavily dependent on parametric data
obtained from real experiments like the ones carried out by the ITU.

Kun 2.6 GHz. Based on the ITU recommendations and on real outdoor
experiments, Kun et al. [50] came out with a path loss model for urban areas
in the range of frequencies used by 802.11b/g Wi-Fi. The model computes
the path loss in decibels such as

PL = 36 + 26 log10 d, (4.6)

with d being the distance between transmitter and receiver.
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4.2 STATE OF THE ART OF NETWORK SIMULATORS

The literature reveals the existence of several network simulators. In this
section, a brief explanation of the most commonly used ones is presented,
pointing out the features that differentiate one from another.

The main requirement for a network simulator is the accuracy of the sim-
ulated traffic data, in comparison to the real traffic generated in identical
conditions. Thus, simulators can be validated with real network data. As we
mentioned before, one of the main difficulties to overcome in a simulation is
the emulation of an accurate physical layer. Ideally, simulators should imple-
ment different wireless technologies. They should also be easy to extend to
fit any specific need. They may also allow interactions with other tools such
as mobility simulators.

Providing an exhaustive list of all available network simulators is out of
the scope of this book. The existing network simulators cover a wide area.
For instance, GNS3 [7], PacketTracer [16], and NETSim [10] are three very
good simulators when considering the simulation of wired router networks
and especially Cisco devices. But, we here focus on simulators for wireless
communication (and especially the Wi-Fi family) and devices mobility.

The number of available simulators for wireless mobile networks has seen
a huge growth during the first decade of this century. Several research labs
have developed their own simulator, resulting in either open-source projects
or a commercial product. Nowadays, the number of network simulation
projects tend to settle down to a reduced set of well admitted tools.

4.2.1 Simulators

Next, a list of simulation software tools that are or have been relevant to the
community of mobile network simulation is given.

CNET. From the University of Western Australia, the CNET project [2]
is a event-based simulator. It is available for several UNIX architectures and
provides a visualization tool that has great educational interest. The main
characteristic of the project is its fast learning curve, since the user rapidly
understands how to create topologies and other mobility scenarios.

However, CNET suffers from a poor physical layer modeling (only free-
space path loss is implemented) and also has too few protocols implemented.
Moreover, the computational model is not scalable. For these reasons,
CNET is not adapted for research purposes, and it is not widely used
for mobile network simulation. But as mentioned before, it is still a good
teaching tool.
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OMNeT++. Objective Modular Network Test-bed in C++ (OMNeT++)
is a component-based, modular simulation framework [69] available at [14].
The project proposes an academic public license that is close to the GNU
(GNU’s Not UNIX) public License, but restricts the use to noncommercial
activities. A commercial version of the simulator, available at [13], offers
technical assistance and extra features. It is basically an event-driven library
and a framework, written in C++. The distribution of the core is provided by
means of Message Passing Interface (MPI) primitives so that all simulations
can be run on a grid.

A strong emphasis is put on the modularity of the architecture. In order to
ease the code inheritance, the development guidelines emphasize the use of
virtual member function in the C++ code. The intermodule communication
model is based on the message passing paradigm, which prevents inter-
dependence between modules, facilitating the development and adaptation
of models to contributors.

This modularity has encouraged the development of a number of success-
ful modules, also called frameworks:

• The INET-framework is the first efficient framework implementing
wireless protocols.

• An attempt for simulating VANETs using INET-framework was reported
in [54].

• INETMANET brings mobile ad hoc network modeling to the INET-
Framework.

• MiXiM is a framework specially designed for static and mobile wireless
networks (sensors networks, MANETs, and VANETs). MiXiM offers
detailed signal propagation models in terms of power decay, frequency
shift, and delay [72]. The so-called AnalogueModel class reference
gives access to the classical models previously presented. Moreover
MiXiM offers the possibility to the user to define its own propagation
model based on statistical characteristics in a three-dimensional space
(frequency, time, and distance).

• The Veins project [65] is a complete intervehicular communication
simulator that brings both realistic communication with the full imple-
mentation of IEEE 802.11p and IEEE 1609.4 DSRC/WAVE models into
MiXiM [35, 36] and realistic vehicular mobility thanks to a bidirectional
interaction with the vehicular mobility simulator Simulation of Urban
Mobility (SUMO) [27].

OPNET. OPNET Technologies, Inc. (formally MIL 3, Inc.) [15] is a
software company created in 1986 whose first product was OPNET Mod-
eler, a software tool, developed in C++, dedicated to network simulation. It
then diversified its activities with specialized services for providers, network
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planning, or network equipment. One of its activities is a university program.
This program is a license agreement that offers free access to the OPNET
suite. It gives academia access to the network simulator and to other mod-
ules like the OPNET Modeler Wireless Suite, which includes a wide range
of wireless protocols.

The architecture is said to be fully scalable with a parallel kernel and it
supports simulation distribution on a grid. The core simulator relies on dis-
crete event simulation but also on a hybrid mode that combines an analytical
and a discrete model. This mode relies on the modeling of a background traf-
fic and a specific traffic. Specific traffic is detailed at packet level while the
background traffic only gives an overview of the inherent load and inter-
ference. This last mode is faster but less accurate than the pure discrete
event model.

While at the time of this writing there exists support for WLAN 802.11a,
b, e, g, and n, no implementation of 802.11p or any VANET-related proto-
col is available in OPNET. Dealing with vehicular mobility, the authors in
[46] claim to have linked OPNET to the SUMO vehicular traffic simulator
(described in Section 4.3).

ns-2. Since 1989, the ns (network simulator) family is a series of discrete
event simulators aimed at simulating network protocols. It is very popular
and probably the most used in academia. ns-2 [11] received a wide support
and most of the state-of-the-art protocols were implemented, if not designed,
in it. Signal propagation modeling is also well supported.

The core of ns-2 has its modules written in C++. The configuration of
scenarios relies on an object-oriented version of Tool Command Language
(Tcl). Both languages are needed for testing new algorithms, but only OTcl
for simulating a protocol that is already implemented in ns-2.

There are, however, some drawbacks in the architecture of the project.
First, the modular architecture is hardly respected and makes some mod-
ules strongly interdependent. The architecture forces any developer willing
to produce a new module to include it in the building process of the core. No
precise integration process of these modules exists. This problem ends up in
various forks of the project, and sometimes it is very difficult for an end user
to have two different modules working together with the same ns-2 core.

Because of the several flaws of ns-2, discussions in the ns mailing list in
2005 proposed starting over with a new code base for a third version of the
popular simulator. This new simulator, ns-3, would be a complete rewrite of
ns-2 with the portage of some efficient modules. Spotted problems were:

• The lack of scalability mainly due to the use of two different languages
and programming paradigms

• The slow learning curve especially for students
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• The large architectural differences between the ns-2 network layers and
real systems layers

• The accumulation of unmaintained an incompatible modules
• The lack of documentation
• The lack of validation

ns-3. The ns-3 project [12] is aimed at solving the previously mentioned
issues. The principal concern of the project is the realism of the simulator.
The ns-3 team wants the project to be easy to validate, with code as close as
possible to any real network-related code. For this, ns-3 relies on only one
language, C++, for the library and the simulation scenarios (although python
bindings exist). This helps producing code easier to debug. The various layers
are as close as possible to the real ones: real IP addresses are used, sockets
resemble real Berkeley Software Distribution (BSD) sockets, and packets are
real network bigendian byte arrays. This permits one to easily execute native
code and to do emulation.

Other Inactive Projects. As previously mentioned, the beginning of the
21st century saw a lot of network simulation projects. Many of them are not
maintained anymore but got much attention.

Among them, GloMoSim [6] was mainly dedicated to the simulation
of wireless networks. It was based on the discrete event simulation lan-
guage Parallel Simulation Environment for Complex Systems (PARSEC)
[18]. A commercial version of the project, Qualnet, is distributed by Scalable
Network Technologies.

Java in Simulation Time (JiST) [8] and its wireless ad hoc extension
Scalable Wireless Ad hoc Network Simulator (SWANS) was a Java-based
high-performance and event-based simulation platform. It also relied on the
PARSEC language and used it to advertise very fast execution times and low
memory footprints.

4.2.2 Analysis

As stated, lots of tools are available to achieve wireless mobile network simu-
lation. The first selection criteria were the accurate modeling of the physical
layer, the modular approach, and the mobility models included. Although
those criteria are reached by the presented tools, one may additionally want
to evaluate the validity of the produced traffic or compare results between
those tools. Indeed, validation against real testbeds is important to ensure the
realism of produced traffic. The IEEE 802.11 model of the ns-3 simulator
was validated in [26] and [57]. Comparably, IEEE 802.11g was validated in
OMNeT++ [29]. In [59], a comparison between ns-2, Qualnet, and OPNET
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against a real data set of wireless communication shows the importance of the
OSI physical layer (PHY) modeling. The comparison stresses that the classi-
cal two-ray ground plus free-space models commonly used are inappropriate
to Wi-Fi indoor and outdoor environments.

Some works also focus on comparing simulators. In [38], the authors
compare ns-2 and OPNET in a wireless and mobile setup. They show com-
parable trends in the results but different absolute values. Garrido et al. [38]
also point out difficulties to reproduce identical mobility patterns in the two
platforms. In [71], the performances of ns-2, ns-3, OMNeT++, SimPy, and
Jist/SWANS are investigated. Results reveal large differences according to
both runtime and memory usage. Finally, a comparison between ns-2 and
OMNeT++ demonstrates an impossibility to compare results [34]. However,
the authors succeeded to wrap a ns-2 module so that it could be used as
an OMNeT++ module. That could reproduce almost identically the results
from ns-2 with the original module and OMNeT++ with the wrapped module.
Those results seem to validate that the core behavior of the two simulators is
comparable and that the modules themselves produce the shift in the results,
mainly because of the various parameters and default values of considered
algorithms.

4.3 MOBILITY SIMULATION

We switch in this section to the simulation of mobility. The main existing
mobility models are summarized in Section 4.3.1, while some of the most
well-known simulators are pointed out in Section 4.3.2.

4.3.1 Mobility Models

Mobility models aim at reproducing the mobility of real-world entities in
simulation. In the present book, those entities may be pedestrians walking
in an urban environment and carrying a communicating device, or they may
also be vehicles moving on a road network and using on-board devices or
any mobile entity equipped with communicating sensors. There are differ-
ent forms of modeling the mobility: (1) artificial rules, (2) reproducing the
exact mobility of real entities using previously captured mobility patterns,
and finally (3) a mix of artificial models fed with real input data.

The first category is simplistic and easy to produce and reproduce. Some
global characteristics can be carried out from these models. Their drawback
is the lack of realism in the generated patterns. The second type of model
(exact mobility patterns) attempts to produce an accurate behavior based on
real mobility data, but it is limited to the capturing session. They interpolate
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the data, providing higher resolution between two pieces of real information,
but it is not possible to extrapolate the data to go beyond the observations. A
typical example is the interpolation of GPS data. The last kind of model is the
most interesting and the most difficult to produce. Those models are based
on real patterns and various information in order to reproduce and extrapolate
the known mobility. The extrapolation is in time (simulation of longer period
than the real capture) and in number (more entities than in the capture).

4.3.1.1 Artificial Models. Bai and Helmy [24] proposed four classes
of artificial models.

1. Random models, mostly inspired by the modeling of physical unpre-
dicted models, rely on random and independent variables to produce
each entity’s mobility. The random walk is an adaptation of the classi-
cal Brownian motion that models the motion of molecules in a gas. The
random waypoint [30] describes a random process where each mobile
picks up a random destination and speed and goes to that point, then
another destination is chosen. This became the most popular artificial
model in academia, especially for testing routing protocols.

2. Time resolution dependency models care about previous mobility vec-
tors in order to pick up new ones. These models try to be more realistic
than random models, claiming that one’s current direction and speed
directly influences the new destination. The Gauss–Markov model [51]
and the smooth random model [28] are the most used ones in this
category.

3. Space resolution dependency models focus on the spacial interaction
between mobile devices. They model groups mobility. The reference
point group model [43] mimics the mobility of a crowd of pedestrians.
Sánchez and Manzoni [63] propose a simulation tool that includes three
novel mobility models. The area scanning mimics pedestrians in a line
going in the same direction, just like rescue patrols seeking for sur-
vivors after a snow avalanche. In the pursue-a-target model, the whole
group goes after the same moving target with some randomness in
their direction and speed. The nomadic community model sketches the
behavior of a flock of entities, like birds, moving as a whole in one
direction while keeping some distance between them. Another famous
flocking model is the Boids model by Craig Reynolds [61] with its three
rules, that is, separation, alignment, and cohesion.

4. Geographical dependency models take into account exterior factors that
alter or direct entities mobility. Mainly vehicular mobility depends on
the road network topology. Bai et al. [25] propose the Manhattan model
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with random motion on a lattice constraint area. In [62], real street maps
from the TIGER database (U.S Census Bureau) are used to move vehi-
cles with random origins and destinations. Routes are calculated using
Dijkstra’s algorithm and the speed of the vehicle varies between 5 miles
per hour and the speed limit. In the pathway mobility model [66], the
classical random waypoint model is adapted to fit the geographical con-
straints of paths or roads. In [45], the obstacle mobility model creates
possible paths in an area where obstacles alter the mobility. A Voronoï
diagram is constructed around the set of obstacles. Finally, the random
waypoint is used to determine destinations and the entities move along
the edges of the diagram.

4.3.1.2 Real Data Interpolation. This is not a kind of model per
se. It is more related to the time and space interpolation and inference of
gathered data, whether it is position based (GPS) or connection based (like
access point logs). These models depend on the captured data. The Com-
munity Resource for Archiving Wireless Data At Dartmouth (CRAWDAD)
project [5] aims at centralizing data sets mainly composed of wireless con-
nection logs. The project counts hundreds of published papers using their
data sets.

In [40], human mobility is approximated with mobile phones probes. The
information about the geolocalization of a cell phone becomes a proxy to the
mobility of its owner.

4.3.1.3 Models Based on Real Data. In this type of model, the input
data is not simply some sparse GPS trails where it is only necessary to inter-
polate the missing positions. The data may be of a different nature and thus
would require real modeling to end up in mobility traces. As human mobility
usually falls into the real data interpolation type of model, mostly vehic-
ular mobility, that actually tolerates models constructed from various data
sources.

Hertkorn and Wagner [42] rely on an extremely detailed data set to provide
an on-demand trip planning model for the city of Cologne, Germany. The
data source is composed of three parts:

• The population of the city modeled with agents with an initial location
(their home) and sociodemographic characteristics

• The city environment with locations for activities (shops, working
places, theaters) described in zones

• An extensive data set of diaries that reports the detailed mobile activity
of the inhabitants of the city
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This detailed data set is then formatted, sorted, and clustered, to propose
an on-demand model that for any agent at any desired time can produce a
trip (effective departure time, source, and destination). Paths from source to
destination are then computed with Gawron’s algorithm [39].

Similarly, Chapter 9 in this book is dedicated to the optimization of a
mobility model based on real data from Luxembourg. The model also uses a
zoned city environment, but no diary surveys are available. Instead, counting
data about road traffic are used.

4.3.1.4 Various Scales of Models. The problem of scales is almost
specific to vehicular motion. Indeed, traffic simulation can be considered on
different levels, from the macroscopic level, dealing with flows of vehicles
on wide areas and wide time windows, to the microscopic level, taking into
account speedups and slowdowns of vehicles, lane changes, or traffic lights.
The macroscopic level corresponds to the classical notion of mobility model
like the ones outlined in this section. The microscopic level is closely related
to physical mechanisms around the vehicle and requires specific models plus
a lot of computation. The two most popular models are the intelligent driver
model [67] and the Krauss model [49]. They use deterministic dynamical
systems that represent the vehicle’s position and speed evolution in time. This
evolution depends on the actual values of this vehicle’s speed and position
but also on the behavior of the vehicle in front of that one. Those dynamical
systems are numerically solved in simulators with Runge–Kutta methods.

4.3.2 State of the Art of Mobility Simulators

This section focuses on vehicular mobility simulators because only this kind
of mobility requires intensive computation and models. Human mobility
models are usually simple or artificial and are thus directly implemented into
wireless network simulators.

A few human mobility projects can, however, be cited like ParkSim [70],
a human mobility simulator for theme parks based on empirical GPS data,
or MobiREAL [52], a model-based human mobility simulator coupled with
a home-made network simulator.

Vehicular motion simulation is a more complicated task with various levels
of complexity. Phenomena like traffic congestion are nontrivial and require
specific models.

In the MObility model generator for VEhicular networks (MOVE) project
[47], random paths are chosen for vehicles on real maps. The STRAW (street
random waypoint) project [33] again uses real maps, and vehicles are given
random origins and destinations. The mobility is, however, more realistic
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with an intersection management. It should, however, not be compared with
real microsimulation.

Tools like STRAW and MOVE rely on the US TIGER database to produce
realistic maps. Their mobility module is not really accurate since no micro-
simulation is implemented. The implemented models are comparable to the
ones described earlier in the geographical dependency models section, with
an extra nonuniform distribution of vehicle speed.

In [53], GrooveSim is presented as an integrated simulation platform,
performing both network and mobility simulation.

CANU mobility simulation environment (CanuMobiSim) is a flexible
framework for human mobility modeling [1]. Its extension to vehicular
mobility, VanetMobiSim [21], uses both macroscopic and microscopic mod-
els to simulate realistic traffic. On the macroscopic level, it can handle TIGER
maps or generate artificial ones from Voronoï diagrams. On the microscopic
side, it implements the classical Intelligent Driver Model (IDM) dynamical
system. The quite high resolution of the produced data is a good input for
realistic wireless simulators.

MATSim [9] is an active project for the large-scale agent-based simulation
of road traffic.

A number of commercial tools advertise realistic traffic simulation, usu-
ally coupled with nice visualization tools. Paramics [17] includes pedestrian
microsimulation to the vehicular network for having more realistic urban
network simulations. SimTraffic [19] is another commercial microsimula-
tion traffic tool with realistic 3-D viewer. VISSIM [22] is a programming
language and execution environment specialized in the simulation of phys-
ical nonlinear dynamic systems. It is used in various fields on engineering.
It can model road traffic, pedestrians, but also signal propagation. CORridor
SIMulation (CORSIM) [3] is a microscopic traffic simulator dedicated to
multilane freeways and traffic signal optimization.

SUMO [20, 27] is a space-continuous road traffic simulator. SUMO stands
for Simulation of Urban MObility. It is an open-source project (GPL license),
mainly developed by the Institute of Transportation Systems at the German
Aerospace Centre (DLR) that handles the micromobility level including road
interactions such as car-following models, traffic light logic, or overtaking
models. Among its various features one can cite:

• The ability to import realistic maps in various popular formats
• A traffic demand approach for the specification of individual vehicle

journeys
• A state of the art and efficient microscopic simulation engine for car-

following models, lane change, and intersection management
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• A variety of global and local (vehicle-based or edge-based) simulation
outputs that allow fine-grained statistics

• A standardized Application Programming Interface (API) through a net-
work interface that permits to drive the tool from another program with
a wide range of details

This last feature is very important as it allows bidirectional interaction
with a network simulator.

4.4 CONCLUSION

The aim of this chapter was to provide the reader with basic yet sufficient
knowledge about the issues related to mobile network simulation. First, we
presented the waves propagation physical phenomena and the main existing
techniques to model them, as well as some of the most well-known network
simulators. Then, we focused on mobility simulation, describing the most
well-known mobility models in the literature and giving an overview of the
main existing mobility simulators.

As shown, physical constraints of radio wave propagation are the biggest
issue when wishing to achieve realistic simulation. This field has, however,
received wide attention for many years. Mostly dedicated to long-distance
transmission, the obtained results in terms of modeling apply more or
less successfully to medium- and short-range communication technologies
like Wi-Fi.

Realistic microsimulation of vehicle mobility was also shown as a chal-
lenging field of research where many problems remain unresolved.

When considering network and mobility simulators, only little attention
could be given to commercial solutions since documentation is hardly pub-
licly available. Thus a broader focus was put on free and open-source (mainly
academic) solutions.

The ns-3 network simulator as well as the SUMO traffic simulator have
been identified as favorable tool sets in order to achieve realistic mobile
network simulation, based on open-source solutions.
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5

PROPOSED OPTIMIZATION
FRAMEWORK

As introduced in Chapter 4, the development of real MANETs is nowadays
still an open issue. Thus, simulators are the most commonly used tech-
nique to emulate the behavior of the MANET for evaluating, validating,
and optimizing algorithms. It is possible to either use an existing general-
purpose simulator (e.g., ns-3) or use or conceive a custom simulator tailored
to specific purposes.

Emulating the real behavior of a mobile ad hoc network is a complex
task, not only are accurate network simulators required but also realistic
mobility generators. Solving optimization problems using realistic simula-
tions for MANETs can be computationally very expensive. However, there
might be some problems where such degree of realism in simulations is not
needed, for example, the network model is not needed. Thus, depending on
the needs of the problem tackled, we differentiate between high accuracy and
computationally demanding simulations or low accuracy but fast simulation.

Evolutionary Algorithms for Mobile Ad Hoc Networks, First Edition. Bernabé Dorronsoro,
Patricia Ruiz, Grégoire Danoy, Yoann Pigné, and Pascal Bouvry.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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We introduce in this chapter the optimization framework that we used for
all the experiments presented in this book. It presents a simple modular archi-
tecture that integrates all the required components to solve an optimization
problem related to mobile ad hoc networks. This framework can also be used
to ease the early stages of the design and development of an algorithm in
mobile ad hoc networks because the optimization module is just a component
that might be unplugged if not needed.

We present in Section 5.1 the architecture of the proposed optimization
framework. Section 5.2 contains descriptions of all the optimization algo-
rithms used in the book, while the simulators we adopted are highlighted in
Section 5.3. We summarize in Section 5.4 the experimental setup that we
followed in all chapters. Finally, Section 5.5 concludes the chapter.

5.1 ARCHITECTURE

This section describes the framework we propose for the optimization of
problems related to mobile ad hoc networks. Its design is outlined in Fig. 5.1.
As can be seen, it is composed of different modules that can be easily
plugged in or unplugged, according to the user’s needs. To work with such
a framework, we first need to select the modules that are required for our
experimentation and then define the contents of each one.

First, we need to define the optimization problem we want to solve, which
must be modeled by a function. This function (usually called the fitness func-
tion) quantifies the quality of any potential solution, and it is used to guide
the search during the optimization process. Additionally, it should ideally
reflect to what extent one solution is better than another. Therefore, it must

Mobility
model

Monitoring
tools

ExperimentsSimulator
Optimization

problem
Optimization

algorithm

Figure 5.1. Design of the proposed framework.
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be carefully defined in order to get good results. As we mentioned before, we
rely on simulators to evaluate the quality of potential solutions.

In order to evaluate a solution, the optimization problem relies on simula-
tors. Either network or mobility simulators, or both, might be required by the
optimization problem in the simulator module. In the latter case, they must be
able to interact. The network simulator may need an accurate mobility model to
perform realistic simulations. Additionally, in some cases it is required that the
network simulator be able to influence the mobility of devices. For instance,
imagine the case of a VANET in which vehicles dynamically change their
routes according to some messages they receive from the network.

The mobility model module contains information about the different mobil-
ity patterns that nodes must follow. This depends on the type of network
(sensor, vehicular, etc.) and the environment that need to be studied. The
mobility model must be very accurate in order to perform realistic simulations.

In the experiments module the use we want to study is specified. Usually,
the configuration parameters influence the behavior of the algorithm to be
optimized, for example, the number of nodes composing the network or the
size of the simulation area.

Once the problem to optimize is defined, we need to set the optimiza-
tion algorithm to tackle it. The choice of the optimization algorithm will
highly depend on the problem to solve. If it is an NP-hard problem (i.e., no
algorithm exists that can solve it in polynomial time), then we must rely on
greedy algorithms, heuristics, or better, metaheuristics. In other cases, exact
approaches are the most appropriate ones. Then, the algorithm to use will
depend on the nature of the problem: if it is combinatorial or continuous,
single- or multi-objective, epistatic, multimodal, and so forth. The literature
must be consulted in order to choose an appropriate optimization algorithm
for the problem at hand. Through out this book, we give some hints to help
in this choice.

