

Ivan Zelinka, Sergej Celikovsky, Hendrik Richter, and Guanrong Chen (Eds.)

Evolutionary Algorithms and Chaotic Systems

Studies in Computational Intelligence,Volume 267

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 246. Thanasis Daradoumis, Santi Caballé,
Joan Manuel Marquès, and Fatos Xhafa (Eds.)
Intelligent Collaborative e-Learning Systems and
Applications, 2009
ISBN 978-3-642-04000-9

Vol. 247. Monica Bianchini, Marco Maggini, Franco Scarselli,
and Lakhmi C. Jain (Eds.)
Innovations in Neural Information Paradigms and
Applications, 2009
ISBN 978-3-642-04002-3

Vol. 248. Chee Peng Lim, Lakhmi C. Jain, and
Satchidananda Dehuri (Eds.)
Innovations in Swarm Intelligence, 2009
ISBN 978-3-642-04224-9

Vol. 249.Wesam Ashour Barbakh,Ying Wu, and Colin Fyfe
Non-Standard Parameter Adaptation for Exploratory Data
Analysis, 2009
ISBN 978-3-642-04004-7

Vol. 250. Raymond Chiong and Sandeep Dhakal (Eds.)
Natural Intelligence for Scheduling,Planning and Packing
Problems, 2009
ISBN 978-3-642-04038-2

Vol. 251. Zbigniew W. Ras and William Ribarsky (Eds.)
Advances in Information and Intelligent Systems, 2009
ISBN 978-3-642-04140-2

Vol. 252. Ngoc Thanh Nguyen and Edward Szczerbicki (Eds.)
Intelligent Systems for Knowledge Management, 2009
ISBN 978-3-642-04169-3

Vol. 253. Roger Lee and Naohiro Ishii (Eds.)
Software Engineering Research, Management and
Applications 2009, 2009
ISBN 978-3-642-05440-2

Vol. 254. Kyandoghere Kyamakya,Wolfgang A. Halang,
Herwig Unger, Jean Chamberlain Chedjou,
Nikolai F. Rulkov, and Zhong Li (Eds.)
Recent Advances in Nonlinear Dynamics and
Synchronization, 2009
ISBN 978-3-642-04226-3

Vol. 255. Catarina Silva and Bernardete Ribeiro
Inductive Inference for Large Scale Text Classification, 2009
ISBN 978-3-642-04532-5

Vol. 256. Patricia Melin, Janusz Kacprzyk, and
Witold Pedrycz (Eds.)
Bio-inspired Hybrid Intelligent Systems for Image Analysis
and Pattern Recognition, 2009
ISBN 978-3-642-04515-8

Vol. 257. Oscar Castillo,Witold Pedrycz, and
Janusz Kacprzyk (Eds.)
Evolutionary Design of Intelligent Systems in Modeling,
Simulation and Control, 2009
ISBN 978-3-642-04513-4

Vol. 258. Leonardo Franco, David A. Elizondo, and
José M. Jerez (Eds.)
Constructive Neural Networks, 2009
ISBN 978-3-642-04511-0

Vol. 259. Kasthurirangan Gopalakrishnan, Halil Ceylan, and
Nii O.Attoh-Okine (Eds.)
Intelligent and Soft Computing in Infrastructure Systems
Engineering, 2009
ISBN 978-3-642-04585-1

Vol. 260. Edward Szczerbicki and Ngoc Thanh Nguyen (Eds.)
Smart Information and Knowledge Management, 2009
ISBN 978-3-642-04583-7

Vol. 261. Nadia Nedjah, Leandro dos Santos Coelho, and
Luiza de Macedo de Mourelle (Eds.)
Multi-Objective Swarm Intelligent Systems, 2009
ISBN 978-3-642-05164-7

Vol. 262. Jacek Koronacki, Zbigniew W. Ras,
Slawomir T.Wierzchon, and Janusz Kacprzyk (Eds.)
Advances in Machine Learning I, 2009
ISBN 978-3-642-05176-0

Vol. 263. Jacek Koronacki, Zbigniew W. Ras,
Slawomir T.Wierzchon, and Janusz Kacprzyk (Eds.)
Advances in Machine Learning II, 2009
ISBN 978-3-642-05178-4

Vol. 264. Olivier Sigaud and Jan Peters (Eds.)
From Motor Learning to Interaction Learning in Robots, 2009
ISBN 978-3-642-05180-7

Vol. 265. Zbigniew W. Ras and Li-Shiang Tsay (Eds.)
Advances in Intelligent Information Systems, 2009
ISBN 978-3-642-05182-1

Vol. 266.Akitoshi Hanazawa, Tsutom Miki,
and Keiichi Horio (Eds.)
Brain-Inspired Information Technology, 2009
ISBN 978-3-642-04024-5

Vol. 267. Ivan Zelinka, Sergej Celikovsky, Hendrik Richter,
and Guanrong Chen (Eds.)
Evolutionary Algorithms and Chaotic Systems, 2010
ISBN 978-3-642-10706-1

Ivan Zelinka, Sergej Celikovsky, Hendrik Richter,
and Guanrong Chen (Eds.)

Evolutionary Algorithms and
Chaotic Systems

123

Prof. Ivan Zelinka
Department of Applied Informatics

Faculty of Applied Informatics

Tomas Bata Univerzity in Zlin

Nad Stranemi 4511

Zlin 76001

Czech Republic

E-mail: zelinka@fai.utb.cz

Prof. Sergej Celikovsky
Department of Control Engineering

Faculty of Electrical Engineering

Czech Technical University in Prague

UTIA AV CR

Pod vodarenskou vezi 4

182 08 Prague 8

Czech Republic

Prof. Hendrik Richter
HTWK Leipzig

Faculty of Electrical Engineering &

Information Technology

04251 Leipzig

Germany

E-mail: richter@fbeit.htwk-leipzig.de

Prof. Guanrong Chen
Department of Electronic Engineering

City University of Hong Kong

83 Tat Chee Avenue, Kowloon

Hong Kong SAR

P. R. China

E-mail: gchen@ee.cityu.edu.hk

ISBN 978-3-642-10706-1 e-ISBN 978-3-642-10707-8

DOI 10.1007/978-3-642-10707-8

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: 2009943373

c© 2010 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed in acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Ivan Zelinka dedicates this book to his
wonderful wife Martina, his beautiful
daughters Marketa and Katerina, and to
his parents.

Sergej Celikovsky dedicates this book to
his parents Karel and Galina, his wife
Avgustina, daughter Klara and son Viktor.

Guanrong Chen dedicates this book to
the memory of his mentor Professor
Mingjun Chen (1934-2008).

Foreword

Ever since the historical discovery of the now-famous Lorenz system in 1963,
a large number of nonlinear systems that can produce chaos have been ob-
served, constructed and analyzed. In fact, chaos theory has become indispens-
able for science and engineering at all levels of research today. The most ac-
tive recent research includes chaos control and chaos synchronization, among
others, with a visible trend toward real-world applications.

The book titled “Evolutionary Algorithms and Chaotic Systems”, edited
by Ivan Zelinka, Sergej Celikovsky, Hendrik Richter and Guanrong Chen,
is a timely volume to be welcome by the chaos community as well as com-
putational intelligence community and beyond. This book is devoted to the
studies of common and related subjects in two intensive research fields of
chaos theory and evolutionary computation. It was not typical that evo-
lutionary computing techniques are used for effective chaos control, chaos
synchronization, chaos identification, and in particular for chaos analysis and
synthesis, therefore this edition of collective state-of-the-art articles on such
interdisciplinary subjects is especially valuable for the scientific and engineer-
ing communities. For these reasons, I enthusiastically recommend this book
to our scientists and engineers working in the fields of nonlinear dynamics,
evolutionary algorithms, control theory, circuits and systems, and scientific
computing alike.

University of California at Berkeley, September 2009 Leon O. Chua

Preface

Deterministic chaos is a fairly active area of research in the last few decades.
Well known chaotic attractors can even be produced by some simple
three-dimensional autonomous systems of ordinary differential equations, for
example the Lorenz system, which originates from modelling of atmospheric
dynamics. For discrete chaos, there is another famous chaotic system, called
logistic equation, which was found based on a predator-prey model show-
ing complex dynamical behaviors. These simple models are widely used in
the study of chaos today, while other similar models exist (e.g., canonical
logistic equation and 1D or 2D coupled map lattices). To date, a large set
of nonlinear systems that can produce chaotic behaviors have been observed
and analyzed. Chaotic systems thus have become a vitally important part
of science and engineering at the theoretical as well as the practical level of
research. The most interesting and applicable notions are, for example, chaos
control and chaos synchronization related to secure communications, among
others. Recently, the study of chaos is focused not only along the traditional
trends but also on the understanding and analyzing principles, with the new
intention of controlling and utilizing chaos toward real-world applications.

This book discusses the mutual intersection of two interesting fields of re-
search, i.e. deterministic chaos and evolutionary computation. Evolutionary
techniques are discussed in this book, which are able to handle tasks such
as control of various chaotic systems and synthesis of their structures (i.e.,
handling symbolic objects to create more complex structures). In this way,
evolutionary techniques are capable of synthesizing chaotic behavior in the
sense that mathematical descriptions of chaotic systems are generated sym-
bolically. Another capability of evolutionary computation - identification of
chaotic system structure-is also discussed in this book. Part of the book is
focused on how chaos can be observed in the dynamics of evolutionary algo-
rithms and used to improve performance of selected evolutionary techniques.

Chapter authors background: Chapter authors are to the best of our
knowledge the originators or closely related to the originators of the above

X Preface

mentioned applications of evolutionary computation as well as the applica-
tions of chaos principles in selected evolutionary algorithms. Hence, this book
will be one of the few books discussing the benefit from intersection of two
modern and fruitful scientific fields of research.

Organization of the Chapters and Book Structure: The book consist
of three parts. The first part is presented by Zelinka and Chen as a moti-
vation for the application of evolutionary computation on chaotic systems
(Chapter 1). It is followed by a brief introduction of evolutionary algorithms
for chaos researchers (Zelinka and Richter, Chapter 2). The next chapter is a
complementary and serves as an introduction of chaos theory for evolutionary
algorithms researchers (Celikovsky and Zelinka, Chapter 3). The last chapter
of this first part discusses the appearance of the so-called edge of chaos in
evolutionary algorithms (Davendra, Chapter 4).

The second part discusses the use of evolutionary algorithms on chaotic
dynamics. A reader can find here an approach of evolutionary algorithms to
1D chaos control (Senkerik et. al., Chapter 5), spatiotemporal chaos control
(Zelinka, Chapter 6) or chaos reconstruction by means of standard meth-
ods (Chapter 7, Chadli), which is followed by Chapter 8 (Zelinka, Raidl) in
which evolutionary algorithms are used to reconstruct chaotic systems from
measured data. Chapter 9 (Ping Li et. al.) is focused on the use of chaos in
encryption, Chapter 10 (Zelinka, Jasek) demonstrates possible benefit and
drawback of the usage of evolution on decryption of chaotically encrypted in-
formation. In Chapter 11 (Zelinka, Chen, Celikovsky) synthesis of chaotic
structure by means of genetic programming like techniques is discussed.
Furthermore, Chapter 12 is centered on the application of evolutionary algo-
rithms on chaos synchronization (Zelinka, Raidl). Finally, the application of
evolutionary optimization in chaotic CML-based fitness landscapes by Richter
(Chapter 13) is discussed.

The third part discuss the appearance and use of deterministic chaos in
evolutionary techniques. Chapter 14 (Davendra, Zelinka) describes the im-
pact of various chaotic systems use on mutation of individuals and Chap-
ter 15 shows the appearance of chaos in selected evolutionary techniques
(Davendra, Zelinka and Onwubolu) and discusses the impact of chaos on
permutative optimization.

The book is based on original research and contains all important results
including more than 589 pictures.

Audience: The book will be an instructional material for senior undergrad-
uate and entry-level graduate students in computer science, physics, applied
mathematics and engineering, who are working in the area of deterministic
chaos and evolutionary algorithms. Researchers who want to investigate how
evolutionary algorithms can be used for chaos control as well as researchers
interested in the appearance of chaos in evolutionary algorithms will find this
book a very useful handbook and starting step-stone. The book will also be

Preface XI

a resource and material for practitioners who want to apply these methods
to solve real-life problems in their challenging applications.

Appendix: The appendix contains description of Mathematica software and
user manual for 40 notebooks. Their actual versions can also be downloaded
from www.fai.utb.cz/people/zelinka/evolutionarychaos or
www.ivanzelinka.eu/evolutionarychaos. It consist Mathematica notebooks of
different evolutionary (or random-like) algorithms and test functions, interac-
tive notebooks allowing manipulation of different chaotic systems and note-
books supporting selected case studies reported in this book.

Motivation: The decision as why to write this book was based on a few
facts. The main one is that the research field on evolutionary algorithms and
deterministic chaos is an interesting area, which is under intensive research
from many other branches of science today. Evolutionary algorithms with its
applications can be found in biology, physics, economy, chemical technologies,
air industry, job scheduling, space research (i.e. antena design for space mis-
sion), amongst others. The same can be stated for deterministic chaos. This
kind of behavior can be observed in physical as well as biological, economi-
cal systems etc. Due to the fact that evolutionary algorithms are capable of
solving many problems including problems containing imprecise information
or uncertanities, it is obvious that it can also be used on chaotic systems
to control, synchronize or/and synthesize them. On the other hand, chaotic
systems and their behavior are very important in engineering, because such
behavior can be used to encrypt important information or, for example, cause
damage if not expected or desired in designed device. Together with “classi-
cal” techniques, evolutionary algorithms can be used to solve various tasks
based on deterministic chaos. This book was written to contain simplified ver-
sions of our experiments with the aim to show how, in principle, evolutionary
algorithms can be used on chaotic systems, and vice versa.

It is obvious that this book does not encompass all aspects of these two
fields of research due to limited space. Only the main ideas and results are
reported here. The authors and editors hope that the readers will be inspired
to do their own experiments and simulations, based on information reported
in this book, thereby moving beyond the scope of the book.

September 2009
Czech Republic Ivan Zelinka
Czech Republic Sergej Celikovsky
Germany Hendrik Richter
Hong Kong Guanrong Chen

Acknowledgements

We are grateful to all the contributors of this book, for their willingness
to work on this interdisciplinary book project which focuses on intersection
of two interesting fields of research: deterministic chaos and evolutionary
algorithms. To write such a book was a little bit complicated due to the fact
that both areas are quite special and researchers are usually experts only
of one of the two areas. Fortunately, we were able to establish a very good
team of contributors, who were interested in participation and were working
professionaly and quickly. Also, the help and support of other colleagues and
friends are indispensable to this book. Thus, we would like to thank all of
them.

Firstly, we would like to thank Prof. Leon O. Chua (University of California
at Berkeley) for his very kind, nice and inspirative Foreword.

To Springer-Verlag in Heidelberg, Germany, our special thank goes to Dr.
Thomas Ditzinger for his enthusiasm and editorial guidance throughout the
period of our preparing the book, and for his patience.

Our special thanks are dedicated to our families for their patience with
our time spent on book writing as well as supporting software preparation.
Especially, to Martina, Marketa and Katerina Zelinkova for their patience
and support to the first editor, who spent almost all holidays on this book
instead of spending wonderful time with his little children.

Very special thanks are dedicated to Donald Davendra for his enormous
help with final book collection and TeX error correction. Without his help,
the time needed to finish this book would be significantly longer.

Contents

Part I: Theory

1 Motivation for Application of Evolutionary
Computation to Chaotic Systems . 3
Ivan Zelinka, Guanrong Chen
1.1 Introduction . 3
1.2 Evolutionary Computation and Selected Examples 4

1.2.1 Evolutionary Design . 8
1.2.2 Application of Evolvable Hardware 9
1.2.3 Automatic Design of Low-Cost Hardware 10
1.2.4 Poorly Specified Problems . 10
1.2.5 Adaptive Systems . 11
1.2.6 Fault Tolerant Systems . 11
1.2.7 Design Innovation in Poorly Understood Design

Spaces . 11
1.2.8 Hummies Competition . 12
1.2.9 Problems Solvable by Evolutionary

Computation . 13
1.2.10 Example: Real-Time Compensation of Plasma

Reactor . 19
1.3 Chaotic Systems . 25
1.4 Conclusions . 32
References . 32

2 Evolutionary Algorithms for Chaos Researchers 37
Ivan Zelinka, Hendrik Richter
2.1 Historical Facts from a Slightly Different Point of View . . . 37
2.2 Evolutionary Algorithms – Outline . 42

2.2.1 Central Dogma of Evolutionary Computational
Techniques . 42

XVI Contents

2.2.2 Evolutionary Algorithms and Importance of
Their Use . 47

2.3 Selected Evolutionary Techniques . 47
2.3.1 Overview . 47
2.3.2 Current State . 48

2.4 Selected Basic Terms from the Evolutionary Algorithms . . . 58
2.4.1 The Usability Areas of Evolutionary

Algorithms . 58
2.4.2 Common Features . 59
2.4.3 Population . 60
2.4.4 Individuals and Their Representation 64
2.4.5 Evolutionary Operators: Selection,

Recombination, Mutation . 73
2.5 Limits to Computation . 75

2.5.1 Searched Space and Its Complexity 75
2.5.2 Physical Limits of Computation 81

2.6 Conclusion . 85
References . 85

3 Chaos Theory for Evolutionary Algorithms
Researchers . 89
Sergej Celikovsky, Ivan Zelinka
3.1 Introduction . 89
3.2 Characterization of Deterministic Chaos 90

3.2.1 Roots of Deterministic Chaos 91
3.3 Universal Features of Chaos . 95

3.3.1 Determinism and Unpredictability of the
Behavior of Deterministic Chaos – Sensitivity to
Initial Conditions . 95

3.3.2 Lyapunov Exponents . 97
3.3.3 The U-Sequence . 100
3.3.4 Intermittence, Period Doubling, Metastable

Chaos and Crises . 102
3.3.5 Feigenbaum Constants . 103
3.3.6 Self-similarity . 105

3.4 From Order to Chaos . 106
3.4.1 Period Doubling . 107
3.4.2 Intermittence . 111
3.4.3 Chaotic Transients . 114
3.4.4 Crises . 117

3.5 Selected Examples . 119
3.5.1 Mechanical System – Billiard 119
3.5.2 Mechanical System – Duffing’s Equation 120
3.5.3 Electronic System – Chua’s Circuit, Circuit with

a Diode . 124

Contents XVII

3.5.4 Biological System – Logistic Equation 128
3.5.5 Meteorological System – Lorenz Weather

Model . 131
3.5.6 Spatiotemporal Chaos . 132
3.5.7 Cellular Automata – Game of Life 133
3.5.8 Artificial Intelligence – Neuron Networks 134
3.5.9 Artificial Intelligence – Evolutionary

Algorithms . 137
3.5.10 Astronomy – The Three-Body Problem 139

3.6 Conclusion . 142
References . 142

4 Evolutionary Algorithms and the Edge of Chaos 145
Donald Davendra
4.1 Introduction . 145
4.2 Edge of Chaos . 146
4.3 Antichaos and Self-organization . 151

4.3.1 A Butterfly Sleeps . 151
4.3.2 Chaos and Antichaos . 152

4.4 Edge of Chaos in Evolutionary Algorithms 153
4.4.1 Stagnation . 153
4.4.2 Anti-stagnation . 154

4.5 Analytical Observation . 154
4.5.1 Diversity Measure . 155
4.5.2 Population Representation . 156

4.6 Conclusion . 160
References . 160

Part II: Applications

5 Evolutionary Design of Chaos Control in 1D 165
Roman Senkerik, Ivan Zelinka, Donald Davendra,
Zuzana Oplatkova
5.1 Introduction . 165
5.2 Evolutionary Techniques in Chaos Control 166
5.3 Chaotic Systems . 167

5.3.1 Logistic Equation . 167
5.3.2 Henon Map . 168

5.4 Selected Method for the Controlling of Chaos 169
5.4.1 Delayed Feedback Control (Pyragas Method) 169

5.5 Evolutionary Algorithms . 170
5.6 Optimization of Chaos Control . 171

5.6.1 Problem Design . 171
5.6.2 The Cost Function . 173
5.6.3 Experimental Results . 176

XVIII Contents

5.6.4 Analysis of All Results . 180
5.7 Comparison with OGY Method . 183

5.7.1 Logistic Equation . 185
5.7.2 Henon Map . 186

5.8 Conclusion and Discussion . 187
References . 188

6 Evolutionary Control of CML Systems 191
Ivan Zelinka
6.1 Introduction . 191
6.2 Motivation . 194
6.3 Selected Evolutionary Algorithm - A Brief Introduction . . . 196

6.3.1 Differential Evolution . 196
6.3.2 SOMA . 197
6.3.3 Simulated Annealing . 200
6.3.4 Genetic Algorithms . 201
6.3.5 Evolutionary Strategies . 202

6.4 CML Control . 203
6.4.1 Used Hardware . 203
6.4.2 Problem Selection and Case Studies 204
6.4.3 Cost Function . 207
6.4.4 Parameter Setting . 215
6.4.5 Experimental Results . 218
6.4.6 CML Real Time Control . 231

6.5 Conclusion . 232
References . 233

7 Chaotic Systems Reconstruction . 237
Mohammed Chadli
7.1 Introduction . 237
7.2 Unknown Inputs Multiple Observer Design 239

7.2.1 Unknown Inputs Observer Design 240
7.2.2 LMI Design Conditions . 243
7.2.3 Pole Placement . 244

7.3 Unknown Inputs Estimation . 246
7.4 Simulation Examples . 247

7.4.1 Academic Example . 247
7.4.2 Application to Chaotic System Reconstruction 253

7.5 Extension to Discret-Time Multiple Model 257
7.5.1 Pole Assignment . 258

7.6 Application to Chaotic System Reconstruction 259
7.7 Conclusion . 262
References . 263

Contents XIX

8 Evolutionary Reconstruction of Chaotic Systems 265
Ivan Zelinka, Ales Raidl
8.1 Introduction . 265
8.2 Motivation . 267
8.3 Chaos System Reconstruction – Classical Methods 268

8.3.1 Reconstruction Based on Time Series Analysis 268
8.4 Evolutionary Reconstruction of Chaotic Systems 271

8.4.1 Problem Selection, Used Algorithms and
Computer Technology . 272

8.4.2 The Cost Function . 272
8.4.3 Experiment Setup . 273
8.4.4 Experimental Results . 275
8.4.5 Reconstruction of Similar Systems 276
8.4.6 Unfinished Evolution . 279
8.4.7 Exotic Solutions . 281
8.4.8 Continuous Systems: Preliminary Study 282

8.5 Conclusion . 287
References . 289

9 Cryptography Based on Spatiotemporal Chaotic
Systems . 293
Ping Li, Zhong Li, Wolfgang A. Halang, Guanrong Chen
9.1 Introduction . 293
9.2 CML-Based Pseudo-Random-Bit Generators 295

9.2.1 Coupled Map Lattice . 296
9.2.2 Digitization Method . 297
9.2.3 Statistical Properties . 298
9.2.4 PRBGs Based on Various CMLs 301

9.3 CML-Based Stream Cipher . 308
9.3.1 Algorithm of the Cipher . 308
9.3.2 Keyspace . 309
9.3.3 Cryptographic Properties of the Keystream 310
9.3.4 High Efficiency . 315

9.4 CML-Based Multimedia Cryptosystem 316
9.4.1 Design of CML-Based Multimedia

Cryptosystem . 316
9.4.2 Performance Analysis . 318

9.5 Conclusion . 326
References . 327

10 Evolutionary Decryption of Chaotically Encrypted
Information . 329
Ivan Zelinka, Roman Jasek
10.1 Introduction . 329
10.2 Motivation . 333
10.3 Selected Evolutionary Algorithm – A Brief Introduction . . . 334

XX Contents

10.4 Evolutionary Decryption . 334
10.4.1 Used Hardware, Problem Selection and Case

Studies . 334
10.4.2 Cost Function . 334
10.4.3 Parameter Setting . 336
10.4.4 Experimental Results . 338

10.5 Conclusion . 340
References . 342

11 Chaos Synthesis by Evolutionary Algorithms 345
Ivan Zelinka, Guanrong Chen, Sergej Celikovsky
11.1 Introduction . 346
11.2 Motivation . 347
11.3 Brief Review of the Selected Evolutionary Algorithm 348
11.4 Symbolic Regression – An Introduction 348

11.4.1 Genetic Programming . 349
11.4.2 Grammatical Evolution . 351
11.4.3 Analytic Programming . 353

11.5 Experiment Design . 357
11.5.1 Parameter Setting . 357
11.5.2 Cost Function . 359
11.5.3 Case Studies . 360

11.6 Conclusion . 379
References . 380

12 Evolutionary Synchronization of Chaotic Systems 385
Ivan Zelinka, Ales Raidl
12.1 Introduction . 385
12.2 Motivation . 387
12.3 Selected Evolutionary Algorithm – A Brief Introduction . . . 387
12.4 Evolutionary Synchronization . 387

12.4.1 Used Hardware, Problem Selection and Case
Studies . 387

12.4.2 Cost Function . 388
12.4.3 Parameter Setting . 390
12.4.4 Experimental Results . 391

12.5 Conclusion . 398
References . 408

13 Evolutionary Optimization and Dynamic Fitness
Landscapes: From Reaction-Diffusion Systems to
Chaotic CML . 411
Hendrik Richter
13.1 Introduction . 411
13.2 Constructing Dynamic Fitness Landscapes from

Reaction–Diffusion Systems and CML 413

Contents XXI

13.2.1 Static and Dynamic Fitness Landscapes 413
13.2.2 Hierarchy of Fitness Landscapes 415
13.2.3 Relationships between Coupled Map Lattices

and Reaction–Diffusion Systems 418
13.3 Properties of Dynamic Fitness Landscapes 422

13.3.1 Topological Properties and Topological Problem
Difficulty . 422

13.3.2 Dynamical Properties and Dynamical Problem
Difficulty . 424

13.3.3 Topological and Dynamical Landscape Measures
for the CML–Based Landscape 428

13.4 Evolutionary Optimization . 436
13.5 Numerical Experiments . 439
13.6 Concluding Remarks . 444
References . 444

14 Controller Parameters Optimization on
a Representative Set of Systems Using
Deterministic-Chaotic-Mutation Evolutionary
Algorithms . 449
Donald Davendra, Ivan Zelinka
14.1 Introduction . 449
14.2 PID Controller . 450

14.2.1 Proportional Algorithm . 450
14.2.2 Proportional Integral Algorithm 451
14.2.3 Proportional Integral Derivative Algorithm 451

14.3 Controller Tuning . 452
14.3.1 Ziegler Nichols Closed Loop Method 453

14.4 System Specifications . 454
14.4.1 Sensitivity Specifications . 454
14.4.2 Optimization Specifications . 455

14.5 Differential Evolution Algorithm . 456
14.5.1 Tuning Parameters . 458

14.6 Chaotic Systems . 458
14.6.1 Lozi Map . 459
14.6.2 Delayed Logistic Map . 459

14.7 Problem Description . 460
14.7.1 Fourth Order System . 460
14.7.2 Third Order System . 468
14.7.3 Electric DC Motor . 476

14.8 Conclusion . 481
References . 482

XXII Contents

15 Chaotic Attributes and Permutative Optimization 483
Donald Davendra, Ivan Zelinka, Godfrey Onwubolu
15.1 Introduction . 483
15.2 Chaotic Signature in Population Dynamics 484
15.3 Population Dynamics . 486

15.3.1 Initial Population . 487
15.3.2 Solution Dynamics . 488
15.3.3 Chaotic Features . 490
15.3.4 Selection and Deletion . 492
15.3.5 Dynamic Clustering . 494

15.4 Metaheuristics . 497
15.4.1 Genetic Algorithms . 497
15.4.2 Differential Evolution Algorithm 499
15.4.3 Self Organizing Migrating Algorithm 501

15.5 General Template . 504
15.6 Quadratic Assignment Problem . 506
15.7 Results . 507

15.7.1 Genetic Algorithm Results . 507
15.7.2 Differential Evolution Results 508
15.7.3 Self Organizing Migration Algorithm Results 511

15.8 Analysis . 512
15.9 Conclusion . 516
References . 517

16 Frontiers . 519
Ivan Zelinka, Sergej Celikovsky
References . 521

List of Contributors

Ivan Zelinka
Tomas Bata University in Zlin,
Faculty of Applied Informatics,
Nad Stranemi 4511,
Zlin 76001, Czech Republic
VSB-TUO, Faculty of Electrical
Engineering and Computer Science,
17. listopadu 15, 708 33
Ostrava-Poruba, Czech Republic,
zelinka@fai.utb.cz

Guanrong Chen
Department of Electronic
Engineering,
City University of Hong Kong,
Kowloon, Hong Kong SAR,
P.R. China
eegchen@cityu.edu.hk

Hendrik Richter
HTWK Leipzig, Fakultät
Elektrotechnik und
Informationstechnik,
D–04251 Leipzig, Germany
richter@fbeit.htwk-leipzig.de

Sergej Celikovsky
Department of Control Engineering
Faculty of Electrical Engineering

Czech Technical University in Prague
Control Theory Department
and
Institute of Information
Theory and Automation,
Academy of Sciences of
Czech Republic,
Pod Vodarenskou vezi 4,
182 08, Praha 8, Czech Republic
celikovs@utia.cas.cz

Donald Davendra
Tomas Bata University in Zlin,
Faculty of Applied Informatics,
Nad Stranemi 4511, Zlin 76001,
Czech Republic
davendra@fai.utb.cz

Roman Senkerik
Tomas Bata University in Zlin,
Faculty of Applied Informatics,
Nad Stranemi 4511, Zlin 76001,
Czech Republic
senkerik@fai.utb.cz

Zuzana Oplatkova
Tomas Bata University in Zlin,
Faculty of Applied Informatics,
Nad Stranemi 4511, Zlin 76001,
Czech Republic
oplatkova@fai.utb.cz

XXIV List of Contributors

Mohammed Chadli
University of Picardie Jules Verne,
Laboratory of Modeling Information
& Systems. 7, Rue du Moulin Neuf,
80000, Amiens, France
Tel.: +33(0)3 82227680
mohammed.chadli@u-picardie.fr

Ales Raidl
Charles University, Faculty of
Mathematics and Physics,
V Holesovickach 2,
180 00 Prague 8,
Czech Republic
ales.raidl@mff.cuni.cz

Ping Li
Department of Electronic
Engineering, Shunde Polytechnic,
Kanton, P.R. China
Kikiliping@hotmail.com

Zhong Li
Faculty of Electrical and Computer

Engineering, FernUniversität in
Hagen, 58084 Hagen,
Germany
zhong.li@fern-hagen.de

Wolfgang A. Halang
Faculty of Electrical and Computer
Engineering, FernUniversität in
Hagen, 58084 Hagen, Germany

Roman Jasek
Tomas Bata University in Zlin,
Faculty of Applied Informatics,
Nad Stranemi 4511, Zlin 76001,
Czech Republic
jasek@fai.utb.cz

Godfrey Onwubolu
School of Applied Technology,
Humber Institute of Technology
and Advanced Learning, Toronto,
ON, Canada M9W 5L7
godfrey.onwubolu@humber.ca

Chapter 1
Motivation for Application of Evolutionary
Computation to Chaotic Systems

Ivan Zelinka and Guanrong Chen

Abstract. This chapter focuses on motivating an application of evolutionary com-
putation to complex problems especially with respect to chaotic systems. In this
chapter, general evolutionary techniques are first reviewed, including the so-called
evolvable hardware, with some selected examples of their applications. Then, mo-
tivation of studying chaotic systems as an interesting application domain for evolu-
tionary algorithms is provided with brief discussions.

1.1 Introduction

Evolutionary algorithms (better known as “evolutionary computational techniques”
or simply “evolutionary techniques”) are powerful tools that can be used to solve
various very complex engineering problems. Generally speaking, evolutionary tech-
niques can be divided into two main categories: evolutionary algorithms (such as
genetic algorithms, particle swarming, ant colony optimization, ...) and evolvable
hardware (application of evolutionary techniques to hardware design, adaptation,
self-repairment, ...). In principle, evolutionary techniques solve selected problems
in the same way as human, which in general can be used successfully to a large set
of engineering problems like the design of different devices and complex systems
identification, control and modeling, etc.

Ivan Zelinka
Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511,
Zlin 76001, Czech Republic
and
VSB-TUO, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15,
708 33 Ostrava-Poruba, Czech Republic
e-mail: zelinka@fai.utb.cz

Guanrong Chen
Department of Electronic Engineering, City University of Hong Kong, Kowloon,
Hong Kong SAR, P.R. China
e-mail: eegchen@cityu.edu.hk

I. Zelinka et al. (Eds.): Evolutionary Algorithms and Chaotic Systems, SCI 267, pp. 3–36.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

4 I. Zelinka and G. Chen

To describe the application capability of evolutionary techniques, some selected
representative examples are first reviewed, followed by a discussion of evolvable
hardware, which is a major part of evolutionary techniques and can be used to solve
complex technical problems in various engineering designs.

1.2 Evolutionary Computation and Selected Examples

The application of evolutionary techniques to hardware design (such as electronic
devices, chaotic circuits, ...) is termed evolvable hardware, aiming to replace some
traditional design methods with evolutionary techniques for specified applications
that either are not achievable by using traditional methods or can benefit from the
evolutionary approach.

The development of evolutionary hardware has been inspired by several other
fields as illustrated by Fig. 1.1.

Computer Science Biology

Bio-
Inspired
Software

Bio-
Inspired

Hardware

Electronic
Engineering

Evolvable
Hardware

Fig. 1.1 Evolvable hardware and sciences of computer, biology and electrical engineering

Recently, the field of bio-inspired hardware has emerged, based on ideas from
biology, to explore methods of fault tolerance and reconfigurability in modern hard-
ware designs. There are many interchangeable ideas between the fields of evolvable
hardware and bio-inspired hardware. However the main focus in this paper is on
the field of evolvable hardware, which lies in the overlapping zone among basic
sciences of computer, biology and electronic engineering.

Evolutionary techniques has been in existence for quite a long time, successfully
solved many complex problems, showing its powerful applications in engineering
practice and theory (see Section 1.2.8). The following examples demonstrate the
successful applications of evolutionary techniques:

1 Motivation for Application of Evolutionary Computation to Chaotic Systems 5

• Real-time plasma reactor control. Selected evolutionary algorithms have been
used to control a plasma reactor. No mathematical model was needed. The reactor
was running in real time during experiments. Evolutionary algorithm was used to
estimate 14 parameters so as to eliminate noise from measured signals (see Sec-
tion 1.2.10, [68] and [47]). The most important aspect of this contribution is the
demonstrated ability of evolutionary techniques for controlling black-box prob-
lems in real-time. Another very important contribution is the use of laboratory
hardware equipment to calculate the fitness of just-in-time synthesized solutions
without knowing a cost function.

• Fingerprint identification. Evolutionary algorithms have been used by com-
puter scientists (e.g., Grasemann and Miikkulainen, Neural Networks Research
Group from the University of Texas at Austin, USA). Genetic algorithm has been
used to develop a program, which can better digitally improve the quality of fin-
gerprint images than programs created by human programmers. During evolu-
tion, the best solutions of each generation in the algorithm were recorded and
discovered. After 50 generations, the algorithm outperforms the comparable hu-
man program. The algorithm was then synthesized. In a typical FBI application,
taking into consideration that the FBI has more than 50 million sets of finger-
prints in its archives, so any algorithm needs to perform about 60,000 digital
fingerprint image transactions every day, it is clear that evolutionary algorithms
might soon help speed up such a time-consuming identification process. This
kind of tasks were investigated by e.g., Ammar and Tao from the West Virginia
University, USA [21]. In their application, they used genetic algorithm to opti-
mize the alignment of a pair of fingerprint images. To test the performance, other
two algorithms were compared with the genetic algorithm. All simulations were
carried out on 250 pairs of fingerprint images. Their results showed that the ge-
netic algorithm was about 13% more accurate than the well-known 2D algorithm
within the same running time.

• Airplane optimization. Evolutionary techniques are also widely used in airplane
engineering [24]. There are numerous examples of wing optimization and opti-
mal design of various mechanical parts of an airplane under investigation. An
interesting approach is described in [33], where minimization of sonic boom on
a supersonic aircraft was based on an evolutionary algorithm. Evolutionary tech-
niques are also used for optimization of flight dynamics [60], where calculation
of the aircraft trimming process was presented using an efficient combination of
global optimization theory and the direct hand-on computer simulation. In this
approach, the methods of artificial intelligence are combined with heuristic al-
gorithms to deal with the complicated equations of airplane motion. The method
may be practically utilized in constructing airplanes as well as flight simulators
design.

• Antenna design. In this application, evolutionary hardware has been used to
design special antenna for NASA space mission (e.g., the Space Technology 5
Project (ST5), http://nmp.jpl.nasa.gov/st5/). The ST5 space program is focused
on the use of identical satellites to test new space technologies. It is part of the
New Millennium Program (NMP). The NMP was created to identify, develop,

6 I. Zelinka and G. Chen

build, and test innovative technologies and concepts for infusion into future
space missions. Despite numerous engineering designs, this particular design was
deemed the best.

• Flow shop scheduling - permutation-based combinatorial optimization. A
very important application in industry is scheduling, to which a number of man-
ufacturing problems are associated. There is many such problems that cannot be
solved by using conventional methods or cannot be solved in reasonable time
(see Chapter 2). Such problems can be successfully solved by evolutionary al-
gorithms, however. A typical problem is the traveling salesman problem. Today,
there exist the so-called ACO algorithm (see Chapter 2), which is able to solve
this hard problem with cardinality 10000! in a reasonable time yielding good re-
sults. The class of permutation-based combinatorial optimization problem is one
of the famous optimization problems just like traveling salesman problem and ve-
hicle routing problem. The most realistic and interesting are the shop scheduling
problems for flow shop and job shop. What makes the permutation-based prob-
lem complex is that the solution representation is very concise, since it must have
a discrete number of values and each variable in the solution is unique. Given a
problem of size n, a representation can be described as x = {x1,x2,x3, ... ,xn},
where each value xi in the solution is unique and the entire set of solutions is an
integer representation from 1 to n. From an optimization point of view, this rep-
resents a number of problems. Firstly, the search space is discrete and a number
of validations inevitably have to be conducted in order to have a viable solution.
Secondly, the search space is very large, to n!. Consequently, these problems are
generally NP or NP-hard [22].

• Chemical reactor design. In chemical engineering, evolutionary optimization
has been applied to system identification [50], [51], where a model of a pro-
cess is built and then its parameters are identified by error minimization against
experimental data. Evolutionary optimization has been widely applied to the
evolution of neural network models for use in control applications (e.g., [35]).
There has been increasing awareness of textbook knowledge and heuristics [34],
which were commonly employed in the development of chemical reactors, were
deemed responsible for the lack of innovation, quality, and efficiency that char-
acterizes many industrial designs. In such examples, among many others, it has
been proved that evolutionary techniques are highly effective for the application
in chemical engineering.

• Bioinformatics. Bioinformatics applies information technology to the field of
molecular biology. The term bioinformatics was coined by Hogeweg in 1978 for
the study of informatics processes in biotic systems. Today, it entails the cre-
ation and advancement of databases, algorithms, computational and statistical
techniques, as well as the theory to solve formal and practical problems arising
from management and analysis of biological data. Evolutionary algorithms have
been successfully applied in, for example, multi-objective optimization in mod-
eling of protein structure prediction [31], evolutionary optimization of metabolic
pathways in [9], and so on (see [10])

1 Motivation for Application of Evolutionary Computation to Chaotic Systems 7

There are many other examples worthy of mentioning, where evolutionary algo-
rithms find successful applications. Standard evolutionary algorithms “exist” since
the first famous seminal paper [23], while evolvable hardware is merely a “product”
of later years. Both algorithms and hardware are complementarily joined together
to solve various complex and difficult problems. The inter-relationships among var-
ious areas of hardware design, synthesis, and evolutionary computation are shown
below in Fig. 1.2.

Evolutionary
Design

Optimization

Creative
Evolutionary

Design

Evolvable
Hardware

Evolutionary Map.
Place Route

Creative Logic
Design

Technology Map.
Place Route

Hardware
Synthesis

Logic
Synthesis

Fig. 1.2 Inter-relational aspects of evolvable hardware

The field of evolvable hardware is still in its infancy, and there are many problems
that must be tackled before one can see a large-scale industrial applications of the
technology. Two important parts of evolvable hardware design are:

Extrinsic evolution uses software simulation of the underlying hardware to eval-
uate the fitness value of each individual in the algorithm. This may be an advantage
if one does not wish to be too technology-specific in the sense that the model of
the hardware can be rather general and even abstract. On the other hand, if tech-
nology itself is the goal then more accurate fitness values may be obtained from a
real implementation other than from numerical simulation. Since fitness steers the
selection process, and thus the evolution, abstraction from technology can lead to a
less-optimal solution.

Intrinsic evolution is based on hardware implementation, where each individual
in the algorithm is implemented and evaluated based on the target technology. This
approach can be used to explore properties of the technology, which otherwise can-
not be utilized by traditional design methods. The evolution process runs on a host
computer responsible for selection and performance of genetic operators. Each in-
dividual in the algorithm is down-loaded to the chip as a configuration data-design
description. Fitness evaluation of a given individual is achieved by applying test
vectors to the implemented individual and then calculating the fitness value from its
response.

8 I. Zelinka and G. Chen

After all, the main objective is then to analyze the design phase and all its at-
tributes. The following section will give a brief overview of the design phase. Then,
the third section will introduce some applications of the evolvable hardware. The
fourth section will discuss some research aspects of evolvable hardware, and the
final section will provide the criteria for successful evolutionary platforms.

1.2.1 Evolutionary Design

For evolvable hardware design problems, assuming design characteristics, the evo-
lutionary algorithm determines some of the structure and/or parameters of a recon-
figurable object. This object may exist in software, though it could be a simulation
of the hardware of a final implementation.

The reconfigurable object might alternatively be physically changeable hardware.
Typically, the object is embedded in some sort of environment, where it responds,
influences, and behaves. The evolutionary algorithm designer devises a fitness eval-
uation procedure that monitors and possibly manipulates the environment and ob-
ject, returning objective function values.

Figure 1.3 shows how such a situation appears to the evolutionary algorithm. It
generates structural/parametric variations of the object, by applying variation oper-
ators (such as mutation and crossover) to some representation of the object’s con-
figuration. All it gets back are the measured objective values: one may think of the
entire evaluation/environment/object complex process as a black-box system.

Object

Environment

Evaluation Procedure

Structural/parametric
variations

Objective
values

System

Fig. 1.3 Evolutionary algorithm for a black-box system

Defining this black-box system allows to consider three separate cases that dis-
tinguish the differences between evolutionary and conventional designs:

1. Inverse model is tractable: If there is a tractable “inverse model” of the black-
box system, then there is a way of working out in advance a sequence of varia-
tions that brings about a desired set of objective values. “Conventional” methods
can be applied: the blind generate-and-test nature of evolution is not essential,
although evolutionary methods are vary competitive.

1 Motivation for Application of Evolutionary Computation to Chaotic Systems 9

2. Inverse model is not tractable, but forward model is: In this case, one can
predict the influence of variations upon the objective values, but the black-box
system is not tractably invertible, so one cannot derive in advance a sequence of
variations to bring about a desired set of objective values. This implies an iterative
approach, where variations are carefully selected according to the forward model
and are applied in sequence. This kind of iterative design-and-test is a common
component of traditional approaches. Search techniques, including evolutionary
algorithms, can be competitive or in some cases the only viable choice [7].

3. Neither forward nor inverse models are tractable: There is neither a way of
discerning which variations will give improvements in the objective values, nor
a way of predicting what will be the effects of variations on the objective values.
Without evolution, all will be lost. By a tentatively agreed definition, evolutionary
methods are those that proceed by incrementally applying variations which are
essentially blind. Selection can lead to an improvement in objective values with
neither a forward nor an inverse model. Whether evolutionary methods actually
succeed in finding a satisfactory design is another issue, but these are the only
way to go in general.

Thus, there indeed is an entire class of design problems that can only be tackled
by evolutionary methods.

1.2.2 Application of Evolvable Hardware

Evolutionary computation is a field of solving problems using learning algorithms
inspired by biological evolution. These kind of algorithms are collectively known
as evolutionary algorithms. They model the cycle of selection, recombination and
reproduction that biological organisms undergo. Typically, they work on a popula-
tion of prospective solutions at every time step. Each individual of the population is
evaluated according to a problem-specific fitness function, which tests how well the
trial solution performs the required task. A selection operator then probabilistically
chooses the solutions within the population that the algorithm will subsequently fo-
cus on, on the basis of the fitness function evaluation. The selected solutions are
recombined and mutated in order to search new but related areas in the problem
space, and then the process iterates.

The evolutionary algorithm most commonly used to evolve hardware design to-
day is the genetic algorithm [15], where each trial circuit design is encoded as a
bit-string. Recombination, or crossover, is achieved by the probabilistic exchange
of bits between individuals, and then mutated by the probabilistic toggling of bits in
each individual, normally according to predefined rates. Thus, the algorithm explic-
itly separates the genetic information that is recombined and mutated (the genotype)
from the actual circuit that is evaluated (the phenotype). Another evolutionary algo-
rithm commonly used is genetic programming [3], where an individual solution is
a computer program typically represented by a tree, without explicit mappings be-
tween genotype and phenotype.

10 I. Zelinka and G. Chen

Using evolution to design, for example, circuits brings a number of important
benefits to electronics, allowing design automation and innovation for an growing
range of applications. Some important areas where evolvable hardware finds good
applications include:

• Automatic design of low-cost hardware;
• Coping with poorly specified problems;
• Creation of adaptive systems;
• Creation of fault tolerant systems;
• Innovation in poorly understood design spaces.

The remainder of this section will explore these benefits in a little more detail.

1.2.3 Automatic Design of Low-Cost Hardware

The ideas of design automation can be of significant benefit to hardware that requires
a low cost per unit. One example is low-volume hardware. Low-cost reconfigurable
hardware can be used to embody evolved designs. For low-volume designs, this
reduces cost by avoiding the need for a VLSI fabrication process. The use of re-
configurable hardware also allows changes in specification to be applied not only to
new applications of a design but also to hardware already in use, thus avoiding re-
placement costs. Risk, and its associated cost, may also be reduced, as design faults
could be corrected either manually or through further evolution.

Evolutionary automation can even make the prospect of evolving hardware de-
sign realistic to suit a specific application. Many medical applications have not been
suitable for hardware solutions owing to the expenses of personalization. Evolvable
hardware, on the contrary, allows cheap-and-fast solutions to such medical appli-
cations. For example, a system has been developed to control a prosthetic hand by
recognizing patterns of myoelectric signals in a user’s arm [32].

1.2.4 Poorly Specified Problems

It is difficult to specify the functionality of some technical problems. In these cases,
design automation may allow feasible solutions be generated from a behavioral de-
scription of the problem. Evolution is one of a class of soft computing techniques
that can be used to handle the situation with poor specifications. For instance, arti-
ficial neural networks (ANNs) have been applied to such problems as noisy pat-
tern recognition [54]. Evolvable hardware techniques are similar but with some
particular advantages over ANNs, as noted by Yao and Higuchi [65]. Both of them
can be feed-forward networks, and both can learn nonlinear functions successfully.
However, hardware is by nature a fast medium and in many cases such as when
restricted to feed-forward networks, evolvable hardware designs are more easily
understood and implemented than ANNs. Therefore, evolvable hardware is often
suited to those problems commonly tackled by ANNs, with fast operation and good
solution tractability. Evolvable hardware suitable for these purposes has already
been developed for industrial applications [42].

1 Motivation for Application of Evolutionary Computation to Chaotic Systems 11

1.2.5 Adaptive Systems

With sufficient automation (for example, real-time synthesis provided by PLDs),
evolvable hardware has good potential to autonomously adapt to changes in its en-
vironment. This can be very useful for situations where real-time control over sys-
tems by humans is impossible, such as deep-space missions. In addition, it could be
particularly useful when harsh or unexpected conditions are encountered.

1.2.6 Fault Tolerant Systems

Another practical class of adaptive systems is one that can adapt to faults in its
own hardware, thereby implementing a level of fault-tolerance. Higuchi et al. [26]
developed an adaptive hardware system that learned the behavior of an expert robot
controller by examples using a genetic algorithm. It could then be used as a backup
controller if the expert controller failed.

On-line autonomous hardware fault detection and repair mechanisms have been
developed [14, 48]. Although these architectures are examples of bio-inspired hard-
ware and have been proposed as a platform for evolutionary experiments, they do not
use evolution as an adaptive repair mechanism. Off-line systems can also be evolved
to provide fault tolerance, as first shown by Thompson [56]. Thompson also showed
that evolution may generate fault tolerant solutions implicitly through the incremen-
tal nature of the evolutionary design process. Fault tolerance can exhibit itself at the
population level as well as at the individual level.

1.2.7 Design Innovation in Poorly Understood Design Spaces

The design space of all circuits contains infinitely many components that can be
wired together in an infinite number of ways. In order to find useful circuits, human
designers need to reduce this search space to a manageable size.

To do so, one works in a space of lower dimensionality, in which one needs skills
for searching. The evolutionary approach may allow to search the space with a lower
or different abstraction. This means that exploration of designs from a much larger
and often richer solution space beyond the realm of the traditional hardware search
spaces is possible, resulting in novel designs.

Such innovative solutions are needed when one does not have a good under-
standing of the design space. A great deal of work center around the optimization
of parameters for design, which fits more to the field of evolutionary optimization
rather than evolutionary design. Work in less abstract search spaces has also been
carried out recently.

Handling the increase in search space size, when moving from optimization to
design, may require additional evolutionary techniques.

12 I. Zelinka and G. Chen

1.2.8 Hummies Competition

Other than simulations, which use evolutionary algorithms to solve various prob-
lems of different levels of complexity, “Hummies” were developed, which aims to
show that solutions reached by evolutionary computation are fully comparable with
solutions designed by “human designers.” Rules of this competition were defined by
Koza, which states that if a solution (result, design, etc.) are fully comparable with
a design by human, then such solution win the competition. These rules of hummies
competition are:

• A reached result by evolutionary algorithms should be patented in the past, or
is an improvement of an existing version, or can be classified as a patentable
solution;

• A result is of the same quality or better than a result published in a recognized
scientific journal;

• A result is better then or the same as a result recorded in database or archive by
widely recognized scientists;

• A result is ready to be published despite the fact that it was “mechanically” cre-
ated;

• A result is of the same quality or better than most real results created by human,
based on a long-term known problem and its “classical” solution;

• A result is better than a solution which was accepted in the time of its discovery;
• A result solves a problem, which is very hard and complex;
• A solution created by evolutionary algorithms wins human or wins programs

created by human.

During the course of this competition, a large set of results were obtained from
various fields of science. Table 1.1 summarizes some selected and accepted results.
A large part of accepted results has been reached in analog circuit design; and results
in other fields like physics and chemistry were also obtained.

Table 1.1 An overview of Hummies awards

Applications Number of Awards

Analog circuits 25
Quantum circuits 8
Physics - optical systems 7
Logical circuits 5
Optimization problems 5
Game strategies 4
Chemistry - molecular design 3
Antenna design 2
Applied mathematics 1

1 Motivation for Application of Evolutionary Computation to Chaotic Systems 13

1.2.9 Problems Solvable by Evolutionary Computation

Generally speaking, any optimization problem in the real world of engineering may
be solved by evolutionary algorithms. A concerned issue is the effectiveness of such
numerical algorithm as evolutionary algorithms in applications. Various artificial
problems have been defined to test the effectiveness and speeds of such algorithms,
in particular how many cost-function evaluations are needed for an algorithm to
reach an optimal solution.

A few selected samples of such test functions are depicted in Fig. 1.4 (Eq. 1.1)
– Fig. 1.15 (Eq. 1.6). Landscapes depicted on those figures are “suffered” by mul-
timodality (more than one global extreme along with many local extremes), nonlin-
earity (nonlinear dependance), noise (additive noise), and the so-called pathologies.
For example, the cost function in Fig. 1.1 (1.1) is very simple and can be solved very
fast by any numerical scheme. In contrast, the cost functions in Fig. 1.5 (Eq. 1.2),
Fig. 1.6 (Eq. 1.3), Fig. 1.13 (Eq. 1.5) and Fig. 1.15 (Eq. 1.6) are hardly solvable by
conventional methods such as the gradient-based methods.

Despite the fact that the aforementioned examples are artificial, many problems
of the same complexity can be found in real life. For instance, consider a very simple
problem defined by Eq. 1.4. This is based on a simple problem from tee seller, which
tries to increase profit by right packing of three kinds of mixes of tee (x1, x2, x3) with
weight limits (2850g and 1380g) on the final amount of tee. This problem, especially
its mathematical definition and description looks quite simple, but location of the
global extreme is surprisingly hard even for evolutionary algorithms. A closer look
at the geometry (i.e., the cost function landscape) shows that the global extreme is
in a very small spot, surrounded by a wide flat area. Fig. 1.7 – Fig. 1.12 depict three
views on the global extreme. In fact, the cost-function landscape is in the 4D space
(with three variables x = x1, y = x2, z = x3). So, the easiest way to see the global
extreme is to fix one of the three variables to better view the position of the global
extreme and then to draw the landscape in terms of the other two variables. In this
way, Fig. 1.7 – Fig. 1.12 are obtained.

D

∑
i=1

x2
i (1.1)

D−1

∑
i=1

(
4
√

(x2
i + x2

i+1) sin(50 10
√

(x2
i + x2

i+1))
2 + 1

)
(1.2)

D−1

∑
i=1

⎛
⎝0,5 +

sin(
√

100x2
i − x2

i+1)
2 − 0,5

(1 + 0.001(x2
i − 2xixi+1 + x2

i+1)2)

⎞
⎠ (1.3)

−(2x1 + 3x2 + 2x3)g,

with g=
{

1, if
−100, if

}
10x1 + 6x2 + 5x3 ≤ 2850
and 4x2 + 5x3 ≤ 1380

(1.4)

14 I. Zelinka and G. Chen

− 1
30

∑
j=1

1

c j + ∑D
i=1 (xi − a j,i)2

(1.5)

D

∏
i=1

√ s
π

es(xi−oi)2 (1.6)

�5

0

5
�5

0

5

0

20

40

Fig. 1.4 Artificial cost function, see Eq. 1.1

The performance of an algorithm depends not only on the algorithmic structure,
but also on the problem complexity. Complexity [61] is a theory that describes how
“fast” can a problem be solved in dependance on input size (i.e., the number of pa-
rameters such as the number of cities in the traveling salesman problem, see Chap-
ter 2). Fig. 1.16 – Fig. 1.19 show some selected dependance on input size. One can
see that the “speed” of dependance on input size is stabilized to far from the origin,
and the input size is the biggest for exponential and factorial growths [61]. There
are in fact two classes of problems (for more precise description, see [61] and [13]),
i.e., P and NP classes of problems [12]. According to complexity theory, the class
of P problems consists of all those decision-making problems that can be solved by
a deterministic sequential machine (e.g., by a deterministic algorithm) in an amount
of time that is polynomial in input size. On the contrary, the class of NP prob-
lems consists of all those decision-making problems whose positive solutions can
be verified in polynomial time given the right information, or equivalently, whose
solutions can be found in polynomial time by a non-deterministic machine (e.g., by
nondeterministic algorithm).

In a deterministic Turing machine, the set of rules prescribes at most one ac-
tion to be performed for any given situation, i.e., each step is strictly determined, no

1 Motivation for Application of Evolutionary Computation to Chaotic Systems 15

Fig. 1.5 Artificial cost function, see Eq. 1.2

Fig. 1.6 Artificial cost function, see Eq. 1.3

16 I. Zelinka and G. Chen

70

80

x

340

350

y
0

00 000

f�x,y,z�

Fig. 1.7 Cost function of tea seller problem, a
complete view

76

77

78

79

80
344.0

344.5

345.0

345.5

346.0

�1192.0

�1191.5

�1191.0

�1190.5

1190.0

Fig. 1.8 A detailed view, see Eq. 1.4

70

80

x

�10

�5

5

10

z
0

00 000

f�x,y,z�

Fig. 1.9 Cost function of tea seller problem, a
complete view

76

77

78

79

80
�2

�1

0

1

2

�1192.0

�1191.5

�1191.0

�1190.5

1190.0

Fig. 1.10 A detailed view, see Eq. 1.4

340

350

y

0

10

z
0

00 000

f�x,y,z�

Fig. 1.11 Cost function of tea seller problem,
a complete view

344.0

344.5

345.0

345.5

346.0
0.0

0.5

1.0

�1192.0

�1191.5

�1191.0

�1190.5

1190.0

Fig. 1.12 A detailed view, see Eq. 1.4

randomness play any role here. Because such a theoretical machine can be described
algorithmically, one may say that deterministic algorithms are solving this class of
problems. A nondeterministic Turing machine, in contrast, may have a set of rules

1 Motivation for Application of Evolutionary Computation to Chaotic Systems 17

0510

0

5

10

�10

�5

Fig. 1.13 Artificial cost function, see Eq. 1.5

0.0 0.5 1.0 1.5 2.0

0

5

10

15

20

25

30

Fig. 1.14 Artificial cost function, see Eq. 1.6

�4 �2 0 2 4

0

5

10

15

Fig. 1.15 Appended to Eq. 1.1

that prescribes more than one action for a given situation, i.e., some steps are (or can
be) influenced by randomness. This is basically the fundamental principle of evo-
lutionary techniques, and in some sense is the behavior of evolutionary techniques
influenced by randomness in the form of mutation, selection, etc. (see Chapter 2).
A lot of engineering problems belong to these classes of problems, and the next
subsection shows a real one in a laboratory plasma reactor control.

18 I. Zelinka and G. Chen

log�n�5

log�n�

1 2 3 4 5 6 7

1.00
0.50

5.00

0.10

10.00

0.05

0.01

n

f�
n�

Fig. 1.16 Growth of a complexity problem represented by log(n) and log5(n)

n

n2

n3

1 2 3 4 5 6 7
1

5

10

50

100

n

f�
n�

Fig. 1.17 Growth of a complexity problem represented by n, n2 and n3

n log�n�5

2n

2 4 6 8 10 12

0.01

0.1

1

10

100

1000

n

f�
n�

Fig. 1.18 Growth of a complexity problem represented by n log5(n) and 2n

1 Motivation for Application of Evolutionary Computation to Chaotic Systems 19

2n

n log�n�5

n

n2

n3

log�n�

log�n�5

2 4 6 8 10

1

5

10

50

100

500

1000

n

f�
n�

Fig. 1.19 Growth of a complexity problem represented by log(n), log5(n), n, n2, n3, n log5(n)
and 2n

1.2.10 Example: Real-Time Compensation of Plasma Reactor

The performance of a self-organizing migration algorithm (SOMA) is examined
here, where a new stochastic optimization algorithm is compared with simulated
annealing (SA) and differential evolution (DE), for a typical engineering appli-
cation (see Chapter 2 and Chapter 6; for a more detailed study of this example,
see [46], [67]).

More precisely, this application is the automated deduction of fourteen Fourier
terms in a radio-frequency (RF) waveform to tune a Langmuir probe. Langmuir
probes are diagnostic tools used to determine the ion density and the electron energy
distribution in plasma processes. RF plasmas are inherently nonlinear, and many
harmonics of the driving fundamental can be generated in the plasma. RF compo-
nents across the ion sheath formed around the probe distort the measurements. To
improve the quality of the measurements, these RF components are removed by an
active-compensation method. This can be achieved by applying an RF signal to the
probe tip that matches both the phase and the amplitude of the RF signal generated
from the plasma. Here, seven harmonics are used to generate the waveform applied
to the probe tip. In so doing, fourteen mutually interacting parameters (seven phases
plus seven amplitudes) had to be tuned on-line. SA and DE were applied to this
problem and compared with the performance of SOMA.

1.2.10.1 A Low-Temperature Plasma System

Artificially produced plasmas are typically generated through an application of elec-
trical energy to a certain gas. Under normal conditions, gases do not conduct elec-
trically with almost all electrons being bound to atoms or molecules. However, if
electrons are introduced and given enough energy by an external power source, then
they have a potential to collide with gas atoms or surfaces thereby releasing more

20 I. Zelinka and G. Chen

electrons, which may then release other electrons. The resulting electrical break-
down is known as an avalanche effect.

1.2.10.2 Radio-Frequency Driven Plasmas

The use of RF rather than DC has been adopted for a number of reasons including
efficiency and compatibility with systems in which direct electrical contact with the
plasma is infeasible. In the case of industrial RF-powered plasmas, an RF generator
is used as the external power source, usually operating at 13.56MHz or a harmonic
of this frequency. Fig. 1.20 shows a typical configuration for a capacitively coupled
system using electrodes.

A main application of RF-powered plasmas is to produce a flux of energetic pos-
itive ions, which impinge continuously over a large area of work piece, e.g. for
etching or deposing. By nature the plasma medium is quasi-neutral, to ensure which
a plasma sheath forms between the plasma and the bounding surfaces. This results
in a plasma potential that tends to be positive relative to the surfaces. The plasma
sheath prevents electrons from leaving the plasma at a greater rate than the ions.

Fig. 1.20 Schematic of an RF-driven plasma system

1 Motivation for Application of Evolutionary Computation to Chaotic Systems 21

1.2.10.3 Langmuir Probes

Langmuir probes [55], developed in 1924 by Langmuir, are one of the oldest probes
used to obtain information about low-pressure plasma properties. By applying a
positive or negative DC potential to the probe relative to the plasma, either an ion or
an electron current can be drawn from the plasma.

The region of space-charge (the sheath), which forms around a probe immersed
in a plasma, has a highly nonlinear electrical characteristic. In RF-generated plas-
mas, this is a major issue as the excitation process leads to the space potential in
the plasma having RF components. As a result, harmonic components of the RF
potential across this layer give rise to serious distortion of the probe’s measured DC
signal. In order to achieve accurate measurements, the harmonic components across
the probe sheath have to be eliminated.

1.2.10.4 Active Compensation in RF-Driven Plasmas

To eliminate the time variation of RF potential difference between the probe and
the plasma, the probe potential is made to follow that of the plasma [4]. This can
be achieved by superimposing a synchronous waveform of appropriate amplitude
and phase onto the probe tip. Because plasmas are inherently nonlinear, they can
generate many harmonics of the exciting fundamental. As a consequence, the RF
signal necessary for satisfactory compensation not only has to match the amplitude
and the phase of the exciting RF fundamental, but also has to match the complex
waveform of the harmonics generated in the plasma.

Conveniently, the electrostatic probe generates a useful control signal that in-
dicates the degree of uncompensated RF voltage across the probe sheath. In the
presence of a plasma, and without any deliberate biasing of the probe, the isolated
electrostatic probe tip adopts a floating potential, at which it draws zero net current.
This floating potential of the probe is also referred to as its DC bias. This DC bias
was used in an automated control system as a feedback parameter for compensation
of the harmonics at the Langmuir probe tip.

1.2.10.5 Automated Control System

An additive synthesizer (harmonic box) with seven harmonics has been developed
in [44], to generate the appropriate waveforms for compensation of a Langmuir
probe system attached to a Gaseous Electronics Conference (GEC) standard refer-
ence plasma reactor [27]. Fig. 1.21 shows the schematic of the control system for
waveform tuning.

The control software selects set-points for the harmonic generator and sets the
parameters, i.e., seven amplitudes and seven phases, using 14 D/A converters. The
harmonic generator, which is synchronized with the main RF power generator, gen-
erates the required waveform which is applied to the Langmuir probe. The probe’s
floating potential (DC bias) is used as a fitness-measure: the higher the DC bias the

22 I. Zelinka and G. Chen

Fig. 1.21 Closed control loop for waveform tuning

better the compensation. The DC bias is read on-line via a DC buffer and a A/D
converter by the computer system. Depending on the optimization algorithm used in
the system, the software then calculates a new set-point based on the actual measure
of the fitness. It can be seen that all the fitness evaluations are actually measurements
rather than simulation results. This implies time restrictions on the search process.

The fourteen input parameters interact, to some degree, due to the technical real-
ization of the synthesizer hardware and the nature of the problem. Small variations
in the 14 parameters caused by these interactions could lead to a large deviation
from optimal tuning and, hence, the probe measurement itself. As a consequence,
the number of points in the discrete search space has to be calculated, as follows:

n = (2b)p (1.7)

Here,

• n: number of points in search space
• b: resolution per channel in bits
• p: number of parameters to be optimized

The D/A and A/D converters used had a resolution of 12 bits and the dimension-
ality of the search space was 14. Hence, the search space consists of n ≈ 3.7×1050

search points. Due to the system time constant, mapping out the entire search space
would take approximately 1041 years with the plasma system used. Hence, mapping
out the entire search space was not a practical option at all.

SA [44] and DE [67] were used successfully to tune the Langmuir probe. The
results were improved further by introducing step width adaptation to SA [43]. The
performance was compared with the performance of SOMA. All experiments were
carried out at the Open University, Oxford Research Unit, UK.

Fig. 1.22 – 1.23 show the experimental set-up. Three different optimization algo-
rithms were used for the automated waveform tuning experiments. A digital oscillo-
scope was used to measure the actual waveforms found by the three algorithms. The
control software ran on a PC under the Linux operating system. The algorithms used
for these experiments were written in C++ and integrated with the existing Lang-
muir probe control software. The plasma system used was a standard GEC reference
cell.

1 Motivation for Application of Evolutionary Computation to Chaotic Systems 23

Fig. 1.22 Experimental set-up: computer with control software (right), wave synthesizer (bot-
tom left), and oscilloscope (top left)

Fig. 1.23 Experimental set-up: plasma reactor with Langmuir probe

1.2.10.6 Experimental Results

Each algorithm was applied 20 times in total. In order to compensate for drifts of the
plasma over time, the three algorithms were applied alternatively, i.e., an algorithm
was applied once followed by the other two algorithms before the first one was
applied again.

The experimental results can be seen in Fig. 1.24 – 1.26 (only selected figures are
shown here). These figures show a typical search run over time: the average fitness
of the population in A/D Converter units, the best individual in the current genera-
tion, and the standard deviation. Fig. 1.25 shows the average values of the D/A Con-
verters, and the deviation for all 14 parameters found by the evolutionary algorithm.

24 I. Zelinka and G. Chen

0 2000 4000 6000 8000 10000 12000
Cost Function Evaluation

2600

2700

2800

2900

3000

3100

3200

3300
s

s
e

n
t

i
F

Deviation

Average

Best

Fig. 1.24 Graphical visualization of all 20 repeated simulations with DE. Every curve is the
history of the best solution from each generation during simulated evolution. Evolutionary
algorithms are searching for the maximal value of the cost function.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Parameter

0

1000

2000

3000

4000

s
s

e
n

t
i

F

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 1.25 Optimal-value setting of all 14 parameters by SOMA. Small rectangles represent
average values from all 20 experiments. Minimal and maximal values are also depicted.

Fig. 1.26 shows the average waveforms found by the evolutionary algorithm. In Fig.
1.24, the example of evolution runs is depicted. Also other results show a linear drift
of plasma over time, which was observed during all experiments [46].

From these results, it can be seen that basically all the three optimization algo-
rithms can find good solutions in a very short time (about 4 minutes, for the limit
was set to 12000 times of cost-function evaluations for each algorithm). Also, based

1 Motivation for Application of Evolutionary Computation to Chaotic Systems 25

0 5 × 10−8 1 × 10−7 1.5× 10−7 2 × 10−7

Time @sD

100000

150000

200000

250000

300000

e
g

a
t

l
o

V
@V

D

Fig. 1.26 Final waveform based on 14 estimated parameters by DE. Small rectangles repre-
sent average values from all 20 experiments. Minimal and maximal values are also depicted.
Dotted line shows average waveform synthesized by evolutionary algorithm.

on [43] and [44], it can be concluded that the tested algorithms significantly outper-
formed the parameter settings by human operator in precision as well as in time.

This is only one of the many existing examples that can be used to demonstrate
the capability of evolutionary algorithms from various fields of research and appli-
cations. It is clear that the use of evolutionary algorithms should be possible also
in the field of chaotic dynamics, which, in fact, has been preliminary investigated,
with focus on chaos control and synthesis, as further discussed in the next section.

1.3 Chaotic Systems

Mutual interaction of evolutionary algorithms and chaotic systems may be studied
from two points of view. The first is how to use evolutionary algorithms as a tool for
analysis, understanding, and control of chaotic systems. The second is how chaos
exists and behaves throughout the algorithmic evolution.

One of main advantages of evolutionary algorithms in chaos control is the fact
that such algorithms are able to solve complex black-box problems without requir-
ing auxiliary information about the problem itself. In chaos control, some widely
accepted artificial cost functions are demonstrated in Fig. 1.4 (Eq. 1.1) – Fig. 1.15
(Eq. 1.6). The first example comes from chaos synchronization (see Chapter 12),
from very simple case of two chaotic systems coupled via one scalar variable.

Fig. 1.27 depicts an example of the cost-function surface, which shows the de-
pendance of cost value on the coupling parameter c and the control parameter a.
The version with only parameter c is depicted in Fig. 1.28. This cost function is
very simple – it is based on a simple sum of the differences (x−x1, y−y1, z− z1) of

26 I. Zelinka and G. Chen

Fig. 1.27 Cost-function surface representing problem of synchronization, see Chapter 12

�5 0 5
0

1000

2000

3000

4000

5000

Coupling parameter d

C
os

tv
al

ue

Fig. 1.28 Cost-function curve representing problem of synchronization, see Chapter 12

all the three variables. For state variable x, it is depicted in Fig. 1.29. The difference
is shown by the light-gray surface between two curves.

Other examples are shown in Fig. 1.30 – Fig. 1.32. Cost-function surfaces were
obtained in a similar way as in the previous example (see Chapter 5). Again, despite

1 Motivation for Application of Evolutionary Computation to Chaotic Systems 27

0 5 10 15 20

�15

�10

�5

0

5

10

15

20

time �s�

x 1
�t
�,

x 2
�t
�

Fig. 1.29 Demonstration of cost function calculation - difference between two different kinds
of behavior (light-gray surface), see Chapter 12

-4

-2

0

2

4

0.1

0.2

0.3

0.4

0.5

0

20

40

-4

-2

0

2

4

Fig. 1.30 Cost-function surface representing problem of chaos control, see Chapter 5

28 I. Zelinka and G. Chen

-4

-2

0

2

4

0.1

0.2

0.3

0.4

0.5

0

20

40

-4

-2

0

2

4

Fig. 1.31 Cost-function surface representing problem of chaos control, see Chapter 5

-4

-2

0

2

4

0.1

0.2

0.3

0.4

0.5

0

10

20

30

-4

-2

0

2

4

Fig. 1.32 Cost-function surface representing problem of chaos control, see Chapter 5

1 Motivation for Application of Evolutionary Computation to Chaotic Systems 29

0 1 2 3 4 5
Pining value

0

50

100

150

200

250

CV

Fig. 1.33 Cost-function curve representing problem of 1D coupled-map-lattice control, see
Chapter 6

the simple structure of all the cost functions, visualization shows very erratic-like
surfaces with high degrees of multi-modality and nonlinearity.

The last example is demonstrated by Fig. 1.33 and Fig. 1.34. This problem is
discussed in Chapter 6. It is clearly visible that any of the above-discussed cost
functions (problems) is hardly solvable by classical numerical methods.

Many methods for chaos control have been developed [11] and some are based
on the original OGY control method [49]. The main principle lies in waiting for
a natural passage of the chaotic orbit close to the desired periodic behavior and
then applying a small perturbation to it, so as to stabilize the system. This relies
on linearization of the corresponding Poincaré Map [5] - [2]. Moreover, there are
variants using for example the pole placement principle [20], [18], and many others
(see Chapter 5). Together with all those “classical” control methods, evolutionary
techniques have been applied [53], [70], [69].

The second issue of interest is about chaos throughout the algorithmic evolution.
Chaos can be observed from inside evolutionary algorithms, as reported in [32].
In this work, models of genetic algorithms were introduced, which exhibit under
certain conditions cycling and chaotic behavior. Chaos in a genetic algorithm can
potentially be used as a source of diversity. In [64], with the logistic map, a simple
equation involving chaos was proposed as the basis of a special mutation opera-
tor. Similar research articles include [64], where dynamic clone and chaos mutation
methods were sued for optimization; [63], where chaos was used to keep individ-
uals of subgenerations ergodically distributed in a defined space and to circumvent
premature individuals of the subgenerations; [37], where the impact of ergodicity
induced by chaos on the population diversibility was investigated.

Chaos can be also observed in evolutionary dynamics, as studied in [45]. Chaotic
patterns are discovered from simulations on games with the prisoners’ dilemma.

30 I. Zelinka and G. Chen

10

20

30

40

Pining value
2

4

6

8

10

Site period

0

5

10

15

Cost Valu

Fig. 1.34 Cost-function surface representing problem of 2D coupled-map-lattice control, see
Chapter 6

More comprehensive and compact studies about chaos existence in evolutionary dy-
namics are reported in the book [45], which contains rich information about chaotic
behavior generated by evolution and has many interesting examples.

It is also interesting to study the use of chaotic dynamics embedded inside evo-
lutionary algorithms for driving the evolutionary process. The background idea is
that evolutionary algorithms require some randomness to proceed. The behavior
of chaotic systems appears to be random, therefore chaotic systems can be used
as for the needed randomness by evolutionary algorithms. The main advantage is
that there is a fairly good understanding of chaotic systems, which in turn leads to
a good understanding of the evolutionary process. An application of such an ap-
proach is discussed in Chapter 14, where chaotic Lozi and delayed logistic maps are
embedded inside the Differential Evolution algorithm for the optimization of PID
control.

The aforementioned examples are merely a few of the many. There are lots of
cases where the model of a system is unknown and, thus, one has no idea about
its complexity landscape beforehand (see Chapter 11). In case studies, evolutionary

1 Motivation for Application of Evolutionary Computation to Chaotic Systems 31

algorithms (genetic programming-like techniques) are commonly used to synthesize
some new discrete chaotic systems (designed by computer). Cost functions were
basically algorithms, i.e., programs, but not standard mathematical formulas. The
objects of evolution were typically symbolic objects, which together with vaguely
defined cost functions do not allow to draw searched landscapes.

Based on the above observations and personal experiences, the following areas
of mutual interaction of evolutionary techniques and deterministic chaos will be
further studied and discussed throughout the present book:

• Chaos control. In this application (Chapter 5), selected evolutionary algorithms
will be used on chaotic dynamics control on, e.g., logistic equation and Hennon
map. Results were compared with standard control methods.

• CML chaos control. Coupled map lattice (CML) systems based on mutually
coupled logistic equations are controlled by different evolutionary algorithms.
Simulations reported in this case study (Chapter 6) will be designed to be non-
realtime, i.e., each repetition of a simulation is started with the same CML from
the beginning under randomly generated initial conditions. Control of a CML to
two stabilized patterns will be defined and simulated.

• Chaotic systems reconstruction. In this case study (Chapters 7 and 8), chaotic
systems will be reconstructed using “classical” methods. In the end, a set of ex-
periments based on evolutionary algorithms will be used for system identification
and reconstruction, using observed data.

• Chaos-based encryption and its evolutionary decryption. In this application
(Chapters 9 and 10), conventional methodologies and principles of chaos-based
encryption will be studied, and evolutionary decryption of chaos-based encrypted
information will be discussed.

• Evolutionary chaos synthesis. This study (Chapter 11) is a continuation of the
investigation in [71]. It will be shown that evolutionary techniques can be used
for chaotic system synthesis, based on some predefined conditions. Some prelim-
inary results on synthesis of continuous chaotic systems will be briefly discussed.

• Synchronization of chaotic systems. As an interesting application (Chapter 12),
a few selected evolutionary algorithms will be used to synchronize two kinds of
coupled systems: Lorenz-Lorenz system and Rössler-Lorenz system.

• Evolutionary optimization in chaotic CML-based fitness landscapes. In this
study (Chapter 13), fitness landscapes will be analyzed and quantified by using
topological and dynamical landscape measures, such as modality, ruggedness, in-
formation content, dynamic severity, and two types of dynamic complexity mea-
sures. The main focus is on dynamic fitness landscapes that exhibit spatiotempo-
ral chaotic behavior.

• Controller parameters optimization on a representative set of systems using
deterministic-chaotic-mutation evolutionary algorithms. In this investigation
(Chapter 14), selected chaotic maps will be used for evolutionary operators like
mutation and selection. Statistically massive simulations will be carried out to
show the impact of chaotic maps on the performance of selected evolutionary
techniques.

32 I. Zelinka and G. Chen

• Chaotic attributes and permutative optimization. Population dynamics and
its relation to chaotic systems will be analyzed (Chapter 15). Using basic chaotic
principles of attractors and edges, a dynamic population is developed, which
is then used to induce and retain diversity in a metaheuristic population. Sim-
ulation will be performed with genetic algorithm, differential evolution, and
self-organizing migrating algorithm, on the combinatorial problem of quadratic
assignment, with promising results.

It should be noted that all these selected areas are still under intensive research
today, and the role of evolutionary algorithms has been and will continue to be
important and interesting.

1.4 Conclusions

This chapter has outlined and summarized, in a preliminary and brief manner, the
ongoing research about the capability of some evolutionary algorithmic methods,
which will be used and analyzed in the present book. For this purposes, contempo-
rary methods from evolutionary techniques, their selected applications, some classes
of problems solvable by evolutionary algorithms, as well as graphical visualization
of selected cost functions, and so on, have been the focal topics. Some related key
references have also been referred to, as information for the readers’ further studies.

Acknowledgements. This work was supported by Grant No. MSM 7088352101 of the Min-
istry of Education, the Czech Republic, and by Grant GACR 102/09/1680 of the Grant
Agency of the Czech Republic.

References

1. Andersen, P.: Evolvable Hardware: Artificial Evolution of Hardware Circuits in Simula-
tion and Reality, M.Sc. Thesis, University of Aarhus, Denmark (1998)

2. Andrievski, B., Fradkov, A.: Control of Chaos: Methods and Applications. Automation
and Remote Control 64(5), 679–719 (2003)

3. Banzhaff, W., Nordin, P., Keller, E., Francone, F.: Genetic Programming. Morgan-
Kaufmann, San Francisco (1998)

4. Benjamin, N., Braithwaite, N., Allen, J.: Self bias of an r.f. driven probe in an r.f. plasma.
Proc. Mat. Res. Soc. Symp. 117, 275–280 (1998)

5. Chen, G., Dong, X.: From Chaos to Order: Methodologies. Perspectives and Applica-
tions. World Scientific, Singapore (1998)

6. de Garis, H.: An Artificial Brain: ATR’s CAM-Brain Project Aims to Build/Evolve an
Artificial Brain with a Million Neural Net Modules Inside a Trillion Cell Cellular Au-
tomata Machine. New Generation Computing J. 12(2), 215–221 (1994)

7. de Oliveira, A., Ramos, F., Gatto, R.: A research agenda for iterative approaches to in-
verse problems using evolutionary computation. In: Proc. 3rd IEEE Int. Conf. on Evolu-
tionary Computation, pp. 55–60 (1996)

1 Motivation for Application of Evolutionary Computation to Chaotic Systems 33

8. Determan, J., Foster, J.: Using chaos in genetic algorithms. In: Evolutionary Computa-
tion, CEC 1999 (1999), doi:10.1109/CEC.1999.785533

9. Ebenhöh, O., Heinrich, R.: Evolutionary optimization of metabolic pathways. Theoret-
ical reconstruction of the stoichiometry of ATP and NADH producing systems, Bull.
Math. Biol. 63(1), 21–55 (2001)

10. Fogel, David, W., Corne (eds.): Evolutionary Computation in Bioinformatics. Morgan
Kaufmann, San Francisco (2002)

11. Fradkov, A., Evans, R.: Control of Chaos: Survey 1997 - 2000. In: Preprints of 15th
Triennial World Congress IFAC, Plenary Papers, Survey Papers, Milestones, Barcelona,
pp. 143–154 (2002)

12. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, New York (1979)

13. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman, New York (1979)

14. Girau, B., Marchal, P., Nussbaum, P., Tisserand, A.: Evolvable Platform for Array Pro-
cessing: A One-Chip Approach. In: Proc. of the 7th Int. Conf. on Microelectronics for
Neural, Fuzzy and Bio-inspired Systems, Granada, Spain, pp. 187–193 (1999)

15. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading (1989)

16. Gonzales-Miranda, J.: Perturbing Chaotic Systems to Control Chaos. In: Synchroniza-
tion and Control of Chaos - An Introduction for Scientists and Engineers. Imperial Col-
lege Press, London (2004)

17. Gordon, D., des Jardins, M. (eds.): Mach. Learn. 20, 1–17 (1995)
18. Grebogi, C., Lai, Y.: Controlling Chaotic Dynamical System. Phys. Rep. 31, 307–312

(1997)
19. Grebogi, C., Lai, Y.: Controling Chaos. In: Schuster, H. (ed.) Handbook of Chaos Con-

trol. Wiley-VCH, Weinheim (1999)
20. Grebogi, C., Lai, Y.: Pole placement Method of Controling Chaos in high dimensions.

In: Schuster, H. (ed.) Handbook of Chaos Control. Wiley-VCH, Weinheim (1999)
21. Hany, H., Yongyi, T.: FingerPrint Registration Using Genetic Algorithms. In: 3rd IEEE

Symposium on Application-Specific Systems and Software Engineering Technology
(ASSET 2000), p. 148 (2000)

22. Hochbam, D.: Approximation Algorithms for NP - Hard Problems. PWS Publishing
Company, USA (1997)

23. Holland, J.: Adaptation in natural and artificial systems. Univ. of Michigan Press, Ann
Arbor (1975)

24. Houghton, E., Carpenter, P.: Aerodynamics for Engineering Students, 5th edn. Elsevier,
Butterworth-Heinemann, Oxford (2003)

25. Harvey, I., Thompson, A.: Through the Labyrinth Evolution Finds a Way: A Silicon
Ridge. In: Proc. of the 1st Int. Conf. on Evolvable Systems, Tsukuba, Japan, pp. 406–
422 (1996)

26. Higuchi, T., Iwata, M., Kajitani, I., Iba, H., Hirao, Y., Manderick, B., Furuya, T.: Evolv-
able Hardware and its Applications to Pattern Recognition and Fault- tolerant Systems.
In: Sanchez, E., Tomassini, M. (eds.) Towards Evolvable Hardware: The Evolutionary
Engineering Approach, pp. 118–135. Springer, Berlin (1996)

27. Hargis, P.: The Gaseous Electronics Conference Radiofrequency Reference Cell - A De-
fined Parallel-Plate Radiofrequency System For Experimental And Theoretical-Studies
of Plasma-Processing Discharges. Rev. Sci. Instrum. 65(1), 140–154 (1994)

34 I. Zelinka and G. Chen

28. Hirst, A.: Notes on the Evolution of Adaptive Hardware. In: Proc. of Adaptive Comput-
ing in Engineering Design and Control, Plymouth, U.K., pp. 212–219 (1996)

29. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge
University Press, Cambridge (1998)

30. Huynen, M., Stadler, P., Fontana, W.: Smoothness within ruggedness: The role of neu-
trality in adaptation. Proc. of the National Academy of Science 93, 397–401 (1996)

31. Judy, M., Ravichandran, K., Murugesan, K.: A multi-objective evolutionary algo-
rithm for protein structure prediction with immune operators. Comput. Meth. Biomech.
Biomed. Eng. 12(4), 407–413 (2009)

32. Kajitani, I., Hoshino, T., Nishikawa, D., Yokoi, H., Nakaya, S., Yamauchi, T., Inuo, T.,
Kajihara, N., Iwata, M., Keymeulen, D., Higuchi, T.: A Gate-Level EHW Chip: Imple-
menting GA Operations and Reconfigurable Hardware on a Single LSI. In: Proc. of the
2nd Int. Conf. on Evolvable Systems, Lausanne, Switzerland, pp. 1–12 (1998)

33. Karr, C., Bowersox, R., Singh, V.: Minimization of Sonic Boom on Supersonic Aircraft
Using an Evolutionary Algorithm. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L.,
Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., We-
gener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller,
J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724. Springer, Heidelberg (2003)

34. Levenspiel, O.: Chemical reaction engineering. John Wiley and Sons, New York (1962)
35. Li, Y., Haubler, A.: Artificial evolution of neural networks and its application to feedback

control. Artif. Intell. Eng. 10, 143–152 (1996)
36. Liu, W., Murakawa, M., Higuchi, T.: ATM Cell Scheduling by Function Level Evolvable

Hardware. In: Proc. of the 1st Int. Conf. on Evolvable Systems, Tsukuba, Japan, pp.
180–192 (1996)

37. Xingwei, L., Yongxiang, P., Gao, H.: Using chaos-parallel evolutionary programming
to solve the flow-shop scheduling problem. In: Intelligent Control and Automation,
WCICA, vol. 3, pp. 2001–2003 (2000)

38. Miller, J., Thomson, P.: Aspects of Digital Evolution: Geometry and Learning. In: Proc.
of the 2nd Int. Conf. on Evolvable Systems, Lausanne, Switzerland, pp. 25–35 (1998)

39. Miller, J., Job, D., Vassilev, V.: Principles in the Evolutionary Design of Digital Circuits
- Part II. Genetic Programming and Evolvable Machines 1(3), 259–288 (2000)

40. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)
41. Murakawa, M., Yoshizawa, S., Kajitani, I., Furuya, T., Iwata, M., Higuchi, T.: Hardware

Evolution at Function Level. In: Proc. of the 4th Conf. on Parallel Problem Solving from
Nature, Berlin, Germany, pp. 62–71 (1996)

42. Murakawa, M., Yoshizawa, S., Kajitani, I., Yao, X., Kajihara, N., Iwata, M., Higuchi, T.:
The GRD Chip: Genetic reconfiguration of DSPs for Neural Network Processing. IEEE
Trans. on Computers 48(6), 628–639 (1999)

43. Nolle, L., Goodyear, A., Hopgood, A., Picton, P., Braithwaite, N.: On Step Width Adap-
tation in Simulated Annealing for Continuous Parameter Optimisation. In: Reusch, B.
(ed.) Fuzzy Days 2001. LNCS, vol. 2206, pp. 589–598. Springer, Heidelberg (2001)

44. Nolle, L., Goodyear, A., Hopgood, A., Piction, D., Braithwaite, N.: Automated control
of an actively compensated Langmuir probe system using simulated annealing. Knowl.
Base Syst. 15(5-6), 349–354 (2002)

45. Nowak, M., May, R.: Evolutionary games and spatial chaos. Nature 359, 826–829
46. Nolle, L., Zelinka, I., Hopgood, A., Goodyear, A.: Comparison of an self-organizing

migration algorithm with simulated annealing and differential evolution for automated
waveform tuning. Adv. Eng. Software 36(10), 645–653 (2005)

1 Motivation for Application of Evolutionary Computation to Chaotic Systems 35

47. Nolle, L., Zelinka, I., Hopgood, A., Goodyear, A.: Comparison of an self organizing
migration algorithm with simulated annealing and differential evolution for automated
waveform tuning. Adv. Eng. Software 36(10), 645–653 (2005)

48. Ortega, C., Tyrrell, A.: Biologically Inspired Fault-tolerant Architectures for Real-time
Control Applications. Contr. Eng. Pract. 7(5), 673–678 (1999)

49. Ott, E., Grebogi, C., Yorke, A.: Controlling Chaos. Phys. Rev. Lett. 64, 1196–1199
(1990)

50. Pham, Q.: Dynamic optimization of chemical engineering processes by evolutionary
method (2005)

51. Pham, Q., Coulter, S.: Modelling the chilling of pig carcasses using an evolutionary
method. Proc. Int. Congress of Refrig. 3a, 676–683 (1995)

52. Rendell, L.: Similarity-based Learning and its Extensions. Comput. Intell. 3, 241–266
(1987)

53. Richter, H., Reinschke, K.: Optimization of local control of chaos by an evolutionary
algorithm. Physica D 144, 309–334 (2000)

54. Rumelhart, D., Widrow, B., Lehr, M.: The Basic Ideas in Neural Networks. Comm.
ACM 37(3), 87–92 (1994)

55. Swift, J., Schwar, M.: Electrical Probes for Plasma Diagnostics, Ilitte, London (1970)
56. Thompson, A.: Evolving Inherently Fault-Tolerant Systems. Proc. IME J. 211(1), 365–

371 (1997)
57. Thompson, A.: Hardware Evolution. Springer, London (1998)
58. Thompson, A., Harvey, I., Husbands, P.: Unconstrained Evolution and Hard Conse-

quences. In: Sanchez, E., Tomassini, M. (eds.) Towards Evolvable Hardware 1995.
LNCS, vol. 1062, pp. 136–165. Springer, Heidelberg (1996)

59. Torresen, J.: Possibilities and Limitations of Applying Evolvable Hardware to Real-
World Applications. In: Proc. of the 10th Int. Conf. on Field Programmable Logic and
Applications, Villach, Austria, pp. 230–239 (2000)

60. Tupy, J., Zelinka, I.: Database and Expert Systems Application. In: 19th International
Conference on DEXA, September 1-5, pp. 524–530 (2008)

61. Wegener, I.: Complexity Theory: Exploring the Limits of Efficient Algorithms. Springer,
Heidelberg (2005)

62. Wright, A., Agapie, A.: Cyclic and Chaotic Behavior in Genetic Algorithms. In: Proc. of
Genetic and Evolutionary Computation Conference (GECCO), San Francisco, July 7-11
(2001)

63. Yan, X., Chen, D., Hu, S.: Chaos-genetic algorithms for optimizing the operation condi-
tions based on RBF-PLS model. Comput. Chem. Eng. 28(4), 579 (2004)

64. Yang, M., Guan, J.: Dynamic Clonal and Chaos-Mutation Evolutionary Algorithm for
Function Optimization. In: Kang, L., Cai, Z., Yan, X., Liu, Y. (eds.) ISICA 2008. LNCS,
vol. 5370, pp. 19–27. Springer, Heidelberg (2008)

65. Yao, X., Higuchi, T.: Promises and Challenges of Evolvable Hardware. In: Proc. of the
1st Int. Conf. on Evolvable Systems, Tsukuba, Japan, pp. 55–78 (1996)

66. Zebulum, R., Aurélio Pacheo, M., Vellasco, M.: Evolvable Systems in Hardware Design:
Taxonomy, Survey and Applications. In: Proc. of the 1st Int. Conf. on Evolvable Systems,
Tsukuba, Japan, pp. 344–358 (1996)

67. Zelinka, I., Nolle, L.: Plasma Reactor Optimizing Using Differential Evolution. In: Price,
K., Storn, R., Lampinen, J. (eds.) Differential Evolution: Global Optimization for Scien-
tists and Engineers. Springer, Heidelberg (2005)

36 I. Zelinka and G. Chen

68. Zelinka, I., Nolle, L.: Plasma reactor optimizing using differential evolution. In: Price,
K., Lampinen, J., Storn, R. (eds.) Differential Evolution: A Practical Approach to Global
Optimization, pp. 499–512. Springer, New York (2006)

69. Zelinka, I., Senkerik, R., Navratil, E.: Investigation on Real Time Deterministic Chaos
Control by Means of Evolutionary Algorithms, CHAOS 2006. In: Proc. 1st IFAC Con-
ference on Analysis and Control of Chaotic Systems, Reims, France, June 28–30, pp.
211–217 (2006)

70. Zelinka, I., Senkerik, R., Navratil, E.: Investigation on Evolutionary Optimitazion of
Chaos Control, Chaos, Solitons & Fractals (2007), doi:10.1016/j.chaos.2007.07.045

71. Zelinka, I., Guanrong, C., Celikovsky, S.: Chaos Synthesis by Means of Evolutionary
algorithms. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 18(4), 911–942 (2008)

Chapter 2
Evolutionary Algorithms for Chaos Researchers

Ivan Zelinka and Hendrik Richter

Abstract. Evolutionary algorithms are search methods that can be used for solv-
ing optimization problems. They mimic working principles from natural evolution
by employing a population–based approach, labeling each individual of the popula-
tion with a fitness and including elements of random, albeit the random is directed
through a selection process. In this chapter, we review the basic principles of evo-
lutionary algorithms and discuss their purpose, structure and behavior. In doing so,
it is particularly shown how the fundamental understanding of natural evolution
processes has cleared the ground for the origin of evolutionary algorithms. Major
implementation variants and their structural as well as functional elements are dis-
cussed. We also give a brief overview on usability areas of the algorithm and end
with some general remarks of the limits of computing.

2.1 Historical Facts from a Slightly Different Point of View

Evolutionary algorithms, or better evolutionary computational techniques (ECT),
are based on principles of evolution which have been observed in nature long time
before they were applied to and transformed into algorithms to be executed on com-
puters. When next reviewing some historical facts that led to evolutionary compu-
tation as we know it now, we will mainly focus on the basic ideas, but will also

Ivan Zelinka
Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511,
Zlin 76001, Czech Republic
and
VSB-TUO, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15,
708 33 Ostrava-Poruba, Czech Republic
e-mail: zelinka@fai.utb.cz

Hendrik Richter
HTWK Leipzig, Fakultät Elektrotechnik und Informationstechnik,
D–04251 Leipzig, Germany
e-mail: richter@fbeit.htwk-leipzig.de

I. Zelinka et al. (Eds.): Evolutionary Algorithms and Chaotic Systems, SCI 267, pp. 37–88.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

38 I. Zelinka and H. Richter

allow to glimpse at the people who did the pioneering work and established the
field. Maybe the two most significant persons whose research on evolution and ge-
netics had the biggest impact on modern understanding of evolution and its use for
computational purposes are Gregor Johann Mendel and Charles Darwin.

Gregor Johann Mendel (Fig. 2.1, July 20, 1822 - January 6, 1884) was an Augus-
tinian priest and scientist, and is often called the father of genetics for his study of
the inheritance of certain traits in pea plants. He was born in the family of farmers in
Hyncice (Heinzendorf bei Odrau) in Bohemia (that time part of Austrian - Hungary
empire, today Czech Republic). The most significant contribution of Mendel for sci-
ence was his discovery of genetic laws which showed that the inheritance of these
traits follows particular laws (published in [52]), which were later named after him.
All his discoveries were done in Abbey of St. Thomas in Brno (Bohemia). Mendel
published his research at two meetings of the Natural History Society of Brünn in
Moravia (east part of Bohemia) in 1865 [52]. When Mendel’s paper was published
in 1866 in Proceedings of the Natural History Society of Brünn, it had little impact
and was cited only about three times over the next thirty-five years. His paper was
criticized at the time, but is now considered a seminal work. The significance of
Mendel’s work was not recognized until the turn of the 20th century. Its rediscov-
ery (thanks to Hugo de Vries, Carl Correns and Erich von Tschermak) prompted the
foundation of the discipline of genetics. Very peculiar historical fact about Mendel’s
research is also that his letters about his discovery, sent to many of scientific soci-
eties, had been found after many years in their libraries unopened. Mendel died on
January 6, 1884, at age 61, soon after his death the succeeding abbot burned all
papers in Mendel’s collection, to mark an end to the disputes over taxation [10].

The other important (and much more well–known and therefore here only briefly
introduced) researcher whose discoveries founded the theory of evolution was the
British scientists Charles Darwin. Darwin (Fig. 2.2) published in his work [17] the

Fig. 2.1 Gregor Johann Mendel (July 20, 1822 - January 6, 1884)

2 Evolutionary Algorithms for Chaos Researchers 39

Fig. 2.2 Gregor Charles Darwin 12 February 1809 - 19 April 1882

main ideas of the evolutionary theory. The full and original title was ”On the Origin
of Species by Means of Natural Selection, or the Preservation of Favored Races in
the Struggle for Life”. Word ”races” refers here to biological varieties. The title has
been changed to [17] for the 6th edition of 1872. In Darwin’s book On the Origin of
Species (1859) established evolutionary descent with modification as the dominant
scientific explanation of diversification in the nature.

The above mentioned ideas of genetics and evolution have been formulated long
before the first computer experiments with evolutionary principles had been done.
The beginning of the ECT is officially dated to the 70s of the 20th century, when
famous genetic algorithms were introduced by J. Holland [37, 38] or to the late
60s with evolutionary strategies, introduced by Schwefel [64] and Rechenberg [60]
and evolutionary programming by L.J. Fogel [29]. However, when certain histori-
cal facts are taken into consideration, then one can see that the main principles and
ideas of ECT as well as its computer simulations had been done earlier than men-
tioned above. Conceptionally, ECT can be traced back to the famous A.M. Turing,
first numerical experiments to the (far less famous) N.A. Barricelli and others. Their
understanding and formulation of basic ideas of ECT was remarkably clear, see e.g.
Turing in his essay “Intelligent machinery” (1948) [67] where he say:

“...if the untrained infant’s mind is to become an intelligent one, it must acquire
both discipline and initiative... discipline is certainly not enough in itself to produce
intelligence. That which is required in addition we call initiative...our task is to
discover the nature of this residue as it occurs in man, and to try and copy it in
machines...”.

40 I. Zelinka and H. Richter

In other words he speaks about simulation of an intelligent creature. Turing con-
tinues in his text by

“...further research into intelligence of machinery will probably be very greatly
concerned with ’searches’...”,

and suggested that ’searches’ will be done probably in the space of numbers and
basically he describes the central idea of ECT by

“...there is the genetic or evolutionary search by which a combination of genes is
looked for, the criterion being the survival value”.

Turing further improved this idea in his article “Computing Machinery and Intel-
ligence” (1950) [67]:

“We cannot expect to find a good child-machine at the first attempt. One must
experiment with teaching one such machine and see how well it learns. One can
then try another and see if it is better or worse. There is an obvious connection
between this process and evolution, by the identifications”

• structure of child machine = hereditary material
• changes of the child machine = mutations
• natural selection = judgement of the experimenter”.

One of the first to transform Turing’s ideas into real computer numerical experi-
ments was N. Barricelli (1954) [4, 5]. Results were published in the journal ”Meth-
ods” with the title ”Esempi Numerici di processi di evoluzione” and consequently
repeated and improved in 1962 [6] when ECT numerical experiment with 500 of 8
bits strings had been successfully done. Based on this numerical simulations Barri-
celli reported that:

“we have created a class of numbers which are able to reproduce and to undergo
hereditary changes...the constitution for an evolutionary process according to the
principle of Darwins theory would appear to be present. The numbers which have
the greatest survival in their environment will survive. The other numbers will be
eliminated little by little. A process of adaptation to the environmental conditions,
that is, a process of Darwinian evolution, will take place”.

Barricelli’s early computer-assisted experiments, which were focused on sym-
biogenesis and evolution (based on Darwin’s ideas), can be accepted like pioneer-
ing experiments in artificial life research. Barricelli has been working in Institute for
Advanced Study in Princeton, New Jersey in 1953, 1954 and 1956. Later he worked
at the University of California, Los Angeles, at Vanderbilt University, in the Depart-
ment of Genetics of the University of Washington, Seattle and then at the Mathe-
matics Institute of the University of Oslo. He is also author of a variety of articles
in fields as different as theoretical physics and mathematical language, virus genet-
ics, DNA, theoretical biology, space flight, etc. Barricelli’s experiments are prob-
ably some of the first historically recorded numerical ECT experiments. Another

2 Evolutionary Algorithms for Chaos Researchers 41

interesting tread of ECT’s pre-history are the works of Box (1957) [7] and Fried-
berg (1958) [30]. Although the original papers are meanwhile hardly accessible, it
is in particular thanks to D.B. Fogel (son of evolutionary programming pioneer L.J.
Fogel), who edited some of these works [27] and recollected some technical details
and implications [26, 28], that this early history of ECT can now be rediscovered.
However, in some respect all these works were slightly ahead of time, as the re-
sults have clearly shown the potential of ECT methods, but the lack of computing
power at that time prevented to solve “real problems” and hence to widespread the

Evolutionary and genetic dynamics,
processes and laws

Fitness

Population
dynamic

Hereditability

Hereditability

DNA coding
(Schrodinger,

Watson and Creek)

Feature

Fitness

MEndelDarwin

Turing Baricceli Modern computer
evolucionists:
Holland, Schwefel,
Rechenberg, Fogel,
Baeck, Price, Koza,
O'Neill, Ryan, ...

Fig. 2.3 Evolutionary theory and its historical relations

42 I. Zelinka and H. Richter

methods. So, the “golden era” of ECT began, when genetic algorithms by J. Hol-
land [37], evolutionary strategies, by Schwefel [64] and Rechenberg [60] and evo-
lutionary programming by Fogel [29] had been introduced. All these designs were
favored by the upcoming of more powerful and more easily programmable comput-
ers so that for the first time interesting problems could be tackled and ECT started
to compete with and became a serious alternative to other optimization methods.
Since that time other successful algorithms using ECT ideas have been developed,
for instance scatter search, particle swarm, memetic algorithms, differential evolu-
tion, ant colony optimization, and many others. Before their brief description it is
important to outline the main principle (lets call it central dogma) of evolutionary
computation in general. History of ECT is of course more rich and complex, than
described here. Main ideas and relations can be more clearly visible from Fig. 2.3.

2.2 Evolutionary Algorithms – Outline

In recent years, a broad class of algorithms has been developed for stochastic op-
timization, i.e. for optimizing systems where the functional relationship between
the independent input variables and the output (objective function) of a system is
not explicitly known. Using stochastic optimization algorithms such as Genetic Al-
gorithms, Simulated Annealing and Differential Evolution, a system is confronted
with a random input vector and its response is measured. This response is then used
by the algorithm to tune the input vector in such a way that the system produces
the desired output or target value in an iterative process. Most engineering problems
can be defined as optimization problems, e.g. the finding of an optimal trajectory
for a robot arm, the optimal thickness of steel in pressure vessels, the optimal set
of parameters for controllers, optimal relations or fuzzy sets in fuzzy models, etc.
Solutions to such problems are usually difficult to find as their parameters usually
include variables of different types, such as floating point or integer variables. Evo-
lutionary algorithms, such as the Genetic Algorithms, Particle Swarm, Ant Colony
Optimization, Scatter Search, Differential Evolution etc., have been successfully
used in the past for these engineering problems, because they can offer solutions to
almost any problem in a simplified manner: they are able to handle optimizing tasks
with mixed variables, including the appropriate constraints, and they do not rely
on the existence of derivatives or auxiliary information about the system, e.g. its
transfer function. This chapter is concerned with a brief introduction on so-called
evolutionary computational techniques (ECT). Although the editors of this book
assume that most of the readers will have at least basic knowledge of ECT, there
might be the wish for clarification and broadening. For this reason, this chapter was
also included to describe in simple terms what ECT actually means.

2.2.1 Central Dogma of Evolutionary Computational Techniques

The evolutionary computational techniques are numerical algorithms that are based
on the basic principles of Darwin’s theory of evolution and Mendel’s foundation of

2 Evolutionary Algorithms for Chaos Researchers 43

genetics. The main idea is that every individual of a species can be characterized
by its features and abilities that help it to cope with its environment in terms of
survival and reproduction. These features and abilities can be termed its fitness and
are inheritable via its genome. In the genome the features/abilities are encoded. The
code in the genome can be viewed as a kind of “blue–print” that allows to store,
process and transmit the information needed to build the individual. So, the fitness
coded in the parent’s genome can be handed over to new descendants and support
the descendants in performing in the environment. Darwinian participation to this
basic idea is the connection between fitness, population dynamics and inheritability
while the Mendelian input is the relationship between inheritability, feature/ability
and fitness. Both views have been brought together in molecular Darwinism with
the idea of a genetic code (first uttered in its full information–theoretical meaning
by Erwin Schrödinger in his 1944 book What is life?) and the discovery of the
structure of the DNA and its implications to genetic coding by James Watson and
Francis Crick in 1953.

By these principles and in connection with the occurrence of mutations that mod-
ify the genome and hence may produce inheritable traits that enhance fitness, a de-
velopment of individuals and species towards best adaption to the environment takes
place. Here, the multitude of individuals in a species serve two connected evolution-
ary aspects, (i.) provide the opportunity to “collect” mutations and pass traits that
are or are not fitness enhancing to descendants on an individual level and (ii.) allow
fitness enhancing genomes to spread in the species from one generation to the next
if the traits bring advantages in survival and reproduction.

However, it should be noted that Darwin or, as the case may be, Mendel, were
not the first. Already in the ancient era, there were thinkers who came with the
same idea as Darwin and Mendel. An outstanding thinker, who supported the idea of
evolution before Darwin, was Anaximander, a citizen from Miletus, an Ionian city of
Asia Minor. Anaximander’s philosophical ideas are summarized in his philosophical
tract “On nature”, however, this name is of a later date, because this book was not
preserved. According to Anaximander, the original principle of the world and the
cause of all being is “without a limit” (“apeiron” in Greek), from which cold and
warm and dry and wet is separated - essentially, one can imagine this principle in
the sense of unlimited and undifferentiated wetness, from which all other natural
substances and individual species of living creatures arise.

By his idea that the Earth, which he imagined as freely floating in space, was
initially in a liquid state and later, when it was drying, gradually gave rise to
animals, who at first lived in water and later migrated onto land, Anaximander
in part anticipates the modern theory of evolution.

The ECT technology stands or falls with the existence of the so-called evolution-
ary algorithms (EA) that in principle form the majority of ECT. Besides evolutionary
algorithms, there still exist other extensions, such as genetic programming, evolu-
tionary hardware, etc. With respect to the fact that evolutionary algorithms are the

44 I. Zelinka and H. Richter

backbone of ECT, attention will be paid in this chapter just to these algorithms,
whose understanding is absolutely necessary for understanding the rest of this
publication.

From the above mentioned main ideas of Darwin and Mendel theory of evolu-
tion, ECT uses some building blocks which the diagram in Fig. 2.4 illustrates. The
evolutionary principles are transferred into computational methods in a simplified
form that will be outlined now.

Initial population
setting

Control parameters
definition of the selected
evolutionary algorithm

Fitness evaluation
of each individual

(parent)

Parent selection
based on their

fitness

Offspring creation

Mutation of a new
offsprings

Fitness evaluation

Best individual
selection from

parents and
offsprings

New empty
population

occupation by
selected individuals

Old population is
replaced by new

one

Evolutionary loop

Fig. 2.4 General cycle of the evolutionary algorithm. The termination of the evolution after n
generations and the selection of the best individual are not indicated in this figure - solution
from the last population.

If the evolutionary principles are used for the purposes of complicated calcula-
tions (in accordance with Fig. 2.4), the following procedure is used:

1. Specification of the evolutionary parameters: For each algorithm, parameters
must be defined that control the run of the algorithm or terminate it regularly,
if the termination criterions defined in advance are fulfilled (for example, the
number of cycles - generations). Part of this point is the definition of the cost
function (objective function) or, as the case may be, what is called fitness - a
modified return value of the objective function). The objective function is usu-
ally a mathematical model of the problem, whose minimization or maximiza-
tion (generally therefore extremization) leads to the solution of the problem.

2 Evolutionary Algorithms for Chaos Researchers 45

This function with possible limiting conditions is some kind of “environmental
equivalent” in which the quality of current individuals is assessed.

2. Generation of the initial population (generally N × M matrix, where N is the
number of parameters of an individual - D is used hereinafter in this publica-
tion - and M is the number of individuals in the population): Depending on the
number of optimized arguments of the objective function and the user’s criteri-
ons, the initial population of individuals is generated. An individual is a vector
of numbers having such a number of components as the number of optimized
parameters of the objective function. These components are set randomly and
each individual thus represents one possible specific solution of the problem.
The set of individuals is called population.

3. All the individuals are evaluated through a defined objective function and to
each of them is assigned a) Either a direct value of the return objective function,
or b) A fitness value, which is a modified (usually normalized) value of the
objective function.

4. Now parents are selected according to their quality (fitness, value of the objec-
tive function) or, as the case may be, also according to other criterions.

5. Descendants are created by crossbreeding the parents. The process of cross-
breeding is different for each algorithm. Parts of parents are changed in classic
genetic algorithms, in a differential evolution, crossbreeding is a certain vector
operation, etc.

6. Every descendant is mutated. In other words, a new individual is changed by
means of a suitable random process. This step is equivalent to the biological
mutation of the genes of an individual.

7. Every new individual is evaluated in the same manner as in step 3.
8. The best individuals are selected.
9. The selected individuals fill a new population.

10. The old population is forgotten (eliminated, deleted, dies,..) and is replaced by
a new population; step 4 represents further continuation.

Steps 4 - 10 are repeated until the number of evolution cycles specified before
by the user is reached or if the required quality of the solution is not achieved. The
principle of the evolutionary algorithm outlined above is general and may more or
less differ in specific cases. So, methods that work by an algorithmic structure as
outlined in the steps 1-10 share the following main evolutionary principles:

• Biological inspiration: The algorithms mimic and use in an abstracted way
working mechanisms of biological systems.

• Population–based calculations: By structuring data in the algorithm by the
individual–and–species model, individual search is coordinated to other indi-
viduals and so to the whole population. This has the effect of parallelism in
the search which is assumed to be the main reason for success of evolutionary
search.

• Repeated calculation of fitness for all individuals: This principles provides
a spectrum of fitness to the population from which search can be guided by
noticing and discriminating individuals of different fitness.

46 I. Zelinka and H. Richter

• Generational search: Repeated generational search guided by the fitness
spectra allows to accumulate individuals with high fitness.

• Stochastic and deterministic driving forces: Random influences, for in-
stance in form of mutations are balanced by the deterministic elements in
the flow of the algorithm.

• Coordination between individuals: Some kind of communication on (or
even in–between) the individuals of the population (e.g. in the selection
(crossover) or recombination process) allows to recognize and exploit indi-
vidual differences in fitness.

There are also exemptions that do not adhere to steps 1 - 10; in such a case,
the corresponding algorithms are not denoted as evolutionary algorithms, but usu-
ally as algorithms that belong to ECT. Some evolutionists exclude them completely
from the ECT class. The ACO algorithm (Ant Colony Optimization), see [21] and
[56] may be an example - it simulates the behavior of an ant colony and can solve
extremely complicated combinatory problems. It is based on the principles of coop-
eration of several individuals belonging to the same colony - in this case ants.

The evolution diagrams are not only popular because they are modern and differ
from classical algorithms, but mainly because of the fact that they are able to replace
a man in the event of a suitable application. This is illustrated in Fig. 2.5. There are
two methods of the problem solution illustrated in this figure. The first one repre-
sents steps of a human investigator, the second one represents the procedure if ECT
is used.

This publication thus deals with ECT’s that in most cases adhere to the above
indicated evolutionary scheme; nevertheless, exemptions are also indicated.

Fig. 2.5 Comparison of the problem solution by means of ECT and a man. Simplified illus-
tration.

2 Evolutionary Algorithms for Chaos Researchers 47

2.2.2 Evolutionary Algorithms and Importance of Their Use

Comparing to standard optimization techniques, evolutionary algorithms can be
used on almost arbitrary optimization problem, however, it is important to remem-
ber that with different performance. As mentioned in the section 2.5.2, there are
problems with different level of complexity, from the simplest (solvable by standard
techniques) to the most complex, whose solution would take much more longer
time, than our universe exist. Thus, some simple problems, that can be very easily
and quickly solved by gradient based techniques, should not be solved by heuristic
methods, because its use would be expensive, i.e. user would “pay” by big number
of cost function evaluations. Another important fact, having impact on EA use is
so called No Free Lunch Theorem (NFLT), see [70]. Main idea of this theorem is
that there is no ideal algorithm which would be able to solve any problem. Simply,
if there are for example two algorithms A and B, then for certain subset of possi-
ble problems is more suitable algorithms A and for another subset algorithm B. All
those subsets can be of course totally disconnected, or/and overlapped.

Based on those facts it is important to remember that evolutionary algorithms
are suitable for problems which are more complex rather simple, and also that their
selection and setting depend on user experiences, expertise etc. More exact classifi-
cation is mentioned in the section 2.4.

2.3 Selected Evolutionary Techniques

2.3.1 Overview

Optimization algorithms are a powerful tool for solving many problems of engi-
neering applications. They are usually used where the solution of a given problem
analytically is unsuitable or unrealistic. If implemented in a suitable manner, there
is no need for frequent user intervention into the actions of equipment in which they
are used.

The majority of the problems of engineering applications can be defined as op-
timization problems, for example, finding the optimum trajectory of a robot or the
optimum thickness of the wall of a pressure tank or the optimum setting of the reg-
ulator’s parameters. In other words, the problem solved can be transformed into a
mathematical problem defined by a suitable prescription, whose optimization leads
to finding the arguments of the objective function, which is its goal.

Countless examples can be found illustrating this problem. The solution of such
problems usually requires working with the arguments of optimized functions,
where the definition ranges of these arguments may be of a heterogeneous char-
acter, such as, for example, the range of integers, real or complex numbers, etc.
Moreover, it may happen (depending on the case) that for certain subintervals from
the permitted interval of values, the corresponding argument of the optimized func-
tion may assume values of various types (integers, real, complex,..). Besides this,
various penalizations and restrictions can play a role within optimization, not only

48 I. Zelinka and H. Richter

for given arguments, but also for the functional value of the optimized function.
In many cases, the analytical solution of such an optimization problem is possible,
nevertheless, considerably complicated and tedious.

A class of very efficient algorithms has been developed for the successful solu-
tion of such problems in the past two decades that make it possible to solve very
complicated problems efficiently. The algorithms of this class have their specific
name, namely “evolutionary algorithms”. They solve problems in such an elegant
manner that they became very popular and are used in many engineering fields.

From the point of view of the most general classification, the evolutionary algo-
rithms belong to heuristic algorithms. Heuristic algorithms are either deterministic
or stochastic. The algorithms of the second group differ in that their certain steps
use random operations, which means that the results of the solutions obtained with
their use may differ in the individual runs of the program. It is therefore meaningful
to run the program several times and select the best solution obtained.

Stochastic heuristic methods are sometimes called metaheuristics, because they
only provide a general framework and the algorithms of the operation itself must be
chosen (for example, by the operation of crossbreeding and mutation in genetic al-
gorithms, operation of neighborhood in simulated annealing, “tabu search”, etc.) in
dependence on the problem investigated. Because these methods are frequently in-
spired by natural processes, they are also called evolutionary algorithms. Depending
on their strategy, they can be divided in two classes:

1. Methods based on point-based strategy such as, for example, simulated anneal-
ing ([41], [13], [66]), hill-climbing algorithm [63] and tabu-search [31]. These
algorithms are based on the neighborhood operation of the current solution, in
which we are looking for a better solution.

2. Population-based strategy. Genetic algorithms [19], [33], [53], [14] are based
on population strategy.

These methods differ from classic gradient methods by admitting (with a cer-
tain probability) a worse solution into the next iteration; in this manner, they try to
avoid local minima. For more details, see, for example, books [31], [33],[53],[54]
and [61].

2.3.2 Current State

Evolutionary algorithms serve for finding the minima (or maxima) of a given objec-
tive function by looking for the optimum numerical combination of its arguments.
These algorithms can be divided according to the principles of their action, com-
plexity of the algorithm, etc. Of course, this classification is not the only possibility,
nevertheless, because it fits the current state rather well, it can be considered as one
of the possible views on the classical and modern optimization methods. There are
slight differences in opinions on their classification. One can encounter statements
that, for example, simulated annealing does not belong to evolutionary techniques,
which is true to some extent. On the other side, other “evolutionists” state that

2 Evolutionary Algorithms for Chaos Researchers 49

simulated annealing does belong to evolutionary techniques, at least as their direct
predecessor. It is true that if simulated annealing is taken into account with elitism,
then one could consider this alternative as an evolutionary algorithm.

2.3.2.1 Classes Optimization Approaches

Figs. 2.6 - 2.8 illustrate various views on the classification of evolutionary algo-
rithms that exhibit certain differences although they have a visible common line.
These differences may be caused not only by the classification of the algorithm ac-
cording to the principles by which it is controlled, but, for example, according to
the classes of problems for which it is “predestined”. The individual classes of algo-
rithms represent generally solutions of a given problem by the methods of various
degrees of efficiency and complexity. Depending on their properties, we classify
algorithms into the following categories:

Enumerative: The algorithm calculates all possible combinations of a given
problem. This approach is suitable for problems where the arguments of
the objective function have a discrete character and assume a small num-
ber of values. Should it be applied generally, it might need more time for
its successful termination than is the time of the existence of the universe.

Deterministic: This group of algorithms is based only on the rigorous methods
of classical mathematics. The algorithms of this character usually require
limiting assumptions that enable these methods to provide efficient results.
Usually, these assumptions are as follows:

• The problem is linear.
• The problem is convex.
• The space of the possible solutions is small.
• The space of the possible solutions is continuous.
• The objective function is unimodal (it has only one extreme).
• There are no nonlinear interactions between the parameters of the ob-

jective function.
• Information on the gradient is available, etc.
• The problem is defined in an analytical form.

The result of the deterministic algorithm is then only one solution.
Stochastic: The algorithms of this type are based on the use of chance. This is

essentially a purely random search of the values of the objective function;
the result is always the best solution that was found during the entire ran-
dom search. The algorithms of this type are usually;

• slow.
• suitable only for small spaces of possible solutions (small range of

arguments of the objective function),
• suitable for a rough estimation.

