

Wolfgang Reisig

Elements
of Distributed Algorithms
Modeling and Analysis
with Petri Nets

With 246 Figures

Springer

Prefa
e
The appli
ation and organization of
omputing systems is tending towardsdistributed
omputing. Pro
essor
lusters, lo
al and wide area networks, andthe forth
oming information highway are evolving new kinds of problems (thesimplest and most basi
 ones in
lude, e.g., distributed organization of mutualex
lusion, or distributed dete
tion of distributed termination). A new kind ofalgorithm,
alled distributed algorithms, has emerged during the last de
ade,aimed at eÆ
iently solving those problems and, more generally, making dis-tributed
omputing systems appli
able to real-world problems.A variety of distributed algorithms are presented and proven
orre
t inthis book. A (Petri net based) te
hnique to model and to analyze distributedalgorithms is
oin
idently presented. This te
hnique fo
uses on lo
al states,independent a
tions, and syn
hronization of distributed threads of
ontrol.This book's s
ope is modest, as it sti
ks to a
hoi
e of small and mediumsize distributed algorithms. Compositionality, stepwise re�nement, interfa
espe
i�
ation, abstra
tion, et
., are not
overed. Nevertheless, this book's
laims are ambitious: Just as PASCAL-like programming stru
tures andHoare-style proof te
hniques appear optimal for a wide
lass of sequentialalgorithms, this book's formalism is suggested to be optimal for a wide
lassof distributed algorithms.Parti
ular preliminary knowledge is not assumed in this text, besides ba-si
s in formal
on
epts and a general intuitive understanding of
omputers
ien
e.The text provides a basis for university
ourses and
an help the pra
ti-tioner to design distributed algorithms. The hurried reader may just studythe pi
tures.A
knowledgmentsThis book is the yield of a de
ade of resear
h into formal methods for model-ing and analysis of Distributed Algorithms. I
ondu
ted this resear
h togetherwith many
olleagues, sta�, and students, both at the Te
hni
al Universityof Muni
h and, sin
e 1993, the Humboldt-Universit�at zu Berlin. It has beensupported by the Deuts
he Fors
hungsgemeins
haft, in the framework of theSonderfors
hungsberei
h 342 as well as in proje
ts on Distributed algorithms

VI Prefa
edesign and
ompositional veri�
ation. The European Union supported thisresear
h via the ESPRIT II proje
ts CALIBAN and DEMON.The material matured and the presentation pro�ted from su

essive
ourses given at the Te
hni
al University of Muni
h and Humboldt-Universi-t�at zu Berlin. My enjoyable summer 1997 visit to the International ComputerS
ien
e Institute at Berkeley, California, de
isively boosted
ompletion of thisbook.With pleasure I a
knowledge a number of
olleagues who dire
tly
on-tributed to this book: Rolf Walter suggested the
on
ept of rounds and the
orresponding theorems of Se
t. 53. He also designed the
rosstalk algorithms,
rosstalk based mutex, and distributed rearrangement (Se
ts. 12, 13.6, and25), and he
ontributed to token passing mutex, global mutex, and to theproofs of the E
ho algorithm and phase syn
hronization (Se
ts. 13.5, 34.1,77, and 81). Ekkart Kindler designed the fairness rules (Se
ts. 48 and 66). He
onstru
ted the spanning tree algorithm (Se
t. 32.3) and
ontributed to tokenpassing mutex, global mutex, and rearrangement (Se
ts. 13.5, 34.1, and 25).J�org Desel
ontributed two
onventions: how to synta
ti
ally represent net-work algorithms (Se
t. 31) and how to handle equations, inequalities and log-i
al expressions (Se
t. 39). He also
ontributed to the global mutex algorithm(Se
t. 34.1). Hagen V�olzer
onstru
ted the phase syn
hronization algorithmtogether with its veri�
ation (Se
ts. 36 and 81) and
ontributed to the proofof the E
ho algorithm (Se
t. 77). J�orn Freiheit
orre
ted an earlier version oflo
al mutual ex
lusion on networks (Se
t. 34.3) and
ontributed de
isive argu-ments to its veri�
ation (Se
t. 79). Tobias Vesper provided the
entral proofarguments for the distributed self-stabilization algorithm (Se
t. 82). WilfriedBrauer
onstru
ted the asyn
hronous sta
k (Se
t. 11). Eike Best referred meto [Dij78℄, the sour
e of this book's
onsensus algorithms (Se
t. 35).In addition, the above-mentioned
ontributed numerous
omments and
orre
tions, as likewise did Juliane Dehnert, Adriane Foremniak, DominikGomm, Keijo Heljanko, Bodo Hohberg, Irina Lomazowa, Sibylle Peuker, Tho-mas Ritz, Karsten S
hmidt, Einar Smith, and Mi
hael Weber. Many thanksto all of them, and to the many further
asual members of the \Ka�eerunde",for inspiring dis
ussions and
riti
ism.The burden of never-ending typesetting,
hanges of text, and
orre
tionswas shouldered mainly by Thomas Ritz. I am very grateful for his patien
eand
onstru
tive
ooperation. The pi
tures were drawn by J�orn Freiheit andAbdourahaman in quite a painstaking manner. Juliane Dehnert
ompiled thereferen
es. I am indebted to all of them.I also owe mu
h to Birgit Heene; her e�e
tive management of daily se
-retarial duties saved me a lot of time that I was able to devote to this book.It is a pleasure to a
knowledge the
onstru
tive, eÆ
ient, and friendlysupport of Hans W�ossner, Ingeborg Mayer, and J. Andrew Ross of Springer-Verlag. Their professional management and
areful editing of the manus
ript

Prefa
e VIIhave again been perfe
t, just as I frequently experien
ed during the last 15years.A Note to the Expert in Petri NetsThis is not a book on Petri nets. It is a book however that heavily em-ploys Petri nets, i.e., a slightly revised form of elementary net systems (en-systems), and \algebrai
" high level nets. Revisions are motivated by therealm of distributed algorithms: The role of loops is re
onsidered, and as-pe
ts of progress and fairness are added. Altogether, those revisions providethe expressive power ne
essary to model elementary distributed algorithmsadequately, retaining intuitive
larity and formal simpli
ity.A version of high-level nets is used to model data dependen
ies and algo-rithms for (
lasses of) networks. Te
hni
ally, su
h nets are based on
on
eptsfrom algebrai
 spe
i�
ation, but they may be understood independently ofthat �eld.Multiple instan
es of a token in the same pla
e will never o

ur, be
ausethe vast majority of distributed algorithms by their nature do without mul-tiple instan
es of tokens. Lo
al states of nets are hen
e propositions andpredi
ates, thus providing the elements for logi
-based analysis te
hniques.Two kinds of properties will be studied, both of them instan
es of [AS85℄'ssafety and liveness properties. In this text they will be
alled state andprogress properties in order to avoid
onfusion with
onventional safety andliveness of Petri nets. Again, those notions are motivated by pra
ti
al needs.Pla
e invariants and initialized traps turn out to be useful in analyzing stateproperties. Progress properties have rarely been
onsidered in the literatureon Petri nets. New
on
epts support their analysis, borrowed from temporallogi
.Berlin, April 1998 Wolfgang Reisig

Contents
Introdu
tion : 1Part A. Elementary System Models 3I. Elementary Con
epts : 51 A First Look at Distributed Algorithms 52 Basi
 De�nitions: Nets . 143 Dynami
s . 174 Interleaved Runs . 215 Con
urrent Runs . 226 Progress . 277 Fairness . 308 Elementary System Nets . 31II. Case Studies : 359 Sequential and Parallel Bu�ers . 3510 The Dining Philosophers . 3811 An Asyn
hronous Sta
k . 4412 Crosstalk Algorithms . 4513 Mutual Ex
lusion . 5014 Distributed Testing of Message Lines . 60Part B. Advan
ed System Models 63III. Advan
ed Con
epts : 6515 Introdu
tory Examples . 6516 The Con
ept of System Nets . 7317 Interleaved and Con
urrent Runs . 7518 Stru
tures and Terms . 7819 A Term Representation of System Nets 8020 Set-Valued Terms . 8321 Transition Guards and System S
hemata 88

X ContentsIV. Case Studies : 9122 High-Level Extensions of Elementary Net Models 9123 Distributed Constraint Programming 9624 Ex
lusive Writing and Con
urrent Reading 10025 Distributed Rearrangement . 10226 Self Stabilizing Mutual Ex
lusion . 105V. Case Studies Continued: A
knowledged Messages : : : : : : : 10727 The Alternating Bit Proto
ol . 10728 The Balan
ed Sliding Window Proto
ol 11229 A
knowledged Messages to Neighbors in Networks 11630 Distributed Master/Slave Agreement . 119VI. Case Studies Continued: Network Algorithms : : : : : : : : : : 12331 Prin
iples of Network Algorithms . 12332 Leader Ele
tion and Spanning Trees . 12533 The E
ho Algorithm . 12734 Mutual Ex
lusion in Networks . 13035 Consensus in Networks . 13436 Phase Syn
hronization on Undire
ted Trees 13737 Distributed Self Stabilization. 140Part C. Analysis of Elementary System Models 143VII. State Properties of Elementary System Nets : : : : : : : : : : : : 14538 Propositional State Properties . 14539 Net Equations and Net Inequalities . 14740 Pla
e Invariants of es-nets . 15041 Some Small Case Studies . 15342 Traps . 15643 Case Study: Mutex . 159VIII. Interleaved Progress of Elementary System Nets : : : : : : : 16544 Progress on Interleaved Runs . 16545 The Interleaved Pi
k-up Rule . 16746 Proof Graphs for Interleaved Progress 17047 Standard Proof Graphs . 17248 How to Pi
k Up Fairness . 17649 Case Study: Evolution of Mutual Ex
lusion Algorithms 178IX. Con
urrent Progress of Elementary System Nets : : : : : : : 18750 Progress on Con
urrent Runs . 18751 The Con
urrent Pi
k-up Rule . 18852 Proof Graphs for Con
urrent Progress 190

Contents XI53 Ground Formulas and Rounds. 19154 Rounds of Sequential and Parallel Bu�er Algorithms 19555 Rounds and Ground Formulas of Various Algorithms 19756 Ground Formulas of Mutex Algorithms 200Part D. Analysis of Advan
ed System Models 205X. State Properties of System Nets : 20757 First-Order State Properties . 20858 Multisets and Linear Fun
tions . 20959 Pla
e Weights, System Equations, and System Inequalities . 21060 Pla
e Invariants of System Nets . 21461 Traps of System Nets . 21962 State Properties of Variants of the Philosopher System 222XI. Interleaved Progress of System Nets : 22763 Progress on Interleaved Runs . 22764 Interleaved Pi
k-up and Proof Graphs for System Nets 22865 Case Study: Produ
er/Consumer Systems 23066 How to Pi
k up Fairness . 231XII. Con
urrent Progress of System Nets : 23367 Progress of Con
urrent Runs . 23368 The Con
urrent Pi
k-up Rule . 23469 Pi
k-up Patterns and Proof Graphs . 23570 Ground Formulas and Rounds. 238XIII. Formal Analysis of Case Studies : 24171 The Asyn
hronous Sta
k . 24172 Ex
lusive Writing and Con
urrent Reading 24473 Distributed Rearrangement . 24974 Self-Stabilizing Mutual Ex
lusion . 25375 Master/Slave Agreement . 25576 Leader Ele
tion . 25877 The E
ho Algorithm . 26078 Global Mutual Ex
lusion on Undire
ted Trees 26679 Lo
al Mutual Ex
lusion . 26980 Consensus in Networks . 27981 Phase Syn
hronization on Undire
ted Trees 28582 Distributed Self-Stabilization. 291Referen
es : 298

Introdu
tion
An algorithm is said to be distributed if it operates on a physi
ally or logi
allydistributed
omputing ar
hite
ture. Typi
ally, su
h ar
hite
tures la
k global
ontrol. This requires parti
ular means to model and to verify distributedalgorithms.This book is based on the assumption that distributed algorithms areimportant and that their present-day treatment
an be improved upon. Two
entral problems are ta
kled: how to adequately des
ribe a distributed algo-rithm and how to prove its de
isive properties.The algorithmi
 idea of most distributed algorithms
enters around mes-sages, syn
hronizing shared use of s
ar
e resour
es, and
ausal dependen
iesof a
tions for some parti
ular, usually not fully spe
i�ed,
omputing ar
hi-te
ture.As an example, the e
ho algorithm is a s
hema for a
knowledged informa-tion dissemination, to run on any
onne
ted network of
omputing agents.From a purely
omputational point of view, this algorithm just stipulatesthat ea
h agent send the same message to all its neighbors. The algorithmi
idea, however, is en
oded in
ausal relations between those messages. Anyadequate des
ription of this idea should employ formal primitives to repre-sent sending and re
eiving of messages; whereas, e.g., the administration ofmessages already re
eived in an array is an implementation detail, irrelevantfor the e
ho algorithm.A distributed algorithm is adequately des
ribed if the operational primi-tives employed fo
us on the essential idea of the algorithm. Experien
e revealsthat lo
al states and atomi
 a
tions are
ru
ial in this
ontext: O

urren
eof an atomi
 a
tion a�e
ts a subset of lo
al states. More involved examplesfurthermore require values to be moved along the system and require a moreabstra
t des
ription of
omputing systems (su
h as \any
onne
ted networkof agents" in the e
ho algorithm). Te
hni
ally, an adjusted version of Petrinets o�ers primitives of this kind.The de
isive properties of ea
h distributed algorithm in
lude aspe
ts ofsafety and liveness, intuitively
hara
terized as \nothing bad will ever hap-pen" and \eventually something good will happen", respe
tively. As an ex-ample, the
ore properties of the e
ho algorithm mentioned above are, �rstly,that the agent starting to disseminate some message will terminate only af-

2 Introdu
tionter all other agents have been informed and, se
ondly, that this agent willeventually terminate. Te
hni
ally, temporal logi
 provides adequate means torepresent and to prove these kinds of property.Hen
e this book will employ an adjusted version of Petri nets to representdistributed algorithms, and an adjusted version of temporal logi
 to verifythem. It
ombines sele
ted
on
epts that reveal transparen
y and simpli
ityof both representation and analysis of distributed algorithms. These in
lude{ suitable means to represent the essentials of distributed algorithms (su
has lo
al states, atomi
ity of a
tions, and syn
hronization), and to avoidunne
essary and super
uous
on
epts su
h as variables and assignmentstatements;{ a maximally tight
ombination of modeling and analysis te
hniques, wherelo
al states are propositional or �rst-order expressions, and a
tions aremost elementary predi
ate transformers;{ well-established Petri net analysis te
hniques (pla
e invariants and initial-ized traps, in parti
ular), immediately yielding logi
al representations ofsafety properties (in the sequel
alled state properties);{ suitable means based on temporal logi
 to represent and prove livenessproperties, by \pi
king up" elementary su
h properties from the stati
presentation of algorithms, and by
ombining them in proof graphs (in thesequel
alled progress properties);{ new notions of progress and fairness that di�er slightly from
onventionalnotions of weak and strong fairness, and yield amazingly simple proof rules.We do not pursue the most expressive means available in an attempt to
over virtually all interesting aspe
ts and properties of distributed algorithms.Instead, we restri
t our attention to te
hni
ally quite simple means, yet still
overing an overwhelming majority of the problems that arise during the
onstru
tion and analysis of distributed algorithms.Spe
ial features of this text, besides its general aim of ultimate trans-paren
y and simpli
ity, in
lude{ the notion of
on
urrent runs, as a basis for the notions of ground statesand round based algorithms;{ a slightly revised notion of fairness;{ parti
ularly strong te
hniques for pi
king up safety and liveness propertiesfrom the stati
 representation of distributed algorithms.

Part AElementary System Models
This part
onsists of two
hapters. The �rst one introdu
es the elementaryingredients for modeling distributed algorithms: lo
al states, atomi
 a
tions,the notion of single runs, and the assumption of progress (among others).Altogether, those elementary
on
epts are amazingly simple. Nevertheless,they provide adequate means to model a large
lass of distributed algorithms.The se
ond
hapter demonstrates this by various well-known distributedalgorithms formulated in this setting. It turns out that
risp models fre-quently do better without variables, assignment statements, global fairnessassumptions, et
.

I. Elementary Con
epts
Di�erent representations of an intuitively simple system are presented and
ompared in Se
t. 1. One of them is a net, i.e., an instan
e of the formalismintrodu
ed in the rest of Chap. I. Se
tion 2 is slightly te
hni
al as it intro-du
es nets, the basi
 notion of this book. Most of Se
t. 2 { anyway small {may be skipped upon �rst reading. The elementary formalism for modelingdistributed algorithms is introdu
ed in Se
t. 3. It essentially
omprises thenotions of lo
al states, lo
al a
tions, and their interplay. Two respe
tive
on-
eptions of single runs of
on
urrent systems are
onsidered in Se
ts. 4 and 5:a
onventional one, employing global states and sequentially observed events,and a
ausality-based notion, emphasizing
ausal order and lo
ality of stateo

urren
es and events. Se
tion 6
onsiders the { intuitively obvious { as-sumption of progress, i.e., the assumption that an enabled a
tion will eithero

ur or be disabled by some o

urren
e of
ompeting a
tion. The fundamen-tals of priority and fairness follow in Se
t. 7. Se
tion 8
on
ludes the
hapterwith remarks on the suggested te
hniques.1 A First Look at Distributed AlgorithmsThis se
tion provides a �rst look at this book's
ontents. We start by out-lining the s
ope of
on
ern, i.e., representations of distributed algorithms.Then di�erent su
h representations are presented for a fairly simple, albeitillustrative example. Among them is a Petri net. Petri nets will be employedthroughout this book.1.1 S
ope of
on
ernDistributed algorithms help to organize a large
lass of te
hni
al as well asnon-te
hni
al systems. A system may exist physi
ally or be implementedorganizationally, or it may be a planned, hypotheti
al reality. Examples ofsystems in
lude any kind of work
ow (e.g., an oÆ
e for issuing passports)and te
hni
al systems (e.g., produ
tion lines in a fa
tory), and of
ourse everykind of
omputing devi
e.A system is assumed to exhibit some quantum of dynami

hange. Dy-nami

hange is often des
ribed as a
ontinuous fun
tion over time. However

6 I. Elementary Con
eptsit is, frequently more appropriate to identify dis
rete
hange. For example,on the level of register-transfer in a
omputer, moving a value into a registeris a
hieved by
ontinuously
hanging voltages. A
ontinuous model may de-s
ribe physi
al details. The intended e�e
t, however, i.e., what the hardwareis built for and intended to provide, is nevertheless dis
rete. This kind ofdis
rete e�e
t will be modeled as an a
tion.Typi
al su
h a
tions of
omputer systems
an be identi�ed in logi
alswit
hes, ma
hine instru
tions,
ompiling and programming issues, databasetransa
tions, network organization, et
.Examples of a
tions in organizational systems, e.g., in a passport oÆ
e,in
lude �lling in an appli
ation form, delivering it to a
lerk, paying a fee ata
ash desk, re
eiving a re
eipt, et
.A
tions also des
ribe a lot of relevant behavior in te
hni
al systems. Typ-i
al a
tions in
hemi
al pro
esses in
lude heating some liquid, or pouring itinto bottles. Of interest in this
ontext are usually measuring instrumentssignaling, e.g., \liquid is hot enough" or \bottle is full".A
tions arise in the pro
ess of modeling behavior of systems, by help ofalgorithms. Many di�erent formalisms for des
ribing su
h algorithms havebeen suggested. This book employs the formalism of Petri nets.1.2 Example: A produ
er-
onsumer systemIn the rest of this
hapter, a fairly simple, albeit illustrative distributed algo-rithm will be modeled, in the sequel denoted as a produ
er-
onsumer system.This algorithm may originate from quite di�erent areas, in
luding databases,
ommuni
ation proto
ols, operating systems, or
omputer ar
hite
ture (butalso from areas outside
omputer s
ien
e): Distinguished items are produ
ed,delivered to a bu�er, later removed from the bu�er, and �nally
onsumed.The bu�er is assumed to have
apa
ity for one item. In a
on
rete instan
e,\to deliver" may stand for \to send" or \to deposit". Likewise, \to remove"may stand for \to re
eive" or \to a

ept". The items involved may be anygoods, data
arries, signals, news, or similar items. We are not interestedhere in any parti
ular one of those
on
rete instan
es, but in their
ommonproperties.Four models of this algorithm will be studied, using four di�erent for-malisms. We start with a programming notation,
ontinue with state andtransition based formalisms, and �nally
onstru
t a Petri net.1.3 A programming notation for the produ
er-
onsumer systemOne may be tempted to represent the produ
er/
onsumer system in termsof programming notations. As an example, assume a variable bu�er, rangingover the two-element domain fempty, �lledg, and the following two programs:

1 A First Look at Distributed Algorithms 7P1: do foreverprodu
e;if bu�er = empty thenbu�er := �lledend P2: do foreverif bu�er = �lled thenbu�er := empty;
onsumeend. (1)Furthermore, let P= (P1 k P2) be a program, representing the parallel exe-
ution of P1 and P2.In order to
larify the meaning of P, one may assume a
ompiler, a runtime system, et
., allowing one to exe
ute P on a given
omputing devi
e.The runs of P then
orrespond to the behavior of the produ
er/
onsumersystem: The system is simulated by P.1.4 A state-based representationof the produ
er-
onsumer systemAs a se
ond approa
h to represent the system des
ribed above, we may as-sume three subsystems: the produ
er, the bu�er, and the
onsumer, with thefollowing states and a
tions:
rd

rp

fd

em

rc

rr

producer: buffer: consumer: (2)Ea
h subsystem
onsists of two lo
al states whi
h are visited alternately: theprodu
er's states are \ready to produ
e" (rp) and \ready to deliver" (rd).Likewise, the bu�er has the states \empty" (em) and \�lled" (fd), and the
onsumer's states are \ready to re
eive" (rr) and \ready to
onsume" (r
).Arrows denote possible steps between the subsystems' states. Arrows withouta sour
e node indi
ate initial states.Diagram (2) does not des
ribe the behavior of the system entirely and
orre
tly: The steps rd! rp and em! fd o

ur
oin
idently in the system.This applies also for rr!r
 and fd!em . This information must be given inaddition to (2).1.5 An a
tion-based representationof the produ
er-
onsumer systemThe above representation is state-based: (lo
al) states are assumed, and tran-sitions are des
ribed as fun
tions over these states. Next we
onsider anexample for an a
tion-based approa
h. The three subsystems are now de-s
ribed by their a
tions: The produ
er alternates the a
tions \produ
e"

8 I. Elementary Con
epts(p) and \deliver" (d). The in�nite sequen
e pdpd: : : of a
tions des
ribesits behavior. This behavior
an be represented �nitely by the equationprodu
er = p.d.produ
er. (3)This equation may be read as \the produ
er �rst performs p, then d, andthen behaves like the produ
er". The in�nite sequen
e pdpd: : : is the solutionof the equation (2) in the set of all (�nite and in�nite) strings
onsisting ofp and d.The
onsumer likewise alternates the a
tions \remove" (r) and \
onsume"(
). Its in�nite behavior r
r
: : : is given by the equation
onsumer = r.
.
onsumer. (4)The bu�er's a
tions are strongly syn
hronized with depositing and remov-ing, and are therefore denoted by d and r, respe
tively. Its behavior drdr : : :is given by bu�er = d:r:bu�er. (5)The overall behavior of the produ
er/
onsumer system is now obtainedfrom the joint behavior of its three subsystems.Assuming a suitable operator \k" for parallel
omposition of systems, theoverall system reads produ
er k bu�er k
onsumer: (6)For ea
h a
tion x, the operator k must guarantee that x and x o

ur
oin
idently.1.6 A net representation of the produ
er-
onsumer systemThe two formalisms of Se
ts. 1.4 and 1.5 operate with quite �xed
on
epts:One is state-based, one is a
tion-based, and both sti
k to pairwise syn
hro-nization of a
tions of sequential pro
esses. With these kinds of formalism, alot of distributed algorithms
an be represented adequately. But we are aftera basi
, neutral formalism, treating states and a
tions on an equal footing,and avoiding the need to �x parti
ular de
ompositions of algorithms alreadyat the beginning.Figure 1.1 represents the produ
er/
onsumer system as a Petri net. Itemploys
ir
les and boxes to represent lo
al states and a
tions, respe
tively.Bla
k dots (\tokens") inside
ir
les
hara
terize the initial state of the sys-tem. Generally, tokens indi
ate lo
al states that are \presently taken" or\rea
hed". Ea
h of the four involved a
tions may o

ur under
ertain
ir-
umstan
es, thus
hanging the a
tual distribution of tokens.

1 A First Look at Distributed Algorithms 9
ready to
deliver

ready to
consume

buffer
filled

buffer
empty

remove consume

ready to
remove

ready to
produce

produce deliver

Figure 1.1. A net model of the produ
er/
onsumer system
ready to
deliver

ready to
consume

buffer
filled

buffer
empty

remove consume

ready to
remove

ready to
produce

produce deliver

Figure 1.2. After o

urren
e of produ
e

10 I. Elementary Con
eptsA
tion produ
e is enabled whenever ready to produ
e
arries a token. O
-
urren
e of produ
e forwards the token to ready to
onsume, thus produ
ingthe global state of Fig. 1.2. Intuitively, o

urren
e of produ
e moves a tokenfrom its \ingoing" to its \outgoing" lo
al state.A
tion deliver has two \ingoing" lo
al states, ready to deliver and bu�erempty. This a
tion is enabled in Fig. 1.2, be
ause both of them
arry a token.O

urren
e of deliver then moves the tokens of all \ingoing" to all \outgoing"lo
al states, viz. to ready to produ
e and to bu�er �lled, as in Fig. 1.3.The state shown in Fig. 1.3 exhibits two enabled a
tions, produ
e andremove. They may o

ur
on
urrently (
ausally independently). O

urren
eof remove then enables
onsume in the obvious manner.
ready to
deliver

ready to
consume

buffer
filled

buffer
empty

remove consume

ready to
remove

ready to
produce

produce deliver

Figure 1.3. After o

urren
e of deliver.Generally, any a
tion in Figs. 1.1 { 1.3 is enabled i� all \ingoing" lo
alstates
arry a token. O

urren
e of an a
tion then moves the tokens from\ingoing" to \outgoing" lo
al states.Figure 1.1 shows exa
tly the lo
al states dis
ussed in Se
t. 1.4. The syn-
hronization of d and �d dis
ussed in Se
t. 1.5 is now provided by the jointswapping of two tokens from Fig. 1.2 to Fig. 1.3.1.7 Some
hara
teristi
s of Petri netsAny formalism for modeling algorithms strongly a�e
ts
omprehension of theunderlying algorithmi
 idea and the
apability to analyze the models. Ea
hformalism �xes and emphasizes some parti
ular issues and aspe
ts. Here wedis
uss six su
h
hara
teristi
s of the formalism
onsidered in this book.Petri nets (in their elementary setting) employ the most elemen-tary
on
epts of states and transitions. (7)A lo
al state is just a logi
al (propositional) atom (e.g. \ready to produ
e" inFig. 1.1) with a truth value that may
hange upon an a
tion's o

urren
e. An

1 A First Look at Distributed Algorithms 11a
tion
onsists (as in many formalisms) of an enabling
ondition and an e�e
ton states upon its o

urren
e. Based on the lo
al states introdu
ed above, thelogi
al
onjun
tion of some lo
al states (with their a
tual truth values) serveas an a
tion's enabling
ondition. The e�e
t of an a
tion's o

urren
e
onsistsin swapping the a
tual truth value of some lo
al states. All o

urren
es of ana
tion
ause the same lo
al e�e
t.Furthermore, a
tions preserve information: From an a
tion and the re-sult of its o

urren
e, the previous state
an be re
omputed. This stronglysupports analysis te
hniques.The propositional
hara
ter of lo
al states will be generalized to predi
atesin Part B, thus re
e
ting data values and s
hemati
 des
riptions of systems.Petri nets emphasize lo
ality of
ausation and e�e
t. (8)Ea
h lo
al state is assigned a �xed set of a
tions that swap (or read) itstruth value. Likewise, ea
h a
tion is assigned a �xed set of lo
al states thatare involved in its o

urren
e. The graphi
al representation of nets (su
h asin Fig. 1.1) represents this vi
inity expli
itly (by arrows).Petri nets expli
itly represent fundamental issues of distributedsystems, su
h as atomi
ity, syn
hronization, mutual independen
eof a
tions, messages, and shared memory. (9)Conventional
ontrol
ow,
onventional variables, and assignment statementsare no basi
 features of Petri nets. They
an nevertheless be simulated, butproper Petri net representations of distributed algorithms do without thosefeatures.Petri nets are neither state-based nor a
tion-based. Both statesand a
tions have a parti
ular status on their own. (10)This implies that Petri nets
an be employed as a referen
e formalism formany kind of modeling formalism. In fa
t, the semanti
s of various
on
urrentlanguages has been formulated in terms of Petri nets.Petri nets are unstru
tured by de�nition. Stru
ture may be puton them additionally. (11)This may be
onsidered a disadvantage of Petri nets: Compositional proofte
hniques, algebrai
 representations, and any kind of indu
tive arguments
an not be applied immediately. However, (11) is also advantageous. As anexample, there exist standard te
hniques to gain the three
omponents (pro-du
er, bu�er,
onsumer) of the net in Fig. 1.1 (they are just pla
e invariants).But a di�erent de
omposition may likewise help: The \upper line" from leftto right,
arrying produ
ed items, and the \lower line" from right to left,
arrying \empty" signals.Petri net models are implementable and are neutral against spe-
i�
 implementation languages. (12)This of
ourse is due to (10) and (11).

12 I. Elementary Con
eptsTo sum up, Petri nets abstra
t from spe
i�

on
epts su
h as state ori-entation, event orientation, pairwise syn
hronization,
omposability from se-quential
omponents, variables, values, assignment statements, hierar
hi
alstru
turing, and similar
on
epts. What remain are fundamentals of modelsfor distributed algorithms. This view is neither parti
ularly \low" or par-ti
ularly \high", it is just a parti
ular level of abstra
tion. The remaining
on
epts are taken from logi
: The
onventional te
hnique of assigning predi-
ates to (global or lo
al) states has in Petri nets been strengthened to takingpropositions and predi
ates themselves as lo
al states.It will turn out that this provides an amazingly useful modeling formalism.It in
ludes a kind of insight into distributed algorithms and properties thatis hard to �nd or present by other means.1.8 Relationship to other formalismsThe
on
eption of a
tions, as introdu
ed in Se
t. 1.1 and dis
ussed under
hara
teristi
 (7), is employed in many other formalisms. Examples in
ludeguarded
ommands [Dij75℄, UNITY [CM88℄, and extended transition sys-tems [MP92℄. But emphasis on lo
al states is typi
al for Petri nets. Otherformalisms usually work with global states.Use of logi
al
on
epts (propositions in Part A and predi
ates in Part B ofthis book) as lo
al states is also a spe
i�
 issue. Other formalisms use states tostore values of variables and
ow of
ontrol. They employ predi
ates on stateswhenever properties of models are to be analyzed. Employing predi
ates asstate elements is hen
e a natural
hoi
e.Reversibility of a
tions is motivated by fundamental
onsiderations in,e.g., [FT82℄ and [Ben73℄. They show relevan
e and universality of reversibleswit
hing elements.Lo
ality of
ausation and e�e
t, as des
ribed in (8), is a fundamental issue[Gan80℄. This
ontrasts with other formalisms su
h as CCS [Mil89℄ and state
harts [Har87℄, where in order to fully
on
eive an a
tion, one has to tra
ethe o

urren
e of a distinguished symbol in the entire system model (i.e., ina term or a graphi
al representation).Compared with Petri nets, other formalisms
ope with fundamental is-sues of distributed algorithms less expli
itly. As an example, assumptions onatomi
ity of parts of assignment statements are frequently not made expli
it,though they are
ru
ial for the semanti
s of parallel programs. Syn
hroniza-tion issues su
h as \wait for messages from all your neighbors, and then : : : "are formulated impli
itly, e.g., by
ounting the number of arriving messages.Many other modeling formalisms are
ompositional and de�ne systemmodels indu
tively, e.g., CCS [Mil89℄ and state
harts [Har87℄. Su
h modelssuggest, but also generally �x,
ompositional and hierar
hi
al proof stru
-tures, term representations, and any kind of indu
tive arguments. Unstru
-tured formalisms su
h as Petri nets and transition systems are better at

1 A First Look at Distributed Algorithms 13allowing for example oriented, goal-guided de
omposition and stru
turingwhen it
omes to
orre
tness proofs.This book's view
an not be retained for large systems. Systemati
 re�ne-ment of spe
i�
ations and
ompositional proof te
hniques are inevitable then.However, large algorithms require adequate te
hniques for small algorithms.The sequel is intended to provide su
h te
hniques, in parti
ular providingsimpler means and arguments for a wide
lass of distributed algorithms.1.9 Relationship to other textbooksOne of the earliest textbooks is [CM88℄, providing a simple abstra
t oper-ational model, a temporal logi
 based proof te
hnique, and an impressive
olle
tion of
ase studies. In the latter two respe
ts, the s
ope of this bookalmost
oin
ides with ours. But we employ a fundamentally di�erent opera-tional model, whi
h expli
itly models
on
urren
y (as well as nondetermin-ism) and is implementable in prin
iple, as it refrains from global fairnessassumptions. Fred S
hneider's most re
ent book [S
h97℄ suggests
onven-tional
on
urrent programs and adjusted, well-established temporal logi
-based proof te
hniques. Con
urren
y is operationally treated as a spe
ial
ase of nondeterminism, and fairness assumptions a�e
t global states (both
ontrasting with our basi
 assumptions).Some issues treated in [BA90℄ and in our book
oin
ide, in
luding al-gorithms for (distributed) mutual ex
lusion and dining philosophers. [BA90℄
on
entrates on programming
on
epts, spe
i�
 programming languages, andimplementation strategies, whereas we
on
entrate on an abstra
t imple-mentable operational model and on veri�
ation.[RH90℄ dis
usses a lot of syn
hronizing algorithms, some of whi
h we pi
kup, too. [RH90℄ represents algorithms in semi-formal pseudo
ode, where weuse a formal operational model. We give the notion of a \wave", suggestedin [RH90℄, a formal basis, and exploit it in proof te
hniques.In the line and style of [BA90℄, [Ray88℄ generalizes that approa
h to otheralgorithms, and parti
ularly to
ommuni
ation proto
ols. [Tel94℄, [Bar96℄,and [Lyn96℄ in a similar style o�er broad
olle
tions of algorithms, in
ludingtemporal aspe
ts su
h as timing
onstraints, probabilisti
 algorithms, et
. Inparti
ular, [Lyn96℄ is an almost
omplete
ompendium of distributed algo-rithms. All these books represent algorithms in pseudo
ode of I/O automata,and employ semi-formal
orre
tness arguments. In
ontrast, we
onsider feweralgorithms, ex
luding real-time and probabilisti
 ones. But we suggest an op-erational model and formal veri�
ation te
hniques that exploit
on
urren
y.[Bes96℄ o�ers a number of algorithms, some of whi
h we
onsider, too.Among all the textbooks mentioned, this is the only one to model
on
ur-ren
y expli
itly (with the help of Petri nets). It also employs a Petri netbased te
hnique (transition invariants) to argue about liveness properties.We suggest a version of temporal logi
 for this purpose.

14 I. Elementary Con
epts[MP92℄ and [MP95℄ suggest a programming representation for algorithms,together with a formal semanti
s, fo
using on temporal logi
-based proof ofsafety properties. Liveness was postponed to a forth
oming volume. We
overliveness, too.Summing up, in
ontrast to our approa
h, none (but [Bes96℄) of the men-tioned textbooks employs an operational model that would represent or ex-ploit
on
urren
y expli
itly (though
on
urren
y is an essential feature ofdistributed algorithms). Veri�
ation is addressed with a di�erent degree ofrigor in all texts, most formally in [CM88℄, [MP92℄, [MP95℄, [Bes96℄, and[S
h97℄. Formal veri�
ation always (ex
ept in [Bes96℄) employs temporal logi
on transition systems, thus not exploiting
on
urren
y. In
ontrast, we sug-gest a version of temporal logi
 that exploits
on
urren
y.2 Basi
 De�nitions: NetsThis se
tion provides the general framework of state elements, transition ele-ments, and their
ombination. This framework will later be applied in various
ontexts.Figure 1.1 shows an example of a net with a parti
ular interpretation:
ir
les and boxes represent lo
al states and a
tions, respe
tively.There exist other interpretations of nets, too. But they always follow thesame s
heme: Two sorts of
omponents are identi�ed, emphasizing \passive"and \a
tive" aspe
ts, respe
tively. They are
ombined by an abstra
t relation,always linking elements of di�erent sorts.2.1 De�nition. Let P and T be two disjoint sets, and let F � (P � T) [(T � P). Then N = (P; T; F) is
alled a net.Unless interpreted in a spe
ial manner, we
all the elements of P , T , andF pla
es, transitions, and ar
s, respe
tively. F is sometimes
alled the
owrelation of the net.We employ the usual graphi
al representation of nets, depi
ting pla
es,transitions, and ar
s as
ir
les, boxes, and arrows, respe
tively. An arrowx! y represents the ar
 (x; y). Ignoring the bla
k dots inside some of the
ir
les, Fig. 1.1 shows a net with six pla
es and four transitions.As a matter of
onvenien
e, in this text a net will frequently be identi�edby the number of the �gure representing it. As an example, �1:1 denotes thenet in Fig. 1.1.Nets are o

asionally denoted in the literature as bipartite graphs. Butnoti
e that the two nets of Fig. 2.1 are not equivalent in any relevant
ontext.The following notational
onventions will be employed throughout theentire book:2.2 De�nition. Let N = (P; T; F) be a net.

2 Basi
 De�nitions: Nets 15
Figure 2.1. Two di�erent netsi. PN , TN , and FN denote P , T , and F , respe
tively. By abuse of notation,N often stands for the set P [T , and aFb for (a; b) 2 F .ii. As usual, F�1, F+, and F � denote the inverse relation, the transitive
losure, and the re
exive and transitive
losure of F , respe
tively, i.e.,aF�1b i� bFa, aF+b i� aF
1F
2 : : :
nFb for some
1; : : : ;
n 2 N andaF �b i� aF+b or a = b. For a 2 N , let F (a) = fb j aFbg.iii. Whenever F
an be assumed from the
ontext, for a 2 N we write �ainstead F�1(a) and a� instead F (a). This notation is translated to subsetsA � N by �A = Sa2A �a and A� = Sa2A a�. �A and A� are
alled thepre-set (
ontaining the pre-elements) and the post-set (
ontaining thepost-elements) of A.The following examples for the above notations apply to �1:1 (i.e., the netin Fig. 1.1): For ea
h pla
e p 2 P�1:1 both sets �p and p� have one element.For ea
h t 2 T�1:1 , j �t j = j t� j. Furthermore, for all a; b 2 �1:1 a(F �N1:1)b.Obviously, for x; y 2 N , x 2 �y i� y 2 x�.The rest of this se
tion introdu
es basi
 notions su
h as isomorphism,spe
ial substru
tures of nets, and subnets. It may be skipped at �rst reading.Isomorphism between nets is de�ned as
an be expe
ted:2.3 De�nition. Two nets N and N 0 are isomorphi
 (written: N ' N 0) i�there exists a bije
tive mapping � : N ! N 0 between their element sets su
hthat �(PN) = PN 0 , �(TN) = TN 0 , and xFNy i� �(x)FN 0�(y).We are mostly not interested in the individuality of pla
es and transitionsof a net. Any isomorphi
 net does the same job, in general. Nets resemblegraphs in this respe
t. In graphi
al representations of nets, then, pla
es andtransitions remain unnamed. We employed this
onvention already in nota-tion (1).The following spe
ial stru
tures are frequently distinguished:2.4 De�nition. Let N be a net.i. x 2 N is isolated i� �x[x� = ;.ii. x; y 2 N form a loop i� xFNy and yFNxiii. x and y are deta
hed i� (�x[fxg [x�) \ (�y[fyg [y�) = ;.iv. For A � N , N is A-simple i� for all x; y 2 A : �x = �y and x� = y�imply x = y.v. N is simple i� N is N-simple.

16 I. Elementary Con
eptsvi. N is
onne
ted i� for all x; y 2 N : x(F [F�1)�y.vii. N is strongly
onne
ted i� for all x; y 2 N : x(F �)y.As an example, the net �1:1 in Fig. 1.1 has no isolated elements and noloops; it is simple,
onne
ted, and even strongly
onne
ted. State bu�er �lledand a
tion produ
e are deta
hed, whereas bu�er �lled and ready to produ
e arenot. Ea
h of the two nets in Fig. 2.1 is
onne
ted, but not strongly
onne
ted.Figure 2.2 gives further examples for the spe
ial stru
tures des
ribed above.
N N

not P -simple not T -simplea loopFigure 2.2. Spe
ial stru
tures in netsIsolated elements sometimes o

ur as a te
hni
al
onstru
t. They have noparti
ularly reasonable use in many appli
ations of nets. Loops o

asionallyplay a distinguished role. Most nets to be studied will be
onne
ted. But itis o

asionally illuminating to
onsider two entirely un
onne
ted nets as onenet.Simpli
ity, as de�ned in Def. 2.4(iv), is quite a natural assumption orproperty in a wide range of appli
ations. Ea
h transition t of a TN -simplenet N is uniquely determined by its pre- and postsets �t and t�. Representingea
h transition t by (�t; t�), N is uniquely given by PN and TN . Likewise,ea
h pla
e p of a PN -simple net N is uniquely determined by �p and p�.To sum up the potential links between two elements of a net, Def. 2.1implies that elements of equal type (i.e., two pla
es or two transitions) arenever F -related. Ea
h pair of elements of di�erent type
orrespond in exa
tlyone out of four alternative ways, as shown in Fig. 2.3.Nets are frequently used in a labeled version, with some symbols or itemsassigned to pla
es, transitions, or ar
s.2.5 De�nition. Let N be a net and let A be any set.i. Let l1: PN ! A, l2: TN ! A, l3: PN [TN ! A and l4: FN ! A bemappings. l1; : : : ; l4 are
alled a pla
e labeling, a transition labeling, anelement labeling, and an ar
 labeling of N over A, respe
tively.ii. N is said to be pla
e labeled (transition labeled, element labeled, ar
labeled, respe
tively) over A i� a
orresponding labeling is given eitherexpli
itly or impli
itly from the
ontext.Labelings are graphi
ally represented by means of symbols as
ribed to the
orresponding
ir
les, boxes, or arrows. For example, the dots in some
ir
les

3 Dynami
s 17
detached transition detached place

pre-transition post-transition

side-transition

pre-place post-place

side-place

place oriented view transition oriented viewFigure 2.3. The relationship between pla
es and transitionsof Figs. 1.1 { 1.3 represent a pla
e labeling l : P� ! f0; 1g, with l(p) = 1 i�the
ir
le representing p
arries a dot.An already labeled net may get additional labelings.3 Dynami
sFigure 1.1 shows a net with pla
es and transitions interpreted as lo
al statesand a
tions, respe
tively. A set of lo
al states forms a global state. Its elementsare graphi
ally depi
ted by a dot in the
orresponding
ir
le. Se
tion 1.6explained that an a
tion t is about to o

ur in a global state, provided �tbelongs to that state. O

urren
e of t then repla
es �t by t�, this way yieldinga new state, as graphi
ally shown in Fig. 3.1.=)Figure 3.1. O

urren
e of an a
tionNets will be denoted by �; pla
es and transitions will be
alled lo
al statesand a
tions, respe
tively, to underline this interpretation.3.1 De�nition. Let � be a net.i. Any subset a � P� of lo
al states is
alled a (global) state of �.

18 I. Elementary Con
eptsii. An a
tion t 2 T� has
on
ession in a given state a (a enables t) i� �t � aand (t� n �t) \ a = ;.iii. Let a � P� be a state and let t 2 T� be an a
tion of �. Then e�(a; t) :=(a n �t) [t� is the e�e
t of t's o

urren
e on a.iv. Let t 2 T� be an a
tion with
on
ession in some state a � P�. Then thetriple (a; t; e�(a; t)) is
alled a step in � and usually written a t�!e�(a; t).A global state is usually depi
ted by bla
k dots (\tokens") in the
orre-sponding
ir
les of graphi
al net representations. The statea = fready to produ
e; bu�er empty ; ready to removegis this way depi
ted in Fig. 1.1. Only one a
tion, produ
e, is enabled in thisstate. O

urren
e of produ
e then yields the state shown in Fig. 1.2. The stateof Fig. 1.3 enables two a
tions, produ
e, and remove.Intuitively, �t is the set of pre-
onditions for the o

urren
e of a
tion t,and t� is the set of
onditions holding after t's o

urren
e (we may
all thempost-
onditions of t).The above de�nition invites a number of observations, to be dis
ussedin the rest of this se
tion. First of all, a transition involved in a loop, as inFig. 3.2, may very well have
on
ession in some given state a. This deviates

t

pFigure 3.2. A loopessentially from the
onventions of elementary net systems [Roz86℄ or
on-dition/event systems [Rei85℄. There, a transition involved in a loop is neverenabled. Our
onvention �ts with pra
ti
al needs [Val86℄.In a step a t�!b, the states a and b are tightly
oupled to the transition t: a
an be tra
ed ba
k from b and t. (This
ontrasts with assignment statementsx := f(x), where the previous value of x
an in general not be tra
ed ba
kfrom f and the new value of x). In
ase � is loop-free, even �t and t�
an beretrieved from a and b.3.2 Lemma. Let a t�!b be a step of some net �.i. a = (b n t�) [�t.ii. �t = a n b and t� = b n a i� � is loop-free.In a step a t�!b, a set
 of pla
es may be added or be removed from botha and b, provided
 is disjoint from �t and from t�:

3 Dynami
s 193.3 Lemma. Let a t�! b be a step of some net � and let
 � P� with
 \(�t[t�) = ;.i. (a [
) t�!(b [
) is a step of �.ii. (a n
) t�!(b n
) is a step of �.We leave proof of Lemmas 3.2 and 3.3 as an exer
ise for the reader.Generally, steps exhibit a whole bun
h of symmetries, parti
ularly for loop-free es-nets.Two situations deserve parti
ular attention: Firstly we observe that a
-
ording to Def. 3.1(ii) there
an be two reasons for a transition t not to have
on
ession in some state a: either some pre
ondition is missing (�t 6� a), orthey are all present (�t � a), but additionally one of the \new" post
ondi-tions is already present ((t� n �t)\a 6= ;), as in Fig. 3.3. This kind of situationwill be denoted as
onta
t:3.4 De�nition. Let � be a net with a transition t 2 T� and a state a � P�.Then a is a
onta
t state with respe
t to t i� �t � a and (t� n �t) \ a 6= ;.
Figure 3.3. Conta
t situationHen
e, in
ase of no
onta
t, the pre
onditions alone provide the require-ments of enabling.The se
ond situation
on
erns two transitions t and u, both enabled insome state a. If they share a
ommon pre- or post
ondition, as in Fig. 3.4,the o

urren
e of t prevents the o

urren
e of u (and vi
e versa); t and u arethen said to be in
on
i
t.

t

u

or t

uFigure 3.4. Con
i
t situation

20 I. Elementary Con
epts3.5 De�nition. Let � be a net, with two di�erent transitions t; u 2 T� anda state a � P� : a is a
on
i
t state with respe
t to t and u i� both t and uhave
on
ession in a, and are not deta
hed.The state of the net shown in Fig. 3.5 is
on
i
ting with respe
t to aand b, as well as with respe
t to a and
. The two a
tions b and
 are not
on
i
ting.
d

D

C B

c

A E

ab

Figure 3.5. Net with
on
i
tThe notion of
on
i
ting events t and u is immediately obvious for loop-free nets. In this
ase, o

urren
e of t prevents immediate o

urren
e of u(and vi
e versa).3.6 Lemma. Let � be a loop-free net. Let a be a
on
i
t state with respe
tto two transitions t and u of �. Then a t�!b implies u not be enabled in stateb. In the
ontext of loops, as in Fig. 3.6,
on
i
t between t and u preventst and u o

urring
on
urrently. A formal de�nition of events o

urring
on-
urrently is postponed to Se
t. 5.
t

uFigure 3.6. Loops, preventing
on
urrent o

urren
e of t and u

4 Interleaved Runs 214 Interleaved RunsSingle steps of a net �, as
onsidered in the previous se
tion,
ompose toruns of �. The most elementary
omposition of two steps a t�! b and b u�!
is their sequential
ombination in the run a t�! b u�!
. Generally, one may
onstru
t runs a0 t1�!a1 t2�!� � � tn�!an of nets �, provided ai�1 ti�!ai is a stepof �, for i = 1; : : : ; n. Furthermore, we
onsider in�nite runs, too:4.1 De�nition. Let � be a net.i. For i = 1; : : : ; n let ai�1 ti�! ai be steps of �. Those steps form a �-based �nite interleaved run w, written a0 t1�! a1 t2�! � � � tn�! an. Ea
hi 2 f0; : : : ; ng is an index of w.ii. For ea
h i = 1; 2; : : : let ai�1 ti�! ai be steps of �. Those steps form a�-based in�nite interleaved run w, sometimes outlined a0 t1�! a1 t2�!� � � .Ea
h i 2 N is an index of w.
A

B

C

D

E

ab c d

Figure 4.1. A net
onsisting of independent subnets
A

B

C

D

E

ab c d

Figure 4.2. Extending �4:1 by loopsExamples of �nite runs of the net �1:1 in
lude a0 produ
e�����! a1 deliver����!a2 remove�����! a3 produ
e�����! a4 and a0 produ
e�����! a1 deliver����! a2 produ
e�����! a5 remove�����! a4,

22 I. Elementary Con
eptswith a0 as depi
ted in Fig. 1.1 and a1; : : : ; a5 obvious from
ontext. Ea
h�nite run of �1:1
an be extended to in�nitely many �nite and in�nite runs.Figures 4.1 and 4.2 show two di�erent nets. The interleaved runs (both �niteand in�nite) starting at the depi
ted global state are equal for both nets.The runs of a net exhibit some regularities. First we
onsider runs
on-sisting of two steps. We give a Lemma for loop-free nets and leave the general
ase to the reader:4.2 Lemma. Let � be a loop-free net, and let a t�!b u�!
 be a �-based run.i. �t\ �u = t� \u� = ;.ii. There exists a state d with a u�!d t�!
 i� t and u are deta
hed.Ea
h initial part of a run is a run. Furthermore, \
y
li
" sequen
es ofsteps
an be repeated:4.3 Lemma. Let � be a net, let a0 t1�!� � � tm�!am be a �-based run, and letn < m.i. a0 t1�!� � � tn�!an and an tn�!� � � tm�!am are also �-based runs.ii. If an = am, then a0 t1�!� � � tm�!am tn+1���!� � � tm�!am is also a �-based run.A state b is rea
hable from a state a i� there exists an interleaved runfrom a to b:4.4 De�nition. Let � be a net and let a; b � P� be global states of �:b is rea
hable from a in � i� there exists a �-based �nite interleaved runa0 t1�!a1 t2�! : : : tn�!an with a0 = a and an = b.We leave proof of Lemmas 4.2 and 4.3 as an exer
ise for the reader.5 Con
urrent RunsWe �nished Se
t. 4 with a dis
ussion of an adequate representation of inde-pendent a
tion o

urren
es. The notion of an interleaved run has been sug-gested, providing a re
ord of a
tion o

urren
es and lo
al state o

urren
es.The revised approa
h, to follow here, deserves parti
ular motivation.A run distinguishes the �rst, se
ond, et
., o

urren
e of an a
tion andrelates it to the �rst, se
ond ,et
., o

urren
e of other a
tions. Ea
h singleo

urren
e of an a
tion will be
alled an event. Likewise, ea
h single o

ur-ren
e of a lo
al state will be
alled a
ondition. Conditions hen
e serve aspre
onditions and post
onditions for events. Then, a run
onsists of
ondi-tions and events, ordered by a \before { after" relation. Interleaved runs,dis
ussed in Se
t. 4, provide global states and an order on events, motivatedby an \observer" who observes events one after the other. Di�erent observers

5 Con
urrent Runs 23may observe di�erent orders of events, hen
e a net is asso
iated with a set ofinterleaved runs.This
on
ept
onfuses system-spe
i�ed,
ausal order with order addition-ally introdu
ed by observation. Events that o

ur independently are arbi-trarily ordered by observation. Even if we assume that independen
e amongevents may not be observable, it may nevertheless be representable. So weask for a representation of obje
tive, i.e., entirely system-based, ordering of
onditions and events.Before formally de�ning su
h a notion, we dis
uss some of the propertiesto be expe
ted from this
on
ept.Firstly, independent events should be distinguished from events in arbi-trary order. As an example,
ompare �4:1 and �4:2: a and
 o

ur indepen-dently in �4:1, whereas in �4:2 they o

ur in either order.The essential di�eren
e between �4:1 and �4:2 is the existen
e of
on
i
tin �4:2: Whenever the state shown in Fig. 4.2 has been rea
hed, a de
ision hasto be made
on
erning the order of a's and
's o

urren
e. Di�erent out
omesof this de
ision yield di�erent runs. Hen
e �4:2 evolves di�erent runs, in fa
tin�nitely many di�erent runs (be
ause the state of �4:2, shown in Fig. 4.2,is rea
hed in�nitely often).A state in �4:1 never o

urs where a de
ision between enabled a
tions isto be made: Whenever two a
tions are enabled, they o

ur mutually inde-pendently.To sum up, an observer-independent notion of runs should re
ord eventsand
onditions. It should make expli
it to what extent events and
onditionsare ordered due to the underlying system's
onstraints. Hen
e, this kind ofo

urren
e re
ord partially orders its elements by the relation \x is a
ausalprerequisite for y", be
ause repetitions of the same a
tion or the same lo
alstate are re
orded as new entries. Unordered elements denote independent(\
on
urrent") o

urren
es. There is a fairly obvious representation of su
hre
ords, namely again as a net. Figures 5.1 { 5.5 show examples.
E

A

D

B

C

A B A

C D C

a ab b

c cd dFigure 5.1. Con
urrent run of �4:1Ea
h transition in Figs. 5.1 and 5.2 represents an event, i.e., the o

urren
eof an a
tion. This a
tion is denoted by the transition's labeling. Distin
ttransitions with the same labeling denote di�erent o

urren
es of the same

24 I. Elementary Con
eptsa
tion. Similarly, a pla
e q shows by its ins
ription b that lo
al state b hasbeen rea
hed due to the o

urren
e of �q and has been left as a result of theo

urren
e of q�.
A AB B

E EEE E

C C DD

a b a

c d cFigure 5.2. Con
urrent run of �4:2
AA BB

E EE

C D

E

Aa b a b

cFigure 5.3. Con
urrent run of �4:2Figure 5.1 shows that the behavior of �4:1
onsists of two independentsequen
es. Figure 5.2 likewise shows a
on
urrent run of �4:2, where the �rsto

urren
e of
 is before the �rst o

urren
e of a, and the se
ond o

urren
eof
 is after the se
ond o

urren
e of a. In the run of �4:2 shown in Fig. 5.3,a o

urs twi
e before the �rst o

urren
e of
.A
on
urrent run will be represented formally as an a
y
li
 net withunbran
hed pla
es. Su
h nets will be
alled o

urren
e nets.5.1 De�nition. A net K is
alled an o

urren
e net i�i. for ea
h p 2 PK , j �p j � 1 and j p� j � 1,ii. for ea
h t 2 TK, j �t j � 1 and j t� j � 1,iii. the transitive
losure F+K of FK , frequently written <K , is irre
exive (i.e.,x1FKx2FK : : : FKxn implies x1 6= xn),iv. for ea
h x 2 K, fy j y <K xg is �nite.Figures 5.1{5.3 show labeled o

urren
e nets. <K is a stri
t partial orderin ea
h o

urren
e net K. In fa
t, x <K y i� there exists an arrow sequen
efrom x to y.

5 Con
urrent Runs 25We are parti
ularly interested in states
onsisting of pairwise unorderedpla
es:5.2 De�nition. Let K be an o

urren
e net.i. Two elements p; q 2 K are
on
urrent i� neither p <K q nor q <K p.ii. A state a � PK is
on
urrent i� its elements are pairwise
on
urrent.iii. A state a is maximal
on
urrent i� a is
on
urrent and no p 2 a is
on
urrent to any q 2 K n a.iv. Let ÆK := fk 2 K j �k = ;g and let KÆ := fk 2 K j k� = ;g.O

urren
e of a
tions preserves
on
urren
y:5.3 Lemma. Let K be an o

urren
e net and let a t�!b be a step of K.i. If a is
on
urrent, then b is
on
urrent, too.ii. If a is maximal
on
urrent, then b is maximal
on
urrent, too.Proof of this lemma is left as an exer
ise for the reader.A

ording to the intended use (des
ribed above) of an o

urren
e net Kto des
ribe a run of a net �, ea
h maximal
on
urrent state a of K representsa state of � that might have been observed during the
ourse of K. Two a-enabled a
tions of K represent
on
urrent (independent) o

urren
es of the
orresponding a
tions of �.
AA BB

E EE

C D

E

Aa b a b

c

u t v

Figure 5.4. A step of a
on
urrent run of �4:25.4 De�nition. Let � be a net, let K be an o

urren
e net and let l : K ! �be an element labeling of K. K is a �-based
on
urrent run i�i.
on
urrent elements of K are di�erently labeled,ii. for ea
h t 2 TK, l(t) 2 T�, l(�t) = �l(t) and l(t�) = l(t)�.A

ording to this de�nition, Fig. 5.1 in fa
t shows a�4:1-based
on
urrentrun. Figures 5.2 and 5.3 likewise show �4:2-based runs. A step u t�! v isadditionally outlined in Fig. 5.4. With l denoting the labeling of Fig. 5.4,l(u) l(t)��! l(v) is the step fA;C;Eg a�!fB;C;Eg of �4:2. Figure 5.5 shows a

26 I. Elementary Con
epts
A : ready to produce
B : ready to deliver
C : buffer empty
D : buffer filled
E : ready to remove
F : ready to consume

a : produce
b : deliver
c : remove
d : consume

A

C

a B b A

E c

 a B b A a B

CDCD

F d E c F

Figure 5.5. The unique maximal
on
urrent run of �1:1further example. Just like �4:1, and in
ontrast to �4:2, the net �1:1 evolvesa unique maximal
on
urrent run.The above de�nition meets the intuition of
on
urrent runs only as longas no
onta
t states o

ur (
f. Def. 3.4). We sti
k to su
h runs in the sequel.Interleaved and
on
urrent runs of a net � are tightly related: Ea
h in-terleaved run of a
on
urrent run of � represents an interleaved run of �.5.5 De�nition. Let � be a net, let K be a �-based run with labeling l, andlet a � PK be a state of K.i. â := fl(p) j p 2 ag is the �-state of a and a is said to represent â.ii. Let w = a0 t1�! a1 t2�! : : : be a K-based interleaved run su
h that TK =ft1; t2; : : : g. Then the sequen
e l(w) := â0 l(t1)���! â1 l(t2)���! : : : is
alled aninterleaving of K.5.6 Lemma. Let � be a net.i. Let K be a �-based
on
urrent run. Then ea
h interleaving of K is a�-based interleaved run.ii. Let v be a �-based interleaved run. Then there exists a unique �-based
on
urrent run K su
h that v is an interleaving of K.Proof of this lemma is left as an exer
ise for the reader.Writing sets fX;Y; Zg as XY Z, the following are two examples of inter-leaved runs of �4:2:v1 = ACE
�!ADE a�!BDE b�!ADE d�!ACE a�!BCE
�!BDE, (1)v2 = ACE
�!ADE a�!BDE d�!BCE b�!ACE a�!BCE
�!BDE. (2)

6 Progress 27There exists two interleaved runs w1 and w2 of the run of �4:2 given inFig. 5.2 su
h that v1 = l(w1) and v2 = l(w2).Hen
e the
on
urrent runs of a net � partition the set of interleavedruns of � into equivalen
e
lasses, where two interleaved runs v1 and v2 areequivalent i� there exists a
on
urrent run K of � with two interleaved runsw1 and w2 su
h that l(w1) = v1 and l(w2) = v2.6 ProgressAny des
ription of algorithms usually goes with the impli
it assumption ofprogress. As an example, ea
h exe
ution of a PASCAL program is assumed to
ontinue as long as the program
ounter points at some exe
utable statement;intermediate termination at some exe
utable statement is not taken into a
-
ount. The situation is more involved for distributed algorithms. Progress isusually assumed for most, but not ne
essarily all a
tions.As an example, one may intend �1:1 not to terminate in a state s withfready to deliver ; emptyg � s, i.e., with deliver enabled. Likewise one maywant re
eive and
onsume not to remain enabled inde�nitely. Not enfor
ingprodu
e may be adequate, however; this a
tion may depend on
omponentsnot represented in Fig. 1.1. So one may be interested in runs that may negle
tprogress of produ
e, but respe
t progress of all other a
tions.6.1 De�nition. Let � be a net and let t 2 T�.i. A �-based �nite or in�nite interleaved run w = a0 t1�!a1 t2�! : : : negle
tsprogress of t i� some state ai enables t, and for no index j > i, tj 2 (�t)�.ii. A �-based
on
urrent run K with labeling l negle
ts progress of t i�l(KÆ) enables t.iii. An interleaved or
on
urrent run r respe
ts progress of t i� r does notnegle
t progress of t.The
on
urrent run in Fig. 5.1 respe
ts progress of b and d, and negle
tsprogress of a and
. The in�nite run outlined in Fig. 5.5 respe
ts progress ofall a
tions of �1:1 A run r of the
on
i
ting net �3:5 respe
ts progress of allits a
tions if a is the last a
tion to o

ur in r, or if d and b o

ur in�nitelyoften and
 just on
e in r.Progress is sensitive to loops. For example, Fig. 6.1 shows a net
onsistingof two deta
hed parts, and Fig. 6.2 gives a �6:1-based
on
urrent run K. Thisrun obviously negle
ts progress of
 in K, be
ause K
an be extended, as inFig. 6.3.The run K has a unique interleavingw = fA;Cg a�!fB;Cg b�!fA;Cg a�! : : : (1)whi
h likewise negle
ts progress of
 in �6:1.