Finally, we require some monitoring tools that take the output of the sim-
ulation and process it for the optimization algorithm. For instance, in the
case of using stochastic simulators, we can not rely on the results of a sin-
gle simulation run. We, therefore, need to perform a number of independent
simulations for a given solution and compute from all the results one sin-
gle fitness value that will be used by the optimization algorithm to guide the
search. In this case, the monitoring tool will be in charge of performing the
independent simulations, process the obtained results, and report the fitness
value to the optimization algorithm.

Next, we will describe the optimization algorithms used in this book
(Section 5.2), as well as the network and mobility simulators (Section 5.3),
and their experimental configurations (Section 5.4). The optimization prob-
lem description, as well as the monitoring tools used to feed the optimization
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algorithm from the simulations results, are specific to the handled problem,
and they will be described in every chapter.

5.2 OPTIMIZATION ALGORITHMS

We present in this section the algorithms used during the experiments per-
formed in the following chapters. In every chapter, panmictic, cellular, and
cooperative coevolutionary evolutionary algorithms are used. They represent
three different kinds of algorithms, and studying all of them will allow us to
extract some guidelines about the suitable algorithm to use for the studied
problem classes. That discussion is provided in Chapter 10.

5.2.1 Single-Objective Algorithms

We introduce in this section the four optimization algorithms we used for the
single-objective problems studied. They are two GAs with panmictic popula-
tion, namely, the steady-state GA (ssGA) and the generational GA (genGA),
and two others with structured populations: the cellular GA (cGA) and the
cooperative coevolutionary GA (CCGA).

5.2.1.1 Steady-State Genetic Algorithm. The steady-state GA
uses a centralized, also called panmictic, population. In panmictic algorithms,
any individual in the population can interact with any other one during the
breeding loop. The pseudocode of this algorithm is shown in Pseudocode 5.1.
It iterates a process (lines 4–10) in which two parents are selected from
the whole population with a given selection criterion (line 5), they are then
recombined (line 6), the obtained offsprings are mutated (line 7), and finally
they are evaluated (line 8), and one of them is inserted into the population
following a given criterion (line 9).

Pseudocode 5.1 Steady-State GA
1: //Algorithm parameters in ‘ssga’
2: InitializePopulation(ssga.pop)
3: Evaluation(ssga.pop)
4: while ! StopCondition() do
5: parents←Selection(ssga.Pop);
6: offspring←Recombination(ssga.Pc,parents);
7: offspring←Mutation(ssga.Pm,offspring);
8: Evaluation(offspring);
9: Add(offspring,ssga.Pop);

10: end while
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As can be seen in the pseudocode of the algorithm, new individuals gen-
erated during the evolution are directly inserted into the current population.
Therefore, it is a (μ+1)-GA, meaning that the population is asynchronously
being updated with the newly generated individuals.

5.2.1.2 Generational Genetic Algorithm. As the ssGA, the gen-
erational GA (genGA) works on a panmictic population. The difference
between them lies in the way in which the population is updated with the
offspring solutions. While for the ssGA new solutions are inserted into
the population just after being evaluated, in the case of genGA the whole
population is updated at the same time. Therefore, it is a (μ+λ)-GA, with
μ = λ.

The gGA pseudocode is given in Pseudocode 5.2. As can be seen, it is
similar to the ssGA, but offspring solutions are inserted into an auxiliary
population of the same size as the main one (line 11). Then, after the auxiliary
population is filled with offspring individuals, it becomes the main population
for the next generation, typically including some elitist solutions from the
previous generation (line 13).

Pseudocode 5.2 Generational GA
1: //Algorithm parameters in ‘genga’
2: InitializePopulation(genga.pop)
3: Evaluation(genga.pop)
4: while ! StopCondition() do
5: // Perform one generation
6: for iterator ← 1 to gen.popSize do
7: parents←Selection(genga.Pop);
8: offspring←Recombination(genga.Pc,parents);
9: offspring←Mutation(genga.Pm,offspring);

10: Evaluation(offspring);
11: Add(offspring,genga.AuxPop);
12: end for
13: genga.Pop←ReplaceWithElitism

(genga.Pop,genga.AuxPop);
14: end while

5.2.1.3 Cellular Genetic Algorithm. Cellular genetic algorithms
(cGAs) [5] are a kind of GA with a structured population in which individuals
are spread in a (usually) two-dimensional toroidal mesh, and they are
only allowed to interact with their neighbors. As an example, we show in
Fig. 5.2 the disposition of the individuals in the population of a cGA, the
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Figure 5.2. cGA with 5 × 5 population and C9 neighborhood.

neighborhood of the center individual (shaded), and of another individual far
from the center, in the upper left corner (dashed line).

A canonical cGA follows the pseudocode included in the algorithm shown
in Pseudocode 5.3. In this basic cGA, the population is usually structured in
a regular grid of d dimensions (d = 1, 2, 3), and a neighborhood is defined
on it. The algorithm iteratively considers as current each individual in the
grid (line 5), and individuals may only interact with individuals belonging
to their neighborhood (line 6), so parents are chosen among the neighbors
(line 7) with a given criterion. Crossover and mutation operators are applied
to the individuals in lines 8 and 9, with probabilities Pc and Pm, respectively.
Afterward, the algorithm computes the fitness value of the new offspring indi-
vidual (or individuals) (line 10) and inserts it (or one of them) instead of the
current individual in the population (line 11) following a given replacement
policy. This loop is repeated until a termination condition is met (line 4).

Pseudocode 5.3 Canonical cGA
1: //Algorithm parameters in ‘cga’
2: InitializePopulation(cga.pop)
3: Evaluation(cga.pop)
4: while ! StopCondition() do
5: for individual ← 1 to cga.popSize do
6: n_list←Get_Neighborhood

(cga,position(individual));
7: parents←Selection(n_list);
8: offspring←Recombination(cga.Pc,parents);
9: offspring←Mutation(cga.Pm,offspring);

10: Evaluation(offspring);
11: Add(position(individual),offspring,cga);
12: end for
13: end while
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L5 L9 C13 C21 C25C9

Figure 5.3. Typical neighborhood structures used in cGAs.

Thanks to the limited interactions given by the population topology, some
isolation is introduced between distant individuals in the population. The fur-
ther two individuals are from each other, the longer it would take for them
to receive any information from the other. The overlapping neighborhoods
allow for a smooth diffusion of information throughout the population. The
effect is that cellular GAs perform a slower convergence with respect to
ssGA, maintaining a higher diversity of solutions in the population. This
will allow cGAs to have a better chance of escaping from local optima in
which other algorithms performing faster convergence, as the ssGA, may get
trapped.

The main neighborhood structures typically used in cGAs are shown in
Figure 5.3 in growing size order, according to the radius metric [7]. The larger
the neighborhood radius and the smaller the population radius, the faster the
information will be spread throughout the population [6].

5.2.1.4 Cooperative Coevolutionary Genetic Algorithm. In
addition to the cellular model, there is another common way for structur-
ing the population of GAs. It consists in splitting the whole population into
several subpopulations in which isolated GAs are evolving. These subpopu-
lations exchange some information among them during the run. We study in
this book an algorithm following this model, namely CCGA, a cooperative
coevolutionary GA.

The main idea behind coevolutionary algorithms is to consider the coevo-
lution of subpopulations of individuals representing specific parts of the
global solution, instead of considering a population of similar individuals
representing a global solution, like classical genetic algorithms do. The qual-
ity of this kind of algorithm has been reported in a large number of studies
in the literature. As an example, two different coevolutionary GAs were
applied in [32] on a number of well-known test functions, and they were
demonstrated to clearly outperform a sequential GA. Similar conclusions
were obtained in [10] for the problem of overcoming network partitioning
and improving its connectivity in MANETs using bypass links.

Cooperative (also called symbiotic) coevolutionary genetic algorithms
(CCGA) involve a number of independently evolving species that together
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Pseudocode 5.4 Cooperative Coevolutionary GA
1: InitializePopulations(ccga.pop)
2: for all speciess do
3: Evaluation(ccga.pops)
4: ShareBestLocal(ccga.pops)
5: end for
6: while !StopCondition() do
7: for all speciess do
8: parents ← Selection(ccga.pops)
9: offspring ← Recombination(ccga.pops, parents)

10: offspring ← Mutation(ccga.pops, offspring)
11: Evaluation(ccga.pops)
12: ShareBestLocal(ccga.pops)
13: end for
14: end while

form complex structures, well-suited to solve a problem (see Pseudocode
5.4). The fitness of an individual depends on its ability to collaborate
with individuals from other species. In this way, the evolutionary pressure
stemming from the difficulty of the problem favors the development of coop-
erative strategies and individuals. The CCGA considered here is based on the
model proposed by Potter and De Jong [29] in which a number of populations
explore different decompositions of the problem, as shown in Fig. 5.4. In this
system, each species represents a subcomponent of a potential solution. Com-
plete solutions are obtained by assembling representative members of each
of the species (populations). The fitness of each individual depends on the
quality of (some of) the complete solutions it participated in, thus measuring
how well it cooperates to solve the problem. The evolution of each species is
controlled by a separate, independent, evolutionary algorithm. In the initial
generation, individuals from a given subpopulation are matched with ran-
domly chosen individuals from all other subpopulations. A fitness for each
individual is evaluated (line 3), and the best individual in each subpopula-
tion is found (line 4). The process of cooperative coevolution starts from the
next generation. For this purpose, in each generation a cycle of operations
is repeated in a round-robin fashion (lines 8–12). Only one current subpop-
ulation is active in a cycle, while the other subpopulations are frozen. All
individuals from the active subpopulation are matched with the best values of
frozen subpopulations. When the evolutionary process is completed, a com-
position of the best individuals from each subpopulation represents a solution
of a problem.
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Solution construction

Population Population
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dν1

dν3
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Solution construction

Solution construction

Figure 5.4. In CCGAs, every population shares with the other coevolving populations its

best partial solution. The partial solutions are evaluated by building complete solutions

with the best partial solutions of the other subpopulations.

5.2.2 Multi-Objective Algorithms

The multi-objective (MO) algorithms used for the experiments in this
book are described in Sections 5.2.2.1–5.2.2.3. They are the well-known
NSGA-II algorithm, CellDE, a cellular differential evolution algorithm for
multi-objective optimization, and CCNSGA-II, a multi-objective cooperative
coevolutionary version of NSGA-II.

5.2.2.1 Nondominated Sorting Genetic Algorithm. The
NSGA-II [12] algorithm is, undoubtedly, the reference MO algorithm. Even
when nowadays better MO algorithms exist, NSGA-II is still the most
referenced one, probably because of its simplicity and good operators and
components, adopted by a large number of other MO algorithms.

Pseudocode 5.5 gives the code for NSGA-II. NSGA-II does not implement
an external archive of nondominated solutions, but the population itself keeps
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Pseudocode 5.5 Nondominated Sorting GA-II
1: //Algorithm parameters in ‘nsga’
2: InitializePopulation(nsga.pop);
3: Evaluation(nsga.pop);
4: while ! StopCondition() do
5: for index ← 1 to nsga.popSize/2 do
6: parents←SelectParents(nsga.pop);
7: children←Crossover(nsga.Pc,parents);
8: children←Mutate(nsga.Pm,children);
9: offspringPop←Add(children);

10: end for
11: Evaluation(offspringPop);
12: union←Merge(nsga.pop, offspringPop);
13: fronts←SortFronts(union);
14: (Pop’, lastFront)←GetBestCompleteFronts(fronts);
15: if size(nextPop) < nsga.popsize then
16: Pop’←BestAccToCrowding(lastFront,

nsga.popsize-size(Pop’));
17: end if
18: end while

the best nondominated solutions found so far. The algorithm starts by gener-
ating an initial random population and evaluating it (lines 2 and 3). Then, it
enters in the main loop that evolves the population. It starts by generating a
second population of the same size as the main one. It is done by selecting
two parents (line 6) by binary tournament based on dominance and crowding
distance (in the case the two selected solutions are nondominated), apply-
ing the recombination operator (typically SBX [12], standing for simulated
binary crossover) to generate two new solutions (line 7), which are mutated in
line 8 (typically using polynomial mutation [12]) and added to the offspring
population (line 9). The number of times this cycle (lines 5–10) is repeated
is the population size divided by 2, thus generating the new population with
the same size as the main one. This new population is then evaluated (line
11) and merged with the main population (line 12). Now, the algorithm must
discard half of the solutions from the merged population to generate the pop-
ulation for the next generation. This is done by selecting the best solutions
according to ranking and crowding, in that order. Concretely, ranking con-
sists of ordering solutions according to the dominance level into different
fronts (line 13). The first front is composed of the nondominated solutions
in the merged population. Then, these solutions in the first front are removed
from the merged population, and the nondominated ones of the remaining
solutions compose the second front. The algorithm proceeds to iterate like
this until all solutions are classified. To build the new population for the next
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generation, the algorithm adds those solutions in the first front until the pop-
ulation is full or adding a front would exceed the population size (line 14).
In the latter case (lines 15–17), the best solutions are selected from the latter
front according to crowding distance (i.e., those solutions that are more iso-
lated in the front) to complete the population. The process is repeated until
the termination condition is met (lines 4–18).

5.2.2.2 CellDE. CellDE [15] is a multi-objective evolutionary algo-
rithm (MOEA) for three-objective problems. It is a hybrid of MOCell [26],
a cellular MO algorithm, and DE [30]. Therefore, it implements a cellu-
lar population topology. The pseudocode of CellDE is given in Pseudocode
5.6. As can be seen, it starts by creating and evaluating a random initial
solution (lines 2 and 3) and building an initial empty archive of nondomi-
nated solutions (line 4). Then, the algorithm iterates to evolve the population
until a given termination condition is met (lines 5–13). In every iteration, all
individuals are evolved by selecting two different parents (line 8) from the
neighborhood of the current individual being evolved and applying a standard
differential evolution operator described later (line 9). The resulting offspring
individual is then evaluated, and it replaces the current individual in the pop-
ulation if the current one does not dominate it (all individuals are updated
at the same time, in a synchronous way). Then, the offspring is inserted into
the archive following the strength pareto evolutionary algorithm 2 (SPEA2)

Pseudocode 5.6 CellDE Algorithm
1: //Algorithm parameters in ‘cellde’
2: InitialisePopulation(cellde.pop)
3: Evaluation(cellde.pop)
4: CreateFront(cellde.front)
5: while ! StopCondition() do
6: for individual ← 1 to cellde.popSize do
7: n_list←Get_Neighborhood(cellde,

position(individual));
8: parents←SelectDifferentParents(n_list);
9: offspring←DifferentialEvolution(parents,

individual);
10: Evaluation(offspring);
11: Add(position(individual),offspring,cellde);
12: AddToArchive(individual);
13: end for
14: PopFeedback();
15: end while
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density estimator. Finally, some randomly selected solutions in the archive
are moved back at random positions in the population.

The differential evolution operator used in CellDE is defined by
Equation (5.1), where u is the offspring, i is the individual index, j is the
variable position in the representation, x is the current individual, and p1 and
p2 are the two parents. Variables F and CR are two control parameters spe-
cific to DE, and they represent the scaling factor for mutation and the control
of the recombination operator, respectively.

ui,j =

{
xr0,j + F(xp1,j − xp2,j) if rand(0, 1) ≤ CR or j = jrand
xi,j otherwise

. (5.1)

5.2.2.3 Cooperative Coevolutionary Nondominated Sorting
Genetic Algorithm. We present in this section the design of the
CCNSGA-II algorithm. It was presented and validated versus other multi-
objective algorithms from the state of the art on continuous functions and on
a scheduling problem in [13] and [14], respectively.

As in single-objective CCGAs, every subpopulation is focused on the opti-
mization of a subset of the problem variables, and a multi-objective GA is
run in every subpopulation to evolve the population of solutions to the cor-
responding subproblem. Every subpopulation will locally look for its own
approximation to the Pareto front. At the end of the run, the obtained solu-
tion sets of every subpopulation are merged into a single one that will be
the output of the CCNSGA-II. Therefore, the Pareto approximations in every
subpopulation are obtained in a decentralized way.

The merging process of the solution sets, found by all the subpopula-
tions, is achieved by choosing one of them and then adding to it all the
solutions from the others. In case the resulting approximation set is full, a
policy based on the crowding distance [12] is used to remove the solution
that contributes less to promote diversity. This scheme performs well when
solving bidimensional problems, as the ones studied in this work.

Besides the archives management in the subpopulations, another differ-
ence of the multi-objective design with respect to the single-objective one
is the way in which complete solutions are built for evaluation. As previ-
ously mentioned, in the case of single-objective optimization, the evaluation
of a partial solution in a subpopulation is achieved by composing a complete
solution with the best partial solutions from all the other subpopulations.
In the case of multi-objective optimization, in most cases there will be
more than a single best solution, that is, a set of nondominated ones. One
could think on solving the problem by randomly choosing one of the non-
dominated solutions in every subpopulation, as is done in other previous
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Figure 5.5. In our CCNSGA-II, every population (e.g., P1) shares with the other coevolving

populations (P2 and P3) its four best partial solutions (bdv11 to bdv14). The partial solutions

are evaluated by building complete solutions with random partial solutions of the other

two subpopulations (bdv2X and bdv3Y).

works [9, 19, 21, 22, 25, 35]. However, it does not provide the different
subpopulations with enough diversity to get accurate Pareto front approxima-
tions, as is suggested in [14]. It therefore highly restricts the search performed
by the algorithm, resulting in solution sets with poor accuracy and diversity.

In CCNSGA-II, every subpopulation shares a number Ns of solutions ran-
domly chosen from the nondominated ones found so far. An example of how
one subpopulation, P1, shares its best solutions with the others is shown in
Fig. 5.5, where Ns = 4. If the local Pareto front contains less than Ns non-
dominated solutions, the set of Ns solutions is completed by other individuals
randomly taken from the rest of the population.

Another consequence of sharing multiple partial solutions is the high num-
ber of possible combinations available to build complete solutions. Indeed,
for a given subpopulation, Ns partial solutions are received from every other
subpopulation, therefore, there are NNP−1

s possible combinations, where NP
is the number of subpopulations. Building and evaluating all the possible
solutions would be extremely costly. In CCNSGA-II, a complete solution is
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Pseudocode 5.7 CCNSGAII Algorithm
1: InitialisePopulations(ccnsgaII.pop)
2: for all speciess do
3: Evaluation(ccnsgaII.pops)
4: Share20BestLocal(ccnsgaII.pops)
5: end for
6: while ! StopCondition() do
7: for all speciess do
8: NSGAIIGeneration(Pops(gen))
9: Evaluation(ccnsgaII.pops)

10: Share20BestLocal(ccnsgaII.pops)
11: end for
12: end while
13: mergeSubpopulations( ) // Generate the final Pareto

front approximation

built for every solution in subpopulation s by using a random partial solution
from every other island bdvij (i is the identifier of the population the solution
belongs to, and j is the index of the solution in the shared list with the Ns
partial solutions). An example is provided in Fig. 5.5 on how population P1
builds its complete solutions with bdv2X and bdv3Y , ∀X, Y ∈ {1, 2, 3, 4}.

Similar to single-objective CCGAs, the CCNSGA-II is easily paralleliz-
able since it is composed of several subpopulations evolved by independent
instances of NSGA-II. In order to improve the computational performance
of CCNSGA-II, we designed a parallel implementation for multicore archi-
tectures in [14]. One thread is created per subpopulation, and a few syn-
chronization points are kept in order to reproduce exactly the same behavior
as the sequential algorithm. Asynchronous communications could also be
implemented, as we proposed in [27].

The proposed CCNSGA-II implementation is shown in Pseudocode 5.7.
The different subpopulations are initialized in line 1. This initialization pro-
cess creates new subpopulations of random partial solutions. After that,
partial solutions are evaluated using random partial solutions from the other
subpopulations (line 3). Then, each subpopulation shares 20 partial solutions,
randomly selected from the best local ones (line 4) [14], unlike the single-
objective CCEA presented in Section 5.2.1.4 in which each species shares
only the local best solution. The algorithm enters now in its main loop (the
cooperative loop), from which it will not exit until the termination criterion is
met. In every iteration of the loop, the subpopulations perform one generation
of NSGA-II in parallel (line 8) and then evaluate their partial solutions using
one random partial solution from those shared by the other species (line 9)
and publish their best local partial solutions (line 10). At the end, we build
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a single Pareto front approximation from the solutions in the local Pareto
front approximations in every subpopulation (line 13). This final Pareto front
approximation will be the output of the algorithm.

5.3 SIMULATORS

We used for the experiments carried out for this book two advanced net-
work and mobility simulators. After surveying the related literature (see
Chapter 4), we decided to rely on ns-3 for the simulation of wireless com-
munication networks and SUMO for generating realistic mobility traces in
real scenarios. They are described next. Less accurate but faster approaches
might also be needed to model both mobility and network communications.
Such an approach based on graphs is also presented.

5.3.1 Network Simulator: ns-3

The strong concern for realism present in the ns-3 project design, as described
in Chapter 4, guided us on the decision to choose it for some of the developed
works in this book.

The architecture of ns-3 is split into independent modules that can be
exposed in two parts. The core part that gathers the general behavior allow-
ing the discrete event scheduling, and the simulation part that describes and
holds the components of a scenario. We present these two parts and then go
through some specific implementations that are interesting for our concerns.

The Core. This central part, independent of any kind of network being
simulated, gathers the commonly needed components. The discrete event
simulation core handles and schedules the events created by the user in its
scenario.

The Object Model. On top of the core discrete event model lies the
actual networking one. It is an object-oriented model where components
share as few dependencies as possible, in order to maximize interoperabil-
ity and code reuse. The communication between the various modules is
ensured by a callback mechanism. The main entities of this object model
are presented next:

• Node mimics a communicating device. Other components are plugged
to it like network devices, applications, or mobility models.
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Figure 5.6. Overview of the ns-3 object model.

• Device represents a physical networking interface. It mostly models the
behavior of the driver of a real network interface.

• Channel is the way the physical medium is modeled. This object holds
all the nonsoftware part of the network, from electronic transmission in
wires to electromagnetic wave propagation in the air. The device model
is tightly linked to the channel since network interfaces depend on the
type of physical medium used.

• Socket is very similar to a real socket. It is the logical medium through
which data go from upper layers to lower layers and the other way
around.

• Application is at the top of the communication stack. Communication
starts from applications that initiate networking activity.

Figure 5.6 illustrates the basic communication model between two nodes.
Data transmissions start from applications, and they follow the network
stack through sockets. When reaching the physical layer, data is handled by
the channel object as a physical phenomenon. All the upper layers are part of
the nodes.

Some Existing Implementations. The simulator implements a variety
of models, protocols, and devices. We will here only provide a brief overview
of the models that are useful to the problems tackled in this book.

We first focus on the wireless implementation. It implements the IEEE
802.11 [2] set of standards. These standards span over the two first layers of
the OSI model, the PHY and the MAC. According to the ns-3 object model,
802.11 appears both in the device model (MAC layer) and the channel model
(PHY layer).
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• The PHY layer models both the physical states of the device (TX,
SYNC, CCA_BUSY, and IDLE) and the physical transmission of the
signal through the air. In this part, the propagation models are gathered,
that is, Friis, two-ray ground, log-distance, Nakagami, Okumura-Hata,
ITU indoor/outdoor, and Kun 2.6 GHz. All these models are described
in Chapter . Some basic (constant speed and random) propagation delays
are also implemented.

• The MAC layer implements the collision avoidance algorithm, as the
Distributed Coordination Function (DCF). It handles infrastructure and
ad hoc modes with beaconing, probing, and association mechanisms.

One may also stress the implementation of acknowledged routing proto-
cols (e.g., Ad hoc On-Demand Distance Vector (AODV), Optimized Link
State Routing (OLSR), Destination-Sequenced Distance Vector (DSDV)), as
well as an energy consumption framework.