50 I. Zelinka and H. Richter

Optimization methods

Traditional methods
(exact)

Direct analytical Constructive solution

Heuristic methods
(approximate)

Linear
programming

Local search

Newton’s method

Gradient methods

Divide and
conquer

Dynamic
programming

Branch and
Bound

Deterministic Probabilistic

Tabu Search

Individual
solutions

Simulated
annealing

Stochastic hill-
climbing

Population based

Evolutionary
algorithms

PSO

Genetic algorithms

Genetic programming

Evolutionary
programming

Evolutionary
strategies

Fig. 2.6 Classification of the optimization methods according to [68]

Optimization problems

Combinatoric

Exact

Continuous

Approximate Nonlinear (analytically unknown) Linear
(programming)

Difficult to optimize

Global Local

Specialized
heuristics

Meta-heuristics Classical (gradient) Gradient
based

Not using gradient

DistributedSearching neighbourhood

Hybrid

Simple Complex

Searching
extremes

Identification Inverse problems Control
Mechanical
engineering

Fig. 2.7 Classification of the optimization methods according to [22]

Mixed: The algorithms of this class represent a “sophisticated” mixture of deter-
ministic and stochastic methods that achieve surprisingly good results in
mutual cooperation. The evolutionary algorithms mentioned above are a

2 Evolutionary Algorithms for Chaos Researchers 51

Global search and optimization

Enumerative

Stochastic

Deterministic

Mixed

Random walk

Simulated annealing

Monte Carlo

Tabu Search

Stochastic hill-climbing

Greedy

Hill-climbing
algorithm

Branch and Bound

Depth First

Broadth First

Caclulus based

Mathematical
programming

ACO – ant colony
optimization

Methods of immune
system

Memetic
algorithms

Scatter Search

Particle Swarm

Genetic algorithmDifferential evolution

SOMA

Fig. 2.8 Other possible organization of optimization algorithms [72]

relatively strong sub-set of these algorithms. The algorithms of the mixed
character are:

• Robust, which means that they very frequently find a quality solution
independently of the initial conditions; this solution is usually repre-
sented by one or several global extremes.

• Efficient and powerful. The terms “efficient and powerful” here mean
that they are able to find a quality solution during a relatively small
number of evaluations of the objective function.

• Differ from purely stochastic methods (thanks to the presence of de-
terministic approaches).

• Have minimum or no requirements for preliminary information.
• They are able to work with problems of the “black box” type, i.e., they

do not need an analytical description of the problem for their activity.
• Are able to find several solutions during one run.

We can briefly summarize these features as follows:

• The enumerative and stochastic optimization is not suitable for problems where
an extensive space of possible solutions must be searched.

• The deterministic optimization works well with problems where the space of
possible solutions is not too extensive.

• Mixed optimization is suitable for problems without limitations to the size of the
space of possible solutions.

52 I. Zelinka and H. Richter

In this book, selected algorithms are described with emphasis put on their ex-
planation and testing. The evolutionary algorithms are now very popular thanks to
properties that are characteristic for the entire class. However, before we start to dis-
cuss their details, it is suitable to mention both the generally known algorithms and
the newer algorithms in this field, which will be developed in more detail later in
this publication. From the well known algorithms, we have selected a few random–
driven algorithms:

• Stochastic Hill Climbing
• Tabu search

the “classic” evolutionary algorithm

• Genetic algorithms
• Genetic programming
• Evolutionary strategy
• Evolutionary programming

and from the newest ones, we will describe

• Learning classifier systems
• Population-based incremental learning
• Ant Colony Optimization
• Immunology System Method
• Memetic Algorithms
• Scatter Search
• Particle Swarm
• Differential Evolution
• SOMA

2.3.2.2 The Outline of the Principles of Action of Random–Driven Search
Algorithms

At the present time, there is a broad spectrum of publications dealing with opti-
mization algorithms, for example, [2]. The purpose of this chapter is to outline only
the principles of some selected algorithms for better information for the reader. The
discussed algorithms are:

Stochastic Hill-Climbing: (SHC) is a version of the hill-climbing mechanism
enriched by the stochastic component [40], [63]. It belongs among the
gradient methods, which means that it searches the space of possible solu-
tions in the direction of the steepest gradient. Thanks to its gradient nature,
it frequently gets stuck in a local extreme. The basic version functions so
that it always starts from the random point in the space of possible solu-
tions. For the momentary proposed solution, the certain neighborhood is
proposed by means of a final set of transformations (Figure 2.9) and the
given function is minimized only in this neighborhood. The local solution
obtained is then used as a start point for the calculation of the new neigh-
borhood. The entire process is then repeated iteratively. The best found

2 Evolutionary Algorithms for Chaos Researchers 53

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10

0

2

4

6

8

10

Fig. 2.9 Principle of the hill-climbing algorithm. The white dot is the starting point of the
algorithm. The set of red solutions is generated for this dot. The best solution is denoted by
the bold red dot that serves also as a new position for the generation of a new (yellow) set of
solutions. The best solution (bold yellow dot) is then used for the generation of the following
set of solutions (blue).

solution is recorded during the process that serves as the optimum found
after termination. The stochastic hill-climbing algorithm is basically only
the multiple repetition of the standard hill-climbing algorithm, each time
from another randomly selected position. The disadvantage of this algo-
rithm is that runaway may occur in it under certain conditions and the
solution gets stuck in a local extreme [40].

Tabu Search: (TS) (prohibited search,[31]) is the improved version of the hill-
climbing algorithm. This algorithm was created by Professor Fred Glover
from the University of Colorado. The improvement consists in introduc-
ing a “short-term memory” into the hill-climbing algorithm, whose task is
to remember those transformations by means of which the current median
was calculated. The final consequence is that runaway cannot occur due
to the forbidden use of these transformations. The name “Tabu Search”
originates from this feature. This method was improved by a “long term

54 I. Zelinka and H. Richter

memory” that includes transformations, which are not short term in the
memory, but have been used frequently. Their use is then penalized, which
decreases the frequency of their use. Contrary to the hill-climbing algo-
rithm, Tabu Search does not get stuck so easily in local extremes.

2.3.2.3 The Outline of the Principles of Action of Evolutionary Algorithms

Genetic algorithm: (GA) This algorithm is one of the first successful applied
ECT methods [37, 33]. In GAs the main principles of ECT are applied
in their purest form. The individuals are encoded as binary strings (mostly
over the alphabet [0,1]), which can be understood as a model of the biolog-
ical counterpart, the genome,1 and represent possible solutions to the opti-
mization problem under study. After initially a population of binary strings
is created randomly, the circle as given in Figure 2.4 is carried out with
the steps fitness evaluation, selection, offspring generation (crossover) and
mutation until the algorithm terminates. The application area of these al-
gorithms are wide and it seem particularly sensible to use them if the prob-
lem description allows a straightforward coding of the objects to optimize
as binary string over a finite alphabet, for instance in combinatorial opti-
mization problem timetabling and scheduling.

Evolutionary strategy: (ES) This algorithm also belongs to the first successful
stochastic algorithms in history. It was proposed at the beginning of the
sixties by Rechenberg [60] and Schwefel [64]. It is based on the princi-
ples of natural selection similarly as the genetic algorithms. Contrary to
genetic algorithms, the evolutionary strategy works directly with individ-
uals described by vectors of real values. Its core is to use candidate solu-
tions in the form of vectors of real numbers, which are recombined and
then mutated with the help of a vector of random numbers. The problem
of accepting a new solution is strictly deterministic. Another distinctive
feature is that ES use self-adaptation, that is the mutation strength for
each individual is variable over the generational run and subject to an own
evolutionary adaption and optimization process.

Evolutionary programming: (EP) EP algorithms [29] have much similarity to
ES in using vectors of real numbers as representation. The main operator
in the generational circle is mutation, in most (particularly early) imple-
mentations no recombination is carried out. In recent years, by adopting
elements of their algorithmic structure EP more and more tends to become
similar to ES.

Learning classifier systems: (LCS) LCS [9] are machine learning algorithms
which are based on GAs and reinforcement learning techniques. Inter-
estingly, LCS were introduced by Holland2 [37] and for a certain time

1 The genome is coded over the alphabet [A,C,G,T], which stand for the amino acids ade-
nine A, cytosine C, guanine G, thymine T.

2 Holland is also know as the father of GAs.

2 Evolutionary Algorithms for Chaos Researchers 55

regarded as a generalization of GAs. LCS optimize over a set of rules that
are intended to best–fit inputs to outputs. The rules are coded binary and
undergo an adaption using GA–like optimization that modifies and se-
lects the best rules. The fitting of the rules is determined by reinforcement
learning methods.

Population-based incremental learning: (PBIL) PBIL was proposed by Baluja
[3] and combines ideas from evolutionary computation with methods from
statistical learning [49]. It uses a real valued representation that is usually
restricted to the interval [0,1] and can be interpreted as the probability to
have a “1” - bit at a certain place in a binary string. From these probabil-
ities, a collection of binary strings is created. These strings are subjected
to a standard evolutionary circle with fitness evaluation, selection and dis-
carding of inferior samples. In addition, based on the evaluation of the
fitness, a deterministic statistical-learning-like updating of the probability
vector takes place, which afterwards is also altered by random mutation.

Ant Colony Optimization: (ACO), [21] This is an algorithm whose action simu-
lates the behavior of ants in a colony. It is based on the following principle.
Let there be a source of ants (colony) and the goal of their activity (food),
see Fig. 2.10. When they are released, all the ants move after some time
along the shorter (optimum) route between the source and goal. The effect
of finding the optimum route is given by the fact that the ants mark the
route with pheromones. If an ant arrives to the crossroads of two routes
that lead to the same goal, his decision along which route to go is random.
Those ants that found food start marking the route and when returning,
their decision is influenced thanks to these marks in favor of this route.
When returning, they mark it for the second time, which increases the
probability of the decision of further ants in its favor. These principles are
used in the ACO algorithm. Pheromone is here represented by the weight
that is assigned to a given route leading to the goal. This weight is addi-
tive, which makes it possible to add further “pheromones” from other ants.
The evaporation of pheromones is also taken into account in the ACO al-
gorithm in such a way that the weights fade away with time at individual
joints. This increases the robust character of the algorithm from the point
of view of finding the global extreme. ACO was successfully used to solve
optimization problems such as the travelling salesman problem or the de-
sign of telecommunication networks, see [56].

Immunology System Method: (ISM) This algorithm is unusual by its algorithm
based on the principles of functioning of the immunology system in liv-
ing organisms. As indicated in [56], there are several principles based on
this model. In this work, the immunology system is considered as a mul-
tivalent system, where individual agents have their specific tasks. These
agents have various competencies and ability to communicate with other
agents. On the basis of this communication and a certain “freedom” in
making decisions of individual agents, a hierarchic structure is formed
able to solve complicated problems. As an example of using this method,

56 I. Zelinka and H. Richter

Ant trajectory

Source

Destination

Fig. 2.10 Principle of the ACO algorithm

antivirus protection can be mentioned in large and extensive computer
systems [18], [12].

Memetic Algorithms: (MA) This term represents a broad class of metaheuris-
tic algorithms [56], [35], [32], [65]. The key characteristics of these al-
gorithms are the use of various approximation algorithms, local search
techniques, special recombination operators, etc. These metaheuristic al-
gorithms can be basically characterized as competitive-cooperative strate-
gies featuring attributes of synergy. As an example of memetic algorithms,
hybrid combinations of genetic algorithms and simulated annealing or a
parallel local search can be indicated. Memetic algorithms were success-
fully used for solving such problems as the traveling salesman problem,
learning of a neural multilayer network, maintenance planning, nonlinear
integer number programming and others (references see [56].

Scatter Search: (SS) This optimization algorithm differs by its nature from the
standard evolutionary diagrams. It is a vector oriented algorithm that
generates new vectors (solutions) on the basis of auxiliary heuristic tech-
niques. It starts from the solutions obtained by means of a suitable heuris-
tic technique. New solutions are then generated on the basis of a subset
of the best solutions obtained from the start. A set of the best solutions
is then selected from these newly found solutions and the entire process
is repeated. This algorithm was used for the solution of traffic problems,
such as traffic control, learning neural network, optimization without lim-
its and many other problems [56], [45].

Particle Swarm: (PSO) The “particle swarm” algorithm is based on work with
the population of individuals, whose position in the space of possible so-
lutions is changed by means of the so-called velocity vector. According
to the description in [56], [71] and [15], there is no mutual interaction
between individuals in the basic version. This is removed in the version
with the so-called neighborhood. In the framework of this neighborhood,
mutual interaction occurs in such a manner that individuals belonging to
one neighborhood migrate to the deepest extreme that was found in this
neighborhood.

2 Evolutionary Algorithms for Chaos Researchers 57

Differential Evolution: (DE) Differential Evolution [57] is a population-based
optimization method that works on real-number coded individuals. For
each individual −→x i,G in the current generation G, DE generates a new trial

individual
−→
x′

i,G by adding the weighted difference between two randomly
selected individuals −→x r1,G and −→x r2,G to a third randomly selected individ-

ual −→x r3,G . The resulting individual
−→
x′

i,G is crossed-over with the original
individual −→x i,G . The fitness of the resulting individual, referred to as per-
turbated vector −→u i,G+1 , is then compared with the fitness of −→x i,G . If the
fitness of −→u i,G+1 is greater than the fitness of −→x i,G , −→x i,G is replaced with
−→u i,G+1 , otherwise −→x i,G remains in the population as −→x i,G+1 . Differential
Evolution is robust, fast, and effective with global optimization ability. It
does not require that the objective function is differentiable , and it works
with noisy, epistatic and time-dependent objective functions.

SOMA: (Self-Organizing Migrating Algorithm) is a stochastic optimization al-
gorithm that is modeled on the social behavior of cooperating individuals
[73]. It was chosen because it has been proven that the algorithm has the
ability to converge towards the global optimum [73]. SOMA works on
a population of candidate solutions in loops called migration loops. The
population is initialized randomly distributed over the search space at the
beginning of the search. In each loop, the population is evaluated and the
solution with the highest fitness becomes the leader L. Apart from the
leader, in one migration loop, all individuals will traverse the input space
in the direction of the leader. Mutation, the random perturbation of indi-
viduals, is an important operation for evolutionary strategies (ES). It en-
sures the diversity amongst the individuals and it also provides the means
to restore lost information in a population. Mutation is different in SOMA
compared with other ES strategies. SOMA uses a parameter called PRT
to achieve perturbation. This parameter has the same effect for SOMA as
mutation has for GA. The novelty of this approach is that the PRT Vector
is created before an individual starts its journey over the search space. The
PRT Vector defines the final movement of an active individual in search
space. The randomly generated binary perturbation vector controls the al-
lowed dimensions for an individual. If an element of the perturbation vec-
tor is set to zero, then the individual is not allowed to change its position in
the corresponding dimension. An individual will travel a certain distance
(called the path length) towards the leader in n steps of defined length. If
the path length is chosen to be greater than one, then the individual will
overshoot the leader. This path is perturbed randomly.

The evolutionary algorithms can be essentially used for the solution of very het-
erogeneous problems. Of course, for the solution of the optimization problems, there
are many more algorithms than were indicated here. Because their description would
exceed the framework of this text, we can only refer to the corresponding literature,
where the algorithms indicated above are described in more details.

58 I. Zelinka and H. Richter

2.4 Selected Basic Terms from the Evolutionary Algorithms

For work with evolutionary diagrams (Figure 2.4), it is necessary to know the mean-
ing of certain terms that occur in the terminology of evolutionary algorithms and
optimization. Some of them will be explained in this section.

2.4.1 The Usability Areas of Evolutionary Algorithms

Until the present date, there are many algorithms that belong to the class of evolu-
tionary diagrams or can be included into this class under certain conditions. Typi-
cal examples are the already mentioned Ant Colony Optimization algorithms, Im-
munology System Method, Scatter Search or Particle Swarm. These algorithms, like
many others, are not universal, but from the principle of their action, they are always
suitable for solving certain classes of problems. The class of problem may be of var-
ious “size” for each algorithm. Genetic algorithms, for example, can be used for a
wide class of problems, while the ACO algorithm, acting on the principle of the
behavior of ants, is essentially predetermined for combinatoric problems of the type
of a traveling salesman, where its performance is excellent.

It is therefore obvious that it is not only sufficient to have a good algorithm, but it
is frequently of vital importance to know with what class of problems a given algo-
rithm can work. This means that it is therefore necessary to determine the usability
range of a given algorithm. In the case of evolution algorithms, we will understand
by this term the class of problems for which a given algorithm provides at least
satisfactory results.

Most optimization problem can be viewed as a geometrical problem, whose goal
is to the find the lowest (minimum) or highest point (maximum) on the N dimen-
sional surface. Such surfaces, defined usually by some functional prescription, may
suffer from various pathologies from the mathematical point of view. With respect to
the tests carried out on the functions tested, whose algorithms are described below,
one can state that the evolutionary algorithms are very efficient and usually suitable
for global optimization (see Fig. 2.11 and Fig.2.12). This set of test function can
be viewed as the usability range of the evolutionary diagrams. It holds for the test
functions mentioned above:

1. The graph of the function does not have a fractal character;
2. They are defined on real, integer or discrete arguments;
3. They are multimodal (one or several extremes);
4. They have various limits (imposed on the arguments or the value of the objective

function);
5. They are strongly nonlinear;
6. They represent problems of the type “needle in a haystack”;
7. Finding the global extreme with evolutionary algorithms is less or more com-

plicated;

2 Evolutionary Algorithms for Chaos Researchers 59

�5

0

5
�5

0

5

0

20

40

Fig. 2.11 Examples of functions that exhibit certain combinations of properties 1-7, a-c

Fig. 2.12 Examples of functions that exhibit certain combinations of properties 1-7, a-c

moreover, it may hold true that:

(a) The function is separable (non-separable), which means that it can be (cannot
be) decomposed into several simpler functions that can be optimized separately;

(b) The number of variables is high;
(c) The space of possible solutions may be large and discontinuous.

Generally speaking, evolutionary algorithms can be used to find the optima of
functions from a very large class. Other information such as gradient, etc., are usu-
ally not necessary.

2.4.2 Common Features

Evolutionary algorithms have certain common features.

1. Simplicity, because algorithms can usually be programmed in a simple manner.
2. Hybridity of numbers with which the algorithms work. Numbers of the integer,

real type, or, as the case may be, only selected sets of numbers (usually denoted
as discrete), such as, for example, -5, 2, 8, 55, 3, 100, can be combined without
any problem.

60 I. Zelinka and H. Richter

3. Use of decimal numbers - The individual need not be converted into the binary
code that is commonly used in genetic algorithms. By the conversion into a
binary code, a given number is distorted (the binary string has a limited length).
When binary recording is used, mutations may cause a sudden change of the
number, which may not have a good impact on the course of evolution. For
example, numbers 15, 16 and 17 are represented as 01111, 10000 and 10001.
The transition from 15 to 16 means the inversion of all five bits, i.e. a 100%
mutation. However, transition from 16 to 17 requires the mutation of only one
bit. Although this “unevenness” can be removed with what is called Gray coding
(see Section 4.5), work with real numbers is still more convenient.

4. Speed - Thanks to its relative simplicity, particularly in comparison with clas-
sical methods, one can say that the required solutions are found much faster.

5. The ability to find an extreme also for functions that are flat from the graph-
ical point of view and the extreme is just a “hole” in this plane. With some
exaggeration, searching the extreme in such a function can be denoted as “look-
ing for a needle in a haystack”. Unfortunately, the efficiency of any algorithms,
including evolutionary, is very low in these problems. If the surface around the
extreme is a plane, than finding the extreme is usually a matter of chance.

6. Ability to provide manifold solutions - The best individual is the result of
evolution - one solution. However, if, for example, the three best individuals are
selected from the last population, they represent three different solutions of the
problem. Of course, with graduated quality. If there are more global extremes in
a given problem, one can expect that they will also be found by the evolutionary
process. Therefore, there will be several solutions of the same quality available.
As an example, the design of the optimum geared transmission can be used
[47], [73], for which the method of differential evolution obtained four alterna-
tive solutions with the same value of objective function or a test function that
has two global extremes at different points. The majority of good evolutionary
techniques are able to localize these extremes.

In other words, the evolutionary algorithms are suitable for looking for extremes
of functions suffering from such pathologies, such as, for example, noise, a high
number of dimensions, “multi-modality” (several local extremes).

2.4.3 Population

A typical feature of the evolutionary algorithms is that they are based on work with
the population of individuals. Population can be represented as matrix NxM (Fig.
2.13), where the columns represent individuals. Each individual represents the cur-
rent solution of the problem. Essentially this is a set of arguments of the objective
function, whose optimum numerical combination is searched for gradually. More-
over, a value of the objective function is connected with each individual (sometimes
“fitness”) that tells how the individual is suitable for further evolution of the popu-
lation. This value does not participate in the evolution process itself. It only carries
information on the quality of the corresponding individual.

2 Evolutionary Algorithms for Chaos Researchers 61

I1 I2 I3 I4 IM

Fitness 55.2 68.3 5.36 9.5 0.89
P1 2.55 549.3 -55.36 896.5 1.89
P2 0.25 66.2 2 -10 -2.2
P3 -66.3 56 4 15.001 -83.66
..
PN 259.3 -10 22.22 536.22 -42.22

Fig. 2.13 Population (of the NM size), Jx is the x-th individual, Pi is the y-th individual Fitness
- individual quality measured by means of the objective function

For the generation of population, it is necessary to define a specimen, see (2.1),
according to which the entire initial population is generated. This sample individual
is also used for correcting the parameters of individuals, who exceed the boundaries
of the space searched.

Specimen = {{Real,{Lo,Hi}},{Integer,{Lo,Hi}}, . . . ,{Real,{Lo,Hi}}} (2.1)

In the sample, three constants are defined for each parameter of a specific in-
dividual from the population: The type of variable (i.e. integer, real, discrete, etc.)
and the boundaries of the interval in which the value of the parameter may be. For
example, {Integer, {Lo, Hi}} defines an integer parameter with the bottom limit Lo
and upper limit Hi. The choice of limits is a very important step, because if they
are chosen in an unsuitable manner, it may happen that solutions will be found that
are not physically real (for example, a negative thickness of the pressure vessel), or
will not be substantiated (for example, an airplane without wings, a pressure vessel
whose wall thickness equals its radius, etc.).

Another equally important meaning of the boundaries is related to the evolution-
ary process itself. It may happen that a given optimization problem will be repre-
sented by a surface, on which the local extremes will assume greater values with the
increasing distance from the origin (Fig. 2.14). This will cause that the evolution
will be finding new solutions until infinity. Of course, if termination is not specified
in dependence on the number of evolutionary cycles (generations, migrations, an-
nealing,). This is caused by the fact that the evolutionary process always proceeds
to deeper and more distant extremes on this (Schwefel’s) function.

Population is generated on the basis of the sample individual by means of 2.2,
see also [47]. P(0) represents the initial population, xi j is the j-th parameter of the
i-th individual.

P(0)
i, j = x(0)

i, j = rnd[0.1] · (x(Hi)
i, j − x(Lo)

i, j)+ x(Lo)
i, j

i = 1, . . . , M , j = 1, . . . , N
(2.2)

In Fig. 2.14 and Fig. 2.15, two randomly generated populations of ten individu-
als are represented. The individuals were two-dimensional in this case. It is obvious

62 I. Zelinka and H. Richter

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

�100 �50 0 50 100

�100

�50

0

50

100

1

2

34
5

6

7

8 9

10

11

12

13

14

15

16

17

18

19

20

�100 �50 0 50 100

�100

�50

0

50

100

Fig. 2.14 Schwefel’s function [64] with the growing extremes in the direction from the origin
(a) and two randomly generated populations (b-c) on another function

I1 I2 I3 I4 I10

424 104 53.3 942.9 178.008
-1.8 -1 0.7 -1.25 -1.19
1.2 2 1.2 -1.5 0.1

Fig. 2.15 Numerical representation of two randomly generated populations from Fig. 2.14 b)

from both figures that the generation of population is essentially a random distribu-
tion of individuals in the space of possible solutions. It occurs during the run of a
given evolutionary algorithm that the individuals gather around one (usually global)
or more extremes, which is graphically illustrated in Fig. 2.17. Mapping of infor-
mation on how the evolution proceeded qualitatively is carried out by means of the
evolution history of the objective function value in form of a simple graph. The de-
pendence of the evolution of the value of the objective function on the evolution
cycle is illustrated in this figure (Fig. 2.16). This is the sequence of the worst (upper
curve) and best (bottom curve) solutions from individual populations. A mapping
more convenient than that described just now is plotting the dependence of the value
of the objective function on the current number of objective function evaluations.
This approach is suitable because during evolutionary cycles (generation, annealing
cycles, migration cycles, etc.), various numbers of evaluations of the profit function
are carried out in individual algorithms. In the first method of graphical mapping,
the slower convergence of the values of the objective function may be displayed
as the faster one and vice versa. The true information on the quality of evolution
may then be distorted. However, if we use the second method, it is then possible to
compare various types of algorithms irrespective of their inner structure.

Besides the evolution of the best individual (or the best individuals when repeat-
ing the simulation), it is also suitable to display the evolution of the worst individual
from the population in one graph. This reveals the overall convergence of the pop-
ulation as such. In a case where the courses of the best and worst individuals meet
soon in the same extreme, it is possible that this is the case of a local extreme. If the

2 Evolutionary Algorithms for Chaos Researchers 63

Fig. 2.16 Evolution of the value of the objective functions during evolution. This is a sequence
of the best solutions from individual populations in dependence on the evolution cycle (gen-
eration, migration cycle, etc.).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

�4 �2 0 2 4

�4

�2

0

2

4

(a) Generation 5

1

2
3

4

5

6

7

8

9

1011

12
13

14

15

16

17
18

19

20

�4 �2 0 2 4

�4

�2

0

2

4

(b) Generation 10

12
3
4

5

6

7

8 9

1011
12

13
14

15

16
17

18

19

20

�4 �2 0 2 4

�4

�2

0

2

4

(c) Generation 15

1
2

345

6

78 910 111213
1415 1617181920

�4 �2 0 2 4

�4

�2

0

2

4

(d) Generation 20

12345
6

7891011121314
15
1617181920

�4 �2 0 2 4

�4

�2

0

2

4

(e) Generation 25

1234567891011121314151617181920

�4 �2 0 2 4

�4

�2

0

2

4

(f) Generation 30

Fig. 2.17 Convergence of the population to the global extreme in individual evolutionary cy-
cles. The start display was omitted; individuals are uniformly distributed on the entire surface
during the start.

best and worst individuals have the same value of the objective function, then only
two explanations are possible:

1. The population is distributed in several extremes with the same value of the
objective function or

2. The entire population is in one extreme, which is more probable, because a lot
of problems are represented by a function with one global extreme.

64 I. Zelinka and H. Richter

In case No. 1, there is a chance that the evolution will proceed further, while in
case No. 2, the same value of both individuals shows that further evolution is use-
less. The evolution of the population must always converge to better values, which
means that it may never show divergence. If a minimum (maximum) is sought, the
evolution must converge to lower (higher) values. If this is not the case, then in a
given algorithm, “elitism” is somehow disrupted (elitism serves as some kind of a
one way filter, which transmits only such solutions that are better or equally good as
those from the old population). In the event of its dysfunction, the given algorithm
would degrade to merely a random search.

2.4.4 Individuals and Their Representation

Several methods are being used when representing individuals in the evolutionary
algorithms. The binary representation is historically the oldest one. In this case, the
individual is formed by a 0 and 1 sequence called a chromosome [53], [2]. This
representation of individuals has its historic roots and is being used in genetic al-
gorithms up to date. In spite of its extension, it has its disadvantages. The basic
disadvantage is the step change of the structure of chromosomes, the correspond-
ing real values during a continuous change. In order to prevent these undesirable
changes in the behavior of the binary code, the so-called Gray code is used. This
is again a binary code, however, completely without the step changes mentioned
above. The transformation of the standard binary code into the Gray binary code
and the inverse transformation are illustrated in Fig. 2.18. The accuracy with which
individuals are able to occur in the space of possible solutions is related to the bi-
nary representation of individuals. Basically, if the binary individual is short and
represents a number with a few digits behind the decimal point, then it will occur
only in certain positions of the real space of possible solutions. If its length and thus
also accuracy grow, then the density of the positions of possible occurrences will
grow. Nevertheless, one should note that the growing length of the individual causes
considerable problems during further operations in the corresponding evolutionary
algorithm (mutations, crossbreeding ...).

Furthermore, individuals can be represented in the form of real or integer num-
bers [57] or, as the case may be, their combinations, depending on the type of the
algorithm [73]. The individual that also contains non-numerical values is a special
representation. With the use of special techniques, it is possible to work numerically
also with this individual. The last special form of representation is the so-called
“tree”. This form of representation makes it possible to visualize the tree structure,
nevertheless, in the computer sense, the string of suitable symbols of a certain char-
acter is still the individual. This kind of visualization is is usually used in so called
genetic programming [48], which is advanced evolutionary technique, used to ma-
nipulate with symbolic structures and create in this way more complex structures.
Another similar approach is grammatical evolution [55], [20].

2 Evolutionary Algorithms for Chaos Researchers 65

Fig. 2.18 Generation of the Gray code - reflection method

2.4.4.1 Binary and Gray Code Representation

The binary code is formed over the alphabet [0,1] as a number representation sys-
tem with base–2. Any (integer) number n can be expressed by the binary string
(bNbN−1 . . .bi . . .b2b1b0) with all the bi ∈ [0,1]. The number n converts to the bi-
nary string by

n = bN2N + bN−12N−1 + . . .+ b222 + b121 + b0. (2.3)

Note that in the binary string every digit (bit) bi counts for a distinct numerical
value, 2bi . So if this bit changes, it depends on the exact bit position how big the
change in the represented numerical value is. Clearly, this change in represented
numerical value can be considerable if the bit is far left in the bit string. Next to
the binary code, the Gray code is frequently used for genetic algorithms. It is also
called the constant change code since when mutating a Gray–coded individual, the
real number that corresponds to the corresponding binary sequence does not change
much.

The Gray code was patented in 1947, when Frank Gray asked to register it under
the name of reflected binary code. However, users started using the name Gray code
according to its founder [34]. One of the alternatives of the construction of the Gray
code is described in Fig. 2.18. It is the so-called “reflection” method. It consists
in taking the n bit code, for example, for n = 2 code 00, 01, 11, 10. This is then
extended by its mirror copy 00, 01, 11, 10, 10, 11, 01, 00 and 0 is added to the
original part, while to the reflected 1: 000, 001, 011, 010, 110, 111, 101, 100. This
is repeated until we have the required m bit string of the Gray code.

Another method that can be easily implemented by a computer is using the XOR
operation. The principle of transformation of the Gray code into the binary code is
prescribed by relation (2.4) and illustrated in Fig. 2.19a. The inverse transformation,
i.e. from the binary into the Gray code is given by relation (2.5) and illustrated in

66 I. Zelinka and H. Richter

(a)

(b)

Fig. 2.19 Generation of the Gray code - XOR method, a) Conversion from the Gray code into
the binary code, b) Conversion from the binary code into the Gray code

Fig. 2.19b. Symbol bk and gk represents the k-th bit of the standard binary code or,
as the case may be, Gray code.

As mentioned above, the binary strings in the Gray code always differ only in
one bit when changing their decimal equivalent by one. The distances between indi-
vidual numbers have therefore the Hamming distance equal to one. The Hamming
distance is defined as the number of bites in which two binary strings differ. The
difference between the binary and Gray coding for numbers from zero to seven can
be seen in Table 2.1.

b1 = g1
b2 = g1 ⊕ g2 = b1 ⊕ g2
b3 = g1 ⊕ g2 ⊕ g3 = b2 ⊕ g3
b4 = g1 ⊕ g2 ⊕ g3 ⊕g4 = b3 ⊕ g4
b5 = g1 ⊕ g2 ⊕ g3 ⊕g4⊕ g5 = b4 ⊕ g5

(2.4)

2 Evolutionary Algorithms for Chaos Researchers 67

g1 = b1
g2 = b1 ⊕ b2
g3 = b2 ⊕ b3
g4 = b3 ⊕ b4
g5 = b4 ⊕ b5

(2.5)

Table 2.1 Difference between the Gray and standard binary code

Decimal value Gray code Binary code

0 0 0
1 1 1
2 11 10
3 10 11
4 110 100
5 111 101
6 101 110
7 100 111

The advantage of the Gray code appears in the more uniform mutation of indi-
viduals and generally in faster convergence to the global optimum. However, there
are differences in opinions. Some authors insist that the Gray code slows down the
genetic algorithm (GA) due to the process of conversion [34]. On the contrary, other
authors prefer the use of the Gray code ([11], [36]).

When using genetic algorithms during mutation or crossbreeding of standard bi-
nary individuals, the argument (gen) may change considerably, see Fig. 2.20. Such
big changes do not occur in individuals in the Gray coding, Fig. 2.21.

Despite fact that evolutionary algorithms has very good performance, it is im-
portant to remember, that there are still problems, whose solution obtaining is still
impossible and also, that there are some limits given to the computation by quantum
physics. This is discussed in the following (last) section of this chapter.

Fig. 2.20 Crossbreeding of individuals in standard binary coding (R1, R2 - parents; P1, P2 -
descendants)

68 I. Zelinka and H. Richter

Fig. 2.21 Crossbreeding of individuals in Gray coding (R1, R2 - parents; P1, P2 - descen-
dants)

2.4.4.2 Real, Integer and Discrete

Another way of individual representation is, when individuals are represented not
only by by binary strings, as written above, but also in strings of real and integer
numbers. Special case of integer representation are so called discrete sets, as ex-
plained later.

In the real representation is individual represented by string of real numbers like
for example 2.3, 22.56, -569.2, Process of mutation, crossover, etc are then gov-
erned by used evolutionary algorithm.

In its canonical form, EAs are usually only capable of handling continuous vari-
ables. However, extending it for optimization of integer variables is rather easy.
Only a couple of simple modifications are required. First, for evaluation of the cost-
function, integer values should be used. Despite this, the EAs itself may still work
internally with continuous floating-point values. Thus,

fcost (yi) i = 1, ..,nparam

where :

yi =
{

xi for continuous variables
INT (xi) for integer variables

xi ∈ X

(2.6)

INT() is a function for converting a real value to an integer value by truncation.
Truncation is performed here only for purposes of cost function value evaluation.
Truncated values are not assigned elsewhere. Thus, EA works with a population of
continuous variables regardless of the corresponding object variable type. This is
essential for maintaining the diversity of the population and the robustness of the
algorithm.

Secondly, in case of integer variables, the population should be initialized as
follows:

P(0) = x(0)
i, j = ri, j

(
x(High)

j − x(Low)
j + 1

)
+ x(Low)

j

i = 1, ...,npop, j = 1, ...,nparam

(2.7)

2 Evolutionary Algorithms for Chaos Researchers 69

Additionally, the boundary constraint handling for integer variables should be
performed as follows:

x(ML+1)
i, j =

⎧⎪⎪⎨
⎪⎪⎩

ri, j

(
x(High)

j − x(Low)
j + 1

)
+ x(Low)

j

i f INT
(

x(ML+1)
i, j

)
< x(Low)

j ∨ INT
(

x(ML+1)
i, j

)
> x(High)

j

x(ML+1)
i, j otherwise

where,
i = 1, ...,npop, j = 1, ...,nparam

(2.8)

Discrete values can also be handled in a straight forward manner. Suppose that
the subset of discrete variables, X(d), contains i elements that can be assigned to
variable x:

X (d) = x(d)
i i = 1, ..., l where x(d)

i < x(d)
i+1 (2.9)

Instead of the discrete value xi itself, its index, i, can be assigned to x. Now the
discrete variable can be handled as an integer variable that is boundary constrained
to range {1,2,3, ..,N}. In order to evaluate the objective function, the discrete value,
xi , is used instead of its index i. In other words, instead of optimizing the value
of the discrete variable directly, the value of its index i is optimized. Only during
evaluation is the indicated discrete value used. Once the discrete problem has been
converted into an integer one, the previously described methods for handling integer
variables can be applied. The principle of discrete parameter handling is depicted in
Fig 2.22. This technique is called discrete set handling (DSH), see [46].

Fig. 2.22 Discrete parameter handling

70 I. Zelinka and H. Richter

2.4.4.3 Tree Representation

The tree representation used by EAs, come from initial idea of so called symbolic
regression by means of a computer program. It was proposed in Genetic Program-
ming (GP), [43], [42]. Genetic programming was the first tool for symbolic regres-
sion carried out by means of computers instead of humans. The main idea comes
from genetic algorithms (GA), which was used in GP [43], [42]. Its ability to solve
very difficult problems is well proved; for example, GP performs so well that it can
be applied to synthesize highly sophisticated electronic circuits [44].

The main principle of GP is based on GA, which is working with populations of
individuals represented in LISP programming language. Individuals in a canonical
form of GP are not binary strings, different from GA, but consist of LISP symbolic
objects like sin, +, Exp, etc. These objects come from LISP, or they are simply user-
defined functions. Individuals in genetic programming, in its canonical form, are
thus commands of Lisp language. There are also another techniques like Read’s lin-
ear coding [59] and DSH technique. DSH technique mentioned above, allow EAs to
manipulate with such a structure also via integer index. Individual is in fact integer
string, which is converted into symbolic expression. Individuals can be then visual-
ized in the form of so called trees, which are graphical unfolding of nonnumerical
expressions, see Fig. 2.23. Individuals in this form can represent not only classi-
cal mathematical expressions, but also logical functions (Fig. 2.24 and Fig. 2.25),
or elements of electronics circuits (Fig. 2.26). Read’s linear code is representation
based on string of integer numbers, as shown on Fig. 2.27 and Fig. 2.28. In the case
of Read’s representation each vertex has associated number according to number of

Fig. 2.23 An example of tree representation. Individuals are represented graphically by trees.
Crossover is nothing more than cutting and exchange of randomly selected sub-trees.

2 Evolutionary Algorithms for Chaos Researchers 71

Or

And

A C

And

Not

A

Not

C

Fig. 2.24 Tree representation of logical function

Nand

Or

C A

Or

Nor

Nor

Or

And

C A

And

Not

B

A

And

Not

C

Not

A

And

Not

C

Not

B

Or

And

C A

And

Not

B

A

And

Not

C

Not

A

And

Not

C

Not

B

C

And

Or

B C

Nand

Or

And

C A

And

Not

B

A

And

Not

C

Not

A

And

Not

C

Not

B

C

And

Nor

A And

Or

And

C A

And

Not

B

A

And

Not

C

Not

A

And

Not

C

Not

B

C

Nor

Nor

Or

And

C A

And

Not

B

A

And

Not

C

Not

A

And

Not

C

Not

B

C

C

Fig. 2.25 Tree representation - more complicated example

outcomming vertexes. Code of arbitrary tree is obtained so that labels of vertexes
are “joined” (according to dotted line with arrows, see Fig. 2.28) into integer string
with a such condition that used vertex label is further ignored, to keep unicity of
description. There is more techniques of how to represent individuals for genetic
programming techniques, however above mentioned techniques (Lisp, Read’s lin-
ear code) are well known. DSH technique can be regarded like experimental novelty
technique, which is mostly used in this book.

72 I. Zelinka and H. Richter

Fig. 2.26 Electronic realization of evolutionary designed circuit via evolution with individuals
in DSH representation

2

1 3
0

1000

0

Fig. 2.27 Read’s tree. Each vertex has associated number according to edges coming out of
vertex. Unique code of tree is constructed according to dashed arrows.

2 Evolutionary Algorithms for Chaos Researchers 73

2

21 2103 210300100

21030010

21030021030210 2103001

Fig. 2.28 Code of Read’s Tree - 210300100

2.4.5 Evolutionary Operators: Selection, Recombination,
Mutation

The algorithmic cycle of evolutionary algorithms relies upon the working of three
main operators, selection, recombination and mutation. All three operators play a
distinctive role in solving the posed optimization problem. In general, during the
evolutionary run, we can separate two phases, exploring and exploiting. In the ex-
ploring the individuals should cover large (ideally all) parts of the search space in
order to find regions where optimal values are likely to be found. Hence, individ-
uals should be different, the diversity of the population should be high. After that
exploration phase, a promising region in the search space should be searched more
detailed, so exploiting the knowledge about the distribution of fitness in the search
space should set in. In this phase the individuals of the population should be pushed
towards the actual optima. Clearly, both phases are necessary for successful problem
solving. If the exploration phase is missing or too short, the individuals might settle
for local optima, missing the global optima in this process. Without exploitation,
the exact location of the best solution might not be found. Overlaying both phases is
the intention to exclude clearly inferior solutions from hindering the search process.
Against this background, the working of the evolutionary operators can be under-
stood.

Selection: The selection mechanism organizes that individuals with higher fitness
become the material from which the next generation is produced. In doing so, it is

74 I. Zelinka and H. Richter

important (particularly in the exploration phase) that not only the very best individu-
als are kept, but also “promising second-bests”. A good selection mechanism should
balance the selective pressure (that is only the best are to survive) with maintenance
of residual diversity in the population. For achieving this balance, different kinds of
selection schemes have been proposed. They can be roughly distinguished in purely
deterministic selection, where either based on ranking or by setting a fitness thresh-
old a certain percentage of the population is kept, and guided stochastic selection,
where samples of the population are randomly picked and based on the comparison
of their fitness values a decision is made to discard or keep them.

Recombination: In recombination (also called crossover, in particular for GAs) new
individuals are created based on those previously selected for their superior fitness.
In a first step, two (or sometimes even more) individuals are appointed to be par-
ents. This appointment can be either deterministic by working off the whole selected
population, or stochastic where the individuals are determined randomly. Then, the
schemes proposed for performing the step differ largely for different kinds of rep-
resentation. For evolutionary algorithms that use binary representation, we find that
both parents swap or shuffle (sometimes at more than one place) subsections of their
binary string. For real valued representation, a (sometimes weighted) arithmetic or
geometric mean between both parents yields the offspring.

Mutation: Following the recombination step, the produced offspring are altered
randomly by mutation, mostly in a marginal manner only. Therefore, mutation rate
(which defines the probability that the offspring are subjected to mutation) and the
mutation strength (which fixed the magnitude of the changes in the offspring) must
be set. Again, we find a difference between binary and real valued representation.
For binary stings, we have a flipping of a bit (0 → 1 or 1 → 0) at one or more places
in the binary string. For vectors of real numbers, realizations of a (mostly normally
distributed) random variable are added to the offspring.

The evolutionary operators just considered can be regarded as the backbone for
the majority of ECT methods, although not all of them must be part in a specific
implementation and also their respected role and importance might be largely dif-
ferent. In general, mutation is next to a sensible choice of the initial population the
source of random and diversity enhancement in the algorithm. It helps to explore
the search space. Selection, on the other hand, acts mainly as a filtering for supe-
rior solution candidates. In this, it exercises selection pressure on the population.
However, for a given type of ECT the same operator might have a different flavor.
So, in GAs mutation is a minor operator, while in ESs it is the main component.
Such differences depend frequently on the type of representation. For a binary rep-
resentation, as GAs use, a single bit change in the right place of the binary string,
as induced by mutation, can cause a very dramatic change of the encoded solution.
The very same bit flip can alter the string largely or a little, depending on where in
the string it happens. This is not the case for real value representation, where the
magnitude of the change caused by mutation can be closely controlled but mutation
rate and strength.

2 Evolutionary Algorithms for Chaos Researchers 75

2.5 Limits to Computation

Unfortunately, many people believe that everything can be computed if we have a
sufficiently powerful computer and elegant algorithm. The goal of this chapter is
to show that some problems cannot be solved algorithmically due to their nature.
Popularly speaking, there is not, has not been and will not be enough time for their
solution.

Part of these restrictions are also physical limits that follow from the material
nature of the universe, which restricts the output of every computer and algorithm
by its space-time and quantum-mechanical properties. These limits, of course, are
based on the contemporary state of our knowledge in physical sciences, which means
that they might be re-evaluated in the case of new experimentally confirmed theories
(strings, etc.). At this moment, however, this is only a speculation and we must adhere
to the generally accepted and confirmed facts from which these limits follow.

2.5.1 Searched Space and Its Complexity

The complexity of the optimization problems can be demonstrated by many exam-
ples. Let us follow examples from [54]. A typical representative is the so-called SAT
problem (boolean satisfiability problem). This is a problem from the field of logic
that is represented by a complex logical function with a great number of logical
variables. Relation 2.10 is an example from [54].

F(x) = (x17 ∨ x̄37 ∨ x73)∧ (x̄11 ∨ x̄56)∧ ...∧ (x2 ∨ x43 ∨ x̄77 ∨ x̄89 ∨ x̄97), (2.10)

that contains 100 variables and the objective is to find such values of individual
arguments of this function for which the resulting value of relation 2.10 is TRUE.
At first sight, this problem looks very trivial; nevertheless, it is a problem that cannot
be solved by classical methods. If we take into account that the expression contains
100 unknown variables that can assume two values (0,1), then the number of all
possible combinations is 2100, which is approximately 1030. In order to get a better
impression on the monstrous size of this number, it is sufficient to imagine how long
it would take to evaluate all the combinations, if 1013 of these combinations are
evaluated within one second (which is of course impossible on single processor).
The correct answer is 109 years. This essentially means that the solution of this
problem would take approximately the time of the existence of the universe.

Another complication related to this problem is the fact that function 2.10 as de-
fined does not make it possible to evaluate the quality of the current solution. This is
a substantial drawback, particularly if the evolutionary techniques are used, because
there is no possibility how to determine whether the qualities of two subsequently
found solutions are close or not. As will be shown further, when using the evolu-
tionary algorithms, it is of vital importance that the information on the quality of the
solution is available for the determination in which “direction” the optimum solu-
tion lays. This is not possible in the case of the SAT problem, because the function

76 I. Zelinka and H. Richter

(a) (b)

(c) (d)

Fig. 2.29 Connections in the traveling salesman problem that form n! possible trajectories
(see Fig. 2.32). We indicate the number of cities / number of connections between the cities
a) 4/6, b) 7/21, c) 10/45, d) 20/190.

only returns TRUE or FALSE, i.e. “good” or “bad”. It does not return how good or
bad a given solution is.

The SAT problem is more or less a scholastic problem. As a more practical prob-
lem from real life, one can use the well known traveling salesman problem. This is
a problem, in which a traveling salesman must visit a set of N cities in the shortest
possible time or with the smallest fuel consumption or, as the case may be, fulfill
other criteria. The traveling salesman problem can be visualized by means of graphs,
as demonstrated in Fig. 2.29 - 2.31.

2 Evolutionary Algorithms for Chaos Researchers 77

Fig. 2.30 Traveling salesman visiting seven cities: The best route is on the left and the worst
route is on the right

Fig. 2.31 Traveling salesman visiting ten cities: The best route is on the left and the worst
route is on the right

The condition is that each route must start and end in the same city and each
city should be visited only once. This is therefore a purely practical problem. The
trajectory of the traveling agent represents a sequence of dots, such as, for example,
“2 - 3 - ... - 7 - 26 ... ”. The number of all possible combinations is n!. In the case
of a symmetrical problem of a traveling salesman (the distance from city A to B is
the same as from city B to A), 2n routes repeats. In this case the final number of
all possible combinations is (n-1)!/2. However, this number is still large. As shown
in Fig. 2.33, the number of all possible combinations very quickly grows with the
number of cities. Already for n > 6, there are more combinations in the traveling
agent problem than in the SAT problem. Fig. 2.33 shows the growth of the number
of solutions of the SAT problem in comparison with the growth of the complexity
of the traveling salesman problem.

Let us look further. The traveling salesman problem has 181,440 possible solu-
tions for 10 cities. There are 1016 possible solutions for 20 cities and 1062 for 50
cities. If 60 cities is used, then there is 1079 of possible solutions. This number is
equal to the estimated number of protons in our universe, i.e. if one proton is used
like memory to store one possible solution, then all protons in universe can store
only TSP with size 60 cities. No more. It is worth mentioning that there is approx-
imately 1021 liters of water on our Planet [54]. It is a trivial task to calculate how
many globes could be covered with this volume of water had we used a reservoir

78 I. Zelinka and H. Richter

Trajectories

Roads

5 10 15
1

1000

106

109

1012

1015

1018

No. of towns

R
oa

d
an

d
tr

aj
ec

to
ri

es

Fig. 2.32 Visualization of the travelling salesman complexity. The difference is illustrated
between the number of roads (blue dots) and possible trajectories (red dots).

TSP

SAT

2 4 6 8 10

1

10

100

1000

104

105

n

SA
T

,
T

SP

(a)

TSP

SAT

0 20 40 60 80 100
1

1026

1052

1078

10104

10130

10156

n

SA
T

,
T

SP

(b)

Fig. 2.33 Growth of the problem complexity for SAT (blue curve) and traveling salesman
(red curve). Starting with seven cities (or variables in SAT), the traveling salesman problem
is more time consuming.

with a volume of 1062 liters water. It is therefore obvious that even from such a
trivial example as the optimum distribution of parcels, a problem may arise, whose
optimum solution is not known. It is worth mentioning that at the present time, there
are special types of evolutionary algorithms (ACO - Ant Colony Optimization) that
manage up to 10,000 cities satisfactorily. We leave it to the kind reader to calculate
what is the number of combinations (hint: 2.84625968091035659).

The third and last sample problem is the artificial testing function, depicted in Fig.
2.34 that is used as a testing function for various types of evolutionary techniques;

2 Evolutionary Algorithms for Chaos Researchers 79

0

5

10

0

5

10

0
5

10

Fig. 2.34 Graph of test fuction

(for another example see [54]). This function is strongly nonlinear (for another simi-
lar functions see Fig. 2.11 and Fig.2.12) and it is complicated. Although the function
in this example is artificial, one can encounter even “wilder” functions that represent
real physical problems. This type of function looks innocent, however, it is the con-
trary in this case. It is necessary to realize that everything is running in computers,
thus also the optimization of such a function, is digitized. If this would not be so,
then it would necessary to calculate the value of the function in an infinite amount
of points. Due to digitization, this infinity reduces to a set of values of the func-
tion, whose cardinality is finite, even though it is still immense. Let us assume that
the computational accuracy of the computer used is 6 decimals. In this case every
variable in a given function assumes real values. Through digitization, the infinity
mentioned above reduces to a set of possible solutions, however the cardinality of
this is still immense. Let us assume that variable in a given function Fig. 2.34 may
assume up to 107 different values. In general terms, this function will assume 107n

values (n is a number of variables here). This number is many times greater than the
number of solutions of the traveling salesman problem for n ≤ 107. For n = 50, there
are 10350 solutions. It is necessary to realize that the accuracy of present computers

80 I. Zelinka and H. Richter

is much higher and the problem therefore generates a gigantic number of possible
solutions.

Let us mention that the complexity of problems is not measured in theoretical
informatics by the time demand factor (even though it is so de facto in the result), but
primarily by the complexity or dependence of the capacity of the algorithm on the
growing number of input data. As was already mentioned, there are problems whose
complexity grows nonlinearly with the growing input (for example, the traveling
salesman problem, see Fig. 2.33). We then speak about algorithms with polynomial,
exponential, etc., complexity. The examples of the complexity of problems are in
Table 2.2 - 2.4 (taken from [51]). Table 2.2 gives the number of possible solutions
for n input parameters. If testing one solution takes the predefined time, the time
demand factor for searching all possible solutions is in Table 2.3. If faster computers
are used, the gross estimation of the acceleration of computation is in Table 2.4. It is
obvious from these tables that there are many problems that no computer can help
to solve.

Table 2.2 Estimation of the values of some functions

n 10 50 100 300 1,000
Function

Polynomial

5n 50 250 500 1,500 5,000
n log2 n 33 282 665 2,469 9,966

n2 100 2,500 10,000 90,000 1 million
(7 digits)

n3 1,000 125,000 1 million 27 million 1 billion
(7 digits) (8 digits) (10 digits)

Exponential

2” 1,024 16 digit 31 digit 91 digit 302 digit
number number number number

n! 3.6 million 65 digit 161 digit 623 digit giant
(7 digits) number number number number

nn 10 billion 85 digit 201digit 744 digit giant
(11 digits) number number number number

For comparison: The number of protons in the visible Universe has approxi-
mately 79 digits The number of microseconds from the “big bang” has 24 digits.

2 Evolutionary Algorithms for Chaos Researchers 81

Table 2.3 Estimation of the time of f(n) operations if 1 operation takes 1 µs

n 10 20 50 100 300
Function

Polynomial

n2 1/10,000 s 1/2,500 s 1/400 s 1/100 s 9/100 s
n5 1/10 s 3.2 s 5.2 s 2.8 hours 28.1 days

Exponential

2n 1/1,000 s 1 s 35.7 years 400 trillion 75 digit
centuries # of centuries

nn 2.8 days 3.3 trillion 70 digit 185 digit 728 digit
years # of centuries # of centuries # of centuries

Table 2.4 Estimation of the time of f(n) operations if 1 operation takes 1 µs

Maximum dimension of the input manageable in a reasonable time

Function Current computers 100 times 1,000 times
faster computers faster computers

n N1 100 N1 1,000 N1
n2 N2 10 N2 31.6 N2
2n N3 N3 + 6.64 N3 + 9.97
n! N4 N4 + 1 N4 + 2

2.5.2 Physical Limits of Computation

As was already mentioned, there are limits restricting the output of any computer
that follow from the quantum-mechanical nature of mass. These limits restrict both
the output of the computer and its memory. It is obvious from these restrictions that
there are many problems that no computer can help to solve.

Basic restriction in this direction is the so-called Bremermann’s limit [8], ac-
cording to which it is not possible to process more than 1051 bites per second in
every kilogram of matter. In the original work of this author [8], the value of 2x1047

bites per second in one gram of matter is indicated. At first sight, this limit does not
look frightening, but only until we take “elementary” real examples for comparison.
Let us consider chess-mate for illustration. For this game, the estimated number
of combinations is 10120. As another example, let us consider the lattice of cellu-
lar automata [39] of 100 x 100 cells that can only assume black and white values
that represents 210,000, which is approximately 103,000 combinations - images. The
current TV sets with a LCD monitor have approximately 1,300x700 pixels, which

82 I. Zelinka and H. Richter

can assume various colors and degrees of brightness. It is clear that the number of
combinations is much higher on an LCD monitor.

This limit can be derived in the following relatively simple manner: For making
it possible to measure, process and transfer information, it is necessary to store it
on some physical carrier. This information may be electromagnetic radiation, paper
tape, laser beam, etc., therefore always something material. Information alone, i.e.,
without a physical carrier, cannot exist. Because elementary particles and their en-
ergy states can also be used as a carrier of information, it is obvious that the limit
of how much information the matter can carry follows from the restriction that was
discovered at this physical level.

In order to make it possible to measure this information, it must be modulated on
the corresponding carrier to resolve the individual carrier’s states that represent the
value of the information. Von Neumann[69] called the resolvable states “markers”.
The lowest resolvable energy states are the quantum states of matter, whose resolv-
ability from the bottom is limited by Heisenberg’s uncertainty relation. When deriv-
ing the already mentioned limits, it does not matter whether mass or energy types
of carriers are considered. Both types are physically interchangeable. Therefore, if
quantum states are considered as the smallest resolvable energy states, which will be
considered as bits in this case, then the “energy-bit” resolution is given by Heisen-
berg’s uncertainty relation. Generally, one can say that according to the Heisenberg
principle of uncertainty it is possible to always identify the final number of states.
Because nobody can say which state will be observed, probability has to be used.
It is common to say that variable X will have n different values with probability
p1, p2, .., pn Based on information theory is clear that we can get

H (p1, p2, .., pn) = −
n

∑
i=1

pi log2 pi (2.11)

bits of information. This function has one global extreme only if it hold p1 = p2 =
... = pn = 1

/
n true. Then

H
(
1
/

n, ...,1
/

n
)

= −
n

∑
i=1

(
1
/

n
)

log2

(
1
/

n
)

= n
(
1
/

n
)

log2 n = log2 n. (2.12)

Such marker can carry maximally log2 n bits of information. Based on quantum
nature of our world it is clear that there is no better marker than marker repre-
sented by n states (i.e. energy levels) of selected quantum system. All levels have
to be in interval [0,Emax] where Emax is maximum of energy. If one can measure
energy with precision ∆E , then in the marker, can be distinguished maximally
n + 1 =

(
Emax

/
∆E
)
+ 1 energy levels. When one marker with n+1 energy lev-

els will be taken into consideration, then by this marker can be represented max-
imally log2 (n + 1) of bits. On the contrary, when two markers will be used with

energy levels in
[
0,1
/

2Emax
]

it can represent 2 log2

(
n
/

2+ 1
)

= log2

(
n
/

2+ 1
)2

bits whereas n + 1 <<
(
n
/

2+ 1
)2 =

(
n2
/

4
)
+ n + 1 and so on. Based on this, it is

clear that for representation of the maximal information carried by marker is opti-

2 Evolutionary Algorithms for Chaos Researchers 83

mal, when n different markers with energy levels in [0,∆E] is used, i.e. with two
energy levels which represents 0 and 1. In total it is possible to represent maximally
n log2 (n/n+ 1) = n log2 (n/n+ 1) = n log2 2 i.e. n bits of information because clearly
log2 2 = 1 hold.

Carrier with mass m is according to Einstein equation equal to Emax = mc2. It is
obvious that in such a carrier it is possible to maximally have

n =
Emax

∆E
=

mc2

∆E
(2.13)

bits of information. To calculate the exact amount of information stored by 2.13,
then we need to use Heisenberg principle of uncertainty

∆E∆ t ≥ h̄
2

(2.14)

In which h̄ = h
/

2π (h is Planck constant, h̄ is Dirac constant). If in 2.14 the
equality is taken into consideration, then one obtains for the upper estimation

n =
mc2

h̄
2∆ t

= 4π
mc2

h
∆ t (2.15)

During time interval ∆ t it is possible to process maximally 4π mc2

h ∆ t bits of infor-
mation. When ∆ t = 1s one can get maximal number of bits which can be processed
or stored in mass per 1s. For m = 1kg this number (lets call it BL) is

BL = 4π
c2

h
(2.16)

where [BL] = 1kg−1s−1

In this moment it is only a matter of simple calculation to get exact numerical
value of BL, lets: speed of light and Planck constant h = 6,62607 ·10−34J.s. Finally
we get

BL ≈ 1,7045 ·1051kg−1 · s−1 (2.17)

This number, which we call BL here, is the so called Bremermann limit. It is
the definite limit which gives maximal number of bits which can be processed or /
and stored by an arbitrary matter. In the original paper Bremermann suggested 1047

which is caused by the use of nonstandard units (cm instead of m and grams instead
of kg, as already mentioned before).

Based on this, it is visible that in our universe the computational power is limited
by matter and basically there is no computer (existing or theoretical) which would
be able to solve arbitrary problems.

If the mass of the Earth (5.9742×1024 kg) is taken into account, then a computer
of such a mass might store (and subsequently also process) approximately 1076 bits
every second. During the life of Earth (109 years), a computer of its mass might
process maximally 1092 bits. If the output of a fictive computer is plotted against

84 I. Zelinka and H. Richter

its mass, it is obvious (Fig. 2.35) that its “computational capacity” is exceeded al-
ready during the solution of the traveling salesman problem for a small number of
cities/computer mass.

0 20 40 60 80 100
1

1026

1052

1078

10104

10130

10156

n �Kg, No. towns�

Q
ua

nt
um

lim
it,

T
SP

(a)

40 41 42 43 44 45
0

2.0�1051

4.0�1051

6.0�1051

8.0�1051

1.0�1052

1.2�1052

1.4�1052

n �Kg, No. towns�
Q

ua
nt

um
lim

it,
T

SP

(b) Detailed view

Fig. 2.35 Simultaneously plotted dependence of the number of possible solutions of the trav-
eling salesman problem on the number of cities n (red) and the number of bits processed in a
computer of mass m (blue). Let us add for more attentive readers that there is a logarithmic
scale in the left figure, while a “normal” in the right figure. This is the reason why the plots
appear considerably different in both figures.

It is clearly obvious from Fig. 2.35 that the break between the number of cities
and the computer mass occurs somewhere between 43 and 44. Perhaps it is not
necessary to mention that the output of our computer is illustrated in bits, which is
a little bit misleading, because one bit is not sufficient for storing information on
one possible solution of the traveling salesman problem. Had this been taken into
consideration during the computation, then the result would have been different,
nevertheless approximately the same as for the order of magnitude.

If we take into account the ACO (Ant Colony Optimization) algorithm that sat-
isfactorily solves the traveling salesman problem up to approximately 10,000 cities,
then we would need a computer of the mass of 1035608 kg for storing and processing
the information on all possible trajectories. In other words, 1035566 computers of the
mass of the Earth, should the computation be finished during the life of the universe
(1017 s). In a similar way [50], we would derive the shortest possible time during
which it is possible to process the stored information. This value is t = 10−12 s; the
current computers work in a region of 10−9 s.

In the publication [50], these considerations have been worked out in more details
and applied to the transfer of information through an information channel (compu-
tation can also be considered as a transfer of information through a special channel).
Beside other things, it was found that if a certain mass (or energy) of the transfer
medium is reached, further information cannot be transferred through the channel,
because the channel collapses into an astrophysical object called black hole. Accord-
ing to[50], the transfer of information is efficient (optimum, maximally usable), if
the information channel is on the brink of collapsing into a black hole.

2 Evolutionary Algorithms for Chaos Researchers 85

Independently of whether these calculations are accurate or only approximate, it
is obvious that physical limits restrict the possibilities of any computer and also of
the mathematical computational methods.

2.6 Conclusion

The principles of evolutionary techniques are described in many publications fo-
cused both on evolutionary diagrams and in publications “outside” the field, where
it is necessary to inform the corresponding community of experts about these tech-
niques. A representative example is [29]. In these and similar monographs, the
problems of evolutionary algorithms are introduced at a very vague level. However,
there are more suitable sources of literature intended for the needs of the technical
community. Here we mention several publications that are suitable for the possible
extension of knowledge on ECT. We can recommend the book [2], which is very
comprehensive. The book [53] is in principle sufficient for understanding the basic
principles; the paper [1] can also be recommended. Among many book monographs,
it is possible to mention [23] and also [54]. Both are written in a very understandable
manner and the reader will not get lost in theorems, definitions and proofs that do
not bring much information for practitioners and beginners. Description of special-
ized algorithms can be found in [53] and [38] (GA), [15] and [71] (PSO), [57], [56],
[58] and [24] (DE), [73] (SOMA), [35], [32] and [65] (MA), [41] and [13] (SA),
[45] (SS).

Popularly written books from the field of computers are much less represented
than specialized expert books. Much information can be found on the Internet, how-
ever, one should mention that this source of information is not always reliable and
one can also encounter untrue and misleading information.

There are many publications on the limits of computational technologies based
on quantum physics. However, these publications are relatively very demanding on
the knowledge from the field of quantum mechanics and mathematics. For extending
the information indicated in this chapter, we recommend the already mentioned pub-
lications [8] and [50]. The substantial part of limits imposed by mass on processing
and storing data is described in the first part [8]. The explanation is so understand-
able that even a reader at a high school level will understand it. In the paper [50],
the relation between transfer channels and black holes is discussed.

You can also read in [2] on the representation of individuals, basic concepts of
ETV and the properties of the test functions. Of course, there are other monographs
and Internet sources providing this information, but we consider publications men-
tioned above as sufficiently representative.

References

1. Babu, B.: Evolutionary Computation - At a Glance. NEXUS, Annual Magazine of Engi-
neering Technology Association, BITS, Pilani, 3–7 (2001)

2. Back, T., Fogel, B., Michalewicz, Z.: Handbook of Evolutionary Computation, Institute
of Physics, London (1997)

86 I. Zelinka and H. Richter

3. Baluja, S.: Population-based incremental learning: A method for integrating genetic
search based function optimization and competitive learning. Technical Report CMU-
CS-94-163, Carnegie Mellon University, USA (1994)

4. Barricelli, N.A.: Esempi Numerici di processi di evoluzione. Methodos, 45–68 (1954)
5. Barricelli, N.A.: Symbiogenetic evolution processes realized by artificial methods.

Methodos 9(35-36), 143–182 (1957)
6. Barricelli, N.A.: Numerical testing of evolution theories: Part I: Theoretical introduction

and basic tests. Acta Biotheor. 16(1-2), 69–98 (1962)
7. Box, G.E.P.: Evolutionary Operation: A Method for Increasing Industrial Productivity.

Appl. Stat. 6(2), 81–101 (1957)
8. Bremermann, H.: Optimization through evolution and recombination Self- Organizing

Systems. In: Yovits, M., Jacobi, G., Goldstine, G. (eds.), pp. 93–106. Spartan Book,
Washington (1962)

9. Bull, L., Kovacs, T.: Foundations of Learning Classifier Systems. Springer, Heidelberg
(2005)

10. Carlson, E.: Doubts about Mendel’s integrity are exaggerated. In: Mendel’s Legacy, pp.
48–49. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2004)

11. Caruana, R., Schaffer, J.: Representation and hidden bias: Gray vs. binary coding for
genetic algorithms. In: Proc. 5th Int. Conf. on Machine Learning, Los Altos, pp. 153–
161. Morgan Kaufmann, San Francisco (1988)

12. Castro, L., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence
Approach. Springer, Heidelberg (2002)

13. Cerny, V.: Thermodynamical approach to the traveling salesman problem: An efficient
simulation algorithm. J. Opt. Theory Appl. 45(1), 41–51 (1985)

14. Chu, P.: A Genetic Algorithm Approach for Combinatorial Optimisation Problems.
Ph.D. Thesis. The Management School Imperial College of Science, Technology and
Medicine, London, p. 181 (1997)

15. Clerc, M.: Particle Swarm Optimization. ISTE Publishing Company (2009)
16. Coveney, P., Highfield, R.: Mezi chaosem a radem, Mlada fronta (2003)
17. Darwin, C.: On the origin of species by means of natural selection, or the preservation

of favoured races in the struggle for life, 1st edn. John Murray, London (1859)
18. Dasgupta, D.: Artificial Immune Systems and Their Applications. Springer, Berlin

(1999)
19. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, Berlin (1996)
20. Dempsey, I., O’Neill, M., Brabazon, A.: Foundations in Grammatical Evolution for Dy-

namic Environments. Springer, Heidelberg (2009)
21. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
22. Dreo, J., Petrowski, A., Siarry, P., Tailard, E.: Metaheuristic for Hard Optimization:

Methods and Case Studies. Springer, Heidelberg (2005)
23. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, Heidelberg

(2007)
24. Feoktistov, V.: Differential Evolution - In Search of Solutions. Springer, Heidelberg

(2006)
25. Fogel, B., Corne, W.: Evolutionary Computation in Bioinformatics. Morgan Kaufmann,

San Francisco (2002)
26. Fogel, D.B.: Unearthing a Fossil from the History of Evolutionary Computation. Funda-

menta Informaticae 35(1-4), 1–16 (1998)
27. Fogel, D.B.: Evolutionary computation: the fossil record. IEEE Press, Piscataway (1998)
28. Fogel, D.B.: Nils Barricelli - Artificial Life, Coevolution, Self-Adaptation. IEEE Com-

put. Intell. Mag. 1(1), 41–45 (2006)

2 Evolutionary Algorithms for Chaos Researchers 87

29. Fogel, L., Owens, J., Walsh, J.: Artificial Intelligence through Simulated Evolution. John
Wiley, Chichester (1966)

30. Friedberg, R.M.: A learning machine: Part I. IBM Journal Research and Development 2,
2–13 (1958)

31. Glover, F., Laguna, M.: Tabu Search. Springer, Heidelberg (1997)
32. Goh, C., Ong, Y., Tan, K.: Multi-Objective Memetic Algorithms. Springer, Heidelberg

(2009)
33. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley Publishing Company Inc., Reading (1989)
34. Haupt, R., Haupt, S.: Practical genetic algorithms, 2nd edn. John Wiley & Sons, USA

(2004)
35. Hart, W., Krasnogor, N., Smith, J.: Recent Advances in Memetic Algorithms. Springer,

Heidelberg (2005)
36. Hinterding, R., Gielewski, H., Peachey, T.: The nature of mutation in genetic algorithms.

In: Eshelman, L. (ed.) Proc. 6th Int. Conf. on Genetic Algorithms, Los Altos, pp. 70–79.
Morgan Kaufmann, San Francisco (1989)

37. Holland, J.: Adaptation in natural and artificial systems. Univ. of Michigan Press, Ann
Arbor (1975)

38. Holland, J.: Genetic Algorithms. Sci. Am., 44–50 (1992)
39. Ilachinski, A.: Cellular Automata: A Discrete Universe. World Scientific Publishing

Company, Singapore (2001)
40. Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search, Ph.D. Thesis, Uni-

versity of New Mexico, Alburquerque (1995)
41. Kirkpatrick, S., Gelatt Jr., C., Vecchi, M.: Optimization by Simulated Annealing. Sci-

ence 220(4598), 671–680 (1983)
42. Koza, J.: Genetic Programming. MIT Press, Cambridge (1998)
43. Koza, J.: Genetic Programming: A paradigm for genetically breeding populations of

computer programs to solve problems. Stanford University, Computer Science Depart-
ment, Technical Report STAN-CS-90-1314 (1990)

44. Koza, J., Keane, M., Streeter, M.: Evolving inventions, pp. 40–47. Scientific American
(2003)

45. Laguna, M., Martı́, R.: Scatter Search - Methodology and Implementations in C.
Springer, Heidelberg (2003)

46. Lampinen, J., Zelinka, I.: Mechanical Engineering Design Optimization by Differential
Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp.
127–146. McGraw-Hill, London (1999)

47. Lampinen, J., Zelinka, I.: Mechanical Engineering Design Optimization by Differen-
tial Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization.
McGraw-Hill, London (1999)

48. Langdon, W.: Genetic Programming and Data Structures. Springer, Heidelberg (1998)
49. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evo-

lutionary Computation. Kluwer Academic Publishers, Dordrecht (2002)
50. Lloyd, S., Giovannetti, V., Maccone, L.: Physical limits to communication. Phys. Rev.

Lett. 93, 100501 (2004)
51. Marik, V., Stepankova, O., Lazansky, J.: Artificial Intelligence III. Czech (ed.) Artificial

Intelligence III. Academia, Praha (2001)
52. Mendel, J.: Versuche über Plflanzenhybriden Verhandlungen des naturforschenden Vere-

ines in Brünn, Bd. IV für das Jahr. Abhandlungen, 3–47 (1865); For the English
translation, see: Druery, C.T., Bateson, W.: Experiments in plant hybridization. Jour-
nal of the Royal Horticultural Society 26, 1–32 (1901), http://www.esp.org/
foundations/genetics/classical/gm-65.pdf

88 I. Zelinka and H. Richter

53. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer,
Berlin (1996)

54. Michalewicz, Z., Fogel, D.: How to Solve It: Modern Heuristics. Springer, Berlin (2000)
55. O’Neill, M., Ryan, C.: Grammatical Evolution - Evolutionary Automatic Programming

in an Arbitrary Language. Springer, Heidelberg (2003)
56. Onwubolu, G., Babu, B.: New Optimization Techniques in Engineering. Springer, New

York (2004)
57. Price, K.: An introduction to differential evolution. In: Corne, D., Dorigo, M., Glover, F.

(eds.) New Ideas in Optimisation, pp. 79–108. McGraw Hill, International, UK (1999)
58. Price, K., Storn, R., et al.: Differential Evolution - A Practical Approach to Global Opti-

mization. Springer, Heidelberg (2005)
59. Read, R.C.: Coding of Unlabeled Trees. In: Read, R. (ed.) Graph Theory and Computing.

Academic Press, London (1972)
60. Rechenberg, I.: (1971) Evolutionsstrategie - Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution (PhD thesis), Printed in Fromman-Holzboog
(1973)

61. Reeves, C.: Modern Heuristic Techniques for Combinatorial Problems. Blackwell Sci-
entific Publications, Oxford (1993)

62. Rego, C., Alidaee, B.: Metaheuristic Optimization via Memory and Evolution: Tabu
Search and Scatter Search. Springer, Heidelberg (2005)

63. Russell, Norvig, S.J., Peter: Artificial Intelligence: A Modern Approach, 2nd edn., pp.
111–114. Prentice Hall, Upper Saddle River (2003)

64. Schwefel, H.: Numerische Optimierung von Computer-Modellen, PhD thesis (1974);
Reprinted by Birkhäuser (1977)

65. Schönberger, J.: Operational Freight Carrier Planning, Basic Concepts. In: Optimization
Models and Advanced Memetic Algorithms. Springer, Heidelberg (2005)

66. Telfar, G.: Acceleration Techniques for Simulated Annealing. MSc Thesis. Victoria Uni-
versity of Wellington, New Zealand (1996)

67. Turing, A.: Intelligent machinery, unpublished report for National Physical Laboratory.
In: Michie, D. (ed.) Machine Intelligence, vol. 7 (1969); Turing, A.M. (ed.): The Col-
lected Works, vol. 3, Ince D. North-Holland, Amsterdam (1992)

68. Vesterstrom, J., Riget, J.: Particle Swarms (May 2002), Dostupny z
www.evalife.dk/publications/JSV_JR_thesis_2002.pdf
(cit.10.2.2007)

69. Von Neumann, J.: The computer and the brain. Yale University Press, New Haven (1958)
70. Wolpert, D., Macready, W.: No Free Lunch Theorems for Search, Technical Report SFI-

TR-95-02-010, Santa Fe Institute (1995)
71. Li, X.: Particle Swarm Optimization - An introduction and its recent develop-

ments (2006), www.nical.ustc.edu.cn/seal06/doc/tutorial_pso.pdf
(4.10.2006) (cit. 20. 2. 2007)

72. Zelinka, I.: Artificial Intelligence in problems of global optimization. Czech (ed.) BEN,
Praha (2002) ISBN 80-7300-069-5

73. Zelinka, I.: SOMA - Self Organizing Migrating Algorithm. In: Onwubolu, Babu, B.
(eds.) New Optimization Techniques in Engineering. Springer, New York (2004)

74. Zvelebil, M., Jeremy, B.: Understanding Bioinformatics. Garland Science (2007)

Chapter 3
Chaos Theory for Evolutionary Algorithms
Researchers

Sergej Celikovsky and Ivan Zelinka

Abstract. This chapter deals with chaotic systems. Based on the characterization of
deterministic chaos, universal features of that kind of behavior are explained. It is
shown that despite the deterministic nature of chaos, long term behavior is unpre-
dictable. This is called sensitivity to initial conditions. We further give a concept of
quantifying chaotic dynamics: the Lyapunov exponent. Moreover, we explain how
chaos can originate from order by period doubling, intermittence, chaotic transients
and crises. In the second part of the chapter we discuss different examples of sys-
tems showing chaos, for instance mechanical, electronic, biological, meteorological,
algorithmical and astronomical systems.

3.1 Introduction

The discovery of the phenomenon of deterministic chaos brought about the need to
verify manifestations of this phenomenon also in experimental data. Deterministi-
cally chaotic systems are necessarily nonlinear, and conventional statistical proce-
dures, which are mostly linear, are insufficient for their analysis. If the output of
a deterministically chaotic system is subjected to linear methods, such signal will
appear as the result of a random process. Examples include Fourier spectral analy-
sis, which will disclose nonzero amplitudes at all frequencies in a chaotic system,

Sergej Celikovsky
Institute of Information Theory and Automation,
Academy of Sciences of the Czech Republic,
Faculty of Electrical Engineering, Czech Technical University in Prague
e-mail: celikovs@utia.cas.cz

Ivan Zelinka
Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511,
Zlin 76001, Czech Republic
and
VSB-TUO, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15,
708 33 Ostrava-Poruba, Czech Republic
e-mail: zelinka@fai.utb.cz

I. Zelinka et al. (Eds.): Evolutionary Algorithms and Chaotic Systems, SCI 267, pp. 89–143.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

90 S. Celikovsky and I. Zelinka

and so chaos can be easily mistaken for random noise. Apart from the (now ma-
ture) signal analysis in both the time and frequency domains, methods operating in
the phase space are gaining in importance. Within such methods, the trajectory of
a dynamic system in the phase space is first reconstructed from the (usually scalar)
time series, and the chaos descriptors are subsequently estimated or modelling is
applied. This is a quite recent field of research, just going back to the discovery of
the immersion theorem [19], [26] in the early 1980s. Despite lack of rigorous math-
ematical explanation of some issues, well interpretable results can be obtained with
some caution. This is so, in particular, for low-dimensional systems, for the analysis
of which such procedures have been primarily developed. Nevertheless, some rather
naive applications and interpretations of results were attempted in the past. Exam-
ples of such simplified interpretations which contradict physical intuition have been
cited by Drazin and King [11]. According to those authors, the early successes of
nonlinear analysis of time series raised hopes that the day will come when we will be
able, from periodical air temperature measurements behind the window, to identify
the dynamics of the whole atmosphere, based on which the future climatic situation
should be predictable.

One of the goals of this chapter is to explain why such a mechanistic interpre-
tation of determinism is not correct. The main reason for that naive idea to fail is
exactly the existence of the deterministic chaos.

This chapter discusses the most common topics of chaos theory, especially from
the practical application aspects point of view. Common approaches to the recon-
struction of the system trajectory in the phase space are summarized and procedures
are outlined for estimating the correlation dimension, entropy and the largest Lya-
punov exponent. Thereby, it a priori assumed that the sources of the time series ex-
amined are nonlinear chaotic systems. This is why, for example, nonlinearity tests
are not described here. For the same reason, as well as due to the limited extent of
this book some important components of nonlinear modelling of time series, such
as nonlinear methods for noise prediction and reduction, are omitted. The interested
reader may find more detailed information on that topic in monographs [2], [17],
[10], [12].

3.2 Characterization of Deterministic Chaos

When hearing the word “chaos”, people who are not experts in this field may imag-
ine a process which is of a purely random nature and lacks any internal rules. Just
a few people realize that “being chaotic” actually means complying well defined
and strictly deterministic rules”. As indicated in the historical outline, chaos is a
discipline which obtained its name only in the 20th century but whose roots date
back to the 18th and 19th centuries, associated with the finding that even simple
problems may generate very complex and unpredictable solutions. For historical
reasons, Hamiltonian systems were the first systems to be studied, represented then
by celestial mechanics problems. Many rules valid for a wide class of Hamiltonian
systems generating chaotic behavior were discovered. Later on, these rules were

3 Chaos Theory for Evolutionary Algorithms Researchers 91

extended to apply to some dissipative chaotic systems as well. Although it deals
basically with dissipative systems, this publication will include a short excursion to
other chaos generating systems as well.

3.2.1 Roots of Deterministic Chaos

The term “chaos” covers a rather broad class of phenomena whose behavior may
seem erratic and unpredictable at the first glance. Often, this term is used to denote
phenomena which are of a purely stochastic nature, such as the motion of molecules
in a vessel with gas etc. This publication focusses on the deterministic chaos, a phe-
nomenon which - as its name suggests - is not based on the presence of a random,
stochastic effects. On the contrary, it is based on the absence of such effects what
may seem surprising at the first glance. Broadly used, the term “chaos” can denote
anything that cannot be predicted deterministically (e.g. motion of an individual
molecule, numbers in a lottery, ...). If, however, the word “chaotic” is combined
with an attribute such as “stochastic” or “deterministic”, then a specific type of
chaotic phenomena is involved, having their specific laws, mathematical apparatus
and a physical origin. Stochastic system (not stochastic chaos) is the appropriate
term for a system such as plasma, gas, liquid, which should be studied by using a
suitable apparatus of plasma physics, statistical mechanics or hydrodynamics. On
the contrary, if a double pendulum, billiard or the similar objects are the subject of
examination, a mathematical apparatus which is based on classical mathematics and
does not exhibit “stigmata” of statistics is employed. The mathematical apparatus
for the description and study of the systems was not chosen at random; in fact, it is
related with the physical nature of the system being studied. Considering the class
of systems of deterministic chaos as mentioned above, signs of chaotic behavior are
usually conditional on the presence of nonlinearities, either in the system itself (i.e.
the system is a nonlinear system) or in links between linear systems [14]. Usually,
such nonlinearities are only visible after making up a mathematical model of the
system or after analysis of observed data. Simple systems exhibiting deterministic
chaos include, for instance, double pendulum, magnetic pendulum, electronic cir-
cuit or a set of bars (Fig. 3.1) over which balls are poured from “the same” starting
position. Since the individual examples are discussed in this monograph below, the
focus will now be on the last-mentioned example. The example involves a very sim-
ple mechanical system which is an analogy of the well-known billiard problem. As
Fig. 3.1 demonstrates, the entire mechanical system consists of a set of bars which
are held by a vertical board and over which balls are poured from “the same” posi-
tion. Although released from the same position, each ball follows a different path-
way. This is so because the starting conditions are not absolutely identical; instead,
they differ very slightly, even negligibly at first glance. It is those differences that
are responsible for the fact that the trajectories differ appreciably. In other words,
the system is sensitive to the initial conditions.

92 S. Celikovsky and I. Zelinka

A

12870 possiblepaths from A to B

B

Fig. 3.1 One of the possible realizations of the billiard problem

This sensitivity to the initial conditions is a phenomenon which is related to the
billiard problem. Basically, the cause is in the fact that the mechanical objects hit-
ting each other do not possess ideally smooth surfaces. Due to this, even the slightest
differences in the initial conditions are “amplified”, ultimately giving rise to differ-
ent trajectories. The nonlinear model shown in Fig. 3.1 can serve as a next model
of the billiard problem. Two types of trajectory are involved: periodic (Fig. 3.2)
and chaotic (Fig. 3.3). The axes of incidence and recoil of the hypothetical ball are
shown. Fig. 3.4 demonstrates the creation of chaos. The ball was started from a
nearly identical position with a difference of 1 × 10−12 in this simulation. Different
trajectories (red and green) can be discriminated after 25 iterations.

0 2 4 6 8 10

�0.5
0.0
0.5
1.0
1.5

Fig. 3.2 Deterministic behavior at billiard

3 Chaos Theory for Evolutionary Algorithms Researchers 93

�1 0 1 2 3 4

�0.5

0.0

0.5

1.0

Fig. 3.3 Chaotic behavior at billiard

0 2 4 6 8

�0.5
0.0
0.5
1.0

Fig. 3.4 Chaotic behavior at billiard, difference in the initial conditions was 1×10−12. After
25 iterations trajectories has diverged.

�0.6 �0.4 �0.2 0.0 0.2 0.4 0.6

�0.4

�0.2

0.0

0.2

Fig. 3.5 Chaotic behavior at simple billiard, no periodical behavior is visible. 500 iterations
from 10 000 is depicted at this picture.

94 S. Celikovsky and I. Zelinka

Chaos can be visualized not only in the manner shown in the figures but also by
means of interdependences of quantities of state. A trajectory having a total length
of 10 000 iterations (Fig. 3.5, only 500 iterations are shown) was generated for this
purpose A rather wealthy set of types of behavior can be encountered in the real
world. One of the possible categorizations is included in Table 3.3. The table en-
compasses both purely stochastic types of behavior (coin toss, thermal noise, ...)
and deterministic types of behavior (celestial mechanics), including chaos (inter-
mittence, chaotic attractors, ...).

Table 3.1 Possible types of behavior of dynamic systems [14]

Behavior Example
Predictable Planets
Unpredictable Coin toss
Chaotic transitions Billiard problem
Intermittence Logistic equation (for A = 3.8284)
Narrow-band chaos Rossler attractor
Low-dimensional broadband chaos Lorenz attractor
High-dimensional broadband chaos Neuron networks
Correlated (colored) noise Random walk
Pseudorandomness Computer-generated randomness
Randomness Thermal noise, radioactivity
Combination of the above types of behavior Real data

3.2.1.1 Hamiltonian Systems

The study of Hamiltonian systems has its roots in the 19th century when it was
introduced by Irish mathematician William Hamilton. For mechanical systems, a
typical feature of Hamiltonian systems that no dissipation of energy occurs in them,
so that mechanical Hamiltonian system is also the so-called conservative one. In
general dynamical system theory the term “conservative” means that certain scalar
function, having typical properties of energy, is preserved along system trajectories.
The creation of chaos theory for Hamiltonian systems was contributed to by scien-
tists such as Boltzman (who laid the foundations of ergodic theory and discovered
the contradiction between the reversibility of a system and irreversibility of its be-
havior) and Poincare. Assets of Hamiltonian systems included their amenability to
solution without the deployment of computer techniques, something we can hardly
imagine today. The mathematical apparatus and thus also the philosophy of Hamil-
tonian systems find application in many areas of physics, such as plasma physics,
quantum mechanics and others.

3.2.1.2 Dissipative Systems

Dissipative dynamic systems are systems where energy escapes into the surround-
ings and state space volume is reduced. Typical examples include weight on spring

3 Chaos Theory for Evolutionary Algorithms Researchers 95

(dissipation being caused by friction between the body and air and energy losses in-
side the material), motion on a wheel, electronic resonance circuits. Since the topics
of dissipative dynamic systems is the subject of a whole monograph, demonstra-
tion of a concrete real system, see the classical oscillating cell, will be given here.
This well-known classical example of a dynamic system is defined by the Lorenz
system (3.2).

3.3 Universal Features of Chaos

Deterministic chaos possesses many features that are common to chaotic behavior
irrespective of the physical system which is the cause of this behavior. This com-
mon nature is expressed by the term universality so as to stress the universal nature
of the phenomena. The quantity and properties of the features as well as the com-
plexity of links between them are so extensive that they could make up a topic for
a separate publication, such as [9]. It is not the aim of this part of the publication to
make a detailed analysis - this would be like carrying coals to Newcastle; instead,
only the best-known features, to be used in the subsequent sections of this book,
will be highlighted. These include, in particular, Feigenbaum’s constants α and δ ,
the U-sequence, Lyapunov exponents, self-similarity and processes by which a sys-
tem usually passes from deterministic behavior to chaotic behavior: intermittence,
period doubling, metastable chaos and crises. Another property which is, curiously,
not included in the pantheon of universalities will be mentioned at the beginning:
the deterministic nature and non-predictability of deterministic chaos.

3.3.1 Determinism and Unpredictability of the Behavior of
Deterministic Chaos – Sensitivity to Initial Conditions

The deterministic structure of systems which generate chaos and their unpredictabil-
ity constitute another typical feature of the universal properties of deterministic
chaos. It is actually irrelevant what type the chaotic system is (chemical, biolog-
ical, electronic, economic, ...): it holds invariably that their mathematical models
are fully deterministic (there is no room for randomness as such in them) and they
are long-term unpredictable in their behaviour. The Rössler (3.1) and Lorenz (3.2)
attractors are the typical examples:

ẋ1(t) = −x2(t)− x3(t)
ẋ2(t) = −x1(t)− x2(t)

5
ẋ3(t) = (x1(t)− 5.7)x3(t)+ 0.2

(3.1)

ẋ1(t) = −a(x1(t)− x2(t))
ẋ2(t) = −x1(t)x3(t)+ bx1(t)+ x3(t)
ẋ3(t) = x1(t)x2(t)− x3(t).

(3.2)

96 S. Celikovsky and I. Zelinka

It is clear from the structure of the equations that no mathematical term express-
ing randomness is present. That apparent randomness that can be seen in deter-
ministic chaos at first glance is not purely fortuitous; in fact, it is related to the
sensitivity to initial conditions. This sensitivity can be demonstrated well on the ex-
ample of a smooth hill from whose top a ball is let run down. The ball will take a
different trajectory in each experiment, which is due to two factors: the first is the
non-ideality of the hill surface, the other, impossibility of setting the starting posi-
tion absolutely identically when repeating the experiment. The inaccuracies are due
to the ubiquitous error of measurement (in manufacturing the hill, in setting the po-
sition, in manufacturing the ball, ...), and even if all the errors could be eliminated,
the uncertainty of the quantum world (i.e. Heisenberg uncertainty principle) would
ultimately take effect and act in the macro-world as well (which it actually does).
Hence, fluctuations cannot be avoided, and so “declaring total war” on fluctuations
is a waste of time and akin to Don Quixote’s tilting at windmills. A normal PC with
appropriate software will do for experiments with sensitivity to initial conditions.
Fig. 3.6 demonstrates sensitivity to initial conditions for the Lorenz attractor. Two
time developments of the variable of state x (Fig. 3.6) are shown for a difference
between the initial conditions ∆y(0) = 0.001, which appears as a negligible error
at first glance. However, in a time as short as 24 seconds the two state trajectories
diverge, as emphasized by the grey area between them. (Fig. 3.7) shows the same
for ∆y(0) = 10−9. Sensitivity to initial conditions is thus one of the characteristic
features of deterministic chaos and can be used as an indicator when classifying a
dynamic system.

16 18 20 22 24 26 28 30
t

�10

�5

0

5

�X�t�

16 18 20 22 24 26 28 30
t

�10

�5

0

5

�X�t�

Fig. 3.6 Sensitivity of the variable x of the Lorenz attractor for δy(0) = 0.001

3 Chaos Theory for Evolutionary Algorithms Researchers 97

30 35 40 45 50
t

�10

�5

0

5

10

�X�t�

30 35 40 45 50
t

�10

�5

0

5

10

�X�t�

Fig. 3.7 Sensitivity of the variable x of the Lorenz attractor for δy(0) = 10−9

3.3.2 Lyapunov Exponents

Lyapunov exponents are another member of the family of universal features of de-
terministic chaos. They are numbers which basically express the divergence (or also
convergence) of the state trajectories of a dynamic system. The exponents can be
calculated relatively simply, both for discrete-time systems and for continuous-time
systems. As will be explained later, Lyapunov exponents are closely related to the
structure of the state space, which (in dynamic systems theory) is represented by
an array of arrows determining the time development of the system at each point
of the space. The development of the system in this space is then represented by a
(usually) continuous curve [24].

The effect of Lyapunov exponents on the behavior of the dynamic system is ap-
parent from Fig. 3.8 and 3.9. Figure 3.8 shows the state space of a simple dynamic
system along with two different time developments starting from two different ini-
tial conditions, which only differ by ∆x = 0.01 in the x-axis. The behavior in the

-2 -1.5 -1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Fig. 3.8 State space trajectory for a dy-
namic system with 2 singular points s1 and
s2. On the position s1 = {0,0} is repeller
and at the position s2 = {−1,0} saddle.
Start points of both trajectories diverge de-
spite fact that this coordinates (x1 = {-1.56,
0.92} and x2 = {-1.57, 0.92}) are very
close.

-0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Fig. 3.9 Different behavior can be ob-
served when both trajectories will start in
different part of state space. Despite its
bigger difference in starting position (x1 =
{0.4, 0.4} and x2 = {0.8, 0.4}) trajectories
merge together after certain time.

98 S. Celikovsky and I. Zelinka

two cases is entirely different. Figure 3.9 shows different behavior. Hence, the be-
havior of a dynamical system is determined by its physical structure, which in the
mathematical description is represented by the state space whose quantifiers can be
Lyapunov exponents. If one is to follow colored arrows in Fig. 3.8, it can be no-
ticed that they are separating with increasing time. On the other hand in Fig. 3.9
they after certain time occupy the same set of points in the state space, in this case
called limit cycle. This observation can be described in a mathematical way by the
Lyapunov exponent λ , see eq. 3.3. The structure of the exponents can help assess
whether chaotic behavior is present in the system or not.

Consider a situation where at time t0 = 0, a hypersphere whose radius is l(0) exists
in the m-dimensional phase space. Let different points of the hypersphere surface
represent different initial conditions of the dynamical system. Hence, starting from
each point of the hypothetical hypersphere, construct a trajectory through the phase
space. After time t the hypersphere transforms into a new object. In the general
case, this object can have a very complicated shape, especially if the dynamics are
chaotic. However, if we restrict ourselves to very short time segments [0,t] and if
the initial radius l(0) is also very small, one can assume for simplicity that the initial
hypersphere is transformed, in the ideal case, into a hyper ellipsoid. Denote li(t) the
length of the semi-major axes of the ellipsoid formed at time t. The ith Lyapunov
exponent

λi = lim
t→∞

1
t

ln
li (t)
l (0)

(3.3)

is a measure of the extension or contraction of the ith semi-major axis of the el-
lipsoid. For graphic reasons, Lyapunov exponents are arranged by magnitude, i.e.
λ1 ≥ λ2 ≥ ... ≥ λm, where m is the dimension of the phase space; this is referred to
as the Lyapunov exponents spectrum. For a chaotic trajectory, at least one Lyapunov
exponent must be positive, although, in addition, the existence of any asymptotic
periodicity must be ruled out to confirm the chaotic nature - see, e.g., [3]. In other
words, the possibility that the trajectory converges to some periodic orbit with t → ∞
must be eliminated. But it is just this requirement that can pose a problem in
practice if the dynamical system is investigated during a finite time interval only.
Chaotic systems with more than one Lyapunov exponent are referred to as hyper-
chaotic [22].

Owing to the limit t → ∞, Lyapunov exponents introduced by eq. (3.3) are global
quantities describing the system dynamics on average. Nevertheless, relating Lya-
punov exponents to a certain part of the trajectory for a relatively short time segment
t also proved to be useful. This leads to the concept of a local Lyapunov exponent
[2], [30]. It will be clear from the above text that Lyapunov exponents represent
the rate of divergence (or convergence) of near trajectories in the phase space, thus
providing a measure of predictability. Hence, this warrants the question as to how
Lyapunov exponents relate to Kolmogorov entropy. The relation can be expressed
as follows [22]:

K ≤ ∑
i,λi>0

λi (3.4)

3 Chaos Theory for Evolutionary Algorithms Researchers 99

where equality occurs for the Sinai-Ruelle-Bowen measure, i.e. the measure which
is smooth along an unstable manifold. Equality between Kolmogorov entropy and
the sum of positive Lyapunov exponents is referred to as Pesin identity [23]. Now,
examine the relationship between Lyapunovs exponents and fractal dimension. If
Lyapunov exponents are negative for all i’s (λi < 0), each attractor of such a system
must be a fixed point and thus have a zero dimension. And on the contrary, if λi > 0
for all i’s, the trajectories in the phase space go apart constantly in all directions
and the dimension converges to that of the phase space [30]. Hence, one will ask
what the relation between Lyapunov exponents and the fractal dimension is. Using
the spectrum of Lyapunov exponents λ1 ≥ λ2 ≥ ... ≥ λm, J. L. Kaplan and J. A.
Yorke introduced the concept of Lyapunov dimension, sometimes referred to as the
Kaplan-York dimension. If k is the largest non-negative integer for which

k

∑
i=1

λi ≥ 0 (3.5)

then Lyapunov dimension is defined as follows [15]:

dL =

⎧⎪⎪⎨
⎪⎪⎩

0 i f no such k exists

k +

k
∑

i=1
λi

|λk+1| i f k < m

m i f k = m

(3.6)

In this definition, m has the meaning of the phase space dimension. General
equality between Lyapunov dimension and some of the other fractal dimensions
has not been proved so far. Many numerical experiments lead to the approximate
equality dL ≈ d1, dL is given by eq. (3.6), d1 is so called informational dimension,
see eq. (3.7)

d1 = lim
r→0

−S(r)
log2 r

= lim
r→0

∑
i

pi log2 pi

log2 r
, (3.7)

equality between these two dimensions being found for two dimensional mappings
[18]. It is generally believed that Lyapunov dimension and information dimension
are equal for “typical” attractors [20], [15]. A general rule holds [8] that Lyapunov
dimension is the upper limit of Hausdorff dimension. The fact that knowledge of
Lyapunov exponents gives us an idea of fractal dimension can be used when testing
procedures for estimating attractor dimension from time series. With the knowledge
of the system control equations in the form of difference equations or ordinary dif-
ferential equations the calculation of Lyapunov exponents is “merely” a technical -
although not necessarily easy - task. Having calculated Lyapunov dimension from
the Lyapunov exponents spectrum and adopting the hypothesis of its closeness to
other fractal dimensions, the value of the dimension so obtained can be compared
with the estimate based on the time series generated by the system control equations
and, tentatively at least, assess the adequacy of some algorithms for nonlinear anal-
ysis of time series. The same approach can be used to examine procedures for the

100 S. Celikovsky and I. Zelinka

calculation of Kolmogorov entropy from experimental data, assuming validity of
Pesinov identity. Now, pay some attention to the time of predictability of the system
behavior, as mentioned earlier. Imagine a dynamic system with one positive Lya-
punov exponent λ . The initial state of the system is known with accuracy ε . After
time T , the position of the system in the phase space is known with accuracy L.
Taking into the account eq. (3.3) we have [5]

λ ≈ 1
T

ln
L
ε
, (3.8)

which implies that

T ≈ 1
λ

ln
L
ε

≈ 1
K

ln
L
ε
, (3.9)

where K is Kolmogorov entropy. Time T expresses the time in which inaccuracy ε
in the determination of the initial conditions increases exponentially. This time is
usually referred to as the system behavior predictability time. However, the relation
above indicates that this time is not only dependent on the dynamics of the system
(Lyapunov exponents); in fact, the magnitude of the initial error also plays a role:
time T increases logarithmically with increasing initial accuracy. Time T can be
only crudely identified with the predictability time and only within the context of
the accuracy considered, which should be chosen reasonably. If you forecast, for
instance, that the next winter will be colder than the past summer, you will probably
be right but such prediction is actually useless for the vast majority of purposes.

3.3.3 The U-Sequence

The universal sequence, or the U-sequence, is another universal feature of deter-
ministic chaos. The U-sequence is frequently demonstrated on iterated maps, whose
typical representative is the well-known logistic equation. The U-sequence can be
observed in the behavior of a number of dynamic systems whose mathematical
model contains unimodal mapping (with one extremum). The logistic equation, for-
mulated as eq. (3.11), is a typical example. The term unimodal mapping denotes the
dependence of a next value on the preceding values when the control parameter is
varied. For instance, if eq. (3.11) is considered and the control parameter A is varied
within the interval of [0, 4], the functional dependence shown in Fig. 3.10 emerges.
The value at which this dependence attains its maximum is usually referred to as the
critical point [16]. This value is 0.5 in Fig. 3.10, as indicated by a vertical ordinate.
When the initial conditions are set, the development of the system is shown graphi-
cally as a sequence of points (Fig. 3.11) and 3.11 on the unimodal curve. The points
of this sequence are assigned the letter L or R according to whether they lie to the
left or to the right of the critical point.

U-sequences listed in Table 3.3 can be observed for the logistic equation. This
and other sequences are also observable with other mathematical models of dynamic
systems.

3 Chaos Theory for Evolutionary Algorithms Researchers 101

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Fig. 3.10 Unimodal sequence of the logistic equation

Table 3.2 U-sequence according to [0]

Perioda U-sequence Parameter A value
2 R 3.2361
4 RLR 3.4986
6 RLRRR 3.6275
5 RLRR 3.7389
3 RL 3.8319
6 RLLRL 3.8446
5 RLLR 3.9057
6 RLLRR 3.9375
4 RLL 3.9603
6 RLLLR 3.9778
5 RLLL 3.9903

A graphic presentation of such sequences is also possible in 2D graphs by assign-
ing white color to the R-positions and black color to the L-positions. Therefore, one
can easily see when U-sequences agree with one another. Figs 3.11 and 3.12 depict
the U-sequences for the logistic equation and for the following equation

xn+1 = 1 −Cx2
n (3.10)

called as the quadratic one. The sequences are the same for A = 3.3 in the former
equation and C = 1.1 in the latter equation.

102 S. Celikovsky and I. Zelinka

0 5 10 15 20
Iterace

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.

A

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.

Fig. 3.11 Graphical representation of the U-
sequence for the logistic equation with pa-
rameter A

0 5 10 15 20
Iterace

0

0.25

0.5

0.75

1.

1.25

1.5

1.75

2.

C

0

0.25

0.5

0.75

1.

1.25

1.5

1.75

2.

Fig. 3.12 Graphical representation of the U-
sequence for the quadratic equation with pa-
rameter C

3.3.4 Intermittence, Period Doubling, Metastable Chaos and
Crises

The emergence of chaos is not a phenomenon that can be described as a purely
discrete event; instead, it has a “transient phase” during which the system behav-
ior changes from predictable to chaotic, both by a deterministic pathway and by
a random pathway. The two processes are often intertwined, representing thus a
kind of “universal” pathway to chaos. Period doubling is a typical example of a
deterministic transition [16]. This is a phenomenon where the period of the system
behavior doubles and at some control parameter levels transforms into chaotic be-
havior. This is demonstrated for the logistic equation in Fig. 3.13 and 3.14, where
the left part displays the period doubling mode and the right part displays intermit-
tence. It is of interest to note that the geometric objects which are seen on the right
in Fig. 3.14, having a triangular shape (iterations 30 - 40, 50 - 60), are known from
stock exchange developments and are employed for near-future time series behavior
estimates.

The emergence of intermittence [16] is associated with very fine changes in the
control parameter, which can be due to noise or, for instance, to numerical insta-
bility. Due to such fine changes the system behavior changes dramatically, being
transferred from one type of behavior to the other. The emergence of intermittence
from the logistic equation is shown in Figs 3.15 and 3.16 by means of the WEB dia-
gram [16], [6]. A web diagram, also sometimes called a cobweb plot, is a graph that
can be used to visualize successive iterations of a function xn+1 = f (xn). The dia-
gram is called WEB because its straight line segments “anchored” to the functions
and can resemble a spider web - thus WEB diagram.

3 Chaos Theory for Evolutionary Algorithms Researchers 103

0 10 20 30 40

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iterace

x

Fig. 3.13 Period doubling for the logistic
equation...

0 20 40 60 80

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iterace

x

Fig. 3.14 ... and intermittence.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

f�x�

Fig. 3.15 WEB diagram of the logistic equa-
tion for A = 3.7375 and 70 iterations

0.46 0.48 0.50 0.52 0.54

0.46

0.48

0.50

0.52

0.54

x

f�x�

Fig. 3.16 WEB diagram (detail) of the logis-
tic equation for A = 3.7375 and 70 iterations

In Fig. 3.16 a small change causes the behavior to “switch” to the chaotic mode
whose overall appearance is shown in Fig. 3.15. If this change is due to a continuous
change in the control parameter, a crisis (see later) can take place if promoted by the
configuration of the system. This means that the entire chaotic attractor can vanish
or be replaced by another attractor [16]. A little bit more detailed analysis of the
various pathways leading to chaos will be presented later in this Chapter.

3.3.5 Feigenbaum Constants

As mentioned in the section highlighting the history of theories dealing with deter-
ministic chaos, the theoretical physicist Mitchell Feigenbaum devised two constants
which certainly belong to the set of universalities of deterministic chaos. Their na-
ture and application can be best explained using examples which include graphical
visualization of the development of a chaotic system, specifically bifurcation dia-
grams (Fig. 3.17).

104 S. Celikovsky and I. Zelinka

Fig. 3.17 Source of Feigenbaum’s constants - self-similarity of bifurcation diagrams. Left:
diagram for the logistic equation (3.11); right: section for the equation containing the trigono-
metric function, eq. (3.12).

The diagrams were generated by using (3.11) and (3.12):

xn+1 = Axn(1 − xn) (3.11)

xn+1 = Bsin(πxn) (3.12)

They differ in a comprehensive representation (Fig. 3.17) but a detailed view shows
that different systems can produce virtually identical behavior: Two Feigenbaum’s
constants α and δ follow from Fig. 3.17. Basically, they are numbers (constants)
representing geometric convergence of bifurcation diagrams. Both diagrams exhibit
branch splitting which proceeds in a very similar manner, as regards both the x-axis
and the y-axis. This can be seen in detail in Fig. 3.17.

Fig. 3.17 demonstrates that when the control parameter is changed, the system
behavior changes so that the branches in the bifurcation diagram are divided into two
additional branches each while a distance from the most recent division is progres-
sively diminishing. If the branching is projected into the x-axis and the ordinates in
which the branching has taken place are denoted sequentially, a sequence of num-
bers is obtained expressing the geometric convergence of the bifurcation diagram
with respect to the x-axis. This set of numbers also expresses the second Feigen-
baum’s constant, δ , given by relations (3.13) and (3.14).

δn =
An − An−1

An+1 − An
(3.13)

δ = lim
n→∞

δn = 4.66920161... (3.14)

Constant δ is the limit of numbers which can be understood, with some exag-
geration, as “local Feigenbaum’s constants”. The first Feigenbaum’s constant is α
(which also precedes δ in the Greek alphabet). This constant is derived by a sim-
ilar procedure. The branching process is accompanied by changes in the distance

3 Chaos Theory for Evolutionary Algorithms Researchers 105

between the points of branching, denoted dn. Once again, constant α is given by the
limit of the ratio of the current distance to the previous distance. The mathematical
formula is given by eq. (3.15). The limiting sequences leading to the above con-
stants can be calculated even from simple mathematical models, such as the logistic
equation.

α = lim
n→∞

dn

dn+1
= 2.5029... (3.15)

Feigenbaum’s constants are physical parameters which are common to a wide
class of systems. From how the constants are derived (as also indicated in [16]) also
follows how they can be used, specifically, how δ can be used to predict additional
bifurcations in the system. Realizing that δ describes the measure of subsequent bi-
furcations, the prediction principle is quite clear. Starting from eq. (3.13) and (3.14)
and rearranging, one arrives at eq. (3.16), which can be used to calculate the control
parameter value at which the next bifurcation will take place.

An+1 =
An − An−1

δ
+ An (3.16)

In this manner the values can be obtained, or as shown by relations (3.17) and (3.18).

A3 =
A2 − A1

δ
+ A2 (3.17)

A4 =
A3 − A2

δ
+ A3 (3.18)

Hence, the result is fully determined by the two preceding bifurcations. Substitu-
tion of eq. (3.17) in (3.18) gives eq. (3.19), which enables us to calculate from two
values of the control parameter An at which bifurcation takes place. In this manner
one can proceed up to the value (3.20) at which chaos appears. In fact, this predic-
tion is approximate only; nevertheless, as proved by various experiments [16], the
predictions fit the reality quite well.

A4 =
A2 − A1

δ 2 + δ
+ A2 (3.19)

A∞ =
A2 − A1

δ − 1
+ A2 (3.20)

3.3.6 Self-similarity

Another common feature of chaos is self-similarity [6], a phenomenon which can
be seen quite well on bifurcation diagrams. Self-similarity is best demonstrable in
fractal geometry. Basically, self-similarity is the property of a geometric object that
contains a component part which is identical with or very similar to the geometric
structure of the whole object. In other words, a sub-set of the parent object is similar
to the parent object. This property is actually only a geometric-linguistic expression

106 S. Celikovsky and I. Zelinka

of rather complex mathematical structures and the associated mathematical appara-
tus which is used in fractal geometry. Self-similarity can be demonstrated graphi-
cally on two classic fractal objects - snowflake and fern (Fig. 3.18 - 3.19). Take any
part of the object: its structure will resemble that of the basic object.

Fig. 3.18 Self-similarity in snowflake ... Fig. 3.19 ... and in fern.

The same applies, for instance, to bifurcation diagrams. Since their structure
is determined by Feigenbaum’s constants, which are universal for chaos as such,
some graphical visualizations of chaos can be expected to exhibit self-similarity,
viz. within a single visualization (a single bifurcation diagram) or among several bi-
furcations diagrams of different systems. This is well illustrated by the demonstra-
tion of self-similarity using bifurcation diagrams (Fig. 3.17). The diagrams clearly
display self-similarity. The result will be the same with other bifurcation diagrams
also. Self-similarity and other fractal properties can also be found in other visual-
izations of course (chaotic attractors), but bifurcation diagrams are apparently most
graphic for this purpose.

3.4 From Order to Chaos

Deterministic chaos as such does not exist on its own. In fact, it is a type of behav-
ior that can be observed in some nonlinear systems and which can be tackled from
various sides. Usually, two methods to get to chaotic behavior are described in the
literature: through local bifurcations and through global bifurcations. The two cate-
gories are then classed further into special subgroups of transition to chaos. For local
bifurcations these include period doubling, quasi-periodicity, and intermittence, the
last-mentioned being further granulated into Type I (tangent bifurcation), Type II
(Hopf’s bifurcation), and Type III (period doubling). For global bifurcations, these
include chaotic transients and crises. An overview of the transitions is shown in
Table 3.3.

3 Chaos Theory for Evolutionary Algorithms Researchers 107

Table 3.3 Ways to chaos

Way to chaos Note

Local bifurcation Period doubling, quasi-periodicity, intermittence (type I, II a III)
Global bifurcation Transients, crisis

Transient to chaotic behavior is very often combination of transients mentioned in
the Table 3.3. Complexity of final transient depend on dynamical system structure,
but also on the set of signals which influent behavior of given dynamical system.

3.4.1 Period Doubling

Period doubling is another way to reach chaos domain and is joined with so called
limit cycles. Term “period doubling” means that under certain conditions is behav-
ior of dynamical system doubling its periodical behavior (from period 2 to period
4, etc...) which is remoted by certain control parameter of observed system. Pe-
riod doubling is easily observable on so called Poincare section, which is in fact,
N − 1 dimensional plane through which trajectory is going. All intersections with
plane are recorded and are observable like points on Poincare plane, as is depicted at
Fig. 3.21, Fig. 3.23 or Fig. 3.25. Under changes of control parameter, system’s tra-
jectory is doubling (number of intersection increase) till chaotic behavior is reached.
Period doubling is observable in systems which containing “internal” frequency and
are controlled by external signal. In the case that there is no external control input
and period doubling is observable, system must contain both signals (frequencies)
generated under suitable conditions.

Both frequencies, or better their mutual combination, determine resulting behav-
ior of dynamical system, which is determined by mutual ratios of both frequencies
(lets call them for now ωR and ωr) which can be rational or irrational. In the case of
rational ratio, is resulting trajectory periodical, in the case of irrational ratio one can
observe quasi-periodical trajectories. The influence of both frequencies can be eas-
ily generated by (3.21). Equations parametrically describe dynamics of trajectory in
3D on a torus, with radius R and r. Frequencies ωR and ωr are of rotation around
main torus radius R and radius of its body r. On figure 3.20 and 3.21 is depicted
trajectory for ωR = 3 and ωr = 2 including Poincare’s surface with three points.
Trajectory is periodical. For ωr = 2.1 is trajectory more complicated, see Fig. 3.22
and 3.23. If the raion of both frequencies become to be more irrational, then torus
surface is more densely covered and at Poincare section is cutting trajectory creating
a circle, see Fig. 3.24 and 3.25.

x1(t) = cos(tωR) (r sin(tωr)+ R)
x2(t) = r cos(tωr)
x3(t) = sin(tωR) (r sin(tωr)+ R)

(3.21)

108 S. Celikovsky and I. Zelinka

-1 0 1

-0.2
0

0.2

-1

0

1

2

Fig. 3.20 Trajectory and its Poincare sec-
tion for ωR = 3

�0.2 0 0.2
x1

0.8

1

1.2

x2

Fig. 3.21 and ωr = 2

-1 0 1

-0.2
0

0.2

-1

0

1

2

Fig. 3.22 Trajectory and its Poincare section
for ωR = 3

�0.2 0 0.2
x1

0.8

1

1.2

x2

Fig. 3.23 and ωr = 2.1

If any of the two frequencies is changed, the resulting trajectory need not neces-
sarily be more chaotic; on the contrary, if the two frequencies are in suitable (“more
rational”) ratios, “deterministic windows” can appear in the trajectory behavior, i.e.
the trajectory does not exhibit chaotic motion. This is demonstrated in Fig. 3.26 -
3.29, where more or less chaotic behavior of the resulting trajectory can be observed

3 Chaos Theory for Evolutionary Algorithms Researchers 109

-1 0 1

-0.2
0

0.2

-1

0

1

2

Fig. 3.24 Trajectory and its Poincare section
for ωR = 3

�0.2 0 0.2
x1

0.8

1

1.2

x2

Fig. 3.25 and ωr = 2.33

ΩR � 2, Ωr � 4.04

-1 0 1

-0.2
0

0.2

-1

0

1

2

Fig. 3.26 Trajectory for ωR = 2 and dif-
ferent ωr

ΩR � 2, Ωr � 4.68

-1 0 1

-0.2
0

0.2

-1

0

1

Fig. 3.27 Trajectory for ωR= 2 and different
ωr

for different. If the behavior becomes chaotic, the trajectory forms a ring, called a
drift ring, on the Poincare plane.

The pathway leading to chaos and containing period doubling has the following
structure: singular point → limiting cycle → period doubling → quasi-periodicity
→ chaos. Period doubling and quasi-periodicity play the parts of chain links only.
Apart from special cases, transition from quasi-periodicity to chaos is only possible
if a new, third frequency appears in the system with a constant change in the control
parameter. Three dimensions as a minimum are needed for chaos to emerge. If (ex-
cept for special cases as mentioned) chaos could emerge for less that 3 dimensions,
this would be in violation of the Poincare-Bendixon theorem, according to which

110 S. Celikovsky and I. Zelinka

ΩR � 2, Ωr � 4.76

-1 0 1

-0.2
0

0.2

-1

0

1

2

Fig. 3.28 Trajectory for ωR= 2 and differ-
ent ωr

ΩR � 2, Ωr � 4.8

-1 0 1

-0.2
0

0.2

-1

0

1

2

Fig. 3.29 Trajectory for ωR= 2 and different
ωr

chaos cannot emerge in 2D. Period doubling with subsequent quasi-periodicity is a
universal phenomenon which can be observed in a wide range of dynamic systems.
The only condition that must be met is that a suitable number of frequencies exist in
the system, while the physical structure of the system does not matter. When study-
ing the phenomenon of period doubling, the system can be looked upon as pair of
systems where one system is superior to (affects - controls) the other system. This
is also referred to as oscillator locking (coupling), specifically frequency locking,
phase locking or mode locking [16], which are different names for the same phe-
nomenon. The extent of locking is given by the ωR and ωr, or more generally by ω1

and ω2 in 3.22, frequency ratio, and is denoted w, from the term winding number
(also called rotation number).

w =
ω2

ω1
(3.22)

If w is determined by a rational ratio, then the wandering trajectory only forms
a finite set of points on Poincare section, and vice versa. It is noteworthy that if the
winding number w is plotted in dependence on a suitably chosen system parameter,
a fractal called “devil’s staircase” [16], [6] appears. Devil’s staircase for the “circu-
lar sine” (eq. 3.23) discrete dynamic system is shown in Fig. 3.30. Meaning of φ
in eq. (3.23) is such that it is based on general description φn+1 = f (φn) in which
f (φ) is periodic in angle φ , see [16], page 263-265. This staircase is a monotonically
increasing curve whose horizontal segments correspond to the winding number (cal-
culated as the ωR and ωr frequency ratio) at which frequency locking takes place.

φn+1 =
⌈
−K sin(2πφn)

2π
+ φn + Ω

⌉
(3.23)

Period doubling can also be observed in systems whose mathematical model does
not directly include any frequency (which does not imply that such a model cannot
be set up for the system). Typical examples include the above logistic equation, as
demonstrated in Fig. 3.31.

3 Chaos Theory for Evolutionary Algorithms Researchers 111

0.3 0.4 0.5 0.6 0.7
�

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

w

Fig. 3.30 Devil’s staircase for the “circular sine” discrete dynamic system with K = 1.2 and
Θ = 0.3 and Ω ∈ [0.25, 0.75]

3.4.2 Intermittence

Intermittence is a next pathway to chaos. During this transition to chaos, irregularly
appearing regions of chaotic behavior whose length and frequency of occurrence
depend on the appropriate system control parameters can be observed in the time
development of the system. As the parameters are gradually changed, the chaotic
segments can be more and more frequent and ultimately become the only observ-
able behavior of the system (or vice versa). Once again, the behavior of the logistic
equation (3.11) can be used to demonstrate intermittence (Fig. 3.14). Intermittence,
of both types in which it is usually classed, is seen in both graphs. First type inter-
mittence is a phenomenon where deterministic (periodic) behaviour alternates with
chaotic behavior (Fig. 3.14). Second type intermittence is characterized by changes
in behavior between chaos and quasi-periodicity (Fig.3.13). It is noteworthy that in
both cases, an object whose apexes fill an imaginary triangle appears in the devel-
opment roughly at the 30th iteration. This object has its name and is amply used

112 S. Celikovsky and I. Zelinka

Fig. 3.31 Period doubling in the logistic equation

in stock exchange speculations to predict the near-future behavior of stocks. One of
the technical indicators, its name is Triangle.

Generally speaking, intermittence is based on the existence of singular points in
the dynamic system’s state space. The abrupt dramatic change in the system behav-
ior is due to the fact that some singular points vanish when the control parameter
is changed slightly and are not replaced by other singular points. As some singu-
lar points vanish, the remaining singular points and their attractivity basins undergo
overall position reconfiguration, and as a consequence, a trajectory which was pe-
riodic becomes chaotic and vice versa. The reverse phenomenon is also feasible of
course, singular points can “be formed”, whereupon the state space is reconfigured
and the system behavior changes.