28 I. Elementary Con
epts
A

ab

B

C DcFigure 6.1. A net
onsisting of two deta
hed parts
ABa abA

CFigure 6.2. �6:1-based
on
urrent run, negle
ting progress of

A AB

C D

a ab

cFigure 6.3. �6:1-based
on
urrent run, respe
ting progress of

A

ab

B

C DcFigure 6.4. The door
ontrol system

6 Progress 29Figure 6.4 now extends �6:1 by a loop (a; C), and Fig. 6.5 gives a �6:4-based
on
urrent run, K 0. This run respe
ts progress of
 very well. Unlikethe run K of Fig. 6.2, the run K 0
an not be extended by an o

urren
e of
,be
ause C is inde�nitely engaged in the o

urren
e of a. Just like K, the runK 0 has a unique interleaving; furthermore, it is exa
tly the same interleavingas K, given in (1). Ea
h state of (1) is followed by an o

urren
e of a
tion a.This a
tion
on
i
ts with
 in �6:4 (a 2 (�
)�), hen
e (1) respe
ts progressof
 in �6:4.To sum up, o

urren
e of progress respe
ting a
tion t in an interleavedrun w is not guaranteed by its persistent enabling (i.e., enabling in ea
h stateof w, as of
 in (1), but only by its persistent and
on
i
t free enabling.The following interpretation of �6:4 shows that this
ondu
t of progressperfe
tly mat
hes intuition: Assume a
rowd of people, o

asionally passinga gate (a
tion a). Lo
al state A is taken whenever a person is due to passthe gate. Passage is feasible only in
ase the gate is not lo
ked (state C).Furthermore, a guard is supposed to lo
k the gate (a
tion
). Lo
king andpassing the gate (a
tions a and
) are
on
i
ting a
tions. Progress of a and
 just ensures that either of them will o

ur in the state shown in Fig. 6.4.The run in Fig. 6.5 shows the
ase of
ontinuous heavy traÆ
 at the gate,\preventing" the guard from
losing the gate.
A AB

C

a ab

CFigure 6.5. �6:4-based
on
urrent run, respe
ting progress of
Defs. 6.1(i) and 6.1(ii) of progress are
losely related: K respe
ts progressof t i� ea
h interleaving of K does:6.2 Lemma. Let � be a net, let K be a �-based
on
urrent run and lett 2 T�. Then K respe
ts progress of t i� ea
h interleaving of K respe
tsprogress of t.Proof of this lemma is left as an exer
ise for the reader.The assumption of progress resembles the well known assumption of weakfairness for some a
tion t. This assumption rules out an interleaved run w =a0 t1�!a1 t2�! : : : where for some n 2 N all states an+i enable t, but no tn+i isequal to t.Progress and weak fairness
oin
ide for the
ase of loop-free systems. Theabove example, however, shows a subtle di�eren
e in the
ase of loops: Theinterleaved run w of (1) is not weakly fair for a
tion
 in the net �6:4, but w

30 I. Elementary Con
eptsvery well respe
ts progress of
 in �6:4. Conversely, ea
h progress respe
tinginterleaved run is weakly fair.7 FairnessMany distributed algorithms require the assumption of fairness for somea
tions. Intuitively formulated, a single run r negle
ts fairness of some a
tiont i� t o

urs only �nitely often, but is enabled in�nitely often in r. Su
h runswill be dis
arded in
ase fairness is assumed for t.
E

dc

D

CBa bA

Figure 7.1. Net with four progressing a
tionsFigure 7.1 shows a te
hni
al example. Let r be an interleaved or
on
ur-rent run of �7:1, respe
ting progress of all a
tions. Then a o

urs and b iseventually enabled in r. Either b eventually o

urs in r, or b is in�nitely oftenenabled in r. In the latter
ase, r negle
ts fairness for b.7.1 De�nition. Let � be a net and let t 2 T�.i. A �-based interleaved run w negle
ts fairness for t i� t o

urs only �nitelyoften in w and is enabled in�nitely often in w.ii. A �-based interleaved run w respe
ts fairness for t i� w does not negle
tfairness for t.iii. A �-based
on
urrent run K respe
ts fairness of t i� all interleavings ofK respe
t fairness of t.An example is the in�nite interleaved run of �7:1:AD a�!BD d�!BE
�!BD d�! : : : (1)A
tion b is enabled in ea
h o

urren
e of BD, hen
e in�nitely often. Fur-thermore, b never o

urs in (1), hen
e (1) negle
ts fairness for b. Likewise,the
on
urrent run K =

8 Elementary System Nets 31
A a B

D d E c D

(2)of �7:1 negle
ts fairness of b: The above run (1) is an interleaving of K. Ea
h�nite pre�x of (1) or (2) respe
ts fairness of all involved a
tions, but negle
tsprogress of some a
tion.As a further example, the run shown in Fig. 6.5 of �6:4, though respe
tingprogress for
, does negle
t fairness for
.8 Elementary System NetsThe previous
hapters provided all means to model a great variety of distrib-uted algorithms; in fa
t all algorithms whi
h have a �xed topology, and aregoverned by
ontrol rather than by values. Those means in
lude lo
al andglobal states, a
tions and their o

urren
e, interleaved and
on
urrent runs,assumptions of progress and quies
en
e, and fairness. A net that takes intoa

ount all su
h aspe
ts and additionally �xes a distinguished initial state,is
alled an elementary system net:8.1 De�nition. A net � is
alled an elementary system net (es-net, forshort) i�i. a state a� � P� is distinguished,
alled the initial state of �,ii. ea
h a
tion t 2 T� is denoted as either progressing or quies
ent,iii. some progressing a
tions may be distinguished as fair.
q

ready to
deliver

ready to
consume

buffer
filled

buffer
empty

remove consume

ready to
remove

ready to
produce

produce deliver

Figure 8.1. Produ
er/
onsumer system, assuming quies
en
e for produ
eand progress for all other a
tions

32 I. Elementary Con
eptsThe graphi
al representation of an es-net � depi
ts ea
h element of a�by a dot (\token") in the
orresponding
ir
le. Ea
h square representing aquies
ent or a fair a
tion is ins
ribed \q" or \'", respe
tively. Figures 8.1and 8.2 show examples. Behavior of es-nets
an be based on interleaved aswell as
on
urrent runs.
waiting to

pass

passingreturning q

passed

gate
open

gate
closed

closing

ϕ

Figure 8.2. The Door
ontrol system, assuming progress for passing, quies-
en
e for returning and fairness for
losing8.2 De�nition. Let � be an es-net.i. A �-based interleaved run w = a0 t1�! a1 t2�! : : : is an interleaved runof � i� a0 = a� and w respe
ts progress of all progressing a
tions andfairness of all fair a
tions of �.ii. A �-based
on
urrent run K with labeling l is a
on
urrent run of � i�l(ÆK) = a�, K respe
ts progress of all progressing a
tions and fairnessof all fair a
tions.�8:1 assumes quies
en
e for produ
e and progress for all other a
tions.Hen
e the runs of �8:1 in
lude the in�nite run of Fig. 5.5 as well as allits pre�xes that leave produ
e enabled. It is easy to see that those pre�xes
oin
ide with the pre�xes K 0 where l(K 0Æ) is the initial state of �1:1.�8:2 assumes progress for a
tion passing, quies
en
e for a
tion returningand fairness for a
tion
losing. Fairness of
losing implies that all runs of �8:2are �nite. Ea
h run may terminate in state fpassed ; gate
losedg (as returningis quies
ent), or may get stu
k in state fwaiting to pass ; gate
losedg, afterthe o

urren
e of
losing.The following notions will be used frequently:8.3 De�nition. Let � be an es-net.i. a � P� is a rea
hable state of � i� a is rea
hable from a�.ii. t 2 T� is a rea
hable a
tion i� t is enabled in some rea
hable state.

8 Elementary System Nets 33iii. � is
on
i
t free i� no rea
hable state is a
on
i
t state.iv. � is
onta
t free i� no rea
hable state is a
onta
t state.Es-nets
onsidered in the sequel will usually be
onta
t free.8.4 Lemma. Let � be an es-net without quies
ent a
tions. � is
on
i
t freei� there exists exa
tly one
on
urrent run of �.Proof of this lemma is left as an exer
ise for the reader.

II. Case Studies
The elementary
on
epts introdu
ed in Chap. I suÆ
e to adequately modela broad
hoi
e of distributed algorithms. Su
h algorithms typi
ally sti
k to
ontrol
ow of
on
urrent systems. Data dependent algorithms will follow inPart B of this book.We
on
entrate on modeling here. Formulation and proof of propertieswill remain on an intuitive footing.9 Sequential and Parallel Bu�ersThis
ase study extends the produ
er/
onsumer system of Fig. 8.1, extendingits one-item bu�er to two
ells. This
an be done in sequential and in parallelvariants. �9:1 gives the sequential solution: Two bu�er
ells are arrangedone after the other. A parallel solution is given with �9:2. Being ready to

A : ready to produce
B : ready to deliver
C : first buffer cell empty
D : first buffer cell filled

a : produce
b : deliver

E : second buffer cell empty
F : second buffer cell filled
G : ready to remove
H : ready to consume

d : remove
e : consume

q

B H

a b d e

A G

D F

C E

c

Figure 9.1. Produ
er/
onsumer with sequential bu�er
ells

36 II. Case Studiesdeliver (B), the produ
er may
hoose either of the two bu�er
ells (if bothare empty). If one or both are still �lled, the produ
er may employ the emptyone or the one that gets empty next, respe
tively.
B b d H

f

GecA

a

F

E

D

C

q

Figure 9.2. Nondeterministi
 produ
er/
onsumer with parallel bu�er
ells�9:2 is intuitively \more
on
urrent" than �9:1 (a notion whi
h will bemade more pre
ise later). But \overtaking" is possible in �9:2. As an example,the �rst bu�er
ell may be �lled before, but emptied after the se
ond one.
B b d H

f

GecA

a

F

E

D

C

KJ L Mq

Figure 9.3. Deterministi
 produ
er/
onsumer with parallel bu�er
ellsCan the advantages of �9:1 (no overtaking) and of �9:2 (dire
t a

essto empty bu�er
ells) be
ombined? �9:3 shows that this is in fa
t possible:A

ess to the bu�er
ells is organized alternately. But it remains to be shownthat �9:3 is \optimal" in some sense: The produ
er is never given a

ess to a

9 Sequential and Parallel Bu�ers 37�lled bu�er
ell while the other
ell is empty. Nor is the
onsumer ever givena

ess to an empty bu�er
ell while the other one is �lled.Unique, formal des
ription of su
h properties, as well as proof of their
orre
tness, are subje
t to Part C.Some di�eren
es among �9:1, �9:2, and �9:3
an be studied with thehelp of their runs: �9:1 has exa
tly one maximal run (up to isomorphism,
f.Se
t. 2). Figure 9.4 shows an initial part of this (periodi
ally stru
tured) run.�9:3 has likewise exa
tly one maximal run, shown in Fig. 9.6.

A a B A

G

 a B A a B

H e G

FEF

C

E

D

c c

b b b

C D C

d dFigure 9.4. Initial part of the unique maximal
on
urrent run of �9:1

A a B A

G

 a B A a B

H f

b c

e

CD

E

C

F

c

Figure 9.5. A
on
urrent run of �9:2Hen
e, both �9:1 and �9:3 are deterministi
 (
.f. Lemma 8.4). In
ontrast,the net �9:2 has in�nitely many di�erent maximal runs: Whenever
onditionB holds, there is a
hoi
e between b and
. One of the runs of �9:2
an begained from�9:3's run in Fig. 9.6 by skipping all o

urren
es of the
onditionsJ , K, L and M . A further, extremely \unfair" one is given in Fig. 9.5: the�rst bu�er
ell is initially �lled, but never emptied.

38 II. Case Studies
A a B A

G

 a B A a B

H f G

b c

e

D

E

C

F

J

L M

K J

d

E

b

Figure 9.6. Initial part of the unique maximal
on
urrent run of �9:310 The Dining PhilosophersDistributed systems often
onsist of subsystems whi
h share s
ar
e resour
es.Su
h a resour
e (e.g., a shared variable) is a

essible by at most one
ompo-nent simultaneously. We
onsider a parti
ular su
h system
on�guration, withea
h resour
e shared by two subsystems, and ea
h subsystem simultaneouslyrequiring two resour
es. E. W. Dijkstra illustrated this system by \philoso-phers" and \forks" whi
h stand for subsystems and resour
es, respe
tively.We quote its �rst publi
ation, [Dij71℄:\Five philosophers, numbered from 0 to 4 are living in a housewhere the table is laid for them, ea
h philosopher having his ownpla
e at the table. Their only problem { besides those of philosophy{ is that the dish served is a very diÆ
ult kind of spaghetti, thathas to be eaten with two forks. There are two forks next to ea
hplate, so that presents no diÆ
ulty, as a
onsequen
e, however, notwo neighbors may be eating simultaneously."Our �rst goal is a representation of this system as an es-net, su
h thatthe runs of the net des
ribe the \meals" of the philosophers' dinner party.Figure 10.1 shows this es-net. The philosophers are denoted A; : : : ; E.Indi
es p, r, t, e stand for \pi
ks up forks", \returns forks", \thinking", and\eating", respe
tively. For i = 0; : : : ; 4,
ondition ai denotes that fork i isavailable for its users.Ea
h philosopher may start eating in the initial state. But neighboringphilosophers apparently
ompete for their shared fork.A typi
al interleaved run of �10:1 is

10 The Dining Philosophers 39

q

q

q

q

q

Ep

At

Ae

Ap

Be

Bt

Bp

Ce Ct

Cp

Dr

a0

a2

a1

Er

Ar

Br

Cr

a4

a3

Et

Dt

Ee

De

Dp

Figure 10.1. The �ve dining philosophersa� Ap��!a1 Cp��!a2 Cr�!a3 Ar��!a4 Bp��!a5 Dp��!a6 Br��!a7 Bp��!a8Dr��!a9 Ep��!a10 Er��!a11 Br��!a12 (1)with states a1; : : : ; a12 obvious from the
ontext. Philosopher B eats twi
e inthis run, and every other philosopher just on
e. The �nal state, a12,
oin
ideswith a� .Turning now to
on
urrent runs, it is
onvenient to introdu
e a shorthandrepresentation for pie
es of runs. For philosopher A,
all any o

urren
e ofan eating
y
le of A. We represent ea
h eating
y
le of philosopher A

40 II. Case Studies
a0 a0

a1 a1

t A p A e A r A tA (2)by
A

(3)The upper ingoing and outgoing ar
s represent the availability of fork 0,the lower two ar
s represent fork 1. \Thinking" is not expli
itly representedin (3).
A B B

C D EFigure 10.2. A shorthand representation of a
on
urrent run of �10:1Eating
y
les of other philosophers are likewise abbreviated. In order torepresent a
on
urrent run, those representations are
omposed in the obvi-ous way. Figure 10.2 thus represents a
on
urrent run of �10:1. In fa
t, theinterleaved run (1) is one of its interleavings.In the sequel we distinguish a parti
ularly fair kind of dinner,
alled de
entdinners:Call a run of �10:1 de
ent i� neighboring philosophers alternateuse of their shared fork. (4)The runs
onsidered in (1) and in Fig. 10.2 are not de
ent, be
ause B eatstwi
e
onse
utively. Hen
e the fork shared between A and B is not usedalternately. This applies
orrespondingly to the fork shared between B andC. With the shorthand
onvention of (2) and (3), Fig. 10.3 shows a
on
urrentrun of �10:1 that is apparently de
ent. Obviously, a de
ent
on
urrent in�niterun is uniquely determined by the �rst use of the forks.

10 The Dining Philosophers 41
B B B B

A A A A A

E E E E

D D D D D

B B B B

C C C C

glue glue
1 2

glue glue
1 2

Figure 10.3. Run K1 of �10:1; employing shorthands as des
ribed in (3).O

urren
es of B must be identi�ed in the obvious manner.
B B B B

C C C C

E E E E E

C

D D D D

A A A A

B B B B

glue glue

1 2

glue
1

glue
2

Figure 10.4. Run K2 of �10:1. Conventions as in Fig. 10.3

42 II. Case StudiesIt is now quite interesting to ask how many di�erent de
ent
ausal runsexist for �10:1. In fa
t, K1 is not the only one. Another one, K2, is shown inFig. 10.4. The two runsK1 andK2 appear stru
turally quite similar, but theyrepresent essentially di�erent behavior. The di�eren
e
an be des
ribed bythe relationship between o

urren
es of a philosopher's eating
y
le and the
on
urrent o

urren
es of eating
y
les of the non-neighboring philosophers:They o

ur
lo
k wise in K1 and anti-
lo
kwise in K2. As an example, in K1to ea
h eating
y
le of A there exist
on
urrent o

urren
es of
y
les of Cand D with C before D. Hen
e in K1 the left pattern of Fig. 10.1 o

urs, andin K2 the right pattern.

A

 C

D

A

 D

C

Figure 10.5. Di�erent patterns in K1 and K2AreK1 andK2 the only de
ent
ausal runs of�10:1? They are not, be
ausedue to a \unlu
ky"
hoi
e of the �rst user of forks, there exist two further,but \less
on
urrent"
ausal runs, one of whi
h is shown in Fig. 10.6. Theruns K1;K2 and K3, together with the
ounterpart of K3 (the
onstru
tionof whi
h is left to the reader), are in fa
t the only de
ent runs. They givestru
tural information on the behavior of �10:1, whi
h
an not be gaineddire
tly from interleaved runs.We turn �nally to non-de
ent
ausal runs. Figure 10.7 shows an example,K4, with philosophers A and C eating in�nitely often, and the other philoso-phers eating never. The run K4 sheds new light on the question whether ornot B has a
han
e to grasp his forks. This question is meaningful only if aglobal view is assumed, allowing for a
oin
ident view at the system's
on-ditions whi
h are represented by a1 and a2 in (1). This assumption is notful�lled in a system with
onditions a1 and a2 lo
ally distributed and withphilosopher B not being able to observe both together.

10 The Dining Philosophers 43
B B B

C C C C

E E E E

D D D D

AA A A

BB B

glue glue

1 2

glue
1

glue
2

B

Figure 10.6. Run K3 of �10:1. Conventions as in Fig. 10.3
A A A A

C C C CFigure 10.7. Run K4 of �10:1. Conventions as in Fig. 10.3. Does B get a
han
e to eat?

44 II. Case Studies11 An Asyn
hronous Sta
kIn this se
tion we develop a
ontrol s
heme for an asyn
hronous pushdowndevi
e (a sta
k). This sta
k has some properties (to be dis
ussed later) whi
hno syn
hronously
ontrolled sta
k
an have.A sta
k of size n is a sequen
e M1; : : : ;Mn of modules. M1 is
alledthe top, Mn the bottom of the sta
k. For i = 2; : : : ; n, the module Mi�1is the prede
essor of Mi, and Mi is the su

essor of Mi�1. All modules are
onstru
ted a

ording to the same s
heme. Figure 11.1 depi
ts
ow of
ontrolin su
h module.
values

two
storing

 quiet

storing
no

value

predecessor
from

successor
to

to
predecessor

from
successorFigure 11.1. Flow of
ontrol in a moduleIn its quiet state, a moduleM stores exa
tly one value, v. Two alternativea
tions may o

ur in this state: Firstly, some value w may arrive from M 'sprede
essor module, yielding a state where M is storing two values v and w.Then M propagates the previously held value v to the su

essor module andreturns quiet with value w. Se
ondly, M may send the stored value v to theprede
essor module, yielding a state where M is storing no value. Then Mrequests some value from its su

essor module and returns quiet with thisvalue.Figure 11.2 shows a sta
k
onsisting of four su
h modules. Push (a
tiona0) inserts a new value to the bu�er, initiating wave-like driving of storedvalues towards the sta
k's bottom. The item stored at M4 gets lost (at a4).Likewise, pop (a
tion b0) removes an item from the bu�er, thus initiatingwave-like popping up of stored values towards the sta
k's top. M4 gets some\unde�ned" value then (by b4). Ea
h module is assumed to store this \unde-�ned" value initially.It is intuitively
lear that �11:2 in fa
t models the
ontrol stru
ture of aproperly behaved sta
k. It is also obvious how a sta
k of size n is extended to a

12 Crosstalk Algorithms 45
push

top

pop

bottomquiet1 quiet2 quiet3 quiet4

a0 a1 a2 a3 a4

b0 b1 b2 b3 b4

q

qFigure 11.2. Flow of
ontrol in the asyn
hronous sta
k with
apa
ity forfour itemssta
k of size n+1, and that this kind of extension does not a�e
t performan
eat the top of the sta
k. Formal arguments spe
ifying those properties andproving them
orre
t will be dis
ussed in Se
t. 55.2.12 Crosstalk AlgorithmsIn a network of
ooperating agents, ea
h agent usually has a distinguishedinitial state. Ea
h time an agent visits its initial state, it
ompletes a round,and its next round is about to begin. A network of agents is said to run around poli
y (or to be round-based) if ea
h message sent in the sender's i-thround is re
eived in the re
eiver's i-th round. Crosstalk arises whenever twoagents send ea
h other messages in the same round.In this se
tion we show what round-based networks of asyn
hronous, mes-sage passing agents may look like. Parti
ular emphasis is given to the issueof
rosstalk.
terminate

pending

act

quiet l quiet r

echo

return

answered
acknowledged

sent

q

Figure 12.1. A
tor and responderTo start with, Fig. 12.1 shows a network of two sites l and r (the left andthe right site, respe
tively) and a
ommuni
ation line that links both sitestogether. In its quiet state, l may spontaneously send a message to r and

46 II. Case Studies
pending l

pending r

quiet l quiet r

echo l

echo r

terminate l

terminate r

return r

return l

acknowledged l

acknowledged r

sent l

sent r

act l

act r

answered l

answered r

q

q

Figure 12.2. A
tor/responder sites: deadlo
k prone
pending l

pending r

quiet l quiet r

echo l

echo r

terminate l

terminate r

return r

return l

acknowledged l

acknowledged r

sent l

sent r

act l

act r

answered l

answered r

cross
talk r

cross
talk l

q

q

Figure 12.3. A
tor/responder sites: round errors possible

12 Crosstalk Algorithms 47
A : quiet l
B : pending l
C : sent l
K : answered l

D : quiet r
E : answered r
F : acknowledged r
G : pending r
H : sent r

a : act l
c : echo r
d : return r
e : act r
f : crosstalk l

A B

C

D DE

F

G

H

Ka

c d e

f

Figure 12.4. A run of �12:3
pending l

pending r

quiet l quiet r

echo l

echo r

finished l

finished r

terminate l

terminate r

return r

return l

acknowledged l

acknowledged r

sent l

sent r

act l

act r

answered l

answered r

cross
talk r

cross
talk l

q

q

Figure 12.5. Round-based
rosstalk
Inscriptions as in Fig. 12.4.
Additionally:

b : terminate r
L : finished l

A AB

C

D DE

F L

a b

c dFigure 12.6. Round of �12:5, with a
tor l and responder r

48 II. Case Studies
Inscriptions as in Fig. 12.6.
Additionally:

M : finished r
g : return l
h : crosstalk r

A AB

C

D DEG

H

K

M

L

a

de

f g

hFigure 12.7. Crosstalk round of �12:5

pending l

pending r

quiet l quiet r

echo l

echo r

finished l

finished r

terminate l

terminate r

return r

return l

acknowledged l

acknowledged r

sent l

sent r

act l

act r

answered l

answered r

cross
talk r

cross
talk l

q

q

Figure 12.8. Ordered
rosstalk: �rst l, then r

12 Crosstalk Algorithms 49
pending l

pending r

quiet l quiet r

echo l

echo r

finished l

finished r

terminate l

terminate r

return r

return l

acknowledged l

acknowledged r

sent l

sent r

act l

act r

answered l

answered r

q

q

Figure 12.9. Alternately ordered
rosstalkremains in the state pending until the re
eipt of an a
knowledgment. Then lterminates and moves to its quiet state, from where l may start a
tion again.Upon re
eiving a message site r e
hoes an a
knowledgment, turns answeredand eventually returns to quiet, where r is ready to a

ept the next message.This interplay of the two sites l and r may be des
ribed intuitively in termsof rounds. A round starts and ends when both sites are quiet. But noti
e thatthe site l may start its (i + 1)st round before site r has
ompleted its i-thround.Now we plan to extend the two agents l and r so as to behave symmetri-
ally (motivated by issues not to be dis
ussed here), i.e., r additionally mayplay the role of a sender and l the role of a re
eiver.The symmetri
al extension �12:2 of �12:1 apparently fails, as the systemdeadlo
ks in
ase both l and r de
ide to a
t in the same round: The site lin the state pendingl expe
ts a token on a
knowledgedr, but gets one onsentr instead. In this situation, an obvious
ontinuation was to a

ept thetoken on sentr and to return along returnedl to quietl. This is a
hieved bythe a
tion
rosstalkl (and likewise
rosstalkr) in �12:3. However, �12:3 isnot (yet) a

eptable: One of its runs, given in Fig. 12.4, is apparently ill-stru
tured: The agent l is eventually o�ered an a
knowledgment as well as amessage, and l by mistake assumes
rosstalk. What a
tually happened maybe
alled a round error: The token on sentr belongs to the se
ond roundof the system. It rea
hes l before l
ompleted the �rst round, i.e., before lproperly a

epted the �rst round's a
knowledgment.

50 II. Case StudiesThis kind of error is ruled out in �12:5 by a further message. Intuitively,this message may be understood as a \round end" signal, with ea
h messagesent in round i being re
eived in round i. Formulated more pre
isely, a round
overs one of the following three sub-runs:l sends a message to r. Upon re
eiving it, r returns an a
knowl-edgment to l. Then l signals finishedl. Figure 12.6 shows thisround. (1)Symmetri
ally to (1), r sends a message to l. Upon re
eiving it, lreturns an a
knowledgment to r. Then r signals finishedr. (2)Both l and r
on
urrently send messages to ea
h other. Then land r both re
eive their partner's message
on
urrently and ea
hof them then returns finished. Figure 12.7 shows this round. (3)The basi

on
epts of �12:5 inevitably imply the
han
e of
on
urrent mes-sages (
on
urrent o

urren
es of a
tl and a
tr). Likewise,
on
urrent a
knowl-edged and
on
urrent �nished messages may o

ur. However, there is alwaysat most one message under way from l to r, and likewise at most one from rto l.This works perfe
tly as long as l and r are linked by two physi
al lines,one for messages from l to r and one for messages from r to l. However, if justone line is available, �12:5 may
ause mismat
h: a message from l to r and amessage from r to l may meet on the line. As a
tl and a
tr are lo
al, quies
enta
tions, this mismat
h
an not be ruled out. It
an however be dete
ted and�xed, provided ea
h sent message, upon meeting some other message at theline, is not entirely destroyed (but only arbitrarily
orrupted). For this
ase,�12:8 orders the o

urren
es of
rosstalkl and
rosstalkr: l a
ts before r and
onsequently finishedl is before finishedr. Augmenting tokens on finishedwith the round's original message then guarantees perfe
t
ommuni
ation.For the
ase of
rosstalk this system guarantees
rosstalkl before the
orresponding
rosstalkr. This is a
hieved by taking l's round-end messageas a further pre
ondition of
rosstalkr.This poli
y may be
onsidered an unfair preferen
e of l over r. A moresymmetri
al solution is �12:9, with alternating priority for
rosstalk. Thissystem is symmetri
al up to an initial bit, with the �rst
rosstalk startingwith site l.13 Mutual Ex
lusionMutual ex
lusion of lo
al states in a network of
ooperating agents is requiredin a great variety of systems. A lot of phenomena and problems that aretypi
al for distributed systems o

ur in the attempt to model various
on
eptsand assumptions on mutual ex
lusion.

13 Mutual Ex
lusion 51This se
tion is intended to glan
e a
ouple of those
on
epts under theaspe
t of properly modeling mutual ex
lusion algorithms. Means to formulateand to prove properties of those algorithms will be dis
ussed in Part C.Two system
omponents (sites) are assumed. Ea
h of them in
ludes aparti
ular (\
riti
al") state. The two sites must syn
hronize su
h that theyalways are able to eventually go
riti
al, but never are
oin
idently in theirrespe
tive
riti
al state.The mutual ex
lusion problem is the problem of
onstru
ting algorithmsa
hieving the two mentioned requirements. Various assumptions on the sites'
apabilities and on the available syn
hronization me
hanisms motivate dif-ferent solutions.In the sequel we state the mutual ex
lusion problem in detail, several solu-tions will be studied, and their respe
tive advantages and their disadvantageswill be dis
ussed.13.1 The problemConsider a system essentially
onsisting of two sites l and r (the left and theright site). Ea
h site is bound to a
y
li
 visit of three lo
al states,
alledquiet, pending, and
riti
al, as shown in Fig. 13.1, with a quies
ent step fromquiet to pending (where the sites' states are indexed l and r, respe
tively).Two properties are to be guaranteed: �rstly, that l and r never be bothtogether
riti
al (the mutual ex
lusion property), and se
ondly that ea
hpending
omponent eventually rea
hes
riti
al and later quiet (the evolutionproperty).
q qa l a r

pending l pending r

critical l critical r

quiet l quiet rFigure 13.1. Basi

omponents of mutexA number of well-known algorithms solves this problem,
oin
idently re-spe
ting various additional requirements. For example, it is frequently re-quired that the two sites l and r
ooperate in a spe
i�
 way only; they mayshare variables or ex
hange messages or mutually inspe
t spe
i�
 lo
al states.Additionally it may be required that a mutual ex
lusion algorithm is distrib-utedly implementable. We refrain from a formal de�nition of this notion andsti
k to an apparently ne
essary
ondition, the lo
ality of fairness: A fairtransition together with its pre-set �t must belong to one site and only one

52 II. Case Studies
q

ϕ ϕ

qa l a r

b l b r

c l c r

pending l pending r

critical l critical r

quiet l quiet r

keyFigure 13.2. The
ontentious mutex algorithmpla
e p 2 �t may be forward bran
hing (i.e., p� % ftg). The partner sitemay be
onne
ted to this pla
e p in a reading mode at most, i.e., by loops(p; t0) only. This version of fairness is distributedly implementable be
ause
onventional hardware guarantees that one site's assignment to a variable isnot prevented by the other site's iterated testing of the variable.First we
onsider three de�
ient algorithms, thus pointing out the diÆ-
ulty of meeting mutual ex
lusion, evolution, and lo
al fairness at the sametime. Then follow four \perfe
t" algorithms, ea
h with its own merits, and�nally we
onsider two asymmetri
al algorithms, granting the left site somekind of preferen
e over the right site.13.2 The
ontentious mutex algorithmFigure 13.2 shows an algorithm that in fa
t meets both requirements of mu-tual ex
lusion and evolution. The lo
al state key, however,
an not be asso
i-ated uniquely with one of the sites. Both sites
ompete for key and moreoverrepeated
on
i
t for key must be resolved fairly for both partners (as bothbl and br are fair a
tions). Hen
e, additional global means are ne
essary toinstall proper management of key nondeterminism. In te
hni
al terms, thealgorithm negle
ts lo
ality of fairness for both bl and br and thus is notdistributedly implementable.13.3 The alternating mutex algorithmFigure 13.3 shows an algorithm that respe
ts the requirements of mutualex
lusion and lo
al fairness (as no fair transition at all is involved). However,it negle
ts evolution. For example, the site r may eventually remain quiet, inwhi
h
ase the site l may get stu
k in its state pending. This algorithm maybe used in the
ase of greedy sites only, where both sites strive to go
riti
alas frequently as possible.13.4 The state testing mutex algorithmFigure 13.4 shows an algorithm with lo
al states non
ritl and non
ritr, whi
h
an be
onsidered as
ags, allowing the respe
tive partner to go into its
riti
al

13 Mutual Ex
lusion 53
q

ϕ

qaq d q

c e

b f
pending l

pending r

critical l critical r

quiet l

quiet r

message lr

message rlFigure 13.3. The alternating mutex algorithmstate. Upon moving to
riti
al along bl, the site l tests the
ag non
ritr and
oin
idently removes its own
ag non
ritl. O

urren
e of the a
tion bl may beprevented forever by in�nitely many o

urren
es of br. Hen
e the assumptionof fairness is inevitable for bl.The pre-set �bl of bl, however, has two forward bran
hing elements,non
ritl and non
ritr, thus violating the requirement of lo
al fairness.
q qal a r

bl

ϕ
b r

ϕ

cl c r

pendingl pending r

criticall critical r

quietl quiet r
noncritl noncrit rFigure 13.4. The state testing mutex algorithm13.5 The token-passing mutex algorithmFigure 13.5 shows an algorithm based on message passing. The essential
on-
ept of the mutex algorithms in Fig. 13.5 is a token that at ea
h rea
hablestate is helt by one of the sites. A site may go
riti
al only while holding thetoken. The site without token may gain it on demand. In �13:5, the tokenis initially helt by site l in the lo
al state availl. With the token in availl,the site l is able to move immediately from pendingl by a
tion a to
riti
all.With a
tion e the site l then returns from
riti
all to quietl and makes thetoken again available for l. Furthermore, l may re
eive a request for the tokensent by the site r along requestedl. Fairness of
 guarantees that l eventuallysends the token to grantedr and
oin
idently turns silentl. The request sent

54 II. Case Studiesby site r along requestedl is due to an o

urren
e of a
tion h. Hen
e site ris at waitingr until the token on grantedr arrives.
ϕ ϕ

quietl pendingl

availl requestedl requested r

silentl

waitingl

grantedl

criticall

quiet rpending r

avail r

silent r

waiting r

granted r

critical r

c j

f n

e m

a b h g

d k

q q

Figure 13.5. A token-passing mutex algorithmO

urren
e of a
tion k then brings the site r to
riti
alr. Site l maymeanwhile be pending again. As site r is now the owner of the token, site lis in silentl and may send a request to r by o

urren
e of b.The two sites l and r are stru
turally symmetri
al. The initial state, how-ever, is not symmetri
al, as site l initially
arries the token (at availl), whereassite r is at silentr. Site l (and likewise site r) is no sequential ma
hine. A
tionsf and
 (a
tions n and j in site r) may very well o

ur
on
urrently.The two sites
ooperate by message passing, with two types of messages(requested and granted) in ea
h dire
tion. Site l has one fair a
tion,
. The
orresponding
on
i
t pla
e availl is not even read by site r. Symmetri
ally,the
on
i
t pla
es of j is availr, not read by l.Site l is fault tolerant with respe
t to a
tions a and b. Site r's iterateda

ess to
riti
alr is not a�e
ted in
ase a or b mali
iously remains enabledforever.

13 Mutual Ex
lusion 5513.6 The round-based mutex algorithmThe ordered
rosstalk algorithm �12:8
an be extended to an algorithm formutual ex
lusion, as shown in Fig. 13.6. The ordered o

urren
e of
rosstalkland
rosstalkr in �12:8 implies that finishedl and finishedr never
arrya token at the same time. �13:6 re�nes finishedl into
ritl, a
tion n andterminatedl.
locall local r

q

q

ϕ

ϕ

terminatedl

terminated r

granted r

grantedl

requestedl

requested r

critl

crit r

quietl

quiet r

pend2l

pend2 r

pend1l

pend1 r

servedl

served r

n
b d

m

a
c

j
k

e
g

f h

p

qFigure 13.6. A round-based mutex algorithmfinishedr is re�ned
orrespondingly. Lo
al states and a
tions of �10:6are re-named a

ording to their new role in �13:6, and further
omponents(quietl, m, pend1l, quietr, p, pend1r) are added, providing the elements asrequired in Fig. 13.1. The system �13:6 operates in rounds: Wanting to go to
riti
al, site l sends a request to site r by a
tion a and remains in pend2l untilsite r rea
ts with a token on either grantedr or requestedr. Site l be
omes
riti
al in both
ases by o

urren
e of a
tion b or a
tion j, respe
tively. Siter likewise may send a request to l by a
tion g, then r remains in pend2runtil site l rea
ts with a token on grantedl or requestedl. Site r be
omes
riti
al in the �rst
ase by a
tion h. The se
ond
ase o

urs in the situationof
rosstalk, where both sites strive at their respe
tive
riti
al state in thesame round. Site r has to wait in this
ase until l leaves
ritl and sends atoken to terminatedl.

56 II. Case StudiesThe two sites l and r are stru
turally not symmetri
al: l pre
edes r in
aseof
rosstalk. Site l is no sequential ma
hine, as n may o

ur
on
urrently toe and f . In site r the a
tion q may likewise o

ur
on
urrently to
 and d.Fairness of a
tion a guarantees that site l in state pendl will eventuallybe
ome
riti
al. The
orresponding
on
i
t pla
e, lo
all, is not read by siter. Symmetri
ally, the
on
i
t pla
e lo
alr of the fair a
tion g of site r is notread by site l.Site l is fault tolerant only with respe
t to a
tion a. Due to the round-based nature of the algorithm, ea
h step of site r to
ritr must expli
itly begranted by l. Vi
e versa, ea
h step of l to
ritl must be granted by r.13.7 Peterson's mutex algorithmThe following algorithm �13:7 is based on two
ags (as already used in �13:4)and a token that is shared by the two sites l and r, and held by one of l andr at any time (as in �13:5). The algorithm was �rst published in [Pet81℄ in aprogramming notation.
b j

c kd m

e nf p

g q

pend1l pend1 r

pend2l pend2 r

pend0l pend0 r

atl at r

criticall critical r

finishedl finished r

quietl quiet ra h
q q

ϕ ϕ

Figure 13.7. Peterson's mutex algorithmThe
ag finishedl signals to the site r that the site l is presently notstriving to be
ome
riti
al. This allows the site r to \easily" a

ess its
riti
alregion, by the a
tion p. Likewise, the
ag finishedr allows the site l to a

essits
riti
al state, by the a
tion f . The shared token alternates between atland atr. The step from pend1l to pend2l results in the token on atl: by a
tion
 in
ase l obtains the token from atr, or by a
tion d in
ase l held the tokenanyway.

13 Mutual Ex
lusion 57The step from pend1r to pend2r likewise results in the token on atr. Hen
ethe token is always at the site that exe
uted the step from pend1 to pend2most re
ently.After leaving quietl along the quies
ent a
tion a, the site l takes threesteps to rea
h its
riti
al state
riti
all. In the �rst step, the fair a
tion bbrings l from pend0l to pend1l and removes the
ag finishedl. Fairness ofb is lo
al, be
ause �b = fpend0l; finishedlg is lo
al to l, with finishedl theonly forward bran
hing pla
e in �b, whi
h is
onne
ted to the right site, r, bya loop (finishedl; p). The se
ond step, from pend1l to pend2l, results in theshared token on atl, as des
ribed above. The third step brings l to
riti
all,with a
tion f in
ase site r signals with finishedr that it is presently notinterested in going
riti
al, or with a
tion e in
ase the site r more re
entlyexe
uted the step from pend1r to pend2r. The algorithm's overall stru
tureguarantees that one of finishedr or atr will eventually
arry a token thatremains there until eventually either f or e o

urs.The two sites l and r are stru
turally symmetri
al, but the initial statefavors the right site.13.8 Dekker's mutex algorithmThe following algorithm �13:8 is a variant of Peterson's algorithm �13:7. Itemploys the same two
ags finishedl and finishedr, and likewise shares atoken, that is either on atl or atr at any time. The essential di�eren
e to�13:7 is the time at whi
h the shared token is adjusted: The token is movedto atl before l be
omes
riti
al in �13:7, whereas the token is moved to atl
qg

ne pf

kc md

jb qq

terminated rterminatedl

critical rcriticall

at ratl

pend1 rpend1l

finished rfinishedl

quiet rquietl

pend0 rpend0l ha
ϕϕ

Figure 13.8. Dekker's mutex algorithm

58 II. Case Studiesafter l has been
riti
al in �13:8. In
ase the site r has not raised its
agfinishedr, the step from pend1l to
riti
all with a
tion d depends not onlyon the shared token in atr but also on the lo
al state pend1r of site r.13.9 Owi
ki/Lamport's mutex algorithmsDi�erent sites may be given di�erent priorities, hen
e di�erent a

ess poli
iesto their respe
tive
riti
al regions. A typi
al example is a system of a writerand a reader site of a shared variable: Whenever prepared to update the vari-able, the writer may eventually exe
ute this update in its
riti
al state. Thereader may be guaranteed less: Whenever pending for reading the variable,the reader will eventually get reading or the writer will eventually update thevariable. Hen
e the reader may start to a

ess its
riti
al state in vain.
writer
involved

writer
detached

ϕ

prep1 prep2 pend2 pend1

failedq q

producing

writing
reading using

reader detached

a

b

c

d

e

f

g

h

j k

Figure 13.9. Owi
ki/Lamport's mutex algorithm�13:9 shows this algorithm. It uses three
ags: The
ag writer deta
hedsignals to the reader that the writer is presently not striving to be
omewriting. The
ag reader deta
hed likewise signals to the writer that thereader is presently not striving to be
ome reading. The
ag writer involvedis just the
omplement of writer deta
hed: Exa
tly one of them is visible atany time.After �nishing the produ
tion of a new value along the quies
ent a
tiona, the writer takes two steps to rea
h its
riti
al state, writing. In the �rststep, the fair a
tion b just swaps the
ag writer deta
hed to writer involved.Fairness of a
tion b is apparently lo
al. The se
ond step brings the writer toits
riti
al state, writing, along the a
tion
. The overall stru
ture of thealgorithm guarantees that the
ag reader deta
hed eventually remains until
 has o

urred.

13 Mutual Ex
lusion 59After using the previous value of the shared variable, the reader may be-
ome pending for a new value along the quies
ent a
tion e. It takes the readertwo steps to rea
h its
riti
al state, reading. Neither of them is guaranteedto o

ur. Furthermore, the reader in the intermediate state pend2 may befor
ed to return to pend1. By the �rst a
tion, f , the reader removes thereader deta
hed
ag. Iterated o

urren
e of a
tion
 may prevent the o
-
urren
e of f (by analogy to the door
losing problem of �6:4). The se
ondstep, from pend2 to reading with a
tion g, is possible only in
ase the writeris deta
hed. In
ase the writer is involved instead, a
tion j releases the
agreader deta
hed, allowing the writer to pro
eed. The reader remains in statefailed until the writer is deta
hed. In this
ase, the reader may pro
eed topend1 and start a further attempt to get reading.13.10 The asymmetri
al mutex algorithm�13:10 shows a further asymmetri
al mutex algorithm that does without anyassumption of fairness. Just like the previous algorithm, the prepared writerwill eventually pro
eed to writing. The writer, however, may update ea
hnewly written value and prevent the reader from reading any value.
q q

prepared

producing

writing available

requested

granted

returned

reading

pending

using

b e f

d
a h

c gFigure 13.10. The asymmetri
al mutex algorithmThe algorithm uses three types of messages: requested and returned sentfrom the reader to the writer and granted sent from the writer to the reader.After �nishing the produ
tion of a new value along the quies
ent a
tiona, the writer takes either a step via a
tion b or one via a
tion d, to rea
hits
riti
al state, writing. A token on available represents the previouslywritten value whi
h not has been read by the reader. A
tion b or d may yieldan updated value. A token on returned represents
ontrol over the sharedvariable returned from the reader to the writer, after the reader has read theprevious value. A
tions a and d then yield a new value.Along the quies
ent a
tion h, the reader, after �nishing the use of thepreviously read value, sends a request for an updated value to the writer.Upon granting a new value along a
tion e, the reader starts reading. However,it may happen that the reader remains stu
k in its lo
al state pending forever:

60 II. Case StudiesThe writer either remains produ
ing forever, or the writer produ
es in�nitelymany new values and negle
ts fairness for the a
tion e. The assumption offairness would help in the latter
ase.14 Distributed Testing of Message LinesAssume a starter pro
ess s and two follower pro
esses, l and r (the left andthe right pro
ess, respe
tively). All three pro
esses are pairwise
onne
tedby dire
ted message lines. Figure 14.1 outlines this topology. Ea
h messagepassing through a line su�ers a �nite, but unpredi
table delay. Pro
esses
ommuni
ate along those lines only.
l r

s
starter

followerfollowerFigure 14.1. Topology of message linesA distributed algorithm is to be
onstru
ted, to enable the starter s toqui
kly test proper fun
tioning of all message lines. A message line is testedby a test message passing through the line.
of starter

start
waiting
starter

terminated
starter

to r
to l from l

from rFigure 14.2. Behavior of the starter pro
ess sFigure 14.2 shows the starter's behavior: s sends test messages to bothl and r, and remains pending until re
eiving test messages from both l andr. Figure 14.3 shows the behavior of the left pro
ess l: It starts by re
eivinga message from s or from r. In the �rst
ase, l sends a message to r andremains waiting for a message from r. Upon re
eipt of this message, l sendsa message to s and terminates. In the se
ond
ase, after re
eipt of a messagefrom r, pro
ess l sends a message to s and remains waiting for a message

14 Distributed Testing of Message Lines 61
from s to s

start
of l

waiting
for r

waiting for s

l terminated

to r from rFigure 14.3. Behavior of follower pro
ess l

from s to r from r to s

start of
starter

starter waiting
starter
terminated

from s to l from l to s

start
of l

waiting for r

waiting for s

l terminated

start
of r

waiting for l

waiting for s

r terminatedFigure 14.4. Test algorithm for network (1) (with boldfa
ed ar
s for agentsstarter, left, and right)

62 II. Case Studiesfrom s. Upon re
eipt of this message, l sends a message to r and terminates.Finally, s terminates, too.It is easy to see that ea
h pro
ess terminates only after a test messagehas passed through all adja
ent message lines. We will prove later on thatthe starter in fa
t will terminate and that its termination is pre
eded bytermination of both follower pro
esses.

Part BAdvan
ed System Models
Part A introdu
ed a formalism
oping with the essentials of
on
urren
y. Itsexpressive power will be in
reased in this part, allowing the integration ofdata stru
tures and the
on
ise representation of unhandily large elemen-tary net systems. A te
hnique for modeling real, large systems results. Twoaspe
ts will govern this pro
edure: Firstly, new
on
epts are introdu
ed asspe
ializations (re�nements) of existing ones. Hen
e, all notions already in-trodu
ed translate
anoni
ally to the new
ase. Se
ondly, powerful analysiste
hniques should be available for the new formalism. Su
h te
hniques willbe presented in Part D.

III. Advan
ed Con
epts
This
hapter provides the
entral basis of the modeling te
hnique of thisbook: the
on
ept of system nets.The step from elementary to general system nets
an be understood intwo di�erent ways. Firstly, as a generalization: While elementary system netssti
k to (distributed)
ontrol stru
ture, general system nets additionally pro-vide data stru
tures. Te
hni
ally, the dynami
 elements (tokens) in a net areno longer bla
k dots, but any kind of data.The se
ond view of general system nets
on
eives them as shorthand or
on
ise representations of elementary system nets: Multiple o

urren
es ofsimilarly stru
tured subnets are folded to a single net stru
ture. Its variousinstan
es (unfoldings) are
hara
terized by ins
riptions of the net elements.This approa
h is parti
ularly suitable, be
ause all notions and
on
epts of es-nets translate
anoni
ally to system nets. It goes without saying that it is ingeneral not intended to unfold a system net expli
itly. Any kind of reasoningon system nets will be exe
uted without expli
it unfolding.15 Introdu
tory ExamplesThree motivating examples will be presented in this se
tion. Te
hni
al detailsfollow in Se
t. 16.15.1 The produ
er/
onsumer system revisitedWe return to the very �rst net model of a produ
er/
onsumer system, as dis-played in Figs. 1.1 and 8.1. This net des
ribes produ
tion, delivery, removal,and
onsumption of any item. No
on
rete, spe
i�
 item has been named. Nowwe assume a spe
i�
 item, a; Figure 15.1 represents the produ
er/
onsumersystem for the obje
t a. In the state shown, the a
tion produ
e a is enabled,and its o

urren
e yields the state shown in Fig. 15.2. Due to the ins
ription\a" at the ar
 linking produ
e a and ready to deliver a, the token to o

ur atready to deliver a is no longer a bla
k dot, but the item a. The a
tion delivera is enabled in this state, be
ause the two ingoing ar
s start from lo
al statesthat
arry items a

ording to the ar
s' ins
riptions: bu�er empty
arries a

66 III. Advan
ed Con
epts
ready to
deliver a

ready to
consume a

buffer filled
with a

buffer empty

remove a

consume a

ready to
remove

ready to
produce

produce a

deliver a

a a a a

aa
q

Figure 15.1. Produ
ing and
onsuming obje
ts of sort a
a

ready to
deliver a

ready to
consume a

buffer filled
with a

buffer empty

remove a

consume a

ready to
remove

ready to
produce

produce a

deliver a

a a a a

aa
q

Figure 15.2. After o

urren
e of produ
e a
a

ready to
deliver a

ready to
consume a

buffer filled
with a

buffer empty

remove a

consume a

ready to
remove

ready to
produce

produce a
q

deliver a

a a a a

aa

Figure 15.3. After o

urren
e of deliver a

15 Introdu
tory Examples 67
ready to
deliver a

ready to
consume a

buffer filled
with a

buffer empty

remove a

consume a

ready to
remove

ready to
produce

produce a

deliver a

produce b

deliver b

remove b

consume b

b b b b

bb

ready to
deliver b

ready to
consume b

buffer filled
with b

a a a a

aa
q

q

Figure 15.4. Produ
ing and
onsuming obje
ts a or b
item ready to be
delivered

item ready to be
consumed

buffer filled
with x

buffer empty

remove x

consume x

ready to
remove

ready to
produce

produce x
qq

deliver x

x x x x

xx

x ∈ {a,b}Figure 15.5. Produ
ing and
onsuming any kind of items

68 III. Advan
ed Con
epts
a

ready to
deliver x

ready to
consume x

buffer filled
with x

buffer empty

remove x

consume x

ready to
remove

x ∈ {a, b}

ready to
produce

produce x
qq

deliver x

x x x x

xx

Figure 15.6. After o

urren
e of produ
e x with x = a in �15:5bla
k dot as required by the unins
ribed ar
, and ready to deliver
arries theitem a as required by the ins
ription a. The o

urren
e of deliver a then re-veals the state shown in Fig. 15.3. Both a
tions produ
e a and remove a areenabled in this state. The o

urren
e of produ
e a would
ause the se
ondappearan
e of \a" at ready to deliver a. The o

urren
e of remove a wouldenable
onsume a in the obvious way.Figure 15.4 now extends �15:1 to enable the treatment of a se
ond item, b.In the state shown, there is a
hoi
e between produ
e a and produ
e b. Choi
eof produ
e a would
ause the behavior des
ribed above. Choi
e of produ
e bwould
orrespondingly
ause pro
essing of the item b.The es-net �15:4
an be represented
on
isely as a system net, shown inFig. 15.5.The pla
e item ready to be delivered of �15:5 represents the two lo
al statesof �15:4, ready to deliver a and ready to deliver b. The ins
ription \a" of thispla
e, as in Fig. 15.2, indi
ates a state that
ontains ready to deliver a. Theother pla
es of �15:5 represent lo
al states of �15:4 in the obvious way.The transition produ
e x of �15:5 likewise represents the two a
tions pro-du
e a and produ
e b of �15:4. Instantiation of the variable x by a
on
reteitem, a or b, yields the
orresponding a
tion. Its o

urren
e produ
es a state,represented as des
ribed above. As an example, o

urren
e of produ
e a in�15:5 yields the state that
orresponds to �15:2, and is represented in �15:6.15.2 The dining philosophers revisitedPlain variables, as employed in Se
t. 15.1, don't help in all
ases. As anexample, we return to the system of thinking and eating philosophers, asintrodu
ed in Se
t. 10. For the sake of simpli
ity we sti
k to the
ase ofthree philosophers, and for reasons to be
ome obvious soon, we redraw the
orresponding es-net, as shown in Fig. 15.7.

15 Introdu
tory Examples 69
a re-
turns
forks

b re-
turns
forks

c re-
turns
forks

c thinking
a picks up
forks

c picks up
forks

b picks up
forks

q

q

q

b thinking

a thinking

f1 available

f3 available

f2 available

c eating

a eating

b eatingFigure 15.7. The system of three philosophersWe strive at a more
on
ise representation of the system by exploitingits regular stru
ture. The essential idea is to represent a set s of lo
al stateswith \similar" behavior as a single pla
e p and likewise a set of a
tions with\similar" behavior as a single transition.As an example, the three lo
al states \a is thinking", \b is thinking", and\
 is thinking" in �15:7 may be assigned the pla
e \thinking philosophers".A state with a and b thinking and
 not thinking then
orresponds to a statewhere \thinking philosophers" is ins
ribed with a and b, but not with
. aand b are then in the a
tual extension of the pla
e \thinking philosophers",whereas
 is not.In the framework of es-nets, the lo
al states may
hange upon the o
-
urren
e of a
tions. This
orresponds to a
hange in the extension of the
orresponding pla
e.Figure 15.8 shows a
orresponding net: The lo
al states of �15:7 are now
lustered into three pla
es, \thinking philosophers", \available forks", and\eating philosophers", respe
tively. The extension of ea
h pla
e is given by itsins
ription. Ea
h a
tion is now to indi
ate the items a�e
ted by its o

urren
e.This is a
hieved by ins
riptions of the
orresponding ar
s. As an example,the ins
riptions of the ar
s adja
ent to \a pi
ks up" in �15:8 indi
ate thatupon the o

urren
e of this transition, the forks f1 and f3 leave \available

70 III. Advan
ed Con
epts
thinking philosophers

available forks

eating philosophers

a

a b

c b

b

a a

c

cba

f3

f1

f2

f1

f2
f3

c re-
turns

b re-
turns

a re-
turns

f1

f1

f3 q

q

q

a picks
up

c picks
up

b picks
up

f2

f1

f2

cc
b

f3

Figure 15.8. Representation using predi
atesforks", and likewise the philosopher a leaves \thinking philosophers" andenters \eating philosophers".In a further transformation, and for reasons to be
ome obvious shortly,we repla
e the ins
riptions of �15:8 as shown in Fig. 15.9: The two forksemployed by any philosopher x are denoted by l(x) and r(x). Hen
e, l andr represent fun
tions, assigning ea
h philosopher x his left and right fork,respe
tively.In a �nal step, a set of a
tions is folded to a single transition. As anexample, the three a
tions \a pi
ks up", \b pi
ks up", and \
 pi
ks up" of�15:9 are represented by the transition \pi
k up" in Fig. 15.10. Return offorks is represented
orrespondingly.The instan
e of a distinguished a
tion (e.g., \a pi
ks up") is in the foldedversion represented by an assignment of
on
rete items to the variables o
-
urring at the surrounding ar
s. As an example, \a pi
ks up"
orresponds in�15:10 to the assignment of a to the variable x. In fa
t, this assignment yieldsthe ins
riptions of ar
s surrounding \a pi
ks up" in �15:9.With �15:10 we have obtained a more abstra
t and general representation.15.3 The distributed sieve of EratosthenesHere we
onsider the well-known example of identifying the prime numbersin a set of integers, a

ording to the Sieve of Eratosthenes. The
onventional

15 Introdu
tory Examples 71
thinking philosophers

available forks

eating philosophers

a

a b

c b

b

a a

c

cba

r(c)

l (b)

l (c)

r(a)

r(b)

r(c)

c re-
turns

b re-
turns

a re-
turns

l (b)

r(a)

l (a) q

q

q

a picks
up

c picks
up

b picks
up

l (c)

f1

r(b)

cc
b

l (a)

P={a,b,c}
G={f1 ,f2 ,f3 }
l ,r : P G→

 = = l (a) r(b) f1
 = = l (b) r(c) f2
 = = l (c) r(a) f3Figure 15.9. Representation using fun
tions

x

thinking philosophers

x

x x

eating philosophers

 (x)

r(x)

available

forks

 (x)

r(x)

a b

c

f1
pick
upqreturn

l l

P={a,b,c}

G={f1,f2,f3}

l ,r : P G→
x : variable over P

 = = l (a) r(b) f1
 = = l (b) r(c) f2
 = = l (c) r(a) f3

Figure 15.10. Representation using parameterized a
tions

72 III. Advan
ed Con
eptspro
edure traverses the numbers from 2 to n, erasing all multiples of 2. In ase
ond path, all remaining multiples of 3 are erased. Generally, the i-th patherases all remaining multiples of the remaining (i+ 1)-st number.There is apparently no need to erase multiples of numbers in any parti
-ular order. The following requirements suÆ
e for erasing all produ
ts: Ea
hnumber k may \see" any other number and may erase it, provided it is a mul-tiple of k. Whenever no further erasing is feasible, the remaining numbers arein fa
t the prime numbers between 2 and n.
2

3

4

5

6

7

8

9

10

Figure 15.11. The distributed sieve of Eratosthenes for n = 10Figure 15.11 shows an es-net of this system for the
ase of n = 10: Allnumbers 2; : : : ; 10 belong to the initial state. The prime numbers 2; 3; 5, and7 belong to ea
h rea
hable state: They are either engaged only in loops (i.e.,2; 3; 5) or in no a
tion at all (i.e., 7). 4 is eventually erased, but may beengaged in erasing (i.e., 8) before being erased (by 2). There is a uniquenumber, 3, to erase 9. Numbers 6, 8, and 10 may be erased alternatively bytwo numbers, respe
tively.

16 The Con
ept of System Nets 73
k

i k•

k

erase
actual

numbers
2..n

k,i : variables over nat

• : multiplication in natFigure 15.12. The distributed sieve of Eratosthenes for any number nFigure 15.12 shows the folded version for any number, n: a
tual numbersinitially
arries all numbers from 2 to n. Transition erase is enabledwhenever some number k and some multiple i � k of k (for i > 1) ispresent in a
tual numbers. Both k and i � k are removed, and k returnsto a
tual numbers .15.4 Con
lusionThe above introdu
tory examples followed a simple idea to
on
isely rep-resent elementary system nets: Firstly, the lo
al states are partitioned intoseveral
lasses. Ea
h
lass is then \folded" to a single pla
e. Su
h a pla
e
on-tains parti
ular items, representing the lo
al states in the
orresponding
lass.Likewise, the a
tions are partitioned into
lasses, and ea
h
lass is folded toa single transition. Ins
riptions of the adja
ent ar
s des
ribe the a
tions inthe
orresponding
lass. A distinguished a
tion
an be regained by evaluatingthe variables involved (i.e., by repla
ing them with
onstants). Nets of thiskind are examples of system nets.A formal framework for system nets has to establish the relationship be-tween synta
ti
al ins
riptions (terms), at ar
s and pla
es, and their
on
retesemanti
al denotation. This relationship of syntax and semanti
s is mathe-mati
ally well established, belonging to the basi

on
epts of
omputer s
i-en
e. Furthermore, it is intuitively obvious, as the above examples show. At�rst reading one may therefore pro
eed to Se
t. 17 immediately.16 The Con
ept of System NetsThe
on
eptual idea of system nets is quite simple: Ea
h pla
e of a systemnet � represents a set of lo
al states and ea
h transition of � represents aset of a
tions. The sets assigned to the pla
es form the underlying universe:16.1 De�nition. Let � be a net. A universe A of � �xes for ea
h pla
ep 2 P� a set Ap, the domain of p in A.For example, in Fig. 15.10 the domain of thinking philosophers and ofeating philosophers is the set of philosophers, and the domain of availableforks is the set of forks.

74 III. Advan
ed Con
eptsAn a
tual state �xes for ea
h pla
e a subset of its domain. An a
tion
orrespondingly �xes the degree of
hange
aused by its o

urren
e:16.2 De�nition. Let � be a net with a universe A.i. A state a of � assigns to ea
h pla
e p 2 P� a set a(p) � Ap.ii. Let t 2 T�. An a
tion m of t assigns to ea
h adja
ent ar
 f = (p; t) orf = (t; p) a set m(f) � Ap.In fa
t, the state of �15:10 as shown in Fig. 15.10 assigns to thinkingphilosophers the set fa; bg, to available forks the set ff1g and to eatingphilosophers the set f
g. A typi
al a
tion m of return in �15:10 was givenby m(eating philosophers ; return) = m(return; thinking philosophers) = f
gand m(return; available forks) = ff2; f3g.Con
ession and e�e
t of a
tions, and the notion of steps, are de�ned in
orresponden
e to Def. 3.1:16.3 De�nition. Let � be a net with some universe A, let a be a state, lett 2 T�, and let m be an a
tion of t.i. m has
on
ession (is enabled) at a i� for ea
h pla
e p 2 �t, m(p; t) � a(p)and for ea
h pla
e p 2 t�, (m(t; p) nm(p; t)) � Ap n a(p).ii. The state e�(a;m), de�ned for ea
h pla
e p 2 P� bye�(a;m)(p) := 8>>><>>>:a(p) nm(p; t) i� p 2 �t n t�,a(p) [m(t; p) i� p 2 t� n �t,(a(p) nm(p; t)) [m(t; p) i� p 2 t� \ �t,a(p) otherwise,is the e�e
t of m's o

urren
e on a.iii. Assume m is enabled at a. Then the triple (a;m; e�(a;m)) is
alled astep of t in �, and usually written a m�!e�(a;m).The a
tion m des
ribed above of the transition return is enabled at thestate shown in Fig. 15.10 (m is moreover the only enabled a
tion). Its o

ur-ren
e yields the state with all philosophers thinking, all forks available, andno philosopher eating.Steps may be des
ribed
on
isely by means of a
anoni
al extension ofa
tions:16.4 Proposition. Let � be an es-net, let t 2 T�, and let a m�!b be a step oft. For all (r; s) 62 F�, extend m by m(r; s) := ;. Then for all pla
es p 2 P�,b(p) = (a(p) [m(t; p)) nm(p; t).System nets are now de�ned by analogy to elementary system nets inSe
t. 8: A net with a domain for ea
h pla
e and a set of a
tions for ea
htransition is furthermore equipped with an initial state, and distinguishedsubsets of quies
ent and fair transitions.

17 Interleaved and Con
urrent Runs 7516.5 De�nition. A net � is a system net i�i. For ea
h pla
e p 2 P�, a set Ap is assumed (i.e., a universe of �),ii. for ea
h transition t 2 T�, a set of a
tions of t is assumed,iii. a state a� is distinguished,
alled the initial state of �,iv. ea
h transition t 2 T� is denoted as either progressing or quies
ent,v. some progressing transitions are distinguished as fair.The introdu
tory examples in Se
t. 15 employ a parti
ular representationte
hnique for system nets: The initial state is given by pla
e ins
riptions, andthe a
tions of a transition are given by the valuations of the variables as theyo

ur in ar
 ins
riptions. Details will follow in Se
t. 19.17 Interleaved and Con
urrent RunsInterleaved runs of system nets
an be de�ned
anoni
ally as sequen
es ofsteps. There is likewise a
anoni
al de�nition of
on
urrent runs,
orrespond-ing to Def. 5.4.Based on the notion of steps given in Def. 16.3, interleaved runs are de�nedby analogy to Def. 4.1:17.1 De�nition. Let � be a system net.i. For i = 1; : : : ; n assume steps ai�1 mi��! ai of �. They form a �-based�nite interleaved run w, written a0 m1��! a1 m2��! : : : mn��! an. Ea
h i 2f0; : : : ; ng is an index of w.ii. For i = 1; 2; : : : assume steps ai�1 mi��! ai of �. They form a �-basedin�nite interleaved run w, sometimes outlined a0 m1��! a1 m2��! : : : . Ea
hi 2 N is an index of w.For example, Fig. 17.1 shows an interleaved run of �15:12 for the
ase ofn = 10: Ea
h state a is represented by listing a(A) in a
olumn. Ea
h a
tionm is represented as a pair (k; l), with m(A; t) = fk; l � kg and m(t; A) = fkg.
 2
 3
 4
 5
 6
 7
 8
 9
10

2
3
4
5
6
7
8
9

2
3
4
5
6
7
8

2
3
4
5
6
7

2
3
4
5
7

2
3
5
7

(5,2) (3,3) (4,2) (3,2) (2,2)

Figure 17.1. Interleaved run of �15:12

76 III. Advan
ed Con
eptsRea
hable steps, states and a
tions are de�ned in analogy to Def. 8.3:17.2 De�nition. Let � be a system net.i. A step a m�! b of � is rea
hable in � i� there exists a �nite interleavedrun a� m1��!a1 m2��!a2�! : : :�!an�1 mn��!an with an�1 mn��!an = a m�!b.ii. A state a of � is rea
hable in � i� a = a� or there exists a rea
hablestep formed b m�!a.iii. An a
tion m is rea
hable in � i� there exists a rea
hable step formeda m�!b.
T,b

T,a

A,f

E,c u,m

A,f

T,c

A,f

t,m’ E,a1

2

3 with T : thinking philosophers

A : available forks

E : eating philosophers

t : pick up

u : returnFigure 17.2. Con
urrent run of �15:10Con
urrent runs are now de�ned in two stages: Firstly, ea
h a
tion mis assigned an a
tion net, representing the a
tion's details in terms of anins
ribed net. In a se
ond step, those nets are \glued together", forming a
on
urrent run.17.3 De�nition. Let � be a system net, let t 2 T�, let m be an a
tion of t,and let N be an inje
tively labeled net with TN = feg. Furthermore, assumel(e) = (t;m), l(�e) = f(p; a) j p 2 �t , and a 2 m(p; t)g, l(e�) = f(p; a) j p 2t� , and a 2 m(t; p)g. Then N is an a
tion net of � (for m).For example,

17 Interleaved and Con
urrent Runs 77
E,c r,m

A,f

T,c

A,f2

3 with T : thinking philosophers

A : available forks

E : eating philosophers

r : return
(1)is an a
tion net for the a
tion m of �15:10 with m(E; r) = f
g, m(r; A) =ff2; f3g and m(r; T) = f
g.17.4 De�nition. Let � be a system net and let K be an element labeledo

urren
e net. K is a �-based
on
urrent run i�i. in ea
h
on
urrent state a of K, di�erent elements of a are di�erentlylabeled,ii. for ea
h t 2 TK, (�t[t�; ftg; �t�ftg [ftg � t�) is an a
tion net of �.As an example, Fig. 17.2 shows a
on
urrent run of �15:10. The in-volved a
tions m and m0 are obvious from the
ontext. As a further example,Fig. 17.3 shows a
on
urrent run of �15:12 for the
ase of n = 10. Ea
h pla
elabel (A; i) is depi
ted by i and ea
h transition label (t;m) is represented asa pair (k; l) with m(A; t) = fk; k � lg and m(t; A) = fkg.

2

3

5

6

7

8

9

3

2

3

4

5

10

3,2

4,2 4

2,2

3,3

5,2

Figure 17.3. Con
urrent run of �15:12 (pla
e ins
riptions (A; i) and transi-tion ins
riptions (t; (k; i)) are represented by i and k; i, respe
tively.)