Another important feature is the ability for the simulator to handle mobil-
ity of devices. It has an implementation for the common artificial mobility
models (constant velocity, constant acceleration, Gauss–Markov, random
position, random walk, random waypoint, and steady-state random way-
point). Nodes may also have no specified mobility and can be driven by an
external application. The following section is dedicated to the study of the
SUMO mobility model, which can be used together with ns-3.

5.3.2 Mobility Simulator: SUMO

The development of the project started in 2001 with a first public release
in 2002. Even if main funding and the core team come from the German
Aerospace Centre (DLR), a large open-source community also con-
tributed. Mostly universities (Erlangen-Nürnberg, Innsbruck, Berlin, Lübeck,
Cologne, Munich, Wroclaw, Bombay, Turin) are participants to the project,
which is a good indicator of SUMO’s popularity in academia.

As the main design guideline is for the project to be fast and portable,
the code is only composed of standard C++ with no extra platform-specific
dependencies. Dealing with the fast guideline, SUMO does not rely on any
graphical interface. Tools in their basic usage are command-line-based only,
and configuration is done through XML files. Although there exists a fast and
useful graphical version of SUMO, it is not necessary.

In order to start using SUMO, at least two sources of information are
needed: the definition of a road network and some traffic demand related to
this network. Road networks are passed to SUMO through an XML file with
a dedicated format. There are two ways to get such a file: by generating it with
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the netgen tool or by converting it from another file format with netconvert.
The tool can read and translate a number of formats from other simulators
(e.g., VISUM, VISSIM, openDRIVE, MATsim) or from database formats
(e.g., ArcView’s shapefiles, OpenStreatMap’s OSM files). When it comes to
traffic demand, the format is yet another XML file with a simple specification
that can be created by other applications. SUMO provides a number of ways
to generate traffic demand depending on the input data source used.

5.3.2.1 The Architecture. There are three main components in the
architecture of SUMO: the network, vehicles, and the traffic demand, which
defines where and when vehicles move in the network.

Network. A SUMO network contains the geographical information
about roads as well as other useful information. From a graph theory point
of view, roads are edges and intersections are vertices, but this is not enough
to gather all the useful road network information. Some other logic is thus
used where roads are still edges (one for each direction of the road) and
intersections are named junctions. Some extra data is used to encode the pos-
sibility to go from one edge to another with connections that indicate to what
other edges one is connected. Edges have attributes that indicate their nature
(type of road and type of traffic allowed). They are composed of lanes on
which vehicles drive. Each lane can have an attribute that indicates the maxi-
mum allowed speed on it. Junctions mainly hold the intersection priority rule
attributes. If a junction has to be controlled by a traffic light, it will bear the
identifier of that device. Traffic lights can also be defined and identified in
the network file with an associated logic.

Vehicles. They have a unique identifier. Each one has a set of attributes
(directly specified or specified through a vehicle type). The color, the length,
the maximum speed, the acceleration, the deceleration, and a CO2 profile
can be given. Since vehicles move in the network, they also hold microscopic
mobility models. In SUMO, vehicles have two models: a car-following model
(a variant of the Krauss model [24]) and a lane change model (originally
designed by SUMO).

Traffic Demand. One single traffic demand is a set of parameters that
gives, for only one vehicle, its trip over the network at a given time. A trip is
identified by at least:

• A vehicle ID
• Optionally, a vehicle type
• An initial position (the ID of an edge on the network)
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• A start date in simulation time (in seconds)
• A destination node ID

Depending on the use case, a demand may also be identified with a route,
which is a list of adjacent edges (IDs in the network) starting from the initial
position of the vehicle and ending at its destination.

Demand files can be produced by an external application since traffic
demand requires external information, like socioeconomic schemes or popu-
lation densities. SUMO, however, provides a set of tools to deal with common
sources of information and finally produces the necessary traffic demand files.

5.3.2.2 TraCI, the Bidirectional Interaction. One of the most use-
ful extra features of the project is probably its ability to interact with other
tools. TraCI (traffic control interface) allows remote control of a running
SUMO simulation. The interface uses a TCP client/server architecture so that
any network-capable application can interact with it. There is no constraint
in terms of language since the communication is done through the network
protocol. Moreover, the other program can run on another machine. The
only constraint is that a client has to be implemented in the other program’s
language [1].

The main use case when considering mobile networks is to couple the
traffic simulator with a network simulation. When dealing with intelligent
transportation systems (ITS), such coupling becomes an essential need.
Indeed, simulating traffic management applications, such as traffic con-
gestion avoidance, requires to modify vehicles mobility at runtime (e.g.,
changing the predefined route of a vehicle if a congestion appears). On
the one hand, the traffic simulator provides the mobility of the vehicles
(position, direction, and speed) while the network simulator computes the
corresponding wireless network according to the given position and mobility.
On the other hand, the network application may decide a change in the
route of a vehicle and ask the traffic simulation to modify this vehicle
mobility. Figure 5.7 illustrates this bidirectional interaction between mobility
simulation and wireless network simulation.

To achieve this integration and allow online simulation, some middleware
is needed.

• TraNS performed the integration of ns-2 with SUMO. It was probably
the first middleware proposed but is not maintained anymore.

• Veins [34] performs the integration with OMNeT++. It actually does
more than a simple middleware integration since the authors claim to
have proposed the first complete implementation on a simulator of the
IEEE 802.11p stack.
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Figure 5.7. Online simulation with a bidirectional interaction between mobility and

wireless network.

• In the iTETRIS project [31], an open-source system called iCS (iTETRIS
control system) was proposed to integrate SUMO with ns-3.

• Another integration tool with ns-3 is the OVNIS framework [28]. It
offers the same fundamental functionality as iCS but adds an adapta-
tion of ns-3 channel for the simulation of wide-area environments. This
feature reduces the computation complexity in time inherent to the clas-
sical channel behavior, where all nodes in the network are considered for
each packet, that is, O(n2).

5.3.3 Graph-Based Simulations

When the accuracy of a realistic simulator is not mandatory, then it is a com-
mon usage in the field of mobile networks to rely on the analogy of graphs
and dynamic graphs as a way to model both the mobility of stations and the
connection network. Nodes of such graphs are stations evolving in a two-
or three-dimensional environment, and edges between nodes represent com-
munication links no matter if wired or wireless connections are considered.
The graph analogy does not provide the accuracy and realism that dedicated
networks and mobility simulators offer, however, graphs are abstractions that
provide rapid modeling and typically run faster than realistic simulators.

In this book, when the constraint of realism gets mitigated by computation
time constraints, then the tackled problems are solved using such graph-based
simulations. More precisely, we here rely on GraphStream [3, 17], a soft-
ware library written in Java for the modeling and manipulation of dynamic
graphs. The library design is based on the concept of event-driven graph
dynamics. It is generic and application independent, thus easily adaptable
to any application domain. Moreover, since GraphStream is written in Java
the interconnection with the optimization framework (also Java based) is
made easily.
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GraphStream handles static and most importantly dynamic graphs (i.e.,
graphs that evolve over time). If nodes are moving stations, and edges are
volatile communications, then the resulting graph is highly dynamic with
nodes and edges being added, modified, or removed. Information related to
nodes and edges (called attributes) are dynamic as well. The fact that a mod-
ification appears in the graph is called an event, and thus, a dynamic graph is
an ordered list or a stream of such graph events.

There are various ways to consider and manipulate these streams of events.
One interesting feature is that such streams may be produced by another
tool or simulator. On the contrary, output streams produced by GraphStream
may be injected in another tool. The simplest way to enable interconnection
between various simulators is an offline link with the help of files.

When an online connection is necessary, it is possible to connect Graph-
Stream in real time with another tool so that it can send to it, or receive from it,
some graph events. A network protocol, NetStream [4], allows the transport
of graph events between tools, which can be written in different languages and
not necessarily located on the same machine. Indeed, realistic simulators like
SUMO or ns-3 are easily connected to GraphStream by this mean.

5.4 EXPERIMENTAL SETUP

We describe in this section the setup we adopted in all our experiments for
this book, unless the opposite is mentioned in the corresponding chapter.

Our framework has been executed on the HPC facilities of the University
of Luxembourg http://hpc.uni.lu/, specifically, on the 2.26 GHz
Intel Xeon L5640 8 core processor nodes, having 24 GB random-access
memory (RAM). These nodes run Debian Linux version 6.0.5 (with kernel
2.6.32-5-amd64) and Java version 1.6.0_25.

In Table 5.1, we show the generic parameters used for all the algorithms
in our experiments in this book. All of them have a single population of
100 individuals, except for the CCGA and CCNSGA-II algorithms, using
subpopulations of 100 individuals for each of the 8 islands used. The ter-
mination condition is achieving 10, 000 fitness function evaluations. The
recombination and mutation operators will be specified in every chapter since
they are dependent on the problem encoding. Recombination is applied with
probability pc = 1.0, while the probability for mutation is pm =1/chrom_
length.

The two parents are selected using a binary tournament, except for the
cellular algorithms, for which one of them is considered to be the current
individual itself. A specific parameter of this cellular model is the neighbor-
hood. We used C9 (9 closest individuals measured in Manhattan distance; see



�

�

“Bouvry-Drv-1” — 2014/4/2 — 14:25 — page 128 — #22
�

�

�

�

�

�

128 PROPOSED OPTIMIZATION FRAMEWORK

TA B L E 5.1. Generic Parameters Used for the Studied
Algorithms

Population size 100 (ssGA, NSGAII)
10 × 10 (cGA, CellDE)
100× number of subpopulations
(CCGA, CCNSGAII)

Termination Condition 10, 000 function evaluations
Selection Binary tournament (BT)

Current individual + BT for cGA
Neighborhood C9 for cellular topologies
Crossover probability pc = 1.0
Mutation probability pm = 1/chrom_length

Fig. 5.2). In the case of CellDE, the same C9 neighborhood is used, and two
of the three parents are randomly selected from the neighborhood (forced to
be different) and the third one is the current individual itself, as suggested
in [15]. We adopt the original values proposed by the authors for the rest of
the parameters in NSGA-II, CellDE, and CCNSGA-II, with the exceptions
of those cases when the values are explicitly mentioned.

Single-objective experiments were conducted using the JCell framework
[5], a Java-based evolutionary optimization framework. Originally intro-
duced to work with cGAs, it also includes panmictic models (generational
and steady-state GA). The cooperative coevolutionary GA extension of
JCell was implemented by the authors. For the multi-objective experiments,
another Java-based framework for metaheuristics was used, jMetal [16]. Sim-
ilarly to JCell, the cooperative coevolutionary variants are not part of the
standard distribution and were implemented in jMetal by the authors.

In order to evaluate the quality of the Pareto front approximations pro-
vided by the MO algorithms, different metrics are typically used in the
literature. None of them is perfect, and it is normal to use several in the
comparison of the algorithms in the literature. In this book, we adopt three
common metrics from the literature, measuring the accuracy of the Pareto
front approximations, their diversity, and both of them at the same time.
These quality indicators are the unary additive epsilon (I1

ε+), SPREAD (�),
and hypervolume (HV):

• Hypervolume (HV) [37]. Calculates the m-dimensional volume (in the
objective space) covered by the solutions in the evaluated Pareto front Q
and a dominated reference point W. Mathematically, for each solution
i ∈ Q, a hypercube vi is constructed with the reference point W (e.g.,
constructed with a vector of worst objective function values) and the
solution i as the diagonal corners of the hypercube. Thereafter, a union
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of all hypercubes is found and its hypervolume is calculated, as shown
in Equation (5.2). Algorithms with the highest HV value perform best
as this metric takes its maximum value when all the solutions in the
evaluated Pareto front belong to the optimal one.

HV = volume

⎛
⎝

|Q|⋃

i=1

vi

⎞
⎠ . (5.2)

• SPREAD. This indicator [12] measures the extent of spread by the set of
computed solutions. It is defined as

� =
df + dl +

∑N−1
i=1

∣∣di − d̄
∣∣

df + dl + (N − 1)d̄
, (5.3)

where di is the Euclidean distance between consecutive solutions, d̄ is
the mean of these distances, and df and dl are the Euclidean distances to
the extreme solutions of the optimal Pareto front in the objective space.
This indicator takes a zero value for an ideal distribution, pointing out a
perfect spread of the solutions in the Pareto front.

• Unary Additive Epsilon (I1
ε+) Indicator [23]. Provides a measure of the

convergence, that is, of the distance to the optimal Pareto front. Given an
approximation set of a problem, S, the I1

ε+ indicator is a measure of the
smallest distance needed to translate every point in S so that it dom-
inates the true Pareto front of the problem S∗. More formally, given
e1 = (e1

1, . . . , e1
m) and e2 = (e2

1, . . . , e2
m), where m is the number of

objectives,

I1
ε+(S) = inf

ε∈R{∀e2 ∈ S∗∃e1 ∈ S : e1 ≺ε e2} (5.4)

where e1 ≺ε e2 if and only if ∀1 ≤ i ≤ m : e1
i < ε + e2

i .

Before applying these metrics, the evaluated Pareto front approximation is
normalized with the maximum and minimum values in the true Pareto front
for every objective. This is done to avoid some bias due to the (possible)
high differences in the order of magnitude of the different objectives. In the
case of the problems considered in this book, the optimal Pareto front is not
known. Therefore, we build a reference Pareto front by merging all the Pareto
front approximations found by all the tested algorithms in every independent
run into one single front. The crowding method is used to discard solutions
when the reference Pareto front is full. This method has been reported to be
appropriate for two- and three-objective problems [8, 11], as those considered
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TA B L E 5.2. Configuration of ns-3 for
the Simulations

Devices/km2 100–200–300
Speed [0, 2] m/s
Size of the area 500 m × 500 m
Default transmission power 16.02 dBm
Direction and speed change every 20 s
Simulation time 40 s

in this book. The reference Pareto front is then used to normalize the Pareto
front approximations found by the algorithms.

Regarding the experimental setup used for ns-3, the mobility model used
to emulate the movements of the devices is either the random walk (also
known as brownian motion mobility model [20]) for simulation of MANETs,
or SUMO for VANETs related problems. In random walk, nodes move with a
randomly chosen speed and direction during a fixed amount of time (20 sec-
onds in our case). After that, other random values for the speed and direction
are chosen. The simulation environment used is a square area of 500 m side,
and the transmission power of devices is set to 16.02 dBm. The speed of the
nodes can vary from 0 to 2 m/s (i.e., between 0 and 7.2 km/h).

We consider three different network densities. The first one is a sparse net-
work with 100 devices/km2, the second one has 200 devices/km2, and finally
the densest one with 300 devices/km2. All the configuration parameters are
summarized in Table 5.2.

Experiments requiring a lower level of accuracy have been conducted with
the dynamic graph library GraphStream in an offline fashion. The realistic
mobility of the nodes or the simulation environment (e.g., the road network)
were provided as inputs for the simulation. The parameter settings are quite
different and thus described in the corresponding experimental chapters.

Finally, in order to provide concluding results, we perform the Wilcoxon
unpaired signed-ranks test [18, 33, 36] to look for significant differences on
the results provided by the algorithms and protocols, compared pairwise. In
the case of MO optimization algorithms, the test is applied on the results
obtained by the quality indicators. This test is a nonparametric alternative to
the student’s t test. This method is used to check whether two data samplings
belong to different populations or not. Therefore, we can use it to compute
if there are statistically significant differences between the data reported by
two different algorithms after the independent runs. The null hypothesis for
this test is that the median difference between pairs of observations in the
underlying populations represented by the samples of results provided by the
algorithms is zero.
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In this book, we use the symbols �, �, and – to show existing significant
differences in the pairwise comparison of the algorithms according to the
Wilcoxon test. These symbols will be arranged in tables. Symbol � means
that the algorithm in that row is statistically better than the algorithm in the
corresponding column with 95% confidence level. On the contrary, � stands
for significantly worse results of the algorithm in that row compared to the
algorithm in the column. Finally, – indicates that no statistical differences
were found between the corresponding algorithms.

5.5 CONCLUSION

This chapter was dedicated to the description of the optimization framework
and the experimental setup that was used throughout all the experiments
reported in this book. The framework is generic enough to be suitable to the
needs of most designers interested on optimizing problems related to mobile
ad hoc networks.

All the single- and multi-objective optimization algorithms used have first
been presented. Network and mobility simulators have also been described,
considering two levels of accuracy: the selected high accuracy but compu-
tationally demanding simulation with ns-3 and SUMO, and low accuracy
but fast simulation with the GraphStream graph library. The configurations
adopted for all of them is given, as well as the method followed to statistically
compare the performance of algorithms and protocols.
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BROADCASTING PROTOCOL

One of the most important low-level operations in networking is broadcast-
ing, especially when dealing with unstructured MANETs. The reason is that,
due to the limited communication range of devices, together with their mobil-
ity, the topology of such networks may change quickly and in unpredictable
ways. This dynamical behavior constitutes one of the main obstacles for per-
forming efficient communications. Therefore, in this chapter we address the
optimization of the delayed flooding with cumulative neighbors (or DFCN
for short) broadcasting protocol [6]. DFCN is a smart broadcasting protocol
that reduces the number of forwarded messages with very low penalization on
the final coverage. This is achieved by dropping the message when a high per-
centage of the device’s neighbors has already received it. Additionally, once
the forwarding decision is taken, the device waits for an arbitrary amount of
time before performing the action, which is canceled in case another neighbor
forwards the message during this time.

Evolutionary Algorithms for Mobile Ad Hoc Networks, First Edition. Bernabé Dorronsoro,
Patricia Ruiz, Grégoire Danoy, Yoann Pigné, and Pascal Bouvry.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

135



�

�

“Bouvry-Drv-1” — 2014/3/22 — 14:27 — page 136 — #2
�

�

�

�

�

�

136 BROADCASTING PROTOCOL

The DFCN protocol was already optimized in a previous work [1] with
a simple multi-objective cellular GA, and using the custom Madhoc simula-
tor [5] for fitness evaluations. However, in this chapter we optimize it with
different types of more advanced highly efficient optimization techniques,
such as NSGA-II, CellDE, and CCNSGA-II (refer to Chapter 5 for details).
Additionally, the protocol has been implemented in the ns-3 simulator in
order to perform much more realistic simulations. Three different network
densities have been considered in this work.

Optimizing a broadcasting strategy implies multiple conflicting goals to
be satisfied at the same time, such as maximizing the number of devices
reached (coverage), minimizing the network use (bandwidth), minimizing
the duration of the process, and the like. In this work, we tackle these three
objectives, thus, we are facing a multi-objective optimization problem.

This chapter is structured as follows. Section 6.1 gives a description of
DFCN and defines the optimization problem we will tackle to enhance the
behavior of the protocol. Section 6.2 summarizes the comparison of the per-
formance of the considered evolutionary algorithms on this problem. Results
are later analyzed and discussed in Section 6.3. Finally, our main conclusions
are pointed out in Section 6.4.

6.1 THE PROBLEM

The problem we study in this chapter is to, given an input MANET, deter-
mine the most adequate parameters for the DFCN broadcasting strategy. In
Section 6.1.1 we first present DFCN [6]. Then, in Section 6.1.2 we define the
optimization problem we tackle to find good configurations of the protocol.

6.1.1 DFCN Protocol

Williams and Camp [14], as well as Stojmenovic and Wu [13], proposed
two of the most frequently referenced analysis of broadcasting protocols.
Williams and Camp [14] categorized the protocols into four families: sim-
ple flooding, probability-based methods, area-based methods, and neighbor
knowledge methods. In their proposal, Stojmenovic and Wu [13] state
that protocols can be classified according to their algorithmic nature —
determinism (no use of randomness), reliability (guarantee of full cover-
age) — or the information required by their execution (network information,
“hello” messages content, broadcast messages content). Similarly, Wu and
Lou [15] categorized protocols as centralized [9] and localized ones. On the
one hand, centralized protocols require a global or quasi-global knowledge
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of the network. They are hence not scalable. On the other hand, localized
protocols are those that require some knowledge of the network at only
1 or 2 hops.

Using the classifications presented here, DFCN [6] is a deterministic algo-
rithm, fully localized, which defines heuristics based on 1-hop information
(neighborknowledge).ThispermitsDFCNtoachievegreat scalability. “Hello”
messages interchanged by the nodes do not carry any additional information.
Only broadcast messages must embed the list of the node’s neighbors.

In order to be able to run the DFCN protocol, the following assumptions
must be met.

• Like many other neighbor-knowledge-based broadcasting protocols
(Flooding With Self-Pruning (FWSP) Scalable Broadcast Algorithm
(SBA), etc.) [8, 10], DFCN requires the knowledge of a 1-hop neighbor-
hood. This is obtained by the use of “hello” packets at a lower network
layer. The set of neighbors of the device s is named N(s).

• Each message m carries — embedded in its header — the set of IDs of
the 1-hop neighbors of its most recent sender.

• Each device maintains local information about all messages received.
Each instance of this local information consists of the following items:

˚ The ID of the message received

˚ The set of IDs of the devices that are known to have received the
message

˚ The decision of whether the message was forwarded or not
• DFCN requires the use of a random delay before possibly reemitting

a broadcast message m. This delay, called random assessment delay
(RAD), is intended to prevent collisions. More precisely, when a device
s emits a message m, all the devices in N(s) receive it at approximately
the same time. It is then likely that all of them forward m simultaneously,
and this simultaneity entails network collisions. The RAD aims at ran-
domly delaying the retransmission of m. As every device in N(s) waits
for the expiration of a different RAD before forwarding m, the risk of
collisions is hugely reduced.

DFCN is an event-driven algorithm that can be divided into three main
parts: the first two deal with the handling of outcoming events, which are (1)
new message reception and (2) detection of a new neighbor. The third part (3)
consists of the decision making for emission as a followup of one of the two
previous events. The behavior resulting from message reception is referred
to as reactive behavior; when a new neighbor is discovered, the behavior is
referred to as proactive behavior.
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Let s1 and s2 be two devices in the neighborhood of one another. When
s1 sends a packet to s2, it attaches to the packet the set N(s1). At recep-
tion, s2 hence knows that each device in N(s1) has likely received the packet.
The set of known devices that has potentially not yet received the packet is
then N(s2) − N(s1). If s2 reemits the packet, the effective number of devices
newly reached is maximized by the heuristic function: h(s2, s1) = |N(s2) −
N(s1)|.

In order to minimize the network use caused by a possible packet
re-emission, a message is forwarded only if the number of potentially reached
devices h(s2, s1) is greater than a given threshold. This threshold is a function
of the number of devices in the neighborhood (the local network density) of
the recipient device s2. It is written “threshold(n).” The decision made by s2
to reemit the packet received from s1 is defined by the Boolean function:

B(s2, s1) =

{
true h(s2, s1) ≥ threshold(n)

false otherwise.

If the threshold is exceeded, the recipient device s2 becomes an emitter in
turn. The message is effectively sent when the random delay (defined by the
RAD) expires. The threshold function, which allows DFCN to facilitate the
message rebroadcasting when the connectivity is low, depends on the size of
the neighborhood n, as given by

Threshold(n) =

{
1 n ≤ safeDensity
minGain ∗ n otherwise,

where safeDensity is the maximum number of neighbors for which the net-
work is considered to be sparse, thus, DFCN always rebroadcasts. minGain
is a parameter of DFCN used for computing the minimum threshold for for-
warding a message, that is, the ratio between the number of neighbors that
have not received the message and the total number of neighbors.

Each time a device s discovers a new neighbor, the RAD for all messages
is set to zero and, therefore, the messages are immediately candidates for
emission. If N(s) is greater than a given threshold, which we have called
proD, this behavior is disabled, so no action is undertaken on new neighbor
discovery.

6.1.2 Optimization Problem Definition

From the description of DFCN in the previous section, we identify the
following parameters to be tuned.
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minGain is the minimum gain for rebroadcasting. This is the most
important parameter for tuning DFCN since minimizing the band-
width should be highly dependent on the network density. It ranges
from 0.0 to 1.0.

lowerBoundRAD,upperBoundRAD define the RAD value (random
delay for rebroadcasting). The two parameters take values in the interval
[0.0, 10.0] seconds, and lowerBoundRAD ≤ upperBoundRAD.

proD is the maximum number of neighbors (proD ∈ [0, 100]) for which it
is still needed to use proactive behavior (i.e., reacting on new neighbors)
for promoting the dissemination in sparse networks.

safeDensity defines the maximum value of the local network density for
rebroadcasting all messages. It ranges from 0 to 100 devices.