The dependence of the existence of singular points on an external control param-
eter can be well demonstrated on iterative mappings, e.g. on the logistic equation.
Fig. 3.32 shows the logistic equation in five-fold iteration for different values of
the control parameter A. If A = 3.74, this “system” includes some singular points
of the sink type, by which trajectories are attracted, and some source type points,
by which trajectories are repulsed. In the steady state the behavior can then be de-
terministic. If the A-values start to change towards 3.72, singular points vanish (no
point of intersection with the logistic equation curve with a slope of 45◦ exists). If
the system development reaches this area, it starts to exhibit deterministic behavior,
because it cannot do otherwise in the limited space between the slope and logistic
equation curve (see Fig. 3.34). Since the intersection of the curve and 45◦ straight
line emerges or vanishes here, this phenomenon is called tangent bifurcation or also
saddle-node bifurcation.

3 Chaos Theory for Evolutionary Algorithms Researchers 113

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

f�x�

Fig. 3.32 Logistic equation intermittence for
A = 3.7375

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

f�x�

Fig. 3.33 and 3.7427

0.46 0.48 0.5 0.52 0.54
x

0.46

0.48

0.5

0.52

0.54

f�x�

Fig. 3.34 Occurrence of intermittence for the logistic equation with A = 3.7375, detail from
Fig. 3.33

In this case the logistic equation tends to chaos (Fig. 3.36). If the parameter varied
from 3.72 to 3.74, deterministic sequences would be more and more frequent in the
chaotic behavior and ultimately the behavior would be purely deterministic. So far
it was tacitly assumed that the intermittence was induced by purely deterministic
A-parameter setting. In the real world, however, virtually everything is affected by
noise, which can superpose control signals as well as other signals. This implies
that noise can also affect the A-parameter, which otherwise can also be constant,
approaching tangent bifurcation. It will be clear that with a suitable noise intensity
and nature, the A-parameter can take values at which singular points vanish, and
furthermore, that due to the properties of noise, this value will be transient rather
than permanent and that the A-parameter will eventually return to its initial value.
The frequency of occurrence of intermittence so induced can be quite different from
that obtained by deterministic “excitation”. The effect of noise on the existence or

114 S. Celikovsky and I. Zelinka

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

f�x�

Fig. 3.35 Behaviour of the logistic equation
with A = 3.74

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

f�x�

Fig. 3.36 and 3.72, 60 iterations

0 50 100 150 200
x

0

2

4

6

8

10

12

f�x�

Fig. 3.37 Behaviour of the relation xn +1 = Asin(xn)+xn at A = 4.61 and x0 = 0.91

non-existence of intermittence is a problem which is too complex to be discussed in
this publication.

3.4.3 Chaotic Transients

Chaotic transients are a typical phenomenon accompanying models that are based
on differential equations. The state space of such a system-model generally includes
n singular points lying on the intersections of separatrices dividing the state space
into regions with different types of behavior. A state space can generally have N
dimensions and so a separatrix may not be a mere curve; instead, it constitutes a
smooth, differently wavy plane referred to as manifold. Such manifolds can get,
without any collision, as far as the state space boundary or else they can intersect.

3 Chaos Theory for Evolutionary Algorithms Researchers 115

The source of deterministic chaos in dynamic systems modeled by differential equa-
tions is the manner in which the manifolds intersect and thus separate the state space
regions from one another. Two types of manifold intersections exist: homoclinic and
heteroclinic. The principle can be best explained on manifolds in 3D with a Poincare
plane. An artificial example of manifolds is shown in Fig. 3.38 and 3.39, exhibiting
also their Poincare plane. Manifolds are classed into stable manifolds (in-set) and
unstable manifolds (out-set). If a state trajectory starts its path on a stable manifold,
it is attracted directly into a singular point, whereas repulsion occurs if the manifold
is unstable. This also holds for reasonably near manifold neighborhoods. Generally,
the nearer a state trajectory is to a manifold, the more its behavior will be affected
by that manifold.

Fig. 3.38 Manifolds in 3D (left) and their
Poincare plane

Fig. 3.39 The dashed area represents an un-
stable manifold

Homoclinic intersection is an intersection of manifolds originating from the same
singular point. This is demonstrated in Fig. 3.40 and 3.41 showing a special case of
intersection of manifolds which is more interlinking than intersection. Homoclinic
intersections, demonstrated in Fig. 3.40 and 3.41, are less common. A classic exam-
ple is the intersection of manifolds shown in Fig. 3.42, exhibiting what will happen
in such case. If two manifolds intersect in this manner, the intersecting manifold will
create a set of intersections of which there are infinitely many and whose “density”
increases towards the singular point. It will be clear that 3D representation of such
intersection creates a much more complex structure - the old state space is broken
down and trapped in any regions from which the trajectory cannot escape and an
attractor emerges.

The appearance of an attractor is thus determined by the formation of a kind of
“pocket” whose boundaries are formed by two manifolds of opposite nature. As
explained above, manifolds affect the behavior in their neighborhood. If a trajec-
tory starts its path anywhere within such a region, then it is necessarily attracted by
one of the manifolds and repulsed by the other manifold. The moment the trajec-
tory is attracted near to a set of points that appear as a singular point on the Poincare

116 S. Celikovsky and I. Zelinka

Fig. 3.40 Homoclinic intersection in 3D
representation...

Fig. 3.41 and its representation on Poincare
plane

Fig. 3.42 Homoclinic intersection of manifolds - a more common case

plane and forms a homoclinic trajectory in 3D, it is hurled off due to the presence
of an unstable manifold. Such a trajectory moves constantly on trajectories which
do not repeat. An artificial case of such development is shown in Fig. 3.43 and 3.44.
Singular points (and manifolds rising from them) are saddle type, and the chance
that the trajectory will starts its path precisely in the position of a homoclinic point
set is nearly certainly nil. This is contributed to by the ubiquitous noise, inaccuracy
of measurement, etc., including quantum uncertainty which is actually transformed
as far as to the macroworld.

The Lorenz attractor is a clear example of the emergence of chaos based on in-
tersecting manifolds, we recommend to read for more [13].

3 Chaos Theory for Evolutionary Algorithms Researchers 117

Fig. 3.43 Trajectory in a region bounded
by manifolds and by their intersections

Fig. 3.44 Cut through region from Fig. 3.43

3.4.4 Crises

Crises are a phenomenon where chaotic behavior usually changes dramatically.
Such changes can be of various nature. Deterministic behavior can vanish altogether,
to be replaced by pure chaos, or conversely, the magnitude of the attractor changes,
as does the size of its basin of attraction. Such changes have a common denominator,
namely, the quality and configuration of singular points in the state space, includ-
ing their change in dependence on the control parameters. Crises are categorized
into 2 classes: boundary crises and interior crises. Boundary crises occur on imagi-
nary boundaries of attractors, which are determined by a suitable control parameter
value. For the logistic equation, the boundary is A = 4. Beyond this boundary the
chaotic attractor, represented by “snowing” in the bifurcation diagram, vanishes.
This is due to the divergence of the trajectory away from the region in which the
chaotic attractor was initially present. For the logistic equation with A = 4 and x0 ∈
[0, 1] the trajectory is confined in the chaotic attractor, because any calculated value
of it again lies within the interval of [0, 1], and since it serves as the logistic equation
argument in the next iteration, it is clear that such a number would also belong to
that interval. However, if A is changed, say, to A = 4.1, then levels in excess 1 can
be attained in the area of the apex of the parabola generated by the logistic equation.
The time needed to attain that area is relatively short. If a trajectory “strays” into that
area, it starts running away from the area where the chaotic attractor was initially
present at A = 4. In other words, if the value is changed to A > 4, a “creep-hole” in
the chaotic attractor opens up, enabling the trajectory to escape. Such change can be
caused by deterministic influences (control, ...) or by random effects (noise). Bound-
ary crisis is demonstrated for the logistic equation in the form of the WEB diagram
in Fig. 3.45. When the number of iterations exceeds 11, the trajectory reaches the
apex of the parabola and escapes to infinity in this case. Something similar can also
be observed on the “circular sine” bifurcation diagram (Fig. 3.46), where chaos van-
ishes abruptly at K = 3.8 and purely deterministic behavior establishes in a different
region of the state space (up to a value of approximately 4.27). The same effect can
be observed in Henon bifurcation diagram at C = 1.8.

118 S. Celikovsky and I. Zelinka

Fig. 3.45 WEB diagram of the logistic equa-
tion for A = 4.1. Example of boundary crisis

Fig. 3.46 “Circular sine” bifurcation diagram

Fig. 3.47 Bifurcation diagram of “Gausian
map” xn+1 = e−bx2

n +c
Fig. 3.48 Bifurcation diagram of xn+1 =
Asinxn +xn

Interior crises are changes in behavior during which the chaotic attractor under-
goes dramatic changes but does not vanish. The bifurcation diagram of the Gaussian
map (Fig. 3.47) is a graphic example showing how the chaotic attractor structure
changes in dependence on the control parameter c. The expansion of the chaotic
attractor is usually due to collision of a trajectory with a source type or unstable
limiting cycle type singular point. In such case the trajectory is “hurled off” to re-
gions where it normally would not get or would get in an extremely long time. Like
in intermittences, noise plays an important role in crises.

Due to crises, attractors can be linked up into a single one, or conversely, can
decompose into several attractors [25]. Fig. 3.48 shows the behavior of equation
xn+1 = Asinxn + xn in dependence on A-parameter and different initial conditions.
Observing what happens when this parameter is increased, one finds that all attrac-
tors are combined into a single one starting from A ≈ 4.603. Before this level, the
trajectory develops in one of the attractors shown only, in dependence on A and on
the starting value. The trajectories only merge at A > 4.603. Decrease in A is accom-
panied by the reverse effect - decomposition of the bound attractor into a number of
disjoint attractors at A < 4.603.

3 Chaos Theory for Evolutionary Algorithms Researchers 119

3.5 Selected Examples

Deterministic chaos can be observed in many dynamic systems of different na-
ture. Included are electronic systems (Chua’s circuit, circuits with diodes, circuits
with digital filters,...), mechanical systems (double pendulum, magnetic pendulum,
billiard problem, ...), biological systems (logistic equation, evolutionary dynamics
systems, ...), physical systems (physical plasma, the three-body problem, hydrody-
namics, ...) and others. Some can be simply materialized on the bench, whereas
others can only be observed within a natural process. The objective of this chapter
is to demonstrate deterministic chaos on selected examples, specifically from the
domains of mechanics, electronics, biology, meteorology and numbers theory.

3.5.1 Mechanical System – Billiard

There are countless examples of deterministic chaos in classical mechanics. A very
didactic example is the experiment with small balls falling through a system of bars
fixed in a wall. This problem concerns the reflection of two bodies with curved sur-
faces - balls in this case - or of a radius (beam) from a spherical surface. Taking into
account the curvature of the surfaces it will be clear that even the slightest change in
the initial conditions will bring about differences in the repeated trajectory. Sensitiv-
ity to initial conditions in the billiard problem can be clearly seen on the simulation
of falling of a ball through a system of bars with 20 rows (Fig. 3.49). Here the simu-
lation was repeated four times with differences in the initial conditions (x-axis) of 0,
0.00001, 0.00002, and 0.00003, respectively. The difference in the initial conditions

Fig. 3.49 Variant of trajectories in the billiard problem

120 S. Celikovsky and I. Zelinka

was thus in the order 10−5. Despite the small number of bar rows (exactly 20) the
trajectories are apparently different starting from the seventh row.

The billiard problem can be demonstrated not only on classic balls but also
on many other types of “billiard”, which are basically curved surfaces forming
together closed objects in which the divergence of colinear radii can be well
observed. Another example is at Fig. 3.50. It is clearly visible that trajectories
diverge after a few iterations. Starting positions were x1 = 0.936578,y1 = 1.31709
and x2 = 0.936578,y2 = 1.3063.

Start here

Fig. 3.50 Another variant of the billiard - trajectories diverge after a few iterations. Starting
positions were x1 = 0.936578,y1 = 1.31709 and x2 = 0.936578,y2 = 1.3063

3.5.2 Mechanical System – Duffing’s Equation

Duffing’s equation describes Duffing’s oscillator, designed in 1918. Duffing’s oscil-
lator consists of a metallic strip with an ac electromagnet located near the centre
of the strip. The electromagnetic field which is formed by the magnet displaces the
strip sideways. Duffing’s oscillator is modeled by (3.24) which, however, describes
the ideal case where no energy is lost. In a real Duffing’s oscillator, energy losses
must be taken into account, as in eq. (3.25). This equation transforms into eq. (3.26)
for the external excitation setup.

q̈(t)− aq(t)+ bq(t)3 = 0 (3.24)

3 Chaos Theory for Evolutionary Algorithms Researchers 121

q̈(t)− aq(t)+ bq(t)3+ cq′(t) = 0 (3.25)

q̈(t)− aq(t)+ bq(t)3 = f0 cos(tωd) (3.26)

Equation (3.24) is a starting point for understanding the origin of chaos in this sys-
tem. The model contains 3 components: acceleration q̈(t), linear force effect aq(t),
and nonlinear force effect bq(t)3. Various types of the steady state can be achieved
in the oscillator by varying parameters a and b. The states can be determined by
means of the first integral (3.27) of the system, describing total energy of the oscil-
lator. The total energy consists of 2 components: kinetic energy and potential energy,
described by the last term and by the remaining terms in (3.28), respectively.

∫
q̇(t)

(−aq(t)+ bq(t)3 + q̈(t)
)

dt (3.27)

−1
2

aq(t)2 +
1
4

bq(t)4 +
1
2

q̇(t)2 (3.28)

The first two terms in (3.28) can be used to set up the potential (Fig. 3.51 and
3.52) describing its dependence on parameter a. If a > 0, the oscillator has three
equilibrium states - two stable states (minima) and one unstable state (maximum
between the two minima). If a < 0, the oscillator possesses one stable state only. The
minima and maxima in the potential shown represent states to which the oscillator
behavior is attracted or from which it is repulsed. If the entire equation (3.28) is
considered, the basin of attraction of Duffing’s oscillator can be depicted as shown
in Fig. 3.53. In the picture, the variables are interchanged according to scheme . Figs
3.53 and 3.54 display both the basins of attraction and the energy equipotentials -
points in which the oscillator possesses the same energy.

The plots in Fig. 3.51 - 3.54 differ in that only the components of the potential
energy of the first integral were used in Fig. 3.51. The components contained q(t)
only and the graph was generated as the q(t) vs a plot. In Fig. 3.53 and 3.54, kinetic

�10

0

10

q

0

2

4

a

�100

�50

0

50

Potential

Fig. 3.51 Duffing’s equation potential at
b = 0.05...

a=-1

a=4

�15 �10 �5 0 5 10 15

0

200

400

600

q

P
o
t
e
n
t
i
a
l

Fig. 3.52 ... and 2D view.

122 S. Celikovsky and I. Zelinka

�15 �10 �5 0 5 10 15
�15

�10

�5

0

5

10

15

q

v

�15 �10 �5 0 5 10 15
�15

�10

�5

0

5

10

15

q

v
Fig. 3.53 Duffing’s equation basins of attraction, a = -1 (left) and a = 4 (right); b = 0.05

-10010

q

-10

0

10

v

0

100

200

300

E

-10

0

10

v

Fig. 3.54 Duffing’s equation basins of attraction and equipotentials in 3D for a = 4 and b =
0.05

energy was also included, enabling non-parametric representation to be applied to
the system total energy. The potential in Fig. 3.51 can be imagined as a wire with a
ball on it. If the ball is positioned at the local maximum, any impulse can displace
the ball from this position. The ball then travels further to some of the sinks, and
since friction is not considered in this model, the ball will oscillate about the local
minimum infinitely long. If the ball were released from a higher-energy position
(level), it would travel cyclically from one local minimum to another through a local
energy maximum. If energy dissipation is considered, (3.24) takes the form of (3.25)

3 Chaos Theory for Evolutionary Algorithms Researchers 123

where the term cq̇(t) represents dissipation. In this modification the ball motion on
the wire will slow down (energy is irreversibly lost) and ultimately stop. Behavior
of this type is better represented in terms of the state space and state trajectories. For
this purpose, eq. (3.24) is modified to the form (3.29).

ṗ(t)− aq(t)+ bq(t)3 = 0
q̇(t) = p(t) (3.29)

In this manner the nth order differential equation is transformed into n first-order
equations. The corresponding variables then represent state variables. This system of
differential equations can serve to simply draw a “state portrait” (Fig. 3.55) in which
the arrows show the direction of the state trajectory (corresponding, in fact, to the
equipotential lines in Fig. 3.53 and 3.54). Different types of behaviour of Duffing’s
equation with dissipation can be obtained by solving (3.25), in dependence on the
extent of dissipation and on initial energy.

�15 �10 �5 0 5 10 15

�20

�10

0

10

20

q

p

�15 �10 �5 0 5 10 15
�30

�20

�10

0

10

20

30

q

p

Fig. 3.55 State portrait of Duffing’s equation, a = -1 (left) and a = 4 (right); b = 0.05

It is clear from Fig. 3.56 and 3.57 that the oscillator’s ultimate steady state de-
pends both on initial energy and on initial position, in other words, on initial con-
ditions. The trajectories of the system behaviour are attracted to one of the basins
of the system’s state space (Fig. 3.58). Fig. 3.59 - 3.61 shows both the state portrait
and the system behavior of eq. (3.25). The gradual energy loss causes the trajectory
to “sink” slowly to one of the attractors. In this manner the state space is divided
into basins in which the state trajectory gets into one or another attractor lobe. Ge-
ometric appearance of such basins can be very complex. See for example system
Fig. 3.62 and 3.63 where are depicted basins of attraction with clear fractal border.
Black area is the domain of attraction, i.e. if arbitrary trajectory start in it, then will
end in white attractor depicted inside black area, otherwise it goes out of the basin.
Other color layers represent trajectory “speed” of escaping.

Chaotic behavior of Duffing’s oscillator by can be obtained by choosing suitable
excitation conditions. This is described by (3.26). The right-hand side excitation

124 S. Celikovsky and I. Zelinka

0 5 10 15 20 25 30

�10

�5

0

5

10

t

q

Fig. 3.56 Behavior of Duffing’s equations
with dissipation...

0 5 10 15 20 25 30

�10

�5

0

5

10

t

q

Fig. 3.57 ... another level of dissipation.

�10 �5 0 5 10

�10

�5

0

5

10

q

p

Fig. 3.58 State trajectories of Duffing’s equation with dissipation

term consists of the term f0 cos(tωd). Both deterministic and chaotic behavior can
be observed for Duffing’s equation for certain values of the two terms. A typical
example of chaos is shown in Fig. 3.64 - 3.65. If the above setup of a ball on a
wire is “transformed” into the setup of a ball rolling on a plane, then the appearance
of chaos can be understood so that external excitation by the element f0 cos(tωd)
provides sufficient energy not only to cover dissipation losses but also for chaotic
motion of the ball.

3.5.3 Electronic System – Chua’s Circuit, Circuit with a Diode

Electronic circuits are among the most popular systems used to demonstrate deter-
ministic chaos. Their popularity stems from the fact that electronic circuits are easy

3 Chaos Theory for Evolutionary Algorithms Researchers 125

�15 �10 �5 0 5 10 15

�20

�10

0

10

20

q

p

Fig. 3.59 State trajectories of Duffing’s
equation with dissipation.

�15 �10 �5 0 5 10 15

�20

�10

0

10

20

q

p

Fig. 3.60 ... another level of dissipation.

�15 �10 �5 0 5 10 15
�20

�10

0

10

20

q

p

Fig. 3.61 State trajectories of Duffing’s equation with dissipation

to set up and provide fast response to impulse. Typical representatives of electronic
circuits with deterministic chaos include Chua’s circuit, whose hardware design and
behaviour are shown in Fig. 3.66-3.67 and Fig. 3.68-3.69, respectively. The core of
Chua’s circuit is a nonlinear resistor, eq. 3.32, sometimes called Chua’s diode [33].

On Fig. 3.69 Chua’s attractor visualized by the program Mathematica (left) and
on the oscilloscope connected to its hardware implementation shown in Fig. 3.67
(left) Chua’s circuit can be described mathematically by eq. (3.30), which can be
used to simulate the behavior of the circuit:

C1 ˙vc1(t) = G(vc2(t)− vc1(t))− g(vc1(t))
C2 ˙vc2(t) = G(vc1(t)− vc2(t))+ iL(t)
Li̇L(t) = −vc2(t)

(3.30)

vc1(0) = 0.15264, vc2(0) = −0.02281, il(0) = 0.38127 (3.31)

126 S. Celikovsky and I. Zelinka

Fig. 3.62 Example of basin of attraction Fig. 3.63 Another example of basin of at-
traction

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5

�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

q

p

Fig. 3.64 Duffing’s equation chaos for f0 =
0.29

�1.0 �0.5 0.0 0.5 1.0 1.5

�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

q

p

Fig. 3.65 ... and for f0 = 0.32; ωd = 1.

Fig. 3.66 Scheme of the Chua’s circuit ... Fig. 3.67 ... and hardware design of Chua’s
circuit.

3 Chaos Theory for Evolutionary Algorithms Researchers 127

�2 �1 0 1 2
�0.4

�0.2

0.0

0.2

0.4

X�t�

Y�t�

Fig. 3.68 Simulation of the Chua’s circuit ... Fig. 3.69 ... and the real behavior.

where the nonlinear resistor g(x) is represented by (3.32),

g(x) = m0x +
m1 − m0

2
(|x + b1|− |x − b1|)+

m2 − m1

2
(|x + b2|− |x − b2|) (3.32)

If suitable initial conditions are set as described by (3.31), a chaotic attractor can be
found in the system (Fig. 3.68).

A simple electronic circuit (Fig. 3.70) where an excitation source, resistor, coil
and diode are connected in series can serve as a next example. The diode provides
nonlinearity which is the cause of chaotic behavior in this circuit.

Vin

R1L1D1

Fig. 3.70 Layout of the circuit with a diode

The mathematical model of this physical system consists of a system of equations
and initial conditions (3.33) where the diode is modeled by means of a piecewise
linear capacitance, namely:

q̇(t) = i(t)

L1 i̇(t) = ν sin(2π f t)−
(|q(t)|(C2−C1)

2C2C1
+ |q(t)|(C2+C1)

2C2C1
+ e0

)
+ i(t)(−R1)

q(0) = 0
i(0) = 0

(3.33)

128 S. Celikovsky and I. Zelinka

Chaotic behavior can be observed when analyzing the dependence of charge q
on control voltage V . Numerical simulations of this circuit are shown in Fig. 3.71
and 3.72, displaying the time development of the behavior of the circuit, and in Fig.
3.73 and 3.74 displaying the behavior of the dependence of current i on q(t).

0.000120 0.000125 0.000130 0.000135 0.000140

�1.� 10�10

�5.� 10�11

0

5.� 10�11

1.� 10�10

t

q�
t�

��0.1

Fig. 3.71 Simulation of the diode circuit ...

0.000120 0.000125 0.000130 0.000135 0.000140

�2.� 10�10

0

2.� 10�10

4.� 10�10

6.� 10�10

t
q�

t�

��0.2

Fig. 3.72 ... for different values of ν .

0.000120 0.000125 0.000130 0.000135 0.000140

�2.� 10�10

0

2.� 10�10

4.� 10�10

6.� 10�10

8.� 10�10

1.� 10�9

t

q�
t�

��0.3

Fig. 3.73 Simulation of the diode circuit ...

0.000120 0.000125 0.000130 0.000135 0.000140

0

5.� 10�10

1.� 10�9

t

q�
t�

��0.4

Fig. 3.74 ... for different values of ν .

The bifurcation diagram of the circuit with a diode is shown in Fig. 3.79. The
diagram clearly displays transition to chaotic behavior with increasing parameter V .
From the structure of the bifurcation diagram one can not only see structure repe-
tition (self-similarity) but also the fact that all three parts are visually very similar
to bifurcation diagrams of the logistic equation (Fig. 3.81), which is just another
evidence in a series of experimental evidences of universality of chaos as such.

3.5.4 Biological System – Logistic Equation

The logistic equation is the most typical example in the domain of biological sys-
tems. This equation models the evolution of dynamic co-evolutionary systems of the
predator-prey type in which all the relevant behavior types are present. The logistic
equation is modeled by relation eq. (3.34). An important element in this equation is
the control parameter A, whose gradual change in the equation gives rise to behavior

3 Chaos Theory for Evolutionary Algorithms Researchers 129

�1.� 10�10�5.� 10�11 0 5.� 10�111.� 10�10

�0.0006

�0.0004

�0.0002

0.0000

0.0002

0.0004

0.0006

q�t�

i�
t�

��0.1

Fig. 3.75 Dependance of i on q(t) ...

�2.� 10�10 0 2.� 10�104.� 10�106.� 10�10

�0.0010

�0.0005

0.0000

0.0005

0.0010

0.0015

q�t�

i�
t�

��0.2

Fig. 3.76 ... for different values of ν .

�2.� 10�100 2.� 10�104.� 10�106.� 10�108.� 10�101.� 10�9

�0.0015

�0.0010

�0.0005

0.0000

0.0005

0.0010

0.0015

q�t�

i�
t�

��0.3

Fig. 3.77 Dependance of i on q(t) ...

0 5.� 10�10 1.� 10�9

�0.001

0.000

0.001

0.002

q�t�

i�
t�

��0.4

Fig. 3.78 ... for different values of ν .

which can be visualized conventionally (Fig. 3.80) or by means of the bifurcation
diagram (Fig. 3.81). Logistic equation is a suitable tool for studying the transition
from deterministic behavior to chaotic behavior as well as phenomena accompany-
ing that transition, such as intermittence and period doubling. Recall that logistic
equation takes the form

xn+1 = Axn(1 − xn) (3.34)

Fig. 3.80 shows chaotic behavior of the logistic equation for precisely defined
initial conditions and control parameter A. The behavior depends both on the initial
conditions and on the control parameter, as the two bifurcation diagrams in Fig. 3.81
clearly demonstrate.

130 S. Celikovsky and I. Zelinka

0.10 0.15 0.20 0.25 0.30

�2.� 10�10

0

2.� 10�10

4.� 10�10

6.� 10�10

8.� 10�10

1.� 10�9

�

q�
t�

Fig. 3.79 Circuit with a diode - bifurcation diagram

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

x

f
�
x

�

Fig. 3.80 Behavior of the logistic equation in time for A = 4, x0 = 0.2027

The diagrams show the chaotic patterns of the system behavior in dependence on
the control parameter. We would like also to note that the bifurcation diagram (and
bifurcation in general) is related to abrupt changes in the system behavior, referred
to as catastrophes, in dependence on the control parameter (Thom’s catastrophe
theory, see also [13], [4], [21]).

3 Chaos Theory for Evolutionary Algorithms Researchers 131

Fig. 3.81 Bifurcation diagram of the logistic equation

3.5.5 Meteorological System – Lorenz Weather Model

A typical representative of deterministic chaos is a very simple model of the behav-
ior of weather expressed by a system of equations devised by Edward Lorenz at MIT
in 1963. Lorenz is generally regarded as the discoverer of deterministic chaos. The
equations, including the initial conditions, are given by (3.35). They represent a hy-
drodynamic model of the behaviour of a gas or liquid during external heating [16].
A simulation of (3.35) provides the chaotic attractor that is shown in Fig. 3.82-3.83.

Fig. 3.82 The Lorenz attractor in 3D ... Fig. 3.83 ... and 2D representation.

132 S. Celikovsky and I. Zelinka

The attractor consists of two lobes in whose centers are singular points that attract
trajectories from their neighborhood and, after certain attraction, repulse them away.
The arrangement of the two singular points is such that the repulsed trajectories
get into the attraction domain of the opposite singular point, where the process is
repeated.

ẋ1(t) = −a(x1(t)− x2(t))
ẋ2(t) = −x1(t)x3(t)+ bx1(t)+ x3(t)
ẋ3(t) = x1(t)x2(t)− x3(t)

(3.35)

The origin of the Lorenz attractor, including modifications in the nature and po-
sitions of the singular points, is described in detail in [13]. It should be noted that
the accuracy of calculation of the behavior of a chaotic system also depends on the
software and method used.

3.5.6 Spatiotemporal Chaos

The systems discussed so far demonstrated deterministic chaos in the time domain,
i.e. where chaotic behavior can be observed in the system behavior developing in
time. In addition to this type of chaotic behavior, another type exists, see spatiotem-
poral behavior ([16], [24]), occurring in systems that are described, e.g., by partial
differential equations. Hence, they are systems with distributed parameters. This
type of behavior can be nicely and simply demonstrated on the logistic equation
discussed above (other iteration equations can also be used, of course) in parallel
connection, referred to as Coupled Map Lattices (CML). This is a spatiotemporally
coupled system with the development of n equations that affect each other via a
coupling constant, usually denoted ε . CML can be regarded as a field of kind of
“oscillators” which affect each other. Mathematical description of a CML using an
iteration equation for its activity consists in (3.36) where the function which is de-
noted f (...) represents the iteration equation.

xn+1(i) = (1 − ε) f (xn(i))+
ε
2
(f (xn(i− 1))+ f (xn(i+ 1))) (3.36)

Equation (3.36) is referred to as a symmetric CML because the kth equation acts
on its neighbors (through the coupling constant ε) equally on both sides. Asymmet-
ric CMLs whose description is, naturally, slightly modified, also exist. Such types
of relatively simple spatiotemporal chaotic systems provide a very wide scale of
behavior, which is used for modelling this type of chaos as well as for the study
of its control and use in information transmission and encoding. Figs 3.84 to 3.85
show the behavior of a CML according to eq. (3.36) where term f (...) is replaced
by the logistic equation, or more precisely by 100 logistic equations that affected
each other during 100 iterations. In Fig. 3.84, black points denote values exceeding
the level of 0.88 (according to [24]). The other points remain white, due to which
information regarding the actual diversity of the spatiotemporal chaos is lost. This is
demonstrated by Fig. 3.85, where a gray-scale picture is depicted. Fig. 3.86 shows

3 Chaos Theory for Evolutionary Algorithms Researchers 133

Fig. 3.84 CML in black-white visualization... Fig. 3.85 ... and its gray-scale version.

Fig. 3.86 2D CML

another version of CML: 2D version, i.e. both axes x and y are logistic equations
joined together. Time line is axe z, which is not visible in Fig. 3.86, this figure is
basically only slice cut of 2D CML in iteration 200.

Naturally, CML is not the only method to simulate spatiotemporal chaos. Consid-
erably more complex descriptions (as regards mathematical formalism and solution)
exist and will be discussed in the Chapter 6, dealing with the control of chaos.

3.5.7 Cellular Automata – Game of Life

Cellular automata [31] represent a tool that can be employed to simulate exten-
sive or complex systems. The history of cellular automata can be traced back to
ancient China, specifically to the year 1303. This is the era of origin of the Chi-
nese arithmetic triangle, better known as Pascal’s triangle (after the French math-
ematician Blaise Pascal, 1623 - 1662) published in 1527, which indirectly led to

134 S. Celikovsky and I. Zelinka

the later development of probability theory. Cellular automata only enjoyed boom
with the development of PCs, which enabled their use in virtually any branch of
human activity. Among applications of cellular automata are, for instance, simula-
tion of forest fires, differentiation of cells in human body (Kuffman’s model), the
human body’s immune failure, hydrodynamic phenomena (e.g. motion of particles
of a fluid, was used to simulate the behavior of 4 million molecules) and passage of
a liquid through unordered geometric structures such as sand. Given the computa-
tional capacity of currently available hardware, cellular automata appeared to be so
to say predestined for technically demanding “parallel” simulations of systems such
as the flow of molecules of a liquid or gas, etc. In such “huge” simulations cellular
automata feature simplicity as well as a high speed as compared to conventional cal-
culations. Cellular automata can also be used to simulate tessellations, i.e. mosaics,
which find application in investigations into the creation of mosaics in various ma-
terials, the shape of boundaries of territories of various predators or the propagation
of epidemics. A cellular automaton can be imagined as a grid/matrix, where each
square/matrix element represents a cell. In simple automata all cells are subject to
a single law, owing to which the most bizarre images can emerge. Apart from their
geometrical meaning, such images can provide information about the dynamics of
the process involved. If a phenomenon is simulated which is not homogeneous or
isotropic (which means identical properties in all points and directions), then this
fact must be taken into account when formulating the rule governing the cellular
automaton. Among the best known and most popular cellular automata is Game of
Life, governed by a very primitive rule and still exhibiting very complex behavior.
The rules are very simple and are identical for all cells:

• Any live cell with more than three live neighbors dies, as if by overcrowding.
• Any live cell with fewer than two live neighbors dies, as if caused by under-

population.
• Any dead cell with exactly three live neighbors becomes a live cell.
• Dead cells are shown in white, live cells shown in black.

This simple set of rules gives rise to incredibly complex behavior (Fig. 3.88)
forming groups of cells that die and become live cells again (blinkers), travel along
the cellular automaton (gliders), shoot down gliders (guns) or travel leaving blinkers
in their traces (star ships). Cellular automata generate both chaotic behavior and de-
terministic behavior (Fig. 3.88). The above CML simulation can also be considered
a cellular automaton based on eq. (3.36 which is the single rule for all cells here.

3.5.8 Artificial Intelligence – Neuron Networks

Neuron networks - biological or artificial - represent another chaos-generating sys-
tem. The presence of chaos in biological networks is associated with diseases such
as epilepsy, in artificial networks, with the phases of learning and recollection. A
neuron network [7] can be represented by an oriented graph whose nodes are neu-
rons, i.e. simple computational units performing primitive mathematical operations

3 Chaos Theory for Evolutionary Algorithms Researchers 135

Fig. 3.87 Game of Life containing both deterministic and chaotic structures

Fig. 3.88 Order in a cellular automaton

such as summation, multiplication, etc. Since a network is formed by discrete ob-
jects, it can be looked upon as a special type of cellular automaton, with a special
set of cells (input and output neurons). Hence, it is reasonable to expect information

136 S. Celikovsky and I. Zelinka

0 50 100 150 200 250 300
Time

0

100

200

300

400

500

600
N

e
u

r
o

n

Fig. 3.89 Steadying of chaos generated by a neuron network (w ∈ [−0.3,0.3])

0 50 100 150 200 250 300
Time

0

100

200

300

400

500

600

N
e

u
r

o
n

Fig. 3.90 “Intermittence” in the behavior of a neuron network (w ∈ [−0.6,0.6])

processing by neuron networks to be accompanied by chaotic behavior. This was
confirmed both experimentally (association with epilepsy found) and by simula-
tions (numerical studies on various models). By way of example, consider a simple
network [25] which is defined by (3.37). This is a single-layer network where out-
puts from neurons not farther than r enter the ith neuron. Hyperbolic tangent is the
transfer function [7] and w is weight, which is generated at random. Fig. 3.89 to 3.91
display the network’s behavior for identical initial conditions with differently large
intervals at which weights w were generated. The color of each point represents the
state of the neuron, of which they are 640. Fig. 3.89 clearly demonstrates that start-
ing from an initial chaotic state, all neurons will ultimately assume the same value.
It is clear from Fig. 3.90 and 3.91 that even a slight change in the weight generating

3 Chaos Theory for Evolutionary Algorithms Researchers 137

0 50 100 150 200 250 300
Time

0

100

200

300

400

500

600

N
e

u
r

o
n

Fig. 3.91 Chaos generated by a neuron network (w ∈ [−0.9,0.9])

interval brings about non-uniform stabilization, and regions can be observed where
neurons pass from a chaotic regime to a steady-state regime and back (see the group
of neurons around neuron 100-150 in Fig. 3.91) - a situation called intermittence.
When the interval for weight generation is extended again, the network’s behavior
is free from any determinism and the networks is in the chaotic regime:

xn+1(i) = tan

(
r

∑
j=1

wi (xn(i− j)+ xn(i+ j))

)
(3.37)

3.5.9 Artificial Intelligence – Evolutionary Algorithms

Optimization algorithms are powerful tools in solving many problems in practi-
cal engineering. They are typically used where solving a problem by an analyti-
cal method is inappropriate or infeasible. Suitably implemented, optimization algo-
rithms can be used without frequent user interventions into the performance of the
facility where they are used. The majority of problems in engineering practice can
be defined as optimization problems, such as finding the optimal trajectory for a
robot, optimal pressure vessel wall thickness, optimal controller parameter setting,
optimal relation between fuzzy sets, etc. In other words, the problem to be solved
can be transformed into a mathematical problem defined by a functional prescrip-
tion whose optimization leads to the finding of arguments of the objective func-
tion, which is the goal of the optimization exercise. A number of highly efficient
algorithms were developed during the past two decades, enabling highly complex
problems to be solved very efficiently and effectively. This class of algorithms has
a specific name of evolutionary algorithms. Such algorithms are capable of solving
highly complex problems quite well, owing to which they are widespread and popu-
lar in many fields of technology. A typical feature of evolutionary algorithms is that

138 S. Celikovsky and I. Zelinka

Fig. 3.92 Bifurcation diagram of simple
genetic algorithm for a ∈ [4,15], b = 1,
T = 7/8

Fig. 3.93 Bifurcation diagram of simple
genetic algorithm for a ∈ [4,15], b = 7,
T = 7/8

Fig. 3.94 Bifurcation diagram of simple
genetic algorithm for a = 9, b ∈ [1,20],
T = 7/8

Fig. 3.95 Bifurcation diagram of simple
genetic algorithm for a = 4, b = 1, T ∈
[0.7,0.9]

they work on populations of possible solutions, called individuals. Such individuals
affect each other’s quality based on certain evolutionary principles in cycles, usually
bearing the name “Generation”.

Deterministic chaos has been also observed, mathematically proven and numer-
ically demonstrated in evolutionary algorithms, especially in genetic algorithms as
reported in [32].

In that research, dynamical system models of genetic algorithms were consid-
ered with the expected behavior of the algorithm analyzed as the population size
goes to infinity. Their work is based on the research of [28], [29] and [27]. An el-
egant theory of simple genetic algorithms is based on random heuristic search on
the idea of a heuristic map G. An important point of the research in [32] is that the
map G includes all of the dynamics of the simple genetic algorithm, based on eq.
3.38 (truncation selection) and eq. 3.39 (mutation heuristic function). It is defined
by Ga,b,T = FT ◦Ua,b. In both equations, p represents population and T = t/r is an
ratio of t most fitted individuals selected from population of size r for reproduction.

3 Chaos Theory for Evolutionary Algorithms Researchers 139

Sample bifurcation diagrams are depicted in Figs. 3.92 - 3.95. Ideas about chaos
in simple genetic algorithm are explained in detail in [32]. In this chapter, it has
been proven that chaos in heuristic algorithms can be observed. This observation is
certainly not valid only for simple genetic algorithms.

FT (p) =
{

1 i f T < p
p
T i f T > p

(3.38)

Ua,b(p) = p − b
2

|2p − 1|a (2p − 1) (3.39)

3.5.10 Astronomy – The Three-Body Problem

Quite a number of systems are encountered in astrophysics exhibiting chaotic behav-
ior. As a typical example, let us discuss the three-body problem. This is a celestial
mechanics problem describing the motion of three (or more) bodies affecting one
another by gravitational forces. Mathematically, the three-body problem is formu-
lated by a system of equations of motion, see (3.40).

m jq̈ j = γ
n

∑
k 	= j

mkm j(q j − qk)∣∣q j − qk
∣∣3 , j = 1, ..., n (3.40)

In this system of equations, m is the mass of the mutually affecting bodies and q
is a vectorial function of time defining the positions of the bodies. The problem of
n bodies involves 6n variables (because each body has 3 position components and
3 velocity components). The motion of a system of n bodies is practically analyti-
cally unsolvable starting from n = 3, and simulations of the behavior are performed
numerically on computers. This problem attracted interest of such mathematicians
as Euler (1767, discovery of colinear periodic trajectories), Lagrange (1772, cen-
tral configuration of a system of n bodies), Charles-Eugene Delaunay (1860-1867,
a study 900 pages volume dealing with the Earth-Moon-Sun system).

A simplified version of the three-body problem, called the restricted three-body
problem, has been formulated in this context. In this simplification, the mass of one
of the bodies is disregarded or the trajectories of the bodies are reduced to some
shapes such as circular or elliptical. Fig. 3.96 - 3.99 shows the behavior of three
bodies for different initial conditions. Chaotic behavior, or more precisely chaotic
orbits of the three bodies are clearly seen.

The n-body problem (or more precisely its restricted version) can also be simu-
lated by means of a relatively simple device called a mad pendulum. This pendulum
consists of N magnets located in the apexes of an N-angle, above which hangs a
steel ball on a thin string (see Fig. 3.100). The mathematical model describing the
behavior of the pendulum is given by (3.41).

140 S. Celikovsky and I. Zelinka

−
6
∑

i=1

Xi−x(t)√
d2(Xi−x(t))2+(Yi−y(t))2

+ sc ∗ x(t)+ R ∗ ẋ(t)+ ẍ(t) = 0

−
6
∑

i=1

Yi−y(t)√
d2(Xi−x(t))2+(Yi−y(t))2 + sc ∗ y(t)+ R ∗ ẏ(t)+ ÿ(t) = 0

(3.41)

Each magnet attracts in some way the ball suspended from the starting position,
and a chaotic trajectory results. For example, Fig. 3.100 - 3.101 shows two trajec-
tories which are entirely different although the starting conditions only differ by
one-hundredth in the velocity.

Fig. 3.96 Three body problem - random ini-
tial conditions

Fig. 3.97 Three body problem - different ini-
tial conditions

Fig. 3.98 Three body problem - different ini-
tial conditions

Fig. 3.99 Three body problem - different ini-
tial conditions

3 Chaos Theory for Evolutionary Algorithms Researchers 141

Fig. 3.100 Trajectories of a mad pendulum
for vx,y = -1.05, -2.31...

Fig. 3.101 ... and another trajectories for
vx,y = -1.05, -2.3.

Fig. 3.102 Another trajectory for vx,y = 3, -1

It is clear from the pictures and from the physical nature of the problem that the
chaotic mode can only be observed during a certain time interval. Due to energy
dissipation the pendulum will eventually stay in the resting position at one of the
magnets or in the origin of the N-angle. Fig. 3.103 shows the development of the
x-component of the pendulum motion. Chaotic behavior can be observed during
the first 20 seconds of development. Subsequently, chaos vanishes due to energy
dissipation, quasi-periodic oscillation follows, and ultimately the pendulum remains
at rest.

142 S. Celikovsky and I. Zelinka

10 20 30 40 50 60

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

Time

v

Fig. 3.103 Time development of the behavior of the pendulum for different starting values
of vx,y

3.6 Conclusion

This chapter presents a very simple introduction to deterministic chaos theory. Main
and well known icons of chaos, like Lyapunov exponent, Feigenbaum’s constant,
U-sequence, self-similarity etc has been introduced. The way how deterministic be-
havior can be changed into a chaotic one is also discussed like intermittence, period
doubling, crises as well as chaotic transients. At the end of this chapter, selected
examples from mechanics, astrophysics, computer sciences, electronics amongst
others are described. Main attention has been paid to demonstration of determin-
istic chaos behavior. For more detailed explanation and description of deterministic
chaos it is recommended to study literature in the references.

Acknowledgements. This work was supported by grant No. MSM7088352101 of the Min-
istry of Education of the Czech Republic and by grants of the Grant Agency of the Czech
Republic GACR 102/09/1680 and 102/08/0186.

References

1. Abarbanel, H.: Analysis of observed chaotic data. Springer, New York (1996)
2. Abarbanel, H., Brown, R., Kennel, M.: Variation of Lyapunov exponents on a strange

attractor. J. Nonlinear Sci. 1, 175 (1991)
3. Alligood, K., Sauer, T., Yorke, J.: Chaos - an introduction to dynamical systems.

Springer, New York (1997)
4. Arnold, V.: The Theory of Singularities and Its Applications, Accademia Nazionale Dei

Lincei, Pisa, Italy (1991)

3 Chaos Theory for Evolutionary Algorithms Researchers 143

5. Baker, G., Gollub, J.: Chaotic dynamics: an introduction. Cambridge University Press,
Cambridge (1996)

6. Barnsley, M.: Fractals Everywhere. Academic Press Professional, London (1993)
7. Bose, N., Liang, P.: Neural Network Fundamentals with Graphs, Algorithms, and Appli-

cations. McGraw-Hill Series in Electrical and Computer Engineering (1996)
8. Constantin, P., Foias, C.: Global Lyapunov exponents, Kaplan-Yorke formulas and the

dimension of attractors for 2D Navier-Stokes equations. Commun. Pure Appl. Math. 38,
1 (1985)

9. Cvitanovic, P.: Universality in Chaos. Taylor and Francis, Abington (1989)
10. Diks, C.: Nonlinear time series analysis, Methods and applications. World Scientific,

Singapore (1999)
11. Drazin, P., Kind, G.(eds.): Interpretation of time series from nonlinear Systems. Special

issue of Physica D, 58 (1992)
12. Galka, A.: Topics in nonlinear time series analysis with implications for EEG analysis.

World Scientific, Singapore (2000)
13. Gilmore, R.: Catastrophe Theory for Scientists and Engineers. John Wiley and Sons,

Chichester (1993)
14. Haken, H.: Synergetics: Introduction and Advanced Topics. Springer, Heidelberg (2004)
15. Kaplan, J., Yorke, J.: Chaotic behavior of multidimensional difference equations. In:

Walter, H., Peitgen, H. (eds.) Functional differential equations and approximation of
fixed points. Lect. Notes Math., vol. 730, p. 204. Springer, Berlin (1979)

16. Hilborn, R.: Chaos and Nonlinear Dynamics. Oxford University Press, Oxford (1994)
17. Kantz, H., Schreiber, T.: Nonlinear time series analysis. Cambridge University Press,

Cambridge (1997)
18. Ledrappier, F., Young, L.: The metric entropy of diffeomorphisms, Parts I and II. Ann.

Math. 122, 509 (1985)
19. Packard, N., Crutchfield, J., Farmer, D., Shaw, R.: Geometry from a time series. Phys.

Rev. Lett. 45, 712 (1980)
20. Pesin, Y.: Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math.

Surv. 32, 55 (1977)
21. Poston, T., Stewart, I.: Catastrophe Theory and its Applications, Pitman, pp. 842–844.

IEEE Press, New York (1977)
22. Rössler, O.: An equation for hyperchaos. Phys. Lett. A 71, 155 (1979)
23. Ruelle, D.: Thermodynamics Formalism. Addison-Wesley, Reading (1978)
24. Schuster, H.: Handbook of Chaos Control. Wiley-VCH, New York (1999)
25. Sprott, J.: Chaos and Time-Series Analysis. Oxford University Press, Oxford (2003)
26. Takens, F.: Detecting strange attractors in turbulence. Lecture Notes in Math., vol. 898

(1981)
27. Vose, M.: The Simple Genetic Algorithm: Foundations and Theory. MIT Press, Cam-

bridge (1999)
28. Vose, M., Liepins, G.: Punctuated equilibria in genetic search. Complex Systems 5, 31–

44 (1991)
29. Vose, M., Wright, A.: Simple genetic algorithms with linear fitness. Evol. Comput. 4(2),

347–368 (1994)
30. Wolff, R.: Local Lyapunov exponents: Looking closely at chaos. J. R. Statist. Soc. B 54,

301 (1992)
31. Wolfram, S.: A New Kind of Science, Wolfram Media (2002)
32. Wright, A., Agapie, A.: Cyclic and Chaotic Behavior in Genetic Algorithms. In: Proc. of

Genetic and Evolutionary Computation Conference (GECCO), San Francisco, July 7-11
(2001)

33. Wyk, M.: Chaos in Electronics. Springer, Heidelberg (1997)

Chapter 4
Evolutionary Algorithms and the Edge of Chaos

Donald Davendra

Abstract. An unconventional approach of the edge of chaos and its application to
discrete systems is described in this chapter. Langton’s approach to cellular au-
tomata and its unique ordered and chaotic behavior is discussed. The expansion
of this approach to genetics and random networks by Kauffman is described with a
brief analogy provided of chaos in evolutionary algorithms in terms of stagnation.

4.1 Introduction

The linkage between chaos and its manifestation in a number of systems of discrete
states is described in this chapter. The most famous example of systems with discrete
states are cellular automata [15]. Whereas the traditional view of chaos as non-
linear dynamical system is well entrenched, a number of discrete systems, some in
nature are also shown to have chaotic attributes. Chaos in this respect is seen as the
course toward unnatural and destructive behavior. Langton [7] and Kauffman [5]
have shown that the boundary between these two phases, edge of chaos is where the
most interesting features can be found.

Edge of chaos has more recently been discovered in living systems. [1] and [6]
have discovered neural activity in the brain which they believe shows that the brain
operates on the edge of chaos, which is the boundary between stable, orderly be-
havior - such as a swinging pendulum - and the unpredictable world of chaos, as
exemplified by turbulence. It is believed that near-chaotic states may be crucial to
memory, and could explain why some people are smarter than others.

Donald Davendra
Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511,
Zlin 76001, Czech Republic
e-mail: davendra@fai.utb.cz

I. Zelinka et al. (Eds.): Evolutionary Algorithms and Chaotic Systems, SCI 267, pp. 145–161.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

146 D. Davendra

This research looks at Kauffman’s approach to chaos in genetics as the backdrop
to the exploration of the dynamic nature of evolutionary algorithms and its con-
vergence. An analytical viewpoint in permutative optimization demonstrates how
stagnation can arise and how it can adversely affect the stability of the system.

A practical application as to how to develop efficient anti-bias rules to overcome
stagnation is given in Chapter 15.

4.2 Edge of Chaos

The phrase edge of chaos was first coined by Christopher Langton in 1990 [7]. It
simply refers to the region of space in cellular automata (CA) which exhibits tran-
sitory behavior between deterministic and chaotic while a parameter lambda, λ is
varied. This region is believed to provide a region capable to universal computation
in CA.

A brief description of CA is now presented. CA are discrete spatially-extended
dynamical systems that have been studied extensively as models of physical pro-
cesses and as computational devices [8]. In its simplest form, a CA consists of a
spatial lattice of cells of size N, each of which, at time t, can be in one of k states. A
CA has a single fixed rule, which is used to update each cell. The lattice starts out
with some initial configuration of local states and, at each t, the states of all cells in
the lattice are synchronously updated based on the rules.

Assume a simple CA, which is one-dimensional and has two possible states per
cell (binary 1 or 0). The neighborhood of this cell is defined by a radius r, which
is the allowable interaction of this cell. In order to update the cell, a set of rules
have to be applied to each and every cell. These rules are kept in a rules table. As
an example, a single 3 grid lattice CA is represented in Figure 4.1. Since k = 2, the
binary state (1,0) is used. State 1 is represented as dark while state 0 is presented in
light sequence.

Fig. 4.1 Single 3 grid CA
representation

1

4 Evolutionary Algorithms and the Edge of Chaos 147

One of the most common rules table in CA is Rule 30 table, which is given in
Figure 4.2. Each possible grid combination is presented and the next state is given
underneath the cell.

0 0 0 1 1 1 1 0

Fig. 4.2 Rule 30 table.

The rule representation for Rule 30 is given in Figure 4.3.

rule 30

Fig. 4.3 Rule 30 representation

Using this rule table as an update sequencer, an initial random configuration can
be iterated, producing more and more complex CA configurations.

The following Figures 4.4 - 4.13 represent the iteration of a single CA lattice
using Rule 30. Figure 4.4 is the initial cell, with single cell of state 1 and 0. Figures
4.5 - 4.9 show the iteration from t = 1 to t = 5. At each level the CA grows by an
additional row, where the preceding cells use Rule 30 to calculate the new states.
Figure 4.10 shows the CA at t = 10, whereas Figures 4.11, 4.12 and 4.13 shows the
growth of the CA lattice at times t = 20, t = 50 and t = 100 respectively.

CA are of interest as models of physical processes because, like many physical
systems, they consist of a large number of simple components (cells) which are
modified only by local interactions, but which acting together can produce global
complex behavior. Even simple CA exhibit two unique states of behavior; limit cy-
cles (periodic behavior) to unpredictable (“chaotic”) behavior.

148 D. Davendra

Fig. 4.4 Initial Cell Fig. 4.5 1 Iteration

Fig. 4.6 2 Iteration Fig. 4.7 3 Iteration

Fig. 4.8 4 Iteration Fig. 4.9 5 Iteration

One of the core proponents and researchers of CA, Stephen Wolfram considered
a coarse classification of CA behavior in terms of these categories. He proposed the
following four classes with the intention of capturing all possible CA behavior [15]:

Class 1 Almost all initial configurations relax after a transient period to the same
fixed configuration (e.g., all 1’s).

Class 2 Almost all initial configurations relax after a transient period to some
fixed point or some temporally periodic cycle of configurations, but which
one depends on the initial configuration.

Class 3 Almost all initial configurations relax after a transient period to chaotic
behavior.

Class 4 Some initial configurations result in complex localized structures, some-
times long-lived.

4 Evolutionary Algorithms and the Edge of Chaos 149

Fig. 4.10 10 Iteration Fig. 4.11 20 Iteration

Fig. 4.12 50 Iteration Fig. 4.13 100 Iteration

However, prior to Wolfram’s work, Langton studied the relationship between the
“average” dynamical behavior of cellular automata and a particular statistic (λ) of a
CA rule table [7].

The drawback of CA and its interpretation as a chaotic system is its discrete
nature. Chaos and its identification is ruled by non-linear differential systems, where
the Lyapunov Exponent can easily differentiate a chaotic system, whereas a CA is
a discrete system. Therefore. Langton defined a parameter lambda λ that varies
incrementally as single output bits are turned on or off in a given rule table.

In order to calculate λ , the following parameters are required:

• Designate one state (0,1) to be quiescent state
• Let k → number of states
• Let N = 2r + 1 → area of neighborhood
• Let T = KN → number of entries in the rule table
• Let nq → number mapping to quiescent state

The formulation of λ is given in Equation 4.1.

λ =
T − nq

T
(4.1)

A “quiescent” state can be any of the available states in a system, therefore in a
binary system, it can be either 1 or 0. For a binary-state CA, if 0 is chosen to be the
quiescent state, then λ is simply the fraction of output 1 bits in the rule table.

Langton performed experimentation on a number of Monte Carlo samples of two-
dimensional nature, starting with λ = 0 and gradually increasing λ to 1, in order to
have a shift from the most homogeneous to the most heterogeneous rule tables.

150 D. Davendra

In terms of analysis. Langton used various statistics methods such as single-site
entropy, two-site mutual information, and transient length to classify CA “average”
behavior at each λ value. Shannon’s work on the Theory of Communication [11]
has formed a major part of the entropy work done by Langton.

The notion of “average behavior” is intended to capture the most likely behavior
observed with a randomly chosen initial configuration for CAs in a fixed-λ sub-
space. These studies revealed correlation between the various statistics and λ . The
correlation is quite good for very low and very high λ values. However, for inter-
mediate λ values in finite-state CAs, there is a large degree of variation in behavior.

Langton claimed on the basis of these statistics that as λ is incremented from 0 to
1, the average behavior of CAs undergoes a “phase transition” from ordered (fixed
point or limit cycle after some short transient period) to chaotic (apparently unpre-
dictable after some short transient period). As λ reaches a “critical value” λc, the
claim is that rules tend to have longer and longer transient phases. Also CAs close
to λc tend to exhibit long-lived, “complex”-nonperiodic, but nonrandom-patterns.
Langton proposed that the λc regime roughly corresponds to Wolfram’s Class 4
CAs [15], and he then hypothesized that “computationally capable” CAs and, in
particular, CAs capable of universal computation will have “critical” λ values cor-
responding to a phase transition between ordered and chaotic behavior. Packard
experimentally tested this hypothesis by using a genetic algorithm (GA) to evolve
CAs to perform a particular complex computation [9]. He interpreted the results as
showing that the GA tends to select CAs close to “critical” λ regions, hence the
“edge of chaos” [8].

Langton specified four regions according to the rule of λ as given in Figure 4.14.
The following describes the range of λ parameter.

1. If all configurations map to quiescent state:
λ = 0

λ0 1

Fixed Periodic Chaotic

C
om

pl
ex

CA Rule space vs λ

Fig. 4.14 Schematic of CA Rule space vs λ

4 Evolutionary Algorithms and the Edge of Chaos 151

2. If no configurations map to quiescent state:
λ = 1

a. If every state is represented equally:
λ = 1 − 1/k

4.3 Antichaos and Self-organization

A refreshing look at Langton’s work was made by Stuart Kauffman in his article
on AntiChaos and Adaption [4]. Kauffman is a proponent of self-organization abil-
ity of a complex system, where he believes that biological order reflects in part a
spontaneous order on which selection has acted, and that the capacity to evolve and
adapt is directly linked to evolution rules [4].

Kauffman deduced that chaos is a part of behavior of complex system. A very
important observation made by him is that any network or dynamical system, which
is finite and oscillatory, will have a finite number of states, and must eventually
reenter a state it has previously encountered. It will consequently cycle repeatedly
through the same states. These states can be labelled as dynamic attractors of a
system which once a system’s trajectory carries it onto a state cycle, it stays there.
The set of states that flow into a cycle or that lie on it constitutes the basin of
attraction of the state cycle.

Left to itself, a network will eventually settle into one of its state cycle attractors
and remain there. Yet if the network is perturbed in some way, its trajectory may
change. Two types of perturbation are possible: minimal perturbations and structural
perturbations [4].

Minimal perturbation is a change of a single or few states of the system; equiv-
alent to the changing of bits in a boolean system. Two outcomes are possible; the
first is that the system will stay in the same basin of attraction, or the second, that
the change will be enough to push it out of the basin of attraction and change its
trajectory.

Structural perturbation is a permanent mutation in the system, equivalent to a
change of system rule. This will cause a permanent change in the system and its
underlying stability.

4.3.1 A Butterfly Sleeps

Kauffman studied the effects of self organization on the random K = N boolean
networks where N is the number of boolean logic elements and K is the number of
inputs into each element. These networks are of interest since the number of inputs
to each element equals the total number of elements - in other words, everything is
connected to everything else [3] . The state S of each element at a given time t is
given as Si(t) ∈ {0,1}(i = 1, ..,N).

152 D. Davendra

Each state Si is dynamically (randomly) updated by means of a boolean function
Ai. This dynamical system now can be defined as Equation 4.2.

Si(t + 1) = Ai [S1(t),S2(t),SK(t)] (4.2)

During his experimentations, he observed the following points of interest:

• As the number of elements N increase in a network, the length of the state cycles
grows exponentially.

• The average length of a state cycle is around the square root of the number of
different states.

• Due to random succession of states, there is maximal sensitivity to initial condi-
tions.

• Number of state cycles (basins of attraction) is very small.
• The expected number of state cycles equals the number of elements divided by

the logarithmic constant e.
• The stability of an attractor is proportional to its basin size, which is the number

of states of trajectories that drain into the attractor.

A strange occurrence is when the number of inputs per element, K decreases to
2; K=2. This system is very stable, in almost all perturbations, with only structural
perturbation having slight effect; hence the butterfly sleeps [4].

Consequently, in random networks with only two inputs per element, each at-
tractor is stable to most minimal perturbations. Similarly, most mutations in such
networks alter the attractors only slightly. The ordered network regime is therefore
characterized by a homeostatic quality: networks typically return to their original
attractors after perturbations [4].

4.3.2 Chaos and Antichaos

Kauffman picked up Langton’s approach for CA to describe the application of net-
work interactivity. Network connectivity and bias is considered the most important
aspect of self organization. The influence a section of network has to another has
lasting effect on the final trajectory of the network. Some network behavior is or-
dered while others are chaotic.

The transcendence between the two regions are controlled by the bias of the net-
work with K acting as the key parameter [13]. Langton proposed the following anal-
ogy to describe a system; ordered networks are solid, chaotic networks are gaseous
and networks in an intermediate state are liquid. In order to move from one state to
another require the lowering of the bias to a critical value. At the point where the
network is in “liquid” state, the edge of chaos of the network is reached and this is
where a number of interesting dynamic behavior emerges [4]. The bias of the ran-
dom boolean network Kc is set as 2, where the chaotic regime is in K > Kc and the
ordered regime is in K < Kc. This critical point Kc = 2 was analytically determined
by [2].

4 Evolutionary Algorithms and the Edge of Chaos 153

Systems poised in the liquid transition state may also have special relevance to
evolution because they seem to have the optimal capacity for evolving. A antichaotic
system is one which changes from a chaotic to an ordered system with the freezing
of its network, while a chaotic system is one which changes from a ordered to a
chaotic system with the melting of its network.

4.4 Edge of Chaos in Evolutionary Algorithms

The major impact of Langton and Kauffman works on chaos is that they have
demonstrated that chaos is not just in the preview of non-linear dynamical systems,
but their impact can be rightly felt in discrete systems. Kauffman most importantly
showed that his interpretation of chaos is not in the low dimensional deterministic
chaos but in a phase where damage spreading takes place.

Evolutionary algorithms have a common base with evolution, since they are
based on the fundamental’s of natural selection.The major advent of these algo-
rithms has been in the proliferation on complex engineering and mathematical prob-
lems, The problems usually require robust techniques for resolutions, and evolution-
ary algorithms are at its forefront.

Most evolutionary algorithms share a common framework. A population P is
randomly generated consisting a number of solutions S, each of which is of size x.
This x is defined by the particular problem being solved F(x). Each solution is vetted
for its fitness by F(x). Each solution is then systematically combined with another
randomly selected solution using selection rules and the new solution is then vetted
for its fitness. If this new solution Si+1 is better then the older solution Si, it then
replaces the older solution in the population. Iteratively, all solutions are subjected
to this routine. The routine continues for a number of generations G.

4.4.1 Stagnation

The major drawback of evolutionary algorithms is that occasionally the solutions
converge to a particular position in the solution space. What is most undesirable is
that these solutions are then unable to move away to another region, and thus the
entire evolution process stagnates. This phenomena is usually referred to as local
optima convergence or stagnation.

Stagnation is of a special interest in evolutionary algorithms. Under what condi-
tions do random systems converge or as Kauffman stipulated - get frozen?

Firstly, a linkage has to be found between evolutionary algorithms and boolean
systems. Evolutionary algorithms share a common background with the Kauffman’s
Random Boolean Networks (RBN). Both are randomly generated. The selection
criteria for each new solution is synchronous and random as in RBN.

Secondly, the main attribute of evolutionary algorithms is the bias in the system
as in RBN. These can be viewed as the rules or selection criteria of an evolutionary
algorithms. Using these bias, it is feasible for solutions to converge and form basins
of attraction.

154 D. Davendra

A solution like a gene, is of finite length, and thus has a fixed number of states
which it cycles through evolution. The premise is that evolution would somehow
take each variable in a solution through a different trajectory on each iteration, which
would then assist in the mapping of the solution space and allow for the discovery
of the global optimal solution.

However, the selection criteria is biased with the other solutions in the popu-
lation, from which the new solution obtains new genetic material for evolution. If
both selected solutions for mating have the same state in the population, then the
new solution will replicate this information and therefore increase the basin of at-
traction. During evolution, these basin of attractions would encompass a majority of
solutions and based on the probability of random selection, the opportunity for so-
lutions to discover new regions in solution space decreases. In effect the population
stagnates.

4.4.2 Anti-stagnation

Stagnation is usually observed form the standpoint of the fitness of the solution in
respect of the problem being solved. However, using the Kauffman analogy, stagna-
tion can be viewed from the perspective of the solution, and the state it occupies in
respect to the other solutions in the population. Using the damage spreading view-
point, the question then arises as to what can exactly be done to have anti-chaos, or
the free movement of the solutions in a evolutionary algorithms?

An approach can be the introduction of reverse bias of a population. This is
equivalent to the structural perturbation of the system. A number of bias rules will
enforce the phase shift between ordered and chaotic behavior. However, these rules
cannot encroach on the underlying heuristic since they will permanently shift its
paradigm.

4.5 Analytical Observation

A brief analytical observation is presented in this section in order to describe the
stagnation process in an evolutionary algorithm. A simplified generic Genetic Algo-
rithm (GA) is selected as the evolutionary algorithm. The operating parameters are
given in Table 4.1.

Table 4.1 GA operating parameters

Parameters Value

Population size 30
Solution size 20
Crossover 2 point
Mutation rate Single
Generation 100

4 Evolutionary Algorithms and the Edge of Chaos 155

The problem to be solved is a strict sense permutative scheduling problem of
flowshop (FSS). This problem is selected since a permutative problem is, first and
foremost, discrete, and secondly since it is permutative, its state cycle can easily be
observed.

The minimization of completion time (makespan) for a flow shop schedule is
equivalent to minimizing the objective function ℑ:

ℑ =
n

∑
j=1

Cm, j (4.3)

s.t.
Ci, j = max

(
Ci−1, j,Ci, j−1

)
+ Pi, j (4.4)

where, Cm, j = the completion time of job j, Ci, j = k (any given value), Ci, j =
j

∑
k=1

C1,k;

Ci, j =
j

∑
k=1

Ck,1 machine number, j job in sequence, Pi, j processing time of job j on

machine i [10] .
The problem instance to be solved is the first problem instance of the Taillard

flowshop benchmark set [14].

4.5.1 Diversity Measure

In order to measure the trajectory of each solution, it becomes imperative to define
some analytical measure of the solution. In terms of permutative strings, where each
variable in a solution is unique and discrete, the deviation of the solution can be
assigned as one of the diversity measures. The formulation for its calculation is
given in Equation 4.5, where n is the size of the solution, and x represents each
variable in the solution.

δ =

⎛
⎜⎜⎝

n−1
∑

i=1
|xi − xi+1|

n

⎞
⎟⎟⎠ ; xi ∈ {x1,x2, ...xn} (4.5)

The second measure is the frequency of each solution in the population. This
shows the level and general depth of the basin of attraction in the solution space.
This is easily given through the use of histograms.

The third and final measure is the representation of the solutions in 3D space.
This can be done through catenation of each solution string into 3 parts. What this
does, is give a clear representation as to how many basins of attraction exist, and
most importantly, their distance to each other.

156 D. Davendra

4.5.2 Population Representation

The population was randomly generated and iterated for 100 generations. The pop-
ulation is represented at ten generation/iteration intervals with the three diversity
measures as given in Figures 4.15 to 4.25.

The initial population is given in Figure 4.15. The deviation plot in Figure 4.15a
displays the population as scattered in the deviation space, with the frequency plot
in Figure 4.15b displaying the same trait. The 3D representation in Figure 4.15c
shows a wide range of solution displacement in the population. This is typical for
random population generation.

From iteration 10 to 30, shown in Figures 4.16 - 4.18, it can be seen that the so-
lutions are drifting in the solution space. There is a small level of attraction between
the solutions as shown in the histograms, where the number of unique solutions
decreases, and the basins of attraction becomes larger. The 3D representation also
displays the similar traits with the displacement between the different basins reduc-
ing in size.

From iteration 40 to 70, shown in Figures 4.19 - 4.22, a clear indication of the
emergence of the basins of attraction is shown. The deviation plot shows the solu-
tions collating in uniques regions, and the histogram shows in increasing depth of
these basins. The 3D representation clearly shows that the distance between these
basins is decreasing in size.

Stagnation of the population is seen from iteration 80 onwards in Figures 4.23 -
4.25. At this point only 3 main basin of attractions exist in the population as shown
in the 3D plots, which occupy 2 distinct deviation points in the deviation plots. At
time increases, the solutions simply drift from one basin to another without being
able to find new regions of space. At this point there is simply genetic drift of the
population with no new solutions being produced. Evolution can be said to have
stagnated.

0 5 10 15 20 25 30

4

5

6

7

8

Solution

D
ev

ia
ti

o
n

1 Iteration

(a) Deviation

1�1030 2�1030 3�1030 4�1030 5�1030

0

1

2

3

4

5

6

Value

F
re

q
u

en
cy

1 Iteration

(b) Histogram

1 Iteration

2�1010

4�1010

6�1010

8�1010

x

2�1010

4�1010

6�1010

8�1010

y

0

5.0�109

1.0�1010

1.5�1010

0�1010

(c) 3D representation

Fig. 4.15 Initial state

4 Evolutionary Algorithms and the Edge of Chaos 157

0 5 10 15 20 25 30

5.5

6.0

6.5

7.0

7.5

Solution

D
ev

ia
ti

o
n

10 Iteration

(a) Deviation

0 2�1030 4�1030 6�1030 8�1030

0

2

4

6

8

10

12

14

Value

F
re

q
u

en
cy

10 Iteration

(b) Histogram

10 Iteration

2�1010

4�1010

6�1010

8�1010

x

1.0�109

1.5�109

2.0�109

y

5.0�109

1.0�1010

1.5�1010

2.0�1010

2.5�1010

(c) 3D representation

Fig. 4.16 Iteration 10

0 5 10 15 20 25 30

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

Solution

D
ev

ia
ti

o
n

20 Iteration

(a) Deviation

1.5�1030 2.0�1030 2.5�1030 3.0�1030 3.5�1030 4.0�1030 4.5�1030 5.0�1030

0

2

4

6

8

10

Value

F
re

q
u

en
cy

20 Iteration

(b) Histogram

20 Iteration

1�1010

2�1010

3�1010

x

1�109

2�109

3�109

4�109

y

5.0�109

1.0�1010

1.5�1010

2.0�1010

2.5�1010

(c) 3D representation

Fig. 4.17 Iteration 20

0 5 10 15 20 25 30

6.0

6.5

7.0

7.5

Solution

D
ev

ia
ti

o
n

30 Iteration

(a) Deviation

1.2�1030 1.4�1030 1.6�1030 1.8�1030 2.0�1030

0

2

4

6

8

Value

F
re

q
u

en
cy

30 Iteration

(b) Histogram

30 Iteration

2�109

4�109

6�109

x

5.0�109

1.0�1010

1.5�1010

y

1�1010

2�1010

3�1010

4�1010

(c) 3D representation

Fig. 4.18 Iteration 30

158 D. Davendra

0 5 10 15 20 25 30

6.4

6.6

6.8

7.0

7.2

7.4

7.6

7.8

Solution

D
ev

ia
ti

o
n

40 Iteration

(a) Deviation

1.35�1030 1.40�1030 1.45�1030 1.50�1030 1.55�1030 1.60�1030

0

2

4

6

8

10

12

Value
F

re
q

u
en

cy

40 Iteration

(b) Histogram

40 Iteration

1.0�109

1.5�109

2.0�109

2.5�109

x

5.0�109

1.0�1010

1.5�1010

2.0�1010

y

5.0�109

1.0�1010

1.5�1010

2.0�1010

2.5�1010

(c) 3D representation

Fig. 4.19 Iteration 40

0 5 10 15 20 25 30

6.0

6.5

7.0

7.5

Solution

D
ev

ia
ti

o
n

50 Iteration

(a) Deviation

1.2�1030 1.3�1030 1.4�1030 1.5�1030

0

5

10

15

20

Value

F
re

q
u

en
cy

50 Iteration

(b) Histogram

50 Iteration

1.0�109

1.5�109

2.0�109

x

5.0�109

1.0�1010

1.5�1010

y

5.0�109

1.0�1010

1.5�1010

2.0�1010

(c) 3D representation

Fig. 4.20 Iteration 50

0 5 10 15 20 25 30

6.4

6.6

6.8

7.0

7.2

7.4

7.6

7.8

Solution

D
ev

ia
ti

o
n

60 Iteration

(a) Deviation

1.15�1030 1.20�1030 1.25�1030 1.30�1030 1.35�1030 1.40�1030

0

2

4

6

8

10

12

14

Value

F
re

q
u

en
cy

60 Iteration

(b) Histogram

60 Iteration

1.0�109

1.5�109x

5.0�109

1.0�1010

1.5�1010

y

1�1010

2�1010

(c) 3D representation

Fig. 4.21 Iteration 60

4 Evolutionary Algorithms and the Edge of Chaos 159

0 5 10 15 20 25 30

6.4

6.6

6.8

7.0

7.2

7.4

7.6

7.8

Solution

D
ev

ia
ti

o
n

70 Iteration

(a) Deviation

1.4135�1030 1.4140�1030 1.4145�1030 1.4150�1030 1.4155�1030 1.4160�1030

0

2

4

6

8

10

12

Value

F
re

q
u

en
cy

70 Iteration

(b) Histogram

70 Iteration

1.0�109

1.5�109
x

5.0�109

1.0�1010

1.5�1010

y

1�1010

2�1010

(c) 3D representation

Fig. 4.22 Iteration 70

0 5 10 15 20 25 30

6.6

6.8

7.0

7.2

7.4

Solution

D
ev

ia
ti

o
n

80 Iteration

(a) Deviation

1.41616�1030 1.41616�1030 1.41616�1030 1.41616�1030

0

2

4

6

8

10

Value

F
re

q
u

en
cy

80 Iteration

(b) Histogram

80 Iteration

1.0�109

1.5�109
x

5�109

1�1010y

5.0�109

1.0�1010

1.5�1010

2.0�1010

(c) 3D representation

Fig. 4.23 Iteration 80

0 5 10 15 20 25 30

6.6

6.8

7.0

7.2

7.4

Solution

D
ev

ia
ti

o
n

90 Iteration

(a) Deviation

1.41616�1030 1.41616�1030 1.41616�1030 1.41616�1030

0

2

4

6

8

10

Value

F
re

q
u

en
cy

90 Iteration

(b) Histogram

90 Iteration

1.0�109

1.5�109
x

5�109

1�1010y

5.0�109

1.0�1010

1.5�1010

2.0�1010

(c) 3D representation

Fig. 4.24 Iteration 90

160 D. Davendra

0 5 10 15 20 25 30

6.6

6.8

7.0

7.2

7.4

Solution

D
ev

ia
ti

o
n

100 Iteration

(a) Deviation

1.41616�1030 1.41616�1030 1.41616�1030 1.41616�1030

0

5

10

15

Value

F
re

q
u

en
cy

100 Iteration

(b) Histogram

100 Iteration

1.0�109

1.5�109
x

5�109

1�1010y

5.0�109

1.0�1010

1.5�1010

2.0�1010

(c) 3D representation

Fig. 4.25 Iteration 100

4.6 Conclusion

Stagnation as described in the chapter is a major concern to researchers. These re-
gions first and foremost decrease the evolutionary process and secondly destroy
genetic information in the population. As shown in the analytical example, these re-
gions form during evolution and once the basin of attraction become large enough,
all the solutions are simply trapped and no new regions are then explored.

As to how these regions form, the answer may lie in the use of the selection
rules or bias. All evolutionary algorithms are biased towards finding regions of best
fitness, however the engine that drives this process is the uniqueness of the solutions
in the population. Stagnation has the opposite effect, where all solutions are simply
cloned. This is the drift from ordered to destructive behavior, the transition from
ordered to chaotic system. The solutions are frozen and simply drift in the attractors
which have formed between the basin of solution.

From an engineering point of view, this is highly undesirable. Reverse bias rules
can provide an answer to this predicament which can keep the trajectories of the
solutions separated. An approach concerning the creation and development of such
rules based on this presumption is given in Chapter 15.

Acknowledgements. The following two grants are acknowledged for the financial support
for this research.

1. Grant Agency of the Czech Republic GARC 102/09/1680
2. Grant of the Czech Ministry of Education MSM 7088352102

References

1. Bassett, D., Meyer-Lindenberg, A., Achard, S., Duke, T., Bullmore, E.: Adaptive re-
configuration of fractal small-world human brain functional networks. The National
Academy of Sciences of the USA 103(51), 19518–19523 (2006)

2. Derrida, B., Pomeau, Y.: Europhysics Letters 1, 45 (1986)

4 Evolutionary Algorithms and the Edge of Chaos 161

3. Fronczak, P., Fronczak, A.: Critical line in undirected Kauffman Boolean networks - the
role of percolation. J. Phys. A: Math. Theor. 41, 224009 (2008)

4. Kauffman, S.: Antichaos and Adaptation. Scientific America, 78–84 (August 1991)
5. Kauffman, S.: At Home in the Universe. Oxford University Press, Oxford (1995)
6. Kitzbichler, M., Smith, M., Christensen, S., Bullmore, E.: Broadband Criticality of Hu-

man Brain Network Synchronization. PLoS Comput. Biol. 5(3), e1000314 (2009)
7. Langton, C.: Computation at the edge of chaos: Phase transitions and emergent compu-

tation. Physica D 42, 12–37 (1990)
8. Mitchell, M., Hraber, P., Crutchfield, J.: Revisiting the Edge of Chaos: Evolving Cellular

Automata to Perform Computations. Complex Systems 7, 89–130 (1993)
9. Packard, N.: Adaptation toward the edge of chaos. In: Kelso, J., Mandell, A., Shlesinger,

M. (eds.) Dynamic Patterns in Complex Systems, pp. 293–301. World Scientific, Singa-
pore (1988)

10. Pinedo, M.: Scheduling: theory, algorithms and systems. Prentice Hall, Inc., New Jersey
(1995)

11. Shannon, C.: A Mathematical Theory of Communication. Bell System Technical Journal,
623–656 (October 27, 1948)

12. Shermer, M.: Exorcising Laplace’s Demon: Chaos and Antichaos, History and Metahis-
tory. History and Theory 34(1), 59–83 (1995)

13. Sole, R., Luque, B.: Phase transitions and antichaos in generalized Kauffman networks.
Phys. Lett. 196, 331–334 (1995)

14. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64, 278–285
(1993)

15. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)

Chapter 5
Evolutionary Design of Chaos Control in 1D

Roman Senkerik, Ivan Zelinka, Donald Davendra, and Zuzana Oplatkova

Abstract. The main aim of this work is to show that powerful optimizing tools like
evolutionary algorithms can be in reality used for the optimization of deterministic
chaos control. This work is aimed on explanation of how to use evolutionary algo-
rithms (EAs) and how to properly define the cost function (CF). It is also focused
on selection of control method and, the explanation of all possible problems with
optimization which comes together in such a difficult task, which is chaos control.

5.1 Introduction

In general, methods for control of chaos deal with a process wherein a tiny pertur-
bation is applied to a chaotic system in order to realize a desirable chaotic, periodic
or stationary behavior. The problems of control of chaos have attracted the attention
of researchers and engineers since the early 1990’s.

Many methods for control of chaos [8] have been developed and based on the
original OGY control method [26]. The main principle consisted in waiting for a
natural passage of the chaotic orbit close to the desired periodic behavior and then
applying a small perturbation, in order to stabilize the system. This is the main
principle of OGY method - Linearization of Poincare Map [10] - [1]. Moreover
there exist also special versions which use the pole placement principle [13], [11].

Roman Senkerik · Donald Davendra · Zuzana Oplatkova
Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511,
Zlin 76001, Czech Republic
e-mail: {senkerik,davendra,oplatkova}@fai.utb.cz

Ivan Zelinka
Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511,
Zlin 76001, Czech Republic
and
VSB-TUO, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15,
708 33 Ostrava-Poruba, Czech Republic
e-mail: zelinka@fai.utb.cz

I. Zelinka et al. (Eds.): Evolutionary Algorithms and Chaotic Systems, SCI 267, pp. 165–190.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

166 R. Senkerik et al.

But there is generally one big disadvantage of OGY and it is the long initial
chaotic transient before trajectories are stabilized. Consequently many targeting al-
gorithms were introduced to shorten the time of stabilization. The question of tar-
geting with application to chaos control has attracted the researchers. The several
first approaches for targeting have used special versions of OGY control scheme
[5], [21] or collecting of information about trajectories, which fall close to desired
state [10]. Also the Pyragas control method is mentioned in this paper as the tool for
successful targeting [22]. Later, lots of methods were developed based on adaptive
approach [30], optimal feedback controller [31], center manifold targeting [38] or
neural networks [18], [19].

Unlike the OGY the Pyragas’s delayed feedback control technique [10], [20] can
be simply considered as targeting and stabilizing algorithm together in one package.
From the point of view of soft computing and optimizations another big advantage
of Pyragas method is the amount of accessible control parameters, which are set up
by using a priori knowledge or mathematical analysis. This is very advantageous
for successful use of optimization of parameters set up by means of EA, leading
to avoidance of any kind of mathematical analysis and mainly to improvement of
system behavior and better and faster stabilization to the desired periodic orbits.

During recent years, a lot of other control techniques have been developed. Some
of them are based on classical linear control law - Open loop and Open plus loop
[18], [7], or they represent new approaches in linear/nonlinear deterministic chaos
control such as adaptive nonlinear control [49] - [17], an indirect adaptive control
algorithm [14], Lyapunov-Bellman technique [2], impulsive control [39] - [41], slid-
ing modes technique [6], using of neural network controller [40], fuzzy control [3]
or back-stepping design [23]-[24].

5.2 Evolutionary Techniques in Chaos Control

These days the evolutionary algorithms (EA) are known as powerful tool for almost
any difficult and complex optimization problem. But the quality of optimization
process results mostly depends on proper design of used cost function, especially
when the EAs are used for optimization of chaos control. The results of numerous
simulations lends weight to the argument that deterministic chaos in general and
also any technique to control of chaos are sensitive to proper parameter set up, initial
conditions and in the case of optimization they are also extremely sensitive to the
construction of used cost function.

The main aim of this work is focused on the examples of EA implementation to
methods for chaos control for the purpose of obtaining better results, which means
faster reaching of desired stable state and superior stabilization, which could be ro-
bust and effective to optimize difficult problems in the world. In other words this
work deals with an investigation on the optimization of the control of chaos by
means of EA and constructing of the cost function securing the improvement of
system behavior and faster stabilization to desired periodic orbits. The control law
is based on two Pyragas methods: Delay feedback control - TDAS and Extended

5 Evolutionary Design of Chaos Control in 1D 167

delay feedback control - ETDAS. As models of deterministic chaotic systems, one
dimensional Logistic equation and two dimensional Henon map were used. The evo-
lutionary algorithm SOMA (Self-Organizing Migrating Algorithm) and Differential
Evolution (DE) were used. Also the comparison with classical control technique -
OGY is presented.

Some research in this field has been recently done using the evolutionary algo-
rithms for optimization of local control of chaos based on a Lyapunov approach
[33], [32]. But the approach described here is unique and novel and up to date were
not used or mentioned anywhere. We use EA to search for optimal setting of ad-
justable parameters of arbitrary control method to reach desired state or behavior of
chaotic system.

In general we would like to show how evolutionary algorithms can be used in the
challenging task of optimization of deterministic chaos control. The main principle
of our approach and the role of EA are depicted in Fig. 5.1.

Fig. 5.1 The scheme of evolutionary chaos control optimization

5.3 Chaotic Systems

5.3.1 Logistic Equation

The logistic equation (logistic map) (LQ) is a one-dimensional discrete-time exam-
ple of how complex chaotic behavior can arise from very simple non-linear dynam-
ical equation. This chaotic system was introduced and popularized by the biologist
Robert May [25]. It was originally introduced as a demographic model by Pierre
Francois Verhulst as a typical predator - prey relationship. Mathematical notation is
given by Equation 5.1 [15]:

xn+1 = rxn (1 − xn) (5.1)

168 R. Senkerik et al.

Where (in case of biological meaning) xn is the population at year n, and r is a
positive number, which represents a special parameter - combination of rate for
reproduction and starvation.

The chaotic behavior can be observed by varying the parameter r. At r = 3.57
is the beginning of chaos, at the end of the period-doubling behavior. At r > 3.57
the system exhibit chaotic behavior. All of this behavior can be clearly seen from
bifurcation diagram (Fig. 5.1).

Fig. 5.2 Bifurcation diagram of Logistic equation

5.3.2 Henon Map

This is a model invented with a mathematical motivation to investigate chaos. The
Henon map is a discrete-time dynamical system, which was introduced as a simpli-
fied model of the Poincare map for the Lorenz system. It is one of the most studied
examples of dynamical systems that exhibit chaotic behavior and in fact it is also a
two-dimensional extension of the one-dimensional quadratic map.

Mathematical notation is given by Equation 5.2 [15]:

xn+1 = 1 + yn − ax2
n

yn+1 = bxn
(5.2)

The map depends on two parameters, a and b. For the values of a = 1.4 and b =
0.3 the Henon map is chaotic. For other values of a and b the map may be chaotic,
intermittent, or converge to a periodic orbit.

Fig. 5.3 shows the bifurcation diagram for the Henon map created by plotting of
variable x as a function of the one control parameter for the fixed second parameter.

5 Evolutionary Design of Chaos Control in 1D 169

Fig. 5.3 Bifurcation diagram of Henon map

5.4 Selected Method for the Controlling of Chaos

Subsequently is given a description of method used for all optimizations and simu-
lations.

5.4.1 Delayed Feedback Control (Pyragas Method)

This is a method developed to stabilize UPO by means of applying small time-
continuous control (perturbation) to a system parameter in continuous time. This is
the main difference from OGY method which is suitable for a discrete control. It is
also known as the Time Delayed Auto Synchronization (TDAS method) and it was
proven that it is very easy to implement and is effective for the less order UPOs,
i.e. orbits with smaller periods. This is one of the most important limitations for this
technique. There also exists the discrete version suitable for control the chaos within
chaotic maps [27].

It is assumed the system P is described by variables x with F as an external
controllable parameter, which has numerical value F = 0 in the absence of control
(external perturbation) Equation 5.3.

dx
dt

= P(x)+ F(t) (5.3)

Desired UPO of period τ which fulfills the following logical condition x(t + τ) =
x(t) can be stabilized by means of delayed feedback control by calculating and
applying control parameter F to the system based on following control law 5.3.

170 R. Senkerik et al.

F(t) = K [x(t − τ)− x(t)] (5.4)

where: the parameter K represents the strength of the perturbation. By proper choice
of the value of K, the desired UPO may be stabilized. The big advantage of this
method lies in the fact, that there is no need of additional information about UPO
except its period τ or only its order in case of discrete-time control.

Once the control is achieved, the size of the perturbation is very small, although
during the previous chaotic transient passage it may be very large and of have to
be limited. But this kind of absence of perturbation can lead to either low qual-
ity stabilization or none, especially in case of higher periodic orbits. Due to this
problem, the extended version of delayed feedback control method was developed
to solve it. (Also called ETDAS - Extended Time Delayed Auto Synchronization)
Equation 5.6 [29].

dx
dt

= P(x)+ F(t)

F(t) = K [(1 − R)S (t − τ)− x(t)] (5.5)

S(t) = x(t)+ RS (t − τ)

where: R is adjustable constant and S is given by a delay equation utilizing previous
states of the system.

This modification particularly solved the problems with stabilization of higher
order UPOs in discrete or continuous time systems.

This method is very simple and can be applicable to a wide variety of systems; of
course it is possible to use it for discrete-time systems. There are only small changes
in the form of equations 5.3, 5.4 and 5.6. The discrete-time version of TDAS method
has the following form 5.6:

xn+1 = P(xn)+ Fn

Fn = K [xn−m − xn] (5.6)

The discrete-time version of ETDAS method has form 5.8:

xn+1 = P(xn)+ Fn

Fn = K [(1 − R)Sn−m − xn] (5.7)

Sn = xn + RSn−m

Where the symbol m represents the order of desired UPO.

5.5 Evolutionary Algorithms

Four versions of SOMA (AllToOne (ATO), AllToOneRand (ATR), AllToAll (ATA),
AllToAllAdaptive (ATAA)) [45] and six versions of DE (DERand1Bin, DE-
Rand2Bin, DEBest2Bin, DELocalToBest, DERand1DIter, DEBest1JIter) [28] were

5 Evolutionary Design of Chaos Control in 1D 171

used for all simulations. See Table 5.1 and Table 5.2 for parameter setting. These
parameters for optimizing algorithms were set up in this “common” way in order to
reach the same value of maximal CF evaluations. This fact is very important due to
further possibility of creating the complete statistical overview of EAs performance.
This statistical summary is significant not only for comparison of both used evolu-
tionary algorithms and its versions but for example in the task of the decision, as to
which algorithm gives better results for all runs when final CF value of the best in-
dividual solution is the same as the CF Value of other best individual solution given
by different versions or algorithms.

Table 5.1 Parameter settings for SOMA

Parameter / Version ATO/ATR ATA/ATAA

PathLength 3 3
Step 0.33 0.33
PRT 0.1 0.1
PopSize 25 10
Migrations 25 7
Max. CF Evaluations (CFE) 5400 5670

Table 5.2 Parameter settings for DE

Parameter Value

F 0.9
Cr 0.2
PopSize 25
Generations 215
Max. CF Evaluations (CFE) 5375

5.6 Optimization of Chaos Control

5.6.1 Problem Design

This section primarily consists of five case studies. All of them are focused on esti-
mation of accessible control parameters for TDAS or EDTAS method for five pro-
posed Cost Functions used in optimizations to stabilize selected UPOs, which are
the following: p-1 (a fixed point), p-2 and p-4 (examples of higher periodic orbits).
The chosen examples of chaotic systems were one dimensional Logistic equation in

172 R. Senkerik et al.

the form 5.1 [15] and two dimensional Henon map in the form 5.2 [15]. Here is the
list of desired UPOs:

Logistic Equation with r = 3.8:
p-1 (fixed point): xF = 0.73842
p-2 orbit: x1 = 0.3737, x2 = 0.8894
p-4 orbit: x1 = 0.3038, x2 = 0.8037, x3 = -0.5995, x4 = 0.9124

Henon Map with a = 1.2 and b = 0.3:
p-1 (fixed point): xF = 0.8
p-2 orbit: x1 = -0.562414, x2 = 1.26241
p-4 orbit: x1 = 0.139, x2 = 1.4495, x3 = -0.8595, x4 = 0.8962

All simulations were mostly repeated 50 times for each EA version, in order to
find the actual optimum and to show and check robustness of used method. The
control method - original TDAS has the form 5.3, 5.4 [27] and ETDAS has the form
5.6 [29].

In the case of Logistic Equation (LQ), optimization proceeded with these param-
eters: K and Fmax for TDAS control method, which is obtained in the form 5.8 after
modification into discrete form suitable for logistic equation.

xn+1 = rxn (1 − xn)+ Fn

Fn = K [xn−m − xn]
(5.8)

The question as to why the TDAS was chosen and used in selected cases of p-1
orbit, although it has proven lower stabilizing performance, has this simple answer.
To avoid any long simulations and evolutionary computations it is better to search in
lower dimensional space and to work with simpler control algorithm, which is not
so demanding for computational time. Furthermore numerous simulations proved
that performance of this control technique in case of p-1 orbit is very satisfactory.

Due to problems with stabilization of higher periodic orbits, it was necessary
to try the optimization by EA for another control method - ETDAS in the form
5.9 suitable for the logistic equation. Thereafter optimization proceeded with these
parameters: K, Fmax and R.

xn+1 = rxn (1 − xn)+ Fn

Fn = K [(1 − R)Sn−m − xn]
Sn = xn + RSn−m

(5.9)

In case of the Henon map, the ETDAS control method was used for all simu-
lations in the form 5.10 after modification into discrete form suitable for the used
system.

xn+1 = a − x2
n + byn + Fn

Fn = K [(1 − R)Sn−m − xn]
Sn = xn + RSn−m

(5.10)

5 Evolutionary Design of Chaos Control in 1D 173

All results are shown only for variable x of two dimensional Henon map because
of its form 5.4-5.8, where the variable y has the same values as variable x but it is
only phase shifted.

The perturbation Fn in equations 5.8-5.10 may have arbitrarily large value, which
can cause diverging of the system outside the interval {0, 1} for logistic equation
or {-1.5, 1.5} in the case of Henon map. Therefore, Fn should have a value between
- Fmax , Fmax and EA should find an appropriate value of this limitation to avoid
diverging of the system.

The ranges of all estimated parameters were in general these:

−2 ≤ K ≤ 2,0 ≤ Fmax ≤ 0.5and0 ≤ R ≤ 0.5

The optimization interval for p-1 orbit was τi = 100 iterations, for higher periodic
orbits it was mostly τi = 150 iterations.

5.6.2 The Cost Function

In this work several types of cost function (CF) were developed and tested for sta-
bilization of p-1 orbit (fixed point) and higher periodic orbits (p-2 and p-4). The CF
has been calculated in general from the distance between desired state and actual
system output. The minimal value of this cost function revealing the best solution
is zero. The aim of all the simulations was to find the best solution that returns the
cost function value as close as possible to zero.

5.6.2.1 Basic CF – Case Study 1

This proposal of the basic cost function is in general based on the simplest CF, which
could be used only for the stabilization of p-1 orbit. The idea was to minimize the
area created by the difference between the required state and the real system output
on the whole simulation interval - τi.

But another cost function (CF) had to be used for stabilizing of higher periodic
orbit. It was synthesized from the simple CF and other terms were added. In this
case, it is not possible to use the simple rule of minimizing the area created by the
difference between the required and actual state on the whole simulation interval
- τi, due to the many serious reasons, for example: degrading of the possible best
solution by phase shift of periodic orbit.

This CF, is in general based on searching for desired stabilized periodic orbit and
thereafter calculation of the difference between desired and found actual periodic
orbit on the short time interval - τs (approx. 20 - 50 iterations) from the point, where
the first min. value of difference between desired and actual system output is found.
Such a design of CF should secure the successful stabilization of higher periodic
orbit anywise phase shifted.

Furthermore, because of CF values being very close to zero, this CF also allows
using of decision rule avoiding very time demanding simulations. This rule stops

174 R. Senkerik et al.

EA immediately, when the first individual with good parameter structure is reached,
thus the value of CF is lower then the acceptable (CFacc) one. Typically CFacc =
0.001 at time interval τs = 20 iterations, thus difference between desired and actual
output has value 0.0005 per iteration - i.e. successful stabilization for used control
technique. This CF was also used for p-1 orbit. The CFBasic has the form 5.11.

CFBasic = penalization1 +
τ2

∑
t=τ1

|T St − ASt| (5.11)

where: TS - target state, AS - actual state
τ1 - the first min. value of difference between TS and AS
τ2 -the end of optimizing interval (τ1 + τs)
penalization1 = 0 if τi - τ2 ≥ τs;
penalization1= 10∗ (τi - τ2) if τi - τ2 < τs (i.e. late stabilization)

5.6.2.2 Targeting CF Simple – Case Study 2

In this case study the simplest CF proposal outlined above was used. It is based on
minimizing the area created by the difference between the required state (stabilized
fixed point) and the real system output on the whole simulation interval - τ , thus this
proposal of CF should secure fast targeting into the close neighborhood of p-1 orbit
and its stabilization. The CFSimple is given by 5.12.

CFSimple =
τi

∑
t=0

|T St − ASt| (5.12)

5.6.2.3 Targeting CF NA – Case Study 3

It was necessary to modify the definition of CF in order to decrease the average
number of iteration required for successful stabilization and avoidance of any as-
sociated problem. The CFsimple is not suitable for adding any term of penalization
for slowly stabilizing solutions, thus the CFbasic was modified to use for all required
UPOs. The CF value is multiplied by the number of iterations (NI) of the first found
minimal value of difference between desired and actual system output (i.e. the be-
ginning of fully stabilized UPO). To avoid problems associated with CF returning
value 0 and to put the penalization to similar level as the non-penalized CF value,
the small constant (SC) is added to CF value before penalization (multiplying by
NI). The modified CFNA has the form 5.13.

CFNA = NI

(
SC+ penalization1 +

τ2

∑
t=τ1

|T St − ASt|
)

(5.13)

where: SC = 10−16 for p-1 orbit, SC = 10−8 for p-2 orbit.

5 Evolutionary Design of Chaos Control in 1D 175

5.6.2.4 Targeting CF Targ1 – Case Study 4

The next proposal of CF design is based on the previous one with small change,
which should avoid any problems with defining the value of small constant SC in
advance (especially for stabilization of higher periodic orbit). The SC value (5.16)
here is computed with the aid of power of non-penalized basic part of CF (5.15).

In general, there exists two possible ways for applying the multiplication by num-
ber of iterations required for stabilization (NI). The first version of final design of
targeting CF (CFTARG1) has the form (5.14). Here the sum of basic part of CF and
automatically computed SC is multiplied by NI. Consequently, the EA should find
the solutions securing the fast targeting into desired behavior of system.

CFTARG1 = NI

(
SC + penalization1 +

τ2

∑
t=τ1

|TSt − ASt|
)

(5.14)

where

EXPCF = log10

(
τ2

∑
t=τ1

|T St − ASt|+ 10−15

)
(5.15)

SC = 10EXPCF (5.16)

5.6.2.5 Targeting CF Targ2 – Case Study 5

In the second version of targeting CF (CFTARG2), there is only slight change in com-
parison with the previous proposal. Here the number of steps for stabilization (NI)
multiplies only the small constant (SC) which is counted in the same way as in the
previous case (5.14). This version of targeting CF (CFTARG2) has the form (5.17)

CFTARG2 = (NI ·SC)+ penalization1 +
τ2

∑
t=τ1

|T St − ASt| (5.17)

5.6.2.6 Graphical CF Overview

The difference between proposed CFs can be clearly seen in Fig. 5.4 - 5.6, which
shows the dependence of CF values on the adjustable parameters K and Fmax (left
part of image - 3D diagram) and dependence of CF values on the adjustable param-
eter K (right part of image 2D - diagram). Possible remaining parameters were set
at the best values reached in optimizations; consequently the two-dimensional dia-
gram always shows the section of global minimum. From these figures, it is obvious
that together with growing complexity of the used CF, the nonlinearity and unpre-
dictability of CF surface also increases. Thus this is the answer for the question as
to why EA were used. The illustrative examples related to CFTARG1 and CFTARG2

are not presented here due to the close graphical similarity with CFNA (Fig. 5.6).

176 R. Senkerik et al.

Fig. 5.4 Dependence of CF value on parameters K and Fmax; R = 0 (left); and parameter K;
Fmax = 0.1944, R = 0 (right); CF Basic, p-1 orbit, Logistic equation, xinitial = 0.8

Fig. 5.5 Dependence of CF value on parameters K and Fmax; R = 0.0180 (left); and parameter
K; Fmax = 0.1030, R = 0.0180 (right); CF Simple, p-1 orbit, Logistic equation, xinitial = 0.8

5.6.3 Experimental Results

This section presents an accumulation of research [48] and also collates and elabo-
rates the experiences with application of EA to chaos control [46] - [34]. It contains
the brief overview of results given by optimizations by means of CF Targ2 (case
study 5) developed on the basis of successful CF NA design. This new CF is able
to firstly, successfully resolve the issue of fast stabilization and secondly, adds more
robustness to the execution of the heuristic. The presented data lends weight to the
argument, that this CF design is a serious consideration in the robust stabilization
of chaotic systems for wide range of initial conditions and seem to be the best choice

5 Evolutionary Design of Chaos Control in 1D 177

Fig. 5.6 Dependence of CF value on parameters K and Fmax; R = 0.4977 (left); and parameter
K; Fmax = 0.3195, R = 0.4977 (right); CF NA, p-1 orbit, Logistic equation, xinitial = 0.8

for the task of finding of “universal and robust solution”. The most of the problems,
which arose with previous CF designs during numerous repetitive simulations (case
studies 1 - 4) were here either successfully suppressed or their negative influence
to the simulations results were reduced. The only disadvantage of this proposal is
relatively big computational-time demands.

The figures shows the simulation of the best individual solutions (with the lowest
final CF value) given by SOMA and DE under identical initial conditions used in
optimization (left part) and for the uniformly distributed initial conditions in the
range 0 < xinitial < 1, 100 samples were used in this kind of simulation (right part).

For the comparison of average number of iterations required for successful sta-
bilization (all 50 repeated simulations), see Table 5.3 and Table 5.4. The value in
braces represents corrected one, which shows the average IStab value (iterations
required for stabilization) only for solutions, which leads to successful stabilization.

5.6.3.1 One Dimensional Example

For the excellent results of optimization in the case of one-dimensional Logistic
equation, please refer to Fig. 5.7 (p-1 orbit), Fig. 5.8 (p-2 orbit) and Fig. 5.9 (p-
4 orbit). From these presented results, it follows that the control method reached
very good performance from the point of view of quickness and quality of the sta-
bilization for both types of simulations. Only in the case of p-4 orbit there occurs
intensifying of the unpleasant fact that this CF Targ2 allowed finding of faster stabi-
lizing solutions, nevertheless this solutions are not suitable for complex simulation
with uniformly distributed initial conditions. Thus the system was not stabilized on
p-4 orbit for all 100 samples and this p-4 orbit seems to be a hard task for EA to find
optimal setting up of control method.

178 R. Senkerik et al.

Fig. 5.7 Best individual solution, CF Targ2, p-1 orbit, DERand1DIter

Fig. 5.8 Best individual solution; CF Targ2, p-2 orbit, DERand1DIter

Fig. 5.9 Best individual solution, CF Targ2, p-4 orbit, DEBest2Bin

5.6.3.2 Two Dimensional Example

The results of optimization in the case of two-dimensional Henon map are depicted
in Fig. 5.10 (p-1 orbit), Fig. 5.11 (p-2 orbit) and Fig. 5.12 (p-4 orbit). As can be
seen from the simulation results, this CF design gives similar excellent performance
from the point of view of quickness and quality of stabilization in as in the case of
Logistic equation. But on the other hand in case of usually not problematic p-1 orbit
this CF give several solutions, where the final CF value is not divisible by the NI

5 Evolutionary Design of Chaos Control in 1D 179

Table 5.3 Comparison of Average IStab values - LQ - Case studies 1-5

UPO p-1 p-2 p-4

EA Version SOMA DE SOMA DE SOMA DE

CF Basic 97 97 123 123 197 218
CF Simple 98 99 - - - -
CF NA 33 31 73 (109) 102 (116) - -
CF Targ1 33 31 78 (112) 104 (115) 77 (195) 121 (215)
CF Targ2 31 30 95 (112) 113 (113) 151 (184) 182 (196)

value (or IStab) without remainder Thus it seems, that every subsequent simulation
affirms the fact, that this design of CF secures very fast reaching of desired state but
with slightly lower quality of stabilization (basic part of CF > 0). This confirms the
phenomenon that endeavors for fast stabilization is at the cost of arising problems
with quality of stabilization and in the proper CF design there should be quickness
and quality balanced.

Fig. 5.10 Best individual solution, CF Targ2, p-1 orbit, DELocalToBest

Fig. 5.11 Best individual solution, CF Targ2, p-2 orbit, SOMA ATO

180 R. Senkerik et al.

Fig. 5.12 Best individual solution, CF Targ2, p-4 orbit, DEBest1JIter

Table 5.4 Comparison of Average IStab values - HENON - Case studies 1-5

UPO p-1 p-2 p-4

EA Version SOMA DE SOMA DE SOMA DE

CF Basic 77 75 124 125 122 122
CF Simple 65 70 - - - -
CF NA 49 47 84 (114) 110 (118) - -
CF Targ1 49 47 72 (113) 109 (118) 110 (121) 121 (123)
CF Targ2 39 38 91 (108) 113 (117) 115 (118) 123 (123)

5.6.4 Analysis of All Results

This work covers five case studies with different used CF as presented. The results
of numerous simulations and previous statistical comparisons of all case studies in
Tables 5.3 and 5.4 give the following piece of knowledge.

• The first proposed CF Basic gives satisfactory results and can be used wherever
the good quality of stabilization is expected and the speed of stabilization and
“universality of this solution” for wider range of initial conditions are not decisive.
This CF does not require any special experiences and knowledge about the system.

• The second CF simple represents the simplest example of targeting CF suitable
only for stabilization of fixed point. In comparison with CF Basic it gives similar
results in the case of LQ and slightly better results in the case of Henon map.

• The next proposal of CF NA represents the progressive targeting CF suitable for
p-1 and p-2 orbit, which gives very good results in the task of shortening of the
initial chaotic stage. The results for p-1 orbit are significantly better than in the
previous two CFs, on the other hand the slightly better results for p-2 orbit were
achieved at the cost of arising of problem with worse performance of EAs and
obtaining of solutions with only temporary stabilization or none at all. Moreover
this CF requires some knowledge about results achieved in the case of CF Basic
due to proper setting of SC value.

• The fourth CF Targ1 brings the advantage of automatically computed SC value,
thus it is suitable for any desired UPO. The obtained results were similar as in
case of CF NA.

5 Evolutionary Design of Chaos Control in 1D 181

• In the last proposal of CF Targ2 there were only slight changes in CF design,
but from the presented results it can be seen, how such a small change can influ-
ence the performance of a controlled system, especially when it is an extremely
sensitive chaotic system. Here, another improvement from the point of view of
quickness of stabilization was achieved and furthermore the performance of EAs
was increased, thus the proportion of non-stabilizing and stabilizing securing so-
lutions. This seems to be the best choice, when very good solution from the close
neighborhood of initial conditions is expected.

An apt comparison of all case studies is depicted in the following Figures 5.13
- 5.18. These figures show selected complex simulations from the best solutions

Fig. 5.13 Comparison of results for LQ - 1p, simulations with distributed initial condi-
tions; 0 < xinitial < 1, 100 samples; 1-SOMA ATA, 2-DELocalToBest, 3-DEBest1JIter, 4-
DERand1Bin, 5-DERand1DIter

182 R. Senkerik et al.

Fig. 5.14 Comparison of results for LQ - 2p, simulations with distributed initial condi-
tions: 0 < xinitial < 1, 100 samples; 1-SOMA ATR, 3- DERand1Bin, 4-SOMA ATAA, 5-
DERand2Bin

Fig. 5.15 Comparison of results for LQ - 4p, simulations with distributed initial conditions:
0 < xinitial < 1, 100 samples; 1-SOMA ATA, 4-DEBest2Bin, 5- DELocalToBest

5 Evolutionary Design of Chaos Control in 1D 183

given by all 10 versions of evolutionary algorithms. The statistical comparison in
Tables 5.3 and 5.4 and the average results of complex simulations of all 10 best
solutions which were the source for following figures 5.13 - 5.18 lends weight to the
argument, that targeting cost functions (CF NA, CF Targ1, and CF Targ2) allows to
reach faster and mostly better quality of stabilization.

Fig. 5.16 Comparison of results for HENON - 1p, simulations with distributed initial con-
ditions: 0 < xinitial < 1, 100 samples; 1-DERand2Bin, 2-DERand1Bin, 3-DEBest2Bin, 4-
DELocalToBest, 5-DELocalToBest

5.7 Comparison with OGY Method

The comparison was done for these two cases: p-1 orbit and p-2 orbit. These com-
parisons are derived from superimposition of 100 examples. The ETDAS control
algorithm was not mostly set up identically as the best individual solution given by

184 R. Senkerik et al.

Fig. 5.17 Comparison of results for HENON - 2p, simulations with distributed initial condi-
tions: 0 < xinitial < 1, 100 samples; 1-DEBest2Bin, 3-SOMA ATO, 4-SOMA ATO, 5-SOMA
ATR

Fig. 5.18 Comparison of results for HENON - 4p, simulations with distributed initial condi-
tions: 0 < xinitial < 1, 100 samples; 1-SOMA ATAA, 4-DEBest1JIter, 5-DELocalToBest

5 Evolutionary Design of Chaos Control in 1D 185

Fig. 5.19 Comparison of OGY, optimized ETDAS for p-1 orbit (left) and p-2 orbit (right),
LQ, CF Targ 2, 0 < xinitial < 1

SOMA or DE as ideally expected (only one exception - LQ, p-1 orbit), due to above
discussed problems and negative phenomenon. Also it has to be considered that the
performance of OGY method is very dependent on the size of tiny neighborhood of
desired UPO where the linearization is applied. Consequently it is possible to reach
either better result than presented here (larger neighborhood increases the chance,
that the chaotic attractor will reach it, but at the cost of breaking the basic OGY idea,
which is linearization in the very tiny neighborhood of UPO) or of course worse re-
sults in the sense of longer initial chaotic stage before stabilization is applied.

5.7.1 Logistic Equation

In the first case ETDAS was set up identically as the best solution given by DE-
Rand1DIter.

As can be seen from Fig. 5.19, ETDAS method steers the chaotic system very
quickly to the desired state. The OGY stabilize 50% of examples in first 100 itera-
tions, but ETDAS stabilize more than 50% of examples in first 20 iterations. Thus
this supports the theory that ETDAS based control method can be simply considered
as targeting and stabilizing algorithm.

In the second case, ETDAS was set up identically as the best solution given by
DERand2Bin. From Fig. 5.19 it follows that ETDAS method steers the chaotic sys-
tem very quickly to close neighborhood of p-2 orbit. To stabilize all of the examples
around 150 iterations are required. However, more than 50% of examples oscillate

186 R. Senkerik et al.

in the close neighborhood after first 50 iterations. Then the stage of reducing of
the neighborhood size, caused by progressive converging into p-2 orbit, ensues. The
OGY method stabilizes about 50% of examples in first 400 iterations and to stabilize
all of the examples about 900 iterations are required.

5.7.2 Henon Map

In the first case, ETDAS was set up identically as the best solution given by SOMA
ATR.

From Fig. 5.20 it follows, that optimized ETDAS method steers the chaotic sys-
tem very quickly to the stable state. The difference between two compared methods
is very considerable because the OGY stabilize 50% of examples in first 200 it-
erations, whereas EDAS stabilize more than 50% of examples in first 10 iterations.
From the similar comparison for logistic equation given in Fig. 5.19 it can be clearly
seen that the difference between these two control methods increase together with
higher dimension or complexity of controlled system. The performance of ETDAS
is almost the same whereas OGY needs twice more iterations to achieve stabiliza-
tion. In this case the performance of ETDAS with Henon map is even better then
with simpler one dimensional equation.

In the second case, ETDAS was set up identically as the best solution given by
DELocalToBest. From Fig 5.20 it follows that optimized ETDAS method needs
approximately 100 iterations to stabilize 50% of chaotic samples system at desired

Fig. 5.20 Comparison of OGY, optimized ETDAS for p-1 orbit (left) and p-2 orbit (right),
HENON, CF Targ2, 0 < xinitial < 1

5 Evolutionary Design of Chaos Control in 1D 187

p-2 orbit. To stabilize the rest of the samples around 200 iterations are required. As
in previous case the OGY stabilizes about 50% of examples in first 500 iterations
and to stabilize all of the examples more than 1000 iterations are required.

5.8 Conclusion and Discussion

The optimization of chaos control described here is relatively simple and easy to
implement. Based on obtained results, it may be claimed that all simulations give
satisfactory results and thus EAs are capable of solving this class of difficult prob-
lems and the quality of results does not depend only on the problem being solved
but also on the proper definition of the CF. The matter of selection of control method
and seemingly simple design of cost functions has this solution. The effective us-
age of evolutionary computation (notably from the point of view of time demands)
claims fast and elementary operations. Presented CFs and selected control algorithm
are quite simple and their representation in the Wolfram Mathematica environment
requires only a few rows of code and do not contain any time-consuming opera-
tions, for example matrix manipulations or analysis of system state. Furthermore as
mentioned in the introduction, the Pyragas control method has lot of easy accessible
parameters, which can be tuned by EA.

From the comparison with classical control technique - OGY follows that ET-
DAS based control method can be simply considered as targeting and stabilizing
algorithm and their performance is much better than OGY.

As can be seen from the optimization results presented here, they are extremely
sensitive to the construction of used CF. Any small change in the design of CF can
cause radical improvement of system behavior, but of course on the other hand can
cause worsening of observed parameters and behavior of chaotic as well. For exam-
ple the problem with fast stabilization not only for initial conditions used in opti-
mization process, but for the whole range of the initial conditions or other described
problems. The sensitivity is confirmed by the phenomenon, that the best individ-
ual solution is not sometimes suitable for complex simulation at all, although the
best solution secures fast and precise stabilization. The weight of this phenomenon
grows together with endeavor for effective complex targeting CF, which can even
bring the increase of the nonlinearity and uncertainness of the CF surface.

From the pair of tables 5.3 and 5.4 it is complex to answer as to which evolu-
tionary algorithm is better or worse. For the first view SOMA seems to be the better
choice, when the average IStab value is taken into account. But from the point of
view of the behavior of each EA during optimizations, it is a difficult question.
The SOMA rapidly heads towards global optimal solution, whereas DE slowly and
“carefully” searches in the erratic CF surface. And this is the reason for the phe-
nomenon, where DE gives slightly more “stabilization securing” solutions, whereas
SOMA got stuck in one of huge amount of local minimums. Eventually both EAs
give very satisfactory results.

From all presented results follows, that it is hard task to propose a CF, which
gives excellent results, especially “universal results” suitable for simulation with
wide range of initial conditions. The series of simulations demonstrates extremely

188 R. Senkerik et al.

sensitivity of chaotic systems to proper settings of control algorithm and of course
the sensitivity to even very tiny change in any parameter. This extreme sensitivity
is transferred into complexity of CF surface thus it is also hard task for EAs to find
good solution. It is also difficult to determine the conditions for optimizations and
subsequent simulations. For example the specification of correct length of optimiza-
tion interval τi is very difficult and it can be stated that it is alike to balancing at the
edge of knife when considering this fact, that the difference in final CF value of size
1.10−4 and subsequent very tiny change in combination of estimated parameters can
cause improvement or worsening of system behavior. And this small difference can
be caused by change in CF design or just only by adding 50 iterations (if the sys-
tem is not absolutely stabilized, the difference between ideal target state and actual
output of system can be relatively appreciable).

As a consequence of these facts it is possible to say that all presented CFs gives
good results and each one is more or less suitable depending on concrete demands
for quickness or quality of stabilization, computational-time demands, order of UPO,
whether it should be the solution only for limited circle of initial conditions or for
wider range etc.

Lastly, as a conclusion it seems that CF Targ2 (case study 5) is the best choice for
optimizations and simulations with limited circle of initial conditions. Also it gives
satisfactory results for wide range of initial solutions, thus gives the “universal”
solutions, which contradict with words chaos or chaotic system.

There is no problem for the future research in defining much more complex CF
comprising as subcriteria control of stability, costs, time-optimality, controllabil-
ity, or any of their arbitrary combinations. Furthermore parameter settings for EA
were based on heuristic approach; therefore there is also possibility for the future
research.

The total amount of optimizations was 36 000. The optimization took from one
minute in the case of p-1 orbit, CF Basic and TDAS control method to six minutes in
case of CF Targ2, Logistic equation ETDAS control and p-4 orbit. All simulations
were performed in Wolfram Mathematica environment. The total number of cost
function evaluations (CFE) for all presented results was 150 millions.

Acknowledgements. This work was supported by grant No. MSM 7088352101 of the Min-
istry of Education of the Czech Republic and by grants of the Grant Agency of the Czech
Republic GACR 102/09/1680.