78 III. Advan
ed Con
epts18 Stru
tures and TermsSystem nets have been represented in Se
t. 15 by means of sorted terms.Su
h terms ground on stru
tures. This se
tion provides the formal basis forstru
tures and terms.We �rst re
all some basi
 notions on
onstants and fun
tions:18.1 De�nition. Let A1; : : : ; Ak be sets.i. Let a 2 Ai for some 1 � i � k. Then a is
alled a
onstant in the setsA1; : : : ; Ak and Ai is
alled a sort of a.ii. For i = 1; : : : ; n+ 1 let Bi 2 fA1; : : : ; Akg, and let f : B1 � : : :�Bn !Bn+1 be a fun
tion. Then f is
alled a fun
tion over the sets A1; : : : ; Ak.The sets B1; : : : ; Bn are the argument sorts and Bn+1 is the target sortof f . The n + 1-tuple (B1; : : : ; Bn+1) is the arity of f and is usuallywritten B1 � : : :�Bn ! Bn+1.For example, in Fig. 15.10, b is a
onstant in P and G of sort P . Further-more, l is a fun
tion over P and G with one argument sort P and the targetsort G. Its arity is P ! G.A stru
ture is just a
olle
tion of
onstants and fun
tions over some sets:18.2 De�nition. Let A1; : : : ; Ak be sets, let a1; : : : ; al be
onstants inA1; : : : ; Ak and let f1; : : : ; fm be fun
tions over A1; : : : ; Ak. ThenA = (A1; : : : ; Ak; a1; : : : ; al; f1; : : : ; fm) (1)is a stru
ture. A1; : : : ; Ak are the
arrier sets, a1; : : : ; al the
onstants, andf1; : : : ; fm the fun
tions of A.In fa
t, the system nets �15:4 and �15:6 are based on stru
tures. Thestru
ture for the philosophers system �15:10 isPhils = (P;G; a; b;
; f1; f2; f3; l; r) (2)with P;G; l, and r as des
ribed in Fig. 15.10. Hen
e this stru
ture has two
arrier sets, six
onstants, and two fun
tions.The stru
ture for the
on
urrent version of Eratosthenes' n-sieve �15:12is Primes = (N; 2; : : : ; n; �) (3)with N denoting the natural numbers, 2; : : : ; n the numbers between 2 andn for some �xed n 2 N, and � the produ
t of integers. Hen
e this stru
turehas one
arrier set, n� 1
onstants, and one fun
tion.The
omposition of fun
tions of a stru
ture
an be des
ribed intuitively bymeans of terms. To this end, ea
h
onstant a of a stru
ture A is representedby a
onstant symbol a and likewise ea
h fun
tion f of A by a fun
tion symbolf. (This
hoi
e of symbols is just a matter of
onvenien
e and
onvention.Any other
hoi
e of symbols would do the same job). Furthermore, termsin
lude variables:

18 Stru
tures and Terms 7918.3 De�nition. Let A = (A1; : : : ; Ak; a1; : : : ; al; f1; : : : ; fm) be a stru
-ture.i. Let X1; : : : ; Xk be pairwise disjoint sets of symbols. For x 2 Xi,
all Aithe sort of x (i = 1; : : : ; k). Then X = X1 [: : :[Xk is a set of A-sortedvariables.ii. Let X be a set of A-sorted variables. For all B 2 fA1; : : : ; Akg we de�nethe sets TB(X) of terms of sort B over X indu
tively as follows:a) Xi � TAib) for all 1 � i � l, if B is the sort of ai then ai 2 TB(X).
) For all 1 � i � m, if B1 � : : : � Bn ! B is the arity of fi and iftj 2 TBj (X) (j = 1; : : : ; n) then f(t1; : : : ; tn) 2 TB(X).iii. The set TA(X) := TA1(X) [: : : [TAk(X) is
alled the set of A-termsover X.For example, with respe
t to the two stru
tures Phils and Primes
on-sidered above, l(b) and r(x) are Phils-terms of sort G over fxg, where thesort of x is P . Likewise, 2 � 5 and 3 � y are Primes-terms of sort N over fyg,where the sort of y is N.In the sequel we always assume some (arbitrarily
hosen, but) �xed orderon variables. Generally we use the following notation:18.4 Notation. A setM is said to be ordered if a unique tuple (m1; : : : ;mk)of pairwise di�erent elements mi is assumed su
h that M = fm1; : : : ;mkg.We write M = (m1; : : : ;mk) in this
ase.Ea
h term u over an ordered set of sorted variables des
ribes a uniquefun
tion, valu, the valuation of u:18.5 De�nition. Let A be a stru
ture and let X = (x1; : : : ; xn) be an or-dered set of A-sorted variables. For i = 1; : : : ; n let Bi be the sort of xi andlet u 2 TB(X) for any sort B of A. Then B1� : : :�Bn is the set of argumentsfor X and the valuation of u in A is a fun
tion valu : B1 � : : : � Bn ! B,whi
h is indu
tively de�ned over the stru
ture of u:valu(a1; : : : ; an) = 8>>>><>>>>: ai if u = xi for 1 � i � n;a if u = a for some
onstant a of A;f(valu1(a1; : : : ; an); : : : ; valuk(a1; : : : ; an))if u = f(u1; : : : ; uk) for some fun
tionf of A and terms u1; : : : ; uk 2 TA(X):For example, with respe
t to the stru
ture Primes
onsidered above,u = (2 � y) � x is a Primes-term over X = fx; yg. Assuming X is orderedX = (x; y), we get valu(3; 4) = val2�y(3; 4) �valx(3; 4) = val2(3; 4) �valy(3; 4) �3 = (2 � 4) � 3 = 8 � 3 = 24. As a spe
ial
ase we
onsider terms withoutvariables:18.6 De�nition. Let A be a stru
ture.

80 III. Advan
ed Con
eptsi. The set TA(;)
onsists of the A-ground terms and is usually written TA.ii. For ea
h u 2 TA of sort B, valu is the unique fun
tion valu : ; ! B,i.e., valu indi
ates a unique element in B. This element will be denotedvalu.For example, with respe
t to the stru
ture Phils
onsidered above, u =l(b) is a phils-ground term with valu = valf3 = f3.This
ompletes the
olle
tion of notions and notations to deal with stru
-tures and terms.19 A Term Representation of System NetsBased on stru
tures and terms as introdu
ed in the previous se
tion, a repre-sentation of system nets is suggested in the sequel, as already used in Se
t. 15.The representation of a transition's a
tions is the essential
on
ept. To thisend, ea
h transition t is assigned its setMt of o

urren
e modes. Ea
h o

ur-ren
e mode then de�nes an a
tion. A typi
al example was
x

f(x)

(x,y)

A

B

C

t

g(x,y) (1)Assume the variable x is of sort M , y of sort N and x ordered before y.Then M �N is the set of o

urren
e modes of t. Ea
h pair (m;n) 2M �Nde�nes an a
tion gmn of t, gained by substituting m and n for x and y inthe adja
ent terms. Hen
e gmn(A; t) = fm; f(m)g,gmn(B; t) = f(m;n)g andgmn(t; C) = fg(m;n)g.The synta
ti
al representation of term-based system nets reads as follows:19.1 De�nition. Let � be a net and let A be a stru
ture. Assumei. ea
h pla
e p 2 P� is assigned a
arrier set Ap of A and a set a�(p) � TApof ground terms,ii. ea
h transition t 2 T� is assigned an ordered set Xt of A-sorted variables,iii. ea
h ar
 f = (t; p) or f = (p; t) adja
ent to a transition t is assigned aset f � TAp(Xt) of Ap-terms over Xt;iv. ea
h transition t 2 T� is denoted either progressing or quies
ent, andsome progressing transitions are distinguished as fair.Then � is
alled a term ins
ribed over A.In graphi
al representations, the pla
es p and the ar
s (r; s) are ins
ribedby a�(p) and rs, respe
tively. Figures 15.1{15.5, 15.9, and 15.11 show exam-ples. O

urren
e modes and a
tions of a transition are de�ned as follows:

19 A Term Representation of System Nets 8119.2 De�nition. Let � be a term ins
ribed net and let t 2 T� be a transi-tion.i. Let (x1; : : : ; xn) be the ordered set of variables of t and let Mi be the sortof xi (i = 1; : : : ; n). Then Mt :=M1� : : :�Mn is the set of o

urren
emodes of t.ii. Let m 2 Mt. For ea
h adja
ent ar
 f = (p; t) or f = (t; p) and di�erentu; v 2 f assume valu(m) 6= valv(m). Then em is an a
tion of t, de�nedby em(f) = fvalu(m) j u 2 fg.The a
tiongmn dis
ussed above is in fa
t an a
tion of the transition (1).A term-ins
ribed net obviously represents a system net:
x

thinking philosophers

x

(x,y,z) (x,y,z)

eating philosophers

y

z

available

forks

y

z

a b c

f1 f2 f3
pick
upqreturn

x : variable over {a,b,c}

y,z : variables over {f1 ,f2 ,f3 }Figure 19.1. A variant of �15:1019.3 De�nition. Let � be a net that is term-ins
ribed over a stru
ture Asu
h that for all p 2 P� and all di�erent u; v 2 a�(p), valu 6= valv. Then thesystem net of �
onsists of{ the universe A,{ for all t 2 T�, the a
tions of t as de�ned in Def. 19.2(ii),{ the initial state a, de�ned for ea
h pla
e p 2 P� bya(p) := fvalu j u 2 a�(p)g,{ the quies
ent, progressing, and fair transitions, as de�ned by �.As a variant of the term-represented philosophers system �15:9 we
on-sider a more liberal a

ess poli
y to the available forks in �19:1: Assumethat the available forks lie in the middle of the table. Ea
h philosopher p

82 III. Advan
ed Con
epts
u pend.
 for m u with

data of m

u locally

u pend.
 for n

 u with
data of n

v pending
 for m

 v with
data of m

v locally
v pending
 for n

 v with
data of n

w pending
 for m

 w with
data of m

w locally
w pending
 for n

 w with
data of n

m ready to serve u

n ready to serve u

m ready to serve v m ready to serve w

n ready to serve v n ready to serve wFigure 19.2. Elementary system net for request servi
estarts eating by taking any two available forks. Furthermore, p ends eatingby returning the two forks taken at the start. Hen
e we have to retain in-formation about the forks that an eating philosopher uses. To this end, aneating philosopher is represented on pla
e eating philosophers together withthe two forks used.Three variables o

ur in �19:1: x, y, and z. The sort of the variable x is P ,the sort of y and z is G. Assuming the order (x; y; z) on the variables, we getMreturn =Mpi
k up = P �G�G. With the o

urren
e mode m = (b; f1; f3),the a
tion em of pi
k up is given by em(thinking philosophers ; pi
k up) = fbg,em(available forks ; pi
k up) = ff1; f3g, and em(pi
k up; eating philosophers)= f(b; f1; f3)g. This a
tion is enabled at a�19:1 . Its o

urren
e then yields thestep a�19:1 em�! s with s(thinking philosophers) = fa;
g, s(available forks) =ff2g, and s(eating philosophers) = f(b; f1; f3)g.As a further example we
onsider a simple algorithm for deterministi
 dis-tributed request servi
e, as shown in the elementary system net of Fig. 19.2.Three data users u, v, and w are to be served by two data managers m andn in
y
li
 order. Initially, ea
h data user works lo
ally. After some time herequires data from both data managers. Upon being served by both m andn, the data user returns to lo
al work. Ea
h data manager in a
y
le �rstserves u, followed by v and w.Figure 19.3 gives a system net representation of this system. The under-lying stru
ture is(Users ;Managers ;Users �Managers ;Managers �Users ; u; v; w;m; n; su
) (1)

20 Set-Valued Terms 83
x pending

for y

y ready to serve x

(m,u)
(n,u)

(x,m)
(x,n)

u v w

(x,y)

(y,x) (y,succ(x))

(x,y)

(x,m)
(x,n)x x

x with
data of y

x locally

users = {u,v,w}

managers = {m,n}

succ : users users

succ(u) = v

succ(v) = w

succ(w) = u

var x : users

var y : managers

→

Figure 19.3. A distributed request servi
ewith details given in Fig. 19.3. In this example, ar
 ins
riptions su
h as (x;m)are terms in
luding variables (e.g., x) as well as
onstant symbols (e.g., m).20 Set-Valued TermsThe formalism of Se
t. 19 is adequate for many system nets. But there existmore general system nets requiring set-valued terms. In order to spe
ify thisissue more pre
isely, assume an es-net � with a transition t 2 T�, an a
tionm of t, and a pla
e p 2 �t[t� with domain A. Then em(p; t) or em(t; p) is asubset of A, with ea
h single term u 2 pt or u 2 tp
ontributing a single ele-ment, valu(m) 2 A. Now we suggest single terms v that
ontribute a subsetvalv(m) � A. More pre
isely, set-valued
onstant symbols, set-valued fun
-tion symbols, and set-valued variables will be used. We start with motivatingexamples for all three types of terms.As a �rst example we return to the representation of the philosopherssystem in Fig. 15.10. The graphi
al representation there of three philosophersa; b;
 and three forks f1; f2; f3 is reasonable and lu
id. The
orrespondingsystem with say, 10, philosophers and 10 forks would be
ome graphi
allymonstrous and for 100 or more items this kind of representation is
ertainlyno longer adequate.It is better to employ set-valued
onstant symbols P and G. The valuationof P returns the set P = fa; b;
g of philosophers and the valuation of G returnsthe set G = ff1; f2; f3g of forks. Figure 20.1 thus shows a typi
al appli
ationof those symbols P and G.The next example motivates the use of set-valued fun
tion symbols: Allversions of the philosophers system
onsidered so far assigns exa
tly two forksto ea
h eating philosopher. Now we follow the poli
y as represented in �20:2:Philosopher a eats with one fork, f1, and philosopher b with two forks, f2 and

84 III. Advan
ed Con
epts
x

thinking philosophers

x

x x

eating philosophers

 (x)

r(x)

available

forks

 (x)

r(x)

P

c

G
pick
upqreturn

l l

P={a,b,c}

G={f1,f2,f3}

l ,r : P G→
x : variable over P

 = = l (a) r(b) f1
 = = l (b) r(c) f2
 = = l (c) r(a) f3

Figure 20.1. Set-valued
onstant symbols P and G
a re-
turns
forks

b re-
turns
forks

c re-
turns
forks

c thinking
a picks up
forks

c picks up
forks

b picks up
forks

q

q

q

b thinking

a thinking

f1 available

f3 available

f2 available

c eating

a eating

b eatingFigure 20.2. Three philosophers with di�erent numbers of forks

20 Set-Valued Terms 85f3. Philosopher
, �nally, employs all three forks. A
on
ise representation ofthis behavior must be based on the fun
tion � : P ! P(G) with �(a) = fg1g,�(b) = fg2; g3g, and �(
) = fg1; g2; g3g. This fun
tion
an not be des
ribedby a set of fun
tions f : P ! G. So we employ a set-valued fun
tion symbol� of arity P ! P(G), with val�(p) = �(p) for ea
h p 2 P . �20:3 employsthis fun
tion symbol. A typi
al run of this system is given in Fig. 20.4.
x

thinking philosophers

x

x x

eathing philosophers

Φ(x)
available

forks

Φ(x)

P

G
pick
upqreturn

P = {a,b,c}
G = {g1,g2,g3}
Φ(a) = {g1}
Φ(b) = {g2,g3}
Φ(c) = {g1,g2,g3}
x : variable over P

Figure 20.3. System net
orresponding to �20:2The last item to be motivated is the use of set-valued variables. As anexample we
ombine �19:1 and �20:3 into the most liberal a

ess poli
y ofphilosophers to forks: A philosopher
hooses any set of forks ea
h time hestarts eating. This
ase is frequently denoted as the drinking philosopherssystem: The philosophers drink
o
ktails in a bar. The bar essentially
onsistsof a sto
k of bottles. When he wants a
o
ktail, a philosopher takes some ofthe bottles from the sto
k, takes them to his pla
e, mixes a
o
ktail, drinksit, and then returns the bottles. The same philosopher may
hoose a di�erentbottles for ea
h
o
ktail. Figure 20.4 represents this behavior, using a set-valued variable, Y , of sort set of bottles.The most general
ase in
ludes both kinds of terms: Element-valued termssu
h as a, b,
, x, y, z in �19:1 and l(x), r(x) in �20:1, and set-valued termssu
h as P , G, �(x) in �20:3, and Y , (x; Y) in �20:5. For the sake of uniformmanagement of both
ases, the evaluation valu(m) of terms u will be slightlyadjusted, yielding a set setvalu(m) in any
ase:20.1 De�nition. Let � be a term ins
ribed net over a stru
ture A.i. Let p 2 P� and let u 2 a�(p). Thensetvalu = (fvalug if the sort of u is Apvalu if the sort of u is P(Ap).

86 III. Advan
ed Con
epts
T,c

T,b

T,a

T,c

T,b

T,a

with T : thinking philosophers t : pick up
A : available forks r : return
E : eating philosophers

A,g3

A,g1

A,g2A,g2

A,g1

A,g3 A,g3

A,g2

A,g1

E,b

E,c

E,at,a

t,b

t,c r,c

r,a

r,b

Figure 20.4. Con
urrent run of �20:3
x

thinking philosophers

x

(x,Y) (x,Y)

drinking philosophers

Y
available

bottles

Y

P

G
pick
upqreturn

P = {a,b,c}
G = {b1,b2,b3}

x : variable over P
Y : variable over the
 subsets of G

Figure 20.5. Drinking philosophers

20 Set-Valued Terms 87ii. Let f = (p; t) 2 F� or f = (t; p) 2 F� , let u 2 f , and let m be anargument of Xt. Thensetvalu(m) = (fvalu(m)g if the sort of u is Apvalu(m) if the sort of u is P(Ap).For example, in�20:3 we obtain setvalx(a) = fag for a 2 P and setval�(x)(b) =fg1; g2g.The a
tions of a term ins
ribed net with both element-valued and set-valued terms is now de�ned as follows:20.2 De�nition. Let � be a term ins
ribed net, let t 2 T�, and let m 2Mt.For ea
h adja
ent ar
 f = (p; t) or f = (t; p) and di�erent u; v 2 f assumesetvalu(m) \ setvalv(m) = ;. Then em is an a
tion of t, de�ned by em(f) =Su2f setvalu(m).As an example, the one-element ordered set fxg is the set of variables ofpi
k up in �20:3. Hen
e b is an o

urren
e mode of pi
k up. The a
tion eb isthen de�ned by eb(thinking philosophers) = eb(eating philosophers) = fbg andeb(available forks) = ff2; f3g. Likewise, let (x; Y) be the set of variables of tin �20:5. Then m = (b; ff1; f3g) is an o

urren
e mode of pi
k up. Then emis de�ned by em(thinking philosophers) = fbg, em(available bottles) = ff1; f3gand em(drinking philosophers) = (b; ff1; f3g). A further o

urren
e mode of�20:5 was, e.g., (b; ff2g).20.3 Proposition. Let � be a term ins
ribed net, let t 2 T�, let m be ana
tion of t, and let a be a state of �. For all (r; s) 62 F� let rs := ;.i. m is enabled at a i�, for ea
h p 2 P�, Su2pt setvalu(m) � a(p) and(Su2tp setvalu(m) nSu2pt setvalu(m)) \ a(p) = ;.ii. Let a m�! b be a step of �. Then for ea
h p 2 P�, b(p) = (a(p) nSu2pt setvalu(m)) [Su2tp setvalu(m).Proof. i. fvalu(m) j u 2 tp n ptg = Su2tp setvalu(m) nSu2pt setvalu(m) byDef. 20.1(ii).ii. By Def. 20.1(ii) and Proposition 16.4. utThe system net of a term-ins
ribed net with both element-valued andset-valued terms is de�ned as a
onservative extension of the
orrespondingnotion in Se
t. 19.3 for element-valued terms:20.4 De�nition. Let � be a net that is term-ins
ribed over a stru
ture A,su
h that for all p 2 P� and all di�erent u; v 2 a�(p) holds setvalu\setvalv =;. Then the system net of �
onsists of{ the universe of A,{ for all t 2 T�, the a
tions of t as de�ned in Def. 20.2,

88 III. Advan
ed Con
epts{ the initial state a, de�ned for ea
h pla
e p 2 P� by a(p) := Su2a�(p) setvalu;{ the quies
ent, progressing and fair transitions, as de�ned by �.Figures 20.2 and 20.3 in fa
t show system nets.21 Transition Guards and System S
hemata21.1 Transition guardsAs in sequential programs, a de
ision between alternative a
tions frequentlydepends on data. For example, if an integer x and a data item y are pro-du
ed independently, then pro
essing y may
ontinue in either of two ways,depending on whether x is positive or negative.An intuitively
onventional representation for this stru
ture was
x

y
y

yy

y
x

x >0x

x<0

(1)But so far system nets do not in
lude transition ins
riptions su
h as \x � 0"or \x < 0". However, su
h ins
riptions
an easily be augmented as shorthandsto avoid loops. The
lassi
al representation for (1) then was
x

y
y

yy

y
x

x

0 1 2 3 ...

-1-2-3 ...

x

x

x

x (2)
Generally, ea
h transition t of a term-ins
ribed net � may be ins
ribed bya term u that involves variables of t only. Ea
h o

urren
e mode m then mustyield a truth value valu(m) 2 ftrue; falseg: An interleaved or
on
urrent runthen must
onsist only of a
tions em with valu(m) = true.This
on
ept is so obvious that we refrain from a formal de�nition.Transition guards are quite useful, as in the following example of thedistributed predi
ate meeting problem.This slightly abstra
t problem assumes a fun
tion f : N ! N and apredi
ate Q � N. The task is to �nd any i 2 N su
h that f(i) 2 Q. (\Q holdsat f(i)").A sequential solution is shown in �21:1, testing Q(f(1)); Q(f(2)); : : : . Thissolution is turned to a distributed solution in �21:2 for any n 2 N. Intuitively,n
on
urrent \strands of
omputation" try to �nd some proper i 2 N.

21 Transition Guards and System S
hemata 89
1 y = f(x) Q(y)

¬ Q(y)
fct f:
fct Q:
var x,y: nat

nat→nat
nat→ {true,false}

x

x x

finished
(x,y) x(x,y)

(x,y)x+1Figure 21.1. Sequential solution to the predi
ate holding problem
1 ... n y = f(x) Q(y)

¬ Q(y)
fct f:
fct Q:
var x,y: nat

nat→nat
nat→ {true,false}

x

x x

finished
(x,y) x(x,y)

(x,y)x+nFigure 21.2. Distributed solution to the predi
ate holding problemThis solution raises the problem of \stopping" all strands after the su

essof one strand. In a truly
on
urrent setting this is an amazingly involvedquestion.21.2 System s
hemataDi�erent term-ins
ribed Petri nets may operate with the same terms. As anexample, a variant of �20:1 may operate withP = fa; bg l(a) = r(b) = f1G = ff1; f2; f3; f4g r(a) = f2l; r : P ! G l(b) = f3 (3)The net with all its ins
riptions may remain in this
ase. There are just theinvolved symbols P , G, l, and r that are evaluated in di�erent ways. Theins
ribed net is just a s
hema for any system that works with two sorts ofitems,
alled philosophers and forks, two
onstant sets P and G of philoso-phers and forks, respe
tively, and two fun
tions that assign a fork to ea
hphilosopher. This system s
hema is represented in Fig. 21.3.Generally, a system s
hema is a term-ins
ribed net with the underlyingstru
ture not entirely �xed. Thus, a system s
hema represents a set of systemnets. A representation of a system s
hema de
lares some sorts (domains) andsome
onstants, fun
tions, and variables over standard sorts, de
lared sorts,
artesian produ
ts, or powersets of sorts. We furthermore assume standardsorts su
h as the natural numbers nat or the truth values bool, together withthe usual operations. Some additional requirements may fo
us the intendedinterpretations.

90 III. Advan
ed Con
epts
x

thinking philosophers

x

x x

eating philosophers

l (x)

r(x)

available

forks

l (x)

r(x)

P

G
pick

up
qreturn

sorts phils, forks

const P : set of phils

const G : set of forks

fct l , r phils forks

var x : phils

→Figure 21.3. A system s
hemaMost distributed algorithms, as
onsidered in the forth
oming
hapters,will be represented as system s
hemata.

IV. Case Studies
A broad
hoi
e of distributed algorithms, modeled as system nets, will bedis
ussed in this
hapter, by analogy to the algorithms modeled as elementarysystem nets in Chap. II.We start out with some extensions of elementary system models fromChap. II, followed by the paradigm of
onstraint programming whi
h is parti
-ularly amenable to distributed exe
ution. Then follow algorithms that orga-nize distributed database updates,
onsensus,
ommuni
ation over unreliable
hannels, and anonymous networks.22 High-Level Extensions of Elementary Net ModelsMany of the algorithms
onsidered in Chap. II
an naturally be general-ized, mainly to aspe
ts of data handling, and thus are adequately modeledas system nets. For the simplest produ
er/
onsumer system this has been
arried out already for the motivating examples of Se
t. 15. Here we startwith slightly more involved produ
er/
onsumer systems.22.1 Produ
er/
onsumer systemsThe introdu
tory example �1:1 was extended in Figs. 9.1 and 9.2 from oneto two bu�er
ells, and in �15:5 from
ontrol to data aspe
ts. Here we extend�15:5 furthermore to the
ase of n bu�er
ells, with n any natural number.In analogy to �9:1 and �9:2, bu�ers
an be organized sequentially or
on
ur-rently.In order to des
ribe (by analogy to Se
t. 9.1) a system with a sequentialbu�er of some length n, the system s
hema of Fig. 22.1 employs pairs (a; i)representing item a to be stored at the i-th bu�er
ell. A
tion forward for-wards items from
ell i to
ell i + 1. Any reasonable interpretation of thissystem s
hema should evaluate the
onstant n as a natural number and assignnatural numbers to the variable i. The addition symbol + is to be interpretedas addition in N.It might be worth remarking that in
on
urrent runs of this system, thea
tion forward may
on
urrently o

ur in di�erent modes (e.g., mode x = a,i = 1 and x = b, i = 2).

92 IV. Case Studies
ready to
deliver

ready to
consume

ready to
produce

ready to
remove

produce
q

deliver

remove

consume

x xxx

1..n

(x,1) (x,n)

filled
buffer
cells

empty
buffer
cells

1 n
forward

(x,i) (x,i+1)

i i+1

sort data
const n : nat
fct + : addition in nat
var x : data
var i : natFigure 22.1. A sequential bu�er with n
ells

ready to
deliver

ready to
consume

ready to
produce

ready to
remove

produce
q

deliver

remove

consume

x xxx

1..n

(x,i) (x,i)

i i

filled
buffer
cells

empty
buffer
cells

11

i

i+1 i

i+1

consumer’s
counter

producer’s
counter

sort data
const n : nat
fct + : addition mod n in nat
var x : data
var i : natFigure 22.2. A parallel bu�er with n
ells

22 High-Level Extensions of Elementary Net Models 93A parallel version of a bu�er by analogy to Fig. 9.3 is shown in Fig. 22.2:The produ
er employs a
ounter for sele
ting the next bu�er
ell. If this
ellis empty (
orresponding token in empty bu�er
ells), an item may go to this
ell by o

urren
e of deliver . The
onsumer likewise employs a
ounter tosele
t the next bu�er
ell for removal of an item.22.2 De
ent philosophersWe are now behind an extension of �15:10 that implements de
ent behaviorby philosophers. To this end the pla
e priority represents ea
h fork by thepair of its potential users, with the next user mentioned �rst. For example,(A;B) denotes the fork shared by A and B, with A to use the fork next.(B;A) denotes the same fork, but with B as its next user.
A B C D E

(A,E)
(B,C)(D,C)
(D,E)

(A,B)

priority

. . . f5f1

thinking philosophers

eating philosophers

sort phils, forks
const A, ... ,E : phils
const f1 , ... ,f5 : forks

fct ,r : phils → forks
var x,y,z : phils
 (A) = f5 , (B) = f1 , ... , (E) = f4
r(A) = f1 , ... ,r(E) = f5

l

l l l

xx

x x

 (x)l

r(x)
 (x)l

r(x)

available

forks

(x,z)
(x,y)

(z,x)
(y,x)

Figure 22.3. De
ent philosophersNow �21:3 is given a new initial state and extended by the pla
e priorityto represent ea
h fork's next user, as in Fig. 22.3. In the state shown there,A and D are the philosophers to start eating, and in fa
t the only behaviorpossible in �22:3 is shown in Fig. 10.3.22.3 Asyn
hronous sta
kA
ontrol s
hema for an asyn
hronous sta
k was suggested in Se
t. 11. Thiswill now be extended to
over also data
ow. By analogy to Fig. 11.1
ow

94 IV. Case Studies
values

two
storing

 quiet

storing
no

value

predecessor
from

successor
to

to
predecessor

from
successor

ai–1 ai

bi–1 bi

vi

(xi,xi–1) (xi,xi–1)

xi xi–1

x x

sort value

const v : value i

var x ,x : valuei-1 i

Figure 22.4. Module Miof values is represented in Fig. 22.4 for a single module, Mi, with an a
-tually stored value, vi. A value vi�1, pushed from the prede
essor moduleMi�1 (a
tion ai�1) is intermediately stored together with vi and then storedpersistently in Mi, with vi
oin
idently pushed down to module Mi+1 (a
-tion ai). Correspondingly, if vi is popped up (a
tion bi�1), the module Miremains intermediately without any stored value. Then Mi pops up a newvalue fromMi+1 (a
tion ai). Figure 22.5 shows a sequen
e of four modules, ofwhi
h Fig. 11.2 shows the
orresponding
ontrol stru
ture. As a
onvention,we assume initially an unde�ned value ? stored in ea
h
ell.
push

top

pop

bottomquiet1 quiet2 quiet3 quiet4

a0 a1 a2 a3 a4

b0 b1 b2 b3 b4

⊥
x

x1 x0

(x1,x0) (x1,x0)

⊥
x

x2 x1

(x2,x1) (x2,x1)

⊥
x

x3 x2

(x3,x2) (x3,x2)

⊥
x

x4 x3

(x4,x3) (x4,x3)

x x x

sort value

const : value

var x0 , x1 , x2 , x3 , x4 , x : value

q

q

⊥

⊥

Figure 22.5. Asyn
hronous sta
k with
apa
ity for four itemsThe regular stru
ture of�22:5 allows a parameterized representation of the\inner" modules M2 andM3 and furthermore a generalization to n modules,as in Fig. 22.6.

22 High-Level Extensions of Elementary Net Models 95

a

a

a

b

b

b

0

0

n

n

(1,z,y) (n,y,x)
(i,y,x) (i+1,z,y)

push

pop

(1,z)
(i+1,z) (i,x)

(n,x)

(1,z)
(i+1,z) (i,z)

(n,⊥)

1 i i+1 n

(1,⊥)
...(n,⊥)

q

q

storing two values

from
predecessor

quiet

storing no value

sort value
const ⊥ : value
const n : nat

var x, y, z : value
var i : natFigure 22.6. Asyn
hronous sta
k with
apa
ity for n items

96 IV. Case Studies23 Distributed Constraint ProgrammingThe paradigm of
onstraint programming advo
ates the
on
ept of start-ing out with a broad domain of
andidates for a problem's solution. Thisdomain then is
onstrained during a program's exe
ution. Elements of thedomain may be extinguished independently of ea
h other. Hen
e
on
urrentexe
ution is quite natural in
onstraint programming. The distributed sieveof Eratosthenes, as dis
ussed in Se
t. 15, is a typi
al
onstraint program.This se
tion starts out with a slight generalization of the distributed Er-atosthenes algorithm, followed by distributed
onstraint algorithms for maxi-mum �nding, sorting, shortest paths,
onne
tivity, and
onvex hull of graphsand polygons.23.1 Distributed relative prime numbersIn a set M � N of natural numbers, m 2 M is relatively prime in M i� mis no produ
t of any two numbers a; b 2 M n f1g. (Obviously, m is a primenumber if M is an initial part M = f1; : : : ; ng of the integers). The set ofrelatively prime numbers is apparently unique for ea
h set M � N. It is
omputed by the distributed
onstraint program �23:1. A spe
ial
ase of thisalgorithm was �15:12.
const M : set of nat

var x, y : nat
MA x divides y

x y

xFigure 23.1. Distributed sieve of Eratosthenes23.2 Distributed maximum �nding�23:2 provides a distributed
onstraint program to
ompute the maximalelement of any �nite set of numbers. The fun
tion symbol max denotes thefun
tion that returns the greater of two argument numbers. Ea
h o

urren
eof transition t
onsiders two elements and eliminates the smaller one.The algorithm terminates with one element at pla
e A, whi
h then is themaximal element.
const M : set of nat

fct max : nat × nat → nat
var x, y : nat

MA t

x y

max(x,y)Figure 23.2. Distributed maximum �nding

23 Distributed Constraint Programming 9723.3 Distributed sortingAssume a set of n indexed
ards, ea
h holding a
ontent, i.e., an alphabeti
string and its a
tual index, i.e., a natural number. Initially ea
h number1; : : : ; n is the index of exa
tly one
ard. The task is to re-arrange the in-di
es su
h that eventually the alphabeti
 order of
ontent
oin
ides with thenumeri
al order of indi
es.�23:3 provides a distributed solution to this problem: Essentially, the in-di
es of two
ards are swapped in
ase the
ontext order disagrees with theindex order. The algorithm terminates with the index
ards holding sortedindi
es.
const M : set of (strings × nat

〈 : alphabetic order on strings

< : order on nat

var a,b : strings

var m,n : nat

M

A

〈
<

a
m

b
n

t
(a,m
(b,n

)
)

(a,n
(b,m

)
)Figure 23.3. Distributed sorting23.4 Distributed shortest pathAssume a �nite, dire
ted graph with ea
h ar
 labeled by some non-negativenumber,
alled its weight. Let u a�! v denote an ar
 from node u to node vwith weight a. Ar
s vi�1 ai�! vi(i = 1; : : : k) form a path from v0 to vk withweight a1 + : : :+ ak. For any two nodes u and v, the distan
e from u to v isin�nite in
ase there exists no path from u to v. Otherwise it is the smallestof all weights of paths from u to v. The task is to
ompute for ea
h pair (u; v)of nodes the distan
e from u to v.�23:4 shows a distributed solution to this problem.M denotes the initiallygiven graph, representing ea
h ar
 u a�!v as (u; v; a). If no ar
 from u to v ex-ists, M
ontains the triple (u; v;1). Transition t repla
es the a
tual distan
e
 of an entry (u;w;
) by a smaller distan
e a+b in
ase a
orresponding pathfrom u along some node v to node w was found. The algorithm terminateswith triples (u; v; a) at p, giving the distan
e a to the pair (u; v) of nodes.

sort nodes

sort arcs = nodes × nodes × nat

const M : set of arcs

var u,v,w : nodes

var a,b,c : nat ∪ {ω}

M c > a+b t

(u,
(v,
(u,

v,
w,
w,

a)
b)
c)

(u,
(v,
(u,

a)
b)
a+b)

v,
w,
w,Figure 23.4. Distributed shortest path

98 IV. Case Studies23.5 Distributed
onne
tivityA �nite undire
ted graph is said to be
onne
ted if ea
h two nodes u and vare linked (along several other nodes) by a sequen
e of ar
s.�23:5 provides a distributed
onstraint program to de
ide whether or nota given graph is
onne
ted. The
onstant M
onsists of the singleton setsfu1g; : : : ; fukg of the graph's nodes u1; : : : ; uk. Ea
h ar
 linking two nodesu and v is in the net represented as (u; v) or as (v; u).Transition t
onstru
ts sets of nodes that represent
onne
ted subgraphs.If t
an no longer be enabled, the
ontents of A de
ide the problem: Thegraph G is
onne
ted if and only if A �nally
ontains one set (whi
h then
onsists of all nodes of G).
sort nodes

sort subgraph = set of nodes

sort arcs = nodes × nodes

const M : setof singletons of subgraphs

const N : set of arcs

var X,Y : set of nodes

var x,y : nodes

M NA

t

∈
∈

x
y

X
Y

X,Y

∪X Y

(x,y)

Figure 23.5. Distributed
onne
tivity23.6 Distributed
onvex hullA polygon in the plane is a �nite sequen
e a0 : : : an of points in the plane. Apolygon de�nes an area with edges (a0; a1); (a1; a2); : : : ; (an�1; an); (an; a0).As an example, Fig. 23.6 outlines the area of the polygon ab
d. The pointse and f are situated inside and outside this area, respe
tively. A polygon is
onvex if ea
h edge linking any two points is entirely inside the polygon'sarea. For example, in Fig. 23.6 the outlined polygon ab
d is
onvex, whereasaeb
 is not.Ea
h �nite set of P of points in the plane is assigned its
onvex hull C(P),whi
h is the smallest
onvex polygon
ontaining them all. For example, thepolygon ab
d des
ribed above is the
onvex hull C(P) for P = fa; b;
; d; egor P = fa; b;
; dg, but not for P = fa; b;
g or P = fa; b;
; d; fg. Obviously,the points of C(P) are elements of P . Furthermore, a point p 2 P is not inC(P) i� it is stri
tly inside some triangle made of three points of C(P).�23:7 provides a distributed
onstraint program to
ompute the
onvexhull of any �nite set P of points. The pla
e A initially
arries all edges betweennodes of P . The predi
ate inside(a; b;
; d) returns true i� the point d is inside

23 Distributed Constraint Programming 99the triangle ab
. Hen
e transition t eliminates all edges
onne
ted to somepoint inside a triangle. The algorithm terminates with the edges of the
onvexhull of P at pla
e A.
a

b

c

d

e fFigure 23.6. A polygon
sort point

const P : set of points

fct inside : point × point × point × point → bool

var a1,a2,a3,a4,b1,b2,b3,b4 : point

P × P inside(a1,a2,a3,a4)A t

(a1,b1) (a3,b3)
(a2,b2) (a4,b4)

(a1,b1) (a3,b3)
(a2,b2)

Figure 23.7. Distributed
onvex hull23.7 Longest upsequen
e problemLet � = a1 : : : an be a sequen
e of n numbers. Let 1 � i1 < i2 < : : : <ik = n be an in
reasing sequen
e of k indi
es of �. Then (ai1 ; : : : ; aik) is anupsequen
e of � i� ai1 < ai2 < : : : < aik (noti
e that aik = an). Clearly thereexists a (not ne
essarily unique) longest upsequen
e of �. Let up(�) denoteits length.The upsequen
e length problem is the problem of
omputing up(a1 : : : an)for ea
h index n 2 N of any (in�nite) sequen
e a1; a2; : : : of numbers.�23:8 solves this problem. Its essential
omponent is pla
e q holding triples(n; x; j). Ea
h su
h triple states that the value of an equals x and thatup(a1 : : : an) � j. A
tion t generates those triples by nondeterministi
ally
hoosing the value x, pi
king the next index n from pla
e p and initializing jby 1. \Better" values are
omputed by u: if the a
tual value of up(a1 : : : an) issmaller than or equal to up(a1 : : : am) for a pre�x a1 : : : am of a1 : : : an, thenup(a1 : : : an) is at least up(a1 : : : am) + 1 .

100 IV. Case Studies
m
y
i

<
<
<

n
x
j

1

n

n+1

(n,x,1)

p
t

q
u

(n,x,j+1)
(m,y,j)

x,
y,

i)
j)

(n,
(m,

var n,m,x,y,i,j: natFigure 23.8. Longest upsequen
e24 Ex
lusive Writing and Con
urrent ReadingAs a variant of the mutual ex
lusion algorithms of Se
t. 13, here we
onsiderthe
ase of
onditional ex
lusive and
on
urrent a

ess to a s
ar
e resour
e,e.g., a variable that may be updated only ex
lusively by one of its writerpro
esses, but be read
on
urrently by its reader pro
esses.24.1 An unfair solutionFigure 24.1 shows a �rst approa
h for an algorithm that organizes this versionof mutual ex
lusion: Any of a set W of initially quiet writer pro
esses mayspontaneously get pending (quies
ent a
tion a), thus applying for a moveto writing. Likewise, ea
h of a set R of initially quiet reader pro
esses mayspontaneously get waiting (quies
ent a
tion d), thus applying for a moveto reading. There is a
ontrol token for ea
h reader pro
ess whi
h must beavailable upon its move to reading (transition e). All su
h
ontrol tokensmust
oin
idently be available for a writer pro
ess to move from pending to
a

b

c

d

e

f

pending

writingquiet

waiting

reading quiet

control

W R

R

qq

x

x

x

x

x

x
y

y

y

y

y

y
y

y

R

R

sorts writer, reader

const W : set of writers

const R : set of readers

var x : writers

var y : readersFigure 24.1. An unfair solution

24 Ex
lusive Writing and Con
urrent Reading 101writing (transition b). The
ontrol tokens in fa
t guarantee the required safetyproperty: Whenever a writer pro
ess is writing, then no other writer pro
essis writing and no reader pro
ess is reading.However, evolution, as dis
ussed in Se
t. 13.1, is not guaranteed for writerpro
esses, and further more
annot be a
hieved by the assumption of fairness.24.2 A fair solutionEvolution has been a
hieved in �24:2, with an additional syn
hronizing pla
e,key, and the re�nement of pending and of waiting into two
onse
utive pla
es,respe
tively. key indi
ates that no writer pro
ess is at pend2, and key is a side
ondition for ea
h reader pro
ess to move to wait2 (with transition f). Threetransitions, b, f , and g are assumed to be fair.
a

b

c

d

e

f

g

h

pend2pend1

writingquiet

wait2

reading

wait1

quiet

control

key

W R

R

qq

x

x

x

x

x

x

x x

yy

y

y

y

y

y

y

y
y

R

R

ϕ ϕ

ϕ

sorts writer, reader

const W : set of writers

const R : set of readers

var x : writers

var y : readersFigure 24.2. Ex
lusive writing and
on
urrent reading24.3 A variant of the solution�24:2 prevents
ompetition among reader pro
esses by a \private"
ontroltoken for ea
h of them. As a generalization we may assume a set U of
ontroltokens, independent from the set R of reader pro
esses (with jU j < jRj), su
hthat ea
h reader pro
ess must get hold of any su
h u 2 U in its step fromwait2 to reading. We furthermore may want to redu
e the number of fairtransitions. Figure 24.3 shows a solution with two fair transitions, b and f .

102 IV. Case Studies
a

b

c

d

e

f

g

h

pend2pend1

writingquiet

wait2

reading

wait1

quiet

control

key

W R

U

qq

x

x

x

x

x

x

x x

yy

z

z

y

y

y

(y,z)

(y,z)
y

U

U

ϕ ϕ

sorts writer, reader, token

const W : set of writers

const R : set of readers

const U : set of tokens

var x : writers

var y : readers

var z : tokensFigure 24.3. A variant to �24:225 Distributed RearrangementThe rearrangement problem assumes a left and a right site that initially hold�nite, nonempty, disjoint sets L and R, respe
tively, of natural numbers.Those sets are to be rearranged su
h that eventually the left site holdsa set L1 of small numbers and the right site a set R1 of large numbers.Furthermore it is assumed that:L [R = L1 [R1 (set preservation) (1)jLj = L1 and jRj = R1 (load balan
e) (2)max(L1) < min(R1) (rearrangement) (3)A distributed algorithm is to be
onstru
ted that does without additionalstorage for the two sites. Su
h an algorithm will be derived in the sequel, ina sequen
e of re�nement steps.25.1 First steps towards a solutionFigure 25.1 shows a �rst solution to this problem. This solution is not dis-tributed, however, be
ause o

urren
e of a requires data-dependent syn
hro-nization among the two sites; hen
e the algorithm is not really distributed.Data-dependent syn
hronization is avoided in the solution �25:2, as any val-ues stored at the two sites may engage in o

urren
es of a. But this algorithmis not guaranteed to terminate: If in a state s, the a
tion a is enabled in modem with m(x) < m(y), the in�nite sequen
e s m�! s m�! : : : is a feasonable in-terleaved run.

25 Distributed Rearrangement 103
const L,R : set of nat
var x,y : nat

L R = ∩ ∅left L R

a

right

x y

x>y

xyFigure 25.1. Non-distributed rearrangement
const L,R : set of nat
var x,y : nat
fct min,max : nat × nat → nat

L ∩ R = ∅left L R

a

right

x y

min(x,y) max(x,y)Figure 25.2. Non-terminating rearrangement25.2 A handshake solutionThe following step gives ea
h site
ontrol over the next value to be o�ered for
omparison: The a
tual pla
es of �25:3 always hold exa
tly one token, l andr, respe
tively, to be
ompared next or to be repla
ed by a \better" value.This algorithm still fails to terminate, but termination
an be a
hieved if ea
h
omparison of values engages at least one \better" value. This is a
hieved in�25:4: Ea
h
ompared value is repla
ed by a better a
tual value from therespe
tive storage. Comparison of values requires at least one newly
hosena
tual value. Hen
e the algorithm terminates in a state where no site has too�er a fresh a
tual value. �25:4 is hen
e a perfe
t solution with handshake
ommuni
ation.
const l ,r : nat
const L,R : set of nat
var x,y : nat
fct min,max : nat × nat → nat
(L ∪ {l }) ∩ (R ∪ {r}) = ∅

x x

x x

xy

y y

yy

min(x,y) max(x,y)left
storage

actual
left

actual
right

right
storage

L-l x>y l r x>y R-r

Figure 25.3. Rearrangement with distinguished
andidates25.3 A distributed solutionThe handshake solution �25:4 now serves as a basis for a distributed solution.To this end, ea
h of the three
ommuni
ating transitions is repla
ed by twomessage-passing transitions, as in �25:5. This algorithm
an apparently be

104 IV. Case Studies

const l ,r : nat
const L,R : set of nat
var x,y : nat
fct min,max : nat × nat → nat
(L ∪ {l }) ∩ (R ∪ {r}) = ∅

L-l R-rx>y x>y

actual
left l

compared
left

compared
right

actual
right

r

left
storage

right
storage

x
x

x

x

x

x

y

y

y
y y

y

y

min(
x,y

)

m
in

(x
,y

)
min(x,y)

max(x,y)

m
ax

(x
,y)

m
ax

(x
,y

) x

Figure 25.4. Distributed handshake rearrangement

const l ,r : nat
const L,R : set of nat
var x,y,z : nat
fct min,max : nat × nat → nat
(L ∪ {l }) ∩ (R ∪ {r}) = ∅
∃ m ∈ L : max(l ,m) = m

L-l

R-r

y>x

x>y

rl

round end

reaction

new value

new value

reaction

round end

left
storage

right
storage

compared
right

actualr

compared
left

actuall min(x,z)

max(z,y)

max(x,z)

min(x,z) max(x,z)min(y,z)

xx

x
xx

x

y

y

yy

y

y
y

y

y

y

z

zz

z

z

z z

z
z

z

z

z

Figure 25.5. Distributed message passing rearrangement

26 Self Stabilizing Mutual Ex
lusion 105
on
eived as a variant of the
rosstalk algorithm, �12:5. The algorithm maywork
on
urrently to the rise of the sets to be rearranged: There may betransitions that
ontinuously drop new elements into the left and the rightstorage during the rearrangement operations. To start
omputation, assumeat least one m 2 L with max(l;m) = m. The symmetri
al argument, at leastone m 2 R with max(r;m) = r, would suÆ
e, too.26 Self Stabilizing Mutual Ex
lusion26.1 Self stabilization of mutual ex
lusionA set of pro
esses is assumed that in
lude parti
ular lo
al states
alled
rit-i
al states. A global state is said to guarantee mutual ex
lusion if at ea
h ofits rea
hable states, at most one pro
ess is
riti
al. An algorithm is to be
on-stru
ted whi
h eventually leads to a state that guarantees mutual ex
lusion.As a parti
ular diÆ
ulty, pro
esses may o

asionally exe
ute irregular steps.Su
h a step may result in a state that does not guarantee mutual ex
lusion.The intended algorithm is supposed to be self stabilizing in this
ase, i.e., itshould eventually lead to a state that again guarantees mutual ex
lusion.In the sequel we solve this problem for sequen
es of tightly
oupled, se-quential pro
esses.26.2 Self stabilizing mutual ex
lusion for a sequen
e of fourpro
essesA stabilizing pro
ess
onsists of four states,
riti
al, right, waiting, and leftthat are visited in a
ir
le, as in
critical

a

left waiting

c

right
b

d

(1)The four steps of (1) are
alled regular steps. Any other step between twodi�erent lo
al steps is irregular ; hen
e (1) exhibits eight irregular steps, notexpli
itly represented.Now assume four stable pro
esses, tightly
oupled in a sequen
e as inFig. 26.1. A stable pro
ess at right or at left is pending for a syn
hronizedstep with its right or left neighbor, respe
tively. A stable pro
ess is waitinguntil its right neighbor has rea
hed its left state. A state a � P�26:1 is feasibleif ea
h stabilizing pro
ess
ontributes exa
tly one lo
al state, i.e., a is formed

106 IV. Case Studies
b0

c1 a1 r1

l1 c1
w1

b1

c2
a2 r2

l2 c2
w2

b2

c3
a3 r3

l3 c3
w3

b3

c4
a4 r4

l4 c4
w4 b4Figure 26.1. A sequen
e of four stable pro
essesa = fa1; : : : ; a4g with ai 2 f
i; ri; wi; lig for i = 1; : : : ; 4. Ea
h regular orirregular step, as de�ned above, retains feasibility of states.Starting from any feasible state, �26:1 eventually rea
hes the statefl1; : : : ; l4g. Mutual ex
lusion is guaranteed from then on, i.e., at most onepro
ess i is
riti
al (i.e., at
i) at ea
h state that is rea
hable from fl1; : : : ; l4g.Formal des
ription and proof of those properties is postponed to Se
t. 82.26.3 Self stabilizing mutual ex
lusion for a sequen
e of pro
essesFigure 26.2 shows the self stabilizing mutex algorithm for any sequen
e of selfstabilizing pro
esses. Initially, some pro
esses are
riti
al, waiting, at right,or at left, respe
tively. Irregular steps are again not represented expli
itly.

critical

min

d

min

left

maxmax

waiting

max

max

e

rightx x

a

b

c

f

r(x)

r(x)

r(x)

r(x) x
x

x

x

sort proc

const min, max : proc

T, U, V, W : set of proc

fct r : proc \ {max} → proc

var x, y : proc

x ≠ y → r(x) ≠ r(y)

∃ n ∈ N : T ∪ U ∪ V ∪ W =

{ ri(min) | 0 ≤ i ≤ n }

T U

W V

Figure 26.2. Self stabilizing mutual ex
lusion in a sequen
e of pro
esses

V. Case Studies Continued:A
knowledged Messages
In networks of
ommuni
ating agents, the senders of messages frequentlyexpe
t a
knowledgments from their re
eivers: Transmission lines may be un-reliable or the sender may prevent message overtaking or may wish to wait forfurther a
tion until a set of messages has rea
hed their respe
tive destination.We start with two
ommuni
ation proto
ols, i.e., distributed algorithmsthat dete
t and repair faulty transmission. Next we dis
uss algorithms thatorganize a
knowledgments of messages to neighboring re
eivers in a network.Finally we
onsider the asymmetri
al
ase of a master pro
ess that obtainsa
knowledgments or refusals from a set of slave pro
esses.27 The Alternating Bit Proto
olIn a sequen
e of steps, a distributed algorithm will be derived that dete
tsloss of messages and enfor
es transmission of
opies of lost messages.27.1 Unreliable transmission linesA
ommuni
ation proto
ol establishes reliable message passing along unreli-able transmission lines. There exist various forms of unreliability, in
ludingloss,
hange of order, or falsi�
ation of messages. This se
tion will assumethat messages may get lost, but are never falsi�ed. O

asionally their orderis assumed not to
hange. Only �nitely many
onse
utive messages may getlost, however. Figure 27.1 outlines the assumptions des
ribed above.

send
message

loss
receive
message

x x

x

ϕ
transmission
linex x

sort message
var x : message
transmission line in fifo modeFigure 27.1. The transmission line

108 V. Case Studies Continued: A
knowledged MessagesA sender and a re
eiver are assumed with a
tions send messages and re-
eive messages, respe
tively. Fairness of re
eive messages ex
ludes an in�nitesequen
e of lost messages. Reliable message passing is guaranteed if an in-stan
e of ea
h sent message will eventually rea
h its destination. The sendermay repeat lost messages to this end, and the re
eiver may return re
eiptsto the sender along another transmission line. Of
ourse, this line may beunreliable, too.In a sequen
e of steps, an algorithm will be derived that establishes reli-able message passing along the unreliable transmission line of Fig. 27.1.27.2 A �rst solutionFor the sake of simpli
ity, in addition to the unreliable transmission line ofFig. 27.1, we temporarily assume a reliable transmission line from the re
eiverto the sender. As a very �rst idea, the re
eiver may a
knowledge re
eipt ofea
h message, as shown in Fig. 27.2. However loss of a message blo
ks thesystem. So, the sender may repeat a message, as in Fig. 27.3. In
ontrast toSe
ts. 16 and 19, in this se
tion we allow many identi
al tokens at a pla
e. Inparti
ular, the transmission line may hold several indistinguishable tokens.
send
message

loss receive
message

x x

x

send receiptreceive receipt

ϕ

ready to
send

message

ready to
send

receipt

transmission
line

transmission line

x x

sort message
var x : message
transmission lines in fifo modeFigure 27.2. Sending of re
eiptsThis algorithm fails in two respe
ts, however: The re
eiver is unable todistinguish a new, original message from
opies of old messages, and thesender may entirely ignore the arrival of re
eipts, thus forever repeating
opiesof a message, instead of eventually re
eiving its re
eipt.

27 The Alternating Bit Proto
ol 109
send
message

loss receive
message

x

x x

x

send
copyx

x

x

x

send receiptreceive receipt

ϕ

ready to
send

message

waiting for
receipt ready to

send
receipt

transmission
line

transmission line

x x

sort message
var x : message
transmission lines in fifo modeFigure 27.3. Repetition of messages
send
message

loss receive
message

(x,n)

(x,n) (x,n)

n nn (x,n)
send
copy(x,n)

(x,n)

(x,n)

n+1 (x,n) n+1 n

send receiptreceive receipt
ϕ

n n

ϕ

1 id for
next

message

waiting for
receipt

1
expected
id ready to

send
receipt

transmission
line

transmission line

x x

sort message
var x : message

var n : nat
transmission lines in fifo modeFigure 27.4. Unique identi�
ation numbers (id)

110 V. Case Studies Continued: A
knowledged MessagesBoth problems have been over
ome in �27:4: Ea
h message is given aunique identi�
ation number (id), with ea
h
opy assigned the id of the re-spe
tive original message. The re
eiver then a

epts one instan
e for ea
hid, either the original message or one of its
opies. Furthermore, the require-ment of fairness for re
eive re
eipt ex
ludes the sender to ignore the arrivalof re
eipts.27.3 Redundant
opies and in
reasing id numbers�27:4 in fa
t establishes reliable message passing along the unreliable trans-mission line: Ea
h �nite sequen
e of sent messages eventually
oin
ides withthe sequen
e of re
eived messages. However, �27:4 has two short
omings (be-sides the assumption of a reliable transmission line from the re
eiver to thesender): its la
k of garbage
olle
tion of redundant
opies, and the unlimitedin
rease in id numbers. Redundant
opies are garbage
olle
ted in �27:5 bymeans of the transition re
eive
opy.
send
message

loss receive
message

(x,n)

(x,n) (x,n)

n nn (x,n)
send
copy

receive
copy n

n

(x,n)

(x,n)

(x,n) (x,m)
m<n

n+1 (x,n) n+1 n

send receiptreceive receipt
n n

ϕ

ϕ

1 id for
next

message

waiting for
receipt

1
expected
id ready to

send
receipt

transmission
line

transmission line

x x

sort message
var x : message

var m,n : nat
transmission lines in fifo modeFigure 27.5. Garbage
olle
tion of redundant
opiesIn
reasing id numbers
an be avoided by help of the additional assumptionthat overtaking is ex
luded: Ea
h transmission line should behave like a queue(�fo). In this
ase the id numbers of all messages and all a
knowledgmentson both lines vary only over two
onse
utive numbers. Hen
e it suÆ
es to useonly two id numbers and to employ them alternately, �27:6 makes do withthe id numbers 0 and 1 and the swap operation n := 1� n.

27 The Alternating Bit Proto
ol 111
send
message

loss receive
message

(x,n)

(x,n) (x,n)

n nn (x,n)
send
copy

receive
copy n

n

(x,n)

(x,n)

(x,n) (x,n)

n (x,n) n n

send receiptreceivereceipt
n n

ϕ

ϕ

1 id for
next

message

waiting for
receipt

1
expected
id ready to

send
receipt

transmission
line

transmission line

x x

sort message
var x : message

var n : {0,1}
 n = 1 - n

transmission lines in fifo modeFigure 27.6. Alternating identi�
ation numbers
send
message

loss receive
message

(x,n)

(x,n) (x,n)

n nn (x,n)
send
copy

receive
copy n

n

(x,n)

(x,n)

(x,n) (x,n)

n (x,n)
(x,n)

(x,n) n

n

nn

n

n n

send
receipt

loss

receive
receipt

n n

receive
receipt

send
receipt

ϕ

ϕϕ

ϕϕ

ϕ

1
actual
bit

repeated
bit 1

repeated
bit

actual
bit

transmission
line

transmission
line

x x

sort message
var x : message

var n : {0,1}
 n = 1 - n
transmission lines in fifo modeFigure 27.7. The alternating bit proto
ol

112 V. Case Studies Continued: A
knowledged Messages27.4 The �nal solutionThe �nal step revokes the assumption of a reliable transmission line from there
eiver to the sender. The means to
ope with this problem are stru
turallyidenti
al to the means des
ribed above to manage an unreliable line from thesender to the re
eiver. This yields the �nal algorithm of Fig. 27.7.The issue of fairness is now more subtle: There may arise
on
i
t betweenthe sender's send
opy and re
eive re
eipt. If one of those a
tions were in-�nitely negle
ted, no new message would ever be transmitted. So, fairnessmust be assumed for both of them. This argument likewise applies to there
eiver's re
eive
opy and send re
eipt.The re
eiver may extend re
eipts to full-
edged messages to be transmit-ted to the sender. This would result in a symmetri
al algorithm, with bothsites playing the role of sender as well as of re
eiver.28 The Balan
ed Sliding Window Proto
olThe alternating bit proto
ol follows quite a stri
t poli
y: The sender re
eivesa re
eipt for the i-th message before sending its (i + 1)st message. Here we
onsider a more liberal proto
ol that moves a \window" along the messagesequen
e,
onsisting of two indi
es. Any data between both indi
es may besent by the sender. The order of re
eipts likewise varies in a \window". As a�rst version of su
h a proto
ol, Fig. 28.1 shows the
ase of transmitting ea
hmessage together with its index in the message sequen
e. The next diagram�28:2 will make do with a �nite set of transmitted identi�ers instead.Both sites of the algorithm are stru
turally and behaviorally almost iden-ti
al, and both start in symmetri
al states. The following des
ription of thealgorithm
on
entrates on the left site, leaving the
orresponding argumentsfor the right site as an exer
ise.28.1 The a
tual window of the left siteIn ea
h rea
hable state, the left site has its a
tual window, i.e., a pair (a; b)of indi
es su
h that the left site may freely
hoose an index i with a < i � band send the i-th message (i; x) (a lr-message) to the right site. The a
tualwindow (a; b)
onsists of the lower window index a = k, expli
itly representedin �28:1, and the upper window index b = j+w, with j the a
tual value of thepla
e smallest index of still expe
ted rl-messages. The value w is
alled thewindow
onstant, i.e., an integer
onstant of the system. Transition a hen
esends lr-messages within the a
tual window.28.2 Window bounds of the left siteWith a message (i; x) re
eived by the left site, the right site a
knowledgesre
eipt of all messages with indi
es from 1 up to i � w. Hen
e the left site

28 The Balan
ed Sliding Window Proto
ol 113

sort message
const w : nat

var x : message
var i, j, k : nat

transition lines in fifo mode

k<i≤ j+w
ϕ

k<i≤ j+w
ϕ

max(k,i-w)

max(k,i-w)

00

0

1

i < j i≤ j

loss

loss

intermediate
storage

intermediate
storage

transmission
line

transmission
line

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

left lower
window index

right lower
window index

k

k k

k k

k

j

j

j

jj

j

j

j

i

i-1

i+1

i

ordered output of lr-messages

ordered output of rl-messages

greatest index
of consecutively
accepted
lr-messages

smallest index of still
expected rl-messages

lr-messages

rl-messages

ϕ

ϕ
a

b

c d

e

f

g
h

Figure 28.1. Balan
ed sliding window proto
ol with unbounded indi
es

sort message
const a1,...,ak,b1,...,bk : message
const w : nat
var x,y : message

var i, j, k : nat
k = 4w + 2
k 1 = 1
transmission lines in fifo mode

+

x (i,x)

(i,y)

x

(i,x)

(i,y)

k< i≤ j w+
ϕ

k< i≤ j w+
ϕ

max(k,i w)-

max(k,i w)-

00

0

1

j-2w-1 < i ≤ j j-2w-1 < i ≤ j

loss

loss

intermediate
storage

intermediate
storage

transmission
line rl

transmission
line lr

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

left lower
window index

right lower
window index

k

k
k

k
k

k

j

j

j

jj

j

j

j

i

i 1-

i

i 1+
i w-

i w-

i

i

ordered
output of

lr-messages

ordered
output of
rl-messages

greatest index
of consecutively
accepted lr-messages

smallest index of still
expected rl-messages

lr-messages

(1,a),...,(k,a)1 k

(1,a),...,(k,a)1 k

rl-messages

ϕ

ϕ
a

b

c d

e

f

g h

Figure 28.2. Balan
ed sliding window proto
ol with bounded indi
es

114 V. Case Studies Continued: A
knowledged Messagesshould stop sending messages with any index up to i � w. Hen
e i� w is alower bound for the lower index of the left site's a
tual window. Transition bupdates this index, k, whenever a message (i; x) arrives at the left site withi�w > k. The role of k then is obvious in the requirement k < i of transitiona. A message (i; x), sent by the left site, a
knowledges the left site's re
eiptof all rl-messages up to index j := i � w. With j the smallest index of stillexpe
ted rl-messages, the left site should send no messages with an indexgreater than j + w. Hen
e j + w is an upper bound for the upper index ofthe left site's window. Hen
e the requirement i � j + w of transition a.28.3 The a
tual window sizeFor a given a
tual window (a; b), the left site may send any message (i; x)with a < i � b, i.e., may
hoose out of b� a messages.b� a is the a
tual window size (1)of the site. It will turn out that the a
tual window size varies between 1and 2w + 1. It remains \large", i.e., varies between 1 and 2w + 1 in
asethe rl-messages arrive in order, i.e., in a sequen
e with the form (i; xi)(i +1; xi+1) : : : , and if the o

urren
es of b and
 alternate. It shrinks to the size ofone index, j, in
ase no message with index j arrives at the left site, whereas,(j+1; xj+1); (j+2; xj+2); : : : do arrive: The lower window index, k, in
reasesin this
ase by j�w, j�w+1, j�w+2; : : : , due to o

urren
es of transition b,whereas
 (and d) are not enabled. The messages (j+1; xj+1); (j+2; xj+2); : : :remain at the intermediate storage. Hen
e the smallest index of still expe
tedrl-messages remains j, and the upper window index remains j + w.Next we
al
ulate the maximal as well as the minimal window size: Forthe maximal window size let j be the a
tual smallest index of still expe
ted rl-messages. Then an rl-message with index j�1 is guaranteed to have rea
hedthe left site along transition b in this
ase. Hen
e for the lower window indexk holds: k � j �w� 1. As the upper window index is j +w, (1) implies thatthe a
tual window size does not ex
eed j + w � (j � w � 1) = 2w + 1.For the minimal window size let j be the a
tual smallest index of stillexpe
ted rl-messages. As the index i of all lr-messages (i; x) does not ex
eedj + w, the greatest index of
onse
utively a

epted lr-messages is j + w, too.Hen
e the a
tual upper window index of the right site does not ex
eed j+2w.Hen
e the index i of ea
h rl-message does not ex
eed j+2w. Those messages,arriving at transition b, yield an index k whi
h does not ex
eed j + w. As kis the lower index of the a
tual window of the left site, the a
tual windowsize may shrink to zero with a message (j; x) at the left site's intermediatestorage. O

urren
e of
 then yields j+1 as the smallest index of still expe
tedrl-messages, bringing the window size to 1.

28 The Balan
ed Sliding Window Proto
ol 11528.4 The right site's windowThe two sites essentially di�er only in one aspe
t: The a
tion
 in
reases thesmallest index of still expe
ted rl-messages, whereas the a
tion h does not in-
rease the greatest index of
onse
utively a

epted lr-messages. However, thisdi�eren
e does not really a�e
t the site's behavior, given a slight adjustmentat the guards of transitions f and g.28.5 Bounded indi
esThe above version�28:1 of the sliding window works with a stri
tly in
reasingsequen
e of indi
es. A �nite set of indi
es, applied in
y
li
 order, is suÆ
ient,however.To this end we assume { by analogy to the alternating bit proto
ol { thatovertaking is ex
luded: Ea
h transmission line should behave as a queue. Se
-ondly we have to estimate the number of di�erent messages that
oin
identlymay exist in the system. This number essentially depends on the window
on-stant, w. With j the smallest index of still expe
ted rl-messages, the messagesin the lr transmission line may be indexed from j�w� 1 to j+w, a

ordingto the
onsiderations of Se
t. 28.3. Messages at the right site's intermediatestorage and at the greatest index of
onse
utively a

epted messages vary inthe same range. Due to the guards of transition f , messages in the rl trans-mission line are indexed between j � 2w � 1 and j + 2w. A message (i; x) inthe left site's intermediate store is a
opy of a previously re
eived message ifi varies between j�2w�1 and j. Hen
e the guard of transition d. The guardof transition g follows the same line of arguments. Altogether, in
luding bothlimits, there may be messages around with up to 4w + 2 di�erent indi
es.Hen
e it suÆ
es to employ 4w + 2 identi�
ation numbers and to employthem in
y
li
 order. �28:2 uses the id numbers 1; : : : ; 4w + 2.28.6 Spe
ializations and generalizationsThe alternating bit proto
ol is essentially a spe
ial
ase of the sliding windowproto
ol, with window
onstant w = 0. Re
eive message and re
eive
opy of�27:7 then
orrespond to the transitions h and g of �28:2. Transitions e andf of �28:2 just organize the window's slide.As a generalization, ea
h site may employ its own window
onstant. Thea
tual window size may shrink to zero or to some number k > 1 in this
ase.This requires more subtle fairness assumptions.