These five parameters compose the five decision variables that correspond
to a DFCN configuration, and, therefore, they characterize the search space.
We have set wide enough intervals for the values of these parameters in order
to include all the reasonable possibilities we can find in a real scenario.
The objectives to optimize are: minimizing the duration of the broadcast-
ing process, maximizing the network coverage, and minimizing the number
of transmissions. Thus, we have defined a triple objective MOP, which is
formally defined as:

s : instance of the ns-3 simulator

minG = g ∈ R|g ∈ minGain

lowRAD = l_RAD ∈ R|l_RAD ∈ lowerBoundRAD

uppRAD = u_RAD ∈ R|u_RAD ∈ upperBoundRAD

proact = d ∈ I|d ∈ proD

safeDens = sd ∈ I|sd ∈ safeDensity

z = (c, b, t) = s(minG,lowRAD,uppRAD,proact,safeDens)

f (minG,lowRAD,uppRAD,proact,safeDens) =

⎧
⎨
⎩

max {c}
min {b}
min {t}

, (6.1)

where z is the set of objectives, c stands for coverage, b for number of
broadcastings, and t is the broadcasting time. The domains of the variables
minGain, lowerBoundRAD, upperBoundRAD, proD, and safeDensity are
presented in detail in Table 6.1.
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TA B L E 6.1. Domain of the Variables
to Optimize

minGain [0.0, 1.0]
lowerBoundRAD [0.0, 10.0] seconds
upperBoundRAD [0.0, 10.0] seconds
proD [0, 100] devices
safeDensity [0, 100] devices

6.2 EXPERIMENTS

We present in this section the results obtained during our experimentation
process. Section 6.2.1 presents the configuration used for our algorithms,
which are later compared in Section 6.2.2.

6.2.1 Algorithm Configurations

Because we are dealing with a multi-objective problem, in this chapter we
use CellDE, NSGA-II, and CCNSGA-II algorithms to look for the optimal
configuration of the DFCN parameters (defined in Section 6.1.2) in order to
get the best possible performance of the considered broadcasting protocol.
The configuration of the different algorithms is the one suggested by their
authors, and it can be found in Chapter 5. The evaluation function of this
problem is expensive (it takes around 10 s), therefore the algorithms stop
after performing 10,000 evaluations.

Solutions are represented as an array of five real variables, corresponding
to the minimum gain, the RAD interval (minimum and maximum values in
the range), proD, and the safe density (the details for these variables can be
found in Section 6.1.2). The last two variables are integer values in DFCN,
and therefore we take the integer part of the real value proposed by the
algorithm before evaluating the solution. This is done for simplicity since it
allows us to avoid the use of heterogeneous chromosomes that would require
specific operators.

In the case of CCNSGA-II, the values of these variables have been dis-
cretized because we need a number of variables to be optimized by every
island [11]. Consequently, real-coded variables are discretized into 16-bit
strings (minGain, lowerBoundRAD, upperBoundRAD), while integer ones
are coded with 8 bits (proD, safeDensity). Two classical recombination and
mutation operators for binary representations were implemented, namely
two-point crossover and bit-flip mutation. Both of them were introduced in
Chapter 2. Eight islands are used to decompose the problem, and therefore
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every island is focused on the optimization of 8 bits of the chromosome of
individuals.

To evaluate the quality of solutions found, the protocol is run with every
solution in ns-3 in 10 different networks (the same 10 networks are used
for all tentative solutions), and the average value of the 10 runs obtained for
coverage, time, and number of forwardings is considered as the fitness value
of that solution.

We use the ns-3 configuration provided in Chapter 5 for the simulation
of the broadcasting algorithm, using the random-walk mobility model. In the
simulations, the network evolves for 30 s in order to have the nodes uniformly
distributed in the area. Then, after these 30 s, a node starts the broadcasting
process. The simulation stops after 40 s.

6.2.2 Comparison of the Performance of the Algorithms

In Tables 6.2–6.4 we present the results we obtained (as mean and standard
deviation) with CellDE, NSGA-II, and CCNSGA-II for the three considered
problem densities according to the HV, SPREAD, and I1

ε+ quality metrics
(already presented in Chapter 5). Those values shadowed in dark gray color

TA B L E 6.2. Comparison of Algorithms according to HV

CellDE NSGA-II CCNSGA-II

100 Dev. 6.46e − 013.7e−03 6.32e − 019.3e−03 5.50e − 018.5e−03
200 Dev. 7.66e − 014.0e−03 7.42e − 018.3e−03 3.98e − 011.5e−02
300 Dev. 8.21e − 012.9e−03 8.09e − 015.2e−03 3.31e − 011.4e−02

TA B L E 6.3. Comparison of Algorithms according to SPREAD

CellDE NSGA-II CCNSGA-II

100 Dev. 5.30e − 012.8e−02 7.43e − 014.5e−02 6.73e − 014.7e−02
200 Dev. 5.65e − 013.3e−02 7.39e − 014.6e−02 6.52e − 014.6e−02
300 Dev. 6.32e − 013.9e−02 7.96e − 015.6e−02 6.59e − 013.1e−02

TA B L E 6.4. Comparison of Algorithms according to I 1
ε+

CellDE NSGA-II CCNSGA-II

100 Dev. 1.04e + 001.3e−01 1.25e + 002.3e−01 4.22e + 004.7e−01
200 Dev. 1.84e + 002.5e−01 2.40e + 005.1e−01 6.82e + 003.4e−01
300 Dev. 3.14e + 003.8e−01 3.72e + 005.2e−01 1.09e + 015.5e−01
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TA B L E 6.5. Comparison of Algorithms according
to Wilcoxon Unpaired Signed-Ranks Test for HV,
SPREAD, and I 1

ε+ on Three Network Densities

NSGA-II CCNSGA-II

HV CellDE � � � � � �
NSGAII � � �

SPREAD CellDE � � � � � �
NSGAII � � �

I1
ε+ CellDE � � � � � �

NSGAII � � �

represent the best obtained results, while the second best ones are over light
gray background. As can be seen, CellDE is the best algorithm for all densi-
ties on the three quality indicators used. CCNSGA-II is the second best one
according to SPREAD, and NSGA-II is the second most accurate one.

Table 6.5 presents the results obtained by the Wilcoxon test on the com-
parison of the algorithms for the three considered network densities. In every
cell, the three symbols refer to the 100, 200, and 300 devices/km2 densities, in
that order. The Wilcoxon test found statistically significant differences in all
cases. CellDE outperforms the other algorithms according to the three stud-
ied metrics for all the problem densities. In the comparison between NSGA-II
and CCNSGA-II, the coevolutionary algorithm is better in terms of SPREAD
and worse for HV and I1

ε+, for the three densities.

6.3 ANALYSIS OF RESULTS

After performing all our experiments, we get 90 Pareto front approximations
(3 algorithms, and 30 independent runs for each) for every considered net-
work density, containing approximately 100 accurate DFCN configurations
each. Analyzing all 9000 solutions for every density is a tedious task for the
decision maker to get the best one for his/her needs. Therefore, it is necessary
to choose among all solutions a subset of representative ones to be analyzed.
For that, we will build an aggregated Pareto front of 100 solutions from all
the solutions reported by the algorithms. This step is not only required in the
case of the study we make in this book, when several algorithms are used and
a final Pareto front approximation is built from all the results obtained, but
also when one single MO algorithm is used to solve the problem. The reason
is that MOEAs are stochastic processes, and, therefore, we must run them
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several times in order to avoid possible low-quality results obtained from one
single unsuccessful run.

We present in Section 6.3.1 a discussion on some appropriate techniques
to gather a representative set of solutions from all the obtained ones in the
experimentation process. Then, we analyze the set of selected representative
solutions built in Section 6.3.2, and we propose in Section 6.3.3 some of them
as new improved configurations for DFCN, analyzing and comparing them
versus the original one.

6.3.1 Building a Representative Subset of Best Solutions

In order to extract a set of representative solutions among all those found dur-
ing experimentation, a final Pareto front approximation can be built from all
the solutions reported by the algorithms in every independent run. This can
be done by simply generating an empty front of limited size (i.e., 100 solu-
tions) and start adding all the obtained solutions in it. Building such Pareto
front approximation from all the solutions found in the different runs will pro-
vide a better front than just choosing the best one reported by the algorithm
according to some quality metric.

There are several density estimators in the literature to discard solutions
from the densest areas in case a new solution is inserted in an already full
front [2, 3]. However, it is worth mentioning that this density estimation
method used to discard nondominated solutions might influence the results.

To illustrate this, in Fig. 6.1 we show the Pareto front approximations
obtained when using three well-known density estimators in the multi-
objective optimization literature, namely strength raw fitness [16], adaptive
grid [7], and crowding [4]. The plots correspond to the densest studied net-
works, as a representative case, and the default configuration of DFCN is
represented as a black square. The three fronts provide similar quality results,
none of them contain solutions that are dominated by any other solution
from the other fronts, and this conclusion is also extensible to the other two
densities. However, they provide different numbers of solutions dominating
DFCN: 5, 7, and 9 for strength raw fitness, for the three studied densities
(from sparser to denser), 1, 6, and 5 for crowding, and 10, 0, and 6 in the
case of adaptive grid. Additionally, not all of them provide a high diversity
of solutions in the covered area, and some of them even dismiss solutions at
the borders of this area, shrinking it. This is important because the decision
maker may think that no solutions exist in these uncovered areas, when in
fact they were found during the experimentations.

As can be seen, the front built with strength raw fitness is the one that pro-
vides a higher diversity of solutions. The adaptive grid technique provides
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Figure 6.1. Pareto front approximations obtained after combining all the reported

results in every run by the three EAs with three different density estimators for the

300 devices/km2 networks. The performance of the default DFCN configuration is shown

as a black square.

poor diversity for high forwarding and coverage values, with a large empty
area. Additionally, there is also an important gap in the lowest part of the
front, corresponding to solutions with short broadcasting times. Regarding
the front generated with crowding, we can observe some denser regions than
in the front generated by strength raw fitness, and therefore there are some
gaps that are not covered, especially the area corresponding to short times, as
in the previous case. These observations are supported by the SPREAD met-
ric in the 300 devices/km2 network, which gives values 0.2781, 0.4766, and
0.4933 for the fronts generated by strength raw fitness, crowding, and adap-
tive grid techniques, respectively. For the other densities, we obtained similar
results, with strength raw fitness providing the best diversity front, followed
by, crowding, and adaptive grid, in that order. The values obtained are 0.1687,
0.3611, and 0.5012 for the three techniques on the 100 devices/km2 density
and 0.3055, 0.4141, and 0.5201 for the 200 devices/km2 networks.



�

�

“Bouvry-Drv-1” — 2014/3/22 — 14:27 — page 145 — #11
�

�

�

�

�

�

ANALYSIS OF RESULTS 145

Even when many solutions are dismissed in the process, it is still recom-
mended to build one single Pareto front approximation from all the results
obtained in the experimentation. The reason is that it can give an overview of
a representative set of solutions available that can be analyzed by the decision
maker. Dealing with all the nondominated solutions without any preselection
is hard to handle, especially when a large number of runs of the MOEA(s)
is performed, as is recommended. Once a certain region of appropriate solu-
tions is identified, then it is possible to find all the dismissed solutions in this
area to perform a deeper study.

6.3.2 Interpretation of the Results

In order to visually show the different solutions found by the EAs with
respect to the original DFCN configuration, in Fig. 6.2 we plot the best
solutions found in our experiments, obtained by merging all the Pareto front
approximations found by the three EAs in all the independent runs. The num-
ber of solutions was limited to 100, so nondominated solutions in the densest
regions were discarded according to the strength raw fitness method [16],
with the aim of offering a wide set of diverse solutions. In the plots, we dif-
ferentiate the solutions provided by the different algorithms, therefore, those
solutions found by NSGA-II are represented as black points, while gray ones
are solutions from CellDE and the + symbol represents the solutions provided
by CCNSGA-II.

The default configuration of DFCN is [6]: minGain = 0.4, RAD ∈
[0.0, 7.0], proD = 4, and safeDensity = 12 [12]. DFCN was dominated by
5, 7, and 3 solutions out of the 100 reported by EAs for the 100, 200, and 300
devices/km2 densities, respectively. Notice that these solutions outperform
the original DFCN configuration in all objectives, so they provide higher
coverage with lower number of forwardings in less time. In addition, 11, 11,
and 7 solutions are better if we put time aside, and 40, 30, and 26 are better
in terms of coverage, for the three densities.

However, we found that the number of solutions dominating DFCN
reported by the three algorithms in the 30 independent runs is considerably
higher than that. In this sense, CellDE, NSGA-II, and CCNSGA-II found
123, 127, and 12 different solutions dominating DFCN, respectively, for the
100 devices/km2 density, 134, 95, and 4 for 200 devices/km2, and 84, 101,
and 0 for 300 devices/km2. The total number of different solutions domi-
nating DFCN found in our experiments increases to 262, 233, and 185 for
the 100, 200, and 300 devices/km2. All of them are plotted as black points
in Fig. 6.3. Consequently, a high number of solutions dominating DFCN
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Figure 6.2. Best nondominated solutions found and the performance of the default DFCN

configuration (represented as black square). Solutions provided by NSGA-II, CellDE, and

CCNSGA-II are represented with symbols and black points, gray points, and +, respectively.
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Figure 6.3. Best nondominated solutions found (gray points) and the performance of

the default DFCN configuration (black square), together with all the solutions dominating

DFCN that were found in our experiments (black points).

is lost when building the final Pareto front approximation. The reasons are
that (i) a number of these solutions are dominated by the ones chosen for
the final set of solutions, (ii) its size is limited to 100, so nondominated
solutions in the most crowded regions are discarded, and (iii) representative
solutions from the whole Pareto front area must be selected, as was discussed
in Section 6.3.1, including those extreme solutions with highly accurate val-
ues for one of the objectives, but that are low compared to the others. These
solutions are nondominated ones, so they are still interesting from the multi-
objective optimization point of view, although they are worse than DFCN
in some of the objectives. It is then the choice of the decision maker to
implement some solution that does not dominate DFCN but is nondominated
with it. As an example, a solution with higher coverage than DFCN and less
network use, at the cost of longer broadcasting time, could be acceptable
in our case.
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6.3.3 Selected Improved DFCN Configurations

In Table 6.6 we compile all the solutions from the Pareto front that were
found to dominate the original DFCN configuration. Their corresponding fit-
ness values are listed in Table 6.7 (where forwardings and coverage values are
expressed as the percentage of devices in the network). From Table 6.6, one
of the most outstanding issues we can see is the high values the EAs assigned
to the proD parameter, ranging from 11 to 88, while the original configura-
tion of DFCN suggests using a value of 4. This means that the algorithms
found that the proactive behavior of the protocol, consisting on reseting the
RAD delay to rebroadcast the messages when a new device arrives in the
neighborhood, is always advisable even in dense areas. Indeed, we tested
the same solutions with a very high value for this parameter — we used
proD = 100 — and the results obtained where exactly the same ones in all
cases, with the exceptions of solutions Sol9 and Sol10, both of them for the
200 devices/km2 networks. Therefore, we can conclude that the EAs find that
this proactive behavior is generally advisable for DFCN, and they are simply
choosing high enough values for proD in order to always enable this feature
of the protocol.

Indeed, enabling always the proactive behavior of the protocol makes the
broadcasting process faster since the RAD does not expire but is stopped
when a new neighbor is found. That is the reason why even when the value
of the RAD in Sol11 is higher than in Sol12 because of the values of the
lowerBoundRAD and upperBoundRAD, the difference in the broadcast time
is not so important. In Sol11, the RAD is fixed to 10 s while it is less than
2.8308 s in Sol12 (more than three times lower), but the broadcast process is
finally only 0.212 s slower for Sol11.

With regard to the other protocol variables optimized, we can see that the
value suggested by the EAs for minGain is in all cases close to the one set by
the protocol designer. We do not find a pattern in the values assigned by the
EAs to the safeDensity parameter. However, we observe that very low values
are assigned for some solutions (i.e., Sol2), indicating that in some cases
it might be a good idea to disable flooding capability of the protocol. For
instance, Sol2 is suggesting to disable the flooding mode but at the same time
promoting the dissemination by canceling the RAD when a new neighbor is
met (as we mentioned before, all the solutions gave the same results with
proD equal to 100 except Sol9 and Sol10).

We observe that small intervals are assigned to RAD, in general. The
extreme is Sol6, which removes this feature from the protocol. Configura-
tions with low RAD interval provide fast solutions, while those with the
highest intervals are the slowest ones. In this sense, there are four solutions
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TA B L E 6.7. Solutions Found that Outperform DFCN
Original Configuration for Three Objectivesa

dev./km2 Solution Forwardings (%) Coverage (%) Time

100 DFCN 25.60 54.80 5.1212
Sol1 22.80 58.40 4.8054
Sol2 22.80 58.00 3.2082
Sol3 20.40 57.20 1.7476
Sol4 24.40 63.20 2.3648
Sol5 25.60 57.60 0.2682

200 DFCN 13.80 49.40 6.0320
Sol6 12.40 52.00 0.0042
Sol7 12.60 69.00 6.0276
Sol8 13.60 55.60 1.3358
Sol9 11.20 58.20 5.1376
Sol10 9.00 55.00 5.2180
Sol11 8.00 52.00 4.1517
Sol12 12.60 53.40 3.9389

300 DFCN 10.27 50.27 6.2294
Sol13 7.20 52.53 4.0212
Sol14 10.27 58.93 5.0449
Sol15 8.40 51.73 0.6933

aForwardings and coverage are shown as the percentage of devices in the
network.

(Sol7, Sol9, Sol10, and Sol11), all of them for the 200 devices/km2 networks,
forcing this RAD time to be 10 s (i.e., the interval is set to [10.0, 10.0]).
These solutions provide, in general, high coverage with a low number of
reemissions, but at the cost of longer times, although, as previously men-
tioned, the difference in time is not that high.

6.4 CONCLUSION

In this chapter we show how evolutionary algorithms can be applied to fine-
tune broadcasting protocols in order to maximize the achieved coverage in
the broadcasting process, while minimizing the network use and the time
required. We focus here on the DFCN protocol as an example, explain it, and
identify the parameters that have a major influence on its performance.

The cellular algorithm, CellDE, clearly outperformed the panmictic
(NSGA-II) and cooperative coevolutionary (CCNSGA-II) algorithms for the
three network densities considered and the three quality indicators used. The
bad performance of the CCNSGA-II algorithm, only better than NSGA-II
for SPREAD and the worst algorithm for the other metrics is probably due to
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the high epistasis introduced in the discretization of the variables. This was
necessary due to the small number of variables identified in the problem.

As a result, a number of solutions were found that outperform the original
configuration of DFCN for all objectives. Among them, we select and analyze
a representative subset with different characteristics.

The algorithms suggest that the proactive behavior included in DFCN
for promoting the dissemination of the message in sparse areas is, indeed,
suitable for any kind of network. The performance of the protocol was mea-
sured in terms of coverage, number of forwardings, and broadcasting time.
Therefore, the algorithms provide a new simpler version of the protocol that
outperforms the original one.
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ENERGY MANAGEMENT

As mentioned in Chapter 6, broadcasting is considered one of the most
important low-level operations in networking, as many applications and even
other protocols rely on its service. In the case of wireless networks, these
dissemination algorithms are generally associated with the broadcast storm
problem [2]. However, when designing broadcast protocols for mobile ad hoc
networks apart from the broadcast storm problem, we should also take into
account the intrinsic limitations of ad hoc networks.

In Chapter 1, the main characteristics of MANETs were presented. As
stated there, one of the main drawbacks is the dependence on the battery life
of the devices, because this energy limitation highly influences the network
behavior: When devices run out of battery power the network capabilities
decrease and might lead to the disappearance of the network. Therefore,
many researchers focus on reducing the energy consumption of devices
conforming the MANET [1, 4].

Evolutionary Algorithms for Mobile Ad Hoc Networks, First Edition. Bernabé Dorronsoro,
Patricia Ruiz, Grégoire Danoy, Yoann Pigné, and Pascal Bouvry.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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In this chapter, we are tackling the optimization of an energy-efficient
broadcasting algorithm. We are considering the enhanced distance-based
broadcasting algorithm (AEDB hereinafter), an energy-aware and distance
based broadcasting algorithm that uses a cross-layer design to reduce energy
consumption [3]. In previous work, some metaheuristics were used in order
to find out the optimal configuration of its parameters [5, 6]. In this chap-
ter, three different evolutionary algorithms are used for the optimization of
AEDB, giving a comparison between performance of each algorithm and a
deep analysis on the behavior of the solutions found.

The chapter is organized as follows: Section 7.1 describes the energy-
aware protocol, AEDB, and the optimization problem we are tackling to
find its optimal configuration. Section 7.2 summarizes the comparison of
the performance of the considered evolutionary algorithms on this problem.
Results are later analyzed and discussed in Section 7.3. Different solutions
from the Pareto front are selected and analyzed in Section 7.4. Finally, our
main conclusions are pointed out in Section 7.5.

7.1 THE PROBLEM

The core of AEDB relies on decisions such as whether to forward the mes-
sage or not and what transmission power to use for each retransmission.
The algorithm’s performance is highly influenced by the value of those
thresholds, which originally were experimentally chosen. In this work, we
optimize the values of these thresholds using some multi-objective tech-
niques, and some of the proposed solutions are analyzed. In this section,
we first introduce the protocol and then the optimization problem is
presented.

7.1.1 AEDB Protocol

In the minimum energy broadcasting problem, every node is able to adjust
its transmission range in order to reduce the power consumption of the dis-
semination process while still guaranteeing full coverage in the network. In a
real scenario with obstacles, moving devices, signal fading, path loss, packet
loss, and the like, ensuring full coverage might be very ambitious, impossi-
ble (due to network partitioning), and in some cases even unnecessary. For
disseminating safety, control, or important messages, it might be worth the
overhead needed for delivering the message to all nodes in the network. But
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for all the other messages (information, advertisment, etc.), it would rather
be more efficient to consider the possibility of relaxing the full coverage con-
straint and, thus, saving all the overhead derived from acknowledgments,
retransmissions, and so forth. In this work, we consider this second family
of protocols, where full coverage is not required.

The adaptive enhanced distance-based broadcasting algorithm (AEDB)
considered in this work aims at saving energy in both sparse and dense
networks. AEDB [3] is an extension of enhanced distance broadcast-
ing(EDB) [4, 7], a broadcasting algorithm that reduces the transmission
power for disseminating a message. As any distance-based broadcasting
algorithm, nodes are candidates to forward the message if the distance to
the source node is higher than a predefined threshold. Thus, there exists a
forwarding area, and only nodes located in it are potential forwarders. In
this case, we are using a cross-layer technique that informs the upper layers
about the signal strength of messages received. Therefore, the decision is not
taken in terms of distance (m) but power (dBm). This predefined value for
the energy is called the borders_Threshold.

The EDB protocol tries to save energy by reducing the transmission power
when forwarding the broadcasting message. The new transmission power is the
one that reaches the furthest neighbor. The energy needed is estimated accord-
ing to the reception energy detected in the beacons exchanged (every 1 s). In
order to be aware of the nodes mobility, an extra fixed amount of energy is
added to the one estimated. This is called the margin_Threshold.

In denser networks, the probability of having a node close to the limit
transmission range is high, therefore, the probability for EDB to reduce
the transmission power is low. Indeed, when the network is very dense the
connectivity is usually very high. Thus, reducing the transmission power
allowing the loss of some one-hop neighbors will save energy without any
detriment in the performance of the broadcasting process. On the contrary,
when the network is sparse, the node must maintain the network connectiv-
ity, as not doing so would make it more difficult to spread a message through
the whole network.