References

1. Andrievski, B., Fradkov, A.: Control of Chaos: Methods and Applications. Autom. Rem.
Contr. 64(5), 679–719 (2003)

2. Awad, E., Ammar, S.: Optimal control and synchronization of Lorenz system with com-
plete unknown parameters. Chaos, Solitons & Fractals 30(5), 1122–1132 (2006)

3. Bing, C., Xiaoping, L., Shaocheng, T.: Adaptive fuzzy approach to control unified
chaotic systems. Chaos, Solitons & Fractals 34(4), 1180–1187 (2007)

4. Bird, C., Aston, P.: Targeting in the Presence of Noise. Chaos, Solitons, & Fractals 9(1),
251–259 (1998)

5 Evolutionary Design of Chaos Control in 1D 189

5. Bollt, E., Kostelich, E.: Optimal Targeting of Chaos. Phys. Lett. 245, 399–406 (1998)
6. Cannas, B., Cincotti, S., Pisano, A., Usai, E.: Controlling Chaos via Second-Order Slid-

ing Modes. In: Proc. International Symposium on Circuits and Systems, ISCAS 2003,
pp. 156–159 (2003)

7. Chen, L.: The Open-plus-closed-loop Control of Chaotic Maps and its Robustness.
Chaos, Solitons & Fractals 21, 113–118 (2004)

8. Fradkov, A., Evans, R.: Control of Chaos:Survey 1997 - 2000. In: Preprints of 15th Tri-
ennial World Congress IFAC, Plenary Papers, Survey Papers, Milestones, Barcelona, pp.
143–154 (2002)

9. Fradkov, A., Evans, R.: Control of Chaos: Methods and Applications in Engineering.
Annu. Rev. Contr. 29(1), 33–56 (2005)

10. Gonzales-Miranda, J.: Perturbing Chaotic Systems to Control Chaos. In: Synchroniza-
tion and Control of Chaos - An Introduction for Scientists and Engineers. Imperial Col-
lege Press, London (2004)

11. Grebogi, C., Lai, Y.: Controlling Chaotic Dynamical System. Phys. Rep. 31, 307–312
(1997)

12. Grebogi, C., Lai, Y.: Controling Chaos. In: Schuster, H. (ed.) Handbook of Chaos Con-
trol. Wiley-VCH, Weinheim (1999)

13. Grebogi, C., Lai, Y.: Pole placement Method of Controling Chaos in high dimensions.
In: Schuster, H. (ed.) Handbook of Chaos Control. Wiley-VCH, Weinheim (1999b)

14. Hassan, S., Mohammad, S.: Indirect adaptive control of discrete chaotic systems. Chaos,
Solitons & Fractals 34(4), 1188–1201 (2007)

15. Hilborn, R.: Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engi-
neers. Oxford University Press, Oxford (2000)

16. Hua, Ch., Guan, X.: Adaptive Control for Chaotic systems. Chaos, Solitons & Frac-
tals 22, 55–60 (2004)

17. Huang, W.: Stabilizing nonlinear dynamical systems by an adaptive adjustment mecha-
nism. Phys. Rev. E 61, R1012–1015 (2000)

18. Iplikci, S., Denizhan, Y.: Control of chaotic systems using targeting by extended control
regions method. Phys. Nonlinear Phenom. 150(3-4), 163–176 (2001)

19. Iplikci, S., Denizhan, Y.: An improved neural network based targeting method for chaotic
dynamics. Chaos, Solitons & Fractals 17(2), 523–529 (2003)

20. Just, W.: Principles of Time Delayed Feedback Control. In: Schuster, H. (ed.) Handbook
of Chaos Control. Wiley-VCH, Weinheim (1999)

21. Kostelich, E., Ott, E., Grebogi, C., Yorke, J.: Higher-dimensional Targeting. Phys. Rev.
E 47(1), 305–310 (1993)

22. Kwon, J.: Targeting and Stabilizing Chaotic Trajectories in the Standard Map. Phys.
Lett. 258, 229–236 (1999)

23. Mascolo, S.: Backstepping Design for Controlling Lorenz Chaos. In: Proc. 36th IEEE
Conference on Decision and Control, San Diego, pp. 1500–15001 (1997)

24. Mascolo, S., Grassi, G.: Controlling Chaos via Backstepping Design. Phys. Rev. E 56(5),
6166–6169 (1997)

25. May, R.: Stability and Complexity in Model Ecosystems. Princeton University Press,
Princeton (2001)

26. Ott, E., Grebogi, C., Yorke, A.: Controlling Chaos. Phys. Rev. Lett. 64, 1196–1199
(1990)

27. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. 170,
421–428 (1992)

28. Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global
Optimization. Natural Computing Series. Springer, Heidelberg (2005)

190 R. Senkerik et al.

29. Pyragas, K.: Control of chaos via extended delay feedback. Phys. Lett. 206, 323–330
(1995)

30. Ramaswamy, R., Sinha, S., Gupte, N.: Targeting Chaos Through Adaptive Control. Phys.
Rev. E 57(3), 2507–2510 (1998)

31. Paskota, M., Lee, J.: Targeting moving targets in chaotic dynamical systems. Chaos,
Solitons & Fractals 8(9), 1533–1544 (1997)

32. Richter, H.: An Evolutionary Algorithm for Controlling Chaos:The Use of Multi - Ob-
jective Fitness Function. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-
Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 308–320.
Springer, Heidelberg (2002)

33. Richter, H., Reinschke, K.: Optimization of local control of chaos by an evolutionary
algorithm. Physica D 144, 309–334 (2000)

34. Senkerik, R., Zelinka, I., Davendra, D.: Comparison of Evolutionary Algorithms in the
Task of Chaos Control Optimization. In: Proc. IEEE Congres on Evolutionary Compu-
tation 2007, CEC 2007, Singapore, September 25-28, pp. 3952–3958 (2007)

35. Senkerik, R., Zelinka, I., Navratil, E.: Optimitazion of Feedback Control of Chaos by
Evolutionary Algorithms. In: Proc. 1st IFAC Conference on Analysis and Control of
Chaotic Systems, CHAOS 2006, Reims, France, pp. 97–102 (2006)

36. Senkerik, R., Zelinka, I., Navratil, E.: Design of Targeting Cost function for Evolutionary
Optimization of Chaos Control. In: Proc. 21st European Conference on Modelling and
Simulation 2007, ECMS 2007, Prague, Czech Republic, June 4-6, pp. 345–350 (2007)

37. Senkerik, R., Zelinka, I., Navratil, E.: Cost function Design for Evolutionary Optimiza-
tion of Chaos Control. In: Proc. 9th European Control Conference 2007, ECC 2007, Kos,
Greece, July 2-5, pp. 1682–1687 (2007)

38. Starrett, J.: Time-optimal Chaos Control by Center Manifold Targeting. Phys. Rev.
E 66(4), 6206–6211 (2002)

39. Sun, J.: Impulsive Control of a New Chaotic System. Math. Comput. Simulat. 64, 669–
677 (2004)

40. Sun, J., Zhang, Y.: Control of Chaotic Systems Using an on-line Trained Linear Neural
Controller. Physica D 100, 423–438 (1997)

41. Sun, J., Zhang, Y.: Impulsive Control of Rossler System. Phys. Lett. 306, 306–312 (2003)
42. Tian, Y., Gao, F.: Adaptive Control of Chaotic Continuous-time systems with delay. Phys.

Nonlinear Phenom. 117, 1–12 (1998)
43. Yang, T., Yang, L., Yang, C.: Impulsive Control of Lorenz System. Physica D 110, 18–24

(1997)
44. Yongai, Z.: Controlling chaos based on an adaptive adjustment mechanism. Chaos, Soli-

tons & Fractals 30(5), 1069–1073 (2006)
45. Zelinka, I.: SOMA - Self Organizing Migrating Algorithm. In: Babu, B., Onwubolu, G.

(eds.) New Optimization Techniques in Engineering. Springer, Heidelberg (2004)
46. Zelinka, I.: Investigation on Evolutionary Deterministic Chaos Control - Extended Study.

In: ECMS 2005, Riga, Latvia (2005)
47. Zelinka, I., Senkerik, R., Navratil, E.: Investigation on Real Time Deterministic Chaos

Control by Means of Evolutionary Algorithms. In: Proc. 1st IFAC Conference on Anal-
ysis and Control of Chaotic Systems, CHAOS 2006, Reims, France, June 28-30, pp.
211–217 (2006)

48. Zelinka, I., Senkerik, R., Navratil, E.: Investigation on Evolutionary Optimitazion of
Chaos Control. Chaos, Solitons & Fractals (2007), doi:10.1016/j.chaos.2007.07.045

49. Zeng, Y., Singh, S.: Adaptive Control of Chaos in Lorenz System. Dynam. Contr. 7,
143–154 (1997)

Chapter 6
Evolutionary Control of CML Systems

Ivan Zelinka

Abstract. This chapter is a continuation of an investigation on deterministic spa-
tiotemporal chaos real-time control by means of selected evolutionary techniques.
Real-time like behavior is specially defined and simulated with spatiotemporal
chaos model based on mutually nonlineary joined n equations, so called Coupled
Map Lattices. In total five evolutionary algorithms has been used for chaos control:
differential evolution, self-organizing migrating algorithm, genetic algorithm, simu-
lated annealing and evolutionary strategies in a total of 15 versions. For modeling of
spatiotemporal chaos behavior, the so called coupled map lattices were used based
on logistic equation to generate chaos. The main aim of this investigation was to
show that evolutionary algorithms, under certain conditions, are capable of control-
ling of CML deterministic chaos, when the cost function is properly defined along-
side the parameters of selected evolutionary algorithms. Investigation consists of
four different case studies with increasing simulation complexity. For all algorithms
each simulation was evaluated 100 times in order to show and check robustness of
used methods. All data were processed and used in order to get summarized results
and graphs.

6.1 Introduction

Deterministic chaos, discovered by E. Lorenz [23] is a fairly active area of research
in the last few decades. The Lorenz system produces one of the well-known canoni-
cal chaotic attractors in a simple three-dimensional autonomous system of ordinary

Ivan Zelinka
Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511,
Zlin 76001, Czech Republic
and
VSB-TUO, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15,
708 33 Ostrava-Poruba, Czech Republic
e-mail: zelinka@fai.utb.cz

I. Zelinka et al. (Eds.): Evolutionary Algorithms and Chaotic Systems, SCI 267, pp. 191–235.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

192 I. Zelinka

differential equations [23], [32]. For discrete chaos, there is another famous chaotic
system, called logistic equation [24]. Logistic equation is based on a predator-prey
model showing chaotic behavior. This simple model is widely used in the study of
chaos, where other similar models exist (canonical logistic equation [12] and 1D or
2D coupled map lattices [31]). Since then, a large set of nonlinear systems that can
produce chaotic behavior have been observed and analyzed. Chaotic systems thus
have become a vitally important part of science and engineering in theoretical as
well as in practical levels of research. The most interesting and applicable notions
are, for example, that chaos control and chaos synchronization are related to secure
communication, amongst others. Recently, the study of chaos is focused not only
along the traditional trends but also on the understanding and analyzing principles,
with the new intention of controlling and utilizing chaos as demonstrated in [4] and
[33]. The term chaos control was first coined by Ott, Grebogi and Yorke in 1990. It
represents a process in which a control law is derived and used so that the original
chaotic behavior can be stabilized on a constant level of output value or a n-periodic
cycle. Since the first experiment of chaos control, many control methods have been
developed and some are based on the first approach [27], including pole placement
[13], [42] and delay feedback [19], [20]. Another research has been done on CML
control by [10], special feedback methods for controlling spatio-temporal on-off in-
termittency has been used there and [10]. This paper introduces a controller (based
on discrete-time sliding mode and Lyapunov function) for controlling of spatiotem-
poral chaos system. Many methods were adapted for the so-called spatiotemporal
chaos represented by coupled map lattices (CML). Control laws derived for CML
are usually based on existing system structures [31], or by using an external observer
[3]. Evolutionary approach for control was also successfully developed, for exam-
ple in, [30], [29] and [38]. Many published methods of deterministic chaos control
(DCC) were (originally developed for classic DCC) adapted for so called spatiotem-
poral chaos represented by CML, given by eq. (6.1). Models of this kind are based
on a set of spatiotemporal (for 1D, Fig. 6.1) or spatial (for 2D, Fig. 6.2)) cells which
represents appropriate state of system elements. Typical example is CML based on
so called logistic equation, [24], [15], [3] which is used to simulate behavior of sys-
tem which consists of n mutually joined cells via nonlinear coupling, usually noted
like ε . Mathematical description of CML system is given by eq. (6.1). The function,
which is represented by f (xn(i)) is an “arbitrary” discrete system - in this case study
logistic equations has been selected to substitute f (xn(i)). CML description based
on eq. (6.1) in Mathematica software is given in Fig. 6.3.

xn+1(i) = (1 − ε) f (xn(i))+
ε
2
(f (xn(i− 1))+ f (xn(i+ 1))) (6.1)

The main aim of this participation is to show that evolutionary algorithms (EA’s)
are capable of controlling (as was also shown for temporal DCC in [30], [29]), CML
as well as deterministic methods without internal system knowledge operating with
CML as like a black box system. The ability of EAs to successfully work with black
box type of problems have been proven; see for example real-time control of plasma

6 Evolutionary Control of CML Systems 193

0 100 200 300 400 500 600
0

10

20

30

40

50

60

Fig. 6.1 1D CML with stabilized pattern T1S2

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Fig. 6.2 2D CML with pinning imported through lattice on position (0,0). Resulting control
pattern (left) is visible as well as spatiotemporal chaos (right)

reactor [25], [26] and [40] or CML non real-time control by evolutionary algorithms
[36], [37] and [41].

This chapter is organized as follows. The first part outlines the motivation of this
investigation. This is followed by a brief survey of evolutionary algorithms which
follow, along with a brief description of the idea of CML chaos control. Evolutionary
chaos control is then described, and finally experimental results are reported, fol-
lowed by conclusion.

194 I. Zelinka

Fig. 6.3 Realization of eq. (6.1) in Mathematica code

6.2 Motivation

Motivation of this investigation is quite simple. As mentioned in the introduction,
evolutionary algorithms are capable of hard problem solving. A lot of examples
about evolutionary algorithms can be easily found. For example in [7] are developed
statistically robust evolutionary algorithms, on the opposite side [18] used evolution-
ary algorithms for fuzzy power system stabilizer which has been applied on single-
machine infinite bus system and multi-machine power system. Another research
was done by [22]. Parameters of permanent magnet synchronous motors has been
optimized by particle swarm algorithm and experimentally validated on servomo-
tor. [6] used swarm intelligence for IIR filter synthesis and in [14] co-evolutionary
particle swarm optimization (CoPSO) approach is used for design of constrained
engineering problems. CoPSO was used for the pressure vessel, compression spring
and welded beam problem with only 30 independent runs.

The main question in this research was if EAs are able to control and stabilize
chaotic systems like CML, and if they are capable to control CML like a black box
system, i.e. when the structure of the controlled system is unknown. All experiments
here were designed to check this idea and either confirm or reject it. Comparison has
been done with control based on analysis of CML system [17], [31] and analytic
derivation of control law for CML. Behavior of controlled CML is as demonstrated
on Fig. 6.4 - Fig. 6.6. Snapshot of frontwave stabilization of CML is depicted here.
Fig. 6.4 shows the initial phase of the frontwave. It is clearly visible that it is fully
random. On Fig. 6.4 CML is shown after 60 iterations – pattern-like structure is
visible there. The last snapshot has been done after 344 iterations – CML has been
successfully stabilized. Thus, the main aim was to stabilize CML with the quality to
that of standard controlling techniques.

6 Evolutionary Control of CML Systems 195

Fig. 6.4 Successful stabilization of CML in T1S3 pattern - start.

Fig. 6.5 Successful stabilization of CML in T1S3 pattern - iteration 60.

196 I. Zelinka

Fig. 6.6 Successful stabilization of CML in T1S3 pattern - pattern is stabilized.

6.3 Selected Evolutionary Algorithm - A Brief Introduction

For the numerical and symbolic experiments described here, stochastic optimization
algorithms such as Differential Evolution (DE) [28], Self Organizing Migrating Al-
gorithm (SOMA) [35], Genetic Algorithms (GA) [16], Simulated Annealing (SA)
[21], [2] and Evolutionary Strategies (ES) [1] were selected.

6.3.1 Differential Evolution

Differential Evolution (Fig. 6.7) is a population-based optimization method that
works on real-number coded individuals. For each individual xi,G in the current
generation G, differential evolution (DE) generates a new trial individual x′

i,G by
adding the weighted difference between two randomly selected individuals xr1,G

and xr2,G to a randomly selected third individual xr3,G. The resulting individual x′
i,G

is crossed-over with the original individual xi,G. The fitness of the resulting indi-
vidual, referred to as a perturbed vector ui,G+1, is then compared with the fitness
of xi,G. If the fitness of ui,G+1 is greater than the fitness of xi,G, then xi,G is re-
placed with ui,G+1; otherwise xi,G remains in the population as xi,G+1. Differential
Evolution is robust, fast, and effective with a global optimization ability. It does not
require the objective function to be differentiable, and it works well even with noisy,
epistatic and time-dependent objective functions. Pseudocode for DE, especially for
DERand1Bin, is given in eq. (6.2).

6 Evolutionary Control of CML Systems 197

1.Input :D,Gmax,NP ≥ 4,F ∈ (0,1+) ,CR ∈ [0,1], and initial bounds :x(lo),x(hi).

2.Initialize :

{
∀i ≤ NP∧∀ j ≤ D : xi, j,G=0 = x(lo)

j + rand j [0,1]•
(

x(hi)
j −x(lo)

j

)
i = {1,2, ...,NP}, j = {1,2, ...,D},G = 0,rand j [0,1] ∈ [0,1]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3.While G < Gmax

∀i ≤ NP

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4.Mutate and recombine :
4.1r1,r2,r3 ∈ {1,2,,NP}, randomly selected, except :r1 �= r2 �= r3 �= i
4.2 jrand ∈ {1,2, ...,D}, randomly selected once each i

4.3∀ j ≤ D,u j,i,G+1 =

⎧⎨
⎩

x j,r3,G +F · (x j,r1,G −x j,r2 ,G)
if(rand j[0,1] < CR∨ j = jrand)
x j,i,Gotherwise

5.Select

xi,G+1 =
{

ui,G+1 if f (ui,G+1) ≤ f (xi,G)
xi,G otherwise

G = G+1
(6.2)

An example of DE is demonstrated on Fig. 6.7.

6.3.2 SOMA

SOMA (Fig. 6.8) is a stochastic optimization algorithm that is modeled based on the
social behavior of competitive - cooperating individuals [35]. It was chosen because
it has been proved that this algorithm has the ability to converge towards the global
optimum [35]. SOMA works on a population of candidate solutions in loops, called
migration loops. The population is initialized by uniform random distribution over
the search space at the beginning of the search. In each loop, the population is eval-
uated and the solution with the lowest cost value becomes the leader. Apart from
the leader, in one migration loop, all individuals will traverse the searched space in
the direction of the leader. Mutation, the random perturbation of individuals, is an
important operation for evolutionary strategies (ES). It ensures diversity amongst
all the individuals and it also provides a means to restore lost information in a pop-
ulation. Mutation is different in SOMA as compared with other ES. SOMA uses a
parameter called PRT to achieve perturbations. This parameter has the same effect
for SOMA as mutation for GA. The PRT vector defines the final movement of an
active individual in the search space. The randomly generated binary perturbation
vector controls the allowed dimensions for an individual. If an element of the pertur-
bation vector is set to zero, then the individual is not allowed to change its position
in the corresponding dimension. An individual will travel over a certain distance
(called the PathLength) towards the leader in finite steps of the defined length. If the
PathLength is chosen to be greater than one, then the individual will overshoot the
leader. This path is perturbed randomly. Pseudocode for SOMA is eq. (6.3).

198 I. Zelinka

Input :N,Migrations,PopSize ≥ 2,PRT ∈ [0,1],Step ∈ (0,1],MinDiv ∈ (0,1],
PathLength ∈ (0,5],Specimen with uper and lower bound x(hi)

j ,x(lo)
j

Initialization :

{
∀i≤PopSize∧∀ j ≤ N : xi, j,Migrations=0 =x(lo)

j +rand j [0,1]•
(

x(hi)
j −x(lo)

j

)
i={1,2, ...,Migrations}, j={1,2, ...,N},Migrations =0,rand j [0,1]∈ [0,1]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

While Migrations < Migrationsmax

∀i ≤ PopSize

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

While t ≤ PathLength
i f rnd j < PRT pak PRTVector j = 1 else 0 , j = 1, . . . ,N
xML+1

i, j = xML
i, j,start +(xML

L, j −xML
i, j,start) t PRTVector j

f
(

xML+1
i, j

)
= if f

(
xML

i, j

)
≤ f

(
xML

i, j,start

)
else f

(
xML

i, j,start

)
t = t +Step

Migrations = Migrations+1
(6.3)

Fig. 6.7 Differential evolution, (http://www.icsi.berkeley.edu/ storn/code.html)

6 Evolutionary Control of CML Systems 199

An example of SOMA is demonstrated on Fig. 6.8.

Fig. 6.8 SOMA, (http://www.fai.utb.cz/people/zelinka/soma)

SOMA can be also regarded as a member of the swarm intelligence class of algo-
rithms. This class contains algorithms such as particle swarm, which is also based
on a population of particles, which are mutually influenced amongst themselves.
Some similarities as well as differences exist between SOMA and particle swarm,
for details see [11], [5].

200 I. Zelinka

6.3.3 Simulated Annealing

Simulated annealing (SA, S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi in 1983, and
by V. Cerny in 1985) is a generic probabilistic meta-algorithm for the global opti-
mization problem, namely locating a good approximation to the global optimum of
a given function in a large search space. By analogy with metallurgical processes,
each step of the SA algorithm replaces the actual solution by a randomly gener-
ated solution from the neighborhood, chosen with a probability depending on the
difference between the corresponding function values and on a global parameter so
called temperature - T . Temperature is decreasing during the process. Current so-
lution changes almost randomly when T is large, but increasingly “downhill” as T
goes to zero. The allowance for “uphill” moves saves the method from becoming
stuck at local minimum. Simulated annealing is a stochastic algorithm defined by:

SA = (M,x0,N, f ,T0,Tf ,α,nT), (6.4)

The meaning of parameters is as follow:

• M: space of possible solutions
• x0: initial solution, randomly selected
• N(x,σ): subset of possible solution x ∈ M
• T0: initial temperature.
• Tf : stopping temperature (temperature of crystallization)
• nT : number of iterations of Metropolis algorithm
• α: temperature reduction α : T → T ′,T ′ < T , usually is used function of re-

duction like T ′ = α × T . Parameter α is usually a single value between 0.8 -
0.99.

In a real world, all objects consist of a number of particles. Physical state can
be described by vector x = (x1,x2, ...,xn,) describing particle position for example.
This state is related to energy y = f (x). If such system is on the same temperature
T long enough, then the probability of the existence of such states is given by the
Boltzmann distribution. The probability that the system is in state x is then given by

e− f (x)/T

Q(T)
(6.5)

with
Q(T) = ∑

i

e− f (x)/T (6.6)

For sufficiently small T , the probability that the system will be in state xmin with
minimal energy f (xmin) is almost 1. It has been suggested that the simulation of an-
nealing by means of Monte Carlo method can be accomplished with a new decision
function as given in eq. 6.7.

P(x → x0) =
{

1, f or f (x) < f (x0)
e−(f (x)− f (x0))/T f or f (x) ≥ f (x0)

(6.7)

6 Evolutionary Control of CML Systems 201

This decision function stipulates whether new state, say xnew (when for example
one particle will change its position) is accepted or not. In the case that xnew is
related to lower energy, then the old state is replaced by a new one. On the contrary,
xnew is accepted with probability 0 < P(x → x0) < 1. If r is random number from [0,
1], then the new state is accepted only if r < P(x → x0) In eq. (6.7) temperature T
has an important influence on probability P(x → x0) when f (x) ≥ f (x0); for big T is
basically accepted for any new state (solution), however for low T states with higher
energy are accepted only rarely. If this algorithm (Metropolis algorithm) is repeated
for one state in a sufficient number of repetitions, then the observed distribution of
generated states is basically the Boltzmann distribution. This allows the realization
of simulated annealing on a PC. Algorithm of simulated annealing, repeating the
Metropolis algorithm for decreasing temperature uses the final state xn related to
Tn as the initial state for the next iteration xm with function α (Tn). This function
decreases actual temperature and can be represented for example by Tm = Tn −α or
Tm = Tn × α . Variable α is an arbitrarily small number.

Pseudocode for simulated annealing is given in eq. (6.8).

1.Input : initial solution x0, temperature T0, function of temperature decrement α(t),
final temperature Tf , number of iterations nT , and initial bounds : x(lo),x(hi).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2.While T < Tf

∀i ≤ nT

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3. Randomly select x from neighbor of N(x0 ,σ)and calculate ∆ f := f (x)− f (x0)

3.1 i f ∆ f < 0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 := x and i f f (x) < f (x∗)
{

then x∗ := x
{ actualization of the best solution}
end

else

⎧⎪⎨
⎪⎩

randomly select r from [0,1] and

i f r < e−∆ f/T

{
then x∗ := x{ move to the worst solution}
end

end
3.2 Tm := α(Tn)

(6.8)

6.3.4 Genetic Algorithms

Genetic algorithms [16] has been developed according to the ideas of biological evo-
lution. GA in its canonical version consists of binary strings-individuals, but other
encodings are also possible. Individuals are processed through evolutionary opera-
tors like selection, crossover, mutation etc. with the aim to get better individuals-
solutions. The evolution usually starts from a population of randomly generated in-
dividuals and loops of generations. In each generation, the fitness of every individual
in the population is evaluated, two or more individuals are selected from the current
population, and modified to form a new population. There exists a whole class of
genetics algorithms, which was used to solve very rich class of problems. Princi-
ples of genetic algorithms are the same as reported in Chapter 2, i.e. it is running in
loops called generations G. In the beginning randomly created initial individuals are
generated (binary strings in basic version of GA), which are then evaluation by the

202 I. Zelinka

fitness function (usually cost function unified into interval [0, 1]). When individu-
als are evaluated, we can classify them as parents. Usually two parents (Pn,Pm) are
selected for crossover operation Ω (exchange of parts of their binary “bodies”). Se-
lection is usually the process when two parents are less or more selected by means
of their fitness. New individuals, called offsprings, are created like a product of
crossover. Each of them has to be mutated (Ωm, random reverse of randomly se-
lected bits of their binary bodies) and again evaluated by the fitness function. In
the last step, before the actual generation is finished, the best individuals (from par-
ents and offsprings) is selected for the new population. The pseudocode for genetic
algorithm is given in eq. (6.9).

1.Input : initial population P consist of individuals pi,mutation T0,
operators of parent selection Θ , mutation Ωm, crossover Ω ,

and initial bounds : x(lo),x(hi).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2.While g < Gmax

∀pi ∈ P

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3.{P1,P2} := Θ(P(t));{ parents selection }
4. O := Ω(P1,P2));{ offspring creation by crossover}
5. O := Ωm(O, pm));{ mutation}
6. find S0 ∈ P(t) such, that f (S0) ≥ f (S), ∀S ∈ P(t);
{S0 is the worst solution in P(t)}
7. S0 := O;{ The worst solution is replaced by offspring}
8. i f f (O) < f (S∗)

{
then S∗ := O;{ updating of the best solution}
end

g := g + 1
(6.9)

6.3.5 Evolutionary Strategies

Evolutionary strategies [1] was originally developed by P. Bienert, I. Rechenberg
and H. P. Schwefel. The first application was focused on mechanical engineering
problems. The original version of ES was different from GA in two main points:

• ES did not used individuals like GA in binary strings,
• ES did not used operators of crossover, selection and mutation, as in GA.

EAs are usually defined like ES((µ +λ)) and ES((µ ,λ)). Symbols µ and λ rep-
resents a set of parents and offsprings, symbols + and , represents whether selection
of the best individuals will be done from the set of parents (µ) or both (µ ∪λ). Both
sets (populations) can have size from 1 individual to a number which is limited
by the memory of the used computer. Size of both ES’s consist of a few strategies
like two-membered ES, multi-membered ES, recombinative ES and self-adaptive
ES. ES is running in a simple loop as described by the pseudocode below; gen-
eral ES((µ + λ)) is described there. In the beginning, a population of parents (µ)
is created. Then the selected parents are mutated by means of so called “Gaussian
mutation operator” N(0,σ) and thus, a set (population) of offsprings (λ) is created.

6 Evolutionary Control of CML Systems 203

After their union into the population P := µ ∪ λ =
(⋃λ

j=1 y j
)

∪ (⋃µ
i=1 xi

)
the best

solutions from P are selected and replace the worst solutions in the population. The
whole process is then repeated. Pseudocode for evolutionary strategies is described
in eq. (6.10).

1.Input :µ− randomly generated parents xi,
σ − standard deviation of normal distribution,
f : costfunction, imax: maximal number of iterations of ES,
FV : fitness value (cost value),
used to stop ES, auxiliary variables : λ− offsprings population,

yi− ith offspring;
P− populationof λ and µ .⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2.While i < imax

∀xi ∈ µ

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3.yi := xi + N(0,σ),{offspring creation}
4.P := µ ∪λ =

(⋃λ
j=1 y j

)
∪ (⋃µ

i=1 xi
)
,

{joining of both populations}
3.µ := selection of the best solutions out of P

5.i f the best f (µ) < FV

{
then stop ES
end

i := i+ 1

(6.10)

For exact descriptions of the above mentioned algorithms, see [28] for DE, [35]
for SOMA, [16], [8] for GA, [21], [2] for SA and [9] or [1] for ES.

6.4 CML Control

6.4.1 Used Hardware

CML control in this case study has been done on special grid computer, compared
to a simple PC as in [39]. This grid computer, called Emanuel, consist of two special
Apple servers (David and Goliath). The bigger one (Goliath, see Fig. 6.10) is based
on 16 XServers, each 2x2 GHz Intel Xeon, 1 GB RAM, 80 GB HD i.e. 64 CPUs.
The second one (David, see Fig. 6.9) is created from 7 Apple Minimacs CoreDuo i.e.
number of accessible CPUs is 14. In total 78 CPUs are available for computation.
Emanuel has been used for calculations in two ways. The first one was focused on
use of each CPU as a single processor and thus a rich set of statistically repeated
experiments were conducted were time was not a factor. The second way involved
the use of Emanuel like a grid machine in order to increase speed of selected time
demanding simulations, as reported in this chapter. However, this does not means
that such class of problems can be solved only on special computers. All solved
problems and reported case studies in this chapter can also be done on single PC but
in a different time scale.

204 I. Zelinka

Fig. 6.9 Emanuel server: David (14 CPUs) ... Fig. 6.10 ... and Goliath (64 CPUs).

6.4.2 Problem Selection and Case Studies

The class of CML problems chosen for this comparative study was based on case
studies reported in [31]. In general, CML control means setting of such pinning sites
(controlled CML sites) and their pinning values (control values) so that the system
stabilizes itself on expected spatiotemporal pattern. CML as an object of study was
chosen because it shows chaotic behavior and its level of complexity can be quite
rich.

All simulations designed and reported here are based on previous simulations,
like [36], [37] or [39]. In the previous simulations, EAs has been found to be ca-
pable of controlling CML chaos. Some of them were modified (cost functions was
redefined) to increase speed (i.e. number of cost function evaluations) of simula-
tions. To highlight the impact of proposed changes in this chapter, we have used all
five evolutionary algorithms to control CML, size of 10 inputs, see Fig. 6.11 and
6.12.

Comparing to simulations described further, this simulation was defined so that
20 unknown parameters has been estimated. The reason of why exactly 20, is simple.
CML size was 10 and EAs estimated which pinning site (10 inputs of CML) shall
be used and what pinning value (10 control signals) will be applied to each input.
Thus evolutionary search has run in the 20 dimensional solution space. Based on
informations in [31] and previous experiences [36], [37] the cost function (6.12)
has been used and it has been empirically discovered that the cost value ≤ 5 should
guarantee stabilized CML (at least in our experimentation in Mathematica code).

6 Evolutionary Control of CML Systems 205

Fig. 6.11 An example from 1500 simulated
CML behavior. Stabilization to T1S1 has
been reached after 250 iterations

Fig. 6.12 Another example from 1500 sim-
ulated CML behavior. Stabilization to T1S1
has been reached before 100 iterations

We have found, that when EAs stop above cost value ≤ 5.1, then the CML is
stabilized in almost all cases between 300 - 600 iterations. To safely stabilize CML
before 100 iterations, it is enough when EAs stop below this level, like for example
cost value ≤ 5.00001. Thus it is quite critical, what stopping cost value is selected.
On Fig. 6.13 and Fig. 6.14 are two examples (of 15) which shows what pinning sites
(black squares, white means not used) were used to control CML. Pinning values
were estimated in the interval [0,5] for each pinning site, and are depicted in Fig.
6.15 and 6.16. On both figures all pinning values are shown, however only those
related used pinning sites (Fig. 6.13, Fig. 6.14), has been used.

Fig. 6.13 Used pinning sites for 100 DE re-
peated simulations. Black sites were used for
CML simulations.

Fig. 6.14 Used pinning sites for 100 GA re-
peated simulations. Black sites were used for
CML simulations.

Fig. 6.15 Used pinning values for sites de-
picted in Fig. 6.13.

Fig. 6.16 Used pinning values for sites de-
picted in Fig. 6.14.

206 I. Zelinka

In Fig. 6.17 and 6.18 the summarized cost function needed to find stabilizing
combination of all 20 parameters is given. It is visible, that the number of cost
function evaluations needed to reach solution was 3964 on average. All those results
are valid for CML of 10 inputs only, however, more often one can use CML with
50, 100 or more inputs and in such a case search algorithms would search in really
high-dimensional space. Expected cost function evaluations would then be much
more higher.

To improve the performance and speed of simulations, two modifications are
suggested here. Number of used pinning sites is omitted, only period of used pinning
site is estimated (i.e. only one variable instead of n variables) which means that
only each nth site is used to apply pinning value. Pinning value is estimated in the
same manner. Only one value is estimated and then applied to each nth pinning
site. In such a case, problem of generally n dimensional problem (n can be 20, 50 ,
100,.....) is reduced only to search in the 2D solution space.

Fig. 6.17 Cost function evaluations, total
view.

Fig. 6.18 Cost function evaluations, detail.

Selected modifications has improved the performance of selected algorithms, as
reported in the following section. The investigation consists of four parts in increas-
ing order from the calculation complexity point of view and was based on [17]. The
first one is focused on pinning values estimation for a priori given pinning sites. In
the second one, the pinning sites with a priori given pinning values were estimated
by EAs. The third simulation was the enlargement of the previous simulation - EAs
were used to find minimal number of pinning sites and the fourth simulation was
focused on mutual estimation of pinning sites and values, i.e. EA was searching for
the minimal number of pinning sites and optimal (as much as possible) pinning val-
ues. All simulations were based on the same model and 100 times repeated for each
EA with new initial conditions for each simulation. Simulations were done for two
basic CML stabilized configuration - T1S1 (CML is stabilized on period Time=1 and
Space=1, i.e. after stabilization is CML as in Fig. 6.19) and T1S2 (CML is stabilized
on period Time=1 and Space=2, i.e. after stabilization is CML as in Fig. 6.1). In

6 Evolutionary Control of CML Systems 207

Fig. 6.19 Successful stabilization of CML (30×100 - 30 pinning sites, 100 iterations) in T1S1
pattern - stabilization after 52 iterations is visible.

total 4×2×1500 = 12000 independent simulations (4×T1S1,2, 15 algorithms, each
for 100 independent runs) of spatiotemporal CML were carried out.

6.4.3 Cost Function

The fitness (cost function) has been calculated according to using the distance be-
tween desired CML state and actual CML output, eq. (6.11). The minimal value of
this cost function, which guarantees the best solution is 0. The aim of all simula-
tions was to find the best solution, i.e. a solution that returns the cost value 0. This
cost function was used for the first two case studies (pinning values setting, pinning
sites setting). In the next (last) two case studies, the cost function (6.12) was used.
It is synthesized from cost function (6.11) so that two penalty terms are added. The
first one, p1, represents the number of used pinning sites in CML. The second one,
p2, is added here to attract attention of evolutionary process on the main part of the
cost function. If this would not be done, then mainly p1 would be optimized and
the results should not be acceptable (proved by simulations). Indexes i and j are co-
ordinates of lattice element, i.e. CMLi, j is ith site (equation) in jth iteration. For all
simulations of T1S1 the stabilized state was set to S1 = 0.75, and for T1S2 to period
S2 = (0.880129, 0.536537), i.e. CML behavior was controlled to this state.

Knowledge (at least approximate) about complexity and variability of used cost
function is very important. Such knowledge can be important when the class of
optimizing algorithms is selected. Thus a few ideas and examples has been se-
lected here to show complexity and its dependance on chaotic system parameter
setting. The complexity of a cost function is clearly visible from Fig. 6.20 - 6.24 and
Fig. 6.26 - 6.30. Different shape of geometrical visualization of (6.11) is given in
Fig. 6.20 - 6.24 for different number of iterations and pinning sites. It is clearly vis-
ible, that the cost function is partly chaotic and for certain pinning value, the global
minimum representing stabilization is accessible. Chaoticity of such a graphical

208 I. Zelinka

Fig. 6.20 Landscape of eq. (6.11) for T1S1 in configuration 10×10, compare with Fig. 6.22.

Fig. 6.21 Landscape of eq. (6.11) for T1S1 in configuration 10×20.

representation is caused due to the fact that calculations are based on the chaotic
system. If an average value (over many of such runs) would be calculated, then we
would get graphs like in Fig. 6.30 (case for T1S2). However, because our simulations
were running on a single run, not over a number of them, are given in Fig. 6.20 - 6.24
and Fig. 6.26 - 6.30 shows the real representation of landscape of our cost function.
It is also important to note, that for each simulation of CML, its exact shape and
chaoticity can be slightly different from the previous ones, due to the sensitivity of
initial conditions. Another more complex visualizations of landscape of eq. (6.11)
is depicted in Fig. 6.31 - 6.35. In Fig. 6.31 is a 3D visualization of the cost func-
tion for T1S1, case study D (see below). Dependence of eq. (6.11) on pinning value

6 Evolutionary Control of CML Systems 209

Fig. 6.22 Landscape of eq. (6.11) for T1S1 in configuration 10×100.

Fig. 6.23 Landscape of eq. (6.11) for T1S1 in configuration 100×10.

Fig. 6.24 Zoom of the landscape of Fig. 6.22 (eq. (6.11)) for T1S1 in configuration 10×100.

210 I. Zelinka

Fig. 6.25 CML T1S2 in configuration 30×600 – stabilization after 400 iterations is visible.

Fig. 6.26 Landscape of eq. (6.11) for T1S2 in configuration 30×600. Comparing with land-
scapes for T1S1 is this much more complex.

Fig. 6.27 Zoom into [1.6, 2.4] of the landscape of eq. 6.11 for T1S2 from Fig. 6.26. Fractal
like structure is observable.

6 Evolutionary Control of CML Systems 211

(continuous value) and used pinning site (discrete value) is depicted here. This figure
has been calculated and depicted like “continuous” landscape, i.e. landscape shape
between calculated points has been interpolated. Discrete (no interpolation is used)
and more realistic visualization, is given in Fig. 6.32. Suitable parameter setting for
CML stabilization is visible from this figure. Better readability of this information
is in Fig. 6.33. It is clear that for pinning values belonging to [1.5, 4] and used site
period (pinning sites) 1 or 2, CML is stabilized, after suitable number of iterations.
Two remaining examples are given in Fig. 6.34 and Fig. 6.35. Both figures represent
CML for T1S2 with the use of each 2nd and 4th pinning site with pinning value 2.
Black color represent stabilizing combination of pinning value and used pinning
sites. It is clear that complexity of the used cost function is big, despite its simple
mathematical description. Also, suitable stabilizing combination of control parame-
ters depend on a number of CML iterations (after certain number of iterations does
a combination become permanent) and configuration (T1S1,2) of stabilized state.

fcost =
30
∑

i=1

b
∑
j=a

∣∣T Si, j −CMLi, j
∣∣2

TSi,j − target state of CML
CMLi,j − actual state of controlled CML
{a,b} = {80,100} for T1S1 and {a,b} = {580,600} for T1S2

(6.11)

fcost = p1 +
(

p2 +
30
∑

i=1

b
∑
j=a

∣∣T Si, j −CMLi, j
∣∣)2

TSi,j − target state of CML
CMLi,j − actual state of controlled CML
p1 − number of actually selected pinning sites
p2 − 100, heuristically set weight constant
{a,b} = {80,100} for T1S1 and {a,b} = {580,600} for T1S2

(6.12)

Fig. 6.28 Zoom into [2, 2.2] of the landscape of eq. 6.11 for T1S2 from Fig. 6.26. Fractal like
structure is observable.

212 I. Zelinka

Fig. 6.29 Zoom into [2.01, 2.02] of the landscape of eq. 6.11 for T1S2 from Fig. 6.26. Fractal
like structure is observable.

Fig. 6.30 Average landscape of eq. 6.11 for T1S2 from Fig. 6.26. Note that smooth landscape
shape is caused by averaging of 100 independent CML runs, each from randomly chosen
initial conditions.

6 Evolutionary Control of CML Systems 213

Fig. 6.31 3D cost function visualization for T1S1, case study D, continuous landscape

Fig. 6.32 3D cost function visualization for T1S1, case study D, discrete landscape in 3D

Cost Value

Site period

214 I. Zelinka

Fig. 6.33 2D cost function visualization for T1S1, case study D, discrete landscape in 2D

Fig. 6.34 2D cost function visualization
for T1S2, case study D, discrete landscape
in 2D. Original CML used each 2nd pin-
ning site with pinning value 2.

Fig. 6.35 2D cost function visualization for
T1S2, case study D, discrete landscape in 2D.
Original CML used each 4th pinning site with
pinning value 2.

6 Evolutionary Control of CML Systems 215

6.4.4 Parameter Setting

The control parameter settings have been found empirically and are given in Table
6.1 - 6.6. The main criterion for this setting was to keep the same setting of parame-
ters as much as possible and of course the same number of cost function evaluations
as well as the population size. Individual length represents the number of optimized
parameters (number of pinning sites, values, ...). Comparing to previous [37] exper-
iments, the length of an individual has been set to 1 or 2, according to the case study.
In the [37] and [39], the individual length was equal to the number of pinning sites,
which has increased the complexity of calculations. To simplify simulations here, a
simple presumption has been made - instead of the exact number of pinning sites as
in [37], their periodicity has been estimated in the evolution, i.e. if parameter for the
pinning site was for example 4, then each 4th site has been used for pinning value
application, etc.

All algorithms (SOMA, DE, SA, GA, ES) have been evaluated 100 times in order
to find the optimal setting. The primary aim of this comparative study is not to show

Table 6.1 Algorithms abbreviation

Algorithm Version Abbreviation
Differential Evolution DEBest1JIter D1

DEBest2Bin D2
DELocalToBest D3
DERand1Bin D4
DERand1DIter D5
DERand2Bin D6

Evolutionary strategies (µ ,λ) ES1
Evolutionary strategies (µ+λ) ES2
Genetic Algorithm G
Simulated annealing with elitism SA1
Simulated annealing without elitism SA2
SOMA AllToAllAdaptive S1

AllToAll S2
AllToOne S3
AllToOneRandomly S4

Table 6.2 DE setting for case studies A, B, C and D

Case Study A B C D
NP 10 10 10 10
F 0.9 0.9 0.9 0.9
CR 0.3 0.3 0.3 0.3
Generations 500 500 500 500
Individual Length 1 1 1 2

216 I. Zelinka

Table 6.3 ES setting for case studies A, B, C and D

Case Study A B C D
µ ,λ 10 10 10 10
σ 0.8 0.8 0.8 0.8
Iterations 200 200 200 200
Individual Length 1 1 1 2

Table 6.4 GA setting for case studies A, B, C and D

Case Study A B C D
Population size 10 10 10 10
Mutation 0.4 0.4 0.4 0.4
Generations 500 500 500 500
Individual Length 1 1 1 2

Table 6.5 SA setting for case studies A, B, C and D

Case Study A B C D
No. of particles 10 10 10 10
σ 0.5 0.5 0.5 0.5
kmax 66 66 66 66
Tmin 0.0001 0.0001 0.0001 0.0001
Tmax 1000 1000 1000 1000
α 0.95 0.95 0.95 0.95
Individual Length 1 1 1 2

Table 6.6 SOMA setting for case studies A, B, C and D

Case Study A B C D
PathLength 3 3 3 3
Step .11 .11 .11 .11
PRT 0.3 0.3 0.3 0.3
PopSize 10 10 10 10
Migrations 10 10 10 10
MinDiv -0.1 -0.1 -0.1 -0.1
Individual Length 1 1 1 2

which algorithm is better and worst, but to show that evolutionary deterministic
chaos control (EDCC) can be really used for different problems of spatiotemporal
chaos control based at least on CML. Outputs of all simulations are depicted in
Fig. 6.36 - 6.61, which shows results of all 100 simulations for each case study. In
each case study, the mutual comparison of obtained results between T1S1 and T1S2

stabilized state is done.

6 Evolutionary Control of CML Systems 217

Fig. 6.36 Pinning value for CML/T1S1 ... Fig. 6.37 ... and for CML/T1S2.

Fig. 6.38 Cost value for CML/T1S1 ... Fig. 6.39 ... and for CML/T1S2.

Fig. 6.40 Cost function evaluations for
CML/T1S1 ...

Fig. 6.41 ... and for CML/T1S2.

Fig. 6.42 Pinning sites for CML/T1S1 ... Fig. 6.43 ... and for CML/T1S2.

218 I. Zelinka

Fig. 6.44 Cost value for CML/T1S1 ... Fig. 6.45 ... and for CML/T1S2.

Fig. 6.46 Cost function evaluations for
CML/T1S1 ...

Fig. 6.47 ... and for CML/T1S2.

Fig. 6.48 Minimal pinning sites for
CML/T1S1 ...

Fig. 6.49 ... and for CML/T1S2.

6.4.5 Experimental Results

All simulations were done in the frame of four case studies A, B, C and D. In
all numerical case studies, both CML regimes T1S1 and T1S2 were compared to
show how complexity of both regimes can influence the number of cost function
evaluations etc.

6 Evolutionary Control of CML Systems 219

Fig. 6.50 Cost value for CML/T1S1 ... Fig. 6.51 ... and for CML/T1S2.

Fig. 6.52 Cost function evaluations for
CML/T1S1 ...

Fig. 6.53 ... and for CML/T1S2.

Fig. 6.54 Minimal pinning sites for
CML/T1S1 ...

Fig. 6.55 ... and for CML/T1S2.

6.4.5.1 Case Study A – Pinning Value Estimation

In this case study, EAs were used to estimate the pinning value for CML. Pinning
sites were a priori set according to [17]. Estimated pinning value was used for all
a priori defined pinning sites (each odd). Calculation was 100 times repeated and

220 I. Zelinka

Fig. 6.56 Pinning values for CML/T1S1 ... Fig. 6.57 ... and for CML/T1S2.

Fig. 6.58 Cost value for CML/T1S1 ... Fig. 6.59 ... and for CML/T1S2.

Fig. 6.60 Cost function evaluations for
CML/T1S1 ...

Fig. 6.61 ... and for CML/T1S2.

from the last population in each simulation the best solution was recorded. Con-
sequently, the best, the worst and the average values were calculated. This has
been done also for cost value and cost function evaluations. All 100 triplets (best,
worst, average) for pinning value, cost value and cost function evaluations were
used to create Fig. 6.36 to 6.37. For results verification, the dependance of cost value

6 Evolutionary Control of CML Systems 221

Table 6.7 T1S1, case study A - experiment summarization, part 1.

Algorithm D1 D2 D3 D4 D5 D6 ES1 ES2

Pinning values
see. Fig 6.36
Minimum 2.2705 2.2559 2.2644 2.2770 2.3190 2.2592 2.2772 2.2607
Average 2.8974 2.8848 2.8700 2.8379 2.8472 2.8838 2.8892 2.8849
Maximum 3.5146 3.5137 3.5109 3.5178 3.5239 3.5150 3.4842 3.4946

Cost Values
see. Fig 6.38
Minimum 0 0 0 0 0 0 0 0
Average ×10−17 3.2538 2.6701 2.0487 2.462 1.5003 4.6961 0.8441 1.9491
Maximum ×10−16 9.2493 9.0279 8.0505 6.9654 7.3313 9.047 2.9231 7.5095

Cost function evaluations
see Fig. 6.40
Minimum 1 1 1 1 1 1 1 1
Average 4 4 5 4 4 4 4 4
Maximum 23 20 24 19 13 16 27 16
Total for each algorithm 400 399 455 449 398 397 426 418

Table 6.8 T1S1, case study A - experiment summarization, part 2.

Algorithm G SA1 SA2 S1 S2 S3 S4

Pinning values
see. Fig 6.36
Minimum 2.2677 2.2630 2.2586 2.2697 2.2687 2.2712 2.2797
Average 2.8807 2.8444 2.8412 2.8776 2.8569 2.9022 2.9329
Maximum 3.5036 3.5328 3.5109 3.5165 3.5223 3.5021 3.5187

Cost Values
see. Fig 6.38
Minimum 0 0 0 0 0 0 0
Average ×10−17 2.9893 3.6742 1.8064 2.2816 5.4718 1.3542 2.2163
Maximum ×10−16 7.1507 9.9162 9.1738 8.2706 9.3396 3.8385 8.4899

Cost function evaluations
see Fig. 6.40
Minimum 1 1 1 1 1 1 1
Average 4 4 4 5 4 4 4
Maximum 17 16 15 20 18 15 14
Total for each algorithm 388 398 415 466 377 365 415

222 I. Zelinka

Table 6.9 T1S2, case study A - experiment summarization, part 1.

Algorithm D1 D2 D3 D4 D5 D6 ES1 ES2

Pinning values
see. Fig 6.37
Minimum 1.8808 1.8809 1.8855 1.8846 1.8801 1.8795 1.8786 1.8786
Average 1.9960 1.9807 1.9855 2.0006 1.9940 2.0011 1.9840 1.9891
Maximum 2.1091 2.1126 2.1141 2.1128 2.1160 2.1117 2.1150 2.1120

Cost Values
see. Fig 6.39
Minimum 0.0004 0.0003 0.0033 0.0008 0.0003 0.0003 0.0017 0.0044
Average 0.0489 0.0496 0.0493 0.0479 0.0506 0.0525 0.0555 0.0508
Maximum 0.0981 0.0980 0.0980 0.0968 0.0997 0.0991 0.0999 0.0999

Cost function evaluations
see Fig. 6.41
Minimum 1 1 1 1 1 1 1 1
Average 21 19 24 20 25 16 17 27
Maximum 208 124 272 160 458 92 82 216
Total for each algorithm 2052 1858 2362 2044 2534 1631 1675 2732

Table 6.10 T1S2, case study A - experiment summarization, part 2.

Algorithm G SA1 SA2 S1 S2 S3 S4

Pinning values
see. Fig 6.37
Minimum 1.8787 1.8791 1.8839 1.8817 1.8786 1.8802 1.8825
Average 2.0033 1.9945 1.9917 2.0012 1.9903 1.9855 1.9949
Maximum 2.1157 2.1151 2.1144 2.1124 2.1127 2.1149 2.1138

Cost Values
see. Fig 6.39
Minimum 0.0005 0.0006 0.0008 0.0011 0.0003 0.0037 0.0027
Average 0.0483 0.0566 0.0534 0.0531 0.0465 0.0518 0.0507
Maximum 0.0998 0.0995 0.0982 0.0974 0.0999 0.0987 0.0977

Cost function evaluations
see Fig. 6.41
Minimum 1 1 1 1 1 1 1
Average 21 21 22 27 22 26 22
Maximum 88 198 90 302 100 96 97
Total for each algorithm 2086 2117 2162 2691 2188 2624 2175

6 Evolutionary Control of CML Systems 223

Table 6.11 T1S1, case study B - experiment summarization, part 1.

Algorithm D1 D2 D3 D4 D5 D6 ES1 ES2

Pinning sites
see. Fig 6.42
Minimum 1.02257 1.00343 1.00784 1.01996 1.00965 1.01471 1.00138 1.00225
Average 1.67993 1.73124 1.83038 1.80492 1.68419 1.75075 1.66654 1.72341
Maximum 2.4858 2.48778 2.4968 2.49605 2.47182 2.49547 2.4893 2.48723

Cost Values
see. Fig 6.44
Minimum 0 0 0 0 0 0 0 0
Average ×10−16 4.21885 3.86358 4.38538 5.25135 4.15223 4.75175 3.74145 5.01821
Maximum ×10−15 1.9984 2.44249 1.9984 2.22045 1.9984 2.44249 1.77636 2.22045

Cost function evaluations
see Fig. 6.46
Minimum 1 1 1 1 1 1 1 1
Average 6 8 7 6 7 6 6 5
Maximum 21 28 32 21 29 27 20 27
Total for each algorithm 559 762 664 584 564 578 620 516

Table 6.12 T1S1, case study B - experiment summarization, part 2.

Algorithm G SA1 SA2 S1 S2 S3 S4

Pinning sites
see. Fig 6.42
Minimum 1.0493 1.0064 1.0134 1.0096 1.0335 1.0047 1.0033
Average 1.8090 1.8221 1.7565 1.6742 1.7609 1.7357 1.7394
Maximum 2.4786 2.4886 2.4977 2.4713 2.4983 2.4979 2.4913

Cost Values
see. Fig 6.44
Minimum 0 0 0 0 0 0 0
Average ×10−16 3.8524 4.4408 4.2188 4.4631 4.8183 4.6407 4.9293
Maximum ×10−15 2.4424 2.6645 2.3314 2.1094 2.4424 2.4424 1.9984

Cost function evaluations
see Fig. 6.46
Minimum 1 1 1 1 1 1 1
Average 7 6 6 6 6 6 6
Maximum 27 36 31 26 24 29 22
Total for each algorithm 680 593 577 583 575 595 607

224 I. Zelinka

Table 6.13 T1S2, case study B - experiment summarization, part 1.

Algorithm D1 D2 D3 D4 D5 D6 ES1 ES2

Pinning sites
see. Fig 6.43
Minimum 3.5103 3.5108 3.5100 3.5071 3.5065 3.5055 3.5003 3.5165
Average 4.0221 3.9555 3.9892 4.0533 3.9600 3.9621 3.9339 4.0353
Maximum 4.4924 4.4832 4.4997 4.4770 4.4969 4.4938 4.4986 4.4971

Cost Values
see. Fig 6.45
Minimum 0 0 0 0 0 0 0 0
Average 5.9×10−5 2.1×10−4 1.9×10−4 8.9×10−12 6.2×10−4 1.3×10−6 3.2×10−8 4.1×10−5

Maximum 3.4×10−3 2.0×10−2 1.9×10−2 8.2×10−10 6.1×10−2 8.7×10−5 3.2×10−6 4.1×10−3

Cost function
evaluations
see Fig. 6.47
Minimum 1 1 1 1 1 1 1 1
Average 8 8 9 9 10 9 9 9
Maximum 51 41 41 41 54 44 42 41
Total for each
algorithm 791 837 932 912 960 852 935 906

Table 6.14 T1S2, case study B - experiment summarization, part 2.

Algorithm G SA1 SA2 S1 S2 S3 S4

Pinning sites
see. Fig 6.43
Minimum 3.5039 3.5015 3.5208 3.5056 3.5012 3.5076 3.5037
Average 3.9498 3.9718 4.0012 4.0100 4.0362 3.9835 3.9643
Maximum 4.4454 4.4984 4.4843 4.4888 4.4940 4.4952 4.4998

Cost Values
see. Fig 6.45
Minimum 0 0 0 0 0 0 0
Average 2.5×10−8 1.6×10−9 1.3×10−5 6.3×10−11 1.2×10−5 3.3×10−7 1.2×10−8

Maximum 2.5×10−6 1.6×10−7 9.6×10−4 4.9×10−9 1.2×10−3 3.3×10−5 1.2×10−6

Cost function
evaluations
see Fig. 6.47
Minimum 1 1 1 1 1 1 1
Average 8 9 8 9 10 9 10
Maximum 42 52 74 53 42 33 57
Total for each
algorithm 768 911 793 886 963 935 968

6 Evolutionary Control of CML Systems 225

Table 6.15 T1S1, case study C - experiment summarization, part 1.

Algorithm D1 D2 D3 D4 D5 D6 ES1 ES2

Pinning sites
see. Fig 6.48
Minimum 1.503 1.5089 1.5242 1.512 1.5047 1.5217 1.5053 1.5024
Average 2.0244 1.9862 2.0589 1.9488 2.0465 1.9911 2.0068 2.0085
Maximum 2.491 2.4877 2.4871 2.4757 2.465 2.4823 2.4572 2.4954

Cost Values
see. Fig 6.50
Minimum +225 0 0 0 0 0 0 0 0
Average ×10−11 +225 1.5802 1.4836 1.4438 1.2931 1.5006 1.3102 1.3102 1.4267
Maximum ×10−11 +225 4.9993 4.6640 4.9993 4.9993 4.9993 4.9993 4.9993 5.329

Cost function evaluations
see Fig. 6.52
Minimum 1 1 1 1 1 1 1 1
Average 10 10 10 8 9 9 10 8
Maximum 61 60 57 26 36 52 45 42
Total for each algorithm 950 969 987 792 878 896 1011 751

Table 6.16 T1S1, case study C - experiment summarization, part 2.

Algorithm G SA1 SA2 S1 S2 S3 S4

Pinning sites
see. Fig 6.48
Minimum 1.5011 1.5012 1.5138 1.5218 1.5080 1.5349 1.5244
Average 1.9925 1.9750 1.9958 2.0538 1.9605 2.0220 2.0071
Maximum 2.4829 2.4976 2.4933 2.4974 2.4808 2.4972 2.4976

Cost Values
see. Fig 6.50
Minimum +225 0 0 0 0 0 0 0
Average ×10−11 +225 1.3756 1.5063 1.4267 1.5859 1.4637 1.3528 1.3983
Maximum ×10−11 +225 5.9941 3.9960 5.3290 5.6587 3.9960 4.9993 4.9993

Cost function evaluations
see Fig. 6.52
Minimum 1 1 1 1 1 1 1
Average 9 9 8 10 9 9 9
Maximum 41 30 33 47 29 76 37
Total for each algorithm 879 853 811 1049 857 926 859

226 I. Zelinka

Table 6.17 T1S2, case study C - experiment summarization, part 1.

Algorithm D1 D2 D3 D4 D5 D6 ES1 ES2

Pinning sites
see. Fig 6.49
Minimum 3.5174 3.5067 3.5154 3.5015 3.5051 3.5122 3.5066 3.5001
Average 3.9792 3.9798 4.0314 4.0025 4.0154 4.0012 3.9725 3.9531
Maximum 4.4898 4.4968 4.4919 4.4821 4.4965 4.4929 4.4927 4.4896

Cost Values
see. Fig 6.51
Minimum 64. 64. 64. 64. 64. 64. 64. 64.
Average 65.9884 64.0479 64. 64.207 64.0153 64.0279 64. 64.2922
Maximum 180.838 68.7866 64.0007 81.3137 64.9063 66.7922 64.0013 93.1835

Cost function evaluations
see Fig. 6.52
Minimum 1 1 1 1 1 1 1 1
Average 7.86 9.52 9.16 9.48 7.97 9.43 8.04 7.65
Maximum 45 39 31 57 31 41 43 29
Total for each algorithm 786 952 916 948 797 943 804 765

Table 6.18 T1S2, case study C - experiment summarization, part 2.

Algorithm G SA1 SA2 S1 S2 S3 S4

Pinning sites
see. Fig 6.49
Minimum 3.5057 3.5167 3.5108 3.5017 3.5029 3.5040 3.5534
Average 3.9914 4.0025 4.0359 3.9847 4.0195 4.0074 4.0318
Maximum 4.4883 4.4901 4.4899 4.4992 4.4926 4.4884 4.4988

Cost Values
see. Fig 6.51
Minimum 64. 64. 64. 64. 64. 64. 64.
Average 64.4721 64.0003 64. 64.339 64.0002 64.0027 64.0418
Maximum 111.186 64.027 64.0001 97.7433 64.0218 64.2691 68.1787

Cost function evaluations
see Fig. 6.52
Minimum 1 1 1 1 1 1 1
Average 8.54 8.57 9.22 7.94 10.38 8.07 8.47
Maximum 32 54 90 34 55 55 42
Total for each algorithm 854 857 922 794 1038 807 847

6 Evolutionary Control of CML Systems 227

Table 6.19 T1S1, case study D - experiment summarization, part 1.

Algorithm D1 D2 D3 D4 D5 D6 ES1 ES2

Pinning sites
see. Fig 6.54
Minimum 1.5036 1.5218 1.5076 1.5044 1.5048 1.5032 1.5034 1.5143
Average 1.9670 2.0621 2.0152 1.9736 2.0192 1.9776 1.9433 2.0379
Maximum 2.4970 2.4987 2.4971 2.4953 2.4970 2.4938 2.4915 2.4933

Pinning value
see. Fig 6.56
Minimum 2.2686 2.3054 2.2658 2.2936 2.2713 2.2605 2.2659 2.2768
Average 2.8893 2.9488 2.8988 2.9181 2.8730 2.9060 2.8665 2.8506
Maximum 3.5222 3.5203 3.4891 3.5203 3.5122 3.5091 3.5195 3.5044

Cost Values
see. Fig 6.58
Minimum +225 0 0 0 0 0 0 0 0
Average +225 0.0089 0.0111 0.0069 0.0033 0.0056 0.0084 0.0094 0.0033
Maximum +225 0.2433 0.2994 0.2637 0.2807 0.2134 0.2604 0.2776 0.1012

Cost function evaluations
see Fig. 6.60
Minimum 1 1 1 1 1 1 1 1
Average 37 26 36 30 30 40 27 27
Maximum 632 152 294 192 234 408 256 231
Total for each algorithm 3715 2638 3585 2997 2984 3990 2733 2651

(according to eq. 6.12) on pinning value was calculated and is depicted in Fig. 6.36
- 6.41. Optimal pinning values were found in the interval [2.3, 3.5] for T1S1 (see
Fig. 6.22) and in [1.87, 2.12] for T1S2 (see Fig. 6.26), (cost value is 0, i.e. mini-
mal difference between CML behavior and desired behavior). Based on the results
it can be stated that in all simulations suitable pinning values were estimated be-
cause according to [17] suitable pinning value (equal to 3) was used and here in
each simulation the best values are around 2.9. Minimal and maximal values were
observed in the interval with cost value 0, as depicted on Fig. 6.22. Important is the
number of cost function evaluations. For T1S1 average number was only 4 while for
T1S2 20, i.e. for T1S1 it seems to be useless to use EAs, while for T1S2 it is reason-
able, because the number of cost function evaluations is bigger than needed for one
generation, as in the case of standard EA (remember, population was 10). It is also
important to remember, that individual length was only 1 to 2 and one of parameters
was “frequency” of used pinning sites, while in [37] and [39] the individual length
was equal to the number of pinning sites. In the case of [37] and [39] the number of
cost function evaluations was much more higher.

228 I. Zelinka

Table 6.20 T1S1, case study D - experiment summarization, part 2.

Algorithm G SA1 SA2 S1 S2 S3 S4

Pinning sites
see. Fig 6.54
Minimum 1.5116 1.5053 1.5104 1.5029 1.5003 1.5012 1.5136
Average 1.9577 2.0183 2.0193 2.0193 2.0068 1.9595 2.0312
Maximum 2.4863 2.4984 2.4915 2.4987 2.4988 2.4618 2.4936

Pinning value
see. Fig 6.56
Minimum 2.2671 2.2740 2.2898 2.2716 2.2670 2.2684 2.2656
Average 2.9148 2.8685 2.8893 2.8538 2.8851 2.8318 2.8431
Maximum 3.5203 3.4947 3.5114 3.5233 3.5206 3.5124 3.4649

Cost Values
see. Fig 6.58
Minimum +225 0 0 0 0 0 0 0
Average +225 0.0074 0.0041 0.0047 0.0085 0.0111 0.0063 0.0034
Maximum +225 0.2491 0.1388 0.2028 0.2493 0.2846 0.1904 0.1877

Cost function evaluations
see Fig. 6.60
Minimum 1 1 2 1 1 1 1
Average 32 28 29 26 69 31 39
Maximum 176 153 117 442 2104 378 878
Total for each algorithm 3243 2753 2862 2607 6922 3148 3887

6.4.5.2 Case Study B – Pinning Sites Position Estimation

Based on results from the previous case study, this case study B was designed. EAs
were used to estimate pinning sites for CML. Pinning values were a priori set to 3
(T1S1) and 2 (T1S2) for all estimated sites according to [17]. Calculation was again
100 times repeated and the best solution (pinning sites) from each simulation was
used to create Fig. 6.42 - 6.47. From the figures is visible that for T1S1 each 1st or 2nd
pinning site was estimated. For T1S2 only each 4th was estimated. Because pinning
sites are “discrete” objects, and because evolution has been running on continuous
parameter space, individual parameter representing pinning site has been rounded
before it was used in CML control. Thus, when the rounded data in Fig. 6.42 and
6.43 is used, then the periodicity of the used pinning sites is 1 or 2 for T1S1 and
4 for T1S2. It was a good coincidence with values from Fig. 6.33 and Fig. 6.35.
Comparison about the number of cost function evaluations is similar to that of case
study A.

6.4.5.3 Case Study C – Minimal Pinning Sites Position Estimation

This case study was designed to improve the previous results from case study B.
Cost function eq. 6.11 was modified to eq. 6.12. All other conditions were kept the

6 Evolutionary Control of CML Systems 229

Table 6.21 T1S2, case study D - experiment summarization, part 1.

Algorithm D1 D2 D3 D4 D5 D6 ES1 ES2

Pinning sites
see. Fig 6.55
Minimum 3.5001 3.5240 3.5096 3.5590 3.6315 3.5076 3.5271 3.5137
Average 4.0625 3.9971 4.0134 3.9488 3.9636 4.0138 4.0034 4.0318
Maximum 4.4628 4.4833 4.4996 4.4382 4.4946 4.4905 4.4939 4.4939

Pinning value
see. Fig 6.57
Minimum 1.9917 1.9917 1.9918 1.9926 1.9919 1.9917 1.9916 1.9918
Average 2.0000 1.9994 2.0004 2.0002 2.0015 1.9995 2.0006 1.9996
Maximum 2.0075 2.0082 2.0081 2.0068 2.0079 2.0081 2.0079 2.0080

Cost Values
see. Fig 6.59
Minimum 66.364 65.111 64.147 68.48 72.956 65.111 65.636 68.457
Average 147.18 141.75 131.28 139.16 166.8 131.15 139. 137.89
Maximum 223.06 222.96 221.72 201.11 219.24 223.35 225.03 221.

Cost function evaluations
see Fig. 6.61
Minimum 17 31 2 86 277 18 14 9
Average 2854 3182 3315 1252 2577 1764 23913 3008
Maximum 6322 7980 10242 2627 7905 9792 140590 7112
Total for each algorithm 59931 318214 314934 30053 25773 176418 2391314 300806

same. Again the same figures were created (Fig. 6.48 - Fig. 6.53. All algorithms
had found in all 100 simulations a suitable number of pinning sites, for T1S1 each
2nd pinning site was estimated and for T1S2 each 4th (remember rounding). Cost
function evaluations was similar to that of case study B.

6.4.5.4 Case Study D – Minimal Pinning Values and Sites Position
Estimation

The last case study was dedicated to the estimation of minimal number of pinning
sites and different pinning values. All simulations were repeated under the same
conditions as in the case study C and the same kind of figures (Fig. 6.54 - 6.61) was
created. Used pinning sites were estimated for T1S1 and each 2nd pinning site was
estimated and for T1S2 each 4th. Pinning values were in [2.3, 3.5] for T1S1 and [1.99,
2.008] for T1S2. Concerning to the cost value, it is really important to note that it
was not 0 because eq. 6.12 contain also heuristically set constants p1 and p2. If for
example for T1S2 each 4th pinning site is recorded, then the total number of used
pinning sites was 30 / 4 = 7, i.e. p1=7 and p2=100, see eq. 6.12. Lets say that the

cost value was 150, then the real value of the cost value is
√

150−7
100 which is 0.119.

Another point of discussion is the number of cost function evaluations. While in the

230 I. Zelinka

Table 6.22 T1S2, case study D - experiment summarization, part 2.

Algorithm G SA1 SA2 S1 S2 S3 S4

Pinning sites
see. Fig 6.55
Minimum 3.5082 3.5271 3.7477 3.7541 3.8251 3.6168 3.6415
Average 3.9625 3.9067 4.2846 3.8572 3.9636 4.0679 4.0846
Maximum 4.4880 4.4939 4.4276 4.4880 4.4624 4.4416 4.3741

Pinning value
see. Fig 6.57
Minimum 1.9917 1.9918 1.9918 1.9917 1.9926 1.9919 1.9917
Average 1.9999 2.0006 1.9992 2.0002 2.0008 2.0032 1.9999
Maximum 2.0078 2.0062 2.0085 2.0064 2.0032 2.0098 2.0073

Cost Values
see. Fig 6.59
Minimum 64.246 67.524 77.397 69.326 75.117 71.723 69.211
Average 134.4 147.16 159.8 141.15 149. 143.89 146.4
Maximum 224.18 218.66 215.85 221.18 219.04 223.92 222.8

Cost function evaluations
see Fig. 6.61
Minimum 29 153 96 180 91 54 75
Average 6976 2156 1986 3142 2723 3452 2541
Maximum 24864 8563 5743 4989 4981 7128 4782
Total for each algorithm 697604 238952 157863 95689 186597 248643 213721

previous three case studies, EAs are disputable (low number of CFE), in the case
study D, it is visible, that especially in the case of T1S2, the use of EA is important
with CFE being more than 5000 in average. As mentioned before, in [37] and [39],
when different philosophy is taken into consideration for individual structure, a big
number of CFE is needed for CML with only 10 sites.

6.4.5.5 Mutual Comparison

Complexity of all four case studies has increased. Based on data from all simulations
two comparison can be done. The first one is from pinning sites point of view. As is
depicted in all four case studies, all EAs are comparable in performance (with small
deviations). It is also visible that changes in cost functions can significantly improve
estimated solutions (case C/D) and [37] and [39]. To check that estimated pinning
sites and pinning values really cause the CML to be stabilized, randomly selected
figures (from 12000) were generated (4 cases × 2 regimes × (15×100 simulations))
based on data from all simulations. In all simulations CML was stabilized to desired
behavior.

6 Evolutionary Control of CML Systems 231

6.4.6 CML Real Time Control

Comparing to study reported in [37] and the extended modified study here, [39]
has also done CML control in simulated realtime regime. The capability of EAs on
such a blackbox processes control has been demonstrated. Comparing to non real-
time CML as in [37], simulated realtime was in such a way that each configuration
(individual) has been applied after n iterations without the possibility to start from
initial conditions again. For demonstrative purposes, three figures are depicted here.
Fig. 6.62 show typical controller output developed during evolution. Each change
of its value is related to another, better individual, whose parameter (or one of them)
was estimated controlled output. Fig. and show process of T1S2 stabilization. For
more exact information, it is recommended to see [39].

Fig. 6.62 An example of controller output

Fig. 6.63 Partial stabilization of realtime CML in T1S2 pattern - pattern is temporarily stabi-
lized

Fig. 6.64 Successful stabilization of realtime CML in T1S2 pattern - pattern is permanently
stabilized

232 I. Zelinka

6.5 Conclusion

The method of evolutionary deterministic chaos control described here is relatively
simple, easy to implement and easy to use. Based on its principles and its possi-
ble universality (it was tested with 5 evolutionary algorithms) it can be stated that
evolutionary deterministic chaos control is capable to solve the class of CML de-
terministic chaos control problems. The main aim of this paper was to show how
various CML control problems were solved by means of evolutionary algorithms.
Evolutionary deterministic chaos control was used here in four basic comparative
simulations. Each comparative simulation was 100 times repeated and all 12000
results (100 simulations for each of 15 algorithm and for each of 4 case studies
and 2 CML regimes – stabilized states) were used to create graphs for evolutionary
deterministic chaos control performance evaluation. For the comparative study, op-
timization algorithms such as Differential Evolution [28], SelfOrganizing Migrating
Algorithm [35], Genetic Algorithms [16] and Simulated Annealing [21], [2] were
used. They were chosen to show that evolutionary deterministic chaos control can
be regarded as a “blackbox” method and that it can be implemented using arbitrary
evolutionary algorithms. As a conclusion the following statements are presented:

• Reached results: based on the fact about cost function and its complexity
(see 6.19 – 6.35), algorithm settings (Table 6.1 – 6.6) and results (Fig. 6.36
– 6.61, Table 6.22 - 6.7) it can be stated that all simulations give satisfactory
results and thus evolutionary deterministic chaos control is capable of solving
this class of problems. This statement is also “supported” by results reached
in [37] and [39].

• No. of successful experiments: In all 12000 simulations, no failure had been
observed (see Fig. 6.36 – 6.61), which means that all 15 algorithms had found
a suitable solution before evolution has finished.

• Mutual comparison: when comparing all algorithms, it is visible that algo-
rithms give good results. Parameter setting for all algorithms was based on
heuristic approach and thus there is a possibility that better settings can be
found there.

• Penalization effect: the penalization in the cost function, eq. 6.12, basically
had little effect on the reached results (case D). Explanation is quite simple
– evolution had found a suitable solution before effect of the penalization
could be graphically visible, because individual structure has been simplified,
comparing to simulations in [37].

• Cost function evaluations: were usually recorded as too small, as discussed
in section 6.4.5.4, however for a little more complicated CML stabilized
states, it dramatically increase (see Fig. 6.61), which confirm that EAs use
on CML control is eligible.

• No. of pinning sites: the same principle applies as in the previous paragraph
(case study B, C and D) In all cases the suitable site n period has been esti-
mated (i.e. each nth site was used). As written in the section 6.4.5.2 because
pinning sites are “discrete” objects, and because evolution has been running
on continuous parameter space, individual parameter representing pinning site

6 Evolutionary Control of CML Systems 233

has been rounded before it was used in CML control. Thus, when rounded data
in Fig. 6.42 and 6.43 is used, then periodicity of used pinning sites is 1 or 2
for T1S1 and 4 for T1S2. It was good coincidence with values from Fig. 6.33
and Fig. 6.35. Thus, the number of site period is depicted like a real number,
however in reality only the rounded version has been used. Real number rep-
resentation on the above mentioned figures is here only to show population
and mainly results diversity.

• Algorithms efficiency: Based on the results obtained in this chapter, one can
make conclusion that the problem itself is quite “simple” because such “sim-
ple and traditional” algorithms like SA or/and ES have demonstrated quite
nice performance. To avoid such “misleading” conclusion, it is important re-
member that

– problem itself is highly nonlinear, almost erratic (see Fig. 6.1, Fig.
6.2, Fig. 6.20 - 6.24 , Fig. 6.26 - 6.35) and thus classical optimization
techniques would certainly fail,

– CML is a source of very rich and complex behavior, see [31],
– for example SA has also shown good performance on real time plasma

reactor control [25], [26] which suggest that techniques like SA, ES,...
are also capable to solve quite complex tasks.

According to the author’s opinion, this is a promising area of research with many
unanswered questions remaining. For example, it would be interesting to investi-
gate the question as to why (and under what conditions) EAs are able to stabilize
complex system such as CML. Answer can probably be based on the fact that EAs
are from certain point of view like a filter which let pass to the new population (i.e.
basically CML mth iteration) only better individuals. Future research of evolution-
ary deterministic chaos control is still open. According to all results obtained, it is
planned that during time the main activities would be focused on the expanding of
this study for other chaotic systems.

Acknowledgements. This work was supported by grant No. MSM 7088352101 of the Min-
istry of Education of the Czech Republic and by grants of the Grant Agency of the Czech
Republic GACR 102/09/1680.

References

1. Beyer, H.: Theory of Evolution Strategies. Springer, New York (2001)
2. Cerny, V.: Thermodynamical approach to the traveling salesman problem: An efficient

simulation algorithm. J. Opt. Theory Appl. 45(1), 41–51 (1985)
3. Chen, G.: Controlling Chaos and Bifurcations in Engineering Systems. CRC Press, Boca

Raton (2000)
4. Chen, G., Dong, X.: From Chaos to Order: Methodologies, Perspectives and Applica-

tions. World Scientific, Singapore (1998)
5. Clerc, M.: Particle Swarm Optimization. ISTE Publishing Company (2006)
6. Das, S., Konar, A.: A swarm intelligence approach to the synthesis of two-dimensional

IIR filters. Eng. Appl. Artif. Intell. 20(8), 1086–1096 (2007)

234 I. Zelinka

7. Dashora, Y.: Improved and generalized learning strategies for dynamically fast
and statistically robust evolutionary algorithms. Eng. Appl. Artif. Intel. (2007),
doi:10.1016/j.engappai.2007.06.005

8. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, Berlin (1996)
9. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chich-

ester (2001)
10. Deilami, M., Rahmani, C., Motlagh, M.: Control of spatio-temporal on-off intermittency

in random driving diffusively coupled map lattices, Chaos, Solitons & Fractals, Decem-
ber 21 (2007)

11. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings
of the Sixth International Symposium on Micromachine and Human Science, Nagoya,
Japan, pp. 39–43 (1995)

12. Gilmore, R., Lefranc, M.: The Topology of Chaos: Alice in Stretch and Squeezeland.
Wiley-Interscience, New York (2002)

13. Grebogi, C., Lai, Y.C.: Controlling chaos. In: Schuster, H. (ed.) Handbook of Chaos
Control. Wiley-VCH, New York (1999)

14. He, Q., Wang, L.: An effective co-evolutionary particle swarm optimization for con-
strained engineering design problems. Eng. Appl. Artif. Intell. 20(1), 89–99 (2007)

15. Hilborn, R.: Chaos and Nonlinear Dynamics. Oxford University Press, Oxford (1994)
16. Holland, J.: Adaptation in Natural and Artificial Systems. Univ. Michigan Press, Ann

Arbor (1975)
17. Hu, G., Xie, F., Xiao, J., Yang, J., Qu, Z.: Control of patterns and spatiotemporal chaos

and its application. In: Schuster, H. (ed.) Handbook of Chaos Control. Wiley-VCH, New
York (1999)

18. Hwang, G.-H.-H., Dong-Wan, K., Jae-Hyun, L., Young-Joo, A.: Design of fuzzy power
system stabilizer using adaptive evolutionary algorithm. Eng. Appl. Artif. Intell. 21(1),
86–96 (2007)

19. Just, W.: Principles of time delayed feedback control. In: Schuster, H. (ed.) Handbook of
Chaos Control. Wiley-VCH, New York (1999)

20. Just, W., Benner, H., Reibold, E.: Theoretical and experimental aspects of chaos control
by time-delayed feedback. Chaos 13, 259–266 (2003)

21. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Sci-
ence 220(4598), 671–680 (1983)

22. Liu, L., Liu, W., Cartes, D.: Particle swarm optimization-based parameter identifica-
tion applied to permanent magnet synchronous motors. Eng. Appl. Artif. Intell. (2007),
doi:10.1016/j.engappai.2007.10.002

23. Lorenz, E.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)
24. May, R.: Simple mathematical model with very complicated dynamics. Nature 261, 45–

67 (1976)
25. Nolle, L., Goodyear, A., Hopgood, A.A., Picton, P.D., Braithwaite, N.StJ.: On Step

Width Adaptation in Simulated Annealing for Continuous Parameter Optimisation. In:
Reusch, B. (ed.) Fuzzy Days 2001. LNCS, vol. 2206, pp. 589–598. Springer, Heidelberg
(2001)

26. Nolle, L., Zelinka, I., Hopgood, A., Goodyear, A.: Comparison of an self organizing
migration algorithm with simulated annealing and differential evolution for automated
waveform tuning. Adv. Eng. Software 36(10), 645–653 (2005)

27. Ott, E., Grebogi, C., Yorke, J.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)
28. Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover,

F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999)

6 Evolutionary Control of CML Systems 235

29. Richter, H.: An evolutionary algorithm for controlling chaos: The use of multi-
objective fitness functions. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-
Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 308–317.
Springer, Heidelberg (2002)

30. Richter, H., Reinschke, K.: Optimization of local control of chaos by an evolutionary
algorithm. Physica D 144, 309–334 (2000)

31. Schuster, H.: Handbook of Chaos Control. Wiley-VCH, New York (1999)
32. Stewart, I.: The Lorenz attractor exists. Nature 406, 948–949 (2000)
33. Wang, X., Chen, G.: Chaotification via arbitrarily small feedback controls: Theory,

method, and applications. Int. J. of Bifur. Chaos 10, 549–570 (2000)
34. Zahra, R., Motlagh, M.: Control of spatiotemporal chaos in coupled map lattice by

discrete-time variable structure control. Phys. Lett. A 370(3-4), 302–305 (2007)
35. Zelinka, I.: SOMA - Self Organizing Migrating Algorithm. In: Babu, B., Onwubolu, G.

(eds.) New Optimization Techniques in Engineering, pp. 167–218. Springer, New York
(2004)

36. Zelinka, I.: Investigation on Evolutionary Deterministic Chaos Control. In: IFAC, Prague
2005 (2005a)

37. Zelinka, I.: Investigation on Evolutionary Deterministic Chaos Control - Extended Study.
In: 19th International Conference on Simulation and Modeling, ECMS 2005, Riga,
Latvia, June 1-4 (2005b)

38. Zelinka, I.: Investigation on realtime deterministic chaos control by means of evolution-
ary algorithms. In: Proc. First IFAC Conference on Analysis and Control of Chaotic
Systems, Reims, France, pp. 211–217 (2006)

39. Zelinka, I.: Real-time deterministic chaos control by means of selected evolutionary al-
gorithms. Eng. Appl. Artif. Intell (2008), doi:10.1016/j.engappai.2008.07.008

40. Zelinka, I., Nolle, L.: Plasma reactor optimizing using differential evolution. In: Price,
K., Lampinen, J., Storn, R. (eds.) Differential Evolution: A Practical Approach to Global
Optimization, pp. 499–512. Springer, New York (2006)

41. Zelinka, I., Senkerik, R., Navratil, E.: Investigation on Evolutionary Optimitazion of
Chaos Control, Chaos, Solitons & Fractals (2007), doi:10.1016/j.chaos.2007.07.045

42. Zou, Y., Luo, X., Chen, G.: Pole placement method of controlling chaos in DC-DC buck
converters. Chinese Phys. 15, 1719–1724 (2006)

Chapter 7
Chaotic Systems Reconstruction

Mohammed Chadli

Abstract. This chapter deals with the multiple model approach based chaotic sys-
tems reconstruction. The approach is based on the design of unknown inputs mul-
tiple observers using Linear Matrix Inequalities (LMI) formulation. The objective
is to estimate state variables of a multiple model subject to unknown inputs affect-
ing both states and outputs of the system. Uncertainties affecting state matrices of
the system are also considered for both continuous-time and discrete-time multiple
models. In order to improve the performances of the observer, poles placement in
an LMI region is also studied. Numerical examples are given to illustrate the ef-
fectiveness the given results. Application dealing with chaotic synchronization and
message decoding are also given by considering chaotic multiple model subject to
hidden message. The proposed approach can be also used in a chaotic cryptosystem
procedure where the plaintext (message) is encrypted using chaotic signals at the
drive system side. The resulting ciphertext is embedded to the output and/or state of
the drive system and is sent via public channel to the response system. The plaintext
is retrieved via the synthesis approach, i.e. the designed unknown input multiple
observer.

7.1 Introduction

In last two decades, many studies concerning stability analysis and design of con-
trollers and observers for a class of systems described by multiple model approach
[20] are carried out. Such representation results from the interpolation of M local

Mohammed Chadli
University of Picardie Jules Verne, Laboratory of Modeling Information & Systems. 7,
Rue du Moulin Neuf, 80000, Amiens, France
Tel.: +33(0)3 82227680
e-mail: mohammed.chadli@upicardie.fr

I. Zelinka et al. (Eds.): Evolutionary Algorithms and Chaotic Systems, SCI 267, pp. 237–264.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

238 M. Chadli

LTI (linear time invariant) models throughout convex functions. These functions can
be viewed as a weighted sum of local LTI models and quantify the relative contri-
bution of each local model to the global model. The choice of the number of local
models may be intuitively chosen by considering some operating regimes. Each
LTI model can be obtained by using a direct linearization of an a priori nonlinear
model around operating points, or alternatively by using an identification proce-
dure [20, 5]. From a practical point of view, LTI model describes the system’s local
behavior around the ith, i : 1...M regime. This approach includes Takagi-Sugeno
fuzzy models [23] and PLDI representation [4]. Based on the Lyapunov method
and Linear Matrix Inequalities (LMI) formulation, sufficient conditions have been
derived for stability analysis, controllers and observers design (see among others
[7, 15, 16, 26, 24]). Recently, systems subject to unknown inputs are extensively
considered in the literature. Unknown inputs can result either from model uncer-
tainty, faults or due to the presence of unknown external excitation. This problem,
usually referred as the unknown input observer design, has been considered actively
for linear systems [13, 12, 27, 10, 22], for descriptor and nonlinear systems (see
among other [19, 17, 14] and for multiple model approach (see for example [7, 6]
and references therein). Based on unknown inputs observer design, many works
have been carried out on secure communication and chaotic system reconstruction
problem. The increasing need of secure communications leads to the development
of many techniques which make difficult the detecting of transmitted message (see
for example [18, 8, 3, 2, 1]. Indeed, the problem we are faced with consists of
transmitting some coded message with a signal broadcasted by a communication
channel. At the receiver side, the hidden signal is recovered by a decoding system.
In this chapter, our goal is to show how to get chaotic multiple model from chaotic
nonlinear system and how to design the proposed structure of observer for chaotic
system reconstruction.

This chapter is organized as follows. In section 2, a considered unknown inputs
multiple model in continuous-time case and his corresponding observer are given.
Synthesis conditions for the proposed observer are given in LMI terms. Two cases
are considered. The case of output signal not depending on the unknown inputs
and the case when both state and output signal are affected by unknown inputs. To
improve the performances of the proposed observer, the pole assignment in a LMI
region is also studied. Unknown input estimation is given in section 3. Then these
design conditions are extended to unknown inputs discrete-time multiple model in
section 5. To illustrate the given synthesis LMI conditions, numerical examples
and applications dealing with the chaotic system reconstruction for both continuous-
time and discrete-time multiple model are proposed.

Throughout this chapter, Rn and Rn×m denote, respectively, the n dimensional
Euclidean space and the set of all n × m real matrices. Superscript “T” denotes ma-
trix transposition and the notation X > Y where X and Y are symmetric matrices,
means that X −Y is positive definite. ⊗ is the Kronecker product, I is the identity
matrix with compatible dimensions, the symbol (∗) denotes the transpose elements
in the symmetric positions and IM = {1,2, · · · ,M}.

7 Chaotic Systems Reconstruction 239

7.2 Unknown Inputs Multiple Observer Design

Consider a continuous-time multiple model with unknown inputs defined as follows
⎧⎪⎨
⎪⎩

ẋ(t) =
M

∑
i=1

µi(ξ (t))(Âix(t)+ Biu(t)+ Di + Riū(t))

y(t) = Cx(t)+ Fū(t)
(7.1)

with

µi(ξ (t)) ≥ 0,
M

∑
i=1

µi(ξ (t)) = 1 (7.2)

and
Âi = Ai + ∆Ai(t) (7.3)

M being the number of local LTI models, x(t) ∈ Rn the state vector, u(t) ∈ Rm

the input vector, ū(t) ∈ Rq, the unknown input and y ∈ Rp the measured outputs.
Ai ∈ Rn×n, Bi ∈ Rn×m, Di ∈ Rn and C ∈ Rp×n define the ith local LTI model. Matrices
Ri ∈ Rn×q and F ∈ Rp×q represent the influence of the unknown inputs. We assume
that q < p and, without loss of generality, that

Assumption 1: rank(F) = q and rank(Ri) = q, i.e. F and Ri are full column ranks.

Assumption 2: rank(C) = p, i.e. C is full row rank.

∆Ai(t) are time-varying matrices representing parametric uncertainties. These
uncertainties are admissibly norm-bounded, structured and satisfy: ∆Ai = DAiFAiEAi

with DAi and EAi are known real matrices with appropriate dimensions and FAi sat-
isfies F�

Ai
FAi ≤ I, ∀ i ∈ IM. The activation functions µi(.) depend on the so-called

decision vector ξ (t) assumed to depend on measurable variables.
In this section, we are concerned by the reconstruction of state variable x(t) of

multiple model (7.1) subject to unknown inputs, using only the available informa-
tion, that is known input u(t) and measured output y(t).

The following lemma will be used in the rest of the paper.

Lemma 1. [28] : Let H and E be given matrices with appropriate dimensions and F
satisfying F�F ≤ I. Then, we have for any ε > 0,

HFE + E�F�H� ≤ εHH� +
1
ε

E�E. (7.4)

The considered unknown input multiple observer, for the unknown input multiple
model (7.1), has the following structure

⎧⎨
⎩

ż(t) =
M

∑
i=1

µi (ξ (t))
(

Niz(t)+ Gi1u(t)+ Gi2 + Liy(t)
)

x̂(t) = z(t)− Ey(t)
(7.5)

240 M. Chadli

The considered observer only uses known variables (u(t) and y(t)) and the same
functions µi(.) as used for the multiple model (7.1). The unknown inputs ū(t) are
considered non available.

In order to estimate the state of the unknown input multiple model (7.1), the
variables Ni ∈ Rn×n, Gi1 ∈ Rn×m, Gi2 ∈ Rn, Li ∈ Rn×p and E ∈ Rn×p must be be
determined such that the state estimation error:

x̃(t) = x(t)− x̂(t) (7.6)

satisfies x̃(t) → 0 when t → ∞. Multiple model subject to unknown inputs which
affect state and outputs variables of the system are then studied. Poles placement in
LMI region for the designed multiple observer is also considered.

7.2.1 Unknown Inputs Observer Design

This section addresses the case when only states are affected by unknown inputs
ū(t), i.e. the multiple model (7.1) with F = 0:

⎧⎪⎨
⎪⎩

ẋ(t) =
M

∑
i=1

µi(ξ (t))(Âix(t)+ Biu(t)+ Di + Riū(t)),

y(t) = Cx(t)
(7.7)

The following result gives sufficient LMI conditions guaranteeing the global
asymptotic convergence of the state estimation error (7.6).

Theorem 7.1. The state estimation error between multiple observer (7.5) and un-
known input multiple model (7.7) converges globally asymptotically towards zero,
if there exists matrices X > 0, S and Wi and scalars εi such that the following con-
ditions hold ∀ i ∈ IM:
[

A�
i X + XAi + A�

i C�S� + SCAi −WiC −C�W�
i + εiE�

Ai
EAi (X + SC)DAi

(∗) −εiI

]
< 0

(7.8a)

(X + SC)Ri = 0 (7.8b)

Then multiple observer (7.5) is completely defined by:

E = X−1S (7.9a)

Gi1 = (I+ X−1SC)Bi (7.9b)

Gi2 = (I+ X−1SC)Di (7.9c)

Ni = (I+ X−1SC)Ai − X−1WiC (7.9d)

Li = X−1Wi − NiE (7.9e)

7 Chaotic Systems Reconstruction 241

Proof. From estimation error (7.6), the expression of x̂(t) given by multiple ob-
server (7.5) and x(t) given by (7.7), we get

x̃(t) = (I+ EC)x(t)− z(t) (7.10)

The dynamic of state estimation error (7.10), taking account the expressions of
y(t) and z(t) given in (7.7) and (7.5), is given by

˙̃x(t) =
M

∑
i=1

µi (ξ)
(

Nix̃(t)+
(
TÂi − KiC − Ni

)
x(t)+ (TBi − Gi1)u(t)+

(T Di − Gi2)+ TRiū(t)
)

(7.11)

with
Ki = NiE + Li, T = I+ EC (7.12)

The following change of variables

Wi = XKi (7.13a)

S = XE (7.13b)

with X > 0 and (7.12) lead to the following expression

˙̃x(t) =
M

∑
i=1

µi (ξ)
(

Nix̃(t)+
(
T Âi − KiC − Ni

)
x(t)+

(
(I+ X−1SC)Bi − Gi1

)
u(t)+

(
(I+ X−1SC)Di − Gi2

)
+ X−1(X + SC)Riū(t)

)
(7.14)

Taking account (7.8b) and (7.9b-c), we get

˙̃x(t) =
M

∑
i=1

µi (ξ)Nix̃(t) (7.15)

with

Ni = T Âi − KiC (7.16)

Then, the state estimation error (7.15) converges asymptotically to zero if there exist
X > 0 such that ∀ i ∈ IM:

XNi + N�
i X < 0 (7.17)

With the same variable change (7.13), inequalities (7.17) are equivalent to

(X + SC)Âi −WiC +((X + SC)Âi −WiC)� < 0 (7.18)

242 M. Chadli

By applying Lemma 1, with Âi = Ai + ∆Ai and ∆Ai = DAiFAiEAi , the constraint
(7.18) is equivalent to the existence of scalars εi > 0 such that

(X + SC)Ai + A�
i (X + SC)� −WiC −C�W�

i + εiE
�
Ai

EAi

+ ε−1
i (X + SC)DAiD

�
Ai

(X + SC)� < 0

(7.19)

which is only the Schur complement of (7.8a). This completes the proof.
�
For multiple model (7.7) without uncertainties, i.e. Âi = Ai, the following corollary
gives sufficient LMI conditions for global asymptotic convergence of the state
estimation error (7.6).

Corollary 1: The state estimation error between multiple observer (7.5) and un-
known input multiple model (7.7) with ∆Ai = 0 converges globally asymptotically
towards zero, if there exists matrices X > 0, S and Wi such that the following condi-
tions hold ∀ i ∈ IM:

(X + SC)Ai + A�
i (X + SC)� −WiC −C�W�

i < 0 (7.20a)

(X + SC)Ri = 0 (7.20b)

Then multiple observer (7.5) is defined by (7.9).

Proof. It suffices to substitute Âi by Ai in (7.18) to get (7.20a). The equalities con-
straints are not modified.
�
It is important to note that equalities (7.8b)/(7.20b), with X > 0 and the change
of variable (7.13), are equivalent to (I + EC)Ri = 0, that is ECRi = −Ri ∀ i ∈
IM. Lets notice that this condition contains the one for linear systems (Ri = R)
where an solution E exits if and only if the rank constraint rank(CR) = rank(R)
holds (see for example [27, 10]). However, in contrast to linear systems, it is
important to note that the condition on the rank is only a necessary condition
for multiple model. Moreover, inequalities (7.20a) with X > 0 are equivalent to

X
(
(I + EC)Ai − KiC

)
+
(
(I + EC)Ai − KiC

)�
X < 0. It is easy to note that these

conditions contain the observability (detectability) conditions of
(
(I+EC)A,C

)
for

linear systems. Then, in order to assist the designer, the following procedure pro-
poses to check two necessary conditions before solving conditions (7.8) or (7.20):

Procedure 1:

i) Check if rank(CRi) = rank(Ri) ∀ i ∈ IM.
ii) Compute for each i ∈ IM, a solution E(i) = −Ri(CRi)+ and check the local

observability of each pair
(
(I+E(i)C)Ai,C

)
. Σ+ denotes any generalized inverse of

matrix Σ with ΣΣ+Σ = Σ [21].

If (i)-(ii) hold, then the designer can solve the sufficient LMI conditions
(7.8)/(7.20) to design multiple observer (7.5).

7 Chaotic Systems Reconstruction 243

7.2.2 LMI Design Conditions

This section considers the general structure of unknown inputs multiple model (7.1),
that is when both the state and the output signal are affected by unknown inputs
ū(t). The following result gives sufficient LMI conditions guaranteeing the global
asymptotic convergence of state estimation error (7.6).

Theorem 7.2. The state estimation error between multiple observer (7.5) and un-
known input multiple model (7.1) converges globally asymptotically towards zero,
if there exists matrices X > 0, S and Wi and scalars εi such that the following con-
ditions hold ∀ i ∈ IM:
[

A�
i X + XAi + A�

i C�S� + SCAi −WiC −C�W�
i + εiE�

Ai
EAi (X + SC)DAi

(∗) −εiI

]
< 0

(7.21a)

(X + SC)Ri = WiF (7.21b)

SF = 0 (7.21c)

Then multiple observer (7.5) is completely defined by (7.9).

Proof. From estimation error (7.6) with the expression of x̂(t) given by observer
(7.5) and multiple model (7.1), we obtain the following expression:

x̃(t) = (I+ EC)x(t)− z(t)+ EFū(t) (7.22)

The dynamic of state estimation error is then given by

˙̃x(t) =
M

∑
i=1

µi (ξ (t))
(

T
(

Âix(t)+ Biu(t)+ Riū(t)+ Di

)
− Niz(t)−

Gi1u(t)− Gi2 − Liy(t)
)

+ EF ˙̄u(t)
(7.23)

where T is defined in (7.12). With the expressions of y(t), z(t) given in (7.1) and
(7.5), we obtain

˙̃x(t) =
M

∑
i=1

µi (ξ)
(

Nix̃(t)+
(
TÂi − KiC − Ni

)
x(t)+ (TBi − Gi1)u(t)+

(T Di − Gi2)+
(
TRi − KiF

)
ū(t)

)
+ EF ˙̄u(t) (7.24)

with Ki defined in (7.12). Thus, using the same change of variable (7.13) with (7.9b-
c) and (7.21b-c), we get

˙̃x(t) =
M

∑
i=1

µi (ξ)Nix̃(t) (7.25)

where Ni is defined in (7.16). The rest of the proof is similar to the one of the
theorem 1. This completes the proof.
�

244 M. Chadli

The following corollary obtained directly from theorem 2, gives sufficient linear
conditions to design a multiple observer for multiple model (7.1) without uncertain-
ties.

Corollary 2: The state estimation error between multiple observer (7.5) and un-
known input multiple model (7.1) with ∆Ai = 0 converges globally asymptotically
towards zero, if there exists matrices X > 0, S and Wi such that the following condi-
tions hold ∀ i ∈ IM:

(X + SC)Ai + A�
i (X + SC)� −WiC −C�W�

i < 0 (7.26a)

(X + SC)Ri = WiF (7.26b)

SF = 0 (7.26c)

Then multiple observer (7.5) is defined by (7.9).

Remark 1. Classical numerical tools as the LMITOOL [25] may be used to solve
the linear problem (7.8) on variables X > 0, S, Wi and scalars εi.. Examples are given
in section 4 to illustrate the derived stability conditions.

Remark 2. Only uncertainties on matrices Ai are considered. Uncertainties on the
other matrices lead to equalities constraints impossible to satisfy and not considered
in this chapter.

Remark 3. The case of different multiple output matrices Ci = C,∀i ∈ IM is not con-
sidered because it leads to non convex constraints not easy to resolve with existing
numerical tools.

7.2.3 Pole Placement

In this part, we investigate how to improve the performances of the proposed ob-
server (7.5) for multiple model (7.1). In order to achieve a desired transient per-
formance, a pole placement should be considered. For many problems, exact pole
assignment may not be necessary; it suffices to locate the pole in a sub-region of
the complex left half plane [9]. This section discusses a pole assignment in LMI
regions S(α,β).

Theorem 7.3. A matrix A ∈ Rn×n is D-stable if and only if there exists a symmetric
positive definite matrix X > 0 such that

MD(A,D) = α ⊗ X + β ⊗ (AX)+ β � ⊗ (AX)� < 0 (7.27)

where α ∈ Rn×n and β ∈ Rn×n.

Since prescribed LMI region (7.27) will be added as supplementary constraint to
these of theorem 1 or theorem 2, it should be noted that it only suffices to locate the

7 Chaotic Systems Reconstruction 245

poles of matrix
M
∑

i=1
µi (ξ (t))Ni in prescribed LMI regions. Indeed, estimation error

(7.25) is D-stable if there exists a matrix X > 0 such that

MD(Ni,D) = α ⊗ X + β ⊗ (NiX)+ β � ⊗ (NiX)� < 0 (7.28)

With the same changes of variables (7.13) applied to inequalities (7.28), we obtain
the following result.

Corollary 3: If there exit matrices X > 0, S and Wi such that the following conditions
hold ∀ i ∈ IM:

α ⊗ X + β ⊗ (XÂi + SCÂi −WiC)+ β � ⊗ (XÂi + SCÂi −WiC)� < 0 (7.29a)

(X + SC)Ri = WiF (7.29b)

SF = 0 (7.29c)

Then, multiple observer (7.5) is globally asymptotically convergent with the per-
formance defined by complex region S(α,β). The multiple observer gains are as
defined by (7.9).

For example, to ensure a given performance of the state estimation error, we define
region Sr(α,β) as the intersection between a circle, of center (0,0) and of radius
β , and the left half plane limited by a vertical straight line of x-coordinate equal to
−α < 0. The corresponding LMI formulation of the corollary 3 is given by the
following corollary.

Corollary 4: If there exit matrices X > 0, S, Wi and scalars εi1 and εi2 such that the
following LMI conditions hold ∀ i ∈ IM:

⎡
⎣−β X XAi + SCAi −WiC (X + SC)DAi

(∗) −β X + εi1E�
Ai

EAi 0
(∗) (∗) −εi1I

⎤
⎦< 0 (7.30a)

[
A�

i X +XAi +A�
i C�S� +SCAi −WiC −C�W�

i +2αX +εi2E�
Ai

EAi (X +SC)DAi

(∗) −εi2I

]
< 0

(7.30b)

(X + SC)Ri = WiF (7.30c)

SF = 0 (7.30d)

Then, multiple observer (7.5) is globally asymptotically convergent with the per-
formance defined by complex region Sr(α,β). The multiple observer gains are as
defined by (7.9).

246 M. Chadli

Proof. For the defined region Sr(α,β), constraints (7.29a) are equivalent to

[−β X XÂi + SCÂi −WiC
(∗) −β X

]
< 0 (7.31a)

XÂi + SCÂi −WiC +(XÂi + SCÂi −WiC)� + 2αX < 0 (7.31b)

Inequalities (7.31a) can be rewritten as follows
[−β X XAi + SCAi −WiC

(∗) −β X

]
+
[
(X + SC)DAi

0

]
FAi

[
0 EAi

]
+[

0
E�

Ai

]
F�

Ai

[
D�

Ai
(X + SC)� 0

]
< 0 (7.32)

Applying Lemma 1 to (7.32) and Schur complement to the result, we get LMI
conditions (7.30a). LMI conditions (7.30b) are also obtained from (7.31b) using
lemma 1. This completes the proof.
�
Note that for the certain case, i.e. Âi = Ai, corollary 4 is rewritten as follows

[−β X XAi + SCAi −WiC
(∗) −β X

]
< 0 (7.33a)

XAi + SCAi −WiC +(XAi + SCAi −WiC)� + 2αX < 0 (7.33b)

(X + SC)Ri = WiF (7.33c)

SF = 0 (7.33d)

7.3 Unknown Inputs Estimation

A lot of works have been considered for the unknown input estimation problem
(see for example [7, 6, 11]). For example in [11], authors are proposed methods for
detecting and reconstructing sensor faults using sliding mode observers whereas in
[6] a method to simultaneously estimate unknown inputs and states for T-S fuzzy
models is proposed.

The method proposed in this chapter is based on the hypothesis of the good esti-
mation of the state variables [7]. Indeed, when the state estimation error is equal to
zero; by replacing x by x̂ in the equation (7.1) we obtain the following approxima-
tion:

ŷ = Cx̂+ F ˆ̄u (7.34)

Since the assumption 1 holds, i.e. the matrix F is of full column rank, an estima-
tion of unknown inputs can be carried out in a simpler way by

ˆ̄u = (F�F)−1F�(y − ŷ) (7.35)

7 Chaotic Systems Reconstruction 247

7.4 Simulation Examples

To illustrate the validness of the proposed results, two examples will be proposed.
The first one illustrates the good estimation of both states and unknown input affect-
ing multiple model in different case (without poles placement, with poles placement
and uncertainties). The second one in section 4.2, deals with the chaotic system re-
construction. First by building chaotic multiple model. Then the design of a multi-
ple observer for such chaotic multiple model is given. Simulation shows the good
chaotic system reconstruction with the proposed design.

7.4.1 Academic Example

Now, consider the multiple model (7.1), where both the state and the output signal
are affected by unknown inputs, with M = 2 and the following data:

A1 =

⎡
⎣−2 1 1

1 −3 0
2 1 −6

⎤
⎦ A2 =

⎡
⎣−3 2 2

5 −8 0
0.5 0.5 −4

⎤
⎦

B1 =

⎡
⎣ 1

−0.5
−0.5

⎤
⎦ B2 =

⎡
⎣ −0.5

1
−0.25

⎤
⎦ F =

[
1
1

]

R1 =

⎡
⎣ 1

−1
1

⎤
⎦ R2 =

⎡
⎣ 1

0.5
−2

⎤
⎦ C =

[
1 1 1
1 0 1

]

and the functions ⎧⎪⎪⎨
⎪⎪⎩

ξ (t) = y1(t)

µ1(ξ (t)) = 1
2 (1 − tanh(ξ (t)))

µ2(ξ (t)) = 1 − µ1(ξ (t))

The following subsections are dedicated to design a multiple observer of the form
(7.5), firstly without pole placement in subsection 4.1.1 and then with pole place-
ment in subsection 4.1.2. Uncertainties on state matrices are also studied in sec-
tion 4.1.3.

7.4.1.1 Observer Design without Pole Placement

The resolution of conditions (7.26) lead to the following result:

X =

⎡
⎣ 0.1 0 0

0 0.1 0
0 0 0.1

⎤
⎦ W1 =

⎡
⎣ 0.22 −0.10

0.33 −0.37
0.30 −0.15

⎤
⎦ W2 =

⎡
⎣ 0.49 −0.40

0.17 −0.15
0.49 −0.72

⎤
⎦

248 M. Chadli

From (7.9), we define completely multiple observer (7.5) as follows:

E=

⎡
⎣−0.18 0.18

−0.66 0.66
−0.57 0.57

⎤
⎦ L1 =

⎡
⎣ 1.04 0.14

0.76 −1.09
−1.55 3.13

⎤
⎦ L2 =

⎡
⎣ 3.70 −2.8

−1.03 1.19
4.05 −6.34

⎤
⎦

G11 =

⎡
⎣ 1.09

−0.16
−0.21

⎤
⎦ G21 =

⎡
⎣−0.68

0.33
−0.82

⎤
⎦

With known input u(t) and unknown input ū(t) given in figures 1 − 2 respec-
tively and initial conditions x0 = (1,0.5,0)� and z0 = (−2,2,−3)�, we obtain the
simulation results given in figures 3 − 5. As shown, the dynamic of the estimated
state tends globally asymptotically to the model sate in spite of the presence of un-
known input ū(t). This allows to illustrate the effectiveness of the derived synthesis
conditions.

Fig. 7.1 Known input u(t)

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 7.2 Unknown input
ū(t)

0 5 10 15 20 25 30 35 40
2

2.5

3

3.5

4

4.5

5

5.5

7 Chaotic Systems Reconstruction 249

Fig. 7.3 State estimation
without pole placement:
x1(t) and x̂1(t)

0 5 10 15 20 25 30 35 40
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 7.4 State estimation
without pole placement:
x2(t) and x̂2(t)

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

Fig. 7.5 State estimation
without pole placement:
x3(t) and x̂3(t)

0 5 10 15 20 25 30 35 40
−3

−2.5

−2

−1.5

−1

−0.5

0

250 M. Chadli

Fig. 7.6 State estimation
with pole placement: x1(t)
and x̂1(t)

0 5 10 15 20 25 30 35 40
−2

−1.5

−1

−0.5

0

0.5

1

1.5

7.4.1.2 Observer Design with Pole Placement

In order to improve performances of the above designed observer, the region
Sr(α,β) defined in (7.33) is used. The considered region is an intersection between
a circle, of center (0,0) and of radius 10, and the left half plane limited by a vertical
line at −2. The resolution of conditions (7.33) corresponding to the region Sr(2,10)
give:

X =

⎡
⎣ 4.15 0 −1.75

0 2.97 0
−1.75 0 1.94

⎤
⎦ W1 =

⎡
⎣ 0.88 1.01

13.41 −13.41
5.94 −3.84

⎤
⎦ W2 =

⎡
⎣ 3.38 4.53

13.41 −13.41
12.82 −19.41

⎤
⎦

From (7.9), the corresponding multiple observer is given by

E =

⎡
⎣−0.47 0.47

−1 1
−1.42 1.42

⎤
⎦ L1 =

⎡
⎣−0.13 1.6

0 0
−7.5 10

⎤
⎦ L2 =

⎡
⎣ 4.64 −3.88

0 0
8.17 −10.88

⎤
⎦

G11 =

⎡
⎣ 1.24

0
0.21

⎤
⎦ G21 =

⎡
⎣−0.97

0
−1.67

⎤
⎦

With the same initial conditions, the known and unknown inputs given in figures
1−2, we obtain the simulation result given in figures 6−8. To show clearly the per-
formance improvements of the designed multiple observer, the simulation of state
estimation errors x̃(t) = x(t)− x̂(t) with and without pole assignment are presented
in figures 9 − 11.

7 Chaotic Systems Reconstruction 251

Fig. 7.7 State estimation
with pole placement: x2(t)
and x̂2(t)

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

Fig. 7.8 State estimation
with pole placement: x3(t)
and x̂3(t)

0 5 10 15 20 25 30 35 40
−3

−2.5

−2

−1.5

−1

−0.5

0

Fig. 7.9 Estimation errors
with and without (red line)
pole placement:x̃1(t) =
x1(t)− x̂1(t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.5

0

0.5

1

1.5

2

2.5

3

252 M. Chadli

Fig. 7.10 Estimation errors
with and without (red line)
pole placement:x̃2(t) =
x2(t)− x̂2(t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1.5

−1

−0.5

0

0.5

Fig. 7.11 Estimation errors
with and without (red line)
pole placement:x̃3(t) =
x3(t)− x̂3(t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.5

0

0.5

1

1.5

2

2.5

3

7.4.1.3 Uncertainties on State Matrices

Now, to show the robustness of the proposed observer, consider the same example
with uncertainties on state matrices as follows

DA1 = DA2 =

⎡
⎣ 0.2 0 0

0 0.2 0
0 0 0.2

⎤
⎦ , EA1 =

⎡
⎣ 0 1 1

1 0 0
2 1 −2

⎤
⎦ , EA2 =

⎡
⎣−2 2 2

5 −4 0
0.5 0.5 0

⎤
⎦

The resolution of conditions (7.30) of corollary 4 corresponding to the same re-
gion Sr(2,10) leads to feasible problem and gives:

X =

⎡
⎣ 26.9004 −0.4639 −8.7213

−0.4639 0.4138 0.0776
−8.7213 0.0776 6.9058

⎤
⎦ , S =

⎡
⎣−6.2098 6.2098

−0.1912 0.1912
−3.8747 3.8747

⎤
⎦

7 Chaotic Systems Reconstruction 253

W1 =

⎡
⎣ 38.0992 −13.2463

1.4271 −2.0360
9.3190 −7.3374

⎤
⎦ , W2 =

⎡
⎣ 101.1735 −60.1674

0.1294 −0.6374
16.3630 −40.7944

⎤
⎦

ε11 = 0.9609, ε21 = 0.1024, ε12 = 1.2122, ε22 = 0.1808

Then from (7.9), multiple observer (7.5) is defined with the following parameters

E =

⎡
⎣−0.7219 0.7219

−0.9972 0.9972
−1.4615 1.4615

⎤
⎦ , G11 =

⎡
⎣ 1.3609

−0.0014
0.2308

⎤
⎦ , G21 =

⎡
⎣−1.2219

0.0028
−1.7115

⎤
⎦

N1 =

⎡
⎣−4.4438 −0.1141 −0.7219

0.0057 −6.1171 0.0028
−1.9230 −0.0381 −8.4615

⎤
⎦ , N2 =

⎡
⎣−7.2484 −0.0510 1.3609

0.0128 −6.8255 −0.0014
−4.0768 0.0158 −1.2692

⎤
⎦

L1 =

⎡
⎣−1.0969 2.8188

0.0171 −0.0200
−8.3702 10.8317

⎤
⎦ , L2 =

⎡
⎣ 4.5317 −3.8926

0.0038 −0.0024
7.3941 −10.1249

⎤
⎦

It is important to note that the derived results can tolerate some level of uncer-
tainties on the state matrices of the multiple model. The designed unknown input
observer is proved to be robust against state matrices uncertainties.

7.4.2 Application to Chaotic System Reconstruction

Results developed in section 7.2 can be applied to reconstruct states of chaotic sys-
tem in multiple model representation and also for a secure communication system.
Indeed, the problem we are faced with consists of transmitting some coded mes-
sage with a signal broadcasted by a communication channel. At the receiver side,
the hidden signal is recovered by a decoding system. The increasing need of secure
communications leads to the development of many techniques which make difficult
the detecting of transmitted message (se for example [18, 8, 3, 2, 1]). In this sec-
tion, our goal to show how the designed observer could be used in chaotic system
reconstruction and in a secure communication scheme. For this purpose we use the
nonlinear Lorenz model as chaotic systems represented by his equivalent chaotic
multiple model. Consider the non linear Lorenz equation [1]:

⎧⎨
⎩

ẋ1(t) = −ax1(t)+ ax2(t)
ẋ2(t) = cx1(t)− x2(t)− x1(t)x3(t)
ẋ3(t) = x1(t)x2(t)− bx3(t)

(7.36)

Which can be rewritten as follows

ẋ(t) = A(x(t))x(t) (7.37)

254 M. Chadli

with:

x =

⎡
⎣ x1

x2

x3

⎤
⎦ , A(x(t)) =

⎡
⎣−a a 0

c −1 −x1(t)
0 x1(t) −b

⎤
⎦

and a, b, and c are constants. Assume that x1(t) ∈ [−d,d] with d > 0. Then, we
can write x1(t) = −d.µ1(x1(t))+d.µ2(x1(t)) with µ1(x1(t))+ µ2(x1(t)) = 1 which
leads to the following multiple model:

ẋ(t) = (µ1(x1(t))A1 + µ2(x1(t))A2)x(t) (7.38)

where

A1 =

⎡
⎣−a a 0

c −1 −d
0 d −b

⎤
⎦ , A2 =

⎡
⎣−a a 0

c −1 d
0 −d −b

⎤
⎦

and

µ1(x1(t)) =
1
2

(
1 +

x1(t)
d

)
µ2(x1(t)) =

1
2

(
1 − x1(t)

d

)

Note that the obtained multiple model exactly represents the nonlinear Lorenz
model under x1(t) ∈ [−d,d].

In the following, we consider the chaotic multiple model (7.38) with a = 10,
b = 8/3, c = 28 and d = 30 in his general form:

⎧⎪⎨
⎪⎩

ẋ =
2

∑
i=1

µi (y1)
(

Aix + Riū
)

y = Cx + Fū

(7.39)

with:

A1 =

⎡
⎣−10 10 0

28 −1 −30
0 30 −8/

3

⎤
⎦ A2 =

⎡
⎣−10 10 0

28 −1 30
0 −30 −8/

3

⎤
⎦

B1 =

⎡
⎣ 0

0
0

⎤
⎦ B2 =

⎡
⎣ 0

0
0

⎤
⎦C =

[
1 0 0
0 1 0

]
F =

[
1
1

]

The simulation of multiple model (7.39) without the unknown input ū and with
the initial value x0 = (1 1 1)� shows the chaotic behavior of the example plotted in
the phase plan of the system (see figure 7.12).

The message to be encoded constitutes the so-called unknown input of the mul-
tiple model which plays the role of the encoder. The output of this model is trans-
mitted using a public channel. On the receiving side, an unknown input multiple
observer serves as a decoder in order to re-build the message. Clearly, the choice of
LTI local models, their number, as well as the nature of the function µi(ξ (t))) are
key elements for an external person to be able to decode the embodied crypted mes-
sage from only the signal y(t). The goal of the proposed example is only to show

7 Chaotic Systems Reconstruction 255

Fig. 7.12 Phase plan of
the chaotic multiple model
(7.38)

−20 −15 −10 −5 0 5 10 15 20
−40

−20

0

20

40

−30 −20 −10 0 10 20 30
0

20

40

60

−20 −15 −10 −5 0 5 10 15 20
0

20

40

60

x
2

x
3

x
3

x
1

x
2

x
1

the feasibility of the proposed design in chaotic system reconstruction and in secure
communication procedure.

Indeed, the unknown input can represent the hidden message to be transmit-
ted. Thus the transmitted signal y is embedded with the hidden message ū of the
figure 7.14 .

The considered multiple observer for this application is
⎧⎪⎨
⎪⎩

ż =
2

∑
i=1

µi (y1)
(

Niz+ Liy
)

x̂ = z− Ey

(7.40)

The resolution of conditions (7.26) with B1 = B2 = (0,0,0)� lead to the following
result:

X =

⎡
⎣ 1.750 1.650 −0.003

1.650 1.750 −0.003
−0.003 −0.003 0.195

⎤
⎦ E =

⎡
⎣ −3.05 3.05

3.99 −3.99
−0.004 0.004

⎤
⎦

N1 =

⎡
⎣ 33.66 47.89 −91.72

−36.18 −45.78 89.96
61.12 −32 −2.79

⎤
⎦ L1 =

⎡
⎣−16.44 17.44

−14.94 15.94
253.9 −252.9

⎤
⎦

N2 =

⎡
⎣ 35.06 49.54 91.72

−37.82 −47.14 −89.96
−62.08 31.20 −2.53

⎤
⎦ L2 =

⎡
⎣ −19.38 17.32

−13.67 17.67
−252.38 253.37

⎤
⎦

Figure 7.13 represent the state estimation error with the initial conditions x0 =
(1 1 1)� and x̂0 = (0 0 0)�. It shows the good reconstruction of chaotic system
state. Figure 7.14 displays the hidden transmitted message and its estimate. Ex-
cepted around the time origin, the unknown input (transmitted message) is perfectly
estimated.

256 M. Chadli

0 5 10 15 20 25 30
−2

0

2

4

0 5 10 15 20 25 30
−4

−2

0

2

0 5 10 15 20 25 30
−1

0

1

2

3

e
1

e
2

e
3

Fig. 7.13 Estimation errors ei = xi − x̂i, i ∈ {1,2,3}

0 5 10 15 20 25 30
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Fig. 7.14 Hidden message ū and its estimate

7 Chaotic Systems Reconstruction 257

7.5 Extension to Discret-Time Multiple Model

Consider the class of a nonlinear discrete-time system subject to unknown inputs
represented by a discret-time multiple model:

⎧⎪⎨
⎪⎩

x(t + 1) =
M

∑
i=1

µi(ξ (t))(Aix(t)+ Biu(t)+ Riū(t)+ Di)

y(t) = Cx(t)+ Fū(t)
(7.41)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm the input vector, ū(t) ∈ Rq, q < n, con-
tains the unknown inputs and y ∈ Rp the measured outputs. Matrices Ai ∈ Rn×n and
Bi ∈ Rn×m. Matrices Ri ∈ Rn×q and F ∈ Rp×q are assumed to satisfy assumptions 1
and 2. The matrices Di ∈ Rn are introduced to take into account the operating point
of the system and C ∈ Rp×n is the output matrix. Functions µi(ξ (t)) are as defined
in (7.2).

The considered structure of the multiple observer is

⎧⎪⎨
⎪⎩

z(t + 1) =
M

∑
i=1

µi(ξ (t))
(
Niz(t)+ Gi1u(t)+ Gi2 + Liy(t)

x̂(t) = z(t)− Ey(t)
(7.42)

where Ni ∈ Rn×n, Gi1 ∈ Rn×m, Gi2 ∈ Rn, E ∈ Rn×p, Li ∈ Rn×p are the observer gains
to be determined. The considered problem concerns both the reconstruction of state
variable x(t) and unknown input u(t), using only the available signal, that is known
input u(t) and measured output y(t).