116 V. Case Studies Continued: A
knowledged Messages29 A
knowledged Messages to Neighbors in NetworksA (distributed) network in
ludes a �nite set of sites. Two sites may be neigh-bors, i.e., be linked by a transmission line for messages to be transmittedin either dire
tion. A site may send messages to its neighbors and expe
tre
eipts that a
knowledge the messages. This se
tion presents some aspe
tsof algorithms that organize a
knowledged messages to neighbors in networks.29.1 One senderLet i be a site in a network (the initiator) and let U be the set of its neighbors.Figure 29.1 shows the basi
s of an a
knowledged message sent by i to allits neighbors. After sending the message to ea
h neighbor (a
tion a), theinitiator remains waiting until re
eipts have arrived from all neighbors. Thenthe initiator terminates (a
tion b). Ea
h single uninformed neighbor x 2 Ure
eives the message (a
tion
) and returns a re
eipt (a
tion d). The algorithmlikewise works in a round-based version, as in Fig. 29.2.
i

messages

receipts

start

terminated

a

waiting pending

unin-
formed

informed
db

c

x

x x

x

x

x

x

x

x

xU

U
U

sort site
const i : site
const U : set of sites

var x : site
i ∉ UFigure 29.1. Basi
s of a
knowledged messages to neighbors29.2 Many sendersMatters are more involved in the
ase of more than one initiator: Ea
h mes-sage and ea
h re
eipt must in
lude its target as well as its sour
e. In Fig. 29.3,messages and re
eipts are represented as pairs (target, sour
e). For ea
h siteu 2 U , pr1(N(u))(= pr2(N(u))) is the set of neighbors of u. Furthermore,N(u) and N(u) are the sets of messages sent by u and re
eipts re
eived byu, respe
tively.

29 A
knowledged Messages to Neighbors in Networks 117
i q

messages

receipts

start

terminated

e

a

waiting pending

unin-
formed

informed
db

c

f

x

x x

x

x

x x

x

x x

x

x

xU

U

x

U

sort site
const i : site
const U : set of sites

var x : site
i U∉Figure 29.2. Round-based message passing

V q

messages

receipts

start

terminated

e

a

waiting pending

unin-
formed

informed
db

c

f

xx

xx

x

x x

x

x (x,y)

(x,y)

(x,y)

(y,x)N(x)

N(x)

x

U

sort site
sort message = site × site
const U, V: set of sites
fct N, N: site → set of messages

var x, y : site
N(x) ⊆ U × {x}
(y,x) ∈ N(x) iff (x,y) ∈ N(x)
U ∩ V = ∅Figure 29.3. Message passing by many initiators

118 V. Case Studies Continued: A
knowledged Messages

sort site
sort message = site × site
const U, V: set of sites
fct N, N: site → set of messages

var x, y : site
N(x) ⊆ U × {x}
(y,x) ∈ N(x) iff (x,y) ∈ N(x)

q

messages

receipts

terminated

e

a

waiting pending

informed
db

c

f

x

x

x

x

x

x x

x

x (x,y)

(x,y)

(x,y)

(y,x)N(x)

N(x) x

idle sites

U

control

Figure 29.4. Sites a
ting as sender or as re
eiver
U q

messages

receipts

start

terminated

e

a

waiting pending

unin-
formed

informed

db

c

f

xx

x
x

x

x x

x

x (x,y)

(x,y)

(x,y)

(y,x)N(x)

N(x)

x

U

sort site
sort message = site × site
const U: set of sites
fct N, N: site → set of messages

var x, y : site
N(x) ⊆ U × {x}
(y,x) ∈ N(x) iff (x,y) ∈ N(x)

x

xx
x

x

x

x

x

U idle

Figure 29.5. Sites a
ting as sender and as re
eiver

30 Distributed Master/Slave Agreement 11929.3 VariantsAs a variant, a site may de
ide to a
t either as a sender or as a re
eiver ofmessages, as in Fig. 29.4. This algorithm would deadlo
k if more than onesite
ould a
t as a sender at the same time.
V q
start

terminated

e

a

waiting pending

unin-
formed

informed

db

c

f

x

x

x

x x

x

x x

x

(x,y)

(x,y)
(x,y)

(y,x)N(x)

N(x)
x

U

sort site
sort message = site × site
const U, V: set of sites
fct N, N: site → set of messages

var x, y : site
N(x) ⊆ U × {x}
(y,x) ∈ N(x) iff (x,y) ∈ N(x)

messages

Figure 29.6. Joint messages and re
eiptsAs a further variant, ea
h site may a
t as a sender and as a re
eiver.This
an easily be a
hieved: In Fig. 29.3 repla
e the requirement U \ V = ;by U = V . Ea
h site then
onsists of two independent,
on
urrently a
ting
omponents: a sender and a re
eiver. One may repla
e them by one sequential,nondeterministi

omponent, as in Fig. 29.5.Finally we observe that the distin
tion of messages and re
eipts is su-per�
ial, as they are
learly identi�ed by their respe
tive sour
e and target.Both will be
alled messages in the sequel. In Fig. 29.6, the pla
e messagesin
ludes all messages that have been sent but not yet re
eived.30 Distributed Master/Slave AgreementA parti
ular form of message a
knowledgment o

urs in the following pro-to
ol: Assume a \master" pro
ess and a set U of \slave" pro
esses. Updateorders laun
hed by the master are to be exe
uted by the slaves, providedno slave refuses. In order to a
hieve this behavior, the master �rst sends aninquiry to ea
h slave. Ea
h slave
he
ks the inquiry and reports a

eptan
eor refusal to the master. In
ase all slaves a

ept, the master sends an updateorder to ea
h slave. In
ase one slave refuses, the master sends a
an
ellationto ea
h slave.

120 V. Case Studies Continued: A
knowledged Messages
q
a

master pending

inquiries

checking slaves

accepting slaves

refusing
slaves

b c

d e

cancellations

orders
k l

pending slaves

answered slaves

h j

g

master inactive inactive slaves
U

idlebusyf

m n

U-x

U
x x

x

x

x
x

x x

U

x

x
x x

xx

x x

x x

U

x
x

x

x

x

x x

xxU

x

x x

sort slaves
const U : set of slaves
var x : slaveFigure 30.1. Distributed master/slave agreementFigure 30.1 shows an algorithm that organizes this behavior. Initially,the master and all slaves are ina
tive, and the only a
tivated transition isthe quies
ent transition a. Its o

urren
e starts the agreement pro
edure bythe master's sending of inquiries to all slaves. Then ea
h slave x on its ownturns
he
king (a
tion g(x)) and nondeterministi
ally
hooses to a

ept or torefuse the master's inquiry (a
tion h(x) or j(x)). In
ase all slaves x 2 Uare a

epting, the master sends orders to all slaves (a
tion b). Otherwise atleast one slave x is refusing and thus enables
(x). Then ea
h other slavey is noti�ed to
an
el: either by d(y) (in
ase y had a

epted the master'so�er) or by e(y) (in
ase y had refused). Eventually, all slaves x 2 U haveanswered and are sent
an
ellations. Altogether, all slaves x are forwardedeither orders, or
an
ellations and so they all turn either busy or idle (a
tionk(x) or l(x), respe
tively).

30 Distributed Master/Slave Agreement 121Hen
e the algorithm guarantees thatmaster pending is eventually followedby master ina
tive together with either all slaves busy or all slaves idle. Thisproperty will formally be shown in Part D.

VI. Case Studies Continued:Network Algorithms
A distributed algorithm is said to be a network algorithm if it is not intendedto run on just one �xed network. Rather, a network algorithm is a s
hema ofalgorithms, to run on any in a whole
lass of networks, su
h as the
onne
tednetworks, the ring- or tree-shaped networks, et
.Network algorithms have many features in
ommon, and it is quite
on-venient to represent equal features always alike. Some intuition-guided
on-ventions and prin
iples for the representation of network algorithms will bepresented in this
hapter. They have already been employed in the abovealgorithms, and will likewise be used in all algorithms of this
hapter, in-
luding algorithms for mutual ex
lusion,
onsensus, and self-stabilization innetworks.31 Prin
iples of Network AlgorithmsThe fundamental idea of the representation of network algorithms is thegeneri
 representation of lo
al algorithms, and the expli
it representationof messages under way. This implies a
anoni
al representation of networkalgorithms, a

ording to the lo
ality prin
iple and the message prin
iple.31.1 Generi
 lo
al algorithmsMany sites of a network usually run the same lo
al algorithm. A networkalgorithm usually
onsists of a few, up to about three, di�erent lo
al algo-rithms. In a system net representation, ea
h lo
al algorithm is representedgeneri
ally, with a variable denoting the network sites. All lo
al algorithmsare
onne
ted to a pla
e, usually
alled messages, that in
ludes all messagesalready sent by their sour
e site and not yet re
eived by their target site.In te
hni
al terms, a network algorithm is represented as a net s
hema.Ea
h lo
al algorithm employs a variable (usually x) for the a
tive site. Ea
ha
tion is supposed to be exe
uted by the site x. The following lo
ality prin
ipleguarantees that ea
h a
tion employs only data that are lo
al to x:

124 VI. Case Studies Continued: Network Algorithms31.2 The lo
ality prin
ipleFor ea
h transition t, ea
h ingoing ar
 of t is ins
ribed by a set of n-tuples ofvariables (mostly just one n-tuple, often a pair or even just a single variable).The �rst variable of all n-tuples of all ingoing ar
s of t are identi
al (usuallyx). In fa
t, all nets in Se
ts. 29 and 33 follow the lo
ality prin
iple, withthe ex
eption of �29:4: Transition a has a dot ins
ribed ingoing ar
. In fa
t,this algorithm is not a network algorithm due to the pla
e
ontrol : All sitesmay
ompete for its token. Hen
e,
ontrol does not establish
ommuni
ationbetween just two sites.The following prin
iple of message representation is an o�spring of theabove lo
ality prin
iple.31.3 The message prin
ipleEa
h message is represented as a n-tuple (x1; : : : ; xn) with x1 the re
eiver andx2 the sender of the message. x3; : : : ; xn may
ontain any kind of information.(The
ase of n = 2 is quite frequent).In fa
t this prin
iple has been applied throughout Se
ts. 27 and 30, andwill likewise be followed in forth
oming se
tions.Summing up, the above representation rules provide a synta
ti
al
riterionfor the distributedness of an algorithm. It supports
larity and readability ofnetwork algorithms, in
luding a standard representation of messages.31.4 Some notions, notations, and
onventionsAs usual, for a set U and a relation W � U � U , let uWv i� (u; v) 2 W .Furthermore,i. W1 := fu 2 U j ex. v 2 U with uWvg,W2 = fv 2 U j ex. u 2 U with uWvgii. W (u) := fv 2 U j uWvgiii. W�1 := f(v; u) j uWvg (frequently written W)iv. uW+v i� for some n � 1 and some u0; : : : ; un 2 U , u0 = u, un = v, andu0Wu1 : : : un�1Wunv. uW �v i� uW+v or u = v.The forth
oming system s
hemata all assume any underlying network.In an abstra
t, te
hni
al setting, a network is a graph; it will usually bedes
ribed by its sets U of nodes and W of ar
s. Ea
h ar
 is a pair of nodes.W (x) denotes the set of neighbors of a node x. The network is frequentlysymmetri
al (W =W�1) and
onne
ted (xW �y for all x; y 2 U). W usually
overs exa
tly the nodes of U (W1 [W2 = U).

32 Leader Ele
tion and Spanning Trees 125W is a tree with root u i� ea
h node is rea
hable from u (8x 2 U : uW �y),W is
y
le free (xW+y ! x 6= y), and ea
h node has at most one prede
essor(yWx ^ zWx! y = z).W is an undire
ted tree i�W is symmetri
al,
onne
ted, and no undire
tedsequen
e of ar
s forms a
y
le (x0Wx1 : : : xnWxn+1 ^ xi�1 6= xi+1 (i =1; : : : ; n) ! x0 6= xn).32 Leader Ele
tion and Spanning Trees32.1 The basi
 leader ele
tion algorithmThe sites of a network are frequently supposed to ele
t one site as their leader.In
ase the leader site
rashes, a new leader must be ele
ted. The sites aregiven unique names to this end (e.g., integer numbers) and a total order isassumed on those names.
(x,y)

(x,y)

(x,y)

(x,y)

(x,y)

(x,z)

(x,z)

(x,z)

M(x,y)

z ≤ y

z > y

V

a

b

c

pending

messages
updating

sort site

sort state : site × site

const U : set of sites

const V,W : set of states

≤ : total order on U

fct M : state → set of states

var x, y, z : site

x,y ∈ U → x W* y

W1 ∪ W2 = U

V = {(u,u) | u ∈ U}

M(x,y) = W(x) × {y}Figure 32.1. Basi
 leader ele
tionFigure 32.1 gives a distributed algorithm for the ele
tion of a leader in any
onne
ted network. Initially, ea
h site is pending and assumes its own nameas a
andidate for the leader. In later states, a pending site holds a better
andidate, i.e., one with a larger name. Generally, a pending site u togetherwith its a
tual
andidate v is represented as a state (u; v). Upon pendingwith v, u informs ea
h neighbor in W (u) about v by a
tion a(u; v) and thenbe
omes updating. An updating site u with its a
tual leader
andidate v mayre
eive a message (u;w). In
ase the newly suggested
andidate, w, does notex
eed v, the site u remains updating with v (a
tion b(u; v; w)). Otherwise u

126 VI. Case Studies Continued: Network Algorithmsgoes pending with the new
andidate w (a
tion
(u; v; w)) and
ontinues asdes
ribed above.A message (w; v) 2 M(u; v) takes the form of a state, with u informingthe site w about v as a
andidate for the leader. There may o

ur multiple
opies of identi
al messages (as in
ase of
ommuni
ation proto
ols). This
an easily be �xed, by extending ea
h message with its sender.�32:1 does not perfe
tly meet the message prin
iple Se
t. 31: A message(u; v) in �32:1
onsists of its re
eiver u and a further pie
e of information, v.The sender is not mentioned expli
itly (though it was easy to do so).Given a
onne
ted network with a �nite set U of sites and a total order �on U , the algorithm terminates with updating all pairs (u;w), where u 2 Uand w is the maximal element of U .32.2 A variant of the basi
 algorithmIn the more general
ase of a partial order ea
h site may sele
t one of thelargest sites as its leader. This is easily a
hieved: In Fig. 32.1, repla
e therequirement of � to be a total order just by � to be a partial order. Thealgorithm is guaranteed to terminate also in this
ase with updating pairs(u;w), where u 2 U and w is one of the largest sites.32.3 Constru
ting a spanning treeThe above algorithm terminates with ea
h site holding the leader's name.As a variant, ea
h site will now be informed about its distan
e to the leaderand about a distinguished neighbor
loser to the leader. A site then maye�e
tively
ommuni
ate with the leader along its distinguished neighbor. Therespe
tive paths to distinguished neighbors form a minimal spanning tree inthe underlying network. Figure 32.2 gives the algorithm.Initially, the leader r is pending with itself as a path to the leader
andi-date, and distan
e 0 to the leader. All other sites are initially updating withthe unspe
i�ed leader
andidate ? and in�nite distan
e. In later phases, apending token (u; v; n) indi
ates that there is a path of length n from u alongv to the leader. A pending site u forwards its a
tual distan
e n to all itsneighbors (by a
tion a(u; v; n)) and then turns updating. An updating to-ken (u; v; n) may re
eive a message (u;w;m). In
ase the reported distan
em of w to the leader would not improve the a
tual distan
e n, the site uremains with distan
e n along neighbor v (a
tion b(u; v; w; n;m), with or-dered set (x; y; z; i; j) of variables). Otherwise u goes pending with distan
em+1 along neighbor w (a
tion
(u; v; w; n;m), with ordered set (x; y; z; i; j)of variables).This algorithm
an be generalized to a set R � U of leaders in the obviousway: Initially, pending
arries f(r; r; 0) j r 2 Rg and updating f(u;?; !) j u 2U nRg. The algorithm then terminates with updating triples (u; v; n), where

33 The E
ho Algorithm 127
(x,y,i)

(x,y,i)

(x,y,i)

(x,y,i)

(x,y,i)

(x,z,j+1)

(x,z,j)

(x,z,j)

N(x,i)

j+1 ≥ i

j+1 < i

(r,r,0)

a

b

c

pending

messages
updatingV

sort site

sort state = site × site × (nat ∪ {ω})

const ⊥ , r : site

const U : set of sites

const V : set of states

const W : set of (sites × sites)

≤ : total order on U

fct N : site × nat → set of states

var i, j : nat

var x, y, z : site

x,y ∈ U → x W*y

W1 ∪ W2 = U

r ∈ U

⊥ ∉ U

V = {(u,⊥ ,w) | u ∈ U \ {r}}

N(x,y,i) = W(x) × {y} × {i}Figure 32.2. Shortest distan
e to a rootn is the minimal distan
e to a leader and v the name of a neighbor
loser toa leader.33 The E
ho AlgorithmGiven a �nite,
onne
ted network with a parti
ular initiator site, the e
ho al-gorithm organizes a
knowledged broad
ast of the initiator's message through-out the entire network to all sites: The initiator will terminate only after allother sites are informed.33.1 One initiator in one roundFigure 33.1 shows one round of messages, sent by the initiator i to all itsneighbors, just as in Fig. 29.1. Furthermore, messages and re
eipts are jointlyrepresented in one pla
e, in a

ordan
e with Fig. 29.6. The
entral idea of thee
ho algorithm is now
overed in the step from �33:1 to �33:2: Upon re
eivingthe initiator's message, a neighbor of the initiator forwards the message to allits neighbors but the initiator, and remains pending until re
eiving messagesfrom all those neighbors. Ea
h site is eventually addressed in this s
hema.Ea
h uninformed site u 2 U re
eives in general more than one message, hen
eu sele
ts one o

urren
e mode (u; v) of a
tion
. In this
ase, v is
alled theparent site of u. The pairs (u; v) with v the parent site of u, form a spanningtree in the underlying network: For ea
h site u 2 U there exists a unique

128 VI. Case Studies Continued: Network Algorithmssequen
e u0 : : : un of sites with u0 = u, un = i and ui the parent site of ui�1(i = 1; : : : ; n). A site u is a leaf of the spanning tree if no neighbor of u ele
tsu as its parent node.
i

start

terminated

a

waiting pending

unin-
formed

informed

db

c

x

x x

x

x

x

(x,y)

(x,y)

(x,y)

(y,x){x} × U

U × {x}

U

sort site
const i: site
const U: set of sites

var x,y: sites
i ∉ U

messages

Figure 33.1. The initiator informs its neighborsFor ea
h pending leaf (u; v), the pla
e messages eventually holds all mes-sages M(u) � (u; v), hen
e the leaf be
omes informed by o

urren
e of d inmode (u; v). The leaves are the �rst to be
ome (
on
urrently) informed. Thenall sites are
onse
utively informed,
ausally ordered along the spanning tree.Finally, the initiator's transition b is enabled, and the waiting initiator turnsterminated.33.2 One initiator in many roundsThe above one round e
ho algorithm likewise works also in a
y
li
 environ-ment, as in Fig. 33.3.33.3 Many initiatorsMatters are more involved in the
ase of more than one initiator: The initia-tor's identity must be forwarded together with ea
h message. Hen
e in �33:4,ea
h message is a triple (x; y; z) with re
eiver x, sender y and initiator z.A message (x; y; z) is sent by an initiator z if y = z and is re
eived by aninitiator z if x = z. All non-initiators just forward the third
omponent ofmessages.

33 The E
ho Algorithm 129
i

messages

start

terminated

a

waiting pending

unin-
formed

informed

db

c

x

x

x

x

x

x

(x,y)

(x,y)
(x,y)

(y,x)M(x)

M(x)

M(x)--(y,x)

M(x)--(x,y)

U

sort site
sort message = site × site
const i : site
const U: set of sites
const W : set of (sites × sites)
fct M, M: site → set of messages
var x,y: site

W = W--1

x,y ∈ U ∪ {i} → x W*y
W1 = U ∪ {i}
i ∉ U
M(x) = W(x) × {x}
M(x) = M(x)--1Figure 33.2. One-round e
ho algorithm

i q

messages

start

terminated

eq

a

waiting pending

unin-
formed

informed
db

c

f

x

x

x

x

x

x

x

x

x (x,y)

(x,y)
(x,y)

(y,x)M(x)

M(x)
x

U

sort site
sort message = site × site
const i : site
const U : set of sites
const W : set of (sites × sites
fct M, M: site → set of messages
var x, y: site

W = W--1

x,y ∈ U ∪ {i} → x W*y
W1 = U ∪ {i}
i ∉ U
M(x) = W(x) × {x}
M(x) = M(x)--1

M(x)--(x,y)

M(x)--(y,x)

Figure 33.3. Cy
li
 e
ho algorithm

130 VI. Case Studies Continued: Network Algorithms
V q

messages

start

terminated

eq

a

waiting pending

unin-
formed

informed
db

c

f

x

x

x

x

x

x x

x

x (x,y,z)

(x,y,z)
(x,y,z)

(y,x,z)M(x,x)

M(x,x)
x

U

sort site
sort message = site × site × site
const U,V: set of sites
const W: set of (sites × sites)
fct M, M: site × site → set of messages
var x, y: site

W = W--1

x,y ∈ U ∪ V → x W*y
W1 = U ∪ V
U ∩ V = ∅
M(x,z) = W(x) × {x} ×{z}
M(x,z) = {x} × W(x) ×{z}

M(x,z)--(x,y,z)

M(x,z)--(y,x,z)

Figure 33.4. Cy
li
 e
ho algorithm with many initiators34 Mutual Ex
lusion in NetworksTwo algorithms will be dis
ussed in this se
tion. The �rst algorithm guaran-tees global mutual ex
lusion: In the entire network, at most one site is
riti
alat ea
h time. The se
ond algorithm guarantees lo
al mutual ex
lusion: Neigh-boring sites are never
riti
al at the same time. Both algorithms guaranteeevolution, as dis
ussed in Se
t. 13. The global mutex algorithm assumes a�xed spanning tree on the given network. Essentially it is an algorithm onundire
ted trees. It
an be applied to any network, by �rstly �xing a spanningtree. This in turn
an be done by help of a variant of the e
ho algorithm,with ea
h node informing its parent node that their joint
ommuni
ation linebelongs to the tree.34.1 Global mutual ex
lusion on undire
ted treesGlobal mutual ex
lusion
an be organized by means of a unique token, alwayshelt by one site, su
h that a site
an be
riti
al only if it holds the token.In the sequel, the underlying network of sites will be assumed to be anundire
ted tree. Then, at ea
h rea
hable state, to ea
h site u0 there exists aunique sequen
e of transmission lines, u0 : : : un with un the a
tual owner ofthe token. In
ase n 6= 0, i.e., u0 not the owner of the token, the transmissionline (u0; u1) is the a
tual token line of u0. The a
tual token lines of all sitesindu
e an order on the ar
s of the underlying undire
ted tree, resulting in adire
ted tree with the owner of the token as its root. �34:1 organizes globalmutual ex
lusion on trees: The pla
e token holds the a
tual owner of thetoken; N is a dire
ted tree on the sites of the network, su
h that the a
tual

34 Mutual Ex
lusion in Networks 131
pending

critical

quiet

compass

token

(x,y)

(x,y)

(x,y) (x,z)

(x,x)

(x,x)

(z,x)

(x,y)

a

b

c

d

e

N

U

ϕ

ϕq

x y≠
ϕ

u

x

x

x
x

x x

x

y

sort site
const u : site
const U : set of sites
const N : set of (sites × sites)
var x,y,z : site
N1∪ N2 = U
u ∈ U
∀ x ∈ U: u N*x
x N+y → x ≠ y
y N x ∧ z N x → y = zFigure 34.1. Global mutex on undire
ted treesowner of the token is the root of the tree. A quiet site u may strive forthe token by o

urren
e of a(u) and then go
riti
al by o

urren
e of b(u),provided u presently owns the token.If u does not own the token, either
ompass holds the token line (u; v) ofu, or the reverse (v; u) of the token line is pending. Intuitively formulated,(u; v) at
ompass states that in order to obtain the token, u must send a
orresponding request to v, by o

urren
e of d(u; v). A pending token (u; v)states that u has the duty to get hold of the token and to hand it over to v.If u holds the token already, u hands it over to v by e(u; v). Otherwise u hasa token line, (u;w), at
ompass, and u sends a request for the token to w, byd(u; v).Three
ompeting transitions, b, d, and e, are assumed to be fair in �34:1.34.2 A version with a simple fairness requirementFigure 34.2 shows a variant of �34:1 that requires only two transitions to betreated fairly. To this end, the pla
e pending of �34:1 has been re�ned intothe sequen
e of pla
e job, a
tion f , and pla
e serving in �34:2. Ea
h site u is
on
urrently serving at most one neighbor site, due to the pla
e idle.The essential di�eren
e between �34:1 and �34:2 is obvious wheneverseveral sites, v1; : : : ; vn, say, are requesting the token from the same site,u. In �34:1 this is represented by n tokens (u; v1); : : : ; (u; vn) at pending.With (u;w) at
ompass, some vj
auses u to demand the token from w, byd(vj ; u; w). After eventually having obtained the token, u sele
ts a site v outof v1; : : : ; vn and hands the token over to v (by e(u; v)), in
ase v 6= u.In �34:2 only one request, (u; v), is serving whereas all other pendingrequests, (u; vi) with vi 6= v, are at job. With (u; v) at
ompass, v will demandthe token from w, by d(v; u; w). After eventually having obtained the token,u hands it over to v, by e(u; v), or goes
riti
al by b(u) in
ase v = u.

132 VI. Case Studies Continued: Network Algorithms
a

q

b

c

d

e

f

U

U

u

Nϕ

ϕ

x y≠

quiet

critical

job

idle serving

compass

(x,z)

(x,y)

(x,y)
(x,y)

(x,x)

(x,y)

(x,y)

(z,x)
(x,x)

(x,y)

x

x

x
x

x

x

x

x

x x
y

token

sort site
const u : site
const U : set of sites
const N : set of (sites × sites)
var x,y,z : site
N1∪ N2 = U
u ∈ U
∀ x ∈ U: u N*x
x N+y → x ≠ y
y N x ∧ z N x → y = z

Figure 34.2. A version with a simple fairness requirement34.3 Lo
al mutual ex
lusion on networksHere we
onsider networks without any restri
tion on their topology. Byanalogy to �13:1, ea
h site is assumed to be bound to the
y
li
 visit of es-sentially three lo
al states,
alled quiet, pending, and
riti
al, with a quies
entstep from quiet to pending. In �34:3, pending is re�ned to two states, pend1and pend2. Two sites are neighboring in the network if and only if they sharea s
ar
e resour
e. Ea
h resour
e is shared by two sites.An algorithm on a network with this kind of site guarantees lo
al mutualex
lusion i� neighboring sites are never both
riti
al at the same time. Itguarantees evolution i� ea
h pending site will eventually be
riti
al.As a spe
ial
ase, the system �10:1 of thinking and eating philosophersguarantees lo
al mutual ex
lusion (with eating the respe
tive
riti
al state).However, this algorithm neither guarantees evolution, nor is it distributed.Figure 34.3 shows a distributed algorithm that guarantees lo
al mutualex
lusion and evolution on networks. A resour
e shared by two sites u andv is represented by (u; v) or (v; u). Ea
h resour
e at any time is on hand(though not ne
essarily in use) of one of its users. A

ording to the lo
alityprin
iple (Se
t. 31.2), (u; v) indi
ates that the resour
e shared between uand v is presently on hand at u. O

urren
e of the quies
ent a
tion a(u)indi
ates that the site u is about to get
riti
al, in analogy to the a
tions aland ar of Fig. 13.1. The step from pend1 to pend2 (a
tion b(u)) demandsr(u) at ready, i.e., that u has re-organized all its resour
es after its last visitof
riti
al. Details on this issue follow later. The
ru
ial step of a site u, frompend2 to
riti
al (a
tion
(u)) requires the set r(u) of all resour
es of u to be

34 Mutual Ex
lusion in Networks 133
q ϕ

available

pend2

criticalquiet

pend1
missing

message

repeated ready

after use

demanded

first
time

hf

e

a c

b

d

P

P

N--P
x

x x

x

xx

xx

U

(x,y)

(x,y)

(y,x)

(x,y)

(x,y) (x,y)

r(x)

r(x)

r(x)

r(x)

N

g

(x,y)(x,y)

(x,y)(x,y)
(x,y)
(x,y)

(x,y)

(y,x)

(x,y)

(x,y)

(x,y)

(x,y)

sort site
sort neighbors = site × site
const U : set of sites
const N, P : set of neighbors
fct r : site → set of neighbors
var x, y : site

N = N--1

N1 = U
P ∪ P--1 = N
P ∩ P--1 = ∅
x P+ y → x ≠ y
r(x) = {x} × N(x)Figure 34.3. Lo
al mutual ex
lusion on networksavailable to u. Upon returning ba
k to quiet by d(u), ea
h resour
e (u; v) isto be re-organized along after use.Ea
h resour
e that u shares with some neighbor v is in one of three states:i. (u; v) is in repeated. In this
ase, the resour
e is on hand at u, and u hasbeen its last user. Upon request of v by message (u; v), the site u mayhand the resour
e over to v, by a
tion g(u; v).ii. (u; v) is missing. In this
ase, the resour
e is on hand at v. In
ase udemands the resour
e (u; v), u sends a message (v; u) to v by a
tione(u; v) and will eventually obtain the resour
e, by a
tion g(v; u).iii. (u; v) is in �rst time. In this
ase, u will eventually obtain the resour
efrom v and will not hand it over to v again before having been
riti
alat least on
e.A site u goes
riti
al by o

urren
e of
(u). This requires r(u) be availableto u. A resour
e (u; v) in repeated may be available to u, but u may de
ideto hand it over to v, by g(u; v). For ea
h resour
e (u; v) not available, u haspreviously sent a message (v; u) to v, by b(u) and e(u; v), and v will eventuallyhand over (u; v) to u, by g(v; u). The resour
e (u; v) is at �rst time in this
ase. The site u retains all forks at �rst time after having been
riti
al.Ea
h resour
e that a
riti
al site u shares with a neighbor v is eitherfreshly handed over to u, i.e., (u; v) is at �rst time or u has used it beforealready, i.e., (u; v) is at repeated. This implies two di�erent a
tions for (u; v) atafter use: In
ase of �rst time, f(u; v) will o

ur and bring (u; v) to repeated.

134 VI. Case Studies Continued: Network AlgorithmsOtherwise, (u; v) is at repeated already and (u; v) is still demanded. Hen
eh(u; v) properly re-organizes the resour
e in this
ase.35 Consensus in NetworksA
onsensus algorithm organizes
onsensus about some
ontra
t or agree-ment, among the sites of a network. This is not trivial if message passing isthe only available
ommuni
ation medium. A basi
 su
h algorithm will bepresented in this se
tion, followed by two more involved extensions.The
entral a
tivity of all three forth
oming algorithms is broad
ast andre
eipt of proposals for a joint
ontra
t. Initially, ea
h site may spontaneouslybroad
ast su
h a proposal to its neighbors. Upon re
eiving su
h a proposal,a site either a

epts it or broad
asts a new proposal. Neither algorithm guar-antees that
onsensus will ever be rea
hed. But
onsensus is guaranteed tobe stable: On
e rea
hed, it remains.The forth
oming algorithms
onsider neither the
ontents of messagesnor the
riteria for a site to a

ept or refuse a proposed
ontra
t. Hen
e ea
hmessage is represented as a pair (x; y), with x its re
eiver and y its sender.
agreed
sites

pending
sites

completed requests

initiated requests

U b a

c

d

M

x

x

x

x

x

x

x
x

(y,x) (y,x)

(x,y)(x,y)

r(x)r(x)

r(x)

r(x)

sort site

sort message = site × site

const U : set of sites

const M : set of messages

fct r, r :site → set of messages

var x, y : site

r(x) = {x} × M(x)

r(x) = M(x) ×{x}Figure 35.1. Basi
 algorithm for distributed
onsensus

35 Consensus in Networks 135

sort site

sort message = site × site

const U : set of sites

const M : set of messages

fct r, r :site → set of messages

var x, y : site

r(x) = {x} × M(x)

r(x) = M(x) × {x}

agreed
sites

demanded
sites

initiated1

U
quiet
sites

U
pending
sites

completed messages

initiated2

M

x

xx

x

x

x

x
x

(y,x)

(x,y)

(y,x)

(x
,y)

r(x)r(x)

(x,y)

(x,y)(x
,y

)

(x,y)(x,y) (x,y)

xx xx

x

x

r(x)

r(x)

ab c

d

e
f g

Figure 35.2. Distributed
onsensus with demanded negotiators35.1 A basi

onsensus algorithmFigure 35.1 shows an algorithm that organizes
onsensus. Initially, ea
h siteis pending and ea
h message is
ompleted (i.e., in the hands of its sender).In this situation, any site x may send ea
h neighbor y a message (y; x)(a
tion a(x)). Upon re
eiving a message, a site x reads its
ontents andreturns it to its sender y, by a
tion b(x; y) or a
tion
(x; y). Both a
tionsb(x; y) and
(x; y) furthermore make the re
eiver x pending. Finally, ea
hpending site x may turn agreed, provided all its messages r(x) are
ompleted(a
tion d(x)).Obviously, at any time, a site is either pending or agreed, and a messageis either
ompleted or initiated. The algorithm does not guarantee that thesites eventually are all agreed. However, the algorithm guarantees stability:It is terminated if and only if all sites are agreed.

136 VI. Case Studies Continued: Network Algorithms

sort site

sort message = site × site

const U : set of sites

const M : set of messages

fct r, r :site→set of messages

var x, y : site

r(x) = {x} × M(x)

r(x) = M(x) × {x}

agreed
sites

demanded
sites

initiated1
quiet
sites

U

U

pending
sites

completed folders

initiated2

M

x

xx

x

x

x

x
x

(y,x)

(x,y)

(y,x)

(x
,y)

r(x)r(x)

(x,y)

(x,y)(x
,y

)

(x,y)(x,y) (x,y)

xx xx

x
x

r(x)

r(x)

ab c

d

e
f g

Figure 35.3. A variant of �35:235.2 An advan
ed
onsensus algorithmThe system �35:2 extends �35:1 by two further states, demanded sites andquiet sites. All sites are initially quiet. Ea
h newly sent message (x; y) at thepla
e initiated1 may
ause its re
eiver x to swap from demanded to quietor vi
e versa. This is te
hni
ally implemented in �35:2 as a nondeterministi

hoi
e between a
tions e(x; y) and g(x; y), or e(x; y) and f(x; y), respe
tively.A demanded site u is not quiet. If demanded and pending, the immediatestep to agreed is ruled out. If no other site is going to send a message, u isenfor
ed to initiate a new proposal (a
tion a(u)). Messages (v; u) then mayprovoke rea
tions of a site v, i.e., new proposals sent to its neighbors g(v)(a
tion a(v)). Then g(u; v) may turn u to quiet. Again, this algorithm isterminated if and only if all sites are agreed.

36 Phase Syn
hronization on Undire
ted Trees 13735.3 A further variant of a
onsensus algorithmIn �35:2, initiation of a new proposal, viz. o

urren
e of a
tion a(x), requiresy to be pending. This side
ondition is repla
ed in �35:3 by x to be demanded.Hen
e in �35:2 a site x may initiate a new proposal even if x is quiet; whereasin �35:3, x may initiate a new proposal even if x is agreed. Again, this algo-rithm is terminated if and only if all sites are agreed.36 Phase Syn
hronization on Undire
ted Trees36.1 The problem of phase syn
hronizationNetwork algorithms work frequently in rounds or phases : Ea
h site eventuallyreturns to its initial state, thus entering its next phase.A syn
hronization me
hanism is o

asionally required, that guaranteessyn
hronized exe
ution of rounds: No site begins its (k+1)st phase unless allsites have
ompleted their k-th phase. Stated di�erently, two sites that arebusy at the same time are exe
uting the same round. The
rosstalk algorithm(Se
t. 12) and all derived algorithms su
h as
rosstalk based mutual ex
lusion(Se
t. 13) and the distributed rearrangement algorithm (Se
t. 25) have beenexamples for syn
hronized exe
ution of rounds of two neighbored sites.A phase syn
hronization algorithm is derived in the sequel, apt for anyundire
ted tree network (su
h networks have been
onsidered in Se
t. 34.1already).36.2 The algorithmFigure 36.1 provides phase syn
hronization on undire
ted trees: Ea
h sitealternates between two states, busy and pending. Initially, ea
h site is busyin its zero round. A site u may
ommuni
ate its a
tual round number n toone of its neighbors v by help of the message (v; u). A site u that is busyin its n-th round goes pending upon re
eiving messages from all but oneneighbor, v, by a
tion a(u; v; n) (with the ordered set (x; y; i) of variables).As no message is available initially, the leaves of the underlying undire
tedtree start the algorithm. A pending site u at round n goes busy in round n+1upon re
eiving the missing message (u; v), by a
tion b(u; v; n). Intuitivelyformulated, the leafs start waves of messages that are sent to inner nodes,thus involving more and more nodes. Eventually, two neighbored sites getmessages from all their neighbors. In this
ase, the messages are re
e
ted,i.e., are returned to their respe
tive senders, whi
h
oin
idently start theirnew round (transition b).As an interesting observation, two identi
al messages may o

ur and mustbe treated as two di�erent tokens (similar situations o

urred in the alter-nating bit proto
ol of Se
t. 27 and the sliding window proto
ol of Se
t. 28).An example was the network formed

138 VI. Case Studies Continued: Network Algorithms
(x,i+1)

(x,y,i)

(x,i)

(x,y,i)

(y,x)(x,y)

r(x)--(y,x) r(x)--(x,y)

ab

busy

pending

messages

U×{0}

sort site

sort message = site × site

const U: set of sites

const W : set of (sites × sites)

fct r, r : site → set of messages

var x, y : site

var i : nat

W = W--1

x,y ∈ U → x W*y

W1 = U

x0W x1 ... xnW xn+1 ∧
xi--1≠ xi+1 for i=1,...,n

→ x0≠ xn

r(x) = W(x) × {x}

r(x) = r(x)--1Figure 36.1. Phase syn
hronization
(x,i+1)

(x,y,i)

(x,i)

(x,y,i)

(y,x,i)(x,y,i)

r(x,i)--(y,x,i) r(x,i)--(x,y,i)

ab

busy

pending

messages

U×{0}

sort site

sort message = site × site × nat

const U: set of sites

const W : set of (sites × sites)

fct r, r : site × nat → set of messages

var x, y : site

var i : nat

W = W--1

x,y ∈ U → x W*y

W1 = U

x0W x1 ... xnW xn+1 ∧
xi--1≠ xi+1 for i=1,...,n

→ x0≠ xn

r(x,i) = W(x) × {x} × {i}

r(x,i) = {x} × W(x) × {i}Figure 36.2. Messages with round number

36 Phase Syn
hronization on Undire
ted Trees 139A B C (1)with a state
onsisting of the empty pla
e busy, two
opies ofmessages (B;C),and pending
ontaining (A; 0), (B; 0), and (C; 1). From the initial state, thisstate is rea
hable by the sequen
e of a
tions a(A;B; 0), a(B;C; 0), a(C;B; 0),b(C;B; 0), a(C;B; 1). The
orresponding state of �36:1 in
ludes two di�erentmessages, (B;C; 0), and (B;C; 1).36.3 Variants of the algorithmO

urren
e of two identi
al messages in �36:1
an be avoided: Just extendea
h message by the
orresponding round number, as in �36:2. The twomessages (B;C) shown above to o

ur in the network (1) are (B;C; 0) and(B;C; 1) in �36:2.As a further variant, a pending site (u; v; n) of �36:1 is not required toretain v; hen
e the version of �36:3.
(x,i+1)

(x,i)

(x,i)

(x,i)

(y,x)(x,y)

r(x)--(y,x) r(x)--(x,y)

ab

busy

pending

messages

U×{0}

sort site

sort message = site × site × nat

const U: set of sites

const W : set of (sites × sites)

fct r, r : site × nat → set of messages

var x, y : site

var i : nat

W = W--1

x,y ∈ U → x W*y

W1 = U

x0W x1 ... xnW xn+1 ∧
xi--1≠ xi+1 for i=1,...,n

→ x0≠ xn

r(x) = W(x) × {x}

r(x) = r(x)--1Figure 36.3. Pending without neighbor

140 VI. Case Studies Continued: Network Algorithms37 Distributed Self Stabilization37.1 Load balan
e in ringsA servi
e site is intended to exe
ute tasks, provided by the site's environment.At any rea
hable state a servi
e site has its a
tual workload, i.e., a set of tasksstill to be exe
uted. The workload in
reases or de
reases due to intera
tionwith the environment.Now assume a set of servi
e sites, ea
h one autonomously intera
ting withits environment. Their individual workload may be heavy or low in a givenstate, and it is worthwhile to balan
e them: A site with heavy workload maysend some tasks to sites with less heavy workload. The overall workload ina set of servi
e sites is balan
ed whenever the
ardinality of the workload oftwo sites di�ers at most by one.A distributed algorithm is
onstru
ted in the sequel, organizing load bal-an
ing in a set of servi
e sites. The
ommuni
ation lines among sites areassumed to form a ring. Ea
h agent u alternately sends a workload messageto its right neighbor, r(u), and a task message to its left neighbor, l(u). Aworkload message of u informs r(u) about the
ardinality of the a
tual work-load of u. A task message of u depends on the previous workload message ofl(u): If this message reports less tasks than u has, the next task message ofu transfers one of u's tasks to l(u). Otherwise, the next task message of utransfers no task to l(u). Intuitively formulated, a site u forwards a task tol(u) whenever the workload of u ex
eeds the workload of l(u).37.2 A distributed load balan
e algorithmFigure 37.1 shows a load balan
e algorithm with �xed workload: The overallnumber of tasks remains
onstant. Ea
h state of a site u is represented as apair (u; n), with n the
ardinality of u's a
tual workload. The task transferedfrom u to l(u) by a task message (l(u); 1), is not represented itself.With the ordered set (x; i; j) of variables, a
tion inform right des
ribes
ommuni
ation with right neighbors: A site u with a
tually n tasks witha
tion informed right(u; n;m) re
eives a task message (u;m) (with m = 0 orm = 1) from r(u), updates its a
tual workload, n, and returns a
orrespondingworkload message (r(u); n +m) ba
k to r(u), indi
ating that u has a
tuallyn+m tasks.With the same ordered set of variables, a
tions send left no task andsend left one task des
ribe
ommuni
ation with left neighbors: A site u witha
tually n tasks re
eives a workload message (u;m) from l(u),
ompares nand m, and returns a task with a
tion send left one task(u; n;m) in
ase itsa
tual workload, n, ex
eeds l(u)'s reported workload, m. Otherwise, u sendsa task message with send left no task(u; n;m), to l(u),
ontaining no task.Initially, ea
h site u informs r(u) about its a
tual workload.

37 Distributed Self Stabilization 141
update
message

(x,j)

receive
from right

(x,i+j)
state 1

V
(x,i)

inform
right

(r(x),i)

workload
message

(x,j)

(x,j)

send left one task

send left no task

(l (x),1)

(l (x),0)

i>j

i≤ j

(x,i)

(x,i)

(x,i)

(x,i) (x,i)

(x,i-1)

state 2state 3

sort site var i, j : nat
sort alloc = site× nat var x,y : site

∀ x ∈ U ∃ 1i ∈ nat : (x,i) ∈ V
const U : set of sites x ≠ y ⇒ r(x) ≠ r(y)
const V : set of alloc ∃ n ∈ nat : rn(x) = x
fct l , r : site → site ∀ x ∀ y ∃ n ∈ nat: y = rn(x)

l (r(x)) = xFigure 37.1. Distributed load balan
ing37.3 De
isive properties of the algorithmThe above algorithm never terminates; ea
h run is in�nite. The overall work-load is eventually balan
ed, as des
ribed above. Two
ases may be distin-guished, depending on the overall workload w := �v2V2u and the numberjU j of sites:In
ase w is a multiple of jU j, a state will be rea
hed where transition sendleft one task remains ina
tive forever, and state1, state2, and state3 together
ontain the tokens (u; n) with u 2 U and n = wjUj . Otherwise a state will berea
hed where for all tokens (u; n) and (v;m) in state1, state2, and state3holds jm � nj � 1, and this remains valid forever. The algorithm behavesquite regularly: With initially V at state1, it evolves exa
tly one
on
urrentrun. This run is stri
tly organized in rounds: All sites
on
urrently exe
utea
tion inform right and produ
e a workload message for their respe
tive rightneighbor. Then all sites
on
urrently exe
ute send left no task or send leftone task, thus produ
ing a task message for their respe
tive left neighbor.Finally, re
eive from right
ompletes a round.37.4 Load balan
ing in a
oating environmentThe load balan
e algorithm should work
on
urrently to other parts of theservi
e sites, in parti
ular to in
rease and de
rease of their respe
tive work-load. But it interferes with those a
tions. From the perspe
tive of the load

142 VI. Case Studies Continued: Network Algorithmsbalan
e algorithm, this interferen
e shines up as nondeterministi

hange ofthe
ardinality of the sites' workload. Figure 37.2 represents this behaviorwith the transition
hange.
update
message

(x,i) (x,j)

(x,j)

receive
from right

(x,i+j)

change

state 1

V
(x,i)

inform
right

(r(x),i)

workload
message

(x,j)

(x,j)

send left one task

send left no task

(l (x),1)

(l (x),0)

i>j

i≤ j

(x,i)

(x,i)

(x,i)

(x,i) (x,i)

(x,i-1)

state 2state 3

sort site var i, j : nat
sort alloc = site× nat var x,y : site

∀ x ∈ U ∃ 1i ∈ nat : (x,i) ∈ V
const U : set of sites x ≠ y ⇒ r(x) ≠ r(y)
const V : set of alloc ∃ n ∈ nat : rn(x) = x
fct l , r : site → site ∀ x ∀ y ∃ n ∈ nat: y = rn(x)

l (r(x)) = xFigure 37.2. Distributed load balan
ing in a
oating environmentThe properties dis
ussed in Se
t. 37.3 are not guaranteed any more in�37:2. A balan
ed state will be rea
hed whenever
hange o

urs seldomly,and do not drasti
ally
hange the workload.

Part CAnalysis of Elementary System Models
The term \analysis" refers to means to show that a system has parti
ularproperties. Examples of systems and typi
al
orresponding properties in
lude1. a mutual ex
lusion algorithm, preventing two sites
oin
iding in theirrespe
tive
riti
al se
tions;2. a produ
er/
onsumer system, ensuring that the bu�er never
arries morethan one item;3. a pushdown devi
e, guaranteeing the equation pop(push(x)) = x;4. a mutual ex
lusion algorithm, ensuring that ea
h pending site will even-tually go
riti
al;5. a resour
e allo
ation pro
edure, eventually serving all demands;6. a termination dete
tion algorithm, establishing that all
omponents of adistributed program are terminated.System properties
an be
lassi�ed by various aspe
ts. Two
lasses of prop-erties will be
onsidered in the sequel,
alled state and progress properties,respe
tively. Intuitively formulated, a state property stipulates that \some-thing bad" never happens. A progress property stipulates that eventually\something good" will happen.A slightly more formal explanation of safety and progress properties isbased on global states s � P� , be they rea
hable or not. For a set M ofglobal states,
all s an M-state i� s 2 M . A state property has the typi
alform \ea
h rea
hable state is anM -state". A progress property has the typi
alform \some M -state will eventually be rea
hed" or, in its
onditional form,\from ea
h L-state someM -state will eventually be rea
hed". The properties1, 2, and 3 des
ribed above are state properties, whereas 4, 5, and 6 areprogress properties.Part C provides te
hniques to des
ribe and to prove su
h properties. Par-ti
ular formulas will be employed for this purpose, adopting
on
epts of tem-poral logi
. However, we do not propose a full-
edged logi
 with
ompletenessresults, minimal sets of operators, or eÆ
ient model
he
king pro
edures. For-mulas are just used to make intuitive statements and
on
lusions transparentand pre
ise, this way deepening the reader's insight into the fun
tioning ofsystems.Te
hni
ally, elementary properties (viz. valid formulas) will be derivedfrom the stati
 stru
ture of a net, i.e., without
onstru
ting its runs. More

144 Part C. Analysis of Elementary System Modelsinvolved valid formulas are gained by means of rules from already derivedformulas.

VII. State Properties of Elementary SystemNets
Here we
onsider properties of elementary system models that
an be de-s
ribed by \at ea
h rea
hable state holds p", with p a propositional expres-sion. A typi
al example was mutual ex
lusion, with p = :(
rit l ^
ritr).Te
hniques to verify su
h properties in
lude pla
e invariants and initializedtraps.38 Propositional State PropertiesA property p that at ea
h state a of an es-net � either holds or fails is
alleda state property of �. p will be said to hold in � i� p holds at ea
h rea
hablestate of �. Su
h properties
an
onveniently be represented by means ofpropositional formulas built from the
onventional propositional operators :(not), ^ (and), _ (or), ! (implies), et
. Lo
al states of es-nets will serve asatoms of su
h formulas.38.1 De�nition. Let P be a set of symbols. Then the set sf(P) of stateformulas over P is the smallest set of symbol sequen
es su
h thati. P � sf(P), andii. if p; q 2 sf(P) then :p 2 sf(P) and (p ^ q) 2 sf(P).The
onventional propositional shorthands will be employed, and sets offormulas are quanti�ed as usual.38.2 Notation. Let P be a set of symbols and let p; q 2 sf(P).i. We usually write(p _ q) for :(:p ^ :q), and (p! q) for (:p _ q).ii. For a set Q = fq1; : : : qng � sf(P) of formulas we often write WQ insteadof q1 _ : : : _ qn. Likewise, for q1 ^ : : : ^ qn we often write VQ or Q orq1 : : : qn. The operator ^ is assumed to bind more strongly than any otheroperator.iii. p is an atom i� p 2 P .State formulas will be
onstru
ted from the lo
al states of es-nets �. Astate formula p will be said to hold or to fail in any global state a of �.Holding of state formulas is de�ned as follows:

146 VII. State Properties of Elementary System Nets38.3 De�nition. Let P be a set of symbols, let a � P and let p; q 2 sf(P).Then a j= p (p holds at a, a is a p-state) is indu
tively de�ned as follows:i. a j= p i� p 2 a, for atoms p 2 P ,ii. a j= :p i� not a j= p,iii. a j= p ^ q i� a j= p and a j= q,This de�nition in fa
t returns the expe
ted meaning for the shorthandsof Notation 38.2, i.e.,a j= p _ q i� a j= p or a j= q,and a j= V a. a j= p! q i� a j= q whenever a j= pA formula p is said to hold in an es-net � i� p holds in ea
h rea
hable stateof �:38.4 De�nition. Let � be an es-net and let p 2 sf(P�). Then p is said tohold in � (p is a valid state property of �), written � j= p, i� a j= p forea
h rea
hable state a of �.
A

BCD

E

a

b

c

d

e

Figure 38.1. � j= (B ! C) ^ (A! :C)As an example, in �38:1 the two formulas B ! C and A ! :C hold.Further examples are �9:1 j= A _ B, �9:3 j= FC ! K and �13:2 j=:(
riti
all ^
riti
alr).38.5 Lemma. Let � be an es-net and let p; q; r; s 2 sf(P�).i. � j= p and � j= q i� � j= p ^ qii. If � j= p and � j= p! q then � j= qiii. If � j= p! q and � j= r ! s then � j= (p ^ r)! (q ^ s).Proof of this lemma is left as an exer
ise for the reader.Some general properties of es-nets
an be
hara
terized by means of stateformulas. Referring to Se
t. 3,
onta
t freeness is represented as follows:

39 Net Equations and Net Inequalities 14738.6 Lemma. An es-net � has no rea
hable
onta
t state i�� j= t̂2T(^� t! :_(t� n �t)):Proof. � has no rea
hable
onta
t state i�, for ea
h rea
hable state a andea
h t 2 T�, if �t � a then (t� n �t) \ a = ;. This holds i� � j= Vt2T (V �t!:W(t� n �t)). utA further formula des
ribes that ea
h rea
hable state enables at least onea
tion:38.7 De�nition. An es-net � is stu
k-free i� � j= Wt2T (V �t^:W(t� n �t)).39 Net Equations and Net InequalitiesState properties
an frequently be proven by means of equations and inequali-ties, whi
h in turn
an be derived from the stati
 stru
ture of any given es-net.To this end, ea
h pla
e p of an es-net � is taken as a variable, ranging overf0; 1g, and ea
h state a � P� is represented by its
hara
teristi
 fun
tiona : P� ! f0; 1g, with a(p) = 1 i� p 2 a. Equations and inequalities with theformn1 � p1 + : : :+ nk � pk = m and (1)n1 � p1 + : : :+ nk � pk � m (2)will be
onstru
ted (where p1; : : : ; pk are variables
orresponding to P� andn1; : : : ; nk;m are integers), whi
h holds in � if the
hara
teristi
 fun
tion ofea
h rea
hable state of � solves (1) and (2). Valid state properties
an thenbe \pi
ked up" from valid equations and inequalities.39.1 De�nition. Let � be an es-net.i. For ea
h state a � P�, the
hara
teristi
 fun
tion a : P� ! f0; 1g of ais de�ned by a(p) = 1 if p 2 a and a(p) = 0 if p 62 a.ii. Let fp1; : : : ; pkg � P� and let p1; : : : ; pk be variables, ranging over f0; 1g.Furthermore let n1; : : : ; nk;m 2 Z. Then� : n1 � p1 + : : :+ nk � pk = mis a �-equation, andÆ : n1 � p1 + : : :+ nk � pk � mis a �-inequality.iii. Let � and Æ be as above, and let a � P� be a state. Then a solves � i�n1�a(p1)+: : :+nk �a(pk) = m, and a solves Æ i� n1�a(p1)+: : :+nk �a(pk) �m.iv. A �-equation � or a �-inequality Æ is valid in � (� or Æ holds in �) i�ea
h rea
hable state of � solves � or Æ, respe
tively.

148 VII. State Properties of Elementary System NetsAddition and subtra
tion of valid �-equations and �-inequalities obvi-ously retains validity.We employ the usual
onventions of integer terms, su
h as skipping 0 �pi.For example, valid �38:1-equations in
lude A+ C +D = 1, B � C + E = 0,and 2A+B+C+2D+E = 2. Likewise, the inequality A+B+C+D+E � 1holds in �38:1.A valid �-equation immediately implies valid state properties. For ex-ample, the valid �38:1-inequalities A + C � 1 and B � C + E = 0 yield�38:1 j= A ! :C and �38:1 j= B ! C, respe
tively. Ea
h valid �-equation� implies a strongest valid state property of �,
alled the state property of�. Most appli
ations involve spe
ial
ases of �-equations, with quite intu-itive state properties. We start with the most general
ase, whi
h may beskipped upon �rst reading, and will formulate the pra
ti
ally relevant
asesas
orollaries.39.2 De�nition. Let � be an es-net and let � be a �-equation.i. Let the summands of � be ordered su
h that � reads n1�p1+: : :+nk�pk = m,with n1 + : : :+ nl = m, for some 1 � l � k. Then p1 ^ � � � ^ pl ^ :pl+1 ^� � � ^ :pk is a standard formula of �.ii. Let � be the set of all standard formulas of �. Then �(�) := W� is thestate property of �.For example, the equation 2A + B + C = 1 has two standard formulas(up to propositional equivalen
e), B ^:A^:C and C ^:A^:B. Likewise,2A + B + C = 2 has the standard formulas A ^ :B ^ :C and B ^ C ^ :A,and the equation A � B � C = 0 has the standard formulas A ^ B ^ :C,A ^ C ^ :B, and :A ^ :B ^ :C.The state property of ea
h valid �-equation holds in �:39.3 Theorem. Let � be an es-net and let � be a valid �-equation. Then� j= �(�).Proof. i. Let a � P� be a rea
hable state of �. Then �
an be written� : n1 � p1 + : : :+ nl � pl + nl+1 � pl+1 + : : :+ nk � pk = m, withp1; : : : ; pl 2 a and pl+1; : : : ; pk 62 a. (1)Then m = n1 � a(p1) + : : :+ nk � a(pk) (by Def. 39.1(iii))= n1 � 1 + : : :+ nl � 1 + nl+1 � 0 + : : :+ nk � 0 (by def. of a and (1))= n1 + : : :+ nl.Then �a := p1 ^ : : : ^ pl ^ :pl+1 ^ : : : ^ :pk is a standard formula of �.Furthermore,a j= �a (by (1) and Def. 38.3). (2)ii. The set � of all standard formulas
ontains the formula �a for ea
hrea
hable state a of � (by
onstru
tion of �a). Hen
e �(�) holds for ea
hrea
hable state (by (2)), whi
h implies the Theorem (by Def. 38.4). ut

39 Net Equations and Net Inequalities 149Appli
ations mostly require propositional impli
ations of state propertiesof quite spe
ial �-equations. The two most important
ases are
overed bythe following
orollary:39.4 Corollary. Let � be an es-net.i. Let p1 + : : :+ pk = 1 be a valid �-equation. Then � j= p1 _ : : : _ pk and� j= p1 ! (:p2 ^ : : : ^ :pk).ii. With n1; : : : ; nk > 0, let n1 �p1+ : : :+nl �pl�nl+1 �pl+1� : : :�nk �pk = 0be a valid �-equation. Then � j= (p1 _ : : : _ pl)! (pl+1 _ : : : _ pk).Proof. i. The standard formulas of the given equation are pi ^ Vj 6=i :pj ,for i = 1; : : : ; k. The properties
laimed are implied by the disjun
tion ofthose formulas.ii. For ea
h standard formula q1 ^ � � � ^ qm ^:qm+1 ^ � � � ^ :qn of the givenequation holds: If for some 1 � i � l, pi 2 fq1; : : : ; qmg, then for somem + 1 � j � n, pj 2 fq1; : : : ; qmg, by
onstru
tion of the equation. Theproperty
laimed is implied by the disjun
tion of those formulas. utBy analogy to Def. 39.2, Theorem 39.3, and Corollary 39.4, ea
h �-inequality Æ
an be assigned a set of standard formulas whi
h yield a stateproperty �(Æ) that holds in �, provided Æ is valid in �. Again, there is amost important spe
ial
ase:39.5 De�nition. Let � be an es-net and let Æ be a �-inequality.i. Let the summands of Æ be ordered su
h that Æ reads n1�p1+: : :+nk�pk � m,with n1 + : : :+ nl � m for some 1 � l � k. Then p1 ^ : : : ^ pl ^ :pl+1 ^: : : ^ :pk is a standard formula of Æ.ii. Let � be the set of all standard formulas of Æ. Then �(Æ) := W� is thestate property of Æ.For example, 2A+B�C � 2 has the three standard formulas A^B ^C,A ^ B ^ :C and A ^ :B ^ :C.The state property of ea
h valid �-inequality holds in �:39.6 Theorem. Let � be an es-net and let Æ be a valid �-inequality. Then� j= �(Æ).Proof of this theorem tightly follows the proof of Theorem 39.3 and is leftas an exer
ise for the reader.The most important spe
ial
ase of the above theorem is
aptured by thefollowing
orollary:39.7 Corollary. Let � be an es-net and let p1 + : : : + pk � 1 be a valid�-inequality. Then � j= p1 _ : : : _ pk.

150 VII. State Properties of Elementary System Nets40 Pla
e Invariants of es-netsValid �-equations
an be gained from solutions of systems of linear, homoge-neous equations. To this end, a matrix � is assigned to ea
h es-net �. Thismatrix employs the pla
es and transitions of � as line and row indi
es:
A

BCD

E

a

b

c

d

e

� a b
 d eA �1 �1 1B 1 �1C 1 1 �1D 1 �1E 1 1 �1
a�A 1BCDEFigure 40.1. �38:1 with matrix � and ve
tor a�40.1 De�nition. Let � be an es-net.i. For t 2 T� let t be the P�-indexed ve
tor where for ea
h p 2 P�t[p℄ := 8><>:+1 i� p 2 t� n �t�1 i� p 2 �t n t�0 otherwise.ii. Let � be the matrix with index sets P� and T�, su
h that for ea
h p 2 P�and t 2 T�, �[p; t℄ := t[p℄.� a b
 d eA �1 �1 1B 1 �1C 1 1 �1D 1 �1E 1 1 �1

i1 i2 i3 i4A 1 1 2B 1 1 1C 1 1 �1D 1 1 2E 1 1 1Figure 40.2. Matrix and four pla
e invariants of �38:1Figure 40.1 represents the matrix of �38:1, as well as the
hara
teristi
 fun
-tion of the initial state. Intuitively, �[p; t℄ des
ribes the
hange of the numberof tokens on the pla
e p upon any o

urren
e of t. The matrix � des
ribesthe stati
 stru
ture of � uniquely in
ase � is loop-free.

40 Pla
e Invariants of es-nets 151The matrix � of an es-net � will now be used to
onstru
t the system�� �x = 0 of homogeneous linear equations. Here �� denotes the transposedmatrix of �, 0 the P�-indexed ve
tor with zero entries, and � the usual innerprodu
t of matri
es and ve
tors. The solutions of this system of equationsare
alled pla
e invariants.40.2 De�nition. Let � be an es-net and let i : P� ! Z be a mapping.Then i is
alled a pla
e invariant of � i� �� � i = 0 (i.e., for ea
h t 2 T�,t � i = �p2P� t[p℄ � i(p) = 0).Figure 40.2 re
alls the matrix of �40:1 and shows pla
e invariants i1; : : : i4of �40:1.Ea
h pla
e invariant is now assigned its
hara
teristi
 equation:40.3 De�nition. Let � be an es-net with P� = fp1; : : : ; pkg and let i be apla
e invariant of �.i. m := i(p1) � a�(p1) + : : :+ i(pk) � a�(pk) is the initial value of i.ii. The �-equation i(p1) � p1 + : : :+ i(pk) � pk = m is the equation of i.In fa
t, the equation of a pla
e invariant is valid in the underlying es-net�:40.4 Theorem. Let � be an es-net and let i be a pla
e invariant of �. Thenthe equation of i is valid in �.Proof. Let � : n1 � p1 + : : :+ nk � pk = m be the equation of i. Then for ea
ht 2 T�,�ki=1ni � t[pi℄ = 0, (1)by Defs. 40.3(ii) and 40.2.Now let a t�!b be any step of �. Then for ea
h p 2 P� ,b(p) = a(p) + t[p℄ (2)by Def. 40.1(i). Furthermore,if a solves � then b solves �, too, (3)shown as follows. Assume a solves �. Thenm = �ki=1ni � a(pi) (by Def. 39.1(iii))= (�ki=1ni � a(pi)) + (�ki=1ni � t[pi℄) (by (1))= �ki=1(ni � a(pi)) + (ni � t[pi℄) = �ki=1ni � (a(pi) + t[pi℄)= �ki=1ni � b(pi) (by (2)).Then b solves � (by Def. 39.1(iii)).

