= A w -"'-'t-. .-I =

ents

Elem
of

Distributed
Algorithms

Modeling and Analysis
with Petri Nets

..'u- -'-"-J: v, :
&) Springer
ool

Wolfgang Reisig

Elements
of Distributed Algorithms

Modeling and Analysis
with Petri Nets

With 246 Figures

@ Springer

Professor Dr. Wolfgang Reisig

Humboldt-Universitiit zu Berlin
Institut fiir Informatik

Unter den Linden 6

D-10099 Berlin, Germany

E-mail: reisig@informatik.hu-berlin.de

Library of Congress Cataloging-in-Publication Data

R:iai%. Wol , 1950-
Elements of distributed algorithms: modeling and analysis with
Petri nets/Wolfgang Reisig,
cm

p- M
Includes bibliographical references.
ISBN 3-540-62752-9 (hardcover)
1. Electronic data ssing-Distributed processing.

2. Computer algorithms. 3.Petri nets. L Title.

QA76.9.D5R445 1998

004'.36-dc21 98-22854

CIP

ISBN 3-540-62752-9 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of
the material is concern rdﬂul]rlh:ri;hsnfmmhﬁnn.n%‘mm&mnf
illustrations, recitation, broadcasting, reproduction on microfilm or ln};‘nthﬂ way,
and storage in data banks. Duplication of this publication or parts thereofl rmitted
only under the provisions of the German Law of September 9, 1965, in its
current version, and permission for use must be obtained from Springer-Verlag.
Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1998
Prifudﬁ szagny "

The use of general descriptive names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover Design: Kiinkel + Lopka, Werbeagentur, Heidelberg
Typesetting: Camera ready by the author
SPIM 10570552 45/3142 -5 432 1 0 - Printed on acid-free paper

Preface

The application and organization of computing systems is tending towards
distributed computing. Processor clusters, local and wide area networks, and
the forthcoming information highway are evolving new kinds of problems (the
simplest and most basic ones include, e.g., distributed organization of mutual
exclusion, or distributed detection of distributed termination). A new kind of
algorithm, called distributed algorithms, has emerged during the last decade,
aimed at efficiently solving those problems and, more generally, making dis-
tributed computing systems applicable to real-world problems.

A variety of distributed algorithms are presented and proven correct in
this book. A (Petri net based) technique to model and to analyze distributed
algorithms is coincidently presented. This technique focuses on local states,
independent actions, and synchronization of distributed threads of control.

This book’s scope is modest, as it sticks to a choice of small and medium
size distributed algorithms. Compositionality, stepwise refinement, interface
specification, abstraction, etc., are not covered. Nevertheless, this book’s
claims are ambitious: Just as PASCAL-like programming structures and
Hoare-style proof techniques appear optimal for a wide class of sequential
algorithms, this book’s formalism is suggested to be optimal for a wide class
of distributed algorithms.

Particular preliminary knowledge is not assumed in this text, besides ba-
sics in formal concepts and a general intuitive understanding of computer
science.

The text provides a basis for university courses and can help the practi-
tioner to design distributed algorithms. The hurried reader may just study
the pictures.

Acknowledgments

This book is the yield of a decade of research into formal methods for model-
ing and analysis of Distributed Algorithms. I conducted this research together
with many colleagues, staff, and students, both at the Technical University
of Munich and, since 1993, the Humboldt-Universitit zu Berlin. It has been
supported by the Deutsche Forschungsgemeinschaft, in the framework of the
Sonderforschungsbereich 342 as well as in projects on Distributed algorithms

VI Preface

design and compositional verification. The European Union supported this
research via the ESPRIT II projects CALIBAN and DEMON.

The material matured and the presentation profited from successive
courses given at the Technical University of Munich and Humboldt-Universi-
tit zu Berlin. My enjoyable summer 1997 visit to the International Computer
Science Institute at Berkeley, California, decisively boosted completion of this
book.

With pleasure I acknowledge a number of colleagues who directly con-
tributed to this book: Rolf Walter suggested the concept of rounds and the
corresponding theorems of Sect. 53. He also designed the crosstalk algorithms,
crosstalk based mutex, and distributed rearrangement (Sects. 12, 13.6, and
25), and he contributed to token passing mutex, global mutex, and to the
proofs of the Echo algorithm and phase synchronization (Sects. 13.5, 34.1,
77, and 81). Ekkart Kindler designed the fairness rules (Sects. 48 and 66). He
constructed the spanning tree algorithm (Sect. 32.3) and contributed to token
passing mutex, global mutex, and rearrangement (Sects. 13.5, 34.1, and 25).
Jorg Desel contributed two conventions: how to syntactically represent net-
work algorithms (Sect. 31) and how to handle equations, inequalities and log-
ical expressions (Sect. 39). He also contributed to the global mutex algorithm
(Sect. 34.1). Hagen Volzer constructed the phase synchronization algorithm
together with its verification (Sects. 36 and 81) and contributed to the proof
of the Echo algorithm (Sect. 77). Jorn Freiheit corrected an earlier version of
local mutual exclusion on networks (Sect. 34.3) and contributed decisive argu-
ments to its verification (Sect. 79). Tobias Vesper provided the central proof
arguments for the distributed self-stabilization algorithm (Sect. 82). Wilfried
Brauer constructed the asynchronous stack (Sect. 11). Eike Best referred me
to [Dij78], the source of this book’s consensus algorithms (Sect. 35).

In addition, the above-mentioned contributed numerous comments and
corrections, as likewise did Juliane Dehnert, Adriane Foremniak, Dominik
Gomm, Keijo Heljanko, Bodo Hohberg, Irina Lomazowa, Sibylle Peuker, Tho-
mas Ritz, Karsten Schmidt, Einar Smith, and Michael Weber. Many thanks
to all of them, and to the many further casual members of the “Kaffeerunde”,
for inspiring discussions and criticism.

The burden of never-ending typesetting, changes of text, and corrections
was shouldered mainly by Thomas Ritz. I am very grateful for his patience
and constructive cooperation. The pictures were drawn by J6érn Freiheit and
Abdourahaman in quite a painstaking manner. Juliane Dehnert compiled the
references. I am indebted to all of them.

I also owe much to Birgit Heene; her effective management of daily sec-
retarial duties saved me a lot of time that I was able to devote to this book.

It is a pleasure to acknowledge the constructive, efficient, and friendly
support of Hans Wossner, Ingeborg Mayer, and J. Andrew Ross of Springer-
Verlag. Their professional management and careful editing of the manuscript

Preface VII

have again been perfect, just as I frequently experienced during the last 15
years.

A Note to the Expert in Petri Nets

This is not a book on Petri nets. It is a book however that heavily em-
ploys Petri nets, i.e., a slightly revised form of elementary net systems (en-
systems), and “algebraic” high level nets. Revisions are motivated by the
realm of distributed algorithms: The role of loops is reconsidered, and as-
pects of progress and fairness are added. Altogether, those revisions provide
the expressive power necessary to model elementary distributed algorithms
adequately, retaining intuitive clarity and formal simplicity.

A version of high-level nets is used to model data dependencies and algo-
rithms for (classes of) networks. Technically, such nets are based on concepts
from algebraic specification, but they may be understood independently of
that field.

Multiple instances of a token in the same place will never occur, because
the vast majority of distributed algorithms by their nature do without mul-
tiple instances of tokens. Local states of nets are hence propositions and
predicates, thus providing the elements for logic-based analysis techniques.

Two kinds of properties will be studied, both of them instances of [AS85]’s
safety and liveness properties. In this text they will be called state and
progress properties in order to avoid confusion with conventional safety and
liveness of Petri nets. Again, those notions are motivated by practical needs.
Place invariants and initialized traps turn out to be useful in analyzing state
properties. Progress properties have rarely been considered in the literature
on Petri nets. New concepts support their analysis, borrowed from temporal
logic.

Berlin, April 1998 Wolfgang Reisig

Contents

Introduction 1
Part A. Elementary System Models 3
I. Elementary Concepts)
1 A First Look at Distributed Algorithms 5
2 Basic Definitions: Nets 14
3 Dynamics ... e 17
4 Interleaved Runs oo, 21
5 Concurrent Runso 22
6 Progress. 27
7 Fairness 30
8 Elementary System Nets i iion.. 31
II1. Case Studies......... i 35
9 Sequential and Parallel Buffers 35
10 The Dining Philosophers oo 0. 38
11 An Asynchronous Stacko it 44
12 Crosstalk Algorithmso ... 45
13 Mutual Exclusion. 50
14 Distributed Testing of Message Lines.................... 60
Part B. Advanced System Models 63
ITII. Advanced Concepts............cooiiiiiiiiniinnannn.. 65
15 Introductory Examples........ o it 65
16 The Concept of System Nets........................... 73
17 Interleaved and Concurrent Runs 75
18 Structures and Termst 78
19 A Term Representation of System Nets.................. 80
20 Set-Valued Terms i 83

21

Transition Guards and System Schemata 88

X Contents
IV. Case Studies.......... ..o, 91
22 High-Level Extensions of Elementary Net Models 91
23 Distributed Constraint Programming 96
24 Exclusive Writing and Concurrent Reading 100
25 Distributed Rearrangement, 102
26 Self Stabilizing Mutual Exclusion 105
V. Case Studies Continued: Acknowledged Messages....... 107
27 The Alternating Bit Protocol 107
28 The Balanced Sliding Window Protocol 112
29 Acknowledged Messages to Neighbors in Networks 116
30 Distributed Master/Slave Agreement.................... 119
VI. Case Studies Continued: Network Algorithms 123
31 Principles of Network Algorithms....................... 123
32 Leader Election and Spanning Trees 125
33 The Echo Algorithm 127
34 Mutual Exclusion in Networks 130
35 Consensus in Networks, 134
36 Phase Synchronization on Undirected Trees 137
37 Distributed Self Stabilization........................... 140
Part C. Analysis of Elementary System Models 143
VII. State Properties of Elementary System Nets............ 145
38 Propositional State Properties 145
39 Net Equations and Net Inequalities 147
40 Place Invariants of es-netso il 150
41 Some Small Case Studies 153
B | Y o P 156
43 Case Study: Mutexoiiiiii i, 159
VIII. Interleaved Progress of Elementary System Nets 165
44 Progress on Interleaved Runs 165
45 The Interleaved Pick-up Rule 167
46 Proof Graphs for Interleaved Progress................... 170
47 Standard Proof Graphs L. 172
48 How to Pick Up Fairness oiia... 176
49 Case Study: Evolution of Mutual Exclusion Algorithms.... 178
IX. Concurrent Progress of Elementary System Nets 187
50 Progress on Concurrent Runs 187
51 The Concurrent Pick-up Rule 188

52 Proof Graphs for Concurrent Progress................... 190

Contents XI

53 Ground Formulas and Rounds. 191
54 Rounds of Sequential and Parallel Buffer Algorithms 195
55 Rounds and Ground Formulas of Various Algorithms. 197
56 Ground Formulas of Mutex Algorithms.................. 200
Part D. Analysis of Advanced System Models 205
X. State Properties of System Nets 207
57 First-Order State Properties 208
58 Multisets and Linear Functions......................... 209
59 Place Weights, System Equations, and System Inequalities. 210
60 Place Invariants of System Nets 214
61 Traps of System Nets i n.. 219
62 State Properties of Variants of the Philosopher System 222
XI. Interleaved Progress of System Nets.................... 227
63 Progress on Interleaved Runs 227
64 Interleaved Pick-up and Proof Graphs for System Nets 228
65 Case Study: Producer/Consumer Systems 230
66 How to Pick up Fairness........... ut. 231
XII. Concurrent Progress of System Nets.................... 233
67 Progress of Concurrent Runs........................... 233
68 The Concurrent Pick-up Rule 234
69 Pick-up Patterns and Proof Graphs 235
70 Ground Formulas and Rounds. 238
XIII. Formal Analysis of Case Studies 241
71 The Asynchronous Stack 241
72 Exclusive Writing and Concurrent Reading 244
73 Distributed Rearrangement, 249
74 Self-Stabilizing Mutual Exclusion 253
75 Master/Slave Agreement 255
76 Leader Election i, 258
77 The Echo Algorithm o .. 260
78 Global Mutual Exclusion on Undirected Trees............ 266
79 Local Mutual Exclusion 269
80 Consensus in Networks, 279
81 Phase Synchronization on Undirected Trees.............. 285
82 Distributed Self-Stabilization........................... 291

References e e 298

Introduction

An algorithm is said to be distributed if it operates on a physically or logically
distributed computing architecture. Typically, such architectures lack global
control. This requires particular means to model and to verify distributed
algorithms.

This book is based on the assumption that distributed algorithms are
important and that their present-day treatment can be improved upon. Two
central problems are tackled: how to adequately describe a distributed algo-
rithm and how to prove its decisive properties.

The algorithmic idea of most distributed algorithms centers around mes-
sages, synchronizing shared use of scarce resources, and causal dependencies
of actions for some particular, usually not fully specified, computing archi-
tecture.

As an example, the echo algorithm is a schema for acknowledged informa-
tion dissemination, to run on any connected network of computing agents.
From a purely computational point of view, this algorithm just stipulates
that each agent send the same message to all its neighbors. The algorithmic
idea, however, is encoded in causal relations between those messages. Any
adequate description of this idea should employ formal primitives to repre-
sent sending and receiving of messages; whereas, e.g., the administration of
messages already received in an array is an implementation detail, irrelevant
for the echo algorithm.

A distributed algorithm is adequately described if the operational primi-
tives employed focus on the essential idea of the algorithm. Experience reveals
that local states and atomic actions are crucial in this context: Occurrence
of an atomic action affects a subset of local states. More involved examples
furthermore require values to be moved along the system and require a more
abstract description of computing systems (such as “any connected network
of agents” in the echo algorithm). Technically, an adjusted version of Petri
nets offers primitives of this kind.

The decisive properties of each distributed algorithm include aspects of
safety and liveness, intuitively characterized as “nothing bad will ever hap-
pen” and “eventually something good will happen”, respectively. As an ex-
ample, the core properties of the echo algorithm mentioned above are, firstly,
that the agent starting to disseminate some message will terminate only af-

2 Introduction

ter all other agents have been informed and, secondly, that this agent will
eventually terminate. Technically, temporal logic provides adequate means to
represent and to prove these kinds of property.

Hence this book will employ an adjusted version of Petri nets to represent
distributed algorithms, and an adjusted version of temporal logic to wverify
them. It combines selected concepts that reveal transparency and simplicity
of both representation and analysis of distributed algorithms. These include

— suitable means to represent the essentials of distributed algorithms (such
as local states, atomicity of actions, and synchronization), and to avoid
unnecessary and superfluous concepts such as variables and assignment
statements;

— a maximally tight combination of modeling and analysis techniques, where
local states are propositional or first-order expressions, and actions are
most elementary predicate transformers;

— well-established Petri net analysis techniques (place invariants and initial-
ized traps, in particular), immediately yielding logical representations of
safety properties (in the sequel called state properties);

— suitable means based on temporal logic to represent and prove liveness
properties, by “picking up” elementary such properties from the static
presentation of algorithms, and by combining them in proof graphs (in the
sequel called progress properties);

— new notions of progress and fairness that differ slightly from conventional
notions of weak and strong fairness, and yield amazingly simple proof rules.

We do not pursue the most expressive means available in an attempt to
cover virtually all interesting aspects and properties of distributed algorithms.
Instead, we restrict our attention to technically quite simple means, yet still
covering an overwhelming majority of the problems that arise during the
construction and analysis of distributed algorithms.

Special features of this text, besides its general aim of ultimate trans-
parency and simplicity, include

— the notion of concurrent runs, as a basis for the notions of ground states
and round based algorithms;

— a slightly revised notion of fairness;

— particularly strong techniques for picking up safety and liveness properties
from the static representation of distributed algorithms.

Part A
Elementary System Models

This part consists of two chapters. The first one introduces the elementary
ingredients for modeling distributed algorithms: local states, atomic actions,
the notion of single runs, and the assumption of progress (among others).
Altogether, those elementary concepts are amazingly simple. Nevertheless,
they provide adequate means to model a large class of distributed algorithms.

The second chapter demonstrates this by various well-known distributed
algorithms formulated in this setting. It turns out that crisp models fre-
quently do better without variables, assignment statements, global fairness
assumptions, etc.

I. Elementary Concepts

Different representations of an intuitively simple system are presented and
compared in Sect. 1. One of them is a net, i.e., an instance of the formalism
introduced in the rest of Chap. I. Section 2 is slightly technical as it intro-
duces nets, the basic notion of this book. Most of Sect. 2 — anyway small —
may be skipped upon first reading. The elementary formalism for modeling
distributed algorithms is introduced in Sect. 3. It essentially comprises the
notions of local states, local actions, and their interplay. Two respective con-
ceptions of single runs of concurrent systems are considered in Sects. 4 and 5:
a conventional one, employing global states and sequentially observed events,
and a causality-based notion, emphasizing causal order and locality of state
occurrences and events. Section 6 considers the — intuitively obvious — as-
sumption of progress, i.e., the assumption that an enabled action will either
occur or be disabled by some occurrence of competing action. The fundamen-
tals of priority and fairness follow in Sect. 7. Section 8 concludes the chapter
with remarks on the suggested techniques.

1 A First Look at Distributed Algorithms

This section provides a first look at this book’s contents. We start by out-
lining the scope of concern, i.e., representations of distributed algorithms.
Then different such representations are presented for a fairly simple, albeit
illustrative example. Among them is a Petri net. Petri nets will be employed
throughout this book.

1.1 Scope of concern

Distributed algorithms help to organize a large class of technical as well as
non-technical systems. A system may exist physically or be implemented
organizationally, or it may be a planned, hypothetical reality. Examples of
systems include any kind of workflow (e.g., an office for issuing passports)
and technical systems (e.g., production lines in a factory), and of course every
kind of computing device.

A system is assumed to exhibit some quantum of dynamic change. Dy-
namic change is often described as a continuous function over time. However

6 I. Elementary Concepts

it is, frequently more appropriate to identify discrete change. For example,
on the level of register-transfer in a computer, moving a value into a register
is achieved by continuously changing voltages. A continuous model may de-
scribe physical details. The intended effect, however, i.e., what the hardware
is built for and intended to provide, is nevertheless discrete. This kind of
discrete effect will be modeled as an action.

Typical such actions of computer systems can be identified in logical
switches, machine instructions, compiling and programming issues, database
transactions, network organization, etc.

Examples of actions in organizational systems, e.g., in a passport office,
include filling in an application form, delivering it to a clerk, paying a fee at
a cash desk, receiving a receipt, etc.

Actions also describe a lot of relevant behavior in technical systems. Typ-
ical actions in chemical processes include heating some liquid, or pouring it
into bottles. Of interest in this context are usually measuring instruments
signaling, e.g., “liquid is hot enough” or “bottle is full”.

Actions arise in the process of modeling behavior of systems, by help of
algorithms. Many different formalisms for describing such algorithms have
been suggested. This book employs the formalism of Petri nets.

1.2 Example: A producer-consumer system

In the rest of this chapter, a fairly simple, albeit illustrative distributed algo-
rithm will be modeled, in the sequel denoted as a producer-consumer system.
This algorithm may originate from quite different areas, including databases,
communication protocols, operating systems, or computer architecture (but
also from areas outside computer science): Distinguished items are produced,
delivered to a buffer, later removed from the buffer, and finally consumed.
The buffer is assumed to have capacity for one item. In a concrete instance,
“to deliver” may stand for “to send” or “to deposit”. Likewise, “to remove”
may stand for “to receive” or “to accept”. The items involved may be any
goods, data carries, signals, news, or similar items. We are not interested
here in any particular one of those concrete instances, but in their common
properties.

Four models of this algorithm will be studied, using four different for-
malisms. We start with a programming notation, continue with state and
transition based formalisms, and finally construct a Petri net.

1.3 A programming notation for the producer-consumer system

One may be tempted to represent the producer/consumer system in terms
of programming notations. As an example, assume a variable buffer, ranging
over the two-element domain {empty, filled}, and the following two programs:

1 A First Look at Distributed Algorithms 7

P1: do forever P2: do forever
produce; if buffer = filled then
if buffer = empty then buffer := empty; (1)
buffer := filled consume
end end.

Furthermore, let P = (P || P2) be a program, representing the parallel exe-
cution of Py and Ps.

In order to clarify the meaning of P, one may assume a compiler, a run
time system, etc., allowing one to execute P on a given computing device.
The runs of P then correspond to the behavior of the producer/consumer
system: The system is simulated by P.

1.4 A state-based representation
of the producer-consumer system

As a second approach to represent the system described above, we may as-
sume three subsystems: the producer, the buffer, and the consumer, with the
following states and actions:

rd fd rc

producer: buffer: consumer:

p em r

~ s /

Each subsystem consists of two local states which are visited alternately: the
producer’s states are “ready to produce” (rp) and “ready to deliver” (rd).
Likewise, the buffer has the states “empty” (em) and “filled” (fd), and the
consumer’s states are “ready to receive” (rr) and “ready to consume” (rc).
Arrows denote possible steps between the subsystems’ states. Arrows without
a source node indicate initial states.

Diagram (2) does not describe the behavior of the system entirely and
correctly: The steps rd — rp and em — fd occur coincidently in the system.
This applies also for rr — rc and fd — em. This information must be given in
addition to (2).

1.5 An action-based representation
of the producer-consumer system

The above representation is state-based: (local) states are assumed, and tran-
sitions are described as functions over these states. Next we consider an
example for an action-based approach. The three subsystems are now de-
scribed by their actions: The producer alternates the actions “produce”

8 I. Elementary Concepts

(p) and “deliver” (d). The infinite sequence pdpd... of actions describes
its behavior. This behavior can be represented finitely by the equation

producer = p.d.producer. (3)

This equation may be read as “the producer first performs p, then d, and
then behaves like the producer”. The infinite sequence pdpd. . . is the solution
of the equation (2) in the set of all (finite and infinite) strings consisting of
p and d.

The consumer likewise alternates the actions “remove” (r) and “consume”
(c). Its infinite behavior rcre. .. is given by the equation

consumer = r.c.consumer. (4)

The buffer’s actions are strongly synchronized with depositing and remov-
ing, and are therefore denoted by d and 7, respectively. Its behavior drdr ...
is given by

buffer = d.T.buffer. (5)

The overall behavior of the producer/consumer system is now obtained
from the joint behavior of its three subsystems.

Assuming a suitable operator “||” for parallel composition of systems, the
overall system reads

producer || buffer || consumer. (6)

For each action z, the operator || must guarantee that z and T occur
coincidently.

1.6 A net representation of the producer-consumer system

The two formalisms of Sects. 1.4 and 1.5 operate with quite fixed concepts:
One is state-based, one is action-based, and both stick to pairwise synchro-
nization of actions of sequential processes. With these kinds of formalism, a
lot of distributed algorithms can be represented adequately. But we are after
a basic, neutral formalism, treating states and actions on an equal footing,
and avoiding the need to fix particular decompositions of algorithms already
at the beginning.

Figure 1.1 represents the producer/consumer system as a Petri net. It
employs circles and bozes to represent local states and actions, respectively.
Black dots (“tokens”) inside circles characterize the initial state of the sys-
tem. Generally, tokens indicate local states that are “presently taken” or
“reached”. Each of the four involved actions may occur under certain cir-
cumstances, thus changing the actual distribution of tokens.

1 A First Look at Distributed Algorithms

ready to ready to
deliver consume

produce deliver remove consume

ready to buffer ready to
produce empty remove

Figure 1.1. A net model of the producer/consumer system

ready to ready to
deliver consume

produce deliver remove consume

ready to buffer ready to
produce empty remove

Figure 1.2. After occurrence of produce

10 I. Elementary Concepts

Action produce is enabled whenever ready to produce carries a token. Oc-
currence of produce forwards the token to ready to consume, thus producing
the global state of Fig. 1.2. Intuitively, occurrence of produce moves a token
from its “ingoing” to its “outgoing” local state.

Action deliver has two “ingoing” local states, ready to deliver and buffer
empty. This action is enabled in Fig. 1.2, because both of them carry a token.
Occurrence of deliver then moves the tokens of all “ingoing” to all “outgoing”
local states, viz. to ready to produce and to buffer filled, as in Fig. 1.3.

The state shown in Fig. 1.3 exhibits two enabled actions, produce and
remove. They may occur concurrently (causally independently). Occurrence
of remove then enables consume in the obvious manner.

ready to ready to
deliver consume

produce deliver remove consume

ready to buffer ready to
produce empty remove

Figure 1.3. After occurrence of deliver.

Generally, any action in Figs. 1.1 — 1.3 is enabled iff all “ingoing” local
states carry a token. Occurrence of an action then moves the tokens from
“ingoing” to “outgoing” local states.

Figure 1.1 shows exactly the local states discussed in Sect. 1.4. The syn-
chronization of d and d discussed in Sect. 1.5 is now provided by the joint
swapping of two tokens from Fig. 1.2 to Fig. 1.3.

1.7 Some characteristics of Petri nets

Any formalism for modeling algorithms strongly affects comprehension of the

underlying algorithmic idea and the capability to analyze the models. Each

formalism fixes and emphasizes some particular issues and aspects. Here we

discuss six such characteristics of the formalism considered in this book.
Petri nets (in their elementary setting) employ the most elemen- (7)
tary concepts of states and transitions.

A local state is just a logical (propositional) atom (e.g. “ready to produce” in
Fig. 1.1) with a truth value that may change upon an action’s occurrence. An

1 A First Look at Distributed Algorithms 11

action consists (as in many formalisms) of an enabling condition and an effect
on states upon its occurrence. Based on the local states introduced above, the
logical conjunction of some local states (with their actual truth values) serve
as an action’s enabling condition. The effect of an action’s occurrence consists
in swapping the actual truth value of some local states. All occurrences of an
action cause the same local effect.

Furthermore, actions preserve information: From an action and the re-
sult of its occurrence, the previous state can be recomputed. This strongly
supports analysis techniques.

The propositional character of local states will be generalized to predicates
in Part B, thus reflecting data values and schematic descriptions of systems.

Petri nets emphasize locality of causation and effect. (8)

Each local state is assigned a fixed set of actions that swap (or read) its
truth value. Likewise, each action is assigned a fixed set of local states that
are involved in its occurrence. The graphical representation of nets (such as
in Fig. 1.1) represents this vicinity explicitly (by arrows).

Petri nets explicitly represent fundamental issues of distributed
systems, such as atomicity, synchronization, mutual independence 9)
of actions, messages, and shared memory.

Conventional control flow, conventional variables, and assignment statements
are no basic features of Petri nets. They can nevertheless be simulated, but
proper Petri net representations of distributed algorithms do without those
features.

Petri nets are neither state-based nor action-based. Both states
. . . (10)
and actions have a particular status on their own.
This implies that Petri nets can be employed as a reference formalism for
many kind of modeling formalism. In fact, the semantics of various concurrent
languages has been formulated in terms of Petri nets.

Petri nets are unstructured by definition. Structure may be put
g (11)
on them additionally.
This may be considered a disadvantage of Petri nets: Compositional proof
techniques, algebraic representations, and any kind of inductive arguments
can not be applied immediately. However, (11) is also advantageous. As an
example, there exist standard techniques to gain the three components (pro-
ducer, buffer, consumer) of the net in Fig. 1.1 (they are just place invariants).
But a different decomposition may likewise help: The “upper line” from left
to right, carrying produced items, and the “lower line” from right to left,
carrying “empty” signals.
Petri net models are implementable and are neutral against spe-
cific implementation languages.