The following result gives sufficient conditions for the global asymptotic conver-
gence of the state estimation error (7.6).

Theorem 7.4. The state estimation error between multiple model (7.41) and un-
known input multiple observer (7.42) converges globally asymptotically towards
zero if there exists matrices X > 0, S and Wi such that the following conditions hold
∀ i ∈ IM:

[
X ∗

XAi + SCAi −WiC X

]
> 0 (7.43a)

(X + SC)Ri = WiF (7.43b)

SF = 0 (7.43c)

Multiple observer (7.42) is then completely defined by (7.9).

Proof. The prrof is obvious by using the same arguments used for proving theorem 1
and theorem 2.
�

258 M. Chadli

7.5.1 Pole Assignment

To improve performances of the multiple observer for better estimation of system
state, dynamics of the multiple observer are constrained to be faster than that of the
multiple model. As stated in section 2.3, it is possible to assign the poles to a specific
sub-region is the complex plane [9]. For example if the prescribed region Sr(σ ,r) is
a disk centered at (σ ,0) and radius r, the LMI formulation of the previous problem
is expressed by the following corollary.

Corollary 5: If there exist matrices X , S and Wi such that the following conditions
hold ∀ i ∈ IM:

[
rX ∗

X(Ai − σI)+ SC(Ai − σI)−WiC rX

]
> 0 (7.44a)

(X + SC)Ri = WiF (7.44b)

SF = 0 (7.44c)

then the multiple observer (7.42) is globally asymptotically convergent with the
performance defined by the complex region S(σ ,r). The observer parameters are as
defined by (7.9).

Remark 4. Note that the LMI constraints (7.44) can be obtained from (7.43) by
simply replacing the matrices Ai by (Ai − σI)/r. Moreover if we are interested by
the region S0(0,α) it suffices to chose σ = 0 and r = α .

Note that the LMI conditions (7.44) can be extended to incertain case, i.e. Âi =
Ai + ∆Ai(t), as follows

Corollary 6: If there exit matrices X > 0, S, Wi and scalars εi1 and εi2 such that the
following LMI conditions hold ∀ i ∈ IM:

⎡
⎣rX −XAi − SCAi +WiC −(X + SC)DAi

(∗) rX − εi1E�
Ai

EAi 0
(∗) (∗) εi1I

⎤
⎦> 0 (7.45a)

(X + SC)Ri = WiF (7.45b)

SF = 0 (7.45c)

Then, multiple observer (7.42) is globally asymptotically convergent with the
performance defined by complex region Sr(σ ,r). The multiple observer gains are as
defined by (7.9).

Summarizing the estimation procedure, the design of multiple observer and the es-
timation of unknown inputs can be implemented as follows:

7 Chaotic Systems Reconstruction 259

Procedure 2:
i) Solve the linear constraints (7.43) (or (7.45) for pole placement with uncertain-

ties) with numerical tools such as the LMITOOL software [25],
ii) Deduce the observer parameters Ni, Gi1, Gi2, Li and E of the multiple observer

(7.42) using the equations (7.9).
iii) Under the assumption 1, estimate unknown input estimation using equation

(7.35).

7.6 Application to Chaotic System Reconstruction

In this section, the proposed multiple observer is used to reconstruct states of chaotic
systems and can be exploited in secure communication scheme. The message to be
encoded is the unknown input of the chaotic multiple model.

Consider a chaotic discrete-time multiple model that results from the interpola-
tion of two local models:⎧⎪⎨

⎪⎩
x(t + 1) =

2

∑
i=1

µi(ξ (t))
(
Aix(t)+ Riū(t)

)

y(t) = Cx(t)+ Fū(t)

(7.46)

The functions µi(.) depend on the multiple model output, ξ (t) = y(t), and ex-
pressed by ⎧⎪⎪⎨

⎪⎪⎩

ξ (t) = y(t)

µ1(ξ (t)) = 1
2 (1 − tanh(ξ (t)))

µ2(ξ (t)) = 1 − µ1(ξ (t))

(7.47)

The numerical values of matrices are as follows:

A1 =
[−1.1 0.5

0.3 0.7

]
, A2 =

[
0.8 −0.1
1 1.1

]
, C =

[
0.5 0.5

]
, F = 5

From the structure of multiple model (7.46), we can deduce the following values:

S = 0, E = 0, Gi1 = 0, Gi2 = 0

For this example, since the encoding system (7.46) can be conceived at the same
time as the decoding system (observer), the computation matrices Ri is then free.
Thus, LMI (7.43a) can be solved without taking into account equalities (7.43b-c).
The resolution of LMI (7.43a) gives

X =
[

1.6718 −2.0563
−2.0563 7.7169

]
W1 =

[−3.9158
9.0362

]
W2 =

[−2.3610
13.5810

]

260 M. Chadli

Fig. 7.15 Phase plan of the
system

−25 −20 −15 −10 −5 0 5 10
−20

0

20

40

60

80

100

Using equations (7.9d-e), we obtain

L1 =
[−1.3418

0.8134

]
L2 =

[
1.1192
2.0581

]

N1 =
[−0.4291 1.1709
−0.1067 0.2933

]
N2 =

[
0.2404 −0.6596

−0.0291 0.0709

]

from (7.46b) with Wi and X , we compute the values of R1 and R2 as follows

R1 =
[−6.7090

4.0671

]
, R2 =

[
5.5959

10.2906

]

The designed unknown multiple observer can be applied in chaotic system recon-
struction and also in a secure communication procedure. In this context, the problem
consists of transmitting a resulting ciphertext embedded to the output by a commu-
nication channel. At the receiver side, the hidden signal (plaintext) is retrieved via
the synthesis approach, i.e. the designed unknown input multiple. Concerning the
transmission of a crypted message on a public channel of communication, one can
wonder about the possibility of detecting and retrieving the message from the trans-
mitted signal. In literature, some answers are given and one of them is satisfied here
with a simple ”visual appreciation” (see for example [18, 8, 2]). So, figure 7.15,
plotted in the phase plan of the system, does not show any particular behavior of
periodic type or with commutation. Obviously, these observations can not establish
security on the inviolability of the transmitted signal. For simulation example, con-
sider the message to be transmitted given by figure 7.16 and the resulting output
(the encoded message) of the chaotic multiple model in figure 7.17. Figures 7.18
and 7.19 show the state variable of the chaotic system and its estimation which
are perfectly superposed. Finally, figure 7.20 presents the estimated unknown input
(message estimate) where the message is perfectly estimated except around the time
origin.

7 Chaotic Systems Reconstruction 261

Fig. 7.16 Message ū(t)

0 50 100 150 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 7.17 Output y(t)

0 50 100 150 200
−10

−5

0

5

10

15

20

25

30

35

40

Fig. 7.18 x1(t) of chaotic
multiple model and its esti-
mate

0 50 100 150 200
−25

−20

−15

−10

−5

0

5

10

262 M. Chadli

Fig. 7.19 x2(t) of chaotic
multiple model and its esti-
mate

0 50 100 150 200
−10

0

10

20

30

40

50

60

70

80

90

Fig. 7.20 Estimated mes-
sage ˆ̄u(t)

0 50 100 150 200
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

7.7 Conclusion

In this chapter we have shown how to use multiple model approach, multiple ob-
server and LMI formulation for chaotic system reconstruction. Indeed, an ap-
proach to design an observer for multiple models with unknown inputs affecting
both the state and the output of the system is proposed. Uncertainties on state ma-
trices are also considered. Sufficient conditions to design the proposed structure of
observer are given in LMI terms under linear equality constraints. To improve
the performances of the proposed unknown inputs multiple observer, poles assign-
ment in LMI regions is also addressed for continuous-time and discrete-time. It
is shown that this approach can be used in chaotic communications in the sense of
signal masking and encryption. Moreover, the hidden message may be embedded
in the state/output of the drive (chaotic) system which enhances the design flexibil-
ity. The designed unknown inputs multiple observer is shown to be satisfactory for
message (unknown input) estimation and for chaotic system reconstruction.

7 Chaotic Systems Reconstruction 263

References

1. Akhenak, A., Chadli, M., Ragot, J., Maquin, D.: Unknown input multiple observer based
approach: application to secure communication. In: 1st IFAC Conference on Analysis
and Control of Chaotic Systems, Reims, France, June 28-30 (2006)

2. Alvares, G., Montoya, F., Romera, M., Pastor, G.: Breaking parameter modulated chaotic
secure communication system. Chaos, Solitons & Fractals 21(4), 783–787 (2004)

3. Boutayeb, M., Darouach, M., Rafaralahy, H.: Generalized State-Space Observers for
Chaotic Synchronization and Secure Communication. IEEE Trans Circ. Syst. Fund.
Theor. Appl. 49(3), 345–349 (2002)

4. Boyd, S., Ghaoui, E., Feron, E., Balakrishnan, V.: Linear matrix inequalities in systems
and control theory. SIAM, Philadelphia (1994)

5. Chadli, M., Maquin, D., Ragot, J.: An LMI formulation for output feedback stabilisa-
tion in multiple model approach. In: IEEE 41th Conference on Decision Control, USA,
December 10-13 (2002)

6. Chadli, M., Akhenak, A., Ragot, J., Maquin, D.: On the Design of Observer for Unknown
Iinputs Fuzzy Models. Int. J. Contr. Autom. Syst. 2(1), 113–125 (2008)

7. Chadli, M., Akhenak, A., Ragot, J., Maquin, D.: State and Unknown In-
put Estimation for Discrete Time Multiple Model. J. Franklin Inst. (2009),
doi:10.1016/j.jfranklin.2009.02.011

8. Chen, M., Zhou, D., Shang, Y.: A new observer-based synchronization scheme for private
communication. Chaos, Solitons & Fractals 24, 1025–1030 (2005)

9. Chilali, M., Gahinet, P.: H∞ Design with pole placement constraints: an LMI approch.
IEEE Transactions on Automatic Control 41(3), 358–367 (1996)

10. Darouach, M., Zasadzinski, M., Xu, S.: Full-order observers for linear systems with un-
known inputs. IEEE Trans. Automatic Control 39, 606–609 (1994)

11. Edwards, C., Spurgeon, S., Patton, J.: Sliding mode observers for fault detection and
isolation. Automatica 36(4), 541–553 (2000)

12. Floquet, T., Barbot, J.: A sliding mode approach of unknown input observers for linear
systems. Decis. Contr., 1724–1729 (2004)

13. Guan, Y., Saif, M.: A novel approach to the design of unknown input observers. IEEE
Trans. Automat. Contr. 36(5), 632–635 (1991)

14. Ha, Q., Trinh, H.: State and input simultaneous estimation for a class of nonlinear sys-
tems. Automatica 40(10), 1779–1785 (2004)

15. Johansson, M., Rantzer, A., Arzén, K.: Piecewise quadratic stability of fuzzy systems.
IEEE Trans. Fuzzy Syst. 7(6), 713–722 (1999)

16. Kim, E., Lee, H.: New approaches to relaxed quadratic stability condition of fuzzy con-
trol systems. IEEE Trans. on Fuzzy Sets 8(5), 523–534 (2000)

17. Koenig, D.: Unknown input proportional multiple-integral observer design for descrip-
tor systems: application to state and fault estimation. IEEE Transactions on Automatic
Control 5(2), 213–217 (2005)

18. Li, C., Liao, X., Wong, K.: Lag synchronization of hyperchaos with application to secure
communications. Chaos, Solitons & Fractals 23, 183–193 (2005)

19. Lin, S., Wang, P.: Unknown input observers for singular systems designed by eigenstruc-
ture assignment. J. Franklin Inst. 340(1), 43–61 (2003)

20. Murray-Smith, R., Johansen, T.: Multiple model approaches to modelling and control.
Taylor & Francis, Abington (1997)

21. Rao, C., Mitra, S.: Generalized Inverse of Matrices and its Applications. Wiley, Chich-
ester (1971)

264 M. Chadli

22. Syrmos, V.: Computational observer design techniques for linear systems with unknown
inputs using the concept of transmission zeros. IEEE Transactions on Automatic Con-
trol 38(5), 790–794 (1993)

23. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modelling
and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

24. Tanaka, K., Wang, H.: Fuzzy Control Systems Design and Analysis: A linear Matrix
Inequality Approach. John Wiley & Sons, Inc., Chichester (2001)

25. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Review 38(1), 49–95
(1996)

26. Xiaodiong, L., Qingling, Z.: New approach to H∞ controller designs based on observers
for T-S fuzzy systems via LMI. Automatica 39, 1571–1582 (2003)

27. Yang, F., Wilde, R.: Observers for linear systems with unknown inputs. IEEE Trans.
Automatic Control 33, 677–681 (1988)

28. Zhou, K., Doyle, J.: Essentials Of Robust Control. Prentice Hall, Englewood Cliffs
(1998)

Chapter 8
Evolutionary Reconstruction of Chaotic Systems

Ivan Zelinka and Ales Raidl

Abstract. This chapter discusses the possibility of using evolutionary algorithms
for the reconstruction of chaotic systems. The main aim is to show that evolutionary
algorithms are capable of the reconstruction of chaotic systems without any partial
knowledge of internal structure, i.e. based only on measured data. Five different
evolutionary algorithms are presented and tested in a total of 13 and 12 versions in
two different versions of experiments. System selected for numerical experiments
here is the well-known logistic equation. For each algorithm and its version, 100
repeated simulations were conducted. According to obtained results it can be stated
that evolutionary reconstruction is an alternative and a promising way as to how to
identify chaotic systems.

8.1 Introduction

Identification of various dynamical systems is vitally important in theory and in
practical applications. A rich set of various methods for dynamical system iden-
tification has been developed. In the case of chaotic dynamics, an example is the
well-known reconstruction of chaotic attractor based on research of [35] who has
shown that, after the transients have died out, one can reconstruct the trajectory on
the attractor from the measurement of a single component. Because, the entire tra-
jectory contains too much information, a series of papers by [12], [8] is introduced

Ivan Zelinka
Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511,
Zlin 76001, Czech Republic
and
VSB-TUO, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15,
708 33 Ostrava-Poruba, Czech Republic
e-mail: zelinka@fai.utb.cz

Ales Raidl
Charles University, Faculty of Mathematics and Physics,V Holesovickach 2,
180 00 Prague 8, Czech Republic
e-mail: ales.raidl@mff.cuni.cz

I. Zelinka et al. (Eds.): Evolutionary Algorithms and Chaotic Systems, SCI 267, pp. 265–291.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

266 I. Zelinka and A. Raidl

to show a set of averaged coordinate invariant numbers (generalized dimensions,
entropies, and scaling indices) by which different strange attractors can be distin-
guished. The method presented here is based on evolutionary algorithms (EAs), see
[1], which allows the reconstruction not only of chaotic attractors as a geometri-
cal object, but also their mathematical description. All those techniques belong to
the class of genetic programming techniques; see [17],[18]. Generally, when it is
used on data fitting, these techniques are called symbolic regression (SR). The term
symbolic regression (SR) represents a process, by which measured data is fitted
by a suitable mathematical formula such as x2 +C, sin(x)+ 1/ex, etc., Mathemat-
ically, this process is quite well known and can be used when data of an unknown
process is obtained. Historically, SR has been in the preview of manual manipu-
lation, however during the recent past, a large inroad has been made through the
use of computers. Generally, there are two well-known methods, which can be used
for SR by means of computers. The first one is called genetic programming (GP),
[17], [18] and the other is grammatical evolution, [22], [31]. The idea as to how to
solve various problems using SR by means of EA was introduced by John Koza,
who used genetic algorithms (GA) for GP. Genetic programming is basically a sym-
bolic regression, which is done by the use of evolutionary algorithms, instead of a
human brain. The ability to solve very difficult problems is now well established,
and hence, GP today performs so well that it can be applied, for example to syn-
thesize highly sophisticated electronic circuits, [19]. In the last decade of the 20th
century, C. Ryan developed a novel method for SR, called grammatical evolution
(GE). Grammatical evolution can be regarded as an unfolding of GP due to some
common principles, which are the same for both algorithms. One important char-
acteristic of GE is that it can be implemented in any arbitrary computer language
compared with GP, which is usually done (in its canonical form) in LISP. In contrast
to other evolutionary algorithms, GE was used only with a few search strategies, for
example with a binary representation of the populations in [23]. Another interesting
investigation using symbolic regression was carried out by [14] working on Arti-
ficial Immune Systems or/and systems which are not using tree structures like lin-
ear genetic programming (full text is at https://eldorado.uni-dortmund.de/bitstream
/2003/20098/2/Brameierunt.pdf) and another similar algorithm to AP, Multi Expres-
sion Programming (see http://www.mep.cs.ubbcluj.ro/). Simply put, evolutionary
algorithm simulates Darwinian evolution of individuals (solutions of given prob-
lem) on a computer and are used to estimate-optimize numerical values of defined
cost function. Methods of GP are able to synthesize in an evolutionary way com-
plex structures like electronic circuits, mathematical formulas etc. from basic set
of symbolic (nonnumeric) elements. In this chapter, analytic programming (AP) is
applied, see [43], [36], [37], [41], [42] for the identification of selected chaotic sys-
tem. Identification is not done on the “level” of strange attractor reconstruction, but
it produces a symbolic-mathematical description of the identified system. Investi-
gation reported here is a continuation of research done in [43] or extended study
reported in Chapter 11.

8 Evolutionary Reconstruction of Chaotic Systems 267

Synthesis, identification and control of complex dynamical systems are usually
extremely complicated. When classics methods are used, some simplification is re-
quired which tends to lead to idealized solutions that are far from reality. In contrast,
the class of methods based on evolutionary principles is successfully used to solve
this kind of problems with a high level of precision. In this chapter an alternative
method of evolutionary algorithms, which has been successfully proven by many
experiments like chaotic systems synthesis, neural network synthesis or electrical
circuit synthesis. This chapter discusses the possibility of using evolutionary algo-
rithms for the identification (reconstruction) of chaotic systems. The main aim of
this work is to show that evolutionary algorithms are capable of reconstruction of
chaotic systems without any partial knowledge of internal structure, i.e. based only
on measured data. Five different evolutionary algorithms are presented and tested
here in a total of 13 and 12 versions. The system selected for numerical experiments
here is the well-known logistic equation for discrete systems and Lorenz attractor
for continuous systems. For each algorithm and its version, 100 repeated simula-
tions were conducted. According to obtained results it can be stated that evolution-
ary reconstruction is an alternative and promising way as to how to identify chaotic
systems.

8.2 Motivation

Motivation of this investigation is quite simple. As mentioned in the introduction,
evolutionary algorithms are capable of hard problem solving. Numerous examples
on evolutionary algorithms can be easily found. Evolutionary algorithms use with
chaotic systems is done for example in [30] where EAs has been used on local
optimization of chaos, [27] for chaos control with use of the multi-objective cost
function or in [28] and [29], where evolutionary algorithms have been studied on
chaotic landscapes. A slightly different approach of evolutionary algorithms is pre-
sented in [43], where selected algorithms were used to synthesize artificial chaotic
systems. In [39], [40], EAs has been successfully used for real-time chaos control
and in [34] and [44] EAs was used for the optimization of Chaos Control. Other
examples of evolutionary algorithms usage can be found in [6] which developed
statistically robust evolutionary algorithms, and on the opposite side [11] used evo-
lutionary algorithms for fuzzy power system stabilizer which has been applied on
single-machine infinite bus system and multi-machine power system. Other research
was done by [20]. Parameters of permanent magnet synchronous motors has been
optimized by particle swarm algorithm and experimentally validated on the servo-
motor. In [5], swarm intelligence has been used for IIR filter synthesis and [26] ap-
plied co-evolutionary particle swarm optimization (CoPSO) approach for the design
of constrained engineering problems, particularly for pressure vessel, compression
spring and welded beam. The main question in the case of this chapter is if EAs are
able to identify chaos in symbolic i.e. mathematical description. All experiments
here were designed to check and either affirm or negate this idea.

268 I. Zelinka and A. Raidl

8.3 Chaos System Reconstruction – Classical Methods

8.3.1 Reconstruction Based on Time Series Analysis

Control of chaos, calculation of quantifiers of chaos etc. requires the trajectories of
the dynamic system in the phase space to be examined. This does not pose a serious
problem if the control equations of the system are explicitly given. In actual experi-
mental practice, however, one is often faced with the fact that the time sequence of
one or, more favorably, more than one variable is measured while the equations of
the system are unknown. For instance, only air temperature or air pressure is mea-
sured. Such a time series can be interpreted as a projection of the trajectory into one
of the axes of the phase space. The task is then to reconstruct the trajectory in the
phase space based on the measured time series of the scalar quantity. Under some
assumptions, we are really able to reconstruct substantial properties of the system
dynamics. The process of estimation of the chaos quantifier values thus separates
into two main steps, i.e.:

• reconstruction of the trajectory in the phase space on a chaotic attractor, and
• calculation of the chaos descriptors itself.

Both steps can be subsequently used for additional modeling of the system, such
as nonlinear prediction or reduction of noise in a signal, etc. For those purposes the
so called reconstruction of the trajectory in the phase space is used. This will be,
although a little bit imprecisely, abbreviated to “phase space reconstruction”.

Time delay method is the approach to phase space reconstruction which is most
frequently used. Let us start from a situation where a scalar quantity x(ti), i = 1, ...,N
is measured at uniformly distributed time moments t1,t2 = t1 + ∆ t, ...,ti = t1 +(i−
1)∆ t, ...,tN . In the early 1980s, Pakard, Crutchfield, Farmer and Shaw [24], Takens
[35] and, according to [7], also Ruelle independently proposed constructing an m-
dimensional signal as follows:

X(t1) = [x(t1),x(t1 + τ),x(t1 + 2τ), ...,x(t1 +(m− 1)τ)]
X(t2) = [x(t2),x(t2 + τ),x(t2 + 2τ), ...,x(t2 +(m− 1)τ)]
...

...
X(ti) = [x(ti),x(ti + τ),x(ti + 2τ), ...,x(ti +(m− 1)τ)], i = 1, ...,M

(8.1)

where m is the dimension of immersion, τ is a suitable time delay and M =
N − (m − 1)τ . The quantities m and τ together are called immersion parameters.
Under rather general assumptions, dynamics reconstructed through the system of
eq. (8.1) is equivalent to the system dynamics on the attractor in the initial phase
space. This equivalence is understood as the identity of characteristic invariants be-
tween the initial and reconstructed attractors. As regards to the full formulation of
the immersion theorem, on which the reconstruction eq.(8.1) is based, the interested
reader is referred to the original Takens’ paper [35] or its extension presented by
Sauer, York and Casdagli [33].

8 Evolutionary Reconstruction of Chaotic Systems 269

Unknown parameters in eq. (8.1) include time delay τ and immersion dimension
m. For the latter it has been proven [35] that it is sufficient if m ≥ 2D + 1 and if
the attractor is a smooth compact manifold of dimension D; in this case, D takes
integer values. However, it is typical where an attractor which has no manifold and
has a fractal structure is to be reconstructed. For such situations, Takens’ theorem
was generalized by the above authors - Sauer, York and Casdagli [33]. According
to them, it is sufficient if m > 2dc where dc is the capacity of the attractor. In some
special cases, the condition for the immersion dimension can be made even less
stringent. For the calculation of the correlation dimension d2 it is even sufficient
that m > d2 [32]. As regards to the time delay τ , the immersion theorem does not
put any special requirement on its choice, except for the necessity to exclude cases
with periodic orbits with periods of τ , 2τ ... etc.

It should be noted that the immersion theorem works absolutely precisely with
infinitely long time series. The above requirements for the time delay and for the
immersion dimension apply to such cases. In reality, however, a researcher works
with a finite volume of data involving some error - error of measurement and/or
rounding error introduced by the computer. This should be borne in mind when
determining immersion parameters based on experimental data. In fact, it appears
that an inappropriate choice of the immersion parameters can affect the result of
the reconstruction of the system dynamics substantially and can result in a wrong
interpretation of the results of estimation of the attractor’s characteristic invariants.

The time delay method represented by Scheme (8.1) is not the only way to con-
struct a multidimensional signal from a one-dimensional time series. Immersion
theorems [35], [32] enable us, within trajectory reconstruction in a phase space, to
select from a wide choice of operations including a number of smooth transforma-
tions, both with the initial time series and with the reconstructed states. This allows
a number of techniques to be used, such as principal component analysis, signal dif-
ferentiation and integration, linear combination of time delayed coordinates or their
filtration or utilization of variables simultaneously measured at different sites.

Let us describe the application of differentiated coordinates, which have a sim-
ple physical interpretation. For the Lorenz system [21] the system of 3 differential
equations (8.2) for the 3 variables x,y,z could be replaced by a single differential
equation for a single variable, x, which, however, is a 3rd order quantity. In this
way it is possible to pass from the phase space formed by the coordinates (x,y,z)
to new coordinates, viz. (x, dx

dt ,
∂ 2x
∂ t2). When working with a scalar time series x(ti),

i = 1, ...,N recorded in equidistant time intervals ∆ t, the 1st, 2nd, ... derivatives have
to be estimated numerically, e.g.

dx
dt (t)i ≈ 1

2∆ t [x(ti + ∆ t)− x(ti − ∆ t)]
d2x
dt2 (t)i ≈ 1

∆ t2 [x(ti + ∆ t)+ x(ti − ∆ t)− 2x(ti)]
d3x
dt3 (t)i ≈ 1

2∆ t3 [x(ti + 2∆ t)− 2x(ti + ∆ t)+ 2x(ti − ∆ t)− x(ti − 2∆ t)]
...

(8.2)

270 I. Zelinka and A. Raidl

or, alternatively, higher order formulas have to be used. The coordinates of point
X(ti) in the phase space will then be

X(ti) = [x(t)i,
dx
dt

(t)i,
d2x
dt2 (t)i,

d3x
dt3 (t)i], (8.3)

where m is, as usual, the dimension of the reconstructed phase space satisfying the
condition m > dc.

Fig. 8.1 Reconstruction of the Lorenz attractor by using differentiated coordinates.

Comparing the position of the point in the phase space so constructed with the
reconstruction which was based on the time delay method (eq. (8.1)) and recalling
that time delay τ is an integer multiple of the sampling step ∆ t, one can see that the
differentiated coordinates are nothing more than a linear combination of coordinates
obtained from the time delay method.

A different method of constructing the phase space, which obviates some prob-
lems encountered with differentiated coordinates and creates an orthogonal base
of this space, is based on the principal component analysis approach. In the con-
text of dynamic system analysis, this method was first used in the mid-1980s [3],
[9], although its mathematical basis dates back to the early 20th century [10]. Cur-
rently, this method can be encountered under various names. Apart from the prin-
cipal component analysis they include, for instance: decomposition into singular
values, empirical orthogonal function, singular spectrum analysis and the Karhunen
Loeve transformation [10], [15]. The different names given to the method actually
reflect the different methods of covariant matrix estimation from relatively short

8 Evolutionary Reconstruction of Chaotic Systems 271

Fig. 8.2 Time development of the first
four coordinates during reconstruction of the
Lorenz system by using differentiated coor-
dinates.

Fig. 8.3 Time development of the first
four coordinates during reconstruction of the
Lorenz system by using differentiated coor-
dinates.

Fig. 8.4 Time development of the first
four coordinates during reconstruction of the
Lorenz system by using differentiated coor-
dinates.

Fig. 8.5 Time development of the first
four coordinates during reconstruction of the
Lorenz system by using differentiated coor-
dinates.

time series. The differences, however, are not appreciable provided that the immer-
sion dimension m is substantially shorter than the length of the time series [15].

8.4 Evolutionary Reconstruction of Chaotic Systems

Another approach entirely different from classical methods (see previous section
or Chapter 7), which is demonstrated in this chapter, is the use of evolutionary al-
gorithms. They are applied on selected examples to demonstrate how evolutionary
algorithms can be applied to the reconstruction of chaotic systems. The first exam-
ple uses data from bifurcation diagram (discrete systems) to synthesize a suitable
solution and the second one is using measured time series to partially reconstruct
the mathematical description of the Lorenz attractor.

272 I. Zelinka and A. Raidl

8.4.1 Problem Selection, Used Algorithms and Computer
Technology

Based on previous successful experiments of [43], the well-known logistic equation
(8.4) has been selected for experiments.

xn+1 = Axn(1 − xn) (8.4)

The selection has been made because its structure is simple, well studied and
analyzed, however, this does not imply that other systems cannot be used. Main
idea was to reconstruct mathematical description as described in detail in the Chap-
ter 11, so that two bifurcation diagrams (original and synthesized solution) has been
compared. The difference between them (see next section) is calculated like fitness
and “says” of what quality the synthesized system is. For the experiments described
here, stochastic optimization algorithms (see also Chapter 6), such as Differential
Evolution (DE) [25], Self Organizing Migrating Algorithm (SOMA) [38], Genetic
Algorithms (GA) [13], Simulated Annealing (SA) [16], [4] and Evolutionary Strate-
gies (ES) [2] were selected. All experiments have been done on a special server con-
sisting of 16 Apple XServer (2 x 2 GHz Intel Xeon, 1 GB RAM,), each with 4 CPU,
so in total 64 CPUs were available for calculations. It is important to note here, that
such technology was used to save time due to a large number of calculations (1300
simulations), however it must be stated that evolutionary reconstruction described
here, is also solvable on a single PC. For all calculations and data processing, Math-
ematica version 7 was used.

8.4.2 The Cost Function

The cost function 8.5 has been designed so that its minimization should lead to the
reconstruction of a system with the same behavior as the original system.

CV =
400

∑
i=300

300

∑
j=200

∣∣∣dataL
i, j − dataident

i, j

∣∣∣ (8.5)

The cost function consists of two sums calculating the difference between two
datasets. The first one, dataL

i, j, represents sorted data of the behavior of the logistic

equation and the second one, dataident
i, j , represent sorted data of the behavior of the

identified system. The first sum (i ∈ [300,400]) represents the fact that the synthe-
sized systems has to be identified for the interval of the control parameter A ∈ [3,4]
in which chaos is by eq. (8.4) generated. Parameter A has been changed by step
0.01, so 100 different time series was recorded. For each setting of A, 300 iterations
has been done. Last 100 data-points (from 300 in total) were taken into calculation
from each time series to calculate the final sum (or create bifurcation diagrams)
- this is represented by the second sum (j ∈ [200,300]). Based on previous facts,
there were generated for each system, 100 × 300 = 30 000 values and for cost value
calculation, 100 × 100 = 10 000 values were used. The minimal value that can be

8 Evolutionary Reconstruction of Chaotic Systems 273

achieved by eq. (8.5) is 0, i.e. system with this cost value is probably an exact re-
construction of the original system. For all experiments a threshold has been set,
which has been used for decision making, whether the identified system belongs to
similar or exotic class of systems. System with cost value equal to 0 which were the
exact reconstruction of the original system, with cost value ∈ (0, 1500] are reported
as similar reconstruction and with cost value > 1500 as exotic reconstruction.

8.4.3 Experiment Setup

Four versions of SOMA, six versions of DE, one version of GA, SA and ES have
been applied in order with AP and were used for all simulations in this chapter.
In Table 8.1 - Table 8.6 abbreviations of used algorithms and their setting is de-
scribed. Parameters for the optimizing algorithm were set up in such a way as to
reach approximately the same value of maximal cost function evaluations for all
used versions. Each version of EAs has been applied 100× in order to synthesize

Table 8.1 Algorithms abbreviation

Algorithm Version Abbreviation
SOMA AllToOne S1

AllToOneRandomly S2
AllToAll S3
AllToAllAdaptive S4

Differential Evolution DERand1Bin D1
DERand2Bin D2
DEBest2Bin D3
DELocalToBest D4
DEBest1JIter D5
DERand1DIter D6

Genetic Algorithm G
Evolutionary strategies (µ ,λ) ES
Simulated annealing SA

Table 8.2 SOMA setting for 4 basic search strategies: S1, S2, S3 and S4

Algorithm S1 S2 S3 S4
PathLength 3 3 3 3
Step 0.11 0.11 0.11 0.11
PRT 0.1 0.1 0.1 0.1
PopSize 200 200 40 40
Migrations 8 8 4 4
MinDiv -0.1 -0.1 -0.1 -0.1
Individual Length 50 50 50 50
Max. CF Evaluations 42984 42984 42120 42120

274 I. Zelinka and A. Raidl

Table 8.3 DE setting for 6 basic search strategies: D1, D2, D3, D4, D5 and D6

Algorithm D1 - D6
NP 200
F 0.9
CR 0.3
Generations 200
Individual Length 50
Max. CF Evaluations 40000

Table 8.4 GA setting for canonical version of GA: G

Algorithm G
PopSize 200
Mutation 0.4
Generations 100
Individual Length 50
Max. CF Evaluations 40000

Table 8.5 ES setting for search strategy: ES

Algorithm ES
µ ,λ 200
σ 0.8
Iterations 200
Individual Length 50
Max. CF Evaluations 40000

Table 8.6 SA setting for search strategy: SA

Algorithm SA
No. of particles 200
σ 0.5
kmax 66
Tmin 0.0001
Tmax 1000
α 0.93
Individual Length 50
Max. CF Evaluations 44600

an appropriate structure which can serve as models of the observed chaotic system.
The primary aim here is not to show which version is better or worse, but to show
that the EA can in reality be used for the reconstruction of chaotic systems with-
out knowledge of internal structure or/and auxiliary information. The basic set of
symbolic element (GFS) used for synthesis consist of : A,x,+,−,∗,/.

8 Evolutionary Reconstruction of Chaotic Systems 275

Results from all experiments are reported in detail in the following sections. In
totality, it can be stated that during all 1300 simulations (100%), original logistic
equation has been identified on 73 occasions (5.6% from all simulations) and similar
systems that less or more fit the behavior of the logistic equation on 186 occasions
(14.3%). Therefore, in total 259 identified cases (19.92%), as given in Table 8.7.

Table 8.7 Experiment summarization

Note Total value %
Total number of simulations 1300 100
Exact reconstruction 73 5.6
Similar reconstruction 186 14.3
Total number of acceptable reconstruction 259 19.92

8.4.4 Experimental Results

8.4.4.1 Exact Reconstruction

During all simulations, the canonical version of the logistic equation has been syn-
thesized 73× in total, (see Table 8.8). Logistic equation has been identified in 7
various versions which are clearly algebraic variation of its canonical version, i.e.
after simple algebraic manipulations we get eq. 8.4, see eq. (8.6) - (8.10).

Table 8.8 Summarization of canonical version synthesis

Equation No. Synthesized
(8.6) 14×
(8.7) 25×
(8.8) 9×
(8.9) 8×
(8.10) 11×
(8.11) 5×
(8.12) 2×
Total 73×

A(x − x2) (8.6)

x(A − Ax) (8.7)

Ax− Ax2 (8.8)

276 I. Zelinka and A. Raidl

A(1 − x)x (8.9)

−x(−A + Ax) (8.10)

x(1 − x)A (8.11)

x2(1/x − 1)A (8.12)

8.4.5 Reconstruction of Similar Systems

Beside the canonical version of the logistic equation, there has also been synthesized
systems, which less or more fit the behavior of the original system. Selected exam-
ples of very good approximation of eq. (8.4) are for example systems eq. (8.13) and
eq. (8.14), see for example Fig. 8.6. Significantly “worst” approximations are for
example eq. 8.15 and 8.16, see Fig. 8.7. and Fig. 8.8. Corresponding cost values are
given in Table 8.9 and 8.10. Minimal, maximal and average cost values of accepted
similar systems (according to threshold) in this “category” are reported there. Be-
havior of other similar systems is reported in Fig. 8.9 - Fig. 8.16. From the given
figures, it is visible that evolution has found really similar systems and their precise
“evolutionary adjustment” to the logistic equation is probably only a question of
better setting of evolutionary algorithm parameters.

Table 8.9 Similar systems – an overview

Cost Value
Minimum 117.538
Average 1053.92
Maximum 1487.85

x

(
A − Ax +

(1 − A)x
A2 (2A − x + Ax)

)
(8.13)

x

(
A − Ax +

x2

A
(1

A + A + A
x + Ax(A + x)

)
)

(8.14)

A(1 − x)x(x +(−A + x)(A + x))
−A2 − x

(8.15)

x

(
A − A3x

A + A2 + x
− A2 − 2A(A − x)

−A2

x + 2x

)
(8.16)

8 Evolutionary Reconstruction of Chaotic Systems 277

Fig. 8.6 The best synthesized solution, see eq. (8.13) and eq. (8.14). Red (thin) points repre-
sent the canonical logistic equation; black (thick) points represent the synthesized system.

Fig. 8.7 Another solution, basically the same behavior of eq. (8.4), only shifted along axis x,
see eq. (8.15). Red (thin) points represent the canonical logistic equation; black (thick) points
represent the synthesized system.

278 I. Zelinka and A. Raidl

Table 8.10 Cost values of similar systems

Equation No. Cost Value
(8.13) 129.549
(8.14) 136.706
(8.15) 1048.72
(8.16) 993.346

Fig. 8.8 Basically the same case as in Fig. 8.6, see eq. (8.16). Red (thin) points represent the
canonical logistic equation; black (thick) points represent the synthesized system.

Fig. 8.9 Another similar solution. Fig. 8.10 Another similar solution.

8 Evolutionary Reconstruction of Chaotic Systems 279

Fig. 8.11 Another similar solution. Fig. 8.12 Another similar solution.

Fig. 8.13 Another similar solution. Fig. 8.14 Another similar solution.

Fig. 8.15 Another similar solution. Fig. 8.16 Another similar solution.

8.4.6 Unfinished Evolution

During all simulations conducted, it been observed, that in many cases evolution
would certainly need longer time to finish successfully the evolutionary reconstruc-
tion, like exact or similar reconstruction. Lets take a look on Fig. 8.17 - 8.24, or/and
on eq. 8.17 - eq. 8.22. On the figures are depicted bifurcation diagrams, which are
very similar to diagrams from logistic equation, they are only shifted along the x
or/and y axes. It is clear that if evolution would run for a longer time, then the bifur-
cation diagrams (or better, the mathematical description in the background), like on

280 I. Zelinka and A. Raidl

Fig. 8.17 Unfinished solution, eq. 8.17. Fig. 8.18 Unfinished solution, eq. 8.18.

Fig. 8.19 Unfinished solution, eq. 8.19. Fig. 8.20 Unfinished solution, eq. 8.20.

Fig. 8.21 Unfinished solution, eq. 8.21. Fig. 8.22 Unfinished solution, eq. 8.22.

Fig. 8.23 Unfinished solution. Fig. 8.24 Unfinished solution.

8 Evolutionary Reconstruction of Chaotic Systems 281

Fig. 8.17 - 8.24, would be better adapted to the identified one. Based on this, one can
say that the above mentioned “similar” reconstruction are unfinished reconstruction
with possibly very good quality (i.e. with low cost value).

x
(
−x(A − x)+

x
A

+ A − x
)

(8.17)

x
(
x − (A

x − A
)
(x − A)

)(
x

(x−A)(−A+x2−4x) + x

)

A
(8.18)

x

(
−x

(
− 2x − Ax

A(A2 − A + x)
+ A − x

)
+ A − x

)
(8.19)

A
(

A
x + x

)

A

⎛
⎜⎜⎜⎝ A

A−x

⎛
⎝ x(x

A +A)
2A+x +A+x

⎞
⎠

+x

⎞
⎟⎟⎟⎠

x2 + x

(8.20)

−
x(A + 2x)

(x
A −A−x

x
A +A + x

)
x
A + 1

A + 1
(8.21)

x

((−Ax− x−A
A − A + x2 + x − 1

)
(A(Ax + x)+ A)

2A2 + A

)
(8.22)

8.4.7 Exotic Solutions

Together with acceptable systems, other systems were also synthesized, which did
not fit the threshold, mentioned in the section Cost function, i.e. its cost value was
> 1500. This category is termed “exotic”, i.e. systems that are very different from
the logistic equation (by behavior and mathematical description), however, there
is still visible a similar structure to the logistic equation. An example can be the
systems given by eq. (8.23) and eq. (8.24), which had been synthesized during all
1300 experiments. For behavior of systems eq. (8.23) see Fig. 8.25, and for eq.
(8.23) see Fig. 8.26. Another selected example is depicted in Fig. 8.27.

A − x + x2 − (A−x)x3(−x+x2)(x+A(2A+A2+x))
A(1− A

x)
A

(8.23)

x

(
2A − A

(
−x − x2

A

)(
−2x + x

A− 1+2x
x2

))

A
(8.24)

282 I. Zelinka and A. Raidl

Fig. 8.25 Example of “exotic” solution, see eq. (8.23)

Fig. 8.26 Another “exotic” solution, see eq.
(8.24).

Fig. 8.27 Bifurcation diagram of Another
“exotic” solution.

8.4.8 Continuous Systems: Preliminary Study

Evolutionary reconstruction of chaotic systems is certainly not restricted only to
discrete systems. Methods of symbolic regression is general enough to be used
also on reconstruction of continuous chaotic systems. To check this idea, the well
known chaotic system has been selected - Lorenz equation, see eq. (8.25). To sim-
plify this experiment for the first time, the third equation ż has been selected to be
synthesized, see eq. (8.25). Basic set of objects used in symbolic regression was
{x(t),y(t),z(t),+,−,×,/}. Total number of simulation has been set to 100 and 5

8 Evolutionary Reconstruction of Chaotic Systems 283

algorithms (DE, SOMA, GA, SA, ES) in all 12 versions were used in order to iden-
tify (reconstruct) by synthesis suitable solutions. In many cases the exact form of
eq. ż(t) = (x(t)y(t)− z(t)) has been synthesized, see eq. 8.25. The remaining syn-
thesized forms were of different form, see Table 8.18. Cost function was defined by
eq. (8.26), as the difference between behavior of the original and identified system
been calculated in the interval t ∈ [0, 20] with randomly selected initial conditions.
Cost value has been calculated in the interval t ∈ [5, 20]. Objective was to minimize
this function to 0.

8.4.8.1 Experiment Setup

Four versions of SOMA, six versions of DE, one version of GA, and one of ES have
been applied in order with AP and were used for all simulations. In Table 8.11 - Ta-
ble 8.15 abbreviations of used algorithms and their setting is described. Parameters
for the optimizing algorithm were set up in such a way as to reach approximately the
same value of maximal cost function evaluations for all used versions. Each version
of EAs has been applied 100× in order to synthesize an appropriate structure which
can serve as models of the observed chaotic system.

Table 8.11 Algorithms abbreviation

Algorithm Version Abbreviation
SOMA AllToAllAdaptive S1

AllToAll S2
AllToOne S3
AllToOneRandomly S4

Differential Evolution DERand1Bin D1
DERand2Bin D2
DEBest2Bin D3
DELocalToBest D4
DEBest1JIter D5
DERand1DIter D6

Genetic Algorithm G
Evolutionary strategies (µ + λ) ES2

Table 8.12 SOMA setting for 4 basic search strategies: S1, S2, S3 and S4

Algorithm S1 S2 S3 S4
PathLength 3 3 3 3
Step 0.11 0.11 0.11 0.11
PRT 0.1 0.1 0.1 0.1
PopSize 100 100 100 100
Migrations 8 8 4 4
MinDiv -0.1 -0.1 -0.1 -0.1
Individual Length 20 20 20 20

284 I. Zelinka and A. Raidl

Table 8.13 DE setting for 6 basic search strategies: D1, D2, D3, D4, D5 and D6

Algorithm D1 - D6
NP 100
F 0.9
CR 0.3
Generations 500
Individual Length 20

Table 8.14 GA setting for canonical version of GA: G

Algorithm G
PopSize 100
Mutation 0.4
Generations 500
Individual Length 20

Table 8.15 ES setting for search strategies: ES

Algorithm ES2
µ ,λ 100
σ 0.8
Iterations 500
Individual Length 20

8.4.8.2 Continuous Systems: Results

Results of this case study are depicted in Fig. 8.28 - 8.31 and Tables 8.16 - 8.18.
Tables 8.16 - 8.17 refer to the number of cost function evaluations that has been used
by EAs to obtain suitable solution. It is graphically reported in Fig. 8.28. Fig. 8.29
and 8.30 depicts two selected histograms of 15 in total to show typical performance
of selected algorithms. The last figure 8.31 depict the success of used algorithms,
i.e. how many times each algorithm fails or succeeds.

ẋ(t) = −a(x(t)− y(t))
ẏ(t) = bx(t)− x(t)z(t)− y(t)
ż(t) = identi f ied part by EAs, see Table 8.18

(8.25)

CV =
t=20

∑
t=0

∣∣xt,Lorenz − xt,Sythesized

∣∣+ ∣∣yt,Lorenz − yt,Sythesized

∣∣+ ∣∣zt,Lorenz − zt,Sythesized

∣∣
(8.26)

It is clear that this approach is also usable, i.e. it can be used to synthesize con-
tinuous systems, however more extensive study is needed.

8 Evolutionary Reconstruction of Chaotic Systems 285

Table 8.16 Experiment summarization, continuous case, part 1.

Algorithm D1 D2 D3 D4 D5 D6 ES2

Cost function evaluations
see Fig. 8.28
Minimum 25 16 14 74 35 11 32
Average 8601 8791 12010 13718 11787 11413 10516
Maximum 50870 39752 98324 57256 44956 50274 39602

Table 8.17 Experiment summarization, continuous case, part 2.

Algorithm G S1 S2 S3 S4

Cost function evaluations
see Fig. 8.28
Minimum 1 9 1048 61 59
Average 6516 11513 63907 12272 13246
Maximum 39043 79014 349478 51672 43202

Table 8.18 Exact / non-exact reconstruction.

Solution No. ż(t) reconstruction Exact Non-exact

1 x(t)y(t)− z(t) 1090 -

2 y(t)
(

x(t)− z(t)
y(t)

)
- 58

3 y(t)
(

x(t)− x(t)
y(t)

)
+x(t)− z(t) - 2

4 y(t)(x(t)+ z(t))−y(t)z(t)− z(t) - 4
5 x(t)(x(t)+y(t))−x(t)2 − z(t) - 3
6 x(t)(y(t)−x(t))+x(t)2 − z(t) - 2

7 −y(t)
(

z(t)
y(t) −x(t)

)
- 5

8 y(t)
(

x(t)− x(t)+z(t)
y(t)

)
+x(t) - 2

9 −y(t)
(

z(t)−x(t)
y(t) −x(t)

)
−x(t) - 1

10 y(t)
(

x(t)
y(t) +x(t)

)
−x(t)− z(t) - 2

11 y(t)(x(t)−y(t))+y(t)2 − z(t) - 1
12 (x(t)−1)y(t)+y(t)− z(t) - 3
13 x(t)(y(t)−1)+x(t)− z(t) - 2
14 −(1−x(t))y(t)+y(t)− z(t) - 1

15 y(t)
(

x(t)− y(t)+z(t)
y(t)

)
+y(t) - 1

16 (1−x(t))y(t)+2x(t)y(t)−y(t)− z(t) - 1
17 (x(t)+1)y(t)−y(t)− z(t) - 3
18 y(t)(x(t)− z(t))+y(t)z(t)− z(t) - 1
19 x(t)(y(t)+ z(t))−x(t)z(t)− z(t) - 1
20 x(t)(y(t)+1)−x(t)− z(t) - 1
21 y(t)(x(t)−y(t)− z(t))+y(t)(y(t)+ z(t))− z(t) - 1

Total 1080 95

286 I. Zelinka and A. Raidl

Fig. 8.28 Cost function evaluations. Thick dots are average values for each algorithm, hori-
zontal line is average of all.

Fig. 8.29 Histogram for differential evolu-
tion algorithm, version DEBest2Bin.

Fig. 8.30 Histogram for genetic algorithm.

Fig. 8.31 No. of successful/non-successful reconstruction. Each bar is divided into two parts.
The upper part represent number of non-successful reconstruction, the lower one successful
reconstruction.

8 Evolutionary Reconstruction of Chaotic Systems 287

Fig. 8.32 Graph of the first part of
eq. (8.27).

Fig. 8.33 Graph of the second part of
eq. (8.27).

8.5 Conclusion

Based on recorded data and results, it may be stated that the simulations provided
promising results, which shows that EAs are capable of model reconstruction of
chaotic systems. In this chapter, five evolutionary algorithms in 13 (12 for continu-
ous case) versions were used and tested. Exact descriptions of the identified systems
(logistic equation, Lorenz system) as well as its variations have been identified from
the results (see for example eq. (8.13), or Table 8.18). The question is why such
complex equation like eq. (8.13) have similar behavior to eq. (8.4). The answer is
simple. After expansion of eq. (8.13), equation (8.27) is obtained. The first part is
basically the logistic equation (see Fig. 8.32). The remaining part participates on the
final behavior without significant impact (see Fig. 8.33).

Ax− Ax2 +
x2

A2 (2A − x − Ax)
− x2

A(2A − x − Ax)
(8.27)

Based on previously mentioned facts and all experimental results, conclusions
and statements can be made for discrete system reconstruction as follows:

• Experiment overview. The cost function (8.5) consist of two sums where the
total number of synthesized data-points was 10 000 from 30 000 (see section
“Cost Function”). Based on the fact that 1300 experiments were conducted, 39
000 000 data-points and 13 000 000 of these points were used for the evalua-
tion of all synthesized systems. The continuous case has similar behavior, see
8.26. This cost function calculates the difference between original behavior of
Lorenz system and the just identified one in the time interval [0,20].

• Number of successful reconstruction. The results were divided into three
categories for discrete system: exact, similar and exotic reconstructions. The
representation is as follows: exact implies that logistic equation has been re-
covered in its canonical version (or its algorithmic variations), similar means
that behavior of the synthesized systems was visually the same (or same and
shifted along x axis) like that of the logistic equation, however with different
mathematical description (see eq. (8.13), (8.14), (8.15) and eq. (8.16)). Exotic

288 I. Zelinka and A. Raidl

reconstruction is partially similar to the original one. Based on all data analy-
sis, it can be stated that a) exact form of logistic equation has been synthesized
73 times (see Table 8.8). Number of synthesized similar systems was 186. For
general overview see Table 8.8.

In Table 8.18 results from continuous case are displayed. Exact description
has been identified 1090× (see solution 1), another, say equivalent descrip-
tions 58× (solution 2) etc. It is important to note that the behavior of Lorenz
attractor was identical only in the interval t ∈ [0,20]. Outside this interval be-
havior of synthesized “Lorenz system” has been less or more divergent, which
is of course obvious.

• Used algorithms and experiment settings. All algorithms has been initial-
ized so that a) population size remained the same, b) cost function evaluations
was similar amongst algorithms as much as possible. The first “condition” has
not been followed for algorithms S3 and S4 compared to S1 and S2 (see Table
8.2). It is caused by the different internal algorithm structure for new individ-
uals calculations. Due to this fact, condition b) has been kept with the highest
priority for the chaotic discrete system identification. In the case of the Lorenz
system we were interested mainly whether this idea will work or not.

• Behavior preciseness. It should be noted here that reconstruction has not
been focused on exact behavior reconstruction for each time development of
logistic equation, but on similarity of behavior via data used later for bifur-
cation diagrams, i.e. difference between bifurcation diagrams has been cal-
culated for discrete systems. Despite the fact that some of them were pre-
cisely estimated, it is our duty to say that sometimes, very rarely and only
for special setting of parameter A, trajectories of synthesized systems were
running to infinity. To avoid this “side effect” the above-mentioned cost func-
tion should contain in future a penalization for such kinds of effects. From
Fig. 8.9 - 8.16, it is also visible that a little bit longer time is needed for
better estimation of system description. For some identified systems it has
been observed that while A ∈ [3,4] the behavior is identical or very simi-
lar with that of logistic equation was produced, whereas other values of A
(for example negative) other chaotic behavior were generated, see for exam-
ple −A+(−(1/A)+A/x −2x)x +(A− x)x with A ∈ [0,1]. Concerning to the
identified Lorenz system, as mentioned before, in the time interval t ∈ [0,20]
the difference between original and identified Lorenz was minimal.

• Problem complexity and algorithm performance. Lets take into consider-
ation only discrete system. Based on the fact that individual can consist of
50 symbolic elements, there are 3.04×1064 possible combinations of synthe-
sized structures - systems, including senseless combinations. This is of course
only the theoretical number, because some combinations will be avoided due
to the process of synthesis (only mathematically acceptable functions with
appropriate number of arguments, ... structures are synthesized). However, in
layman’s terms, it can be stated that all 259 synthesized solutions (from 1300
in total) represents 8.51 × 10−61% of such defined searched space. If we will
follow maximal allowed number of cost function evaluations (see Table 8.2 -

8 Evolutionary Reconstruction of Chaotic Systems 289

Table 8.6, 534 808 cost function evaluations, i.e. tested solutions) then evolu-
tion searched maximally 1.74 × 10−57% of the search space. Lets take a sim-
plified time point of view. When for example MacBook, 2.33 MHz Intel Core
Duo with 3 GB RAM is used, then one cost function evaluation needs (if we
omit time needed for formula synthesis) approx. 0.3659 s. Then to evaluate all
possible combinations by simple enumeration would take approx. 3.52×1056

years. This is 2.35 × 1046 longer than the expected lifespan of our universe.
All those numbers clearly shows that EAs are powerful enough to handle such
tasks and obtained results are not simply a matter of randomness.

• Other evolutionary techniques. In this chapter, the so-called analytic pro-
gramming has been used, however we have to say that another and more well
known techniques like genetic programming, see [17], [18] or grammatical
evolution, see [22], should give similar results as reported here.

Conclusions about preliminary and simplified study of reconstruction of Lorenz
system is:

• Number of successful reconstruction. The number of the same reconstructed
form of the ż(t) is reported in the Table 8.18 and is quite large. It shows that
EAs were able to reconstruct ż(t) in its exact form. On the other side, in Table
8.18 it is visible that EAs also has found another similar solutions, which,
in the interval t ∈ [0, 20] has fit the behavior of reconstructed system very
well. Behind this interval, the trajectories of such systems usually runs out of
attractor domain.

• Simplifications. For preliminary study on continuous system, such simplifi-
cation that only ż(t) has to be reconstructed has been used. Based on the per-
formance of used algorithms in this and other chapters, it is logical to expect,
that EAs should be able to identify all three part of Lorenz system. To confirm
such statement, it is however necessary to do more extensive research.

In conclusion, it has to be stated that, a) EAs use on chaos identification is a
promising direction of research; b) to increase the number of successful identifica-
tions (see Table 8.7, Table 8.8) the cost function or/and algorithm settings should be
improved.

Acknowledgements. This work was supported by grant No. MSM 7088352101 of the Min-
istry of Education of the Czech Republic and by grants of the Grant Agency of the Czech
Republic GACR 102/09/1680.

References

1. Back, T., Fogel, D., Michalewicz, Z.: Handbook of Evolutionary Computation. Institute
of Physics, London (1997)

2. Beyer, H.: Theory of Evolution Strategies. Springer, New York (2001)
3. Broomhead, D., King, G.: Extracting qualitative dynamics from experimental data. Phys-

ica D 20, 217 (1986)

290 I. Zelinka and A. Raidl

4. Cerny, V.: Thermodynamical approach to the traveling salesman problem: An efficient
simulation algorithm. J. Opt. Theory Appl. 45(1), 41–51 (1985)

5. Das, S., Konar, A.: A swarm intelligence approach to the synthesis of two-dimensional
IIR filters. Eng. Appl. Artif. Intell. 20(8), 1086–1096 (2007)

6. Dashora, Y., Sanjeev, K., Nagesh, S., Tiwarid, M.: Improved and generalized learn-
ing strategies for dynamically fast and statistically robust evolutionary algorithms. Eng.
Appl. Artif. Intell (2007), doi:10.1016/j.engappai.2007.06.005

7. Drazin, P., Kind, G. (eds.): Interpretation of time series from nonlinear Systems. Special
issue of Physica D 58 (1992)

8. Eckmann, J., Procaccia, I.: Fluctuation of Dynamical Scaling Indices in Non-Linear Sys-
tems. Phys. Rev. 34A, 659 (1986)

9. Fraedrich, K.: Estimating the dimension of weather and climate attractors. J. Atmom.
Sci. 43, 419 (1986)

10. Galka, A.: Topics in nonlinear time series analysis with implications for EEG analysis.
World Scientific, Singapore (2000)

11. Hwang, G.-H., Kim, D.-W., Lee, J.-H., An, Y.-J.: Design of fuzzy power system stabilizer
using adaptive evolutionary algorithm. Eng. Appl. Artif. Intell. 21(1), 86–96 (2007)

12. Halsey, T., Jensen, M., Kadanoff, L., Procaccia, I., Schraiman, B.: Fractal Measures and
Their Singularities: the Characterization of Strange Sets. Phys. Rev. 33A, 1141 (1986)

13. Holland, J.: Adaptation in Natural and Artificial Systems. Univ. Michigan Press, Ann
Arbor (1975)

14. Johnson, C.: Artificial immune systems programming for symbolic regression. In: Ryan,
C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS,
vol. 2610, pp. 345–353. Springer, Heidelberg (2003)

15. Kantz, H., Schreiber, T.: Nonlinear time series analysis. Cambridge University Press,
Cambridge (1997)

16. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Sci-
ence 220(4598), 671–680 (1983)

17. Koza, J.: Genetic Programming II. MIT Press, Cambridge (1998)
18. Koza, J., Bennet, F., Andre, D., Keane, M.: Genetic Programming III. Morgan Kauf-

mann, San Francisco (1999)
19. Koza, J., Keane, M., Streeter, M.: Evolving Inventions. Sci. Am., 40–47 (2003)
20. Liu, L., Wenxin, L., David, A.: Particle swarm optimization-based parameter identifica-

tion applied to permanent magnet synchronous motors. Eng. Appl. Artif. Intell. (2007),
doi:10.1016/j.engappai.2007.10.002

21. Lorenz, E.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 20 (1963)
22. O’Neill, M., Ryan, C.: Grammatical Evolution. In: Evolutionary Automatic Program-

ming in an Arbitrary Language. Kluwer Academic Publishers, Dordrecht (2002)
23. O’Sullivan, J., Conor, R.: An Investigation into the Use of Different Search Strategies

with Grammatical Evolution. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi,
A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 268–277. Springer, Heidelberg (2002)

24. Packard, N., Crutchfield, J., Farmer, D., Shaw, R.: Geometry from a time series. Phys.
Rev. Lett. 45, 712 (1980)

25. Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover,
F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999)

26. He, Q., Wang, L.: An effective co-evolutionary particle swarm optimization for con-
strained engineering design problems. Eng. Appl. Artif. Intell. 20(1), 89–99 (2007)

27. Richter, H.: An evolutionary algorithm for controlling chaos: The use of multi-
objective fitness functions. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-
Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 308–317.
Springer, Heidelberg (2002)

8 Evolutionary Reconstruction of Chaotic Systems 291

28. Richter, H.: A study of dynamic severity in chaotic fitness landscapes, Evolutionary
Computation, 2005. The IEEE Congress 3(2), 2824–2831 (2005)

29. Richter, H.: Evolutionary Optimization in Spatio-temporal Fitness Landscapes. In:
Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao,
X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 1–10. Springer, Heidelberg (2006)

30. Richter, H., Reinschke, K.: Optimization of local control of chaos by an evolutionary
algorithm. Physica D 144, 309–334 (2000)

31. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical Evolution: Evolving Programs for an
Arbitrary Language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) Eu-
roGP 1998. LNCS, vol. 1391, p. 83. Springer, Heidelberg (1998)

32. Sauer, T., Yorke, J., Casdagli, M.: Embedology. J. Stat. Phys. 65, 579 (1991)
33. Sauer, T., Yorke, J.: How many delay coordinates do you need? Int. J. Bifurcat Chaos 3,

737 (1993)
34. Senkerik, R., Zelinka, I., Navratil, E.: Optimization of feedback control of chaos by

evolutionary algorithms. In: 1st IFAC Conference on Analysis and Control of Chaotic
Systems, Reims, France (2006)

35. Takens, F.: Detecting strange attractors in turbulence. Lect. Notes Math., pp. 366–381
(1981)

36. Zelinka, I.: Analytic programming by Means of Soma Algorithm. In: Proc. 8th Interna-
tional Conference on Soft Computing Mendel 2002, Brno, Czech Republic, pp. 93–101
(2002a)

37. Zelinka, I.: Analytic programming by Means of Soma Algorithm. In: ICICIS 2002, First
International Conference on Intelligent Computing and Information Systems, Egypt,
Cairo (2002b)

38. Zelinka, I.: SOMA - Self Organizing Migrating Algorithm. In: Babu, B., Onwubolu, G.
(eds.) New Optimization Techniques in Engineering. Springer, Heidelberg (2004)

39. Zelinka, I.: Investigation on Realtime Deterministic Chaos Control by Means of Evolu-
tionary Algorithms. In: 1st IFAC Conference on Analysis and Control of Chaotic Sys-
tems, Reims, France (2006)

40. Zelinka, I.: Real-time deterministic chaos control by means of selected evolutionary al-
gorithms. Eng. Appl. Artif. Intell. (2008), doi:10.1016/j.engappai.2008.07.008

41. Zelinka, I., Oplatkova, Z.: Analytic programming - Comparative Study. In: The sec-
ond International Conference on Computational Intelligence, Robotics, and Autonomous
Systems, CIRAS 2003, Singapore (2003)

42. Zelinka, I., Oplatkova, Z.: Boolean Parity Function Synthesis by Means of Arbitrarry
Evolutionary Algorithms - Comparative Study. In: 8th World Multiconference on Sys-
temics, Cybernetics and Informatics, SCI 2004, Orlando, USA (2004)

43. Zelinka, I., Chen, G., Celikovsky, S.: Chaos Synthesis by Means of Evolutionary Algo-
rithms. Int. J. Bifurcat Chaos Appl. Sci. Eng. 18(4), 911–942 (2008)

44. Zelinka, I., Senkerik, R., Navratil, E.: Investigation on Evolutionary Optimization of
Chaos Control. Chaos, Solitons & Fractals (2007), doi:10.1016/j.chaos.2007.07.045

Chapter 9
Cryptography Based on Spatiotemporal Chaotic
Systems

Ping Li, Zhong Li, Wolfgang A. Halang, and Guanrong Chen

Abstract. Chaos has been applied in cryptography in the past decades since there
are tight relationships between chaos and cryptography. Especially, spatiotempo-
ral chaotic systems can be used to design cryptosystems with satisfactory proper-
ties. The chapter focuses on applying a typical spatiotemporal chaotic system, i.e.,
a coupled map lattice (CML) in cryptography. Multiple-output pseudo-random bit
generators (PRBGs) based on CMLs with various constructions and parameters val-
ues are designed. Their properties are investigated and compared to determine a
certain CML with certain parameters from which the resulting PRBG have satis-
factory properties. Additionally, a stream cipher based on the CML is designed and
analyzed. It is shown that it has high security, high efficiency and low cost. More-
over, a multimedia cryptosystem based on the proposed stream cipher is constructed
by using a field programmable gate array (FPGA). The effects of the encryptions of
the text file, the audio file and the image file by using the cryptosystem is measured
as effective.

9.1 Introduction

Over the past decades, there has been much interest in designing and analyzing
chaos-based ciphers [16, 4]. The main reason for it is that chaotic systems are

Ping Li
Department of Electronic Engineering, Shunde Polytechnic, Kanton, P.R. China
e-mail: Kikiliping@hotmail.com

Zhong Li · Wolfgang A. Halang
Faculty of Electrical and Computer Engineering, FernUniversität in Hagen,
58084 Hagen, Germany
e-mail: zhong.li@fern-hagen.de

Guangrong Chen
Department of Electronic Engineering, City University of Hong Kong,
Kowloon, Hong Kong SAR, P.R. China

I. Zelinka et al. (Eds.): Evolutionary Algorithms and Chaotic Systems, SCI 267, pp. 293–328.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

294 P. Li et al.

characterized by sensitive dependence on initial conditions and control parame-
ters, random-like behavior and unstable periodic orbits with long periods, which
are quite advantageous to ciphers [30, 13]. Till now, lots of chaos-based ciphers
have been proposed, moreover, various techniques, such as using multiple chaotic
systems [14], high-dimensional chaotic systems [5], multiple iterations of chaotic
systems [33], have been proposed to improve chaos-based ciphers.

Among the proposed chaos-based ciphers, many ciphers are not applicable in
practice, due to the following reasons. Firstly, for ciphers where the orbits of chaotic
systems with simple constructions are directly used to encrypt plaintexts, useful in-
formation can be extracted from the chaotic orbits to break the ciphers. Secondly,
there exists dynamical degradation of chaotic systems in their realization with digital
computers, which threatens the security of the ciphers based on these chaotic sys-
tems [15]. Thirdly, some chaos-based ciphers have low implementation speeds [3],
which makes the ciphers infeasible in practice. To overcome these drawbacks, mul-
tiple chaotic systems [14], high-dimensional chaotic systems [5], multiple iterations
of chaotic systems [33], and perturbance-based algorithms [21] have been proposed
to improve chaos-based ciphers.

More recently, a one-way coupled logistic-map lattice has been used to design
ciphers [17]. Some modifications of these ciphers have been made to improve the
security [26], performance [28] and robustness against channel noise [31]. These ci-
phers have high security and good performance since the following special inherent
features of spatiotemporal chaos generated by the coupled logistic-map lattice.

1. The orbit of a spatiotemporal chaotic system has a long period even with dy-
namical degradation of digital chaos [27];

2. The randomness of the orbit of a spatiotemporal chaotic system is guaranteed
by the complex dynamics with a large number of positive Lyapunov exponents;

3. There are multiple sites in a spatiotemporal chaotic system, which can generate
independent keystreams simultaneously.

Therefore, using spatiotemporal chaotic systems in cryptography is a significant
advance for improving chaos-based ciphers. It is meaningful to study spatiotemporal-
chaos-based cryptography.

However, current ciphers based on spatiotemporal chaos adopt some conven-
tional cryptographic techniques (such as S-box), and chaos synchronization. To
study the benefit of using spatiotemporal chaos in cryptography, we concern about
applying only spatiotemporal chaos into cryptography in the chapter.

In addition, the current research on spatiotemporal-chaos-based cryptography
leads to the following problems to be addressed. Firstly, various coupled map lat-
tices (CMLs) except for the one-way and diffusive coupled logistic-map lattice have
never been applied in spatiotemporal-chaos-based ciphers. Thus, the issues of how
to choose suitable spatiotemporal chaotic systems for cryptography are to be con-
sidered. Secondly, in the existing design of spatiotemporal-chaos-based ciphers, or
even general chaos-based ciphers, the parameters of the nonlinear dynamical sys-
tems are fixed without explanation. Though the chaos-based ciphers with these
parameters have acceptable properties from the cryptographic point of view, the
question of how to choose the parameters remains to be answered.

9 Cryptography Based on Spatiotemporal Chaotic Systems 295

This chapter is organized in the way of resolving the above listed problems,
involving the following aspects of applying spatiotemporal chaotic systems in
cryptography: design and analysis of CML-based pseudo-random bit generators
(PRBGs), design and analysis of a CML-based stream cipher, design a multime-
dia cryptosystem based on the proposed stream cipher. Concretely, the chapter is
sketched out in the following:

1. Design of a multiple-output PRBG using a diffusive coupled logistic-map lat-
tice. The statistical properties, such as probability density function (PDF), lin-
ear complexity, auto-correlation and cross-correlation of the PRBGs based on
various digitization methods are to be investigated. It will be shown that binary-
representation method is the best one.

2. Analysis of the properties of the PRBGs based on various CMLs. To determine
the CMLs, from which the resulting PRBGs have satisfactory properties, six
PRBGs based on six different CMLs are investigated. The six CMLs consist of
three simple chaotic systems, i.e., logistic map, skew-tent map and r-adic map,
with two simplest coupling methods, i.e., one-way coupling and diffusive cou-
pling, respectively. PDF, auto-correlation, cross-correlation, statistical test and
cycle length of the six PRBGs with various parameters are to be investigated so
as to determine the parameter intervals within which the PRBGs have satisfac-
tory properties. It will be indicated that a one-way coupled logistic-map lattice
with certain parameters has the best properties. This research results in criteria
for designing PRBGs with proper performance.

3. Design of a stream cipher employing a one-way coupled logistic-map lattice
with certain parameters. Only the last 32 bits are extracted from the chaotic
orbit of each site in the CML to guarantee the pseudo-random bit sequences
(PRBSs), which consist of the sequences of these 32bits, having perfect statis-
tical properties. The PRBSs as keystreams are used to encrypt plaintexts by the
“XOR” operation. The security of the stream cipher is to be tested by attacking
it via typical attack methods and analyzing its cryptographic properties. More-
over, the efficiency of the stream cipher is to be analyzed. It will be shown that
the cipher has higher security, higher efficiency and lower costs by comparing
with Hu’s stream cipher of a complicated configuration.

4. Design of a multimedia cryptosystem based on the proposed stream cipher. The
cipher is to be implemented in a field programmable gate array (FPGA). The en-
hanced parallel port (EPP) is used to communicate data between a PC and the
FPGA. A user-friendly interface is designed with Visual C++ 6.0, with which
text, image and audio can be encrypted and decrypted successfully. The proper-
ties of the cryptosystem, such as the sensitivity to the key, speed and efficiency
of the FPGA, are to be analyzed.

9.2 CML-Based Pseudo-Random-Bit Generators
A multiple-output PRBG is designed only based on a CML. The CML as a typical
spatiotemporal chaotic system is introduced firstly. Digitization methods are used in

296 P. Li et al.

Fig. 9.1 A diffusive coupled
map lattice

the PRBG and influence the properties of the PRBG. The statistical properties, such
as probability density function (PDF), linear complexity, auto-correlation and cross-
correlation of the PRBSs generated from the PRBGs based on various digitization
methods are investigated and compared. It is indicated that the digitization method
based on binary representation is good for a PRBG. Moreover, the configuration and
parameters of the CML have affect on the properties of the PRBG. To determine
suitable CMLs and corresponding parameter intervals for the PRBGs, six PRBGs
are constructed by using the simplest coupling methods, i.e., one-way coupling and
diffusive coupling, and three simple chaotic maps, i.e., logistic map, skew-tent map
and r-adic map also named as sawtooth map. The statistical properties, periods and
efficiency of these PRBGs with various parameters are investigated.

9.2.1 Coupled Map Lattice

CMLs are used as spatiotemporal chaotic systems in the chapter and introduced
firstly. A spatiotemporal chaotic system is a spatially extended system, which can
exhibit chaos in both space and time. It is often modeled by partial differential equa-
tions (PDE), coupled ordinary differential equations (CODE), or CML [23].

A CML is often adopted as the basic model of a spatiotemporal chaotic system.
A CML is a dynamical system with discrete-time, discrete-space and continuous
states. It consists of nonlinear maps located on the lattice sites, named as local
maps. Each local map is coupled with other local maps in terms of certain cou-
pling rules. Because of the intrinsic nonlinear dynamics of each local map and the
diffusion due to the spatial coupling among local maps, the CML can exhibit spa-
tiotemporal chaos. A CML has been extensively studied in the fields of bifurcation
and chaos, pattern formation, physical biology and engineering since it was pro-
posed by Kaneko in 1983 [7]. There are two main merits in using a CML as the
model of a spatiotemporal chaotic system: one is that a CML captures the most es-
sential features of spatiotemporal chaos; another is that a CML can be easily handled
both analytically and numerically [23]. Further, by adopting various local maps and
coupling methods [2], various CMLs can be constructed.

A diffusive coupling logistic-map lattice, one of the most popular CMLs, is de-
scribed as

x j
n+1 = (1 − ε) f (xi

n)+
ε
2
[f (x j+1

n)+ f (x j−1
n)], (9.1)

where f (x) = rx(1 − x) is the logistic map with r ∈ (0,4], x j
n represents the state

variable for the jth site (j = 1,2, ...,L, L is the number of the sites in the CML) at
time n (n = 0,1,2, ...), ε ∈ (0,1) is the coupling strength. The periodic boundary
condition, x0

n = xL
n for all n, is used in the CML. The CML can be illustrated in

Fig. 9.1, where “LM” is the abbreviation of the local map.

9 Cryptography Based on Spatiotemporal Chaotic Systems 297

Fig. 9.2 The pattern of a
CML

Time (n)

S
pa

ce
 (

i)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Consider the CML (9.1) with ε = 0.9, r = 4 and L = 100. By starting from ran-
dom initial conditions and discarding 105 initial transients, 100 sequential output of
each site of the CML are depicted in Fig. 9.2, where black points stands for ones
which values are larger than 0.5 and white points stands for ones which values are
smaller than 0.5. It is shown that the CML is chaotic in both time and space; that is,
for a certain site, its output is random-like, for certain time, the output of all sites is
also random-like.

Similarly, the CMLs in other configurations with certain parameters can exhibit
spatiotemporal chaos.

9.2.2 Digitization Method

If a CML exhibits spatiotemporal chaos, then its output, xi
n, can be regarded as

a pseudo-random number, which means that {xi
n}(n = 1,2, ...) can be used as a

pseudo-random-number sequence (PRNS), denoted by PRNSi. Therefore, L PRNSs
can be simultaneously generated from the CML with L sites.

By digitizing the PRNS of each site of the CML, PRBSs can be generated. There
are three general methods to obtain PRBSs from PRNSs generated by chaotic maps
as follows,

Method 1: By dividing the interval visited by a chaotic orbit, xn, into m parts
and labelling them with definite integers belonging to [0,m− 1], the nth pseudo-
random number is assigned with an integer r ∈ [0,m− 1] when xn enters the rth
subinterval [25]. A special case is m = 2, that is, the interval [a,b] is divided into
two parts [a,C] and [C,b], where xn ∈ [a,b] and C is a threshold. This is the so-
called threshold method proposed in [9] and applied in many PRBGs [32]. Then,
a PRBS is defined as

sn =
{

1, i f xn ∈ [a,C]
0, i f xn ∈ [C,b].

298 P. Li et al.

Method 2: xn can be represented as a binary sequence

xn = 0.bn1,bn2, ...,bnP, (9.2)

where P stands for a certain precision. When a double-float precision is used in
computer realization, P is equal to 52. Based on the binary representation, the
digitization method is shown in the Fig. 9.3. It is seen that the mth bits in the
binary representation comprise the mth PRBS. In maximum, P PRBSs can be
generated from one PRNS by using this method. This method is proposed in [9]
and widely used in PRBGs [32, 8].

Method 3: A modified version of Method 2 is proposed in [8], where a PRBS is
generated as follow:

sn = bn1 ⊕ bn2⊕, ...,⊕bnP, (9.3)

where ⊕ means XOR operation.

The digitization methods are applied here to get PRBSs from a PRNS. Thus, 3
PRBGs based on these three digitization methods are constructed, which are called
PRBG1–3. In PRBG1 and PRBG3, only one PRBS is generated from one site. In
PRBG2, the computation precision is assumed as 52, therefore, 52 PRBSs are gen-
erated from one site. Totally, 52L PRBSs can be generated at one time.

9.2.3 Statistical Properties

Such statistical properties as a uniform PDF, strong linear complexity, the δ -like
auto-correlation and the close-to-zero cross-correlation are desirable for a PRBG to
be applicable in cryptography [13].

• PDF
Denote a PRBS generated from a PRBG as SN = {b1,b2, ...bi, ...,bN}, where N
is the iteration time. The uniform PDF of SN means P(bi = 0) = P(bi = 1). In
other words, the ratio between the number of {si = 0} and that of {si = 1} is
equal to 1.

• Strong linear complexity
The linear complexity of SN , denoted by Ln, is the length of the shortest LFSR
that generates a sequence having SN in its first n time. The sequence {Ln,n =
1,2, ...,N} is called the linear complexity profile of SN , which can be computed
using the Berlekamp-Massey algorithm [19]. By plotting the points (n,Ln) in the

Fig. 9.3 Digitization
method

9 Cryptography Based on Spatiotemporal Chaotic Systems 299

n × L plane and then joining the successive points by a horizontal line followed
by a vertical line, the linear complexity profile of SN is graphed. The expected
linear complexity of a PRBG should closely follow the line L = N/2.

• δ -like auto-correlation
The auto-correlation of SN measures the extent of similarity between the se-
quences SN and a shift of SN by t positions. The mean-removed auto-correlation,
Cii(τ), of a PRBS is given by

Cii(τ) = Ĉii(τ)/Ĉii(0),
Ĉii(τ) = 1

N ∑N
n=1(bn − b̄n)(bn+|τ| − b̄n),

b̄n = 1
N ∑N

k=1 bk,
|τ| = 0,1, ...,N − 1.

• Close-to-zero cross-correlation
It is known that PRBSs can be generated simultaneously from a PRBG. If being
independent of each other with zero cross-correlation, they can be used to encrypt
multiple plaintexts at one time.

The statistical properties of PRBG1, PRBG2 and PRBG3 are investigated and
shown in Figs. 9.4, 9.5 and 9.6, respectively. Here, one of 52 PRBSs is randomly
chosen for testing its distribution, linear complexity and auto-correlation. Addition-
ally, two of 52 PRBSs are randomly chosen for testing their cross-correlation.

1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.2

0.4

0.6

0.8

1

N

R
at

io

(a) 0:1 Ratio

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

400

450

500

n

Ln

(b) Linear complexity

−1000 −500 0 500 1000

0

0.2

0.4

0.6

0.8

1

tao

C
ii

(c) Auto-correlation

−1000 −500 0 500 1000

0

0.2

0.4

0.6

0.8

1

tao

C
ij

(d) Cross-Correlation

Fig. 9.4 Statistical properties of PRBG1

300 P. Li et al.

1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.2

0.4

0.6

0.8

1

N

R
at

io

(a) 0:1 Ratio

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

400

450

500

n

Ln

(b) Linear complexity

−1000 −500 0 500 1000

0

0.2

0.4

0.6

0.8

1

tao

C
ii

(c) Auto-correlation

−1000 −500 0 500 1000

0

0.2

0.4

0.6

0.8

1

tao

C
ij

(d) Cross-Correlation

Fig. 9.5 Statistical properties of PRBG2

1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.2

0.4

0.6

0.8

1

N

R
at

io

(a) 0:1 Ratio

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

400

450

500

n

Ln

(b) Linear complexity

−1000 −500 0 500 1000

0

0.2

0.4

0.6

0.8

1

tao

C
ii

(c) Auto-correlation

−1000 −500 0 500 1000

0

0.2

0.4

0.6

0.8

1

tao

C
ij

(d) Cross-Correlation

Fig. 9.6 Statistical properties of PRBG3

9 Cryptography Based on Spatiotemporal Chaotic Systems 301

As we can see, different digitization methods result in different statistical prop-
erties of the PRBGs. A comparison of the statistical properties among the three
PRBGs is concluded in Table. 9.1. The cross-correlation and the linear complexity
of the three PRBGs meet the requirements of cryptography. It is remarked that the
auto-correlation of PRBG1 is not δ -like, while the uniform distributions of PRBG1-
2 are better than that of PRBG3; therefore, PRBG2 has the best overall statistical
properties. The digitization method 2 is thus preferred in designing a PRBG.

Table 9.1 Comparison of statistical properties of Three PRBGs

PRBG distribution linear complexity auto-correlation cross-correlation

PRBG1 uniform follows line L = N/2 not δ -like close to zero
PRBG2 uniform follows line L = N/2 δ -like close to zero
PRBG3 almost uniform follows line L = N/2 δ -like close to zero

9.2.4 PRBGs Based on Various CMLs

A multiple-output PRBG based on a CML with certain parameters has good prop-
erties. This subsection concerns how to determine CMLs and their parameters for
constructing PRBGs with satisfactory properties.

It is known that the PDF of the logistic map is equal to 1
π
√

x(1−x)
[10], which

is not uniform; whereas, any piecewise linear chaotic map f : I �→ I, I = [a,b] ⊂ R,
have a uniform PDF, namely, 1

b−a [1]. The ununiformity of the PDF of the local map
may have a negative effect on the PDF of the CML. Therefore, the CMLs based on a
piecewise linear chaotic map, i.e., the skew tent map [18], is employed to construct
a PRBG. The skew tent map is described as

f (x, p) =
{

x/p , x ∈ [0, p)
(x − p)/(1 − p) , x ∈ (p,1] p ∈ (0.5,1).

In the following, the properties of the PRBG based on diffusive coupled skew-
tent-map lattice (DCSTML) are analyzed.

9.2.4.1 Statistical Properties of the PRBGs

Since the parameters of the PRBG, p, ε and L, may have effects on the properties of
the PRBG, the effect of each parameter on the properties of the PRBG is analyzed.
PDF, auto-correlation and cross-correlation as the important statistical properties
of the PRBGs with one varying parameter and others fixed are investigated. In the
simulation, the lengths of the PRBSs are computed to be 104 and the parameters
vary in the following way: firstly, increase p from 0.51 to 0.99 by 0.01 each time,
while fix ε as 0.9 and L as 8; then increase ε from 0.01 to 0.99 by 0.02 each time,
while fix p as 0.51 and L as 8; finally, increase L from 8 to 64 by 1 each time with

302 P. Li et al.

fixing p as 0.51 and ε as 0.9. Due to the symmetric configuration of the CML, it
is reasonable to analyze the statistical properties of the multiple PRBSs generated
from an arbitrarily chosen PRNS.

PDF

To analyze the PDF of a PRBG, a scaled difference ∆P between P{(bn) = 0} and
P{(bn) = 1} in each PRBS, i.e., ∆P = (N1 − N0)/(N/2), (N1, N0, and N are the
number of “1” and “0”, and the length of the PRBS, respectively) is computed.
Fig. 9.7(a) shows ∆P of the 52 PRBSs output from the PRBG with various p, where
the x-axis is the index of the 52 PRBS, denoted by i, the y-axis denotes the various
p and the z-axis stands for ∆P.

It is shown that ∆P of the first 4 PRBSs are much bigger than zero. Additionally,
by setting a threshold of ∆P as 0.07, Figs. 9.7(a) and 9.7(d) are plotted in the follow-
ing way: if ∆P of the PRBS is smaller than the threshold, the point corresponding
to the index of the PRBS and p of the PRBG from which the PRBS output is drawn
black, otherwise, the point is drawn white. In the same way, ∆P of the 52 PRBSs
from the PRBG with various ε and various L are plotted in Figs. 9.7(b)(e) and in
Figs. 9.7(c)(f), respectively. It is shown that the 5th–52nd PRBSs have uniform PDF
whatever the parameters are.

Auto-correlation

Since δ -like auto-correlation means Cii(0) = 1 and {Cii(τ)}(|τ| = 1,2, ...,N − 1)
or the maximum of {Cii(τ)}(|τ| = 1,2, ...,N − 1) is close to zero, the close-to-zero
maximum auto-correlation of a PRBS is equivalent to the δ -like auto-correlation of
a PRBS. The maximum auto-correlations of the 52 PRBSs of the PRBG with various
parameters are computed and shown in Fig. 9.8. It is indicated that the maximum
auto-correlations of the first 4 PRBSs are much far from zero and the rest except for
the PRBSs from the PRBG with p close to 0.99 is close to zero.

Additionally, we set the threshold of the maximums as 0.05, and get Fig. 9.8(d)(e)
and (f) in the same way as that of the previous section. It is shown that the maximum
auto-correlations of all the 5th–52nd PRBSs output from the PRBG with any pa-
rameters values are smaller than 0.05. Therefore, the auto-correlation of the PRBG
without the first 4 PRBSs satisfies the requirement of cryptography.

Cross-correlation

In order for the 5th-52nd PRBSs generated from the output of each site of the PRBG
to be applicable in parallel, the cross-correlation between arbitrary two PRBSs
should be close-to-zero. Maximum cross-correlations, denoted by Ci1i2 , between
PRBSi

m1
and PRBSi

m2
(i,m1,m2 ∈ N, i ∈ [1,L],m1,m2 ∈ [5,52],m1 �= m2) output

from the PRBG with various parameters are computed and shown in Fig. 9.9. Ad-
ditionally, other maximum cross-correlations, denoted by Ci1 j2 , between PRBSi

m1

and PRBS j
m2 (i, j,m1,m2 ∈ N, i, j ∈ [1,L], i �= j,m1,m2 ∈ [5,52]) of the PRBG with

various parameters are shown in Fig. 9.10.

9 Cryptography Based on Spatiotemporal Chaotic Systems 303

(a) ∆P of the PRBG with various p (b) ∆P of the PRBG with various ε

(c) ∆P of the PRBG with various L

i

p
=

 0
.5

1
: 0

.0
1

: 0
.9

9

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

(d) The range of p within which the PRBG
has uniform PDF

i

ε
=

 0
.0

1
: 0

.0
2

: 0
.9

9

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) The range of ε within which the PRBG
has uniform PDF

i

 L
 =

 8
 :

1
: 6

4

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

55

(f) The range of L within which the PRBG has
uniform PDF

Fig. 9.7 ∆P of the PRBG with various parameters

We set the threshold of the maximum cross-correlation as 0.05 and find that the
maximum cross-correlation between all pairs of PRBSs output from the PRBG with
all parameters values are smaller than 0.05. Therefore, the cross-correlation of the
PRBG is acceptable from the cryptographic point of view.

Statistical test

In practice, a statistical test is employed to investigate the randomness of PRBGs and
thus to verify whether PRBGs are acceptable or not from the statistical point of view.
There are many statistical test available, such as Diehard Battery of Tests, Knuth’s

304 P. Li et al.

i

p
=

 0
.5

1
: 0

.0
1

: 0
.9

9

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

i

ε
=

 0
.0

1
: 0

.0
2

: 0
.9

9

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

i

 L
 =

 8
 :

1
: 6

4

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

55

Fig. 9.8 The maximum auto-correlations of the PRBG with various parameters

Collection, FIPS 140-2 Statistical Test Suite, and NIST Statistical Test Suite [24].
Since the computations of the 52 PRBSs from the PRBG with various parameters are
time-consuming, and among them, the FIPS 140-2 test takes the least computation
time, therefore, in our work, the FIPS 140-2 [20] is used to evaluate the randomness
of the proposed PRBG. The FIPS 140-2 specifies four statistical tests, i.e., monobit
test, poker test, run test, and long run test, all of which should be passed if a PRBS
passes the FIPS 140-2.

The 52 PRBSs generated from arbitrary one PRNS from the PRBG with various
parameters are detected by using the FIPS 140-2. The results are shown in Fig. 9.11,
where a black point corresponds to the index of the PRBS which passes the test and
the parameter of the PRBG from which the PRBS is output. It is shown that the
first 4 PRBSs have bad randomness with any parameter values. Therefore, these
PRBSs should be discarded for a good PRBG. In addition, since the first 12 PRBSs

9 Cryptography Based on Spatiotemporal Chaotic Systems 305

Fig. 9.9 The maximum Ci1i2 of the PRBG with various parameters

Fig. 9.10 The maximum Ci1 j2 of the PRBG with various parameters

306 P. Li et al.

from the PRBG with p close to 0.99 can not pass the FIPS 140-2 test, as shown
in Fig. 9.11(a), p close to 0.99 should be avoided. According to Figs. 9.11(b) and
9.11(c), the 5th-52nd PRBSs can pass the FIPS 140-2 whatever ε and L are.

i

r
=

 0
.5

1
: 0

.0
1

: 0
.9

9

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

(a) various p

i

ε
=

 0
.0

1
: 0

.0
2

: 0
.9

9

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) various ε

i

 L
 =

 8
 :

1
: 6

4

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

55

(c) various L

Fig. 9.11 FIPS 140-2 of the PRBG with various parameters

Periodicity

Long period is an important cryptographic requirement to a PRBG. Similar to the
method of estimating the periodicity of a PRNS employed in [27], the dependence
of the transient time for the trajectory to enter the periodic circle and the period

on the precision δ = 10−h and L is investigated. τ =
N
∑

i=1
τi and T =

N
∑

i=1
Ti of any

PRNS generated from the PRBG with L = 2 are derived by arbitrarily choosing N
(N = 10h if h ≤ 6 or N = 1 if h > 6) different initial conditions of a PRBG and
computing transient times τi and the periods Ti in the way as [27]. τ and T vs h,
respectively, are plotted in Fig. 9.12, where the triangle and circle signs stand for τ
and T , respectively.

It is shown that τ follows the solid curves well. Therefore, for a certain L, one
has

τ(h,L) ∝ 10α(L)+β (L)h.

For different L, α(L), β (L) have different values. According to Fig. 9.12(d), τ
and T do not increase as L increases, and in addition, T is always smaller than τ .

9 Cryptography Based on Spatiotemporal Chaotic Systems 307

1 2 3 4 5 6 7 8
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

h

τ,
 T

(a) L=2

1 2 3 4 5 6
10

0

10
1

10
2

10
3

h

τ,
 T

(b) L=3

1 2 3 4 5 6
10

0

10
1

10
2

10
3

10
4

10
5

10
6

h

τ,
 T

(c) L=4

1 2 3 4 5 6 7 8 9 10 11
1

1.5

2

2.5

3

3.5

4

4.5

5

lo
g 10τ

, l
og

10T

L

(c) h=3

Fig. 9.12 τ and T of the PRBG with various L and h

Since the cryptographic properties of a PRBG are related to T + τ rather than τ ,
power law behavior of τ has an more important effect on the properties of the PRBG.

9.2.4.2 Comparison of PRBGs Based on Various CMLs

With different local maps and different coupling methods various CMLs can be
constructed. In order to answer the question of how to determine the CMLs with
certain parameters for constructing PRBGs with proper statistical properties, various
CMLs with various local maps and coupling modes are used to construct PRBGs,
and a comparison among the PRBGs is carried out in this section. Logistic map
as the most well-known one-dimensional chaotic system, skew-tent map and r-adic
map, described as f (x,r) = rx mod 1 (r > 1) [2] as the simple piecewise linear
chaotic maps are employed as the local maps of the CMLs; one-way coupling and
diffusive coupling as the two simplest coupling modes are used as the coupling
methods; thereby, six CMLs are obtained.

Similar to the analysis of the PRBG based on DCSTML, statistical properties
of the PRBGs based on diffusive coupled logistic-map lattice (DCLML), diffu-
sive coupled r-adic-map lattice (DCRML), one-way coupled logistic-map lattice
(OWCLML), one-way coupled skew-tent-map lattice (OWCSTML), and one-way
coupled r-adic-map lattice (OWCRML) with various parameters are investigated,
respectively.

308 P. Li et al.

The results show that the PRBG based on one-way coupled logistic-map lattice
with certain parameter has the most satisfactory statistical properties, largest period
and highest efficiency among the six PRBGs.

9.3 CML-Based Stream Cipher

A one-way coupled logistic-map lattice (OWCLML) with certain parameters has
the best cryptographic properties among the six simplest PRBGs, based on which a
stream cipher is designed in the section.

9.3.1 Algorithm of the Cipher

Based on the OWCLML, a stream cipher can be constructed. The encryption is
described as

x j
n+1 = (1 − ε) f (x j

n,a j)+ ε f (x j−1
n ,a j−1),

f (x j
n,a j) = (3.9 + 0.1a j)x

j
n(1 − x j

n),
K j

n = int[x j
n × 2u] mod 2v,

C j
n = M j

n
⊕

K j
n ,

(9.4)

where u,v ∈ N, K j
n , M j

n , and C j
n are keystream, plaintext and ciphertext, respec-

tively, and
⊕

means bitwise XOR. Actually, the CML serves as a PRBG to pro-
duce L keystreams by imposing int and mod algebraic operations on the outputs
of the CML. Plaintexts are bitwise XORed with keystreams to produce the ci-
phertext. Encryption keys are assumed as a j ∈ [0,1], denoted as a vector form
a = {a1,a2, ...,aL}.

The configuration and parameters of the decryption are the same as those of the
encryption, which is described as

y j
n+1 = (1 − ε) f (y j

n,a′
j)+ ε f (y j−1

n ,a′
j−1),

f (y j
n,a′

j) = (3.9 + 0.1a′
j)y

j
n(1 − y j

n),
K′ j

n = int[y j
n × 2u]mod2v,

M′ j
n = C j

n
⊕

K′ j
n,

(9.5)

where a′
j ∈ [0,1], denoted as a′ = {a′

1,a
′
2, ...,a

′
L}, are decryption keys. When a′ = a

and y j
0 = x j

0, these two CMLs are synchronized, i.e., y j
n = x j

n, thus producing identical

keystreams, K′ j
n = K j

n . As a result, the plaintext is decrypted, M′ j
n = M j

n .

Remarks:

1. Self-synchronous chaotic ciphers have an advantage that they do not need an
extra synchronization signal, but also a disadvantage that a ciphertext, which
controls a keystream generator in a cipher, is accessible and thus can be used
for cryptanalysis [6].

9 Cryptography Based on Spatiotemporal Chaotic Systems 309

2. In terms of the statistical properties discussed in section 9.2, in order for the
keystreams in the proposed cipher to have proper statistical properties [11],
a j (j = 1,2, ...,L) are set as keys to guarantee that the parameter of the logistic
map falls in the range [3.9,4.0] and ε is fixed as 0.95.

3. The double floating-point arithmetic is used in the cipher. Since the number of
the significant bits of the binary representation of double floating-point number
in the computer is 52, u is set as 52.

4. v is assumed as 32 for the following reasons. First, the first 4 bits are discarded
for their bad statistical properties. Second, the smaller v is, the harder it is to
break the cipher with known-plaintext attack, which will be indicated in sub-
section 9.3.3. Finally, from the implementation point of view, the larger v is, the
more efficient the cipher will be. Therefore, a tradeoff between efficiency and
security leads to fix v as 32 by considering that common computers adopt 32
bits or 64 bits CPUs.

5. The determination of L lies in the following considerations. L has no evident
influence on the cryptographic properties of the keystream [11] except for its
period equal to about 107L [27]. Meanwhile, it does not influence the encryp-
tion speed, too, which will be indicated in subsection 9.3.4. Additionally, the
cost of breaking the cipher is about 240L, which will be analyzed in detail in
subsection 9.3.3. Therefore, in investigating a concrete cipher thereafter, L is
assumed as 4 in order that the keystream has period of 1028 and the cost of
breaking the cipher is up to 2160, which are suitable from cryptographic point
of view.

9.3.2 Keyspace

A keyspace is defined as a set of all possible keys [22], which should be studied
in depth in designing a cipher. Error function [17] is used here to determine the
keyspace of the cipher. When a′ �= a, the decrypted plaintext, M′ j

n, can be deviated
from the original one, M j

n . The error function is defined as

e(j,∆at) = 1
T ∑T

n=1 |m′ j
n − m j

n|, j = 1,2, ...L,

m′ j
n = M′ j

n
232 ,m j

n = M j
n

232 ,
(9.6)

where ∆at = {∆a1,∆a2, ...,∆at}(∆ai = a′
i − ai, i = 1,2, ...,t,t ≤ L), and T is en-

cryption times. The error function vs ∆a1 with T = 105 is plotted in Fig. 9.13. It
is shown that the error function is not equal to zero but 0.25 even if ∆a1 takes an
extremely small value 2−47. In other words, the key a′

1 is sensitive to any differences
equal to or larger than 2−47. Similarly, the error function of ∆ai(i = 2,3, ...,L) are
computed, and it is shown that the keys a′

i(i = 2,3, ...,L) are also sensitive to any
differences equal to or larger than 2−47. Therefore, the keyspace is 247L.

310 P. Li et al.

Fig. 9.13 Error function

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

∆a
1

e(
j,∆

a 1)

×2−48

9.3.3 Cryptographic Properties of the Keystream

Since the ciphertext is generated by using directly bitwise XOR between the plain-
text and the keystream in the cipher, the cryptographic properties of the keystream
have significant effects on the security of the cipher. Due to the symmetric con-
figuration of the CML, all keystreams have similar cryptographic properties. Some
cryptographic properties of a keystream among the L ones, such as probability dis-
tribution, auto-correlation, and run probability, are numerically investigated in this
section.

Probability distribution

The order-1 and order-2 probability distributions [17] of the keystreams in the cipher
with random initial conditions, arbitrarily chosen plaintext, and a = 0.5I (I is a L-
vector with all elements equal to 1) are investigated.

The order-1 probability distribution of the keystream, ρ(ks j
n)(=

ρ(K j
n)

232), is
plotted in Fig. 9.14(a). The order-2 probability distribution of the keystream,

ρ(ks j
n,ks j

n−1)(=
ρ(K j

n ,K j
n−1)

232), is plotted in Fig. 9.14(b). The length of the keystream

is 106. It is shown that the probability distributions are uniform.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ρ

k
n

0

0.5

1

0

0.5

1
0

0.5

1

1.5

2

k
n−1

k
n

ρ

Fig. 9.14 Probability distribution of the keystream

9 Cryptography Based on Spatiotemporal Chaotic Systems 311

Run

A run of a binary sequence s is another postulate of randomness, and defined as a
subsequence of s consisting consecutive 0’s or consecutive 1’s that is neither pre-
ceded nor succeeded by the same symbol [19]. The probabilities of 0/1 runs of
length n(n = 1,2, ...,N), denoted as p0(n)/p1(n) or p0/1(n) of Kj, are investigated,

where p0/1(n) =
R0/1(n)

R0/1
and R0/1 = ∑N

n=1 R0/1(n) with R0/1(n) being the number of

0/1 runs of length n. p0/1(n) vs n is plotted in Fig. 9.15. It is shown that p0/1(n)
is directly proportional to n, which is the characteristic of a truly random binary
sequence of an infinite length [17].

Auto-correlation

The δ -like auto-correlation is one of cryptographic requirements to keystream in a
cipher. The mean-removed auto-correlation of the keystream with length T = 106 is
plotted in Fig. 9.16. It is shown that the keystream has the δ -like auto-correlation.

In summary, according to the analysis above, L keystreams have satisfactory
random-like statistic properties.

Fig. 9.15 Probability of the
run of the keystream

0 5 10 15 20 25
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

n

P
0/

1

Fig. 9.16 Auto-correlation
of the keystream

−100 0 100

0

0.5

1

τ

C
ii(τ

)

312 P. Li et al.

Security Analysis

In this section, the security of the cipher is evaluated by investigating its confusion
and diffusion properties and using various typical attacks, such as the error function
attack, the differential attack, the known-plaintext attack, the brute-force attack, and
the chosen-plaintext/ciphertext attack.

9.3.3.1 Confusion and Diffusion

To resist common attacks, the cipher should have the following two basic crypto-
graphic properties: confusion and diffusion. Confusion reflects the uniformity of
all keys. To evaluate the confusion of the cipher, the independence of the prob-
ability distribution of the ciphertext on the exact value of a key is analyzed via
ρ(c|a) (c = C

232 , C =Cn(j;a), a = aI), which is shown in Fig. 9.17. The conditional
probability distribution of the ciphertext is uniform for different keys. Therefore, the
confusion of the cipher is guaranteed.

Diffusion reflects strong sensitivity of a key to tiny changes. In terms of the anal-
ysis of the error function described in subsection 9.3.2, the key of the cipher is even
sensitive to a extremely small change 2−47, which verifies the diffusion of the cipher.

Fig. 9.17 Conditional prob-
ability distribution ρ(c|a)

0

0.5

1

0

0.5

1
0

0.5

1

1.5

2

ac

ρ

9.3.3.2 Error Function Attack

The error function can also be used to break a cipher by an attacker, which is called
Error Function Attack (EFA). For the proposed cipher, the cost of EFA is up to 247L.
It is noted that the cost of EFA can be reduced by using some optimal adaptive
searching methods if there exists certain tendency toward the key in the error func-
tion attack. To check if there is such a tendency, Fig. 9.13 is enlarged to Fig. 9.18.
It is indicated that there is no tendency about the location of a1 even if a′

1 − a1 is
equal to 2−47. Thus, any adaptive searching can hardly work without any tendencies.
Therefore, the cost of EFA of the cipher is exactly equal to 247L.

9 Cryptography Based on Spatiotemporal Chaotic Systems 313

Fig. 9.18 Enlarged error
function

0 50 100 150 200

0.249

0.2495

0.25

0.2505

0.251

0.2515

∆a
1

e(
j,∆

a 1)

×2−48

9.3.3.3 Differential Attack

Some features of the differential relations between ciphertexts and plaintexts, such
as some characteristic differential relations caused by any imperfect statistical prop-
erties of keystreams, can be used to break a cipher by a differential attack. To inves-
tigate whether there are such differential relations in the cipher, conditional proba-
bility of the ciphertext ρ(∆c|∆m)(∆c = ∆C

232 ,∆C =Cn(j;M̂ j
n)−Cn(j;M j

n)) under the

condition ∆m = ∆M j
n

232 (∆M j
n = M̂ j

n −M j
n) is shown in Fig. 9.19. The differential prob-

ability ρ(∆c) is uniform whatever the differential probability ρ(∆m) is. Therefore,
the cipher is immune to the differential attack.

Fig. 9.19 Conditional dif-
ferential probability of the
ciphertext

20
40

60
80

100

20
40

60
80

100
0

0.5

1

1.5

2

∆m∆c

ρ

9.3.3.4 Known-Plaintext Attack

With Kerchoffs’ assumption, i.e., an attacker knows complete details of a cipher and
implementation except keys, known-plaintext attack is to expose keys with public
ciphertexts and known plaintexts. To break the proposed cipher, a known-plaintext
attack is applied via an inverse analytical computation with known plaintexts and
accessible ciphertexts, i.e., the keystreams K j

n . The cost of the known-plaintext at-
tack to the cipher can be estimated as follows. To simplify the conduction, x j

n+1 =
(1 − ε) f (x j

n,a
j
n) + ε f (x j−1

n ,a j−1
n) and f (x j

n,a j) = (3.9 + 0.1a j)x
j
n(1 − x j

n) in (9.4)

314 P. Li et al.

can be recast as x j
n+1 = G(x j

n,x
j−1
n ,a j,a j−1). To obtain keys a, a set of L equations

is given by
x1

n+1 = G(x1
n,x

L
n ,a1,aL),

x2
n+1 = G(x2

n,x
1
n,a2,a1),

· · ·
xL

n+1 = G(xL
n ,xL−1

n ,aL,aL−1),

(9.7)

where 2L variables, x j
n+1 and x j

n (j = 1,2, ...,L), should be known to solve a. In

addition, one x j
n can be obtained from one K j

n , however, one K j
n corresponds to

252−32 possible x j
n. Consequently, the cost of the known-plaintext attack is no less

than 240L.
A typical known-plaintext attack is the brute-force attack, where a cipher is at-

tacked by trying every possible key one by one to decrypt plaintext with public
ciphertext and checking whether the resulting plaintext is the original one. Since the
keyspace is deduced as 247L, the cost of the brute-force attack of the cipher is 247L.

9.3.3.5 Chosen-Plaintext Attack and Chosen-Ciphertext Attack

In applying chosen-plaintext and chosen-ciphertext attacks to the cipher, an attacker
chooses some special plaintexts and ciphertexts to capture certain keystreams. In
the cases that certain keystreams correspond to certain keys, i.e., there exist some
characteristic relations between keystreams and keys, those attacks are effective.

The relation between the keystream k(= K j
n

232) and the key a(a = aI) is investigated
with conditional probability distribution of k under the condition a. ρ(k|a) is plotted
in Fig. 9.20. It is indicated that no characteristics of keys can be extracted from
keystreams, consequently, no special plaintexts or ciphertexts can be chosen to break
keys. In other words, chosen-plaintext/ciphertext attack has the same efficiency as
the known-plaintext attack to this cipher.

In summary, the known-plaintext attack is the most effective attack to the cipher
and its cost to break the cipher is 240L. Moreover, the security of the cipher can be
increased conveniently by adding one lattice to the CML in the cipher with little
more computation, which results in the cost of breaking the cipher rising 240 times.

Fig. 9.20 Conditional prob-
ability distribution ρ(k|a)

20
40

60
80

100

20
40

60
80

100
0

0.5

1

1.5

2

ak

ρ

9 Cryptography Based on Spatiotemporal Chaotic Systems 315

9.3.4 High Efficiency

In addition to high security, the cipher is quite efficient. All the coupled maps of
the CML in the cipher are used to encrypt plaintexts simultaneously. A close-to-
zero cross-correlation among L keystreams guarantees the efficiency of the paral-
lel L encryptions/decryptions in the cipher. The cross-covariance, i.e., mean-moved
cross-correlation, is used here to analyze the cross-correlation of any two keystreams
among L keystreams with length 106, Ki

n and K j
n , which are described as

Ci j(τ) = Ĉi j(τ)/
√

Ĉii(0)Ĉj j(0),τ = 0,1, ...,T − 1,

Ĉi j(τ) = 1
T ∑T

n=1(K
i
n − K

i
n)(K

j
n+τ − K

j
n),

K
i
n = 1

T ∑T
n=1 Ki

n.

(9.8)

The result of the computation of the cross-covariance is plotted in Fig 9.21. It is
shown that all keystreams are independent. Therefore, the parallel L keystreams can
be used to effectively encrypt plaintexts at one time.

Due to the parallel operation, an around 700M bits plaintext can be encrypted
per second in our computer with 1.8GHz CPU and 1.5GB RAM. In addition, the
encryption speeds of the ciphers based on the CMLs of various sizes are similar,
and this is indicated by the relation between the speeds and L as shown in Fig. 9.22.
As a comparison, the encryption speed of the cipher proposed in [17] is computed

Fig. 9.21 Cross-correlation
of any two keystreams

−100 0 100
−0.5

0

0.5

τ

C
ij(τ

)

Fig. 9.22 The relation be-
tween the encryption speed
and L

5 10 15 20 25 30
100

200

300

400

500

600

700

800

900

L = 2 : 2 : 64

S
pe

ed
 (

M
 b

ps
)

316 P. Li et al.

to be about 300M bits per second by our computer, which is much slower than the
proposed cipher.

9.4 CML-Based Multimedia Cryptosystem

In this section, a multimedia cryptosystem based on a spatiotemporal chaotic sys-
tem is proposed and implemented by a field programmable gate array (FPGA). The
modification of the stream cipher proposed in section 9.3 is used in the cryptosys-
tem. Since the generation processes of the multiple keystreams from the sites of the
CML by a CPU of a computer are actually not in parallel, the cipher is implemented
in an FPGA to generate the keysteams simultaneously. For implementation of the
cipher in FPGA, the values of the cipher are digitized. The FPGA adopted in the
cryptosystem is one Sparten-3 device produced by Xilinx company, i.e., XC3S400,
because of its low cost and high efficiency of resource for implementing the digi-
tized cipher. In designing the FPGA, a pipeline architecture is adopted to improve
the usage efficiency of the FPGA. In the cryptosystem, data for encryption are input
from a PC and transmitted to the FPGA. Data usually communicates via a serial port,
a parallel port, a usual serial bus (USB), a peripheral component interconnect (PCI)
bus, etc.. Within these communication modes, using a parallel port has some advan-
tages: simple transfer protocol, high speed and easy implementation. Especially, an
enhanced parallel port (EPP), which is a data transfer mode defined in IEEE 1284
standard, has simple transfer protocol and high transfer speed. Therefore, an EPP is
applied in this system. Simulation shows that the data are communicated efficiently
between a PC and an FPGA via the EPP. In addition, a user-friendly interface of the
cryptosystem is designed with Visual C++. With the easy-to-handle interface, a user
can encrypt/decryt text, image and audio files, and observe the results.

For testing the performance of the cryptosystem, the keyspace, the statistical
properties, the security and the efficiency of the cryptosystem are investigated.

9.4.1 Design of CML-Based Multimedia Cryptosystem

The multimedia cryptosystem adopting a cipher based on a CML, which is imple-
mented in a FPGA, is described in this section. The design of the cryptosystem
consists of the FPGA implementation of the cipher, the EPP communication be-
tween a PC and the FPGA and a user-friendly interface, which are to be described
in the following.

9.4.1.1 FPGA Implementation of the CML-Based Cipher

The multimedia cryptosystem adopts the cipher modified from that presented in
section 9.3 [12]. Since the cipher (9.4) adopts double float precision, it should be
digitized into integer domain for its implementation in an FPGA. In addition, to
make the balance between efficiency and security of the cipher (9.4), the highest 32
bits in binary representations of the values are used as keystream. Similarly, only the

9 Cryptography Based on Spatiotemporal Chaotic Systems 317

highest 32-bit in binary representations of the values are used during iterations of
the cipher. The modified cipher, named as digital CML-based cipher, is described as

x j
n+1 = (((232 − ε ′) f (x j

n))h32 +(ε ′ f (x j−1
n))h32)h32,

f (x j
n) = ((x j

n << 2)h32(232 − x j
n))h32,

K j
n = x j

n

C j
n = M j

n ⊕ K j
n ,

(9.9)

where “(·)h32” means to extract the highest 32 bits of the value in “()”; “<< 2”
stands for right-shifting 2 bits since the parameter of the logistical map in each site
is equal to 4 to achieve the strongest chaos of the CML [12]; ε ′ = (int)ε × 232; ε is
assumed as 0.95 to make the keystream possessing good statistical properties [11].

The FPGA implementation of each site in the cipher is similar. Taking the 1st
site as an example, its implementation at one round is realized in the following four
steps:

1. compute 1 − x1
n and 1 − x4

n,
2. compute f (x1

n) and f (x4
n),

3. compute (1 − ε) f (x1
n) and ε f (x4

n),
4. compute x1

n+1,

To achieve the highest speed of the cipher with the limited resource of the FPGA,
a pipeline architecture is adopted. Meantime, to use effectively the resource of the
FPGA with the pipeline architecture, the CML in the cipher adopts 8 sites. Thus, 16
18 × 18 multipliers of Spaten3 series are needed simultaneously for four multiple
arithmetic of two 32-bit integers. Therefore, the FPGA in the cryptosystem adopts
the type XC3S400 of Spaten3 series. The simulation done in Modelsim 5.8 environ-
ment shows that all multipliers of the FPGA which are the key resource of a FPGA
work simultaneously and one datum can be output from the CML at any clock cycle.

Moreover, to evaluate the efficiency of using the FPGA resources, the conceptual
VHDL design definition is synthesized to generate the logical or physical represen-
tation for the targeted silicon device. Xilinx Synthesis Technology (XST) is used to
synthesize the CML-based cipher by choosing the device xc3s400pq208. The result
is shown in Table. 9.2, which indicates that all multipliers are used, therefore, the
device xc3s400 can execute the algorithm well.

Table 9.2 Performance of the FPGA implementation of the CML-based cipher

CLK Slices Flip Flops LUT-4 GCLK MULT18X18s

150.060MHz 504 (14%) 545 (7%) 677(9%) 1(12%) 16 (100%)

9.4.1.2 EPP Communication between PC and FPGA

In the cryptosystem, data for encryption are input from a PC and transmitted to the
FPGA. Data communication can be usually via a serial port, a parallel port, USB,

318 P. Li et al.

a PCI bus, etc.. Within these communication modes, since the EPP has relatively
simple transfer protocol and high transfer speed, the data between a PC and an
FPGA are transferred via EPP in the presented cryptosystem. The implementation
of EPP communication includes designing a state machine and optimizing.

Design of state machine: A state machine is used to realize the communication
protocols of EPP in the FPGA. The adopted state machine is the so-called mealy
state machine consisting of 5 states.

Optimization of communication: Since the transistor-transistor logic (TTL) of an
EPP adopts 0 ∼ 5v voltage standard, which can be easily perturbed, the output
signal from a PC, such as a read/write control signal, a data selection signal and
8-bit signal in the data bus, should be filtered before entering into the FPGA. A
low-pass filter using two-stage D flip-flops is employed here as filtering function.

The cryptosystem is simulated in Modelsim 5.8. The simulation result indicates
that the data are successfully communicated between a PC and the FPGA, and en-
crypted/decrypted correctly.

9.4.1.3 Implementation of the Cryptosystem

An interface for a user to manipulate the cryptosystem is designed with Visual C++
6.0, as shown in Fig. 9.23. The interface includes the buttons of inputting encryp-
tion/decryption keys and sending the keys. For text encryption/decryption, it sup-
ports the windows for inputting plaintexts and displaying ciphertexts and decrypted
texts. For image encryption/decryption, plain-image, cipher-image and decrypted-
image can be visible by choosing the corresponding check boxes. The cipher-image
and decrypted image can also be saved by clicking the Save buttons. For audio en-
cryption/decryption, by clicking Read In Audio button, one audio file can be cho-
sen or a recorder can be open for recording audio files to be encrypted. Plain-audio,
cipher-audio and decrypted-audio can be played by clicking corresponding buttons.

With the user-friendly interface, the sender can input plain-media and encryption
key, encrypt the plain-media and display cipher-media in his PC; the receiver can
input decryption keys, and display cipher-media sent by the sender and decrypted-
media in his PC.

9.4.2 Performance Analysis

For measuring the performance of the cryptosystem, its cryptographic properties,
security, speed and its effects of encrypting multimedia is investigated quantitively
in this section.

9.4.2.1 Properties of the Cryptosystem

Since the cipher of the cryptosystem is modified from that in [12], the properties
of the cryptosystem may be different from those of the CML-based cipher in [12].
Similar to the way in [12], the keyspace, the statistical properties of the keystreams,

9 Cryptography Based on Spatiotemporal Chaotic Systems 319

Fig. 9.23 The system inter-
face

the security and the efficiency of the cryptosystem are analyzed, which results are
described as follows.

Keyspace: Error function is used to determine the keyspace of the cryptosystem,
which is equal to 28×32 = 2256.

Statistical properties of the keystream: The important statistical properties, such
as probability distribution, auto-correlation and run probability, of the keystream
generated from the cryptosystem are numerically investigated. It is shown that
the cryptosystem has uniform 1-order and 2-order probability distribution, δ -like
auto-correlation and random-like run-probability. Additionally, NIST test suite
is used to measure the randomness of the keystream. 20 keystream sequences
of length 106 are tested here by the NIST statistical test suite. All passing rate
of tests except for AET being 95% are equal to 100%, which indicates that the
keystreams pass the NIST test suite.

Security: The security of the cryptosystem is evaluated by investigating its confu-
sion and diffusion properties and using various typical attacks, such as the error
function attack, the differential attack, the known-plaintext attack, the brute-force
attack and the chosen-plaintext/ciphertext attack. It is shown that the brute force
attack is the most efficient attack, which costs 2256.

320 P. Li et al.

Efficiency: Since the FPGA adopts the pipeline architecture, the generation speed
of one CML output is up to the clock speed in the FPGA. In the cases of adopting
an FPGA with the clock frequency of 150.060MHz, a plaintext of 4.8G bits can
be encrypted per second.

In addition, the cost of the cryptosystem is nearly equal to that of the adopted
FPGA. Since the cost of the adopted FPGA is low, the cryptosystem is low-cost.
Therefore, the cryptosystem has been verified to possess satisfactory statistical prop-
erties, high security, high encryption speed and low-cost.

9.4.2.2 Effect of Encrypting Multimedia

Various media have own special features, so the effect of encrypting various multi-
media may be different. In this section, the effect of the cryptosystem’s encrypting
text, audio and image files are investigated, respectively.

Text

The effect of encrypting a text file is analyzed by taking a special file with identical
characters as a plaintext. A text file consisting of 10000 “1” in byte is used as a
plaintext and encrypted by our cryptosystem. To resist statistical attacks, the cipher-
text should have random-like properties. The distribution and auto-correlation, as
the important statistical properties, of the ciphertext are investigated.

The plain-text and its cipher-text are plotted in Figs. 9.24(a) and 9.24(b), respec-
tively. Their histograms with 256 bins are obtained in Figs. 9.24(c) and 9.24(d),
respectively. Since the text file consists of identical characters, its distribution is
the worst. However, the ciphertext has nearly uniform distribution. To measure the
uniformity of the generated ciphertext, the χ2 test of the ciphertext’s histogram is
applied [29].

The statistic of the χ2 test is described as

χ2 =
K

∑
i=1

(oi − ei)2

ei
, (9.10)

where oi, ei and K are an observed frequency, an expected (theoretical) frequency
and the number of distinct events, respectively. Here, K is equal to 255 due to the
histogram having 256 bins, then ei = (int) 10000

256 and χ2 of the histogram is computed
as 223.88. With a significance level of 0.05, it is found that χ2

255;0:05 = 293.2478 >
223.88, which implies that the distribution of the ciphertext is uniform.

In addition, the auto-correlations of the plaintext and the ciphertext are obtained
and plotted in Figs. 9.24(e) and 9.24(f), respectively. It is seen that the ciphertext
has δ -like auto-correlation, which is similar to random texts.

To check the diffusion with respect to the plaintext, the cross-correlation of the
two ciphertexts from two plain-texts with the difference of only 1 bit is computed
and plotted in Fig. 9.25.

9 Cryptography Based on Spatiotemporal Chaotic Systems 321

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

120

140

160

180

200

(a) Plain-text

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Cipher-text

−150 −100 −50 0 50 100 150
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(c) Distribution of Plain-text

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

(d) Distribution of Cipher-text

−100 −50 0 50 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

τ

A
ut

o−
co

rr
el

at
io

n

(e) Auto-correlation of Plain-text

−100 −50 0 50 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

τ

A
ut

o−
co

rr
el

at
io

n

(f) Auto-correlation of Cipher-text

Fig. 9.24 Plain-text and cipher-text, and their distributions and Auto-correlation

Fig. 9.25 The correlation
of two cipher-texts from
two plain-texts with tiny
difference

−200 −150 −100 −50 0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

τ

cr
os

s−
co

rr
el

at
io

n

322 P. Li et al.

It is seen that the cross-correlation is close-to-zero, which indicates that small
change in a plain-text can influence over whole the cipher-text. Therefore, the cryp-
tosystem can encrypt texts effectively.