The AEDB protocol considers the possibility of discarding some neigh-
bors from the one-hop neighborhood in dense networks. In fact, the algorithm
is able to adapt its behavior to the network density. Potential forwarders set
a random delay before resending. If, during this time, many nodes located
in the forwarding area are detected (called neighbors_Threshold), the
transmission range is reduced and some one-hop neighbors are discarded.
The new furthest neighbor is the node located in the forwarding area that is
the closest one to the source node. A more detailed explanation can be found
in [3], and Pseudocode 7.1 gives the AEDB code.
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Pseudocode 7.1 AEDB Algorithm
Data: m: the incoming broadcast message.
Data: r: the node receiving m.
Data: s: the node that sent m.
Data: p: the received signal strength of m sent by s.
Data: pmin: the minimum signal strength received from any s.
Data: potentialForwarders: # neighbors in the forwarding area.

1: if m is received for the first time then
2: calculate p
3: update pmin
4: if pmin > borders_Threshold then
5: r → drop message m
6: else
7: waiting ← true
8: wait time rand ∈ [delay interval]
9: end if

10: else if waiting then
11: calculate p
12: if p > pmin then
13: update pmin
14: end if
15: end if
16: if pmin > borders_Threshold then
17: r → drop message m
18: else
19: if potentialForwarders > neighbors_Threshold then
20: estimate p to reach closest neighbor to

borders_Threshold
21: else
22: discard s from the one-hop neighbors list
23: estimate p to reach furthest neighbor
24: end if
25: transmit m
26: end if
27: waiting ← false

7.1.2 Optimization Problem Definition

As mentioned in Section 7.1.1, AEDB has a set of fixed parameters whose
values determine the behavior of the protocol. Those thresholds are explained
after and listed here: borders_Threshold, margin_Forwarding,
the delay interval, and neighbors_Threshold.
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• The value of the borders_Threshold sets the size of the forward-
ing area. The higher the threshold, the higher the number of potential
forwarders, the coverage, the network resources used, and the number of
collisions.

• The margin_Forwarding is related to both the energy saved and
the coverage achieved. It is the extra amount of energy added to the
estimated transmission power. The higher the margin value, the higher
the coverage reached as well as the energy used.

• The value of the delay interval sets the waiting time and also affects
the behavior of the protocol. We split this threshold into two different
variables: minimum delay and maximum delay referring to the
lower and upper value of the interval, respectively. If the delay is very
high, the time used to spread the message will be high, but if it is very
small, the number of collisions will probably increase.

• Finally, the neighbors_Threshold fixes the minimum number of
neighbors in the forwarding area needed to consider the network is dense
enough to discard some nodes. It affects the use of the network and the
energy used. The lower the value, the lower the energy used and the
higher the number of forwardings.

Wechooseaninterval foreachparameter inorder tofindreasonablesolutions
and limit the search space. These values are shown in Table 7.1, and they are
large enough to cover the most suitable solutions. The algorithm originally
creates a set of random feasible solutions (values chosen from the intervals
shown in Table 7.1), and automatically evolves them to better solutions.

The quality of the performance of a broadcasting algorithm in ad hoc net-
works is usually related to some standard measurements. The aspects we are
considering and that are the most common ones in this kind of protocols are:

1. The coverage obtained, that is, the number of devices that, after the
dissemination process, receive the broadcast message

2. The energy used by the broadcast process, measured as the sum of the
energy every device consumes to forward the message

TA B L E 7.1. Domain of Variables to
Optimize

minimum delay [0, 1] s
maximum delay [0, 5] s
border_Threshold [−95, −70] dBm
margin_Threshold [0, 3] dBm
neighbors_Threshold [0, 50]
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3. The number of forwardings, considered as the amount of nodes that
after receiving the broadcasting message decide to resend it

4. And the broadcast time, considered as the time needed to spread a
message in the network, since the source node sends the message until
the last node receives it

From the point of view of the designer of the broadcasting algorithm,
the higher the number of objectives the more complex the decision making
and the optimization process. Thus, in this work instead of optimizing the
protocol in terms of the previously mentioned four different objectives, we
consider three objectives and a constraint. Previous work observed that the
best solutions found on the same scenarios do not take longer than 2 s for
disseminating the broadcasting message [5]. Therefore, in the evaluation
process of the optimization, we consider a solution is no longer valid if
the broadcasting time is higher than 2 s, and analyze the following three
objectives: (1) energy used, (2) coverage achieved, and (3) number of
forwardings used.

Unlike in Chapter 5.5, in this work we are showing how to find the most
suitable values of the parameters subject to a specific restriction. In our case,
we only consider the broadcasting time constraint, but more constraints could
be easily added to the optimization algorithms.

The purpose of this work is, therefore, to tune all these parameters using
multi-objective techniques (based on Pareto dominance) in order to obtain
the best possible behavior of the protocol, considering the three objectives
and the constraint explained above. Below, we include a formal definition of
the problem.

s : instance of the ns3 simulator

dmin = d1 ∈ R|d1 ∈ minimum delay

dmax = d2 ∈ R|d2 ∈ maximum delay

b = b1 ∈ R|b1 ∈ border_Threshold

m = m1 ∈ R|m1 ∈ margin_Threshold

n = n1 ∈ R|n1 ∈ neighbor_Threshold

z = (e, c, nb, t) = s(d min, d max, d, m, n)

f (d min, d max, b, m, n) =

⎧
⎨
⎩

min {e}
max {c}
min {nb}

; s. t. t < 2 (7.1)

where z is the set of objectives, e stands for energy saved, c for cov-
erage, nb for number of broadcastings, and t is the broadcasting time.
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The domains of the variables minimum delay, maximum delay,
border_Threshold, margin_Threshold, and neighbor_
Threshold are presented in detail in Table 7.1.

7.2 EXPERIMENTS

As mentioned before, optimizing four objectives makes both the optimization
process and the analysis of the results more complex. Thus, we use broad-
casting time as a constraint and consider that any solution that takes more
than 2 s is no longer valid. As in the case of Chapter 6, we deal here with a
three-dimensional problem, composed of a number of real-coded and integer
variables. Hence, we tackle the problem with the same algorithms: NSGA-II,
CellDE, and CCNSGA-II.

7.2.1 Algorithm Configurations

Measuring the quality of a given parameter configuration (i.e., a tentative
solution to the problem) is a complex task that must evaluate the solution in
terms of the coverage, the energy used, the number of forwarded messages,
and the broadcasting time obtained by the optimized protocol in any network
configuration.

We adopt the same experimental setup and algorithm configurations as
in Chapter 6. Therefore, we rely on the ns-3 simulator to evaluate every solu-
tion. As an attempt to obtain concluding results in the evaluation of solutions,
we simulate every protocol configuration (i.e., every solution) on 10 different
networks. The fitness value for every objective is defined as the average of
the values obtained for the 10 networks in every objective. We always used
the same 10 different seeds in our ns-3 simulations to evaluate the solutions,
thus, we analyze the behavior of AEDB over the same 10 different networks.

We use the original configurations proposed by the authors for the three
optimization algorithms, previously detailed in Chapter 5. The termination
condition of the algorithms was set to 10,000 evaluations performed. Individ-
uals are encoded as an array of 5 real values, and the value used for evaluation
for the integer variable (neighbor_Threshold) is the integer part of
the real value. Therefore, the real-coded variables are minimum delay,
maximum delay, border_Threshold, and margin_Threshold.
In the case of CCNSGA-II, variables were discretized into 16 and 8 bits (for
real and integer variables, respectively), as was the case in Chapter 6. The
population is decomposed into 8 islands, each of them being in charge of the
optimization of 32 bits of the chromosome of each individual.
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Regarding the configuration of ns-3 for the simulation of the broadcast-
ing algorithm, we use the same as in Chapter 6. They are described in
Section 6.2.1.

7.2.2 Comparison of the Performance of the Algorithms

The performance of the three algorithms is compared in Tables 7.2–7.4, in
terms of the mean and standard deviation for the three quality metrics we
consider in this book: HV, SPREAD, and I1

ε+ (please refer to Chapter 5).
Those values shaded in dark gray color represent the best obtained results,
while the second best ones are shaded in a light gray background. The results
of the Wilcoxon test are shown in Table 7.5.

As can be seen, the most accurate algorithm is NSGA-II, significantly out-
performing CCNSGA-II and CellDE for HV and I1

ε+ on the three densities.
The only exception is CellDE in the densest network for I1

ε+. In that case, we
did not find significant differences in the performance of the two algorithms.

In terms of the diversity of solutions in the Pareto front approximation,
NSGA-II is clearly the worst performing one, with significant differences
with the other two algorithms in all cases. In the comparison between CellDE

TA B L E 7.2. Comparison of the Algorithms according to HV

CellDE NSGA-II CCNSGA-II

100 Dev. 5.52e − 012.0e−03 5.59e − 012.9e−03 5.31e − 015.1e−03
200 Dev. 5.50e − 013.8e−03 5.66e − 012.3e−03 5.23e − 011.2e−02
300 Dev. 6.33e − 013.8e−03 6.46e − 014.1e−03 6.06e − 016.6e−03

TA B L E 7.3. Comparison of Algorithms according to SPREAD

CellDE NSGA-II CCNSGA-II

100 Dev. 7.35e − 013.6e−02 8.71e − 016.2e−02 7.94e − 016.6e−02
200 Dev. 7.98e − 014.7e−02 9.76e − 015.6e−02 7.88e − 015.7e−02
300 Dev. 7.68e − 014.4e−02 1.02e + 004.5e−02 7.79e − 018.6e−02

TA B L E 7.4. Comparison of Algorithms according to I 1
ε+

CellDE NSGA-II CCNSGA-II

100 Dev. 1.48e + 002.0e−01 3.64e + 006.2e+00 5.22e + 004.4e+00
200 Dev. 3.17e + 003.4e−01 3.27e + 004.3e+00 6.23e + 002.6e+00
300 Dev. 7.78e + 005.2e+00 7.31e + 002.0e+00 1.45e + 017.3e+00
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TA B L E 7.5. Comparison of Algorithms according
to Wilcoxon Unpaired Signed-Ranks Test for HV,
SPREAD, and I 1

ε+ on Three Network Densities

NSGA-II CCNSGA-II

HV CellDE � � � � � �
NSGA-II � � �

SPREAD CellDE � � � � – –
NSGA-II � � �

I1
ε+ CellDE � � – � � �

NSGA-II � � �

and CCNSGA-II, the former was found to be statistically better only for
the sparsest density, and no significant differences were found for the other
densities.

7.3 ANALYSIS OF RESULTS

We analyze in this section the quality of the obtained results and validate
them with the performance of the original AEDB configurations. The values
assigned to this original configuration are: [0.0, 1.0] seconds for the delay
interval, −90 dBm for border_Threshold, 0.5 dBm for margin_
Threshold, and 8, 10, and 12 devices for neighbor_Threshold for
the 100, 200, and 300 devices/km2 densities, respectively.

As in Chapter 6, all the different solutions obtained for each optimization
algorithm were considered to build one single Pareto front approximation
with the best nondominated solutions found for every network density. They
are displayed in Fig. 7.1. The maximum size for these fronts was set to 100
solutions, so when more than 100 nondominated solutions are available, the
best 100 ones, according to the strength raw fitness method, are selected.
In the different plots, the black square is the result obtained by the default
configuration of AEDB [3, 6].

In the Pareto front approximations shown in Fig. 7.1, it stands out that
the fronts have two clear sets of solutions in the three scenarios. For the
lowest energy values in the approximated range [−20, 20] dBm, solutions
provide very low coverage and a high number of forwardings, following a
linear relationship between these two objectives in which the coverage value
is similar to the number of forwardings. These are typically solutions in
which devices are only broadcasting the message to their closest one, and
therefore the number of forwardings is very close to the number of devices
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Figure 7.1. Best nondominated solutions found and the performance of the default AEDB

configuration (represented as black square). Solutions provided by NSGA-II, CellDE, and

CCNSGA-II are represented with symbols and black points, gray points, and +, respectively.

receiving the message (i.e., the coverage). However, for higher energy values
over 20 dBm, the shape of the Pareto front changes, and we can see a clearly
defined front of solutions in which coverage values are growing much faster
than the number of forwardings. This region of the front is the one in which
we are more interested, since it is providing high coverage at a reasonable
number of forwardings and energy requirements.

We compared these Pareto front approximations to the solution obtained
with the original configurations of AEDB for the three network densities.
Looking for fair comparisons, AEDB with the initial settings was executed on
10 different networks using the same seeds as in the optimization algorithms.
The average values for each of the objectives is compared to the solutions of
the Pareto front. In case at least one objective of the solution is better than
AEDB and better or equal for the rest of the objectives, the solution is said to
be dominant. We found 8, 11, and 1 solutions dominating the original config-
uration of AEDB (i.e., providing better results for the three objectives) for the
three different configurations: 100, 200, and 300 devices/km2, respectively.
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Figure 7.2. The reference Pareto fronts obtained after merging all the Pareto front

approximations obtained with all dominating solutions. Black filled circles are the solutions

that dominate the original AEDB configuration.

As in Chapter 6, we proceed now to study all the solutions outperform-
ing the original configuration of AEDB. We considered all the solutions
found by each algorithm in the 30 executions and we found out that CellDE
outperforms AEDB in 201 solutions, NSGA-II in 349, and CCNSGA-II in
116 for the 100 devices configuration. From these 666 solutions, 17 were
nondominated with the solutions in the Pareto front. For the 200 devices con-
figuration, CellDE outperforms AEDB in 349 solutions, NSGA-II in 539, and
CCNSGA-II in 280. From this set of 1168 solutions, 33 were nondominated.
In case of the 300 devices network, CellDE dominates AEDB in 29 solu-
tions, NSGA-II found 53 better solutions, and CCNSGA-II 30. From those
112 solutions, 2 were nondominated solutions with those in the Pareto front.
In Fig. 7.2, the solutions found that dominate AEDB are plotted as black dots.

From Fig. 7.2, we can see that in both the Pareto front of 100 and 300
devices networks, the dominating solutions that were added are localized in
a small area. However, in the 200 devices case we can see that the solu-
tions are more spread along the Pareto front. The reason is that the original
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configuration of AEDB is not as fine tuned as in the case of the other network
densities.

7.4 SELECTING SOLUTIONS FROM THE PARETO FRONT

The main goal of the multi-objective optimization process we follow is to
have a complete view of the protocol behavior in terms of different objectives.
So that depending on the situation or the specific needs, the designer can
tune the protocol for promoting one objective or another. Additionally, this
process allows him/her to fine-tune the protocol for different scenarios or
even to make it adaptive to the circumstances (changing from a very crowded
place to a more empty one).

All the solutions in the Pareto front approximations are nondominated,
that is, none is better than another. However, from the point of view of the
protocol designer, a decision must be taken to choose the most appropriate
one according to the expected performance.

We can apply restrictions to the Pareto front solutions in order to focus
on one part of the front, that is, targeting a minimum coverage or network
usage. It is also possible to apply these restrictions during the optimization
process such that all the solutions found by the optimization algorithm fit in
this part of the front (as we did with the broadcast time). However, includ-
ing the restriction during the optimization will prevent the designer from a
complete view of the protocol behavior mentioned before. That is the case
here with the broadcast time, that is, we do not know the performance of the
protocol for solutions taking longer than 2 s.

In this work, we want to have a comprehensive idea of the protocol for
all the different objectives (that is why no more constraints were added) and
then focus on one small area to better understand the behavior of the protocol.
For that, we selected some solutions from the Pareto front and applied some
restriction considering we are using a broadcasting algorithm in an ad hoc
network. Therefore, we assess that the coverage must be at least 80% of the
total number of devices, and the number of forwardings should be less than
30%. From the remaining solutions fulfilling those constraints, we compute
the energy saved per forwarding (in milliwatts), and consider the 10 best
ones. The solutions obtained and the values for their parameters are shown
in Table 7.6. Additionally, the quality of the solutions appears in the last 3
columns. The first one, represents the percentage of the energy saved per
forwarding. The second, the percentage of the coverage reached, and the last
one, the percentage of nodes that forwarded the message. Solutions in bold
dominate the original configuration of AEDB.
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The energy saved per forwarding is calculated as

EgSaved = DefTx (mW) − EgPerForwarding(mW);

EgPerForwarding =
EgUsed

#forwardings + 1
.

(7.2)

That is, the difference between the energy used in case all the nodes send-
ing the message are using the default transmission power DefTx, and the
actual energy used by the protocol (in milliwatts) EgUsed, divided by the
number of forwardings.

Analyzing the values of the solutions obtained we can extract several
conclusions:

• As the network density grows, the value of the borders_Threshold
decreases. This behavior was expected as for dense networks, the dis-
semination of the message is easier, and a lower percentage of nodes is
required to resend the message. Thus, the smaller the area of forwarding,
the lower the number of potential forwarders.

• The value of the neighbors_Threshold is very high for the two
sparsest densities (100 and 200 devices/km2). In fact, this high value
is disabling the mechanism for excluding neighbors from the one-hop
neighborhood. Only in the densest network, there are four solutions
where this adaptive behavior is allowed. They are 300dSol5, 300dSol7,
300dSol8, and 300dSol10.

• The solutions obtaining the highest value of coverage are not necessarily
the ones consuming the most (i.e., the percentage of energy saved for
300dSol3 is higher than in the case of 300dSol8) but are the ones with
higher number of forwardings.

• The configurations with high values of forwardings are not always sav-
ing less energy (i.e., 100dSol2 has the highest value of forwardings as
well as the highest value for the energy saved per forwarding). We must
clarify that this is happening because we are showing the energy saved
per forwarding. Even when the energy used is high, if the number of
forwardings is also high, it could mean that many nodes forward with
low transmission power, therefore, obtaining a high value of the energy
saved per forwarding.

Additionally, we would like to emphasize that in the table we are includ-
ing the percentage of energy saved per forwarding. Therefore, high-energy
saving will appear in solutions where the total energy used is not necessarily
low, but the number of forwardings is high. Additionally, solutions that tend
to use high transmission power but a low number of forwarding will present
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low energy savings. That is the reason why 100devSol1 (in bold) dominates
AEDB, but the values presented for the energy savings is lower (58.8% and
11% for AEDB and 100devSol1, respectively).

From the values obtained, we can conclude that, finding an optimal config-
uration of the parameters is a complex task. Even after analyzing the obtained
values, we can conclude that there is no general rule we can apply for
obtaining one specific behavior. Therefore, we confirm that multi-objective
optimization is needed for optimally configuring the parameters of any
protocol.

7.4.1 Performance of the Selected Solutions

The values of the solutions shown in Table 7.6 were obtained after optimiz-
ing the dissemination algorithm in 10 different networks. The optimization
algorithm looks for a combination of parameters that gives the best possi-
ble performance of the protocol on those networks. Therefore, very sensitive
solutions are obtained. Small changes in the value of the parameters highly
influence the behavior of the algorithm.

We select now some solutions from this small area of the Pareto front
we are studying in depth and test them in 100 different networks in order to
evaluate the robustness of the solutions. For the selection process, at least one
of the solutions that dominate the AEDB original configuration was chosen,
as well as the solution with the highest value for the coverage and forwarding
(it is always the case). Analyzing the behavior of solutions that obtained a
high value of coverage using a low number of forwardings is also desired
(a very sensitive solution).

The average broadcast time for 100 executions of all the above solutions
is lower than 2 s. In Table 7.7, the quality of some selected solutions is pre-
sented. We can see the values obtained for the different objectives for the
optimized 10 networks and also when the solutions are evaluated in 100
different networks. A drop in the quality of solutions is expected as the
parameters were optimized for those 10 networks.

Solutions with high coverage but a low value of number of forwardings are
very sensitive as they were really fine tuned for those 10 networks. There-
fore, their coverage values for 100 networks decrease. This is the case for
100dSol5, 200dSol5, and 300dSol8.

The biggest changes are noticed in the 100 devices configuration as it is
the network where the dissemination process is harder. Therefore, good con-
figurations require exhaustive fine tuning, and small changes highly influence
the behavior of the protocol.
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TA B L E 7.7. Quality of Selected Solutions in 100
Networks

10 runs 100 runs

%Es %C %F %Es %C %F

AEDB 58.6 75.2 24.8 38.4 81.1 29.0
100dSol2 40.8 90.0 28.4 29.3 79.0 26.8
100dSol4 27.6 84.4 23.2 32.1 80.2 26.4
100dSol5 22.6 84.0 22.8 27.2 75.8 22.7
AEDB 33.1 92.4 22.8 32.9 93.0 15.4
200dSol2 23.7 100.0 18.6 30.6 89.4 16.2
200dSol3 29.1 99.6 18.4 28.1 93.5 16.6
200dSol5 23.6 98.6 10.8 19.1 79.0 11.4
AEDB 20.6 100.0 18.7 26.7 98.1 18.3
300dSol3 25.9 100.0 13.7 27.0 98.8 13.6
300dSol4 38.1 86.5 6.8 38.0 72.4 5.6
300dSol8 15.2 97.9 10.1 9.4 91.9 10.4

In order to provide statistical confidence to our results, we employ the
Wilcoxon matched-pairs signed-rank test. This method is used to check
whether two data samplings belong to different populations or not. There-
fore, it can be used to compute if there are statistically significant differences
between the data reported by two different protocol configurations on the 100
studied networks. The null hypothesis for this test is that the median differ-
ence between pairs of observations in the underlying populations represented
by samples of results provided by the protocol is zero. In Table 7.8 the com-
parison between the original configuration and the three selected solutions
of each density is shown. Each solution is compared to AEDB in terms of
the three different objectives. The symbol � means that there is a statisti-
cal difference and the solution found by the EAs is better. On the contrary,
� represents statistical differences but the original configuration of AEDB
performs better. Finally, the em dash (—) stands for no differences found.

The original configuration of AEDB was experimentally chosen. There-
fore, different configurations were manually tested and the best one was
selected. From Table 7.8, we can see that this initial setting highly promotes
the number of devices reached. Indeed, none of the solutions found by the
evolutionary algorithms perform better than AEDB in terms of the coverage
achieved (from the three selected ones) in any density on the 100 networks.
Other solutions from the Pareto front should be chosen in case achieving high
coverage is the main priority for the protocol, over the energy and the num-
ber of forwardings. On the contrary, 8 out of 9 solutions behave better than
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TA B L E 7.8. Comparison between the AEDB Original
Configurations and Selected Solutions in 100 Different
Networks in Terms of Three Objectives

EnergyUsed Coverage Forwardings

100dSol2 – – –
100dSol4 � – �
100dSol5 � � �
200dSol2 � � �
200dSol3 � – �
200dSol5 � � �
300dSol3 � – �
300dSol4 � � �
300dSol8 � � �

0

0.2

0.4
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0.8

1

1.2

Energy Coverage Forwarding Time

100 devices 
100devSol2
100devSol4
100devSol5
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Energy Coverage Forwarding Time

200 devices 
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0.333
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0.833
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300 devices 
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200devSol5

300devSol3
300devSol4
300devSol8

Figure 7.3. Relative value of the different solutions with respect to the original AEDB

setting.

AEDB with statistical significance in terms of the other 2 objectives (energy
and number of forwardings).

For a better understanding of the behavior of the different solutions,
Fig. 7.3 we shows the relative values to the original configuration of AEDB
for all the selected solutions. We plot the relative performance for the three
optimized objectives as well as for the broadcast time. We should remark
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that all the solutions presented have an average value of the broadcasting
time lower than 2 s. A dashed line marks the behavior of AEDB using the
original settings. On the one hand, in case of maximization (coverage) values
above the dashed line means an improvement. On the other hand, minimiz-
ing (energy used, number of forwarding, and broadcast time) values below
the dashed line represent a better performance than the original configuration
of AEDB.

As we mentioned before, we can see that, on average, none of the solu-
tions outperform AEDB with the original settings in terms of the coverage
achieved. Some solutions are very close to the dashed line, but none is over
it. Oppositely, all the solutions outperform it for the two other optimized
objectives (energy used and number of forwarding). Regarding the broadcast
time, a couple of solutions take longer to disseminate the message, but we
should remark that the broadcast time was a constraint not an objective in the
optimization process.