152 VII. State Properties of Elementary System NetsTo show the theorem, let a be any rea
hable state of �. Then there existsan interleaved run a0 t1�!a1 t2�! : : : tl�!al of � with a0 = a� and al = a. Thena0 solves � (by Def. 40.3(i)). Then ea
h aj (j = 0; : : : ; l) solves � (by (3) andindu
tion on j). Hen
e the theorem, by Def. 39.1(iv). utThe equations of i1; : : : ; i4 as given in Fig. 40.2 are A + C + D = 1,A + B + D + E = 1, 2A + B + C + 2D + E = 2, and B � C + E = 0,respe
tively. They are in fa
t valid, due to Theorem 40.4.Important state properties
an frequently be proven by means of equationsof pla
e invariants with entries ranging over f0; 1g and initial value equalto 1. Examples are i1 and i2 of Fig. 40.2. The equation of su
h a pla
einvariant is formed p1 + : : :+ pk = 1, with P = fp1; : : : ; pkg � P� . It
an begraphi
ally depi
ted with boldfa
ed ar
s adja
ent to pla
es in P . Figure 40.3shows examples. The pla
es in P together with the adja
ent transitions inP � [�P from a \subnet" with j �t j = j t� j = 1 for ea
h a
tion t. O

urren
eof t (whi
h may depend on lo
al states not in P) then swaps the unique tokenwithin P .A

ording to Corollary 39.4(i), su
h pla
e invariants yield valid state prop-erties. For example, with invariant i1 of Fig. 40.2, the state formulas A_C_Dand A! (:C ^ :D) hold in �40:1.Slightly more generally, many pla
e invariants have entries ranging overf�1; 0;+1g, with initial value 0. In Fig. 40.2, i4 is an example. With Corol-lary 39.4(ii), su
h pla
e invariants yield formulas of form (p1 _ : : : _ pl) !(pl+1 _ : : : _ pk). For example, i4 of Fig. 40.2 yields (B _ E) ! C, and �i4implies C ! (B _ E).
BCD

E
bd

e

outlining i 1

A
ac

BCD

E
bd

e

outlining i 2

A
ac

Figure 40.3. Outlining invariants i1 and i2 as given in Fig. 40.2

41 Some Small Case Studies 15341 Some Small Case Studies41.1 State properties of produ
er/
onsumer systemsThe produ
er/
onsumer systems �8:1, �9:1, �9:2, and �9:3
onsist essentiallyof small
ir
les, syn
hronized along
ommon a
tions. Ea
h
ir
le is
hara
-terized by a pla
e invariant, in fa
t a
hara
teristi
 ve
tor. In �9:1 theirequations arethe produ
er's invariant i1: A+B = 1 (1)the �rst bu�er
ell's invariant i2: C +D = 1 (2)the se
ond bu�er
ell's invariant i3: E + F = 1 (3)the
onsumer's invariant i4: G+H = 1 (4)Hen
e in ea
h rea
hable state, the produ
er is either ready to produ
e or readyto deliver, ea
h bu�er
ell is either empty or �lled, and the
onsumer is eitherready to remove or ready to
onsume.It is not diÆ
ult to realize that the above four invariants also apply to�9:2 and �9:3.The rest of this se
tion is dedi
ated to the \optimality" of �9:3, as ex-plained in Se
t. 9: The produ
er is never for
ed to a

ess a �lled bu�er
ellwhile the other
ell is ready to deliver. Furthermore, if at least one bu�er
ellis empty, then the token on J or K \points at" an empty bu�er
ell. This isrepresented by(B ^ (E _ C))! (BEJ _ BCK). (5)Proof of (5) is based on three invariants (6)-(8), of whi
h (7) is outlined inFig. 41.1:
B b d H

f

GecA

a

F

E

D

C

KJ L Mq

Figure 41.1. Pla
e invariant E +K � C �M = 0 of �9:3

154 VII. State Properties of Elementary System NetsJ +K = 1, hen
e �9:3 j= J _K. (6)E +K � C �M = 0, hen
e �9:3 j= EK ! CK. (7)C + J �E � L = 0, hen
e �9:3 j= CJ ! EJ . (8)Now we derive�9:3 j= (E _ C)! (E _ C) ^ (J _K), by (6). (9)�9:3 j= (E _ C)! EJ _ EK _ CJ _ CK, by (9). (10)�9:3 j= (E _ C)! EJ _ CK, by (10),(7) and (8). (11)Now (5) follows from (11) by propositional logi
.41.2 Mutual ex
lusion of the
ontentious algorithmsMutual ex
lusion of two lo
al states p and q of some es-net � is apparentlyrepresented by� j= :(p ^ q). (1)This
an frequently be proven by means of pla
e invariants.
q qa d

b e

c f

B F

C G

A E

D

ϕ ϕ

Figure 41.2. Pla
e invariant C +D +G = 1 (boldfa
e) of �13:2An example is the mutual ex
lusion of
riti
all and
riti
alr in the
on-tentious algorithm �13:2.Figure 41.2 re
alls this algorithm, with renamed elements and boldfa
ear
s of its invariant C+D+G = 1. With Corollary 39.4(i), both the formulasC ! :G and G! :C hold in �41:2, hen
e �41:2 j= :(C ^G).41.3 Mutual ex
lusion of the alternating algorithmFigure 41.3 re
alls the alternating mutex algorithm �13:3 with renamedpla
es. The boldfa
e ar
s outline the pla
e invariant C + D + E + H = 1whi
h implies :(C ^ H), viz. mutual ex
lusion of
riti
all and
riti
alr in�13:3.

41 Some Small Case Studies 155
q

ϕ

qaq d q

c e

b f
B

G

C H

A

F

D

EFigure 41.3. Pla
e invariant (boldfa
e) of the alternating mutex algorithm�13:3

c j

F A

B G H

C

D

J

E

RL

M

N

P

K

Q

f n

e m

a b h g

d k

q q

ϕ ϕ

Figure 41.4. Pla
e invariant (boldfa
e) of the token passing mutex algorithm�13:5

156 VII. State Properties of Elementary System Nets41.4 Mutual ex
lusion of the token passing algorithmFigure 41.4 re
alls the token passing mutex algorithm �13:5, with renamedelements. The boldfa
e ar
s depi
t the pla
e invariantB+E+J+K+M+Q=1. This invariant immediately implies mutual ex
lusion of E and Q, i.e.,mutex of �13:5.41.5 Mutual ex
lusion of the asymmetri
al algorithmFigure 41.5 re
alls the asymmetri
al algorithm �13:10, with renamed pla
es.The boldfa
e ar
s depi
t the pla
e invariant C +D + E +K +G = 1. Thisinvariant immediately implies mutual ex
lusion of C and K, i.e., mutex of�13:10.
B

A

C D

F

E

G

K

J

H

b e f

d
qa q h

c gFigure 41.5.Pla
e invariant (boldfa
e) of the asymmetri
al mutex algorithm�13:9Pla
e invariants fail to prove mutual ex
lusion of all other algorithms ofSe
t. 13, however, parti
ularly those relying on loops. As loops don't show upin the in
iden
e matrix, they
annot be represented and exploited by pla
einvariants. Removing all loops from �13:4, �13:8 destroys the mutex property,but retains the pla
e invariants. Hen
e pla
e invariants
annot help for thosealgorithms. In fa
t, they also fail for �13:6.One may employ a di�erent analysis te
hnique to this end, and in fa
tsu
h a te
hnique exists. The following se
tion has the details.42 TrapsThis se
tion provides a further te
hnique for proving state properties of es-nets, useful in many
ases where pla
e invariants fail. This te
hnique is basedon traps, i.e., on subsets P � P� with P � � �P . A trap fp1; : : : ; pkg impliesthe valid inequality p1+ : : :+pk � 1 and hen
e the state formula p1_ : : :_pk,provided one of its pla
es belongs to the initial state. Hen
e we are mostlyinterested in initialized traps:

42 Traps 15742.1 De�nition. Let � be an es-net and let P � P�.i. P is a trap i� P 6= ; and P � � �P .ii. P is initialized i� P \ a� 6= ;Figure 42.1 shows an example of an initialized trap, fA;Dg. Figure 42.2 out-
D

C

A

B

ab

c

dFigure 42.1. Initialized trap fA;Dg
trap

if present

then requiredFigure 42.2. Graphi
al outline of a traplines the requirement for traps graphi
ally. As a further example, fA;C;D;Egis an initialized trap of �40:1.Basi
 rules on sets imply:42.2 Proposition. The union of traps of a net N is again a trap of N .Proof. Let A and B be traps of N . Then (A [B)� = A� [B� � �A[�B =�(A [B). utEa
h trap is now assigned its inequality, by analogy to the equation ofpla
e invariants, as de�ned in Def. 40.3.42.3 De�nition. Let � be an es-net and let P = fp1; : : : ; pkg � P� be atrap of �. Then p1 + : : :+ pk � 1is the inequality of P .In fa
t, the inequality of an initialized trap is valid:

158 VII. State Properties of Elementary System Nets42.4 Theorem. Let � be an es-net and let P � P� be an initialized trap.Then the inequality of P is valid in �.Proof. i. Let Æ : p1+ : : :+pk � 1 be the inequality of P , and let a � P� bea state of �. Then a solves Æ i� a(p1) + : : :+ a(pk) � 1 i� a(pi) = 1 forat least one 1 � i � k i� pi 2 a for at least one 1 � i � a i� P \ a 6= ;.Hen
e for ea
h state a � P� ,a solves Æ i� a \ P 6= ;. (1)Furthermore, for ea
h a
tion t 2 T�:If �t\P 6= ; then t� \P 6= ; (2)be
ause P is a trap.ii. Let a t�!b be a step of � and assumea \ P 6= ;. (3)We distinguish two
ases:If �t\P 6= ; then ; 6= t� \P (by (2)) � ((a n �t) \ P) [(t� \P) =((a n �t) [t�) \ P = b \ P (by Def. 3.1).Otherwise �t\P = ;. Then ; 6= a \ P (by (3)) = (a \ P) n (�t\P) �((a \ P) n (�t\P)) [(t� \P) = ((a n �t) [t�) \ P = b \ P (by Def. 3.1).Hen
e for ea
h step a t�!b of �,If a \ P 6= ; then b \ P 6= ;. (4)iii. To show the theorem, let a be any rea
hable state of �. Then there existsan interleaved run a0 t1�! a1 t2�! : : : tl�!al of � with a0 = a� and al = a.Then a0 \ P 6= ; (by the theorem's assumption and Def. 42.1). Thenai \P 6= ; for i = 1; : : : ; l by (4) and indu
tion on i. Then al solves Æ (by(i)), hen
e a solves Æ. utThe inequality of a trap
an be
ombined with inequalities of other trapsand with equations of pla
e invariants. A small but typi
al example is theproof of �42:1 j= B ! D, hen
e the equationB � D (1)must hold. Figure 42.1 yields the pla
e invariantA+B = 1. (2)Furthermore, the initialized trap fA;Dg yields the inequalityA+D � 1. (3)Subtra
ting (3) from (2) then yieldsB �D � 0 (2)� (3)whi
h immediately implies (1).The inequality of an initialized trap P yields the formula WP , a

ordingto Corollary 39.7.

43 Case Study: Mutex 15942.5 Corollary. Let � be an es-net and let P � P� be an initialized trap.Then � j= WP .Proof. The proposition follows from Def. 42.3 and Corollary 39.7. ut43 Case Study: MutexMutual ex
lusion has been shown for a number of algorithms in Se
t. 41.Here we show mutual ex
lusion for the remaining algorithms of Se
t. 13 by
ombining equations and inequalities of pla
e invariants and traps.43.1 Mutex of the state testing algorithmFigure 43.1 redraws the state testing algorithm, renaming its lo
al statesand outlining its trap fD;Eg by boldfa
ed ar
s. Mutual ex
lusion in thisrepresentation reads �43:1 j= :(C ^H), hen
e the equationC +H � 1 (1)must hold. Proof of (1) is based on two elementary pla
e invariants with theequationsC +D = 1, (2)E +H = 1, (3)and the initialized trap fD;Eg outlined in Fig. 43.1 whi
h yieldsD +E � 1. (4)Subtra
ting the inequality (4) from the sum of the equations (2) and (3)yieldsC +D +E +H �D �E � 1 + 1� 1 (2) + (3)� (4)whi
h immediately redu
es to (1).
q qa l a r

b l b r

c l c r

B G

C H

A F

ϕ ϕ

D EFigure 43.1. Trap fD;Eg of the state testing mutex algorithm �13:4

160 VII. State Properties of Elementary System Nets43.2 Mutex of the round-based algorithmFigure 43.2 redraws the round-based mutex algorithm �13:6, renaming itslo
al states and outlining one of its traps by boldfa
ed ar
s. Mutual ex
lusion
A E

q

q

L

M

D

J

C

H

N

R

P

S

B

K

Q

T

G

F

n
b d

m

a
c

j
k

e
g

f h
q

p

ϕ

ϕ

Figure 43.2. Trap fA;C;D;E; J;Kg of the round-based mutex algorithm�13:6in this representation reads �43:2 j= :(N ^ R), hen
e the equationN +R � 1 (1)must hold. Proof of (1) is based on three pla
e invariants with the equationsA+ C +D + J +M +R = 1, (2)D +E +H + J + L+N = 1, (3)K +R+ S + T = 1, (4)the initialized trap, outlined in Fig. 43.2 with the inequalityA+ C +D +E + J +K � 1, (5)and the obvious inequalityD +H + J + L+M + S + T � 0. (6)Thus we obtain by (2) + (3) + (4)� (5)� (6)

43 Case Study: Mutex 161N + 2R � 2, i.e., N2 +R � 1. (7)(7) is equivalent to (1), be
ause N and R vary over f0; 1g.43.3 Mutex of Peterson's algorithmFigure 43.3 redraws Peterson's mutex algorithm �13:7, renaming its lo
alstates and outlining its trap fC;F;G;Mg by boldfa
ed ar
s. Mutual ex
lusion
C L

F P

D M

E N

G H

b j

c kmd

ne f p

g q
a hA J

B K

q q

ϕ ϕ

Figure 43.3. Trap fC;F;G;Mg in Peterson's algorithm �13:7in this representation reads �43:3 j= :(E ^N), hen
e the equationE +N � 1 (1)must hold. Proof of (1) is based on three elementary pla
e invariants withthe equationsG+H = 1, (2)C +D +E + F = 1, (3)L+M +N + P = 1, (4)and two initialized traps, one of whi
h is outlined in Fig. 43.3, whi
h yieldC + F +G+M � 1, (5)L+ P +H +D � 1. (6)Subtra
tion of (5) and (6) from the pla
e invariants' sum, i.e., (2) + (3) +(4)� (5)� (6), then immediately yields (1).

162 VII. State Properties of Elementary System Nets43.4 Mutex of Dekker's algorithmFigure 43.4 renames the lo
al states of Dekker's mutex algorithm �13:8 andoutlines its trap fF;C; P; Lg. Mutual ex
lusion then reads �43:4 j= :(D^M),
qg

ne pf

kc md

ϕϕ

NE

MD

HG

LC

PF

jb qq
ha

JA

KB

Figure 43.4. Trap fC;F; L; Pg in Dekker's algorithm �13:8hen
e the equationD +M � 1 (1)must hold. Proof of (1) is based on two elementary pla
e invariants with theequationsF + C +D +E = 1, (2)P + L+M +N = 1, (3)the initialized trap, outlined in Fig. 43.3, with the inequalityF + C + P + L � 1, (4)and the obvious inequalityE +N � 0. (5)Then (1) follows with (2) + (3)� (4)� (5).

43 Case Study: Mutex 16343.5 Mutex of Owi
ki/Lamport's algorithmFigure 43.5 renames the lo
al states of Owi
ki/Lamport's algorithm �13:9and outlines its trap fC;F;G;Kg. Mutual ex
lusion of writing and readingthen reads �43:5 j= :(D ^ L), hen
e the equationD + L � 1 (1)must hold. Proof of (1) is based on two elementary pla
e invariants with theequationsC +D + F = 1, (2)G+K + L = 1, (3)and an initialized trap, outlined in Fig. 43.5, with the inequalityC + F +G+K � 1. (4)Subtra
tion of (4) from the sum of (2) and (3), i.e., (2) + (3) � (4), thenredu
es to (1).This
ompletes the proof of mutual ex
lusion for all algorithms of Se
t. 13.
E

F

ϕ

B C K J

Mq q

A D L H

G

a

b

c

d

e

f

g

h

j k

Figure 43.5. Trap fC;F;G;Kg in Owi
ki/Lamport's asymmetri
al mutexalgorithm �13:9

VIII. Interleaved Progressof Elementary System Nets
As explained in the introdu
tory text of Part C, a progress property of an es-net � stipulates for a given setM of states that one of them will eventually berea
hed. In its
onditional form, a progress property stipulates that, startingat any state in some set L of states, a state in M will eventually be rea
hed.The notion of progress
an be based on interleaved runs as well as on
on
urrent runs. This se
tion sti
ks to the interleaved version. Con
urrentvariants will follow in Chap. IX.44 Progress on Interleaved RunsWe
onsider progress properties that are
onstru
ted from two state proper-ties, p and q: The progress property p leads to q (written p 7! q) holds in aninterleaved run r of some es-net � i� ea
h p-state of r is eventually followedby some q-state. Furthermore, p 7! q is said to hold in � i� p 7! q holds inea
h run of �. For example, the evolution property of a mutex algorithm �(
f. Se
t. 13) then reads� j= pending 7!
riti
al (1)Te
hni
ally, leads-to formulas are
onstru
ted from state formulas (
f.Def. 38.1):44.1 De�nition. Let P be a set of symbols and let p; q 2 sf(P) be stateformulas over P . Then the symbol sequen
e p 7! q (\p leads to q") is aleads-to formula over P . The set of all su
h formulas is denoted lf(P).Leads-to formulas are interpreted over interleaved runs and over es-nets:44.2 De�nition. Let � be an es-net and let p 7! q 2 lf(P�) be a leads-toformula.i. p 7! q is said to hold in an interleaved run w of � (written w j= p 7! q)i� to ea
h p-state of w with index i there exists a q-state in w with someindex j � i.ii. p 7! q is said to hold in � (written � j= p 7! q) i� w j= p 7! q for ea
hinterleaved run w of �.

166 VIII. Interleaved Progress of Elementary System NetsFor example, in �44:1, AB 7! E, A 7! CD, and A 7! E hold, but notAB 7! AD. In �44:2, ABC 7! (F _G) and AB 7! (F _DG) hold.
A

B

a

b

C

D

c
EFigure 44.1. A 7! E

A

B

C

a

b

D

E

c

d

F

GFigure 44.2. ABC 7! (F _G), and AB 7! (F _DG)Essential properties of the
ase studies of Chap. II
an be formulated bymeans of leads-to formulas. Examples in
lude:{ for bu�er systems � as in Figs. 9.1{9.3: Ea
h produ
er ready to deliver willeventually return to ready to produ
e: � j= B 7! A (but A 7! B does nothold there!);{ for a
tor/responder systems � as in Figs. 12.1, 12.2, 12.3, 12.5: The leftagent will eventually return to its lo
al state: � j= :lo
all 7! lo
all;{ for mutual ex
lusion algorithms � as in Figs. 13.4{13.10: Ea
h pendingsite will eventually be
riti
al: � j= pending 7!
riti
al or ea
h preparedwriter will eventually be writing.The leads-to operator exhibits a
ouple of useful properties:44.3 Lemma. Let � an es-net and let p; q; r 2 sf(P�).i. If � j= p! q then � j= p 7! q;ii. � j= p 7! p;iii. If � j= p 7! q and � j= q 7! r then � j= p 7! r;iv. If � j= p 7! r and � j= q 7! r then � j= (p _ q) 7! r.

45 The Interleaved Pi
k-up Rule 167Bra
kets will be avoided in progress formulas by the assumption that theprogress operator 7! binds more weakly than any propositional operator. Forexample, p ^ q 7! r _ s will stand for (p ^ q) 7! (r _ s).Proof of this lemma is left as an exer
ise for the reader.45 The Interleaved Pi
k-up RuleSe
tion 44 introdu
ed means to represent leads-to properties. Now we pursuea method to prove su
h properties. To this end we suggest a te
hnique to\pi
k up" simple valid leads-to formulas from the stati
 stru
ture of a net.Further valid formulas
an be derived from already established state- andprogress properties by help of the next
hapter's proof graphs.The forth
oming te
hnique is based on the (admittedly quite obvious)observation that either an enabled, progressing a
tion o

urs itself, or one ofits atta
hed neighbors o

urs.As an example, assume the following pie
e
A

B

C

a

b

D

E

(1)of an es-net �. fA;Bg enables the progressing a
tion a; hen
e either a or bo

urs eventually. Represented in the framework of Se
t. 44, we gain � j=AB 7! D _ AE. In general:45.1 Lemma. Let � be an es-net and let t 2 T� be progressing. Then � j=�t 7! Wu2(�t)� e�(�t; u).Proof of this lemma is left as an exer
ise for the reader.More generally, we may start out with any progress prone set of lo
alstates. As an example, in

168 VIII. Interleaved Progress of Elementary System Nets
A

e
D

B
f

E

C g
Fq

(2)
the state AC enables e, hen
e either of e, f , or g will eventually o

ur. Hen
e� j= AC 7! (CD _ CE _ AF).45.2 De�nition. Let � be an es-net and let Q � P�. Then Q is progressprone i� Q enables at least one progressing a
tion of �.As an example, AC is progress prone in (2) whereas BC is not.45.3 Lemma. Let � be an es-net and let Q � P� be progress prone. Then� j= Q 7! Wu2Q� e�(Q; u).Proof of this lemma is left as an exer
ise for the reader. Lemma 45.1 isapparently a spe
ial
ase of Lemma 45.3. As a further example
onsider thees-net � =

A

a

b

B

C

D

c

d

E

F

(3)
Def. 45.2 implies � j= BC 7! E_BF . The overall stru
ture of � further-more implies � j= B ! :D. Hen
e d is prevented in the state BC, and
 isthe only a
tion to o

ur. Thus even � j= BC 7! E holds. Generally, a set Qof lo
al states of an es-net � prevents an a
tion t i� t is not enabled at anyrea
hable state a with Q � a. This holds true i� � j= Q ! : �t. A
hangeset of Q then in
ludes all t 2 Q� that are not prevented by Q:45.4 De�nition. � be an es-net and let Q � P�.i. Q prevents an a
tion t 2 T� i� � j= Q! :(�t).ii. U � T� is a
hange set of Q i� U 6= ; and Q prevents ea
h t 2 Q� nU .Q� is obviously a
hange set of Q. In the net � as given in (3), BC isprogress prone, whereas BD is not. BC prevents d and CD prevents
. Theset f
; dg as well as the set f
g are
hange sets of BC. The set fa; bg is a
hange set of A whereas fag is no
hange set of A.

45 The Interleaved Pi
k-up Rule 169The following theorem des
ribes the most general
ase to pi
k up leads-toformulas from the stati
 stru
ture of a net: Ea
h
hange set of a progressprone set Q implies a leads-to formula.45.5 Theorem. Let � be an es-net, let Q � P� be progress prone and letU be a
hange set of Q in �. Then� j= Q 7! _u2U e�(Q; u):
A

e
E

B
f

F

C

g
GDFigure 45.1. AC 7! EC holds, provided A! :D and C ! :B hold.Proof. Let w = a0 t1�! a1 t2�! : : : be an interleaved run of � and let ai j= Qfor some index i of w. Then there exists a Q-enabled progressing a
tion, t.{ Then ai enables t (be
ause �t � Q � ai).{ Then there exists an index j > i with tj 2 (�t)� (by Def. 8.2(i) andDef. 6.1).{ Then there exists an index l � j with tl 2 Q�. Let k be the smallest su
hindex.{ Then aj j= Q for all i � j < k, and parti
ularly ak�1 j= Q.{ Then tk 2 U (by Def. 45.4), and furthermore ak j= e�(Q; tk).{ Hen
e ak j= Wu2U e�(Q; u).The theorem now follows from Def. 44.2. utLemma 45.3 is apparently a spe
ial
ase of Theorem 45.5 (with U = Q�).A further, slightly more involved example is shown in Fig. 45.1: AssumingA! :D and C ! :B to hold in �45:1, fA;Cg prevents both g and f . Hen
eU = feg is a
hange set of fA;Cg. Furthermore, fA;Cg is progress prone,hen
e �45:1 j= AC 7! EC. As a �nal example, �45:2 j= :B _ :E, hen
e fAgprevents b, and �45:2 j= A 7! C follows from Theorem 45.5.

170 VIII. Interleaved Progress of Elementary System Nets
A B

a b c d

C D EFigure 45.2. � j= A 7! CSmall
hange sets U generate more expressive progress formulas than largeones. However, it is o

asionally useful not to insist on minimal
hange setsU : It may be diÆ
ult to prove that a set Q prevents an a
tion t 2 Q�, andthe
ontribution of t to the generated progress formula may be irrelevant forthe intended use. In fa
t, the spe
ial
ases of Lemma 45.1 or Lemma 45.3frequently suÆ
e.A

ording to its use in
orre
tness proofs, Theorem 45.5 suggests
on-stru
ting a valid progress formula from a set Q � P� of pla
es a

ording tothe following s
hema:45.6 The pi
k-up rule for leads-to formulas. Let � be an es-net andlet Q � P� .1. Make sure Q enables some progressing a
tion t 2 T� (i.e., �t � Q).2. Starting with U := Q�, identify some a
tions prevented by Q and removethem from U .3. With the remaining set U � Q� of a
tions,
onstru
t the progress formulaQ 7! Wu2U (Q n �u) [u�.46 Proof Graphs for Interleaved ProgressLeads-to properties
an be proven by help of valid leads-to formulas that arepi
ked up a

ording to the pi
k-up rule of Se
t. 45, and their
ombinationa

ording to Lemma 44.3.Su
h proofs
an
onveniently be organized by means of proof graphs. Thenodes of a proof graph are state formulas. The ar
s starting at some node prepresent a disjun
tion of leads-to formulas. A proof graph is a
y
li
, has oneinitial node, p, and one �nal node, q, thus proving p 7! q. As an almost trivialexample, given p 7! q and q 7! r, proof of the formula p 7! r is representedby the proof graph
p q r . (1)Assuming standard notions of graphs, we de�ne

46 Proof Graphs for Interleaved Progress 17146.1 De�nition. Let � be an es-net, let p; q 2 sf(P�) be state formulas andlet G be a graph su
h thati. G is dire
ted, �nite, and a
y
li
,ii. The nodes of G are state formulas in sf(P�),iii. p is the only node without prede
essor nodes,iv. q is the only node without su

essor nodes,v. for ea
h node r, if r1; : : : ; rn are the su

essor nodes of r, then � j= r 7!(r1 _ : : : _ rn).Then G is a proof graph for p 7! q in �.The following theorem presents the
entral property of proof graphs:46.2 Theorem. Let � be an es-net and let G be a proof graph for p 7! q in�. Then � j= p 7! q.Proof. The Theorem is shown by indu
tion on the length n of a longest pathin �. Indu
tion basis: for n = 1, requirements iii and iv of Def. 46.1 implyp = q, hen
e � j= p 7! q by Lemma 44.3(i).For the indu
tion step, let a1 : : : an be the sequen
e of nodes of a longestpath of G, and assume indu
tively the Theorem holds for ea
h proof graphwith longest paths of length n� 1.For ea
h su

essor node r of p in G, let Gr be the subgraph of G
onsistingof all nodes and ar
s between r and q. Gr is a proof graph for r 7! q.Furthermore, the longest path of Gr has length n � 1, hen
e the indu
tiveassumption implies � j= r 7! q.Now, let r1; : : : ; rm are the su

essor nodes of p. Then � j= p 7! (r1 _: : : _ rm) by Def. 46.1(v). Furthermore, � j= (r1 _ : : : _ rm) 7! q by m-foldappli
ation of the above argument, and Lemma 44.3(iv). Hen
e � j= p 7! qby Lemma 44.3(iii). utAn ar
 from a node p to a node q is usually depi
ted p 7! q (as in(1)). The spe
ial
ase of a progress set U = fu1; : : : ; ung and a propertyQ 7! Wu2U e�(Q; u) pi
ked up by Theorem 45.5 is frequently depi
ted as
p

q
1

q
n

u
n

u
1 (2)A propositional impli
ation � j= p! (q1_ : : :_ qn) is usually represented by

p

q
1

q
n

(3)

172 VIII. Interleaved Progress of Elementary System NetsA small proof graph for leads-to properties of �38:1 exempli�es these
onven-tions: B b7! E�!EC e7! A (4)proves �38:1 j= B 7! A as follows: �38:1 j= B 7! E follows from Lemma 45.3with the progress set fbg. The impli
ation �38:1 j= E ! EC follows fromthe pla
e invariant B + E � C = 0, and � j= EC 7! A follows again fromLemma 45.3 with the progress set feg.47 Standard Proof GraphsThe
onstru
tion of a proof graph parti
ularly in
ludes determination of
or-re
t su

essor states of ea
h node, as required in Def. 46.1(v). The pi
k-uprule 45.3 fortunately produ
es valid formulas that perfe
tly �t this purpose.Whenever the pi
k-up rule fails at some node r (as no a
tion is enabled atr), pla
e invariants and traps may spe
ialize r by help of a valid impli
ationr ! r1 _ : : : _ rn. This again �ts into the s
hema of proof graphs, a

ordingto Lemma 44.3(i). Proof graphs
onstru
ted in this way are
alled standardproof graphs:47.1 De�nition. Let � be an es-net, let p; q 2 sf(P�) and let G be a proofgraph for p 7! q in �. G is a standard proof graph i�i. Ea
h node r 6= q is a
onjun
tion r = r1 ^ : : : ^ rn of atomi
 formulasr1; : : : ; rn 2 P�.ii. For ea
h node r and its dire
t su

essor nodes r1; : : : ; rn holds: Either� j= r ! (r1_ : : :_rn), or the pi
k-up rule yields � j= r 7! (r1_ : : :_rn).In fa
t, all proof graphs of Se
t. 46 are standard proof graphs. In additionto the properties and propositional impli
ations, a question mark indi
atesan a
tion that is not guarantees to be enabled, as for �45:2:
 A

C

D

a

b? : (1)The motivating examples of Se
t. 44
an now be proven by help of stan-dard proof graphs. For example, Fig. 47.1 shows a standard proof graphfor �44:1 j= A 7! E and Fig. 47.2 shows a standard proof graph for�44:2 j= AB 7! (F _DG).As a slightly nontrivial example we
onstru
t a proof graph to show a
entral property of the asymmetri
al mutex algorithm �13:10: The preparedwriter eventually gets writing. In terms of the representation of Fig. 47.3 wehave to show

47 Standard Proof Graphs 173
1.A 2.AB

3.BC

4.AD

5.CD 6.E

a b

b a

cFigure 47.1. Standard proof graph for �44:1 j= A 7! E
1.AB 2.BD

3.AG

4.F

5.DG

6.(F ∨ DG)
a c

?d ?d

aFigure 47.2. Standard proof graph for �44:2 j= AB 7! (F _DG)
B

A

C D

F

E

G

K

J

H

b e f

d
qa q h

c gFigure 47.3. � j= B 7! C

174 VIII. Interleaved Progress of Elementary System Nets�47:3 j= B 7! C. (2)The pi
k-up rule of Se
t. 45 does not apply to B, be
ause B itself is notprogress prone. So we apply the invariant D+E+K+G�A�B = 0 whi
himplies �47:3 j= B ! (D _ E _K _G): (3)Propositional reasoning implies �47:3 j= B ! (BD _ BE _ BK _ BG),and Lemma 44.3(i) furthermore yields �47:3 j= B 7! (BD_BE_BK_BG).This is the justi�
ation for node 1 in the following �rst step of a proof graph:
1 B 2 BD 3 BE 4 BK 5 BG

(4)To
ontinue the
onstru
tion of a proof graph, we
onsider the nodesinvolved. Node 2, BD, enables a
tion b. Hen
e Lemma 45.3 applies. Thepla
e invariant C+D+E+K+G, as outlined in Fig. 41.5, implies D ! :G,hen
e fB;Dg prevents d. This yields BD 7! C _ BE. Graphi
ally,
2 BD 3 BE 6 C .

e?

b
(5)The question mark at \e" indi
ates that a
tion e is not ne
essarily en-abled. Node 3, BE, like node 1 enables none of the a
tions. Again, a pla
einvariant helps: The pla
e invariant J �E � F = 0 implies �47:3 j= E ! J ,hen
e �47:3 j= BE ! BEJ , or graphi
ally,

3 BE 7 BEJ . (6)Node 7 now enables f . BEJ implies :D and :G, hen
e prevents b andd, leaving
hange set ffg.
1.B 2.BD 3.BE 7.BEJ 4.BK 5.BGH 6.BG 7.C

e?

b

df gFigure 47.4. Proof graph for �47:3 j= B 7! CCorresponding arguments apply to nodes 4 and 5, resulting in the proofgraph shown in Fig. 47.4. �47:3 j= DJ 7! (C _ K) is shown likewise inFig. 47.5. Its nodes are justi�ed as follows: Node 1 by invariant C + D �F + J +K +G = 1. Node 2: DFJ prevents f , by invariant F + E � J = 0.Nodes 3{5: trivial.

47 Standard Proof Graphs 175
1.DJ 2.DFJ 3.EJ 5.K 6.C ∨ K

4.C
b?

e fFigure 47.5. Proof graph for �47:3 j= DJ 7! C _KStandard proof graphs are easily understood and
he
ked. However, thereis no formalism to
onstru
t small and intuitive normal proof graphs. Forexample, loss of information is o

asionally mandatory, as in the standardproof graph
AB A C CB CD

a b
(8)proving �47:6 j= AB 7! CD.

A
a

C

B

b

c
DFigure 47.6. � j= AB 7! CDNot ea
h valid progress formula
an be proven by a normal proof graph.An example is �47:7 j= AB 7! C. This de�
it
an be repaired by the
om-plement E of B, as in Fig. 47.8. Then �47:8 j= AB 7! C is proven by thenormal proof graph of Fig. 47.9 (with pla
e invariant B+E = 1 for node 3).

A

B

C

D

e

f

g

Figure 47.7. � j= AB 7! C is not derivable by a standard proof graphWhether or not ea
h valid progress formula of an es-net
an be provenby a standard proof graph together with
omplements, is left as an openproblem.

176 VIII. Interleaved Progress of Elementary System Nets
A

B

C

D

e

f

g

EFigure 47.8. Extending �47:7 by lo
al state E, representing :B
1.AB 2.DE 3.AE 4.EC 6.C

5.BCe

f g eFigure 47.9. Standard proof graph for �47:8 j= AB 7! C48 How to Pi
k Up FairnessProgress properties frequently depend on fairness assumptions. For example,none of the essential progress properties of the mutex algorithms in Se
t. 13holds if fairness is negle
ted.A pi
k-up rule for leads-to properties will be given in this se
tion, ex-ploiting fairness assumptions. It applies to fair transitions that are
on
i
tredu
ed. This property has been dis
ussed informally in the introdu
tion ofSe
t. 13 already: A
on
i
t redu
ed transition t has at most one forwardbran
hing pla
e in �t. In fa
t, almost all algorithms
onsidered so far dealwith fair transitions that are
on
i
t redu
ed. The state testing mutex algo-rithm �13:4 is the only ex
eption.48.1 De�nition. Let � be an es-net and let t 2 T�. t is
on
i
t redu
edi� there exists at most one p 2 �t with p� % ftg. In this
ase, p is
alled the
on
i
t pla
e of t.48.2 Theorem. Let � be an es-net and let t 2 T� be fair and
on
i
tredu
ed, with
on
i
t pla
e p. For Q := �t nfpg assume furthermore � j=Q 7! p. Then � j= Q 7! t�.Proof. Let w = a0 t1�!a1 t2�! : : : be an interleaved run of �. For ea
h Q-stateak of w,tk+1 = t or ak+1 j= Q (1)be
ause t is
on
i
t redu
ed. Furthermore, to ea
h Q-state ak there exists ap-state al0 with l0 � k (by the theorem's assumption of � j= Q 7! p). Let lbe the smallest su
h index. Then for all k < i � l, ti 6= t (be
ause p 2 �t),hen
e ai j= Q (by (1), with indu
tion on i), hen
e al j= �t.Summing up, to ea
h Q-state ak there exists an index l > k withal�1 j= �t and (tl = t or al j= Q). (2)

48 How to Pi
k Up Fairness 177
E

dc

D

CBa b
ϕ

A

Figure 48.1. � j= B 7! CTo show w j= Q 7! t�, let ak be any Q-state. Then there exists an indexl > k with tl = t or a sequen
e l0 < l1 < : : : of indi
es with ali j= �t, fori = 0; 1; : : : (by (2) and indu
tion on l). Then(a) there exists an index l > k with tl = t or(b) w negle
ts fairness for t (by Def. 7.1(i))Case (b) is ruled out by the theorem's assumption of fairness for t. Hen
ew j= Q 7! t� by Def. 44.2(i). The theorem follows with Def. 44.2(ii). utAs an example, a
tion b of �48:1 is fair and
on
i
t redu
ed, with
on
i
tpla
e D. In order to show (�b nfDg) 7! b�, i.e.,�48:1 j= B 7! C (3)we �rst show �48:1 j= B 7! D by the proof graph
1.B 2.BE 3.BD 4.D

c (4)where node 1 is based on the pla
e invariant A+B�D�E = 0, and node 2on the pla
e invariant C +D + E = 1. Then the above theorem implies (3)(with t = b and Q = fBg).
A

ba

B

q
C Dc

ϕ

Figure 48.2. � j= C 7! D

178 VIII. Interleaved Progress of Elementary System NetsThe
on
i
t pla
e p of a fair,
on
i
t redu
ed transition t is frequentlylinked to other transitions by loops only, as e.g. in Fig. 48.2 with t =
 andp = C. Then a variant of the above Theorem applies:48.3 Corollary. Let � be an es-net, let t 2 T� be fair and
on
i
t redu
ed,with
on
i
t pla
e p. For ea
h u 2 p� assume u = t or u 2 �p. Then � j=�t 7! t�.Proof of this Corollary tightly follows the proof of Theorem 48.2, and isleft as an exer
ise to the reader. As an example, this Theorem immediatelyyields �48:2 j= C 7! D.49 Case Study:Evolution of Mutual Ex
lusion AlgorithmsWe are now prepared to prove the evolution property of the mutual ex
lusionalgorithms of Se
t. 13. Evolution of the alternating algorithm �13:3 is notguaranteed, and evolution of the state testing algorithm �13:4
annot beproven by means of Theorem 48.2, be
ause the fair transitions bl and brare not
on
i
t redu
ed. The round-based algorithm �13:6 is postponed toSe
t. 56. Evolution of the asymmetri
al algorithm �13:10 has already beenproven in Se
t. 47. Evolution of all other algorithms of Se
t. 13 will be provenin the sequel.49.1 Evolution of the
ontentious algorithmFigure 49.1 re
alls the
ontentious algorithm, with renamed pla
es. Due to
q qa d

b e

c f

B F

C G

A E

D

ϕ ϕ

Figure 49.1. Renamed
ontentious mutex algorithm �13:2the algorithm's symmetry we sti
k to evolution of the left site, i.e.,B 7! C. (1)The fair a
tion b is
on
i
t redu
ed, with
on
i
t pla
e D. First we showB 7! D by means of the proof graph

49 Case Study: Evolution of Mutual Ex
lusion Algorithms 179
1.B 2.G 3.D

f (2)Its node 1 is justi�ed by the pla
e invariant A + B �D � G = 0. Node 2 istrivial with Lemma 45.1.Theorem 48.2 now immediately yields (1), with t = b, p = D and Q =fBg.49.2 Evolution of the token passing algorithmThe token passing algorithm of Fig. 13.5 is redrawn in Fig. 49.2 with renamedpla
es. Due to the symmetry of the algorithm it suÆ
es to show the evolution
c j

F A

B G H

C

D

J

E

RL

M

N

P

K

Q

f n

e m

a b h g

d k

q q

ϕ ϕ

Figure 49.2. Renamed token passing mutex algorithm �13:5of the left site, viz �13:5 j= pendingl !
riti
all. In the version of Fig. 49.2this reads �49:2 j= A 7! E.In a separate
al
ulation we �rst show �49:2 j= H 7! HM .This property will be used twi
e: as part of the proof graph in Fig. 49.4,and as argument in the justi�
ation of one of its nodes, employing the fairnessrule.

180 VIII. Interleaved Progress of Elementary System NetsFigure 49.3 gives a proof graph for �49:2 j= H 7! HM . Its nodes arejusti�ed as follows: node 1: inv C + H � K � Q � M = 0; node 2: invG +K � P = 0; node 3: P prevents j with M +N + P +Q = 1; node 4: Qprevents j with M +N + P +Q = 1.
1.H 3.HKP

k
2.HK 5.HM4.HQ

mFigure 49.3. Proof graph for �49:2 j= H 7! HM
1.A 5.HM3.AC

c?
7.JD

d
2.AB

a

6.J
b

4.H
j

Fig.
49.3

8.EFigure 49.4. Evolution of the token passing algorithmFigure 49.4 now proves the evolution property �49:2 j= A 7! E. Its nodesare justi�ed as follows: node 1: inv F +A�B�C = 0; node 2: B prevents bwith inv B+C+D+E = 1; node 3: C prevents a with inv B+C+D+E = 1;node 4: proof graph Fig. 49.2; node 5: fairness rule 48.1 with
on
i
t pla
eM ,proof graph Fig. 49.2 and the propositional tautology j= HM !M ; node 6:pla
e invariant H + J �D = 0; node 7:
hange set fdg.49.3 Evolution of Peterson's algorithmThe algorithm of Fig. 13.7 is redrawn in Fig. 49.5 with renamed pla
es asin Fig. 43.3. Due to the symmetry of the algorithm it suÆ
es to show theevolution of the left site, viz. �13:7 j= pend0l 7!
riti
all. In the version ofFig. 49.5 this reads �49:5 j= B 7! E. Figure 49.6 gives a proof graph for thisproperty.The following pla
e invariants will
ontribute to justify its nodes:inv1: A+B � F = 0;inv2: G+H = 1;inv3: L+M +N + P = 1;inv4: C +D +E + F = 1.The nodes of Fig. 49.6 are justi�ed as follows:

49 Case Study: Evolution of Mutual Ex
lusion Algorithms 181
C L

F P

D M

E N

G H

b j

c kmd

ne f p

g q
a hA J

B K

q q

ϕ ϕ

Figure 49.5. Renamed Peterson's mutex algorithm �13:7node 1: inv1;node 2: Corollary 48.3;node 3: inv2;node 4: inv3;node 5: H prevents d with inv2 and C prevents e with inv4;node 6: G prevents
 with inv2,M prevents k with inv3 and C preventsp with inv4;node 7: G prevents
 with inv2 and N prevents both k and n with inv3;node 8: G prevents
 with inv2 and P prevents both k and n with inv3;node 9: G prevents both
 and m with inv2 and L prevents n with inv3;
6.CGM

7.CGN

8.CGP

9.CGL

10.CHM

1.B 2.BF 3.C 4.CG

5.CH

11.DG
b

m

n

q

j

k

c
c

d

d

d

d

12.DGM

13.DGN

14.DGP

15.DGL

16.DHM

17.E

q

j

k

f

e

n

Figure 49.6. Evolution of Peterson's algorithm

182 VIII. Interleaved Progress of Elementary System Netsnode 10: H prevents both d and n with inv2, M prevents m with inv3and C prevents both e and p with inv4;node 11: inv3;node 12: G prevents e with inv2,M prevents both f and k with inv3 andD prevents both d and p with inv4;node 13: G prevents e with inv2, N prevents f , k, and n with inv3 andD prevents d with inv4;node 14: G prevents e with inv2, D prevents d with inv4 and P preventsboth k and n with inv3;node 15: G prevents both e and m with inv2, L prevents both f and nwith inv3 and D prevents d with inv4;node 16: M prevents f and m with inv3, D prevents
 and p with inv4and H prevents n with inv2.49.4 Evolution of Dekker's algorithmThe algorithm of Fig. 13.8 is redrawn in Fig. 49.7. By analogy to the previous
qg

ne pf

kc md

ϕϕ

NE

MD

HG

LC

PF

jb qq
ha

JA

KB

Figure 49.7. Renamed Dekker's mutex algorithm �13:8se
tion, Fig. 49.8 shows a proof graph for �49:7 j= B 7! D. The followingpla
e invariants will
ontribute to justify its nodes:inv1: A+B � F = 0;inv2: G+H = 1;inv3: L+M +N + P = 1;inv4: C +D +E + F = 1.

49 Case Study: Evolution of Mutual Ex
lusion Algorithms 183
1.B 2.BF 3.C 14.D

8.CGMm

4.CG

9.CH

10.CHM

c

6.CGPq

12.CHP

c

5.CGN

b

11.CHN

n

7.CGL
j?

13.CHL
dp q j?Figure 49.8. Evolution of Dekker's algorithmThe nodes of Fig. 49.8 are justi�ed as follows:node 1: inv1;node 2: Corollary 48.3;node 3: inv2;node 4: inv3;node 5: N prevents
, d, m, and n with inv3, C prevents f with inv4:node 6: P prevents d, m, and n with inv3 and C prevents f with inv4;node 7: L prevents
 and n with inv3, G prevents d with inv2 and Cprevents both f and k with inv4;node 8: M prevents
, d, and m with inv3, G prevents p with inv2 andC prevents f with inv4;node 9: inv3;node 10: M prevents
, m, and d with inv3, H prevents n with inv2 andC prevents e with inv4;node 11: N prevents
, d, m, and p with inv3, C prevents e with inv4;node 12: P prevents d, m, and p with inv3 and C prevents e with inv4;node 13: L prevents both
 and p with inv3, H prevents m with inv2 andC prevents both e and k with inv4.49.5 Evolution of Owi
ki/Lamport's asymmetri
al mutexThe algorithm of Fig. 13.9 is redrawn in Fig. 49.9. We will show di�erentproperties of the writer and the reader site, respe
tively. First we show thatthe pending writer will eventually be writing; formally: �13:9 j= prep1 7!writing. In the version of Fig. 49.9 this reads �49:9 j= B 7! D. Figure 49.10gives a proof graph for this property.The following invariants will
ontribute to justify its nodes:inv1: A+B � F = 0;inv2: H + J +K + L+M = 1;inv3: C +D �E = 0;inv4: G+K + L = 1;

184 VIII. Interleaved Progress of Elementary System Nets
E

F

ϕ

B C K J

Mq q

A D L H

G

a

b

c

d

e

f

g

h

j k

Figure 49.9. Renamed Owi
ki/Lamport's asymmetri
al mutex algorithm�13:9inv5: A+B + C +D = 1;inv6: C +D + F = 1;inv7: E + F = 1;
1.B 2.BF 3.C 4.CL 5.CG 6.CK 7.CKE 8.CGM 9.D

c

b h f? cjFigure 49.10. Evolution of the writer in Owi
ki/Lamport's algorithmThe nodes of Fig. 49.10 are justi�ed as follows:node 1: inv1;node 2: Corollary 48.3;node 3: inv4;node 4: L prevents
 by inv4;node 5: trivial;node 6: inv3;node 7: K prevents
 by inv4; E prevents g by inv7; C prevents d by inv5;node 8: M prevents f by inv2 and C prevents k by inv6.If the reader is pending, the algorithm guarantees that eventually thereader will be reading or the writer will be writing; formally: �13:9 j=pend1 7! (writing _ reading). In the version of Fig. 49.9 this reads �49:9 j=J 7! L _D.

49 Case Study: Evolution of Mutual Ex
lusion Algorithms 185
1.J 2.JG 3.K 6.KC 10.KCE 12.MCEG 13.D 14.L ∨ D

7.KD

5.KB

4.KA

9.KBF

8.KAF

11.L

g

g
a

b

c?

f j c

Figure 49.11. Evolution of the reader in Owi
ki/Lamport's algorithmFigure 49.11 shows a proof graph for this property. In addition to theabove invariants inv1, : : : , inv7, the following invariant will
ontribute tojustify the nodes of this proof graph:inv8: H + J �G = 0.The nodes of Fig. 49.11 are justi�ed as follows:node 1: inv8;node 2: trivial;node 3: inv5;node 4: inv1;node 5: inv1;node 6: inv3;node 7: trivial;node 8: K prevents k by inv2; A prevents b by inv5 and F prevents jby inv7;node 9: K prevents k by inv2 and F prevents j by inv7;node 10: K prevents
 by inv4, C prevents d by inv5 and E prevents gby inv7;node 11: trivial;node 12: M prevents both j and f by inv2; C prevents d by inv5 and Eprevents k by inv7;node 13: trivial.

IX. Con
urrent Progressof Elementary System Nets
The interleaving based leads-to operator 7!,
onsidered in Chap. VIII, ad-equately des
ribes important properties of a wide range of distributed al-gorithms. But a variety of progress properties, typi
al and spe
i�
 for dis-tributed algorithms, are not expressible by this operator. This parti
ularlyin
ludes rounds, as informally des
ribed in the
ase studies of Chap. III.A new operator \,!" will be introdu
ed in Se
t. 50 with p ,! q (\p
ausesq") interpreted over
on
urrent runs K: In K holds p ,! q i� ea
h rea
hablep-state of K is followed by a rea
hable q-state.50 Progress on Con
urrent RunsAs an introdu
tory example we return to the produ
er/
onsumer system�8:1. Its behavior was intuitively des
ribed as a sequen
e of rounds, with ea
hround
onsisting of an item's produ
tion, delivery, removal, and
onsumption.Ea
h su
h round starts and ends in the initial state. The rounds of a run of�8:1 are depi
ted in Fig. 50.1. We shall present means to represent and toreason about rounds of this kind and other progress properties based on
on
urrent runs. We start with syntax
orresponding to Def. 44.1:50.1 De�nition. Let P be a set of symbols and let p; q 2 sf(P) be stateformulas over P . Then the symbol sequen
e p ,! q (\p
auses q") is a
ausesformula over P . The set of all su
h formulas will be denoted
f(P).Causes formulas are interpreted over
on
urrent runs and over es-nets:50.2 De�nition. Let � be an es-net and let p ,! q 2
f(P) be a
ausesformula.i. p ,! q is said to hold in a
on
urrent run K of � (written K j= p ,! q)i� to ea
h rea
hable p-state C of K there exists a q-state D of K that isrea
hable from C.ii. p ,! q is said to hold in � (written � j= p ,! q) i� K j= p ,! q for ea
h
on
urrent run K of �.As an example, the formulas BC ,! BE and A ,! CD both hold in �50:2(whereas BC 7! BE and A 7! CD don't hold).The following lemma resembles Lemma 44.3:

188 IX. Con
urrent Progress of Elementary System Nets

A : ready to produce
B : ready to deliver
C : buffer empty
D : buffer filled
E : ready to remove
F : ready to consume

a : produce
b : deliver
c : remove
d : consume

A

C

a B b A

E Ec

 a B b A a B

CDCD

F d dE c F

end of
first round

end of
second round

Figure 50.1. Rounds in the in�nite run of �8:1. Ins
riptions as in Fig. 5.5
A

B

C

D

E

F
a

b

c

d

eFigure 50.2. � j= BC ,! BE and � j= A ,! CD50.3 Lemma. Let � be an es-net and let p; q; r 2 sf(P�).i. � j= p ,! p;ii. If � j= p ,! q and � j= q ,! r then � j= p ,! r;iii. If � j= p ,! r and � j= q ,! r then � j= (p _ q) ,! r.In general,
auses is weaker then leads-to. They
oin
ide in spe
ial
ases:50.4 Lemma. Let � be an es-net and let p; q; r 2 sf(P�).i. If � j= p 7! q then � j= p ,! q;ii. Let Q � P� and let q = WQ. If � j= p ,! q then � j= p 7! q.51 The Con
urrent Pi
k-up RuleSe
tion 50 introdu
ed means to represent
auses properties. Means to provesu
h properties will be derived in the sequel. Valid
auses formulas
an be

51 The Con
urrent Pi
k-up Rule 189pi
ked up from the stati
 stru
ture of a net. A
orresponding pi
k-up rule willbe based on
hange sets, as introdu
ed for the leads-to-operator in Se
t. 45.6.The forth
oming pi
k-up rule highlights one distinguished feature: Pi
kedup
auses formulas p ,! q
an be embedded into a
ontext, r, yieldingr ^ p ,! r ^ q: (1)First we
onsider a spe
ial
ase of the forth
oming most general pi
k-uprule, in Theorem 51.1.As an example, from an es-net � with a part
A a B (2)the property � j= A ,! B
an be pi
ked up immediately. This in turn
anbe embedded into the
ontext of any lo
al state C, yielding� j= CA ,! CB. (3)As a more general example, from

A a C

B Db

(4)� j= AB ,! BC _ D
an be pi
ked up immediately. This again
an beembedded into the
ontext of any lo
al state E, yieldingEAB ,! EBC _ED. (5)Abstra
tly formulated, let Q � P� be progress prone and let U � Q� be a
hange set of Q. Then � j= Q ,! Wu2U e�(Q; u). This of
ourse resemblesthe pi
k-up rule for the leads-to operator 7!, as stated in Lemma 45.3. Butin
ontrast to pi
ked up yields formulas, the above
auses formula
an beembedded in a
ontext R � P� , yielding� j= R [Q ,! R [(Wu2U e�(Q; u)), (6)provided �U � Q and Q \ R = ;.Rule (6) suÆ
es in most
ases, and will be
onsidered in Corollary 51.2.Rule (6) is o

asionally too stri
t, as the following example shows: In (4), fAgis progress prone and fa; bg is a
hange set of fAg. Hen
e � j= A ,! C_D
anbe pi
ked up immediately. But a
ontext
annot be applied to this formulaby means of (6) be
ause �fa; bg 6� fAg. So, in (6) we skip the requirement of�U � Q, but allow
ontext to e�(Q; u) only in
ase �u � Q. For example, in(4) the formula A ,! C _ D
an now be embedded into the
ontext of anylo
al state E for the o

urren
e of a (be
ause �a � fAg), but not for theo

urren
e of b (be
ause �b 6� fAg), yielding

190 IX. Con
urrent Progress of Elementary System Nets� j= EA ,! EC _D. (7)Generally formulated, the
hange set U of a progress prone set Q is parti-tioned into U = V _W su
h that �V � Q. Then a
ontext R is applied to Vonly. Hen
e the following theorem:51.1 Theorem. Let � be an es-net, let Q � P� be progress prone and letU = V [W be a
hange set of Q with �V � Q. Furthermore, let R � P� withR \ �V = ;. Then � j= R [Q ,! (R [Wu2V e�(Q; u)) _ (Wu2W e�(Q; u)).Proof. Let K be a
on
urrent run of � and let C be a rea
hable R[Q-state.With ' := (R [Wu2V e�(Q; u)) _ (Wu2W e�(Q; u)) we have to show:K has a '-state that is rea
hable from C. (1)There exists a subset CQ � C with l(CQ) = Q. Then l(CQ) enables at leastone progressing a
tion u (by the theorem's assumption that Q is progressprone). Then CQ 6� KÆ (by Def. 8.2(ii)). Furthermore, u 2 U (as U is a
hangeset of Q). Then there exists some t 2 CQ� with l(t) = u (by Def. 5.4(ii)).If u 2 V , then �u � Q (by the theorem's assumption �V � Q), hen
e�t � CQ. Then D := (C n �t) [t� is rea
hable from C. Even more, D is ane�(Q; u)-state. Furthermore, there exists a subset CR � C with l(CR) = R(by
onstru
tion of C). Furthermore, l(CR) \ l(�t) = R \ �u = ; (by theTheorem's assumption R \ �U = ;). Hen
e CR \ �t = ; (by Def. 5.4). Hen
eCR � D. Hen
e D is also a R-state. Hen
e '-state, rea
hable from C. Hen
e(1).In
ase of u 2 W , let t0 be a minimal (with respe
t to <K) element witht0 2 CQ� and l(t) = u. Then there exists a state E, rea
hable from C, withC [�t � E. Then F := (E n �t0)[t0� is an e�(Q; u)-state, rea
hable from C,hen
e (1). utA

ording to this theorem, in fa
t (7) is valid in (4). The following spe
ial
ase with W = ; (hen
e V = U) suÆ
es in most
ases (e.g., for the validityof (5) and (4)).51.2 Corollary. Let � be an es-net, let Q � P� be progress prone and letU � T� be a
hange set of Q with �U � Q. Furthermore, let R � P� withR \Q = ;. Then � j= R [Q ,! R [Wu2U e�(Q; u).The opposite spe
ial
ase (i.e., V = R = ;) mirrors the interleaved pi
k-uprule.52 Proof Graphs for Con
urrent ProgressPi
ked-up
auses formulas
an be
omposed in proof graphs. The su

essornodes r1; : : : ; rn of a node r then represent r ,! (r1 _ : : : _ rn). All otheraspe
ts of su
h proof graphs
oin
ide with proof graphs for leads-to formulas:

53 Ground Formulas and Rounds 19152.1 De�nition. Let � be an es-net, let p; q 2 sf(P�) be state formulas,and let G be a graph meeting Def. 46.1(i){(iv) andvi. for ea
h node r, if r1; : : : ; rn are the su

essor nodes of r, then � j= r ,!(r1 _ : : : _ rn).Then G is a proof graph for p ,! q in �.Proof graphs for
auses formulas in fa
t prove validity of those formulas:52.2 Theorem. Let � be an es-net and let G be a proof graph for p ,! q in�. Then � j= p ,! q.Proof of this theorem is essentially the same as the proof of Theorem 46.2and is left as an exer
ise to the reader.Standard proof graphs are
onstru
ted from propositional impli
ationsand pi
ked-up formulas:52.3 De�nition. Let � be an es-net, let p; q 2 sf(P�), and let G be a proofgraph for p ,! q in �. G is a standard proof graph i�i. Ea
h node r 6= q is a
onjun
tion r = r1 ^ : : : ^ rn of atomi
 formulasr1; : : : ; rn 2 P�.ii. For ea
h node r and its dire
t su

essor nodes r1; : : : ; rn, either � j=r ! (r1 _ : : : _ rn) or the pi
k-up rule Theorem 51.1 yields � j= r ,!(r1 _ : : : _ rn).Leads-to properties p 7! q
an frequently be proven by means of shortproof graphs for p ,! q, together with Lemma 50.4(ii). For example, theproperty �44:1 j= A 7! E, as proven in Fig. 47.1,
an likewise be proven bymeans of the { shorter { proof graph in Fig. 52.1 for �44:1 j= A ,! E, andLemma 50.4(ii). The forth
oming
on
ept of rounds provides further meansfor short proof of both
auses and leads-to formulas.
1.A 2.AB 3.AD 4.CD 5.Eb a cFigure 52.1. Standard proof graph for �44:1 j= A ,! E53 Ground Formulas and RoundsA state formula p 2 sf(P�) of an es-net � is said to be a ground formula of �if in ea
h
on
urrent run, ea
h rea
hable state of � is followed by a p-state;formally� j= true ,! p. (1)

192 IX. Con
urrent Progress of Elementary System NetsDistributed algorithms
an frequently be properly
omprehended and veri�edusing ground formulas. Interesting ground formulas are mostly
onjun
tions(viz. subsets) of atoms p � P� , or even distinguished rea
hable states. Su
ha state is said to be a ground state. For example, the initial state ACE of theprodu
er/
onsumer system �8:1, as redrawn in �53:1, is a ground state, andin fa
t the only ground state of �53:1.Claim (1) implies that ea
h �nite run of � ends at a p-state, and thatea
h in�nite run of � has in�nitely many p-states. Distributed algorithms arefrequently round-based. A round of an es-net � is a �nite, �-based
on
urrentrun that starts and ends at a ground state. � is round-based if there exists a�nite set R of rounds su
h that ea
h
on
urrent run K of �
an be
on
eivedas a �nite or in�nite sequen
e of rounds of R. As an example, there exists aunique round of �53:1, as outlined in Fig. 50.1.53.1 De�nition. Let � be an es-net and let p 2 sf(P�) be a state formula.p is a ground formula of � i� � j= true ,! p.
B F

D

C

c d

EA

a q b

Figure 53.1. Ground formula ACEThere is an operational
hara
terization of ground formulas p � P� . It isbased on the notion of
hange sets as introdu
ed in Def. 45.4(ii) already.53.2 Theorem. Let � be an es-net and let p � P� withi. � j= a� ,! p, andii. for some
hange set U of p and ea
h u 2 U , � j= e�(p; u) ,! p.Then p is a ground formula.Proof. Let K be a
on
urrent run of �, and let A;B � PK be two rea
hablestates of K.A transition t 2 TK is said to be between A and B i� for some a 2A and some b 2 B holds: a �K t �K b. Let dist(A;B) denote theset of all transitions between A and B. Obviously dist(A;B) = ;i� B is rea
hable from A. (2)

53 Ground Formulas and Rounds 193The proof essentially bases on the following proposition:Let dist(A;B) 6= ; and let A be a p-state. Then there exists area
hable p-state D of K with dist(D;B) $ dist(A;B). (3)This proposition is proven as follows: dist(A;B) 6= ; implies a transitiont 2 A� with t < b for some b 2 B. Then there exists a transition u with�u � A and u < b, be
ause t has only �nitely many prede
essors in K.Let C := (A n �u) [u�. Then dist(C;B) = dist(A;B) n fug. If C is a p-state, we are done (with D := C). Otherwise l(u) 2 p�, hen
e l(u) 2 U forea
h
hange set U of p. Furthermore l(C) is an e�(A; u)-state of �. Then� j= l(C) ,! p by the Theorem's assumption. Then there exists a p-state Dof K, rea
hable from C. Furthermore, dist(A;B) $ dist(C;B) � dist(D;B).Hen
e the proposition (2).Now let B be any rea
hable state of K. The Theorem's assumption � j=a� ,! p implies a rea
hable p-state, A of K. A dist(A;B) is �nite, �nitelymany appli
ations of the proposition (2) yield a rea
hable p-state D of Kwith dist(D;B) = ;. Then (1) implies D be rea
hable from B hen
e theTheorem. utAs an example, we prove that the initial state ACE is a ground formulaof �53:1 by means of Theorem 53.2. The �rst
ondition, � j= a� ,! ACE,is trivially ful�lled with Lemma 50.3(i). For the se
ond
ondition of Theo-rem 53.2 observe that U = fag is a
hange set of ACE, be
ause A preventsb by inv A + B = 1 and C prevents
 by inv C +D = 1. Hen
e we have toshow: �53:1 j= BCE ,! ACE. The proof graph1:BCE b,!2:ADE
,!3:ACF d,!4:ACE (4)shows this property. Its nodes are justi�ed as follows:node 1:
ontext E;node 2:
ontext A;node 3:
ontext AC.Hen
e (4) proves that ACE will eventually be rea
hed from any rea
hablestate, though (4) does not refer to all rea
hable states of �53:1, and ignores,e.g., BDE or BDF !As a further, te
hni
al example we show that the initial state AD of �53:2is a ground state: A

ording to Theorem 53.2 it suÆ
es to show thatBD ,! AD, and (5)AE ,! AD (6)both hold in �53:2, as fa; dg is a
hange set of AD. Figure 53.3 shows a proofgraph for (5). Its nodes are justi�ed as follows:node 1: Theorem 51.1, with V = fbg, W = fgg, R = fDg;node 2:
ontext F ;

194 IX. Con
urrent Progress of Elementary System Netsnode 3:
ontext A;node 4:
ontext D.Corollary 51.2 was not suÆ
ient to justify node 1.Proof of (6) is left to the reader, due to the symmetri
al stru
ture of �53:2.
A

D

B

E

C

F

a b c

d e f

g

q

qFigure 53.2. AD is a ground state
1.BD 2.CF 3.CD 4.AD

g ? f c

bFigure 53.3. �53:2 j= BD ,! ADGround formulas support the proof of any
auses formulas:In Theorem 51.1, the requirement that Q is progress prone may be repla
edby the requirement to imply :p for some ground formula p. An element t ofthe
hange set U with �t � Q is obsolete in this
ase. Hen
e:53.3 Theorem. Let � be an es-net and let p be a ground formula of �. LetQ � P� with � j= Q ! :p and let U be a
hange set of Q in �. Then� j= Q ,! Wu2U e�(Q; u).Proof. Let K be a
on
urrent run of �, let C be a Q-state of K, and letCQ � C with l(CQ) = Q. Then there exists a p-state D of K that is rea
hablefrom C, be
ause p is a ground formula. From � j= Q! :p follows CQ 6� D.Hen
e there exists a transition t 2 CQ� in K, with l(t) 2 U . Hen
e theproposition. utAs an example we show that the �lled bu�er of the produ
er/
onsumersystem �53:1 will eventually be empty:�53:1 j= D 7! C. (7)Based on the above proven ground formula ACE we apply Theorem 53.3 asfollows: The bu�er is �lled in some state a � P�53:1 i� D 2 a. Furthermore,�53:1 j= D ! :C by inv D + C = 1; hen
e �53:1 j= D ! :ACE. U = f
g

54 Rounds of Sequential and Parallel Bu�er Algorithms 195is a
hange set of D and e�(D;
) = CF . Hen
e with Theorem 53.3: �53:1 j=D ,! C, hen
e (7) with Lemma 50.4(ii).54 Rounds of Sequential and Parallel Bu�er Algorithms54.1 Rounds of the sequential two-
ell algorithmThe initial state ACE of the basi
 produ
er/
onsumer algorithm �8:1, asredrawn in Fig. 53.1, is a ground state, i.e., a ground formula that even is area
hable state of �53:1. This has been proven in Se
t. 53 already, and hasbeen outlined in Fig. 50.1. The sequential bu�er with two
ells, as outlinedin Fig. 9.1, has a unique ground state, too, i.e., its initial state ACEG. Proofof this property stri
tly follows the
orresponding proof of �53:1, and is leftas an exer
ise to the reader.54.2 A ground formula of the nondeterministi
 parallel algorithmFigure 9.2 has no ground state. As Fig. 9.5 exempli�es, one of the bu�er
ellsmay remain �lled forever. However, the algorithm has a ground formula, AG,indi
ating that the produ
er always returns to ready to produ
e, and the
onsumer to ready to remove. This property
an easily be proven by meansof Theorem 53.2: a�9:2 ! AG is a propositional tautology, hen
e triviallya�9:2 ,! AG. Furthermore, fa; d; eg is a
hange set of AG, hen
e we have toshowBG ,! AG, AEH ,! AG, and ACH ,! AG. (1)The �rst of those propositions follows from the standard proof graph
1.BG 2.BFG 3.BEH

4.BCH

5.BEG

6.BCG

7.AG
d

e ?

f

f

b

c

c b
(2)Justi�
ation of its nodes as well as proof of the rest of (1) is left as an exer
iseto the reader.54.3 A ground formula of the deterministi
 parallel algorithmThe deterministi
 parallel produ
er/
onsumer of Fig. 9.3 has likewise noground state: Some of its �nite runs terminate in the initial state, and someterminate in the state ACEGKM . But ACEG is a ground formula of �9:3,indi
ating the produ
er and the
onsumer ready and both bu�er
ells empty.