Audio

Generally, the correlation of adjacent data in an audio file is stronger than that of
a text file. To check the effect of encrypting an audio file with this cryptosystem,
an audio file consisting of a short time of silence and several same words is tested.
The plain-audio and its cipher-audio are plotted in Figs. 9.26(a) and 9.26(b), respec-
tively. Their histograms with 1024 bins are obtained in Figs. 9.26(c) and 9.26(d),

0 1 2 3 4 5 6 7 8

x 10
4

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

(a) Plain-audio

0 1 2 3 4 5 6 7 8

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Cipher-audio

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

500

1000

1500

(c) Distribution of Plain-audio

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

D
is

tr
ib

ut
io

n

(d) Distribution of Cipher-audio

−100 −50 0 50 100
−0.5

0

0.5

1

τ

A
ut

o−
co

rr
el

at
io

n

(e) Auto-correlation of Plain-audio

−100 −50 0 50 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

τ

A
ut

o−
co

rr
el

at
io

n

(f) Auto-correlation of Cipher-audio

Fig. 9.26 Plain-audio and cipher-audio, and their distributions and Auto-correlation

9 Cryptography Based on Spatiotemporal Chaotic Systems 323

Fig. 9.27 The correlation
of two cipher-Audios from
two plain-Audios with tiny
difference

−200 −150 −100 −50 0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

τ

cr
os

s−
co

rr
el

at
io

n

respectively. It is shown that the cipher-audio has much more uniform distribution
than the plain-audio. χ2 test is also used here to check whether the distribution of
the cipher-audio is uniform. χ2 of the distribution of the cipher-image is computed
as 926.54 and smaller than χ2

1023;0:05 = 1098.5208 with a significance level of 0.05.
Therefore, the distribution of the cipher-audio is regarded as uniform. In addition,
the auto-correlations of the plain-audio and cipher-audio are obtained and plotted in
Figs. 9.26(e) and 9.26(f), respectively. It is indicated that the cipher-audio has δ -like
auto-correlation.

Moreover, the cross-correlation of two cipher-audios from two plain-audios with
tiny difference is computed and plotted in Fig. 9.27.

The close-to-zero cross-correlation indicates the complete diffusion with respect
to a plain-audio. As a result, the cryptosystem can encrypt an audio file effectively.

Image

It is known that adjacent pixels in an image have high correlation. In order to resist
the statistical attacks, a cipher-image should possess uniform distribution and close-
to-zero correlation of adjacent pixels. Moreover, to avoid the known-plaintext attack
and the chosen-plaintext attack, the changes in the cipher-image should be signif-
icant even with a small change in the original plain-image; that is, the influence
of one-pixel change in the plain-image should be on whole the cipher-image. Two
measures, i.e., the number of pixel change rate (NPCR) and unified average chang-
ing intensity (UACI) [4], can be adopted to test the influence. The NPCR is used
to measure the number of different pixels between two images. UACI is to measure
the average intensity difference between two images. In the following, by taking
the “Lena” gray image with 256 × 256 pixels, which is a popular image for general
image analysis, as a plain-image, the distribution and correlation of adjacent pixels
of the plain-image and its cipher-image, and NPCR and UACI of the cipher-images
are analyzed.

Distribution: The Lena image and its histogram are plotted in Figs. 9.28(a) and
9.28(b), respectively.

324 P. Li et al.

(a) Plain-image (b) Cipher-image

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3
x 10

4

(c) Distribution of Plain-image

0 50 100 150 200 250
0

50

100

150

200

250

300

350

Grayscale

D
is

tr
ib

ut
io

n

(d) Distribution of Cipher-image

Fig. 9.28 Plain-image, cipher-image and their distributions

It is seen that the distribution of the plain-image is not uniform. In addition,
the cipher-image and its gray histograms are plotted in Figs. 9.28(c) and 9.28(d),
respectively. It is shown that the distribution of the cipher-image becomes uni-
form. This uniformity is further justified by the χ2 test. According to Eq. (9.10),
oi is the observed occurrence frequencies of each gray level, which belongs to
the range [0,255]; ei is expected occurrence frequencies of each gray level and
equal to 256 for the image with 256 × 256 pixels; k is 255 due to the number
of gray levels as 256. χ2 of the distribution of the cipher-image is computed
as 256.09 and smaller than χ2

255;0:05 = 293.25 with a significance level of 0.05,
which verifies that the distribution of the cipher-image is uniform.

Correlation of adjacent pixels: For an ordinary image, each pixel is usually highly
correlated with its adjacent pixels either in horizontal, vertical or diagonal direc-
tions. The correlation property in horizontal, vertical and diagonal direction can
be quantified by the auto-correlation of the sequence consisting of pixels queuing
row by row, column by column and diagonal row by diagonal row, respectively.
The three correlation coefficients of the Lena image and those of its cipher-image
are plotted in Fig. 9.29. It can be observed that the cipher-image obtained from
the cryptosystem retains small correlation coefficients in all directions, which are
similar to those of random image.

9 Cryptography Based on Spatiotemporal Chaotic Systems 325

−200 −150 −100 −50 0 50 100 150 200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

τ

H
or

iz
on

ta
l c

or
re

la
tio

n

(a) Horizontal correlation of plain-image

−200 −150 −100 −50 0 50 100 150 200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

τ

H
or

iz
on

ta
l c

or
re

la
tio

n

(b) Horizontal correlation of cipher-image

−200 −150 −100 −50 0 50 100 150 200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

τ

V
er

tic
al

 c
or

re
la

tio
n

(c) Vertical correlation of plain-image

−200 −150 −100 −50 0 50 100 150 200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

τ

V
er

tic
al

 c
or

re
la

tio
n

(d) Vertical correlation of cipher-image

−200 −150 −100 −50 0 50 100 150 200
−0.2

0

0.2

0.4

0.6

0.8

1

τ

D
ig

on
al

 c
or

re
la

tio
n

(e) Diagonal correlation of plain-image

−200 −150 −100 −50 0 50 100 150 200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

τ

D
ig

on
al

 c
or

re
la

tio
n

(f) Diagonal correlation of cipher-image

Fig. 9.29 Horizontal, vertical and diagonal correlation of plain-image and cipher-image

NPCR: Let C(i, j) and C′(i, j) be the pixel in the ith row and jth column of two
images C and C′, respectively, the NPCR can be defined as

NPCR =

N
∑
i, j

D(i, j)

N
× 100%,

where N is the total number of pixels in the image and D(i, j) is defined as

D(i, j) =
{

0, C(i, j) = C′(i, j)
1, C(i, j) �= C′(i, j)

326 P. Li et al.

To check whether the NPCR of a cryptosystem is similar to that of random image,
the NPCR of a random image is computed, which is given by

NPCRR = 1 − 2S,

where s is the number of bits representing 256 gray scales, therefore, equal to 8;
that is, NPCRR = 0.9961.

The NPCR of the cipher-images encrypted from two images with only one
bit difference via the cryptosystem is computed as 0.996048, which is similar to
that of random images.

UACI: UACI is defined as

UACI =
1
N

(
N

∑
i, j

|C(i, j)−C′(i, j)|
255

)× 100%

Similarly, to check whether the UACI of the cryptosystem is similar to that of
random image, the UACI of a random image is computed, which is given by

UACIR =

1
22S−1

2S−1
∑

i=1
i(i+ 1)

2S − 1
= 0.3346354,

The UACI of the cipher-images encrypted from two images with only one bit
difference via the cryptosystem is computed as 0.335383, which is similar to that
of random images.

Therefore, the cryptosystem can also encrypt an image well.
In summary, since the plain-media with worse or the worst statistical properties

can be encrypted to the cipher-media with random-like statistical properties, the
cryptosystem is able to encrypt multimedia effectively.

9.5 Conclusion

Spatiotemporal chaos has advantages to ciphers because of tis inherent characteris-
tics. This chapter has applied a typical spatiotemporal chaotic system, i.e., a CML,
in cryptography. Firstly, a multiple-output PRBG using a CML is designed. The
statistical properties, such as probability density function (PDF), linear complexity,
auto-correlation and cross-correlation of the PRBGs based on various digitization
methods have been investigated. It has shown that binary-representation method is
the best one. To determine the CMLs, from which the resulting PRBGs have satis-
factory properties, six PRBGs based on six different CMLs have been investigated.
The six CMLs consist of three simple chaotic systems, i.e., logistic map, skew-tent
map and r-adic map, with two simplest coupling methods, i.e., one-way coupling
and diffusive coupling, respectively. PDF, auto-correlation, cross-correlation, sta-
tistical test and cycle length of the six PRBGs with various parameters have been
investigated so as to determine the parameter intervals within which the PRBGs

9 Cryptography Based on Spatiotemporal Chaotic Systems 327

have satisfactory properties. It has been indicated that a one-way coupled logistic-
map lattice with certain parameters has the best properties. This research results
in criteria for designing PRBGs with proper performance. Secondly, a stream ci-
pher employing a one-way coupled logistic-map lattice with certain parameters has
been designed. The security of the stream cipher has been tested by attacking it via
typical attack methods and analyzing its cryptographic properties. Moreover, the ef-
ficiency of the stream cipher has been analyzed. It has shown that the cipher has
higher security, higher efficiency and lower costs by comparing with Hu’s stream
cipher of a complicated configuration. Finally, a multimedia cryptosystem based on
the proposed stream cipher has been designed and implemented in a FPGA. The
EPP is used to communicate data between a PC and the FPGA. A user-friendly in-
terface is designed with Visual C++ 6.0, with which text, image and audio can be
encrypted and decrypted successfully. The properties of the cryptosystem, such as
the sensitivity to the key, speed and efficiency of the FPGA, have been analyzed to
be satisfactory.

References

1. Baranovsky, A., Daems, D.: Design of one-dimensional chaotic maps with prescribed
statistical properties. Int. J. Bifurcat Chaos Appl. Sci. Eng. 5, 1585–1598 (1995)

2. Batista, A.M., Pinto, S.E., Viana, R.L., Lopes, S.R.: Lyapunov spectrum and synchro-
nization of piecewise linear map lattiecs with power-law coupling. Phys. Rev. E 65
(2002)

3. Baptista, M.S.: Cryptography with chaos. Phys. Lett. A 240, 50–54 (1999)
4. Chen, G., Mao, Y., Chui, C.: A symmetric image encryption scheme based on 3rd chaotic

cat maps. Chaos, Solitons & Fractals 21, 749–761 (2003)
5. Garcia, P., Parravano, A., Cosenza, M., Jimenez, J., Marcano, A.: Coupled map networks

as communication schemes. Phys. Rev. E 65, 195–201 (2002)
6. Gotz, M., Kelber, K., Schwarz, W.: Discrete-time chaotic encryption systems-part i: Sta-

tistical design approach. IEEE Trans. Circ. Syst. Fund. Theor. Appl. 44(10), 963–970
(1997)

7. Kaneko, K.: Theory and Application of Coupled Map Lattices. John Wiley and Sons,
New York (1993)

8. Kocarev, L., Jakimoski, G.: Pseudorandom bits generated by chaotic maps. IEEE Trans.
Circ. Syst. Fund. Theor. Appl. 50, 123–126 (2003)

9. Kohda, T., Tsuneda, A.: Pseudonoise sequence by chaotic nonlinear maps and their cor-
relation properties. IEICE Trans. Commun. E76-B, 855–862 (1993)

10. Lasota, A., Mackey, M.C.: Chaos, Fractals, and Noise: stochastic aspects of dynamics.
Springer, New York (1997)

11. Li, P., Li, Z., Halang, W.A., Chen, G.R.: Analysis of a multiple output pseudo-random-
bit generator based on a spatiotemporal chaotic system. Int. J. Bifurcat Chaos Appl. Sci.
Eng. 16(10), 2949–2963 (2006)

12. Li, P., Li, Z., Halang, W.A., Chen, G.R.: A stream cipher based on a spatiotemporal
chaotic system. Chaos, Solitons & Fractals 32(5), 1867–1876 (2007)

13. Li, S.J.: Analyses and New Designs of Digital Chaotic Ciphers. Ph.D thesis, School of
Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, China (2003)

328 P. Li et al.

14. Shujun, L., Xuanqin, M., Yuanlong, C.: Pseudo-random bit generator based on couple
chaotic systems and its applications in stream-cipher cryptography. In: Pandu Rangan,
C., Ding, C. (eds.) INDOCRYPT 2001. LNCS, vol. 2247, pp. 316–329. Springer, Hei-
delberg (2001)

15. Li, S.J., Chen, G.R., Qin, M.: On the dynamical degradation of digital piecewise linear
chaotic maps. Int. J. Bifurcat Chaos Appl. Sci. Eng. 15(10), 3119–3151 (2005)

16. Li, S., Álvarez, G., Chen, G.R.: Breaking a chaos-based secure communication scheme
designed by an improved modulation method. Chaos, Soliton & Fractals 25, 109–120
(2005)

17. Lu, H., Wang, S., Li, X., Tang, G., Kuang, J., Ye, W., Hu, G.: A new spatiotemporally
chaotic cryptosystem and its security and performance analyses. Chaos 14(3), 617–629
(2004)

18. Masuda, N., Aihara, K.: Cryptosystems with discretized chaotic maps. IEEE Trans. Circ.
Syst. Fund. Theor. Appl. 49(1), 28–40 (2002)

19. Menezes, A., Oorschot, P.V., Vanstone, S.: Handbook of Applied Cryptography. CRC
Press, Boca Raton (1997)

20. NIST, Security requirements for cryptographic modules (FIPS pub 140-2) (2001),
http://csrc.nist.gov/publications/fips/fips140-2

21. Sang, T., Wang, R., Yan, Y.: Clock-controlled chaotic keystream generators. Electronics
Letters 34(20), 1932–1934 (1998)

22. Schneier, B.: Applied Cryptography: Protocols, algorithms, and source code in C. John
Wiley and Sons, New York (1996)

23. Schuster, H.G.: Handbook of Chaos Control. WILEY-VCH, Weinheim (1999)
24. Soto, J.: Statistical testing of random number generators (1999),

http://csrc.nist.gov/rng/rng5.html
25. Stojanovski, T., Kocarev, L.: Chaos-based random number generators-part i: Analysis.

IEEE Trans. Circ. Syst. Fund. Theor. Appl. 48(3), 281–288 (2001)
26. Tang, G., Wang, S., Lu, H., Hu, G.: Chaos-based cryptograph incorporated with S-box

algebraic operation. Phys. Lett. A 318, 388–398 (2003)
27. Wang, S., Liu, W., Lu, H., Kuang, J., Hu, G.: Periodicity of chaotic trajectories in real-

izations of finite computer precisions and its implication in chaos communications. Int.
J. Mod. Phys. B 18(17-19), 2617–2622 (2004)

28. Wang, S., Ye, W., Lu, H., Kuang, J., Li, J., Luo, Y., Hu, G.: A spatiotemporal-chaos-
based encryption having overall properties considerably better than advanced encryption
standard. Comm. Theor. Phys. 40, 57–60 (2003)

29. Wikipedia (2006) Chi Test,
http://en.wikipedia.org/wiki/Pearson%7s-chi-square-test

30. Yang, T.: A survey of chaotic secure communication systems. International Journal of
Computational Cognition 2(2), 81–130 (2004)

31. Ye, W., Dai, Q., Wang, S., Lu, H., Kuang, J., Zhao, Z., Zhu, X., Tang, G., Huang, R.,
Hu, G.: Experimental realization of a highly secure chaos communication under strong
channel noise. Phys. Lett. A 330, 75–84 (2004)

32. Zhang, H., Wang, H., Chen, W.: Oversampled chaotic binary sequences with good secu-
rity. J. Circ. Syst. Comput. 11, 173–185 (2002)

33. Zhou, H., Ling, X.: Problems with the chaotic inverse system encryption approach. IEEE
Trans. Circ. Syst. Fund. Theor. Appl. 44(3), 268–271 (1997)

Chapter 10
Evolutionary Decryption of Chaotically
Encrypted Information

Ivan Zelinka and Roman Jasek

Abstract. This chapter introduces the concept of decryption of chaotically en-
crypted information. Five evolutionary algorithms have been used for chaos syn-
chronization here: differential evolution, self-organizing migrating algorithm,
genetic algorithm, simulated annealing and evolutionary strategies in a total of 15
versions. The main aim was to ascertain if evolutionary algorithms are able to iden-
tify the “key” (control parameter) of the chaotic system, which was used to encrypt
information. The proposed scheme is based on the extended map of Clifford strange
attractor, where each dimension has a specific role in the encryption process. In-
vestigation consists of one case study. All the algorithms was 100 times repeated in
order to show and check robustness of the proposed methods and experiment con-
figurations. All data were processed in order to get summarized results and graphs.

10.1 Introduction

Chaotic systems are extremely sensitive to initial conditions and this feature can be
very helpful in the field of cryptography. Various encryption schemes use chaotic
systems for encryption key generation and this key is then used for pixel permuta-
tion and pixel diffusion. But chaotic systems and their maps can be used directly

Ivan Zelinka
Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511,
Zlin 76001, Czech Republic
and
VSB-TUO, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15,
708 33 Ostrava-Poruba, Czech Republic
e-mail: zelinka@fai.utb.cz

Roman Jasek
Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511,
Zlin 76001, Czech Republic
e-mail: jasek@fai.utb.cz

I. Zelinka et al. (Eds.): Evolutionary Algorithms and Chaotic Systems, SCI 267, pp. 329–343.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

330 I. Zelinka and R. Jasek

for encryption purpose. The proposed scheme is based on the extended map of the
Clifford strange attractor, where each dimension has a specific role in the encryption
process. Two dimensions are used for pixel permutation and the third dimension is
used for pixel diffusion. The theoretical and simulation results prove many proper-
ties of this scheme such as large key space and high security.

Image is a multimedia signal providing the most information to a person. For
this reason the question appears as to which way can be signal be secured against
unauthorized reading e.g. in medicine or military fields. Position permutation and
diffusion of the pixels belongs to basic methods of image encryption. Their com-
bination leads to better security against known attacks and is very often has found
practical usage. However, these methods remains open for various encryption al-
gorithms and that is why the knowledge of chaotic systems can be useful. These
systems are extremely sensitive to initial conditions and thus they are suitable can-
didates in the field of cryptography. Many papers have been written on this theme
for that very reason.

Chaos-based image encryption is discussed in detail in the previous chapter as
well as in [14]. Most of the papers have described the process of the generation of
the time series based on a chaotic map. These series are used for the creation of the
binary sequence as an encryption key and pixels of plain image are then rearranged
and XOR operated with this key. For example in [6] three logistic maps are used in
key stream generator and this improved the linear complexity of key stream. Each
paper proposed various type of key generator or improvements of chaotic encryp-
tions in terms of security and speed [17], [2], [10] but only a few of them show
a different way of encryption, such as using hyper-chaotic system for confusing
the relationship between the plain-image and the cipher-image [7], Lorentz system
for key-stream generation [5] or S-box algebraic operations [11], [1]. When other
methods such as image encryption in wavelet domain proposed in [16] are used with
chaos-based encryption scheme, we should expect interesting results. The results for
the audio signals are presented in [8], where the wavelet coefficients were modified
and the audio signal becomes inaudible.

The aim of this chapter is to show that evolutionary algorithms are capable, at
least under strong simplifications, of decrypting information, which has been en-
crypted by chaotic dynamics. We have used results from [9]. The proposed scheme
in this chapter uses the formula of a strange attractor for encryption purposes. It does
not create any encryption key but uses attractor map for pixel permutation and diffu-
sion directly. Parameters of attractor map play the role of encryption keys here and
key-space is very large due to their non-integer character. Chaos based encryption
has been done by means of so called Clifford system (attractor), which is depicted
in Fig. 10.1 - 10.3.

xn = sin(ayn)+ ccos(axn)
yn = sin(bxn)+ d cos(byn)

(10.1)

xn = sin(ayn)+ ccos(axn)
yn = sin(bxn)+ d cos(byn)
zn = sin(eyn)+ f cos(ezn)

(10.2)

10 Evolutionary Decryption of Chaotically Encrypted Information 331

�2 �1 0 1 2

�1

0

1

2

x

y

Fig. 10.1 Clifford attractor according to eq. (10.1).

In the research work of [9], encryption and its robustness with Clifford chaotic
system use has been tested. The tested “message” for encryption were two pictures,
see Fig. 10.4 and Fig. 10.5. In the encryption scheme, the Clifford attractor was
used. It belongs to the trigonometric strange attractors and is described by eq. (10.1)
and eq. (10.2). Fig. 10.6 shows the flowchart of this encryption scheme. The main
parameters (key) are used for the iterative process of the Clifford system. Pixel of
image is used as the initial value of Clifford system. New positions and modification
value is gained after iterations and quantization. These positions are then used for
pixel permutation and the modification value is XOR operated with original pixel
value and the value of the previous pixel. Encrypted pixel is gained this way.

When the proposed schema of encryption (for more see [9]) is used, then one
can obtain a picture as in Fig. 10.7. Histograms related to the original Lena and
its encrypted version are depicted in Fig. 10.8 and Fig. 10.9. Both kind of pictures
shows (of course there is also rigorous mathematical background) that the picture is
really well encrypted.

332 I. Zelinka and R. Jasek

Fig. 10.2 Clifford attractor according to
eq. (10.2)...

Fig. 10.3 ... and another 3D view.

Fig. 10.4 Lena Fig. 10.5 Man with camera.

Fig. 10.6 Scheme with encoding.

10 Evolutionary Decryption of Chaotically Encrypted Information 333

Fig. 10.7 Encrypted Lena.

Fig. 10.8 Histogram of original Lena figure... Fig. 10.9 ...and after encryption.

10.2 Motivation

Motivation of this research is very simple. Chaos based encryption is under intensive
research attention today and encryption itself is vitally important for various com-
munities, from industrial to government. We would like to ascertain if it is possible
to identify key used for encryption by means of evolutionary algorithms.

Good encryption scheme must be resistant against any brute-force attacks, so the
key space must be too large. The total precision of a common PC processor is 16
decimal digits, therefore the number of different combinations of one parameter is
1016 and it corresponds approximately to 253 size key space. Six attractor parame-
ters are used in the proposed scheme; hence the key space is enlarged to 2318. Also,

334 I. Zelinka and R. Jasek

the number of iterations k of Clifford system eq. (10.2) and the number of encryption
rounds m can be considered as keys. Thus, the key space of the proposed scheme is
large enough to make the classical brute-force attack infeasible. Table 10.1 shows
comparison of key spaces of various encryption schemes. Our proposed encryption
scheme has the largest key space.

Table 10.1 Key space comparison

Encryption scheme Key space
Proposed in [9] 2318

[14] 2128

[6] 2158

[7] 2232

[8] 2256

10.3 Selected Evolutionary Algorithm – A Brief Introduction

For the numerical and symbolic experiments described here, stochastic optimization
algorithms such as Differential Evolution (DE) [15], Self Organizing Migrating Al-
gorithm (SOMA) [18], Genetic Algorithms (GA) [12], Simulated Annealing (SA)
[13], [4] and Evolutionary Strategies (ES) [3] were selected. Description of all se-
lected algorithms can be found in the mentioned references or in Chapter 6.

10.4 Evolutionary Decryption

10.4.1 Used Hardware, Problem Selection and Case Studies

Evolutionary decryption in this case study has been done on a specialized grid com-
puter. This grid computer consist of two special Apple servers (for pictures, see
Chapter 6). A total of 78 CPUs were available for computation. This grid has been
used for calculations so that each CPU has been used like a single processor and
thus a rich set of statistically repeated experiments were possible which are not
time dependent. Typical parallel computing has been avoided in experiments de-
scribed here.

10.4.2 Cost Function

The Lena picture has been encrypted by eq. (10.2) with parameters defined as: a
= -1.85, b = 1.48, c = -1.55, d = -1.87, e = -4.32, f = 0.63. In [9] the encrypted
picture was successfully tested for key sensitivity. The set of keys in [9] are very
similar, only one parameter is different with minimal divergence (b = 1.4800001).
This small difference is enough to get after the decryption of a noisy picture as
in Fig. 10.7. To test key sensitivity, which is based on encryption of the “Lena”

10 Evolutionary Decryption of Chaotically Encrypted Information 335

Fig. 10.10 Correlation of Lena picture,
sharp peak at position 100000 represent so-
lution - right estimation of the parameter b.

Fig. 10.11 Detail view.

image by mentioned setting, cross-correlation of their encrypted forms was then
computed. Fig. 10.10 and Fig. 10.11 shows cross-correlation of images encrypted
by these two different set of keys. Correlation value does not exceed 0.02. This
implies very low correlation and very low similarity of images and their pixels.
In general, adjacent pixels of the most plain-images are highly correlated. One of
the requirements of an effective image encryption process is to generate encrypted
image with low correlation of adjacent pixels. Correlation between two horizontally,
vertically and diagonally adjacent pixels of original and encrypted image was also
analyzed in [9].

The fitness (cost function) has been calculated very simply. In fact it was a simple
search for such a value of parameter b so that cross-correlation value was equal to
1, i.e. right parameter of b was found. In total, 6 parameters were used like the key.
To simplify the situation and make calculation time shorter, only parameter b has
been selected for evolutionary estimation. Also, another important note should be
mentioned here: numerical accuracy. Parameter b has been estimated with different
level on numerical precision. The largest was for ∆b = 1×10−15, which was used
to generate in total 200 000 data points around the right value of b. For this type of
precision, a tiny region of parameter b has been explored.

Comparing to another case studies, reported in this book, similarity between two
kind of behavior and other parameters was not measured. Only similarity, via cross
correlation, has been measured. Due to the chaotic nature of cost function landscape
(Fig. 10.11), it was near to random search, thanks to the sophisticated search pro-
cess. The cost function can be simply described by eq. (10.3). From that viewpoint,
it behaves as a blind search, because on cross-correlation graphs, the general trend
is completely flat.

i f
b is such that cross− correlation = 1 then stop

else
continue in evolution

end

(10.3)

336 I. Zelinka and R. Jasek

10.4.3 Parameter Setting

The control parameter settings have been found empirically and are given in
Tables 10.2 - 10.7. Number of cost function evaluations was not an objective in this
study. Only one objective was there - to successfully estimate part of the encrypting
key. We would like to note that settings of all used algorithms here, has been based
on our preliminary experiences and certainly can be improved. However, this topic
is quite numerically time consuming, so we let this topic open for future research.

Table 10.2 Algorithms abbreviation

Algorithm Version Abbreviation
Differential Evolution DEBest1JIter D1

DEBest2Bin D2
DELocalToBest D3
DERand1Bin D4
DERand1DIter D5
DERand2Bin D6

Evolutionary strategies (µ ,λ) ES1
Evolutionary strategies (µ+λ) ES2
Genetic Algorithm G
Simulated annealing with elitism SA1
Simulated annealing without elitism SA2
SOMA AllToAllAdaptive S1

AllToAll S2
AllToOne S3
AllToOneRandomly S4

Table 10.3 DE setting.

Parameter Value
NP 500
F 0.9
CR 0.3
Generations 500
Individual Length 1

Table 10.4 ES setting.

Parameter Value
µ ,λ 500
σ 1
Iterations 100
Individual Length 1

10 Evolutionary Decryption of Chaotically Encrypted Information 337

Table 10.5 GA setting.

Parameter Value
Population size 500
Mutation 0.4
Generations 561
Individual Length

Table 10.6 SA setting.

Parameter Value
No. of particles 500
σ 0.5
kmax 66
Tmin 0.0001
Tmax 1000
α 0.9
Individual Length 1

Table 10.7 SOMA setting.

Parameter Value
PathLength 3
Step .11
PRT 1
PopSize 500
Migrations 10
MinDiv -0.1
Individual Length 1

All algorithms (SOMA, DE, SA, GA, ES) have been evaluated 100 times in order
to find the optimum of both case studies. The primary aim of this comparative study
is not to show which algorithm is better and worst, but to show whether evolutionary
synchronization can be used for decryption of chaotically encrypted information.
Comparing to the other case studies reported in this book, population size is in
this application is set to quite a high number (500). This number has not been se-
lected randomly, but was obtained after a very simple set of simulations. Before
the population size has been determined, a simple investigation on how dependent
successful decryption is on population size was conducted. Fig. 10.12 captures this
dependance. Straightforward dependance on population size is clearly visible there.
When population size is more than 300, then evolutionary algorithms are capable of
finding a larger number of successful decryptions, compared to unsuccessful ones.
This is the reason why 500 individuals has been set for each algorithm.

338 I. Zelinka and R. Jasek

Non successful decryption

Successful decryption

50 100 200 500

20

30

40

50

60

70

80

Population size

Su
cc

es
sf

ul
no

n
su

cc
es

sf
ul

ld
ec

ry
pt

io
n

Fig. 10.12 Dependance of the number of successful decryptions on population size.

10.4.4 Experimental Results

Outputs of all simulations is depicted in Fig. 10.13 and Fig. 10.14, which shows
results of all 100 simulations. In Fig. 10.13 one can see minimal, average as well as
maximal number of cost function evaluations to get successful decryption. We have

D1 D2 D3 D4 D5 D6 ES1 ES2 GA SA1 SA2 S1 S2 S3 S4
0

100 000

200 000

300 000

400 000

500 000

Algorithm

C
os

t
fu

nc
ti

on
ev

al
ua

ti
on

s

Fig. 10.13 Number of cost function evaluations needed to successfully decrypt figure of Lena.
Horizontal line is an average of all.

10 Evolutionary Decryption of Chaotically Encrypted Information 339

62

38

26

74

14

86

40

60

20

80

19

81

22

98

555

95

77

23

54

46

43

57

59

41

57

43

60

40

54

46

D1 D2 D3 D4 D5 D6 ES1 ES2 GA SA1 SA2 S1 S2 S3 S4
0

20

40

60

80

100

Algorithm

N
o.

of
su

cc
es

sf
ul

no
n

su
cc

es
sf

ul
ex

pe
ri

m
en

ts

Fig. 10.14 No. of successful/non-successful decryptions. Each bar is divided into two parts.
The upper part represent number of non-successful decryption, the lower one successful de-
cryption.

to note that in this figure are reported only positive results. All results (positive /
negative; successful / non successful;...) are reported in Fig. 10.14. All informations
together are summarized in Tables 10.8 - 10.9.

Table 10.8 Experiment summarization, part 1.

Algorithm D1 D2 D3 D4 D5 D6 ES1 ES2

Cost function evaluations
see Fig. 10.13
Minimum 2552 51 28282 59560 44722 460 22001 192
Average 161918 111398 134070 289378 160836 125863 70601 6904
Maximum 274100 280484 253892 554632 246312 245866 119201 12009
Total for each algorithm 10038904 2896337 670348 10706974 1769198 1636222 141202 55231

Decryption
see. Fig 10.14
Non-successful 38 74 86 60 80 81 98 95
Successful 62 26 14 40 20 19 2 5
Total 100 100 100 100 100 100 100 100

340 I. Zelinka and R. Jasek

Table 10.9 Experiment summarization, part 2.

Algorithm G SA1 SA2 S1 S2 S3 S4

Cost function evaluations
see Fig. 10.13
Minimum 1112 1586 2169 1828 10 40980 135
Average 119028 47897 59022 82466 81756 72597 116153
Maximum 280837 102941 113166 220822 213012 117624 260978
Total for each algorithm 8808093 2203247 1947736 4865512 4660108 435580 5226899

Decryption
see. Fig 10.14
Non-successful 23 46 57 41 43 40 46
Successful 77 54 43 59 57 60 54
Total 100 100 100 100 100 100 100

10.5 Conclusion

In this chapter, we have studied the possibility of evolutionary decryption of en-
crypted information, based on chaotic systems. Compared to other case studies,
only one “case study” is reported here as given in figures above (Lena decryption).
All details about it are discussed below. As a conclusion, summarizing all previous
informations, it can be stated that:

• Usability of evolutionary algorithms. In experiments reported here, two
very strong simplifications has been taken into consideration. The first one
was that only one parameter b of 6 (a - f from eq. (10.2)) has been estimated.
The second one is partially done by restriction based on computer and used
software accuracy. Part of decryption (cross-correlations “landscape”, where
EAs were searching for optimal value of b) has been made in C++ program-
ming language, thus parameter b has been estimated with level of numerical
precision of ∆b = 1×10−15. Further, evolutionary search has been restricted
to a tiny region which was used to generate in total - only 200 000 data points
around the right value of b. For this kind of precision, a tiny region of pa-
rameter b has been explored. From figures and tables above, it seems that
evolutionary search was quite successful, however, it is very logical to expect
that if more than one parameter in a wider intervals would be estimated, then
evolutionary algorithms would certainly fail.

• Effectiveness of used algorithms and proposed methods can be evaluated
from two viewpoints. The first one is, that we can evaluate each algorithm
separately, according to Fig. 10.14 and Tables 10.8 and 10.9. If we take into
consideration the fact that there was 200 000 possible points to search through,
it seems that evolutionary algorithms give good performance, because accord-
ing to Fig. 10.13 all average values (excluding one - DE4) are below 200 000,
which is better than a “brute force” method. On the other side, it is impor-
tant to note that this conclusion is valid only when when brute force (i.e. all

10 Evolutionary Decryption of Chaotically Encrypted Information 341

4

2 2

5

2

3 3 3

5 5 5

3

4

7

9

0 50 000 100 000 150 000 200 000 250 000
0

2

4

6

8

10

Cost function evaluations

H
it

DE1

Fig. 10.15 Histogram of successful decryp-
tions for DE1.

5
6

10

8

2

9

5

8

2

4

2

7

4 4

1

0 50 000 100 000 150 000 200 000 250 000
0

2

4

6

8

10

Cost function evaluations

H
it

GA

Fig. 10.16 Histogram of successful decryp-
tions for GA.

6

8

3

6

5

7 7

3

4

2

1 1

3 3

0 50 000 100 000 150 000 200 000
0

2

4

6

8

Cost function evaluations

H
it

S1

Fig. 10.17 Histogram of successful decryp-
tions for S1.

3

5

6

8

3

8

5

4

5

3

1

3

1 1 1

0 50 000 100 000 150 000 200 000
0

2

4

6

8

Cost function evaluations

H
it

S2

Fig. 10.18 Histogram of successful decryp-
tions for S2.

possible solutions are investigated) is used so that each solution is randomly
selected. If each solution would be selected consequently in order (i.e. the first,
the second, ...), then the performance of evolution would be overwhelmed on
100 000 (remember, that is the position of the right value of b). If random
search is compared, then result would be similar. Algorithms with values be-
low 100 000 are ES1, ES2, SA1-S3.

The second point of view is that when we evaluate all results of all algo-
rithms together, as reported in Fig. 10.14. In that case, unfortunately it appears
that average effectiveness is almost random.

• Performance- misleading conclusion can also be made when we forget that
only positive results are repoted in Fig. 10.13. For example, algorithm ES2
seems to be absolutely excellent, however when one takes a closer look in
Fig. 10.14, then it is easily visible that values reported in Fig.10.13. are based
on 5 successful results. Cost function evaluations in all 5 cases are low and
probably are a matter of “randomness”, i.e. from only 5 cases we can hardly
deduced any statistics. Another point of view can be obtained when sepa-
rate histograms are reported for each algorithm, for example in Figs. 10.15 -
10.18. It is clearly visible that some algorithms has found more positive results

342 I. Zelinka and R. Jasek

below 100 000 and 200 000, and for some of them it is just simply a uniform
distribution.

• Ability to locate extreme on chaotic landscape. All results plotted and dis-
cussed above shows one quite important preliminary fact. More or less, evo-
lutionary algorithms are capable to find an extreme on chaotic landscapes,
which does not contain so called trend (general trend, average trend, ...), i.e.
such a landscape is completely flat. To get more rigorous conclusion, it is
however needed to do more extensive study in various chaotic landscapes.

Based on all results and their analysis, we can conclude, that chaos based encryp-
tion is still very safe and is probably not solvable by such techniques as evolutionary
algorithms. On the other side, results reported here seems to be an inspiration (at
least for us) for more extensive study on how effective evolutionary decryption is,
when more individuals and decrypted parameters are taken into account.

Acknowledgements. This work was supported by grant No. MSM 7088352101 of the Min-
istry of Education of the Czech Republic and by grants of the Grant Agency of the Czech
Republic GACR 102/09/1680.

References

1. Asim, M., Jeoti, V.: On Improving an Image Encryption Scheme based on Chaotic Lo-
gistic Map. In: ICIAS (2007)

2. Asim, M., Jeoti, V.: Hybrid Chaotic Image Encryption Scheme based on S-box and Ci-
phertext Feedback. In: ICIAS (2007)

3. Beyer, H.-G.: Theory of Evolution Strategies. Springer, New York (2001)
4. Cerny, V.: Thermodynamical approach to the traveling salesman problem: An efficient

simulation algorithm. J. Opt. Theory Appl. 45(1), 41–51 (1985)
5. Fu, C., Zhang, Z., Cao, Y.: An Improved Image Encryption Algorithm Based on Chaotic

Maps. In: ICNC (2007)
6. Fu, C., Zhang, Z., Chen, Z., Wang, X.: An Improved Chaos-Based Image Encryption

Scheme. In: ICCS 2007. Springer, Berlin (2007)
7. Gao, T., Chen, Z.: A new image encryption algorithm based on hyper-chaos. ScienceDi-

rect (2007)
8. Giesl, J., Vlcek, K.: Audio signal encryption in wavelet domain based on chaotic maps.

In: Mendel 2008, Brno (2008)
9. Giesl, J., Vlcek, K.: Image Encryption Based on Strange Attractor. ICGST-GVIP Jour-

nal 9(2), 19–26 (2009)
10. Gu, G., Han, G.: An Enhanced Chaos Based Image Encryption Algorithm. In: ICICIC

(2006)
11. He, X., Zhu, Q., Gu, P.: A New Chaos-Based Encryption Method for Color Image.

Springer, Berlin (2006)
12. Holland, J.: Adaptation in Natural and Artificial Systems. Univ. Michigan Press, Ann

Arbor (1975)
13. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Sci-

ence 220(4598), 671–680 (1983)
14. Mao, Y., Chen, G.: Chaos-Based Image Encryption. Springer, Berlin (2003)

10 Evolutionary Decryption of Chaotically Encrypted Information 343

15. Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover,
F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999)

16. Seo, Y.-H., Kim, D.-W., Yoo, J.-S., Dey, S., Agrawal, A.: Wavelet Domain Image En-
cryption by Subband Selection and Data Bit Selection. Springer, Berlin (2003)

17. Wong, K., Kwok, B., Law, W.-S.: A Fast Image Encryption Scheme based on Chaotic
Standard Map. Springer, Berlin (2006)

18. Zelinka, I.: SOMA – Self Organizing Migrating Algorithm. In: Babu, B., Onwubolu, G.
(eds.) New Optimization Techniques in Engineering, pp. 167–218. Springer, New York
(2004)

Chapter 11
Chaos Synthesis by Evolutionary Algorithms

Ivan Zelinka, Guanrong Chen, and Sergej Celikovsky

Abstract. This chapter introduces the notion of chaos synthesis by means of evolu-
tionary algorithms and develops a new method for chaotic systems synthesis. This
method is similar to genetic programming and grammatical evolution and is applied
alongside evolutionary algorithms: differential evolution, self-organizing migrating,
genetic algorithm, simulated annealing and evolutionary strategies. The aim of this
investigation is to synthesize new and “simple” chaotic systems based on some ele-
ments contained in a pre-chosen existing chaotic system and a properly defined cost
function. The investigation consists of two case studies based on the aforementioned
evolutionary algorithms in various versions. For all algorithms, 100 simulations of
chaos synthesis were repeated and then averaged to guarantee the reliability and ro-
bustness of the proposed method. The most significant results are carefully selected,
visualized and commented in this chapter.

Ivan Zelinka
Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511,
Zlin 76001, Czech Republic
and
VSB-TUO, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15,
708 33 Ostrava-Poruba, Czech Republic
e-mail: zelinka@fai.utb.cz

Guanrong Chen
Department of Electronic Engineering, City University of Hong Kong, Kowloon,
Hong Kong SAR, P.R. China
e-mail: eegchen@cityu.edu.hk

Sergej Celikovsky
Institute of Information Theory and Automation,
Academy of Sciences of the Czech Republic, Faculty of Electrical Engineering,
Czech Technical University in Prague
e-mail: celikovs@utia.cas.cz

I. Zelinka et al. (Eds.): Evolutionary Algorithms and Chaotic Systems, SCI 267, pp. 345–382.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

346 I. Zelinka, G. Chen, and S. Celikovsky

11.1 Introduction

Deterministic chaos, discovered by E. Lorenz [26] is a fairly active area of research
in the last few decades. The Lorenz system produces a well-known chaotic attractor
in a simple three-dimensional autonomous system of ordinary differential equations
[26], [41]. For discrete chaos, there is another famous chaotic system, called logistic
equation [27], which was found based on a predator-prey model showing complex
dynamical behaviors. These simple models are widely used in the study of chaos
today, while other similar models exist (e.g., canonical logistic equation [14] and
1D or 2D coupled map lattices [40]). To date, a large set of nonlinear systems that
can produce chaotic behaviors have been observed and analyzed. Chaotic systems
thus have become a vitally important part of science and engineering at the theo-
retical as well as practical levels of research. The most interesting and applicable
notions are, for example, chaos control and chaos synchronization related to secure
communications, among others.

Recently, the study of chaos is focused not only along the traditional trends but
also on the understanding and analyzing principles, with the new intention of con-
trolling and utilizing chaos toward real-world applications as demonstrated in [6],
[45] and many references therein. The term chaos control was first used by Ott, Gre-
bogi and Yorke in 1990. It represents a process in which a control law is derived and
used such that the original chaotic behavior can be stabilized on a constant level of
output value or a periodic cycle. Since the first experimental report on chaos con-
trol, many control methods have been developed and some are based on the first
approach [33], including pole placement [15], [56] and delay feedback [36], [20],
[21], to name just a couple. Many methods were adapted to spatiotemporal chaos
represented by Coupled Map Lattices (CML). Control laws derived for CML are
usually based on existing system structures [40], or using an external observer [5],
etc. Evolutionary approach for control was also successfully developed in, for ex-
ample, [38], [37], [50].

Simultaneously with these research activities, some new chaotic systems were
found, like the chaotic Chen system [7], [42], which according to [44], [43] is a dual
system of the Lorenz system. Other well-known chaotic systems were discovered,
including dissipative ones like Lozi, Tinkerbell, Ikeda, Sinai, Burger, Duffing sys-
tems, and conservative ones like Chirikov, Arnold, Baker, Nose-Hoover and Henon-
Heiles systems. These chaotic systems were mostly derived from some known
physical systems. A typical example is the logistic equation obtained based on the
predator-prey system or the Lorenz system derived from an atmospheric model. On
the contrary, another direction of research was evolving about chaotic systems syn-
thesis. As a few representative examples, [55] investigated an algorithm for comput-
ing heteroclinic orbits with possible use in chaos synthesis. This investigation partly
used ideas on chaos synthesis and synchronization from [1]. In [12] there was an-
other investigation, which is based mostly on hardware to generate multiple-scroll
strange attractors. Basically very similar research was also carried out in [11], [10].

11 Chaos Synthesis by Evolutionary Algorithms 347

Methods used in generating new chaotic systems from physical systems or from
“manipulations” (e.g., control and parameter estimation [40], [18]) are based on
deterministic mathematical analysis. Along with these classical methods, there are
also numerical methods based partly on deterministic and partly on stochastic meth-
ods, called evolutionary algorithms (EAs) [2]. Evolutionary algorithms were used in
searching solutions in many computationally hard problems including classes of P
and NP problems [13]. In chaos studies, they have been used for chaos control [49],
[50], [37], among others.

The aim of this chapter is to show that EA-based symbolic regression (i.e., han-
dling with symbolic objects to create more complex structures) is capable of syn-
thesizing chaotic behavior in the sense that the mathematical descriptions of chaotic
systems are synthesized symbolically by means of evolutionary algorithms. The
ability of EAs to successfully solve this kind of black-box problems has been proven
(see, for example, [51], [28]), and is reinforced once again here in this chapter.

The paper is organized as follows. The first part outlines the motivation of the
research. This is followed by a brief survey of evolutionary algorithms, along with a
brief description of symbolic regression methods used with evolutionary algorithms.
Next, the method of symbolic regression, called analytic programming, is described
in more detail, which will be used in the rest experiments. Evolutionary synthesis of
chaos is then studied, and finally experimental results are reported, followed by the
conclusion.

11.2 Motivation

In recent years, interests in soft computing methods are increasing, including in par-
ticular evolutionary algorithms. These algorithms are based on similar principles of
biological evolution in the real world. The aim of EAs is to solve computationally
hard problems which are too complex to be solved by conventional methods. In its
canonical form, EAs can be used only for numerical estimation of parameters (usu-
ally, arguments of a given cost function). Together with EAs in the canonical form,
another modification allows to use EAs as a symbolic “constructors”, i.e., a pro-
cessor, for synthesizing complex structures in a symbolic way, based on some pre-
defined simple elements (mathematical operators or electronic elements like diode,
transistor, etc.). The term “symbolic way” stipulates that mathematical structures
and equations, electronic systems, etc., are generated from those simple elements
just mentioned.

Given the above background, the main motivation of this research was the ques-
tion “Is it possible to synthesize the mathematical description of a new chaotic
system, based on simple and elementary mathematical objects, by means of evo-
lutionary computation?” This question was also based partially on the fact that in
engineering applications, it is very often vitally important to know not only when
chaos can be generated but also how to generate it [6], [34]. This is extremely im-
portant in cryptography, for example, where chaotic systems are often used in the

348 I. Zelinka, G. Chen, and S. Celikovsky

design. From a mathematical point of view, it is quite clear that there are some
classes of chaotic systems which can be represented by one canonical form (one
class – one canonical form) [14]. However, generally speaking, it is not so easy to
exactly synthesize a chaotic system with specified features by means of classical
mathematical methods. A positive answer to the question mentioned above would
open possibilities to synthesize not only a set of not-yet-described chaotic systems,
but also some chaotic systems with predefined features. It is believed that such pos-
sibilities would have an important impact on engineering design of various complex
nonlinear systems, especially chaotic systems.

11.3 Brief Review of the Selected Evolutionary Algorithm

For both numerical and symbolic experiments described below, stochastic optimiza-
tion algorithms such as Differential Evolution (DE) [35], Self Organizing Migrating
Algorithm (SOMA) [48], Genetic Algorithms [17], [4] for Simulated Annealing
(SA) and [9] or [3] for Evolutionary Strategies (ES) are selected to use. For detail
description of selected evolutionary algorithms see Chapter 6.

11.4 Symbolic Regression – An Introduction

The term “symbolic regression” represents a process during which measured data
sets are fitted thereby a corresponding mathematical formula is obtained in an ana-

lytical way. An output of the symbolic expression could be, for example, N
√

x2 + y3

k ,
and the like. For a long time, symbolic regression was a domain of human calcula-
tions but in the last few decades computers as generally used for symbolic compu-
tation.

The initial idea of symbolic regression by means of a computer program was
proposed in Genetic Programming (GP) [22], [23]. The other approaches are Gram-
matical Evolution (GE) developed in [39] and Analytic Programming (AP) in [53].
Other interesting investigations using symbolic regression were carried out in [19]
on Artificial Immune Systems and Probabilistic Incremental Program Evolution
(PIPE), which generates functional programs from an adaptive probability distri-
bution over all possible programs. As an extension of GE to the another algorithms
is also [30], where DE was used with GE. Symbolic regression is schematically de-
picted in Fig. 11.1. Generally speaking, it is a process which combines, evaluates
and creates more complex structures based on some elementary and noncomplex ob-
jects, in an evolutionary way. Such elementary objects are usually simple mathemat-
ical operators (+,−,×, ...), simple functions (sin, cos, And, Not, ...), user-defined
functions (simple commands for robots – MoveLeft, TurnRight, ...), etc. An output
of symbolic regression is a more complex “object” (formula, function, command,...),
solving a given problem like data fitting of the so-called Sextic and Quintic prob-
lem described by eq. (11.1) [25], [52], randomly synthesized function by eq. (11.2)
[52], Boolean problems of parity and symmetry solution (basically logical circuits

11 Chaos Synthesis by Evolutionary Algorithms 349

Fig. 11.1 Symbolic regression - schematicall view

synthesis) by eq. (11.3) [24], [53], or synthesis of quite complex robot control com-
mand by eq. (11.4) [23], [32]. Equations (11.1)–(11.4) mentioned here are just a
few samples from numerous repeated experiments done by AP, which are used to
demonstrate how complex structures can be produced by symbolic regression in
general for different problems.

x

(
K1 +

(
x2K3

)
K4 (K5 + K6)

)
∗ (−1 + K2 + 2x(−x − K7)) (11.1)

√
t

(
1

log(t)

)sec−1(1.28)

logsec−1(1.28) (sinh(sec(cos(1)))) (11.2)

Nor[(Nand[Nand[B||B,B&&A],B])&&C&&A&&B,
Nor[(!C&&B&&A||!A&&C&&B||!C&&!B&&!A)&&
(!C&&B&&A||!A&&C&&B||!C&&!B&&!A)||
A&&(!C&&B&&A||!A&&C&&B||!C&&!B&&!A),
(C||!C&&B&&A||!A&&C&&B||!C&&!B&&!A)&&A]]

(11.3)

Prog2[Prog3[Move,Right, IfFoodAhead[Left,Right]],
IfFoodAhead[IfFoodAhead[Left,Right],Prog2[IfFoodAhead[
IfFoodAhead[IfFoodAhead[Left,Right],Right],Right],
IfFoodAhead[Prog2[Move,Move],Right]]]]

(11.4)

11.4.1 Genetic Programming

Genetic programming was the first tool for symbolic regression carried out by means
of computers instead of humans. The main idea comes from genetic algorithms
(GA), which was used in GP [22], [23]. Its ability to solve very difficult problems is
well proven; for example, GP performs so well that it can be applied to synthesize
highly sophisticated electronic circuits [24].

The main principle of GP is based on GA, which is working with populations of
individuals represented in LISP programming language. Individuals in a canonical

350 I. Zelinka, G. Chen, and S. Celikovsky

Fig. 11.2 Parental trees

form of GP are not binary strings, different from GA, but consist of LISP symbolic
objects (commands, functions, ...), etc. These objects come from LISP, or they are
simply user-defined functions. Symbolic objects are usually divided into two classes:
functions and terminals. Functions were previously explained and terminals repre-
sent a set of independent variables like x, y, and constants like π , 3.56, etc.

The main principle of GP is usually demonstrated by means of the so-called trees
(basically graphs with nodes and edges, as shown in Fig. 11.2 and Fig. 11.3, repre-
senting individuals in LISP symbolic syntax). Individuals in the shape of a tree, or
formula like 0.234Z+X −0.789, are called programs. Because GP is based on GA,
evolutionary steps (mutation, crossover, ...) in GP are in principle the same as GA.
As an example, GP can serve two artificial parents – trees on Fig. 11.2 and Fig. 11.3,
representing programs 0.234Z+X −0.789 and ZY (Y +0.314Z). When crossover is
applied, for example, subsets of trees are exchanged. Resulting offsprings of this
example are shown in Fig. 11.3.

Thereafter, offspring fitness is calculated such that the behavior of the just-
synthesized and evaluated individual-tree should be as much as possible similar to
the desired behavior. Here, desired behavior can be understood to be like a measured
data set from some process (a program that should fit them as well as possible) or
like an optimal robot trajectory, i.e., when the program is realizing a sequence of
robot commands (TurnLeft, Stop, MoveForward,...) leading as close as possible to
the final position. This is basically the same for GE.

11 Chaos Synthesis by Evolutionary Algorithms 351

Fig. 11.3 Offsprings

For detailed description of GP, see [23], [25] and for on-line working example,
visit [http://evonet.lri.fr/CIRCUS2/node.php?node=56].

11.4.2 Grammatical Evolution

Another method for the same task in view of the resulting program alike GP was
developed in [29] called grammatical evolution (GE). GE has one advantage com-
pared to GP and this is the ability to use arbitrary programming languages, not only
LISP as in the case of the canonical version of GP. In contrast to other evolution-
ary algorithms, GE was used only with a few search strategies, and with a binary
representation of the populations [29]. Last successful experiment with DE applied
on GE was also done in [30]. Grammatical evolution is in its canonical form based
on GA, thanks to a few important changes it has in comparison with GP. The main
difference is in individual coding.

While GP manipulates in LISP symbolic expressions, GE uses individuals based
on a binary strings. These are transformed into integer sequences and then mapped
into a final program in the Backus-Naur form (BNF) [29], as explained by the fol-
lowing artificial example. Let T = {+,−,×,/,x,y} be a set of operators and ter-
minals and let F = {epr, op, var} be the so-called nonterminals. In this case, the
grammar used for final program synthesis is given in Table 11.1. The rule used for
individuals transforming into a program is based on eq. (11.5) below. Grammatical

352 I. Zelinka, G. Chen, and S. Celikovsky

evolution is based on binary chromosome with a variable length, divided into the
so-called codons (range of integer values, 0-255), which is then transformed into an
integer domain according to Table 11.2.

unfolding = codon mod rules
where rules is number of rules for given nonterminal

(11.5)

Table 11.1 Grammatical evolution - rules

Nonterminals Unfolding Index
expr ::= op expr expr 0

var 1
op ::= + 0’

- 1’
* 2’
/ 3’

var :: X 0”
Y (1”)

Table 11.2 Grammatical evolution - codon

Chromosome Binary Integer BNF index
Codon 1 101000 40 0
Codon 2 11000011 162 2’
Codon 3 1100 67 1
Codon 4 10100010 12 0”
Codon 5 1111101 125 1
Codon 6 11100111 231 1”
Codon 7 10010010 146 Unused
Codon 8 10001011 139 Unused

Synthesis of an actual program is described as the following: start with a non-
terminal object expr. Because the integer value of Codon 1 (see Table 11.2) is 40,
according to eq. (11.5) one has an unfolding of expr = op expr expr (40 mod 2,
2 rules for expr, i.e., 0 and 1). Consequently, Codon 2 is used for the unfolding
of op by * (162 mod 4), which is terminal and thus the unfolding for this part of
program is closed. Then, it continues in unfolding of the remaining nonterminals
(expr expr) till the final program is fully closed by terminals. If the program is
closed before the end of the chromosome is reached, then the remaining codons
are ignored; otherwise, it continues again from the beginning of the chromosome.
The final program based on the just-described example is in this case x · y (see
Fig. 11.4). For a fully detailed description of GE principles, see [29] or consult
[http://www.grammaticalevolution.org/].

11 Chaos Synthesis by Evolutionary Algorithms 353

Fig. 11.4 Final program by GE

11.4.3 Analytic Programming

The final method described here and used for experiments in this chapter, is called
Analytic Programming (AP), which has been compared to GP with very good results
(see, for example, [52], [31], [53], [32]), [54] or visit the online university website
www.ivanzelinka.eu, subpage sites.

The basic principles of AP were developed in 2001 and first published in
[46],[47]. AP is also based on the set of functions, operators and terminals, which
are usually constants or independent variables alike, for example:

• functions: sin, tan, tanh, And, Or,...
• operators: +, -, ×, /, dt,...
• terminals: 2.73, 3.14, t,...

All these objects create a set, from which AP tries to synthesize an appropriate so-
lution. Because of the variability of the content of this set, it is called a general func-
tional set (GFS). The structure of GFS is nested, i.e., it is created by subsets of func-
tions according to the number of their arguments (Fig. 11.5). The content of GFS is
dependent only on the user. Various functions and terminals can be mixed together.
For example, GFSall is a set of all functions, operators and terminals, GFS3arg is
a subset containing functions with maximally three arguments, GFS0arg represents
only terminals, etc. (Fig. 11.5).

AP, as further described later, is a mapping from a set of individuals into a set
of possible programs. Individuals in population and used by AP consist of non-
numerical expressions (operators, functions,...), as described above, which are in
the evolutionary process represented by their integer position indexes (Fig. 11.6,
Fig. 11.7, see also Chapter 2). This index then serves as a pointer into the set of
expressions and AP uses it to synthesize the resulting function-program for cost
function evaluation.

354 I. Zelinka, G. Chen, and S. Celikovsky

Fig. 11.5 Hierarchy in GFS

Fig. 11.6 DSH-Integer index, see Chapter 2

11 Chaos Synthesis by Evolutionary Algorithms 355

Fig. 11.7 Principle of mapping from GFS to programs

Fig. 11.7 demonstrates an artificial example as how a final function is created
from an integer individual via DSH. Number 1 in the position of the first parameter
means that the operator ”+” from GFSall is used (the end of the individual is far
enough). Because the operator “+” must have at least two arguments, the next two
index pointers 6 (sin from GFS) and 7 (cos from GFS) are dedicated to this operator
as its arguments. The two functions, sin and cos, are one-argument functions, so the
next unused pointers 8 (tan from GFS) and 9 (t from GFS) are dedicated to the sin
and cos functions. As an argument of cos, the variable t is used, so this part of the
resulting function is closed (t is zero-argument) in its AP development. The one-
argument function tan remains, and because there is one unused pointer 9, tan is
mapped on t which is on the 9th position in GFS.

To avoid synthesis of pathological functions, a few security “tricks” are used
in AP. The first one is that GFS consists of subsets containing functions with the
same or a smaller number of arguments. The nested structure (see also Fig. 11.5)
is used in the special security subroutine, which measures how far the end of an
individual is and, according to this, mathematical elements from different subsets
are selected to avoid pathological functions synthesis. More precisely, if more ar-
guments are desired then a possible function (the end of the individual is near) will
be replaced by another function with the same index pointer from the subset with
a smaller number of arguments. For example, it may happen that the last argument
for one function will not be a terminal (zero-argument function). If the pointer is
longer than the length of subset, e.g., a pointer is 5 and is used GFS0, then the
element is selected according to the “formula” element = pointer value mod num-
ber of elements in GFS0. In this example, the selected element would be the vari-
able t (see GFS0 in Fig. 11.5).

356 I. Zelinka, G. Chen, and S. Celikovsky

GFS doesn’t need to be constructed only from clear mathematical functions as
demonstrated above, but may also be constructed from other user-defined functions,
e.g., logical functions, functions which represent elements of electrical circuits or
robot movement commands, linguistic terms, etc.

During the evolution of a population, a different set of operators are used, such as
crossover and mutation. In comparison with GP or GE, evolutionary operators like
mutation, crossover, tournament, and selection are fully used in the competence of
the established evolutionary algorithm. AP does not contain them in any scale of its
internal structure. AP is created to be like a superstructure of EA for symbolic re-
gression independent of their algorithmic structures. Operations used in EA are not
influenced by AP and vice versa. For example, if DE is used for symbolic regression
in AP, then all evolutionary operations are completed according to the DE rules and
only by DE. AP just transforms individuals into formulas.

During the evolution, more or less appropriate individuals are synthesized. Some
of these individuals are used to reinforce the evolution towards a better solution
synthesis. The main idea of reinforcement is based on the addition of the just-
synthesized and partly successful program into an initial set of terminals. Reinforce-
ment is based on a user-defined criterion used in decision as to which individual will
be used as an addition into the initial set of terminals. A criterion for the decision
is in fact a threshold, i.e., by a user-defined cost value, under which conditions are
synthesized solutions added into GFS. For example, if the threshold is set to 5, and
if the fitness of all individuals (programs in the population) is bigger than 5, then
evolution is running on the basic, i.e., initially defined, GFS. When the best indi-
vidual in the actual population is less than 5, then it is entirely added into the initial
GFS and is marked as a terminal. Since this moment, evolution is running on the
enriched GFS containing a partially successful program. Thanks to this advantage,
evolution is able to synthesize the final solutions much faster than the AP without
reinforcement. This fact has been repeatedly verified by simulations on different
problems. When the program is added into GFS, the threshold is also set to its fit-
ness. If furthermore an individual with lower fitness than the just-reset threshold
is synthesized, then the old one is rewritten by the better one, and the threshold is
rewritten by a new fitness value again.

Adding a partially successful program as a terminal, just for simplicity, can avoid
programming difficulties if it would be added like a new function. It is quite simi-
lar to automatically defined functions (ADF) for GP; however, the set of functions
and terminals in GP can contain more than one ADF, which of course at least theo-
retically increases the complexity of the search space to the order of n!), including
properly defined arguments of these ADF and critical situation checking (selfcall-
ing,...). This is not a problem of AP reinforcement, because adding a program into
the initial GFS is regarded as a terminal (or a terminal structure), i.e., no function,
no arguments, no selfcalling, etc., and the cardinality of the initial GFS set increases
only by one.

For more exact description with more details, we recommend to read [54].

11 Chaos Synthesis by Evolutionary Algorithms 357

11.5 Experiment Design

11.5.1 Parameter Setting

The control parameter settings of used EAs (with abbreviation in Table 11.3) have
been found empirically and are given in Table 11.4 (SOMA), Table 11.5 (DE), Table
11.6 (GA), Table 11.7 (ES) and Table 11.8 (SA) respectively. The main criterion for
this setting is to keep the setting of parameters as much the same as possible for all
simulations and, of course, the same number of cost function evaluations as well as
the same population sizes (parameter PopSize for SOMA and GA, and NP for DE,
etc). Individual length represents the number of optimized parameters, i.e., in the
case of this research a maximal number of integer indexes will be used in evolution
in order to synthesize a new chaotic system.

AP, being applied on the evolutionary algorithms in 13 versions, was used for
the experimentation. Symbolic objects (e.g., variables, constants,...) for manipula-
tion and complex structure synthesis were selected from the well-known logistic
equation:

xn+1 = Ax(1 − x) (11.6)

Table 11.3 Algorithms abbreviation

Algorithm Version Abbreviation
SOMA AllToOne A

AllToOneRandomly B
AllToAll C
AllToAllAdaptive D

Differential Evolution DERand1Bin E
DERand2Bin F
DEBest2Bin G
DELocalToBest H
DEBest1JIter I
DERand1DIter J

Genetic Algorithm K
Evolutionary strategies (µ ,λ) L
Simulated annealing M

Table 11.4 SOMA setting for 4 basic search strategies: A, B, C, D

Algorithm A B C D
PathLength 3 3 3 3
Step 0.11 0.11 0.11 0.11
PRT 0.1 0.1 0.1 0.1
PopSize 200 200 200 200
Migrations 10 10 10 10
MinDiv -0.1 -0.1 -0.1 -0.1
Individual Length 50 50 50 50

358 I. Zelinka, G. Chen, and S. Celikovsky

Table 11.5 DE setting for 6 basic search strategies: E, F, G, H, I, J

Algorithm E F G H I J
NP 200 200 200 200 200 200
F 0.9 0.9 0.9 0.9 0.9 0.9
CR 0.3 0.3 0.3 0.3 0.3 0.3
Generations 200 200 200 200 200 200
Individual Length 50 50 50 50 50 50

Table 11.6 GA setting for canonical version of GA: K

Algorithm K
PopSize 200
Mutation 0.4
Generations 100
Individual Length 50

Table 11.7 ES setting for search strategy: L

Algorithm L
µ ,λ 200
σ 0.8
Iterations 100
Individual Length 50

Table 11.8 SA setting for search strategy: M

Algorithm M
No. of particles 200
σ 0.5
kmax 66
Tmin 0.0001
Tmax 1000
α 0.95
Individual Length 50

This selection was based on the fact that the logistic equation is a well-known
simple system that can produce chaotic behavior. This equation is also well an-
alyzed. It was expected that evolutionary search would be able to synthesize the
logistic equation, which was in fact a source of elements for GFS. Evolutionary syn-
thesis of logistic equation was actually observed, as further discussed later. Another
reason behind the selection of the logistic equation is that results from designed
experiments can be easily compared, verified and analyzed.

11 Chaos Synthesis by Evolutionary Algorithms 359

The basic set of objects used in symbolic regression are {x, A, +, –, ×, /}. It is
also important to note that experiments provided here, i.e., evolutionary synthesis
of chaotic systems, are not restricted to one-dimensional chaotic maps but can be
applied in principle to synthesis of higher-dimensional and more complex chaotic
systems. This declaration is based on many other successful complex examples ac-
complished by GP, GE and AP in the past.

In this research, a total of 1300 independent simulations were completed, 100
trials by each of the 13 algorithms. Each simulation was started at randomly selected
initial conditions (i.e., each initial population was randomly generated).

11.5.2 Cost Function

The cost function was in fact a little bit complex decision function with multiple
“If” conditions.

The cost function used for chaos synthesis, comparing with other problems like
chaos control [49], [50] or black-box optimization [28], is quite a complex structure
which cannot be easily described by a few simple mathematical equations. Instead,
it is described by the following procedure:

1. Take a synthesized function and evaluate it for 500 iterations with a sampling
step of ∆ A = 0.1.

2. Check if each value of A for all 500 iterations is unique or if some data are
repeated in the series (the first check for chaos, indirectly). If the data are not
unique, then go to step 5, else go to step 3.

3. Take the last 200 values, and for each value of A, calculate its Lyapunov expo-
nent.

4. Check the Lyapunov exponent: If the Lyapunov exponent is positive, write all
important data (synthesized functions, number of cost function evaluations, etc.)
into a file. Then, repeat the simulation for another synthesized system by going
to step 1.

5. If the data are not unique, i.e., if the Lyapunov exponent is not positive, return
an individual fitness, and sum all values whose occurrences in the dataset from
step 1 are more than 1 (simply, it returns the occurrences of periodicity, quasi-
periodicity – higher penalization of an individual in the evolution).

More brief and simple description of above algorithmically defined cost function
can be also done as in eq.11.7.

Data[fsynt, 1, ..., fsynt, 500] := fsynt, k+1 = fsynt, k(xstart), k ∈ [1, 500]⎧⎨
⎩

i f Data[fsynt, 1] �= Data[fsynt, 2] �= �= Data[fsynt, 500]
then

{
calculate λ for Data[fsynt, 300, ... , fsynt, 500] , i f λ > 0 write all to file

else penalize individual
(11.7)

The input to this cost function is a synthesized function and the output is the
fitness (quality) of the synthesized function (i.e., the individual in the population).

360 I. Zelinka, G. Chen, and S. Celikovsky

In the cost function, it was tested twice to ensure that the behavior of the just-
synthesized formula is really chaotic. The first test was done in step 2 (unique
appearance in the data series) and the second one, in step 4, where the Lyapunov
exponent was tested numerically [16].

The reason as to why in step 5, the sum of the non-unique data appearances was
returned is based on the fact that the evolution is searching for minimal values. In
this case, the value 2 means that some data element appears in the 500-data series
twice, and 1 would means that there is no periodicity and thus synthesized system
is a possible candidate for chaos.

To ensure that the results obtained are correct, all written synthesized functions
were used for automatic generation of bifurcation diagrams and Lyapunov expo-
nents, as further discussed below.

11.5.3 Case Studies

Two case studies are presented in this chapter. The first and main one (discrete
systems) is the continuation of research done in [54]. Simulations has been enlarged
(compare with [54]) for other evolutionary algorithms (GA, SA, ES). The second
one is focused on how to synthesize simple discrete systems based on user demand.

11.5.3.1 Discrete Systems: Simulations and Results

All algorithms (SOMA, DE, GA, ES and SA) in 13 versions have been applied for
100 times in order to find artificially synthesized functions that can produce chaos.
All of these experiments were done using the Mathematica software. The primary
aim of this comparative study is not to show which algorithm is better or worst, but
to show that symbolic regression is able to synthesize some new (at least in the sense
of mathematical description and behavior) chaotic systems.

Based on the results from experiments, two different sets of figures were created.
The first set (Fig. 11.8 - Fig. 11.10) shows the performances of different algorithms
from different points of views, the second set (Fig. 11.13 - Fig. 11.88) shows be-
haviors of the selected synthesized programs, i.e., bifurcation diagrams. The syn-
thesized programs are also appended to each figure in the form of the mathematical
formula. Fig. 11.11 shows an example of the so-called program length histogram,
generated from 100 simulations. Program length (in Mathematica command: Leaf-
Count, denoted as LC) means a number of elements that create a mathematical for-
mula.

As an example, the logistic equation (11.6), for which LC = 8, seems at the first
glance to be false (equation contains A,x,1 and ×). However, with a closer look at
this equation via the Mathematica command TreeForm, one gets formula 11.8 (see
also Fig. 11.12), and LC = 8 is thus clear: (×, A, +, 1, ×, -1, x, x).

Times[A,Plus[1,Times[−1,x]],x] (11.8)

11 Chaos Synthesis by Evolutionary Algorithms 361

A B C D E F G H I J K L M
0

2000

4000

6000

8000

10 000

12 000

Algorithm

C
FE

Fig. 11.8 Mutual comparison of all algorithms

A B C D E F G H I J K L M

0

500

1000

1500

2000

2500

3000

Algorithm

C
FE

Fig. 11.9 Mutual comparison of all algorithms - detail

There is an explanation for the contradiction between the fact that the length of
an individual was set to 50 (Table 11.4 - Table 11.8) and Fig. 11.10, where one can
observe programs of lengths larger than 50. The explanation is that when a symbolic
string like “Ax(1−x)” is transformed into an expression, it becomes a formula 11.8,
i.e., it is “artificially” enhanced due to some Mathematica internal programming
reasons.

For a better overview of the performances of all such algorithms and the lengths
of the synthesized programs, Fig. 11.9 was generated and displayed, where for all 13
algorithms, the corresponding minimal, average and maximal values are depicted.
Almost the same quality in LC is observed for all of them.

When evolutionary techniques are used, usually their performances are evaluated
via cost function evaluations [2], [48], i.e., how many times the cost function has
to be re-calculated in order to reach a suitable solution. Fig. 11.8 and Fig. 11.9 are

362 I. Zelinka, G. Chen, and S. Celikovsky

A B C D E F G H I J K L M

10

20

30

40

50

60

Algorithm

L
C

Fig. 11.10 Mutual comparison of LC of all algorithms

10 20 30 40 50 60
LC

0

5

10

15

20

25

t
i

H

Fig. 11.11 Histogram of LC for DERand1Bin

displayed for this purpose. From both pictures, it appears that only algorithms C
and D have less performance. But this is not true, because the SOMA versions C
and D have larger numbers of cost function evaluations (see [48]). Because EA was
stopped only according to a defined number of cost function evaluations (see [48]
or Section 11.5.1 Parameter Setting), these two versions of SOMA logically differ
from each other, as shown in Fig. 11.9 .

For mutual comparisons of algorithm performances in successfully generating
chaotic systems, Fig. 11.13 - Fig. 11.88 and corresponding equations show selected
(visually the best) results of all 1300 simulations in all case studies. With each figure
is joined equations of the synthesized systems. To be “sure” that those bifurcation
diagrams are true, Lyapunov exponents were also generated for each bifurcation
diagram (not completely reported here).

11 Chaos Synthesis by Evolutionary Algorithms 363

Times

A Plus

1 Times

1 x

x

Fig. 11.12 Tree representation of eq. (11.8)

Fig. 11.13 Bifurcation diagram of
2A(2x−1)

A+x2 ...

Fig. 11.14 ... and its tree representation.

Fig. 11.15 Bifurcation diagram of
x

x3

2A3(x−A)(A+x)
+A

...
Fig. 11.16 ... and its tree representation.

364 I. Zelinka, G. Chen, and S. Celikovsky

Fig. 11.17 Bifurcation diagram of
A− A

x
(

A(−x)+ A
x − x(Ax+A+x)+1

A +A
)
+A

...
Fig. 11.18 ... and its tree representation.

Fig. 11.19 Bifurcation diagram of
A(A+x

2A+1 +2A)
1

x(A−2x) +A
...

Fig. 11.20 ... and its tree representation.

11 Chaos Synthesis by Evolutionary Algorithms 365

Fig. 11.21 Bifurcation diagram of
− x

(A+x)(A2+ x
A)(2(A−1)x+x2)−A

+A−x ...
Fig. 11.22 ... and its tree representation.

Fig. 11.23 Bifurcation diagram of
x(3Ax2−Ax+ A

x −2A−2x)
3A+x2 ...

Fig. 11.24 ... and its tree representation.

Fig. 11.25 Bifurcation diagram of
x

A(−x)+ x(−A−x+1)+A
A+x − 1

A(A−x) +4A−x
...

Fig. 11.26 ... and its tree representation.

366 I. Zelinka, G. Chen, and S. Celikovsky

Fig. 11.27 Bifurcation diagram of
A(A(−x)−A−x)

A
x + x

A +2x
...

Fig. 11.28 ... and its tree representation.

Fig. 11.29 Bifurcation diagram of 2x −
x(A+x) ...

Fig. 11.30 ... and its tree representation.

Fig. 11.31 Bifurcation diagram of
A

x

(
A2

x2 +Ax2
)

−x(A+x)+ x
A +2A−x

+x2

...
Fig. 11.32 ... and its tree representation.

11 Chaos Synthesis by Evolutionary Algorithms 367

Fig. 11.33 Bifurcation diagram of
A

− −A2+ 2A+x
A −x

x − x
3A−2x +A

A +Ax+A+x

...
Fig. 11.34 ... and its tree representation.

Fig. 11.35 Bifurcation diagram of
−A+3x− 1

x
A
x −A+x

...

Fig. 11.36 ... and its tree representation.

Fig. 11.37 Bifurcation diagram of
A2

− x2
A + 1

2x(x2−A) − A
x −2x

+x ...
Fig. 11.38 ... and its tree representation.

368 I. Zelinka, G. Chen, and S. Celikovsky

Fig. 11.39 Bifurcation diagram of
(A−x)

(
− Ax2

A+x +A−x2
)

(A+x)(2A+x) ...

Fig. 11.40 ... and its tree representation.

Fig. 11.41 Bifurcation diagram of
(−Ax−x)(Ax−2A+x)

Ax
A+x +x2 ...

Fig. 11.42 ... and its tree representation.

Fig. 11.43 Bifurcation diagram of
A2(A−Ax)

x(− A
x +x+1)

A +A
+x ...

Fig. 11.44 ... and its tree representation.

11 Chaos Synthesis by Evolutionary Algorithms 369

Fig. 11.45 Bifurcation diagram of
A

x2
A −x(x

x−A +A−x)− 3x−A
A+2x +A

−x ...
Fig. 11.46 ... and its tree representation.

Fig. 11.47 Bifurcation diagram of
x

x((A−x)2−2x)
− 2A

x
A −1

−A
+A

−x ...
Fig. 11.48 ... and its tree representation.

370 I. Zelinka, G. Chen, and S. Celikovsky

Fig. 11.49 Bifurcation diagram of
A+x

− A
x −x(3A+x

x +x) ...
Fig. 11.50 ... and its tree representation.

Fig. 11.51 Bifurcation diagram of
(Ax+ x

A +A+x2)(− 2A
A+x +A+x)

x(Ax−x(A−x)+2A+x) −A ...

Fig. 11.52 ... and its tree representation.

Fig. 11.53 Bifurcation diagram of
A2(A−x)

x(A(−x)+A+2x) −2A+x−1
x ...

Fig. 11.54 ... and its tree representation.

11 Chaos Synthesis by Evolutionary Algorithms 371

Fig. 11.55 Bifurcation diagram of
A+ 1

2A −3x
A
2x − A

A+x −A−x
...

Fig. 11.56 ... and its tree representation.

Fig. 11.57 Bifurcation diagram of
− A

2x
(
− x3

A3 − A2
x +A

) ...
Fig. 11.58 ... and its tree representation.

Fig. 11.59 Bifurcation diagram of
A2x(A2+A+2x−1)

(−A−x+1)(A
x −A+x+ 1

x)
...

Fig. 11.60 ... and its tree representation.

372 I. Zelinka, G. Chen, and S. Celikovsky

Fig. 11.61 Bifurcation diagram of

A− A(3A−x2)
A−2x(−A−x)

A +1
...

Fig. 11.62 ... and its tree representation.

Fig. 11.63 Bifurcation diagram of
A

A(A+x)
2x + A

Ax+1
1
x +1

−2A+x−1

...
Fig. 11.64 ... and its tree representation.

11 Chaos Synthesis by Evolutionary Algorithms 373

Fig. 11.65 Bifurcation diagram of

− 2A2x(A(−x)+A+x)
Ax2+2x+1 ...

Fig. 11.66 ... and its tree representation.

Fig. 11.67 Bifurcation diagram of
A
x +2A−x2

A+x
2Ax +x

...

Fig. 11.68 ... and its tree representation.

Fig. 11.69 Bifurcation diagram of
Ax−A−x

A
2x − A(A−x)

Ax+2A−x+1 +A+x
...

Fig. 11.70 ... and its tree representation.

374 I. Zelinka, G. Chen, and S. Celikovsky

Fig. 11.71 Bifurcation diagram of
A

x2(Ax+ x
A)

x−A − 4Ax
A+2x +2x− 1

x

...
Fig. 11.72 ... and its tree representation.

Fig. 11.73 Bifurcation diagram of

− A(A−x)(2x−A)
2A+ 1

A +x2 −A+x ...
Fig. 11.74 ... and its tree representation.

Fig. 11.75 Bifurcation diagram of
x−Ax2(Ax+A+x)

x2
(

A+ 1
x2 −x

)
(x

A +x)
...

Fig. 11.76 ... and its tree representation.

11 Chaos Synthesis by Evolutionary Algorithms 375

Fig. 11.77 Bifurcation diagram of
A3

A2− A
x − (−A−x)(x−3A)

A −A−x
+x ...

Fig. 11.78 ... and its tree representation.

Fig. 11.79 Bifurcation diagram of
(x−A)(A(−x)− A

x −A+2x)

x

(
A

x2(Ax+ 2x
A +2A)+ x

2A

) ...

Fig. 11.80 ... and its tree representation.

Fig. 11.81 Bifurcation diagram of
A

A3x(A−x)+ x3

A2 + A(A−x)
2x3

+A−x ...
Fig. 11.82 ... and its tree representation.

376 I. Zelinka, G. Chen, and S. Celikovsky

Fig. 11.83 Bifurcation diagram of
Ax−2x+2

x2− A
x +x

A

...
Fig. 11.84 ... and its tree representation.

Fig. 11.85 Bifurcation diagram of
A−2A((A−x)2−x)
x(A−x)− 2(Ax+A+x)

A

+1 ...

Fig. 11.86 ... and its tree representation.

Fig. 11.87 Bifurcation diagram of
2Ax(−A2−2x)

A+x2 ...

Fig. 11.88 ... and its tree representation.

11 Chaos Synthesis by Evolutionary Algorithms 377

11.5.3.2 Engineering Design: Preliminary Study

The same principle has been used to synthesize discrete chaotic systems with user
defined conditions, i.e. simple engineering design of chaotic systems has been done
in this part. In this case study, systems with chaotic behavior in the interval [2, 3],
has been accepted while search has been running in interval [0, 4] (overlapping
during search was also allowed). In this preliminary study only DE and SOMA al-
gorithms have been used in 50 repeated simulations. Selected demonstrative results
are depicted on Fig. 11.89 - 11.96. Basic set of objects used in symbolic regression
was again {x,A,+,−,×,/}. Bifurcation diagrams of selected systems (Fig. 11.89 -
11.96) are in a few cases overlapping interval [2, 3] and are different in amplitude. It
is reasonable to expect that if restriction would be applied on amplitude, then such
defined systems would also be synthesized.

Fig. 11.89 Engineering design: bifurca-
tion diagram of

− A(A+2x)

2

(
A(Ax+ A

x)
(A2−A+1)(Ax+2x)(A(x−A)+A)

+x

) .

Fig. 11.90 Engineering design: bifurcation di-

agram of
A(−A2+A+x)+A2+A−x

A2(−x)+A(A2+x)− A+x
Ax −A−2x

.

Fig. 11.91 Engineering design: bifurca-

tion diagram of − Ax(Ax−A2(x−2A))
A(−A−x2+x)−x .

Fig. 11.92 Engineering design: bifurcation di-
agram of

Ax

((A+x)(−A2+A+x)+A+1)

⎛
⎜⎜⎜⎜⎜⎜⎝

A−
A

⎛
⎝ x

2
(
− A

x +A−x
)
(A+x)

+ x+1
A

⎞
⎠

2x

⎞
⎟⎟⎟⎟⎟⎟⎠

.

378 I. Zelinka, G. Chen, and S. Celikovsky

Fig. 11.93 Engineering design: bifurcation

diagram of
A(2A(x−A)+ 1

A−x +A)
− 1

A2x2 + 4x3
A −x(x−A)−x

.

Fig. 11.94 Engineering design: bifurcation
diagram of − Ax2

−A2+2A−x3+x .

Fig. 11.95 Engineering design: bifurca-
tion diagram of

A

x
(

A
−A2+Ax+A−x2 +x

+Ax2−x
)
+ A

2x +A+x
.

Fig. 11.96 Engineering design: bifurca-
tion diagram of

A2

(
Ax(A−x)+ x

A +A−3x
)⎛⎝(x

A +A−x2
)(

Ax2+x
)
+

Ax
(

x
2A+2x −Ax

)
A

x(A+x) − x
A−x

−A

⎞
⎠− A

A+x −A

.

11.6 Conclusion

The aim of this paper is to show how various chaotic systems can be synthesized
by means of evolutionary algorithms. Evolutionary synthesis of chaotic systems has
been applied to 13 basic comparative simulations in this chapter. Each compara-
tive simulation was repeated 100 times and all 1300 results (100 simulations for
each algorithm) were used to create Fig. 11.14 - Fig. 11.88 for overall performance
evaluation of evolutionary chaos synthesis. The results look quite promising and
convincing.

For comparative studies, five algorithms was used - Differential Evolution (DE)
[35], Self Organizing Migrating Algorithm (SOMA) [48], Genetic Algorithms [17],
[4], Simulated Annealing (SA) and [9] Evolutionary Strategies (ES) [3]. They were
chosen to show that evolutionary synthesis of chaos by AP can be implemented via
any evolutionary algorithm and that they all give reasonable results.

The method of symbolic regression described in this paper is relatively simple,
but feasible to implement and easy to use. Based on its principles and its possible

11 Chaos Synthesis by Evolutionary Algorithms 379

universality (as just mentioned, it was tested with 5 evolutionary algorithms –
SOMA, DE, GA, ES and SA in 13 versions), symbolic regression seems quite ca-
pable of synthesizing new dynamical systems for generating chaos.

As a summary, the following statements are presented:

• Result verification. To be sure that the results as presented in this chapter are
correct, all written synthesized functions were used for automatic generation
of bifurcation diagrams and Lyapunov exponents.

• Simulation results. Based on the results (Fig. 11.14 - Fig. 11.88) and the
selected bifurcation diagrams, it can be stated that all simulations give satis-
factory results and that evolutionary synthesis of chaos is capable of solving
this class of problems.

• Range of chaos and interval of observation. During evolutions, chaos was
searched by focusing on interval [0, 4], based on the a priori known behavior
of the logistic equation, whose elements were used in the evolution. Despite
the a priori known information, a few chaotic systems were located outside of
this interval. That was due to the fact that a part of the chaotic behavior was
inside the interval [0, 4] and thus EA was able to identify it. From these facts,
it is clear that EA are able to locate chaos in a wider range than those expected
from some textbook exemplary systems.

• Exemplary system synthesis. Based on the fact that the logistic equation (its
elements and range) is used for chaos synthesis, it is logical to expect that
during evolution (if repeated for many times) the original system should also
be synthesized. That event was also observed for a few times, exactly in the
mathematical form eq. (11.6).

• Mutual comparison. When comparing all algorithms, it is obvious that these
algorithms produced good results. Parameter setting for the algorithms was
based on a heuristic approach and thus there is a possibility that better set-
tings can be found there. Based on these results, it is clear that for symbolic
synthesis via analytic programming any evolutionary algorithm can be used.

• Engineering design. It is quite clear that evolutionary synthesis of chaos can
be applied to engineering design of devices based on chaos (signal transmis-
sion via chaos, chaos-based encryption, and so on). Based on principles and
results reported in this paper, it should be possible to synthesize systems with
some precisely defined chaotic features and attributes.

Future research is being carried on under the framework of evolutionary synthe-
sis of chaos. It is expected that all 13 EAs will also be used for synthesis of chaotic
systems that are not restricted to the simple logistic equation. Based on the results
reported in this chapter and our experience with EAs, it is believed that symbolic re-
gression based on EAs is also able to synthesize various chaotic systems according
to some predefined characteristics and conditions. It can be foreseeable that the pos-
sibility of synthesizing such artificial systems would have an impact on engineering
applications dealing with chaos (signal transmission, cryptography, etc.), which is
worth further investigation.

380 I. Zelinka, G. Chen, and S. Celikovsky

Acknowledgements. This work was supported by grant No. MSM 7088352101 of the Min-
istry of Education of the Czech Republic and by grants of the Grant Agency of the Czech
Republic GACR 102/09/1680.

References

1. Alvarez, J., Puebla, H., Cervantes, I.: Stability of observer-based chaotic communitcation
for a class of Lur’e systems. Int. J. Bifurcat Chaos Appl. Sci. Eng. 7, 1605–1618 (2002)

2. Back, T., Fogel, D., Michalewicz, Z.: Handbook of Evolutionary Computation, Institute
of Physics, London (1997)

3. Beyer, H.: Theory of Evolution Strategies. Springer, New York (2001)
4. Cerny, V.: Thermodynamical approach to the traveling salesman problem: An efficient

simulation algorithm. J. Opt. Theory Appl. 45(1), 41–51 (1985)
5. Chen, G.: Controlling Chaos and Bifurcations in Engineering Systems. CRC Press, Boca

Raton (2000)
6. Chen, G., Dong, X.: From Chaos to Order: Methodologies, Perspectives and Applica-

tions. World Scientific, Singapore (1998)
7. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurcat Chaos Appl. Sci. Eng. 9,

1465–1667 (1999)
8. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, Berlin (1996)
9. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chich-

ester (2001)
10. Dmitriev, A., Panas, A., Starkov, S.: Ring oscillating systems and their application to

the synthesis of chaos generators. Int. J. Bifurcat Chaos Appl. Sci. Eng. 6(5), 851–865
(1996)

11. Dmitriev, A., Efremova, E., Kuzmin, L., Anagnostopoulos, A.: High dimensional RC –
oscillators of chaos. In: International Symposium on Nonlinear Theory and its Applica-
tions, Miyagi, Japan (2001)

12. Eguchi, K., Inoue, T., Tsuneda, A.: Synthesis and analysis of a digital chaos circuit gener-
ating multiple-scroll strange attractors. IEICE Trans. Fundamentals E82-A(6), 965–972
(1999)

13. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, New York (1979)

14. Gilmore, R., Lefranc, M.: The Topology of Chaos: Alice in Stretch and Squeezeland.
Wiley Interscience, New York (2002)

15. Grebogi, C., Lai, Y.: Controlling chaos. In: Schuster, H. (ed.) Handbook of Chaos Con-
trol. Wiley-VCH, New York (1999)

16. Hilborn, R.: Chaos and Nonlinear Dynamics. Oxford University Press, UK (1994)
17. Holland, J.: Adaptation in Natural and Artificial Systems. Univ. Michigan Press, Ann

Arbor (1975)
18. Hu, G., Xie, F., Xiao, J., Yang, J., Qu, Z.: Control of patterns and spatiotemporal chaos

and its application. In: Schuster, H. (ed.) Handbook of Chaos Control. Wiley-VCH, New
York (1999)

19. Johnson, C.: Artificial immune systems programming for symbolic regression. In: Ryan,
C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS,
vol. 2610, pp. 345–353. Springer, Heidelberg (2003)

20. Just, W.: Principles of time delayed feedback control. In: Schuster, H. (ed.) Handbook of
Chaos Control. Wiley-VCH, New York (1999)

11 Chaos Synthesis by Evolutionary Algorithms 381

21. Just, W., Benner, H., Reibold, E.: Theoretical and experimental aspects of chaos control
by time-delayed feedback. Chaos 13, 259–266 (2003)

22. Koza, J.: Genetic Programming: A paradigm for genetically breeding populations of
computer programs to solve problems. Stanford University, Computer Science Depart-
ment, Technical Report STAN-CS-90-1314 (1990)

23. Koza, J.: Genetic Programming. MIT Press, Boston (1998)
24. Koza, J., Keane, M., Streeter, M.: Evolving inventions. Scientific American, 40–47

(2003)
25. Koza, J., Bennet, F., Andre, D., Keane, M.: Genetic Programming III. Morgan Kauf-

namm, New York (1999)
26. Lorenz, E.: Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 20(2),

130–141 (1963)
27. May, R.: Simple mathematical model with very complicated dynamics. Nature 261, 45–

67 (1976)
28. Nolle, L., Zelinka, I., Hopgood, A., Goodyear, A.: Comparison of an self organizing

migration algorithm with simulated annealing and differential evolution for automated
waveform tuning. Adv. Eng. Software 36(10), 645–653 (2005)

29. O’Neill, M., Ryan, C.: Grammatical Evolution. In: Evolutionary Automatic Program-
ming in an Arbitrary Language. Springer, New York (2003)

30. O’Neill, M., Brabazon, A.: Grammatical Differential Evolution. In: Proc. International
Conference on Artificial Intelligence (ICAI 2006), pp. 231–236. CSEA Press (2006)

31. Oplatkova, Z.: Optimal trajectory of robots using symbolic regression. In: Proc. 56th
International Astronautics Congress 2005, Fukuoka, Japan, paper nr. IAC-05-C1.4.07
(2005)

32. Oplatkova, Z., Zelinka, I.: Investigation on artificial ant using analytic programming. In:
Proc. Genetic and Evolutionary Computation Conference 2006, Seattle, WA, pp. 949–
950 (2006)

33. Ott, E., Grebogi, C., Yorke, J.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)
34. Perruquetti, W., Barbot, J.: Chaos in Automatic Control. CRC, Bota Raton (2005)
35. Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover,

F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999)
36. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170,

421–428 (1992)
37. Richter, H.: An evolutionary algorithm for controlling chaos: The use of multi-

objective fitness functions. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-
Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 308–317.
Springer, Heidelberg (2002)

38. Richter, H., Reinschke, K.: Optimization of local control of chaos by an evolutionary
algorithm. Physica D 144, 309–334 (2000)

39. Ryan, C., Collins, J., O’Neill, M.: Grammatical evolution: Evolving programs for an ar-
bitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP
1998. LNCS, vol. 1391, p. 83. Springer, Heidelberg (1998)

40. Schuster, H.: Handbook of Chaos Control. Wiley-VCH, New York (1999)
41. Stewart, I.: The Lorenz attractor exists. Nature 406, 948–949 (2000)
42. Ueta, T., Chen, G.: Bifurcation analysis of Chen’s attractor. Int. J. Bifurcat Chaos Appl.

Sci. Eng. 10, 1917–1931 (2000)
43. Vanecek, A., Celikovsky, S.: Chaos synthesis via root locus. IEEE Trans. on Circ. and

Systems 41, 59–60 (1994)
44. Vanecek, A., Celikovsky, S.: Control Systems: From Linear Analysis to Synthesis of

Chaos. Prentice-Hall, London (1996)

382 I. Zelinka, G. Chen, and S. Celikovsky

45. Wang, X., Chen, G.: Chaotification via arbitrarily small feedback controls: Theory,
method, and applications. Int. J. Bifurcat Chaos Appl. Sci. Eng. 10, 549–570 (2000)

46. Zelinka, I.: Analytic programming by Means of new evolutionary algorithms. In: Proc.
1st International Conference on New Trends in Physics 2001, Brno, Czech Republic, pp.
210–214 (2001)

47. Zelinka, I.: Analytic programming by means of soma algorithm. In: ICICIS 2002, First
International Conference on Intelligent Computing and Information Systems, Cairo,
Egypt, pp. 148–154 (2002)

48. Zelinka, I.: SOMA – Self Organizing Migrating Algorithm. In: Babu, B.V., Onwubolu,
G. (eds.) New Optimization Techniques in Engineering, pp. 167–218. Springer, New
York (2004)

49. Zelinka, I.: Investigation on evolutionary deterministic chaos control. In: Proc. IFAC,
Prague, Czech Republic, paper No. 03187 (2005)

50. Zelinka, I.: Investigation on realtime deterministic chaos control by means of evolution-
ary algorithms. In: Proc. First IFAC Conference on Analysis and Control of Chaotic
Systems, Reims, France, pp. 211–217 (2006)

51. Zelinka, I., Nolle, L.: Plasma reactor optimizing using differential evolution. In: Price,
K., Lampinen, J., Storn, R. (eds.) Differential Evolution: A Practical Approach to Global
Optimization, pp. 499–512. Springer, New York (2005)

52. Zelinka, I., Oplatkova, Z.: Analytic programming – Comparative study. In: Proc. the Sec-
ond International Conference on Computational Intelligence, Robotics, and Autonomous
Systems, Singapore, paper No. PS04-2-04 (2003)

53. Zelinka, I., Oplatkova, Z., Nolle, L.: Analytic programming – Symbolic regression by
means of arbitrary evolutionary algorithms. Int. J. of Simulation, Systems, Science and
Technology 6(9), 44–56 (2005)

54. Zelinka, I., Guanrong, C., Celikovsky, S.: Chaos Synthesis by Means of Evolutionary
algorithms. Int. J. Bifurcat Chaos Appl. Sci. Eng. 18(4), 911–942 (2008)

55. Zhou, T., Chen, G., Celikovský, S.: An algorithm for computing heteroclinic orbits and
its application to chaos synthesis in the generalized Lorenz system. In: Proc. 16th World
Congress of the International Federation of Automatic Control [CD-ROM], Praha, Czech
Republic (2005)

56. Zou, Y., Luo, X., Chen, G.: Pole placement method of controlling chaos in DC–DC buck
converters. Chinese Phys. 15, 1719–1724 (2006)

Chapter 12
Evolutionary Synchronization of Chaotic
Systems

Ivan Zelinka and Ales Raidl

Abstract. This chapter introduces a simple investigation on deterministic chaos
synchronization by means of selected evolutionary techniques. Five evolutionary
algorithms has been used for chaos synchronization here: differential evolution, self-
organizing migrating algorithm, genetic algorithm, simulated annealing and evolu-
tionary strategies in a total of 15 versions. Experiments in this chapter has been done
with two different coupled systems (master - slave) - Rössler-Lorenz and Lorenz-
Lorenz. The main aim of this chapter was to show that evolutionary algorithms,
under certain conditions, are capable of synchronization of, at least, simple chaotic
systems, when the cost function is properly defined as well as the parameters of
selected evolutionary algorithm.This chapter consists of two different case studies.
For all algorithms each simulation was 100 times repeated to show and check the
robustness of proposed methods and experiment configurations. All data were pro-
cessed to obtain summarized results and graphs.

12.1 Introduction

Synchronization is a dynamical process during which one system (synchronized,
slaved) is remoted by another (synchronizing, master) so that the synchronized
system is in a certain manner following the behavior of the master system. The

Ivan Zelinka
Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511,
Zlin 76001, Czech Republic
and
VSB-TUO, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15,
708 33 Ostrava-Poruba, Czech Republic
e-mail: zelinka@fai.utb.cz

Ales Raidl
Charles University, Faculty of Mathematics and Physics,V Holesovickach 2,
180 00 Prague 8, Czech Republic
e-mail: ales.raidl@mff.cuni.cz

I. Zelinka et al. (Eds.): Evolutionary Algorithms and Chaotic Systems, SCI 267, pp. 383–407.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

384 I. Zelinka and A. Raidl

word “synchronization” come from the Greek word “synchronos” (συνχρoνoς)
in which συν (syn) means the same (common,...) and χρoνoς (chronos) means
the “time”. Synchronization can be divided into the following classes [9], [4], [12]:

• Identical synchronization. This synchronization may occur when two iden-
tical chaotic oscillators are mutually coupled (unidirectional or bidirectional
coupling), or when one of them drives the other, which is the case of numerical
study A (Lorenz-Lorenz), reported in this chapter. Basically, if {x1,x2, ...xn}
is a set of state (dynamical) variables of the master system as well as
{x′

1,x
′
2, ...x

′
n} of the slave system, then both systems are synchronized if under

certain initial conditions and t → ∞ is true that |x1 − x
′
1| → 0. This states that

nothing more than large time is enough for dynamics of both systems in a
good approximation. This kind of synchronization is usually called identical
synchronization.

• Generalized synchronization differ from the previous case by the fact that
coupled chaotic oscillators are different and that the dynamical state of one
of the oscillators is completely determined by the state of the other. This is a
case of numerical study B (Rössler-Lorenz), reported in this chapter.

• Phase synchronization is another case of synchronization which occurs when
the oscillators coupled are not totally identical and the amplitudes of the os-
cillator remain unsynchronized, while only oscillator phases evolve in syn-
chrony. There is a geometrical interpretation of this case of synchronization.
It is possible to find a so called plane in phase space in which the projection of
the trajectories of the oscillator follows a rotation around a well-defined cen-
ter. The phase is defined by the angle ϕ(t), described by the segment which
is joining the center of rotation and the projection of the trajectory point onto
the plane.

• Anticipated and lag synchronization. Lets say that we have a synchroniz-
ing system with state variables {x1,x2, ...xn} and a synchronized system with
state variables {x′

1,x
′
2, ...x

′
n}. Anticipated and lag synchronization occurs when

x
′
1(t) = x1(t + τ) holds true. This relation, in fact, states that the dynamics of

one of the systems follows, or anticipates, the dynamics of the other and whose
dynamics is described by delay differential equations.

• Amplitude envelope synchronization is a kind of synchronization which
may appear between two weakly coupled chaotic oscillators. Comparing with
another cases of synchronization, there is no correlation between phases or
amplitudes. One can observe a periodic envelope that has the same frequency
in the two systems. Magnitude of that envelope has the same order of the
difference between the average frequencies of oscillation of both systems. It
is important to note that phase synchronization can develops from amplitude
one, when the strength of the coupling force between two amplitude envelope
synchronized oscillators increases in time.

A rich amount of literature of working with synchronization exist. We can recom-
mend as a representative literature [9], [4] and [12]; all three books are well written
and highly readable. Other research works are [13], [2] (synchronization based on

12 Evolutionary Synchronization of Chaotic Systems 385

time series analysis), [11] (robustness of synchronized systems), and many others.
Avery good starting reference can be found in the above mentioned books [9], [4]
and [12].

The main aim of this research is to show that evolutionary algorithms (EA) are
capable of synchronizing simple chaotic systems, without the knowledge of internal
system structure. The ability of EAs to successfully work with black box type of
problems have been proven; see for example real-time control of plasma reactor
[7], [8], [20] or CML non real-time control by evolutionary algorithms [17], [18],
[21] and Chapter 6 in this book. This chapter is organized as follows. The first
part outlines the motivation of EAs use on synchronization. This is followed by a
very brief note about used evolutionary algorithms whose detailed description is
presented in Chapter 6. Evolutionary synchronization is then studied, and finally
experimental results are reported, followed by conclusion.

12.2 Motivation

Motivation of this research is quite simple. As mentioned in the introduction and
also in the previous chapters, evolutionary algorithms are capable of hard problem
solving. A lot of examples about evolutionary algorithms can be easily found like
their use in control, artificial intelligence, electronic devices design and setting etc.
For more, see for example mentioned references in Chapter 6, section Motivation.
The main question in the case of this chapter was if EAs are able to synchronize
simple chaotic systems. Main attention has been paid to continuous chaotic sys-
tems, i.e. to Rössler and Lorenz systems. All experiments here were designed to
confirm or reject this idea and were designed to be as simple as possible, to show
the methodology of evolutionary algorithms use.

12.3 Selected Evolutionary Algorithm – A Brief Introduction

For the numerical and symbolic experiments described here, stochastic optimiza-
tion algorithms such as Differential Evolution (DE) [10], Self Organizing Migrating
Algorithm (SOMA) [16], Genetic Algorithms (GA) [5], Simulated Annealing (SA)
[6], [3] and Evolutionary Strategies (ES) [1] were selected. Description of all these
algorithms can be found in mentioned references or in Chapter 6.

12.4 Evolutionary Synchronization

12.4.1 Used Hardware, Problem Selection and Case Studies

Synchronization in this case study has been done on a special grid computer, com-
paring to simple PC as in [19]. This grid computer consist of two special Ap-
ple servers (for pictures, see Chapter 6). In total 78 CPUs are available. Emanuel
has been used for calculations such that each CPU has been used like a single

386 I. Zelinka and A. Raidl

processor and thus a rich set of statistically repeated experiments was possible which
was not time consuming. Typical parallel computing has been avoided in experi-
ments described here.

Chaotic systems used in this chapter, has been selected from continuous domain,
especially the Rössler and Lorenz systems. This selection has been done because in
the remaining part of this book are used mostly discrete chaotic systems (1D as well
as CML systems) prior to continuous systems. We would like to show that EAs are
not restricted only to discrete domain, so this was the main reason of Rössler and
Lorenz system use.

Two case studies (A and B) were defined and used. In the first a coupled system
Lorenz-Lorenz (case A, eq. (12.1)) was used. Synchronization has been done via
parameter d and coupling “part” d (x1(t)− x2(t)) in eq. (12.1). The cost function in
this case has been calculated according to eq. (12.3), i.e. difference in master-slave
system in all three system variables.

In the second case study (B), Rössler-Lorenz system was used as described by
eq. (12.2). Synchronization has been done via parameter c and coupling “part”
c(y1(t)− y2(t)) in eq. (12.2). Cost function in this case has been calculated ac-
cording to eq. (12.4), i.e. only, comparing with eq. (12.3), for one system variable
difference in master-slave system.

12.4.2 Cost Function

The fitness (cost function) has been calculated, as mentioned in the last paragraph,
according to the distance between desired synchronizing system state and actual
synchronized system state. The minimal value of this cost function, guarantees the
best solution. The aim of all simulations was to find the best solution, i.e. a solution
that returns the cost value as small as possible. The difference between eq. (12.3)
and eq. (12.4) is in the number of used state variables. In the case of eq. (12.3)
it is logical to expect that all three state variables will be synchronized perfectly,
while in the case of the eq. (12.4) we expected that only synchronized variable,
in this case y2(t), will be synchronized in an acceptable manner. Results depicted
later in various figures has confirmed all these presumptions. The cost value was in
fact the absolute value of summarization of grey areas between synchronizing and
synchronized system output (time series) as demonstrated in Fig. 12.1.

Lorenz − Lorenz synchronization
Lorenz system (master) :
x′

1(t) = −a(x1(t)− y1(t))
y′

1(t) = −x1(t)z1(t)+ bx1(t)− y1(t)
z′

1(t) = x1(t)y1(t)− cz1(t)

Lorenz system (slave) :
x′

2(t) = −a2 (x2(t)− y2(t))+ d(x1(t)− x2(t))
y′

2(t) = −x2(t)z2(t)+ bx2(t)− y1(t)
z′

2(t) = x2(t)y2(t)− z2(t)

(12.1)

12 Evolutionary Synchronization of Chaotic Systems 387

Rössler − Lorenz synchronization
Rössler system (master) :
x′

1(t) = −y1(t)− z1(t)
y′

1(t) = −x1(t)− y1(t)
5

z′
1(t) = (x1(t)− 5.7) z1(t)+ 0.2

Lorenz system (slave) :
x′

2(t) = −a(x2(t)− y2(t))
y′

2(t) = −x2(t)z2(t)+ bx2(t)+ c(y1(t)− y2(t))
z′

2(t) = x2(t)y2(t)− z2(t)

(12.2)

CFLL(a2,d) =
100∫
0

|x1(t)− x2(t)|+ |y1(t)− y2(t)|+ |z1(t)− z2(t)|dt (12.3)

CFRL(a,b,c) =
200∫
0

|(y1(t)− y2(t)|dt (12.4)

0 5 10 15 20

15

10

5

0

5

10

15

20

time s

x 1
t

,
x 2

t

Fig. 12.1 Principle of cost value calculation. For all three variables x(t), y(t) and z(t) has
been calculated difference between behavior of synchronizing and synchronized system (light
grey area).

388 I. Zelinka and A. Raidl

12.4.3 Parameter Setting

The control parameter settings have been found empirically and are given in Tables
12.1 - 12.6. The main criterion for this setting was to keep the same setting of param-
eters as much as possible alongside the same number of cost function evaluations
as well as the population size. Individual length represents the number of optimized
parameters (in this case coupling parameter d (L-L system) or c (R-L system)).

We would like to note that settings of all used algorithms has been based on our
preliminary experiences and certainly can be improved. However this topic is quite
numerically time consuming, so we let this topic open for future research.

All algorithms (SOMA, DE, SA, GA, ES) have been applied 100 times in order
to find the optimum of both case studies. The primary aim of this comparative study
is not to show which algorithm is better and worst, but to show that evolutionary
synchronization can be really used for chaotic systems. Outputs of all simulations
are depicted in Fig. 12.6 - 12.12, and Fig. 12.34 - 12.36, which shows results of all
100 simulations for each case study.

Table 12.1 Algorithms abbreviation

Algorithm Version Abbreviation
Differential Evolution DEBest1JIter D1

DEBest2Bin D2
DELocalToBest D3
DERand1Bin D4
DERand1DIter D5
DERand2Bin D6

Evolutionary strategies (µ ,λ) ES1
Evolutionary strategies (µ+λ) ES2
Genetic Algorithm G
Simulated annealing with elitism SA1
Simulated annealing without elitism SA2
SOMA AllToAllAdaptive S1

AllToAll S2
AllToOne S3
AllToOneRandomly S4

Table 12.2 DE setting for case studies A and B

Case Study A B
NP 100 100
F 0.9 0.9
CR 0.3 0.3
Generations 500 500
Individual Length 2 3

12 Evolutionary Synchronization of Chaotic Systems 389

Table 12.3 ES setting for case studies A and B

Case Study A B
µ ,λ 100 100
σ 1 1
Iterations 100 100
Individual Length 2 3

Table 12.4 GA setting for case studies A and A

Case Study A B
Population size 100 100
Mutation 0.4 0.4
Generations 500 500
Individual Length 2 3

Table 12.5 SA setting for case studies A and B

Case Study A B
No. of particles 100 100
σ 0.5 0.5
kmax 66 66
Tmin 0.0001 0.0001
Tmax 1000 1000
α 0.95 0.95
Individual Length 2 3

Table 12.6 SOMA setting for case studies A and B

Case Study A B
PathLength 3 3
Step .11 .11
PRT 0.1 0.1
PopSize 20 20
Migrations 10 10
MinDiv -0.1 -0.1
Individual Length 2 3

12.4.4 Experimental Results

Two main case studies has been done in this chapter. Case study A (synchroniza-
tion of Lorenz-Lorenz system), and B (synchronization of Rössler-Lorenz system).
In both cases attention was paid to parameter estimation, obtained cost value as
well as to cost function evaluations needed to reach acceptable setting of given syn-
chronization. All data has been processed in order to get viable statistics about the

390 I. Zelinka and A. Raidl

evolutionary dynamics behind these experiments. These statistics has been pro-
cessed into figures, which shows the performance of evolutionary techniques from
different point of views. Average values are depicted as horizontal line in each fig-
ure.

12.4.4.1 Case Study A: Lorenz - Lorenz Synchronization

In the first case study, we have used for synchronization two identical systems
Lorenz - Lorenz systems (eq. (12.1), Fig. 12.2). Synchronization has been done
by coupling of variables x1,2(t) via parameter d. The difference between them has

X1

y1 z1

X2

y2 z2

Drive / Lorenz Response / Lorenz

Fig. 12.2 Schematic of Lorenz-Lorenz synchronization. Variable x2 has been directly
synchronized.

5 0 5
0

1000

2000

3000

4000

5000

Coupling parameter d

C
os

tv
al

ue

Fig. 12.3 Dependance of cost function value on coupling parameter d.

12 Evolutionary Synchronization of Chaotic Systems 391

Fig. 12.4 Dependance of cost function value on coupling parameter d and parameter a2.

D1 D2 D3 D4 D5 D6 ES1 ES2 GA SA1 SA2 S1 S2 S3 S4
0

20 000

40 000

60 000

80 000

Algorithm

C
os

t
fu

nc
ti

on
ev

al
ua

ti
on

s

Fig. 12.5 Cost function evaluations...

D1 D2 D3 D4 D5 D6 ES1 ES2 GA SA1 SA2 S1 S2 S3 S4
0

5000

10 000

15 000

20 000

25 000

30 000

Algorithm

C
os

t
fu

nc
ti

on
ev

al
ua

ti
on

s

Fig. 12.6 ... and detail view; horizontal line
is an average value of all.

been calculated and multiplied by parameter d, see (d (x1(t)− x2(t))) in eq. (12.1).
In fact, the search for optimal parameter setting has been done with dependance on
two parameters: on parameter d and a2 in eq. (12.1).

Complexity of cost function landscape, is depicted on Fig. 12.3 for dependance
only on coupling parameter d and Fig. 12.4 for dependance at both parameters. All
parameters were varied around nominal values, as referred in the literature. Com-
plexity is very high, as anyone can easily see. In the chaotic landscape a linear-like
trend is visible. Thanks to this trend, it is visible that the minimum can be expected
at position {d, a2} = {8,10}.

392 I. Zelinka and A. Raidl

D1 D2 D3 D4 D5 D6 ES1 ES2 GA SA1 SA2 S1 S2 S3 S4

20

30

40

50

60

Algorithm

C
os

t
va

lu
e

Fig. 12.7 Cost value...

D1 D2 D3 D4 D5 D6 ES1 ES2 GA SA1 SA2 S1 S2 S3 S4

27.6

27.8

28.0

28.2

28.4

28.6

Algorithm

C
os

t
va

lu
e

Fig. 12.8 ... and detail view; horizontal line
is an average value of all.

D1 D2 D3 D4 D5 D6 ES1 ES2 GA SA1 SA2 S1 S2 S3 S4

9.75

9.80

9.85

9.90

9.95

10.00

10.05

Algorithm

P
ar

am
et

er
a

Fig. 12.9 Estimation of parameter a ...

D1 D2 D3 D4 D5 D6 ES1 ES2 GA SA1 SA2 S1 S2 S3 S4

9.975

9.980

9.985

9.990

9.995

10.000

Algorithm

P
ar

am
et

er
a

Fig. 12.10 ... and detail view; horizontal
line is an average value of all.

D1 D2 D3 D4 D5 D6 ES1 ES2 GA SA1 SA2 S1 S2 S3 S4

10

15

20

Algorithm

P
ar

am
et

er
d

Fig. 12.11 Estimation of parameter d ...

D1 D2 D3 D4 D5 D6 ES1 ES2 GA SA1 SA2 S1 S2 S3 S4

7.7

7.8

7.9

8.0

8.1

8.2

8.3

Algorithm

P
ar

am
et

er
d

Fig. 12.12 ... and detail view; horizontal
line is an average value of all.

During this case study 5 algorithms has been used in 15 versions. Attention was
focused on quality from the cost function evaluations point of view, further on cost
value, parameter a2 setting as well as setting of the coupling parameter d. Parameters
a2 and d has been estimated simultaneously, i.e. individual dimension was 2. All
these results are reported in Figs. 12.5 - 12.12. Together with minimal, maximal
and average values, average vaue of all algorithms (horizontal line) is also depicted.

12 Evolutionary Synchronization of Chaotic Systems 393

0 20 40 60 80 100

�4

�2

0

2

4

6

time �s�

x 1
�t

�
�

x 2
�t

�

Fig. 12.13 Difference between x1(t) and
x2(t).

0 20 40 60 80 100

�20

�15

�10

�5

0

5

10

time �s�

z 1
�t

�
�

z 2
�t

�

Fig. 12.14 Difference between z1(t) and
z2(t).

50 55 60 65 70
�0.4

�0.2

0.0

0.2

0.4

time �s�

x 1
�t

�
�

x 2
�t

�

Fig. 12.15 Difference between x1(t) and
x2(t) - detail...

50 55 60 65 70

�15

�10

�5

0

5

10

15

time �s�

x 1
�t

�,
x 2

�t
�

Fig. 12.16 ...and total view on both vari-
ables x1(t) and x2(t). Both tme series are
almost identical.

On Fig. 12.5 and Fig. 12.6 the performance (how many cost function evaluations
was needed to find acceptable setting) of all algorithms is reported. Fig. 12.7 and
Fig. 12.8 show the same for cost value related to used estimated setting (i.e. how
much differs the behavior of both systems), Fig. 12.9 and Fig. 12.10 show how well
the parameter a2 has been estimated and Fig. 12.11 and Fig. 12.12 the give the same
for parameter d. Difference of estimated parameters is still in the range of acceptable
values (i.e. slaved system has been synchronized very well) ism shown in Fig. 12.14,
as it is visible in Fig. 12.13 and 12.14. Difference between the worst and the best
behavior of x1,2 and z1,2 is depicted there. The biggest impact on cost value come
from interval [0, 7s], before systems are well synchronized. Another anomaly is at
position 92s, which is just a sharp peak with little impact on cost value. Middle part
is depicted in Fig. 12.15 and related time series of both variables x1,2 is shown in
Fig. 12.16.

From all figures it is visible that all EAs has demonstrated almost the same perfor-
mance. Only a few differences has been recorded thanks to “outliers” (values “far”
away from average), probably caused by non-optimal setting of selected algorithm.
The problem of finding real optimal setting of used algorithms is quite complex and
time consuming process and it was not an objective of this study.

394 I. Zelinka and A. Raidl

Table 12.7 Experiment summarization, Lorenz - Lorenz, part 1.

Algorithm D1 D2 D3 D4 D5 D6 ES1 ES2

Cost function evaluations
see Fig. 12.5
Minimum 2820 4588 4428 4240 8180 5150 401 237
Average 9828.24 10977.46 9386.76 10330.74 13300.32 13088.38 3702.85 1145.04
Maximum 15120 16020 12704 15356 17748 18714 11201 2055
Total for each algorithm 982824 1097746 938676 1033074 252706 1308838 370285 114504

Cost Values
see. Fig 12.7
Minimum 27.50 27.58 27.50 27.51 27.53 27.51 18.03 22.69
Average 27.82 27.82 27.82 27.83 27.82 27.81 24.98 26.13
Maximum 27.99 27.99 27.99 27.99 27.99 27.99 27.98 27.99

Parameter a setting
see. Fig 12.9
Minimum 9.9969 9.9969 9.9967 9.9968 9.9972 9.9967 9.8399 9.9376
Average 9.9988 9.9987 9.9987 9.9988 9.9987 9.9988 10.002 9.999
Maximum 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 10.081 10.055

Parameter d setting
see. Fig 12.11
Minimum 7.8500 7.8476 7.8553 7.8434 7.8911 7.8424 7.8772 7.9012
Average 7.9464 7.9482 7.9476 7.9430 7.9456 7.9464 11.589 9.8122
Maximum 7.9987 7.9992 7.9990 7.9991 7.9917 7.9979 23.048 13.365

Table 12.8 Experiment summarization, Lorenz - Lorenz, part 2.

Algorithm G SA1 SA2 S1 S2 S3 S4

Cost function evaluations
see Fig. 12.5
Minimum 32180 3844 1346 1508 26338 2458 4534
Average 48490.67 4972.66 4909.23 14908.32 58855.69 7371.88 10993.90
Maximum 50100 4984 4984 22006 83430 10794 11220
Total for each algorithm 872832 497260 412375 1490832 3766764 737188 1099390

Cost Values
see. Fig 12.7
Minimum 27.78 27.94 27.69 27.50 27.53 27.53 27.65
Average 28.93 32.89 33.15 27.86 27.84 27.85 31.36
Maximum 31.48 44.65 52.80 27.99 27.99 27.99 65.48

Parameter a setting
see. Fig 12.9
Minimum 9.9839 9.9225 9.8695 9.9966 9.9966 9.9968 9.7364
Average 9.9946 9.9757 9.9745 9.9985 9.9987 9.9986 9.9799
Maximum 9.9997 9.9997 9.9998 9.9999 9.9999 9.9999 9.9999

Parameter d setting
see. Fig 12.11
Minimum 7.5454 7.0813 7.2120 7.8497 7.8472 7.8618 7.1813
Average 7.8311 7.7000 7.6908 7.9442 7.9383 7.9450 7.8539
Maximum 7.9942 7.9929 7.9989 7.9995 7.9979 7.9997 7.9979

12 Evolutionary Synchronization of Chaotic Systems 395

Fig. 12.17 Schematic of Rössler-Lorenz synchronization. Variable y2 has been directly syn-
chronized.

12.4.4.2 Case study B: Rössler - Lorenz Synchronization

In this case study we have used the selected evolutionary algorithms on synchro-
nization of two different systems (Fig. 12.17), i.e. on synchronization of the Rössler
- Lorenz systems (see Fig. 12.18 and Fig. 12.19). Synchronization has been done
by the coupling of variables y1,2(t) so that the difference between them has been
calculated and multiplied by parameter c, see (c(y1(t)− y2(t))) in eq. (12.2). Typi-
cal difference between non-synchronized and synchronized behavior is depicted in
Fig. 12.20 - Fig. 12.25. The effect of synchronization on synchronized system is
depicted in Fig.12.26 and Fig. 12.27 (compare with Fig. 12.19).