7.5 CONCLUSION

In this chapter, an adaptive energy-efficient and distance-based broadcast-
ing algorithm was optimized in terms of three different objectives: (1) the
energy used for the dissemination process, (2) the coverage achieved by the
message, and (3) the number of forwardings used to get the mentioned cov-
erage. An upper bound for the broadcast time was set (i.e., 2 s). Therefore,
we have included a constraint in our optimization process. The set of param-
eters proposed by the optimization algorithm is only a feasible solution if the
broadcasting time is lower than 2 s. Otherwise, the solution is discarded.

We used three different optimization algorithms, namely, NSGA-II,
CellDE, and CCNSGA-II, and compared them in terms of three different
metrics: (1) Hypervolume, (2) SPREAD, and (3) unary additive epsilon
indicator.

Considering the point of view of the protocol designer, we selected and
analyzed a small subset of solutions from a specific area of the Pareto front.
Bearing in mind that the protocol is a dissemination algorithm, we analyzed
solutions with a coverage value higher than 80% of the total number of
devices. We also restricted the solutions to have less than 30% number of for-
warding. Finally, from all the remaining solutions we calculated the energy
saved per forwarding and selected the 10 best solutions. We could see that
there is no general rule we can apply for obtaining one specific behavior,
thus, the optimization process was needed.

Additionally, some selected solutions were executed in 100 different
networks to check their robustness. As expected, we noticed that the
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deterioration of solutions depends on the density of the network, as well as on
how sensitive the solutions are. Nevertheless, they are still very competitive
and outperform the original configuration of AEDB.
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The limited radio range of MANETs nodes as well as their mobility cause a
highly fluctuating topology that can induce severe degradation of the quality
of service or even lead to network partitioning, that is, no path is available
between some pairs of nodes.

In order to leverage such issues, many authors proposed to study or create
small-world properties in wireless networks as they are assumed to improve
some quality of service metrics, for example, end-to-end throughput [7] or
robustness to failure [3].

The main problem is, however, to find a practical way to establish any
communication link in an ad hoc network, which is characterized by bounded
transmission ranges. TO this end, we introduce the notion of injection points,
which are nodes equipped with an additional communication interface. All
the injection points are assumed to be fully connected, that is, any injec-
tion point can directly communicate with another one. This new paradigm
based on an overlay graph approach is proposed to cope with Watts original

Evolutionary Algorithms for Mobile Ad Hoc Networks, First Edition. Bernabé Dorronsoro,
Patricia Ruiz, Grégoire Danoy, Yoann Pigné, and Pascal Bouvry.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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rewiring process [9]. It extends some of our previous work [4–6] with a more
realistic injection point model.

In this chapter, we focus on the VANET class, where vehicles can either
communicate with each other, in a peer-to-peer fashion, or with roadside
units that allow access to back-end systems. The scenario used here is
the vehicular traffic in the center of the city of Luxembourg. This sce-
nario is motivated by the existence of Wi-Fi access points spread all over
the city center [1]. Thus, this preexisting infrastructure allows to actually
implement the notion of injection point. In addition, the realistic network
topologies studied in this chapter were obtained using the VehILux mobil-
ity model for Luxembourg, whose parameter optimization is presented in
Chapter 9.

The tackled problem consists in finding the best set of injection points
to create a fully connected overlay network that unpartitions a VANET and
maximizes the resulting network small-world properties. This leads to the
optimization of three different objectives:

1. The maximization of the clustering coefficient (CC) so that it
approaches the CC of a corresponding regular graph

2. The minimization of the difference between the average path length
(APL) of the generated graph and the APL of a corresponding random
graph

3. The minimization of the number of injection points in order to limit
communication overheads

In this chapter, we consider the usage of a scalar approach in which this
multi-objective problem is transformed into a singleobjective one. More pre-
cisely, we use an aggregation approach through the linear combination of the
three objectives.

The problem is optimized in a centralized way, assuming that global
knowledge of the network is known. The suitability of this approach for
the real world might be debatable. It would require efficient mechanisms to
communicate the network status to the server, as well as a fast optimization
algorithm to dynamically make decisions on the vehicles to use as injection
points. However, this allows one to better understand the problem and find
state-of-the-art and highly accurate solutions. These solutions are then used
to assess the performance of four online heuristics (i.e., to be implemented in
the devices), one centralized and three decentralized, proposed to solve the
problem in a computationally efficient way.

The remainder of this chapter is organized as follows. Section 8.1
describes the problem at hand, and the heuristics used for solving it are
explained in Section 8.2. The experimental setup is presented in Section 8.3,
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and the results obtained are later analyzed in Section 8.4. Finally, Section 8.5
concludes the chapter.

8.1 THE PROBLEM

The problem studied in this chapter is to, provided a snapshot of a VANET,
determine the best set of vehicles to join the overlay in order to unpartition
the corresponding network graph and maximize its small-world properties.
Section 8.1.1 first provides details on the injection network problem defini-
tion and used metrics. Then Section 8.1.2 defines the tackled optimization
problem.

8.1.1 Injection Networks

The injection networks problem considers hybrid VANETs where each vehi-
cle can potentially have both vehicle-to-vehicle and vehicle-to-infrastructure
(e.g., using Wi-Fi hotspots) communications. Nodes elected as injection
points (i.e., nodes connected to the infrastructure) form a fully connected
overlay network that aims at increasing the connectivity and robustness of
the VANET. Injection points, respectively, permit one to efficiently dissemi-
nate information from distant and potentially disconnected nodes and prevent
costly bandwidth overuse with redundant information. An example network
is presented in Fig. 8.1. However, the number of chosen injection points must
be minimized since these induce additional communication costs.

In addition, we consider that the small-world properties of the network
should be maximized. Small-world networks [9] are a class of graphs that
combines the advantages of both regular and random networks with, respec-
tively, a high clustering coefficient (CC) and a low average path length (APL).
The APL is defined as the average of the shortest path length between any
two nodes in a graph G = (V , E), that is,

APL =
1

n(n − 1)

∑

i,j

d(vi, vj)

with d(vi, vj) the shortest distance between nodes vi, vj ∈ V . It thus indicates
the degree of separation between the nodes in the graph. The local CC of
node v with kv neighbors is

CCv =
|E(�v)|

kv(kv − 1)
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Injection point

Key

Overlay connection
Network node V2V connection
Injection point

Figure 8.1. Network with 248 nodes including 6 injection points composing the overlay

network.

where |E(�v)| is the number of links in the relational neighborhood of v and
kv(kv −1) is the number of possible links in the relational neighborhood of v.
The global clustering coefficient is the average of all local CC in the network,
denoted as

CC =
1

n

∑

v

CCv.

The CC measures the extent to which strongly interconnected groups of
nodes exist in the network, that is, groups with many edges connecting nodes
belonging to the group, but very few edges leading out of the group.

We here consider Watts original definition of the small-world phenomenon
in networks with APL ≈ APLrandom and CC � CCrandom, where APLrandom
and CCrandom are, respectively, the APL and CC of random graphs with
similar number of nodes and average node degree k.

8.1.2 Optimization Problem Definition

The proposed optimization problem can be formalized as follows. The solu-
tion to this problem is a binary vector sol of size n (number of nodes in
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the network), sol[1..n] where sol[i] = 1 if node vi is an injection point, and
sol[i] = 0 if vi is not an injection point. The decision space is thus of size 2n.

In this work, we consider two single-objective definitions of the problem,
F1 and F2. F1 only considers the optimization of the network small-world
properties, CC and APL, regardless of the number of injection points to use.
Optimizing F1 will permit to have an empirical bound on the small-world
values reachable in the network. F2 considers the minimization of the num-
ber of injection points in addition to the maximization of the small-world
properties. The solution maximizing F2 will then be a compromise between
these three objectives.

In case the obtained network is unpartitioned, the aggregative objective
function F1 is defined as

F1 =
(

0.5 +
ccdiff

2

)
+

[
1 −

(
0.5 +

apldiff

2 × d

)]
, (8.1)

where d is the diameter of the obtained graph G, that is, the longest shortest
path between any two nodes; ccdiff is the absolute difference between the
CC of the resulting network and the CC of the equivalent random graph:
ccdiff = |cc−ccrandom|. Similarly, apldiff is the absolute difference between the
APL of the resulting network and the APL of the equivalent random graph:
apldiff = |apl−aplrandom|. For each overlay network instance evaluated in this
work, the aplrandom and ccrandom is obtained by averaging the APL and CC of
30 corresponding random graphs using Watts random rewiring procedure [9]
with probability p = 1. Each random graph is created based on the number of
devices and average network degree.

No priority is given to one objective over the other. The weights are thus
defined in order to normalize the two different objectives to be maximized in
the [0,1] interval.

The second function F2 is defined as

F2 = F1 +

(
1 − inj

n

)
, (8.2)

where inj is the number of chosen injection points and n is the total number
of nodes in the graph.

Finally, in case the graph is still partitioned, the solution is considered
invalid and is thus penalized as the opposite of the number of remaining
partitions P:

F1 = −P; F2 = −P. (8.3)
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In order to optimize this single-objective problem, we rely on the follow-
ing four evolutionary algorithms, generational GA, steady-state GA, cellular
GA, and cooperative coevolutionary GA described in detail in Chapter 5. The
results with these metaheuristics are then used to assess the performance of
five heuristics, two centralized and three decentralized, proposed to compute
solutions in a computationally efficient way. These heuristics are presented
in the next section.

8.2 HEURISTICS

In this section we describe the five different heuristics we propose to quickly
solve the injection networks problem. The three presented in Section 8.2.2
are decentralized and require local knowledge; therefore, they can be actually
implemented to solve the problem in a real system.

8.2.1 Centralized

We first propose two basic centralized heuristics designed to minimize the
number of injection points in the solution. Since the overlay network induced
by the injection points is a clique, the smallest valid solution set con-
sists in selecting one injection point in each connected component, that is,
unpartitioned graph.

8.2.1.1 Random Injection Point per Connected Component.
This heuristic, referred as RandPerComp, selects a random node in each con-
nected component without any consideration for small-world properties (i.e.,
the average clustering coefficient or the average path length). This heuristic is
centralized since it necessitates a global knowledge of the network. Choosing
a set of random points permits one to obtain a lower bound for minimum size
solutions, that is, solutions with the minimum number of injection points.
Indeed, any other minimum-size centralized solution that does not perform
better than the random one can directly be considered as useless.

8.2.1.2 Connected Component Centers. This second centralized
heuristic, referred as CenterComp, also aims at selecting the smallest set of
injection points. The main difference with RandPerComp resides in the fact
that we select the center of each connected component in order to optimize
the average path length to some extent. The center of a connected component
is the node u ∈ V characterized by the smallest aggregated graph distance,
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composed of all graph distances between u and all the other nodes of the
same connected component. This can be formalized as follows:

center = arg min
u∈V

∑

v∈V\{u}
dG(u, v).

8.2.2 Distributed

In this chapter, we propose and evaluate the performance of solutions that can
be practically implemented in real VANETs, that is, distributed and localized
approaches.

This means that in a realistic situation, no global knowledge can be
assumed and each vehicle must rely on local information, that is, information
from its neighbors, to decide whether or not it should be an injection point.
Indeed in a real VANET context, the access to neighbor information is limited
in distance for scalability reasons, since collecting further information would
require intensive bandwidth usage to the expense of the application com-
munications. This available information is generally quantified in number of
hops, that is, how far in graph distance. As an example, 1-hop information
refers to information received from the direct neighbors, while 2-hop infor-
mation additionally contains data from the neighbors of the neighbors. The
first proposed heuristic to solve the injection networks problem is one 1-hop
and the other two are 2-hop. These are detailed later.

8.2.2.1 Highest Degree. This very simple heuristic evaluates in its
direct (i.e., 1-hop) neighborhood whether its related vehicle has the highest
degree, thus number of neighbors. The vehicle becomes an injection point
if this evaluation is positive. In the eventuality of ties, the vehicle with the
highest unique identifier (ID) is selected. The underlying idea of this heuristic
is that having an injection point with a high number of neighbors will help
reduce the APL of the local graph, which may also positively affect the APL
of the whole graph.

8.2.2.2 Highest Clustering Coefficient. This second heuristic is
based on a similar idea, but instead of selecting vehicles based on their num-
ber of neighbors, it relies on the highest clustering coefficient. In case of a
tie, the highest unique identifier is selected. The underlying idea is that if we
select the highest local clustering coefficient (CC), the overall CC can only
increase as the overlay network is fully connected.
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8.2.2.3 KHOPCA. The last heuristic is based on KHOPCA, a dynamic
multihop clustering algorithm for mobile wireless networks proposed by
Brust et al. [2]. KHOPCA creates trees of a maximum depth k, meaning that
the maximum graph distance between the root and its farthest leaf is k. This
algorithm is based on the repetition of very simple rules in a distributed and
localized fashion. The proposed adaptation consists in considering that each
root should be selected as an injection point.

8.3 EXPERIMENTS

We describe in this section the methodology we followed for our experi-
ments. Solutions are represented as a binary string, every bit representing
one vehicle. Those genes set to 1 mean that the corresponding vehicles act as
injection points, while a 0 value indicates the contrary.

8.3.1 Algorithm Configurations

In terms of network, we have used realistic VANETs instances in the center
of Luxembourg, simulated using the VehILux mobility model [8]. VehILux
accurately reproduces the vehicular mobility in Luxembourg by exploit-
ing both realistic road network topology (OpenStreetMaps) and real traffic
counting data from the Luxembourg Ministry of Transport. The six studied
networks represent snapshots of a simulated area of 0.6 km2, three snapshots
are taken between 6:00 a.m. and 6:15 a.m., and the three others between
7:00 a.m. and 7:15 a.m. These six network instances are named using their
corresponding timestamp, starting from 21900 to 26099. In the case of
Luxembourg, this time range is characterized by monotonously increasing
number of vehicles due to very dense commuting activity. The properties of
the instances are shown in Table 8.1.

8.3.2 Comparison of the Performance of the Algorithms

The algorithms’ averaged best solutions over the 30 runs are presented in
Tables 8.2 and 8.3 for the six problem instances, when optimizing F1 and
F2, respectively. Values shaded in dark gray represent the best obtained
results, while the second best ones are shaded in light gray. The results of
the corresponding Wilcoxon test are shown in Table 8.4.

Considering F1, it can be first noticed that the CCGA is performing
worse than the other three GAs with statistical confidence for the small- and
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TA B L E 8.1. Network Instances

Surface 0.6 km2

Coverage Radius 100 m

6
a.

m
. Network number 21900 22200 22500

Number of nodes 40 62 60
Partitions 10 8 6

Solution space 112 4.6118 1.1518

7
a.

m
. Network number 25500 25800 26099

Number of nodes 223 248 301
Partitions 10 6 7

Solution space 1.3467 4.5274 4.0790

TA B L E 8.2. Comparison of the Average Best per Algorithm Using F1

Instance genGA ssGA cGA CCGA

21900 1.3007±7.6e−3 1.2983±3.9e−3 1.3033±6.8e−3 1.2783±3.5e−2
22200 1.3568±1.4e−2 1.3590±1.2e−2 1.3633±5.9e−4 1.3389±1.4e−2
22500 1.3312±4.9e−4 1.3272±6.7e−3 1.3307±3.3e−3 1.3215±1.6e−2
25500 1.2969±7.9e−3 1.2972±2.4e−3 1.2761±7.0e−3 1.2285±2.3e−1
25800 1.3088±1.3e−2 1.3005±6.3e−3 1.3038±1.6e−3 1.3037±1.0e−2
26900 1.3199±2.2e−3 1.3157±6.9e−3 1.3094±3.7e−3 1.4814±7.8e−3

TA B L E 8.3. Comparison of the Average Best per Algorithm Using F2

Instance genGA ssGA cGA CCGA

21900 2.0329±8.9e−16 2.0329±8.9e−16 2.0329±8.9e−16 2.0225±3.9e−2
22200 2.1738±1.1e−2 2.1738±1.1e−2 2.1748±7.7e−4 2.1578±5.5e−2
22500 2.1579±1.8e−4 2.1574±3.5e−4 2.1578±2.2e−4 2.1539±3.6e−3
25500 2.1845±7.6e−2 2.0585±1.9e−1 2.1993±2.7e−4 2.1222±1.6e−1
25800 2.2205±1.2e−3 2.2198±1.4e−3 2.2207±1.1e−3 2.2181±2.2e−3
26900 1.7200±1.6e−1 1.7893±1.9e−1 2.2269±1.0e−3 2.0070±2.1e−1

TA B L E 8.4. Comparison of Algorithms according to Wilcoxon Unpaired
Signed-Ranks Test for F1 and F2 on the Six Network Instances

ssGA cGA CCGA

F1 genGA – – – – � – � � – � � � � � � � � �
ssGA � � – � – � � � � � � �
cGA � � � � � �

F2 genGA – – � � � � – � – � – � � � � � � �
ssGA – � � � � � � � � – � �
cGA � � � � � �
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Figure 8.2. Convergence plots of F2 on the 21900 instance.

medium-size problem instances, that is, from 21900 to 25500. When increas-
ing the problem size, CCGA improves its quality, first outperforming the
ssGA in 25800 and then outperforming all on the most complex instance
(26099). The cGA is significantly the best on the first two instances, whereas
it is outperformed by the two panmictic GAs on the 22500 instance and by
the genGA on the 25800.

When optimizing F2, the CCGA behavior is similar, as it is significantly
outperformed by all algorithms for all instances except for the largest one
where it is in second place, after the cGA. No difference has been found
between the three other algorithms on the first instance. They indeed all found
the same average with the same standard deviation. The cGA significantly
performs better than all the algorithms on half of the instances (22200, 25500,
and 26099) and than the ssGA on the remaining two instances.

Figures 8.2 and 8.3 present the convergence of the four algorithms when
optimizing F2 on the smallest and largest instances, respectively. These two
plots are chosen since they are representative of the behavior of the algo-
rithms on the other instances and other fitness function F1. It clearly appears
that on the small problem the CCGA has one of the fastest convergence but
is the first to get trapped in some local optima. The three other algorithms
all converge to the same average value, the cGA being the fastest to reach it,
after 10800 evaluations as opposed to 16100 for genGA and 17200 for ssGA.
When tackling the largest instance, the two EAs with structured population,
that is, cGA and CCGA clearly outperform the other two EAs.

Finally, Table 8.5 presents the overall best result obtained per algorithm
and problem instance among the 30 independent runs. It appears that for the
three small-problem instances all algorithms found the same best or second
best solution, indicating that the problem is easier to solve. The perfor-
mance is less homogeneous for the larger instances. The genGA finds the
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Figure 8.3. Convergence plots of F2 on the 26099 instance.

TA B L E 8.5. Comparison of Overall Best per Algorithm

F1 F2

Instance genGA ssGA cGA CCGA genGA ssGA cGA CCGA

21900 1.3174 1.3174 1.3174 1.3238 2.0329 2.0329 2.0329 2.0329
22200 1.3635 1.3635 1.3635 1.3635 2.1751 2.1751 2.1751 2.1736
22500 1.3316 1.3316 1.3316 1.3789 2.1579 2.1579 2.1579 2.1572
25500 1.3015 1.3013 1.2879 1.2976 2.1995 2.1993 2.1995 2.1990
25800 1.3121 1.3109 1.3069 1.3108 2.2219 2.2217 2.2219 2.2215
26900 1.3228 1.3234 1.3143 1.4892 2.1984 2.1989 2.2286 2.2265

best solution for the next two instances, while CCGA and cGA do for the
26099 with F1 and F2, respectively, which also indicates that the EAs with
structured population performed better on the most complex instances.

8.4 ANALYSIS OF RESULTS

After conducting all the experiments, we first propose in Section 8.4.1 to
analyze the values of the underlying objectives in F1 and F2 from the best
solution found for each problem instance. Then in Section 8.4.2 the results
obtained by the proposed heuristics are compared to these empirical bounds
obtained with the EAs.

8.4.1 Analysis of the Objective Values

In this section we are interested in analyzing the objective values of the best
solutions obtained during the optimization process. As previously defined,
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TA B L E 8.6. Objective Values Analysis for F1

Instance Fitness APL APLrand CC CCrand Inj. Pts

21900 1.3174 3.1026 2.8833 0.8874 0.2159 14
22200 1.3635 2.4918 2.7179 0.9574 0.3056 32
22500 1.3789 2.4915 2.8418 0.8810 0.2108 20
25500 1.3015 2.4910 2.7266 0.8580 0.3334 114
25800 1.3121 2.4656 2.7355 0.8697 0.3244 133
26099 1.4892 2.4933 2.7521 0.8671 0.3078 153

TA B L E 8.7. Objective Values Analysis for F2

Instance Fitness APL APLrand CC CCrand Inj. Pts

21900 2.0329 3.3590 3.0853 0.7680 0.1631 10
22200 2.1751 3.8361 3.1063 0.8351 0.1356 8
22500 2.1579 4.2203 3.0894 0.7713 0.1424 6
25500 2.1995 3.6396 2.8828 0.7752 0.1755 13
25800 2.2219 3.7044 2.8842 0.7739 0.1744 8
26099 2.2286 4.2200 2.9248 0.7615 0.1365 9

the fitness functions F1 and F2 are weighted sums of, respectively, two and
three objectives: small-world metrics with clustering coefficient and average
path length and the number of injection points. We thus propose to analyze
the values of these objectives in the best solution obtained per instance, as
presented in Tables 8.6 and 8.7 for F1 and F2, respectively.

Since F1 only considers small-world (SW) properties, the APL and CC
values are to be considered as empirical bounds. We can observe that the
required number of injection points to reach the best SW values is very
high, that is, close to half of the nodes, ranging from 14 out of 40 nodes
for the instance 21900 to 153 out of 301 nodes for 26099. Except for the
first instance, the APL values are quite low and similar, with an average of
2.589 and a standard deviation of 2.5e−1. Indeed, the APL is also lower than
the average APL of equivalent random graphs (APLrand), which means that
the defined weighted fitness function focuses on the minimization of this
objective. The CC values obtained are very high, with an average of 0.8868,
which correspond to the desired SW values since we aim at CC � CCrandom.

As expected, when including minimization of the number of injection
points in the fitness function, that is, F2, the SW values change drastically.
The average APL is now 3.829, meaning an increase of 47.8% with a high-
est difference of 69.3% in instance 22500. It is also significantly higher than
the APLrand, with an average increase of 27.8% and a worst-case difference
of 44.2% in the 26099 instance. The CC difference is also noticeable, with
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an average of 0.7808, which means a decrease of 11.9% but remains much
higher than the CCrandom. However, the number of required injection points
has also been drastically reduced, even to the minimum possible. Indeed
it is equal to the number of connected components in the network for the
three small instances, and it only requires 13, 8, and 9 injection points for,
respectively, 10, 6, and 7 connected components, for the large instances.

8.4.2 Comparison with Heuristics

This section first presents the results obtained with the five heuristics on the
same six VANET snapshots and then compares them to the empirical bounds
obtained with the EAs. Since the RandPerComp and the KHOPCA heuris-
tics include some randomness, they are averaged over 30 different runs. The
other three heuristics are only run once since they are deterministic. Finally,
KHOPCA is used with a depth of k = 2.

8.4.2.1 Heuristics Performance. Tables 8.8 and 8.9 present the
average results of the heuristics on the 6-h instances and 7-h instances,
respectively. In terms of fitness, not surprisingly, the two centralized heuris-
tics perform better than the decentralized ones for F2. This is thanks to their
global knowledge of the network that permits to have the minimum number
of injection points, that is, as many as the number of connected components
in the network. On the contrary, this low number of injection points limits the

TA B L E 8.8. Average Heuristics Results on the 6-h Instances

RndPerComp CenterComp HigherCC HigherDeg KHOPCA

CC 0.7863 0.7882 0.7799 0.7832 0.7976
APL 4.1875 3.7732 3.2904 3.5145 3.4001
Inj. 8.0000 8.0000 17.0000 10.6667 12.200
F1 1.2588 1.2724 1.2397 1.2627 1.2497
F2 2.0992 2.1127 1.9157 2.0567 2.0145

TA B L E 8.9. Average Heuristics Results on the 7-h Instances

RndPerComp CenterComp HigherCC HigherDeg KHOPCA

CC 0.7672 0.7675 0.7622 0.7641 0.7622
APL 5.2339 5.1365 3.6343 3.7402 3.5093
Inj. 7.6667 7.6667 17.0000 14.0000 14.8000
F1 1.2276 1.2296 1.2282 1.2408 1.2363
F2 2.1968 2.1988 2.1605 2.1859 2.1779
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quality of the SW values and thus has the opposite effect on F1, for which
the decentralized heuristics perform better on average.