196 IX. Con
urrent Progress of Elementary System NetsThis again
an be shown using the Theorem 53.2: a�9:3 ! ACEG is a propo-sitional tautology. fag is a
hange set of ACEG, be
ause A prevents b and
 by inv A + B = 1, E prevents d by inv E + F = 1, and C prevents e byinv C +D = 1. Hen
e one has to show �9:3 j= BCEG ,! ACEG. This
anbe a
hieved by means of a standard proof graph, left as an exer
ise to thereader.54.4 Rounds of the two
onsumers algorithmFigure 54.1 shows a system with two
onsumers. Its initial state is a groundstate. This follows from Theorem 53.2 by means of the proof graph1: BCEG b,! 2: ADEG ,!,!
e 3: ACFG4: ACHE ,!,!df5: ACEG (3)
B

F

H

D

C

c

e

d

f

E

G

A

a q b

Figure 54.1. Two
onsumersAs a variant one may turn�54:1 into a deterministi
 algorithm, serving the
onsumers alternately. This is easily a
hieved by means of the syn
hronization
ir
uit
J K

c

e

(4)

55 Rounds and Ground Formulas of Various Algorithms 197augmented to �54:1. The above ground formula ACEG then is no longer aground state, but only a ground formula.55 Rounds and Ground Formulas of Various AlgorithmsVirtually all algorithms of Chap. II are round-based or at least have groundformulas. Being aware of rounds and ground formulas, the reader obtainsbetter intuitive per
eption of an algorithm. In this se
tion we dis
uss roundsof various algorithms introdu
ed in Chap. II, in
luding the philosophers, theasyn
hronous pushdown, and the
rosstalk algorithm. Rounds and groundformulas of mutual ex
lusion algorithms are postponed to Se
t. 56.55.1 Rounds of the philosophers algorithmThe algorithm for thinking and eating philosophers, as given in Fig. 10.1,operates in �ve rounds, one for ea
h philosopher. Ea
h round
omprises aninstan
e of pi
king up and releasing a philosopher's forks, as outlined in (2)of Se
t. 10.Upon proving this property, we �rst observe that the initial state � of�10:1 enables �ve a
tions, Ap, Bp, Cp, Dp, and Ep, i.e., ea
h philosopheris able to pi
k up his forks. In fa
t, U = fAp; : : : ; Epg is a
hange set of�. Let �A; : : : ; �E be the states rea
hed after the o

urren
e of Ap; : : : ; Ep,respe
tively. Hen
e there are �ve steps � Ap��!�A; : : : ; � Ep��!�E starting at �.In order to show that � is in fa
t a ground state, with Theorem 53.2 we haveto show �A ,! �; : : : ; �E ,! �. This in turn is almost trivial, be
ause one
anpi
k up �A Ar,!�; : : : ; �E Er,!� immediately, a

ording to Corollary 51.2 (withempty
ontext).As a
onsequen
e, ea
h
on
urrent run has a linearization (in general notunique) that
onsists of a sequen
e of eating
y
les, as represented in (2) and(3) of Se
t. 10.55.2 Rounds of the asyn
hronous pushdown algorithmThe algorithm that organizes
ontrol in an asyn
hronous sta
k with
apa
ityfor four items has been given in Fig. 11.2, and is redrawn in Fig. 55.1, withrenamed pla
es. It operates in two rounds, one to push a value into the sta
k,and one to pop a value. Ea
h round
omprises either an entire \wave" ofpushing down data along the a
tions a0; : : : ; a4, or an entire wave of soli
itingdata along b0; : : : ; b4.Upon proving this fa
t, we �rst observe that the initial state � of �55:1enables two a
tions, a0 and b0, i.e., the initial state is enabled for both a pushround and a pop round. In fa
t, U = fa0; b0g is a
hange set of �. Hen
e two

198 IX. Con
urrent Progress of Elementary System Nets
push

top

pop

bottomA1 A2 A3 A4

a0 a1 a2 a3 a4

b0 b1 b2 b3 b4

B1 B2 B3 B4

C1 C2 C3 C4

q

qFigure 55.1. Renamed asyn
hronous sta
k �11:2steps � a0�!B1A2A3A4 and � b0�!C1A2A3A4 start at �. In order to show that� is a ground state, with Theorem 53.2 we have to show B1A2A3A4 ,! �and C1A2A3A4 ,! �. This is easily a
hieved by two proof graphsB1A2A3A4 a1,!A1B2A3A4 a2,!A1A2B3A4 a3,!A1A2A3B4 a4,!� (1)andB1C2A3A4 b1,!A1C2A3A4 b2,!A1A2C3A4 a3,!A1A2A3C4 a4,!� (2)Their nodes are justi�ed by pla
e invariants Ai+Bi+Ci = 1 for i = 1; : : : ; 4.We leave the details as an exer
ise to the reader.As a
onsequen
e, ea
h
on
urrent run of the asyn
hronous sta
k has alinearization that
onsists in a sequen
e of rounds, ea
h of whi
h des
ribeseither an entire push-wave or an entire pop-wave of the sta
k.55.3 Rounds of the
rosstalk algorithmFigure 55.2 re
alls the
rosstalk algorithm �12:5 with renamed pla
es. Thisalgorithm operates in three rounds, as already dis
ussed in Se
t. 12. Here weare going to prove that the initial state AE is in fa
t a ground state. Thefollowing pla
e invariants of �55:2 will be used:inv1: A+B +G = 1,inv2: E +K + F = 1,inv3: A+ C +D + J +M = 1,inv4: D +E +H + J + L = 1.

55 Rounds and Ground Formulas of Various Algorithms 199
B

a

A E

c

F
D

C

b d

K

ge

G
J

H

f h

kj

L

M

q

q

Figure 55.2. Renamed
rosstalk �12:5First we observe thatfa; gg is a
hange set of AE: (1)A prevents
 by inv3 and E prevents e by inv4. Figure 55.3 showse�(AE; a) ,! AE (2)(as e�(AE; a) = BCE). The nodes of Fig. 55.3 are justi�ed as follows:node 1:
ontext B, and E prevents k by inv2;node 2:
ontext BH , K prevents
 by inv2, and C prevents h by inv3;node 3:
ontext FM , B prevents e by inv1, and H prevents b by inv4;node 4:
ontext GM ;node 5:
ontext E;node 6:
ontext F , D prevents j by inv4;node 7:
ontext A.
1.BCE 2.BCHK

6.BDF

3.BFHM

7.ALF

4.FGLM 5.EGM 8.AE
g k

b
c

j d

d

fFigure 55.3. Proof of e�(AE; a) ,! AE

200 IX. Con
urrent Progress of Elementary System NetsFigure 55.4 shows likewisee�(AE; g) ,! AE (3)(as e�(AE; g) = AHK).
1.AHK 2.BCHK

6.GJK

3.BFHM

7.GEM

4.FGLM 5.EGM 8.AE
a k

h
e

j d

f

fFigure 55.4. Proof of e�(AE; g) ,! AEThe two proof graphs in Figs. 55.3 and 55.4 re
e
t the three rounds of�55:2: The upper line of ea
h proof graph des
ribes the
ase of
rosstalk. Thelower line of Fig. 55.3 re
e
ts a message from R to L, and the lower line ofFig. 55.4 a message from L to R. We leave the justi�
ation of the nodes ofFig. 55.4 as an exer
ise to the reader.With Theorem 53.2 it follows immediately from (1), (2), and (3) that AEis in fa
t a ground state of �55:2.56 Ground Formulas of Mutex Algorithms56.1 Constru
tion of ground formulasA mutex algorithm
an never rea
h a state that is entirely symmetri
al withrespe
t to the two sites involved. If it
ould, then both sites
ould
ontinueto always a
t symmetri
ally and thus would never rea
h a state with one site
riti
al and the other site not
riti
al. In fa
t, ea
h algorithm of Se
t. 11 iseither asymmetri
al by stru
ture (su
h as the syn
hronized algorithm, Ow-i
ki/Lamport's algorithm, and the asymmetri
al algorithm) or is asymmet-ri
al by initial state (su
h as the token passing algorithm, Peterson's algo-rithm, and Dekker's algorithm). The
ontentious, the alternating, and thestate-testing algorithms are symmetri
al both in stru
ture and initial state,but have been ruled out as a

eptable mutex algorithms.Asymmetry of the initial state is inherited to ea
h rea
hable state, andthus the token-passing, Peterson's, and Dekker's algorithm don't have aground state. But the lo
al quiet states of the two sites l and r
onstitute aground formula quietl ^ quietr (1)in ea
h mutex algorithm. The initial state of the three stru
turally asymmet-ri
al algorithms are even ground states.

56 Ground Formulas of Mutex Algorithms 201Proof of (1)
an again be based on Theorem 53.2. In ea
h mutex algorithm�, the initial state a� enables two a
tions whi
h
onstitute a
hange set of a� ,and lead to pendl and pendr (or similarly denoted lo
al states), respe
tively.So we have to showpendl ^ quietr ,! a� , and quietl ^ pendr ,! a� . (2)Evolution of � gives pendl ,!
ritl and pendr ,!
ritr. A proof of evolutionof various algorithms, as given in Se
t. 49,
an easily be modi�ed to proofsof pendl ^ quietr ,!
ritl ^ quietr, andquietl ^ pendr ,! quietl ^
ritr. (3)Furthermore,
ritl ^ quietr ,! a� , and quietl ^
ritr ,! a�. (4)
an immediately be pi
ked up by Corollary 51.2 (with
ontext quietr andquietl, respe
tively).Hen
e (2) follows from (3) and (4), and the transitivity of the
ausesoperator ,!.All this does not yet apply to the round-based mutex algorithm �13:6,be
ause its evolution remains to be proven.56.2 A ground formula of the round-based mutex algorithmFigure 56.1 re
alls the round-based mutex algorithm �13:6, with renamedpla
es. We will showAE is a ground formula of �56:1 (1)Proof of (1) employs the following pla
e invariants of �56:1:inv1: A+B +G = 1,inv2: E + F +K = 1,inv3: A+ C +D + J +M +R = 1,inv4: D +E +H + J + L+N = 1.First we observe thatfa; gg is a
hange set of AE (2)as A prevents
 by inv3 and E prevents e by inv4. As a te
hni
ality, Fig. 56.2shows BCHK ,! AE. The nodes of Fig. 56.2 are justi�ed as follows:node 1:
ontext CK, C prevents b by inv3 and B prevents e by inv1;node 2:
ontext CGK;node 3:
ontext G, K prevents
 by inv2, K prevents d by inv2 and Cprevents h by inv3;node 4:
ontext EG;node 5:
ontext E.

202 IX. Con
urrent Progress of Elementary System Nets
A E

q

q

L

M

D

J

C

H

N

R

P

S

B

K

Q

T

G

F

n
b d

m

a
c

j
k

e
g

f h
q

p

ϕ

ϕ

Figure 56.1. Renamed round-based mutex algorithm �13:6
1.BCHK 2.CGKN 3.CGKL 4.EGR 5.EGM 6.AE

j n k q fFigure 56.2. �56:1 j= BCHK ,! AENow Fig. 56.3 showse�(AE; a) ,! AE (3)
1.BCE 2.BDF 3.AFN

5.BCHK

4.AFL 6.AE
c b

a ?

h d

Fig.56.2Figure 56.3. �56:1 j= e�(AE; a) ,! AEThe nodes of Fig. 56.3 are justi�ed as follows:node 1:
ontext B, and E prevents k by inv2;node 2:
ontext F , and D prevents j by inv4;node 3:
ontext AF ;node 4:
ontext A, and F prevents k by inv2;node 5: Figure 56.2.Finally, Fig. 56.4 shows

56 Ground Formulas of Mutex Algorithms 203
1.AHK 2.GJK 3.EGR

5.BCHK

4.EGM 6.AE
e h

a ?

qFigure 56.4. �56:1 j= e�(AE; g) ,! AEe�(AE; g) ,! AE (4)The nodes of Fig. 56.4 are justi�ed as follows:node 1:
ontext K, and A prevents j by inv1;node 2:
ontext G, and J prevents k by inv3;node 3:
ontext EG;node 4:
ontext E;node 5: Figure 56.2.Altogether, (2), (3), and (4) imply (1) by Theorem 53.2.56.3 Evolution of the round-based mutex algorithmDue to the asymmetry of the round-based mutex algorithm we have to showboth �13:6 j= pend1l 7!
ritl and �13:6 j= pend1r 7!
ritr. In the represen-tation of Fig. 56.1 this reads�56:1 j= Q 7! N , and (1)�56:1 j= T 7! R (2)Proof of these properties employs the ground formula AE: First we observethat the ground formula AE implies true ,! A (by Def. 53.1), hen
e Q ,! A(by propositional logi
), hen
e Q 7! A (by Lemma 50.4(ii)). This in turnimplies�56:1 j= Q 7! B (3)by Theorem 48.2. Furthermore, �56:1 j= B ! :A (by inv1) and fb; jg is a
hange set of fBg. Hen
e �48:1 j= B ,! N (by Theorem 53.3), hen
e�56:1 j= B 7! N (4)by Lemma 50.4(ii). Thus (1) follows from (3) and (4) with Lemma 44.3(iii).Likewise, one shows �56:1 j= T 7! K and �56:1 j= K 7! R, whi
h implies (2).

Part DAnalysis of Advan
ed System Models
In analogy to the analysis of elementary system nets as des
ribed in Part C,state properties and progress properties will be
onsidered separately forsystem nets, too.

X. State Properties of System Nets
State properties have been de�ned for elementary system nets as proposi-tional
ombinations on a system's lo
al states. Parti
ularly important stateproperties have been derived from valid equations and inequalities formedn1 � p1 + � � �+ nk � pk = m and n1 � p1 + � � �+ nk � pk � m, respe
tively. Ea
hinteger ni provides a weight for pi. This kind of equation or inequality holdsat a state s if valuation of variables pi by the integer s(pi) solves the equationor inequality.For advan
ed system nets, any domain D may provide weights f(pi) 2 Dfor a pla
e pi. The fun
tion f must be appli
able to the
ontents s(pi) of piat any rea
hable state, s. In fa
t, this approa
h is followed for system nets inthe sequel. As an example, in the term represented system net

u

t

x f(x)

g(x)
BA

sort dom

const u : dom

fct f, g : dom dom→
var x : dom

(1)the number of tokens remains invariant, provided the tokens on A are
ountedtwi
e: For ea
h rea
hable state s, 2 � js(A)j+ js(B)j = 2. As a shorthand thisis represented by the symboli
 equation2jAj+ jBj = 2. (2)A more informative state property is gained by weight fun
tions f and g,
anoni
ally extended to sets and
oin
identally applied to the token load of A.In fa
t, at ea
h rea
hable state s, f(s(A))[g(s(A))[s(B) = ff(u); g(u)g. Asa matter of
onvention and uni�
ation, this will be expressed by the symboli
equationf(A) + g(A) +B = f(u) + g(u). (3)The unifying formal ba
kground for both (2) and (3) are multisets ofitems, in whi
h an item may o

ur more than on
e. Multisets and linearfun
tions on multisets provide means to
onstru
t equations, inequalities,pla
e invariants, and initialized traps for system nets. All those
on
epts aregeneralizations of the
orresponding
on
epts for es-nets given in Chap. VII.

208 X. State Properties of System Nets57 First-Order State PropertiesFormulas to represent properties of states of advan
ed system nets will beemployed, by analogy to formulas to represent properties of states of elemen-tary system nets, as introdu
ed in Se
t. 38.S Terms as introdu
ed in Se
t. 19(there used as ar
 ins
riptions) will serve in a �rst-order logi
, with pla
es ofsystem nets as predi
ate symbols (by analogy to Se
t. 39.1, where pla
es ofelementary system nets served as propositional variables).We start with the syntax of formulas over a stru
ture A.57.1 De�nition. Let A be a stru
ture, let X be a set of A-sorted variables,and let P be any set of symbols. Then the set F(A; X; P) of state formulasover A, X , and P is the smallest set of symbol
hains su
h that for all t 2TA(X) and all p; q 2 P ,i. p:t, p = t, and p � q 2 F(A; X; P)ii. if f; g 2 F(A; X; P) then f ^ g 2 F(A; X; P) and :f 2 F(A; X; P).The following notations will be used, by analogy to Se
t. 38.2:57.2 Notations. In the sequel we employ the
onventional propositionalsymbols _ and !, and for any set Q = fq1; : : : ; qng the shorthands WQfor q1 _ : : : _ qn, and VQ or just Q for q1 ^ : : : ^ qn. Furthermore, we writeA:u1; : : : ; un as a shorthand for A:u1 ^ : : : ^ A:un.Ea
h advan
ed system net � is assigned its set of state formulas. Thoseformulas are
onstru
ted from the stru
ture of �, with the pla
es of � servingas predi
ate symbols. The token load s(p) of pla
e p at a state s, as well asthe ins
riptions in f of an ar
 f , are terms that may o

ur in state formulas.57.3 De�nition. Let A be a stru
ture, let X be an A-sorted set of variables,and let � be a net, term-ins
ribed over A and X.i. Ea
h f 2 F(A; X; P�) is a state formula of �.ii. For ea
h state s of �, the state formula ŝ of � is de�ned by ŝ :=Vp2P� s(p).Su
h formulas are interpreted as follows:57.4 De�nition. Let � be an es-net, let f be a state formula of �, let v bean argument for its variables, and let s be a state of �.i. s j= f(v) (\a is an f(v)-state") is indu
tively de�ned over the stru
tureof f . To this end, let u 2 TA(X), p; q 2 P� and g; h 2 F(A; X; P).{ s j= p:t(v) i� setvalu(v) � s(p), ands j= (p = t)(v) i� setvalu(v) = s(p).{ s j= p � q i� s(p) � s(q).{ s j= g ^ h i� s j= g and s j= h.{ s j= :g i� not s j= g.

58 Multisets and Linear Fun
tions 209ii. s j= f i�, for all arguments u of X, s j= f(u).iii. � j= f i�, for all rea
hable states s of �, s j= f .Apparently, for ea
h state a, a j= â.58 Multisets and Linear Fun
tionsState properties
an frequently be proven by means of equations and inequal-ities, whi
h in turn
an be derived from the stati
 stru
ture of a given systemnet, by analogy to equations and inequalities of es-nets. Ea
h pla
e of thenet will serve as a variable, ranging over the subsets of the pla
es' domains.Terms will employ linear extensions of fun
tions of the underlying algebra.Ea
h stru
tureA
anoni
ally indu
esmultisets of its
arrier sets and linearextensions of its fun
tions. Intuitively, a multiset B over a set A assigns toea
h a 2 A a multipli
ity of o

urren
es of a. As a spe
ial
ase, a
onventionalsubset of a sti
ks to the multipli
ities 0 and 1. For te
hni
al
onvenien
e weallow negative multipli
ities, too, But proper multisets have no negative entry.58.1 De�nition. Let A be a set.i. Any fun
tion M : A! Z is
alled a multiset over A. Let AM denote theset of all multisets over A.ii. Let M 2 AM and z 2 ZZ. Then zM 2 AM is de�ned for ea
h a 2 A byzM(a) := z �M(a).iii. Let L;M 2 AM. Then L + M 2 AM is de�ned for ea
h a 2 A by(L+M)(a) := L(a) +M(a).iv. A multiset M 2 AM is proper i� M(a) � 0 for all a 2 A.Sets
an be embedded
anoni
ally into multisets, and some operations onsets
onditionally
orrespond to operations on multisets:58.2 De�nition. Let A be a set, let a 2 A and B � A. If A is obvious fromthe
ontext, am and Bm denote multisets over A, de�ned by am(x) = 1 ifx = a and am(x) = 0 otherwise; and Bm(x) = 1 if x 2 B and Bm(x) = 0,otherwise.Union and di�eren
e of sets
orrespond to addition and subtra
tion of the
orresponding multisets, given some additional assumptions:58.3 Lemma. Let A be a set and let B;C � A.i. (B [C)m = Bm + Cm, provided B \ C = ; andii. (B n C)m = Bm � Cm, provided C � B.58.4 Notations.i. By abuse of notation we usually write just A instead of Am.

210 X. State Properties of System Netsii. Addition B + C and subtra
tion B � C are written for ordinary sets Band C only if B\C = ; and C � B, respe
tively. Parti
ularly, for a 2 Aand B � A, B � a is written only if a 2 B.There is a
anoni
ally de�ned s
alar produ
t and a sum of fun
tions overmultisets:58.5 De�nition. Let A and B be sets:i. Any fun
tion ' : AM ! BM is
alled a multiset fun
tion from A to B.ii. Let ' : AM ! BM be a multiset fun
tion and let z 2 Z. Then z' : AM !BM is de�ned for ea
h M 2 AM by z'(M) := z � ('(M)).iii. Let '; : AM ! BM be two multiset fun
tions. Then '+ : AM ! BMis de�ned for ea
h M 2 AM by ('+)(M) := '(M) + (M).iv. OAB denotes the zero-valuating multiset fun
tion from A to B, i.e.,OAB (M) = OB for ea
h M 2 AM. The index AB is skipped whenever it
an be assumed from the
ontext.Ea
h fun
tion f : A ! B and ea
h set-valued fun
tion g : A ! BM ofa stru
ture A
an be extended
anoni
ally to a multiset fun
tion g : AM !BM:58.6 De�nition. Let A and B be sets and let f : A ! B or f : A ! BMbe a fun
tion. Then the multiset fun
tion f̂ : AM ! BM is de�ned for ea
hM 2 AM and ea
h b 2 B by f̂(m)(b) = �a2f�1(b)M(a).By abuse of notation we write f instead of f̂ whenever the
ontext ex-
ludes
onfusion. The indu
ed fun
tions f̂ are linear :58.7 Lemma. Let A and B be sets, let f : A! B be a fun
tion, let L;M 2M(A), and let z 2 Z. Then for the multiset extension of f , f̂(L +M) =f̂(L) + f̂(M), and f̂(z �M) = z � f̂(M).Proof. Let b 2 B and let C := f�1(b).i. f̂(L + M)(b) = �a2C(L + M)(a) = �a2C(L)(a) + �a2C(M)(a) =f̂(L)(a) + f̂(M)(a) = (f̂(L) + f̂(M))(a).ii. f̂(z �M)(b) = �a2C(z �M)(a) = �a2Cz �M(a) = z ��a2CM(a) = z �f̂(M).ut59 Pla
e Weights, System Equations,and System InequalitiesState properties are essentially based on weighted sets of tokens, formallygiven by multiset valued mappings on the pla
es' domains.

59 Pla
e Weights, System Equations, and System Inequalities 21159.1 De�nition. Let � be a system net over a universe A, let p 2 P�, andlet B be any multiset. Then a mapping I : Ap ! B is a pla
e weight of p. Iis natural if B = N.Pla
e weights are frequently extended to set-valued arguments and thenapplied to the token load s(p) of the token at pla
e p in a global state, s. Inthis
ase, a multiset I(s(p)) is
alled a weighted token load of p.Pla
e weights
an be used to des
ribe invariant properties of system netsby help of equations that hold in all rea
hable states:59.2 De�nition. Let � be a system net over a universe A, let B be anymultiset and let P = fp1; : : : ; png � P�. For j = 1; : : : ; k, let Ij : Apj ! Bbe a pla
e weight of pj.i. fI1; : : : ; Ikg is a �-invarian
e with value B if for ea
h rea
hable state sof �, I1(s(p1)) + � � �+ Ik(s(pk)) = B.ii. A �-invarian
e fI1; : : : ; Ikg is frequently written as a symboli
 equationI1(p1) + � � �+ Ik(pk) = Band this equation is said to hold in �.In a �-equation I1(p1) + � � �+ Ik(pk) = B, the value of B is apparentlyequal to I1(s�(p1)) + � � �+ Ik(s�(pk)), with s� the initial state of �.As a te
hni
al example, in the term ins
ribed representation of a systemnet �,
u v

t

x f(x)

g(x)
BA

sort dom

const u, v : dom

fct f, g : dom dom→
var x : dom

(1)let fu; vg be the domain of both A and B, and for x 2 fa; bg let IA(x) =f(x) + g(x) and IB(x) = x. Then fIA; IBg is a �-invarian
e with valueU = f(u) + g(u) + f(v) + g(v), symboli
ally writtenf(A) + g(A) +B = U . (2)One of the rea
hable states is s, with s(A) = u and s(B) = f(v)+g(v). Thenin fa
t IA(s(A)) + IB(s(B)) = IA(u) + IB(f(v)) + IB(g(v)) = U .Intuitively formulated, a

ording to this invarian
e, the element u is atA, or both f(u) and g(u) are at B. The
orresponding property for v holdsa

ordingly in �.As a further example, in � =
A

B

C

x

x

a

b

f(x)

g(x)

u v

sort dom
const u, v : dom
fct f, g, f-1, g-1 : dom → dom
var x : dom
f-1(f(x)) = x
g-1(g(x)) = x

(3)

212 X. State Properties of System Netslet again fu; vg be the domain of all pla
es A, B, and C, and for x 2 fu; vg letIA(x) = x, IB(x) = f�1(x) and IC(x) = g�1(x). Then fIA; IB ; ICg is a �-invarian
e with value u+v, symboli
ally written A+f�1(B)+g�1(C) = u+v.One of the rea
hable states is s, with s(A) = u, s(B) = f(v) and s(C) = ;.Then in fa
t IA(s(A))+ IB(s(B))+ IC(s(C)) = IA(u)+ IB(f(v))+ IC(;) =u+ f�1(f(v)) = u+ v.As a �nal te
hni
al example, in � =
x

f(x)

aA u

sort dom

const u : dom

fct f : dom dom

var x : dom

f(f(x)) = x

→ (4)let U = fug and IA(x) = x + f(x). Then fIAg is a �-invarian
e with valueu+ f(u), symboli
ally writtenA+ f(A) = u+ f(u).
x

A

x

x x

C

 (x)

r(x)

B
 (x)

r(x)

a b

c

f1
tu

l l

sort phils, forks

const a, b, c : phils

const f1,f2,f3 : forks

lfct , r: phils → forks

var x : phils

 = = l (a) r(b) f1

 = = l (b) r(c) f2

 = = l (c) r(a) f3Figure 59.1. Renamed philosophers system �15:10A more realisti
 example is the philosophers system �15:10, redrawn inFig. 59.1. This system has three interesting equations:A+ C = a+ b+
,B + l(C) + r(C) = f1 + f2 + f3, andr(A) + l(A)�B = f1 + f2 + f3.In analogy to Se
t. 39 we also
onsider inequalities that hold in all rea
hablestates:

59 Pla
e Weights, System Equations, and System Inequalities 213
C

A

B

D

a

b

c

d

x

xx

x

x

x

x

x

f(x)

f(x)

f(x)

f(x)

sort dom
const U, V : set of dom
fct f : dom → dom

var x : dom
 f(U) = V

U V

Figure 59.2. f(A) +B � V is a valid inequality59.3 De�nition. Let � be a system net over a universe A, let B be anymultiset, and let P = fp1; : : : ; pkg � P�. For j = 1; : : : ; k let Ij : Apj ! Bbe a pla
e weight of p.fI1; : : : ; Ikg yields a �-so
ket with value B if for ea
h rea
hable state sof �, I1(s(p1)) + � � �+ Ik(s(pk)) � B.A �-so
ket fI1; : : : ; Ikg is frequently written as a symboli
 inequalityI1(p1) + � � �+ Ik(pk) � B,and this inequality is said to hold in �.
f(x)

a b

c

d

e

A

B

C

D

E

F

v
u

f(x)

f(x)

x

x

x

x x

x

x

f(x)
x

x
x

sort dom
const u, v : dom
fct f : dom → dom

var x : dom
f(f(x)) = x
f(u) = vFigure 59.3. f(A) + f(C) +D � u is a valid inequality

214 X. State Properties of System NetsFigures 59.2 and 59.3 provide typi
al examples.In �59:2 let IA and IB be pla
e weights of A and B, respe
tively, withIA(x) = f(x) for ea
h x 2 U and IB(y) = y for ea
h y 2 V . Then fIA; IBgis a �-so
ket with value V . As a symboli
 inequality it reads f(A) +B � V .Likewise, in �59:3, let IA, IB , and IC be pla
e weights of A, B, and C,respe
tively, with IA(x) = IC(x) = f(x) and ID(x) = x, for ea
h x 2 fu; vg.Then fIA; IC ; IDg is a �-so
ket with value ff(v); ug = fug. As a symboli
inequality this reads f(A) + f(C) +D � u.60 Pla
e Invariants of System NetsWe are now seeking a te
hnique to prove �-invarian
es without expli
itlyvisiting all rea
hable states. To this end we
onstru
t pla
e invariants forsystem nets, in analogy to pla
e invariants of es-nets: A set of pla
e weightsis a pla
e invariant if ea
h o

urren
e mode m of ea
h transition t yieldsa balan
ed weighted e�e
t to the pla
es involved, i.e., the weighted set ofremoved tokens is equal to the weighted set of augmented tokens; formally,for pla
e weights I1; : : : ; Ik of pla
es p1; : : : ; pk,I1(m(t; p1))+� � �+Ik(m(t; pk)) = I1(m(p1; t))+� � �+Ik(m(pk ; t)). (1)A more
on
ise representation of (1) is gained by a slightly di�erent per-spe
tive on transitions and their a
tions: Ea
h ar
 � = (p; t) or � = (t; p)de�nes a mapping e� that assigns ea
h a
tion m of t the
orresponding subsetm(�) of Ap. Furthermore, this subset is
anoni
ally
on
eived as a multiset,i.e., an element of AMp :60.1 De�nition. Let � be a system over a stru
ture A. Let t 2 T� be atransition with Mt its set of a
tions and let � = (t; p) or � = (p; t) be an ar
of �. Then the fun
tion e� :Mt ! AMp is de�ned by e�(m) = m(�).The fun
tion e� is
anoni
ally extended to e�(m) = ; if � is no ar
. Forexample, in
A

B

C

u

v

x

y
t

f(x,y)
g(x,y)

sort U, V, W
const u : U
const v : V
fct f, g : U V W× →
var x : U
var y : V

(2)the set of a
tions of t is U � V . Then ea
h a
tion (u; v) yieldsfAt(u; v) = fug, fBt(u; v) = fvg, ftC(u; v) = ff(u; v); g(u; v)g, andftA(u; v) = ftB(u; v) = fCt(u; v) = ;. (3)A

ording to Def. 58.5, etp� ept is a multiset valued fun
tion that assignsea
h o

urren
e mode m of t its e�e
t on p, i.e., the tokens removed from por augmented to p upon t's o

urren
e in mode m.

60 Pla
e Invariants of System Nets 215Ea
h pla
e weight Ip : Ap ! B of a pla
e p
an
anoni
ally be extended tothe set valued arguments Ip : AMp ! BM, by Def. 58.6. This fun
tion in turn
an be
omposed with etp� ept, yielding a fun
tion Ip Æ (etp� ept) :Mt ! BM.A set of pla
e weights is a pla
e invariant if the sum of weighted e�e
tsof all involved pla
es redu
es to the zero fun
tion O . The value of a pla
einvariant is derived from the net's initial state:60.2 De�nition. Let � be a system net and let p1; : : : ; pk 2 P�. For j =1; : : : ; k let Ij be a pla
e weight of pj . Then I = fI1; : : : ; Ikg is a pla
einvariant of � if for ea
h transition t 2 T�,I1 Æ (ftp1 � fp1t) + � � �+ Ik Æ (ftpk � fpkt) = O.The multiset I1(s�(p1)) + � � �+ Ik(s�(pk)) is the value of I.As an example, for the net (2) let IA, IB , and IC be pla
e weights forA, B,and C, respe
tively, with IA(x) = f(x) for ea
h x 2 U , IB(y) = g(y) for ea
hy 2 V , and IC(z) = z for ea
h z 2 W . Then the set fIA; IB ; ICg is a pla
einvariant of (2): With (3) follows IAÆ(ftA�fAt)+IBÆ(ftB�fBt)+ICÆ(ftC�fCt) =f Æ (O �fAt) + g Æ (O � fBt) +ftC � O = �f ÆfAt� g Æ fBt+ftC. Then for all(u; v) 2 U �V , again with (2), (�f ÆfAt�g ÆfBt+ftC)(u; v) = �f(fAt(u; v))�g(fBt(u; v)) +ftC(u; v) = �f(u; v)� g(u; v)+ f(u; v)+ g(u; v) = O . The valueof this pla
e invariant is IA(u) + IB(v) + IC(O) = f(u) + g(v).A pla
e invariant provides in fa
t a valid �-equation:60.3 Theorem. Let � be a system net, let p1; : : : ; pk 2 P�, and for j =1; : : : ; k, let Ij be a pla
e weight of �. Let fI1; : : : ; Ikg be a pla
e invariantof � and let U be its value. Then the equationI1(p1) + � � �+ Ik(pk) = Uholds in �.Proof. i. Let r t;m��!s be a step of �. Then for ea
h p 2 P� , s(p) = r(p) +m(t; p)�m(p; t), by Proposition 16.4. Then�kj=1Ij(s(pj)) = �kj=1Ij(r(pj) +m(t; pj)�m(pj ; t))= �kj=1Ij(r(pj)) +�kj=1Ij(m(t; pj)�m(pj ; t)) by Def. 58.1= �kj=1Ij(r(pj)) +�kj=1Ij((gt; pj)(m) � (gpj ; t)(m)) by Def. 19.2= �kj=1Ij(r(pj)) +�kj=1Ij((gt; pj)� (gpj ; t))(m) by Lemma 58.7= �Ij(r(pj)) + O(m) = �Ij(r(pj))

216 X. State Properties of System Netsii. Now let s be a rea
hable state of �. Then there exists an inter-leaved run of � formed s0 t1;m1���! s1 t2;m2���! : : : tl;ml���! sl with sl = s.Then �kj=1Ij(s0(pj)) = U , by Def. 60.2. Then for ea
h i = 1; : : : ; l,�kj�1Ij(si(pj)) = U , by i. This yields the proposition for i = l. utPla
e invariants
an be mimi
ked symboli
ally in term-ins
ribed repre-sentations of system nets. To this end, the fun
tions etp, ept, etp � ept, and Ipwill be represented symboli
ally. The
omposition Ip Æ (etp� ept) of fun
tionsIp and (etp� ept) then is symboli
ally exe
utable as substitution of terms.De�nition 19.1 assigns ea
h ar
 � = (t; p) or � = (p; t) of a term-ins
ribednet � a set � � TAp(Xt) of Ap-terms over Xt. For ea
h u 2 �, valu (asde�ned in Def. 18.5) is a mapping from Mt to Ap. This mapping
an beextended
anoni
ally to valu : Mt ! AMp . Mappings of this kind
an besummed up, giving rise to the mapping e� : Mt ! AMp of Def. 60.1, de�nedby e�(m) := valu1(m) + � � �+ valuk(m), with Xt = fu1; : : : ; ukg. Hen
e e�
anbe represented symboli
ally ase� = u1 + � � �+ uk (1)in this
ase.The multiset extension Ip : AMp ! B of a pla
e weight I : Ap ! B
anbe represented as a term with one variable, ranging over AMp . For the sake of
onvenien
e we always
hoose the variable p, hen
e the
orresponding termis an element of TB(fpg).The
omposed fun
tion Ip Æ (etp � ept) : Mt ! B is now symboli
allyrepresented by the multiset term� = Ip[etp� ept=p℄ (2)whi
h is gained from Ip by repla
ing ea
h o

urren
e of the variable p in Ipby the term etp � ept. Hen
e � is a term in TB(Xt), and its valuation val� isequal to Ip Æ (etp� ept).
A

B

C

u v x
a

f(x)

g(x)

sort dom
const u, v : dom
fct f, g : dom dom→
var x : doma s� IA �x u+ v f(A) + g(A)B f(x) BC g(x) CFigure 60.1. System net with matrix, initial state s� , and a pla
e invariant

60 Pla
e Invariants of System Nets 217The analogy to Se
t. 40
ontinues, as a term-ins
ribed net � is representedas a matrix � with row indi
es P� ,
olumn indi
es T�, and entries �(p; t) =etp� ept. Its initial state s� , as well as ea
h pla
e invariant I ,
an be representedas a
olumn ve
tor, representing the initial token load s�(p) as a variable freeground term of sort Ap and ea
h entry I(p) as the term Ip, introdu
ed above.Moreover, pla
e invariants I
an be
hara
terized as solutions of� � I = (O ; : : : ;O) (3)with O a symbol for the zero multiset fun
tion, as des
ribed in Def. 58.5. Ithen is a ve
tor of pla
e weights, one for ea
h pla
e. The produ
t of a
om-ponent Ip of I with a matrix entry �(p; t) is the substitution Ip[�(p; t)=p℄,addition of terms is the symboli
 sum of multiset terms.As an example, Fig. 60.1 shows a system net together with its matrix andthe ve
tor representation of its initial state and a pla
e invariant. Substitutionof matrix entries into the
omponents of I yieldsIA[aA�Aa=A℄ = IA[�x=A℄= f(A) + g(A)[�x=A℄= f(�x) + g(�x)= �f(x)� g(x);IB [aB �Ba=B℄ = IB [f(x)=B℄= B[f(x)=B℄= f(x);IC [aC � Ca=C℄ = IC [g(x)=C℄= C[g(x)=C℄= g(x):Figure 60.2 likewise provides the matrix, the initial state, and a pla
einvariant of the net (3) of Se
t. 59. Substitution of entries of the �rst
olumnof the matrix into the
omponents of I yields

218 X. State Properties of System NetsIA[aA�Aa=A℄ = IA[�x=A℄= A[�x=A℄= �x;IB [bB �Bb=B℄ = IB [f(x)=B℄= f�1(B)[f(x)=B℄= f�1(f(x))= x;IC [O ℄ = O
A

B

C

x

x

f(x)

g(x)

u v

a

b

sort dom
const u, v : dom
fct f, g, f-1, g-1: dom → dom
var x : dom
f-1(f(x)) = x
g-1(g(x)) = xa b s� IA �x �x u+ v AB f(x) f�1(B)C g(x) g�1(C)Figure 60.2. Matrix, initial state, and a pla
e invariant to (2) of Se
t. 59As a �nal te
hni
al example, Fig. 60.3 gives matrix, initial state, and apla
e invariant to (4) of Se
t. 59. Substitution of the matrix entry into theinvariant yields IA[aA�Aa=A℄ = IA[f(x)� x=A℄= A+ f(A)[f(x)� x=A℄= f(x)� x+ f(f(x)� x)= f(x)� x+ f(f(x))� f(x)= f(x)� x+ x� f(x)= O

61 Traps of System Nets 219
f(x)

x

A au
sort dom
const u : dom
var x : dom

fct f : dom dom→
f(f(x)) = xA s� Ia f(x)� x u A+ f(A)Figure 60.3. Matrix, initial state, and a pla
e invariant to (3) of Se
t. 59To �nish this se
tion, Fig. 60.4 shows matrix, initial state, and three pla
einvariants for the philosophers system of Fig. 59.1.

x

A

x

x x

C

 (x)

r(x)

B
 (x)

r(x)

a b

c

f1
tu

l l

sort phils, forks

const a, b, c : phils

const f1,f2,f3 : forks

lfct , r : phils → forks

var x : phils

 = = l (a) r(b) f1

 = = l (b) r(c) f2

 = = l (c) r(a) f3t u s� I1 I2 I3A �x x a+ b A l(A) + r(A)B �l(x)� r(x) l(x) + r(x) f1 B �BC x �x
 C l(C) + r(C)Figure 60.4. Matrix, initial state, and three pla
e invariants to �59:161 Traps of System NetsWe are now seeking a te
hnique to prove �-so
kets without visiting all rea
h-able states. To this end we
onstru
t initialized traps for system nets, inanalogy to initialized traps of elementary system nets.Informally stated, a trap of a system net is a set fI1; : : : ; Ikg of weights ofpla
es p1; : : : ; pk su
h that for ea
h element b of a given set B, ea
h transitionthat removes at least one token with weight b from those pla
es returns at

220 X. State Properties of System Netsleast one token with weight b to those pla
es. This gives rise to an inequalityof the formI1(p1) + � � �+ Ik(pk) � B. (1)Traps are essentially a matter of plain sets (whereas pla
e invariants arebased on multisets). For an ar
 (p; t) and an o

urren
e mode m of t, m(p; t)is a plain set a

ording to Def. 16.2. Then I(m(p; t)) := fI(u) j u 2 m(p; t)gis a set, for any pla
e weight I . Constru
tion of traps now goes with set union(not with multiset addition).61.1 De�nition. Let � be a system net and let p1; : : : ; pk 2 P�. For j =1; : : : ; k, let Ij be a pla
e weight of pj . Then I = fI1; : : : ; Ikg is a trap of �if for ea
h transition t 2 T� and ea
h o

urren
e mode m,I1(m(p1; t)) [� � � [Ik(m(pk; t)) � I1(m(t; p1)) [� � � [Ik(m(t; pk)).The set I1(s�(p1)) [� � � [Ik(s�(pk)) is the initialization of I.As an example, in �59:2, let IA and IB be pla
e weights for A and B,respe
tively, with IA(x) = ff(x)g for ea
h x 2 U and IB(y) = fyg for ea
hy 2 V . In the sequel we showfIA; IBg is a trap of �59:2. (2)To this end, we �rst observe that the o

urren
e modes of both transitionsa and b are given by the set U . Then for ea
h m 2 U :IA(m(A; a)) [IB(m(B; a)) = IA(fmg) [IB(ff(m)g)= ff(m)g [ff(m)g= ff(m)g= ff(m)g [;= IA(fmg) [IB(;)= IA(m(a;A)) [IB(m(a;B)).Likewise, for the transition b,IA(m(A; b)) [IB(m(B; b)) = IA(fmg) [IB(ff(m)g)= ff(m)g [ff(m)g= ff(m)g= ; [ff(m)g= IA(m(b; A)) [IB(m(b; B)).Finally, for t =
 and t = d,

61 Traps of System Nets 221IA(m(A; t)) [IB(m(B; t)) = IA(;) [IB(;)= ; [;= ;� IA(m(t; A)) [IB(m(t; B)).Hen
e, fIA; IBg is in fa
t a trap of �59:2. Its initialization is IA(U) [IB(;) = f(U) [; = V . An initialized trap in fa
t provides a valid �-inequality:61.2 Theorem. Let � be a system net, let p1; : : : ; pk 2 P�, and for j =1; : : : ; k, let Ij be a pla
e weight of �. Let fI1; : : : ; Ikg be a trap of � withinitialization B. Then the inequalityI1(p1) [� � � [Ik(pk) � Bholds in �.Proof. i. Let r t;m��!s be a step of �. ThenSkj=1 Ij(s(pj)) = Skj=1 Ij((r(pj) nm(pj ; t)) [m(t; pj)) by Def. 16.3= Skj=1 Ij(r(pj) nm(p; t)) [Skj=1 Ij(m(t; pj)) by rules on sets� Skj=1(Ij(r(pj)) n Ij(m(p; t))) [Skj=1 Ij(m(t; pj)) by rules on sets� (Skj=1 Ij(r(pj)) nSkj=1 Ij(m(p; t))) [Skj=1 Ij(m(t; pj))by rules on sets= Skj=1 Ij(r(pj)) [Skj=1 Ij(m(t; pj)) by Def. 61.1� Skj=1 Ij(r(pj)) by rules on sets.ii. Now let s be a rea
hable state of �. Then there exists an inter-leaved run of � formed s0 t1;m1���! s1 t2;m2���! : : : tl;ml���! sl with sl = s.Then Skj=1 Ij(s0(pj)) � B, by Def. 61.1. Then for ea
h i = 1; : : : ; l,Skj=1 Ij(si(pj)) � B, by i and indu
tion on i. Then the
ase of i = limplies the proposition. utProof of traps
an be mimi
ked symboli
ally in term-ins
ribed systemnets. To this end, pla
e weights I , and fun
tions e� assigned to ar
s �, arerepresented symboli
ally as des
ribed in Se
t. 60. The fun
tion I Æ�
an thenbe represented symboli
ally by the multiset term� = Ip[e�=p℄ (3)

222 X. State Properties of System Netsin analogy to (2) of Se
t. 60. Union of fun
tions then
an be expressed byset union of singleton sets f�g. Ea
h valuation of the variable p in � by somem 2 Ap then des
ribes the item IpÆe�(m) = Ip(e�(m)). O denotes the fun
tionthat returns no value at all.As an example, the trap in (2)
an be veri�ed symboli
ally as follows:IA Æ (gA; a) [IB Æ (gB; a) = f(A) Æ ex [B Æ gf(x)= f(A)[x=A℄ [B[f(x)=B℄= ff(x)g [ff(x)g= ff(x)g= ff(x)g [O= f(A)[x=A℄ [O= IA Æ ex [IB Æ O= IA Æ (ga;A) [IB Æ (ga;B).Likewise, IA Æ (gA; b) [IB Æ (gB; b) = f(A) Æ ex [B Æ gf(x)= ff(x)g= O [B[f(x)=B℄= IA Æ O [IB Æ gf(x)= IA Æ (gb; A) [IB Æ (gb; B).Finally, for t =
 or t = d,IA Æ (gA; t) [IB Æ (gB; t) = O [O= O� IA Æ (gt; A) [IB Æ (gt; B).The initialization of the trap fIA; IBg is given symboli
ally byIA(U) [IB(;) = f(A)[U=A℄ [B[;=B℄= f(U) [;= f(U)= V .62 State Properties of Variantsof the Philosopher System62.1 State properties of nondeterministi
 philosophersWe start with state properties of the philosophers system, as
onsidered inSe
ts. 19 and 20. Figure 62.1 redraws �19:1, with renamed pla
es. It shows

62 State Properties of Variants of the Philosopher System 223
x

A

B

x

(x,y,z) (x,y,z)

C

zz

a b c

f1 f2 f3
tq

u
y y

sort phils, forks

const a, b, c : phils

const f1,f2,f3 : forks

var x : phils

var y, z : forks

Figure 62.1. System s
hema for �19:1the
ase of a philosopher taking any two forks. An obvious pla
e invariantthen isA+ pr1(C) = a+ b+
, (1)
on�rming that ea
h philosopher is either thinking or eating. The pla
e in-variantB + pr2(C) + pr3(C) = f1 + f2 + f3 (2)states that ea
h fork is either available or in use.The pla
es A and B are quite loosely
onne
ted: Ea
h philosopher
orre-sponds to any two forks, hen
e it is just the number of philosophers at A andthe number of forks at B that
an be
ombined in a pla
e invariant
overingA and B. More pre
isely, philosophers
ount twi
e as mu
h as forks do:2jAj � jBj = 3. (3)62.2 State properties in the
ontext of set-valued fun
tionsFigure 62.2 shows a system s
hema, with ea
h philosopher x taking a �xedset �(x) of forks. �20:3 is an instantiation of this s
hema. Pla
e invariants of�62:2 are easily gained and interpreted:A+ C = P (4)states that ea
h philosopher is either thinking or eating.B + �(C) = G (5)states that ea
h fork is either available or in use by exa
tly one philosopher,and

224 X. State Properties of System Nets
x

A

x

x x

C

 (x)
B

 (x)

P

G tq

u
Φ Φ

sort phils, forks

const P : set of phils

const G : set of forks

fct : phils → set of forksΦ

var x : phils

Figure 62.2. System s
hema for �20:3�(A) �B = �(P) �G (6)states that ea
h philosopher
orresponds to the set of his or her forks.62.3 State properties of the drinking philosophersFinally, Fig. 62.3 shows a system s
hema for the drinking philosophers. �20:5provides an instantiation of this s
hema.
x

A

x

(x,Y)
(x,Y)

C

B

P

G tq

u
Y Y

sort phils, bottles

const P : set of phils

const G : set of bottles

var x : phils

var Y : set of bottles

Figure 62.3. System s
hema for �20:5Its matrix, initial state, and two pla
e invariants are given in Fig. 62.4.The pla
e invariant I1 yields the equation

62 State Properties of Variants of the Philosopher System 225t u M0 I1 I2A �x x P AB �Y Y G BC (x; Y) �(x; Y) pr1(C) pr2(C)Figure 62.4. Matrix, initial state, and two pla
e invariants of the drinkingphilosophers system, �62:3A+ pr1(C) = P , (7)stating that ea
h philosopher is either thinking or eating. Likewise, I2 yieldsB + pr2(C) = G, (8)stating that ea
h bottle is either available or in use. There is no pla
e invariant
onne
ting A and B.

XI. Interleaved Progress of System Nets
Two progress operators have been suggested for elementary system models:the interleaved progress operator 7! (\leads to") and the
on
urrent progressoperator ,! (\
auses"). They both
an be adapted
anoni
ally to the
aseof advan
ed system nets. The
auses operator will turn out more importantbe
ause of its ability for parallel
omposition. In analogy to elementary systemnets, we start with progress on interleaved runs.63 Progress on Interleaved RunsIn analogy to Se
t. 44, a progress property p 7! q (p leads to q) is
onstru
tedfrom two state properties p and q. Now, p and q are �rst-order state proper-ties, as de�ned in Se
t. 57. Again, as in Se
t. 44, p 7! q holds in an interleavedrun w if ea
h p-state of w is followed by a q-state. p 7! q holds in a systemnet � if p 7! q holds in ea
h of its interleaved runs. Te
hni
ally, leads-toformulas are
onstru
ted from state formulas:63.1 De�nition. Let A be a stru
ture, let X be a set of A-sorted variables,let P be a set of symbols, and let p; q 2 F(A; X; P) be state formulas. Thenthe symbol sequen
e p 7! q (p leads to q) is a �rst-order leads-to formula.Leads-to formulas are interpreted over interleaved runs and over systemnets:63.2 De�nition. Let � be a net that is term-ins
ribed over a stru
ture Aand a set X of variables. Let p; q 2 F(A; X; P�) and let w be an interleavedrun of �.i. For an argument u of X let w j= (p 7! q)(u) i� for ea
h p(u)-state withindex i, there exists a q(u)-state with index j � i.ii. p 7! q is said to hold in w (written w j= p 7! q) i� for ea
h argument uof X, w j= (p 7! q)(u).iii. p 7! q is said to hold in � (written � j= p 7! q) i� w j= p 7! q for ea
hinterleaved run w of �.As an example, in Fig. 63.1 the formula A:u ^A:v 7! C:f(u; v) is true.

228 XI. Interleaved Progress of System Nets
u v

x
A B

(x,y)
C

f(x,y)x
a bFigure 63.1. A:u ^ A:v 7! C:f(u; v)64 Interleaved Pi
k-upand Proof Graphs for System NetsThe pi
k-up rule for es-nets, as stated in Se
t. 45, is
anoni
ally extendedto system nets. The only slightly nontrivial new notion is the postset s� ofa state s of a system net �. In fa
t, s�
ontains a
tions of transitions of�. More pre
isely, an a
tion m of a transition t is in s� if o

urren
e of mredu
es the token load of some pla
e p, i.e., if m(p; t) 6= ;.64.1 De�nition. Let � be a system net and let s be a state of �.i. s is progress prone i� s enables at least one a
tion of some progressingtransition of �.ii. Let t 2 T� and let m be an a
tion of t. s prevents m i� � j= ŝ !:m(p; t).iii. Let t 2 T� and let m be an a
tion of t. m 2 s� if for some pla
e p of �,s(p) \m(p; t) 6= ;.iv. A set M of a
tions of some transitions of � is a
hange set of s if M 6= ;and s prevents ea
h m 2 s� nM .The following theorem des
ribes the most general
ase for pi
king upleads-to formulas from the stati
 stru
ture of a system net: Ea
h
hange setof a progress prone state s yields a leads-to formula:64.2 Theorem. Let � be a system net, let s be a progress prone state, andlet M be a
hange set of s. Then� j= s 7! _m2M e�(s;m).Proof of this theorem follows the proof of Theorem 45.5 and is left as anexer
ise for the reader.64.1 Pi
k-up patternsRules for pi
king up valid leads-to formulas from term-ins
ribed nets will bepresented in the sequel. A most general, fully
edged synta
ti
al pi
k-up rule,i.e., a synta
ti
al representative of Theorem 64.2, is te
hni
ally
ompli
atedand unwieldy. Some typi
al patterns will be
onsidered instead, suÆ
ient forverifying an overwhelming majority of
ase studies.We start with forward bran
hing pla
es that lead to a disjun
tion:

64 Interleaved Pi
k-up and Proof Graphs for System Nets 229
A

B

C

x

x

f(x)

g(x)

u v A:x 7! B:f(x) _ C:g(x). (1)Syn
hronization is as expe
ted:
A

B

C

u

v

x

y
t

f(x,y) A:x ^ B:y 7! C:f(x; y). (2)More generally, and with the pi
ked-up formula written as a proof graph,
A

B

C F

D

E

x

x

x

y

e

f

g

f(x)

g(x,y)

h(x)

A.u
C.v

D:f(u)

E.g(u,y)

F.h(v)

. (3)
In
ase additionally A:u ! :B:y, all a
tions formed f(u;w) are ruled outand one may pi
k up

A.u
C.v

D.f(u)

F.h(v). (4)Summing up, the interleaved pi
k-up rule of Se
t. 45
anoni
ally generalizesto system nets and will be used a

ordingly.64.2 Proof graphsProof graphs for interleaved progress of system nets
an be
onstru
ted instri
t a

ordan
e with the
ase of elementary system nets, as introdu
ed in
A.u
A.v

B.u
A.v

A.u
B.v

B.u
B.v

a(v)

a(u)a(v)

a(u)

b(u,v)
C.f(u,v)Figure 64.1. Proof graph for �63:1 j= A:u ^A:v 7! C:f(u; v)

230 XI. Interleaved Progress of System NetsSe
ts. 46 and 47. We refrain from a formal de�nition here; the general
ase
an easily be derived from the proof graph for �63:1 j= A:u^A:v 7! C:f(u; v),given in Fig. 64.1.65 Case Study: Produ
er/Consumer SystemsWe are now prepared to show for produ
er/
onsumer systems that ea
h pro-du
er item will eventually be
onsumed. Figure 65.1 shows a system s
hema,
B F

D

C

c d

EA

a q b

x
x x x

xx

sort dom
var x : domFigure 65.1. System s
hema for produ
er/
onsumer systemswith instantiation as in �15:5. Ea
h item ready to be delivered should even-tually be
ome ready to be
onsumed. In terms of �65:1 this readsB:u 7! F:u. (1)Figure 65.2 shows a proof graph for (1). Its nodes are justi�ed as follows:node 1: inv. C + jDj = 1node 2: inv. E + jF j = 1node 3: D:x prevents b(u) by inv. C + jDj = 1 and F:x prevents
(x) byinv. E + jF j = 1node 4: D:x prevents b(u) and ea
h
(y) for y 6= x, by inv. C + jDj = 1node 5: C prevents
(x) by inv. C + jDj = 1 and B(u) prevents b(x) forx 6= u by inv. A+ jBj = 1node 6: C prevents
(x) by inv. C + jDj = 1 and B(u) prevents b(x) forx 6= u by inv. A+ jBj = 1node 7: D:u prevents
(x) for x 6= u by inv. C + jDj = 1node 8: inv. E + jF j = 1node 9: F:x prevents
(u) by inv. E + jF j = 1.

66 How to Pi
k up Fairness 231
1) B.u 2) B.u

D.x

B.u
3) D.x

F.x

d(x) B.u
4) D.x

E

c(x) B.u
5) C

F.x

d(x) B.u
6) C

E

b(u)
7) D.u

E

c(u)
10) F.u

b(u)
9) D.u

F.x

d(x)

8) B.u
C

Figure 65.2. Proof graph for �65:1 j= B:u 7! F:u66 How to Pi
k up FairnessA pi
k-up rule for leads-to properties is
onstru
ted in the sequel that exploitsthe assumption of fairness of a
tions. Some te
hni
alities are required �rst,in
luding the pre- and postsets of a
tions, and persisten
e of states. Thepostset s� of a state s has already been de�ned in Se
t. 64.1.66.1 De�nition. Let � be a system net, let t 2 T�, and let m 2 Mt be ana
tion of t.i. The preset �m and the postset m� of m are states of �, de�ned for ea
hpla
e p 2 P� by �m(p) = m(p; t) and m�(p) = m(t; p), respe
tively.ii. For two states r and s, let r n s be the state de�ned for ea
h pla
e p of �by (r n s)(p) := r(p) n s(p).As an example, in Fig. 66.1, x = u de�nes an a
tionm of b, with �m(B) =fug, �m(D) = fvg, and �m(A) = �m(C) = �m(E) = ;. A substate s is
E

v w
xx

xx

dc

D f(x)

CBa b
ϕ

A
u

x x x f(x)
sort dom

const u, v, w : dom

fct f : dom → dom

var x, y : dom

f(u) = v

Figure 66.1. s is m-persistent, with u 2 s(B) and m(x) = u

232 XI. Interleaved Progress of System Netspersistent with respe
t to an a
tion m if s
an be
hanged only by o

urren
eof m:66.2 De�nition. Let � be a system net, let t 2 T�, m 2 Mt, and s � �m.Then s is m-persistent if s� = fmg and � j= s 7! �m ns.For example, ea
h state s of �66:1 with u 2 s(B) is m-persistent forthe a
tion m of b de�ned by x = u. As a variant of �66:1, repla
e the ar
ins
ription f(t) of (D; b) by a variable y. No rea
hable state has a persistenta
tion of b in this
ase.An a
tion m of a fair transition will o

ur at ea
h m-persistent state:66.3 Theorem. Let � be a system net, let t 2 T� be fair, let m 2Mt, andlet s be a m-persistent state. Then � j= s 7! m�.Proof. Let w = s0 (t1;m1)�����!s1 (t2;m2)�����!s2 : : : be an interleaved run of �. Let skbe an s-state, i.e., sk j= s. Then tk+1 = (t;m) or sk+1 j= s be
ause s� = fmg.Furthermore, there exists an �m-state sl0 , with l0 � k, be
ause � j= s 7! �m.Let l be the smallest su
h index. Then sl�1 j= �m. Hen
efor some l > k, tl = (t;m) or sl j= s. (1)To show w j= s 7! m�, let sk be an s-state. By iteration of (1), eithertl = (t;m) for some l > k (and hen
e sl+1 j= s), or there exists an in�nitesequen
e of s-states. But the latter
ase is ruled out due to the assumptionof fairness for t. utReturning to �66:1, the proof graph
B.u E.v D.v

(2)proves B:u 7! D:v, i.e., for ea
h state s with u 2 s(B) and ea
h a
tion m ofb with m(x) = u, s j= �m ns. Ea
h su
h state is m-persistent. Hen
e�66:1 j= B:u 7! C:f(u) (3)by Theorem 66.3.The above fairness rule, Theorem 66.3, deserves a slight generalization: Itlikewise holds in a
ontext, �, and furthermore bears additional alternatives.66.4 Corollary. Let � be a system net, let t 2 T� be fair, let m 2 Mt,and let �, q be state formulas. Furthermore, let s be a state of � su
h that� j= (� ^ s) 7! (� ^ �m) _ q. Then � j= (� ^ s) 7! (� ^m�) _ q.A
anoni
al extension of the proof of Theorem 66.3 proves this
orollary.

XII. Con
urrent Progress of System Nets
The above interleaving-based progress operator for advan
ed system netsis now
omplemented by a
on
urren
y-based operator ,!, in analogy to
on
urrent progress of elementary system nets, as dis
ussed in Chap. IX.67 Progress of Con
urrent RunsFirst-order
auses formulas are
onstru
ted from state formulas as de�ned inDef. 57.1, and the elementary
auses operator from Def. 50.2.67.1 De�nition. Let A be a stru
ture, let X be a set of A-sorted variables,let P be a set of symbols, and let p; q 2 F(A; X; P) be state formulas. Thenthe symbol sequen
e p ,! q (\p
auses q") is a �rst-order
auses formula.Causes formulas are interpreted over
on
urrent runs and over systemnets:67.2 De�nition. Let � be a net that is term-ins
ribed over a stru
ture Aand a set X of variables. Let p; q 2 F(A; X; P�) and let K be a
on
urrentrun of �.i. For an argument u of X, let K j= (p ,! q)(u) i� to ea
h rea
hable p(u)-state C of K there exists a q(u)-state D of K that is rea
hable fromC.ii. p ,! q is said to hold in K (written K j= p ,! q) i� for ea
h argumentu of X, K j= (p ,! q)(u).iii. p ,! q is said to hold in � (written � j= p ,! q) i� K j= p ,! q for ea
h
on
urrent run K of �.As an example, A:fu; vg ,! B:fu; vg holds in

A B

C

D

u v

g(x)

f(x)

a

b

c

x
xx

x

(1)As dis
ussed in Lemmas 50.3 and 50.4, properties of the propositional
auses operator likewise apply to the �rst-order
auses operator:

234 XII. Con
urrent Progress of System Nets67.3 Lemma. Let � be a system net that is term-ins
ribed over a stru
tureA and let p; q 2 sf(A; X; P�).i. � j= p ,! p.ii. If � j= p ,! q and � j= q ,! r then � j= p ,! r.iii. If � j= p ,! r and � j= q ,! r then � j= (p _ q) ,! r.iv. If � j= p 7! q then � j= p ,! q.v. If q in
ludes no logi
al operator and � j= p ,! q then � j= p 7! q.68 The Con
urrent Pi
k-up RuleA rule to pi
k up
auses properties from a system net is now derived, in anentirely semanti
al framework. The problem of pi
king up
auses formulasfrom a term-ins
ribed representation of system nets, is postponed to the nextse
tion.We start with some properties and notations of states of system nets.68.1 De�nition. Let � be a system net and let r; s be two states of �.i. The state r [s of � is de�ned for ea
h pla
e p 2 P� by (r [s)(p) :=r(p) [s(p).ii. Let r � s i� for ea
h pla
e p 2 P�, r(p) � s(p).iii. r is disjoint with s i� for ea
h p 2 P�, r(p) \ s(p) = ;.iv. For an a
tion m of some transition t, let �m be a state of �, de�ned forea
h pla
e p 2 P� by �m(p) = m(p; t). For a set M of a
tions, let �Mbe the state de�ned for ea
h p 2 P� by �M(p) = Sfm(p) j m 2Mg.Change sets of system nets, as de�ned in Def. 64.1 for interleaved progress,
an likewise be used for
on
urrent progress properties:68.2 Theorem. Let � be a system net and let r; s be states of �. Assume sis progress prone, and let U = V [W be a
hange set of s, with �V � s and rdisjoint with �V . Then � j= r[s ,! (r[Wu2V e�(s; u))_(Wu2W e�(r[s; u)).Proof of this theorem follows proof of Theorem 51.1 and is left as anexer
ise for the reader.Many appli
ations of this theorem deal with the spe
ial
ase of W = ;,i.e., �U � s and r disjoint from �U :68.3 Corollary. Let � be a system net, let s be a progress prone state of �,and let U be a
hange set of s with �U � s. Furthermore, let r be a state thatis disjoint with s. Then � j= r [s ,! r [(Wu2U e�(s; u)).

69 Pi
k-up Patterns and Proof Graphs 23569 Pi
k-up Patterns and Proof GraphsIn analogy to the pattern of Se
t. 64.1, valid
auses formulas
an be pi
kedup from term-ins
ribed nets with the help of pi
k-up patterns, as suggestedin the sequel.We sti
k to elementary formulas, avoiding the negation operator :.69.1 Notations. Let � be an es-net that is term-ins
ribed over a stru
tureA and a set X of variables.i. A state formula p in sf(A; X; P�) is elementary if the negation symbol: does not o

ur in p.ii. For a pla
e p 2 P� and a state formula q, we write p 62 q if p does noto

ur in q.In
ase p 62 q, the pla
e p,
onsidered as a state, is disjoint to state q.69.1 The elementary patternMost elementary is the
ase of a forward unbran
hed pla
e, A, linked to aba
kward unbran
hed transition, a:
A B

f(x)

a

xLet � be an elementary state formula with A;B 62 �.i. � ^ A:xa(x),! � ^ :A:x ^B:f(x)ii. � ^ A:(x+ U)a(x),! � ^ A:U ^ B:f(x)iii. � ^ A = U a(U),! � ^ A = 0 ^B:f(U)69.2 The alternative patternThe typi
al free
hoi
e alternative is likewise easy:
A

B

C

g(x)

f(x)
a

b

x

xLet � be an elementary state formula with A;B;C 62 �.i. � ^ A:x ,! � ^ :A:x ^ (B:f(x) _ C:g(x))ii. � ^ A:(x+ U) ,! � ^ A:U ^ (B:f(x) _ C:g(x))iii. � ^ A = U ,! � ^A = 0 ^ B:f(V) ^ C:g(W) ^ U = V [W

236 XII. Con
urrent Progress of System Nets69.3 The syn
hronizing patternSyn
hronization of pla
es without alternatives goes as
an be expe
ted:
A

B

Ca
f(x)

g(x)
xLet � be an elementary state formula with A;B;C 62 �.i. � ^ A:x ^ B:f(x)a(x),! :A:x ^ :B:f(x) ^ C:g(x)ii. � ^ A = U ^ f(A) � B a(A),! � ^ A = ; ^ C:g(U)69.4 The pattern for alternative syn
hronizationChoi
e between syn
hronized transitions yields important patterns:

A

B

C

D

E

f(x)

y

b
k(x)

h(x)

a

y

x

Let � be an elementary state formula with A; : : : ; E 62 �.i. � ^ A:x ^ B:f(x) ,! � ^D:h(x) _ E:f(x)ii. Let A:x prevent b(f(x)). Then � ^ A:x ^ B:f(x)a(x),! D:h(x)iii. A = U ^ f(A) � B ,! D:h(V) ^ E:f(W) ^ U = V [WA frequent spe
ial
ase of this pattern is
A

B

Ca

x
xwith B an elementary, propositional pla
e and x varying over the set U . Theni. � ^ A:x ^ B ,! � ^Wy2U C:yii. Let inv jAj � 1 be a valid inequality. Then A:x ^ B ,! C:x.