To estimate the complexity of cost function landscape, a series of figures show-
ing dependance on three parameters a, b and c in eq. (12.2), has been generated.
All three parameters were varied around nominal values referred in the literature.
For each parameter change, the behavior of master-slave system has been generated
and the cost value calculated. In Fig. 12.28 and 12.29 dependance on various val-
ues of parameter a is depicted, in Fig. 12.30 and 12.31 on parameter b and in Fig.
12.32 and 12.33 on parameter c. It is clear that the cost function landscape (three
dimensional surface (three variables a, b and c) is in four dimensional space - fourth
dimension is cost value) is very complex, nonlinear and almost erratic. Thus the use
of evolutionary computation is again acceptable in this case.

Similarly, like in the previous case study, 5 algorithms in 15 versions have been
used. Attention, like in the previous case, was focused also on cost value, parameter
a, b setting as well as the setting of the coupling parameter c. All three parameters
has been estimated simultaneously, i.e. individual dimension was 3. All these results
are reported in Figs. 12.34 - 12.39. Together with minimal, maximal and average
values, the average vaue of all algorithms (horizontal line) is also depicted. Fig.
12.37 show the same for the cost value related to used estimated setting (i.e. how
much differs behavior of both systems), Fig. 12.34 show how well parameter a has
been estimated and the same is done in Fig. 12.35 for parameter b and Fig. 12.36
for parameter c. The number of cost function evaluations needed for each algorithm
is reported in Fig. 12.38 and 12.39. From all figures, it is visible that all EAs have

396 I. Zelinka and A. Raidl

�5

0

5

10

x

�10

�5

0

5
y

0

5

10

15

20

z

Fig. 12.18 Rössler attractor (master), see.
eq. (12.2)

�10

0

10
x

�20

0

20
y

0

20

40

z

Fig. 12.19 Lorenz attractor (slave), see. eq.
(12.2)

demonstrated almost the same performance and generally works as well as in the
previous case.

After evolution, it was discovered that EAs had found different setting than is
reported in literature, i.e. {a,b,c} = {0.13089,3.35025,69.9999} (cost value was
7.69753) instead of {a,b,c} = {3,26.5,69} as used in Fig. 12.20 - Fig. 12.25. The
behavior of evolutionary synchronized R-L system is depicted in Fig. 12.41 - Fig.
12.44. From figures is clearly visible that variable y2(t) has been synchronized very
well while another state variables were almost supressed. Fig. 12.44 shows the dif-
ference between y1(t) and y2(t). When comparing evolutionary setting of parameter
a with Fig. 12.28, then it is clear that EAs have found different settings (extreme
on function) than is visible in this figure (around a = 1). Value a = 0.13089 signal-
ize, that there is more deeper extreme, which is depicted in Fig. 12.40. It is located
almost on the left side. Despite the fact that its location is on the border of the
searched space and there are another extremes (including many of chaotic) EAs has
successfully found this setting repeatedly.

12.5 Conclusion

In this chapter we have studied the possibility on synchronization with evolution-
ary estimation of coupling parameters as well as internal parameters of selected
chaotic systems. Two kind of synchronized systems were used: Lorenz - Lorenz
(L-L) and Rössler - Lorenz (R-L) systems. Attention has been paid on synchro-
nization of variable x2(t) for L-L synchronization and state variable y2(t) in the
case of R-L synchronization. For the comparative study optimization algorithms
such as Differential Evolution (DE) [10], Self Organizing Migrating Algorithm
(SOMA) [16], Genetic Algorithms (GA) [5], Simulated Annealing (SA) [6], [3] and

12 Evolutionary Synchronization of Chaotic Systems 397

150 160 170 180 190 200

�10

�5

0

5

10

time �s�

x 1
�t

�,
x 2

�t
�

Fig. 12.20 Rössler-Lorenz system for vari-
ables x1(t) and x2(t) (eq. (12.2)) with c = 0
(not synchronized)...

150 160 170 180 190 200

�10

�5

0

5

10

time �s�

x 1
�t

�,
x 2

�t
�

Fig. 12.21 ... and under synchronization (c
= 69.4458). Lorenz system is dotted light
red curve.

150 160 170 180 190 200

�20

�10

0

10

20

time �s�

y 1
�t

�,
y 2

�t
�

Fig. 12.22 Rössler-Lorenz system for vari-
ables y1(t) and y2(t) (eq. (12.2)) with c = 0
(not synchronized)...

150 160 170 180 190 200

�10

�5

0

5

time �s�

y 1
�t

�,
y 2

�t
�

Fig. 12.23 ... and under synchronization (c
= 69.4458). Lorenz system is dotted light
red curve.

150 160 170 180 190 200
0

10

20

30

40

time s

z 1
t

,
z 2

t

Fig. 12.24 Rössler-Lorenz system for vari-
ables z1(t) and z2(t) (eq. (12.2)) with c = 0
(not synchronized)...

100 120 140 160 180 200
0

5

10

15

20

time �s�

z 1
�t

�,
z 2

�t
�

Fig. 12.25 ... and under synchronization (c
= 69.4458). Lorenz system is dotted light
red curve.

Evolutionary Strategies (ES) [1] were selected. As a conclusion the following state-
ments are presented:

• Algorithm performance. Based on all informations and figures reported in
this chapter, it can be stated, that all EAs showed good performance. In both

398 I. Zelinka and A. Raidl

�5
0

5

x

�5 0 5
y

0

20

40

z

Fig. 12.26 Synchronized Lorenz attractor

Fig. 12.27 Synchronized Lorenz attractor, another view.

case studies the averages of each algorithm were “almost” on the same value
(average of all) which is depicted by a horizontal line. For L-L synchroniza-
tion see Fig. 12.5 - 12.16; for R-L synchronization see Fig. 12.34 - 12.39.
Values far from average can be explained by the fact that a) algorithms are

12 Evolutionary Synchronization of Chaotic Systems 399

Fig. 12.28 Dependance of parameter a in
Rössler-Lorenz system (eq. (12.2))...

Fig. 12.29 ... and its detail.

Fig. 12.30 Dependance of parameter b in
Rössler-Lorenz system (eq. (12.2))...

Fig. 12.31 ... and its detail.

0 10 20 30 40 50 60 70

100

200

300

400

c

C
os

tv
al

ue

Fig. 12.32 Dependance of parameter c in
Rössler-Lorenz system (eq. (12.2))...

35 40 45 50 55 60 65 70

60

70

80

90

100

c

C
os

tv
al

ue

Fig. 12.33 ... and its detail.

of evolutionary (pseudorandom, etc...) nature; b) settings of algorithm control
parameters is not optimal; c) algorithms need longer time to get better values.
However the most simplest explanation is that all those extreme values are just
“outliers”, i.e. only a few values estimated not so optimally, due to random-
ness of evolutionary algorithms.Two randomly selected histograms showing
outliers are depicted in Fig. 12.45 and 12.46. From Fig. 12.45 it is clearly visi-
ble that cost function evaluation (approx. 30000, see Fig. 12.38, algorithm S4)

400 I. Zelinka and A. Raidl

D1 D2 D3 D4 D5 D6 ES1 ES2 GA SA1 SA2 S1 S2 S3 S4

0.00

0.05

0.10

0.15

0.20

0.25

Algorithm

P
ar

am
et

er
a

Fig. 12.34 Estimation of parameter a ...

D1 D2 D3 D4 D5 D6 ES1 ES2 GA SA1 SA2 S1 S2 S3 S4

0

5

10

15

20

Algorithm

P
ar

am
et

er
a

Fig. 12.35 ... and of parameter b .

D1 D2 D3 D4 D5 D6 ES1 ES2 GA SA1 SA2 S1 S2 S3 S4
45

50

55

60

65

70

75

Algorithm

P
ar

am
et

er
c

Fig. 12.36 Estimation of parameter c ...

D1 D2 D3 D4 D5 D6 ES1 ES2 GA SA1 SA2 S1 S2 S3 S4
4.0

4.5

5.0

5.5

6.0

6.5

7.0

Algorithm

C
os

t
va

lu
e

Fig. 12.37 ... and summarization of cost
values.

D1 D2 D3 D4 D5 D6 ES1 ES2 GA SA1 SA2 S1 S2 S3 S4

0

10 000

20 000

30 000

40 000

Algorithm

C
os

t
fu

nc
ti

on
ev

al
ua

ti
on

s

Fig. 12.38 Cost function evaluations...

D1 D2 D3 D4 D5 D6 ES1 ES2 GA SA1 SA2 S1 S2 S3 S4
0

2000

4000

6000

8000

10 000

12 000

Algorithm

C
os

t
fu

nc
ti

on
ev

al
ua

ti
on

s

Fig. 12.39 ... and detail view.

is really not a rule, but an outlier. The same is visible in Fig. 12.46, compared
with Fig. 12.11, algorithm ES1.

• Statistical robustness. In the frame of this case study 30 (2×15) simulations
has been done, and each has been 100 × repeated. Thus the total number of
simulations was 3000 simulations equal to 14975294 / 4387854 (L-L / R-L)
cost function evaluations, see for more detailed description see Table 12.7 and
12.8 (L-L system) and Tables 12.9 - 12.10 (R-L system). All those calculations
led to positive results, i.e. systems have been synchronised succesfully. All
calculations has been done on a grid computer which consist of two special
Apple servers: 16 XServers, each 2x2 GHz Intel Xeon, 1 GB RAM, 80 GB

12 Evolutionary Synchronization of Chaotic Systems 401

0 2 4 6 8 10

10

20

30

40

50

60

a

C
os

tv
al

ue

Fig. 12.40 Total view of cost value dependance on parameter a

150 160 170 180 190 200

�5

0

5

10

time �s�

x 1
�t

�,
x 2

�t
�

Fig. 12.41 Synchronization of x1,2(t) ac-
cording to the best estimated setting.

150 160 170 180 190 200

�10

�5

0

5

time �s�

y 1
�t

�,
y 2

�t
�

Fig. 12.42 Synchronization of y1,2(t) ac-
cording to the best estimated setting.

HD i.e. 64 CPUs) and 7 Apple Minimacs CoreDuo i.e. number of accessible
CPUs is 14. In total 78 CPUs there was available for computation.

• Results divergence. As mentioned before, results in both case studies are
slightly different. Obtained averages are mostly on the same level, however
their divergence is for algorithms like ES and SA is different. As mentioned
before, probably better setting should be applied. On the other side, there is
so called “No Free Lunch” theorem, see [14], according to which universal
algorithm does not exist, i.e. some of selected evolutionary algorithm is not
much suitable for this task. But this is probably not a case of the algorithms
used here.

402 I. Zelinka and A. Raidl

100 120 140 160 180 200

0

5

10

15

20

time �s�

z 1
�t

�,
z 2

�t
�

Fig. 12.43 Synchronization of z1,2(t) ac-
cording to the best estimated setting.

100 120 140 160 180 200
�0.4

�0.2

0.0

0.2

time �s�

y 1
�t

�,
y 2

�t
�

Fig. 12.44 Synchronization: difference be-
tween y1(t)−y2(t).

Table 12.9 Experiment summarization, Rössler - Lorenz, part 1.

Algorithm D1 D2 D3 D4 D5 D6 ES1 ES2

Cost function evaluations
see Fig. 12.5
Minimum 54 19 11 7 6 8 36 1
Average 1500 1234 1589 1806 2013 1791 7376 1637
Maximum 4582 2832 3900 4644 4364 5744 38861 6477
Total for each algorithm 149963 56767 158851 180646 201257 179055 737582 158797

Cost Values
see. Fig 12.37
Minimum 4.5966 4.5531 4.5254 4.5314 4.7290 4.5533 4.0446 4.5991
Average 5.9067 6.0994 5.9115 5.9307 6.0956 6.0467 5.9568 6.2024
Maximum 6.9800 6.9453 6.9906 6.9888 6.9933 6.9855 6.9829 6.9992

Parameter a setting
see. Fig 12.34
Minimum 0.0063 0.0015 0.0018 0.0008 0.001 0.0008 -0.004 -0.003
Average 0.1001 0.1184 0.1033 0.1027 0.1062 0.1122 0.0975 0.0815
Maximum 0.2482 0.2304 0.2433 0.2328 0.2679 0.2658 0.2451 0.2548

Parameter b setting
see. Fig 12.35
Minimum 0.0534 0.3000 0.0416 0.0391 0.0313 0.0104 -3.257 -1.413
Average 2.0676 2.4464 2.1227 2.3213 2.1520 2.4390 1.9063 3.4911
Maximum 5.6232 11.309 7.2874 10.248 7.3880 19.717 19.221 18.584

Parameter c setting
see. Fig 12.36
Minimum 46.333 48.138 45.681 46.458 46.144 46.607 45.726 47.220
Average 61.686 61.474 62.077 61.985 60.619 61.969 62.397 62.576
Maximum 69.984 69.990 69.941 69.873 69.995 69.890 79.150 74.171

12 Evolutionary Synchronization of Chaotic Systems 403

Table 12.10 Experiment summarization, Rössler - Lorenz, part 2.

Algorithm G SA1 SA2 S1 S2 S3 S4

Cost function evaluations
see Fig. 12.5
Minimum 5 8 12 9 3 3 7
Average 1222 1188 989 923 11738 4588 5002
Maximum 5957 4984 4984 3008 26220 12656 28628
Total for each algorithm 122169 118765 98879 92258 1173843 458846 500176

Cost Values
see. Fig 12.37
Minimum 4.5533 4.6710 4.7431 4.7287 4.5311 4.6754 4.5709
Average 5.8689 6.0519 6.0542 6.0657 6.0624 6.0390 6.0297
Maximum 6.9866 7.1153 7.3234 6.9764 6.9965 6.9898 6.9938

Parameter a setting
see. Fig 12.34
Minimum 0.0053 0.0004 0.0004 0.0026 0. 0.0019 0.0001
Average 0.1083 0.1017 0.0971 0.1223 0.0914 0.1065 0.1009
Maximum 0.2586 0.2191 0.2602 0.2749 0.253 0.2533 0.2572

Parameter b setting
see. Fig 12.35
Minimum 0.0403 0.0617 0.1234 0.0261 0.0157 0.0167 0.0674
Average 1.9918 1.9770 2.2398 2.5879 2.9517 2.2215 2.637
Maximum 4.8671 16.629 7.4493 6.2005 22.604 6.0407 18.449

Parameter c setting
see. Fig 12.36
Minimum 47.188 45.505 45.489 48.398 45.961 46.766 46.868
Average 62.236 59.287 60.202 64.109 61.287 61.465 60.811
Maximum 69.834 69.892 69.797 69.996 69.920 69.911 69.864

0 5000 10 000 15 000 20 000 25 000 30 000
0

10

20

30

40

50

60

Cost function evaluations

H
it

Fig. 12.45 Histogram of cost function eval-
uations; R-L system.

10 15 20
0

10

20

30

40

Parameter d value

H
it

Fig. 12.46 Histogram for parameter d; L-L
system.

404 I. Zelinka and A. Raidl

0.0 0.5 1.0 1.5 2.0 2.5 3.0

8.60

8.65

8.70

8.75

8.80

8.85

8.90

8.95

b

C
os

tv
al

ue

Fig. 12.47 Dependance of cost value on the
parameter b for a = 0.1 and c = 69.4458 ...

2.20 2.22 2.24 2.26 2.28 2.30
8.60

8.65

8.70

8.75

b

C
os

tv
al

ue

Fig. 12.48 ... and detail view.

2.276 2.278 2.280 2.282 2.284
8.60

8.62

8.64

8.66

8.68

8.70

8.72

8.74

b

C
os

tv
al

ue

Fig. 12.49 Dependance of cost value on the parameter b in very tiny region. Global extreme
is marked by red (light grey) circle. Its estimation is approximate, because this picture (and
dataset used for) has been calculated with certain, limiting accuracy.

• Algorithm settings. Algorithm setting has been established according to
heuristically known setting for each algorithm as well as on our own expe-
riences. We would like to remind that it does not mean that there is no better
settings for any of used algorithms. Main aim was not focused on speed of
used algorithms but on successful synchronization.

• Synchronization settings. During all simulations different setting for
estimated parameters has been found, comparing with literature and our
heuristically obtained setting (a = 3, for b = 26.5 and c = 70 for R-L sys-
tem). Compare Fig. 12.21 with Fig. 12.41, Fig. 12.23 with Fig. 12.42 and Fig.
12.25 with Fig. 12.43. Thus EAs have found better setting. Differences of

12 Evolutionary Synchronization of Chaotic Systems 405

150 160 170 180 190 200

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

time �s�

x 1
�t

�,
x 2

�t
�

Fig. 12.50 Difference between x2−best(t)
(solid line) and x2−worst(t) (dotted line).

150 160 170 180 190 200

�2

0

2

4

6

8

time �s�

z 1
�t

�,
z 2

�t
�

Fig. 12.51 Difference between z2−best(t)
(solid line) and z2−worst(t) (dotted line).

behavior between synchronizing and synchronized variables are also depicted
in Fig. 12.13, 12.14, 12.15 and Fig. 12.16.

• Problem complexity. Problem complexity, represented by the cost function
landscape, is depicted in Fig. 12.3, Fig. 12.4, Fig. 12.28 - 12.33 and Fig. 12.40.
It is clearly visible that cost function landscape is very erratic, nonlinear and
multimodal. Another view on its complexity is given in Fig. 12.47 - 12.49.
Compare Fig. 12.47 with Fig. 12.30. The extreme of parameter b dependance
has moved for different a and c from positions (approx.) 15 to 2.2785. In other
words, optimal setting cannot be found simply by visual checking of each
parameter dependance, due to their mutual influence. Thus naturally, problem
of synchronization, is suitable for evolutionary algorithms.

• Different results. When comparing R-L and L-L systems, then one can see,
that there is visible difference in the range of the parameter value estimation,
as well as in cost function evaluations and cost values. It is obvious because
a) both systems are different, b) in both systems is estimated by different
number of parameters, c) cost values are differently calculated, see eq. (12.3)
and (12.4). For L-L system the cost value (eq. (12.3)) is calculated in interval
t ∈ [0,100] like difference between all three variables, while in R-L system
(eq. (12.4)) for only y1,2(t) variable and t ∈ [0,200]. Another important point
is, that because in R-L system y1(t)−y2(t)− is minimized only, then the vari-
ables x2(t) and z2(t) were not pressed by evolution into exact values. Variables
x2(t) and z2(t) has thus a “freedom” to reach different values. It is visible in
Fig. 12.50 and 12.51. A difference between the best and the worst estimated
synchronization is depicted there for R-L system and variables x2(t) and z2(t).
Gray area represent “space” for all possible values of both variables.

• Estimated parameters. In the synchronization experiments coupling param-
eters are usually estimated. In this numerical study, the internal parameters
of chaotic systems has been selected for optimization are also estimated.
It can reflect, for certain systems, situation that some of physical parame-
ters (pressure, current, ...) can be remoted by an external observer. Because
the parameters has some certain physical meaning (they are not abstract

406 I. Zelinka and A. Raidl

numbers), one has to carefully work with them and sometimes this is sim-
ply not allowed. We did not follow this idea in numerical studies here.

• Negative values. In the reported results it can easily be found that for some
values, negative values are returned, especially for evolutionary strategies. It
was caused by the fact that in evolutionary strategies procedure “watching”
has not been applied whether evolutionary process overstepped the allowable
search space or not. Thus, evolutionary strategies, has also searched a little bit
behind of searchable space borders.

According to the author’s opinion, this is a promising area of evolutionary al-
gorithms use. Experiments designed, numerically simulated and reported here were
one of the most simplest. Based on results obtained here and also in other chapters,
it is possible to say that EAs are viable and should also work on more complicated
cases of synchronization, for example the CML systems.

Acknowledgements. This work was supported by grant No. MSM 7088352101 of the Min-
istry of Education of the Czech Republic and by grants of the Grant Agency of the Czech
Republic GACR 102/09/1680.

References

1. Beyer, H.: Theory of Evolution Strategies. Springer, New York (2001)
2. Brown, R., Rulkov, N., Tracy, E.: Modeling and synchronization chaotic system from

time-series data. Phys. Rev. E 49, 3784 (1994)
3. Cerny, V.: Thermodynamical approach to the traveling salesman problem: An efficient

simulation algorithm. J. Opt. Theory Appl. 45(1), 41–51 (1985)
4. Gonzalez-Miranda, J.: Synchronization and Control of Chaos. An introduction for sci-

entists and engineers. Imperial College Press (2004)
5. Holland, J.: Adaptation in Natural and Artificial Systems. Univ. Michigan Press, Ann

Arbor (1975)
6. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Sci-

ence 220(4598), 671–680 (1983)
7. Nolle, L., Goodyear, A., Hopgood, A., Picton, P., Braithwaite, N.StJ.: On Step Width

Adaptation in Simulated Annealing for Continuous Parameter Optimisation. In: Reusch,
B. (ed.) Fuzzy Days 2001. LNCS, vol. 2206, pp. 589–598. Springer, Heidelberg (2001)

8. Nolle, L., Zelinka, I., Hopgood, A., Goodyear, A.: Comparison of an self organizing
migration algorithm with simulated annealing and differential evolution for automated
waveform tuning. Adv. Eng. Software 36(10), 645–653 (2005)

9. Pikovsky, A., Rosemblum, M., Kurths, J.: Synchronization: A Universal Concept in Non-
linear Sciences. Cambridge University Press, Cambridge (2001)

10. Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover,
F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, New York (1999)

11. Rulkov, N., Sushchik, M.: Robustness of synchronized chaotic oscillations. Int. J. Bifur-
cat Chaos Appl. Sci. Eng. 7, 625 (1997)

12. Schuster, H. (ed.): Handbook of Chaos Control. Wiley-VCH, New York (2007)
13. Sushchik, M., Rulkov, N., Tsimring, L., Abarbanel, H.: Generalized synchronization of

chaos in directionally coupled chaotic systems. In: Proceedings of Intl. Symp. on Non-
linear Theory and Appl., vol. 2, pp. 949–952. IEEE, Los Alamitos (1995)

12 Evolutionary Synchronization of Chaotic Systems 407

14. Wolpert, D., Macready, W.: No Free Lunch Theorems for Search, Technical Report SFI-
TR-95-02-010, Santa Fe Institute (1995)

15. Wolpert, D., Macready, W.: No Free Lunch Theorems for Optimization. IEEE Trans.
Evol. Comput. 1(67) (1997)

16. Zelinka, I.: SOMA – Self Organizing Migrating Algorithm. In: Babu, B., Onwubolu, G.
(eds.) New Optimization Techniques in Engineering, pp. 167–218. Springer, New York
(2004)

17. Zelinka, I.: Investigation on Evolutionary Deterministic Chaos Control. In: IFAC, Prague
(2005a)

18. Zelinka, I.: Investigation on Evolutionary Deterministic Chaos Control – Extended
Study. In: 19th International Conference on Simulation and Modeling (ECMS 2005),
Riga, Latvia, June 1-4 (2005b)

19. Zelinka, I.: Real-time deterministic chaos control by means of selected evolutionary al-
gorithms. Eng. Appl. Artif. Intell (2008), doi:10.1016/j.engappai.2008.07.008

20. Zelinka, I., Nolle, L.: Plasma reactor optimizing using differential evolution. In: Price,
K., Lampinen, J., Storn, R. (eds.) Differential Evolution: A Practical Approach to Global
Optimization, pp. 499–512. Springer, New York (2006)

21. Zelinka, I., Senkerik, R., Navratil, E.: Investigation on Evolutionary Optimitazion of
Chaos Control. Chaos, Solitons & Fractals (2007), doi:10.1016/j.chaos.2007.07.045

Chapter 13
Evolutionary Optimization and Dynamic Fitness
Landscapes
From Reaction–Diffusion Systems to Chaotic CML

Hendrik Richter

Abstract. Evolutionary algorithms are a promising option for solving dynamic opti-
mization problems. These problems have fitness landscapes whose topological fea-
tures change dynamically with the run–time of the evolutionary algorithm. In this
chapter, we study these landscapes by analyzing and quantifying their properties
using topological and dynamical landscape measures such as modality, ruggedness,
information content, dynamic severity and two types of dynamic complexity mea-
sures, Lyapunov exponents and bred vector dimension. Here, our main focus is on
dynamic fitness landscapes that exhibit spatio–temporal chaotic behavior. We fur-
ther discuss evolutionary algorithms and modifications needed to make them fit to
perform in dynamic landscapes and present numerical experiments showing the al-
gorithms’ performances. These results allow us to link the landscape measures to
the behavior of the evolutionary algorithms.

13.1 Introduction

An evolutionary algorithm is a stochastically driven but systematic search method
for solving optimization problems. All of its three main operators, selection, recom-
bination and mutation, depend on random elements. In other words, an evolutionary
algorithm, just as its biological inspiration and namegiver natural evolution, is a
phenomenon of chance, albeit the effect of chance is directed, mainly as a result of
the selection process. However, due to the heavy influence of chance in the working
of the algorithm, it is a challenge to establish some sound theory of evolutionary
computation. A corner–stone in such a theory is the conceptional framework of fit-
ness landscapes. The concept of fitness landscapes was introduced in the context of

Hendrik Richter
HTWK Leipzig, Fakultät Elektrotechnik und Informationstechnik,
Institut Mess–, Steuerungs– und Regelungstechnik, D–04251 Leipzig, Germany
e-mail: richter@fbeit.htwk-leipzig.de

I. Zelinka et al. (Eds.): Evolutionary Algorithms and Chaotic Systems, SCI 267, pp. 409–446.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

410 H. Richter

theoretical biology by Wright in the early 1930s [65] and later became an impor-
tant tool in theoretical studies in evolutionary optimization [19, 27, 32, 55, 57]. A
fitness landscape combines a search space with a notation of fitness for every point
in it, which for instance can be obtained by a genotype–to–fitness mapping or more
generally by encoding the set of all possible solutions of an optimization problem
and assorting a fitness value each. So, the fitness landscape appears as a potential
function on which the individuals of the population may move. This permits to pose
the question of how properties of the fitness landscape reflect, explain and allow to
predict the behavior of the evolutionary algorithm, and vice versa [27]. It can also
be studied how the population dynamics of the search algorithm (that is, the flow
of the individuals of the evolutionary algorithm in the landscape) interrelate with
topological and dynamical features of the fitness landscape.

A traditional field of application and theoretical study for evolutionary algorithms
is to consider static optimization problems. These problems have a fitness landscape
that does not change its topological features while the evolutionary algorithm is run-
ning. In recent years, we saw an increasing interest in solving dynamic optimization
problems [9, 24, 37, 44, 69]. Here, the fitness landscape has topological features that
change dynamically with the run–time of the evolutionary algorithm. Hence, such
dynamic fitness landscapes can be viewed as spatially extended dynamical systems.
So, our main topics here are how dynamic fitness landscapes can be formulated
mathematically, how they relate to spatio–temporal dynamical systems considered
in nonlinear dynamics, what their properties are and how these properties corre-
spond to the behavior of evolutionary algorithms used to do optimization in these
landscapes.

In this chapter, we consider dynamic fitness landscapes and study their topolog-
ical and dynamical properties. We show in Sec. 13.2 how these landscapes can be
constructed from reaction–diffusion systems modelled by partial differential equa-
tions (PDE) and also from coupled map lattices (CML). With this we intend to
establish relationships between these different kinds of description. In this context,
our main emphasis is on dynamic fitness landscapes that exhibit spatio–temporal
chaotic behavior. In Sec. 13.3 the study of topological and dynamical properties of
fitness landscapes is formalized and we present different types of landscape mea-
sures. We consider the topological landscape measures modality, ruggedness and
information content and the dynamical landscape measure severity and two types
of dynamic complexity measures, Lyapunov exponents and bred vector dimensions.
The evolutionary algorithm and modifications needed to make them fit to perform
in dynamic landscapes are discussed in Sec. 13.4. Four types of implementation are
considered, hyper–mutation, self–adaption, and two types of memory schemes, di-
rect and abstract memory. We present numerical experiments with the evolutionary
algorithm implementations and the fitness landscapes in Sec. 13.5. We use these ex-
periments to evaluate the performance of the algorithms and to link these results to
the landscape measures studied before. The chapter ends with concluding remarks
and a pointer at further problems.

13 Evolutionary Optimization and Dynamic Fitness Landscapes 411

Fig. 13.1 Static fitness land-
scape in R

2 as mountainous
region with peaks, valleys,
ridges and plateaus.

13.2 Constructing Dynamic Fitness Landscapes from
Reaction–Diffusion Systems and CML

13.2.1 Static and Dynamic Fitness Landscapes

In this chapter we will define dynamic fitness landscapes and provide a framework
for posing dynamic optimization problems. According to [27, 57] a static fitness
landscape ΛS is given by

ΛS = (S,n, f), (13.1)

where S is the search space that can be constructed from a genotype–to–fitness map-
ping1 or more generally from encoding the set of all possible solutions of an opti-
mization problem. The neighborhood structure n(x) is a function that assigns to
every x ∈ S a set of neighbors.2 The fitness function f (x) : S → R gives the fitness
value for every point in the search space. In Fig. 13.1 a typical fitness landscape is
shown over a two–dimensional search space. In this special case with S = R

2 the
metaphorical meaning of a fitness landscape as a mountainous region with peaks,
valleys, ridges and plateaus becomes particularly apparent. As each point of the
search space is characterized by a unique fitness value, solving an optimization
problem translates into finding the highest peak (or lowest valley). Hence, a static
optimization problem is

1 In theoretical biology a finer distinction is drawn between genotype and phenotype,
e.g. [57], which leads to a genotype–to–phenotype–to–fitness mapping. Genotype here
stands for the genetic make–up of a generic individual, i.e. its total genetic information,
the sum of all (genetically) possible individuals of a species. The phenotype characterizes a
particular individual, i.e. a specific instance of the generic, genotypical individual. In biol-
ogy this distinction is necessary because genetic fluctuations by mutation can only happen
on the level of genotypes, while fitness can only be assigned to phenotypical individuals.
In evolutionary computation, genotype can be thought of as standing for the search space,
phenotype for the individuals of an evolutionary algorithm, and fitness remains the same.

2 If the search space is a metric space (for instance a Hilbert (or Banach) space which is fre-
quently taken to define spatially extended systems properly), this neighborhood structure
is inherent and there is no need to define it additionally.

412 H. Richter

fS = max
x∈S

f (x), (13.2)

which is finding the maximal fitness value fS and its location xS = arg f (xS).3

If an evolutionary algorithm is employed to solve the problem, the fitness land-
scape concept becomes once more useful as a population intended to find the op-
timum can be viewed as though living on the landscape’s surface. Moreover, gen-
erational change in the population means movement on the surface with the aim to
ascent a peak. The picture furthermore illustrates a dynamic optimization problem
in that the landscape is to change dynamically beneath the individuals of the popu-
lation. To describe such a kind of problem, we need the concept of a dynamic fitness
landscape4 which we consider next.

A dynamic fitness landscape ΛD can be defined by

ΛD = (S,n,Γ ,F,φ), (13.3)

where S is the search space and again represents all possible solutions x ∈ S of the
optimization problem and n(x) is an equivalent neighborhood structure; footnote
2 applies likewise. Γ is a time set (transition semi–group) that defines a measur-
ing and ordering scale for the changes; F is the set of fitness functions and every
f ∈ F with f : S × Γ → R depends on time and provides a fitness value to ev-
ery point in the search space and any element of the time set Γ . The transition
map φ : F × S × Γ → F describes how the fitness function changes over time.
Further, the map must satisfy the temporal identity and composition conditions,
that is φ(f ,x,0) = f (x,0) and φ(f ,x,t1 + t2) = φ(φ(f ,x,t1),x,t2), ∀ f ∈ F , ∀x ∈ S,
∀t1,t2 ∈ Γ and the spatial boundary conditions φ(f ,xbound ,t) = f (xbound ,t), ∀ f ∈ F ,
∀t ∈ Γ and xbound being the boundary set of search space S. The transition map
can depend on continuous and/or discrete values conditional to whether time and/or
space possess that property. So, we can put the continuous and discrete number sets,
R and Z, to the time sets and search spaces. For a discrete search space there is
S ⊆ Z

n and for a continuous one S ⊆ R
n, where n is its dimensionality. We use

x ∈ S ⊆ R
n and i ∈ S ⊆ Z

n to specify a point in continuous or discrete search space.
The time variables become Γ = Z for discrete and Γ = R for continuous, where we

3 Optimization problems can be either maximization or minimization problems. As shown
with (13.2), we only consider maximization problems here. Between maximization or min-
imization problems there is the relationship max f (x) = −min f (x), so this is without loss
of generality.

4 Instead of the term dynamic fitness landscape we also find dynamic environment or even
non–stationary environment in the literature. Environment and fitness landscape are rather
synonymous, but we prefer fitness landscape as there is a substantial mathematical the-
ory on fitness landscapes available, which appears to be useful in the context of dynamic
optimization. Statistically speaking, the term non–stationary implies more than dynamics,
namely that the dynamics is generated by a stochastic process and the expected value of
the process changes over time. Hence, it should only be used if this is indeed the focus of
the dynamics considered.

13 Evolutionary Optimization and Dynamic Fitness Landscapes 413

use k ∈ Z and t ∈ R to label specific points in time. With these preliminaries, we can
formulate the dynamic optimization problem

fS(t) = max
x∈S

f (x,t), ∀t ≥ 0, (13.4)

which yields the temporarily highest fitness fS(t) and its solution trajectory5

xS(t) = arg fS(t), ∀t ≥ 0. (13.5)

For calculating the time evolution of all fitness values in the search landscape, it
can be convenient to have an iterative generation law describing how a fitness value
at f (x,t) evolves into f (x,t + δ t) with δ t a small time increment. In the dynamic
fitness landscape (13.3), this time evolution of a point x not only depends on time
and the fitness values of the point itself, but also on the fitness values of surrounding
points, that is f (x+δx,t) with δx = (δx1,δx2, . . . ,δxn). So, a general evolution law
becomes

f (x,t + δ t) = Ψ (f (x,t), f (x1 + δx1,t), f (x2 + δx2,t), . . . , f (xn + δxn,t)) , (13.6)

with Ψ being the generator mapping.
It is noteworthy that such a definition is closely related to the standard definition

for dynamical systems, see e.g. [1, 30], Ch. 1. In addition to the elements there, the
notation of a time–depended fitness function replaces the state space variables in
order to tackle the proposed dynamic optimization problem.

13.2.2 Hierarchy of Fitness Landscapes

For the class of spatially extended systems, a hierarchy of spatio–temporal dynam-
ics has been suggested [15, 26] which stems from the decision of discretization of
space and time. We adapt this hierarchy for discussing different kinds of static and
dynamic fitness landscapes, see Tab. 13.1.6 The given classes indicate an increasing
degree of complexity which relates to the amount of information required to specify
a unique fitness value and hence to one type of scale for the expected difficulty in
solving the posed optimization problem. The classes 1 and 2 are static combinatorial
and continuous optimization problems which are the topic of a widely ramified and
extensive literature in the context of evolutionary computation, e.g. [3, 16, 35]. The

5 For the dynamic optimization problem in discrete time, we replace formally k for t in
(13.4) and (13.5).

6 In addition to the discretization of space and time, for spatio–temporal dynamics a dis-
cretization of the local state variable has been suggested [15, 26], particularly to capture
dynamics where states can only have a finite number of different values as for instance de-
scribed by cellular automata. In our field of application, such a discretization would mean
to have discrete fitness values. Such discrete fitness values sometimes occur, for instance in
using surrogate models for the fitness function evaluation, but generally, fitness landscapes
have rarely this property and so we do not consider such a distinction here.

414 H. Richter

Table 13.1 Hierarchy of fitness landscapes; S static, D discrete, C continuous

Class Space Time Model

1 D S Discrete fitness function
2 C S Continuous fitness function
3 D D Coupled map lattices (CML)
4 C D Continuous fitness function with external discrete dynamics
5 D C Lattice of coupled ordinary differential equation (ODE)
6 C C Partial differential equation (PDE)

classes 3 and 6 will be closer looked at below. The models in class 3 and 4 include
dynamic optimization problems that received much attention in form of continu-
ous or discrete fitness functions whose selected topological features change with a
discrete time regime, usually generated by some external source of dynamics.

A well–known example of a class 4 problem is the so–called moving peak bench-
mark [8, 38] which uses as fitness function f (x) : S → R an n–dimensional “field of
cones on a zero plane”, where the cones have randomly chosen heights and slopes
and are distributed across the landscape. So, we write

f (x) = max
{

0 , max
1≤i≤N

[hi − si‖x − ci‖]
}

, (13.7)

where N is the number of cones in the landscape, ci are the coordinates of the i–th
cone, and hi, si specify its height and slope, see Fig. 13.2 for a typical landscape in
R

2. The given specification of dynamics requires to move N cones in terms of co-
ordinates, heights and slopes. By defining dynamic sequences for coordinates c(k),
heights h(k) and slopes s(k), a dynamic fitness landscape

f (x,k) = max
{

0 , max
1≤i≤N

[hi(k)− si(k)‖x − ci(k)‖]
}

(13.8)

can be obtained. In studies of the dynamic fitness landscape (13.8) three main types
of dynamics regarding the coordinates ci(k), heights h(k) and slopes s(k) of the
cones have been considered: (i.) regular dynamics usually generated by analytic
coordinate transformations, for instance cyclic dynamics where each ci(k), h(k),
s(k) repeats itself after a certain period of time or translatory dynamics where the
quantities ascribe a pre–defined track or tour, (ii.) chaotic dynamics generated by a
chaotic discrete–time system, for instance the generalized Hénon map, see [44, 45]
for details of the generation process, and (iii.) random dynamics with each ci(k),
h(k), s(k) for each k being an independent realization of, for example, a normally or
uniformly distributed random variable.

A similar and also popular dynamic fitness landscape is the XOR-generator by
Yang [67, 69], which is a class 3 problem. This generator can be constructed from

13 Evolutionary Optimization and Dynamic Fitness Landscapes 415

Fig. 13.2 Typical fitness
landscape (13.7) for n = 2
and N = 4.

any binary–encoded stationary function f (x) as follows. For each environment k, an
XORing mask M(k) is incrementally generated by

M(k) = M(k − 1)⊕ T(k), (13.9)

where “⊕” is a bitwise exclusive-or (XOR) operator (i.e., 1 ⊕ 1 = 0, 1 ⊕ 0 = 1, and
0⊕0 = 0) and T (k) is an intermediate binary template generated for environment k.
T (k) is generated with ρ × l (ρ ∈ (0.0,1.0]) random loci set to 1 while the remaining
loci are set to 0. For the initial environment k = 1, M(1) is set to a zero vector, i.e.,
M(1) = 0.

To summarize, the majority of the literature on evolutionary computation in dy-
namic fitness landscapes focusses on class 3 and 4 landscapes. In contrast, the class
5 dynamic fitness landscape does not play a major role in studies. It corresponds to
a combinatorial optimization problem, where the fitness function changes with con-
tinuous time. Even if a practical optimization problem would have such features,
we would most likely model discrete time behavior in the dynamic landscape for
reasons discussed right afterwards.

A class 3 problem, a CML–based dynamic fitness landscape and its relationship
to both a class 4 and class 6 problem, the latter is PDE–based, is the main topic of this
chapter. In modelling physical systems, we usually consider continuous changes in
both space and time. So, a general dynamic fitness landscape may describe the evo-
lution of fitness values in a search space where the landscape may undergo changes
continuously in both space and time. Such a dynamic evolution has to be modelled
by a PDE. On the other hand, to facilitate efficient computing, an appropriate dis-
cretization is needed, the more so as numerical effort in solving the dynamic op-
timization problem by an evolutionary algorithm scales with the number of fitness
function evaluations. Such a discretization of space and time can be obtained by the
CML formalism, in particular for reaction–diffusion systems and surface growth. It
is important to note that by doing so essential features of the dynamics are preserved,
e.g. [25, 31, 42, 59]. Moreover, as we focus on dynamic fitness functions in which an
evolutionary algorithm is used for solving an optimization problem, and as in evo-
lutionary algorithms time is counted by generations and is hence discrete, it appears
to be sensible to have dynamic fitness landscapes that change at discrete points in
time, too. As mentioned before we put for the CML–based landscape S ⊆ Z

n and

416 H. Richter

Γ = Z and for the PDE–based S ⊆ R
n and Γ = R, where n is dimensionality of the

search space. Note that this implies i = (i1, i2, . . . , in) and x = (x1,x2, . . . ,xn) for the
discrete and continuous spatial variables and k and t for the discrete and continuous
temporal variables. So, from the generator mapping (13.6) we obtain for discrete
time and space the CML–like mapping

f (i,k+1) =Ψ

(
f (i,k),

J1

∑
j1=1

f (j1, i2, . . . , in,k),
J2

∑
j2=1

f (i1, j2, . . . , in,k), . . .

)
(13.10)

and for continuous time and space the PDE7

∂ f (x,t)
∂ t

= Ψ
(

f (x,t),
∂ f
∂x1

,
∂ f
∂x2

, . . . ,
∂ f
∂xn

,
∂ f 2

∂x1x2
, . . . ,

∂ f 2

∂x1xn
, . . . ,

∂ f 2

∂x2
1

, . . .

)
.

(13.11)
With these mathematical descriptions, dynamic fitness landscapes of class 3 and 6
are specified in a very general way. In order to analyze both types and their relation-
ship, we next consider the 2D cases, that is n = 2.

13.2.3 Relationships between Coupled Map Lattices and
Reaction–Diffusion Systems

For a two–dimensional search space S a dynamic fitness landscape can be viewed
as the time evolution of the surface over a 2D plane at point x and time t. Such
a general dynamic 2D fitness landscape8 that describes the dynamics of the fitness
value f (x1,x2,t) with continuous spatial variables (x1,x2) and continuous time t can
be modelled by the parabolic PDE

∂ f
∂ t

= a1

(
∂ 2 f

∂x2
1

+
∂ 2 f

∂x2
2

)
− a2g1

(
∂ f
∂x1

,
∂ f
∂x2

)
+ g2(f), (13.12)

where a1,a2 are coefficients and g1,g2 are mappings. With (13.12), we describe a
class 6 dynamic fitness landscape. It can be interpreted as a reaction–diffusion sys-
tem with an additional nonlinear term and is a special case of the general descrip-
tion (13.11). This type of PDE has close resemblance to the Kardar–Parisi–Zhang
(KPZ) equation [29], which has been proposed to model surface growth. The main
difference is that the KPZ equation includes an explicit stochastic (Gaussian noise)
term. Recently, the KPZ equation has been intensively studied [31, 33, 36] while
particularly the relation to Coupled Map Lattices (CML) has been a central ques-
tion. Clearly, both are models of extended dynamical systems. Also and as men-
tioned before, a numerical solution of a PDE always requires to have some kind of

7 In doing so, we assume that the space S and the mapping φ enjoy properties that guarantee
existence and uniqueness of such a spatio–temporal evolution.

8 To emphasize that the dynamics of the fitness landscape is that of an extended dynamical
system, also the (synonymous) term spatio–temporal fitness landscape is used.

13 Evolutionary Optimization and Dynamic Fitness Landscapes 417

Fig. 13.3 The coupled map
lattice (CML) (13.14) as
building block for class 3
and 4 fitness landscapes.

discretization of space and time. So, an alternative strategy to a study by any of
the methods for numerically solving the PDE, appears to consist of a study of the
corresponding CML and their mutual dynamical properties.

Recently, a fitness landscape based on a CML has been studied [46, 47], which is
of class 3. We will relate this fitness landscape to the PDE–based landscape (13.12).
For the CML, we lay out a lattice grid with I1 × I2 equally sized cells, which builds a
2D–structure. For every discrete time step k, k = 0,1,2, . . ., each cell is characterized
by its height

f (i1, i2,k), i1 = 1,2, . . . , I1, i2 = 1,2, . . . , I2, (13.13)

where (i1, i2) denote the spatial indices in vertical and horizontal directions, re-
spectively, see Fig. 13.3. We interpret this height f (i1, i2,k) as fitness according to
the geometrical metaphor of a fitness landscape. It is subject to changes over time,
which are described by the two–dimensional CML with nearest–neighbor coupled
interaction [12, 25]

f (i1, i2,k + 1) = (1 − ε)g(f (i1, i2,k))+
ε
4

[
g(f (i1 − 1, i2,k)) + g(f (i1 + 1, i2,k))

+ g(f (i1, i2 − 1,k)) +g(f (i1, i2 + 1,k))
]
, (13.14)

where g(f (i1, i2,k)) is a local mapping function and ε is the diffusion coupling
strength. As local mapping function we use the logistic map

g(f (i1, i2,k)) = α f (i1, i2,k)(1 − f (i1, i2,k)). (13.15)

It is a nonlinear map with the parameter 0 < α < 4 which is defined for the unit
interval f ∈ [0,1]. For some parameter α , the map (13.15) exhibits chaotic behavior,
for instance in the parameter interval α ∈ [3.57,4]. This local chaotic behavior is
distributed to other areas of the lattice by coupling. So, it is the source of spatio–
temporal chaos in the extended dynamical system.

Finally, we need to set the period boundary conditions

f (I1 + 1, i2,k) = f (1, i2,k),
f (i1, I2 + 1,k) = f (i1,1,k). (13.16)

418 H. Richter

Initialization of the CML is done by initial heights f (i1, i2,0) being realizations of a
random variable uniformly distributed on [0,1]. The spatio–temporal behavior of the
CML depends on the lattice size I1 × I2 and two parameters, the coupling strength
ε and the nonlinear parameter α . The CML (13.14) can be seen as a special case in
two dimensions of the general CML–like spatio–temporal mapping (13.10).

The CML are known to exhibit a rich spatio–temporal behavior, including dif-
ferent types of spatio–temporal periodicity and chaos, quasi–periodicity and pattern
formation. So, the CML are an instructive example for the principle of generat-
ing high–dimensional complex spatio–temporal dynamics by using local chaos cre-
ated by a low–dimensional mechanism that is transmitted to a spatial extension by
coupling.

We now link the discrete space and time fitness landscape f (i1, i2,k) to the land-
scape with continuous space and time f (x1,x2,t) according to eq. (13.12). We take
the continuum limit of the CML and employ the following discretizations: a forward
difference of the time derivative

∂ f (x1,x2,t)
∂ t

↔ f (i1, i2,k + 1)− f (i1, i2,k)
δ t

(13.17)

and the central differences of the space derivatives

∂ f (x1,x2,t)
∂x1

↔ 1
2

f (i1 + 1, i2,k)− f (i1 − 1, i2,k)
δx1

, (13.18)

∂ f (x1,x2,t)
∂x2

↔ 1
2

f (i1, i2 + 1,k)− f (i1, i2 − 1,k)
δx2

(13.19)

and the second derivatives

∂ 2 f (x1,x2,t)
∂x2

1

↔ f (i1 + 1, i2,k)− 2 f (i1, i2,k)+ f (i1 − 1, i2,k)
(δx1)2 , (13.20)

∂ 2 f (x1,x2,t)
∂x2

2

↔ f (i1, i2 + 1,k)− 2 f (i1, i2,k)+ f (i1, i2 − 1,k)
(δx2)2 , (13.21)

with the time step δ t and the spatial steps δx1,δx2 being equal to one in the used
system of units. So, we obtain the PDE

∂ f
∂ t

=
αε
4

(
∂ 2 f

∂x2
1

+
∂ 2 f

∂x2
2

)
− αε

2

((
∂ f
∂x1

)2

+
(

∂ f
∂x2

)2
)

+(α − 1) f − α f 2,

(13.22)
where kδ t → t, i1δx1 → x1, i2δx2 → x2 and f (i1, i2,k) → f (x1,x2,t). With eq.
(13.22), we have a parabolic PDE of the reaction–diffusion type (13.12).

As shown in [47] from the CML (13.14), a fitness landscape of class 4 with
continuous space and the search space variable x can been defined by setting scaling
factors s1,s2 ∈ R+ and by imposing a rounding condition, so that

13 Evolutionary Optimization and Dynamic Fitness Landscapes 419

(�s1x1�
�s2x2�

)
=
(

i
j

)
. (13.23)

So, we obtain the dynamic fitness function for the two–dimensional CML (13.14)
as

f (x,k) =

⎧⎨
⎩

f (�s1x1�,�s2x2�,k) for
1 ≤ �s1x1� ≤ I1

1 ≤ �s2x2� ≤ I2

0 otherwise

⎫⎬
⎭ , k ≥ 0. (13.24)

This dynamic fitness landscape, see Fig. 13.4, will be the test bed for the numerical
experiments reported in Sec. 13.5. For (13.24), we can pose a dynamic optimization
problem

fS(k) = max
x∈R2

f (x,k) =

⎧⎨
⎩ max

1≤�s1x1�≤I1
1≤�s2x2�≤I2

f (�s1x1�,�s2x2�,k)
⎫⎬
⎭ , k ≥ 0, (13.25)

which yields a sequence fS(k) of the highest fitness. Solving the dynamic optimiza-
tion problem defines a solution trajectory

xS(k) = argmax
x∈R2

f (x,k) = arg

⎧⎨
⎩ max

1≤�s1x1�≤I1
1≤�s2x2�≤I2

f (�s1x1�,�s2x2�,k)
⎫⎬
⎭ , k ≥ 0, (13.26)

which we intend to find by using an evolutionary algorithm.
To summarize, we have shown the mathematical relationship between a CML–

based dynamic fitness landscape and a class of parabolic PDEs. In doing so, we
have created a link between a computational efficient and hence numerically ex-
perimentable model and a description of real physical phenomena such as surface
growth and reaction–diffusion dynamics. So, the dynamic fitness landscape (13.24)
can be considered to be a more realistic description of real–world dynamic opti-
mization problems than the benchmarks such as (13.8) or (13.9).

Fig. 13.4 CML–based fit-
ness landscape (13.24)
for I1 = I2 = 9 and
s1 = s2 = 0.5.

420 H. Richter

13.3 Properties of Dynamic Fitness Landscapes

A main concern in evolutionary computation is developing, testing and applying
algorithms that solve optimization problems. From a theoretical perspective, it is
therefore desirable to classify the tackled optimization problems in order to com-
pare the approaches and also to suggest possibilities for improving the algorithms.
A first and rather structural classification is provided by the hierarchy of fitness land-
scapes given in Sec. 13.2.2. An important aspect of the concept of fitness landscapes
is that it provides a theoretical framework for describing, evaluating, comparing and
quantifying the difficulty of a given optimization problem. Based on this notation,
it is intended to obtain an estimation for the behavior an evolutionary algorithm is
expected to have. Within the conceptional framework this question is addressed by
concepts and quantifiers for measuring fitness landscapes [21, 27, 57, 62]. These
landscape measures can also be seen as an attempt to define some types of met-
ric for fitness landscapes. Some of these measures have been suggested for static
fitness landscapes and hence account for topological properties of the fitness land-
scape. Besides, for dynamic fitness landscape also dynamical properties have to be
considered.

13.3.1 Topological Properties and Topological Problem Difficulty

Unfortunately, even for a static fitness landscape the question of how difficult a cer-
tain optimization problem is for an evolutionary algorithm is not easy to answer.
If we view a fitness landscape as in the Figs. 13.1 or 13.2, we see a collection of
hills and valleys that can be accompanied by ridges, plateaus, etc. The optimization
task is constituted by finding the highest hill (or lowest valley). The evolutionary
algorithm puts individuals into these landscapes, while in the generational circle
they should trawl the search space and finally find the optimum. In this process, the
only feedback from the landscape comes from the fitness values of all member of
the population. Moreover, a movement towards an optimum can only be expected if
either an individual with high fitness pulls other individuals to itself in the recombi-
nation step or random fluctuations working on the individuals during the mutation
step put them nearer to the optimum. However, as both movements are censored by
the selection step, if either one or the other movement leads to a decreasing fitness,
it becomes futile. From these thoughts it is clear why a single sphere of ever increas-
ing fitness with a single highest value, see Fig. 13.5, is a particularly easy problem
to solve. There is no distraction for the evolutionary process. The individuals just
move up the single hill. However, in more complex landscapes with more than one
hill also their number, size, form and distribution constitute difficulty in the search
process of stochastically driven search procedures as evolutionary algorithms. In
terms of an optimization task these features correspond to the number of optima,
how they are distributed and what the space in–between the optima looks like.

It is easily understood and intuitively reasonable that the difficulty of finding the
global optimum among several local optima depends on their number; the larger the

13 Evolutionary Optimization and Dynamic Fitness Landscapes 421

Fig. 13.5 Sphere–like fit-
ness landscape of contin-
uously increasing fitness
towards the single optimum.

Fig. 13.6 Different types of fitness landscapes: a) long–path problem, b) neutrality with
spike–like peaks.

number of local optima, the more difficult the problem is [27, 57]. Second, distribu-
tion of the optima relates to problem difficulty. The problem becomes different if the
optima are either grouped in one subset of the search space or if they are scattered
widely. In the former case, the population only has to find the area of the optima
and can then jump from lower optima to higher optima using the stochastic drive in
the algorithm. If the optima are distributed widely, the population might split and
some areas might not be searched at all. Furthermore, as pointed out above an evo-
lutionary algorithm is using differences in the fitness of individuals populating the
fitness landscape in its search process. That means not only the wider surrounding of
the optima counts, but also the nearer neighborhood is of interest. For instance, the
problem belongs to a different category, if the optima consist of peaks that gradually
slope down into all directions, see Fig. 13.5, or the peak can only be approached by
a narrow single path of monotonically increasing fitness (so–called long path prob-
lems [23]), see Fig. 13.6a, or there are slim and distant peaks on an otherwise plain
surface of equal or nearly equal fitness (so–called neutrality [55]), see Fig. 13.6b.
These geometrically motivated features are addressed by the notion of accessabil-
ity (or basin of attraction) of optima and they are a third major factor of landscape
topology that contributes to problem hardness.

422 H. Richter

However, from these main ingredients of problem difficulty, it cannot be easily
deduced how in a certain landscape the number of local optima, their distribution
and their accessability balance each other in terms of problem difficulty [55, 62].
Clearly, modality, which expresses the number of local optima, is a primary factor
and might in addition have the advantage that it can be assigned rather straight-
forwardly by enumeration. However, apart from the sheer number of optima, it is
the interplay of all three aspects that defines hardness of optimizing in a fitness
landscape for an evolutionary algorithm. This is the reason why landscape measures
have been suggested that are aimed to catch problem hardness more generally rather
than just by accounting for a single aspect of the landscape topology. In addition,
these measures allow to weight the three factors.

For evaluating topological problem difficulty the topological landscape measures

• modality = number and distribution of local maxima,
• ruggedness = analysis of the static correlation structure,
• information content = an entropic landscape measure,
• epistasis = a Walsh analysis

have been suggested and for static landscapes, these measures have been studied
intensively [19, 57, 62]. In [22, 46, 47], these measures were applied to dynamic
fitness landscapes. It has been shown that dynamic fitness landscapes inherit topo-
logical aspects of problem difficulty from their static counterparts. On the other
hand, the features of the dynamics in the landscape contribute in their own way. The
definitions of the topological measures and the results obtained for the CML–based
dynamic fitness landscape (13.24) are briefly recalled in Sec. 13.3.3 to have a ref-
erence and comparison to the dynamical measures considered next. Only the Walsh
epistasis measure is omitted as it had been shown in [47] that it poorly reflects prob-
lem hardness for the CML–based dynamic landscape considered here.

13.3.2 Dynamical Properties and Dynamical Problem Difficulty

In a dynamic fitness landscape not only topological features constitute problem dif-
ficulty, there is also a contribution of features of the involved dynamics [9, 24, 37].
Similar to the situation with topological properties, there is no simple classification.
If we look at a dynamic fitness landscape (imagine a landscape as in the Figs. 13.1 or
13.2, where now the hills, valleys and plateaus are changing their position and shape
and move around the plane that forms the search space) then again some intuitively
comprehensible factors that make finding the moving optima easy or hard can be
seen. An evolutionary algorithm carries out a parallelized population–based search
in which detecting the optimum depends on improvements over a certain number
of generations; with the more generations available, the better for problem solving.
Therefore, finding the optimum in just one generation is highly improbable and gen-
erally speaking controverts the fundamental idea of evolutionary search. Dynamical
problems that can be solved robustly by an evolutionary algorithm should involve
a change pattern that allows the algorithm at least a certain number of generations.

13 Evolutionary Optimization and Dynamic Fitness Landscapes 423

So, the speed at which the landscape changes must have some influence. Gener-
ally it must hold that the faster the speed (more changes per time interval) is, the
more complicated is the dynamical problem. In defining the speed of the landscape
changes, the time scale of the dynamic fitness landscape needs to be related to the
computation time of the evolutionary algorithm, which counts time by generations.
In general, a generation of the evolutionary algorithm results from the computation
time for the fitness evaluation, which needs to be carried out for all the individuals
of the population and usually is the main contribution, and the time needed for ex-
ecuting the evolutionary operators such as selection, recombination and mutation,
which is a minor part. This gives an estimate for the time required to calculate one
generation. Note that for a given implementation and hardware, this time can be
converted into real CPU time. So, for a population size that is constant over the evo-
lutionary run, for every generation the (approximately) same time interval should
go by. For a dynamic fitness landscape that also has a continual change pattern, this
means that both time scales relate linearly.

We can describe the dynamics of an evolutionary algorithm by the generation
transition function ψ , see e.g. [3], p. 64–65, which can be interpreted as a nonlin-
ear probabilistic dynamical system that maps and transforms a population P(τ) at
generation τ ∈ N0 into a population P(τ + 1) at generation τ + 1,

P(τ + 1) = ψ (P(τ)) ,τ ≥ 0 (13.27)

by using the evolutionary operators selection, recombination and selection (and pos-
sibly some additional operators such as memory, hyper–mutation and so on). Start-
ing from an initial population P(0), eq. (13.27) describes the population dynamics
in the search space. With the proposed linear scale between both the time scales of
the evolutionary algorithm τ and the time scale of the dynamic fitness landscape k,
we obtain a relation by the change frequency γ ∈ N.9 There is

τ = γk (13.28)

with γ being constant.10 The quantity γ can be interpreted as the computation time
that the algorithm needs to solve the problem and hence is an estimate of the required

9 Instead of the term change frequency, we can also find change period in the literature.
Change period is motivated by interpreting γ as time interval, change frequency because γ
indicates after how many generations the landscape changes. In the following, we prefer
the latter interpretation.

10 The relation (13.28) links the time scales for dynamic fitness landscapes of class 3 and
4 with discrete time as for instance given by (13.8) or (13.10). For dynamic fitness land-
scapes of class 6 as modelled by (13.11) and (13.12) the changes happen continuously.
This means changes in the dynamic fitness landscape occur in–between generations or
several (in theory an infinite number of) times within one generation. But as fitness eval-
uation in an evolutionary algorithm usually takes place just once in a generation, these
changes would probably not come into effect before the next generation, that is the next
synchronization point between t ∈ R and γ−1τ . Therefore, the discussion above applies to
continuous dynamic fitness landscapes in the same way.

424 H. Richter

time between changes of the fitness landscape.11 However, numerical experiments
in evolutionary computation of dynamic fitness landscapes usually view the change
frequency γ slightly differently. They consider γ an adjustable parameter that can be
used to evaluate and compare different types and implementations of evolutionary
algorithms. This view is justified by the fact that γ can indeed be adjusted by modi-
fications done on the parameters and implementation of the evolutionary algorithm
and the hardware on which the algorithm runs. Note that this view also means that
the change frequency is no longer a property of the dynamic fitness landscape but
is seen to be independent of it. In the numerical experiments, we will adopt this
view and consider change frequency as something that can be adjusted. Note further
that by doing so, change frequency has a unique role among all other topological
and dynamical properties defining problem hardness. While all the other properties
belong to the dynamic fitness landscape considered, change frequency is defined by
the evolutionary algorithm and hence assumed to be freely settable (at least within
certain limits).

Aside from the (relative) speed of the landscape changes, a second major dy-
namical influence on problem hardness addresses the spatial distance that the opti-
mum moves if the landscape changes, that is the (relative) strength of the landscape
changes. As optimum finding for an evolutionary algorithm implies to trawl the
search space for a certain time, time restrictions as those coming from a chang-
ing landscape mean that the average distance between subsequent optima is a good
measure for problem hardness. This dynamical property is called dynamic severity
for which there are several notations [9, 45, 63]. They all have in common that they
measure the (relative) magnitude of the changes by comparing the landscape at sub-
sequent points in time, for instance between k to k + 1 or t to t + δ t. In terms of
the dynamic fitness landscapes of class 3 and 4, dynamic severity means to evaluate
the (average) distance from the highest peak’s coordinates xS(k) = arg fS(k) before
and after a change, as given by (13.5).12 With eq. (13.44), this is applied to the
CML–based dynamic fitness landscape considered here.

In dynamic optimization, we sometimes find a discrimination between gradual
and abrupt changes. What distinguishes gradual from abrupt changes is basically
understood as different degrees of dynamic severity, but somehow change frequency
also contributes and is intertwined with it. Our view is this. For landscapes with
discrete time the situation is rather straightforward. As in discrete time the changes
happen one after the other to distinct points in time, an abrupt change is one with a
large severity, a gradual one has a low severity, no matter what the change frequency
is. For discrete time dynamic fitness landscape of class 3 and 4, the landscape has

11 Usually, γ is considered to be constant for all generations τ , but it might also be a function
of k and even be different (for instance a positive integer realization of a random process)
for every k.

12 Using a similar argumentation as for change frequency, see footnote 10, dynamic severity
can be defined for class 6 dynamic fitness landscapes as for instance (13.11) in the likewise
fashion. Therefore, the highest peak’s coordinates as given from the solution trajectory of
the dynamic optimization problem (13.4) must be compared for a time lapse between t and
t +δ t.

13 Evolutionary Optimization and Dynamic Fitness Landscapes 425

no speed by itself, the only base for comparison is the generational dynamics of
the evolutionary algorithm linearly linked via the change frequency (13.28). For
changes in the fitness landscape in continuous time, a more elaborated discussion is
necessary; for those dynamic fitness landscapes we need a notation of speed on its
own. The (direction–less) speed vS(t) of the optimum xS(t) at time t can be defined
by

vS(t) = lim
δ t→0

‖x(t + δ t)− x(t)‖
δ t

. (13.29)

For δ t being small and constant, the average speed of the optimum 〈vS(t)〉 can be
calculated by

〈vS(t)〉 =
1
K

K−1

∑
k=0

‖x(t +(k + 1)δ t)− x(t + kδ t)‖
δ t

(13.30)

with K sufficiently large. The nominator term is dynamic severity (cf. eq. (13.44) so
that for continuous time dynamic fitness landscape an abrupt change is indicated by
a 〈vS(t)〉δ t above a certain limit, while a gradual change is characterized by a small
value of this quantity.

Dynamic severity is an intrinsic property of the fitness landscape. This also ap-
plies to a third dynamical property of fitness landscapes that tries to capture the
complexity of the dynamics. In this context, complexity refers to limits in the long–
term predictability of the spatio–temporal evolution, even if explicit stochastic ele-
ments in the describing equations are absent. So, studying dynamic complexity is
highly linked to and conceptionally as well as methodically overlapping with the
study of deterministic chaos.13 A first and again rather structural classification of
dynamic complexity is to categorize dynamics as either regular, chaotic or random.
Here, regular dynamics is completely predictable and usually generated by analytic
coordinate transformations. It might, for instance, be cyclic, where we have a pe-
riodic recurrence of all topological features of the landscape after a certain time
interval or translatory, where the topological features follow a pre–defined track or
tour. Chaotic dynamics is generated by deterministic chaotic systems (that might be
locally interacting with the spatially distributed landscape) and is predictable only
for a short term. Random dynamics stems from a stochastic process, that is from
realizations of a random variable, and is unpredictable even for short terms.

Apart from this verbal assignment and in order to have a quantification, we can
resort to quantifiers of dynamics used and established in the field of nonlinear dy-
namics, such as Lyapunov exponents and vectors, different types of entropies and

13 An alternative (and complimentary to the degree of predictability) approach to define
complexity is by using concepts from algorithmic information theory, e.g. [5, 14]. Ac-
cordingly, algorithmic complexity of a spatio–temporal evolution is defined by the length
of the smallest algorithm capable of specifying the evolution. As chaotic evolutions are
nonperiodic and oscillatory, their algorithmic complexity is large. However, algorithmic
complexity only superficially allows to separate chaos and random, as all chaotic behav-
ior is algorithmically complex, but not all evolutions that are algorithmically complex, are
chaotic, too.

426 H. Richter

information flows, correlations and related quantities as bred vector dimensions,
or fractal dimensions. All these quantities are widely used as an analyzing tool in
nonlinear dynamical systems theory. However, they were developed to deal with
low–dimensional nonlinear (possibly chaotic) dynamical systems described by or-
dinary differential equations (ODEs). Only for such systems, these quantities are
unambiguously meaningful and the relationships between the quantities are largely
understood.14 In recent years, several attempts have been made to extend the theory
of low–dimensional dynamical systems to (infinite–dimensional) spatio–temporal
systems and by doing so to establish quantities similar to the conventional Lyapunov
exponents, dimensions and entropies. Still, this work is in its infancy and the power
of the theory is confined to certain limits. Also, while some quantities as Lyapunov
exponents or bred vector dimensions have shown to be meaningful in quantifying
patterns of space–time dynamics, others are rather ambiguous and allusive. More-
over, the relationships between the quantities are still far from being clear.

In the following, we consider the dynamic landscape measures

• change frequency = speed of fitness landscape changes relative to EA,
• dynamic severity = distance between subsequent optima,
• dynamic complexity = predicability of spatio–temporal evolution:

– Lyapunov exponents = divergence rate between nearby evolutions,
– bred vector dimensions = analysis of the dynamic correlation structure.

In the next section, we will study dynamical landscape measures for the CML–based
fitness landscape. As discussed above, change frequency is here considered as a pa-
rameter to be set. On the other hand, dynamic severity and the quantities to measure
dynamic complexity, that are Lyapunov exponents and bred vector dimensions, will
be looked at as depending on the dynamic landscape.

13.3.3 Topological and Dynamical Landscape Measures for the
CML–Based Landscape

13.3.3.1 Topological Measures

Topological landscape measures have been intensively studied for the CML–based
dynamic fitness landscape (13.24) in [46, 47] and we therefore only briefly recall
the definitions and some of the results.

Modality. For the fitness landscape (13.24), the topological landscape measure
modality accounts for the average number of local maxima and can be assigned
by enumeration. We consider as neighborhood structure the surrounding heights.
That means the neighborhood structure N±1(i1, i2) of the (i1, i2)–cell is

N±1(i1, i2) = (i1 + δ1, i2 + δ2), (13.31)

14 For instance, there are the relationships between Lyapunov exponents and fractal dimen-
sions via the Kaplan–Yorke dimension [13, 18, 49] or between Lyapunov exponents and
entropies via the Kolmogovov–Sinai entropy and the Pesin entropy formula, see e.g. [4].

13 Evolutionary Optimization and Dynamic Fitness Landscapes 427

where (δ1,δ2) are taken as disjunction of the permutations over the set S = {−1,0,1}
that is

(δ1,δ2) = (−1,−1)∧ (−1,0)∧ (−1,1)∧ (0,−1)
∧ (0,1)∧ (1,−1)∧ (1,0)∧ (1,1). (13.32)

Additionally, the cell specified by (δ1,δ2) = (0,0) is excluded from the neighbor-
hood structure N±1(i1, i2). Here, (i1, i2)T = (�s1x1�,�s2x2�)T . Hence, the fitness
function possesses a local maximum at point (i1, i2) and time k if

f (i1, i2,k) ≥ f (N(i1, i2),k). (13.33)

We denote #LM(k) the number of local maxima at time k. As this quantity may
change over time, we consider its time average 〈#LM(k)〉, which is

〈#LM(k)〉 = lim
K→∞

1
K

K−1

∑
k=0

#LM(k). (13.34)

For computing an approximate value of the time average number of local maxima,

the 〈#LM(k)〉 is replaced by #LM = 1
K

K−1
∑

k=0
#LM(k) with K sufficiently large.

Ruggedness. The topological landscape measure ruggedness can be analyzed by
the static correlation structure. This method works by performing a random walk on
the landscape and calculating its random walk correlation function. For the dynamic
fitness landscape (13.24), this begins with generating a time series

f (τs,k) = f (i1(τs), i2(τs),k), τs = 1,2, . . . ,T (13.35)

of the heights f (�s1x1�,�s2x2�,k) with (i1, i2)T = (�s1x1�,�s2x2�)T . For doing the
random walk, we create 2×T independent realizations (ti1 ,ti2) of an integer random
variable uniformly distributed on the set S = {−1,0,1}. Starting from an initial cell
(i1(1), i2(1))T , the next cell indices (i1(τs +1), i2(τs +1))T on the walk are obtained
by adding the two independent realizations of the random variable to the current cell
indices:

(i1(τs + 1), i2(τs + 1))T = (i1(τs)+ ti1 , i2(τs)+ ti2)
T . (13.36)

In addition, the boundary condition (13.16) is observed. From the random walk
in the two spatial dimensions that is specified by (i1(τs), i2(τs))T , we obtain the
needed time series on the dynamic fitness landscape by recording the heights
f (τs,k) = f (i1(τs), i2(τs),k) at time k. For this time series, the spatial correlation
can be calculated. The spatial correlation is widely used in determining ruggedness
of static landscape [19, 56, 64]. It is an estimate r(tL,k) of the autocorrelation func-
tion of the time series with time lag tL, also called random walk correlation function:

428 H. Richter

r(tL,k) =

T−tL
∑

τ=1

(
f (τs,k)− f̄ (k)

)(
f (τs + tL,k)− f̄ (k)

)
T
∑

τs=1

(
f (τs,k)− f̄ (k)

)2
, (13.37)

where f̄ (k) = 1
T

T
∑

τs=1
f (τs,k) and T � tL > 0. The spatial random walk correlation

function measures the correlation between different regions of the fitness landscape
for a fixed k. As r(tL,k) changes over time, we consider its time average 〈r(tL,k)〉,
for which we calculate numerically an approximated value r(tL) similarly as for the
average number of maxima. From this quantity, the correlation of the lag tL

λR(tL) = − 1
ln(|r(tL)|) (13.38)

can be obtained. Among the correlations of the lag tL, it has been shown that rugged-
ness is best expressed by the correlation length [56]

λR = − 1
ln(|r(1)|) , (13.39)

which is the correlation of the lag tL = 1. The lower the value of λR, the more
rugged is the landscape. This kind of evaluating fitness landscapes relies upon the
assumption that the landscape is statistically isotropic [19, 20]. This means that the
value of r(tL,k) obtained from the random walk does not depend on the specific
random walk used and particularly not on the chosen initial cell. Our numerical
results have shown that this holds for the landscapes considered here.

Information content. The topological landscape measure information content can
be accounted for by entropic measures [58, 61, 62]. Starting point for this method
to evaluate landscapes is again, as for the correlation structure considered above, a
time series (13.35), f (τs,k), which is generated by a random walk on the dynamic
landscape for a fixed time k. From this time series, we code the difference in fitness
between two consecutive walking steps by the symbols sτs ∈ S, τs = 1,2, . . . ,T −1,
taken from the set S = {−1,0,1}. These symbols are calculated by

sτ (e,k) =

⎧⎨
⎩

−1, if f (τs + 1,k)− f (τs,k) < e
0, if | f (τs + 1,k)− f (τs,k)| ≤ e
1, if f (τs + 1,k)− h(τs,k) > e

(13.40)

for a fixed e ∈ [0,L], where L is the maximum difference between two fitness values.
The obtained symbols are concatenated to a string

S(e,k) = s1s2 . . .sT−1. (13.41)

The parameter e defines the sensitivity by which the string S(e,k) accounts for dif-
ferences in the fitness values. For e = 0, the string S(e,k) contains the symbol zero

13 Evolutionary Optimization and Dynamic Fitness Landscapes 429

only if the random walk has reached a strictly flat area. It hence discriminates very
sensitively between increasing and decreasing fitness values. On the other hand, for
e = L, the string only contains the symbol zero, which makes evaluating the struc-
ture of the landscape pointless. In this way, a fixed value of e with 0 < e < L defines
a level of detail of information about the landscape’s structure. The string (13.41)
represents this information depending on e and codes it by subblocks over the set S.
In other words, varying e allows to zoom in on or to zoom out of the information
structure of the landscape.

For defining entropic measures of the landscape, we look at the distribution of
subblocks of length two, sτs sτs+1, τs = 1,2, . . .T −2, within the string (13.41). These
subblocks stand for local patterns in the landscape. We denote the probability of the
occurrence of the pattern δ1δ2 with δ1,δ2 ∈ S and δ1 �= δ2 by pδ1δ2

. For numerical
calculation, we approximate this probability by the relative frequency of the patterns
within the string S(e,k). As the set S consists of three elements, we find six different
kinds of subblock sτs sτs+1 = δ1δ2 with δ1 �= δ2 within the string. From their prob-
abilities at a fixed time k and a given sensitivity level e we calculate the entropic
measure [62]

HIC(e,k) = − ∑
δ1,δ2∈S

δ1 �=δ2

pδ1δ2
(e,k) log6

(
pδ1δ2

(e,k)
)
, (13.42)

which is called information content of the fitness landscape. Note that by taking the
logarithm in Eq. (13.42) with the base 6, the information content is scaled to the
interval [0,1]. As for the other landscape measures, for evaluating dynamic fitness
landscapes, we consider the time average 〈HIC(e,k)〉 for which we numerically cal-
culate an approximated value HIC(e). In the numerical calculation, we set the value
e = 0, that is we consider the information content of highest sensitivity. As was
shown in [47], epistasis measured by Walsh analysis is not a particularly meaning-
ful quantity for the CML–based fitness landscape with chaotic behavior. Therefore,
we do not consider it here.

Fig. 13.7 shows the topological landscape measures modality #LM, ruggedness
λR and information content HIC for varying ε , α = 3.999, s1 = s2 = 1 and constant
lattice sizes. We see that in large areas of the parameter space of ε there are similar
characteristics, which in the case of λR scales in an inverse manner. Further, there
are rarely intervals in ε where the measures remain constant. Also, only for the
modality measure #LM we find real differences for varying lattice sizes. The other
two measures are very similar no matter if the quadratic lattice size is I1 = I2 =
12 or I1 = I2 = 20. Moreover, for 0.1 ≤ ε ≤ 0.3, all topological measures behave
differently from the other parameter values; we find a rather erratic characteristic.
These results can be understood by considering the spatio–temporal behavior of the
CML that defines the fitness landscape. In this parameter range, the CML are known
to possess spatio–temporal periodic patterns, while elsewhere the system exhibits
spatio–temporal chaos [66].

430 H. Richter

Fig. 13.7 The topological landscape measures for varying ε , α = 3.999 and constant lattice
sizes: a) modality #LM , b) ruggedness λR and c) information content HIC .

13.3.3.2 Dynamical Measures

We next consider dynamic landscape measures and start with dynamic severity as
change frequency is treated as a property of the evolutionary algorithms, but not of
the dynamic fitness landscape.

Dynamic severity. As discussed above, dynamic severity accounts for the average
distance from the highest peak’s coordinates xS(k) = arg fS(k) before and after a
change.

Hence, dynamic severity σ can be calculated for the CML–based fitness land-
scape (13.24) by

σ(k + 1) = ‖xS(k + 1)− xS(k)‖ (13.43)

with

xS(k) = arg

⎧⎨
⎩ max

1≤�s1x1�≤I1
1≤�s2x2�≤I2

f (�s1x1�,�s2x2�,k)
⎫⎬
⎭

13 Evolutionary Optimization and Dynamic Fitness Landscapes 431

being the solution of the dynamic optimization problem (13.26). As this quantity
may vary with time k, we consider the time average severity

〈σ(k)〉 = lim
K→∞

1
K

K−1

∑
k=0

σ(k) (13.44)

and calculate an approximative value σ similarly as done for the other measures.

Dynamic complexity measure: Lyapunov exponents. A first method to measure
dynamic complexity is by using the concept of Lyapunov exponents. The Lya-
punov exponents give the divergence or convergence rates between a time evo-
lution of the system and its nearby evolution that results from being displaced
from the original one by an infinitesimal perturbation [28, 40]. For calculating
the (largest) Lyapunov exponent for the CML–based fitness landscape (13.24), we
therefore consider the time evolution itself, f (�s1x1�,�s2x2�,k) and its neighbor-
ing evolution ∆ f (�s1x1�,�s2x2�,k), which is obtained by linearizing the system
along the evolution f (�s1x1�,�s2x2�,k). The linearized system determined along
f (�s1x1�,�s2x2�,k) describes exactly the result of an infinitesimal displacement and
allows to observe if both time evolutions diverge (positive Lyapunov exponent) or
converge (negative Lyapunov exponent). A positive Lyapunov exponent generally
indicates chaos, and the magnitude of the positive Lyapunov exponent can be seen
as a dynamic complexity measure.

We write the linearization of the CML–based fitness landscape (13.24) as fol-
lows:

∆ f̃ (i1, i2,k) =
d

d f
g(f (i1, i2,k))

∆ f (i1, i2,k + 1) = (1 − ε) f̃ (i1, i2,k)+
ε
4

[
f̃ (i1 − 1, i2,k)+ f̃ (i1 + 1, i2,k)

+ f̃ (i1, i2 − 1,k)+ f̃ (i1, i2 + 1,k)
]
, (13.45)

where (i1, i2)T = (�s1x1�,�s2x2�)T . This linearization is the tangential system to the
2D CML and has dimension I1 × I2. For its calculation, the boundary conditions
(13.16) have to be taken into account. From the linearization (13.45), we can define
the (largest) Lyapunov exponent λL as

λL = lim
k→∞

1
k

ln
‖∆ f (i1, i2,k)‖
‖∆ f (i1, i2,0)‖ , ∀ 1 ≤ i1 ≤ I1,1 ≤ i2 ≤ I2. (13.46)

Calculation of the Lyapunov exponent can be done using standard methods, for
instance using QR–factorization, which is known to be computationally efficient,
reliable and robust, see e.g. [11].

Dynamic complexity measure: bred vector dimension. As a second measure for
dynamic complexity, we consider bred vector dimensions. Bred vector dimensions
are a concept for evaluating the dynamic correlation structure of spatially extended

432 H. Richter

systems [17, 41, 43]. It has been used to identify local regions where this correlation
is high and which can therefore be used for prediction and short term forecast. Here,
we will use bred vector dimensions as a general measure for the dynamic correlation
structure of fitness landscapes and so as another dynamic landscape measure.

For calculating the bred vector dimension, we again consider a neighborhood
structure as in (13.31), but with a difference: N±�(i1, i2) is now the disjunction of the
permutations over the set S = {−�,−�+ 1, . . . ,−1,0,1, . . . , �− 1, �} and (δ1,δ2) =
(0,0) remains included. So, we specify (2�+1)2 cells around and including the cell
(i1, i2) by this neighborhood structure. For doing so around every (i1, i2), again the
boundary conditions (13.16) need to be satisfied. As there are maximally I1 × I2

cells with (possibly) different fitness values in the CML–based fitness landscape
and because taking into account the same spatial subsection twice would bias the
results, we need to limit � ≤ 1

2 (
√

I1I2 − 1). We now calculate the dynamic fitness
landscape for a point in time k, which should be large enough so that the transients
starting from f (i1, i2,0) are removed. At this point in time, we disturb κ times the
fitness landscape f (i1, i2,k) within the neighborhood structure N±�(i1, i2) by a small
Gaussian noise with mean zero and standard deviation std, that is

f j(N±�(i1, i2),k) := f j(N±�(i1, i2),k)+N (0,std), j = 1,2, . . . ,κ . (13.47)

Then, we define a time lag kL and calculate the time evolution of all κ disturbed
landscapes for further kL iterations. The obtained f j(N±�(i1, i2),k + kL) are formed
into a vector f̂ j of length (2�+ 1)2, which is called the bred vector. It is normalized
to unity and hence contains the normalized fitness values for the entire neighbor-
hood structure of the disturbed landscape. From the κ bred vectors f̂ j as columns,
we build a matrix B, which is of dimension (2� + 1)2 × κ . The matrix BT B can
be regarded as its corresponding covariance matrix. It expresses the local linear in-
dependence of the κ local bred vectors. A measure for this independence can be
obtained from the singular values σi of the matrix B, which are the roots of the
eigenvalues of the covariance matrix BT B, σi =

√
eigi(BT B). These singular values

are a measure for the amount of variance in the set of bred vectors. In other words,
they account for the degree of difference imposed by the disturbances applied to
the fitness landscape kL time steps before. From these singular values we finally
calculate the quantity

ψB =
(∑κ

i=1 σi)
2

∑κ
i=1 σ2

i

, (13.48)

which is called the bred vector dimension [41]. As each bred vector, which forms
one of the columns of the matrix B, is normalized to unit length, ψB can have values
1 ≤ ψB ≤ κ . The value ψB = 1 indicates that all bred vectors are equal, meaning that
the correlation between them is maximal. Any 1 < ψB ≤ κ expresses differences in
the bred vectors with the magnitude of ψB being a measure of the amount of dif-
ference. An integer ψB can even be interpreted as to relate to the dimensionality of
the subspace spanned by the bred vectors. So, by fixing a time lag kL, we obtain
a quantity for the degree of temporal divergence and correlation that disturbances
in the fitness landscape cause and hence a dynamic correlation structure related to

13 Evolutionary Optimization and Dynamic Fitness Landscapes 433

Fig. 13.8 The dynamical landscape measures for varying ε , α = 3.999 and constant lattice
sizes: a) dynamic severity σ , b) Lyapunov exponent λL and c) bred vector dimension ψB.

dynamic complexity. Note also that the bred vector dimension is a measure that is
conceptionally similar to the Lyapunov exponents and Lyapunov vectors considered
above. The main difference is that Lyapunov vectors account for the effect of in-
finitesimal perturbations to the time evolution, while bred vectors evaluate the result
of finite perturbations. In the numerical calculation, the values kL = 25, κ = 5 and
std = 0.0001 have been taken. As reference cell in the center of the neighborhood
structure, the cell with the maximum fitness value at time k was used.

Fig. 13.8 shows the dynamical landscape measures dynamic severity σ and the
dynamic complexity measures Lyapunov exponent λL and bred vector dimension
ψB for varying ε , α = 3.999, s1 = s2 = 1 and constant lattice sizes. The most strik-
ing feature is that all three dynamical landscape measures show large parameter
intervals in ε , particularly for ε > 0.3 where the values vary only slightly. This is
a characteristic not found in the topological measures, see Fig. 13.7. Also, only
dynamic severity shows a strong dependency on the lattice size. Again, as for the
topological measures, the parameter interval with spatio–temporal periodic patterns
is clearly visible. For the Lyapunov exponents, we obtain negative values, indicating
an absence of chaos.

The dynamical measure severity not only depends on the lattice size but also
on the scaling factors s1 and s2. As shown in Fig. 13.8a, the quantity σ obtained
for the quadratic lattice and (i1, i2)T = (�x1�,�x2�)T (that is s1 = s2 = 1) can be

434 H. Richter

regarded as constant for a given lattice size and a large majority of values of ε . So,
dynamic severity of the CML–based fitness landscape with s1 = s2 = 1 is a dynamic
property depending on the choice of α , ε and I1 × I2. This property can be linearly
scaled and adjusted by s1 and s2. In general, for quadratic lattices with I1 = I2,

dynamic severity scales as σ ∼
√

(s2
1 + s2

2) · I1, while for rectangular lattices, we

have σ ∼
√

s2
1I2

1 + s2
2I2

2 .

13.4 Evolutionary Optimization

As we have discussed in the previous section, problem hardness in a dynamic opti-
mization problem not only depends on topological features of the associated fitness
landscape, but also on its dynamical properties. In this context, it is interesting to
note that one of the driving forces behind the development of evolutionary algo-
rithms was exactly to have search methods for topological difficult problems. So,
it has been shown that evolutionary algorithms are remarkably successful in solv-
ing static optimization problems with a high degree of problem difficulty. In recent
years it has further been shown that these problem solving abilities can also be used
to tackle dynamic optimization problems. However, certain modifications in the al-
gorithmic structure of the evolutionary algorithm are necessary to make it work in
dynamic fitness landscapes. The working principle of evolutionary algorithms is to
maintain and evolve a population of candidate solutions through selection, recombi-
nation and mutation. The next generation’s population is generated by first selecting
relatively fitter individuals from the current population and then applying changes
to the selected individuals. This is sequentially done by either more deterministic
means (recombination) and or more stochastic (mutation). With these steps the new
off–spring of the next generation are created. In the normal working mode the indi-
viduals in the population will eventually converge to the optimal solution due to the
selection pressure. This convergence property, when happening at a proper pace, is
intended and expected from the evolutionary algorithm in order to locate the optimal
solution of the static problems.

For solving dynamic optimization problems, however, this convergence property
causes big problems for the evolutionary algorithm because it deprives the popula-
tion of genetic diversity. Dynamic optimization means not longer to find one optimal
solution, but to track the movement of the optimal solution with time. Consequently,
when the fitness landscape changes, it is hard for the population to escape from the
old optimal solution in order to search for the new one, if its diversity is low. The
algorithm’s convergence is simultaneously corroding its genetic diversity that after
a change is exactly needed to explore the search space and to find the optimum
again. This situation means that the algorithm must be equipped with some addi-
tional schemes which can control, maintain and occasionally enhance the popula-
tion’s diversity.15 For achieving this goal, several approaches have been suggested.

15 This often requires to detect the point in time where a change in the landscape occurs,
see [48] for a discussion of the involved problems.

13 Evolutionary Optimization and Dynamic Fitness Landscapes 435

One way to classify them is by looking at what element of the evolutionary algo-
rithm is modified and if therefore rather stochastic or deterministic means are used.
With this classification, there are four groups of schemes for diversity management
to make evolutionary algorithms fit to perform in dynamic fitness landscapes:

• on the level of the algorithm’s individuals by mainly stochastic means, as for
instance hyper–mutation [39] or random immigrants [60],

• on the level of the algorithm’s population by mainly deterministic means,
as for instance with different types of memory [8, 50, 53, 68] and multi–
population approaches [10],

• on the level of the algorithm’s parameters, as for instance by stochastic self–
adaption of the mutation [2, 7],

• on the level of the algorithm’s operators with additional and completely dif-
ferent operators, as for instance for anticipating and predicting the dynam-
ics [6, 51, 54].

In a specific implementation, there can be hybrid types of the above mentioned
schemes. One of those is an abstract memory scheme [50, 51], which combines a
memory with a prediction of dynamics. Apart from the abstract memory scheme,
we will consider a hyper–mutation scheme, a standard direct memory and a self–
adaptive mutation scheme in the numerical experiments with the CML–based dy-
namic fitness landscape.

The considered schemes work as follows, see Tab. 13.2 for details of the pa-
rameter settings. With the hyper–mutation scheme, we have a standard evolutionary
algorithm with selection, recombination and mutation. In the implementation here,
we use a population size µ , a tournament selection of tournament size 2, a fitness–
related intermediate sexual recombination (which is operated µ times and for each
recombination two individuals are chosen randomly to produce offspring that is the
fitness–weighted arithmetic mean of both parents), and a standard mutation with
mutation probability pm and base mutation rate bm (that means a mutated individ-
ual x′ differs from an un–mutated individual x by (x′ − x) ∼ bm ·N (0,1)). For the
initial population, individuals are generated whose elements are realizations of a
random variable normally distributed on [0,ω2]. The hyper–mutation now increases
the mutation strength if a change in the fitness landscape has occurred for a limited
number of generations (usually one or two). Therefore, the base mutation rate is
multiplied by the hyper–mutation rate hm, so that the hyper–mutated individuals are
(x′ − x) ∼ bm ·hm ·N (0,1). In this way, for a certain generational lag, the need for
an abrupt increase in genetic diversity is satisfied.

In self–adaption, we use the standard operators of an evolutionary algorithm and
have used the same implementation as for hyper–mutation, that is population size
µ , tournament selection and fitness–related intermediate sexual recombination. In
contrast, the mutation rate itself is a parameter that undergoes a permanent op-
timization and adaption process. Therefore, the mutation rate is considered as an
additional subject to optimize. For every individual in the population, its mutation
rate becomes an extra component. In other words, the mutation rate becomes an

436 H. Richter

additional dimension in the fitness landscape. So, the mutation rates mr are sub-
ject to the selection process and are continuously changed by an own mutation (and
hence adaption) process, see e.g. [2, 3, 34]. They are adapted every generation with
mr(τ +1) = mr(τ) ·exp(τAN (0,1)), where τA is an adaption rate and for generation
τ = 0, mr(0) = mr0. Based on this self–adapting rate, the individuals are mutated
according to the magnitude that the quantity has in a particular generation, that is
(x′ −x) ∼ mr(τ +1) ·N (0,1). With such a design of the mutation process, the muta-
tion rate is no longer a parameter to be set before the evolutionary run and controlled
by the experimenter. So, the mutation rates might converge to some (optimal) values
or might be oscillating between certain values. As the rates are subject to the internal
optimization and adaption process, they often have well–fitting values. On the other
hand, this may also mean that the rates take values that are poorly suited. To counter
this effect, in the mutation step, which follows the adaption of the mutation rates,
the number λ of individuals generated by mutation, called offspring candidates, ex-
ceeds the population size of the parents. In a second selection process only the best
offspring candidates are picked, eliminating ill–fitting mutation rates in the process.

The principle of memory schemes is to store useful information from the old
fitness landscape and reuse it later in a new one. Therefore, a memory with the
same representation as the population is set up that splits an extra storage space to
explicitly store information from a current generation. This information is employed
later, for instance by merging the stored individuals with the population at that time.
This is known as direct memory [8, 53, 68]. The memory has the size µmem and is
feeded by individuals selected for their high fitness. If a change in the landscape
occurs, the stored individuals are inserted in the population, replacing individuals
with low fitness. Since memory space is usually limited, we need to update the
information stored in the memory. A general strategy is to select one memory space
to be replaced by the best individual of the population.

A second example for a memory that additionally realizes some elements of pre-
dicting the dynamics of the landscape is the abstract memory scheme [50, 51]. The
basic idea of abstract memory is that the solutions are not stored directly, that is
as individuals representing points in search space, but as their abstraction. We un-
derstand as an abstraction of a good solution its approximate location in the search
space, which is therefore partitioned with a grid of size εG. In an abstract storage
process, µstor individuals with high fitness are taken and sorted according to the
partition in the search space which they represent. Each individual sorted increases
a counter belonging to that partition and indicates how often a good solution has
occurred in exactly this subsection of the search space. In the abstract retrieval pro-
cess, we fix a number of individuals to be inserted in the population by µretr and
create these individuals randomly such that their statistical distribution regarding
the partition matches that stored in the memory. Hence, abstract memory combines
ideas from memory such as saving individuals for future re–insertion with attempts
to predict the time evolution of the dynamic fitness landscape: storing the abstrac-
tion of good solutions, that is to use their approximate location in the search space,
allows to deduce a probabilistic model for the spatial distribution of future solutions
of the problem.

13 Evolutionary Optimization and Dynamic Fitness Landscapes 437

Table 13.2 Parameter of the tested evolutionary algorithms

Considered Scheme Design parameter Symbol Value
All schemes Population size µ 50

Initial population width ω2 5
Hyper–mutation Base–mutation rate bm 0.1

Hyper–mutation rate hm 30
Mutation probability pm 0.25

Self–adaption Offspring size λ 50
Initial mutation rates mr0 1.5
Adaption rate τA 1.25

Direct memory Memory size µmem 10
Abstract memory Grid size εG 1.0

Individuals to memory µstor 3
Individuals from memory µretr 20

The parameters used in the implementations that are the subjects of the numerical
experiments reported in the next section, are summarized in Tab. 13.2.

13.5 Numerical Experiments

The performance of the algorithms is measured by the Mean Fitness Error (MFE),
defined as below:

MFE =
1
R

R

∑
r=1

[
1
T

T

∑
τ=1

(
f (xs(k),k)− max

x j(τ)∈P(τ)
f (x j(τ),k)

)]

k=�γ−1τ�
, (13.49)

where max
x j(τ)∈P(τ)

f
(
x j(τ),�γ−1τ�) is the fitness value of the best–in–generation indi-

vidual x j(τ) ∈ P(τ) at generation τ , f
(
xS(�γ−1τ�),�γ−1τ�) is the maximum fitness

value at generation τ , T is the number of generations used in the run, and R is the
number of consecutive runs. We set R = 150 and T = 1500 in all experiments. Note
that f

(
xs(�γ−1τ�),�γ−1τ�) and max

x j(τ)∈P(τ)
f
(
x j(τ),�γ−1τ�) change every γ gener-

ations according to Eq. (13.28). The MFE serves as a performance criterion and
as behavior data for the evolutionary optimization in the dynamic fitness landscape
(13.24). Fig. 13.9 show the MFE for the four considered evolutionary algorithm im-
plementations hyper–mutation, self–adaption, direct and abstract memory and the
landscape parameters α = 3.999, I1 = I2 = 16, s1 = s2 = 1 and different values of
ε . For these values the dynamic fitness landscape shows mostly spatio–temporal
chaotic behavior, but also spatio–temporal periodic patterns. The figures give the
MFE and its 95% confidence interval for the change frequencies γ = 10, γ = 20
and γ = 30. We observe that for most values of ε , the curves for each γ are distinct
with the smallest γ leading to the largest MFE , and vice versa.

438 H. Richter

Fig. 13.9 Behavior of different implementations of the evolutionary algorithm expressed as
the mean fitness error MFE (13.49) for the CML–based fitness landscape (13.24) with I1 =
I2 = 16 and α = 3.999: a) hyper-mutation, b) self–adaption, c) direct memory, d) abstract
memory.

Looking the results, we see some differences between the four implementations.
Although all results are for 150 runs, the confidence intervals that reflect to what
degree the given mean value can be expected to be indeed the mean value if an
infinite number of runs would have been carried out, are much higher for self–
adaption and direct memory than for hyper–mutation and abstract memory. This
means that for both implementations, for self–adaption even to a larger degree than
for direct memory, some performance results are much better than the mean, but
others are much worse. This result may possibly be explained for self–adaption by
the fact that the mutation rates evolve towards optimal values after a change, but
sometimes exactly these optimal values become unfavorable after the next change.
As there is only the feedback via the individuals’ fitness and the selection process
(including potentially ill–posed mutation rates), it might take a certain time until
optimal mutation rates are obtained again. This point of view seems to be confirmed
by the observation that the confidence intervals are particularly large for small γ ,
that is for a landscape that changes fast. For direct memory, the effect might be
that the stored individuals inserted after a change do not help in that particular new
environment. The retrieved individuals might be favorable after another change, but
not after the given one. Also, it is interesting to note that some implementations,

13 Evolutionary Optimization and Dynamic Fitness Landscapes 439

particularly hyper–mutation, but to some extent also abstract memory, react on the
presence of spatio–temporal periodic patterns at 0.1 ≤ ε ≤ 0.3 with a drop in the
MFE .

However, our interest here is neither to discuss possible performance enhancing
alterations in the algorithms’ parameters or implementation details or more gener-
ally the optimal design of the algorithms, nor to argue about which implementation
is superior over another. To do so, the extent of the presented results is much to
small, and also we find it more illuminating to study the underlying working prin-
ciples of the algorithms. In other words, in theoretical studies the behavior of the
evolutionary algorithm is sometimes much more interesting than the actual perfor-
mance record. Therefore, we next approach the question of which implementation
fulfils the expectations with respect to the landscape measures consider above. To
get a metric of the strength of the relationship between landscape measures and
the algorithms’ behavior, we apply a parametric and a nonparametric correlation
analysis, e.g. [52]. In particular, we study the Pearson product–moment correlation
and the Kendall rank–order correlation. So, we run tests for relationships between
these quantities, these are linear relation (Pearson) and piecewise linear relation
(Kendall). With this, we intend to establish how reliable a linear or a piecewise lin-
ear relation between the landscape measures and the algorithms’ behavior is. We
would like to stress that this correlation analysis cannot imply any simple causation
between landscape properties and the algorithm’s behavior. As frequently in corre-
lation analysis, to claim causation from observed correlation can be questionable
or even misleading. Clearly, the landscape measures reflect different aspects of the
landscape’s problem difficulty, and this problem difficulty, in turn, must affect the
flow of individuals in the landscape and hence the behavior of the evolutionary al-
gorithm. However, each topological and dynamical measure emphasizes a specific
aspect in problem hardness and there is no guarantee that the considered measures
do not ignore properties that are important for details of the algorithms’ behavior in
exactly that landscape.

In the Figs. 13.10 and 13.11, the Pearson correlation coefficient ρ2
P (also known as

”Pearson’s r”) and the Kendall correlation coefficient ρ2
K (also known as ”Kendall’s

τ”) are given. We write ρ2
P(MFE,#LM) for the squared Pearson correlation between

MFE and #LM, ρ2
K(MFE,#LM) for the squared Kendall correlation and so on. The

square of the correlation coefficients ρ2
P is also known as the coefficient of determi-

nation and can be interpreted as follows. The squared correlation coefficient repre-
sents the fraction of variance that is expressed by the fit between the MFE and the
landscape measures. If the data from the landscape measures and the behavior data
from the evolutionary algorithm were used in a statistical model, the quantity ρ2

P
would be a metric of how well this model is able to predict further data. Hence, we
view ρ2

P as a measure of reliability, strength and predictive power of the relationship
between the landscape measures and the evolutionary algorithms’ behavior. For the
correlation coefficient ρ2

K a likewise interpretation is possible.
The results in the Figs. 13.10 and 13.11 show some clear trends. A first is that the

topological landscape measures modality, ruggedness and information content have
a stronger correlation with the behavior of the evolutionary algorithm expressed by

440 H. Richter

Fig. 13.10 Correlation analysis using Pearson product–moment correlation between topolog-
ical and dynamical landscape measures and the behavior of the evolutionary algorithm ex-
pressed by the mean fitness error MFE for different implementations: a) hyper-mutation, b)
self–adaption, c) direct memory, d) abstract memory. A - ρ2

P(MFE,#LM), B - ρ2
P(MFE,λR),

C - ρ2
P(MFE,HIC), D - ρ2

P(MFE,σ), E - ρ2
P(MFE,λL), F - ρ2

P(MFE,ψB).

the performance measure MFE , as compared to the dynamical landscape measures.
A second trend is that the correlation of the topological measures decrease with in-
creasing change frequency γ . A possible explanation is that change frequency seems
to be the fundamental factor determining the MFE , see Fig. 13.9, where γ seems to
set the level of the curves but not their form, which is done by ε and so by the other
landscape measures. If γ gets larger, that is, the evolutionary algorithm has more
generations to find the optimum, then the algorithms’ performance is no longer so
heavily influenced by topological problem hardness. The performance of an evolu-
tionary algorithm having enough time to search for the maxima is weaker affected
by the difficulties that are accounted for by the topological landscape measures. For
the dynamical landscape measures severity, Lyapunov exponents and bred vector di-
mensions the correlations are generally much weaker but such a ceasing relationship
for increasing γ is also not obtained. On the contrary, in some cases these measures
seem to predict the algorithms’ behavior even stronger for larger γ than for smaller
ones. A comparison between the two types of correlation coefficients considered
here yields rather equivocal results, although Pearson correlation ρ2

P seems to give
slightly stronger indications, particularly for the topological landscape measures.

13 Evolutionary Optimization and Dynamic Fitness Landscapes 441

Fig. 13.11 Correlation analysis using Kendall rank–order correlation between topological
and dynamical landscape measures and the behavior of the evolutionary algorithm expressed
by the mean fitness error MFE for different implementations: a) hyper-mutation, b) self–
adaption, c) direct memory, d) abstract memory. A - ρ2

K(MFE,#LM), B - ρ2
K(MFE,λR), C -

ρ2
K(MFE,HIC), D - ρ2

K(MFE,σ), E - ρ2
K(MFE,λL), F - ρ2

K(MFE,ψB).

So, the question if linear relationships (Pearson) are to prefer over piecewise linear
(Kendall) is not definitely answerable.

A general exception to these rules are the results for self–adaption. Here, an im-
plementation detail might offer some clues. Self–adaption is the only of the four im-
plementations that does not directly and externally–triggered react on a landscape
change. The other three implementations detect a change and immediately response
with diversity enhancing actions such as hyper–mutation or inserting individuals
from the memory. Self–adaption, on the other hand, relies upon the mutation rates
to adjust themselves over a certain number of generations as the result of the self–
adaption process. This might be a reason why the problem solving abilities of the
self–adaption scheme, particularly for small γ , are less determined by the problem
hardness accounted for by the landscape measures, while the actual performance
results are comparable to the other implementations. For self–adaption this seems
to mean that the population’s diversity is high enough all the time. So, while the
other three schemes experience jump–like increases in their diversity as a result of

442 H. Richter

the actions carried out after a detected change, but also a rapidly deterioration of di-
versity afterwards, self–adaption includes a continuing and not dwindling diversity
management that makes it more independent from the landscape properties.

13.6 Concluding Remarks

In this chapter of the book, we have considered the behavior of evolutionary al-
gorithms in dynamic fitness landscapes that exhibit spatio–temporal chaos. These
landscapes can be constructed from reaction–diffusion systems or from coupled map
lattices (CML) and both kinds of description are related to each other. We have an-
alyzed and quantified their properties using topological and dynamical landscape
measures such as modality, ruggedness, information content, dynamic severity and
two types of dynamic complexity measures, Lyapunov exponents and bred vector
dimension. Four types of evolutionary algorithm implementations, hyper–mutation,
self–adaption, and two kinds of memory schemes, direct and abstract memory, were
studied and their performance in the spatio–temporal chaotic fitness landscapes was
recorded. We used these performance data to relate the algorithms’ behavior to the
landscape measures using a correlation analysis. So, it was shown that the topologi-
cal landscape measures correlate stronger with the algorithms’ behavior, particularly
for landscapes that change frequently. This correlation tends to cease for landscapes
with a slower change pattern. Albeit dynamical landscape measures do show weaker
correlations, they tend to remain preserved for varying change frequency.

As initially stated, a main point in a theoretical approach to evolutionary compu-
tation is to study how properties of the fitness landscape reflect, explain and allow
to predict the behavior of the evolutionary algorithm, and vice versa. This question
was posed here specifically for dynamical fitness landscapes and our hope is that
the given approach might be useful as a starting point for a more general theory
of dynamic fitness landscapes, which still is in its infancy. For further developing
such a theory it might be helpful to go on taking inspiration from both the theory of
static fitness landscapes and of spatially extended dynamical systems. We believe
that only by bringing these fields together (which is a variation of the overall topic
of the present book) substantial progress can be achieved.

References

1. Aoki, N., Hiraide, K.: Topological Theory of Dynamical Systems. North-Holland, Ams-
terdam (1994)

2. Arnold, D., Beyer, H.: Optimum tracking with evolution strategies. Evol. Comput. 14,
291–308 (2006)

3. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies. In: Evo-
lutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)

4. Barreira, L., Pesin, Y.: Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero
Lyapunov Exponents. Cambridge University Press, Cambridge (2007)

13 Evolutionary Optimization and Dynamic Fitness Landscapes 443

5. Batterman, R., White, H.: Chaos and algorithmic complexity. Found. Phys. 26, 307–336
(1996)

6. Bosman, P.: Learning and anticipation in online dynamic optimization. In: Yang, S., Ong,
Y., Jin, Y. (eds.) Evolutionary Computation in Dynamic and Uncertain Environments, pp.
129–152. Springer, Heidelberg (2007)

7. Boumaza, A.: Learning environment dynamics from self-adaptation. In: Yang, S.,
Branke, J. (eds.) GECCO Workshops 2005, pp. 48–54 (2005)

8. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In: Angeline, P., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proc.
Congress on Evolutionary Computation, IEEE CEC 1999, pp. 1875–1882. IEEE Press,
Piscataway (1999)

9. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic
Publishers, Dordrecht (2001)

10. Branke, J., Kau, T., Schmidt, C., Schmeck, H.: A multi–population approach to dynamic
optimization problems. In: Parmee, I. (ed.) Proc. of the 4th Int. Conf. on Adaptive Com-
puting in Design and Manufacturing, pp. 299–308 (2000)

11. Bremen, H., Udwadia, F., Proskurowski, W.: An efficient method for the computation of
Lyapunov numbers in dynamical systems. Physica D 101, 1–16 (1997)

12. Chazottes, J., Fernandez, B.: Dynamics of Coupled Map Lattices and of Related Spatially
Extended Systems. Springer, Heidelberg (2005)

13. Chlouverakis, K., Sprott, J.: A comparison of correlation and Lyapunov dimensions.
Physica D 200, 156–164 (2005)

14. Chrianti, A., Falconi, M., Mantic, G., Vulpiani, A.: Applying algorithmic complexity to
define chaos in the motion of complex systems. Phys. Rev. E 50, 1959–1967 (1994)

15. Crutchfield, J., Kaneko, K.: Phenomenology of spatiotemporal chaos. In: Hao, B. (ed.)
Directions in Chaos, vol. 1, pp. 272–353. World Scientific, Singapore (1987)

16. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, Heidelberg
(2003)

17. Francisco, G., Muruganandam, P.: Local dimension and finite time prediction in spa-
tiotemporal chaotic systems. Phys. Rev. E 67, 066204–1–5 (2003)

18. Frederickson, P., Kaplan, P., Yorke, E., Yorke, J.: The Lyapunov dimension of strange
attractors. J. Diff. Equations 49, 185–203 (1983)

19. Hordijk, W.: A measure of landscapes. Evol. Comput. 4, 335–360 (1996)
20. Hordijk, W.: Correlation analysis of the synchronizing–CA landscape. Physica D 107,

255–264 (1997)
21. Hordijk, W., Stadler, P.: Amplitude spectra of fitness landscapes. Adv. Complex Sys-

tems 1, 39–66 (1998)
22. Hordijk, W., Kauffman, S.: Correlation analysis of coupled fitness landscapes. Complex-

ity 10, 42–49 (2005)
23. Horn, J., Goldberg, D., Deb, K.: Long path problems. In: Davidor, Y., Männer, R.,

Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 149–158. Springer, Heidelberg
(1994)

24. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments – A survey.
IEEE Trans. Evol. Comput. 9, 303–317 (2005)

25. Kaneko, K.: The coupled map lattice. In: Kaneko, K. (ed.) Theory and Application of
Coupled Map Lattices, pp. 1–49. John Wiley, Chichester (1993)

26. Kaneko, K., Tsuda, I.: Complex Systems: Chaos and Beyond. Springer, Heidelberg
(2001)

444 H. Richter

27. Kallel, L., Naudts, B., Reeves, C.: Properties of fitness functions and search landscapes.
In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Com-
puting, pp. 177–208. Springer, Heidelberg (2001)

28. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press,
Cambridge (1999)

29. Kardar, M., Parisi, G., Zhang, Y.: Dynamic scaling of growing interfaces. Phys. Rev.
Lett. 56, 889–892 (1986)

30. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems.
Cambridge University Press, Cambridge (1995)

31. Katzav, E., Cugliandolo, L.: From coupled map lattices to the stochastic Kardar–Parisi–
Zhang equation. Physica A 371, 96–99 (2006)

32. Kauffman, S.: The Origin of Order: Self–Organization and Selection in Evolution. Ox-
ford University Press, Oxford (1993)

33. Ma, K., Jianga, J., Yanga, C.: Scaling behavior of roughness in the two-dimensional
Kardar–Parisi–Zhang growth. Physica A 378, 194–200 (2007)

34. Meyer, S., Nieberg, B.H.: Self–adaptation in evolutionary algorithms. In: Lobo, F., Lima,
C., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithm, pp. 47–75.
Springer, Heidelberg (2007)

35. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer,
Heidelberg (1996)

36. Miranda, V., Aarão Reis, F.: Numerical study of the Kardar–Parisi–Zhang equation.
Phys. Rev. E 77, 031134–1–6 (2008)

37. Morrison, R.: Designing Evolutionary Algorithms for Dynamic Environments. Springer,
Heidelberg (2004)

38. Morrison, R., De Jong, K.: A test problem generator for non–stationary environments. In:
Angeline, P., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proc. Congress
on Evolutionary Computation, IEEE CEC 1999, pp. 2047–2053. IEEE Press, Piscataway
(1999)

39. Morrison, R., De Jong, K.: Triggered hypermutation revisited. In: Zalzala, A., Fonseca,
C., Kim, J., Smith, A., Yao, X. (eds.) Proc. Congress on Evolutionary Computation, IEEE
CEC 2000, pp. 1025–1032. IEEE Press, Piscataway (2000)

40. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993)
41. Patil, D., Hunt, B., Kalnay, E., Yorke, J., Ott, E.: Local low dimensionality of atmospheric

dynamics. Phys. Rev. Lett. 86, 5878–5881 (2001)
42. Pesin, Y., Yurchenko, A.: Some physical models of the reaction–diffusion equation and

coupled map lattices. Russ. Math. Surv. 59, 481–513 (2004)
43. Primo, C., Szendro, I., Rodrı́guez, M., López, J.: Dynamic scaling of bred vectors in

spatially extended chaotic systems. Europhys. Lett. 765, 767–773 (2006)
44. Richter, H.: Behavior of evolutionary algorithms in chaotically changing fitness land-

scapes. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bulli-
naria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS,
vol. 3242, pp. 111–120. Springer, Heidelberg (2004)

45. Richter, H.: A study of dynamic severity in chaotic fitness landscapes. In: Corne, D. (ed.)
Proc. Congress on Evolutionary Computation, IEEE CEC 2005, pp. 2824–2831. IEEE
Press, Piscataway (2005)

46. Richter, H.: Evolutionary optimization in spatio–temporal fitness landscapes. In: Runars-
son, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.)
PPSN 2006. LNCS, vol. 4193, pp. 1–10. Springer, Heidelberg (2006)

13 Evolutionary Optimization and Dynamic Fitness Landscapes 445

47. Richter, H.: Coupled map lattices as spatio–temporal fitness functions: Landscape mea-
sures and evolutionary optimization. Physica D 237, 167–186 (2008)

48. Richter, H.: Detecting change in dynamic fitness landscapes. In: Tyrrell, A. (ed.) Proc.
Congress on Evolutionary Computation, IEEE CEC 2009, pp. 1613–1620. IEEE Press,
Piscataway (2009)

49. Richter, H.: Can a polynomial interpolation improve on the Kaplan-Yorke dimension?
Phys. Lett. A 372, 4689–4693 (2008)

50. Richter, H., Yang, S.: Memory based on abstraction for dynamic fitness functions. In: Gi-
acobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-
Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero, J., Roth-
lauf, F., Squillero, G., Uyar, A.Ş., Yang, S., et al. (eds.) EvoWorkshops 2008. LNCS,
vol. 4974, pp. 597–606. Springer, Heidelberg (2008)

51. Richter, H., Yang, S.: Learning behavior in abstract memory schemes for dynamic opti-
mization problems. Soft Computing 13, 1163–1173 (2009)

52. Sheskin, D.: Handbook of Parametric and Nonparametric Statistical Procedures. CRC
Press, Boca Raton (1997)

53. Simões, A., Costa, E.: Variable-size memory evolutionary algorithm to deal with dy-
namic environments. In: Giacobini, M., et al. (eds.) EvoWorkshops 2007. LNCS,
vol. 4448, pp. 617–626. Springer, Heidelberg (2007)

54. Simões, A., Costa, E.: Evolutionary algorithms for dynamic environments: Prediction
using linear regression and Markov chains. In: Rudolph, G., Jansen, T., Lucas, S., Poloni,
C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 306–315. Springer, Heidelberg
(2008)

55. Smith, T., Husbands, P., Layzell, P., O’Shea, M.: Fitness landscapes and evolvability.
Evol. Comput. 10, 1–34 (2002)

56. Stadler, P.: Landscapes and their correlation functions. J. Math. Chem. 20, 1–45 (1996)
57. Stadler, P., Stephens, C.: Landscapes and effective fitness. Comm. Theor. Biol. 8, 389–

431 (2003)
58. Teo, J., Abbass, H.: An information–theoretic landscape analysis of neuro–controlled

embodied organisms. Neural Comput. Appl. 13, 80–89 (2004)
59. Tereshko, V.: Selection and coexistence by reaction–diffusion dynamics in fitness land-

scapes. Phys. Lett. A 260, 522–527 (1999)
60. Tinós, R., Yang, S.: A self–organizing random immigrants genetic algorithm for dynamic

optimization problems. Genet. Program Evol. Mach. 8, 255–286 (2007)
61. Vassilev, V.: Information analysis of fitness landscapes. In: Husbands, P., Harvey, I. (eds.)

Proc. Fourth European Conference on Artificial Life, pp. 116–124. MIT Press, Cam-
bridge (1997)

62. Vassilev, V., Fogarty, T., Miller, J.: Information characteristics and the structure of land-
scapes. Evol. Comput. 8, 31–60 (2000)

63. Weicker, K.: An analysis of dynamic severity and population size. In: Schoenauer, M.,
Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo Guervós, J., Schwefel, H. (eds.) Par-
allel Problem Solving from Nature–PPSN VI, pp. 159–168. Springer, Heidelberg (2000)

64. Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the differ-
ence. Biol. Cybern. 63, 325–336 (1990)

65. Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution.
In: Jones, D. (ed.) Proc. of the Sixth International Congress on Genetics, pp. 356–366
(1932)

446 H. Richter

66. Xie, F., Hu, G.: Spatio–temporal periodic and chaotic pattern in a two–dimensional cou-
pled map lattice system. Phys. Rev. E 55, 79–86 (1997)

67. Yang, S.: Non–stationary problem optimization using the primal-dual genetic algorithm.
In: Sarker, R., Reynolds, R., Abbass, H., Tan, K., Essam, D., McKay, R., Gedeon, T.
(eds.) Proc. Congress on Evolutionary Computation, IEEE CEC 2003, pp. 2246–2253.
IEEE Press, Piscataway (2003)

68. Yang, S.: Associative memory scheme for genetic algorithms in dynamic environments.
In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E.,
Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H., et al. (eds.)
EvoWorkshops 2006. LNCS, vol. 3907, pp. 788–799. Springer, Heidelberg (2006)

69. Yang, S., Yao, X.: Experimental study on population-based incremental learning algo-
rithms for dynamic optimization problems. Soft Computing 9, 815–834 (2005)

Chapter 14
Controller Parameters Optimization on a
Representative Set of Systems Using
Deterministic-Chaotic-Mutation Evolutionary
Algorithms

Donald Davendra and Ivan Zelinka

Abstract. The application of Differential Evolution (DE) to the task of PID con-
troller optimization is explored in this chapter. DE is applied in two variants; canon-
ical and chaos mutated. DE canonical version uses a random number generator
where as the chaos mutated version uses chaotic maps as the mutation generator.
These two variants are applied to three different systems in order to gauge their ef-
fectiveness. The results present two main points. The first is the effectiveness of DE
over tuning algorithms and other metaheuristics. The second is the competitiveness
and effectiveness of embedding chaotic systems in DE.

14.1 Introduction

The PID controller is the most common form of feedback. It was an essential el-
ement of early governors and it became the standard tool when process control
emerged in the 1940s. In process control today, more than 95% of the control loops
are of PID type, most loops are actually PI control. PID controllers are today found
in all areas where control is used. The controllers come in many different forms.

Donald Davendra
Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511,
Zlin 76001, Czech Republic
e-mail: davendra@fai.utb.cz

Ivan Zelinka
Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511,
Zlin 76001, Czech Republic
and
VSB-TUO, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15,
708 33 Ostrava-Poruba, Czech Republic
e-mail: zelinka@fai.utb.cz

I. Zelinka et al. (Eds.): Evolutionary Algorithms and Chaotic Systems, SCI 267, pp. 447–480.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

448 D. Davendra and I. Zelinka

There are stand-alone systems in boxes for one or a few loops, which are manu-
factured by the hundred thousands yearly. PID control is an important ingredient
of a distributed control system. The controllers are also embedded in many special-
purpose control systems. PID control is often combined with logic, sequential func-
tions, selectors, and simple function blocks to build the complicated automation
systems used for energy production, transportation, and manufacturing. Many so-
phisticated control strategies, such as model predictive control, are also organized
hierarchically. PID control is used at the lowest level; the multivariable controller
gives the set-points to the controllers at the lower level. The PID controller can thus
be said to be the “bread and butter” of control engineering. It is an important com-
ponent in every control engineers tool box [1].

PID controllers have survived many changes in technology, from mechanics and
pneumatics to microprocessors via electronic tubes, transistors, integrated circuits.
The microprocessor has had a dramatic influence on the PID controller. Practically
all PID controllers made today are based on microprocessors. This has given op-
portunities to provide additional features like automatic tuning, gain scheduling,
continuous adaptation and more recently evolutionary tuning [6].

One of the recent approaches of the tuning of these controllers is in the usage of
evolutionary algorithms (EA’s). This chapter discusses two such unique techniques.

The first is the use of Differential Evolution (DE) for PID tuning. DE is a global
optimizer which uses a stochastic random search strategy.

The second technique is the embedding of chaotic maps inside DE to act as mu-
tation value generators in order to have a deterministic search pattern in the solution
space. This strategy is implemented in order to compare the effectiveness of random
and chaotic search systems.