KHOPCA, whose main target is to maximize the CC, obtains the best CC
average on the small density networks, but with a higher number of injection
points. For the larger networks that represent some traffic jam condition, the
CC values obtained are all very similar, probably because selecting nodes in a
very dense network does not impact much the average CC. Despite their low
number of injection points, the centralized heuristics obtain good CC values,
which could be explained by the fact that adding more injection points might
not necessarily increase the average CC.

The APL results show that the HigherCC and KHOPCA are the best for
this objective, most likely because they have the highest number of injection
points. On the other hand, the two centralized heuristics perform the worst
because of their low number of injection points. The worst one is the Rand-
PerComp, which shows that randomly choosing the injection points makes it
highly improbable to obtain good results for the APL.

When considering the number of injection points, the HigherCC shows its
limits as it has the highest value in all cases. Obviously, the two centralized
approaches have the same values since they are equal to the number of con-
nected components. These provide some lower bound and permit to show the
good quality of HigherDeg and KHOPCA. This ranking is the same for both
the 6-h and 7-h instances.

8.4.2.2 Heuristics Compared to EAs. We now compare the perfor-
mance of the heuristics to the empirical bounds found by the EAs on the two
most different instances, that is, 21900 and the 26099.

Tables 8.10 and 8.11 present the three objective values (CC, APL, and
injection points) and the corresponding fitness values F1 and F2 of the five
heuristics on the two problem instances. The last two columns provide the
best solution found by the EAs for each fitness function.

When comparing the fitness values, it first appears that the heuristics can
have excellent performance on the small instances. Indeed, the CenterComp
that best performs on 21900 is only 3% worse than the EA on F1 and

TA B L E 8.10. Comparison of Heuristics and EAs on the 21900 Instance

RndPerComp CenterComp HigherCC HigherDeg KHOPCA Best F1 Best F2

CC 0.7711 0.7723 0.8162 0.7632 0.7783 0.8874 0.7680
APL 3.7444 3.3590 2.9743 3.3589 3.1983 3.1026 3.3590
Inj 10.0000 10.0000 16.0000 11.0000 12.2667 14.0000 10.0000
F1 1.2622 1.2818 1.2474 1.2396 1.2424 1.3174
F2 2.0120 2.0318 1.8474 1.9646 1.9357 2.0329
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TA B L E 8.11. Comparison of Heuristics and EAs on the 26099 Instance

RndPerComp CenterComp HigherCC HigherDeg KHOPCA Best F1 Best F2

CC 0.7615 0.7619 0.7532 0.7577 0.7551 0.8671 0.7615
APL 6.2215 6.0900 3.9267 4.0667 3.6129 2.4933 4.2200
Inj. 7.0000 7.0000 16.0000 15.0000 15.7333 153.0000 9.0000
F1 1.2214 1.2248 1.2082 1.2290 1.2404 1.4892
F2 2.1981 2.2015 2.1550 2.1792 2.1882 2.2286

0.0015% worse on F2. But considering decentralized heuristics, the accu-
racy decreases with HigherCC being 5.5% worse on F1 and HigherDeg
3.4% worse on F2. Also the more complex the problem, the more differ-
ence between the heuristics and the EAs. For the 26099 instance, KHOPCA,
which performs best on F1, is 17% worse and RndPerComp, which performs
best on F2, is 1.4% worse.

When comparing to the optimal small-world properties, that is, the results
obtained with F1, the HigherCC is the closest on the 21900 instance, but it
requires two additional injection points to reach a smaller APL but also CC.
As can be seen on the 26099 instance, the small-world quality degrades with
the size of the instances but is justified by the fact that half of the nodes must
be injection points to reach this optimum, which is not applicable in a real
setting.

Finally, the comparison with the best found compromise solutions on the
three objectives, that is, with F2, demonstrates that simple decentralized solu-
tions like HigherDeg on 21900 can reach very similar values. Indeed the
difference in CC is only 0.6%, close to 0 on the APL and just requiring one
additional injection point. When tackling the larger instance, the best decen-
tralized heuristic is KHOPCA, whose SW values are also close to the ones
found by the best EA, with a CC only 1% worse and an APL 15% better.
However, these come at the expense of a drastic increase in number of injec-
tion points, as they require 15 injection points compared to the 9 of the EA,
thus 67% more.

8.5 CONCLUSION

This third experimental chapter has proposed to apply evolutionary algo-
rithms on a topology control problem in VANETs. The objective is to select
so-called injection points that provide connectivity to road-side units and cre-
ate a fully connected overlay network of back-end systems, to unpartition the
network, and optimize its small-world properties.
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We have proposed a single-objective formulation for this new problem as
a weighted sum of the three objectives, and we used two different scenar-
ios representing realistic vehicular networks in the center of Luxembourg.
The six problem instances were first tackled using four EAs to provide some
empirical bounds on the SW values and number of injection points.

The performance of the algorithms was compared in terms of the qual-
ity and convergence speed of solutions and concluded that the genGA and
ssGA perform well on all instances but the largest one, where both structured
population algorithms, that is, cGA and CCGA perform the best.

Using such algorithms with a global knowledge of the network is not
applicable in a real situation since it would imply the usage of central servers
to optimize this hard problem in real time and require large communication
overhead. However, the obtained results can be used to assess quality on the
results of other more suitable algorithms to solve the problem.

Five heuristics were proposed and compared to the solutions provided
by the evolutionary algorithms. Three heuristics are fully decentralized,
meaning that these could be implemented in real systems. Experiments
demonstrated that heuristics are able to obtain highly accurate results with
CC and APL values close to the optimal ones but at the expense of a higher
number of injection points.
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REALISTIC VEHICULAR
MOBILITY

Vehicular ad hoc networking opens new services perspectives, including
safety, infotainment, and real-time traffic information. The emergence of
such networks has raised new research challenges that differ from regular ad
hoc networks. These are motivated by the high speed of the vehicles, which
creates complex mobility and network connectivity patterns.

In order to provide efficient and reliable services, dedicated solutions like
new communication standards and information dissemination algorithms are
required. As discussed in Chapter 4, their evaluation can either be achieved
through experimental testbeds or simulations. Testbeds permit one to obtain
measures in real-world conditions but are limited in scale due to reproducibil-
ity and economic and technological constraints. Simulations are, therefore,
preferred but require realistic network and mobility models. This chapter
focuses on the latter.

The importance of having accurate mobility models in VANET simulation
is well acknowledged, and many vehicular mobility models have thus been

Evolutionary Algorithms for Mobile Ad Hoc Networks, First Edition. Bernabé Dorronsoro,
Patricia Ruiz, Grégoire Danoy, Yoann Pigné, and Pascal Bouvry.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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proposed in the literature. Initially limited to simple artificial models such as
the Manhattan model [3], traces can now be generated on real road topologies
by microscopic mobility simulators. The reader may refer to Chapter 4 for a
detailed survey of mobility models and mobility simulators.

As mentioned in [7], the current challenge in mobility modeling is the
generation of large-scale traces, such as a citywide area. Two such models
have recently been proposed in the literature, one for the city of Cologne (see
Chapter 4) and the other for the city of Luxembourg [4, 5], referred to as
VehILux in the remainder of this chapter.

VehILux relies on two real-world sources of information: detailed geo-
graphic maps and traffic volume counts. A set of probabilistic geographic
attraction points is used to select the destination of each vehicle. These val-
ues depend on the considered scenario specified by the geographic area and
the traffic volume counts.

In this chapter, we thus propose to optimize these probabilities using our
optimization framework and demonstrate how it is possible to improve the
accuracy of the model.

The remainder of this chapter is organized as follows. Section 9.1 provides
a detailed description of the VehILux mobility model and of the corre-
sponding optimization problem. Then, Section 9.2 presents the experimental
design, the configuration of the single-objective optimization algorithms, and
a comparison of the algorithm’s performance. A detailed analysis is then
provided in Section 9.3. Finally, conclusions and future works are given in
Section 9.4.

9.1 THE PROBLEM

This section first provides a detailed description of the VehILux mobility
model and is followed by the definition of the corresponding optimization
problem.

9.1.1 Vehicular Mobility Model

VehILux is a realistic vehicular macromobility model that permits one to
generate city or regionwide traffic flows based on real geographic and
traffic volume count data. Since traffic counts only provide local infor-
mation, VehILux includes a probability-based destination model exploiting
geographic information. A general overview of the VehILux architecture
is shown in Fig. 9.1 and a detailed description of its components is then
provided.
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Figure 9.1. VehILux mobility model overview.

9.1.1.1 Input Data. VehiILux relies on two sources of real-world
information. The first one is hourly traffic volume counts made available
by the Luxembourg Ministry of Transport. These are gathered by count-
ing devices (a.k.a., counting loops) spread around Luxembourg. Each traffic
count provides quantitative information (i.e., the number of vehicles that
passed through the count) and qualitative information (i.e., differentiation
between cars and trucks/buses).

The second source of information is detailed geographic maps from Open-
StreetMap (OSM) [1]. VehILux exploits OSM accurate information on the
road network, speed limits, and traffic lights. It additionally benefits from
OSM land-use information through a classification of geographic zones by
type: (1) commercial, (2) industrial, and (3) residential. Figure 9.2 presents
a map of Luxembourg with the corresponding counting loops and different
zones. These two sources of input data are used by VehILux traffic demand
and assignment models described hereafter.

9.1.1.2 Traffic Demand and Traffic Assignment Models. A traf-
fic demand model must provide information on the vehicles start time and
the origin and destination of each vehicle trip. However, as previously men-
tioned, traffic volume counts do not provide such geographic information.
The VehILux model thus uses two types of origins of traffic, that is, count-
ing loops located at the edges of the map (see Fig. 9.2), referred to as outer
traffic, and some additional traffic originating from residential zones inside
the map, referred to as inner traffic. The probability of selecting a residential
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Figure 9.2. Simulation area with geographical zones and control loops.

zone is positively correlated with its surface. The inner traffic is defined as a
fraction of the outer traffic using a parameter named inner traffic ratio.

The destination model (i.e., the probability of selecting one geographic
zone as destination) is more complex and relies on the notions of zone types,
zone surface, and attractivity areas.

The selection probability of a zone is a function of its surface and of
its type (commercial, industrial, or residential). Each zone type is assigned
an overall global probability of being selected as a destination type, noted
PT where T ∈ {R, C, I} is the zone type (i.e., residential, commercial, or
industrial). However, zones of the same type may exist in different locations,
and some of them might be more attractive than others (e.g., a commercial
zone in the city center may be more attractive than another commercial zone
of equal surface outside the city). This effect is modeled by attractivity areas.
Each attractivity area is defined for a specific zone type with geographic coor-
dinates, a radius, and a probability. Coordinates and radius are set based on
problem instance knowledge, but the probability is a tunable parameter. Each
zone of the map either belongs to one attractivity area or to the default area,
which represents the absence of any attractivity area. The probability P(z) of
a zone z to be selected can be formalized as
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Figure 9.3. Destination zone selection procedure.

P(z) = PT × P(za) × S(z)

S(za)
, (9.1)

where PT is the probability of the zone type, P(za) and, S(za) are, respec-
tively, the probability and surface of the attractivity area za to which the zone
z was assigned, and S(z) is the surface of zone z.

The example provided in Fig. 9.3 (top-left corner) presents the three
default attractivity areas, Acd for commercial, Ard for residential, and
Aid for industrial. Additionally, the illustrated map contains four attractiv-
ity areas, two residential (Ar1 and Ar2), one commercial (Ac1) and one
industrial (Ai1), each of them having a probability.

The selection of a destination is done using a three-step probabilistic
model. In the first step the zone type is chosen according to the zone
type probability PT . In the second step, one attractivity area or the default
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attractivity area of the same type is selected based on its probability, PTi

or DT . Finally, in the third and last step, one zone is chosen within the
selected attractivity area with a probability P(z) proportional to the zone
surface.

Figure 9.3 illustrates the selection process of a destination zone in a sim-
plified scenario. In step 1, the industrial zone type is chosen. Two attractivity
areas of the industrial type remain, Ai1 and the default one Aid. Ai1 is then
selected in step 2. Finally, in step 3 one of the five zones in Ai1 is selected as
a destination.

After defining the origin and destination of each trip with the traffic
demand model, the traffic assignment model generates the route between
them. In VehILux a Dijkstra algorithm based on the shortest paths in time
is used (based on the OSM input data).

Finally, the quality of the generated traffic is evaluated using the count-
ing loops located inside the simulation area, which are used as control points
(represented as numbered black circles in Fig. 9.2). The traffic generated
by VehILux is then compared to the real traffic volume counts in these
locations.

9.1.2 Optimization Problem Definition

In order to produce mobility patterns for a given environment, VehILux
requires input data and parameters to be set. The map and counting infor-
mation provide most of the needed information. Indeed, each zone given by
the map is located and has a surface and a type. The various zone types are
also given to the system as static information. Attractivity areas require more
empirical knowledge on the considered area, so their position and radius is
also given as static information.

All the other information in the system can be considered as tunable input
parameters. The following parameters (Table 9.1) are thus considered as
decision variables from an optimization problem point of view:

TA B L E 9.1. Domain of the Variables
to Optimize

PT [1, 100]
DT [1, 100]
PTi [1, 100]
InnerTrafficRatio [1, 100]
ShiftingRatio [1, 100]
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PT is the zone type attractivity assigned for each zone type T ranging
from 1 to 100. Their sum equals to 100.

DT is the default attractivity area probability for each zone type T . It
ranges from 1 to 100.

PTi defines the attractivity of a conventional area of type T with index i.
For each zone type a default attractivity area and one or more specific
attractivity area(s) are set. It takes values between 1 and 100. The sum
of default and conventional attractivity area probabilities for each zone
type is 100.

InnerTrafficRatio is the inner traffic ratio that represents the amount of
traffic originating from residential zones inside the simulation area as
a percentage of the outer traffic (i.e., traffic generated from counting
loops located at the border of the map). It ranges from 1 to 100.

ShiftingRatio is the shifting ratio that defines the percentage of vehicles
that trip starts at hour h but ends at hour h + 1. Indeed, the model does
not define a precise departure time for each vehicle trip but departures
within 1-h time slots. The inner traffic ratio then permits one to simulate
that some trips pass through the control point in the next hour.

The number of decision variables, and more precisely the number of
attractivity area probabilities varies depending on the simulation area. For the
considered Luxembourg scenario, one residential, one industrial, and three
commercial attractivity areas are considered. The total number of decision
variables is thus 13.

The quality of the generated flow is then evaluated by comparing the gen-
erated traffic counts with real traffic volume counts at the control points.
Thirteen out of the 28 real-life traffic count locations positioned closer to
the center of the region are reserved to validate the flow generated by the
model.

The evaluation or fitness function F is the following:

F =
C∑

c=1

T∑

t=1

|rc(t) − cc(t)|, (9.2)

where rc(t) is the real traffic volume count at control point c in time slot t,
cc(t) is the number of vehicles at control point c derived from the generated
traffic flows in time slot t, C is the number of control points, and T is the
number of time slots. The smaller this sum of absolute differences between
the real traffic volume counts and the estimated ones is, the better the model
estimated the real flow.
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Traffic flows are generated independently for each 1-h time slot t and con-
trol point c [i.e., cc(t)] as real traffic count data are typically collected on
a per hour basis. As already mentioned, there is no precise departure time
related to each origin–destination pair, except the 60-min slots (e.g., vehicle
i departs from point a to point b between 9 and 10 a.m.). By default vehicles
are supposed to arrive at their destinations in the same time slot. The shifting
ratio SR, originally proposed in [6], removes this limitation by defining the
ratio of vehicles whose trips are scheduled to start in time slot t, but will pass
through the control point in the slot t + 1. The estimated number of vehicles
that pass through control point c within time slot t [c(t)] is thus calculated as
follows:

cc(t) = pc(t) × (1 − SR) + pc(t − 1) × SR, (9.3)

where pc(t) is the number of all vehicles generated in time slot t that pass
through control point c, pc(t − 1) is the number of vehicles generated in time
slot t−1 that pass through control point c in time slot t, and SR is the shifting
ratio.

The objective is thus to use a single-objective optimization metaheuristic
in order to fine-tune these 13 probabilities and obtain vehicular mobil-
ity traces that produce traffic counts as close as possible to the real ones.
A formal definition of the problem follows:

s : instance of the Graphstream simulation

PR = pr ∈ R | pr ∈ PT

PC = pc ∈ R | pc ∈ PT

PI = pi ∈ R | pi ∈ PT

DR = dr ∈ R | dr ∈ DT

DC = dc ∈ R | dc ∈ DT

DI = di ∈ R | di ∈ DT

PR1 = pr1 ∈ R | pr1 ∈ PTi

PC1 = pc1 ∈ R | pc1 ∈ PTi

PC2 = pc2 ∈ R | pc2 ∈ PTi

PC3 = pc3 ∈ R | pc3 ∈ PTi

PI1 = pi1 ∈ R | pi1 ∈ PTi

IR = ir ∈ R | ir ∈ InnerTrafficRatio

SR = sr ∈ R | sr ∈ ShiftingRatio
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with

PR + PC + PI = 100.0

DR + PR1 = 100.0

DC + PC1 + PC2 + PC3 = 100.0

DC + PC1 = 100.0

min F(PR, PC, PI , DR, DC, DI , PR1 , PC1 , PC2 , PC3 , PI1 , SR, IR) (9.4)

9.2 EXPERIMENTS

This section presents the experimental results obtained. Section 9.2.1
presents the configuration of the single-objective algorithms used, and their
performance is analyzed in Section 9.2.2.

9.2.1 Algorithms Configuration

Similar to Chapter 8, this study deals with single-objective optimization. We
have thus used the same four single-objective metaheuristics, that is, genGA,
ssGA, cGA, and CCGA, to look for the best set of parameters for the VehILux
mobility model defined in Section 9.1.2. The configuration of the algorithms
is the one suggested by their authors, and it can be found in Chapter 5, except
for the coevolutionary algorithm that considers 4 subpopulations of 25 indi-
viduals each. The termination condition is set to 8000 evaluations because of
the computationally demanding fitness calculation. Solutions are encoded as
real vectors of size 13. A normalization is used to ensure that the sum of all
zone type probabilities PT is 100 and that the sum of attractivity area(s) and
default attractivity area is also 100 for each type T .

In order to evaluate the VehILux mobility model parameters, experiments
have been based on a detailed map of Luxembourg from OpenStreetMap [1],
from which the corresponding road network graph and zones are extracted. It
includes the roads length and speed limits and the information about the type,
number, position, and surface of the zones. The surface of the considered
area is 1700 km2 (47×36 km). Traffic volume counts from 28 locations were
obtained from [2]. As previously mentioned, 15 counting loop locations were
selected as entering points and 13 as control points (see Fig. 9.2). For each
control point, values corresponding to each hour were taken.

Two different instances have been tackled, the 11 h that was used in [6] to
optimize the original VehILux model, ranging from 12 a.m. to 11 a.m., and a
new smaller instance of only 3 h (from 6 a.m. to 9 a.m.). During this period
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(i.e., morning hours), most of the travel involves commuting, therefore, the
entering points are selected from the locations positioned at the edges of
the map.

9.2.2 Comparison of the Performance of the Algorithms

The performance of the algorithms is compared in Table 9.2. showing best
and average fitness with standard deviation for all algorithms on both prob-
lem instances. Additionally, values shaded in dark gray represent the best
obtained results, while the second best ones have a light gray background.

In the 3-h instance, the CCGA outperforms all other algorithms in both
best solution found and average solution found. The second best solution is
obtained by the ssGA while the cGA is second in terms of average solution.

In the 11-h instance, the best solution is still found by the CCGA, fol-
lowed by the cGA. But the CCGA average solution quality is in second place,
behind the genGA.

Statistical confidence in these results is here assessed using boxplots as
shown in Fig. 9.4. In such boxplots, the bottom and top of the boxes represent

TA B L E 9.2. Comparison of Algorithms on the 3- and 11-h Instances

3 h 11 h

Algorithm Best fitness Avg. fitness Best fitness Avg. fitness

genGA 4869 4954.63±43.62 14330 14427.67±55.08
ssGA 4858 4991.27±113.45 14341 14502.17±94.36
cGA 4865 4950.80±53.35 14326 14441.50±76.91
CCGA 4848 4933.07±86.74 14250 14431.83±106.04
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Figure 9.4. Fitness boxplot for the 3-h instance (left) and 11-h instance (right).
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the lower and upper quartiles of the data distribution, respectively, while the
line in-between represents the median. The whiskers are the lowest datum
still within 1.5 IQR (interquartile range) of the lower quartile, and the highest
datum still within 1.5 IQR of the upper quartile. The circles are data not
included between the whiskers, that is, outliers. Finally, the notches in the
boxes display the variability of the median between samples. If the notches of
two boxes do not overlap, then it means that there is a statistically significant
difference in the data with 95% confidence. In our case, it clearly appears
that for both problem instances there is no statistical difference between the
best algorithms since their notches overlap.

Figures 9.5 and 9.6 present the convergence of the four algorithms on the 3
and 11 h respectively. Such plots represent the best solution at every iteration
of the algorithm averaged over the 30 independent runs.

In the 3-h instance, the ssGA presents the best initial convergence speed.
However, it gets trapped in some local optima faster than the three other algo-
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Figure 9.5. Convergence plots of the 3-h instance.
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Figure 9.6. Convergence plots of the 11-h instance.
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rithm as its convergence plot crosses the other three algorithm plots around
3000 function evaluations. The CCGA initially converges a bit slower but
keeps converging for longer than the other algorithms and manages to reach
the best average.

The ssGA behaves the same in the 11-h instance, with the best con-
vergence speed but a fast flattening curve that exhibits some premature
convergence. The CCGA is again very close and becomes best from 2200
evaluations. However, the genGA reaches the best average with a slower but
more constant convergence, closely followed by the cGA. These have thus
ensured a better solution diversity preservation. If using a higher number of
evaluations was possible, based on this steeper convergence, we could expect
a more significant average advantage for the genGA and cGA.

9.3 ANALYSIS OF RESULTS

After all experiments were performed, we obtain a set of 120 best solutions
per problem instance (4 algorithms and 30 independent runs). In order to
extract some additional knowledge on the solutions found, we first analyze
the decision variables in these two best solution sets in Section 9.3.1. Then in
Section 9.3.2 we study the best objective value found by the CCGA in both
instances at the level of traffic control loops.

9.3.1 Analysis of the Decision Variables

In order to visually represent the variations in the 13 decision variables values
found in the 120 best solutions, we provide boxplots in Figures 9.7 and 9.8
for the 3-h and 11-h instances, respectively.

In the 3-h boxplot, the first noticeable information that can be extracted
is the relatively small range between the lower and upper quartiles of the
data distribution for most of the variables. This shows that promising solu-
tions are located in this limited region of the decision space. The smallest
range is obtained with the inner traffic ratio (IR), with a range between 61.97
and 69.99. Only the industrial and residential attractivity areas probabilities
feature a large range and thus variation in their values.

In terms of zone type probability, the industrial type (Pi) clearly dominates
with a median at 64.77, compared to 31.65 for the residential (Pr) and 34.10
for the commercial (Pc). For the four commercial attractivity areas probabil-
ity, both default and Pc1 have a very low median attractivity, compensated
with high probabilities for Pc2 and Pc3. The industrial area has the high-
est attractivity of all, with a median probability of 87.16. Finally, residential
probabilities are the most balanced.
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Figure 9.7. Decision variables boxplot for the 3-h instance.
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Figure 9.8. Decision variables boxplot for the 11-h instance.