This of course is due to (10) and (11).

(12)

12 I. Elementary Concepts

To sum up, Petri nets abstract from specific concepts such as state ori-
entation, event orientation, pairwise synchronization, composability from se-
quential components, variables, values, assignment statements, hierarchical
structuring, and similar concepts. What remain are fundamentals of models
for distributed algorithms. This view is neither particularly “low” or par-
ticularly “high”, it is just a particular level of abstraction. The remaining
concepts are taken from logic: The conventional technique of assigning predi-
cates to (global or local) states has in Petri nets been strengthened to taking
propositions and predicates themselves as local states.

It will turn out that this provides an amazingly useful modeling formalism.
It includes a kind of insight into distributed algorithms and properties that
is hard to find or present by other means.

1.8 Relationship to other formalisms

The conception of actions, as introduced in Sect. 1.1 and discussed under
characteristic (7), is employed in many other formalisms. Examples include
guarded commands [Dij75], UNITY [CM88], and extended transition sys-
tems [MP92]. But emphasis on local states is typical for Petri nets. Other
formalisms usually work with global states.

Use of logical concepts (propositions in Part A and predicates in Part B of
this book) as local states is also a specific issue. Other formalisms use states to
store values of variables and flow of control. They employ predicates on states
whenever properties of models are to be analyzed. Employing predicates as
state elements is hence a natural choice.

Reversibility of actions is motivated by fundamental considerations in,
e.g., [FT82] and [Ben73]. They show relevance and universality of reversible
switching elements.

Locality of causation and effect, as described in (8), is a fundamental issue
[Gan80]. This contrasts with other formalisms such as CCS [Mil89] and state
charts [Har87], where in order to fully conceive an action, one has to trace
the occurrence of a distinguished symbol in the entire system model (i.e., in
a term or a graphical representation).

Compared with Petri nets, other formalisms cope with fundamental is-
sues of distributed algorithms less explicitly. As an example, assumptions on
atomicity of parts of assignment statements are frequently not made explicit,
though they are crucial for the semantics of parallel programs. Synchroniza-
tion issues such as “wait for messages from all your neighbors, and then ... ”
are formulated implicitly, e.g., by counting the number of arriving messages.

Many other modeling formalisms are compositional and define system
models inductively, e.g., CCS [Mil89] and state charts [Har87]. Such models
suggest, but also generally fix, compositional and hierarchical proof struc-
tures, term representations, and any kind of inductive arguments. Unstruc-
tured formalisms such as Petri nets and transition systems are better at

1 A First Look at Distributed Algorithms 13

allowing for example oriented, goal-guided decomposition and structuring
when it comes to correctness proofs.

This book’s view can not be retained for large systems. Systematic refine-
ment of specifications and compositional proof techniques are inevitable then.
However, large algorithms require adequate techniques for small algorithms.
The sequel is intended to provide such techniques, in particular providing
simpler means and arguments for a wide class of distributed algorithms.

1.9 Relationship to other textbooks

One of the earliest textbooks is [CM88], providing a simple abstract oper-
ational model, a temporal logic based proof technique, and an impressive
collection of case studies. In the latter two respects, the scope of this book
almost coincides with ours. But we employ a fundamentally different opera-
tional model, which explicitly models concurrency (as well as nondetermin-
ism) and is implementable in principle, as it refrains from global fairness
assumptions. Fred Schneider’s most recent book [Sch97] suggests conven-
tional concurrent programs and adjusted, well-established temporal logic-
based proof techniques. Concurrency is operationally treated as a special
case of nondeterminism, and fairness assumptions affect global states (both
contrasting with our basic assumptions).

Some issues treated in [BA90] and in our book coincide, including al-
gorithms for (distributed) mutual exclusion and dining philosophers. [BA90]
concentrates on programming concepts, specific programming languages, and
implementation strategies, whereas we concentrate on an abstract imple-
mentable operational model and on verification.

[RHI0] discusses a lot of synchronizing algorithms, some of which we pick
up, too. [RHI0] represents algorithms in semi-formal pseudo code, where we
use a formal operational model. We give the notion of a “wave”, suggested
in [RH90], a formal basis, and exploit it in proof techniques.

In the line and style of [BA90], [Ray88] generalizes that approach to other
algorithms, and particularly to communication protocols. [Tel94], [Bar96],
and [Lyn96] in a similar style offer broad collections of algorithms, including
temporal aspects such as timing constraints, probabilistic algorithms, etc. In
particular, [Lyn96] is an almost complete compendium of distributed algo-
rithms. All these books represent algorithms in pseudo code of I/O automata,
and employ semi-formal correctness arguments. In contrast, we consider fewer
algorithms, excluding real-time and probabilistic ones. But we suggest an op-
erational model and formal verification techniques that exploit concurrency.

[Bes96] offers a number of algorithms, some of which we consider, too.
Among all the textbooks mentioned, this is the only one to model concur-
rency explicitly (with the help of Petri nets). It also employs a Petri net
based technique (transition invariants) to argue about liveness properties.
We suggest a version of temporal logic for this purpose.

14 I. Elementary Concepts

[MP92] and [MP95] suggest a programming representation for algorithms,
together with a formal semantics, focusing on temporal logic-based proof of
safety properties. Liveness was postponed to a forthcoming volume. We cover
liveness, too.

Summing up, in contrast to our approach, none (but [Bes96]) of the men-
tioned textbooks employs an operational model that would represent or ex-
ploit concurrency explicitly (though concurrency is an essential feature of
distributed algorithms). Verification is addressed with a different degree of
rigor in all texts, most formally in [CM8&8], [MP92], [MP95], [Bes96], and
[Sch97]. Formal verification always (except in [Bes96]) employs temporal logic
on transition systems, thus not exploiting concurrency. In contrast, we sug-
gest a version of temporal logic that exploits concurrency.

2 Basic Definitions: Nets

This section provides the general framework of state elements, transition ele-
ments, and their combination. This framework will later be applied in various
contexts.

Figure 1.1 shows an example of a net with a particular interpretation:
circles and boxes represent local states and actions, respectively.

There exist other interpretations of nets, too. But they always follow the
same scheme: Two sorts of components are identified, emphasizing “passive”
and “active” aspects, respectively. They are combined by an abstract relation,
always linking elements of different sorts.

2.1 Definition. Let P and T be two disjoint sets, and let F C (P x T) U
(T x P). Then N = (P,T,F) is called a net.

Unless interpreted in a special manner, we call the elements of P, T', and
F places, transitions, and arcs, respectively. F' is sometimes called the flow
relation of the net.

We employ the usual graphical representation of nets, depicting places,
transitions, and arcs as circles, boxes, and arrows, respectively. An arrow
x — y represents the arc (z,y). Ignoring the black dots inside some of the
circles, Fig. 1.1 shows a net with six places and four transitions.

As a matter of convenience, in this text a net will frequently be identified
by the number of the figure representing it. As an example, X ; denotes the
net in Fig. 1.1.

Nets are occasionally denoted in the literature as bipartite graphs. But
notice that the two nets of Fig. 2.1 are not equivalent in any relevant context.

The following notational conventions will be employed throughout the
entire book:

2.2 Definition. Let N = (P,T, F) be a net.

2 Basic Definitions: Nets 15

Figure 2.1. Two different nets

i. Py, Ty, and Fy denote P, T, and F, respectively. By abuse of notation,
N often stands for the set PUT, and aFb for (a,b) € F.

ii. As usual, F~1, F* and F* denote the inverse relation, the transitive
closure, and the reflexive and transitive closure of F', respectively, i.e.,
aF~1b iff bFa, aF*b iff aFc Fey ...c,Fb for somecy,...,c, € N and
aF*b iff aF*b or a =b. For a € N, let F(a) = {b| aFb}.

iti. Whenever F' can be assumed from the context, for a € N we write *a
instead F~'(a) and a® instead F(a). This notation is translated to subsets
ACNby*A=U,cs’a and A* = |J,c 40 *A and A® are called the
pre-set (containing the pre-elements) and the post-set (containing the
post-elements) of A.

The following examples for the above notations apply to X 1 (i.e., the net
in Fig. 1.1): For each place p € Py, , both sets *p and p* have one element.
For each t € T'x;, ,, | *t| = |t*|. Furthermore, for all a,b € X1 1 a(Fy,)b.

Obviously, for z,y € N, z € *y iff y € z°.

The rest of this section introduces basic notions such as isomorphism,
special substructures of nets, and subnets. It may be skipped at first reading.

Isomorphism between nets is defined as can be expected:

1.1

2.3 Definition. Two nets N and N' are isomorphic (written: N ~ N') iff
there erists a bijective mapping 3 : N — N' between their element sets such
that 3(Pn) = Pn, B(TNn) = Tnv, and xFny iff B(z)Fn B(y)-

We are mostly not interested in the individuality of places and transitions
of a net. Any isomorphic net does the same job, in general. Nets resemble
graphs in this respect. In graphical representations of nets, then, places and
transitions remain unnamed. We employed this convention already in nota-
tion (1).

The following special structures are frequently distinguished:

2.4 Definition. Let N be a net.

i. * € N isisolated iff *xUz® =).
ii. ¢,y € N form a loop iff tFny and yFnz
ii. x and y are detached iff (*zU{z}Uz®) N (*yU{y}tUy®) = 0.
iw. For A C N, N is A-simple iff for all z,y € A : *x = *y and z* = y°*
imply x = y.
v. N is simple iff N is N-simple.

16 I. Elementary Concepts

vi. N is connected iff for all x,y € N : z(F U F~1)*y.
vii. N is strongly connected iff for all z,y € N : x(F*)y.

As an example, the net X; 1 in Fig. 1.1 has no isolated elements and no
loops; it is simple, connected, and even strongly connected. State buffer filled
and action produce are detached, whereas buffer filled and ready to produce are
not. Each of the two nets in Fig. 2.1 is connected, but not strongly connected.
Figure 2.2 gives further examples for the special structures described above.

e elim o olx

aloop not PN-simpIe not TN—simpIe

Figure 2.2. Special structures in nets

Isolated elements sometimes occur as a technical construct. They have no
particularly reasonable use in many applications of nets. Loops occasionally
play a distinguished role. Most nets to be studied will be connected. But it
is occasionally illuminating to consider two entirely unconnected nets as one
net.

Simplicity, as defined in Def. 2.4(iv), is quite a natural assumption or
property in a wide range of applications. Each transition ¢ of a Tx-simple
net N is uniquely determined by its pre- and postsets *¢t and t*. Representing
each transition ¢ by (°¢,¢*), N is uniquely given by Py and Tn. Likewise,
each place p of a Py-simple net N is uniquely determined by ®*p and p°®.

To sum up the potential links between two elements of a net, Def. 2.1
implies that elements of equal type (i.e., two places or two transitions) are
never F-related. Each pair of elements of different type correspond in exactly
one out of four alternative ways, as shown in Fig. 2.3.

Nets are frequently used in a labeled version, with some symbols or items
assigned to places, transitions, or arcs.

2.5 Definition. Let N be a net and let A be any set.

i. Let ly: Py — A, ls: Ty = A, I3: Py UTN — A and ly: Fy — A be
mappings. ly, ... 1y are called a place labeling, a transition labeling, an
element labeling, and an arc labeling of N over A, respectively.

it. N is said to be place labeled (transition labeled, element labeled, arc
labeled, respectively) over A iff a corresponding labeling is given either
explicitly or implicitly from the context.

Labelings are graphically represented by means of symbols ascribed to the
corresponding circles, boxes, or arrows. For example, the dots in some circles

3 Dynamics 17

detached transition detached place

] O

pre-transition post-transition pre-place post-place

side-transition side-place

place oriented view transition oriented view

Figure 2.3. The relationship between places and transitions

of Figs. 1.1 — 1.3 represent a place labeling [: Py — {0,1}, with I(p) = 1 iff
the circle representing p carries a dot.
An already labeled net may get additional labelings.

3 Dynamics

Figure 1.1 shows a net with places and transitions interpreted as local states
and actions, respectively. A set of local states forms a global state. Its elements
are graphically depicted by a dot in the corresponding circle. Section 1.6
explained that an action t is about to occur in a global state, provided °*¢
belongs to that state. Occurrence of ¢ then replaces *t by t*, this way yielding
a new state, as graphically shown in Fig. 3.1.

Figure 3.1. Occurrence of an action

Nets will be denoted by X'; places and transitions will be called local states
and actions, respectively, to underline this interpretation.

3.1 Definition. Let X' be a net.
i. Any subset a C Py, of local states is called a (global) state of X.

18 I. Elementary Concepts

ii. An action t € T, has concession in a given state a (a enables t) iff *t C a
and (t*\ *t) Na = 0.

iii. Let a C Px be a state and let t € T be an action of X'. Then eff(a,t) :=
(a\ *t)Ut® is the effect of ¢’s occurrence on a.

w. Lett € Ts; be an action with concession in some state a C Px,. Then the

triple (a,t,eff(a,t)) is called a step in X and usually written a—t>eff(a, t).

A global state is usually depicted by black dots (“tokens”) in the corre-
sponding circles of graphical net representations. The state

a = {ready_to_produce, buffer _empty, ready_to_remove}

is this way depicted in Fig. 1.1. Only one action, produce, is enabled in this
state. Occurrence of produce then yields the state shown in Fig. 1.2. The state
of Fig. 1.3 enables two actions, produce, and remove.

Intuitively, ®¢ is the set of pre-conditions for the occurrence of action t,
and t* is the set of conditions holding after ¢’s occurrence (we may call them
post-conditions of t).

The above definition invites a number of observations, to be discussed
in the rest of this section. First of all, a transition involved in a loop, as in
Fig. 3.2, may very well have concession in some given state a. This deviates

Figure 3.2. A loop

essentially from the conventions of elementary net systems [Roz86] or con-
dition/event systems [Rei85]. There, a transition involved in a loop is never
enabled. OQur convention fits with practical needs [Val86].

In astep a BN b, the states a and b are tightly coupled to the transition ¢: a
can be traced back from b and ¢. (This contrasts with assignment statements
x := f(z), where the previous value of z can in general not be traced back
from f and the new value of z). In case X' is loop-free, even *¢ and ¢t* can be
retrieved from a and b.

3.2 Lemma. Let a-5b be a step of some net X.
i. a=(b\t*)U°"t.
ii. *t=a\bandt* =0\ a iff ¥ is loop-free.

In a step ai>b, a set ¢ of places may be added or be removed from both
a and b, provided c is disjoint from *¢ and from ¢°:

3 Dynamics 19

3.3 Lemma. Let a5 b be a step of some net X and let ¢ C Py with ¢N
(tut®) =0.

i. (aUc)i>(bUc) is a step of X.
it. (a\c) —t>(b \ ¢) is a step of X.

We leave proof of Lemmas 3.2 and 3.3 as an exercise for the reader.
Generally, steps exhibit a whole bunch of symmetries, particularly for loop-
free es-nets.

Two situations deserve particular attention: Firstly we observe that ac-
cording to Def. 3.1(ii) there can be two reasons for a transition ¢ not to have
concession in some state a: either some precondition is missing (*t Z a), or
they are all present (*¢ C a), but additionally one of the “new” postcondi-
tions is already present ((¢*\ *t)Na # 0), as in Fig. 3.3. This kind of situation
will be denoted as contact:

3.4 Definition. Let X' be a net with a transitiont € T, and a state a C Psy;.
Then a is a contact state with respect to t iff *t C a and (t*\ *t) Na # 0.

Figure 3.3. Contact situation

Hence, in case of no contact, the preconditions alone provide the require-
ments of enabling.

The second situation concerns two transitions ¢ and u, both enabled in
some state a. If they share a common pre- or postcondition, as in Fig. 3.4,
the occurrence of ¢ prevents the occurrence of u (and vice versa); ¢t and u are
then said to be in conflict.

t
t
or
u
u

Figure 3.4. Conflict situation

20 I. Elementary Concepts

3.5 Definition. Let X be a net, with two different transitions t,u € T's; and
a state a C Py : a is a conflict state with respect to ¢t and w iff both t and u
have concession in a, and are not detached.

The state of the net shown in Fig. 3.5 is conflicting with respect to a
and b, as well as with respect to a and ¢. The two actions b and ¢ are not
conflicting.

Figure 3.5. Net with conflict

The notion of conflicting events ¢ and u is immediately obvious for loop-
free nets. In this case, occurrence of ¢ prevents immediate occurrence of u
(and vice versa).

3.6 Lemma. Let X be a loop-free net. Let a be a conflict state with respect
to two transitions t and u of X. Then atb implies u not be enabled in state

b.

In the context of loops, as in Fig. 3.6, conflict between ¢ and u prevents
t and u occurring concurrently. A formal definition of events occurring con-
currently is postponed to Sect. 5.

Figure 3.6. Loops, preventing concurrent occurrence of ¢ and u

4 Interleaved Runs 21

4 Interleaved Runs

Single steps of a net X, as considered in the previous section, compose to
. t

runs of ¥. The most elementary composition of two steps a — b and b— ¢
. . . T t

is their sequential combination in the run a = b - c. Generally, one may

1 to tn . t; .

construct runs ag — a; — - - - —>a,, of nets X', provided a; 1 —>a; is a step
of ¥, for i =1,... ,n. Furthermore, we consider infinite runs, too:

4.1 Definition. Let X be a net.

i. Fori =1,... ,n let a;_ LN a; be steps of X. Those steps form a X-
based finite interleaved run w, written ag LiN ay BENSRNIN an. Each
i €{0,...,n} is an index of w.

ii. For each i = 1,2,... let a;_1 LN a; be steps of Y. Those steps form a
Y-based infinite interleaved run w, sometimes outlined ag LN ai RN
Each © € N is an index of w.

Figure 4.2. Extending Y, ; by loops

. . produce deliver
Examples of finite runs of the net X ; include aq > a 5

remove produce produce deliver produce remove
as > a3 > aq and ag > ay > a9 > Ay > ayq,

22 I. Elementary Concepts

with ag as depicted in Fig. 1.1 and ay,...,as obvious from context. Each
finite run of Xy ; can be extended to infinitely many finite and infinite runs.
Figures 4.1 and 4.2 show two different nets. The interleaved runs (both finite
and infinite) starting at the depicted global state are equal for both nets.

The runs of a net exhibit some regularities. First we consider runs con-
sisting of two steps. We give a Lemma for loop-free nets and leave the general
case to the reader:

4.2 Lemma. Let X be a loop-free net, and let ab b c be a ¥-based run.

i *tN®u=t"Nu* = 0.
ii. There exists a state d with a-5d -5 c iff t and u are detached.

Each initial part of a run is a run. Furthermore, “cyclic” sequences of
steps can be repeated:

4.3 Lemma. Let X be a net, let ag BANUULN am be a X-based run, and let
n<<m.

. t t t t
i.oag—= - -a, and ap = -y a,, are also X-based runs.
tn41

it. If ap = an,, then ag LT —t"i>am A= LN am 98 also a X -based run.
A state b is reachable from a state a iff there exists an interleaved run
from a to b:

4.4 Definition. Let X be a net and let a,b C Ps; be global states of X:
b is reachable from a in X iff there exists a X'-based finite interleaved run

t ¢ tn)
ap a1 = ... a, with ap = a and a,, = b.

We leave proof of Lemmas 4.2 and 4.3 as an exercise for the reader.

5 Concurrent Runs

We finished Sect. 4 with a discussion of an adequate representation of inde-
pendent action occurrences. The notion of an interleaved run has been sug-
gested, providing a record of action occurrences and local state occurrences.
The revised approach, to follow here, deserves particular motivation.

A run distinguishes the first, second, etc., occurrence of an action and
relates it to the first, second ,etc., occurrence of other actions. Each single
occurrence of an action will be called an event. Likewise, each single occur-
rence of a local state will be called a condition. Conditions hence serve as
preconditions and postconditions for events. Then, a run consists of condi-
tions and events, ordered by a “before — after” relation. Interleaved runs,
discussed in Sect. 4, provide global states and an order on events, motivated
by an “observer” who observes events one after the other. Different observers

5 Concurrent Runs 23

may observe different orders of events, hence a net is associated with a set of
interleaved runs.

This concept confuses system-specified, causal order with order addition-
ally introduced by observation. Events that occur independently are arbi-
trarily ordered by observation. Even if we assume that independence among
events may not be observable, it may nevertheless be representable. So we
ask for a representation of objective, i.e., entirely system-based, ordering of
conditions and events.

Before formally defining such a notion, we discuss some of the properties
to be expected from this concept.

Firstly, independent events should be distinguished from events in arbi-
trary order. As an example, compare X, 1 and X, »: a and ¢ occur indepen-
dently in Y, ;, whereas in X4 » they occur in either order.

The essential difference between Y, ; and Xy - is the existence of conflict
in Y4 »: Whenever the state shown in Fig. 4.2 has been reached, a decision has
to be made concerning the order of a’s and ¢’s occurrence. Different outcomes
of this decision yield different runs. Hence X, » evolves different runs, in fact
infinitely many different runs (because the state of X4, shown in Fig. 4.2,
is reached infinitely often).

A state in Y41 never occurs where a decision between enabled actions is
to be made: Whenever two actions are enabled, they occur mutually inde-
pendently.

To sum up, an observer-independent notion of runs should record events
and conditions. It should make explicit to what extent events and conditions
are ordered due to the underlying system’s constraints. Hence, this kind of
occurrence record partially orders its elements by the relation “z is a causal
prerequisite for y”, because repetitions of the same action or the same local
state are recorded as new entries. Unordered elements denote independent
(“concurrent”) occurrences. There is a fairly obvious representation of such
records, namely again as a net. Figures 5.1 — 5.5 show examples.

@ o}~] ~® ~Ha] ~-©@ o} ~-®
®
O} @ Hu ~©O -} @ - ~©

Figure 5.1. Concurrent run of X4 4

Each transition in Figs. 5.1 and 5.2 represents an event, i.e., the occurrence
of an action. This action is denoted by the transition’s labeling. Distinct
transitions with the same labeling denote different occurrences of the same

24 I. Elementary Concepts

action. Similarly, a place ¢ shows by its inscription b that local state b has
been reached due to the occurrence of *q and has been left as a result of the
occurrence of ¢°.

Figure 5.2. Concurrent run of Xy »

Figure 5.3. Concurrent run of X4 o

Figure 5.1 shows that the behavior of X4 ; consists of two independent
sequences. Figure 5.2 likewise shows a concurrent run of X4 o, where the first
occurrence of ¢ is before the first occurrence of a, and the second occurrence
of ¢ is after the second occurrence of a. In the run of X4 5 shown in Fig. 5.3,
a occurs twice before the first occurrence of c.

A concurrent run will be represented formally as an acyclic net with
unbranched places. Such nets will be called occurrence nets.

5.1 Definition. A net K is called an occurrence net iff

i. for eachp € Pk, |*p| <1 and |p*| <1,

ji. for eacht € Tk, |*t| > 1 and |t*]| > 1,

i11. the transitive closure F;g of F, frequently written <y, is irreflexive (i.e.,
21 FraoFr ... Fx, implies x1 # x,),

iv. for each z € K, {y |y <k x} is finite.

~

Figures 5.1-5.3 show labeled occurrence nets. <y is a strict partial order
in each occurrence net K. In fact, r <x y iff there exists an arrow sequence
from x to y.

5 Concurrent Runs 25

We are particularly interested in states consisting of pairwise unordered
places:

5.2 Definition. Let K be an occurrence net.

i. Two elements p,q € K are concurrent iff neither p <x q nor q <g p.
it. A state a C Pk is concurrent iff its elements are pairwise concurrent.
iii. A state a is maximal concurrent iff a is concurrent and no p € a is

concurrent to any q € K \ a.
w. Let ° K :={ke€ K|°k =0} and let K° :={k € K | k* = 0}.

Occurrence of actions preserves concurrency:

5.3 Lemma. Let K be an occurrence net and let a-b be a step of K.

i. If a is concurrent, then b is concurrent, too.
it. If a is mazimal concurrent, then b is mazimal concurrent, too.

Proof of this lemma is left as an exercise for the reader.

According to the intended use (described above) of an occurrence net K
to describe a run of a net X, each maximal concurrent state a of K represents
a state of X' that might have been observed during the course of K. Two a-
enabled actions of K represent concurrent (independent) occurrences of the
corresponding actions of X.

Figure 5.4. A step of a concurrent run of ¥4 »

5.4 Definition. Let X be a net, let K be an occurrence net and letl : K — ¥
be an element labeling of K. K is a X-based concurrent run iff

i. concurrent elements of K are differently labeled,
ii. for eacht € Tk, l(t) € Tx, 1(*t) = °I(t) and I(t*) = 1(t)°.
According to this definition, Fig. 5.1 in fact shows a X4 1-based concurrent

run. Figures 5.2 and 5.3 likewise show X4 o-based runs. A step u Loy is
additionally outlined in Fig. 5.4. With [denoting the labeling of Fig. 5.4,

I(u) 10, I(v) is the step {A4,C,E} % {B,C, E} of ¥,,. Figure 5.5 shows a

26 I. Elementary Concepts

A ready to produce a: produce
B : ready to deliver b: deliver
C: buffer empty C: remove
D: buffer filled d: consume
E : ready to remove

F : ready to consume

Figure 5.5. The unique maximal concurrent run of X ;

further example. Just like X4 1, and in contrast to X4 o, the net X 1 evolves
a unique maximal concurrent run.
The above definition meets the intuition of concurrent runs only as long
as no contact states occur (cf. Def. 3.4). We stick to such runs in the sequel.
Interleaved and concurrent runs of a net X' are tightly related: Each in-
terleaved run of a concurrent run of X represents an interleaved run of X.

5.5 Definition. Let X be a net, let K be a X' -based run with labeling I, and
let a C Pk be a state of K.

i. a:={l(p) | p € a} is the Y-state of a and a is said to represent a.

7. Let w = ag LN ai L2 be a K-based interleaved run such that Tk =

{t1,t2,...}. Then the sequence l(w) := dy M)a} 182 is called an

interleaving of K.

5.6 Lemma. Let X be a net.

i. Let K be a X-based concurrent run. Then each interleaving of K is a
X -based interleaved run.

1. Let v be a X-based interleaved run. Then there exists a unique X -based
concurrent run K such that v is an interleaving of K.

Proof of this lemma is left as an exercise for the reader.
Writing sets {X,Y, Z} as XY Z, the following are two examples of inter-
leaved runs of Xy o:

v, = ACES ADE % BDE % ADE% ACE % BCE % BDE, (1)

vy = ACE S ADE % BDE % BCE 2% ACE % BCE < BDE. (2)

6 Progress 27

There exists two interleaved runs w; and wy of the run of X4, given in
Fig. 5.2 such that v; = I(w1) and vy = I(w=).

Hence the concurrent runs of a net X partition the set of interleaved
runs of X into equivalence classes, where two interleaved runs v; and v are
equivalent iff there exists a concurrent run K of X with two interleaved runs
wy and wsy such that I(w1) = vy and I(ws) = vo.

6 Progress

Any description of algorithms usually goes with the implicit assumption of
progress. As an example, each execution of a PASCAL program is assumed to
continue as long as the program counter points at some executable statement;
intermediate termination at some executable statement is not taken into ac-
count. The situation is more involved for distributed algorithms. Progress is
usually assumed for most, but not necessarily all actions.