This chapter is divided into the following sections. Section 14.2 introduces the
PID controller. Section 14.3 discusses the various controller tuning parameters
whereas section 14.4 gives a background on the system specifications of PID con-
troller. DE is introduced in section 14.5 and the Chaotic Systems in section 14.6.
The experimentations conducted to gauge the effectiveness of these approaches is
given in section 14.7. Section 14.8 concludes the chapter.

14.2 PID Controller

The PID controller contains three unique parts; proportional, integral and derivative
controller [1]. The following sections describe the different components.

14.2.1 Proportional Algorithm

The mathematical representation is given as,

mv(s)
e(s)

= kc (14.1)

14 Controller Parameters Optimization on a Representative Set of Systems 449

in the Laplace domain or as,

mv(t) = mvss + kce(t) (14.2)

in the time domain.
The proportional mode adjusts the output signal in direct proportion to the con-

troller input (which is the error signal, e). The adjustable parameter to be specified is
the controller gain, kc. The larger the kc, the more the controller output will change
for a given error [1].

The time domain expression also indicates that the controller requires calibration
around the steady-state operating point. This is indicated by the constant term mvss.
This represents the ‘steady-state’ signal for the mv and is used to ensure that at zero
error, the cv is at setpoint. In the Laplace domain this term disappears, because of
the deviation ‘variable’ representation [1].

A proportional controller reduces error but does not eliminate it (unless the pro-
cess has naturally integrating properties), i.e. an offset between the actual and de-
sired value will normally exist [1].

14.2.2 Proportional Integral Algorithm

The mathematical representation is given as,

mv(s)
e(s)

= kc

[
1 +

1
Tis

]
(14.3)

in the Laplace domain or as,

mv(t) = mvss + kc

[
e(t)+

1
Ti

∫
e(t)dt

]
(14.4)

in the time domain.
The additional integral mode corrects for any offset (error) that may occur be-

tween the desired value (setpoint) and the process output automatically over time.
The adjustable parameter to be specified is the integral time (Ti) of the controller [1].

14.2.3 Proportional Integral Derivative Algorithm

The mathematical representation is given as,

mv(s)
e(s)

= kc

[
1 +

1
Tis

+ TDs

]
(14.5)

in the Laplace domain or as,

mv(t) = mvss + kc

[
e(t)+

1
Ti

∫
e(t)dt + TD

de(t)
dt

]
(14.6)

450 D. Davendra and I. Zelinka

Derivative action anticipates where the process is heading, by looking at the time
rate of change of the controlled variable (its derivative). TD is the ‘rate time’ and this
characterizes the derivative action (with units of minutes). In theory, derivative ac-
tion should always improve dynamic response and it does in many loops. In others,
however, the problem of noisy signals makes the use of derivative action undesirable
(differentiating noisy signals can translate into excessive mv movement).

Derivative action depends on the slope of the error, unlike P and I. If the error is
constant, derivative action has no effect [1].

The parallel PID controller is given as in Equation 14.7.

mv(s) = kce(s)+
1

Tis
e(s)+ TDse(s) (14.7)

A further alternative simplified form is given in Equation 14.8.

G(s) = K

(
1 +

1
sTi

+ sTd

)
(14.8)

The PID form most suitable for analytical calculations is given in Equation 14.9.

G(s) = k +
ki

s
+ skd (14.9)

The parameters are related to the standard form through: k = K, ki = K
Ti

and
kd = KTd .

The advantage is that the parameters appear linearly and it is possible to obtain
pure proportional, integral, or derivative action by finite values of the parameters.

The overall PID controller is given in Fig.14.1.

Fig. 14.1 PID Controller

14.3 Controller Tuning

Controller tuning involves the selection of the best values of kc, Ti and TD. This is
often a subjective procedure and is certainly process dependent. When tuning a PID

14 Controller Parameters Optimization on a Representative Set of Systems 451

algorithm, generally the aim is to match some preconceived “ideal” response profile
for the closed loop system. The following response profiles are typical [6].

Overshoot: this is the magnitude by which the controlled “variable swings” past
the setpoint. 5/10% overshoot is normally acceptable for most loops.

Rise time: the time it takes for the process output to achieve the new desired
value. One-third the dominant process time constant would be typical.

Decay ratio: this is the ratio of the maximum amplitude of successive oscilla-
tions.

Settling time: the time it takes for the process output to die to between, say +/-
5% of setpoint.

14.3.1 Ziegler Nichols Closed Loop Method

The Ziegler Nichols method is straightforward. First, set the controller to P mode
only. Next, set the gain of the controller (kc) to a small value. Make a small setpoint
(or load) change and observe the response of the controlled variable. If kc is low,
the response should be sluggish. Increase kc by a factor of two and make another
small change in the setpoint or the load. Keep increasing kc (by a factor of two) until
the response becomes oscillatory. Finally, adjust kc until a response is obtained that
produces continuous oscillations. This is known as the ultimate gain (ku). Note, the
period of the oscillations is Pu. The control law settings are then obtained as given
in Table 14.1.

Table 14.1 Ziegler Nichols Tuning

kc Ti TD

P ku
2

PI ku
2.2

Pu
2.2

PID ku
1.7

Pu
2

Pu
8

It is unwise to force the system into a situation where there are continuous oscil-
lations as this represents the limit at which the feedback system is stable.

Generally, it is a good idea to stop at the point where some oscillation has been
obtained. It is then possible to approximate the period Pu and if the gain at this point
is taken as the ultimate gain ku, then this will provide a more conservative tuning
regime.

452 D. Davendra and I. Zelinka

14.4 System Specifications

14.4.1 Sensitivity Specifications

In order to measure the system, it becomes imperative to first discuss the specifica-
tions of the system [1]. Consider a system given in Fig 14.2.

Fig. 14.2 Block diagram of basic feedback loop.

A block diagram of a basic feedback loop is shown in Fig 14.2. The system loop
is composed of two components, the process P and the controller. The controller has
two blocks, the feedback block C and the feedforward block F. There are two dis-
turbances acting on the process, the load disturbance d and the measurement noise
n. The load disturbance represents disturbances that drive the process away from its
desired behavior. The process variable x is the real physical variable that we want
to control. Control is based on the measured signal y, where the measurements are
corrupted by measurement noise n. Information about the process variable x is thus
distorted by the measurement noise. The process is influenced by the controller via
the control variable u. The process is thus a system with three inputs and one output.
The inputs are: the control variable u, the load disturbance d and the measurement
noise n. The output is the measured signal. The controller is a system with two in-
puts and one output. The inputs are the measured signal y and the reference signal r
and the output is the control signal u. Note that the control signal u is an input to the
process and the output of the controller and that the measured signal is the output of
the process and an input to the controller.

Taking Laplace transforms and simplifying the systems in terms of input and
output, the following gang of four characteristics emerge when the system has pure
error of F=1 [1].

PC

1 + PC
(14.10)

P
1 + PC

(14.11)

C
1 + PC

(14.12)

14 Controller Parameters Optimization on a Representative Set of Systems 453

1
1 + PC

(14.13)

Equation 14.10 is the complementary sensitivity function, Equation 14.11 is the
load disturbance sensitivity function, Equation 14.12 is the noise sensitivity function
and Equation 14.13 is the sensitivity function. In this chapter, Equation 14.10 and
14.13 are used as system measure.

14.4.2 Optimization Specifications

The properties of the transfer functions can also be based on integral criteria [3].
Let e(t) be the error caused by reference values or disturbances and let u(t) be
the corresponding control signal. The performance index is calculated over a time
interval; T, normally in the region of 0 ≤ T ≤ ts where ts is the settling time of the
system. The following performance indices are of note:

14.4.2.1 Integral of Time Multiplied by Absolute Error (ITAE)

IITAE =
T∫

0

t |e(t)|dt (14.14)

The ITAE weights the error with time and hence emphasizes the error values later
on in the response rather than the initial large errors.

14.4.2.2 Integral of Absolute Magnitude of the Error (IAE)

IIAE =
T∫

0

|e(t)|dt (14.15)

IAE gets the absolute value of the error to remove negative error components.
IAE is good for simulation studies.

14.4.2.3 Integral of the Square of the Error (ISE)

IISE =
T∫

0

e2 (t)dt (14.16)

The ISE squares the error to remove negative error components. ISE discrimi-
nates between over-damped and under damped systems, i.e. a compromise mini-
mizes the ISE.

454 D. Davendra and I. Zelinka

14.4.2.4 Mean of the Square of the Error (MSE)

IMSE =
1
n

n

∑
i=1

(e(t))2 (14.17)

MSE reflects all variation and deviation from the target value.

14.5 Differential Evolution Algorithm

Differential evolution (DE) is one of the evolutionary optimization methods pro-
posed by Price [8] to solve the Chebychev polynomial fitting problem. DE is a
population-based and stochastic global optimizer, and has proven to be a robust
technique for global optimization.

In order to describe DE, a schematic is given in Fig 14.3.

1.Input :D,Gmax,NP ≥ 4,F ∈ (0,1+) ,CR ∈ [0,1],and initial bounds :x(lo),x(hi).

2.Initialize :

{
∀i ≤ NP ∧∀ j ≤ D : xi, j,G=0 = x(lo)

j + rand j [0,1]•
(

x(hi)
j −x(lo)

j

)
i = {1,2, ...,NP}, j = {1,2, ...,D},G = 0,rand j [0,1] ∈ [0,1]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3.While G < Gmax

∀i ≤ NP

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4. Mutate and recombine :
4.1 r1,r2,r3 ∈ {1,2,,NP},

randomly selected,except :r1 �= r2 �= r3 �= i
4.2 jrand ∈ {1,2, ...,D}, randomly selected once each i

4.3 ∀ j ≤ D,u j,i,G+1 =

⎧⎨
⎩

x j,r3,G +F · (x j,r1,G −x j,r2 ,G)
if (rand j [0,1] < CR∨ j = jrand)
x j,i,G otherwise

5. Select

xi,G+1 =
{

ui,G+1 if f (ui,G+1) ≤ f (xi,G)
xi,G otherwise

G = G+1

Fig. 14.3 Canonical Differential Evolution Algorithm

There are essentially five sections to the code. Section 1 describes the input to the
heuristic. D is the size of the problem, Gmax is the maximum number of generations,
NP is the total number of solutions, F is the scaling factor of the solution and CR is
the factor for crossover. F and CR together make the internal tuning parameters for
the heuristic.

Section 2 outlines the initialization of the heuristic. Each solution xi, j,G=0 is cre-
ated randomly between the two bounds x(lo) and x(hi) . The parameter j represents
the index to the values within the solution and i indexes the solutions within the
population. So, to illustrate, x4,2,0 represents the second value of the fourth solution
at the initial generation.

14 Controller Parameters Optimization on a Representative Set of Systems 455

After initialization, the population is subjected to repeated iterations in section 3.
Section 4 describes the conversion routines of DE. Initially, three random num-

bers r1,r2,r3 are selected, unique to each other and to the current indexed solution
i in the population in 4.1. Henceforth, a new index jrand is selected in the solution.
jrand points to the value being modified in the solution as given in 4.2. In 4.3, two
solutions, x j,r1,G and x j,r2,G are selected through the index r1 and r2 and their values
subtracted. This value is then multiplied by F, the predefined scaling factor. This is
added to the value indexed by r3 .

However, this solution is not arbitrarily accepted in the solution. A new random
number is generated, and if this random number is less than the value of CR, then
the new value replaces the old value in the current solution. Once all the values in
the solution are obtained, the new solution is vetted for its fitness or value and if
this improves on the value of the previous solution, the new solution replaces the
previous solution in the population. Hence the competition is only between the new
child solution and its parent solution.

Price [8] has suggested ten different working strategies. It mainly depends on the
problem on hand for which strategy to choose. The strategies vary on the solutions to
be perturbed, number of differing solutions considered for perturbation, and finally
the type of crossover used. The following are the different strategies being applied.

Strategy 1: DE/best/1/exp: ui,G+1 = xbest,G + F • (xr1,G − xr2,G)
Strategy 2: DE/rand/1/exp: ui,G+1 = xr1,G + F • (xr2,G − xr3,G

)
Strategy 3: DE/rand−best/1/exp: ui,G+1 = xi,G + λ • (xbest,G − xr1,G

)
+F • (xr1,G − xr2,G)

Strategy 4: DE/best/2/exp: ui,G+1 = xbest,G + F • (xr1,G − xr2,G − xr3,G − xr4,G
)

Strategy 5: DE/rand/2/exp: ui,G+1 = x5,G + F • (xr1,G − xr2,G − xr3,G − xr4,G
)

Strategy 6: DE/best/1/bin: ui,G+1 = xbest,G + F • (xr1,G − xr2,G)
Strategy 7: DE/rand/1/bin: ui,G+1 = xr1,G + F • (xr2,G − xr3,G

)
Strategy 8: DE/rand−best/1/bin: ui,G+1 = xi,G + λ • (xbest,G − xr1,G

)
+F • (xr1,G − xr2,G)

Strategy 9: DE/best/2/bin: ui,G+1 = xbest,G + F • (xr1,G − xr2,G − xr3,G − xr4,G
)

Strategy 10: DE/rand/2/bin: ui,G+1 = x5,G + F • (xr1,G − xr2,G − xr3,G − xr4,G
)

The convention shown is DE/x/y/z. DE stands for Differential Evolution, x rep-
resents a string denoting the solution to be perturbed, y is the number of difference
solutions considered for perturbation of x, and z is the type of crossover being used
(exp: exponential; bin: binomial).

DE has two main phases of crossover: binomial and exponential. Generally, a
child solution ui,G+1 is either taken from the parent solution xi,G or from a mutated
donor solution vi,G+1 as shown : u j,i,G+1 = v j,i,G+1 = x j,r3,G +F • (x j,r1,G − x j,r2,G

)
.

The frequency with which the donor solution vi,G+1 is chosen over the parent
solution xi,G as the source of the child solution is controlled by both phases of
crossover. This is achieved through a user defined constant, crossover CR which
is held constant throughout the execution of the heuristic.

456 D. Davendra and I. Zelinka

The binomial scheme takes parameters from the donor solution every time that
the generated random number is less than the CR as given by rand j [0,1] < CR , else
all parameters come from the parent solution xi,G.

The exponential scheme takes the child solutions from xi,G until the first time that
the random number is greater than CR, as given by rand j [0,1] < CR, otherwise the
parameters comes from the parent solution xi,G.

To ensure that each child solution differs from the parent solution, both the ex-
ponential and binomial schemes take at least one value from the mutated donor
solution vi,G+1.

14.5.1 Tuning Parameters

Outlining an absolute value for CR is difficult. It is largely problem dependent.
However a few guidelines have been laid down [8]. When using binomial scheme,
intermediate values of CR produce good results. If the objective function is known
to be separable, then CR = 0 in conjunction with binomial scheme is recommended.
The recommended value of CR should be close to or equal to 1, since the possibility
or crossover occurring is high. The higher the value of CR, the greater the possibility
of the random number generated being less than the value of CR, and thus initiating
the crossover.

The general description of F is that it should be at least above 0.5, in order to
provide sufficient scaling of the produced value.

The tuning parameters and their guidelines are given in Table 14.2.

Table 14.2 Guide to choosing best initial control variables

Control Variables Lo Hi Best? Comments

F: Scaling Factor 0 1.0+ 0.3 – 0.9 F ≥ 0.5
CR: Crossover probability 0 1 0.8 − 1.0 CR = 0, separable

CR = 1, epistatic

14.6 Chaotic Systems

Chaos theory has its manifestation in the study of dynamical systems that exhibit
certain behavior due to the perturbation of the initial conditions of the systems. A
number of such systems have been discovered and this branch of mathematics has
been vigorously researched for the last few decades.

The area of interest for this chapter is the embedding of chaotic systems in the
form of chaos number generator for an evolutionary algorithm.

The systems of interest are discrete dissipative systems. The two common sys-
tems of Lozi map and Delayed Logistic (DL) were selected as mutation generators
for the DE heuristic.

14 Controller Parameters Optimization on a Representative Set of Systems 457

14.6.1 Lozi Map

The Lozi map is a two-dimensional piecewise linear map whose dynamics are sim-
ilar to those of the better known Henon map [4] and it admits strange attractors.

The advantage of the Lozi map is that one can compute every relevant parameter
exactly, due to the linearity of the map, and the successful control can be demon-
strated rigorously.

The Lozi map equations are given in Equations 14.18 and 14.19.

y1 (t + 1) = 1 − a |y1 (t)|+ y2 (t) (14.18)

y2 (t + 1) = by1 (t) (14.19)

The parameters used in this work are a = 1.7 and b = 0.5 as suggested in [2].
The Lozi map is given in Figure 14.4.

Fig. 14.4 Lozi map

14.6.2 Delayed Logistic Map

The Delayed Logistic (DL) map equations are given in Equations 14.20 and 14.21.

y1 (t + 1) = y2 (14.20)

y2 (t + 1) = ay2 (1 − y1) (14.21)

458 D. Davendra and I. Zelinka

The parameters used in this work is a = 2.27. The DL map is given in Figure 14.5.

Fig. 14.5 Delayed Logistic

14.7 Problem Description

Three unique control systems problems are evaluated using DE and its chaos variant
DEchaos. These are a fourth order ball and hoop system [9], a generic third order
system and an electric DC motor system of [7].

14.7.1 Fourth Order System

The first problem selected is a fourth order system comparable with the ball and
hoop system [9] and presented in [3].

The Open Loop Transfer Function (OLTS) of this system [3] is given in
Equation 14.22.

G(s) =
1

s4 + 6s3 + 11s2 + 6s
(14.22)

14.7.1.1 Ziegler Nichols Designed Controller

The Ziegler-Nichols tuning method using root-locus was the “conventional” method
used to evaluate the PID gains for the system. The root locus diagram is given in
Figure 14.6.

14 Controller Parameters Optimization on a Representative Set of Systems 459

3 2 1
Re

2

1

1

2

Im

Fig. 14.6 Root Locus plot for G(s)

The crossover and gain for the system is j1 and 10 respectively. With a frequency
wc of 1rad/s, the period Tc is calculated as:

Tc =
2π
wc

= 6.28sec

Placing the values of kc and Tc into Table 14.3

Table 14.3 Ziegler Nichols PID tuning parameters for 4th order system

Controller kp Ti TD

PID 0.6kc Tc/2 Tc/8

which gives the tuning values in Table 14.4.
Using the relationships:

ki =
kp

Ti
(14.23)

kD = kpTD (14.24)

the PID gain can be calculated as in Table 14.5.

460 D. Davendra and I. Zelinka

Table 14.4 Ziegler Nichols PID tuning parameters for 4th order system

Controller kp Ti TD

PID 6 3.14 0.79

Table 14.5 Ziegler Nichols PID Gain values for 4th order system

Controller kp ki kD

PID 6 1.91 4.74

Following Equation 14.24, the transfer function for the PID controller is now
given as:

PID = 6 +
1.97

s
+ 4.74s

Connecting the controller in series with the plant, the transfer function can be
visualized as the controller-plant:

CP =
(6 + 1.97/s+ 4.74s)

(6s+ 11s2+6s3+s4)

Using the sensitivity function in Equation 14.13, the step response of the system
can be seen in Figure 14.7.

0 20 40 60 80 100 120 140
0.0

0.5

1.0

1.5

Time

O
ut
pu
t

KP 6 KI 1.97 KD 4.74
PID Controller Setting by Ziegler Nichols

Fig. 14.7 System response for PID controller

14 Controller Parameters Optimization on a Representative Set of Systems 461

The steady state characteristics of the controlled system is given in Table 14.6.

Table 14.6 Steady state responses

Title Rise Time Overshoot Settling Time

Root Locus 2.935 59.244 15.05

14.7.1.2 Evolutionary Synthesis

The most important aspect of evolutionary synthesis is the formulation of the objec-
tive function. EA works of the premise of a black-box system, whether to maximize
or minimize a system.

In order to effectively optimize a relevant set of PID controllers, the ideal ap-
proach is to minimize the error of the system. These specifications are given in
Section 14.4.2.

Four distinct objective functions are created, each to minimize one of the stated
errors. DE operates on trying to minimize these four unique errors.

The following Table 14.7 gives the results of the four different error analysis.

Table 14.7 Objective function values

Parameters Values kp ki kD

IAE 7.818 5.856 0.0043 11.835

ISE 6.4102 5.204 0.1568 20.804

ITAE 15.19 4.8436 0.00025 7.0235

MSE 0.0312 5.204 0.1568 20.804

Figures 14.8 - 14.11 give the system response of the four different errors.
The combined system responses for DE are given in Fig 14.12.
The system specifications are given in Table 14.8. From the values, it is obvious

that the best controller was designed by ITAE. In term of overshoot, ITAE has the
optimal value of 6.715, ISE and MSE have the lowest rise time of 1.31sec and IAE
has the lowest settling time of 5.19sec.

462 D. Davendra and I. Zelinka

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Time

O
ut
pu
t

KP 5.85616 KI 0.004344 KD 11.835
System responce for IAE

Fig. 14.8 System response for IAE

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Time

O
ut
pu
t

KP 5.20481 KI 0.156823 KD 20.8041
System responce for ISE

Fig. 14.9 System response for ISE

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Time

O
ut
pu
t

KP 4.84369 KI 0.000257771 KD 7.0235
System responce for ITAE

Fig. 14.10 System response for ITAE

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Time

O
ut
pu
t

KP 5.20481 KI 0.156823 KD 20.8041
System responce for MSE

Fig. 14.11 System response for MSE

0 10 20 30 40 50
0.0

0.5

1.0

1.5

Time

O
ut
pu
t

System responce for different PID settings

Fig. 14.12 Combined system response for DE

14 Controller Parameters Optimization on a Representative Set of Systems 463

Table 14.8 Steady state responses of DE for fourth order system

Title Ziegler
Nichols

IAE ISE ITAE MSE

Overshoot 59.244 14.5 24.52 6.715 24.52

Rise Time 2.935 1.665 1.31 2.155 1.31

Settling Time 15.05 5.19 9.22 6.095 9.22

14.7.1.3 Evolutionary Synthesis with Chaos

The two uniques chaos maps of Lozi and DL are swapped with the random generator
in DE. The results are given in Tables 14.9 and 14.10 for the Lozi and DL systems
respectively.

Table 14.9 DEchaos Lozi objective function values

Parameters Values kp ki kD

IAE 0.0811 5.856 0.0043 11.835

ISE 0.156 5.204 0.1568 20.804

ITAE 0.065 4.8436 0.00025 7.0235

MSE 31.224 5.204 0.1568 20.804

Table 14.10 DEchaos DL objective function values

Parameters Values kp ki kD

IAE 0.0811 5.856 0.0043 11.835

ISE 0.156 5.204 0.1568 20.804

ITAE 0.065 4.8436 0.00025 7.0235

MSE 31.224 5.204 0.1568 20.804

The interesting feature is that the values obtained for both the systems is identi-
cal. Since this has now effectively become a deterministic search pattern, the trajec-
tory of the two systems encompass the same local optimal value. The steady state
responses of the two systems is given in Table 14.11.

464 D. Davendra and I. Zelinka

Table 14.11 Steady state responses of DEchaos Lozi/DL for fourth order system

Specification Ziegler
Nichols

IAE ISE ITAE MSE

Overshoot 59.244 14.5 24.52 6.715 24.52

Rise Time 2.935 1.665 1.31 2.155 1.31

Settling Time 15.05 5.19 9.22 6.095 9.22

As the responses of both the chaos map systems is the same, the plots of the
different system measures are given in Figures 14.13 - 14.16. The combined plot is
given in Figure 14.17.

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Time

O
ut
pu
t

KP 5.85616 KI 0.0043441 KD 11.835
DEchaos System responce for IAE

Fig. 14.13 System responce for IAE

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Time

O
ut
pu
t

KP 5.20481 KI 0.156823 KD 20.8041
DEchaos System responce for ISE

Fig. 14.14 System responce for ISE

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Time

O
ut
pu
t

KP 4.84313 KI 0.000266893 KD 7.02508
DEchaos System responce for ITAE

Fig. 14.15 System responce for ITAE

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Time

O
ut
pu
t

KP 5.2048 KI 0.156822 KD 20.8041
DEchaos System responce for MSE

Fig. 14.16 System responce for MSE

14 Controller Parameters Optimization on a Representative Set of Systems 465

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

Time

O
ut
pu
t

System responce for different PID settings

Fig. 14.17 Combined system responce for DEchaos

14.7.1.4 Analysis

The results obtained for DE and DEchaos are compared with Genetic Algorithm (GA)
of [3] for the same problem. The results are presented in Tables 14.12 and 14.13.
The results obtained for both DE and DEchaos are identical, and apart from the rise
time, the DE variants dominates all other steady state responses over GA.

Table 14.12 Comparison of DEchaos, DE and GA for ISE and IAE

Specification Ziegler IAE ISE

Nichols GA DE DEchaos GA DE DEchaos

Overshoot 59.244 44.97 14.5 14.5 28.804 24.52 24.52

Rise Time 2.935 1.2 1.665 1.665 1.2 1.31 1.31

Settling Time 15.05 9.3 5.19 5.19 20.4 9.22 9.22

Table 14.13 Comparison of DEchaos, DE and GA for ITAE and MSE

Specification Ziegler ITAE MSE

Nichols GA DE DEchaos GA DE DEchaos

Overshoot 59.244 57.19 6.715 6.715 28.59 24.52 24.52

Rise Time 2.935 1.3 2.155 2.155 1.2 1.31 1.31

Settling Time 15.05 8.2 6.095 6.095 20.4 9.22 9.22

466 D. Davendra and I. Zelinka

14.7.2 Third Order System

The second problem is a third order problem. The plant transfer function is given
as:

G(s) =
0.1

s(3s+ 1) (0.8s+ 1)
(14.25)

14.7.2.1 Ziegler Nichols Designed Controller

The root locus plot of the system G(s) is given in Figure 14.18.

1.5 1.0 0.5
Re

1.0

0.5

0.5

1.0

Im

Fig. 14.18 Root locus for third order system

The crossover and gain for the system is 0.6449i and 1.58 respectively. The op-
erating values for the Zeigler Nichlos is given in Table 14.14.

Table 14.14 Ziegler Nichols PID tuning parameters for 3rd order system

Controller kp Ti TD

PID 6 3.14 0.79

14 Controller Parameters Optimization on a Representative Set of Systems 467

Using the sensitivity function in Equation 14.13, the step response of the system
can be seen in Figure 14.19.

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Time

O
ut
pu
t

KP 0.2 TI 40 TD 1.28
PID Controller Setting by Ziegler Nichols

Fig. 14.19 System response for PID controller with Ziegler Nichols

14.7.2.2 Evolutionary Synthesis

The operating parameters of DE is given in Table 14.15.

Table 14.15 Operating Parameters of DE

Parameter Value

Population Size 500

Generations 500

F 0.82

CR 0.8

Specimen 200 - 500

Two separate simulations was conducted. For the first simulation, the specimen
size was kept at 200, whereas for the second simulations, the size was set at 500.

468 D. Davendra and I. Zelinka

The results obtained from the evolutionary synthesis of the problem is given in
Table 14.16.

Table 14.16 Objective function values

Experiment Parameters Values kp ki kD

Specimen=200 IAE 4.866 27.457 0.4939 199.999

ISE 1.013 0.3196 1.7648 199.999

ITAE 2.731 41.6181 0.1386 199.999

MSE 0.005 0.3196 1.7648 199.999

Specimen=500 IAE 8.351 33.584 2.1051 475.966

ISE 2.949 0.3089 4.1444 499.999

ITAE 13.106 74.7689 0.656 482.150

MSE 0.01474 0.3089 4.1444 499.999

The assignment of the operating parameters for DE is very important. As shown
in Table 14.15, specimen has two different values; 200 and 500. The different error
responses are given in Figures 14.20 to 14.27.

Figures 14.20 and 14.21 give the responses for IAE for the different specimen
parameter setting of 200 and 500.

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Time

O
ut
pu
t

KP 27.4578 KI 0.493933 KD 200.
System responce for IAE

Fig. 14.20 System response for Specimen =
200

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

Time

O
ut
pu
t

KP 33.5843 KI 2.10512 KD 475.966
System responce for IAE

Fig. 14.21 System response for Specimen =
500

Figures 14.22 and 14.23 give the responses for ISE for the different specimen
parameter setting of 200 and 500.

14 Controller Parameters Optimization on a Representative Set of Systems 469

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Time

O
ut
pu
t

KP 0.319659 KI 1.76484 KD 200.
System responce for ISE

Fig. 14.22 System response for Specimen =
200

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

Time

O
ut
pu
t

KP 0.308918 KI 4.14442 KD 500.
System responce for ISE

Fig. 14.23 System response for Specimen =
500

Figures 14.24 and 14.25 give the responses for ITAE for the different specimen
parameter setting of 200 and 500.

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Time

O
ut
pu
t

KP 41.6182 KI 0.138648 KD 200.
System responce for ITAE

Fig. 14.24 System response for Specimen =
200

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

Time

O
ut
pu
t

KP 74.7689 KI 0.656549 KD 482.151
System responce for ITAE

Fig. 14.25 System response for Specimen
= 500

Figures 14.26 and 14.27 give the responses for MSE for the different specimen
parameter setting of 200 and 500.

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Time

O
ut
pu
t

KP 0.319659 KI 1.76484 KD 200.
System responce for MSE

Fig. 14.26 System response for Specimen =
200

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

Time

O
ut
pu
t

KP 0.308918 KI 4.14442 KD 500.
System responce for MSE

Fig. 14.27 System response for Specimen
= 500

470 D. Davendra and I. Zelinka

Comparing the results between the two settings, it is obvious that both specimen
settings offer different parameter performances. The rise time of the 500 specimen
is less, however, the peak overshoot and number of oscillations are less in specimen
setting of 200. The settling time is almost identical for both systems.

The system plots of both the experiments is given in Figures 14.28 and 14.29.

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Time

O
ut

pu
t

System responce for different PID settings

Fig. 14.28 Comparison results with Ziegler Nichols and DE with Specimen=200

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

Time

O
ut
pu
t

System responce for different PID settings

Fig. 14.29 Comparison results with Ziegler Nichols and DE with Specimen=500

The steady state responses for the two different systems is given in Table 14.17
and 14.18. The major drawback for DE is the overshoot, which is significantly

14 Controller Parameters Optimization on a Representative Set of Systems 471

higher than that of Ziegler Nichols. However, in all other aspects, DE proves a better
tuning heuristic. The rise time is marginally lower and the settling time is signifi-
cantly lower.

Table 14.17 Steady state responses for third order system with Specimen = 200

Title Ziegler
Nichols

IAE ISE ITAE MSE

Overshoot 27.7602 40.7344 28.905 44.3401 28.905

Rise Time 4.315 0.85 0.84 0.85 0.84

Settling Time 20.315 6.75 20.26 4.94 20.26

Table 14.18 Steady state responses for third order system with Specimen = 500

Specification Ziegler
Nichols

IAE ISE ITAE MSE

Overshoot 27.7602 55.502 55.211 58.751 55.211

Rise Time 4.315 0.55 0.535 0.55 0.535

Settling Time 20.315 5.885 37.22 5.76 37.22

14.7.2.3 Evolutionary Synthesis with Chaos

The results of the two chaotic mutation systems is given in Tables 14.19 and 14.20.
As with the previous results of the fourth order system, the two results are identical,
stipulating that the solution lies on the trajectory of the attractors.

Table 14.19 DEchaos Lozi objective function values for third order system

Parameters Values kp ki kD

IAE 0.0811 5.856 0.0043 11.853

ISE 0.1561 5.204 0.1568 20.804

ITAE 0.0658 4.843 0.00025 7.0234

MSE 31.224 5.2048 0.1568 20.8041

472 D. Davendra and I. Zelinka

Table 14.20 DEchaos DL objective function values for third order system

Parameters Values kp ki kD

IAE 0.0811 5.856 0.0043 11.853

ISE 0.1561 5.204 0.1568 20.804

ITAE 0.0658 4.843 0.00025 7.0234

MSE 31.224 5.2048 0.1568 20.8041

The steady state responses for the two systems in given in Table 14.21. When
compared to the Ziegler Nichols method, DEchaos obtains better performance indices
for all the specifications. IAE obtains a better settling time whereas ISE and MSE
attain better overshoot and rise time.

Table 14.21 DEchaos - Lozi/DL steady state responses for third order system

Specification Ziegler
Nichols

IAE ISE ITAE MSE

Overshoot 27.7602 10.441 2.561 14.36 2.561

Rise Time 4.315 4.33 3.335 5.58 3.335

Settling Time 20.315 10.735 26.825 13.085 26.825

The system responses for DEchaos for the four different errors is given in
Figures 14.30 – 14.33.

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Time

O
ut
pu
t

KP 5.85616 KI 0.00434409 KD 11.835
System responce for IAE

Fig. 14.30 System response for IAE

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Time

O
ut
pu
t

KP 5.2048 KI 0.156823 KD 20.8041
System responce for ISE

Fig. 14.31 System response for ISE

14 Controller Parameters Optimization on a Representative Set of Systems 473

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Time

O
ut
pu
t

KP 4.84371 KI 0.000257738 KD 7.02341
System responce for ITAE

Fig. 14.32 System response for ITAE

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Time

O
ut
pu
t

KP 5.20481 KI 0.156823 KD 20.8041
System responce for MSE

Fig. 14.33 System response for MSE

The combined results of the four different error specifications is given in
Figure 14.34.

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Time

O
ut
pu
t

System responce for different PID settings

Fig. 14.34 Combined system response for DEchaos

14.7.2.4 Analysis

Analysis is done with the results obtained for the different DE variants. The optimal
results from the experimentation of DE is compared with that of DEchaos as given in
Table 14.22. The most striking feature is that DEchaos is able to produce significantly
lower overshoot than all the other systems. This is seen across all the different error
specifications. DE is however better performing when rise time and settling time is
concerned.

474 D. Davendra and I. Zelinka

Table 14.22 Comparison of DEchaos and DE for third order system.

Specification Ziegler IAE ISE ITAE MSE

Nichols DE DEchaos DE DEchaos DE DEchaos DE DEchaos

Overshoot 57.19 40.734 10.441 28.905 2.561 44.34 14.36 28.905 2.561

Rise Time 2.935 0.85 4.33 0.84 3.335 0.85 5.58 0.84 3.335

Settling Time 15.05 6.75 10.735 20.26 26.825 4.94 13.085 20.26 26.825

14.7.3 Electric DC Motor

The third problem is the Electric DC Motor [7]. The transfer function is given in
Equation 14.26.

G(s) =
K

LaJs3 +(RaJ + BLa) s2 +(K2 + RaB) s
(14.26)

where

La = armature inductance
Ra = armature resistance
K = motor constant
J = motor of inertia
B = mechanical friction

The values of the parameters are given as:

La = 0.025
Ra = 5
K = 0.9
J = 0.042
B = 0.01625

The transfer function is now given as in Equation 14.27:

G(s) =
0.9

0.0005s3 + 0.2104s2 + 0.8913s
(14.27)

The root locus plot of the plant is given in Figure 14.35.

14 Controller Parameters Optimization on a Representative Set of Systems 475

200 150 100 50
Re

60

40

20

20

40

60

Im

Fig. 14.35 Root Locus Plot for Electric DC Motor transfer function

14.7.3.1 Evolutionary Synthesis

DE produced two distinct results when applied to this problem. The obtained values
are given in Table 14.23.

Table 14.23 Objective function values

Parameters Values kp ki kD

IAE 1.31783∗10−13 418.184 5.648∗10−11 96.58

ISE 3.91643∗10−18 418.185 1.805∗10−6 96.58

ITAE 6.1959∗10−10 65.254 9.925∗10−12 15.0712

MSE 1.95822∗10−20 418.185 1.802∗10−6 96.58

Table 14.24 gives the steady state responses of the different DE heuristics. A
notable feature is the very low overshoot of DE1. This is quite unique since its it
almost a hundred times lower than Ziegler Nichols. In terms of settling time and
rise time, DE1 and DE2 produce better results.

The optimal result in terms of settling time and peak overshoot is shown in
Figure 14.36.

The second result, which has a better rise time is shown in Figure 14.37 together
with the first result.

476 D. Davendra and I. Zelinka

Table 14.24 Comparison of steady state responses of DE and Ziegler Nichols method

Specification Ziegler Nichols DE1 DE2

Overshoot 41.4 0.4727 28.255

Settling time 2.56 0.04 0.04

Rise Time 0.242 0.03 0.01

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

Time

O
ut
pu
t

KP 0.2 TI 40 TD 1.28
PID Controller Setting by Ziegler Nichols

Fig. 14.36 System response for evolved PID settings

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Time

O
ut
pu
t

System responce for different PID settings

Fig. 14.37 System response for different evolved PID settings

14 Controller Parameters Optimization on a Representative Set of Systems 477

14.7.3.2 Evolutionary Synthesis with Chaos

The results obtained with the chaotic maps is given in Tables 14.25 and 14.26. As
has been the case with the other experiments, the results obtained for both the sys-
tems are identical.

Table 14.25 DEchaos Lozi objective function values

Parameters Values kp ki kD

IAE 3.20351∗108 158.059 3.333∗10−10 36.505

ISE 2.5533∗1017 158.059 2.57536∗10−7 36.505

ITAE 1.3302∗109 158.059 8.2886∗10−10 36.505

MSE 5.1066∗1019 158.059 2.5711∗10−7 36.505

Table 14.26 DEchaos DL objective function values

Parameters Values kp ki kD

IAE 7.8537∗107 158.060 7.3295∗10−7 36.505

ISE 2.3876∗1017 158.059 3.4944∗10−7 36.505

ITAE 1.2072∗108 158.051 2.9060∗10−8 36.503

MSE 4.7151∗1019 158.059 1.07143∗10−6 36.505

The steady state responses of the two systems is given in Table 14.27. In all the
specifications, DEchaos obtains better performance indices.

Table 14.27 DEchaos - Lozi/DL steady state responses for DC Motor system

Specification Ziegler
Nichols

IAE ISE ITAE MSE

Overshoot 41.4 11.97 11.97 11.97 11.97

Rise Time 2.56 0.015 0.015 0.015 0.015

Settling Time 0.242 0.035 0.035 0.035 0.035

The system responses plots of the four error specifications is given in Fig-
ures 14.38 - 14.41 and the combined system response for DEchaos is given in Fig-
ure 14.42.

478 D. Davendra and I. Zelinka

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

Time

O
ut
pu
t

KP 158.059 KI 10
3.33318 10 KD 36.5052

System responce for IAE

Fig. 14.38 System response for IAE

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

Time

O
ut
pu
t

KP 158.06 KI 7
2.57536 10 KD 36.5053

System responce for ISE

Fig. 14.39 System response for ISE

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

Time

O
ut
pu
t

KP 158.059 KI 10
8.28865 10 KD 36.5052

System responce for ITAE

Fig. 14.40 System response for ITAE

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

Time

O
ut
pu
t

KP 158.06 KI 7
2.57118 10 KD 36.5053

System responce for MSE

Fig. 14.41 System response for MSE

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

Time

O
ut
pu
t

System responce for different PID settings

Fig. 14.42 Combined system response for DEchaos

14 Controller Parameters Optimization on a Representative Set of Systems 479

14.7.3.3 Analysis

DE and DEchaos is compared with the tuning algorithms of Ziegler-Nichlos and Con-
tinuous Cycling (CC) and metaheuristics of Genetic Algorithm (GA), Evolutionary
Programming (EP) and Particle Swarm Optimization (PSO) of [7].

Table 14.28 gives the steady state responses of all the different heuristics. DE
and DEchaos are able to produce better results for all the compared specifications.
DE obtains the best overshoot value and rise time, whereas DEchaos has the optimal
settling time.

Table 14.28 Comparison of steady state responses of different heuristics for the DC motor
system.

Specification Ziegler
Nichols

CC EP GA PSO DE1 DE2 DEchaos

Overshoot 41.4 87.6 8.81 13 12.9 0.472 28.25 11.97

Settling time 2.56 4.31 0.205 0.324 1.15 0.04 0.04 0.015

Rise Time 0.242 0.0474 0.014 0.0317 0.0317 0.03 0.01 0.035

14.8 Conclusion

DE is shown as a robust tuning algorithm for PID controller. In the three prob-
lems attempted, it has generally proven more successful than that of Ziegler Nichols
tuning method and the other heuristics of GA and PSO with which it is compared
against.

The two variants of DE; the stochastic canonical (DE) and deterministic chaotic
(DEchaos) are equally successful. The most striking feature is the consistency of the
results produced by DEchaos. For all the experimentations with the two unique chaos
maps, the result obtained were identical. This led to the claim that the result lay in
the path of the attractors which were mapping the solution space.

Through the obtained results and its analysis, this research reinforces the claim
that chaos can be utilized alongside traditional metaheuristics in the task of global
optimization.

Acknowledgements. The following two grants are acknowledged for the financial support
provided for this research.

1. Grant Agency of the Czech Republic GARC 102/09/1680
2. Grant of the Czech Ministry of Education MSM 7088352102

480 D. Davendra and I. Zelinka

References

1. Astrom, K.: Control System Design. University of California, Santa Barbra (2002)
2. Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.: Chaotic sequences to improve the

performance of evolutionary algorithms. IEEE Trans. Evol. Comput. 7(3), 289–304 (2003)
3. Griffin, I.: On-line pid controller tuning using genetic algorithm. Master’s thesis, Dublin

City University, Ireland (2003)
4. Hennon, M.: A two-dimensional mapping with a strange attractor. Commun. Math.

Phys. 50, 69–77 (1979)
5. Ibrahim, S.: The pid controller design using genetic algorithms. Master’s thesis, University

of Southern Queensland, Australia (2005)
6. Landau, Y.: Digital Control Systems. Springer, London (2006)
7. Nagraj, B., Subha, S., Rampriya, B.: Tuning algorithms for pid controller using soft com-

puting techniques. International Journal of Computer Science and Network Security 8,
278–281 (2008)

8. Price, K.: New ideas in Optimisation. McGraw Hill, New York (1999)
9. Wellstead, P.: Ball and hoop (2008),

http://www.control-systems-principles.co.uk

Chapter 15
Chaotic Attributes and Permutative
Optimization

Donald Davendra, Ivan Zelinka, and Godfrey Onwubolu

Abstract. Population dynamics and its relation to chaotic systems is analyzed in
this Chapter. Using basic chaotic principles of attractors and edges, a dynamic pop-
ulation is developed, which is used to induce and retain diversity in a metaheuristic
population. Simulation is done with Genetic Algorithm, Differential Evolution and
Self-Organizing Migrating Algorithm on the combinatorial problem of Quadratic
Assignment with promising results.

15.1 Introduction

One of the most challenging optimization problems is permutative based com-
binatorial optimization. This class of problem harbors some of the most famous
optimization problems like traveling salesman and vehicle routing problem.

Another very important branch is that of scheduling, to which a number of man-
ufacturing problems are associated. The most realized and of interest are the shop
scheduling problems of flow shop and job shop.

Donald Davendra
Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511,
Zlin 76001, Czech Republic.
e-mail: davendra@fai.utb.cz

Ivan Zelinka
Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511,
Zlin 76001, Czech Republic
and
VSB-TUO, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15,
708 33 Ostrava-Poruba, Czech Republic
e-mail: zelinka@fai.utb.cz

Godfrey Onwubolu
Knowledge Management & Mining, Inc., Richmond Hill, Ontario, Canada
e-mail: onwubolu_g@dsgm.ca

I. Zelinka et al. (Eds.): Evolutionary Algorithms and Chaotic Systems, SCI 267, pp. 481–517.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

482 D. Davendra, I. Zelinka, and G. Onwubolu

What makes a permutative problem complex is that the solution representation
is very concise, since it must have a discrete number of values, and each occupied
variable in the solution is unique. Given a problem of size n, a representation can be
described as x = {x1,x2,x3, ...,xn}, where each value xi in the solution is unique and
the entire set of solutions is an integer representation from {1, n}.

From an optimization point of view, this represents a number of problems. Firstly,
the search space is discrete and a number of validations inevitably have to be con-
ducted in order to have a viable solution. Secondly, the search space is very large,
to the scale of n!. Consequently, these problems are generally termed NP or NP
Hard [16].

The usual approach is to explore the search space in the neighborhood of good
solutions in order to find better solutions. This unfortunately has the effect of con-
verging the population, which then leads to stagnation. The usual term is local op-
tima convergence/stagnation. Local minima regions acts as attractor basins, where
solutions converge. Diversity in the population decreases and possibility of future
evolution diminishes.

This chapter presents the research that looks at the diversity of the population in
order to aid the application of metaheuristics. A permutative solution and its rep-
resentation present some advantages to this effect. The usual measure of a solution
is its fitness, in respect to the problem being solved. In a permutative solution, the
distinct ordering of values gives the opportunity to have other measures of diversity.

The following sections describe the approach developed within this scope of re-
search. The first section analyzes chaos and its implications in metaheuristics. The
second section outlines the need for having distinct initial population, and chaotic
attributes of attractors and edges. The third section describes some fields of measure
of diversity followed by the approach of clustering of the solutions. Three unique
crossover paradigms are then presented to which the clustered population has been
applied. The subsequent sections describe the extensive experimentation conducted
on the Quadratic Assignment Problem (QAP) and an analysis of the dynamic nature
of clustered populations.

15.2 Chaotic Signature in Population Dynamics

Population and its application to chaotic systems is well documented. Populations
viewed as dynamical systems was first discussed by [24]. Subsequent work by [15],
further chronicled the work of viewing populations as number systems. The logistic
map, the simplest chaotic system is also used for the modeling of population dy-
namics [24]. Another system is the Voltterra-Lotka equations of biological models.

Chaos in optimization has been largely explored through Neural Networks [18].
The core approach has been to avoid regions of “local optima” or “stagnation” in
order to find better solutions. The basic concept has been that chaotic dynamics have
been able to search for solutions along the formation of a strange attractor which has
fractal structures. These structures are then used to search for solutions in state space
along such fractal attractors who’s Legesgue measure is zero.

15 Chaotic Attributes and Permutative Optimization 483

Nozawa [26] modified the Hopfield-Neural network by the Eulers method to cre-
ate an equivalent to the chaotic neural network of [2]. A 10 city problem is solved
with better results than stochastic models.

Yamada and Aihara [38] solved the Traveling Salesman Problem with chaotic
neural networks by computing the largest Lyapunov exponent. They showed that
the solving abilities are very high when the largest Lyapunov exponent is near zero,
which implies that “an edge of chaos ” could have high performance to solve com-
binatorial problems.

Maintenance scheduling problems were solved by a chaotic simulated annealing
approach by [5]. It was also proven of the existence of chaotic dynamics in solving
combinatorial problems using chaotic neural networks.

A further exploration of chaos in optimization was done by [19], who proposed
a new network model of chaotic potts spin. Using this method the constraint term is
always satisfied and feasible solutions are always obtained.

This chapter takes a similar approach to the ones described, as the main aspect is
the avoidance of “local optima” regions in the search space. However, we look upon
the population as the driving system behind the convergence of the population.

The usual approach is to visualize the population as a fitness landscape, where
solutions transverse towards global optimal solutions. This approach takes a differ-
ent view of the population. A population is looked upon as an information base, a
“genetic code” base where each solution occupies a distinct place in the information
space. An example is given in Figure 15.1.

Fig. 15.1 Population representation

484 D. Davendra, I. Zelinka, and G. Onwubolu

During successive generations, solutions are mated together, and an exchange of
information takes place. Based on selection criteria of different algorithms, new and
better performing solutions are accepted in the population after each generation.

However, during evolution, solutions tend to converge towards each other. What
this in effect does, is reduce the amount of information available in the information
plane of the collective information gene pool. Even if the solution converges towards
the global minima, the information left in the population is usually marginal. This
is what is termed as “local optima stagnation”.

The main input in this research is the creation of a dynamic population which is
kept on the threshold of information viability and which can be used by any number
of metaheuristics as a population paradigm.

15.3 Population Dynamics

Each solution in a population contains certain information, its own “genetic code”
which is used for replication. A way to visualize it is to see a solution as occupying
a certain point in the information space as given in Figure 15.2.

Fig. 15.2 Solution in information space

The basin or trough that the solution occupies is dependent on the number of
solutions which occupy the same basin. The basin boundaries are not exactly linear,
but rather a contour. This presents the possibility/probability for entry and escape
from this specific point as given in Figure 15.3.

15 Chaotic Attributes and Permutative Optimization 485

Fig. 15.3 Solution boundary in information space

As population evolves, the information is shared within the evolving solutions.
Within a number of generations, a number of solutions can occupy the same in-
formation space. The size of the “basin” increasing and its attraction energy also
increases. As more and more solutions are replicated, the number of “evolutionary
channels” which exists between the solutions decreases. This gives rise to stagnation
of the population, where no new solutions with new/better information is produced.

15.3.1 Initial Population

The main reason for random population is to provide an initial loose mapping of
the solution space. For permutative problems, where solution ordering is stringent,
it is often the case that adjacent values are required. A typical approach of using
local search heuristics to search in the neighborhood of the solutions usually yields
closely aligned solutions.

The initial population P, for this heuristic is partially stochastic and partly de-
terministic. The population is divided into two sub-populations, SPs, one randomly
generated (SPrand) and the other structurally generated (SPstruct).

The formulation for SPrand is fairly simple. A random permutative string is gen-
erated for each solution till a specified number given as Psize.

The structured population SPstruct is somewhat more complex. It is made of two
parts. In the first part, an initial solution is generated with ascending values given
as xascending = {1,2,3, ..,n}, where n is the size of the problem. In order to obtain
a structured solution, the first solution is segmented and recombined in different
orders to produce different combinations. The first segmentation occurs at n/

2, and

486 D. Davendra, I. Zelinka, and G. Onwubolu

the two halfś are swapped to produce the second solution. The second fragmentation
occurs by the factor 3; n/

3 Three regions of solutions now exist. The number of
possible recombination′s that can exist is 3! = 6. At this point there are nine solutions
in the SPstruct . The general representation is given as:

k ≥ 1 + 2! + 3! ++ z! (15.1)

where z is the total number of permutations possible and k is Psize
/
2 .

The pseudocode of the clustered population generation is given in Figure 15.4.

Algorithm for Clustered Population Generation

Assume a population given as P which is divided equally into two sub-populations; one ran-
dom SPr and one structured SPs. The schedule size is n and population size is NP. The maxi-
mum catenation of the schedule is given as c and the permutation rate is given as pr = c!.
Generate random population.

1. For i = 1,2,,NP/2 do the following:

a. Create a random solution schedule ∃!xi : SPr := {x1, ..,xi..,xn}; i ∈ Z+

2. Create structured population.

a. Calculate the truncation point and number as tp =
⌊n/c
⌋
.

b. Generate two schedules, one forward biased Xf = {1,2, ...,n} and the other reverse
biased Xr = {n,n−1, ...,1}.

c. Generate permutation list for forward bias given as:{
Xf
}

=
{{

1, ..,xtp

}
,
{

xtp +1,,2•xtp

}
,,

{
c•xtp , ...,n

}}
and reverse bias as

{Xr} =
{{

n, ..,c•xtp

}
,
{

2•xtp ,,xtp +1
}

,,
{

xtp , ...,1
}}

.
d. i = 1,2,, pr do the following:

i. Generate a permutative list based on the truncation points in the solution.

3. Output P = SPr ∪SPs as the final population.

Fig. 15.4 Algorithm for Clustered Population Generation

15.3.2 Solution Dynamics

A solution represented as x = {x1,x2, ...,xn}, where n is the number of variables,
within a population has a number of attributes. Usually the most visible is its fitness
value, by which it is measured within the population. This approach is not so viable
in order to measure the diversity of the solution in the population. In retrospect, a
single solution is assigned a number of attributes for measure, as given in Table 15.1.

15 Chaotic Attributes and Permutative Optimization 487

Table 15.1 Solution Parameters

Parameter Description Activity

Deviation Measure of the deviation of the solution Control
Spread Alignment of the solution Control
Life Number of generation cycles Selection
Offspring Number of successful offspring′s produced Selection

The most important attribute is the deviation (the difference between successive
values in a solution). Since we are using only permutative solutions, deviation or
ordering of the solution is important. This is due to the fact that each value in the
solution is unique. Each value in the solution has a unique footprint in the search
space. The formulation for deviation is given as:

δ =

⎛
⎜⎜⎝

n−1
∑

i=1
|xi − xi+1|

n

⎞
⎟⎟⎠xi ∈ {x1,x2, ...,xn} (15.2)

Spread of a solution gives the alignment of the solution. Each permutative so-
lution has a specific ordering, whether it is forward aligned or reverse aligned.
Whereas deviation measures the distance between adjacent solutions, spread is the
measure of the hierarchy of subsequent solutions given as:

∂ =
{

+1 i f (xi+1 − xi) ≥ 1
−1 i f (xi+1 − xi) ≤ 1

i ∈ {1,2,,n}
(15.3)

The generalization of spread is given in Table 15.2.

Table 15.2 Spread generalization

Spread Generalization

> 0 Forward spread
0 Even spread
< 0 Reverse spread

Life is the number of generations the solution has survived in the population
and Offspring is the number of viable solutions that have been created from that
particular solution. These two variables are used for evaluating the competitiveness
of different solutions.

488 D. Davendra, I. Zelinka, and G. Onwubolu

The pseudocode is given in Figure 15.5.

Algorithm for Solution Dynamics

Assume a problem of size n, and a schedule given as X = {x1, ..,xn}. There are NP schedules
in the population. Initialize Xsprd = 0.

1. For i = 1,2,,NP do the following:

a. Calculate deviation: Xi,dev =
n−1
∑
1

|xi−xi+1|
n

b. Calculate spread: Xi,sprd = Xsprd + 1 ⇔
n−1
∑
1

(xi −xi+1) > 1 and Xi,sprd = Xsprd −

1 ⇔
n−1
∑
1

(xi −xi+1) < 1

Fig. 15.5 Algorithm for Solution Dynamics

15.3.3 Chaotic Features

Within the population, certain solutions are seen to exhibit attracting features. These
points are usually local optima regions, which draw the solutions together. The ap-
proach utilized is to subdivide the population in clusters, each cluster a distinct
distance from another.

Figure 15.6 shows a “deviation” space with three clusters. Each cluster contains
“n” solutions. At any one time “n” clusters will be in the population, and these
clusters share information to create new solutions.

Two controlling parameters are now defined which control the clusters.

Chaos Attractor CA: The distance that each segment of solution has to differ from
each other. The CA is given in (15.4).

CA ∈ [0.1,1+) (15.4)

Within the population indexed by the deviation, solutions with similar deviation
are clustered together, and each cluster is separated by at least a single CA as seen
in (15.5).

(δ1,δ2, ...,δi)
CA↔(δi+1,δi+2, ...,δ2i)

CA↔
...

CA↔(δ3i+1,δ3i2, ...,δ4i)
(15.5)

The second controlling factor is the Chaos Edge CE . Whereas CA is the mapping
of individual solutions, CE is the measure of the entire population. Figure 15.7 shows

15 Chaotic Attributes and Permutative Optimization 489

Fig. 15.6 Clusters in deviation space

Fig. 15.7 Boundary of the clusters

the deviation space with the boundary outline. The entire “active” solution space
is within the region of the outer contours. This is the “chaotic edge” of the current
information space.

490 D. Davendra, I. Zelinka, and G. Onwubolu

CE is the measure of the deviation of the fitness of the population and is used
to prevent the population from stagnating to any fitness minima. The algorithm is
given in Figure 15.8.

Algorithm for Chaotic Features Calculation

Assume a problem of size n, and a schedule given as X = {x1, ..,xn}. There are NP schedules
in the population {P} and each schedule has a deviation and fitness given by Xdevi and Xsprd .
The cluster distance is given by CA. Initialize four clusters {C1}, {C2}, {C3} and {C4}.

1. For i = 1,2,,NP do the following:

a. Sort the {P} in ascending order of Xdevi.
b. Divide the population into the four clusters based on Xdevi.
c. For j = 1, ..,4 do the following:

i. Calculate the difference between boundary solutions of each cluster {C}.
CA, j = Xmax[Xdevi],Cj

−Xmin[Xdevi],Cj

ii. IF CA, j < CA
A. Dynamic clustering of the boundary solutions of each cluster.

2. Output {PC} as the clustered population.

Fig. 15.8 Algorithm for Chaotic Features Calculation

15.3.4 Selection and Deletion

Selection of the next generation is based on a tier-based system. If the new solu-
tion improves on the global minima, it is then accepted in the solution. Otherwise,
competing clusters jokey for the new solution. Initially the solution is mapped for
its deviation. This deviation is then mapped to the corresponding cluster.

Within the cluster, the placement of the solution is evaluated. If the new solution
corresponds to an existing solution, or reduces the threshold CA value of the cluster,
then it is discarded.

The solution is accepted if it improves on the CA value of the cluster (hence
improving diversity) and also to some extent keeps the balance of the CE . If the
cluster has less than average solutions, then the new solution is admitted.

Table 15.3 gives the selection criteria.
Once the solution is added to the cluster, another solution can be discarded. This

solution is usually elected from the middle placed solutions in the cluster, whose
fitness is not in the top 5% of the population. If no such solutions exist, then the
average rated solution is removed. Solution with high Life and low Offspring are
discarded, since they are considered dormant within the cluster. The algorithm for
selection is given in Figure 15.9 and the algorithm for deletion is given in Fig-
ure 15.10.

15 Chaotic Attributes and Permutative Optimization 491

Table 15.3 Selection criteria

Variables Criteria

Fitness Improves clusters best solution
CA Increases the value of CA
CE Problem dependent

Algorithm for Selection

Assume a problem of size n, and a new schedule given as Xnew = {x1, ..,xn}. There are NP
schedules in the population {P} and each schedule has a deviation and fitness given by Xdevi
and Xsprd . The cluster distance is given by CA.

1. Calculate the deviation and spread of the solution Xnew as Xnew,devi and Xnew,devi.
2. Find the associated cluster PC,X of the new solution Xnew based on Xnew,devi: Xnew,devi ∈C.
3. Calculate the fitness of the new solution f (Xnew).
4. IF Xnew → {

PC,X
}∥∥Xnew,devi∪

{
PC,X

}
> CA,X

a. Insert the new solution in the associated cluster Xnew → {
PC,X

}
.

b. Update the life Xli f e and offspring Xo f f spring value of the parent solution.
c. Calculate the CE,X of the new cluster.

Fig. 15.9 Algorithm for Selection

Algorithm for Deletion

Assume a problem of size n, and a new schedule given as Xnew = {x1, ..,xn}. There are NP
schedules in the population {P} and each schedule has a deviation and fitness given by Xdevi
and Xsprd and life and offspring given as Xli f e and Xo f f spring. The cluster distance is given by
CA and the Edge is given as CE . The active cluster is given as PC,A.

1. Randomly select a boundary solution as in the active cluster XA. If the solution has poor
offspring and long life in comparison to the average values of the cluster, it is deleted
from the population.

2. IF XA,o f f spring < avg
[
PC,o f f spring

]∥∥XA,li f e > avg
[
PC,li f e

]
a. Delete XA.

If the selected solution increases the CA value between the clusters, it is selected for
deletion.

3. ELSE IF
(
XA �⊂ {PC,X

})
> CA

a. Delete XA.

4. Calculate the CE,X of the new cluster.

Fig. 15.10 Algorithm for Deletion

492 D. Davendra, I. Zelinka, and G. Onwubolu

Table 15.4 gives the deletion criteria.

Table 15.4 Deletion criteria

Variables Criteria

Life High
Offspring Low
CA Decreases

15.3.5 Dynamic Clustering

The selection and crossover criteria have now been outlined. After each generation
/ migration, the clusters are reconfigured. Since, in all heuristics, there is a tendency
to converge, it is imperative to keep the solutions unique.

The procedure is to calculate the deviation of the new solutions. Since a mesh
of solutions may exist, it is feasible to reconfigure certain boundary solutions. Fig-
ure 15.11 can be a representation of a sub-population (SP).

Fig. 15.11 Solution space after migration

15 Chaotic Attributes and Permutative Optimization 493

Fig. 15.12 Fuzzy clustering and boundary solution isolation

A mutation routine is used to reconfigure a solution. By altering certain positions
within the solution it is possible to realign the deviation and spread of the solution.
Boundary values within the solutions (usually represented by the upper and lower
bound of the solution) are swapped. Another approach is to have two random posi-
tions generated and the values in these positions swapped. An illustration is given
to describe this process in Table 15.5, Figure 15.12 and Figure 15.13.

Table 15.5 Swap of boundary values

Solution Deviation Spread

10 9 6 5 2 1 8 7 4 3 2.1 -7
1 9 6 5 2 10 8 7 4 3 3.0 -5

Once the boundary values are re-aligned, the second migration/generation loop
occurs. The entire process pseudocode is given in Figure 15.14.

494 D. Davendra, I. Zelinka, and G. Onwubolu

Fig. 15.13 Realigned solutions into discrete clusters

Algorithm for Dynamic Clustering

Assume four clusters C1 - C4, each with separation distance CA,i, where i refers to the corre-
sponding cluster. Each schedule has n variables.

1. Isolate each schedule in a cluster which has a separation value less than that of CA:
Xdevi < CA,X .

2. DO

a. Randomly select two unique random indices on the schedule Rnd [r1,r2] ∈ n.
b. Using these indices exchange the values in the solution: xr1 ⇔ xr2 .
c. Calculate new deviation of the solution Xnew,devi.
d. IF Xdevi > CA,X

i. Accept new schedule in the solution Xnew → {
PC,X

}
3. WHILE new schedule NOT accepted in cluster

Fig. 15.14 Algorithm for Dynamic Clustering

15 Chaotic Attributes and Permutative Optimization 495

15.4 Metaheuristics

The clustered population is designed to be used by any metaheuristic. This is the ad-
vantage of this approach, since it is not tied down to a specific method. This section
discusses three different heuristics of Genetic Algorithm (GA), Differential Evo-
lution (DE) algorithm and finally Self-Organising Migrating Algorithm (SOMA).
Each of these heuristics has been applied to the QAP problem. The DE approach is
taken from [11], and the SOMA approach is of [12]. The GA approach was created
to bring completeness to the strategies used.

In each of the heuristics used, the canonical population was removed and replaced
with the clustered population and its integrated features.

15.4.1 Genetic Algorithms

Genetic Algorithm (GA) is an adaptive heuristic search algorithm premised on the
evolutionary ideas of natural selection and genetics. GA is designed to simulate
processes in natural system necessary for evolution, specifically those that follow
the principles first laid down by Charles Darwin of survival of the fittest. As such,
they represent an intelligent exploitation of a random search within a defined search
space to solve a problem [17].

A number of variants of GA exist. For this research, a two-point crossover ap-
proach was used as the crossover methodology for the propagation of the population.

A two-point crossover approach is simple to execute. Two solutions from differ-
ent clusters are randomly selected. These solutions are checked to ensure that their
spread is not equal. This is done to map more diversified solutions. Two crossover
positions are randomly selected in the solutions given as {CP1,CP2} = Random [n],
and the two solutions are mated with a possibility of six unique offspring′s being
created. An illustration of the selection and crossover is given in Figure 15.15.

An example of this process can be shown by having the two values of crossover
given as CP1 = 2 and CP2 = 4. The two solutions selected for crossover can be

represented as x1 =
{

2,5, |4
2
,3, |1

4
,6

}
and x2 =

{
3,4, |1

2
,2, |6

4
,5

}
. Three regions

exist within each solution. By swapping alternate regions, a total number of possible
solutions is now given as in Table 15.6.

With this crossover process, infeasible solutions are usually created. An effective
repairment routine is described in the following section that was used to repair the
solutions.

Once all the solutions are repaired, their fitness is evaluated and the solution with
the best fitness is selected for possible adaptation into the population.

15.4.1.1 Repairment

The repairment process is given in a number of routines. The first routine is to check
the entire solution for repeated values. These repeated values and their positions are

496 D. Davendra, I. Zelinka, and G. Onwubolu

Fig. 15.15 GA representation

Table 15.6 Possible solutions from crossover

Permutation Solution

{1,1,2} {2,5,4,3,6,5}
{1,2,1} {2,5,1,2,1,6}
{1,2,2} {2,5,1,2,6,5}
{2,1,1} {3,4,4,3,1,6}
{2,1,2} {3,4,4,3,6,5}
{2,2,1} {3,4,1,2,1,6}

isolated in a replicated array xrepl =
{

x j,x j+n, ..,x
}

. The second routine is to find
which values are missing from the solutions given as xmis = {1, ..,n}∩{x1,x2, ..,xn}.

Since, the replicated array contains a number of sequences of replicated solutions,
randomly one solution in each sequence is labelled as feasible and repatriated back
into the main solution. This leaves the replicated array containing only infeasible
values.

15 Chaotic Attributes and Permutative Optimization 497

Randomly each value is selected from the missing array and inserted in the posi-

tion of a replicated value in the replicated array xmis
random→ xrepl.

Finally, the replicated array is reinserted in the solution array with all values now
feasible xrepl → x.

An illustrative example is given in Table 15.7.

Table 15.7 Illustrative example of repairment.

Routine Rand x xrepl xmis

Replicated {1,3,4,3,4, (1,1,1∗)
values 10,6,7,1,1} (4∗,4)

Missing {2,8,9}
value

Feasible {3,1} {∗,3,4,3,∗, (1,1,1∗)
solution 10,6,7,∗,1} (4∗,4)

Repair {2,3,1} {1
3
,1

1
,4

2
} {2

2
,8

3
,9

1
}

solution {3,1,2}
Final {8,3,4,5,9,
solution 10,6,7,2,1}

15.4.2 Differential Evolution Algorithm

Differential Evolution (DE) [33], is the second heuristic selected to be used in con-
junction with the clustered population. DE uses a vector perturbation methodology
for crossover.

Each solution is visualized as a vector in search space. A new vector is created
by the combination of four unique vectors. A schematic of DE applied to clustering
is given in Figure 15.16.

There are ten working strategies for DE, but the one selected for implementation
is the DE/rand/2/bin represented as in (15.6):

Ui,G+1 = xbest,G + F · (x j,r1,G − x j,r2,G − x j,r3,G − x j,r4,G) (15.6)

This strategy was selected since it maps to the four unique clusters in the SP.
The best solution is selected from the entire SP based on fitness value. Then, each
random solution is selected from each distinct cluster. Again the selected values
are checked for opposing spread. If the spread is identical, then a second round of
selection occurs. A schematic is given in Figure 15.17.

498 D. Davendra, I. Zelinka, and G. Onwubolu

1 4 0 1 0 1. , , , , , [,],max Input: anD G NP F CR≥ ∈ +() ∈ dd initial bounds:

 While

x x

G

lo hi() (), .

.2 <<

∀ ≤

G

i NP

max

.3 Mutate and recombine:

 3.1 r r r r1 2 3 4 1 2, , , { , ,....∈ ,, },Psize

 ranndomly selected from each cluster

 3.2 ranj Drand ∈{ , ,..., },1 2 ddomly selected once each

i

j D u j i G3 3. , , ,∀ ≤ ++ =

+ ⋅ − − −

1

1 2 3
x F x x x xbest G j r G j r G j r G j r, , , , , , , ,(

44

0 1
,)

([,]
G

jrand CR j j if < ∨ = rrand

j i Gx

)

, , otherwise

4. Select Crite

⎧

⎨
⎪

⎩
⎪

rria

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

= +

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪G G 1

Fig. 15.16 DE selection

Fig. 15.17 DE selection

The selection of the cluster is random, so r1 can be selected from any cluster
with no preference. These values are subtracted given as x j,r1,G − x j,r2,G − x j,r3,G −
x j,r4,G. The resulting value is multiplied by the scaling factor F and added to the
best solution as given in Figure 15.18.

15 Chaotic Attributes and Permutative Optimization 499

Fig. 15.18 DE crossover

The resulting value is only accepted in the new solution if a generated random
number is below the given threshold provided by the controlling parameter of CR.
This procedure provides added stochasticity to the heuristic.

15.4.3 Self Organizing Migrating Algorithm

The third utilized heuristic is SOMA [39], which is based on the competitive-
cooperative behavior of intelligent creatures solving a common problem.

In SOMA, individual solutions reside in the optimized model′s hyperspace, look-
ing for the best solution. It can be said, that this kind of behavior of intelligent
individuals allows SOMA to realize very successful searches.

Because SOMA uses the philosophy of competition and cooperation, the variants
of SOMA are called strategies. They differ in the way as to how the individuals
affect all others. The best operating strategy is called ′AllToAll′ and consists of the
following steps:

1. Definition of parameters. Before execution, the SOMA parameters (PathLength,
Step, PRT, Migrations see Table 10) are defined.

500 D. Davendra, I. Zelinka, and G. Onwubolu

2. Creating of population. The population SP is created and subdivided into
clusters.

3. Migration loop.

a. Each individual is evaluated by the cost function
b. For each individual the PRT Vector is created.
c. All individuals, perform their run towards the randomly selected solution

in the opposing cluster according to (15.8). Each solution is selected from
individual cluster piecewise. The movement consists of jumps determined
by the Step parameter until the individual reaches the final position given
by the PathLength parameter. For each step, the cost function for the actual
position is evaluated and the best value is saved. Then, the individual returns
to the position, where it found the best-cost value on its trajectory.

The schematic of SOMA with clustered population is given in Figure 15.19.

Fig. 15.19 SOMA migration utilizing clustered population

SOMA, like other evolutionary algorithms, is controlled by a number of parame-
ters, which are predefined. They are presented in Table 15.8.

15 Chaotic Attributes and Permutative Optimization 501

Table 15.8 SOMA parameters

Name Range Type

PathLength (1.1 − 3) Control
StepSize (0.11 − PathLength) Control
PRT (0 − 1) Control

15.4.3.1 Mutation

Mutation, the random perturbation of individuals, is applied differently in SOMA
compared with other ES strategies. SOMA uses a parameter called PRT to achieve
perturbation. It is defined in the range [0, 1] and is used to create a perturbation
vector (PRT Vector) as shown in (15.7):

i f rnd j < PRT then PRTVector j = 1
else 0, j = 1, ..,n

(15.7)

The novelty of this approach is that in its canonical form, the PRT Vector is
created before an individual starts its journey over the search space. The PRT Vector
defines the final movement of an active individual in search space.

The randomly generated binary perturbation vector controls the allowed dimen-
sions for an individual. If an element of the perturbation vector is set to zero, then
the individual is not allowed to change its position in the corresponding dimension.

15.4.3.2 Crossover

In standard ES, the crossover operator usually creates new individuals based on
information from the previous generation. Geometrically speaking, new positions
are selected from an N-dimensional hyper-plane. In SOMA, which is based on the
simulation of cooperative behavior of intelligent beings, sequences of new positions
in the N-dimensional hyperplane are generated. The movement of an individual is
thus given as follows:

r = r0 + mtPRTVector (15.8)

where:

• r : new candidate solution
• r0 : original individual
• m : difference between leader and start position of individual
• t : ∈ [0 , Path length]
• PRTVector : control vector for perturbation

502 D. Davendra, I. Zelinka, and G. Onwubolu

It can be observed from (15.8) that the PRT vector causes an individual to move
toward the leading individual (the one with the best fitness) in N-k dimensional
space. If all N elements of the PRT vector are set to 1, then the search process is car-
ried out in an N dimensional hyperplane (i.e. on a N+1 fitness landscape). If some
elements of the PRT vector are set to 0 then the second terms on the right−hand side
of (15.8) equals 0. This means those parameters of an individual that are related to
0 in the PRT vector are not changed during the search. The number of frozen pa-
rameters, k, is simply the number of dimensions that are not taking part in the actual
search process. Therefore, the search process takes place in an N-k dimensional
subspace.

For each individual, once the final placement is obtained, the values are
re-converted into integer format. SOMA conversion is different from that used
for DE. The values are simply rounded to the nearest integer and repaired us-
ing the repairment procedure. This process was developed and selected during
experimentation.

15.5 General Template

Collating all the piecewise explanation, a general generic template is now described.

1. Initialize: Assign the problem size n, population size Psize, sub population sizes
SPstruct SPrand , and the control parameters of CA and CE .

2. Generate: Randomly create SPrand , half the size of Psize, and then structurally
create SPstruct . These two form the basis of the population.

3. Calculate: Calculate the deviation and spread of each solution in the population.
Taking the deviation values, configure the population into four clusters. The
minimal separation value between the clusters is assigned as CA. Taking the
entire SP, the standard deviation of the fitness is computed. This is labelled as
the CE .

4. Generation/Migration

a. Taking each SP in turn, the selected heuristic of GA, DE or SOMA is ap-
plied to the population.

b. The new solution is calculated for its deviation and spread.
c. Using the selection criteria, the solution is placed within the cluster corre-

sponding to its deviation. If replicated solutions exist, then it is discarded.
Selection is based on fitness and the move of the CA and CE .

5. Re-calculation: The SP is re-calculated for its cluster boundaries.
6. Dynamic clustering: If the value of CA has deceased, then the boundary solu-

tions are reconfigured. The CE value is calculated for the new population.

The generic template is given in Figure 15.20

15 Chaotic Attributes and Permutative Optimization 503

1 0 1 1. , , , , . , Input: n P SP SP Csize struct rand A ∈ +(()

=
∀ ≤ ∧ ∀

, ,

.

C Gen

SP
i

P
E

rand

size

2
2

 Initialize:
jj n x rand x x

i

i j G j j
hi

j
lo≤ = [] −()

=

=
() (): ,, , 0 0 1

1

i

,, ,.., , { , ,..., }, , ,2 2 1 2 0 0 1P
j n G randsize

j{ } = = []] ∈[]

⎧

⎨
⎪

⎩
⎪

=

=

0 1,

 SP

k

struct

PP
z z k xsize

i

z

as2 1 2
1

; max ! ... ! ;∋ + + +()⎛
⎝⎜

⎞
⎠⎟

≤
=
∑ ccend

lo hi

descend
hi lo

x x

x x x

= { }
=

() ()

()

,..,

,.., ((){ }
∀ ≤ () ⊆ ⎯ →⎯⎯i z x x iascend descend

permutate, , ⎯⎯ ()

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

append SPstruct

3. Calculate

Deviaation δ =
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

∈
+

=

−

∑ x x

n
x x

j j
j

n

j

1
1

1

1: , xx x

if x x

if

n

j j

2

11 1

1

,..,{ }

∂
+ −() ≥

−

−
Spread =

 xx x

C

j j

A k

C

k

A

−

()+

−() ≥

⎧
⎨
⎪

⎩⎪

= ()↔

1

1 2
5 5

1

δ δ δ δ, ,..,
11 5 2 2 5 4 5 1
, ,.., ... ,δ δ δ δk k

C C

k

A A

()+ () ()+
⎛
⎝

⎞
⎠ ↔ ↔

44 5 2

1 2

k k

E i iC std f x x x x

()+
⎛
⎝

⎞
⎠

= ()() ∈

,..,

: , ,..

δ

..,

. max

x

G G

Psize
{ }

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

<4 While foor each

 Mutate and recombine:

SP

i Psize∀ ≤

5.

 u x xi G

DE

, , ,...,+ ←1 1 2 xxi{ }
∂ Calculate and of5 1. δ

 Select

 if

u

x

u

i G

i G

i G

,

,

,

.
+

+

+

=

1

1

1

6

ff u f x

u C

i G best

i G A

,

,

+

+

() ≤ ()1

1 if >

xx

C C

i G

A

,

. ,

 otherwise

 Calculate

⎧

⎨
⎪

⎩
⎪

7 EE

G

8. Dynamic clustering

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

== +

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪ G 1

Fig. 15.20 General Template

504 D. Davendra, I. Zelinka, and G. Onwubolu

15.6 Quadratic Assignment Problem

QAP is an important problem in theory and practice. Formally, given n facilities and
n locations, two n x n matrices A = [ai j] and B = [brs], where ai j is the distance
between locations i and j and brs is the flow between facilities r and s, the QAP can
be stated as follows:

min
ψεS(n)

n

∑
i=1

n

∑
j=1

bi jaψiψ j (15.9)

where S(n) is the set of all permutations (corresponding to the assignments) of the
set of integers {1,. . .,n}, and the ψi gives the location of facility i in the current
solution ψεS(n). Here bi jaψiψ j describes the cost distribution of simultaneously
assigning facility i to location ψ j and facility j to location ψi.

The term quadratic stems from the formulation of the QAP as an integer opti-
mization problem with a quadratic objective function. Let xi j be a binary variable
which takes value 1 if facility i is assigned to location j and 0 otherwise. Then the
problem can be formulated as:

min
n

∑
i=1

n

∑
j=1

n

∑
l=1

n

∑
k=1

ai jbklxikx jl (15.10)

subject to the constraints

n

∑
i=1

xi j = 1,
n

∑
j=1

xi j = 1,xε{0,1} (15.11)

According to [36], the QAP instances found in QAPLIB can be classified into
four classes;

• Unstructured, randomly generated instances: Instances with the distance and
flow matrix entries generated randomly according to an uniform distribution. The
taixxa is an example of these instances, which are considered the most difficult
to solve (we note that x ≡ integer number).

• Unstructured instances: Instances with the grid matrix defined as the Manhat-
tan distance between grid points on a n1 x n2 grid and with random flows.

• Real-life instances: ‘Real-life’ instances from practical application of the QAP.
Amongst them are the layout problem of the hospital (kra30x)and instances cor-
responding to the layout of the typewriter keyboards (bur26x). The real-life in-
stances have in common that the flow matrices have (in contrast to the previously
mentioned randomly generated instances) many zero entries and the entries are
not uniformly distributed.

• Real-life like instances: Because the real life like instances are mainly of small
size, [36] proposed the taixxb instances in such a way that they resemble the
distribution found in real life problems.

15 Chaotic Attributes and Permutative Optimization 505

In order to differentiate different classes of QAP the flow dominance fd is used.
It is defined as the coefficient of the flow matrix entries multiplied by the factor of
100 and is represented as:

f d(B) = 100 · σ
µ

(15.12)

where

µ =
1
n2 ·

n

∑
i=1

n

∑
j=1

bi j

and

σ =

√
1

n2 − 1
·

n

∑
i=1

n

∑
j=1

(bi j − µ)2

The general description is that unstructured randomly generated problems with
a uniform distribution have a fd of less than 1.2 while real life structured problems
have a fd larger than 1.2.

15.7 Results

This section presents the results obtained from the three different sets of experimen-
tations conducted. Each experiment was repeated 10 times with the same control
values. The presented results are the best solutions obtained from these ten simula-
tion on each instant.

All experimentation was conducted on an parallel array of 16 X-Serves with a
total of 64 Quad Xeon processors all running on Grid Mathematica platform.

15.7.1 Genetic Algorithm Results

The first set of results is from Genetic Algorithms. The operational parameters of
GA is given in Table 15.9.

Table 15.9 GA operational values

Parameter Value

Strategy 2 Point Crossover
Mutation Single
Population size 500 - 1000
Generations 500 - 1000

506 D. Davendra, I. Zelinka, and G. Onwubolu

The generic and clustered GA results for the irregular problems is presented in
Table 15.10.

Table 15.10 Clustered GA Irregular QAP comparison

Instant fd n Optimal GA GAclust

bur26a 2.75 26 5246670 1.64 1.25
bur26b 2.75 26 3817852 1.95 1.34
bur26c 2.29 26 5426795 1.75 1.56
bur26d 2.29 26 3821225 1.24 1.21
bur26e 2.55 26 5386879 1.52 1.32
bur26f 2.55 26 3782044 1.62 1.56
bur26g 2.84 26 10117172 1.53 1.42
bur26h 2.84 26 7098658 1.65 1.54
chr25a 4.15 26 3796 2.3 1.56
els19 5.16 19 17212548 0.94 0.91
kra30a 1.46 30 88900 1.23 1.12
kra30b 1.46 30 91420 1.64 1.34
tai20b 3.24 20 122455319 1.58 1.21
tai25b 3.03 25 344355646 1.61 0.94
tai30b 3.18 30 637117113 2.19 1.24
tai35b 3.05 35 283315445 2.32 0.85
tai40b 3.13 40 637250948 2.54 1.12
tai50b 3.1 50 458821517 2.75 1.24
tai60b 3.15 60 608215054 2.68 1.52
tai80b 3.21 80 818415043 3.11 1.95

The results of the regular problems in given in Table 15.11.
The results clearly demonstrate that using clustering improves the results of

generic GA. Even though the results obtained for GA are not as competitive for
the QAP instances, the main idea of this research of clustering of the population to
improve the performance of metaheuristics is validated.

15.7.2 Differential Evolution Results

The second experiment is conducted with Differential Evolution algorithm. Exten-
sive experimentation was conducted with both the regular and irregular QAP prob-
lems. Comparison is done with the DE heuristic without clustering [11].

The operational parameters of DE are given in Table 15.12.
The first part of the results is on the irregular QAP instances. The results are

presented in Table 15.13. The columns represent the name of the problem, its flow

15 Chaotic Attributes and Permutative Optimization 507

Table 15.11 Clustered GA Regular QAP comparison

Instant fd n Optimal GA GAclust

nug20 0.99 20 2570 0.98 0.85
nug30 1.09 30 6124 0.84 0.82
sko42 1.06 42 15812 0.95 0.84
sko49 1.07 49 23386 1.12 0.93
sko56 1.09 56 34458 1.35 0.94
sko64 1.07 64 48498 1.68 1.23
sko72 1.06 72 66256 2.52 1.54
sko81 1.05 81 90998 3.21 2.15
tai20a 0.61 20 703482 0.98 0.52
tai25a 0.6 25 1167256 0.68 0.68
tai30a 0.59 30 1818146 1.02 0.95
tai35a 0.58 35 2422002 1.32 0.98
tai40a 0.6 40 3139370 1.54 1.22
tai50a 0.6 50 4941410 1.62 1.31
tai60a 0.6 60 7208572 2.13 1.98
tai80a 0.59 80 13557864 3.21 2.35
wil50 0.64 50 48816 1.89 0.98

Table 15.12 DE operational values

Parameter Value

Strategy DE/rand/2/bin
CR 0.9
F 0.3
Population 500 - 1000
Generation 500 - 1000

dominance, problem size, optimal reported value, DE result and DE with clustering
result.

Comparing the results of DE and DEclust , it is easy to see that DEclust performs
better than DE. Of the 8 burxx instances, the optimal result is obtained for all in-
stances. On the kraxx and taixx instances, DEclust outperforms DE marginally.

The second part of the results is on the regular QAP instances as given in
Table 15.14.

DEclust outperforms DE in regular QAP instances. It manages to find 10 optimal
instances out of the 16 tested. Of the remaining 6, DEclust obtains close to 0.01% to
the optimal.

508 D. Davendra, I. Zelinka, and G. Onwubolu

Table 15.13 Clustered DE Irregular QAP comparison

Instant fd n Optimal DE DEclust

bur26a 2.75 26 5246670 0.006 0
bur26b 2.75 26 3817852 0.0002 0
bur26c 2.29 26 5426795 0.00005 0
bur26d 2.29 26 3821225 0.0001 0
bur26e 2.55 26 5386879 0.0002 0
bur26f 2.55 26 3782044 0.000001 0
bur26g 2.84 26 10117172 0.0001 0
bur26h 2.84 26 7098658 0.0001 0
chr25a 4.15 26 3796 0.227 0.07
els19 5.16 19 17212548 0.0007 0
kra30a 1.46 30 88900 0.0328 0.024
kra30b 1.46 30 91420 0.0253 0.015
tai20b 3.24 20 122455319 0.0059 0
tai25b 3.03 25 344355646 0.003 0
tai30b 3.18 30 637117113 0.0239 0
tai35b 3.05 35 283315445 0.0101 0.002
tai40b 3.13 40 637250948 0.027 0
tai50b 3.1 50 458821517 0.001 0
tai60b 3.15 60 608215054 0.0144 0.012
tai80b 3.21 80 818415043 0.0287 0.014

Table 15.14 Clustered DE Regular QAP comparison

Instant fd n Optimal DE DEclust

nug20 0.99 20 2570 0.018 0
nug30 1.09 30 6124 0.005 0
sko42 1.06 42 15812 0.009 0
sko49 1.07 49 23386 0.009 0
sko56 1.09 56 34458 0.012 0
sko64 1.07 64 48498 0.013 0.006
sko72 1.06 72 66256 0.011 0.007
sko81 1.05 81 90998 0.011 0.01
tai20a 0.61 20 703482 0.037 0
tai25a 0.6 25 1167256 0.026 0
tai30a 0.59 30 1818146 0.018 0
tai35a 0.58 35 2422002 0.038 0
tai40a 0.6 40 3139370 0.032 0.019
tai50a 0.6 50 4941410 0.033 0.026
tai60a 0.6 60 7208572 0.037 0.012
tai80a 0.59 80 13557864 0.031 0.021
wil50 0.64 50 48816 0.004 0

15 Chaotic Attributes and Permutative Optimization 509

15.7.3 Self Organizing Migration Algorithm Results

The third and final experiment was conducted with SOMA. The operational param-
eters of SOMA is given in Table 15.15.

Table 15.15 SOMA operational values

Parameter Value

Strategy All-to-All
Step Size 0.21
PathLength 3
Population 500 - 1000
Migration 500 - 1000

The results are compared with those of SOMA without clustering of [12] and is
given in Table 15.16.

Table 15.16 Clustered SOMA Irregular QAP comparison

Instant fd n Optimal SOMA SOMAclust

bur26a 2.75 26 5246670 0 0
bur26b 2.75 26 3817852 0 0
bur26c 2.29 26 5426795 0 0
bur26d 2.29 26 3821225 0 0
bur26e 2.55 26 5386879 0 0
bur26f 2.55 26 3782044 0.03 0.01
bur26g 2.84 26 10117172 0 0
bur26h 2.84 26 7098658 0 0
chr25a 4.15 26 3796 0.129 0.10
els19 5.16 19 17212548 0 0
kra30a 1.46 30 88900 0.002 0.002
kra30b 1.46 30 91420 0.03 0.027
tai20b 3.24 20 122455319 0.004 0
tai25b 3.03 25 344355646 0 0
tai30b 3.18 30 637117113 0.043 0
tai35b 3.05 35 283315445 0 0
tai40b 3.13 40 637250948 0.02 0
tai50b 3.1 50 458821517 0.2 0.2
tai60b 3.15 60 608215054 0.5 0.2
tai80b 3.21 80 818415043 0.8 0.4

510 D. Davendra, I. Zelinka, and G. Onwubolu

The results of clustered SOMA with regular problems is given in Table 15.17.

Table 15.17 Clustered SOMA Regular QAP comparison

Instant fd n Optimal SOMA SOMAclust

nug20 0.99 20 2570 0 0
nug30 1.09 30 6124 0.02 0
sko42 1.06 42 15812 0.01 0
sko49 1.07 49 23386 0.005 0
sko56 1.09 56 34458 0.01 0
sko64 1.07 64 48498 0.06 0.02
sko72 1.06 72 66256 0.2 0.04
sko81 1.05 81 90998 0.35 0.05
tai20a 0.61 20 703482 0 0
tai25a 0.6 25 1167256 0 0
tai30a 0.59 30 1818146 0.01 0
tai35a 0.58 35 2422002 0.03 0
tai40a 0.6 40 3139370 0.623 0.58
tai50a 0.6 50 4941410 0.645 0.42
tai60a 0.6 60 7208572 0.62 0.62
tai80a 0.59 80 13557864 1.05 0.95
wil50 0.64 50 48816 0 0

15.8 Analysis

Comparison of the obtained results is done with some published heuristics. The
first comparison is done with the irregular QAP instances. The two best performing
results of DEclust and SOMAclust is compared with the Improved Hybrid Genetic
Algorithm of [20] shown as GA1 and the highly refereed Ant Colony approach of
[14] given as HAS in Table 15.18.

The best performing algorithm is DEclust which obtains the best comparative re-
sult in 17 out of 20 problem instances. SOMAclust obtains the best results in 13
instances and HAS in 12 instances. The hybrid Genetic Algorithm approach how-
ever is able to find the optimal result in the two instances that it is applied, where
the other heuristics are not so effective. For the larger size problems, DEclust proves
to be a better optimizer.

The second set of comparison is done with the regular QAP instances. Compar-
ison of the clustered SOMA and DE is done with the GA (GA1) approach of [20],
greedy GA (GAGreedy) of [1], GA (GA2) of [13], Simulated Annealing algorithm
(TB2M) of [3], Robust Tabu Search (RTS) of [36], Combined Simulated Annealing
and Tabu Search (IA-SA-TS) of [25] and Ant Colony (HAS) of [14]. The results are
given in Table 15.19.

15 Chaotic Attributes and Permutative Optimization 511

Table 15.18 Irregular QAP comparison

Instant fd n Optimal GA1 HAS DEclust SOMAclust

bur26a 2.75 26 5246670 - 0 0 0
bur26b 2.75 26 3817852 - 0 0 0
bur26c 2.29 26 5426795 - 0 0 0
bur26d 2.29 26 3821225 - 0 0 0
bur26e 2.55 26 5386879 - 0 0 0
bur26f 2.55 26 3782044 - 0 0 0.01
bur26g 2.84 26 10117172 - 0 0 0
bur26h 2.84 26 7098658 - 0 0 0
chr25a 4.15 26 3796 - 3.082 0.07 0.10
els19 5.16 19 17212548 - 0 0 0
kra30a 1.46 30 88900 0 0.629 0.024 0.002
kra30b 1.46 30 91420 0 0.071 0.015 0.027
tai20b 3.24 20 122455319 - 0.091 0 0
tai25b 3.03 25 344355646 - 0 0 0
tai30b 3.18 30 637117113 - 0 0 0
tai35b 3.05 35 283315445 - 0.025 0.002 0
tai40b 3.13 40 637250948 - 0 0 0
tai50b 3.1 50 458821517 - 0.192 0 0.2
tai60b 3.15 60 608215054 - 0.048 0.012 0.2
tai80b 3.21 80 818415043 - 0.667 0.014 0.4

Table 15.19 Regular QAP comparison

Instant fd n Optimal GA1 GAGreedy GA2 TB2M RTS IA-SA-
TS

HAS DEclust SOMAclust

nug20 0.99 20 2570 - - - - - - 0 0 0
nug30 1.09 30 6124 0 0.07 0 0.94 0.73 0.52 0.098 0 0
sko42 1.06 42 15812 0 0.250 0 0.66 1.03 0.46 0.076 0 0
sko49 1.07 49 23386 0.038 0.210 0.009 0.67 0.54 0.46 0.141 0 0
sko56 1.09 56 34458 0 0.02 0.001 0.66 0.53 0.50 0.101 0 0
sko64 1.07 64 48498 0 0.22 0 0.57 0.93 0.45 0.504 0.006 0.02
sko72 1.06 72 66256 0.042 0.29 0.014 0.60 0.52 0.48 0.702 0.007 0.04
sko81 1.05 81 90998 0.067 0.2 0.014 0.46 0.41 0.40 0.493 0.01 0.05
tai20a 0.61 20 703482 - - - - - - 0.675 0 0
tai25a 0.6 25 1167256 - - - - - - 1.189 0 0
tai30a 0.59 30 1818146 - - - - - - 1.311 0 0
tai35a 0.58 35 2422002 - - - - - - 1.762 0 0
tai40a 0.6 40 3139370 - - - - - - 1.989 0.019 0.58
tai50a 0.6 50 4941410 - - - - - - 2.8 0.026 0.42
tai60a 0.6 60 7208572 - - - - - - 0.313 0.012 0.62
tai80a 0.59 80 13557864 - - - - - - 1.108 0.021 0.95
wil50 0.64 50 48816 0.028 0.07 0.002 0.25 0.55 0.16 0.061 0 0

512 D. Davendra, I. Zelinka, and G. Onwubolu

As with the irregular problem, DEclust is the best performing algorithm. It man-
ages to find the best value in 16 out of 17 instances, of which 10 are optimal values.
SOMAclust is the second best heuristic with 10 best solutions, all of which are opti-
mal values of those particular problems.

In terms of population dynamics, consider the initial population clustering of a
sample population of “bur26a” instance as given in Figure 15.21.

5 10 15 20 25 30
Number of Solutions

1

1.25

1.5

1.75

2

2.25

2.5

2.75

n
o

i
t

a
i

v
e

D
e
u

l
a

V

History of Solution Deviation
Output of Chaotic Attractor

Fig. 15.21 Initial Population Clustering

The final population clustering is given in Figure 15.22.
The deviation of the solutions is from 1 - 2.75 in the initial population and 5 - 10

in the final population. This shows a drift of the solutions in the deviation space. An-
other point of interest is that the solutions are still diversified in their structure. The
solutions within the clusters have converged, however the overall diversity is main-
tained within the population. This opens more opportunity to obtain better solutions
in next generations.

The spread of the solutions in given in Figure 15.23.
The Chaotic Edge CE of the population throughout the population generation (in

this case, 200 generations) is given in Figure 15.24.
A general decline of the spread of the clusters and fitness values is seen. This is

typical for a minimizing function.
The final graph of the best individual is seen in Figure 15.25.
A direct correlation is seen between the graphs of Chaotic Edge and Best Indi-

vidual. The Edge is a prelude to a shift in solution space. A shift generally signifies
a region of new solutions, and possibility of further improvement.

15 Chaotic Attributes and Permutative Optimization 513

5 10 15 20 25 30
Number of Solutions

5

6

7

8

9

10
n

o
i

t
a

i
v

e
D

e
u

l
a

V

History of Solution Deviation
Output of Chaotic Attractor

Fig. 15.22 Initial Population Clustering

5 10 15 20 25 30
Number of Solutions

�14

�12

�10

�8

�6

�4

�2

n
o

i
t

u
l

o
S

d
a

e
r

p
S

Spread
Spread Factor Plot

Fig. 15.23 Solution Spread

514 D. Davendra, I. Zelinka, and G. Onwubolu

0 50 100 150 200
Number of Generations

20000

40000

60000

80000

100000

120000

140000

D
T

S
History of the Chaos Edge

Chaos Edge Plot

Fig. 15.24 Chaotic Edge

0 50 100 150 200
Number of Generations

5.5� 106

5.52� 106

5.54� 106

5.56� 106

5.58� 106

5.6� 106

5.62� 106

5.64� 106

t
s

o
C

e
u

l
a

V

History of the Best Individual
Output of Chaotic DE

Fig. 15.25 Best Individual

15.9 Conclusion

Chaotic principles and attributes in respect to stagnation in evolutionary algorithms
is the underlying principle of this research. An approach of bypassing local optima
and creating a viable and diversified population is presented. This population relies

15 Chaotic Attributes and Permutative Optimization 515

on the two principles of chaos, Attractors and Edges. Attractors forms basin of solu-
tions where solutions converge, where as an Edge is the limit along which feasible
and better solutions can exist, taking in terms the information currently held by the
population.

A dynamic population is devised which can be utilized by any heuristic. This
population is embedded on three different heuristics of GA, DE and SOMA. Ex-
perimentation is first done with the canonical heuristics and then with clustered
heuristics. A marked improvement is observed in the clustered results, which vali-
date the approach of dynamic clustering of the population. Comparison is also done
with published heuristics with very good results.

Acknowledgements. The following two grants are acknowledged for the financial support
for this research.

1. Grant Agency of the Czech Republic GARC 102/09/1680
2. Grant of the Czech Ministry of Education MSM 7088352102

References

1. Ahuja, R., Orlin, J., Tiwari, A.: A descent genetic algorithm for the quadratic assignment
problem. Comput. Oper. Res. 27, 917–934 (2000)

2. Aihara, K., Takabe, T., Toyoda, M.: Chaotic Neural Networks. Phys. Lett. A 6, 333–340
(1990)

3. Boelte, A., Thonemann, U.: Optimizing simulated annealing schedules with genetic pro-
gramming. Eur. J. Oper. Res. 92, 402–416 (1996)

4. Burkard, R., Rendl, F.: A thermodynamically motivated simulation procedure for com-
binatorial optimisation problems. Eur. J. Oper. Res. 17, 169–174 (1994)

5. Chen, L., Kazuyuki, A.: Chaotic simulated annealing by a neural network model with
transient chaos. Neural Networks 6(8), 915–930 (1995)

6. Connolly, D.: An improved annealing scheme for the QAP. Eur. J. Oper. Res. 46, 93–100
(1990)

7. Davendra, D.: Differential Evolution Algorithm for Flow Shop Scheduling, Bachelor
Degree Thesis, University of the South Pacific (2001)

8. Davendra, D.: Hybrid Differential Evolution Algorithm for Discrete Domain Problems.
Master Degree Thesis, University of the South Pacific (2003)

9. Davendra, D., Onwubolu, G.: Flow Shop Scheduling using Enhanced Differential Evo-
lution. In: Proceeding of the 21st European Conference on Modelling and Simulation,
Prague, Czech Republic, June 4-5, pp. 259–264 (2007)

10. Davendra, D., Onwubolu, G.: Enhanced Differential Evolution hybrid Scatter Search for
Discrete Optimisation. In: Proceeding of the IEEE Congress on Evolutionary Computa-
tion, Singapore, September 25-28, pp. 1156–1162 (2007)

11. Davendra, D., Onwubolu, G.: Forward Backward Transformation. In: Onwubolu, G.,
Davendra, D. (eds.) Differential Evolution: A Handbook for Permutation-Based Combi-
natorial Optimization, pp. 35–80. Springer, Germany (2009)

12. Davendra, D., Zelinka, I.: Optimization of Quadratic Assignment Problem using Self-
Organinsing Migrating Algorithm. Comput. Informat. 28, 169–180 (2009)

516 D. Davendra, I. Zelinka, and G. Onwubolu

13. Drezne, Z.: A new genetic algorithm for the quadratic assignment problem. INFORMS
Journal on Computing 115, 320–330 (2003)

14. Gambardella, L., Thaillard, E., Dorigo, M.: Ant Colonies for the Quadratic Assignment
Problem. Int. J. Oper. Res. 50, 167–176 (1999)

15. Gleick, J.: Chaos: Making a New Science, Vintage, USA (1987)
16. Hochbam, D.: Approximation Algorithms for NP - Hard Problems. PWS Publishing

Company, USA (1997)
17. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press,

Ann Arbor (1975)
18. Ikeguchi, T., Horio, Y.: Chaos for avoiding local minima A. Mutual Connection Neural

Network Dynamics (White Paper)
19. Ishi, S., Sato, M.: Chaotic potts spin model for combinatorial optimization problems.

Neural Networks 10, 941–963 (1997)
20. Ji, P., Yongzhong, W., Haozhao, L.: A solution method for the Quadratic Assignment

Problem (QAP). In: Proceeding of the Sixth International Symposium on Operations
Research and Its Applications (ISORA 2006), Xinjiang, China, August 8-12, pp. 106–
117 (2006)

21. Koopmans, T., Beckmann, M.: Assignment problems and the location of economic ac-
tivities. Econometrica 25, 53–76 (1957)

22. Lawler, E., Lensta, J., Rinnooy, K., Shmoys, D.: Sequencing and scheduling: algorithms
and complexity. In: Graves, S., Rinnooy, K., Zipkin, P. (eds.) Logistics of Production and
Inventory, pp. 445–522. North Holland, Amsterdam (1995)

23. Lin, F., Kao, C., Hsu: Applying the genetic approach to simulated annealing in solving
NP- hard problems. IEEE Trans. Syst. Man Cybern. B Cybern. 23, 1752–1767 (1993)

24. May, R.: Stability and Complexity in Model Ecosystems. Princeton University Press,
Princeton (2001)

25. Misevicius, A.: An Improved Hybrid Optimization algorithm for the Quadratic Assign-
ment Problem. Mathematical Modelling and Analysis 9(2), 149–168 (2004)

26. Nozawa, H.: Chaos 2. Physics D 2, 377 (1992)
27. Onwubolu, G.: Optimisation using Differential Evolution Algorithm. Technical Report

TR-2001-05, IAS (October 2001)
28. Onwubolu, G.: Emerging Optimisation Techniques in Production Planning and Control.

Imperial Collage Press, London (2002)
29. Onwubolu, G., Clerc, M.: Optimal path for automated drilling operations by a new

heuristic approach using particle swamp optimisation. Int. J. Prod. Res. 42(3), 473–491
(2004)

30. Onwubolu, G., Davendra, D.: Scheduling flow shops using differential evolution algo-
rithm. Eur. J. Oper. Res. 171, 674–679 (2006)

31. Operations Reserach Library,
http://people.brunel.ac.uk/˜mastjjb/jeb/info.htm
(Cited September 13, 2008)

32. Pinedo, M.: Scheduling: theory, algorithms and systems. Prentice Hall, Inc., New Jersey
(1995)

33. Price, K.: An introduction to differential evolution. In: Corne, D., Dorigo, M., Glover, F.
(eds.) New Ideas in Optimisation, pp. 79–108. McGraw Hill, International, UK (1999)

34. Price, K., Storn, R.: Differential evolution (2001),
http://www.ICSI.Berkeley.edu/˜storn/code.html
(Cited September 10, 2008)

15 Chaotic Attributes and Permutative Optimization 517

35. Sahni, S., Gonzalez, T.: P-complete approximation problems. J. ACM 23, 555–565
(1976)

36. Taillard, E.: Robust taboo search for the quadratic assignment problem. Parallel Com-
put. 17, 443–455 (1991)

37. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64, 278–285
(1993)

38. Yamada, T., Aihara, K.: Nonlinear Neurodynamics and Combinatorial Optimization in
Chaotic Neural Networks. J. Intell. Fuzzy Sys. 1(5), 53–68 (1997)

39. Zelinka, I.: Soma - Self Organizing Migrating Algorithm. In: Onwubolu, G., Babu, B.
(eds.) New Optimization Techniques in Engineering. Springer, Germany (2004)

Chapter 16
Frontiers

Ivan Zelinka and Sergej Celikovsky

This book presents and discusses the interdisciplinary scientific field between deter-
ministic chaos and evolutionary techniques. As demonstrated in the previous chap-
ters, this research is very promising. In this chapter, we would like to offer a few
exciting and realistic ideas and opinions for possible future directions of research
and development on chaos and evolutionary techniques.

Let us first take a overview on the historical evolution of both involved disci-
plines.

Footprints of deterministic chaos as well as that of the evolutionary theory can
be traced back to the 19th century. The first signs of chaos were discovered by
the famous French mathematician Henri Poincaré when he studied the well-known
three-body problem of the celestial mechanics. On the other hand, the revolutionary
and yet perhaps also controversial evolutionary theory by Charles Darwin from the
Great Britain generated another impulse in the human history. It is very interesting
to note that independently of Darwin, the basic laws of the genetic inheritance had
been defined and experimentally verified by Gregor Johann Mendel, the augustinian
priest and scientist who lived in Brno, on the territory of the present Czech Republic.
The sad story is that Mendel’s letters about his discovery written to many scientific
societies were discovered several decades thereafter, and remained unopened in the
libraries! In the 19th century, both chaos theory and evolution theory were mainly
of academic interest. On the contrary, in the 20th and 21st centuries, deterministic

Ivan Zelinka
Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511,
Zlin 76001, Czech Republic
and
VSB-TUO, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15,
708 33 Ostrava-Poruba, Czech Republic
e-mail: zelinka@fai.utb.cz

Sergej Celikovsky
Control Theory Department, Institute of Information Theory and Automation, Academy of
Sciences of Czech Republic, Pod Vodarenskou vezi 4, 182 08, Praha 8, Czech Republic
e-mail: celikovs@utia.cas.cz

I. Zelinka et al. (Eds.): Evolutionary Algorithms and Chaotic Systems, SCI 267, pp. 519–521.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

520 I. Zelinka and S. Celikovsky

chaos and evolutionary theory brought up a growing number of real-world applica-
tions as well as new theory developments, especially after the 1950’s.

The reason why deterministic chaos has become an area of engineering interest
stems from the fact that many engineering applications involve nonlinear dynamical
systems, which possibly generate chaotic behavior. In the past, when appropriate
computational techniques that could be used to simulate or even solve such a prob-
lems were not available, these kinds of behavior had been either ignored or replaced
by linear approximate models. Thanks to the modern powerful computational tech-
nologies and techniques (workstations, high performance computing, cloud comput-
ing, etc.), solving hard problems involving chaotic systems is no longer a problem.
In fact, one has become capable of getting better results leading to more precise
engineering outcome.

Deterministic chaos has been successfully applied to such areas as secure data en-
cryption, oscillators synchronization, random-like number generators, system iden-
tification and reconstruction, and many others areas from systems engineering and
information processing. On the other hand, the evolutionary theory, based on the
principle of genetic inheritance, has also been successfully developed and applied
to solve complicated and complex problems (see Chapter 2 for more details). The
power of evolutionary techniques is evidenced by the fact that when being properly
used, it is able to solve many hard (or “unsolvable”) problems so as to obtain at least
acceptable, sometimes even optimal solutions. Some typical examples are listed in
Chapter 1, including the traveling salesman by Ant Colony Optimization (ACO)
[3] and [4], aircraft engine improvement by Genetic Algorithms (GA), fingerprint
identification [2] by GA, and many others. Applications can also be found within
various fields like chemical engineering, mechanical engineering, electronics, air-
craft design, logistics, manufacturing, and so on.

Evolutionary algorithms have been “transformed” into the so-called evolutionary
hardware, which is currently a quite promising area of intensive research, with po-
tential applications in robotics, defense technology and space technologies. It can
be expected that evolutionary hardware will be utilized in the near future, in indus-
trial applications as well as physical systems modeling and prediction (one possible
realization has been recorded in quantum physics, [5]). Evolutionary algorithms,
genetic programming and genetic programming-like techniques might also be used
for engineering design of chaotic systems according to user-defined specifications,
as discussed in Chapter 11. Another progress can be expected in evolutionary design
of algorithms, as initiated in [1]). In this research, different versions of differential
evolution were successfully synthesized by other evolutionary algorithms.

From the reports of this book (e.g., in chapter introductions and experimental re-
sults), it is foreseeable that the mutual interactions of evolutionary algorithms and
chaotic dynamics are vital and valuable. Evolutionary algorithms can be used to
easily handle very complex problems of informatics or to control very difficult engi-
neering devices where chaotic dynamics play an important role (as a proper solution
bypassing an “obstacle”), while chaotic behavior can also be observed in the dynam-
ics of the evolutionary algorithms (see Chapter 15), so its “control” or elimination
can significantly improve the performance of some such algorithms.

16 Frontiers 521

Lets summarize a few basic findings and facts. The first is that evolutionary algo-
rithms are capable of getting solutions (at least acceptable from an engineering point
of view) for hard problems whose complexity imposes so many possible solutions
that there is no computer (even futuristic ones) that can verify all such solutions
to find the best one (see Chapter 2). The second is that inside chaotic dynamics
there is an infinite number of unstable trajectories, so it is a control engineering
problem that can be used for stabilization and control, especially when the observed
system has a truly black-box model (i.e., no mathematical knowledge is present to
the designer). The third is that there exist some physical limits based on quantum
mechanics (Chapter 2). These limits create troubles, which cannot be overcome by
any existing or even hypothetical computer and thus give us computational limita-
tions and restrictions. Therefore, one can foresee that the future of the computational
techniques will, at least partially, be based on mutual fusion of evolutionary theory
and chaos theory, in order to “find a shortcut” to get feasible solutions of extremely
complex problems. Application of such interdisciplinary research can be expected
in such fields like nanotechnology, complex networks (e.g., social networks and the
Internet), automatic algorithms design, evolutionary hardware, etc. It is clear that
if this indeed takes place, then the theoretical foundations will, in turn, be signifi-
cantly enriched, especially in the areas of algorithm theory, computational biology,
aerospace physics, complex networks, and complexity theory, and many others.

Even though the last paragraph presents the prognosis of the future impact of
only the overlapping between chaos and evolution, based on the materials presented
in this book, we are fairly confident that such a prognosis will eventually become a
reality, which may actually happen very soon.

References

1. Oplatkova, Z.: Metaevolution - synthesis of evolutionary algorithms by means of symbolic
regression, Ph.D. thesis, TBU Zlin (2007)

2. Hany, H.A., Tao, Y.: Fingerprint registration using genetic algorithms. In: 3rd IEEE Sym-
posium on Application-Specific Systems and Software Engineering Technology (ASSET
2000), p. 148 (2000)

3. Stützle, T., Hoos, H.: The Max-Min Ant System and Local Search for the Travelling Sales-
man Problem. In: Bäck, T., Michalewicz, Z., Yao, X. (eds.) IEEE International Conference
on Evolutionary Computation, Piscataway, pp. 309–314. IEEE Press, Los Alamitos (1997)

4. Gambardella, L.M., Dorigo, M.: Ant-Q: A Reinforcement Learning Approach to the Trav-
eling Salesman Problem. In: Prieditis, A., Russell, S. (eds.) Proceedings of ML 1995,
Twelfth International Conference on Machine Learning, Tahoe City, CA, pp. 252–260.
Morgan Kaufmann, San Francisco (1995)

5. Bartels, R.A., Murnane, M.M., Kapteyn, H.C., Christov, I., Rabitz, H.: Learning from
learning algorithms: Application to attosecond dynamics of high-harmonic generation.
Phys. Rev. A 70, 043404 (2004)

	3642107060
	Studies in Computational Intelligence,Volume 267
	Evolutionary Algorithms and
Chaotic Systems
	Foreword
	Preface
	Acknowledgements
	Contents
	Part I: Theory
	Chapter 1
Motivation for Application of Evolutionary
Computation to Chaotic Systems
	Introduction
	Evolutionary Computation and Selected Examples
	Evolutionary Design
	Application of Evolvable Hardware
	Automatic Design of Low-Cost Hardware
	Poorly Specified Problems
	Adaptive Systems
	Fault Tolerant Systems
	Design Innovation in Poorly Understood Design Spaces
	Hummies Competition
	Problems Solvable by Evolutionary Computation
	Example: Real-Time Compensation of Plasma Reactor

	Chaotic Systems
	Conclusions
	References

	Chapter 2
Evolutionary Algorithms for Chaos Researchers
	Historical Facts from a Slightly Different Point of View
	Evolutionary Algorithms – Outline
	Central Dogma of Evolutionary Computational Techniques
	Evolutionary Algorithms and Importance of Their Use

	Selected Evolutionary Techniques
	Overview
	Current State

	Selected Basic Terms from the Evolutionary Algorithms
	The Usability Areas of Evolutionary Algorithms
	Common Features
	Population
	Individuals and Their Representation
	Evolutionary Operators: Selection, Recombination, Mutation

	Limits to Computation
	Searched Space and Its Complexity
	Physical Limits of Computation

	Conclusion
	References

	Chapter 3
Chaos Theory for Evolutionary Algorithms
Researchers
	Introduction
	Characterization of Deterministic Chaos
	Roots of Deterministic Chaos

	Universal Features of Chaos
	Determinism and Unpredictability of the Behavior of Deterministic Chaos – Sensitivity to Initial Conditions
	Lyapunov Exponents
	The U-Sequence
	Intermittence, Period Doubling, Metastable Chaos and Crises
	Feigenbaum Constants
	Self-similarity

	From Order to Chaos
	Period Doubling
	Intermittence
	Chaotic Transients
	Crises

	Selected Examples
	Mechanical System – Billiard
	Mechanical System – Duffing's Equation
	Electronic System – Chua's Circuit, Circuit with a Diode
	Biological System – Logistic Equation
	Meteorological System – Lorenz Weather Model
	Spatiotemporal Chaos
	Cellular Automata – Game of Life
	Artificial Intelligence – Neuron Networks
	Artificial Intelligence – Evolutionary Algorithms
	Astronomy – The Three-Body Problem

	Conclusion
	References

	Chapter 4
Evolutionary Algorithms and the Edge of Chaos
	Introduction
	Edge of Chaos
	Antichaos and Self-organization
	A Butterfly Sleeps
	Chaos and Antichaos

	Edge of Chaos in Evolutionary Algorithms
	Stagnation
	Anti-stagnation

	Analytical Observation
	Diversity Measure
	Population Representation

	Conclusion
	References

	Part II: Applications
	Chapter 5
Evolutionary Design of Chaos Control in 1D
	Introduction
	Evolutionary Techniques in Chaos Control
	Chaotic Systems
	Logistic Equation
	Henon Map

	Selected Method for the Controlling of Chaos
	Delayed Feedback Control (Pyragas Method)

	Evolutionary Algorithms
	Optimization of Chaos Control
	Problem Design
	The Cost Function
	Experimental Results
	Analysis of All Results

	Comparison with OGY Method
	Logistic Equation
	Henon Map

	Conclusion and Discussion
	References

	Chapter 6
Evolutionary Control of CML Systems
	Introduction
	Motivation
	Selected Evolutionary Algorithm - A Brief Introduction
	Differential Evolution
	SOMA
	Simulated Annealing
	Genetic Algorithms
	Evolutionary Strategies

	CML Control
	Used Hardware
	Problem Selection and Case Studies
	Cost Function
	Parameter Setting
	Experimental Results
	CML Real Time Control

	Conclusion
	References

	Chapter 7
Chaotic Systems Reconstruction
	Introduction
	Unknown Inputs Multiple Observer Design
	Unknown Inputs Observer Design
	LMI Design Conditions
	Pole Placement

	Unknown Inputs Estimation
	Simulation Examples
	Academic Example
	Application to Chaotic System Reconstruction

	Extension to Discret-Time Multiple Model
	Pole Assignment

	Application to Chaotic System Reconstruction
	Conclusion
	References

	Chapter 8
Evolutionary Reconstruction of Chaotic Systems
	Introduction
	Motivation
	Chaos System Reconstruction – Classical Methods
	Reconstruction Based on Time Series Analysis

	Evolutionary Reconstruction of Chaotic Systems
	Problem Selection, Used Algorithms and Computer Technology
	The Cost Function
	Experiment Setup
	Experimental Results
	Reconstruction of Similar Systems
	Unfinished Evolution
	Exotic Solutions
	Continuous Systems: Preliminary Study

	Conclusion
	References

	Chapter 9
Cryptography Based on Spatiotemporal Chaotic
Systems
	Introduction
	CML-Based Pseudo-Random-Bit Generators
	Coupled Map Lattice
	Digitization Method
	Statistical Properties
	PRBGs Based on Various CMLs

	CML-Based Stream Cipher
	Algorithm of the Cipher
	Keyspace
	Cryptographic Properties of the Keystream
	High Efficiency

	CML-Based Multimedia Cryptosystem
	Design of CML-Based Multimedia Cryptosystem
	Performance Analysis

	Conclusion
	References

	Chapter 10
Evolutionary Decryption of Chaotically
Encrypted Information
	Introduction
	Motivation
	Selected Evolutionary Algorithm – A Brief Introduction
	Evolutionary Decryption
	Used Hardware, Problem Selection and Case Studies
	Cost Function
	Parameter Setting
	Experimental Results

	Conclusion
	References

	Chapter 11
Chaos Synthesis by Evolutionary Algorithms
	Introduction
	Motivation
	Brief Review of the Selected Evolutionary Algorithm
	Symbolic Regression – An Introduction
	Genetic Programming
	Grammatical Evolution
	Analytic Programming

	Experiment Design
	Parameter Setting
	Cost Function
	Case Studies

	Conclusion
	References

	Chapter 12
Evolutionary Synchronization of Chaotic
Systems
	Introduction
	Motivation
	Selected Evolutionary Algorithm – A Brief Introduction
	Evolutionary Synchronization
	Used Hardware, Problem Selection and Case Studies
	Cost Function
	Parameter Setting
	Experimental Results

	Conclusion
	References

	Chapter 13
Evolutionary Optimization and Dynamic Fitness
Landscapes
	Introduction
	Constructing Dynamic Fitness Landscapes from Reaction–Diffusion Systems and CML
	Static and Dynamic Fitness Landscapes
	Hierarchy of Fitness Landscapes
	Relationships between Coupled Map Lattices and Reaction–Diffusion Systems

	Properties of Dynamic Fitness Landscapes
	Topological Properties and Topological Problem Difficulty
	Dynamical Properties and Dynamical Problem Difficulty
	Topological and Dynamical Landscape Measures for the CML–Based Landscape

	Evolutionary Optimization
	Numerical Experiments
	Concluding Remarks
	References

	Chapter 14
Controller Parameters Optimization on a
Representative Set of Systems Using
Deterministic-Chaotic-Mutation Evolutionary
Algorithms
	Introduction
	PID Controller
	Proportional Algorithm
	Proportional Integral Algorithm
	Proportional Integral Derivative Algorithm

	Controller Tuning
	Ziegler Nichols Closed Loop Method

	System Specifications
	Sensitivity Specifications
	Optimization Specifications

	Differential Evolution Algorithm
	Tuning Parameters

	Chaotic Systems
	Lozi Map
	Delayed Logistic Map

	Problem Description
	Fourth Order System
	Third Order System
	Electric DC Motor

	Conclusion
	References

	Chapter 15
Chaotic Attributes and Permutative
Optimization
	Introduction
	Chaotic Signature in Population Dynamics
	Population Dynamics
	Initial Population
	Solution Dynamics
	Chaotic Features
	Selection and Deletion
	Dynamic Clustering

	Metaheuristics
	Genetic Algorithms
	Differential Evolution Algorithm
	Self Organizing Migrating Algorithm

	General Template
	Quadratic Assignment Problem
	Results
	Genetic Algorithm Results
	Differential Evolution Results
	Self Organizing Migration Algorithm Results

	Analysis
	Conclusion
	References

	Chapter 16
Frontiers
	References