When analyzing the 11-h instance boxplot, it appears that all the variable
medians are very similar and their range of values is smaller than for the
3-h case, except for the residential attractivity probabilities. This also attests
that the same promising decision space locations have been identified by
all algorithms. The main difference with the 3-h instance is the commercial
zone type probability increase, respectively, the industrial zone type proba-
bility decrease. This can be explained by the fact that in the 11-h instance,
after 9 a.m. commercial areas will start attracting a lot of traffic. The same
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TA B L E 9.3. Decision Variable Values
of Best Solutions 3- and 11-h Instances
Found by the CCGA

Decision variable Best 3 h Best 11 h

PR 1.1554 1.0000
PC 28.1651 58.5880
PI 70.6796 40.4120
DR 36.0150 59.4788
DC 6.2990 1.7655
DI 2.5669 2.4094
PR1 63.9855 40.5213
PC1 6.2777 1.0704
PC2 53.6799 64.9543
PC3 33.7434 32.2099
PI1 97.4331 97.5906
IR 64.4731 58.4855
SR 51.5402 40.8842

difference is also observable between the global best solution in the 3-h and
11-h instances found by the CCGA, whose values are given in Table 9.3.

9.3.2 Analysis of the Objective Values

In this section we are interested in analyzing the objective values of the best
solutions obtained during the optimization process. As previously mentioned,
the fitness value F of a solution is equal to the sum of the total error in each of
the 13 control loops. We thus propose to analyze the quality of the generated
traffic in specific control loops.

Figure 9.9 graphically compares the real traffic counts with the VehILux
counts from the overall best solution (i.e., CCGA) for the two scenarios. Four
control loops out of the 13 are presented: 445, 403, 401, and 1431, which can
be localized on the Luxembourg map in Figure 9.2.

It first appears that the generated flow generally follows the tendency of
the real data. This is especially observable for the VehILux model on 11 h
where the same peek hours are generated between 6 a.m. and 10 a.m. A few
control loops, like 403, have less accurate values. One explanation can be the
usage of the Dijkstra algorithm to compute shortest path in time for each trip,
that is, from origin to destination. This might concentrate the vehicles flow
on some paths to the expense of others where control loops might be located.

The selected four traffic counting loops are representative when comparing
the accuracy of the 3-h traffic counts to the 11-h. Indeed, depending on the



�

�

“Bouvry-Drv-1” — 2014/4/2 — 14:30 — page 205 — #15
�

�

�

�

�

�

ANALYSIS OF RESULTS 205

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12

Tr
af

fic
 c

ou
nt

s

Time

Control loop 445

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12

Tr
af

fic
 c

ou
nt

s

Time

Control loop 403

0
100
200
300
400
500
600
700
800

0 2 4 6 8 10 12

Tr
af

fic
 c

ou
nt

s

Time

Control loop 401

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10 12

Tr
af

fic
 c

ou
nt

s

Time

Control loop 1431

VehILux 3h

realData
VehILux 11h

VehILux 3h

realData
VehILux 11h

VehILux 3h

realData
VehILux 11h

VehILux 3h

realData
VehILux 11h

Figure 9.9. Traffic counts comparison.

TA B L E 9.4. Traffic Counts per Control Loop for 3-h
Instance and Similar 3-h Slot from 11-h Instance

Control Loop Number 3-h 11-h extract Difference

1431 445 603 158
1429 248 1081 833

445 25 174 149
433 400 283 −117
415 111 103 −8
404 591 590 −1
432 268 304 36
407 434 370 −64
401 579 535 −44
400 135 191 56
403 809 628 −181
420 335 366 31
412 468 363 −105

Total 4848 5591 743

considered loop, the accuracy is similar, worse, or better. More details are
provided in Table 9.4 where the error per loop for the 3-h instance and the
same 3-h slot extracted from the 11-h instance are given. In addition, the
last column provides the difference between these two, which is positive if



�

�

“Bouvry-Drv-1” — 2014/4/2 — 14:30 — page 206 — #16
�

�

�

�

�

�

206 REALISTIC VEHICULAR MOBILITY

the 3-h instance is better and negative if worse. Out of 13 control loops,
2 have almost similar accuracy, 5 are worse, and 6 are better. The highest
improvement, 833, is obtained on loop 1429, which features a high traffic
count with 1729 vehicles in 3 h.

This can be a consequence of the fitness function definition, which con-
siders the sum of the absolute error per loop. The algorithm thus focuses
on loops that can can be improved the most, that is, loops with high traffic,
which might imply worsening other loops with lower traffic and thus lower
improvement possibility. This can also be vizualized in Fig. 9.9 where the
traffic generated in loop 1431 with very high traffic is improved and loop 403
with lower traffic is degraded. Normalizing the error per control loop could be
investigated as a way to prevent this effect. Finally, the total error difference
is 743 in favor of the 3-h instance. This means that considering shorter time
frames indeed leads to better results, in our case to an improvement of 13%.

9.4 CONCLUSION

In this last experimental chapter, we have proposed an application of single-
objective evolutionary algorithms to improve the accuracy of the VehILux
vehicular mobility model. More precisely, VehILux parameters (i.e., proba-
bilities) have been optimized in order to generate traffic flows that minimize
the difference with real traffic counting data.

The CCGA found the best solution for the two problem instances con-
sidered, but, in general, no statistically significant difference could be found
between the four EAs applied. Evidence of the good convergence speed of
the CCGA was also provided.

An analysis of the decision variables range in the best solutions found has
shown that very similar regions of the decision space have been identified
by all four algorithms. Finally, the analysis of the overall best found solution
by the CCGA in both problem instances has demonstrated that considering
a smaller simulation time frame permits one to improve the mobility model
accuracy.
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SUMMARY AND DISCUSSION

This book gives an overview of most existing works dealing with optimiza-
tion issues in mobile networks. Researchers in the field of ad hoc networks
that are not familiarized with approximate optimization techniques, such as
evolutionary algorithms, but that require the use of such tools in their every-
day work will find it very useful. Four concrete examples, ranging from
broadcasting algorithm to mobility model optimization, are given in order
to show the interested researcher how to identify and define an optimization
problem in the frame of ad hoc networks, as well as some hints on the way
to address it.

We pay special attention to evolutionary algorithms (EAs), which is a
broad family of well-known population-based optimization algorithms. In
EAs, the population of solutions evolves thanks to the use of genetic oper-
ators, which combine the information of different solutions to generate new
ones, and the survival of the fittest solutions.

The book is composed of two different parts. The first one is dedicated to
introduce the reader in the field, as well as to provide a thorough review of the

Evolutionary Algorithms for Mobile Ad Hoc Networks, First Edition. Bernabé Dorronsoro,
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210 SUMMARY AND DISCUSSION

current state of the art. It starts with an overview of ad hoc networks, providing
descriptions of the three main kinds of networks composing them, namely,
mobile ad hoc networks, vehicular ad hoc networks, and sensor networks. The
main existing technologies used in such networks are presented and discussed.

After presenting mobile networks, an introduction to evolutionary algo-
rithms is provided in Chapter 2, for those that are not familiarized with these
techniques. All the main components typically present in EAs are described,
as well as four different kinds of EAs that differ on how the population of
solutions is organized and managed. As we see throughout the book, it sup-
poses a major influence of the performance of the algorithms, and they can
be applied to any kind of EA. multi-objective optimization is also introduced
in the chapter because many existing problems related to mobile networks
are, indeed, multi-objective in nature.

Chapter 3 provides an extensive review on the application of EAs and other
metaheuristics for a number of problems that have been identified in mobile
ad hoc networks. First, a taxonomy of such techniques is given, depending
on three main issues: (a) whether they are executed beforehand or during the
network runtime, (b) the level of knowledge they require from the network,
and (c) whether they are centralized or not. Then, we identify the main opti-
mization problems that have been defined in the context of mobile networks
in the literature, explaining the main existing metaheuristics that have been
applied to solve them (paying special attention to EAs).

The last chapter of this first part is devoted to a presentation of the exist-
ing network and mobility simulators, as well as a description of the main
existing models for emulating signal propagation and mobility patterns. This
chapter is intended to help the reader in the choice of the most appropriate
simulator(s) for his/her specific case.

The second part of the book focuses on the optimization of some rele-
vant problems in the field of mobile ad hoc networks. It starts by presenting
the proposed optimization framework in Chapter 5. It is a useful tool for
researchers and engineers that deal with mobile networks. It is composed by
a number of modules that can be easily plugged in or unplugged, and it can
be used either for optimizing problems for mobile networks or for designing
and validating new protocols and algorithms.

Chapter 6 studies the optimization of the parameters of a broadcasting pro-
tocol, according to the coverage achieved, the network use, and the time of
the broadcasting process. Therefore, it has been solved with multi-objective
optimization algorithms. A discussion considers the most appropriate way
to build a representative set of the best nondominated solutions, which is an
important process for the decision maker to have the most complete informa-
tion on the problem. The obtained results, as well as the contribution of the
different algorithms on the final set of solutions, are carefully analyzed.
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An energy-efficient communication protocol is optimized in Chapter 7. As
we saw throughout the book, mobile networks are typically composed by
battery-powered devices, making the proposed problem highly relevant in this
field. The problem is, again, multi-objective, and four different objectives were
identified. However, one of the objectives, the time, was considered as a con-
straint in the optimization process, considering valid any solution that takes 2
s or less. Removing this objective makes easier both the optimization process
and the interpretation of the results. A number of solutions were selected from
the final set of nondominated configurations of the protocol, and they were
carefully evaluated, compared, and analyzed on a wide set of networks.

Enhancing the network connectivity in the frame of VANETs is the target
of Chapter . The goal is to create an underlying topology using the infrastruc-
ture composed by the road-side units to optimize the network connectivity
(i.e., to minimize the distance between any two nodes, and maximizing the
connectivity between devices). Additionally, the number of vehicles that
communicate through the infrastructure should be minimized too in order
to prevent the network congestion. Two different single-objective optimiza-
tion problems are defined to solve a number of static network snapshots. The
obtained results were used to assess the quality of a number of centralized
and decentralized heuristics that we designed to solve the problem online. A
realistic scenario was used for the experiments, which accurately reproduces
the observed traffic in the city of Luxembourg.

In contrast of the previous chapters, focused on the optimization of com-
munication protocols or the network topology, Chapter 9 presents an original
approach that targets the optimization of a mobility model to make it as
realistic as possible. It takes as an input data the information given by traf-
fic counters located in Luxembourg. Some of these counters are chosen as
traffic injection points, which are used by the mobility model to generate
the mobility traces, using some geographical information to decide on the
destination. The configuration of the mobility model is optimized to fit the
observed data in the rest of the counters. The optimization problem is defined
as a single-objective one, and the fitness function will be given by minimiz-
ing the difference between the real observed traffic and the generated one at
every counter.

10.1 A NEW METHODOLOGY FOR OPTIMIZATION IN MOBILE
AD HOC NETWORKS

After giving a general overview of the main works in the literature dealing
with optimization issues in mobile networks, a new framework is proposed
to help researchers in the field to tackle their problems and to guide them
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to successfully solve them. The framework, proposed in Chapter 5, has a
simple architecture, composed of a number of modules that can be plugged in
or unplugged according to need. These modules are used to specify the opti-
mization algorithm(s) to use, the simulators, as well as their configurations,
among others.

The framework is not intended for optimization purposes only. It can be
used for designing and evaluating novel communication protocols or mobility
patterns, which can be afterward optimized by plugging in the optimization
module. We focus here on the use of metaheuristics, in particular, evolution-
ary algorithms, as optimization tools. This book shows how to apply them
to tackle different problems in the field. The cases of optimal broadcasting,
energy saving, network topology, and mobility traces generation were stud-
ied in a didactic way, so nonfamiliarized researchers can learn the techniques
to apply them in their work.

Applying heavy optimization techniques as evolutionary algorithms for
solving problems in mobile networks might seem counterintuitive because of
the decentralized nature of these networks, as well as their limited resources.
However, they can be really useful in this field. As we will see next, they are
typically used in online or offline modes in the literature.

In the online cases, the optimization technique must be completely
decentralized and can only make use of local knowledge of the network.
Additionally, they cannot be computationally expensive because they will be
executed in the network nodes. Ant colony optimization is typically used in
such cases, generally to optimize the routing process and some of its variants
(namely, multicast and multipath routing) [11, 16]. However, other meta-
heuristics, as GAs, were used online with local knowledge to solve problems
related to node deployment [9, 18] and encouraging node cooperation [3].

The application of metaheuristics in offline mode makes sense, for
instance, in the last step of the engineering process of protocols and algo-
rithms that rely on a set of parameters to be tuned. They can be used in
communication and topology control protocols, among others. They can also
be used for the optimization of some of the components used in simulations
to make them more realistic, as the mobility models, the signal propaga-
tion, and so forth. Notice that this optimization process generally requires
the use of simulations to evaluate candidate solutions for guiding the search.
These simulations are typically stochastic processes that require a number of
repetitions in the evaluation process in order to look for meaningful results.
Such experiments are run once to optimize the final solution, before it is
implemented. Therefore, it is generally worth to carry out the computation-
ally expensive experiments in order to find a nearly optimal result. In this
book, some examples of the application of different EAs are given for the
offline optimization of communication protocols (Chapters 6 and 7) and for
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making mobility models more realistic, as we do in Chapter 9 or [15]. Other
examples can be found in the literature to optimize routing protocols [7, 17],
to avoid selfishness [14], topology control, clustering [8], or security [13],
among others.

Offline optimization techniques are also used in the literature for reverse
engineering. In this case, the optimization algorithms are applied to solve the
problem under some unrealistic assumptions, as the use of global knowl-
edge, the lack of mobility, and the like. The designer then analyzes the
obtained results, what will allow him/her to get new knowledge about the
problem. Then this new acquired knowledge will be used in the design of
the solution to the actual problem. The topology connectivity improvement
shown in Chapter 8 is an example of this technique. Other examples can be
found in the literature, where GAs are used for optimizing the topology con-
nectivity, either by adjusting the transmission power for the nodes forming
sensor networks [10] or by setting bypass links connecting distant devices in
MANETs [1, 2] and VANETs [6, 12].

The proposed optimization framework can be used either for online and
offline optimization modes. In this book, the offline mode is explored. We
solve four different problems with EAs that evolve panmictic, cellular, and
cooperative coevolutionary populations, in order to compare the performance
of the different kinds of EAs. Online optimization algorithms can also be
used in this framework, by implementing them in the optimization problem
module. In the next two sections, we summarize our main findings on the
performance of the different algorithms on the studied problems.

10.2 PERFORMANCE OF THE THREE ALGORITHMIC PROPOSALS

We briefly summarize in this section the behavior of the different algorithms
on the four studied problems.

10.2.1 Broadcasting Protocol

The problem addressed in Chapter is to fine-tune the parameters of a broad-
casting algorithm for an optimal performance. Three different objectives, in
conflict with each other, were defined to measure the quality of solutions: the
number of devices receiving the broadcasted message, the network use, and
the time required by the process. Five parameters of the protocol are identi-
fied and optimized. This number is too low for the cooperative coevolutionary
algorithm, which requires a number of variables in the different islands to
apply the recombination operator. Therefore, we opted for discretizing the
variables of the protocol for this algorithm.
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Regarding the results, the cellular algorithm (i.e., CellDE) clearly outper-
formed the other ones. The panmictic algorithm (NSGA-II) outperforms the
cooperative coevolutionary one (CCNSGA-II) in terms of accuracy, but
the latter is statistically better according to the diversity of solutions found.
The mentioned differences stand for the three network densities studied.

10.2.2 Energy-Efficient Communications

The obtained results for the energy-saving broadcasting protocol studied in
Chapter 7 differ from those previously presented. In this case, NSGA-II
generally outperforms CellDE in terms of accuracy of solutions, with the
exception of the densest network, for which no significant differences were
found between the two algorithms. Regarding the diversity of solutions
in the Pareto front found, CellDE outperforms NSGA-II for all network
densities.

Regarding CCNSGA-II, it is always significantly worse than the two
compared algorithms in terms of accuracy, according to the metrics used.
However, the algorithm contributes with a high number of solutions to the
final Pareto front built from the solutions obtained in all experiments by
the three algorithms. And this number grows with the network density: It
provides 43, 67, and 76% of the solutions for the sparse, medium, and
dense networks, respectively. Additionally, it provides high diversified Pareto
fronts, as it outperforms NSGA-II for the three densities, and it is only
worse than CellDE for the sparsest density. Therefore, we can say that the
CCNSGA-II shows better exploration capabilities with respect to the other
two algorithms.

10.2.3 Network Connectivity

Four single-objective genetic algorithms were used to solve the problem of
improving the network connectivity introduced in Chapter : two of them with
panmictic populations, a cellular one, and a cooperative coevolutionary GA.
Two different fitness functions were used for the problem optimization, and
similar conclusions were obtained for both of them. In general, the panmic-
tic GAs outperform the others for the smallest (and less difficult) problem
instances, but they perform poorly for the biggest ones, compared to the
cGA and the CCGA. The reason is that using panmictic populations pro-
vide the algorithms with high convergence speed. This results in a premature
loss of diversity in the population that in the most difficult problems favors
the algorithms getting stuck in local optima. On the contrary, the GAs with
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structured population keep more diversity for longer, therefore, increasing
the exploration capabilities of the algorithm. At this point, we would like to
mention that, even when population diversity is preserved for a long time by
the CCGA, the convergence speed it performs is as fast as for the panmictic
algorithms.

Comparing the panmictic population GAs, genGA was outperforming
ssGA in all cases when statistical differences were found, with the only
exception of the largest problem using function F2.

10.2.4 Vehicular Mobility

The last problem we tackle in the book is the optimization of the mobility
model for VANETs in the scenario of Luxembourg. In this case, the objec-
tive is to minimize the difference between the real observed traffic and the
simulated traffic in a number of predefined locations. Therefore, it is a single-
objective optimization problem that has been solved with the same four GAs
used for the network connectivity optimization problem.

The best algorithms were the CCGA and genGA for this problem. How-
ever, we did not find statistical confidence in most cases on the comparison of
the algorithms. The only conclusion we could extract from these tests is that
ssGA performs the worst for the large instance. Regarding the convergence
speed, ssGA is the fastest algorithm, followed by CCGA, genGA, and cGA,
in that order. An indication of the quick diversity loss in the population of
ssGA is that it is the first one getting stuck in local optima. The cGA is the
slowest compared algorithm, but it is able to find highly competitive results
in all cases.

10.3 GLOBAL DISCUSSION ON THE PERFORMANCE
OF THE ALGORITHMS

The choice of an accurate optimization algorithm for a given problem is not
an easy task. There is a plethora of different kinds of metaheuristics in the lit-
erature, and it is very difficult to predict their behavior on a concrete problem.
Additionally, there is not “a globally best” algorithm for all possible prob-
lems, as the no free lunch theorem [20] states. Therefore, it is an advisable
practice to look for optimization algorithms that are shown to perform well
for other problems with similar features to the addressed one. In this section,
we try to give the reader some hints to choose an appropriate optimization
algorithm, by discussing the performance of the different algorithms studied
here for all problems.
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TA B L E 10.1. Ranking of Performance of Algorithms Used
in This Book

Single Objective Multi-objective

Algorithm Rank Algorithm Rank

1 cGA 3.21 1 CellDE 2.72
2 genGA 2.93 2 NSGA-II 1.89
3 ssGA 2.00 3 CCNSGA-II 1.39
4 CCGA 1.86

Table 10.1 presents a ranking of the overall performance of the algo-
rithms in the experiments made in the book. It was computed by applying
the Friedman test to the presented average results of the algorithms in all
problems (the higher the rank value the better the algorithm). In the case of
the multi-objective algorithms, we are considering the results obtained for
the three performance metrics studied to build the ranking. The test found
statistical differences among the algorithms with 95% confidence. As we can
see, the algorithms using the cellular populations are the ones performing the
best for the studied problems. They are followed by the panmictic algorithms,
and the cooperative coevolutionary one, in that order. This observation holds
both for the single- and multi-objective problems.

We would like to emphasize at this point that, even when the cooperative
coevolutionary algorithmic model was last in the presented rank, it performed
well for the most complex problem instances, particularly in the case of the
two single-objective problems (addressed in Chapters 8 and 9). In the next
two sections, we will present some additional discussion on the performance
of the algorithms for the single- and multi-objective problems, respectively.

10.3.1 Single-Objective Case

We first comment on the convergence speed of the algorithms for the single-
objective problems. The algorithms implementing panmictic populations
generally converge fast to an optimum. However, they might not be the best
option to deal with multimodal problems, which are composed of a large
number of local and global optimal solutions. The reason is that these algo-
rithms are quickly loosing the population diversity, making it difficult to
generate new solutions in other areas of the search space. Therefore, there
is a need to look for an appropriate trade-off between the exploration and the
exploitation performed by the algorithm in the search space [19].

Algorithms with structured populations generally provide better explo-
ration capabilities than the equivalent panmictic ones. Consequently, they
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explore larger areas of the search space, exploiting the most promising ones.
This way, the chances to find the optimal solution and/or avoiding getting
stuck in local optimal ones are increased. However, they perform a slower
convergence, therefore, requiring a higher effort to find the optimal solution
with respect to panmictic algorithms (when they find it).

We observed that the studied cooperative coevolutionary algorithms con-
verge as fast as the panmictic ones, but they still can effectively explore the
search space. Indeed, these algorithms are among the most accurate ones
for the biggest instances of most of the studied problems. However, their
limitation mainly comes with the number of decision variables to optimize.
This algorithmic model requires the decomposition of the problem into sev-
eral smaller subproblems. When the problem is not easily decomposable, it
is common practice to just split the chromosome into several smaller ones,
which will be independently optimized in the islands. Therefore, the num-
ber of decision variables to optimize in every island must be high enough to
allow the application of the evolutionary operators.

10.3.2 Multi-Objective Case

In the multi-objective case, it is difficult to extract conclusions about the per-
formance of CCNSGA-II compared with the other algorithms. The reason
is that the problems had to be discretized to be solved by CCNSGA-II due
to the small number of decision variables of the original problem (only five
variables). However, in previous works [4, 5], CCNSGA-II was shown to
perform slightly worse than NSGA-II for a number of benchmark problems,
but with the important advantage of being a parallel algorithm. Parallelizing
multi-objective algorithms is not an easy task because normally information
of the global population must be used to ensure a diverse set of solutions in
the Pareto front approximation. The speedup of the algorithm was shown to
be superlinear versus NSGA-II.

The particular case of the problems addressed in this book (in Chapters 6
and 7) confirm our previously published results: CCNSGA-II performs worse
than NSGA-II in terms of accuracy of results, but it is better according to
the diversity of solutions in the Pareto front, meaning that it is performing a
better exploration of the search space. We checked the number of solutions
that every algorithm contributes to the final Pareto fronts analyzed in the
chapters, built from all solutions obtained by all the algorithms. In the case
of DFCN optimization, CellDE is the algorithm providing more solutions,
composing 47, 70, and 66% of the Pareto front (for the three densities, from
the sparsest to the densest one), followed by NSGA-II, with 42, 30, and 34%,
respectively, and CCNSGA-II, with 11, 0, and 0%. However, CCNSGA-II is
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the algorithm providing more solutions to the final Pareto front in the case
of the AEDB optimization problem (except for the sparsest network): 43, 67,
and 76% versus 50, 33, and 23% by NSGA-II and 5, 0, and 0% in the case of
CellDE.

10.4 CONCLUSION

This last chapter provides an overall conclusion for this book. A brief sum-
mary of the contents of the book is first presented. Then, we discuss the
novel methodology proposed to tackle optimization problems with meta-
heuristics in the frame of ad hoc networks. Finally, the performance of the
three algorithmic classes studied (namely, panmictic, cellular, and coopera-
tive coevolutionary) is discussed for the four problems addressed in the book,
and their overall behavior on all the studied problems is also analyzed. Some
hints are given in order to help the reader on the choice of the algorithm to
use when solving similar problems.
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