As an example, one may intend X ; not to terminate in a state s with
{ready to deliver, empty} C s, i.e., with deliver enabled. Likewise one may
want receive and consume not to remain enabled indefinitely. Not enforcing
produce may be adequate, however; this action may depend on components
not represented in Fig. 1.1. So one may be interested in runs that may neglect
progress of produce, but respect progress of all other actions.

6.1 Definition. Let X be a net and let t € T'x..

i. A X-based finite or infinite interleaved run w = ag i)a1 Ly neglects
progress of t iff some state a; enables t, and for no index j > i, t; € (°t)°.
it. A X-based concurrent run K with labeling | neglects progress of ¢ iff
I(K®) enables t.
iti. An interleaved or concurrent run r respects progress of t iff r does not
neglect progress of t.

The concurrent run in Fig. 5.1 respects progress of b and d, and neglects
progress of a and c. The infinite run outlined in Fig. 5.5 respects progress of
all actions of X1 1 A run r of the conflicting net X3 5 respects progress of all
its actions if a is the last action to occur in r, or if d and b occur infinitely
often and ¢ just once in r.

Progress is sensitive to loops. For example, Fig. 6.1 shows a net consisting
of two detached parts, and Fig. 6.2 gives a X 1-based concurrent run K. This
run obviously neglects progress of ¢ in K, because K can be extended, as in
Fig. 6.3.

The run K has a unique interleaving

w={A4,C}5{B,C}LH{A,C}%. .. (1)

which likewise neglects progress of ¢ in Xjg 1.

28 I. Elementary Concepts

B

Figure 6.1. A net consisting of two detached parts

@——fal—@ el @ e~
©

Figure 6.2. Y4 1-based concurrent run, neglecting progress of ¢

@@ bkl @
O c—®

Figure 6.3. Y4 1-based concurrent run, respecting progress of ¢

B

Figure 6.4. The door control system

6 Progress 29

Figure 6.4 now extends Y, by a loop (a,C), and Fig. 6.5 gives a Xg 4-
based concurrent run, K'. This run respects progress of ¢ very well. Unlike
the run K of Fig. 6.2, the run K' can not be extended by an occurrence of c,
because C is indefinitely engaged in the occurrence of a. Just like K, the run
K’ has a unique interleaving; furthermore, it is exactly the same interleaving
as K, given in (1). Each state of (1) is followed by an occurrence of action a.
This action conflicts with ¢ in X4 (a € (°c)®), hence (1) respects progress
of ¢ in 26.4-

To sum up, occurrence of progress respecting action ¢ in an interleaved
run w is not guaranteed by its persistent enabling (i.e., enabling in each state
of w, as of ¢ in (1), but only by its persistent and conflict free enabling.

The following interpretation of Xg 4 shows that this conduct of progress
perfectly matches intuition: Assume a crowd of people, occasionally passing
a gate (action a). Local state A is taken whenever a person is due to pass
the gate. Passage is feasible only in case the gate is not locked (state C).
Furthermore, a guard is supposed to lock the gate (action ¢). Locking and
passing the gate (actions a and c¢) are conflicting actions. Progress of a and
¢ just ensures that either of them will occur in the state shown in Fig. 6.4.

The run in Fig. 6.5 shows the case of continuous heavy traffic at the gate,
“preventing” the guard from closing the gate.

Figure 6.5. Y4 4-based concurrent run, respecting progress of ¢

Defs. 6.1(i) and 6.1(ii) of progress are closely related: K respects progress
of t iff each interleaving of K does:

6.2 Lemma. Let Y be a net, let K be a X-based concurrent run and let
t € Tx,. Then K respects progress of t iff each interleaving of K respects
progress of t.

Proof of this lemma is left as an exercise for the reader.
The assumption of progress resembles the well known assumption of weak
fairness for some action ¢. This assumption rules out an interleaved run w =

ag i)a1 2, . where for some n € N all states a,4; enable ¢, but no ¢,,4; is
equal to t.

Progress and weak fairness coincide for the case of loop-free systems. The
above example, however, shows a subtle difference in the case of loops: The
interleaved run w of (1) is not weakly fair for action c¢ in the net Xg 4, but w

30 I. Elementary Concepts

very well respects progress of ¢ in X4 4. Conversely, each progress respecting
interleaved run is weakly fair.

7 Fairness

Many distributed algorithms require the assumption of fairness for some
actions. Intuitively formulated, a single run r neglects fairness of some action
t iff t occurs only finitely often, but is enabled infinitely often in r. Such runs
will be discarded in case fairness is assumed for ¢.

Figure 7.1. Net with four progressing actions

Figure 7.1 shows a technical example. Let r be an interleaved or concur-
rent run of X7, respecting progress of all actions. Then a occurs and b is
eventually enabled in r. Either b eventually occurs in 7, or b is infinitely often
enabled in r. In the latter case, r neglects fairness for b.

7.1 Definition. Let X be a net and let t € T'x..

i. A X-based interleaved run w neglects fairness for ¢ iff t occurs only finitely
often in w and is enabled infinitely often in w.
it. A X -based interleaved run w respects fairness for t iff w does not neglect
fairness for t.
i1i. A X-based concurrent run K respects fairness of ¢ iff all interleavings of
K respect fairness of t.

An example is the infinite interleaved run of X7 1:

ADSBDSBESBDS . (1)

Action b is enabled in each occurrence of BD, hence infinitely often. Fur-
thermore, b never occurs in (1), hence (1) neglects fairness for b. Likewise,
the concurrent run K =

8 Elementary System Nets 31

® & -®

of ¥7.1 neglects fairness of b: The above run (1) is an interleaving of K. Each
finite prefix of (1) or (2) respects fairness of all involved actions, but neglects
progress of some action.

As a further example, the run shown in Fig. 6.5 of Xg 4, though respecting
progress for ¢, does neglect fairness for c.

(2)

8 Elementary System Nets

The previous chapters provided all means to model a great variety of distrib-
uted algorithms; in fact all algorithms which have a fixed topology, and are
governed by control rather than by values. Those means include local and
global states, actions and their occurrence, interleaved and concurrent runs,
assumptions of progress and quiescence, and fairness. A net that takes into
account all such aspects and additionally fixes a distinguished initial state,
is called an elementary system net:

8.1 Definition. A net ¥ is called an elementary system net (es-net, for
short) iff

i. a state axy C Py is distinguished, called the initial state of X,
1. each action t € Tx, is denoted as either progressing or quiescent,
1. some progressing actions may be distinguished as fair.

ready to ready to
deliver consume

buffer
filled

produce deliver .

. remove consume .

ready to buffer ready to
produce empty remove

Figure 8.1. Producer/consumer system, assuming quiescence for produce
and progress for all other actions

32 I. Elementary Concepts

The graphical representation of an es-net X' depicts each element of ay
by a dot (“token”) in the corresponding circle. Each square representing a
quiescent or a fair action is inscribed “¢” or “¢”, respectively. Figures 8.1
and 8.2 show examples. Behavior of es-nets can be based on interleaved as
well as concurrent runs.

waiting to
pass

returning n

gate closing gate
open closed

passed

Figure 8.2. The Door control system, assuming progress for passing, quies-
cence for returning and fairness for closing

8.2 Definition. Let X be an es-net.

1. A Y -based interleaved run w = ag LN ai 2, is an interleaved run
of X iff ap = ax and w respects progress of all progressing actions and
fairness of all fair actions of X.

it. A X -based concurrent run K with labeling | is a concurrent run of X' iff
I(°K) = ax, K respects progress of all progressing actions and fairness
of all fair actions.

Xs.1 assumes quiescence for produce and progress for all other actions.
Hence the runs of Yg; include the infinite run of Fig. 5.5 as well as all
its prefixes that leave produce enabled. It is easy to see that those prefixes
coincide with the prefixes K’ where [(K'°) is the initial state of X ;.

XYs.2 assumes progress for action passing, quiescence for action returning
and fairness for action closing. Fairness of closing implies that all runs of Xg o
are finite. Each run may terminate in state {passed, gate closed} (as returning
is quiescent), or may get stuck in state {waiting to pass, gate closed}, after
the occurrence of closing.

The following notions will be used frequently:

8.3 Definition. Let X be an es-net.

i. a C Py is a reachable state of X iff a is reachable from ayx.
ii. t € T’y is a reachable action iff t is enabled in some reachable state.

8 Elementary System Nets 33

i1i. X is conflict free iff no reachable state is a conflict state.
iv. X is contact free iff no reachable state is a contact state.

Es-nets considered in the sequel will usually be contact free.

8.4 Lemma. Let X be an es-net without quiescent actions. X' is conflict free
iff there exists exactly one concurrent run of X.

Proof of this lemma is left as an exercise for the reader.

II. Case Studies

The elementary concepts introduced in Chap. I suffice to adequately model
a broad choice of distributed algorithms. Such algorithms typically stick to
control flow of concurrent systems. Data dependent algorithms will follow in
Part B of this book.

We concentrate on modeling here. Formulation and proof of properties
will remain on an intuitive footing.

9 Sequential and Parallel Buffers

This case study extends the producer/consumer system of Fig. 8.1, extending
its one-item buffer to two cells. This can be done in sequential and in parallel
variants. Xy 1 gives the sequential solution: Two buffer cells are arranged
one after the other. A parallel solution is given with Yy ,. Being ready to

E

O

O,
E

A : ready to produce E : second buffer cell empty
B : ready to deliver F : second buffer cell filled
C : first buffer cell empty G: ready to remove

D : first buffer cell filled H: ready to consume

a : produce d : remove

b : deliver e : consume

Figure 9.1. Producer/consumer with sequential buffer cells

36 II. Case Studies

deliver (B), the producer may choose either of the two buffer cells (if both
are empty). If one or both are still filled, the producer may employ the empty
one or the one that gets empty next, respectively.

Figure 9.2. Nondeterministic producer/consumer with parallel buffer cells

Yoo is intuitively “more concurrent” than Xy (a notion which will be
made more precise later). But “overtaking” is possible in Xy 5. As an example,
the first buffer cell may be filled before, but emptied after the second one.

Figure 9.3. Deterministic producer/consumer with parallel buffer cells

Can the advantages of Y91 (no overtaking) and of Xy, (direct access
to empty buffer cells) be combined? Y9 3 shows that this is in fact possible:
Access to the buffer cells is organized alternately. But it remains to be shown
that Xy 3 is “optimal” in some sense: The producer is never given access to a

9 Sequential and Parallel Buffers 37

filled buffer cell while the other cell is empty. Nor is the consumer ever given
access to an empty buffer cell while the other one is filled.

Unique, formal description of such properties, as well as proof of their
correctness, are subject to Part C.

Some differences among Xy 1, Yo, and Yy 3 can be studied with the
help of their runs: Xy ; has exactly one maximal run (up to isomorphism, cf.
Sect. 2). Figure 9.4 shows an initial part of this (periodically structured) run.
Y9 3 has likewise exactly one maximal run, shown in Fig. 9.6.

Figure 9.5. A concurrent run of Xy o

Hence, both Yo ; and Yy 3 are deterministic (c.f. Lemma 8.4). In contrast,
the net Yy has infinitely many different maximal runs: Whenever condition
B holds, there is a choice between b and ¢. One of the runs of Xy 5 can be
gained from Xy 3’s run in Fig. 9.6 by skipping all occurrences of the conditions
J, K, L and M. A further, extremely “unfair” one is given in Fig. 9.5: the
first buffer cell is initially filled, but never emptied.

38 II. Case Studies

Figure 9.6. Initial part of the unique maximal concurrent run of Xy 3

10 The Dining Philosophers

Distributed systems often consist of subsystems which share scarce resources.
Such a resource (e.g., a shared variable) is accessible by at most one compo-
nent simultaneously. We consider a particular such system configuration, with
each resource shared by two subsystems, and each subsystem simultaneously
requiring two resources. E. W. Dijkstra illustrated this system by “philoso-
phers” and “forks” which stand for subsystems and resources, respectively.
We quote its first publication, [Dij71]:

“Five philosophers, numbered from 0 to 4 are living in a house
where the table is laid for them, each philosopher having his own
place at the table. Their only problem — besides those of philosophy
— is that the dish served is a very difficult kind of spaghetti, that
has to be eaten with two forks. There are two forks next to each
plate, so that presents no difficulty, as a consequence, however, no
two neighbors may be eating simultaneously.”

Our first goal is a representation of this system as an es-net, such that
the runs of the net describe the “meals” of the philosophers’ dinner party.

Figure 10.1 shows this es-net. The philosophers are denoted A,... , E.
Indices p, r, t, e stand for “picks up forks”, “returns forks”, “thinking”, and
“eating”, respectively. For i = 0,... .4, condition a; denotes that fork ¢ is
available for its users.

Each philosopher may start eating in the initial state. But neighboring
philosophers apparently compete for their shared fork.

A typical interleaved run of Yo is

10 The Dining Philosophers 39

Figure 10.1. The five dining philosophers

AP CP C’r‘ A’r‘ BP DP B’r‘ BP
ay — Q] —> a3 ——> a3 —> a4 ——> a5 ——> Qg —> A7 —> 4§ (1)
D, Ey, E, B,
—a9g——>a10 ——>a11 —> 412
with states aq, ..., a1 obvious from the context. Philosopher B eats twice in

this run, and every other philosopher just once. The final state, a2, coincides
with ay;.

Turning now to concurrent runs, it is convenient to introduce a shorthand
representation for pieces of runs. For philosopher A, call any occurrence of
an eating cycle of A. We represent each eating cycle of philosopher A

40 II. Case Studies

by
e 3)
/ \

The upper ingoing and outgoing arcs represent, the availability of fork 0,
the lower two arcs represent fork 1. “Thinking” is not explicitly represented
in (3).

- 7

A —————> B =B
\

/¥

Figure 10.2. A shorthand representation of a concurrent run of X'

NSNS

Eating cycles of other philosophers are likewise abbreviated. In order to
represent a concurrent run, those representations are composed in the obvi-
ous way. Figure 10.2 thus represents a concurrent run of Xy 1. In fact, the
interleaved run (1) is one of its interleavings.

In the sequel we distinguish a particularly fair kind of dinner, called decent
dinners:

Call a run of X191 decent iff neighboring philosophers alternate (4)

use of their shared fork.

The runs considered in (1) and in Fig. 10.2 are not decent, because B eats
twice consecutively. Hence the fork shared between A and B is not used
alternately. This applies correspondingly to the fork shared between B and
C.

With the shorthand convention of (2) and (3), Fig. 10.3 shows a concurrent
run of Xy that is apparently decent. Obviously, a decent concurrent infinite
run is uniquely determined by the first use of the forks.

10 The Dining Philosophers 41

glue glue, - - - -

SN N SO

/A\E/A\E A\E/A B
NSNS NS NS N
R A A
SN TN TN

glue glue 2

/B\ /
E/A\

/ AN

D

VD

1

Figure 10.3. Run K; of Yg1; employing shorthands as described in (3).
Occurrences of B must be identified in the obvious manner.

glue glue 2

NN SN SN SN S
SN NN N SN
N N AN A N N
//E\ /E\ /E\ /E\ /E\
SN TN TN TN

R I

Figure 10.4. Run K> of Y. Conventions as in Fig. 10.3

42 II. Case Studies

It is now quite interesting to ask how many different decent causal runs
exist for X1g1. In fact, K is not the only one. Another one, K>, is shown in
Fig. 10.4. The two runs K; and K> appear structurally quite similar, but they
represent, essentially different behavior. The difference can be described by
the relationship between occurrences of a philosopher’s eating cycle and the
concurrent occurrences of eating cycles of the non-neighboring philosophers:
They occur clock wise in K7 and anti-clockwise in K5. As an example, in K3
to each eating cycle of A there exist concurrent occurrences of cycles of C'
and D with C before D. Hence in K the left pattern of Fig. 10.1 occurs, and
in K, the right pattern.

N AN
N /N
N N
NN NN
/N /N
Figure 10.5. Different patterns in K; and K>

Are K; and K, the only decent causal runs of X.1? They are not, because
due to a “unlucky” choice of the first user of forks, there exist two further,
but “less concurrent” causal runs, one of which is shown in Fig. 10.6. The
runs K1, Ky and K3, together with the counterpart of K3 (the construction
of which is left to the reader), are in fact the only decent runs. They give
structural information on the behavior of Xg1, which can not be gained
directly from interleaved runs.

We turn finally to non-decent causal runs. Figure 10.7 shows an example,
K4, with philosophers A and C eating infinitely often, and the other philoso-
phers eating never. The run K4 sheds new light on the question whether or
not B has a chance to grasp his forks. This question is meaningful only if a
global view is assumed, allowing for a coincident view at the system’s con-
ditions which are represented by a; and as in (1). This assumption is not
fulfilled in a system with conditions a; and as locally distributed and with
philosopher B not being able to observe both together.

10 The Dining Philosophers 43

T
T T T T
P T P
R e e
PRI I D
A T T T

glue1 glue2 o

Figure 10.6. Run K3 of ¥ ;. Conventions as in Fig. 10.3

N N N N
Y Y Y Y
D 4 N 4 U 4 ¢

Figure 10.7. Run K, of X5 1. Conventions as in Fig. 10.3. Does B get a
chance to eat?

44 II. Case Studies

11 An Asynchronous Stack

In this section we develop a control scheme for an asynchronous pushdown
device (a stack). This stack has some properties (to be discussed later) which
no synchronously controlled stack can have.

A stack of size n is a sequence My,...,M, of modules. M; is called
the top, M, the bottom of the stack. For i = 2,...,n, the module M;
is the predecessor of M;, and M; is the successor of M;_1. All modules are
constructed according to the same scheme. Figure 11.1 depicts flow of control
in such module.

storing
from two to
predecessor values successor

S

quiet

)

to storing from
predecessor no successor
value

Figure 11.1. Flow of control in a module

In its quiet state, a module M stores exactly one value, v. Two alternative
actions may occur in this state: Firstly, some value w may arrive from M’s
predecessor module, yielding a state where M is storing two values v and w.
Then M propagates the previously held value v to the successor module and
returns quiet with value w. Secondly, M may send the stored value v to the
predecessor module, yielding a state where M is storing no value. Then M
requests some value from its successor module and returns quiet with this
value.

Figure 11.2 shows a stack consisting of four such modules. Push (action
ap) inserts a new value to the buffer, initiating wave-like driving of stored
values towards the stack’s bottom. The item stored at M, gets lost (at a4).
Likewise, pop (action by) removes an item from the buffer, thus initiating
wave-like popping up of stored values towards the stack’s top. My gets some
“undefined” value then (by b4). Each module is assumed to store this “unde-
fined” value initially.

It is intuitively clear that Xy s in fact models the control structure of a
properly behaved stack. It is also obvious how a stack of size n is extended to a

12 Crosstalk Algorithms 45

ap ag ay ag as

push :|—>O—> (— (—+ ()—»/D
top quiety quiet, quiety % bottom

bo by b, bs b,

Figure 11.2. Flow of control in the asynchronous stack with capacity for
four items

stack of size n+1, and that this kind of extension does not affect performance
at the top of the stack. Formal arguments specifying those properties and
proving them correct will be discussed in Sect. 55.2.

12 Crosstalk Algorithms

In a network of cooperating agents, each agent usually has a distinguished
initial state. Each time an agent visits its initial state, it completes a round,
and its next round is about to begin. A network of agents is said to run a
round policy (or to be round-based) if each message sent in the sender’s i-th
round is received in the receiver’s i-th round. Crosstalk arises whenever two
agents send each other messages in the same round.

In this section we show what round-based networks of asynchronous, mes-
sage passing agents may look like. Particular emphasis is given to the issue
of crosstalk.

terminate return

acknowledged

Figure 12.1. Actor and responder

To start with, Fig. 12.1 shows a network of two sites [and r (the left and
the right site, respectively) and a communication line that links both sites
together. In its quiet state, [may spontaneously send a message to r and

46 II. Case Studies

terminate

acknowledged

quiet;

acknowledged;

return;

Figure 12.2. Actor/responder sites: deadlock prone

terminate

pending;

quiet;

acknowledged;

return

Figure 12.3. Actor/responder sites: round errors possible

return

r

terminate ,

return

r

terminate ,

12 Crosstalk Algorithms 47

A quiet, D : quiet, a :act
B : pending, E : answered, c : echo,
C: sent, F : acknowledged, d : return,
K : answered, G: pending, e :act,
H: sent, f : crosstalk,
Figure 12.4. A run of X5 3
terminate; finished; return

pending; acknowledged , r

quiet; o quiet

answered;

acknowledged;

N
return; finished terminate

Figure 12.5. Round-based crosstalk

Inscriptions as in Fig. 12.4.
Additionally:

b : terminate,

L : finished;

Figure 12.6. Round of X5 5, with actor [and responder r

48 II. Case Studies

Figure 12.7.

terminate finished;

Crosstalk round of Yo 5

Inscriptions as in Fig. 12.6.
Additionally:

M finished,

g :return,

h : crosstalk,

return

pending; . acknowledged ,

quiet;

answered;

acknowledged;

r

return;

Figure 12.8.

N
finished -

Ordered crosstalk: first [, then r

terminate

12 Crosstalk Algorithms 49

terminate finished; return

r

quiet; o quiet

answered;

acknowledged;

N
return; finished terminate

Figure 12.9. Alternately ordered crosstalk

remains in the state pending until the receipt of an acknowledgment. Then [
terminates and moves to its quiet state, from where [may start action again.
Upon receiving a message site r echoes an acknowledgment, turns answered
and eventually returns to quiet, where r is ready to accept the next message.
This interplay of the two sites [and r may be described intuitively in terms
of rounds. A round starts and ends when both sites are quiet. But notice that
the site [may start its (i + 1)st round before site r has completed its i-th
round.

Now we plan to extend the two agents [and r so as to behave symmetri-
cally (motivated by issues not to be discussed here), i.e., r additionally may
play the role of a sender and [the role of a receiver.

The symmetrical extension X5 5 of X151 apparently fails, as the system
deadlocks in case both ! and r decide to act in the same round: The site [
in the state pending; expects a token on acknowledged,, but gets one on
sent, instead. In this situation, an obvious continuation was to accept the
token on sent, and to return along returned; to quiet;. This is achieved by
the action crosstalk; (and likewise crosstalk,) in Xi53. However, Xis3 is
not (yet) acceptable: One of its runs, given in Fig. 12.4, is apparently ill-
structured: The agent [is eventually offered an acknowledgment as well as a
message, and [by mistake assumes crosstalk. What actually happened may
be called a round error: The token on sent, belongs to the second round
of the system. It reaches | before [completed the first round, i.e., before [
properly accepted the first round’s acknowledgment.

50 II. Case Studies

This kind of error is ruled out in X5 5 by a further message. Intuitively,
this message may be understood as a “round end’ signal, with each message
sent in round ¢ being received in round . Formulated more precisely, a round
covers one of the following three sub-runs:

[sends a message to r. Upon receiving it, r returns an acknowl-
edgment to l. Then [signals finished;. Figure 12.6 shows this (1)
round.

Symmetrically to (1), r sends a message to I. Upon receiving it, [
: - (2)
returns an acknowledgment to r. Then r signals finished,..

Both [and 7 concurrently send messages to each other. Then [
and r both receive their partner’s message concurrently and each (3)
of them then returns finished. Figure 12.7 shows this round.

The basic concepts of X5 5 inevitably imply the chance of concurrent mes-
sages (concurrent occurrences of act; and act,.). Likewise, concurrent acknowl-
edged and concurrent finished messages may occur. However, there is always
at most one message under way from [to r, and likewise at most one from r
to [.

This works perfectly as long as [and r are linked by two physical lines,
one for messages from [to r and one for messages from r to [. However, if just
one line is available, X5 5 may cause mismatch: a message from [to r and a
message from r to [may meet on the line. As act; and act, are local, quiescent
actions, this mismatch can not be ruled out. It can however be detected and
fixed, provided each sent message, upon meeting some other message at the
line, is not entirely destroyed (but only arbitrarily corrupted). For this case,
X12.8 orders the occurrences of crosstalk; and crosstalk,: | acts before r and
consequently finished; is before finished,.. Augmenting tokens on finished
with the round’s original message then guarantees perfect communication.

For the case of crosstalk this system guarantees crosstalk; before the
corresponding crosstalk,. This is achieved by taking I’s round-end message
as a further precondition of crosstalk,.

This policy may be considered an unfair preference of [over r. A more
symmetrical solution is Y29, with alternating priority for crosstalk. This
system is symmetrical up to an initial bit, with the first crosstalk starting
with site [.

13 Mutual Exclusion

Mutual exclusion of local states in a network of cooperating agents is required
in a great variety of systems. A lot of phenomena and problems that are
typical for distributed systems occur in the attempt to model various concepts
and assumptions on mutual exclusion.

13 Mutual Exclusion 51

This section is intended to glance a couple of those concepts under the
aspect of properly modeling mutual exclusion algorithms. Means to formulate
and to prove properties of those algorithms will be discussed in Part C.

Two system components (sites) are assumed. Each of them includes a
particular (“critical”) state. The two sites must synchronize such that they
always are able to eventually go critical, but never are coincidently in their
respective critical state.

The mutual exclusion problem is the problem of constructing algorithms
achieving the two mentioned requirements. Various assumptions on the sites’
capabilities and on the available synchronization mechanisms motivate dif-
ferent solutions.

In the sequel we state the mutual exclusion problem in detail, several solu-
tions will be studied, and their respective advantages and their disadvantages
will be discussed.

13.1 The problem

Consider a system essentially consisting of two sites [and r (the left and the
right site). Each site is bound to a cyclic visit of three local states, called
quiet, pending, and critical, as shown in Fig. 13.1, with a quiescent step from
quiet to pending (where the sites’ states are indexed [and r, respectively).
Two properties are to be guaranteed: firstly, that [and r never be both
together critical (the mutual exclusion property), and secondly that each
pending component, eventually reaches critical and later quiet (the evolution

property).

a [q] critical; critical

quiet;

Figure 13.1. Basic components of mutex

A number of well-known algorithms solves this problem, coincidently re-
specting various additional requirements. For example, it is frequently re-
quired that the two sites [and r cooperate in a specific way only; they may
share variables or exchange messages or mutually inspect specific local states.
Additionally it may be required that a mutual exclusion algorithm is distrib-
utedly implementable. We refrain from a formal definition of this notion and
stick to an apparently necessary condition, the locality of fairness: A fair
transition together with its pre-set *¢# must belong to one site and only one

52 II. Case Studies

quiet; quiet,
Figure 13.2. The contentious mutex algorithm

place p € *t may be forward branching (i.e., p* 2 {t}). The partner site
may be connected to this place p in a reading mode at most, i.e., by loops
(p,t") only. This version of fairness is distributedly implementable because
conventional hardware guarantees that one site’s assignment to a variable is
not prevented by the other site’s iterated testing of the variable.

First we consider three deficient algorithms, thus pointing out the diffi-
culty of meeting mutual exclusion, evolution, and local fairness at the same
time. Then follow four “perfect” algorithms, each with its own merits, and
finally we consider two asymmetrical algorithms, granting the left site some
kind of preference over the right site.

13.2 The contentious mutex algorithm

Figure 13.2 shows an algorithm that in fact meets both requirements of mu-
tual exclusion and evolution. The local state key, however, can not be associ-
ated uniquely with one of the sites. Both sites compete for key and moreover
repeated conflict for key must be resolved fairly for both partners (as both
b; and b, are fair actions). Hence, additional global means are necessary to
install proper management of key nondeterminism. In technical terms, the
algorithm neglects locality of fairness for both b and b, and thus is not
distributedly implementable.