69 Pi
k-up Patterns and Proof Graphs 23769.5 The pattern for syn
hronized alternativesThere frequently o

ur two or more alternatives that are syn
hronized alonga ba
kwards bran
hed pla
e:
A

B

C

D

E

x

y

a

b

cz

g(x)

f(x,y)

h(y)y

x

Let � be an elementary state formula with A; : : : ; E 62 �.i. � ^ A:x ^ B:y ,! � ^D:f(x; y) _ C:g(x) _ E:h(y)ii. Let A:x prevent
(y; z) and let B:y prevent a(x). Then A:x ^ B:y ,!D:f(x; y).69.6 Proof graphs for
auses formulasBased on Lemma 67.3, proof graphs for
auses formulas
an be
onstru
tedas usual.As an example we turn ba
k to the produ
er/
onsumer system. Fig-ure 65.2 shows that ea
h produ
ed item will eventually be
onsumed; te
h-ni
ally, B:u 7! F:u for ea
h item u. As an alternative we observe withLemma 67.3(v) that it was suÆ
ient to prove B:u ,! F:u instead. Figure 69.1
1) B.u 2) B.u

D.x

B.u
3) D.x

F.x

d(x) B.u
4) D.x

E

c(x) B.u
5) C

F.x

d(x) B.u
6) C

E

b(u)
7) D.u

E

c(u)
9) F.u

8) B.u
C

Figure 69.1. �65:1 j= B:u ,! F:ushows a
orresponding proof graph. In
omparison to Fig. 65.2, one node hasvanished. More important is the simpli�
ation in the nodes' justi�
ation:node 1: inv. C + jDj = 1,node 2: inv. E + jF j = 1,node 3: pattern of Se
t. 69.1,
ontext B:u ^D:x,node 4: pattern of Se
t. 69.4, D:x prevents
(y) for ea
h y 6= x by inv.C + jDj = 1,
ontext B:u,

238 XII. Con
urrent Progress of System Netsnode 5: pattern of Se
t. 69.1,
ontext B:u ^ C,node 6: pattern of Se
t. 69.4, B:u prevents ea
h b(x) for x 6= u by inv.A+ jBj = 1,
ontext E,node 7: pattern of Se
t. 69.4, D:u prevents ea
h
(x) for x 6= u by inv.C + jDj = 1,
ontext E,node 8: inv. E + jF j = 1.Further de
isive simpli�
ation of the proof will be gained by help of roundsin the next se
tion.70 Ground Formulas and RoundsGround formulas and rounds of elementary system nets are now
anoni
allyextended to advan
ed system nets:70.1 De�nition. Let � be a system net and let p be a state formula of �.Then p is a ground formula of � if � j= true ,! p.70.2 Theorem. Let � be a system net and let s be a state of �. Then s isa ground formula of � i� � j= a� ,! s and there exists a
hange set U of ssu
h that for ea
h u 2 U , � j= e�(s; u) ,! s.As an example, for the produ
er/
onsumer system in Fig. 65.1 we proveACE is a ground formula of �65:1. (1)The �rst
ondition of Theorem 70.2, � j= a� ,! ACE, is trivially ful�lled,as a� = ACE. For the se
ond
ondition we observe that fa(u) j u 2 domg isa
hange set of ACE, be
ause for all x 2 dom, A prevents b(x) by the pla
einvariant A+ jBj = 1, C prevents
(x) by C + jDj = 1, and E prevents d(x)by E + jF j = 1. Hen
e we have to show for all x 2 dom: B(x) ,! ACE. Theproof graph
B

D

(m,u)
(n,u)

(x,m)
(x,n)

u v w

(x,y)

(y,x) (y,succ(x))

(x,y)

(x,m)
(x,n)x x

C

AFigure 70.1. Renamed distributed request servi
e �19:3

70 Ground Formulas and Rounds 2391)B:x^C ^E b(x),! 2)A^D:x^E
(x),! 3)A^C ^F:xd(x),! 4)A^C ^E (2)shows this property. Its nodes are justi�ed as follows, with all formulas dueto the elementary pi
k-up pattern of Se
t. 69.1:node 1: pattern of Se
t. 69.4,B:x prevents b(y) for y 6= x by inv. A+jBj =1,
ontext E,node 2: pattern of Se
t. 69.4,D:x prevents
(y) for y 6= x by inv. C+jDj =1,
ontext A,node 3: pattern of Se
t. 69.4,
ontext A ^ C.As a further example we show that the initial state of the Distributed Re-quest Servi
e of Fig. 19.3 is a ground state. Figure 70.1 renames this system.As a te
hni
al simpli�
ation, pairs (x; y) will be written xy; hen
e we haveto showD:mu; nu ^ A:u; v; w is a ground formula of �70:1. (3)The set fa(x) j x 2 fu; v; wgg apparently is a
hange set of a�70:1 . Fur-thermore, let x; y; z 2 fu; v; wg be pairwise di�erent. Then (3) follows withTheorem 70.2 from the following proof graph:e�(a� ; a(x)) = 1)D:mu; nu ^ A:y; z ^ B:xm; xn,! 2)D:mu; nu ^ B:xm; xn; ym; yn; zm; zn= 3)D:mu; nu ^ B:um; un; vm; vn; wm;wn,! 4)D:mv; nv ^ B:vm; vn; wm;wn ^ C:mu; nu,! 5)D:mw; nw ^ B:wm;wn ^ C:mu; nu;mv; nv,! 6)D:mu; nu ^ C:mu; nu;mv; nv;mw; nw,! 7)D:mu; nu ^ A:u; v; w.All nodes are justi�ed by the elementary pi
k-up pattern of Se
t. 69.1.70.3 Theorem. Let � be a system and let p be a ground formula of �. Lets be a state of � with � j= s ! :p, and let U be a
hange set of s. Then� j= s ,! Wu2U e�(s; u).This theorem simpli�es proof of leads-to formulas in many
ases. As anexample, Fig. 69.1 provides a proof of �65:1 j= B:u ,! F:u. This propertyalso follows from the proof graph1)B:u b(u),! 2)D:u
(u),! 3)F:u. (4)Its nodes are justi�ed as follows:node 1: B:u prevents b(y) for y 6= x, and B:u! :ACE, by inv. A+jBj =1. Hen
e the proposition with (1) and Theorem 70.3.node 2: D:u prevents
(y) for y 6= x, andD:u! :ACE, by inv. C+jDj =1. Hen
e the proposition with (1) and Theorem 70.3.

XIII. Formal Analysis of Case Studies
The
ase studies of Part B, as introdu
ed in Chaps. IV, V, and VI, are nowre
onsidered and formally veri�ed.71 The Asyn
hronous Sta
k71.1 Properties of modulesThe
entral state property of the asyn
hronous sta
k �22:6 states that ea
hmodule Mi is always quiet, or storing two values, or storing no value. In thesta
k's representation of Fig. 71.1, the equationA1 +B1 + C = (1) + � � �+ (n), (1)states this property. Bra
kets indi
ate that numbers 1; : : : ; n are to be
onsid-ered as data values, and addition as multiset addition of singleton sets. Proofof (1) is easy: (1) is the equation of the pla
e invariant given in Fig. 71.2.71.2 Balan
ed statesA state of the asyn
hronous sta
k is balan
ed if ea
h module Ai is at its quietstate, storing exa
tly one value. In terms of Fig. 71.1, a state is balan
ed in
ase there exist values u1; : : : ; un withA:(1; u1); : : : ; (n; un). (2)A balan
ed state enables the a
tions b0(u1) and a0(v; u1), for all values v.b0(u1) pops u1 out of the sta
k, yielding the intermediate stateC:1 ^A:(2; u2); : : : ; (n; un). (3)This state is eventually followed by the balan
ed stateA:(1; u1); : : : ; (n� 1; un); (n;?), (4)as shown by the following proof graph:C:1 ^ A:(2; u2); : : : ; (n; un) b(1;u2),!C:2 ^ A:(1; u2); (3; u3); : : : ; (n; un) b(2;u3),!

242 XIII. Formal Analysis of Case Studies
a

a

a

b

b

b

0

0

n

n

(1,z,y) (n,y,x)
(i,y,x) (i+1,z,y)

(1,z)
(i+1,z) (i,x)

(n,x)

(1,z)
(i+1,z) (i,z)

(n,⊥)

1 i i+1 n

(1,⊥)
...(n,⊥)

q

q

B

from
predecessor

A

C

sort value
const ⊥ : value
const n : nat

var x, y, z : nat
var i : natFigure 71.1. Renamed asyn
hronous sta
k �22:6a0 a an b0 b bn iA �(1; z) (i; x) (n; x) �(1; z) (i; z) �(n;?) pr1(A)�(i+ 1; z) �(i+ 1; z)B (1; z; y) (i + 1; z; y) �(n; y; x) pr1(B)�(i; y; x)C 1 (i+ 1) �n C�(i)Figure 71.2. Matrix and pla
e invariant to �71:1

71 The Asyn
hronous Sta
k 243...C:i ^ A:(1; u2); : : : ; (i� 1; ui); (i+ 1; ui+1); : : : ; (n; un) b(i;ui+1),!...C:n ^ A:(1; u2); : : : ; (n� 1; un) bn,!A:(1; u2); : : : ; (n� 1; un); (n;?)The pattern of Se
t. 69.4 and the above equation (1) justify this proof graph.Likewise, an a
tion a0(v; u1) pushes v into the sta
k, yielding the intermediatestateB:(1; u1; v) ^ A:(2; u2); : : : ; (n; un). (5)This state is eventually followed by the balan
ed stateA:(1; v); (2; u1); : : : ; (n; un�1), (6)as shown by the following proof graph:B:(1; u1; v) ^ A:(2; u2); : : : ; (n; un)a(1;u1;v),!B:(2; u2; u1) ^ A:(1; v); (3; u3); : : : ; (n; un)a(2;u2;u1),!...B:(i; ui; ui�1) ^ A:(1; v); (2; u1); : : : ; (i� 1; ui�2);(i+ 1; ui+1); : : : ; (n; un)a(i;ui;ui�1),!...B:(n; un; un�1) ^A:(1; v); (2; u1); : : : ; (n� 1; un�2)a(n;un�1;un),!A:(1; v); (2; u1); : : : ; (n; un�1).The pattern of Se
t. 69.4 and the above pla
e invariant (1) justify this proofgraph.71.3 A ground formulaThe balan
ed states of �71:1 are
hara
terized by the formulapr1(A):1; : : : ; n. (7)Given a balan
ed state s with A:u1, the a
tions b0(u1) and all a
tions a0(v; u1)(for all values v) form a progress set of s. With the above proof graphsand Def. 70.1 it follows that (7) is a ground formula of �71:1. Hen
e, ea
hrea
hable state of the asyn
hronous sta
k is eventually followed by a balan
edstate. Furthermore, with the proof graphs above, a push followed by a popreturns the original sta
k up to the sta
k's last element, whi
h will
ontainthe unde�ned element, ?:A:(1; u1); : : : ; (n; un)a0(v;u1),!

244 XIII. Formal Analysis of Case Studies...A:(1; v); (2; u1); : : : ; (n; un�1) b0(v),!...A:(1; u1); : : : ; (n� 1; un�1); (n;?).72 Ex
lusive Writing and Con
urrent ReadingTwo algorithms of Se
t. 24 are now proven
orre
t. Three properties are to beshown for ea
h of them: ex
lusive writing,
on
urrent reading, and evolution.To improve the te
hni
al treatment, the two algorithms' pla
es have beenrelabeled in Figs. 72.1 and 72.3, respe
tively.72.1 Proof of ex
lusive writing and
on
urrent reading of �24:2Ex
lusive writing of �24:2, as redrawn in Fig. 72.1,
an easily be shown byhelp of the pla
e invarianteR(D) + F +K = R (1)with eR(x) := R for ea
h x 2 W . This invariant immediately impliesjDj � 1, i.e., no two writer pro
esses are writing
oin
idently. It further-more implies D = x ! K = 0, i.e., if one pro
ess is writing, no pro
essis reading. Con
urrent reading
an easily be demonstrated by means of a
a

b

c

d

e

f

g

h

CB

DA

J

K

H

G

F

E

W R

R

qq

x

x

x

x

x

x

x x

yy

y

y

y

y

y

y

y
y

R

R

ϕ ϕ

ϕ

Figure 72.1. Renamed writers/readers �24:2pre�x w of an interleaved run of �72:1. The sequen
e of a
tions of w ise(r1); : : : ; e(rn); f(r1); : : : ; f(rn); g(r1); : : : ; g(rn) where R = fr1; : : : ; rng. wterminates in a state a with a j= K(R), i.e., all reader pro
esses are reading.

72 Ex
lusive Writing and Con
urrent Reading 24572.2 Proof of evolution of writers for �24:2Evolution of writers of �24:2, as redrawn in Fig. 72.1, reads�72:1 j= B:x 7! D:x . (2)Its proof is essentially based on the property�72:1 j= C:x ,! D:x ^ E . (3)This property in turn holds due to the proof graph of Fig. 72.2. Its nodes are
1. C.x

2. C.x D=0

3. C.x D=0 J F

4. C.x D=0 J=0

5. C.x D=0 J=0 K=0

6. C.x J=0 F=R

7. C.x J=R F=R

8. D.x E

∧

∧ ∧ ⊆

∧ ∧

∧ ∧ ∧

∧ ∧

∧ ∧

∧

g(J)

c(x)?

c(x)

h(K)

d(D)

Figure 72.2. Proof graph for �72:1justi�ed as follows:1: pattern of Se
t. 69.1 and
ontext C:x.2: inv eR(D) + F � J �H �G = 0.3: C:x ^ x 6= z ! :C:z with inv jCj + jEj = 1, hen
e C:x prevents C:zfor x 6= z, hen
e C:x ^ J:y ^ F:y ,! K:y _ (D:x ^ E) with pattern ofSe
t. 69.4(i) and a
tion g(y) or
(x), hen
e C:x^J � F ,! J:0_(D:x^E) with pattern of Se
t. 69.4(iii), hen
e the proposition with
ontextD = 0.4: K h(K),! K:0 by pattern of Se
t. 69.1, hen
e the proposition with
ontextC:x ^ J = 0 ^D = 0.5: inv eR(D) + F +K = R.6: inv G +H + J +K = R and inv J + J = R, with J the
omplementof J .7: C:x ^ x 6= z ! :C:z with inv jCj + jEj = 1, hen
e C:x prevents
(z) for z 6= x. C:x ! :E by inv jCj + jEj = 1, hen
e C:x preventsf(y). J:R ! J:0 by inv J + J = R, hen
e J prevents g(y). Hen
e theproposition with pattern of Se
t. 69.4(ii).

246 XIII. Formal Analysis of Case StudiesFurthermore, proof of (2) requires�72:1 j= B:x 7! E. (4)This
an be shown by the proof graph
1. B.x 2. C.z 3. EIts nodes are justi�ed as follows:1: inv jCj+ jEj = 1.2: property (3), with Lemma 67.3(v).Proof of (2) is now gained by the proof graph1:B:x 7! 2:C:x 7! 3:D:x.Its nodes are justi�ed as follows:1: by (4) and Theorem 66.3.2: by property (3), with Lemma 67.3(v).72.3 Proof of evolution of readers of �24:2Evolution of readers of �24:2 means�72:1 j= H:y 7! K:y. (5)Its proof is based on�72:1 j= H:y 7! E, (6)to be shown by analogy to (4). Furthermore, we require�72:1 j= J:y 7! F:y, (7)whi
h holds due to the proof graph1:J:y d(D),! 2:D = 0h(K),! 3:D = 0 ^K = 0! 4:F = R! 5:F:y.Its nodes
an be justi�ed by analogy to the nodes of the proof graph of (3),left as an exer
ise to the reader.Proof of (5) now follows with the proof graph1:H:y 7! 2:J:y 7! 3:K:y.Its nodes are justi�ed as follows:1: Theorem 66.3, with (6).2: Theorem 66.3, with (7).

72 Ex
lusive Writing and Con
urrent Reading 247
a

b

c

d

e

f

g

h

CB

DA

J

K

H

G

F

E

W R

R

qq

x

x

x

x

x

x

x x

yy

z

z

y

y

y

(y,z)

(y,z)
y

U

U

ϕ ϕ

Figure 72.3. Renamed writers/readers �24:372.4 Proof of ex
lusive writing and
on
urrent reading of �24:3By analogy to the
ase of �24:2 ex
lusive writing of �24:3 as redrawn inFig. 72.3
an easily be shown by means of the pla
e invarianteU(D) + F + pr2(K) = U (8)with eU(x) := U for ea
h x 2 W . This invariant immediately implies jDj � 1,i.e., no two writer pro
esses are writing
oin
idently. Furthermore, D = x!K = 0, i.e., if one pro
ess is writing, then no pro
ess is reading. Con
urrentreading is in fa
t possible for up to jU j reader pro
esses, in
ase jU j � jRj.This
an be demonstrated by means of a pre�x w of an interleaved run of�72:3. The sequen
e of a
tions of w ise(r1); : : : ; e(rn); f(r1); g(r1; u1); : : : ; f(rm); g(rm; um),where R = fr1; : : : ; rng and U = fu1; : : : ; umg. w terminates in a state awith a j= K(f(r1; u1); : : : ;(rm; um)g), i.e., m = jU j reader pro
esses reading.72.5 Proof of evolution of writing for �24:3Evolution of writers of �24:3 means�72:3 j= B:x 7! D:x. (9)Its proof is essentially based on�72:3 j= C:x ,! D:x ^ E. (10)This property holds due to the proof graph

248 XIII. Formal Analysis of Case Studies
1. C.x

2. C.x D=0

3. C.x D=0 K=0

4. C.x F=U

5. D.x E

∧

∧ ∧

∧

∧

h(K)

c(x)?

d(D)

c(x)Justi�
ation of its nodes follows the proof graph of (3) and is left as anexer
ise to the reader.Proof of (9) furthermore requires�72:3 j= B:x 7! E. (11)This property follows from the proof graph
1. B.x 2. C.z 3. EIts nodes are justi�ed as follows:1: inv jCj+ jEj = 1.2: property (10).Now, (9) follows from the proof graph1:B:x 7! 2:C:x 7! 3:D:x.Its nodes are justi�ed as follows:1: by the fairness rule (Theorem 66.3) with (11).2: by property (10).72.6 Proof of evolution of readers of �24:3Evolution of readers of �24:3 means�72:3 j= H:y 7! K:(y; z). (12)Its proof is based on�72:3 j= H:y 7! E, (13)to be shown by analogy to (11). Furthermore, we require�72:1 j= J:y 7! K:(y; z),whi
h holds due to the proof graph1:J:y d(D),! 2:J:y ^D = 0h(K),! 3:J:y ^D = 0 ^K = 0! 4:J:y ^ U = F ,! 5:K:(y; z). (14)Its nodes are justi�ed as follows:

73 Distributed Rearrangement 2491: D d(D),! D:0 with pattern of Se
t. 69.1(iii) and
ontext J:y.2: K h(K),! K:0 with pattern of Se
t. 69.1(iii) and
ontext J:y ^D = 0.3: inv eU(D) + F + pr2(K) = U .4: J:y ^ y 6= z ! :J:z by inv jEj+ jJ j+ jCj = 1, hen
e J:y prevents g(z)for z 6= y. J:y ! :C:x by inv jEj + jJ j + jCj = 1, hen
e J:y prevents
(x). Hen
e the proposition with pattern of Se
t. 69.4(iii).This
ompletes the proof of properties of the writer/reader system of Se
t. 24.73 Distributed RearrangementFigure 73.1 rewrites �25:5, with renamed pla
es. We �rst
onstru
t a groundformula, ground. This formula enables at least one transition, unless the twosets are rearranged. A des
ending fun
tion will show that ground will berea
hable only �nitely often.

const l ,r : nat
const L,R : set of nat
var x,y,z : nat
fct min,max : nat × nat → nat
(L ∪ {l }) ∩ (R ∪ {r}) = ∅
∃ m ∈ L : max(l ,m) = m

L-l

R-r

y>x

x>y

rl

Lb d

D

C

H
e

g

J

Mf h

N a
c

P

E

KG

A
j k

B F
min(x,z)

max(z,y)
max(x,z)

min(x,z) max(x,z)min(y,z)

xx

x
xx

x

y

y

yy

y

y
y

y

y

y

z

zz

z

z

z z

z
z

z

z

z

Figure 73.1. Renamed distributed message passing rearrangement �25:5

250 XIII. Formal Analysis of Case Studies73.1 Some basi
sWe assume a �xed interpretation of the symbols in �25:5, withdom := L [R (1)the set of numbers involved, as initially given. The formulaground := (N + P +A+E = dom) ^ A:x ^ E:y ^ A < E (2)will turn out to be a ground formula: Both sites
arry a test number on Aand E, respe
tively, with A < E. All other numbers are
olle
ted at N andP , respe
tively. The degree of disorder at a ground state between the twosites is measured bydis := jf(u; v) 2 (N [A)� (P [E) j u > vgj, (3)hen
e the two sites are rearranged in a ground state if disorder has disap-peared:rearr := (dis = 0). (4)73.2 Two proof graphsThe forth
oming arguments are essentially based on the following four pla
einvariants:inv 1: jEj+ jKj+ jF j = 1.inv 2: jDj+ jEj+ jH j+ jJ j+ jLj+ jM j = 1.inv 3: jAj+ jBj+ jGj = 1.inv 4: jAj+ jCj+ jDj+ jJ j+ jM j+ jRj = 1.
(5)
N.U
P.V
B.u
C.u
E.v

(6)
N.U
P.V
B.u
F.max(u,v)
D.min(u,v)

(9)
N.U
P.V--w+v
K.w
C.u
B.u
H.w
v > w

(7)
N.U
P.V
F.max(u,v)
A.min(u,v)
L

(10)
N.U
P.V--w+v
K.w
C.u
G.min(u,w)
L
v > w

(8)
N.U
P.V
A.min(u,v)
E.max(u,v)

(11)
N.U
P.V--w+v
G.min(u,w)
L
F.max(u,w)
M
v > w

(12)
N.U
P.V--w+v
L
F.max(u,w)
A.min(u,w)
v > w

(13)
N.U
P.V--w+v
A.min(u,w)
E.max(u,w)
v > w

ground
d(max(u,v))b(y,z)

d(max(u,w))f(min(u,w))k(u)j(u,w)

c(
v,

u)

g(v,w)

Figure 73.2. Proof graph for �73:1

73 Distributed Rearrangement 251Figure 73.2 shows a proof graph (its node numbering
ontinues the abovenumbered lines), with nodes justi�ed as follows (we refrain from expli
itlymentioning the respe
tive patterns of Se
t. 69):node 5: g(v; w) is a
tually a s
hema for all w 2 V with v > w. Further-more,
ontextN:U^B:u;E:v ex
ludes k(u;w) for ea
h w 2 dom,by inv 1.node 6:
ontext N:U ^P:V ^F:max(u; v); D:min(u; v) ex
ludes j(u;w)for ea
h w 2 dom, by inv 2.node 7:
ontext N:U ^ P:V ^ A:min(u; v).node 8: propositional reasoning.node 9:
ontext N:U ^ P:V � w + v ^K:w ^ C:u; H:w ex
ludes b(u; z)by inv 2; B:u ex
ludes e(u;w) for ea
h u 2 dom, by inv 3.node 10:
ontext N:U ^ P:V � w + v ^ G:min(u;w) ^ L; K:w ex
ludes
(u;w) for ea
h w 2 dom by inv 1; C(u) ex
ludes h(w; u) forea
h u 2 dom, by inv 4.node 11:
ontext N:U ^ P:V � w + v ^ L ^ F:max(u;w).node 12:
ontext N:U ^ P:V � w + v ^ L ^ A:min(u;w).node 13: propositional reasoning.Figure 73.3 outlines a proof graph that, symmetri
ally to Fig. 73.2, swapsthe left and the right site of Fig. 73.2.
(14)

N.U

P.V

K.v

H.v

A.u

(15)

N.U

P.V

A.min(u,v)

E.max(u,v)

(16)

N.U--w+v

P.V

A.min(u,v)

E.max(u,v)

v > w

ground

Figure 73.3. Proof graph for �73:1First we proof that ground is in fa
t a ground formula:73.3 A ground formulaground is a ground formula of �73:1.Proof. i. s�73:3 ,! (5) a

ording to the spe
i�
ation in Fig. 73.3. Further-more, (5) ,! ground by Fig. 73.2. Hen
e s�73:3 ,! ground .ii. ground prevents ea
h a
tion of e by inv 2 and ea
h a
tion of f by inv 4,hen
e a progress set of ground is given by all a
tions a(u;w) with A:uand N:w and w > u, together with all a
tions g(v; w) with E:v and P:w

252 XIII. Formal Analysis of Case Studiesand v > w. A
tions a(u;w) and g(v; w) lead to states shaped as (5) and(14), respe
tively. The proposition then follows from the proof graphs inFigs. 73.2 and 73.3, and Theorem 70.2. ut73.4 Proof of rearrangementIn
ase of ground states, disorder (
.f. (3))
an be
hara
terized in terms ofthe derivation of the test elements in A and E from the minimum of N andthe maximum of P , respe
tively. To this end, letdevl := fw 2 N j u 2 A ^ w > ugdevr := fw 2 P j u 2 E ^ u < wg. (17)Then, at ea
h ground state holds obviouslydis = devl + devr. (18)In the proof graph of Fig. 73.2, the a
tion g(v; w) de
reases devr; and noother a
tion would a�e
t devl or devr. Hen
e, ea
h node may be extendedby the requirement devl < n ^ devr � m, whi
h yields(5) ^ devl < n ^ devr � m ,! ground ^ devl < n ^ devr � m. (19)Likewise follows with the proof graph of Fig. 73.3:(14) ^ devl � n ^ devr < m ,! ground ^ devl � n ^ devr < m. (20)
(21)
ground
dis = k
> 0

(22)
ground
devl ≤ n
dev r≤ m
n+m = k

a(v,
u)

g(v,u)

(23)
(5) ∧
devl < n
dev r≤ m
n+m = k

(25)
(14) ∧
devl ≤ n
dev r< m
n+m = k

(24)
ground
devl < n
dev r≤ m
n+m = k

(26)
ground
devl ≤ n
dev r< m
n+m = k

(27)
ground
devl + devm< k

ground
dis < k

Figure 73.4. Proof graph for �73:1We are now prepared to justify the nodes of the proof graph in Fig. 73.3:(21) by (18)

74 Self-Stabilizing Mutual Ex
lusion 253(22) inv2 prevents e, and inv4 prevents
, pi
k-up pattern of Se
t. 69.5(23) by (19)(24) by propositional reasoning(25) by (20)(26) by propositional reasoning(27) by (18)To ea
h ground -state there exists an index k with dis = k. Then �nitelymany instantiations of the proof graph of Fig. 73.1 yieldsground ,! ground ^ dis = 0. (28)With the proposition of Se
t. 73.3 and Theorem 70.2 followss�73:1 ,! ground . (29)Hen
e (28) and (29) together with (4) gives�73:1 ,! rearr, (30)whi
h des
ribes, as intended, that rearrangement will be rea
hed inevitably.74 Self-Stabilizing Mutual Ex
lusion74.1 Properties to be shownFigure 74.1 re
alls algorithm �26:2, renaming its pla
es. Assuming a
on
rete
A

min

d

min

D

maxmax

C

max

max

e

Bx x

a

b

c

f

l (x)

l (x)

l (x)

l (x) x
x

x

x

sort proc

const min, max : proc

T, U, V, W : set of proc

fct r : proc \ {max} → proc

var x, y : proc

x ≠ y → r(x) ≠ r(y)

x ≠ r(y) ⇔ x = min

∃ n ∈ N : T∪ U ∪ V ∪ W

= {ri(min) | 0 ≤ i ≤ n }

T U

W V

Figure 74.1. Renamed self-stabilizing mutex �26:2interpretation of the involved
onstant symbols, let R = fu1; : : : ; ung be theset of pro
esses (i.e., R = T [U [V [W , with u1 = min, un = max, andr(ui) = ui+1 (i = 1; : : : ; n)).A state is feasible if it ful�lls the equation

254 XIII. Formal Analysis of Case StudiesA+B + C +D = R. (1)Two properties of �74:1 are to be shown: Firstly, ea
h feasible state leadsto a state with all pro
esses at D:feasible 7! D:R, (2)and se
ondly, for ea
h state rea
hable from a D:R-state holds:jAj � 1. (3)74.2 Proof of (2)For ea
h non-D:R-state s,
all i the smooth index of s if s j= :D:ui ands j= D:ui+1; : : : ; un. By de�nition let 0 be the smooth index of the stateD:R. The proof graph
¬D.un A.un B.un C.un D.un

a(un) e f (4)shows that ea
h feasible state with smooth index n leads to a state with asmaller smooth index.Indu
tively, we show that ea
h state with smooth index i leads to a statewith a smaller smooth index. To this end we introdu
e shorthands
ij :=C:ui ^ : : : ^ C:uj and Æij := D:ui ^ : : : ^ D:uj . Figure 74.2 then shows therequired property. A D:R-state will be rea
hed after at most n iterations.
¬D.ui

δn
i+1

A.ui

δn
i+1

B.ui

δn
i+1

γi
i

A.ui+1

δn
i+2

…a(ui) b(ui) a(un-1) b(un-1)γi
n-2

B.un-1

δn
n

γi
n-1

A.un

γi
n-1

B.un

γi
n γi

n-1

δn
n

γi
n-2

δn
n-1

γi
i

δn
i+1

δn
ia(un) e f c(un-1) c(un-2) … c(un-1) c(un)Figure 74.2. Proof graph for �74:174.3 Proof of (3)Here we assume D:R as the initial state of �74:1. Then for ea
h u 2 R, u 6=min, the set fC:u;D:r(u)g is a trap. Hen
e for all u 6= min, C:u+D:r(u) � 1(by Theorem 61.2), hen
e

75 Master/Slave Agreement 255jCj+ jDj � n� 1. (5)Furthermore, (1) impliesjAj+ jBj+ jCj+ jDj = n. (6)Then the inequality (6)�(5)= jAj+ jBj � 1 immediately yields (3).75 Master/Slave Agreement75.1 The essential propertyFigure 75.1 re
alls the master/slave algorithm �30:1, renaming its pla
es.The essential aspe
t of �30:1 is to guarantee that master pending is even-tually followed by master ina
tive together with either all slaves busy or allslaves pending. In the redrawn version �75:1 of �30:1 this property is formallyrepresented by�75:1 j= B ,! A ^ (N:U _ P:U). (1)
q
a

B

E

L

F

G

b c

d e

H

J
k l

M

C

h j

g

A K
U

PN

D

f

m n

U-x

U
x x

x

x

x
x

x x

U

x

x
x x

xx

x x

x x

U

x
x

x

x

x

x x

xxU

x

x x

Figure 75.1. Renamed master/slave agreement �30:1

256 XIII. Formal Analysis of Case Studies75.2 State propertiesProof of (1) is based on the following pla
e invariants of �75:1:inv1: E + L+ F +G�D � U � jBj = 0inv2: F +G+H + J +N + P +K + L = Uinv3: U �A+ U �B + C +D = Uinv4: F +G+ J +H �M = 0inv5: H + J +N + P +K �E � U �A� C = 0inv6: L+M +N + P +K = Uinv4 and inv6 imply F +G+ J +H � U . (2)75.3 A proof graph for the essential propertyFigure 75.2 shows a proof graph for (1). As a shorthand it employs� = B ^ (E + L+ F +G � U). (3)
1) B

2) α ∧ H ≤ M l (H)

3) α ∧ H = 0

4) α ∧ H = 0 ∧ J ≤ M k(J)

5) α ∧ H = 0 ∧ J = 0 m(N)

6) α ∧ H = 0 ∧ J = 0 ∧ N = 0 n(P)

7) α ∧ H = 0 ∧ J = 0 ∧ N = 0 ∧ P = 0

8) α ∧ E ≤ K g(E)

9) α ∧ E = 0

10) α ∧ E = 0 ∧ L = 0

11) B ∧ F + G ≥ U

12) B ∧ F.U b(U)

14) A ∧ J.U

15) A ∧ J.U ∧ M.U k(U)

16) A ∧ N.U

13) B ∧ G.x ∧ F + G ≥ U

17) B ∧ G.x ∧ F = V ∧ G = x + W ∧ x + V + W = U c(x)

18) C.x ∧ H.x ∧ D.V + W ∧ F = V ∧ G = W ∧ x + V + W = U d(V)

19) C.x + V ∧ H.x + V ∧ D.W ∧ G = W ∧ x + V + W = U e(W)

20) C.x + V + W ∧ H.x + V + W ∧ x + V + W = U

21) C.U ∧ H.U f

22) A ∧ H.U

23) A ∧ H.U ∧ M.U l (U)

24) A ∧ P.U

25) A ∧ (N.U ∨ P.U)Figure 75.2. Proof graph for (1), with shorthand (3)Four se
tions
an be distinguished in this proof graph: The steps from line2 to line 7 �nish the previous round. Line 7 to line 11 start the a
tual round,

75 Master/Slave Agreement 257pro
eeding until ea
h slave has made its
hoi
e. The left bran
h des
ribes the
ase of all sites agreed, with o

urren
e of b(U) and k(U). The right bran
hdes
ribes the
ase of at least one slave refusing, with o

urren
e of
, d, e,and, most important, l(U).The nodes of this proof graph are justi�ed as follows, with rule numbersreferring to Se
t. 69:1. inv1, inv4.2. H:x! :J:x by (2), hen
e H:x prevents k(x), hen
e the proposition withpattern of Se
t. 69.4.3. inv4.4. J:x! :H:x by inv7, hen
e J:x prevents l(x), hen
e the proposition withpattern of Se
t. 69.4.5. pattern of Se
t. 69.1.6. pattern of Se
t. 69.1.7. inv5.8. pattern of Se
t. 69.3.9. pattern of Se
t. 69.2.10. de�nition of �.11. propositional logi
, inv2.12. F:U ! G = 0 by (2), hen
e F:U prevents
(x). Furthermore, B ! D =0 by inv3, hen
e B prevents d. Hen
e the proposition with pattern ofSe
t. 69.5.14. inv4.15. J:U ! H = 0 by (2), hen
e J:U prevents l(x). Furthermore, J � M ,with inv4. Hen
e the proposition with pattern of Se
t. 69.4.16. propositional logi
.13. inv2.17. G:x ! :F:U by (2), hen
e G:x prevents b. Furthermore, B ! D = 0by inv3, hen
e B prevents e(x). Hen
e the proposition with pattern ofSe
t. 69.5.18. The
ase of V +W = 0 dire
tly implies 21. Otherwise C < U by inv6,whi
h prevents f . Furthermore, C:x ! :B by inv3, hen
e C:x preventsb. Finally, F:V ! G \ V = ; by inv2, hen
e F:V prevents e(y) for ea
hy 2 V . Hen
e the proposition with pattern of Se
t. 69.4 and
ontextH:x ^D:W ^G =W .19. The
ase of W = 0 dire
tly implies 21. Otherwise C < U by inv6, whi
hprevents f . Furthermore, C:x! :B by inv3, hen
e C:x prevents
(y) forea
h y 2 W . Finally, G:W ! F \W = ; by inv2, hen
e G:W preventsd(y) for ea
h y 2 W . Hen
e the proposition with pattern of Se
t. 69.4and
ontext C:V ^H:x + V .20. propositional impli
ation.21. pattern of Se
t. 69.1 with
ontext H:U .22. inv4.

258 XIII. Formal Analysis of Case Studies23. H:U ! J = 0 by (2), hen
e H:U prevents k(x). Furthermore, H � Mwith inv4. Hen
e the proposition with pattern of Se
t. 69.4.24. propositional logi
.76 Leader Ele
tionFigure 76.1 re
alls�32:1 with renamed pla
es. Withmax the maximal elementof U , the property to be shown iss�76:1 ,! B:U � fmaxg ^ A = ; ^ C = ;. (1)
(x,y)

(x,y)

(x,y)

(x,y)

(x,y)

(x,z)

(x,z)

(x,z)

M(x,y)

z ≤ y

z > y

V

a

b

c

A

C
B

sort site

sort state : site × site

const U : set of sites

const V,W : set of states

≤ : total order on U

fct M : state → set of states

var x, y, z : site

x,y ∈ U → x W* y

W1 ∪ W2 = U

V = {(u,u) | u ∈ U}

M(x,y) = W(x) × {y}Figure 76.1. Renamed leader ele
tion �32:176.1 Fundamental state propertiesAn obvious pla
e invariant implies that ea
h site is either pending or updating :A1 +B1 = U . (2)Furthermore, a site v, already knowing the leader, is related to its neigh-bors by a property derived from a trap. To this end, assume a state s andtwo neighboring sites u; v 2 U , and s j= B:(u;max). s has been rea
hedby o

urren
e of a(u;max). This a
tion also produ
ed C:(v;max). With s
onsidered as (a new) initial state, an initialized trap yields the inequalityA:(u;max) + C:(v;max) + A:(v;max) + B:(v;max) � 1. Together with (2)this yields the valid propositional formula

76 Leader Ele
tion 259B:(u;max) _ C:(v;max) _ A:(v;max) _ B:(v;max). (3)Intuitively formulated, ea
h neighbor of a site already updating with theleader is also aware of the leader, or a
orresponding message is pending.76.2 A fundamental progress propertyA weight fun
tion f will be required, that assigns ea
h state (u; v) its \better"
andidates. So, for all u; v 2 U letf(u; v) = f(u;w) j w > vg. (4)Obviously, f(u; v) = ; if v = max.We sti
k to states with all sites updating (B1:U) in the sequel. This in-
ludes the terminal state with no pending messages (C = ;) and emptyweights f(u; v) for all sites u (f(B) = ;). The proof graph of Fig. 76.2 states
Let ϕ := B1.U ∧

B2.max b(u,v,w) 5) ϕ
C ⊂ N

f(B) = M

1) ϕ
C = N

f(B) = M ≠ ∅

c(u,v,w)2) ϕ
C = N ≠ ∅
f(B) = M

a(u,w)3)

B1.U\{u}

B2.max

A.(u,w)

w > v

4) ϕ
f(B) ⊂ M

6) ϕ
((C ⊂ N ∧ f(B) = M)

∨ f(B) ⊂ M)Figure 76.2. Proof graph for �76:1that one of the sites not yet knowing the leader (f(B) =M 6= ;) will eventu-ally hold a \better"
andidate (f(B) � M), or will have skipped a pendingmessage (C � N). The proof graph's nodes are justi�ed as follows:node 1: B2:max, f(B) 6= ; and the graph's
onne
tedness implyneighboring sites u and w, B:(u;max), and B:(v; i) withi < max. Then C:(u;max) by (3) and (2).node 2: C 6= ; implies some C:(u;w), and ' implies some B:(u; v).This enables b(u; v; w) or
(u; v; w). Hen
e, C 6= ; ^ ' isprogress prone. Then apply the pattern of Se
t. 69.5.node 3: pattern of Se
t. 69.2.nodes 4 and 5: propositional logi
.

260 XIII. Formal Analysis of Case Studies76.3 Proof of (1)The proof graph in Fig. 76.2 shows' ,! 'C = N ((C � N ^ f(B) =M)f(B) =M 6= ; _f(B) �M) . (5)C may shrink �nitely often only, hen
e �nitely many iterations of (5) yield' ,! 'C = N f(B) �Mf(B) =M 6= ; . (6)A remaining message is
leared by' ,! 'C = N C � Nf(B) = ; f(B) = ; , (7)as C:(u; v)^f(B) = ; implies C:(u; v)^B:(u;max), hen
e enables b(u; v;max).The following proof graph now proves (1):
1) s∑

a(V) 2) B.V 3) ϕ
C = N

f(B) = M ≠ ∅

4) ϕ
f(B) = ∅

5) ϕ

f(B) = ∅
C = ∅

6) C = ∅
B.U × {max}

A = ∅Its nodes are justi�ed as follows:node 1: pattern of Se
t. 69.1.node 2: propositional reasoning, with C = ; ^ f(B) = ; i� jU j = 1.node 3: �nitely many iterations of (6).node 4: �nitely many iterations of (7).node 5: by
onstru
tion of '.77 The E
ho Algorithm77.1 Properties to be provenFigure 77.1 provides a redrawn version of the E
ho Algorithm of Fig. 33.2. Ithas two de
isive properties: Firstly, the initiator terminates only if all othersites have been informed before. In Fig. 77.1, this readsC:i! G:U (1)and is a typi
al state property. Se
ondly, the initiator will eventually termi-nate, i.e.,

77 The E
ho Algorithm 261
A

E

C

GF

D

B

(y,x)

x
c

d

a b

(x,y) (x,y)

i i i i

(x,y)

i

U

sort site

sort message = site × site

const i : site

const U : set of sites

const W : set of (sites × sites)

fct M, M : site → set of messages

var x,y : site

W = W--1

x,y ∈ U ∪ {i} → x W*y

W1 = U ∪ {i}

i ∉ U

M(x) = W(x) × {x}

M(x) = M(x)--1

M(i) M(i)

M(x)--(x,y)M(x)
--(y

,x)

Figure 77.1. Redrawn e
ho algorithm �33:2s�77:1 7! C:i, (2)whi
h is a typi
al liveness property. Both (1) and (2) will be veri�ed in thesequel.There is no straightforward pla
e invariant or trap that would prove (1).Nor is there a proof graph for (2), with steps pi
ked up a

ording to thepatterns of Se
t. 69. Rather, one has to argue indu
tively along a spanningtree that yields at pla
e F .77.2 Three pla
e invariantsFigure 77.1 has three important pla
e invariants, as given in Fig. 77.2. Twoof them are indu
tively quite obvious, representing the \life lines" of theinitiator i and of all other sites, respe
tively.The equation of I1 is A+B + C = i. This impliesA:i+B:i+ C:i = 1, (3)hen
e the initiator is always either at its start or is waiting, or is terminated.The equation furthermore implies8x 2 U : A:x+B:x+ C:x = 0, (4)hen
e no non-initiator site ever �nds at A, B, or C.Correspondingly, the equation of I2 is E + F1 +G = U . This implies

262 XIII. Formal Analysis of Case Studiesa b
 d s� I1 I2 I3A �i i A M(A)B i �i BC i C M(C)D M(i) �M(i) M(x) �M(x) D�(x; y) +(x; y)�(y; x) +(y; x)E �x U E M(E)F (x; y) �(x; y) F1 F+ FG x G M(G)I � s� i U M(U 0)Let F = F�1 and U 0 = U [fIgFigure 77.2. Matrix, initial state, and three pla
e invariants of �77:18x 2 U : E:x+ F1:x+G:x = 1, (5)hen
e ea
h non-initiator is always either uninformed or pending or informed.The equation furthermore implies8x 62 U : E:x+ F1:x+G:x = 0, (6)hen
e the initiator never �nds on E, F , or G.I3, �nally, represents the potential messages of the system. Its equationis M(A) +M(C) +D+M(E) +F +F +M(G) =M(U 0), implying for ea
hmessage (y; x) 2M(U 0) the propertyM(A):(y; x)+M (C):(y; x)+D:(y; x)+M(E):(y; x) + F:(y; x) + F :(y; x) +M(G):(y; x) = M:(y; x), whi
h in turnredu
es to8x 2 U 0 8y 2W (x) :A:x+ C:y +D:(y; x) +E:x+ F:(y; x) + F:(x; y) +G:y = 1. (7)Hen
e for ea
h message (y; x) holds: Its sender x is still starting or unin-formed, or the message has already been sent but not re
eived yet, or one ofy and x has re
eived the message from x to y, respe
tively, or the message'sre
eiver y is terminated or informed.77.3 The pending site's rooted treeA further state property will be required, stating that the tokens on F alwaysform a tree with root i. This will be formulated with the help of the followingnotation:A sequen
e u0 : : : un of sites ui 2 U 0 is a sequen
e of F at a states i� s j= F:(ui�1; ui) for i = 1; : : : ; n. (8)For ea
h rea
hable state s we will now prove the following two properties:For ea
h F1:u there is a unique sequen
e u0 : : : un of F with u0 = uand un = i, (9)

77 The E
ho Algorithm 263andthe elements of ea
h sequen
e of F are pairwise di�erent. (10)Both properties now are together shown by indu
tion on the rea
hability ofstates:Both (9) and (10) hold initially, as s�77:1 j= F = ;. Now, let r be a rea
hablestate, let r m�! s be a step of some transition t, and indu
tively assume (9)and (10) for r.The
ase of t = a or t = b implies r(F) = s(F), hen
e the step r m�! sretains both (9) and (10) for s. For t =
 or t = d let m(x) = u and m(y) = v.The
ase of t =
 goes as follows: Enabledness of
(m) at r now for rimplies D:(u; v) and E:u. Then r j= F1:v, a

ording to the following sequen
eof impli
ations:1. 2. 3. 4. 5.D:(u; v) D:(u; v) :E:v :E:v F1:v .E:u E:u E:u :G:vv 2 W (u) v 2 W (u)Its nodes are justi�ed as follows:node 1: (6);node 2: (7) with x = v, y = u;node 3: (7) with x = u, y = v;node 4: (5).Now, r j= F1:v and the indu
tive assumption of (9) imply a unique se-quen
e v : : : i of F at state r. Then uv : : : i is a sequen
e of F at state s,be
ause s(F) = r(F) + (u; v). Together with (5), this implies (9) for s. Fur-thermore, r j= u 62 F1 (by (5)) and u 6= i by (4), hen
e (10) for s.Correspondingly, enabledness of d(m) at r now for r implies D:M(u) �(u; v) and F:(u; v). Then r j= F2:u a

ording to the following sequen
e ofimpli
ations:1. 2. 3. 4. 5. 6.D:M(u) D:M(u) F \ (M(u) F \ (M(u) F \M(u) = ; :F2:u�(u; v) �(u; v) �(u; v)) = ; �(v; u)) = ;F:(u; v) :F:(v; u) :F:(v; u) :F:(v; u)Its nodes 1 and 2 are justi�ed by (7), nodes 3, 4, and 5 by properties of M .With r j= :F2:u, for ea
h sequen
e u0 : : : un of F , u1; : : : ; un 6= u. Thisimplies (9) for the state s, be
ause s(F) = r(F)� (u; v). (10) is then trivial,be
ause s(F) � r(F).

264 XIII. Formal Analysis of Case Studies77.4 Proof of the state property (1)(1) is indire
tly proven in three steps:i. Assume F 6= ;. Then there exists some w 2 U 0 with F:(w; i), by (9).Then :C:i by (7).ii. For all u 2 U 0 we show E:u! :C:i (*)by indu
tion on the distan
e of u to i: For u = i, (*) holds trivially,as :E:i by (6). Indu
tively assume (*), let v 2 W (u), and assume E:v.Then u 2 W (v), hen
e :G:u, by (7). Then F1:u or E:u, by (5). The
aseof F1:u implies F 6= ;, hen
e :C:i by (i). The
ase of E:u implies :C:iby indu
tive assumption.iii. C:i! E = F = ;, by (i) and (ii). Then (1) follows from (5).77.5 Progress from uninformed to pendingHere we show that ea
h uninformed site u 2 U will eventually go pending. Interms of �77:1 this reads:Let U = V [W , V 6= ;, W 6= ;. ThenE:V ^ F1:W ,! Wv2V (E:V � v ^ F1:W + v). (11)This property holds due to the following proof graph:1) E:V ^ F1:W ^ V 6= ; ^W 6= ; !2) E:V ^ F1:W ^ ex. v 2 V ^ ex. w 2W [fig with D:(v; w) ,!3) E:V � v ^ F1:W + vIts nodes are justi�ed as follows:node 1: Conne
tedness of U 0 implies some neighbors v; w su
h that E:v,and F1:w or w = i. Furthermore,i. F1:w implies w 2 U by (6), hen
e :A:w by (4). w = i andW 6= ; imply some F:(u; i) by (9), hen
e :A:i by (7).ii. E:v implies v 2 U by (6), then :C:v by (4).iii. F1:w implies :E:w by (5) and w = i implies :E:w by (6).iv. E:v implies :F1:v by (9), hen
e :F:(v; w).v. Let u0 : : : un be a sequen
e of F with u0 = w and un = i,a

ording to (9). The
ase of n = 1 implies u1 = i 6= v, hen
e:F:(w; v). Otherwise, F1:u1. Then E:v implies u1 6= v by (5).Hen
e :F:(w; v).vi. E:v implies :G:v by (5).Now (i),: : : ,(vi), and (7) imply D:(v; w).node 2: pattern of Se
t. 69.5.

77 The E
ho Algorithm 26577.6 Progress from pending to informedHere we show that ea
h pending site will eventually be informed. In terms of�77:1 this reads:Let U = V [W with V 6= ;. ThenF1:V ^G:W ,! Wv2V (F1:V � v ^G:W + v). (12)This property holds due to the following proof graph:1) F1:V ^G:W ^ V [W = U ^ V 6= ; !2) ex. v 2 V ex. w 2 U :F1:V ^G:W ^ V [W = U ^D:(M(v) � (v; w)) ,!3) ex. v 2 V ex. w 2 U with F1:V � w ^G:W + v.Its nodes are justi�ed as follows:node 1: Let u0 : : : un be a maximal sequen
e of F . This exists due to(9) and (10). In
ase u1 is the only neighbor of u0, D:(M(u0) �(u0; u1)) = D:((u0; u1) � (u0; u1)) = D:; whi
h holds trivially.Otherwise, let (u0; v) 2M(u0)� (u0; u1). Then the following sixproperties hold:i. (9) implies some F:(w; i), hen
e :A:i by (7), hen
e :A:v in
ase i = v. Otherwise, v 2 U , hen
e :A:v by (4).ii. u0 2 U by
onstru
tion, hen
e :C:u0 by (4).iii. E = ; by (5) and V [W = U , hen
e :E:v.iv. Maximality of u0 : : : un implies :F:(v; u0).v. F:(u0; u1) implies :F:(u0; v) as the path from u0 to i is uniqueby (9).vi. F1:u0 implies :G:u0.Now (i),: : : ,(vi), and (7) imply D:(u0; v). This argument appliesto all (u0; v) 2M(u0)� (u0; u1), hen
e D:M(u0)� (u0; u1).node 2: pattern of Se
t. 69.4.77.7 Proof of the liveness property (2)(2) is now proven with the help of the proof graph of Fig. 77.3. Its nodes arejusti�ed as follows:node 1: de�nition of a�node 2: pattern of Se
t. 69.1,
ontext Enode 3:
:(u; i) is enabled for ea
h u 2M(i); pattern of Se
t. 69.4node 4: jV j-fold appli
ation of (11)node 5: jU j-fold appli
ation of (12)node 6: we distinguish three
ases:i. u 2M(i) implies u 6= i, hen
e :A:u by (4)ii. G:U implies E = F = ; by (5) and (6). Hen
e :E:u,:F:(i; u), and :F:(u; i).

266 XIII. Formal Analysis of Case Studies
iii.

1) s∑77.1
2) E = U ∧ A.i a(i)

3) E = U ∧ D.M(i) c(u,i)

4) E.V ∧ F1.W ∧ W ≠ ∅∧ V ∪ W = U

5) F1.U

6) G.U

7) D.M(i)

8) D.M(i) ∧ B.i b(i)

9) C.iFigure 77.3. A proof graph for s�77:1 ,! C:ii 62 U implies :G:i by (6).Now, (i), (ii), and (iii) with (7) implyD:(i; u)_C:i. This argumentapplies to all (i; u) 2M(i), hen
e D:M(i) _ C:i.node 7: :C:i by (7); :A:i be
ause s�77:1 ! :D:M(i), the only initialstep is s�77:1 a�!B:i, and fB:i; C:ig is a trap, initialized after thisstep. Hen
e the proposition by (3).node 8: pattern of Se
t. 69.178 Global Mutual Ex
lusion on Undire
ted Trees78.1 The property to be provenHere we
onsider the version of Fig. 34.2. There is one progress propertyto be shown for this algorithm: ea
h request of a site u for going
riti
al(i.e., job:(u; u)) is eventually served (i.e.,
riti
al :u). In terms of the redrawnversion as in Fig. 78.1, this readsB:(x; x) 7! D:x. (1)Proof of (1) is based on state properties, to be
onsidered �rst.78.2 State propertiesThe forth
oming two state properties exploit the
y
le free stru
ture of theunderlying network. A basi
 state property of �78:1 is a tree on E [B [Cwith its root in G (where E stands for E�1). More pre
isely,With G:u, the tokens on E [B [C
onsist of paths from u toall sites v. Those paths form a tree. Tokens formed (u; u) mayadditionally o

ur at B or C. (2)This property
an easily be proven by indu
tion on the rea
hability of states:(2) obviously holds initially, due to the assumption given in Fig. 78.1. O

ur-ren
es of d, f , or e in any mode apparently preserve the tree on E [B [C.

78 Global Mutual Ex
lusion on Undire
ted Trees 267
a

q

b

c

d

e

f

U

U

u

Nϕ

ϕ

x y≠

A

D

B

F
C

E

(x,z)

(x,y)

(x,y)
(x,y)

(x,x)

(x,y)

(x,y)

(z,x)
(x,x)

(x,y)

x

x

x
x

x

x

x

x

x x
y

G

sort site
const u : site
const U : set of sites
const N : set of (sites × sites)
var x,y,z : site
N1∪ N2 = U
u ∈ U
∀ x ∈ U : u N*x
x N+y → x ≠ y
y N x ∧ z N x → y = z

Figure 78.1. Renamed global mutex on trees, �34:2O

urren
es of a and b add and remove pairs formed (u; u) to and from C,respe
tively. A
tion
, �nally, does not tou
h E, B, or C.A further state property is based on the left tree, de�ned for ea
h pair(u; v) of neighboring sites u and v: Any site w belongs to the left tree of(u; v) if in the underlying network, the undire
ted path
onne
ting w and udoes not in
lude v. The following property of left trees will be exploited inindu
tive proofs:If w and v are neighbors of u, then the left tree of (w; u) is smallerthan the left tree of (u; v). (3)Apparently, we have for G:r and ea
h site u:If r 6= u, there is a unique neighbor site w of u, with r in the lefttree of (w; u). (4)Then with (2),if E:(v; u) or B:(u; v) or C:(u; v), and if G:w, then w is in the lefttree of (u; v). (5)78.3 Progress propertiesTwo properties of pairs (u; v) of neighboring sites u and v are
onsideredhere:C:(x; y) 7! C:(x; y) ^G:x (6)B:(x; y) 7! C:(x; y) (7)

268 XIII. Formal Analysis of Case StudiesThey are proven by indu
tion on the size of the left tree of (x; y).As indu
tion basis, let (u; v) be a pair of neighboring sites and assumeits left tree has one element only. This, of
ourse, is u. Then with (2), G:u,whi
h implies (6). Proof of (7) requiresB:(u; v)! B:(u; v) ^ F:u. (8)This holds as the indu
tion basis implies that v is the only neighbor of u;hen
e :C:(u;w) for all sites w (with (2)), hen
e F:u by the pla
e invariantF:u+ pr1(C):u = 1.Now, B:(u; v) 7! C:(u; v) follows from property (8) and the fairness ruleTheorem 66.3.Indu
tively assume (6) and (7) for all neighboring pairs of sites with lefttrees of size smaller than n. Let (u; v) be a pair with left tree of size n, letG:r, and let w be the neighbor of u,
onstru
ted a

ording to (4).Then the following proof graph proves (6) for (x; y) = (u; v):
1

C.(u,v)

d(u,v,w)2
C.(u,v)
E.(u,w)

3
C.(u,v)
B.(w,u)

4
C.(u,v)
C.(w,u)

5
C.(u,v)
C.(w,u)
G.w

6
C(u,v)
G.u

e(w,u) (9)Its nodes are justi�ed as follows:node 1: by (4) and (2).node 2: fairness rule Theorem 66.3.node 3: indu
tive assumption of (7) for (x; y) = (w; u), and (3).node 4: indu
tive assumption of (6) for (x; y) = (w; u), and (3).node 5: pi
k-up rule of Se
t. 69.3.Proof of (7) requires the proof graph
1) B.(u,v) 2) C.(u,v’) 3) C.(u,v’)

G.u
4) F.ue(u,v’) (10)Its nodes are justi�ed as follows:node 1: pla
e invariant C2:u+ F:u = 1.node 2: v0 6= w by (2); then w
onstru
ted a

ording to (4) for v and forv0
oin
ide; then (9) with v repla
ed by v0.node 3: pi
k-up rule of Se
t. 69.3.Now, B:(u; v) 7! C:(u; v) follows with property (10) and the fairness ruleTheorem 66.3.

79 Lo
al Mutual Ex
lusion 26978.4 Proof of (1)Two properties are required, provided by the following two proof graphs:
1) B.(u,u) 2) C.(u,v) 3) C.(u,v) ∧ G.u 4) F.ue(u,v) (11)node 1: pla
e invariant C2:u+ F:u = 1.node 2: property (6).node 3: pi
k-up rule of Se
t. 69.2.The se
ond proof graph is

1)
C.(u,u)
¬G.u

d(u,u,w)2)
C.(u,u)
E.(u,w)

3)
C.(u,u)
B.(w,u)

4)
C.(u,u)
C.(w,u)

5)
C.(u,u)
C.(w,u)
G.w

6)
C(u,u)
G.u

e(w,u) (12)node 1: Let w be the neighbor of u,
onstru
ted a

ording to (4). Thenapply (2).node 2: fairness rule Theorem 66.3.node 3: property (7).node 4: property (6).node 5: pi
k-up rule of Se
t. 69.3.Now, (1) is proven by the following proof graph for x = u:
1)

B.(u,u)

2)

C.(u,u)

3)

C.(u,u)

¬G.u

4)

C.(u,u)

G.u

5)

D.u
(13)withnode 1: property (11), fairness rule Theorem 66.3.node 2: propositional argument.node 3: property (12).node 4: pi
k-up rule of Se
t. 69.3.79 Lo
al Mutual Ex
lusion79.1 Properties to be provenAs in most
ases, safety and liveness properties are to be proven. A safetyproperty guarantees that neighboring sites are never both
riti
al at the sametime. In terms of the redrawn representation of Fig. 79.1 this readsD:x ^ y 2 r(x) ! :D:y. (1)

270 XIII. Formal Analysis of Case Studies
q ϕ

G

C

DA

B
H

L

K M

F

E

J

hf

e

a c

b

d

P

P

N-P
x

x x

x

xx

xx

U

(x,y)

(x,y)

(y,x)

(x,y)

(x,y) (x,y)

r(x)

r(x)

r(x)

r(x)

N

g

(x,y)(x,y)

(x,y)(x,y)
(x,y)
(x,y)

(x,y)

(y,x)

(x,y)

(x,y)

(x,y)

(x,y)

sort site
sort neighbors = site × site
const U : set of sites
const N, P : set of neighbors
fct r : site → set of neighbors
var x, y : site

N = N-1

N1 = U
x P+ y → x ≠ y
P ∪ P-1 = N
P ∩ P-1 = ∅
r(x) = {x} × N(x)Figure 79.1. Renamed mutex on networks �34:3A liveness property guarantees evolution: Ea
h pending site is eventually
riti
al :B:x 7! D:x. (2)Proof of (1) and (2) starts with some state properties of �79:1, derivedfrom pla
e invariants or from indu
tive arguments. There is always a dis-tinguished partial order on the sites, des
ribing priority of a

ess to sharedresour
es. Upon going
riti
al, a site may have priority for some, but notne
essarily all resour
es.79.2 State propertiesWe start with eleven state properties from pla
e invariants of �79:1:A+B + C +D = U , hen
e for ea
h u 2 UA:u+B:u+ C:u+D:u = 1. (3)r(C) + r(D) + F +M = N , hen
e for ea
h (u; v) 2 NC:u+D:u+ F:(u; v) +M:(u; v) = 1. (4)r(C) + r(D) + F � J �E = 0, hen
e for ea
h (u; v) 2 NC:u+D:u+ F:(u; v)� J:(u; v)�E:(u; v) = 0. (5)r(C) + r(D) + F +K +H �E = N , hen
e for ea
h (u; v) 2 N

79 Lo
al Mutual Ex
lusion 271C:u+D:u+ F:(u; v) +K:(u; v) +H:(u; v)�E:(u; v) = 1. (6)E + J +M = N , hen
e for ea
h (u; v) 2 NE:(u; v) + J:(u; v) +M:(u; v) = 1. (7)H + J +K = N , hen
e for ea
h (u; v) 2 NH:(u; v) + J:(u; v) +K:(u; v) = 1. (8)G+G+ r(D) + r(D) + F + F = P + P = N , hen
e for ea
h (u; v) 2 NG:(u; v) +G:(v; u) +D:u+D:v + F:(u; v) + F:(v; u) = 1. (9)G+ r(D) + F +H + L = N , hen
e for ea
h (u; v) 2 NG:(u; v) +D:u+ F:(u; v) +H:(u; v) + L:(v; u) = 1. (10)L+ L+H � J �K = 0, hen
e for ea
h (v; u) 2 NL:(v; u) + L:(u; v) +H:(u; v)� J:(v; u)�K:(v; u) = 0. (11)r(C) � J �E �G�H � L = N , hen
e for ea
h (v; u) 2 NC:v � J:(v; u)�E:(v; u)�G:(v; u)�H:(v; u)� L:(u; v) = 1. (12)r(C) +K �E �G� L = 0, hen
e for ea
h (u; v) 2 NC:u+K:(u; v)�E:(u; v)�G:(u; v)� L:(v; u) = 0. (13)In addition, the following two properties will be required:K:(u; v)! G:(u; v) _D:u _ F:(u; v). (14)This property holds initially and is apparently preserved by o

urren
es of
(u) and d(u). O

urren
e of f(u; v) or h(u; v) lead to both K:(u; v) andG:(u; v). O

urren
e of g(u; v) leads to both :G:(u; v) and :K:(u; v). Noother o

urren
es of a
tions tou
h (14).L:(v; u)! J:(u; v). (15)This property holds initially and is apparently preserved by o

urren
e ofe(u; v). L:(v; u) prevents f(u; v) by (10). No other o

urren
es of a
tionstou
h (15).79.3 Priority among neighborsIn ea
h rea
hable state, neighboring sites are related by priority : A site uhas priority over its neighbor v i� v has been
riti
al more re
ently. Hen
e,u gains priority over v upon o

urren
e of
(v), and looses priority upono

urren
e of
(u). No other a
tion a�e
ts priority among neighbors u andv. Consequently, the e�e
t of
(v), whi
h is D:v, immediately shows priorityof u over v. O

urren
e of d(v) does not e�e
t priority, hen
e F:(v; u) alsoshows priority of u over v. Likewise, o

urren
es of f(v; u) and g(v; u) retain

272 XIII. Formal Analysis of Case Studiesu's priority over v. Their e�e
t is G:(v; u) ^K:(v; u) and G:(v; u) ^M:(v; u).Both formulas imply G:(v; u)^:J:(v; u) (by (8) and (7), respe
tively), whi
hwill turn out suÆ
ient to
hara
terize priority. Finally, g(v; u) retains u'spriority over v, yielding G:(u; v). This a
tion
an o

ur only in the
ontextof J:(u; v). Altogether, priority of some site u over one of its neighbors v isde�ned bynprior(u; v) i�D:v _ F:(v; u) _ (G:(v; u) ^ :J:(v; u)) _ (G:(u; v) ^ J:(u; v)). (16)In the rest of this se
tion we will prove that nprior in fa
t is well de�ned,i.e., exa
tly one of two neighbors u and v has priority at ea
h rea
hable state;formallynprior(u; v) i� :nprior(v; u). (17)This is equivalent to the two propositionsnprior(u; v)! :nprior(v; u). (18)and:nprior(v; u)! nprior(u; v). (19)The following shorthands will simplify proof of (18) and (19): Let� := D:v _ F:(v; u) _ (G:(v; u) ^ :J:(v; u));� := G:(u; v) ^ J:(u; v);
 := D:u _ F:(u; v) _ (G:(u; v) ^ :J:(u; v));Æ := G:(v; u) ^ J:(v; u).Then, (18) is equivalent to :(�^
)^:(�^Æ)^:(�^
)^:(�^Æ). The �rst andthird sub-formula, :(�^
) and :(� ^
), follow from the invariant property(9). The se
ond and third sub-formulas are propositional tautologies.Correspondingly, (19) is equivalent to �_ � _
 _ Æ, whi
h in turn followsfrom (9).Priority
hanges only upon o

urren
e of transition
: Let r t�!s be a step.Thenr j= nprior(u; v) implies s j= nprior(u; v) or t =
(u). (20)Upon proving (20), assume r j= nprior(u; v). Then (16) implies four
ases:i. r j= D:v. Then t = d(v) yields s j= F:(v; u); hen
e (20).ii. r j= F:(v; u). Then t = f(v; u) yields s j= G:(v; u) ^ K:(v; u); hen
es j= G:(v; u)^:J:(v; u) with (8), swapping u and v; hen
e (20). t = h(v; u)yields s j= G:(v; u) ^M:(v; u); hen
e s j= G:(v; u) ^ :J:(v; u) with (7),swapping u and v; hen
e (20).iii. r j= G:(v; u)^:J:(v; u). Then t = g(v; u) yields s j= G:(u; v); furthermore,enabling of g(v; u) requires r j= L:(v; u), hen
e r j= J:(u; v) by (15), hen
es j= G:(u; v) ^ J:(u; v), hen
e (20). t =
(v) yields s j= D:v, hen
e (20).t = e(v; u) is prevented by G:(v; u) and (10), swapping u and v.