13.3 The alternating mutex algorithm

Figure 13.3 shows an algorithm that respects the requirements of mutual
exclusion and local fairness (as no fair transition at all is involved). However,
it neglects evolution. For example, the site r may eventually remain quiet, in
which case the site [may get stuck in its state pending. This algorithm may
be used in the case of greedy sites only, where both sites strive to go critical
as frequently as possible.

13.4 The state testing mutex algorithm

Figure 13.4 shows an algorithm with local states noncrit; and noncrit,, which
can be considered as flags, allowing the respective partner to go into its critical

13 Mutual Exclusion 53

message ;-

-©®

(e

N
message

Figure 13.3. The alternating mutez algorithm

state. Upon moving to critical along b;, the site [tests the flag noncrit, and
coincidently removes its own flag noncrit;. Occurrence of the action b; may be
prevented forever by infinitely many occurrences of b,.. Hence the assumption
of fairness is inevitable for b;.

The pre-set *b; of b, however, has two forward branching elements,
noncrit; and noncrit,., thus violating the requirement of local fairness.

pending; ‘ pending,

Figure 13.4. The state testing muter algorithm

13.5 The token-passing mutex algorithm

Figure 13.5 shows an algorithm based on message passing. The essential con-
cept of the mutex algorithms in Fig. 13.5 is a token that at each reachable
state is helt by one of the sites. A site may go critical only while holding the
token. The site without token may gain it on demand. In X35, the token
is initially helt by site [in the local state avail;. With the token in avail;,
the site [is able to move immediately from pending; by action a to critical;.
With action e the site [then returns from critical; to quiet; and makes the
token again available for [. Furthermore, [may receive a request for the token
sent by the site r along requested;. Fairness of ¢ guarantees that ! eventually
sends the token to granted, and coincidently turns silent;. The request sent

54 II. Case Studies

by site r along requested; is due to an occurrence of action h. Hence site r
is at waiting, until the token on granted, arrives.

quiet; pending; pending, quiet,

© @O O« @+ ®

availl requestedl requestedr availr

c ﬂ#‘ .&ﬂ
! W’

granted; granted,

criticaly critical

Figure 13.5. A token-passing mutex algorithm

Occurrence of action k then brings the site r to critical,. Site | may
meanwhile be pending again. As site r is now the owner of the token, site [
is in silent; and may send a request to r by occurrence of b.

The two sites [and r are structurally symmetrical. The initial state, how-
ever, is not symmetrical, as site [initially carries the token (at avail;), whereas
site r is at silent,. Site [(and likewise site) is no sequential machine. Actions
f and ¢ (actions n and j in site r) may very well occur concurrently.

The two sites cooperate by message passing, with two types of messages
(requested and granted) in each direction. Site [has one fair action, ¢. The
corresponding conflict place avail; is not even read by site r. Symmetrically,
the conflict places of j is avail,., not read by I.

Site [is fault tolerant with respect to actions a and b. Site r’s iterated
access to critical, is not affected in case a or b maliciously remains enabled
forever.

13 Mutual Exclusion 55

13.6 The round-based mutex algorithm

The ordered crosstalk algorithm X5 g can be extended to an algorithm for
mutual exclusion, as shown in Fig. 13.6. The ordered occurrence of crosstalk;
and crosstalk, in X5 g implies that finished; and finished, never carry
a token at the same time. X3¢ refines finished; into crit;, action n and
terminated;.

quiet;

terminated;

served;

terminated,

Figure 13.6. A round-based mutex algorithm

finished, is refined correspondingly. Local states and actions of Xg g
are re-named according to their new role in X34, and further components
(quiet;, m, pendl;, quiet,, p, pendl,) are added, providing the elements as
required in Fig. 13.1. The system X34 operates in rounds: Wanting to go to
critical, site [sends a request to site r by action a and remains in pend2; until
site r reacts with a token on either granted, or requested,. Site | becomes
critical in both cases by occurrence of action b or action j, respectively. Site
r likewise may send a request to [by action g, then r remains in pend2,
until site ! reacts with a token on granted; or requested;. Site r becomes
critical in the first case by action h. The second case occurs in the situation
of crosstalk, where both sites strive at their respective critical state in the
same round. Site r has to wait in this case until [leaves crit; and sends a
token to terminated;.

56 II. Case Studies

The two sites [and r are structurally not symmetrical: [precedes r in case
of crosstalk. Site [is no sequential machine, as n may occur concurrently to
e and f. In site r the action ¢ may likewise occur concurrently to ¢ and d.

Fairness of action a guarantees that site [in state pend; will eventually
become critical. The corresponding conflict place, local;, is not read by site
r. Symmetrically, the conflict place local, of the fair action g of site r is not
read by site [.

Site [is fault tolerant only with respect to action a. Due to the round-
based nature of the algorithm, each step of site r to crit, must explicitly be
granted by [. Vice versa, each step of [to crit; must be granted by r.

13.7 Peterson’s mutex algorithm

The following algorithm X3 7 is based on two flags (as already used in X3.4)
and a token that is shared by the two sites [and r, and held by one of [and
r at any time (as in Xy35). The algorithm was first published in [Pet81] in a
programming notation.

finished; finished,

Figure 13.7. Peterson’s mutex algorithm

The flag finished; signals to the site r that the site [is presently not
striving to become critical. This allows the site to “easily” access its critical
region, by the action p. Likewise, the flag finished, allows the site [to access
its critical state, by the action f. The shared token alternates between at;
and at,.. The step from pendl; to pend2; results in the token on at;: by action
c in case | obtains the token from at,, or by action d in case [held the token
anyway.

13 Mutual Exclusion 57

The step from pendl, to pend2, likewise results in the token on at,.. Hence
the token is always at the site that executed the step from pendl to pend2
most recently.

After leaving quiet; along the quiescent action a, the site [takes three
steps to reach its critical state critical;. In the first step, the fair action b
brings [from pend0; to pendl; and removes the flag finished;. Fairness of
b is local, because *b = {pend0;, finished;} is local to [, with finished; the
only forward branching place in *b, which is connected to the right site, r, by
a loop (finished;, p). The second step, from pendl; to pend2;, results in the
shared token on at;, as described above. The third step brings I to critical;,
with action f in case site r signals with finished, that it is presently not
interested in going critical, or with action e in case the site » more recently
executed the step from pendl, to pend2,. The algorithm’s overall structure
guarantees that one of finished, or at, will eventually carry a token that
remains there until eventually either f or e occurs.

The two sites I and r are structurally symmetrical, but the initial state
favors the right site.

13.8 Dekker’s mutex algorithm

The following algorithm X3¢ is a variant of Peterson’s algorithm Xy3.7. It
employs the same two flags finished; and finished,., and likewise shares a
token, that is either on at; or at, at any time. The essential difference to
Y13.7 is the time at which the shared token is adjusted: The token is moved
to at; before [becomes critical in Y37, whereas the token is moved to at;

finished; finished,

terminated; terminated,

Figure 13.8. Dekker’s mutez algorithm

58 II. Case Studies

after [has been critical in X;35. In case the site r has not raised its flag
finished,, the step from pendl; to critical; with action d depends not only
on the shared token in at, but also on the local state pendl, of site r.

13.9 Owicki/Lamport’s mutex algorithms

Different sites may be given different priorities, hence different access policies
to their respective critical regions. A typical example is a system of a writer
and a reader site of a shared variable: Whenever prepared to update the vari-
able, the writer may eventually execute this update in its critical state. The
reader may be guaranteed less: Whenever pending for reading the variable,
the reader will eventually get reading or the writer will eventually update the
variable. Hence the reader may start to access its critical state in vain.

writer
b involved f

Figure 13.9. Owicki/Lamport’s mutez algorithm

XY13.9 shows this algorithm. It uses three flags: The flag writer detached
signals to the reader that the writer is presently not striving to become
writing. The flag reader detached likewise signals to the writer that the
reader is presently not striving to become reading. The flag writer involved
is just the complement of writer detached: Exactly one of them is visible at
any time.

After finishing the production of a new value along the quiescent action
a, the writer takes two steps to reach its critical state, writing. In the first
step, the fair action b just swaps the flag writer detached to writer involved.
Fairness of action b is apparently local. The second step brings the writer to
its critical state, writing, along the action ¢. The overall structure of the
algorithm guarantees that the flag reader detached eventually remains until
¢ has occurred.

13 Mutual Exclusion 59

After using the previous value of the shared variable, the reader may be-
come pending for a new value along the quiescent action e. It takes the reader
two steps to reach its critical state, reading. Neither of them is guaranteed
to occur. Furthermore, the reader in the intermediate state pend2 may be
forced to return to pendl. By the first action, f, the reader removes the
reader detached flag. Tterated occurrence of action ¢ may prevent the oc-
currence of f (by analogy to the door closing problem of Xg 4). The second
step, from pend2 to reading with action g, is possible only in case the writer
is detached. In case the writer is involved instead, action j releases the flag
reader detached, allowing the writer to proceed. The reader remains in state
failed until the writer is detached. In this case, the reader may proceed to
pendl and start a further attempt to get reading.

13.10 The asymmetrical mutex algorithm

Y13.10 shows a further asymmetrical mutex algorithm that does without any
assumption of fairness. Just like the previous algorithm, the prepared writer
will eventually proceed to writing. The writer, however, may update each
newly written value and prevent the reader from reading any value.

prepared b e granted f pending

requested

available

producing c returned ¢} using

Figure 13.10. The asymmetrical mutez algorithm

The algorithm uses three types of messages: requested and returned sent
from the reader to the writer and granted sent from the writer to the reader.

After finishing the production of a new value along the quiescent action
a, the writer takes either a step via action b or one via action d, to reach
its critical state, writing. A token on available represents the previously
written value which not has been read by the reader. Action b or d may yield
an updated value. A token on returned represents control over the shared
variable returned from the reader to the writer, after the reader has read the
previous value. Actions a and d then yield a new value.

Along the quiescent action h, the reader, after finishing the use of the
previously read value, sends a request for an updated value to the writer.
Upon granting a new value along action e, the reader starts reading. However,
it may happen that the reader remains stuck in its local state pending forever:

60 II. Case Studies

The writer either remains producing forever, or the writer produces infinitely
many new values and neglects fairness for the action e. The assumption of
fairness would help in the latter case.

14 Distributed Testing of Message Lines

Assume a starter process s and two follower processes, [and r (the left and
the right process, respectively). All three processes are pairwise connected
by directed message lines. Figure 14.1 outlines this topology. Each message
passing through a line suffers a finite, but unpredictable delay. Processes
communicate along those lines only.

starter

follower follower

Figure 14.1. Topology of message lines

A distributed algorithm is to be constructed, to enable the starter s to
quickly test proper functioning of all message lines. A message line is tested
by a test message passing through the line.

start starter starter
of starter waiting terminated
() -
W/

O tol from 1
tor

Figure 14.2. Behavior of the starter process s

from r

Figure 14.2 shows the starter’s behavior: s sends test messages to both
l and r, and remains pending until receiving test messages from both [and
r. Figure 14.3 shows the behavior of the left process [: It starts by receiving
a message from s or from r. In the first case, [sends a message to r and
remains waiting for a message from r. Upon receipt of this message, [sends
a message to s and terminates. In the second case, after receipt of a message
from r, process [sends a message to s and remains waiting for a message

14 Distributed Testing of Message Lines 61

waiting
forr

gtfalrt ‘ [terminated

Figure 14.3. Behavior of follower process [

starter waiting

start of ° 1 7\ 1 starter

starter L _/ terminated
fromltos

start .

of 1 @>< ‘»ﬂ‘ L terminated

fromstor

start

of r r terminated

waiting for s

Figure 14.4. Test algorithm for network (1) (with boldfaced arcs for agents
starter, left, and right)

62 II. Case Studies

from s. Upon receipt of this message, [sends a message to r and terminates.
Finally, s terminates, too.

It is easy to see that each process terminates only after a test message
has passed through all adjacent message lines. We will prove later on that
the starter in fact will terminate and that its termination is preceded by
termination of both follower processes.

Part B
Advanced System Models

Part A introduced a formalism coping with the essentials of concurrency. Its
expressive power will be increased in this part, allowing the integration of
data structures and the concise representation of unhandily large elemen-
tary net systems. A technique for modeling real, large systems results. Two
aspects will govern this procedure: Firstly, new concepts are introduced as
specializations (refinements) of existing ones. Hence, all notions already in-
troduced translate canonically to the new case. Secondly, powerful analysis
techniques should be available for the new formalism. Such techniques will
be presented in Part D.

III. Advanced Concepts

This chapter provides the central basis of the modeling technique of this
book: the concept of system nets.

The step from elementary to general system nets can be understood in
two different ways. Firstly, as a generalization: While elementary system nets
stick to (distributed) control structure, general system nets additionally pro-
vide data structures. Technically, the dynamic elements (tokens) in a net are
no longer black dots, but any kind of data.

The second view of general system nets conceives them as shorthand or
concise representations of elementary system nets: Multiple occurrences of
similarly structured subnets are folded to a single net structure. Its various
instances (unfoldings) are characterized by inscriptions of the net elements.
This approach is particularly suitable, because all notions and concepts of es-
nets translate canonically to system nets. It goes without saying that it is in
general not intended to unfold a system net explicitly. Any kind of reasoning
on system nets will be executed without explicit unfolding.

15 Introductory Examples

Three motivating examples will be presented in this section. Technical details
follow in Sect. 16.

15.1 The producer/consumer system revisited

We return to the very first net model of a producer/consumer system, as dis-
played in Figs. 1.1 and 8.1. This net describes production, delivery, removal,
and consumption of anyitem. No concrete, specific item has been named. Now
we assume a specific item, a; Figure 15.1 represents the producer/consumer
system for the object a. In the state shown, the action produce a is enabled,
and its occurrence yields the state shown in Fig. 15.2. Due to the inscription
“a” at the arc linking produce a and ready to deliver a, the token to occur at
ready to deliver a is no longer a black dot, but the item a. The action deliver
a is enabled in this state, because the two ingoing arcs start from local states
that carry items according to the arcs’ inscriptions: buffer empty carries a

66 IIT. Advanced Concepts

ready to ready to
deliver a consume a

buffer filled
with a

ready to buffer empty ready to
produce remove

Figure 15.1. Producing and consuming objects of sort a

ready to ready to
deliver a consume a

buffer filled
with a

ready to buffer empty ready to
produce remove

Figure 15.2. After occurrence of produce a

ready to ready to
deliver a consume a

buffer filled
with a

ready to buffer empty ready to
produce remove

Figure 15.3. After occurrence of deliver a

15 Introductory Examples

ready to ready to
deliver b consume b

buffer filled

produce b with b remove b

deliver b consume b

ready to ready to
deliver a consume a

buffer filled
with a

ready to buffer empty ready to
produce remove

Figure 15.4. Producing and consuming objects a or b

item ready to be item ready to be
delivered consumed

buffer filled
with x

remove X

consume X

ready to buffer empty ready to
produce remove

x O{a,b}

Figure 15.5. Producing and consuming any kind of items

67

68 IIT. Advanced Concepts

ready to ready to
deliver x consume x

buffer filled
with x

remove X

consume X

ready to buffer empty ready to
produce remove

x O {a, b}

Figure 15.6. After occurrence of produce x with x = a in Y55

black dot as required by the uninscribed arc, and ready to deliver carries the
item a as required by the inscription a. The occurrence of deliver a then re-
veals the state shown in Fig. 15.3. Both actions produce a and remove a are
enabled in this state. The occurrence of produce a would cause the second
appearance of “a” at ready to deliver a. The occurrence of remove a would
enable consume a in the obvious way.

Figure 15.4 now extends Y51 to enable the treatment of a second item, b.
In the state shown, there is a choice between produce a and produce b. Choice
of produce a would cause the behavior described above. Choice of produce b
would correspondingly cause processing of the item b.

The es-net X154 can be represented concisely as a system net, shown in
Fig. 15.5.

The place item ready to be delivered of X5 5 represents the two local states
of X15.4, ready to deliver a and ready to deliver b. The inscription “a” of this
place, as in Fig. 15.2, indicates a state that contains ready to deliver a. The
other places of X5 5 represent local states of X5 4 in the obvious way.

The transition produce x of X5 5 likewise represents the two actions pro-
duce a and produce b of X5 4. Instantiation of the variable z by a concrete
item, a or b, yields the corresponding action. Its occurrence produces a state,
represented as described above. As an example, occurrence of produce a in
X155 yields the state that corresponds to X5, and is represented in X5 6.

15.2 The dining philosophers revisited

Plain variables, as employed in Sect. 15.1, don’t help in all cases. As an
example, we return to the system of thinking and eating philosophers, as
introduced in Sect. 10. For the sake of simplicity we stick to the case of
three philosophers, and for reasons to become obvious soon, we redraw the
corresponding es-net, as shown in Fig. 15.7.

15 Introductory Examples 69

a thinking

®

b thinking

®

are-
turns
forks T

a picks up

c thinking ~ forks

e
q b picks|
- f, available -

f3 available

bre-
turns |;
forks

(_
o

®

¢ picks up

c eating

b eating

@

a eating

Figure 15.7. The system of three philosophers

We strive at a more concise representation of the system by exploiting
its regular structure. The essential idea is to represent a set s of local states
with “similar” behavior as a single place p and likewise a set of actions with
“similar” behavior as a single transition.

As an example, the three local states “a is thinking”, “b is thinking”, and
“c is thinking” in Y57 may be assigned the place “thinking philosophers”.
A state with a and b thinking and ¢ not thinking then corresponds to a state
where “thinking philosophers” is inscribed with a and b, but not with c. a
and b are then in the actual extension of the place “thinking philosophers”,
whereas c is not.

In the framework of es-nets, the local states may change upon the oc-
currence of actions. This corresponds to a change in the extension of the
corresponding place.

Figure 15.8 shows a corresponding net: The local states of Y57 are now
clustered into three places, “thinking philosophers”, “available forks”, and
“eating philosophers”, respectively. The extension of each place is given by its
inscription. Each action is now to indicate the items affected by its occurrence.
This is achieved by inscriptions of the corresponding arcs. As an example,
the inscriptions of the arcs adjacent to “a picks up” in X5 g indicate that
upon the occurrence of this transition, the forks fi; and f3 leave “available

70 IIT. Advanced Concepts

thinking philosophers

a 2b a
b b
are-
turns c c
I: 5 f3 qj
f available forks f a picks
up
f, f1
bre- f f2
turn 2 fy f f2 n
% 3
3 b picks
cre- up
]
¢ picks
up
a b c b a
=

eating philosophers

Figure 15.8. Representation using predicates

forks”, and likewise the philosopher a leaves “thinking philosophers” and
enters “eating philosophers”.

In a further transformation, and for reasons to become obvious shortly,
we replace the inscriptions of X;5g as shown in Fig. 15.9: The two forks
employed by any philosopher z are denoted by I(z) and r(z). Hence, [and
r represent functions, assigning each philosopher z his left and right fork,
respectively.

In a final step, a set of actions is folded to a single transition. As an
example, the three actions “a picks up”, “b picks up”, and “c picks up” of
X15.9 are represented by the transition “pick up” in Fig. 15.10. Return of
forks is represented correspondingly.

The instance of a distinguished action (e.g., “a picks up”) is in the folded
version represented by an assignment of concrete items to the variables oc-
curring at the surrounding arcs. As an example, “a picks up” corresponds in
X15.10 to the assignment of a to the variable x. In fact, this assignment yields
the inscriptions of arcs surrounding “a picks up” in Xj5.9.

With X519 we have obtained a more abstract and general representation.

15.3 The distributed sieve of Eratosthenes

Here we consider the well-known example of identifying the prime numbers
in a set of integers, according to the Sieve of Eratosthenes. The conventional

15 Introductory Examples 71

thinking philosophers

= ab

are-
turns

available forks

c
N4
eating philosophers
P={a,b,c} L(a) = r(b) =f;
G={fy .fy 3} L(b) =r(c) =f
Ir:P- G I(c) =r(a) =f3

Figure 15.9. Representation using functions

thinking philosophers
X X P={a,b,c}
G={fy.fo.f3}
available Lr:P- G
(X 1(x ! X : variable over P
return %% q BICK

r(x) — r(x) P L(a) = r(b) =f
o L) = 1(0) =F,
I(c) = r(a)=f3

eating philosophers

Figure 15.10. Representation using parameterized actions

72 IIT. Advanced Concepts

procedure traverses the numbers from 2 to n, erasing all multiples of 2. In a
second path, all remaining multiples of 3 are erased. Generally, the i-th path
erases all remaining multiples of the remaining (i + 1)-st number.

There is apparently no need to erase multiples of numbers in any partic-
ular order. The following requirements suffice for erasing all products: Each
number k may “see” any other number and may erase it, provided it is a mul-
tiple of k. Whenever no further erasing is feasible, the remaining numbers are
in fact the prime numbers between 2 and n.

Figure 15.11. The distributed sieve of Eratosthenes for n = 10

Figure 15.11 shows an es-net of this system for the case of n = 10: All
numbers 2, ..., 10 belong to the initial state. The prime numbers 2,3, 5, and
7 belong to each reachable state: They are either engaged only in loops (i.e.,
2,3,5) or in no action at all (i.e., 7). 4 is eventually erased, but may be
engaged in erasing (i.e., 8) before being erased (by 2). There is a unique
number, 3, to erase 9. Numbers 6, 8 and 10 may be erased alternatively by
two numbers, respectively.

16 The Concept of System Nets 73

actual k,i : variables over nat
erase L
numbers «: multiplication in nat

Figure 15.12. The distributed sieve of Eratosthenes for any number n

Figure 15.12 shows the folded version for any number, n: actual numbers
initially carries all numbers from 2 to n. Transition erase is enabled
whenever some number k and some multiple i - k of k£ (for i > 1) is
present in actual numbers. Both k and ¢ - k are removed, and k returns
to actual numbers.

15.4 Conclusion

The above introductory examples followed a simple idea to concisely rep-
resent elementary system nets: Firstly, the local states are partitioned into
several classes. Each class is then “folded” to a single place. Such a place con-
tains particular items, representing the local states in the corresponding class.
Likewise, the actions are partitioned into classes, and each class is folded to
a single transition. Inscriptions of the adjacent arcs describe the actions in
the corresponding class. A distinguished action can be regained by evaluating
the variables involved (i.e., by replacing them with constants). Nets of this
kind are examples of system nets.

A formal framework for system nets has to establish the relationship be-
tween syntactical inscriptions (terms), at arcs and places, and their concrete
semantical denotation. This relationship of syntax and semantics is mathe-
matically well established, belonging to the basic concepts of computer sci-
ence. Furthermore, it is intuitively obvious, as the above examples show. At
first reading one may therefore proceed to Sect. 17 immediately.

16 The Concept of System Nets

The conceptual idea of system nets is quite simple: Each place of a system
net X represents a set of local states and each transition of X' represents a
set of actions. The sets assigned to the places form the underlying universe:

16.1 Definition. Let X be a net. A universe A of X' fixes for each place
p € Py a set Ay, the domain of p in A.

For example, in Fig. 15.10 the domain of thinking philosophers and of
eating philosophers is the set of philosophers, and the domain of available
forks is the set of forks.

74 IIT. Advanced Concepts

An actual state fixes for each place a subset of its domain. An action
correspondingly fixes the degree of change caused by its occurrence:

16.2 Definition. Let X be a net with a universe A.

i. A state a of X assigns to each place p € Py, a set a(p) C Ap.
it. Let t € Tx;. An action m of ¢t assigns to each adjacent arc f = (p,t) or

f=1(t,p) a set m(f) C Ap.

In fact, the state of X519 as shown in Fig. 15.10 assigns to thinking
philosophers the set {a,b}, to available forks the set {f1} and to eating
philosophers the set {c}. A typical action m of return in X519 was given
by m(eating philosophers, return) = m(return, thinking philosophers) = {c}
and m(return, available forks) = {fa, f3}.

Concession and effect of actions, and the notion of steps, are defined in
correspondence to Def. 3.1:

16.3 Definition. Let X be a net with some universe A, let a be a state, let
t € Ty, and let m be an action of t.

i. m has concession (is enabled) at a iff for each place p € *t, m(p,t) C a(p)
and for each place p € t*, (m(t,p) \ m(p,t)) C A, \ a(p).
it. The state eff(a,m), defined for each place p € Py by

a(p) \ m(p, t) iff p € *t\t°,

_ Jalp)Um(t,p) iff pet**t,

@ m®) =)\ mp.) Um(tp) i pe e,
a(p) otherwise,

is the effect of m’s occurrence on a.
iii. Assume m is enabled at a. Then the triple (a,m,eff(a,m)) is called a
step of t in X, and usually written a — eff (a,m).

The action m described above of the transition return is enabled at the
state shown in Fig. 15.10 (m is moreover the only enabled action). Its occur-
rence yields the state with all philosophers thinking, all forks available, and
no philosopher eating.

Steps may be described concisely by means of a canonical extension of
actions:

16.4 Proposition. Let ¥ be an es-net, let t € T's;, and let a—=b be a step of
t. For all (r,s) € F;, extend m by m(r,s) := 0. Then for all places p € Ps;,

b(p) = (a(p) Um(t,p)) \ m(p,t).

System nets are now defined by analogy to elementary system nets in
Sect. 8: A net with a domain for each place and a set of actions for each
transition is furthermore equipped with an initial state, and distinguished
subsets of quiescent and fair transitions.

17 Interleaved and Concurrent Runs 75

16.5 Definition. A net X' is a system net iff

i. For each place p € Px, a set A, is assumed (i.e., a universe of X),
ii. for each transition t € Ts;, a set of actions of t is assumed,
i1i. a state ay is distinguished, called the initial state of X,
w. each transition t € T'x, is denoted as either progressing or quiescent,
v. some progressing transitions are distinguished as fair.

The introductory examples in Sect. 15 employ a particular representation
technique for system nets: The initial state is given by place inscriptions, and
the actions of a transition are given by the valuations of the variables as they
occur in arc inscriptions. Details will follow in Sect. 19.

17 Interleaved and Concurrent Runs

Interleaved runs of system nets can be defined canonically as sequences of
steps. There is likewise a canonical definition of concurrent runs, correspond-
ing to Def. 5.4.

Based on the notion of steps given in Def. 16.3, interleaved runs are defined
by analogy to Def. 4.1:

17.1 Definition. Let X be a system net.

i. Fori=1,...,n assume steps a;_1 —> a; of ¥. They form a X-based
finite interleaved run w, written ap —= a1 —2 ... =2 a,. Each i €
{0,...,n} is an index of w.

. For i =1,2,... assume steps aj_1 —» a; of X. They form a X-based
infinite interleaved run w, sometimes outlined ag I 0y =22 ... Each
i € N is an index of w.

For example, Fig. 17.1 shows an interleaved run of X5 15 for the case of
n = 10: Each state a is represented by listing a(A4) in a column. Each action
m is represented as a pair (k,[), with m(A,t) = {k,l- k} and m(¢, A) = {k}.

2 2 2 2 2 2
3 3 3 3 3 3
4 52) 4 (33 4 (42) 4 (82 4 (22 5
5 T 5 T 5 T 5 5 7
6 6 6 6 7

7 7 7 7

8 8 8

9 9

10

Figure 17.1. Interleaved run of X5 12

76 IIT. Advanced Concepts

Reachable steps, states and actions are defined in analogy to Def. 8.3:
17.2 Definition. Let X be a system net.

A step a5 b of ¥ is reachable in X iff there exists a finite interleaved
mi mao Mn - Mn m

TUN Ay — A1 — A2 — . .. — Ap—1 — A, With ap—1 —=a, = a—b.

A state a of X is reachable in X iff a = ax or there exists a reachable

step formed b—>a.

An action m is reachable in X iff there exists a reachable step formed
m

a—b.

.

~.

.

~.

a

ONONC)

Al

with T : thinking philosophers
A : available forks
E : eating philosophers

®

t : pick up

u:return

Figure 17.2. Concurrent run of X5 19

Concurrent runs are now defined in two stages: Firstly, each action m
is assigned an action net, representing the action’s details in terms of an
inscribed net. In a second step, those nets are “glued together”, forming a
concurrent run.

17.3 Definition. Let X be a system net, let t € T’s;, let m be an action of t,
and let N be an injectively labeled net with Ty = {e}. Furthermore, assume
Ie) = (t,m), 1(*¢) = {(p,a) | p € *t, and a € m(p, 1)}, 1(e*) = {(p.a) | p €
t*, and a € m(t,p)}. Then N is an action net of X' (for m).

For example,

17 Interleaved and Concurrent Runs 77

with T : thinking philosophers
A : available forks
E : eating philosophers
r:return (1)

@ o

9(%@;

is an action net for the action m of X510 with m(E,r) = {c}, m(r, 4) =

{f2, f3} and m(r,T) = {c}.

17.4 Definition. Let X be a system net and let K be an element labeled
occurrence net. K is a X-based concurrent run iff

i. in each concurrent state a of K, different elements of a are differently
labeled,
ii. for each t € Tx, (*tUt®, {t},*t x{t} U {t} x t*) is an action net of X.

As an example, Fig. 17.2 shows a concurrent run of Xi519. The in-
volved actions m and m' are obvious from the context. As a further example,
Fig. 17.3 shows a concurrent run of X5 12 for the case of n = 10. Each place
label (A,1) is depicted by i and each transition label (¢,m) is represented as
a pair (k,l) with m(A,t) = {k,k -1} and m(¢, A) = {k}.

|
&

52

Q01019199

9

Figure 17.3. Concurrent run of X5 12 (place inscriptions (4,¢) and transi-
tion inscriptions (¢, (k,%)) are represented by 4 and k, 4, respectively.)

78 IIT. Advanced Concepts

18 Structures and Terms

System nets have been represented in Sect. 15 by means of sorted terms.
Such terms ground on structures. This section provides the formal basis for
structures and terms.

We first recall some basic notions on constants and functions:

18.1 Definition. Let Aq,..., A be sets.

i. Let a € A; for some 1 < i < k. Then a is called a constant in the sets
Aq,..., A and A; is called a sort of a.

it. Fori=1,... ,n+11let B; € {A1,...,Ax}, andlet f:B; X ... x B,, =
By,+1 be a function. Then f is called a function over the sets Ay,... , Ag.
The sets By, ... ,By are the argument sorts and By @s the target sort
of f. The n + 1-tuple (By,...,Bpt1) is the arity of f and is usually
written B; X ... X By, = Bp41.

For example, in Fig. 15.10, b is a constant in P and G of sort P. Further-
more, [is a function over P and G with one argument sort P and the target
sort G. Its arity is P — G.

A structure is just a collection of constants and functions over some sets:

18.2 Definition. Let Aq,...,A; be sets, let ay,...,a; be constants in

Ay, ... A and let fi,.. ., fm be functions over Ay, ..., Ai. Then
A:(Ala"'7Ak;a17"'7al;fla"'7fm) (1)

is a structure. Aq,..., Ay are the carrier sets, aq,...,a; the constants, and

fi,--+, fm the functions of A.

In fact, the system nets Y54 and X5 are based on structures. The
structure for the philosophers system X5.1¢ is

Phils = (P,G;a,b,c; f1, fa, f3;1,7) (2)

with P,G, 1, and r as described in Fig. 15.10. Hence this structure has two
carrier sets, six constants, and two functions.

The structure for the concurrent version of Eratosthenes’ n-sieve X;5 12
is

Primes = (N;2,... ,n;+) (3)

with N denoting the natural numbers, 2,... ,n the numbers between 2 and
n for some fixed n € N, and - the product of integers. Hence this structure
has one carrier set, n — 1 constants, and one function.

The composition of functions of a structure can be described intuitively by
means of terms. To this end, each constant a of a structure A is represented
by a constant symbol a and likewise each function f of A by a function symbol
f. (This choice of symbols is just a matter of convenience and convention.
Any other choice of symbols would do the same job). Furthermore, terms
include variables:

18 Structures and Terms 79

18.3 Definition. Let A = (Ay,... ,Ar;a1,... a5 f1,..., fm) be a struc-
ture.

i. Let Xq,..., X} be pairwise disjoint sets of symbols. For x € X;, call A;
thesortof x (i =1,... k). Then X = X; U...UX}, is a set of A-sorted
variables.

it. Let X be a set of A-sorted variables. For all B € {Ay,..., A} we define
the sets Tp(X) of terms of sort B over X inductively as follows:

a) X; C Ty,
b) for all 1 <i <1, if B is the sort of a; then a; € Tg(X).
¢) Forall1 <i<m, if Bl X ... x B, = B is the arity of f; and if
t; €Tp;(X) (j =1,...,n) then £(t1,... ,t,) € Tp(X).
iii. The set To(X) := Ta,(X)U...UT4,(X) is called the set of A-terms
over X.

For example, with respect to the two structures Phils and Primes con-
sidered above, 1(b) and r(z) are Phils-terms of sort G over {z}, where the
sort of x is P. Likewise, 2 -5 and 3 - y are Primes-terms of sort N over {y},
where the sort of y is N.

In the sequel we always assume some (arbitrarily chosen, but) fixed order
on variables. Generally we use the following notation:

18.4 Notation. A set M is said to be ordered if a unique tuple (1, ... ,myg)
of pairwise different elements m; is assumed such that M = {my,... ,my}.
We write M = (mq, ... ,my) in this case.

Each term u over an ordered set of sorted variables describes a unique
function, val®, the valuation of wu:

18.5 Definition. Let A be a structure and let X = (z1,... ,2,) be an or-
dered set of A-sorted variables. For i = 1,... ,n let B; be the sort of x; and
letw € Te(X) for any sort B of A. Then By X ...x By, is the set of arguments
for X and the valuation of u in A is a function val* : By X ... X B, = B,
which is inductively defined over the structure of u:

a; ifu=u=x; for1 <i<mn,

a if u = a for some constant a of A,
val*(ay, ... ,a,) =< fwal*(ai,...,ap),... ,val™(ay,... ,ay))
if u=£(uy,... ,u) for some function

f of A and terms uy, ... ,up € Ta(X).

For example, with respect to the structure Primes considered above,
u = (2 y)- xis a Primes-term over X = {z,y}. Assuming X is ordered
X = (z,y), we get val®“(3,4) = val®>¥(3,4) -val®(3,4) = val®(3,4) -val¥(3,4) -
3=1(2-4)-3 =8-3 = 24. As a special case we consider terms without
variables:

18.6 Definition. Let A be a structure.

80 IIT. Advanced Concepts

i. The set T4(0) consists of the A-ground terms and is usually written T 4.

ii. For each u € T4 of sort B, val® is the unique function val* :) — B,
i.e., val® indicates a unique element in B. This element will be denoted
val®™.

For example, with respect to the structure Phils considered above, u =
1(b) is a phils-ground term with val¥ = val®s = f3.

This completes the collection of notions and notations to deal with struc-
tures and terms.

19 A Term Representation of System Nets

Based on structures and terms as introduced in the previous section, a repre-
sentation of system nets is suggested in the sequel, as already used in Sect. 15.
The representation of a transition’s actions is the essential concept. To this
end, each transition ¢ is assigned its set M; of occurrence modes. Each occur-
rence mode then defines an action. A typical example was

A
X
()

O

Assume the variable z is of sort M, y of sort N and x ordered before y.
Then M x N is the set of occurrence modes of ¢t. Each pair (m,n) € M x N
defines an action mn of ¢, gained by substituting m and n for z and y in
the adjacent terms. Hence mn(A,t) = {m, f(m)}, mn(B,t) = {(m,n)} and
mnt, C) = {g(m,n)}.

The syntactical representation of term-based system nets reads as follows:

g(x.y) , < >C (1)

19.1 Definition. Let X be a net and let A be a structure. Assume

i. each place p € Px is assigned a carrier set A, of A and a set ax(p) C Ty,
of ground terms,
ii. each transition t € Ty is assigned an ordered set X; of A-sorted variables,
iii. each arc f = (t,p) or f = (p,t) adjacent to a transition t is assigned a
set f C Ty, (X¢) of Ap-terms over Xy;
iv. each transition t € Ty is denoted either progressing or quiescent, and
some progressing transitions are distinguished as fair.

Then X' 1is called a term inscribed over A.

In graphical representations, the places p and the arcs (r, s) are inscribed
by ax(p) and T3, respectively. Figures 15.1-15.5, 15.9, and 15.11 show exam-
ples. Occurrence modes and actions of a transition are defined as follows:

19 A Term Representation of System Nets 81

19.2 Definition. Let X be a term inscribed net and let t € T, be a transi-

tion.
i. Let (zy1,...,z,) be the ordered set of variables of t and let M; be the sort
ofx; (i=1,...,n). Then My := My x ...x M, is the set of occurrence
modes of t.

i. Let m € My. For each adjacent arc f = (p,t) or f = (t,p) and different
u,v € f assume val*(m) # val¥(m). Then m is an action of ¢, defined

by m(f) = {val*(m) |u € f}.

The action mn discussed above is in fact an action of the transition (1).
A term-inscribed net obviously represents a system net:

thinking philosophers

available

y @ y pick
return 2
2 ‘ 2 4 Juw

eating philosophers

X :variable over {a,b,c}
y,z : variables over {f; ,f; f3}

Figure 19.1. A variant of X5 19

19.3 Definition. Let X be a net that is term-inscribed over a structure A
such that for all p € Py, and all different u,v € ax(p), val* # val’. Then the
system net of X consists of

— the universe A,
— for all t € Ts;, the actions of t as defined in Def. 19.2(ii),
— the initial state a, defined for each place p € Ps; by
a(p) = {val* | u € ax(p)},
— the quiescent, progressing, and fair transitions, as defined by X.

As a variant of the term-represented philosophers system X;59 we con-
sider a more liberal access policy to the available forks in Xj91: Assume
that the available forks lie in the middle of the table. Each philosopher p

82 IIT. Advanced Concepts

m ready {g serve u
\Ja

m ready to serve v m ready to serve w

pend

form uwith
data of m ‘

u locally . v locally
u with ‘ v with
data of n

n ready to serve u

Figure 19.2. Elementary system net for request service

starts eating by taking any two available forks. Furthermore, p ends eating
by returning the two forks taken at the start. Hence we have to retain in-
formation about the forks that an eating philosopher uses. To this end, an
eating philosopher is represented on place eating philosophers together with
the two forks used.

Three variables occur in X19.1: z, ¥, and z. The sort of the variable z is P,
the sort of y and z is G. Assuming the order (z,y, z) on the variables, we get
Mreturn = Mpick up = P x G x G. With the occurrence mode m = (b, f1, f3),
the action m of pick up is given by m(thinking philosophers, pick up) = {b},
m(available forks,pick up) = {f1, f3}, and m(pick up, eating philosophers)
= {(b, f1, f3)}. This action is enabled at ay,, ,. Its occurrence then yields the

step ax,,, — s with s(thinking philosophers) = {a,c}, s(available forks) =
{f2}, and s(eating philosophers) = {(b, f1, f3)}.

As a further example we consider a simple algorithm for deterministic dis-
tributed request service, as shown in the elementary system net of Fig. 19.2.
Three data users u, v, and w are to be served by two data managers m and
n in cyclic order. Initially, each data user works locally. After some time he
requires data from both data managers. Upon being served by both m and
n, the data user returns to local work. Each data manager in a cycle first
serves u, followed by v and w.

Figure 19.3 gives a system net representation of this system. The under-
lying structure is

(Users, Managers, Users x Managers, Managers x Users,u,v,w,m,n, suc) (1)

20 Set-Valued Terms 83

y ready to serve x

users = {u,v,w}
managers = {m,n}
succ : users - users
succ(u) = v

succ(v) =w

succ(w) =u

var X : users

var y : managers

x locally

Figure 19.3. A distributed request service

with details given in Fig. 19.3. In this example, arc inscriptions such as (z,m)
are terms including variables (e.g.,) as well as constant symbols (e.g., m).

20 Set-Valued Terms

The formalism of Sect. 19 is adequate for many system nets. But there exist
more general system nets requiring set-valued terms. In order to specify this
issue more precisely, assume an es-net X' with a transition ¢ € Ts;, an action
m of ¢, and a place p € *tUt* with domain A. Then m(p,t) or m(t,p) is a
subset of A, with each single term u € pt or u € tp contributing a single ele-
ment, val*(m) € A. Now we suggest single terms v that contribute a subset
val?(m) C A. More precisely, set-valued constant symbols, set-valued func-
tion symbols, and set-valued variables will be used. We start with motivating
examples for all three types of terms.

As a first example we return to the representation of the philosophers
system in Fig. 15.10. The graphical representation there of three philosophers
a,b,c and three forks fi, fo, f3 is reasonable and lucid. The corresponding
system with say, 10, philosophers and 10 forks would become graphically
monstrous and for 100 or more items this kind of representation is certainly
no longer adequate.

It is better to employ set-valued constant symbols P and G. The valuation
of P returns the set P = {a, b, ¢} of philosophers and the valuation of G returns
the set G = {f1, fa, f3} of forks. Figure 20.1 thus shows a typical application
of those symbols P and G.

The next example motivates the use of set-valued function symbols: All
versions of the philosophers system considered so far assigns exactly two forks
to each eating philosopher. Now we follow the policy as represented in Yyg o:
Philosopher a eats with one fork, fi, and philosopher b with two forks, f» and

84

return

Figure 20.1. Set-valued constant symbols P and G

are-
turns
forks

L (x)
r(x)

IIT. Advanced Concepts

thinking philosophers

available

forks

eating philosophers

L(x)
r(x)

pick
up

P={a,b,c}
G={fy.fo.f3}
lr:P- G

X : variable over P

l(a) =r(b) =f;
L(b) =r(c) =f,
I(c) =r(a) =fs

bre-
turns |;
forks

a picks up
forks

a eating

Figure 20.2. Three philosophers with different numbers of forks

20 Set-Valued Terms 85

f3. Philosopher ¢, finally, employs all three forks. A concise representation of
this behavior must be based on the function @ : P — P(G) with #(a) = {g1 },
&(b) = {92,935}, and ®(c) = {g1, 92,93} This function can not be described
by a set of functions f : P — G. So we employ a set-valued function symbol
@ of arity P — P(G), with val®(p) = &(p) for each p € P. Xy9.3 employs
this function symbol. A typical run of this system is given in Fig. 20.4.

thinking philosophers

X X
P ={a,b,c}
G =
available o) - Egﬁgz,gs}
D(X X .
return % P(x) q Blp():k ®(b) = {903}
®(c) ={91,92.93}
forks X : variable over P
X X

eathing philosophers

Figure 20.3. System net corresponding to Xag 2

The last item to be motivated is the use of set-valued variables. As an
example we combine Y91 and XYs.3 into the most liberal access policy of
philosophers to forks: A philosopher chooses any set of forks each time he
starts eating. This case is frequently denoted as the drinking philosophers
system: The philosophers drink cocktails in a bar. The bar essentially consists
of a stock of bottles. When he wants a cocktail, a philosopher takes some of
the bottles from the stock, takes them to his place, mixes a cocktail, drinks
it, and then returns the bottles. The same philosopher may choose a different
bottles for each cocktail. Figure 20.4 represents this behavior, using a set-
valued variable, Y, of sort set of bottles.

The most general case includes both kinds of terms: Element-valued terms
such as a, b, ¢, z, y, z in X191 and I(z), r(z) in Xsg.1, and set-valued terms
such as P, G, &(z) in Y03, and YV, (z,Y) in Xog.5. For the sake of uniform
management of both cases, the evaluation val“(m) of terms u will be slightly
adjusted, yielding a set setval®(m) in any case:

20.1 Definition. Let X be a term inscribed net over a structure A.
i. Let p € Py, and let u € ax(p). Then

setval® = {val“} if the sort of u is Ap
| val if the sort of u is P(Ap).

86 IIT. Advanced Concepts

with T : thinking philosophers t: pick up
A : available forks r:return
E : eating philosophers

Figure 20.4. Concurrent run of Yo 3

thinking philosophers

X X
P ={a,b,c}
available G ={by,byb3}
Y Y pick < vari
return | = q up X : variable over P
Y : variable over the
bottles subsets of G

drinking philosophers

Figure 20.5. Drinking philosophers

20 Set-Valued Terms 87

ii. Let f = (p,t) € Fx or f = (t,p) € Fx, let u € f, and let m be an
argument of X¢. Then

setval® (m) = {val*(m)} zf the sort of u z:s Ap
val*(m) if the sort of u is P(Ap).
For example, in X0 3 we obtain setval® (a) = {a} for a € P and setval®® (b) =

{91,923
The actions of a term inscribed net with both element-valued and set-

valued terms is now defined as follows:

20.2 Definition. Let X' be a term inscribed net, let t € T's;, and let m € M.
For each adjacent arc f = (p,t) or f = (t,p) and different u,v € f assume
setval“(m) N setval’(m) = 0. Then m is an action of t, defined by m(f) =

U7 setval®(m).

As an example, the one-element ordered set {z} is the set of variables of
pick up in X 3. Hence b is an occurrence mode of pick up. The action b is
then defined by b(thinking philosophers) = b(eating philosophers) = {b} and
b(available forks) = {f2, f3}. Likewise, let (z,Y") be the set of variables of ¢
in Y59.5. Then m = (b,{f1, fs}) is an occurrence mode of pick up. Then m
is defined by m(thinking philosophers) = {b}, m(available bottles) = {f1, f3}
and m(drinking philosophers) = (b, {f1, fs}). A further occurrence mode of
Y05 was, e.g., (b, {f2})-

20.3 Proposition. Let X be a term inscribed net, let t € T;, let m be an
action of t, and let a be a state of X. For all (r,s) & Fx let 75 := {).

i. m is enabled at a iff, for each p € Py, |J,cprsetval“(m) C a(p) and
(Uueﬁ setval“(m) \ Uueﬁ setval“(m)) Na(p) = 0.

ii. Let a = b be a step of X¥. Then for each p € Px, b(p) = (a(p) \
Uwepzsetval®(m)) U U, g setval®(m).

Proof. i. {val*(m) | u € tp\ pt} = U,z setval“(m) \ U, cpz setval“(m) by
Def. 20.1(i).
ii. By Def. 20.1(ii) and Proposition 16.4. o

The system net of a term-inscribed net with both element-valued and
set-valued terms is defined as a conservative extension of the corresponding
notion in Sect. 19.3 for element-valued terms:

20.4 Definition. Let X be a net that is term-inscribed over a structure A,
such that for all p € Px and all different u,v € ax(p) holds setval”Nsetval’ =
(). Then the system net of X consists of

— the universe of A,
— for all t € Tx, the actions of t as defined in Def. 20.2,

88 IIT. Advanced Concepts

— the initial state a, defined for each place p € Ps by a(p) := UuEa);(p) setval®,
— the quiescent, progressing and fair transitions, as defined by X.

Figures 20.2 and 20.3 in fact show system nets.

21 Transition Guards and System Schemata

21.1 Transition guards

As in sequential programs, a decision between alternative actions frequently
depends on data. For example, if an integer x and a data item y are pro-
duced independently, then processing y may continue in either of two ways,
depending on whether x is positive or negative.

An intuitively conventional representation for this structure was

But so far system nets do not include transition inscriptions such as “x > 07
or “x < 0”. However, such inscriptions can easily be augmented as shorthands
to avoid loops. The classical representation for (1) then was

Generally, each transition ¢ of a term-inscribed net X' may be inscribed by
a term u that involves variables of ¢ only. Each occurrence mode m then must
yield a truth value val*(m) € {true, false}: An interleaved or concurrent run
then must consist only of actions m with val®(m) = true.

This concept is so obvious that we refrain from a formal definition.

Transition guards are quite useful, as in the following example of the
distributed predicate meeting problem.

This slightly abstract problem assumes a function f : N — N and a
predicate @ C N. The task is to find any ¢ € N such that f(i) € Q. (“Q holds
at £()").

A sequential solution is shown in Yo 1, testing Q(f(1)), Q(f(2)),.... This
solution is turned to a distributed solution in X5y » for any n € N. Intuitively,
n concurrent “strands of computation” try to find some proper ¢ € N.

21 Transition Guards and System Schemata 89

finished

G 00 o)) (D

fct . nat- nat
fct Q: nat - {true,false}
var x,y: nat

Figure 21.1. Sequential solution to the predicate holding problem

finished
e o0y ()
X+n x,y)
. N fct f: nat - nat
fct Q: nat - {true,false}

var X,y: nat

Figure 21.2. Distributed solution to the predicate holding problem

This solution raises the problem of “stopping” all strands after the success
of one strand. In a truly concurrent setting this is an amazingly involved
question.

21.2 System schemata

Different term-inscribed Petri nets may operate with the same terms. As an
example, a variant of X5y 1 may operate with

P ={a,b} l(a) =r(b) = f1
G:{f17f27f37f4} T(a) :f2 (3)
Lr:P>G 1(b) = fs

The net with all its inscriptions may remain in this case. There are just the
involved symbols P, G, I, and r that are evaluated in different ways. The
inscribed net is just a schema for any system that works with two sorts of
items, called philosophers and forks, two constant sets P and G of philoso-
phers and forks, respectively, and two functions that assign a fork to each
philosopher. This system schema is represented in Fig. 21.3.

Generally, a system schema is a term-inscribed net with the underlying
structure not entirely fixed. Thus, a system schema represents a set of system
nets. A representation of a system schema declares some sorts (domains) and
some constants, functions, and variables over standard sorts, declared sorts,
cartesian products, or powersets of sorts. We furthermore assume standard
sorts such as the natural numbers nat or the truth values bool, together with
the usual operations. Some additional requirements may focus the intended
interpretations.

90 IIT. Advanced Concepts

thinking philosophers

X X
available
L (X 1(x i
return 4»(() :)4“) q pick
r(x) r(x) up
forks
X X

eating philosophers

sorts phils, forks fct [, rphils - forks
const P : set of phils var x: phils
const G : set of forks

Figure 21.3. A system schema

Most distributed algorithms, as considered in the forthcoming chapters,
will be represented as system schemata.

IV. Case Studies

A broad choice of distributed algorithms, modeled as system nets, will be
discussed in this chapter, by analogy to the algorithms modeled as elementary
system nets in Chap. II.

We start out with some extensions of elementary system models from
Chap. II, followed by the paradigm of constraint programming which is partic-
ularly amenable to distributed execution. Then follow algorithms that orga-
nize distributed database updates, consensus, communication over unreliable
channels, and anonymous networks.

22 High-Level Extensions of Elementary Net Models

Many of the algorithms considered in Chap. IT can naturally be general-
ized, mainly to aspects of data handling, and thus are adequately modeled
as system nets. For the simplest producer/consumer system this has been
carried out already for the motivating examples of Sect. 15. Here we start
with slightly more involved producer/consumer systems.

22.1 Producer/consumer systems

The introductory example X; ; was extended in Figs. 9.1 and 9.2 from one
to two buffer cells, and in X5 5 from control to data aspects. Here we extend
Y155 furthermore to the case of n buffer cells, with n any natural number.
In analogy to Y91 and Xy o, buffers can be organized sequentially or concur-
rently.

In order to describe (by analogy to Sect. 9.1) a system with a sequential
buffer of some length n, the system schema of Fig. 22.1 employs pairs (a,)
representing item a to be stored at the i-th buffer cell. Action forward for-
wards items from cell ¢ to cell i + 1. Any reasonable interpretation of this
system schema should evaluate the constant n as a natural number and assign
natural numbers to the variable ;. The addition symbol + is to be interpreted
as addition in N.

It might be worth remarking that in concurrent runs of this system, the
action forward may concurrently occur in different modes (e.g., mode z = a,
i=landz=0b,i=2).

92 IV. Case Studies

ready to ready to
deliver consume

ready to ready to
produce remove

sort data

const n: nat

fct +: addition in nat
var X : data

var i : nat

Figure 22.1. A sequential buffer with n cells

producer’s consumer’'s

counter counter
ready to

ready to
consume

deliver

consume

remove

empt
el o bulfe ready o
sort data
const n: nat
fct +: addition mod n in nat
var X : data
var i nat

Figure 22.2. A parallel buffer with n cells

22 High-Level Extensions of Elementary Net Models 93

A parallel version of a buffer by analogy to Fig. 9.3 is shown in Fig. 22.2:
The producer employs a counter for selecting the next buffer cell. If this cell
is empty (corresponding token in empty buffer cells), an item may go to this
cell by occurrence of deliver. The consumer likewise employs a counter to
select the next buffer cell for removal of an item.

22.2 Decent philosophers

We are now behind an extension of X519 that implements decent behavior
by philosophers. To this end the place priority represents each fork by the
pair of its potential users, with the next user mentioned first. For example,
(A, B) denotes the fork shared by A and B, with A to use the fork next.
(B, A) denotes the same fork, but with B as its next user.

thinking philosophers

priority

(AE)
(A.B) (B,C)(D.C)

available

eating philosophers

sort phils, forks fct Lr : phils - forks
const A, ... ,E: phils var x,y,z : phils
const f; , .. f5: forks IA)=f5 1(B)=1f ,...1(E)=14

(A=t ... (E)=fs

Figure 22.3. Decent philosophers

Now X5 3 is given a new initial state and extended by the place priority
to represent each fork’s next user, as in Fig. 22.3. In the state shown there,
A and D are the philosophers to start eating, and in fact the only behavior
possible in Y, 3 is shown in Fig. 10.3.

22.3 Asynchronous stack

A control schema for an asynchronous stack was suggested in Sect. 11. This
will now be extended to cover also data flow. By analogy to Fig. 11.1 flow

94 IV. Case Studies

storing
from two to
predecessor ., . values | successor
_ (%iXi-1) (*i:Xi-1) _ sort value
a1 3
const vj: value
var = Xj.1.Xj : value
by b
to storing from
predecessor no successor
value

Figure 22.4. Module M;

of values is represented in Fig. 22.4 for a single module, M;, with an ac-
tually stored value, v;. A value v;_1, pushed from the predecessor module
M;_1 (action a;_1) is intermediately stored together with v; and then stored
persistently in M;, with v; coincidently pushed down to module M;; (ac-
tion a;). Correspondingly, if v; is popped up (action b;_;), the module M;
remains intermediately without any stored value. Then M; pops up a new
value from M, (action a;). Figure 22.5 shows a sequence of four modules, of
which Fig. 11.2 shows the corresponding control structure. As a convention,
we assume initially an undefined value L stored in each cell.

a a,
()(x3,x2) |:|3 (xg:X3) ()A(XA«Xa) |:|4
X2 X4 X3

@ quietg @ quiet, bottom

a

ap

X1:X X1.X Xo,X. Xo,X.
pUSh 170, 170, 271 2271
X1 X0 X2

quiety @

(Xa«xz)

sort value
const [1:value
var X0 1+ X1 4 X2 1 X3, X4 , X @ value

Figure 22.5. Asynchronous stack with capacity for four items
The regular structure of Yo, 5 allows a parameterized representation of the

“inner” modules M> and M3 and furthermore a generalization to n modules,
as in Fig. 22.6.