79 Lo
al Mutual Ex
lusion 273iv. r j= G:(u; v) ^ J:(u; v). Then t = g(u; v) is prevented by J:(u; v) and (8).t = f(u; v) is prevented by G:(u; v) and (9).No other o

urren
es of a
tions t 6=
(u) a�e
t r j= nprior(u; v). This
om-pletes proof of (20).For a step r t�!s likewise holdss j= nprior(u; v) implies r j= nprior(u; v) or t =
(v), (21)whi
h
an be proven in analogy to (20).Finally, for a step r t�!s with r 6j= nprior(u; v) and s j= nprior(u; v) holdsfor all w 2 r(v), s 6j= nprior(v; w). (22)The assumption of (22) with (21) imply t =
(v); then (22) follows with (16).As a te
hni
ality, it will turn out
onvenient to assign ea
h site u the set�(u) of all pairs (u; v), where u has priority over a neighbor, v:�(u) := fug � nprior(u). (23)79.4 Priority in the networkPriority among any two sites u; v 2 U is the transitive
losure of priorityamong neighbors:prior := nprior+. (24)As in
ase of nprior we have to show that prior is well de�ned, i.e., isasymmetri
al:prior(u; v)! :prior(v; u). (25)Proof of (25) starts with the initial state s�79:1 . For this state, (16) andFig. 79.1 imply nprior(u; v) i� P:(u; v), hen
e prior(u; v) i� P+:(u; v). ThenP+:(u; v) ! :P+:(v; u) by the assumption of xP+y ! x 6= y, as stated inFig. 79.1.Indu
tively, let r t�!s be a step and assume r j= (25). If s 6j= prior(u; v), theproposition s j= (25) is trivial. Otherwise, there exist sites u0; : : : ; un, n � 1with u0 = u, un = v, su
h that with � := u0 nprioru1 : : : un�1 npriorunholds: s j= �. If r j= �, then u0 6= un follows from the indu
tive assumption.Otherwise, there exists an index, i, with r 6j= ui�1 npriorui. Then for allw 2 r(ui), s 6j= nprior(ui; w), by (22). Then i = n, by
onstru
tion of �.Then there is no w 2 r(v) with s j= v npriorw (be
ause un = v). Thens j= :prior(v; u), by (24).The reverse of (25) is not ne
essarily valid, i.e., deta
hed sites may beunrelated by priority.Both above properties implynprior(v; u)! prior(v) � prior(u), (26)

274 XIII. Formal Analysis of Case Studies
1.

C.u ∧
E.u

2.

C.u ∧
E.u ∧

¬D.u ∧
¬F.(u,v)

3.

C.u ∧
E.(u,v) ∧

¬D.u ∧
¬F.(u,v) ∧

K.(u,v)

5.

C.u ∧
E.(u,v) ∧

¬D.u ∧
¬F.(u,v) ∧

H.(u,v)

4.

C.u ∧
G.(u,v)

6.

C.u ∧
L(v,u))

e(u,v)

Figure 79.2. Proof graph for (27)as follows: prior = nprior+ by (24). Then prior(u) = Sv2nprior(u)fvg [nprior(v). Furthermore, prior(u; v)! :prior(v; u), by (25), and v 2 nprior(u)i� nprior(v; u). This implies (26).79.5 Demanded resour
esIssuing a demand for its resour
es is the �rst step of a site on its way to
riti
al. A demanded resour
e (u; v) of a pending site u will eventually beavailable to u, or u will send a message (v; u) to v:C:u ^E:(u; v) 7! C:u ^ (L:(v; u) _G:(u; v)). (27)The proof graph of Fig. 79.2 proves (27). Its nodes are justi�ed as follows:node 1: by (4),node 2: by (6),node 3: by (14),node 5: H:(u; v) ex
ludes
(u) by (10), :D:u ex
ludes d(u), :F:(u; v) ex-
ludes h(u; v).The formula (27) is now embedded into a
ontext, �. The formula �addresses the set �(u) of resour
es of u for whi
h u has priority. Some of themare available to u for its �rst time after being used by v. They
onstitute adistinguished set, Q. Furthermore, a priorized resour
e (u; v) is assumed. So,let � := �(u) = R ^Q [f(u; v)g � �(u) ^G:Q ^ J:Q. (28)Priority for u may in
rease whenever one of its neighbors goes
riti
al:

79 Lo
al Mutual Ex
lusion 275�
(w)���!�(u) = R [f(u;w)g for all w 2 r(u), (29)whi
h follows dire
tly from (16) and the stru
ture of �79:1.A step r t�!s a�e
ts � only if u or one of its neighbors goes
riti
al:� t�!� for all t 6=
(w), with w 2 r(u) [fug. (30)(20) and (21) imply that �(u) is not tou
hed by o

urren
e of t. Further-more, G:Q prevents f(u; v) by (9), and J:Q prevents g(u; v) by (8) for allv 2 r(u); hen
e (30).Context � yields a further alternative result for (27), with u gaining pri-ority over more neighbors:C:u ^ � ^E:(u; v) 7! (C:u ^ � ^ (L:(v; u) _G:(u; v))) _ �(u) � R. (31)The proof graph of Fig. 79.2
an systemati
ally be turned into a proofgraph for (31): Repla
e ea
h node, n, by n ^ � and augment the followingadditional outgoing ar
s:n
(w)7! 9:D:w ! 10:�(u) = R [f(u;w)g (32)with w 2 prior(u).Additionally, extend justi�
ation of ea
h node, n, as follows: J:(u; v) pre-vents g(u;w) by (8) (repla
ing v by w), and G:(u; v) prevents f(u;w) by (10)(repla
ing v by w). The proposition then follows with (30). Node 9 is justi�edby (29).79.6 Messages are eventually
onsideredA site v holding a resour
e (u; v) without priority for the resour
e, wil even-tually hand it over to u upon request of u, i.e., upon a message (v; u). Con-sideration of the message is a matter of fairness of v.We start with a te
hni
ality,
ru
ial for the forth
oming fairness argument:A repeatedly used resour
e is eventually available:K:(u; v) 7! G:(u; v), (33)whi
h holds due to the proof graph
1) K.(u,v) 2) D.u 3) F.(u,v) 4) F.(u,v) ∧ E.(u,v)

5) F.(u,v) ∧ J.(u,v)

6) G.(u,v)h(u,v)

f(u,v)with the following justi�
ation of nodes:node 1: by (14);node 2: by pi
k-up rule of Se
t. 64.1;node 3: by (5);node 4: by pi
k-up rule of Se
t. 64.2; E:(u; v) prevents f(u; v) by (7);

276 XIII. Formal Analysis of Case Studiesnode 5: by pi
k-up rule of Se
t. 64.2; J:(u; v) prevents h(u; v) by (7).Ea
h message of a priorized site is eventually granted by the respe
tive neigh-bor:C:u ^ prior(u; v) ^ L:(v; u) 7! C:u ^G:(u; v). (34)1: C:u ^ prior(u; v) ^ L:(v; u)!2: C:u ^ prior(u; v) ^ L:(v; u) ^D:v d(v)7!3: C:u ^ prior(u; v) ^ L:(v; u) ^ F:(v; u)!4: C:u ^ prior(u; v) ^ L:(v; u) ^ F:(v; u) ^ (E:(v; u) _ J:(v; u)) 7!5: C:u ^ prior(u; v) ^ L:(v; u) ^G:(v; u)!6: C:u ^ L:(v; u) ^G:(v; u) ^ :J:(v; u)!7: C:u ^ L:(v; u) ^K:(v; u) 7!8: C:u ^G:(u; v)Figure 79.3. Proof graph for (34)The proof graph of Fig. 79.3 proves (34). Its nodes are justi�ed as follows:node 1: by (16); L:(v; u)! :G:(u; v), by (10);node 2: D:v ex
ludes
(u), g(v; u), and
(v), by (9);node 3: D:v ! :M:(v; u) by (4) (swapping u and v), hen
e the proposi-tion by (7) (swapping u and v);node 4: by o

urren
e of f(v; u) or g(v; u); F:(v; u) ex
ludes
(u), g(v; u),and
(v), by (9);node 5: G:(v; u) implies :D:v ^ :F:(v; u) ^ :G:(u; v), by (9), hen
e theproposition by (16);node 6: L:(v; u) ^ :J:(v; u) imply K:(v; u), by (11);node 7: Fairness rule of Theorem 66.3 and (33).In analogy to the step from (27) to (31), formula (34)
an be embeddedinto the
ontext �. Again, gaining priority over more neighbors arises as anadditional alternative:C:u ^ � ^ L:(v; u) 7! (C:u ^ � ^G:(u; v)) _ �(u) � R. (35)The proof graph of Fig. 79.3
an systemati
ally be turned into a proof graphfor (35) in exa
t
orresponden
e to (32), in
luding the extended justi�
ationof nodes as given for (32). Fairness rule of Theorem 66.3 is then to be repla
edby Corollary 66.4.

79 Lo
al Mutual Ex
lusion 277
1.

C.u ∧

α

2.

C.u ∧

α ∧

E.(u,v)

3.

C.u ∧

α ∧

L.(v,u)

4.

C.u ∧

α ∧

G.(u,v)

5.

(C.u ∧

α ∧

G.(u,v) ∧

J(u,v))

∨ π (u) ⊃ RFigure 79.4. Proof graph for (36)79.7 A pending site obtains its priorized resour
esA resour
e with priority for u is eventually available for u, retaining all alreadyavailable resour
es. Alternatively, u may gain priority over more resour
es:C:u ^ � 7! (C:u ^ � ^G:(u; v) ^ J:(u; v)) _ �(u) � R. (36)Figure 79.4 provides a proof graph for (36). Its nodes are justi�ed as follows:node 1: by (13);node 2: by (31);node 3: by (35);node 4: by (16), (5), (9).Iteration of (36) may extend �(u), but this is limited by r(u). As � retains allresour
es in G \ J , all resour
es with priority for u are eventually availableto u:C:u 7! C:u ^G:�(u) ^ J:�(u). (37)The following proof graph proves (37):1: C:u! 2: C:u ^ � 7! 3: C:u ^G:�(u) ^ J:�(u). (38)Its nodes are justi�ed as follows:node 1: Def. (28);node 2: at most jr(u)j iteration of (36).79.8 A pending site goes
riti
alEa
h pending site u may la
k priority over some neighbors. It neverthelessgoes eventually
riti
al : u either gains priority over all its resour
es, or goes
riti
al with some resour
es over whi
h u has no priority:C:u 7! D:u. (39)This will be proven by indu
tion on jprior(u)j. The proof graph of Fig. 79.5
overs the
ase of prior(u) = ;. Its nodes are justi�ed as follows:

278 XIII. Formal Analysis of Case Studies1: ! 2: 7! 3:
(u)7! 4:C:u^ C:u^ C:u^ D:uprior(u) = ; �(u) = r(u) G:r(u)^J:r(u)Figure 79.5. Proof graph for the indu
tion basis of (39)node 1: by (17), (23);node 2: by (37);node 3: J:r(u) prevents g(u; v) by (8), G:r(u) prevents f(u; v) by (6).Now let prior(u) = M and indu
tively assume C:v 7! D:v wheneverprior(v) � M . Then Fig. 79.6 provides a proof graph for the indu
tive step.Its nodes are justi�ed as follows:node 1: by (37);node 2: propositional logi
;node 3: by pi
k-up rule of Se
t. 64.2; for ea
h v 2 nprior(u), J:�(u) pre-vents g(u; v);node 4: by (4);node 5: by (16);node 6: by (12);node 7: by (26);node 8: indu
tive assumption;1: C:u7!2: C:u ^G:�(u) ^ J:�(u)3: C:u ^G:r(u) ^ J:�(u)
(u)7! g(u; v)4: C:u ^ nprior(v; u) ^ :G:(u; v)5: C:u ^ nprior(v; u) ^ :G:(u; v) ^ :D:u ^ :F:(u; v)!6: C:u ^ nprior(v; u) ^G:(v; u) ^ J:(v; u)!7: C:u ^ nprior(v; u) ^ C:v !8: C:u ^ prior(v) � prior(u) ^ C:v 7!9: C:u ^D:v 7!10: D:uFigure 79.6. Proof graph for the indu
tion step of (39)

80 Consensus in Networks 279node 9: at node 8, let M := prior(u). Then at node 9, prior(u) �M , by(29) and (30). Hen
e the proposition by indu
tive assumption.79.9 Proof of the essential propertiesWe are now prepared to prove the essential properties (1) and (2). The safetyproperty (1) follows from a pla
e invariant, by means of the following proofgraph (in fa
t, a sequen
e of impli
ations), with u 2 U and v 2 r(u):1) D:u ! 2) r(D):(u; v) ! 3) :r(D):(v; u) ! 4) :D:v.Justi�
ation of nodes:node 1: by de�nition of r(D) in Fig. 79.1node 2: by (9)node 3: by de�nition of r(D) in Fig. 79.1The liveness property (2) is shown by the following proof graph, with u 2 U :1) B:u 7! 2) C:u 7! 3) D:u.Justi�
ation of nodes:node 1: pi
k-up pattern of Se
t. 64.1node 2: by (39).80 Consensus in NetworksThe essential property of the
onsensus algorithm of Se
t. 35 is stability of
onsensus:In
ase all sites are agreed, no request remained initiated. (1)Furthermore, no a
tion is enabled in this
ase. We dis
uss this property forall three algorithms of Se
t. 35.80.1 Stability of the basi

onsensus algorithmFigure 80.1 re
alls the basi

onsensus algorithm of Fig. 35.1 with renamedpla
es. We have to show:B:U ! D = ;. (2)To this end we
onsider two pla
e invariantsA+B = U (3)andC +D =M , (4)

280 XIII. Formal Analysis of Case Studies
BA

C

D

U b a

c

d

M

x

x

x

x

x

x

x
x

(y,x) (y,x)

(x,y)(x,y)

r(x)r(x)

r(x)

r(x)

sort site

sort message = site × site

const U : set of sites

const M : set of messages

fct r, r :site → set of messages

var x, y : site

r(x) = {x} × M(x)

r(x) = M(x) × {x}Figure 80.1. Renamed basi

onsensus algorithm �35:1as well as the trapr(A) + C � r(U). (5)The ins
riptions of Fig. 35.1 furthermore implyr(U) =M . (6)Then (3) and (6) implyr(A) + r(B) = r(U) =M . (7)Subtra
tion of (5) from the sum of (4) and (7) yields (4)+(7)�(5):r(B) +D �M . (8)Now we
on
ludeB:U ! r(B):M ! D = ; (9)by (6) and (8). Obviously, D = ; ! D = ;, hen
e (2).80.2 Stability of the advan
ed
onsensus algorithmFigure 80.2 re
alls the advan
ed
onsensus algorithm of Fig. 35.2, with re-named pla
es. We are to show three properties.Firstly, a site u may be agreed as well as demanded only if an initiatedmessage for u is pending, i.e., u not �nally agreed. In Fig. 80.2 this reads

80 Consensus in Networks 281

sort site

sort message = site × site

const U : set of sites

const M : set of messages

fct r, r :site → set of messages

var x, y : site

r(x) = {x} × M(x)

r(x) = M(x) × {x}

B

E F U G

UA

C

D

M

x

xx

x

x

x

x
x

(y,x)

(x,y)

(y,x)

(x
,y)

r(x)r(x)

(x,y)

(x,y)(x
,y

)

(x,y)(x,y) (x,y)

xx xx

x

x

r(x)

r(x)

ab c

d

e
f g

Figure 80.2. Renamed advan
ed
onsensus algorithm �35:2B:u ^ E:u! pr1(D):u. (10)Proof of (10) is again based on two pla
e invariants,A+B = U (11)andE +G = U , (12)as well as the trapA+G+ pr1(D) � U . (13)Now, (13) is subtra
ted from the sum of (11) and (12), yielding (11)+(12)�(13):B +E � pr1(D) � U , (14)

282 XIII. Formal Analysis of Case Studieshen
eB:u+E:u � pr1(D):u+ 1. (15)This immediately implies (10).The se
ond property to be proven about �35:2 is stability, as stated in(1). In terms of Fig. 35.2 this readsB = U ! D = ; (16)Proof of (16) employs (11), the pla
e invariantC + F +D =M (17)and the trapr(A) + C �M . (18)Now, (11) impliesr(A) + r(B) = r(U) =M (19)and subtra
tion of (18) from the sum of (17) and (19) yields (17)+(19)�(18):r(B) + F +D �M . (20)Now, de�nition of r and (20) implyB = U ! r(B) =M ! D = 0! D = ;, (21)hen
e (16).The third property to be proven about �35:2 states that no site is de-manded (hen
e ea
h site is quiet, by (12)) in
ase all neighbors are agreed.In terms of �80:2 this readsB = U ! E = ;. (22)Upon proving (22) we observe that (11), (12), (13), and (16) implyr(A) + r(B) =M , (23)r(E) + r(G) =M , (24)r(A) + r(G) +D �M , (25)r(B) = r(U)! D = ;. (26)Now, (25) is subtra
ted from the sum of (23) and (24), yielding (23)+(24)�(25):r(B) + r(E) �D �M , (27)hen
e with (26),r(B) =M ! r(B) + r(E) �M , (28)hen
eB = U ! B +E � U , (29)whi
h implies (22).

80 Consensus in Networks 283

sort site

sort message = site×site

const U : set of sites

const M : set of messages

fct r, r :site → set of messages

var x, y : site

r(x) = {x} × M(x)

r(x) = M(x) × {x}

B

E F G

U

U

A

C

D

M

x

xx

x

x

x

x
x

(y,x)

(x,y)

(y,x)

(x
,y)

r(x)r(x)

(x,y)

(x,y)(x
,y

)

(x,y)(x,y) (x,y)

xx xx

x
x

r(x)

r(x)

ab c

d

e
f g

Figure 80.3. Renamed variant of the advan
ed
onsensus algorithm �35:380.3 Stability of the further variantFigure 80.3 re
alls the advan
ed
onsensus algorithm, with renamed pla
es.Its veri�
ation is based on three pla
e invariants:A+B = U , hen
e for ea
h u 2 UA:u+B:u = 1; (30)E +G = U , hen
e for ea
h u 2 UE:u+G:u = 1; (31)C + F +D =M , hen
e for ea
h (u; v) 2MC:(v; u) + F:(u; v) +D:(u; v) = 1; (32)and two traps A+G + pr1(D) � U , hen
e for ea
h u 2 U there exists somev 2 U with

284 XIII. Formal Analysis of Case StudiesA:u+D:(u; v) +G:u � 1; (33)r(A) + C + r(pr1(D)) + r(E) �M , hen
e for all (u; v); (u;w) 2MA:u+ C:(u;w) +D:(u; v) +E:(u; v) � 1. (34)Properties (30){(34) give rise toB:u ^ C:(v; u)! C:(u;w) (35)for all (v; u); (u; v) 2 M , whi
h holds due to the following proof graph (justa sequen
e of impli
ations):1) B:u ^ C:(v; u)!2) :A:u ^ C:(v; u)!3) :A:u ^ :D:(u; v)!4) :A:u ^ :D:(u; v) ^G:u!5) :A:u ^ :D:(u; v) ^ :E:u!6) C:(u;w).Its nodes are justi�ed as follows:node 1: by (30),node 2: by (32),node 3: by (33),node 4: by (31),node 5: by (34).Now, for i 2 N letMi := r(Sij=0 qj(u)). (36)We showB:U ^ C:(v; u)! C:Mi (37)by indu
tion on i.For the indu
tion basis, (35) implies B:u ^ C:(v; u) ! C:r(u), whi
h is (37)for i = 0. For the indu
tion step, assume (37) and let (u0; w0) 2Mi+1. Thenthere exists some (v0; u0) 2Mi, by
onstru
tion of Mi. Then1) B:U ^ C:(v; u)!2) B:U ^ C:(v0; u0)!3) C:(u0; w0),withnode 1: due to the indu
tion hypothesis andnode 2: due to (35).

81 Phase Syn
hronization on Undire
ted Trees 285This goes for ea
h (u0; w0) 2 Mi+1, hen
e B:U ^ C:(v; u) ! C:Mi+1, whi
h
ompletes the indu
tion step.Obviously, M = S1i=0Mi. Then (37) impliesB:U ^ C:(v; u)! C:M (38)Furthermore,B:U ^ C:(v; u)! C:M ^G:U (39)due to the following proof graph (just a sequen
e of impli
ations):1) B:U ^ C:M !2) :A:U ^ C:M !3) :A:U ^D = ; !4) G:U ,withnode 1: by (30).node 2: by (32).node 3: by (33).Stability of �80:3 is now proven by means of an un
onventional argument,along interleaved runs:Let s be a rea
hable state with s j= B:U . Then there exists an interleavedrun s0 t1�!s1 t2�! : : : tn�!sn with sn = s. Then there exists a smallest index, i,with si j= B:U . Furthermore, i > 0, be
ause :(s0 j= B:U). Then ti = d(u),for some u 2 U . Then si j= B:U ^ C:(v; u) for ea
h v 2 q(u). Then si j=C:M ^ G:U , by (39). Then i = n, be
ause no a
tion is enabled at si. Hen
es j= B:U implies s j= B:U ^ C:M ^G:U . This with (32) impliesB:U ! D = ; ^G:Uwhi
h is the stability property for �80:3.81 Phase Syn
hronization on Undire
ted Trees81.1 Properties to be provenFigure 81.1 is a redrawn version of the phase syn
hronizations algorithm ofFig. 36.1. It has two de
isive properties: Firstly, busy sites are always in thesame round. In Fig. 81.1 this readsA:(u; n) ^ A:(v;m)! n = m (1)and is a typi
al state property. Se
ondly, ea
h site will
onse
utively in
reaseits round number. In Fig. 81.1 this readsA:(u; n) 7! A:(u; n+ 1) (2)

286 XIII. Formal Analysis of Case Studies
(x,i+1)

(x,y,i)

(x,i)

(x,y,i)

(y,x)(x,y)

r(x)--(y,x) r(x)--(x,y)

ab

A

C

B

U×{0}

sort site

sort message = site × site × nat

const U: set of sites

const W : set of (sites × sites)

fct r, r : site × nat → set of messages

var x, y : site

var i : nat

W = W-1

x,y ∈ U → x W*y

W1 = U

x0W x1 ... xnW xn+1 ∧
xi--1≠ xi+1 for i=1,...,n

→ x0≠ xn

r(x) = W(x) × {x}

r(x) = r(x)-1Figure 81.1. Renamed phase syn
hronization, �36:1for ea
h u 2 U and ea
h n 2 N, hen
e a typi
al liveness property. Both (1)and (2) will be veri�ed in the sequel.As a matter of
onvenien
e we slightly generalize the
onventions ofSe
t. 31.4 for proje
tion of pairs and triples:(a; b;
)1 = aand(a; b;
)1;2 = (a;
; b)1;3 = (b; a;
)2;1 = (a; b).Furthermore, four fun
tions �; �; �; � : U � N ! M(U � U) will be em-ployed, de�ned by�(u; n) := 2n � r(u),�(u; n) := 2n � r(u),�(u; n) := (2n+ 1) � r(u),�(u; n) := (2n+ 1) � r(u)Those four fun
tions, as well as the above generalized proje
tions, will
anon-i
ally be lifted to multisets, as des
ribed in Def. 58.6.

81 Phase Syn
hronization on Undire
ted Trees 28781.2 Pla
e invariants�81:1 has four important pla
e invariants. Three of them are quite intuitive.First of all, jAj+ jCj = jU j, whi
h immediately impliesjC1j = jC1;2j, (3)hen
e ea
h site u has always a unique round number, and if pending, it ispending with a unique site, v.Se
ondly, A1 + C1 = U , whi
h for ea
h u 2 U impliesA1:u+ C1:u = 1. (4)Hen
e ea
h site is always either busy or pending.The pla
e invariant B+B+r(C1)+r(C1) = 2(C1;2+C2;1) relates pendingneighbors to their mutual messages. For ea
h pair (u; v) of neighboring sitesthis impliesB:(u; v) +B:(v; u) + r(C1):(u; v) + r(C1):(v; u)= 2 � C1;2:(u; v) + 2 � C1;2:(v; u). (5)Furthermore, :C1:u^C1:v implies r(C1):(u; v) = C1;2:(u; v) = 0^r(C1):(v; u) =C1;2:(v; u) = 1, hen
e B:(u; v) +B:(v; u) = 1, by (5), hen
e with (4),A1:u ^ :A1:v ! B:(u; v) ^ B:(v; u). (6)The pla
e invariant above furthermore impliesjBj+ jBj = 2jC1;2 + C2;1j � jr(C1)j � jr(C1)j. (7)The fourth pla
e invariant is �(A) + B + �(C1;3) = �(A) +B + �(C1;3),whi
h implies for all u; v 2 U :�(A):(u; v) +B:(v; u) + �(C1;3):(u; v) =�(A):(v; u) +B:(u; v) + �(C1;3):(v; u). (8)This invariant links all pla
es of �81:1.81.3 Busy neighbors don't ex
hange messagesIn
ase two neighboring sites u and v are both busy, there is no messageavailable from u to v or from v to u. In terms of �81:1 this reads for all u 2 Uand v 2 q(u):A1:u ^ A1:v ! B:(u; v) = B:(v; u) = 0. (9)Upon proving (9), assume a state s with s j= A1:u ^ A1:v. Then at s holdsA1:u = A1:v = 1, hen
e C1:u = C1:v = 0 (by (4)), hen
e C1;2:(u; v) =C1;2:(v; u) = 0 (by (3)), hen
e the proposition, by (5). ut

288 XIII. Formal Analysis of Case Studies81.4 A property of neighboring pending sitesA neighbor v of a pending site u is pending with u, or u is pending with v.In terms of �81:1, for u 2 U and v 2 q(u),C1:u! C1;2:(u; v) _ C1;2:(v; u). (10)Proof of (10) assumes a state s with s j= C1:u = 1. Then at s holds forall w 2 q(u) : r(C1):(u;w) = 1, hen
e parti
ularly r(C1):(u; v) = 1, hen
eC1;2:(u; v) + C1;2:(v; u) � 1, by (5), hen
e the proposition. ut81.5 A site is pending with a busy neighborA pending site v with a busy neighbor u is pending with u. (Hen
e, with (3),at most one neighbor of a pending site is busy). In terms of �81:1, for u 2 Uand v 2 q(u),A1:u ^ C1:v ! C1;2:(v; u). (11)Proof of (11)
ombines two properties of�81:1: First, C1:v implies C1;2:(u; v)_C1;2:(v; u) by (10). Se
ond, A1:u implies :C1:u by (4), hen
e :C1;2:(u; v). ut81.6 Three pending neighbors form a sequen
eAssume a site v, pending with w. Then ea
h other pending neighbor u of vis pending with v. In �81:1 this reads for v 2 U and u;w 2 q(v):C1:u ^ C1;2:(v; w)! C1;2:(u; v). (12)Proof of (12)
ombines two properties of�81:1: First, C1:u implies C1;2:(u; v)_C1;2:(v; u) by (10). Se
ond, C1;2:(v; w) implies :C1;2:(v; u), by (4). ut81.7 Busy neighbors are in the same roundIf two neighbors u and v are both busy, they operate in the same round. In�81:1 this reads for u 2 U , v 2 q(u), and n;m 2 N:A:(u; n) ^ A:(v;m)! n = m. (13)To prove (13), let s be a rea
hable state of �81:1 with s j= A1:u^A1:v. Thenat s holds C1:u = C1:v = 0 by (4), hen
e �(C1;3):(u; v) = �(C1;3):(v; u) = 0.Furthermore, B:(u; v) = B:(v; u) = 0, by (9). Combining both properties, (8)yields �(A):(u; v) = �(A):(v; u). Then for ea
h n 2 N, A:(u; n) = A:(v; n).Then (13) follows with (4). ut

81 Phase Syn
hronization on Undire
ted Trees 28981.8 A property of
hainsGiven u0; : : : ; un 2 U , the sequen
e u0 : : : un is a
hain if ui�1 2 r(ui) fori = 1; : : : ; n, and ui�1 6= ui+1 for i = 1; : : : ; n� 1.Assume a
hain u0 : : : un, starting with a busy site, u0, followed by apending site, u1. Then all follower sites u2; : : : ; un are pending. In �81:1 thisreadsA1:u0 ^ C1:u1 ! C1:ui for all i = 1; : : : ; n. (14)To prove (14), let s be a rea
hable state with s j= A1:u0 ^ C1:u1. Then at sholds C1;2:(u1; u0) by (11). Then:C1;2:(u1; u2) (*)by (4). Now,
ontradi
ting (14), assume an index 1 � i � n with s j= :C1:ui.Let j be the smallest of those indi
es. Then at s holds A1:uj by (4), hen
eC1;2:(uj�1; uj), by (11). Then C1;2:(ui�1; ui) for i = 2; : : : ; n by iteratedappli
ation of (12). Then in parti
ular C1;2:(u1; u2), whi
h
ontradi
ts (*).ut81.9 Proof of the state property (1)We are now prepared to prove (1) as follows:Let s be a rea
hable state with s j= A:(u; n)^A:(v;m). Then there exists a
hain u0 : : : un in U with u0 = u and un = v. Then s j= A1:ui for i = 0; : : : ; n,by (14) and (4). Then at s holds A:(ui; n) for i = 0; : : : ; n by iteration of (13).Hen
e n = m.81.10 Pending sites have pending messagesHere we start proof of the liveness property (2). First, we observe pendingmessages in
ase all sites are pending:C1:U ! jBj > 0. (15)Proof of (15) is based on the observation that an undire
ted tree with n nodeshas n� 1 ar
s. Hen
e, in �81:1,jr(U)j = jr(U)j = jU j � 1. (16)Then C1:U ! jBj + jBj = 2jC1;2 + C2;1j � jr(C1)j � jr(C1)j (by (7)) =2jU j � 2(jU j � 1) (by (16)) = 2.

290 XIII. Formal Analysis of Case Studies81.11 �81:1 is deadlo
k freeEa
h rea
hable state of �81:1 enables at least one a
tion. (17)Proof. Let s be a rea
hable state of �81:1. 1st
ase: s j= A1:u for at least oneu 2 U . Then there exists a
hain u0 : : : un, n � 0, of sites with s j= A1:uifor all i = 0; : : : ; n, and :A:v for all v 2 q(un) � un�1. Hen
e for all su
h vholds s j= B:(v; u) _ B:(u; v), by (6). Now we distinguish two
ases: Firstly,s j= B:(u; v) for all v 2 q(un)�un�1. Then s enables a(un; un�1; k), where s j=A:(un; k). Otherwise, there exists some v 2 r(un)� un�1 with s j= B:(v; u).Furthermore, s j= C:(v; u; k) for some k 2 N (with (4)). Then s enablesb(v; u; k). 2nd
ase: There is no u 2 U with s j= A1:u. Then s j= C1:U (with(4)). Then jBj > 0, by (15). Hen
e there exist u; v 2 U with s j= B:(u; v).Then s j= C:(u; v; k) for some k 2 N, by (5). Then s enables b(u; v; k). ut81.12 The weight fun
tion
A fun
tion
(u; v) will be
onsidered, whi
h for neighbors u and v yieldsan integer value
(u; v) at any given state s. Values
(ui�1; ui) remain in alimited interval for all
hains u0 : : : un, and o

urren
es of transitions in
reasethose values. For u; v 2 U , let
(u; v) := B:(v; u) +�n2N2n �A:(u; n) + (2n+ 1) � C1;3:(u; n). (18)Then (8) implies
(u; v) =
(v; u). (19)Furthermore, for neighbors w of u, C1;2:(u;w) i� r(C1):(u;w); hen
eB:(w; u) � 2 (by (5)), hen
ej
(u; v)�
(u;w)j � 2, (20)again by (5). Then for ea
h sequen
e u0 : : : uk of sites, (19) and (20) implyj
(u0; u1)�
(un�1; un)j � 2(k � 1). (21)81.13 Proof of the liveness property (2)Inspe
tion of �81:1 yields for ea
h step r t�! s with t = a(u; v; i) or t =b(u; v; i):If
(u; v) = n at state r, then
(u; v) > n at state s. (22)Property (17) implies at least one pair (u; v) of neighbors with in�nitelymany o

urren
es of a(u; v; i) and b(u; v; i). Then in the set of all rea
hablestates,
(u; v) is not limited, by(22). This applies to all neighbors u, v, by(21). Hen
e (2).

82 Distributed Self-Stabilization 29182 Distributed Self-Stabilization82.1 Properties to be provenFigure 82.1 is a redrawn version of the distributed self stabilization algorithm.We have to show that the overall workload remains
onstant, eventually isbalan
ed, and hen
eforth remains balan
ed.
E

(x,j)
d

(x,i+j)
A

V
(x,i)

a
(r(x),i)

D

(x,j)

(x,j)

c

b

(l (x),1)

(l (x),0)

i>j

i≤ j

(x,i)

(x,i)

(x,i)

(x,i) (x,i)

(x,i-1)

BC

sort site var i, j : nat
sort alloc = site× nat var x,y : sitesort alloc = site× nat var x,y : site

∀ x ∈ U ∃ 1i ∈ nat : (x,i) ∈ V
const U : set of sites x ≠ y ⇒ r(x) ≠ r(y)
const V : set of alloc ∃ n ∈ nat : rn(x) = x
fct l , r : site → site ∀ x ∀ y ∃ n ∈ nat: y = rn(x)

l (r(x)) = xFigure 82.1. Renamed distributed load balan
ingA formal representation of those properties in terms of �82:1
an be basedon the following fun
tions. For any pla
e p 2 fA;B;C;Eg and any site u 2 U ,let �(p; u) := (0 i� :p1:un i� p:(n; u) ;�(u) := �fA;B;C;Eg�(p; u), and� := �u2U�(u): (1)These fun
tions des
ribe the workload of site u at pla
e p, the entire workloadof u and the overall workload in the system, respe
tively. The initial overallworkload is k i� a�82:1 j= � = k. A balan
ed state meets the predi
atebalan
ed := u; v 2 U ! j�(u)� �(v)j � 1. (2)

292 XIII. Formal Analysis of Case StudiesSo we have to show the state property�82:1 j= � = k (3)and the progress property�82:1 j= a� 7! balan
ed. (4)Furthermore, we have to show that all states rea
hable from a balan
ed stateare balan
ed, i.e., for ea
h step r t�!s,balan
ed(r) ! balan
ed(s). (5)82.2 Pla
e invariantsWe have two quite obvious pla
e invariants. First, ea
h site is always in oneof the three states of �37:1 (together with its token load): A1+B1+C1 = U(with V1 = U a

ording to the spe
i�
ation of Fig. 82.1). Hen
e in parti
ularfor ea
h u 2 U holdsA1:l(u) +B1:l(u) + C1:l(u) = 1. (6)Se
ond, ea
h site is either in the quiet state1 or has sent a workload messageto its right neighbor (i.e., is the left neighbor of the �rst
omponent of aworkload message), or is to re
eive an update message: A1+r(D1)+E1 = U .Hen
e for ea
h u 2 U follows A1:l(u) + r(D1):l(u) + E1:l(u) = 1, whi
h inturn yieldsA1:l(u) +D1:u+E1:l(u) = 1. (7)82.3 Further properties of �82:1Two basi
 properties are required in the sequel: The ground formula A1:U ,and an upper bound for the workload of the sender of a workload message.To start with, we �rst showA1:U is a ground formula. (8)Upon proving (8), observe that all steps starting at A1:U are shapedA1 a(u;n)����!A1:U � u ^ B1:u ^D1:r(u), for some u 2 U and n 2 N. Then (8)follows from Theorem 70.2 and the following proof graph:1) A1:U � u ^ B1:u ^D1:r(u) ,!2) B1:U ^D1:U ,!3) C1:U ^ E1:U ,!4) A1:U .Its nodes are justi�ed by the pi
k-up pattern of Se
t. 69.1 together with thefollowing:

82 Distributed Self-Stabilization 2931) by o

urren
e of a(v; n) for all (v; n) 2 V; v 6= u2) by o

urren
e of b(v; n;m) or
(v; n;m) for all v 2 U3) by o

urren
e of d(v; n;m) for all v 2 U .Se
ond, we show that a workload message tops its sender's token load:D:(u; n)! �(l(u)) � n. (9)(9) is obviously true at the initial state. Indu
tively assume a step r t�!s withr j= (9). Upon proving s j= (9) two
ases are distinguished:i. Assume r 6j= D:(u; n) and s j= D:(u; n). Then t = a(l(u); n) (by thestru
ture of the net). Then s j= B:(l(u); n) (by the o

urren
e rule).Hen
e s j= B1:l(u), hen
e s j= :A1:l(u)^:C1:l(u), by (6). Furthermore,the assumption of s j= D:(u; n) implies s j= D1:u, hen
e s j= :E1:l(u)(by (7)). Both arguments together imply �(l(u)) � �(B:l(u)). Then s j=B:(l(u); n) implies the proposition.ii. Assume r j= �(l(u)) � n and s 6j= �(l(u)) � n. Then t =
(u; n;m), forsome n;m 2 N (by the stru
ture of the net). Then s j= E1:(l(u); n) (by theo

urren
e rule). Then s j= :D1:(u; n) (by (7)), hen
e the proposition.82.4 A de
reasing weightA weight fun
tion � on states will be employed, de�ned for ea
h state s of�82:1 by �(s) = n i� s j=�u2U�(u)2 = n. (10)It will turn out that no step in
reases � . Furthermore, � de
reases upono

urren
e of
(u; n;m), provided m+ 1 is smaller than n.First we show that
3 does not in
rease � : Let r
(u;n;m)�����!s be a step. Then�(r) � �(s). (11)In order to show (11), observe that at r holds (�) B:(u; n) as well as (��)D:(u;m), due to the o

urren
e rule. Furthermore, with r j= �(l(u)) = a ^�(u) = b, at r holds b � n by (�), n > m by ins
ription of transition
, andm � �(l(u)), by (��) and (9); hen
e (���) (a� b+ 1) � 0. Now,�(s) = �(r) � a2 � b2 + (a+ 1)2 + (b� 1)2 (by the stru
ture of
(u; n;m))= �(r) � a2 � b2 + a2 + 2a+ 1 + b2 � 2b+ 1= �(r) + 2(a� b+ 1)� � , by (���), hen
e (11).(11)
an be strengthened in
ase �(u) > �(l(u)) + 1: Let r
(u;n;m)�����! s be astep of �82:1 with m+ 1 < n. Then�(r) > �(s) (12)

294 XIII. Formal Analysis of Case StudiesProof of (12) is a slight variant of the above proof graph of (11): m+ 1 < nnow implies b > n, hen
e (a � b + 1) < 0. Then the last two lines read�(r) + 2(a� b+ 1) < �(r).Generalizing (11), no step at all in
reases � : Let r t�!s be a step of �82:1.Then�(r) � �(s). (13)To prove (13), observe that �(r) 6= �(s) implies t =
(u; n;m) for some u 2 Uand n;m 2 N, by de�nition of � and �, and the stru
ture of �82:1. Then (13)follows from (11).82.5 Des
entsA des
ent of length k
onsists of a sequen
e u; l(u); l2(u); : : : ; lk+1(u) of sites,with token loads de
reasing by 1 from u to l(u) and by any number from lk(u)to lk+1(u), and identi
al token load of l(u); : : : ; lk(u). More pre
isely, for anysite u 2 U and any state s, the des
ent of u at s amounts to k (written:Æ(u) = k) i� there exists some n 2 N with�(u) = n+ 1, �(li(u)) = n (i = 1; : : : ; k), �(ln+1(u)) � n� 1. (14)Figure 82.2 outlines examples.In general, there may exist states s with unde�ned des
ent Æ(u). Evenmore, obviously holds for all states s of �82:1:s is balan
ed i� no site has a des
ent at s. (15)In the sequel we will show that large des
ents redu
e to small ones and smalldes
ents redu
e the weight � . Ea
h large des
ent redu
es to a smaller one, asexempli�ed in Fig. 82.2.
u

after n = 2
δ(l (u)) = 2

u

before n = 2
δ(u) = 4

Figure 82.2. Redu
tion of a large des
entA1:U ^ Æ(u) = k ^ k � 2 ,! A1:U ^ Æ(l(u)) = k � 2. (16)This proposition follows from the following proof graph:

82 Distributed Self-Stabilization 2951) A1:U ^ Æ(u) = k ^ k � 2!2) A1:U ^A:(u; n+1)^A:(li(u); n) (i = 1; : : : ; k) ^A:(lk+1(u); n� j) ,!3) B1:U ^ D1:U ^ B:(u; n + 1) ^ B:(li(u); n) (i = 1; : : : ; k) ^ D:(u; n) ^D:(li(u); n) (i = 1; : : : ; k � 1) ^D:(lk(u); n� j) ,!4) C1:U ^ E1:U ^ C:(li(u); n) (i = 1; : : : ; k � 1) ^ C:(lk(u); n � j) ^E:(l(u); 1) ^ E:(li(u); 0) (i = 2; : : : ; k) ,!5) A1:U^A:(l(u); n+1)^A:(li(u); n) (i = 2; : : : ; k�1) ^A:(lk(u); n�1)!6) A1:U ^ Æ(l(u)) = k � 2.Its nodes are justi�ed as follows:node 1: there exist n; j � 1 with the des
ribed properties, a

ording to(14)node 2: by o

urren
e of fa(v;m) j v 2 U ^ A:(v;m)gnode 3: by o

urren
e of
(u; n + 1; n), b(li(u); n; n) for i = 1; : : : ; k �1,
(lk(u); n; n � j), and b(v;m;m0) or
(v;m;m0) for all v 6=li(u) (i = 0; : : : ; k)node 4: by o

urren
e of fd(v;m;m0) j v 2 U ^ C:(v;m) ^ E:(v;m0)gnode 5: by (14).Ea
h des
ent of length 0 redu
es the weight � , as outlined in Fig. 82.3.
u

after no descent σ(u)2 + σ(l (u))2 = 8

u

before n = 2 σ(u)2 + σ(l (u))2 = 10
δ(u) = 0

Figure 82.3. Des
ent of length 0Formally,A1:U ^ Æ(u) = 0 ^ � = m ,! � < m. (17)This proposition follows from the following proof graph:1) A1:U ^ Æ(u) = 0 ^ � = m!2) A:(u; n+ 1) ^ A:(l(u); n� j) ^ � = m ,!3) B:(u; n+ 1) ^D:(u; n� j) ^ � � m
(u;n+1;n�j),!4) � < m.Its nodes are justi�ed as follows:node 1: there exist n; j � 1 with the des
ribed properties, a

ording to(14)

296 XIII. Formal Analysis of Case Studiesnode 2: by o

urren
e of a(u; n+ 1) and a(l(u); n� j)node 3: by (12).Ea
h des
ent of length 1 likewise redu
es the weight � , as outlined in Fig. 82.4.
u

after no descent σ(u)2 + σ(l (u))2

+ σ(l 2 (u))2 = 12

u

before n = 2
δ(u) = 1

σ(u)2 + σ(l (u))2

+ σ(l 2 (u))2 = 14

Figure 82.4. Des
ent of length 1Formally,A1:U ^ Æ(u) = 1 ^ � = m ,! � < m. (18)This proposition follows from the following proof graph:1) A1:U ^ Æ(u) = 1 ^ � = m!2) A1:U ^ A:(u; n+ 1) ^ A:(l(u); n) ^ A:(l2(u); n� j) ^ � = m ,!3) B:(u; n+1)^D:(u; n)^B:(l(u); n)^D:(l(u); n� j)^ � � m
(u;n+1;n),!4) E:(l(u); 1) ^ B:(l(u); n) ^D:(l(u); n� j) ^ � � m
(l(u);n;n�j),!5) � < m.Its nodes are justi�ed as follows:node 1: there exist n; j � 1 with the des
ribed properties, a

ording to(14)node 2: by o

urren
e of a(u; n+ 1), a(l(u); n), and a(l2(u); n� 1)node 3: by the o

urren
e rulenode 4: by (12).The weight � is redu
ible as long as there exists a des
ent:� = m ,! � < m _ 8u 2 U : Æ(u) is unde�ned. (19)This proposition follows from the following proof graph:1) � = m ,!2) A1:U ^ � � m! 3) 8u 2 U : Æ(u) unde�ned!4) A1:U ^ � � m ^ 9u 2 U; k 2 N with Æ(u) = k ,!5) A1:U ^ � � m ^ 9u 2 U with Æ(u) � 1 ,!6) � < m!7) � < m _ 8u 2 U : Æ(u) unde�ned

82 Distributed Self-Stabilization 297Its nodes are justi�ed as follows:node 1: by (8) and (13)node 2: propositional logi
node 3: propositional logi
node 4: by bk2
 fold appli
ation of (16)node 5: by (17) if Æ(u) = 0, and by (18) if Æ(u) = 1node 6: propositional logi
.82.6 Proof of the essential propertiesTo show (3), let r t�!s be any step of �82:1, and assume �r = k. Then �s = kfollows due to the stru
ture of �81:1. Finally, (3) follows by indu
tion on thelength of interleaved runs of �82:1To prove (5), �rst
onsider the
ase of t =
(u; n;m) for some u 2 U andn;m 2 N. Then at r holds B:(u; n)^D:(u;m)^n > m. Furthermore, �(u) � nby (1) and m � �(l(u)), by (9). Hen
e �(u) = n and �(l(u)) = n� 1, as r isbalan
ed. Then at s holds �(u) = n� 1 and �(l(u)) = n. The workload �(v)remains un
hanged for all v 6= u. Hen
e s is balan
ed, too.All a
tions t not involving
 do not tou
h �(u) for any u 2 U , hen
e theproposition.Proof of (4) requiresa� ,! balan
ed, (20)proven by the following proof graph:a� ! � = m ,! � = n1 < m ,! � = n2 < n1 ,! : : : ,! � = nm = 0,! ,! ,! ,!8u 2 U : Æ(u) is unde�ned!balan
edwhi
h is justi�ed as follows: The �rst impli
ation states that � has some value,m, at the initial state a� . All other nodes in the upper line are justi�ed by(19). The last impli
ation holds by (15).In order to show (4), let w be an interleaved run of �82:1. Then there existsa
on
urrent run K of �82:2, in
luding all a
tions of w. K has a rea
hable,balan
ed state, s, (by (20)). Then w has a rea
hable state, s0, su
h that alla
tions of K, o

urring before s, are a
tions of w, o

urring before s0. Then�82:2 j= s 7! s0 and s0 is balan
ed by (5), hen
e the proposition.

Referen
es
[Agh86℄ G. A. Agha. A Model of Con
urrent Computation in Distributed Sys-tems. MIT Press, Cambridge, Mass., 1986.[AS85℄ B. Alpern and F. B. S
hneider. De�ning liveness. InformationPro
essing Letters, 21:181{185, 1985. Safety/Liveness De
omposition.[BA90℄ M. Ben-Ari. Prin
iples of Con
urrent and Distributed Programming.International Series in Computer S
ien
e. Prenti
e Hall, EnglewoodCli�s, N. J., 1990.[Bar96℄ V. Barbosa. An Introdu
tion to Distributed Algorithms. MIT Press,Cambridge, Mass., 1996.[BB82℄ G. Berry and G. Boudol. The
hemi
al abstra
t ma
hine. TCS, 1982.[BCM88℄ J.-P. Banâtre, A. Coutant, and D. le Metaye. A parallel ma
hine formultiset transformation and its programming style. Future Genera-tions Computer Systems, 4:133{144, 1988.[BE96℄ G. Burns and J. Esparza. Trapping mutual ex
lusion in the box
al
ulus. Theoreti
al Computer S
ien
e. Spe
ial Volume on Petri Nets,153(1{2), January 1996.[Ben73℄ C. H. Bennett. Logi
al reversibility of
omputation. IBM Journal ofResear
h and Development, 6:525{532, 1973.[Bes96℄ E. Best. Semanti
s of Sequential and Parallel Programs. InternationalSeries in Computer S
ien
e. Prenti
e Hall, Englewood Cli�s, N. J.,1996.[BF88℄ E. Best and C. Fern�andez. Nonsequential Pro
esses, volume 13 ofEATCS Monographs on Theoreti
al Computer S
ien
e. Springer-Verlag, Berlin, 1988.[BGW89℄ G. M. Brown, M. G. Gouda, and C. Wu. Token systems that self-stabilize. IEEE Transa
tion on Computers, 38(6):845{852, 1989.[BP89℄ J. E. Burnes and J. Pa
hl. Uniform self-stabilizing rings. ACM Trans-a
tions on Programming Languages and Systems, 11(2):330{344, April1989.[Bro87℄ M. Broy. Semanti
s of �nite and in�nite networks of
on
urrent
om-muni
ating agents. Distributed Computing, 2:13{31, 1987.[Cha82℄ E. J. H. Chang. E
ho algorithms: Depth parallel operations on generalgraphs. IEEE Transa
tions on Software Engineering, SE-8(4):391{401, 1982.[CM84℄ K. M. Chandy and J. Misra. The drinking philosophers problem. ACMTransa
tions on Programming Languages and Systems, 6(4):632{646,O
tober 1984.[CM88℄ K. M. Chandy and J. Misra. Parallel Program Design: A Foundation.Addison-Wesley, Reading, Mass., 1988.[Des97℄ J. Desel. How distributed algorithms play the token game. InC. Freksa, M. Jantzen, and R. Valk, editors, Foundations of Computer

300 Referen
esS
ien
e, volume 1337 of LNCS Le
ture Notes in Computer S
ien
e,pages 297{306. Springer-Verlag, 1997.[Dij71℄ E. W. Dijkstra. Hierar
hi
al ordering of sequential pro
esses. A
taInformati
a, 1:115{138, 1971.[Dij74℄ E. W. Dijkstra. Self-stabilizing systems in spite of distributed
ontrol.Communi
ations of the ACM, 17(11):643{644, 1974.[Dij75℄ E. W. Dijkstra. Guarded
ommands, nondeterminan
y, and formalderivation of programs. Communi
ations of the ACM, 18(8):453{457,1975.[Dij78℄ E. W. Dijkstra. Finding the
orre
tness proof of a
on
urrent pro-gram. Pro
. Koninklijke Nederlandse Akademie van Wetens
happen,81(2):207{215, 1978.[DK98℄ J. Desel and E. Kindler. Proving
orre
tness of distributed algorithmsusing high-level Petri nets { a
ase study. In 1998 International Con-feren
e on Appli
ation of Con
urren
y to System Design, pages 177{186, Fukushima, Japan, Mar
h 1998. IEEE Computer So
iety Press.[DKVW95℄ J. Desel, E. Kindler, T. Vesper, and R. Walter. A simpli�ed proof fora self-stabilizing proto
ol: A game of
ards. Information Pro
essingLetters, 54:327{328, 1995.[DKW94℄ J. Desel, E. Kindler, and R.Walter. A game of tokens: A proof
ontest.Petri Net Newsletter, 47:3 { 4, O
tober 1994.[DS80℄ E. W. Dijkstra and C. S. S
holten. Termination dete
tion for di�using
omputations. Information Pro
essing Letters, 4:1{4, 1980.[Fin79℄ S. G. Finn. Resyn
h pro
edures and a fail safe network proto
ol.IEEE Transa
tions on Communi
ations, COM-27:840{845, 1979.[FT82℄ E. Fredkin and T. To�oli. Conservative logi
. International Journalof Theoreti
al Physi
s, 21(3/4):219{253, 1982.[Gan80℄ R. Gandy. Chur
h's thesis and prin
iples for me
hanisms. In TheKleene Symposium, pages 123{274, North-Holland, Amsterdam, 1980.J. Barwise et al., editors.[GPR97℄ J. E. Gehrke, C. G. Plaxton, and R. Rajaraman. Rapid
onver-gen
e of a lo
al load balan
ing algorithm for asyn
hronous rings.In M. Mavroni
olas and P. Tsigas, editors, Distributed Algorithms,WDAG, volume 1320 of LNCS Le
ture Notes in Computer S
ien
e,pages 81{95. Springer-Verlag, September 1997.[Har87℄ D. Harel. State
harts: A visual formalism for
omputer systems. S
i-en
e of Computer Programming, 8(3):231{274, 1987.[Jen92℄ K. Jensen. Coloured Petri Nets, volume 1 of EATCS Monographs onTheoreti
al Computer S
ien
e. Springer-Verlag, 1992.[Kin95℄ E. Kindler. Modularer Entwurf verteilter Systeme mit Petrinetzen.PhD thesis, Te
hnis
he Universit�at M�un
hen, 1995.[KRVW97℄ E. Kindler, W. Reisig, H. V�olzer, and R. Walter. Petri net basedveri�
ation of distributed algorithms: An example. Formal Aspe
ts ofComputing, 1997.[KW95℄ E. Kindler and R. Walter. Message passing mutex. In J. Desel, editor,Stru
tures in Con
urren
y Theory, Workshops in Computing, pages205{219, Berlin, May 1995. Springer-Verlag.[Lam86℄ L. Lamport. The mutual ex
lusion problem: Part I { a theory of in-terpro
ess
ommuni
ation. Journal of the ACM, 33(2):313{326, 1986.[Lyn96℄ N. A. Lyn
h. Distributed Algorithms. Morgan Kaufmann Publishers,San Fran
is
o, Calif., 1996.[Mat89℄ F. Mattern. Verteilte Basisalgorithmen. Informatik-Fa
hberi
hte 226,Springer-Verlag, Berlin, 1989.

Referen
es 301[Mil89℄ R. Milner. Communi
ation and Con
urren
y. International Series inComputer S
ien
e. Prenti
e Hall, Englewood Cli�s, N. J., 1989.[Mis91℄ J. Misra. Phase syn
hronization. Information Pro
essing Letters,38:101{105, 1991.[MP92℄ Z. Manna and A. Pnueli. The Temporal Logi
 of Rea
tive and Con-
urrent Systems. Springer-Verlag, Berlin, 1992.[MP95℄ Z. Manna and A. Pnueli. Temporal Veri�
ation of Rea
tive Systems.Springer-Verlag, Berlin, 1995.[NTA96℄ M. Naimi, M. Trehel, and A. Arnold. A log(n) distributed mutualex
lusion algorithm based on path reversal. Journal of Parallel andDistributed Computing, 34:1{13, 1996.[OL82℄ S. Owi
ki and L. Lamport. Proving liveness properties of
on
ur-rent programs. ACM Transa
tions on Programming Languages andSystems, 4(3):455{495, 1982.[Pet81℄ G. L. Peterson. Myths about the mutual ex
lusion problem. Infor-mation Pro
essing Letters, 12(3):115{116, June 1981.[PM96℄ W. Peng and K. Makki. Petri nets and self-stabilization of
ommuni-
ation proto
ols. Informati
a, 20:113{123, 1996.[Ray88℄ M. Raynal. Distributed Algorithms and Proto
ols. Wiley Series inparallel
omputing. J. Wiley and Sons, 1988.[Ray89℄ K. Raymond. A tree-based algorithm for distributed mutual ex
lusion.ACM Transa
tions on Computer Systems, 7(1):61{77, February 1989.[Rei85℄ W. Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoreti
alComputer S
ien
e. Springer-Verlag, Berlin, 1985.[Rei95℄ W. Reisig. Petri net models of distributed algorithms. In Jan vanLeeuven, editor, Computer S
ien
e Today. Re
ent Trends and Devel-opments, volume 1000 of LNCS Le
ture Notes in Computer S
ien
e,pages 441{454. Springer-Verlag, Berlin, 1995.[Rei96a℄ W. Reisig. Interleaved progress,
on
urrent progress, and lo
alprogress. In D. A. Peled, V. R. Pratt, and G. J. Holzmann, edi-tors, Partial Order Methods in Veri�
ation, volume 29, pages 24{26.DIMACS Series in Dis
rete Mathemati
s and Theoreti
al ComputerS
ien
e, Ameri
an Mathemati
al So
iety, 1996.[Rei96b℄ W. Reisig. Modeling and veri�
ation of distributed algorithms. InU. Montanari and V. Sassone, editors, CONCUR 96: Con
urren
yTheory, volume 1119 of LNCS Le
ture Notes in Computer S
ien
e,pages 79{95. Springer-Verlag, 1996.[RH90℄ M. Raynal and J.-M. Helary. Syn
hronization and Control of Distrib-uted Systems and Programs. Wiley Series in parallel
omputing. J.Wiley and Sons, 1990.[RK97℄ W. Reisig and E. Kindler. Veri�
ation of distributed algorithms withalgebrai
 Petri nets. In C. Freksa, M. Jantzen, and R. Valk, editors,Foundations of Computer S
ien
e | Potential, Theory, Cognition,volume 1337 of LNCS Le
ture Notes in Computer S
ien
e, pages 261{270. Springer-Verlag, 1997.[Roz86℄ G. Rozenberg. Behaviour of elementary net systems. In W. Brauer,W. Reisig, and G. Rozenberg, editors, Petri Nets: Central Models andTheir Properties, volume 254 of LNCS Le
ture Notes in ComputerS
ien
e, pages 60{94. Springer-Verlag, 1986.[S
h97℄ F. B. S
hneider. On Con
urrent Programming. Springer, 1997.[Seg83℄ A. Segall. Distributed network proto
ols. IEEE Transa
tions on In-formation Theory, IT 29-1:23{35, 1983.

302 Referen
es[SF86℄ N. Shavit and N. Fran
ez. A new approa
h to dete
tion of lo
allyindi
ative stability. In L. Kott, editor, Pro
eedings of the 13th ICALP,volume 226 of LNCS Le
ture Notes in Computer S
ien
e, pages 344{358. Springer-Verlag, 1986.[Tel91℄ G. Tel. Topi
s in Distributed Algorithms, volume 1 of CambridgeInternational Series on Parallel Computation. Cambridge UniversityPress, Cambridge, U.K., 1991.[Tel94℄ G. Tel. Introdu
tion to Distributed Algorithms. Cambridge UniversityPress, Cambridge, U.K., 1994.[V�ol97℄ H. V�olzer. Verifying fault toleran
e of distributed algorithms for-mally: A
ase study. Informatik-Beri
hte 84, Humboldt-Universit�atzu Berlin, May 1997. (appears in: Pro
eedings of CSD98, Interna-tional Conferen
e on Appli
ation of Con
urren
y to System Design,Aizu-Wakamatsu City, Mar
h 1998, IEEE Computer So
iety Press).[Val86℄ R. Valk. In�nite behaviour and fairness. In W. Brauer, W. Reisig, andG. Rozenberg, editors, Petri Nets: Central Models and Their Proper-ties, volume 254 of LNCS Le
ture Notes in Computer S
ien
e, pages377{396. Springer-Verlag, 1986.[Wal95℄ R. Walter. Petrinetzmodelle verteilter Algorithmen. PhD thesis,Humboldt-Universit�at zu Berlin, Institut f�ur Informatik. Edition Ver-sal, vol. 2. Bertz Verlag Berlin, 1995.[Wal97℄ R. Walter. The asyn
hronous sta
k revisited: Rounds set the twilightreeling. In C. Freksa, M. Jantzen, and R. Valk, editors, Foundations ofComputer S
ien
e, volume 1337 of LNCS Le
ture Notes in ComputerS
ien
e, pages 307{312. Springer-Verlag, 1997.[WWV+98℄ M. Weber, R. Walter, H. V�olzer, T. Vesper, W. Reisig, S. Peuker,E. Kindler, J. Freiheit, and J. Desel. DAWN: Petrinetzmodelle zurVeri�kation verteilter Algorithmen. Informatik-Beri
ht 88, Humboldt-Universit�at zu Berlin, 1998.

	Introduction
	Part A. Elementary System Models
	I. Elementary Concepts
	1 A First Look at Distributed Algorithms
	2 Basic Definitions: Nets
	3 Dynamics
	4 Interleaved Runs
	5 Concurrent Runs
	6 Progress
	7 Fairness
	8 Elementary System Nets

	II. Case Studies
	9 Sequential and Parallel Buffers
	10 The Dining Philosophers
	11 An Asynchronous Stack
	12 Crosstalk Algorithms
	13 Mutual Exclusion
	14 Distributed Testing of Message Lines

	Part B. Advanced System Models
	III. Advanced Concepts
	15 Introductory Examples
	16 The Concept of System Nets
	17 Interleaved and Concurrent Runs
	18 Structures and Terms
	19 A Term Representation of System Nets
	20 Set-Valued Terms
	21 Transition Guards and System Schemata

	IV. Case Studies
	22 High-Level Extensions of Elementary Net Models
	23 Distributed Constraint Programming
	24 Exclusive Writing and Concurrent Reading
	25 Distributed Rearrangement
	26 Self Stabilizing Mutual Exclusion

	V. Case Studies Continued: Acknowledged Messages
	27 The Alternating Bit Protocol
	28 The Balanced Sliding Window Protocol
	29 Acknowledged Messages to Neighbors in Networks
	30 Distributed Master/Slave Agreement

	VI. Case Studies Continued: Network Algorithms
	31 Principles of Network Algorithms
	32 Leader Election and Spanning Trees
	33 The Echo Algorithm
	34 Mutual Exclusion in Networks
	35 Consensus in Networks
	36 Phase Synchronization on Undirected Trees
	37 Distributed Self Stabilization

	Part C. Analysis of Elementary System Models
	VII. State Properties of Elementary System Nets
	38 Propositional State Properties
	39 Net Equations and Net Inequalities
	40 Place Invariants of es-nets
	41 Some Small Case Studies
	42 Traps
	43 Case Study: Mutex

	VIII. Interleaved Progress of Elementary System Nets
	44 Progress on Interleaved Runs
	45 The Interleaved Pick-up Rule
	46 Proof Graphs for Interleaved Progress
	47 Standard Proof Graphs
	48 How to Pick Up Fairness
	49 Case Study: Evolution of Mutual Exclusion Algorithms

	IX. Concurrent Progress of Elementary System Nets
	50 Progress on Concurrent Runs
	51 The Concurrent Pick-up Rule
	52 Proof Graphs for Concurrent Progress
	53 Ground Formulas and Rounds
	54 Rounds of Sequential and Parallel Buffer Algorithms
	55 Rounds and Ground Formulas of Various Algorithms
	56 Ground Formulas of Mutex Algorithms

	Part D. Analysis of Advanced System Models
	X. State Properties of System Nets
	57 First-Order State Properties
	58 Multisets and Linear Functions
	59 Place Weights, System Equations, and System Inequalities
	60 Place Invariants of System Nets
	61 Traps of System Nets
	62 State Properties of Variants of the Philosopher System

	XI. Interleaved Progress of System Nets
	63 Progress on Interleaved Runs
	64 Interleaved Pick-up and Proof Graphs for System Nets
	65 Case Study: Producer/Consumer Systems
	66 How to Pick up Fairness

	XII. Concurrent Progress of System Nets
	67 Progress of Concurrent Runs
	68 The Concurrent Pick-up Rule
	69 Pick-up Patterns and Proof Graphs
	70 Ground Formulas and Rounds

	XIII. Formal Analysis of Case Studies
	71 The Asynchronous Stack
	72 Exclusive Writing and Concurrent Reading
	73 Distributed Rearrangement
	74 Self-Stabilizing Mutual Exclusion
	75 Master/Slave Agreement
	76 Leader Election
	77 The Echo Algorithm
	78 Global Mutual Exclusion on Undirected Trees
	79 Local Mutual Exclusion
	80 Consensus in Networks
	81 Phase Synchronization on Undirected Trees
	82 Distributed Self-Stabilization

	References