22 High-Level Extensions of Elementary Net Models

storing two values

(1,zy) (n,y.,x)

(i.y:x)

ap an
from
a
push| 9 predecessor
1.2) (i+1,2) (i,x))
(1@(”'5 quiet
1,z n,0
2 (i+1,2) @i,z) .0
bo bn
pop | d b

storing no value

sort value var XY, z:value
const [I:value var i:nat
const n:nat

Figure 22.6. Asynchronous stack with capacity for n items

95

96 IV. Case Studies

23 Distributed Constraint Programming

The paradigm of constraint programming advocates the concept of start-
ing out with a broad domain of candidates for a problem’s solution. This
domain then is constrained during a program’s execution. Elements of the
domain may be extinguished independently of each other. Hence concurrent
execution is quite natural in constraint programming. The distributed sieve
of Eratosthenes, as discussed in Sect. 15, is a typical constraint program.

This section starts out with a slight generalization of the distributed Er-
atosthenes algorithm, followed by distributed constraint algorithms for maxi-
mum finding, sorting, shortest paths, connectivity, and convex hull of graphs
and polygons.

23.1 Distributed relative prime numbers

In a set M C N of natural numbers, m € M is relatively prime in M iff m
is no product of any two numbers a,b € M \ {1}. (Obviously, m is a prime
number if M is an initial part M = {1,...,n} of the integers). The set of
relatively prime numbers is apparently unique for each set M C N. It is
computed by the distributed constraint program Y53 1. A special case of this
algorithm was 215_12.

Xy const M : set of nat
@D e oot

» var X, y:nat

Figure 23.1. Distributed sieve of Eratosthenes

23.2 Distributed maximum finding

Y530 provides a distributed constraint program to compute the maximal
element of any finite set of numbers. The function symbol maxz denotes the
function that returns the greater of two argument numbers. Each occurrence
of transition t considers two elements and eliminates the smaller one.

The algorithm terminates with one element at place A, which then is the
maximal element.

Xy const M :setofnat
A t fct max : nat x nat - nat
max(x,y) var X, Y : nat

Figure 23.2. Distributed maximum finding

23 Distributed Constraint Programming 97

23.3 Distributed sorting

Assume a set of n indexed cards, each holding a content, i.e., an alphabetic
string and its actual indez, i.e., a natural number. Initially each number
1,...,n is the index of exactly one card. The task is to re-arrange the in-
dices such that eventually the alphabetic order of content coincides with the
numerical order of indices.

X533 provides a distributed solution to this problem: Essentially, the in-
dices of two cards are swapped in case the context order disagrees with the
index order. The algorithm terminates with the index cards holding sorted
indices.

A (a,n) const M :setof (strings x nat
(b,m) 0 : alphabetic order on strings
alb .
t < :order on nat
m<n .
(am) var ab : strings
(b.n) var m,n : nat

Figure 23.3. Distributed sorting

23.4 Distributed shortest path

Agsume a finite, directed graph with each arc labeled by some non-negative
number, called its weight. Let u — v denote an arc from node u to node v
with weight a. Arcs v;_; — vi(i = 1,...k) form a path from vg to v, with
weight a1 + ...+ ag. For any two nodes u and v, the distance from u to v is
infinite in case there exists no path from u to v. Otherwise it is the smallest
of all weights of paths from u to v. The task is to compute for each pair (u, v)
of nodes the distance from u to v.

Xs3.4 shows a distributed solution to this problem. M denotes the initially
given graph, representing each arc u v as (u,v, a). If no arc from u to v ex-
ists, M contains the triple (u, v, 00). Transition ¢ replaces the actual distance
c of an entry (u,w, ¢) by a smaller distance a+ b in case a corresponding path
from w along some node v to node w was found. The algorithm terminates
with triples (u,v,a) at p, giving the distance a to the pair (u,v) of nodes.

(u,v, a)

(v, w, b) sort nodes

(u,w,c) sort arcs =nodes x nodes x nat
®Cc>a+b t const M :setofarcs

(u,v, a) var u,v,w : nodes

(v, w,b) var a,b,c:nat O {w}

(u,w,a+b)

Figure 23.4. Distributed shortest path

98 IV. Case Studies

23.5 Distributed connectivity

A finite undirected graph is said to be connected if each two nodes u and v
are linked (along several other nodes) by a sequence of arcs.

2535 provides a distributed constraint program to decide whether or not
a given graph is connected. The constant M consists of the singleton sets
{u1},...,{ux} of the graph’s nodes uy,... ,u;. Each arc linking two nodes
uw and v is in the net represented as (u,v) or as (v,u).

Transition ¢ constructs sets of nodes that represent connected subgraphs.
If ¢ can no longer be enabled, the contents of A decide the problem: The
graph G is connected if and only if A finally contains one set (which then
consists of all nodes of G).

XY xOX (x.y)
nCu e (G

Xoy
sort nodes const N :setof arcs
sort subgraph = set of nodes var X,Y : set of nodes
sort arcs = nodes x nodes var X,y :nodes
const M : setof singletons of subgraphs

Figure 23.5. Distributed connectivity

23.6 Distributed convex hull

A polygon in the plane is a finite sequence ag . ..a, of points in the plane. A
polygon defines an area with edges (ao,a1), (a1,a2),-. -, (Gn-1,an), (an,ao).
As an example, Fig. 23.6 outlines the area of the polygon abcd. The points
e and f are situated inside and outside this area, respectively. A polygon is
convez if each edge linking any two points is entirely inside the polygon’s
area. For example, in Fig. 23.6 the outlined polygon abcd is convex, whereas
aebc is not.

Each finite set of P of points in the plane is assigned its convex hull C(P),
which is the smallest convex polygon containing them all. For example, the
polygon abed described above is the convex hull C(P) for P = {a,b,c,d, e}
or P = {a,b,c,d}, but not for P = {a,b,c} or P = {a,b,c,d, f}. Obviously,
the points of C'(P) are elements of P. Furthermore, a point p € P is not in
C(P) iff it is strictly inside some triangle made of three points of C'(P).

Y37 provides a distributed constraint program to compute the convex
hull of any finite set P of points. The place A initially carries all edges between
nodes of P. The predicate inside(a, b, ¢, d) returns ¢rue iff the point d is inside

23 Distributed Constraint Programming 99

the triangle abc. Hence transition ¢ eliminates all edges connected to some
point inside a triangle. The algorithm terminates with the edges of the convex
hull of P at place A.

a d

Figure 23.6. A polygon

aj,by) (az,b
(G553 o)
Ainside(al,az,a3,a4) t |

b b
(apy) @9

sort point fct inside : point x point x point x point - bool
const P : setof points var ajp,ap,as,as,by,by.bs,by, : point

Figure 23.7. Distributed convex hull

23.7 Longest upsequence problem

Let 0 = ay...a, be a sequence of n numbers. Let 1 < i1 < iy < ... <
i, = n be an increasing sequence of k indices of . Then (a;,,... ,a;,) is an
upsequence of o iff a;, < a;, < ... < a;, (notice that a;, = a,). Clearly there
exists a (not necessarily unique) longest upsequence of o. Let up(c) denote
its length.

The upsequence length problem is the problem of computing up(a; . .. a,)
for each index n € N of any (infinite) sequence a1, as, ... of numbers.

X538 solves this problem. Its essential component is place g holding triples
(n,z,j). Each such triple states that the value of a, equals z and that
up(ay ...a,) > j. Action ¢ generates those triples by nondeterministically
choosing the value x, picking the next index n from place p and initializing j
by 1. “Better” values are computed by u: if the actual value of up(a; .. .ay) is
smaller than or equal to up(a; ...an,) for a prefix a; ...an, of a1 ...a,, then
up(ay ...ay) is at least up(ay ...am) +1 .

100 IV. Case Studies

(n, x, i)

n my, j
COe e e O S
y <X
n+1 (n,x,j+1) i <j
p .
t (m,y.j) u

var n,m,xx,y,ij: nat

Figure 23.8. Longest upsequence

24 Exclusive Writing and Concurrent Reading

As a variant of the mutual exclusion algorithms of Sect. 13, here we consider
the case of conditional exclusive and concurrent access to a scarce resource,
e.g., a variable that may be updated only exclusively by one of its writer
processes, but be read concurrently by its reader processes.

24.1 An unfair solution

Figure 24.1 shows a first approach for an algorithm that organizes this version
of mutual exclusion: Any of a set W of initially quiet writer processes may
spontaneously get pending (quiescent action a), thus applying for a move
to writing. Likewise, each of a set R of initially quiet reader processes may
spontaneously get waiting (quiescent action d), thus applying for a move
to reading. There is a control token for each reader process which must be
available upon its move to reading (transition e). All such control tokens
must coincidently be available for a writer process to move from pending to

control
sorts writer, reader var X : writers
const W : set of writers var y : readers

const R :setof readers

Figure 24.1. An unfair solution

24 Exclusive Writing and Concurrent Reading 101

writing (transition b). The control tokens in fact guarantee the required safety
property: Whenever a writer process is writing, then no other writer process
is writing and no reader process is reading.

However, evolution, as discussed in Sect. 13.1, is not guaranteed for writer
processes, and further more cannot be achieved by the assumption of fairness.

24.2 A fair solution

Evolution has been achieved in Ys4 5, with an additional synchronizing place,
key, and the refinement of pending and of waiting into two consecutive places,
respectively. key indicates that no writer process is at pend2, and key is a side
condition for each reader process to move to wait2 (with transition f). Three
transitions, b, f, and g are assumed to be fair.

key

control
sorts writer, reader var X : writers
const W : set of writers var y : readers

const R :setof readers

Figure 24.2. Exclusive writing and concurrent reading

24.3 A variant of the solution

Y40 prevents competition among reader processes by a “private” control
token for each of them. As a generalization we may assume a set U of control
tokens, independent from the set R of reader processes (with |U| < |R]), such
that each reader process must get hold of any such u € U in its step from
wait? to reading. We furthermore may want to reduce the number of fair
transitions. Figure 24.3 shows a solution with two fair transitions, b and f.

102 IV. Case Studies

key

control
sorts writer, reader, token var X . writers
const W : set of writers var y : readers
const R: setof readers var z : tokens

const U : set of tokens

Figure 24.3. A variant to Xy o

25 Distributed Rearrangement

The rearrangement problem assumes a left and a right site that initially hold
finite, nonempty, disjoint sets L and R, respectively, of natural numbers.

Those sets are to be rearranged such that eventually the left site holds
a set Ly of small numbers and the right site a set R; of large numbers.
Furthermore it is assumed that:

LUR=LUR, (set preservation) (1)
|[L|=L; and |R|=R (load balance) (2)
max(Ly) < min(Ry) (rearrangement,) (3)

A distributed algorithm is to be constructed that does without additional
storage for the two sites. Such an algorithm will be derived in the sequel, in
a sequence of refinement steps.

25.1 First steps towards a solution

Figure 25.1 shows a first solution to this problem. This solution is not dis-
tributed, however, because occurrence of a requires data-dependent synchro-
nization among the two sites; hence the algorithm is not really distributed.
Data-dependent synchronization is avoided in the solution Xs5.0, as any val-
ues stored at the two sites may engage in occurrences of a. But this algorithm
is not guaranteed to terminate: If in a state s, the action a is enabled in mode
m with m(z) < m(y), the infinite sequence s = s —% ... is a feasonable in-
terleaved run.

25 Distributed Rearrangement 103

const L,R : set of nat

a
X > nat

y var xy
left G x>y C;@ right LaR=0

y X
Figure 25.1. Non-distributed rearrangement

const L,R : set of nat
var X,y : nat

@C;I:l@ fct min,max : nat x nat - nat
right LaR=0

min(x,y) max(x,y)

Figure 25.2. Non-terminating rearrangement

25.2 A handshake solution

The following step gives each site control over the next value to be offered for
comparison: The actual places of Xy5 3 always hold exactly one token, [and
r, respectively, to be compared next or to be replaced by a “better” value.
This algorithm still fails to terminate, but termination can be achieved if each
comparison of values engages at least one “better” value. This is achieved in
Xo5.4: Each compared value is replaced by a better actual value from the
respective storage. Comparison of values requires at least one newly chosen
actual value. Hence the algorithm terminates in a state where no site has to
offer a fresh actual value. Y554 is hence a perfect solution with handshake
communication.

actual actual
X left X y right X y

@Cm
el y min(xy) max(x.y) y X right
storage storage

const L,r :nat

const L,R : set of nat

var X,y nat

fct min,max :nat x nat - nat

LO{NnRO{H=0

Figure 25.3. Rearrangement with distinguished candidates

25.3 A distributed solution

The handshake solution X554 now serves as a basis for a distributed solution.
To this end, each of the three communicating transitions is replaced by two
message-passing transitions, as in Y,55. This algorithm can apparently be

104 IV. Case Studies

left
storage

storage

const L,r : nat

const L,R : set of nat

var X,y I nat

fct min,max :nat x nat - nat

(LO{pn(RO{MH=0

Figure 25.4. Distributed handshake rearrangement

round end

reaction 'nax(

. 2y
’h/n(x’ 2))

left
storage

right
storage

round end
const IL,r : nat
const L,R : set of nat
var X.y,Z :nat
fct min,max :nat x nat - nat

Lo{ipnROM=0
OmOL:max(l,m)=m

Figure 25.5. Distributed message passing rearrangement

26 Self Stabilizing Mutual Exclusion 105

conceived as a variant of the crosstalk algorithm, X5 5. The algorithm may
work concurrently to the rise of the sets to be rearranged: There may be
transitions that continuously drop new elements into the left and the right
storage during the rearrangement operations. To start computation, assume
at least one m € L with max(l,m) = m. The symmetrical argument, at least
one m € R with max(r,m) = r, would suffice, too.

26 Self Stabilizing Mutual Exclusion

26.1 Self stabilization of mutual exclusion

A set of processes is assumed that include particular local states called crit-
ical states. A global state is said to guarantee mutual exclusion if at each of
its reachable states, at most one process is critical. An algorithm is to be con-
structed which eventually leads to a state that guarantees mutual exclusion.
As a particular difficulty, processes may occasionally execute irreqular steps.
Such a step may result in a state that does not guarantee mutual exclusion.
The intended algorithm is supposed to be self stabilizing in this case, i.e., it
should eventually lead to a state that again guarantees mutual exclusion.

In the sequel we solve this problem for sequences of tightly coupled, se-
quential processes.

26.2 Self stabilizing mutual exclusion for a sequence of four
processes

A stabilizing process consists of four states, critical, right, waiting, and left
that are visited in a circle, as in

The four steps of (1) are called regular steps. Any other step between two
different local steps is irregular; hence (1) exhibits eight irregular steps, not
explicitly represented.

Now assume four stable processes, tightly coupled in a sequence as in
Fig. 26.1. A stable process at right or at left is pending for a synchronized
step with its right or left neighbor, respectively. A stable process is waiting
until its right neighbor has reached its left state. A state a C Pk, , is feasible
if each stabilizing process contributes exactly one local state, i.e., a is formed

106 IV. Case Studies

Figure 26.1. A sequence of four stable processes

a = {ay,...,a4} with a; € {c;,r;,w;,;} for i = 1,...,4. Each regular or
irregular step, as defined above, retains feasibility of states.

Starting from any feasible state, Yy5.1 eventually reaches the state
{li,...,14}. Mutual exclusion is guaranteed from then on, i.e., at most one
process i is critical (i.e., at ¢;) at each state that is reachable from {l;,...,1l4}.

Formal description and proof of those properties is postponed to Sect. 82.

26.3 Self stabilizing mutual exclusion for a sequence of processes

Figure 26.2 shows the self stabilizing mutex algorithm for any sequence of self
stabilizing processes. Initially, some processes are critical, waiting, at right,
or at left, respectively. Irregular steps are again not represented explicitly.

sort proc
const min, max : proc

T, U, V, W : set of proc
fct r:proc\{max} - proc
var X, y:proc
X ZY - r(x) £ ry)

OnON:TOUOVOWS=
{rimin) |0 i< n}

Figure 26.2. Self stabilizing mutual exclusion in a sequence of processes

V. Case Studies Continued:
Acknowledged Messages

In networks of communicating agents, the senders of messages frequently
expect acknowledgments from their receivers: Transmission lines may be un-
reliable or the sender may prevent message overtaking or may wish to wait for
further action until a set of messages has reached their respective destination.

We start with two communication protocols, i.e., distributed algorithms
that detect and repair faulty transmission. Next we discuss algorithms that
organize acknowledgments of messages to neighboring receivers in a network.
Finally we consider the asymmetrical case of a master process that obtains
acknowledgments or refusals from a set of slave processes.

27 The Alternating Bit Protocol

In a sequence of steps, a distributed algorithm will be derived that detects
loss of messages and enforces transmission of copies of lost messages.

27.1 Unreliable transmission lines

A communication protocol establishes reliable message passing along unreli-
able transmission lines. There exist various forms of unreliability, including
loss, change of order, or falsification of messages. This section will assume
that messages may get lost, but are never falsified. Occasionally their order
is assumed not to change. Only finitely many consecutive messages may get
lost, however. Figure 27.1 outlines the assumptions described above.

loss .
send X receive
message transmlssmn message
] x e x S

N g -

sort message
var X : message
transmission line in fifo mode

Figure 27.1. The transmission line

108 V. Case Studies Continued: Acknowledged Messages

A sender and a receiver are assumed with actions send messages and re-
ceive messages, respectively. Fairness of receive messages excludes an infinite
sequence of lost messages. Reliable message passing is guaranteed if an in-
stance of each sent message will eventually reach its destination. The sender
may repeat lost messages to this end, and the receiver may return receipts
to the sender along another transmission line. Of course, this line may be
unreliable, too.

In a sequence of steps, an algorithm will be derived that establishes reli-
able message passing along the unreliable transmission line of Fig. 27.1.

27.2 A first solution

For the sake of simplicity, in addition to the unreliable transmission line of
Fig. 27.1, we temporarily assume a reliable transmission line from the receiver
to the sender. As a very first idea, the receiver may acknowledge receipt of
each message, as shown in Fig. 27.2. However loss of a message blocks the
system. So, the sender may repeat a message, as in Fig. 27.3. In contrast to
Sects. 16 and 19, in this section we allow many identical tokens at a place. In
particular, the transmission line may hold several indistinguishable tokens.

send X loss receive
message transmlssmn message
X line X SO X B

N

ready to

send

message receipt

e

receive receipt transmission line send receipt

sort message
var x : message
transmission lines in fifo mode

Figure 27.2. Sending of receipts

This algorithm fails in two respects, however: The receiver is unable to
distinguish a new, original message from copies of old messages, and the
sender may entirely ignore the arrival of receipts, thus forever repeating copies
of a message, instead of eventually receiving its receipt.

27 The Alternating Bit Protocol 109

loss

send X receive
message Fansmlssmn message
ine
- X > 0 X -
receipt
message
e
receive receipt transmission line send receipt
sort message
var x : message
transmission lines in fifo mode
Figure 27.3. Repetition of messages
send . (xn s receive
message transmission message
(x.n) line (x.n) o 0 | Xe -

e

expected

ready td
send
receipt

transmission line

receive receipt

sort message var n : nat
var X : message transmission lines in fifo mode

Figure 27.4. Unique identification numbers (id)

send receipt

110 V. Case Studies Continued: Acknowledged Messages

Both problems have been overcome in Y57 4: Each message is given a
unique identification number (id), with each copy assigned the id of the re-
spective original message. The receiver then accepts one instance for each
id, either the original message or one of its copies. Furthermore, the require-
ment of fairness for receive receipt excludes the sender to ignore the arrival
of receipts.

27.3 Redundant copies and increasing id numbers

Y74 in fact establishes reliable message passing along the unreliable trans-
mission line: Each finite sequence of sent messages eventually coincides with
the sequence of received messages. However, Y57 4 has two shortcomings (be-
sides the assumption of a reliable transmission line from the receiver to the
sender): its lack of garbage collection of redundant copies, and the unlimited
increase in id numbers. Redundant copies are garbage collected in Y57 5 by
means of the transition receive copy.

send . (xn s receive
message transmissio message
X (x,n) line (x,n)

d ready td
send
receipt

message

n+1 (x,n

-) n — n)
receive receipt transmission line send receipt
sort message var m,n : nat
var X : message transmission lines in fifo mode

Figure 27.5. Garbage collection of redundant copies

Increasing id numbers can be avoided by help of the additional assumption
that overtaking is excluded: Each transmission line should behave like a queue
(fifo). In this case the id numbers of all messages and all acknowledgments
on both lines vary only over two consecutive numbers. Hence it suffices to use
only two id numbers and to employ them alternately, Yo7 ¢ makes do with
the id numbers 0 and 1 and the swap operation i := 1 — n.

27 The Alternating Bit Protocol 111

send .. (xn loss receive
message transmlssmn message
(x.n) line (x.n) T X

receipt

message

e
-) n ~— n .
receivereceipt transmission line send receipt
sort message var n : {0,1} transmission lines in fifo mode
var X : message n=1-n

Figure 27.6. Alternating identification numbers

o receive
transmission message
(x,n) line (x,n) -

send (x,n
message

receive send
receipt receipt

>l

- n o n
receive transmission send
receipt N line receipt

loss
sort message var n: {0,1}
var X : message n=1-n

transmission lines in fifo mode

Figure 27.7. The alternating bit protocol

112 V. Case Studies Continued: Acknowledged Messages

27.4 The final solution

The final step revokes the assumption of a reliable transmission line from the
receiver to the sender. The means to cope with this problem are structurally
identical to the means described above to manage an unreliable line from the
sender to the receiver. This yields the final algorithm of Fig. 27.7.

The issue of fairness is now more subtle: There may arise conflict between
the sender’s send copy and receive receipt. If one of those actions were in-
finitely neglected, no new message would ever be transmitted. So, fairness
must be assumed for both of them. This argument likewise applies to the
receiver’s receive copy and send receipt.

The receiver may extend receipts to full-fledged messages to be transmit-
ted to the sender. This would result in a symmetrical algorithm, with both
sites playing the role of sender as well as of receiver.

28 The Balanced Sliding Window Protocol

The alternating bit protocol follows quite a strict policy: The sender receives
a receipt for the i-th message before sending its (i + 1)st message. Here we
consider a more liberal protocol that moves a “window” along the message
sequence, consisting of two indices. Any data between both indices may be
sent by the sender. The order of receipts likewise varies in a “window”. As a
first version of such a protocol, Fig. 28.1 shows the case of transmitting each
message together with its index in the message sequence. The next diagram
Yog.2 will make do with a finite set of transmitted identifiers instead.

Both sites of the algorithm are structurally and behaviorally almost iden-
tical, and both start in symmetrical states. The following description of the
algorithm concentrates on the left site, leaving the corresponding arguments
for the right site as an exercise.

28.1 The actual window of the left site

In each reachable state, the left site has its actual window, i.e., a pair (a,b)
of indices such that the left site may freely choose an index ¢ with a <i < b
and send the i-th message (i,) (a lr-message) to the right site. The actual
window (a, b) consists of the lower window index a = k, explicitly represented
in Yog 1, and the upper window index b = j+w, with j the actual value of the
place smallest index of still expected rl-messages. The value w is called the
window constant, i.e., an integer constant of the system. Transition a hence
sends Ir-messages within the actual window.

28.2 Window bounds of the left site

With a message (i,z) received by the left site, the right site acknowledges
receipt of all messages with indices from 1 up to i — w. Hence the left site

28 The Balanced Sliding Window Protocol 113

ordered output of Ir-messages

Ir-messages

intermediate
storage

smallest index of still @i, [(1,%)
expected rl-messages

i,X

(i.x)

k<i<j+tw
¢

a transmission
line
c - =7 Ie_ft Iowe_r rlght Iow_er
window index window inde

transmission

(i) k<is‘ﬂ'+w

. (X 1,X j

intermediate™) a0 ' greatest index

storage (i,x) (@i,x) 1(1,x) of consecutively

accepted
. ordered output of r-messages | | loss rl-messages Ir-messages

sort message var x : message transition lines in fifo mode
const w : nat var i, j, k : nat

Figure 28.1. Balanced sliding window protocol with unbounded indices

ordered
i output of
T PE— loss Ir-messages

Ir-messages

mallest index of still
expected rl-message

(ix)

intermediate
storage

éi,x) (i,x)

) LJlk<isjow i,X

transmission
line Ir k

max(k,io w)
(ix)

left lower right lower
window index window inde:

transmission

(ix) [
e greatest index
(i,x) : ., of consecutively

(i) |(i:X) accepted Ir-messag

intermediat
storage

ordered loss

output of WLy)
rl-messages rl-messages

sort message var i, j, k: nat

const ay,...,a,by,...,b, : message K=4w + 2

const w : nat k®1=1

var X,y : message transmission lines in fifo mode

Figure 28.2. Balanced sliding window protocol with bounded indices

114 V. Case Studies Continued: Acknowledged Messages

should stop sending messages with any index up to i — w. Hence i — w is a
lower bound for the lower index of the left site’s actual window. Transition b
updates this index, k, whenever a message (i, z) arrives at the left site with
i —w > k. The role of k then is obvious in the requirement k < i of transition
a.

A message (i,), sent by the left site, acknowledges the left site’s receipt
of all rl-messages up to index j := ¢ — w. With j the smallest index of still
expected rl-messages, the left site should send no messages with an index
greater than j + w. Hence j + w is an upper bound for the upper index of
the left site’s window. Hence the requirement i < j + w of transition a.

28.3 The actual window size

For a given actual window (a,b), the left site may send any message (i,x)
with a < ¢ < b, i.e., may choose out of b — a messages.

b—a is the actual window size (1)

of the site. It will turn out that the actual window size varies between 1
and 2w + 1. It remains “large”, i.e., varies between 1 and 2w + 1 in case
the rl-messages arrive in order, i.e., in a sequence with the form (i,z;)(i +
1,2i41) - . ., and if the occurrences of b and ¢ alternate. It shrinks to the size of
one index, j, in case no message with index j arrives at the left site, whereas,
(G+1,2541),(j+2,2542),... do arrive: The lower window index, k, increases
in this case by j—w, j—w+1, j—w+2, ..., due to occurrences of transition b,
whereas ¢ (and d) are not enabled. The messages (j+1,2;41), (j+2,2j42),. ..
remain at the intermediate storage. Hence the smallest index of still expected
rl-messages remains j, and the upper window index remains j + w.

Next we calculate the maximal as well as the minimal window size: For
the maximal window size let j be the actual smallest index of still expected rl-
messages. Then an rl-message with index j — 1 is guaranteed to have reached
the left site along transition b in this case. Hence for the lower window index
k holds: k > j —w — 1. As the upper window index is j + w, (1) implies that
the actual window size does not exceed j+w — (j —w — 1) = 2w + 1.

For the minimal window size let j be the actual smallest index of still
expected rl-messages. As the index i of all lr-messages (i, z) does not exceed
j + w, the greatest index of consecutively accepted Ir-messages is j + w, too.
Hence the actual upper window index of the right site does not exceed j+ 2w.
Hence the index ¢ of each rl-message does not exceed j+ 2w. Those messages,
arriving at transition b, yield an index k& which does not exceed j + w. As k
is the lower index of the actual window of the left site, the actual window
size may shrink to zero with a message (j,x) at the left site’s intermediate
storage. Occurrence of ¢ then yields j+1 as the smallest index of still expected
rl-messages, bringing the window size to 1.

28 The Balanced Sliding Window Protocol 115

28.4 The right site’s window

The two sites essentially differ only in one aspect: The action c¢ increases the
smallest index of still expected ri-messages, whereas the action h does not in-
crease the greatest index of consecutively accepted Ir-messages. However, this
difference does not really affect the site’s behavior, given a slight adjustment
at the guards of transitions f and g.

28.5 Bounded indices

The above version Xag 1 of the sliding window works with a strictly increasing
sequence of indices. A finite set of indices, applied in cyclic order, is sufficient,
however.

To this end we assume — by analogy to the alternating bit protocol — that
overtaking is excluded: Each transmission line should behave as a queue. Sec-
ondly we have to estimate the number of different messages that coincidently
may exist in the system. This number essentially depends on the window con-
stant, w. With j the smallest index of still expected rl-messages, the messages
in the Ir transmission line may be indexed from j —w — 1 to j + w, according
to the considerations of Sect. 28.3. Messages at the right site’s intermediate
storage and at the greatest index of consecutively accepted messages vary in
the same range. Due to the guards of transition f, messages in the rl trans-
mission line are indexed between j — 2w — 1 and j + 2w. A message (i,) in
the left site’s intermediate store is a copy of a previously received message if
i varies between j — 2w — 1 and j. Hence the guard of transition d. The guard
of transition g follows the same line of arguments. Altogether, including both
limits, there may be messages around with up to 4w + 2 different indices.
Hence it suffices to employ 4w + 2 identification numbers and to employ
them in cyclic order. Yyg 5 uses the id numbers 1,...,4w + 2.

28.6 Specializations and generalizations

The alternating bit protocol is essentially a special case of the sliding window
protocol, with window constant w = 0. Receive message and receive copy of
X577 then correspond to the transitions h and g of Ysg . Transitions e and
f of Xag.5 just organize the window’s slide.

As a generalization, each site may employ its own window constant. The
actual window size may shrink to zero or to some number k& > 1 in this case.
This requires more subtle fairness assumptions.

116 V. Case Studies Continued: Acknowledged Messages

29 Acknowledged Messages to Neighbors in Networks

A (distributed) network includes a finite set of sites. Two sites may be neigh-
bors, i.e., be linked by a transmission line for messages to be transmitted
in either direction. A site may send messages to its neighbors and expect
receipts that acknowledge the messages. This section presents some aspects
of algorithms that organize acknowledged messages to neighbors in networks.

29.1 One sender

Let ¢ be a site in a network (the initiator) and let U be the set of its neighbors.
Figure 29.1 shows the basics of an acknowledged message sent by ¢ to all
its neighbors. After sending the message to each neighbor (action a), the
initiator remains waiting until receipts have arrived from all neighbors. Then
the initiator terminates (action b). Each single uninformed neighbor z € U
receives the message (action ¢) and returns a receipt (action d). The algorithm
likewise works in a round-based version, as in Fig. 29.2.

messages

unin-
formed

informed

receipts

sort site var x:site
const i:site idu
const U : set of sites

Figure 29.1. Basics of acknowledged messages to neighbors

29.2 Many senders

Matters are more involved in the case of more than one initiator: Each mes-
sage and each receipt must include its target as well as its source. In Fig. 29.3,
messages and receipts are represented as pairs (target, source). For each site
u € U, pri(N(u))(= pra(N(u))) is the set of neighbors of u. Furthermore,
N(u) and N (u) are the sets of messages sent by u and receipts received by

u, respectively.

29 Acknowledged Messages to Neighbors in Networks 117

messages

receipts

sort site var X:site
const i:site iou
const U : set of sites

Figure 29.2. Round-based message passing

messages

receipts

sort site var Xx,y:site

sort message = site x site N(x) O U x {x} _
const U, V: set of sites (y,x) O N(x) iff (x,y) O N(x)
fct N, N: site - set of messages UnVv=10

Figure 29.3. Message passing by many initiators

118 V. Case Studies Continued: Acknowledged Messages

idle sites

messages

receipts
sort site var X, y:site
sort message = site x site N(x) O U x {x} _
const U, V: set of sites (y,x) O N(x) iff (x,y) O N(x)

fct N, N: site — set of messages

Figure 29.4. Sites acting as sender or as receiver

messages

receipts
sort site var Xx,Yy:site
sort message = site x site N(x) O U x {x} _
const U: set of sites (y,x) O N(x) iff (x,y) O N(x)

fct N, N: site - set of messages

Figure 29.5. Sites acting as sender and as receiver

30 Distributed Master/Slave Agreement 119

29.3 Variants

As a variant, a site may decide to act either as a sender or as a receiver of
messages, as in Fig. 29.4. This algorithm would deadlock if more than one
site could act as a sender at the same time.

sort site var Xx,Yy:site
sort message = site x site N(x) O U x {x} _
const U, V: set of sites (y,x) O N(x) iff (x,y) J N(x)

fct N, N: site — set of messages

Figure 29.6. Joint messages and receipts

As a further variant, each site may act as a sender and as a receiver.
This can easily be achieved: In Fig. 29.3 replace the requirement UNV = ()
by U = V. Each site then consists of two independent, concurrently acting
components: a sender and a receiver. One may replace them by one sequential,
nondeterministic component, as in Fig. 29.5.

Finally we observe that the distinction of messages and receipts is su-
perficial, as they are clearly identified by their respective source and target.
Both will be called messages in the sequel. In Fig. 29.6, the place messages
includes all messages that have been sent but not yet received.

30 Distributed Master/Slave Agreement

A particular form of message acknowledgment occurs in the following pro-
tocol: Assume a “master” process and a set U of “slave” processes. Update
orders launched by the master are to be executed by the slaves, provided
no slave refuses. In order to achieve this behavior, the master first sends an
inquiry to each slave. Each slave checks the inquiry and reports acceptance
or refusal to the master. In case all slaves accept, the master sends an update
order to each slave. In case one slave refuses, the master sends a cancellation
to each slave.

120 V. Case Studies Continued: Acknowledged Messages

o)
Inquiries

accepti

refusing

slaves pending slaves|

orders

master inactive inactive slaves

sort slaves
const U : set of slaves
var X : slave

Figure 30.1. Distributed master/slave agreement

Figure 30.1 shows an algorithm that organizes this behavior. Initially,
the master and all slaves are inactive, and the only activated transition is
the quiescent transition a. Its occurrence starts the agreement procedure by
the master’s sending of inquiries to all slaves. Then each slave z on its own
turns checking (action g(x)) and nondeterministically chooses to accept or to
refuse the master’s inquiry (action h(z) or j(z)). In case all slaves z € U
are accepting, the master sends orders to all slaves (action b). Otherwise at
least one slave z is refusing and thus enables ¢(z). Then each other slave
y is notified to cancel: either by d(y) (in case y had accepted the master’s
offer) or by e(y) (in case y had refused). Eventually, all slaves z € U have
answered and are sent cancellations. Altogether, all slaves x are forwarded
either orders, or cancellations and so they all turn either busy or idle (action
k(z) or I(x), respectively).

30 Distributed Master/Slave Agreement 121

Hence the algorithm guarantees that master pending is eventually followed
by master inactive together with either all slaves busy or all slaves idle. This
property will formally be shown in Part D.

VI. Case Studies Continued:
Network Algorithms

A distributed algorithm is said to be a network algorithm if it is not intended
to run on just one fixed network. Rather, a network algorithm is a schema of
algorithms, to run on any in a whole class of networks, such as the connected
networks, the ring- or tree-shaped networks, etc.

Network algorithms have many features in common, and it is quite con-
venient to represent equal features always alike. Some intuition-guided con-
ventions and principles for the representation of network algorithms will be
presented in this chapter. They have already been employed in the above
algorithms, and will likewise be used in all algorithms of this chapter, in-
cluding algorithms for mutual exclusion, consensus, and self-stabilization in
networks.

31 Principles of Network Algorithms

The fundamental idea of the representation of network algorithms is the
generic representation of local algorithms, and the explicit representation
of messages under way. This implies a canonical representation of network
algorithms, according to the locality principle and the message principle.

31.1 Generic local algorithms

Many sites of a network usually run the same local algorithm. A network
algorithm usually consists of a few, up to about three, different local algo-
rithms. In a system net representation, each local algorithm is represented
generically, with a variable denoting the network sites. All local algorithms
are connected to a place, usually called messages, that includes all messages
already sent by their source site and not yet received by their target site.

In technical terms, a network algorithm is represented as a net schema.
Each local algorithm employs a variable (usually z) for the active site. Each
action is supposed to be executed by the site z. The following locality principle
guarantees that each action employs only data that are local to x:

124 VI. Case Studies Continued: Network Algorithms

31.2 The locality principle

For each transition ¢, each ingoing arc of ¢ is inscribed by a set of n-tuples of
variables (mostly just one n-tuple, often a pair or even just a single variable).
The first variable of all n-tuples of all ingoing arcs of ¢ are identical (usually
In fact, all nets in Sects. 29 and 33 follow the locality principle, with
the exception of Xag 4: Transition a has a dot inscribed ingoing arc. In fact,
this algorithm is not a network algorithm due to the place control: All sites
may compete for its token. Hence, control does not establish communication
between just two sites.
The following principle of message representation is an offspring of the
above locality principle.

31.3 The message principle

Each message is represented as a n-tuple (z1,...,x,) with z; the receiver and
x5 the sender of the message. x3, ..., z, may contain any kind of information.
(The case of n = 2 is quite frequent).

In fact this principle has been applied throughout Sects. 27 and 30, and
will likewise be followed in forthcoming sections.

Summing up, the above representation rules provide a syntactical criterion
for the distributedness of an algorithm. It supports clarity and readability of
network algorithms, including a standard representation of messages.

31.4 Some notions, notations, and conventions

As usual, for a set U and a relation W C U x U, let uWw iff (u,v) € W.
Furthermore,

i Wy ={ueU|ex.veU with ulWv},
Wy ={veU]|ex. ueU with ulWv}
ii. W(u):={veU|uWuv}
iii. W=:={(v,u) | uWwv} (frequently written W)
iv. uWTw iff for some n > 1 and some ug, ..., u, € U, ug = u, u, = v, and
woWuq ... up_ 1Wup,
v. uW*v iff uWW v or u = 0.

The forthcoming system schemata all assume any underlying network.
In an abstract, technical setting, a network is a graph; it will usually be
described by its sets U of nodes and W of arcs. Each arc is a pair of nodes.
W (z) denotes the set of neighbors of a node x. The network is frequently
symmetrical (W = W) and connected (xW*y for all z,y € U). W usually
covers exactly the nodes of U (W, U W, = U).

32 Leader Election and Spanning Trees 125

W is a tree with root u iff each node is reachable from u (Vz € U : ulWV*y),
W is cycle free (xW Ty — x #), and each node has at most one predecessor
(YWaz AzWx — y = z).

W is an undirected tree iff W is symmetrical, connected, and no undirected
sequence of arcs forms a cycle (zogWzy ... 2, Wxpi1 A zi1 # xigp1 (1 =
1,...,n) = xzg #xp).

32 Leader Election and Spanning Trees

32.1 The basic leader election algorithm

The sites of a network are frequently supposed to elect one site as their leader.
In case the leader site crashes, a new leader must be elected. The sites are
given unique names to this end (e.g., integer numbers) and a total order is
assumed on those names.

pending updating
sort site var X, y,z:site
sort state : site x site xy OU - xW*y
const U : set of sites W, 0 Wy=U
const V,W : set of states V ={(u,u) |u O U}

< :total order on U M(x,y) = W(x) x {y}

fct M state - set of states

Figure 32.1. Basic leader election

Figure 32.1 gives a distributed algorithm for the election of a leader in any
connected network. Initially, each site is pending and assumes its own name
as a candidate for the leader. In later states, a pending site holds a better
candidate, i.e., one with a larger name. Generally, a pending site u together
with its actual candidate v is represented as a state (u,v). Upon pending
with v, u informs each neighbor in W (u) about v by action a(u,v) and then
becomes updating. An updating site u with its actual leader candidate v may
receive a message (u,w). In case the newly suggested candidate, w, does not
exceed v, the site u remains updating with v (action b(u, v, w)). Otherwise u

126 VI. Case Studies Continued: Network Algorithms

goes pending with the new candidate w (action ¢(u,v,w)) and continues as
described above.

A message (w,v) € M(u,v) takes the form of a state, with u informing
the site w about v as a candidate for the leader. There may occur multiple
copies of identical messages (as in case of communication protocols). This
can easily be fixed, by extending each message with its sender.

X301 does not perfectly meet the message principle Sect. 31: A message
(u,v) in X321 consists of its receiver v and a further piece of information, v.
The sender is not mentioned explicitly (though it was easy to do so).

Given a connected network with a finite set U of sites and a total order <
on U, the algorithm terminates with updating all pairs (u,w), where u € U
and w is the maximal element of U.

32.2 A variant of the basic algorithm

In the more general case of a partial order each site may select one of the
largest sites as its leader. This is easily achieved: In Fig. 32.1, replace the
requirement of < to be a total order just by < to be a partial order. The
algorithm is guaranteed to terminate also in this case with updating pairs
(u,w), where u € U and w is one of the largest sites.

32.3 Constructing a spanning tree

The above algorithm terminates with each site holding the leader’s name.
As a variant, each site will now be informed about its distance to the leader
and about a distinguished neighbor closer to the leader. A site then may
effectively communicate with the leader along its distinguished neighbor. The
respective paths to distinguished neighbors form a minimal spanning tree in
the underlying network. Figure 32.2 gives the algorithm.

Initially, the leader r is pending with itself as a path to the leader candi-
date, and distance 0 to the leader. All other sites are initially updating with
the unspecified leader candidate 1 and infinite distance. In later phases, a
pending token (u,v,n) indicates that there is a path of length n from « along
v to the leader. A pending site u forwards its actual distance n to all its
neighbors (by action a(u,v,n)) and then turns updating. An updating to-
ken (u,v,n) may receive a message (u,w,m). In case the reported distance
m of w to the leader would not improve the actual distance n, the site u
remains with distance n along neighbor v (action b(u,v,w,n,m), with or-
dered set (x,y, z,1,7) of variables). Otherwise u goes pending with distance
m + 1 along neighbor w (action ¢(u, v, w,n,m), with ordered set (z,y, 2,4, 7)
of variables).

This algorithm can be generalized to a set R C U of leaders in the obvious
way: Initially, pending carries {(r,r,0) | r € R} and updating {(u, L,w) | u €
U \ R}. The algorithm then terminates with updating triples (u,v,n), where

33 The Echo Algorithm 127

pending updating
sort site var i,j:nat
sort state = site x site x (nat O {w}) var Xy, z:site
const 0, r: site xy OU - xW*y
const U : set of sites WO Wy=U
const V : set of states rgu
const W : set of (sites x sites) M v

< :total order on U V={u0Ow)|u O U\{r}
fct N:site x nat - set of states NOGY,) = W(X) x {y} x {i}

Figure 32.2. Shortest distance to a root

n is the minimal distance to a leader and v the name of a neighbor closer to
a leader.

33 The Echo Algorithm

Given a finite, connected network with a particular initiator site, the echo al-
gorithm organizes acknowledged broadcast of the initiator’s message through-
out the entire network to all sites: The initiator will terminate only after all
other sites are informed.

33.1 One initiator in one round

Figure 33.1 shows one round of messages, sent by the initiator ¢ to all its
neighbors, just as in Fig. 29.1. Furthermore, messages and receipts are jointly
represented in one place, in accordance with Fig. 29.6. The central idea of the
echo algorithm is now covered in the step from X331 to X'33.2: Upon receiving
the initiator’s message, a neighbor of the initiator forwards the message to all
its neighbors but the initiator, and remains pending until receiving messages
from all those neighbors. Each site is eventually addressed in this schema.
Each uninformed site u € U receives in general more than one message, hence
u selects one occurrence mode (u,v) of action c. In this case, v is called the
parent site of u. The pairs (u,v) with v the parent site of u, form a spanning
tree in the underlying network: For each site u € U there exists a unique

128 VI. Case Studies Continued: Network Algorithms

sequence uy . ..U, of sites with ug = u, u, =i and u; the parent site of u; 1
(t=1,...,n). A site u is a leaf of the spanning tree if no neighbor of u elects
u as its parent node.

waiting messages pending

(x.y)

terminated informed

sort site var Xy: sites
const i site iou
const U: set of sites

Figure 33.1. The initiator informs its neighbors

For each pending leaf (u,v), the place messages eventually holds all mes-
sages M (u) — (u,v), hence the leaf becomes informed by occurrence of d in
mode (u,v). The leaves are the first to become (concurrently) informed. Then
all sites are consecutively informed, causally ordered along the spanning tree.
Finally, the initiator’s transition b is enabled, and the waiting initiator turns
terminated.

33.2 One initiator in many rounds

The above one round echo algorithm likewise works also in a cyclic environ-
ment, as in Fig. 33.3.

33.3 Many initiators

Matters are more involved in the case of more than one initiator: The initia-
tor’s identity must be forwarded together with each message. Hence in Y53 4,
each message is a triple (x,y, z) with receiver z, sender y and initiator z.
A message (r,y,2) is sent by an initiator z if y = 2z and is received by an
initiator z if £ = z. All non-initiators just forward the third component of
messages.

129

33 The Echo Algorithm

M(X)-(y.x)

site

message = site X site
i:site

U: set of sites

W : set of (sites x sites)

M, M: site - set of messages
X,y: site

sort
sort
onst
const
const
fet
var

(=]

Figure 33.2. One-round echo algorithm

messages

messages

informed

M()-(x,y)

w=w-1

x,y OU O{} - xW*y
W, =U O {i}

igu

M(x) = W(x) x {x}
M(x) = M(x)~1

M(x)=(y.x)

M(x)-(x.y)
sort site w=w-1
sort message = site x site x,y OU Ofi} - x W*y
const i: site W, =U 0O {i}
const U : set of sites igu
const W : set of (sites x sites M(X) = W(x) x {x}
fct M, M: site — set of messages M(x) = M(x)~2
var Xx,Y: site

Figure 33.3. Cyclic echo algorithm

130 VI. Case Studies Continued: Network Algorithms

X

M(x,2)-(y,x,2)

e

unin-
formed

(xy.2)

M(x,2)—(X.y,2)

sort site w=w-1

sort message = site x site x site xydQuQOvVv - x W*y
const U,V: set of sites W, =uivVv

const W: set of (sites x sites) UnVvV=10

fct M, M: site x site — set of messages M(X,z) = W(x) x {x} x{z}
var x,y: site M(x,2) = {x} x W(x) x{z}

Figure 33.4. Cyclic echo algorithm with many initiators

34 Mutual Exclusion in Networks

Two algorithms will be discussed in this section. The first algorithm guaran-
tees global mutual exclusion: In the entire network, at most one site is critical
at each time. The second algorithm guarantees local mutual exclusion: Neigh-
boring sites are never critical at the same time. Both algorithms guarantee
evolution, as discussed in Sect. 13. The global mutex algorithm assumes a
fixed spanning tree on the given network. Essentially it is an algorithm on
undirected trees. It can be applied to any network, by firstly fixing a spanning
tree. This in turn can be done by help of a variant of the echo algorithm,
with each node informing its parent node that their joint communication line
belongs to the tree.

34.1 Global mutual exclusion on undirected trees

Global mutual exclusion can be organized by means of a unique token, always
helt by one site, such that a site can be critical only if it holds the token.

In the sequel, the underlying network of sites will be assumed to be an
undirected tree. Then, at each reachable state, to each site u there exists a
unique sequence of transmission lines, ug . ..u, with u, the actual owner of
the token. In case n # 0, i.e., ug not the owner of the token, the transmission
line (ug,uq) is the actual token line of ug. The actual token lines of all sites
induce an order on the arcs of the underlying undirected tree, resulting in a
directed tree with the owner of the token as its root. X341 organizes global
mutual exclusion on trees: The place token holds the actual owner of the
token; N is a directed tree on the sites of the network, such that the actual

34 Mutual Exclusion in Networks 131

sort site

const u : site

const U : set of sites
const N : set of (sites x sites)
var X,y,z:site

N1D N2=U

udu

Ox OU: uN*x

xNty & xzy

YyNxOzNX -y=z

Figure 34.1. Global mutex on undirected trees

owner of the token is the root of the tree. A quiet site u may strive for
the token by occurrence of a(u) and then go critical by occurrence of b(u),
provided u presently owns the token.

If u does not own the token, either compass holds the token line (u,v) of
u, or the reverse (v,u) of the token line is pending. Intuitively formulated,
(u,v) at compass states that in order to obtain the token, v must send a
corresponding request to v, by occurrence of d(u,v). A pending token (u,v)
states that u has the duty to get hold of the token and to hand it over to v.
If w holds the token already, v hands it over to v by e(u,v). Otherwise u has
a token line, (u,w), at compass, and u sends a request for the token to w, by
d(u,v).

Three competing transitions, b, d, and e, are assumed to be fair in X34 1.

34.2 A version with a simple fairness requirement

Figure 34.2 shows a variant of Y341 that requires only two transitions to be
treated fairly. To this end, the place pending of X341 has been refined into
the sequence of place job, action f, and place serving in X34 5. Each site u is
concurrently serving at most one neighbor site, due to the place idle.

The essential difference between X341 and X345 is obvious whenever
several sites, vy,...,v,, say, are requesting the token from the same site,
uw. In X341 this is represented by n tokens (u,v1),...,(u,v,) at pending.
With (u,w) at compass, some v; causes u to demand the token from w, by
d(vj,u,w). After eventually having obtained the token, u selects a site v out
of v1,...,v, and hands the token over to v (by e(u,v)), in case v # u.

In Y345 only one request, (u,v), is serving whereas all other pending
requests, (u,v;) with v; # v, are at job. With (u,v) at compass, v will demand
the token from w, by d(v, u,w). After eventually having obtained the token,
u hands it over to v, by e(u,v), or goes critical by b(u) in case v = u.

132 VI. Case Studies Continued: Network Algorithms

sort site

const u : site

const U : set of sites

const N : set of (sites x sites)
var X\y,z:site

N]_D N2 =U

uJu

Ox 0 U: uN*x

xNty - x#y

YyNxOzNXx -y=2z

Figure 34.2. A version with a simple fairness requirement

34.3 Local mutual exclusion on networks

Here we consider networks without any restriction on their topology. By
analogy to X3, each site is assumed to be bound to the cyclic visit of es-
sentially three local states, called quiet, pending, and critical, with a quiescent
step from quiet to pending. In X34 3, pending is refined to two states, pend!
and pend?2. Two sites are neighboring in the network if and only if they share
a scarce resource. Each resource is shared by two sites.

An algorithm on a network with this kind of site guarantees local mutual
exclusion iff neighboring sites are never both critical at the same time. It
guarantees evolution iff each pending site will eventually be critical.

As a special case, the system Y1 of thinking and eating philosophers
guarantees local mutual exclusion (with eating the respective critical state).
However, this algorithm neither guarantees evolution, nor is it distributed.

Figure 34.3 shows a distributed algorithm that guarantees local mutual
exclusion and evolution on networks. A resource shared by two sites u and
v is represented by (u,v) or (v,u). Each resource at any time is on hand
(though not necessarily in use) of one of its users. According to the locality
principle (Sect. 31.2), (u,v) indicates that the resource shared between u
and v is presently on hand at w. Occurrence of the quiescent action a(u)
indicates that the site u is about to get critical, in analogy to the actions a;
and a, of Fig. 13.1. The step from pend! to pend2 (action b(u)) demands
r(u) at ready, i.e., that u has re-organized all its resources after its last visit
of critical. Details on this issue follow later. The crucial step of a site u, from
pend?2 to critical (action c(u)) requires the set r(u) of all resources of u to be

34 Mutual Exclusion in Networks 133

b r(x) demanded

missing _(X.Y)

time

message

d after use
sort site N=N-1
sort neighbors = site x site N;=U
const U : set of sites POP1l=N
const N, P : set of neighbors PnPl=0
fct r: site - set of neighbors xPty o xzy
var X,y : site r(x) = {x} x N(x)

Figure 34.3. Local mutual exclusion on networks

available to u. Upon returning back to quiet by d(u), each resource (u,v) is
to be re-organized along after use.
Each resource that u shares with some neighbor v is in one of three states:

i. (u,v) is in repeated. In this case, the resource is on hand at u, and u has
been its last user. Upon request of v by message (u,v), the site u may
hand the resource over to v, by action g(u,v).

ii. (u,v) is missing. In this case, the resource is on hand at v. In case u
demands the resource (u,v), u sends a message (v,u) to v by action
e(u,v) and will eventually obtain the resource, by action g(v, u).

iii. (u,v) is in first ¢time. In this case, u will eventually obtain the resource
from v and will not hand it over to v again before having been critical
at least once.

A site u goes critical by occurrence of ¢(u). This requires r(u) be available
to u. A resource (u,v) in repeated may be available to u, but u may decide
to hand it over to v, by g(u, v). For each resource (u,v) not available, u has
previously sent a message (v, u) to v, by b(u) and e(u, v), and v will eventually
hand over (u,v) to u, by g(v,u). The resource (u,v) is at first time in this
case. The site u retains all forks at first time after having been critical.

Each resource that a critical site u shares with a neighbor v is either
freshly handed over to u, i.e., (u,v) is at first time or u has used it before
already, i.e., (u, v) is at repeated. This implies two different actions for (u,v) at
after use: In case of first time, f(u,v) will occur and bring (u,v) to repeated.

134 VI. Case Studies Continued: Network Algorithms

Otherwise, (u,v) is at repeated already and (u,v) is still demanded. Hence
h(u,v) properly re-organizes the resource in this case.

35 Consensus in Networks

A consensus algorithm organizes consensus about some contract or agree-
ment, among the sites of a network. This is not trivial if message passing is
the only available communication medium. A basic such algorithm will be
presented in this section, followed by two more involved extensions.

The central activity of all three forthcoming algorithms is broadcast and
receipt of proposals for a joint contract. Initially, each site may spontaneously
broadcast such a proposal to its neighbors. Upon receiving such a proposal,
a site either accepts it or broadcasts a new proposal. Neither algorithm guar-
antees that consensus will ever be reached. But consensus is guaranteed to
be stable: Once reached, it remains.

The forthcoming algorithms consider neither the contents of messages
nor the criteria for a site to accept or refuse a proposed contract. Hence each
message is represented as a pair (z,y), with z its receiver and y its sender.

initiated requests

sort site fet r, T :site » set of messages
sort message = site x site var X, y:site
const U : set of sites r(x) = {x} x M(x)
const M : set of messages T(X) = M(x) x{x}

Figure 35.1. Basic algorithm for distributed consensus

35 Consensus in Networks 135

pending
sites
initiated2
sort site fct r,T:site » set of messages
sort message = site X site var X,y :site
const U : set of sites r(x) = {x} x M(x)
const M : set of messages T(X) = M(x) x {x}

Figure 35.2. Distributed consensus with demanded negotiators

35.1 A basic consensus algorithm

Figure 35.1 shows an algorithm that organizes consensus. Initially, each site
is pending and each message is completed (i.e., in the hands of its sender).

In this situation, any site may send each neighbor y a message (y, z)
(action a(z)). Upon receiving a message, a site z reads its contents and
returns it to its sender y, by action b(z,y) or action c¢(x,y). Both actions
b(z,y) and c(z,y) furthermore make the receiver x pending. Finally, each
pending site x may turn agreed, provided all its messages r(z) are completed
(action d(x)).

Obviously, at any time, a site is either pending or agreed, and a message
is either completed or initiated. The algorithm does not guarantee that the
sites eventually are all agreed. However, the algorithm guarantees stability:
It is terminated if and only if all sites are agreed.

136 VI. Case Studies Continued: Network Algorithms

pending
sites
initiated2
sort site fct r, T :site - set of messages
sort message = site x site var X,y :site
const U: set of sites r(x) = {x} x M(x)
const M : set of messages T(X) = M(x) x {x}

Figure 35.3. A variant of X355

35.2 An advanced consensus algorithm

The system Y352 extends Y351 by two further states, demanded sites and
quiet sites. All sites are initially quiet. Each newly sent message (z,y) at the
place initiated; may cause its receiver x to swap from demanded to quiet
or vice versa. This is technically implemented in Y355 as a nondeterministic
choice between actions e(z,y) and g(z,y), or e(z,y) and f(zx,y), respectively.

A demanded site u is not quiet. If demanded and pending, the immediate
step to agreed is ruled out. If no other site is going to send a message, u is
enforced to initiate a new proposal (action a(u)). Messages (v, u) then may
provoke reactions of a site v, i.e., new proposals sent to its neighbors g(v)
(action a(v)). Then g(u,v) may turn u to quiet. Again, this algorithm is
terminated if and only if all sites are agreed.

36 Phase Synchronization on Undirected Trees 137

35.3 A further variant of a consensus algorithm

In X35 o, initiation of a new proposal, viz. occurrence of action a(x), requires
y to be pending. This side condition is replaced in X35 3 by = to be demanded.
Hence in Y35 » a site may initiate a new proposal even if x is quiet; whereas
in Y353, £ may initiate a new proposal even if z is agreed. Again, this algo-
rithm is terminated if and only if all sites are agreed.

36 Phase Synchronization on Undirected Trees

36.1 The problem of phase synchronization

Network algorithms work frequently in rounds or phases: Each site eventually
returns to its initial state, thus entering its next phase.

A synchronization mechanism is occasionally required, that guarantees
synchronized execution of rounds: No site begins its (k4 1)st phase unless all
sites have completed their k-th phase. Stated differently, two sites that are
busy at the same time are executing the same round. The crosstalk algorithm
(Sect. 12) and all derived algorithms such as crosstalk based mutual exclusion
(Sect. 13) and the distributed rearrangement algorithm (Sect. 25) have been
examples for synchronized execution of rounds of two neighbored sites.

A phase synchronization algorithm is derived in the sequel, apt for any
undirected tree network (such networks have been considered in Sect. 34.1
already).

36.2 The algorithm

Figure 36.1 provides phase synchronization on undirected trees: Each site
alternates between two states, busy and pending. Initially, each site is busy
in its zero round. A site u may communicate its actual round number n to
one of its neighbors v by help of the message (v,u). A site u that is busy
in its n-th round goes pending upon receiving messages from all but one
neighbor, v, by action a(u,v,n) (with the ordered set (z,y,i) of variables).
As no message is available initially, the leaves of the underlying undirected
tree start the algorithm. A pending site u at round n goes busy in round n+1
upon receiving the missing message (u,v), by action b(u,v,n). Intuitively
formulated, the leafs start waves of messages that are sent to inner nodes,
thus involving more and more nodes. Eventually, two neighbored sites get
messages from all their neighbors. In this case, the messages are reflected,
i.e., are returned to their respective senders, which coincidently start their
new round (transition b).

As an interesting observation, two identical messages may occur and must
be treated as two different tokens (similar situations occurred in the alter-
nating bit protocol of Sect. 27 and the sliding window protocol of Sect. 28).
An example was the network formed

138 VI. Case Studies Continued: Network Algorithms

busy

.

a
(xy) messages (y,x)
) Gy
pending
sort site w=w1
sort message = site x site Xy OU - X W*y
const U: set of sites W;=U
const W : set of (sites x sites) XoW X ... XgW X410
fct r, T:site - setof messages Xi—1# Xjz1 fori=1,..n
var X, y:site —~ Xo# Xp
var i:nat r(x) = W(x) x {x}
) = 1)~
Figure 36.1. Phase synchronization
busy
Ll X a
(xy.) ~messages (y,x,i)
(x.y.i)
pending

sort site w=w-
sort message = site x site x nat xy OU - xW*y
const U: set of sites W;=U
const W : set of (sites x sites) XoW X1 ... XpW Xp41 O
fct r,7:site x nat — set of messages Xj—1% Xj1 fori=1,...,n
var X,y :site - Xp# X
var i:nat r(x,i) = W(x) x {x} x {i}

i) = {x x W(x) > {i}

Figure 36.2. Messages with round number

36 Phase Synchronization on Undirected Trees 139

A B C (1)

with a state consisting of the empty place busy, two copies of messages (B, C),
and pending containing (A, 0), (B,0), and (C,1). From the initial state, this
state is reachable by the sequence of actions a(A4, B,0), a(B, C,0), a(C, B, 0),
b(C, B,0), a(C, B,1). The corresponding state of Y36 1 includes two different
messages, (B,C,0), and (B, C,1).

36.3 Variants of the algorithm

Occurrence of two identical messages in X361 can be avoided: Just extend
each message by the corresponding round number, as in Ys35.5. The two
messages (B, () shown above to occur in the network (1) are (B, C,0) and
(B, C,].) in 236.2-

As a further variant, a pending site (u,v,n) of X361 is not required to
retain v; hence the version of Y3q 3.

busy

o I

x,y) messages

(y.x)

pending
sort site w=w-1
sort message = site x site x nat x,y OU - x W*y
const U: set of sites W, =U
const W : set of (sites x sites) XoW X1 ... XpW Xp41 O
fct r,7:site x nat — set of messages Xj—1% Xj+1 fori=1,..,n
var X,y :site - X% Xp
var i:nat r(x) = W(x) x {x}

f(x) = o)™

Figure 36.3. Pending without neighbor

140 VI. Case Studies Continued: Network Algorithms

37 Distributed Self Stabilization

37.1 Load balance in rings

A service site is intended to execute tasks, provided by the site’s environment.
At any reachable state a service site has its actual workload, i.e., a set of tasks
still to be executed. The workload increases or decreases due to interaction
with the environment.

Now assume a set of service sites, each one autonomously interacting with
its environment. Their individual workload may be heavy or low in a given
state, and it is worthwhile to balance them: A site with heavy workload may
send some tasks to sites with less heavy workload. The overall workload in
a set, of service sites is balanced whenever the cardinality of the workload of
two sites differs at most by one.

A distributed algorithm is constructed in the sequel, organizing load bal-
ancing in a set of service sites. The communication lines among sites are
assumed to form a ring. Each agent u alternately sends a workload message
to its right neighbor, r(u), and a task message to its left neighbor, I(u). A
workload message of u informs r(u) about the cardinality of the actual work-
load of u. A task message of u depends on the previous workload message of
I(u): If this message reports less tasks than u has, the next task message of
u transfers one of u’s tasks to I(u). Otherwise, the next task message of u
transfers no task to [(u). Intuitively formulated, a site u forwards a task to
I(u) whenever the workload of u exceeds the workload of I(u).

37.2 A distributed load balance algorithm

Figure 37.1 shows a load balance algorithm with fixed workload: The overall
number of tasks remains constant. Each state of a site u is represented as a
pair (u,n), with n the cardinality of u’s actual workload. The task transfered
from u to I(u) by a task message (I(u), 1), is not represented itself.

With the ordered set (x,1,j) of variables, action inform right describes
communication with right neighbors: A site v with actually n tasks with
action informed right(u,n,m) receives a task message (u,m) (with m = 0 or
m = 1) from r(u), updates its actual workload, n, and returns a corresponding
workload message (r(u),n + m) back to r(u), indicating that u has actually
n + m tasks.

With the same ordered set of variables, actions send left no task and
send left one task describe communication with left neighbors: A site u with
actually n tasks receives a workload message (u,m) from [(u), compares n
and m, and returns a task with action send left one task(u,n, m) in case its
actual workload, n, exceeds I(u)’s reported workload, m. Otherwise, u sends
a task message with send left no task(u,n,m), to [(u), containing no task.

Initially, each site u informs r(u) about its actual workload.

37 Distributed Self Stabilization 141

receive inform

from right o state 1) right .
9" i) «) (r00.)

)

(1 (x),0) (x,i-1)

send left no task

(1 (x),1) 57 T« (x.J)
L—1" send left one task

sort site var i, j:nat
sort alloc = site x nat var X,y : site
Ox0OU 00 nat: (x,i))O V
const U : set of sites xzy O r(x) # r(y)
const V: set of alloc On O nat: r"(x) = x
fet l,r:site - site Ox Oy On O nat: y = r"(x)

L (r(x)) =x

Figure 37.1. Distributed load balancing

37.3 Decisive properties of the algorithm

The above algorithm never terminates; each run is infinite. The overall work-
load is eventually balanced, as described above. Two cases may be distin-
guished, depending on the overall workload w := Y,ey,u and the number
|U| of sites:

In case w is a multiple of |U]|, a state will be reached where transition send
left one task remains inactive forever, and statel, state2, and stated together
contain the tokens (u,n) with v € U and n = ﬁ Otherwise a state will be
reached where for all tokens (u,n) and (v,m) in statel, state2, and state3
holds |m — n| < 1, and this remains valid forever. The algorithm behaves
quite regularly: With initially V' at statel, it evolves exactly one concurrent
run. This run is strictly organized in rounds: All sites concurrently execute
action inform right and produce a workload message for their respective right
neighbor. Then all sites concurrently execute send left no task or send left
one task, thus producing a task message for their respective left neighbor.
Finally, receive from right completes a round.

37.4 Load balancing in a floating environment

The load balance algorithm should work concurrently to other parts of the
service sites, in particular to increase and decrease of their respective work-
load. But it interferes with those actions. From the perspective of the load

142 VI. Case Studies Continued: Network Algorithms

balance algorithm, this interference shines up as nondeterministic change of
the cardinality of the sites’ workload. Figure 37.2 represents this behavior
with the transition change.

receive inform

) state 1 ight i
from right i)) rg (r(x),i)

(1 (x),0) (x,i-1)

send left no task

(1 (x).1) M5 (x.J)
L—1" send left one task

sort site var i,j:nat
sort alloc = site x nat var X,y : site
Ox0U 00 nat: (x,)0 V
const U : set of sites x £y O r(x) £ r(y)
const V:setof alloc On O nat:r(x) =x
fct l,r:site - site Ox Oy On O nat: y = r"(x)

1 (r(x)) =x

Figure 37.2. Distributed load balancing in a floating environment

The properties discussed in Sect. 37.3 are not guaranteed any more in
X37.5. A balanced state will be reached whenever change occurs seldomly,
and do not drastically change the workload.

Part C
Analysis of Elementary System Models

The term “analysis” refers to means to show that a system has particular
properties. Examples of systems and typical corresponding properties include

1. a mutual exclusion algorithm, preventing two sites coinciding in their
respective critical sections;

2. a producer/consumer system, ensuring that the buffer never carries more

than one item;

a pushdown device, guaranteeing the equation pop(push(z)) = x;

4. a mutual exclusion algorithm, ensuring that each pending site will even-

tually go critical;

a resource allocation procedure, eventually serving all demands;

6. a termination detection algorithm, establishing that all components of a
distributed program are terminated.

w

ot

System properties can be classified by various aspects. Two classes of prop-
erties will be considered in the sequel, called state and progress properties,
respectively. Intuitively formulated, a state property stipulates that “some-
thing bad” never happens. A progress property stipulates that eventually
“something good” will happen.

A slightly more formal explanation of safety and progress properties is
based on global states s C Py, be they reachable or not. For a set M of
global states, call s an M -state iff s € M. A state property has the typical
form “each reachable state is an M-state”. A progress property has the typical
form “some M-state will eventually be reached” or, in its conditional form,
“from each L-state some M-state will eventually be reached”. The properties
1, 2, and 3 described above are state properties, whereas 4, 5, and 6 are
progress properties.

Part C provides techniques to describe and to prove such properties. Par-
ticular formulas will be employed for this purpose, adopting concepts of tem-
poral logic. However, we do not propose a full-fledged logic with completeness
results, minimal sets of operators, or efficient model checking procedures. For-
mulas are just used to make intuitive statements and conclusions transparent
and precise, this way deepening the reader’s insight into the functioning of
systems.

Technically, elementary properties (viz. valid formulas) will be derived
from the static structure of a net, i.e., without constructing its runs. More

144 Part C. Analysis of Elementary System Models

involved valid formulas are gained by means of rules from already derived
formulas.

VII. State Properties of Elementary System
Nets

Here we consider properties of elementary system models that can be de-
scribed by “at each reachable state holds p”, with p a propositional expres-
sion. A typical example was mutual exclusion, with p = =(crit; A crit,).
Techniques to verify such properties include place invariants and initialized
traps.

38 Propositional State Properties

A property p that at each state a of an es-net X either holds or fails is called
a state property of X. p will be said to hold in X iff p holds at each reachable
state of X. Such properties can conveniently be represented by means of
propositional formulas built from the conventional propositional operators —
(not), A (and), V (or), — (implies), etc. Local states of es-nets will serve as
atoms of such formulas.

38.1 Definition. Let P be a set of symbols. Then the set sf(P) of state
formulas over P is the smallest set of symbol sequences such that

i. P Csf(P), and
ii. if p,q € sf(P) then —p € sf(P) and (p A q) € sf(P).

The conventional propositional shorthands will be employed, and sets of
formulas are quantified as usual.

38.2 Notation. Let P be a set of symbols and let p,q € st(P).

i. We usually write
(pVq) for =(=p A —=q), and (p — q) for (=pV q).
it. For asetQ ={q,...qn} Csf(P) of formulas we often write \/ Q instead
of @ V...V qn. Likewise, for q A ... A q, we often write \ Q or Q or
q1 - - -Gn- The operator A is assumed to bind more strongly than any other
operator.
i11. p 1s an atom iff p € P.

State formulas will be constructed from the local states of es-nets X. A
state formula p will be said to hold or to fail in any global state a of X.
Holding of state formulas is defined as follows:

146 VII. State Properties of Elementary System Nets

38.3 Definition. Let P be a set of symbols, let a C P and let p,q € sf(P).
Then a = p (p holds at a, a is a p-state) is inductively defined as follows:

i. a =p iff p € a, for atomsp € P,
it. a = —p iff not a = p,
ii. aEpAqiffalEpandal=q,

This definition in fact returns the expected meaning for the shorthands
of Notation 38.2, i.e.,

aEpVqiffaEporalg,

and a E Aa. al=p— qiff a |= g whenever a |=p

A formula p is said to hold in an es-net X iff p holds in each reachable state
of X

38.4 Definition. Let X be an es-net and let p € sf(Px). Then p is said to
hold in X' (p is a valid state property of X), written X |= p, iff a | p for
each reachable state a of X.

Figure 38.1. ¥ = (B = C) A (A — =C)

As an example, in Y351 the two formulas B — C and A — —C hold.
Further examples are Y91 = AV B, Y93 E FC — K and Y35 =
—(critical; A critical,).

38.5 Lemma. Let ¥ be an es-net and let p,q,r,s € sf(Pyx).
i. YEpand X =qiff X EpAg

i. f Y Epand ¥ =p— qthen ¥ =g
iwi. f YEp—>qand Y Er — s then X = (pAr) = (gAs).

Proof of this lemma is left as an exercise for the reader.
Some general properties of es-nets can be characterized by means of state
formulas. Referring to Sect. 3, contact freeness is represented as follows:

39 Net Equations and Net Inequalities 147

38.6 Lemma. An es-net X has no reachable contact state iff

o= ANt ==\).

teT

Proof. X has no reachable contact state iff, for each reachable state a and
each t € Ty, if *t C a then (¢*\ *t) Na = 0. This holds iff ¥ = A,. (At =
~V(E°\ *1)). 0

A further formula describes that each reachable state enables at least one
action:

38.7 Definition. An es-net X is stuck-free iff ¥ = \/, . (A *t A=V (2°\ *1)).

39 Net Equations and Net Inequalities

State properties can frequently be proven by means of equations and inequali-
ties, which in turn can be derived from the static structure of any given es-net.
To this end, each place p of an es-net X is taken as a wvariable, ranging over
{0,1}, and each state a C Py is represented by its characteristic function
a: Py — {0,1}, with a(p) = 1 iff p € a. Equations and inequalities with the
form

ny-pr1+...+ng-pc=m and (1)
ni-pi+...+ng pc>m (2)
will be constructed (where py, ..., px are variables corresponding to Px and
ni,...,nk,m are integers), which holds in X' if the characteristic function of

each reachable state of X solves (1) and (2). Valid state properties can then
be “picked up” from valid equations and inequalities.

39.1 Definition. Let X be an es-net.

i. For each state a C Py, the characteristic function a : Py, — {0,1} of a
is defined by a(p) =1 if p€ a and a(p) =0 if p & a.
ii. Let {p1,...,pr} C Px and let p1,...,px be variables, ranging over {0,1}.
Furthermore let ny,...,ni, m € Z. Then
€: Ny p1+...+Ng-px=m
is a X-equation, and
d: nyprt-.-+ng-pr>m
is a Y-inequality.
i1i. Let € and 6 be as above, and let a C Px be a state. Then a solves € iff
ny-a(p1)+...+ng-a(pr) = m, and asolves d iff ny-a(p1)+...+ng-a(pr) >
m.
. A Y-equation € or a X-inequality § is valid in X (e or § holds in X) iff
each reachable state of X solves € or §, respectively.

148 VII. State Properties of Elementary System Nets

Addition and subtraction of valid Y-equations and X-inequalities obvi-
ously retains validity.

We employ the usual conventions of integer terms, such as skipping 0-p;.
For example, valid X35 1-equations include A+ C+D =1, B—-C+ E =0,
and 2A+ B+ C+2D+ E = 2. Likewise, the inequality A+ B+C+D+E > 1
holds in 238.1-

A valid Y-equation immediately implies valid state properties. For ex-
ample, the valid Y35 1-inequalities A + C < 1 and B — C + E = 0 yield
Y381 | A — -C and Y5351 = B — (| respectively. Each valid Y-equation
€ implies a strongest valid state property of X, called the state property of
€. Most applications involve special cases of Y-equations, with quite intu-
itive state properties. We start with the most general case, which may be
skipped upon first reading, and will formulate the practically relevant cases
as corollaries.

39.2 Definition. Let X be an es-net and let € be a X-equation.

i. Let the summands of € be ordered such that € reads ny-p1+. . .+ng-px = m,
withni + ...+ n;=m, for some 1 <l <k. Thenpi A---Ap A —pr41 A
-« A —pg s a standard formula of e.
it. Let IT be the set of all standard formulas of €. Then x(e) := \/ I is the
state property of e.

For example, the equation 24 + B + C' = 1 has two standard formulas
(up to propositional equivalence), B A=A A —=C and C' A=A A —B. Likewise,
2A + B + C = 2 has the standard formulas A A =B A —-C and B A C A=A,
and the equation A — B — C' = 0 has the standard formulas A A B A =C,
ANCA=B,and ~AA-BA-=C.

The state property of each valid X-equation holds in X

39.3 Theorem. Let X be an es-net and let € be a valid X -equation. Then

2 x(e)-

Proof. 1. Let a C Py be a reachable state of X. Then € can be written
€:ny-p1+...+n-pr+n41 pry1t+ ...+ NE-pr=m, with

Pi,---,pr €aand prya, ..., pr € a. (1)
Then m =ny -a(p1) + - ..+ ng - a(px) (by Def. 39.1(iii))
=ni-1+...4+n-14+n41-0+...4+n4-0 (by def. of @ and (1))
=n1+...+n;.

Then 7, :=p1 A... APy A—prp1 A ... A —pg is a standard formula of e.
Furthermore,

a =7, (by (1) and Def. 38.3). (2)

ii. The set IT of all standard formulas contains the formula m, for each
reachable state a of X' (by construction of 7,). Hence x(¢) holds for each
reachable state (by (2)), which implies the Theorem (by Def. 38.4). O

39 Net Equations and Net Inequalities 149

Applications mostly require propositional implications of state properties
of quite special Y-equations. The two most important cases are covered by
the following corollary:

39.4 Corollary. Let X be an es-net.

i. Let p1+ ...+ px =1 be a valid X-equation. Then X =py V...V p, and
YEp = (p2 Ao A D).

1. Withny,...,ng >0,letny-pr+...4+n;-pr—nyp1 P41 —---—Ng-pr =0
be a valid ¥-equation. Then X = (1 V... Vp) = (D1 V...V Dg).

Proof. i. The standard formulas of the given equation are p; A A i Pjs
fori =1,...,k. The properties claimed are implied by the disjunction of
those formulas.

ii. For each standard formula g3 A -+ A @ A “Gma1 A - -+ A gy, of the given
equation holds: If for some 1 < i <, p; € {q1,...,¢m}, then for some
m+1<j<n,pj €{q,...,qm}, by construction of the equation. The
property claimed is implied by the disjunction of those formulas. O

By analogy to Def. 39.2, Theorem 39.3, and Corollary 39.4, each X-
inequality d can be assigned a set of standard formulas which yield a state
property x(d) that holds in X, provided ¢ is valid in ¥. Again, there is a
most important special case:

39.5 Definition. Let X be an es-net and let § be a X-inequality.

i. Let the summands of § be ordered such that 6 reads ny-p1+...4+ng-px > m,
withny + ...+ n; > m for some 1 <1 <k. Thenpr A...App A—pry1 A
..\ —py, is a standard formula of §.
it. Let IT be the set of all standard formulas of . Then x(8) := \/ II is the
state property of §.

For example, 2A + B — C' > 2 has the three standard formulas AN BAC,
AANBA-C and AN-BA-C.
The state property of each valid Y-inequality holds in X

39.6 Theorem. Let X be an es-net and let & be a valid X -inequality. Then

2 E x(9).

Proof of this theorem tightly follows the proof of Theorem 39.3 and is left
as an exercise for the reader.

The most important special case of the above theorem is captured by the
following corollary:

39.7 Corollary. Let X' be an es-net and let p1 + ...+ pr > 1 be a valid
Y-inequality. Then ¥ Ep1 V...V pg.

150 VII. State Properties of Elementary System Nets

40 Place Invariants of es-nets

Valid Y-equations can be gained from solutions of systems of linear, homoge-
neous equations. To this end, a matrix X is assigned to each es-net Y. This
matrix employs the places and transitions of X' as line and row indices:

X a b c d e ax
Al -1 -1 1 A 1
B 1 -1 B
C 1 1 -1 C
D 1 -1 D
E 1 1 -1 E

Figure 40.1. X33 with matrix X' and vector ax

40.1 Definition. Let X be an es-net.
i. Fort € T let t be the Ps;-indexed vector where for each p € Ps;
+1 iffpet*t
tpl =< -1 iff pect\t*

0 otherwise.

it. Let X be the matriz with index sets Ps; and T's;, such that for each p € Py,
and t € Tx, X[p, t] := t[p].

P a b c d e i1 d2 i3 n
Al -1 -1 1 A 1 2
B 1 -1 B 1 1 1
C 1 1 -1 cl 1 1 -1
D 1 -1 D|1 1 2
E 1 1 -1 E 1 1 1

Figure 40.2. Matrix and four place invariants of Xsg 1

Figure 40.1 represents the matrix of X35 1, as well as the characteristic func-
tion of the initial state. Intuitively, X[p, t] describes the change of the number
of tokens on the place p upon any occurrence of ¢t. The matrix X describes
the static structure of X' uniquely in case X' is loop-free.

40 Place Invariants of es-nets 151

The matrix X of an es-net X will now be used to construct the system
X7 -2 = 0 of homogeneous linear equations. Here X7 denotes the transposed
matrix of X, 0 the Px-indexed vector with zero entries, and - the usual inner
product of matrices and vectors. The solutions of this system of equations
are called place invariants.

40.2 Definition. Let X be an es-net and let i : Py, — 7Z be a mapping.
Then i is called a place invariant of X' iff X7 -i = 0 (i.e., for each t € Tx,

t-i= Ypepst[p] -i(p) = 0).

Figure 40.2 recalls the matrix of X4 ; and shows place invariants iy, . . .44
of 240.1.
Each place invariant is now assigned its characteristic equation:

40.3 Definition. Let X be an es-net with Py = {p1,... ,pr} and let i be a
place invariant of X.

i m:=1i(p1)-ax(pr)+ ... +i(pr) - ax(pe) is the initial value of i.
it. The X-equation i(p1) -p1+ ...+ i(pr) - px = m is the equation of .

In fact, the equation of a place invariant is valid in the underlying es-net
PIH

40.4 Theorem. Let X be an es-net and let i be a place invariant of X. Then
the equation of i is valid in X.

Proof. Let €: ny -p1 + ...+ ng - px = m be the equation of i. Then for each
t e TE,

i ni - tlpi] = 0, (1)
by Defs. 40.3(ii) and 40.2.
Now let a5 b be any step of Y. Then for each p € Py,

b(p) = a(p) + tlp] (2)
by Def. 40.1(i). Furthermore,

if a solves € then b solves €, too, (3)
shown as follows. Assume a solves €. Then

m =Y n; - a(p;) (by Def. 39.1(iii))
= (ZEani - a(p) + (Dyni - tpi]) (by (1))
= Sl i (ni - alpi) + (ni - tlpi]) = ZEyni - (a(pi) + tpi])

= X ini - b(ps) (by (2)).

Then b solves e (by Def. 39.1(iii)).

152 VII. State Properties of Elementary System Nets

To show the theorem, let a be any reachable state of X. Then there exists

an interleaved run ag i)al RN iml of X with ag = ax and a; = a. Then
ap solves e (by Def. 40.3(i)). Then each a; (j =0,...,[) solves € (by (3) and
induction on j). Hence the theorem, by Def. 39.1(iv). o

The equations of iy,...,iy as given in Fig. 40.2 are A+ C + D = 1,
A+B+D+E=1,2A44+B+C+2D+FE =2,and B-C+E =0,
respectively. They are in fact valid, due to Theorem 40.4.

Important state properties can frequently be proven by means of equations
of place invariants with entries ranging over {0, 1} and initial value equal
to 1. Examples are i; and iy of Fig. 40.2. The equation of such a place
invariant is formed py + ...+ px =1, with P = {p1,... ,pr} C Px. It can be
graphically depicted with boldfaced arcs adjacent to places in P. Figure 40.3
shows examples. The places in P together with the adjacent transitions in

P*U*P from a “subnet” with | *¢| = |¢*| = 1 for each action ¢. Occurrence
of ¢ (which may depend on local states not in P) then swaps the unique token
within P.

According to Corollary 39.4(i), such place invariants yield valid state prop-
erties. For example, with invariant i; of Fig. 40.2, the state formulas AVCV D
and A — ("C A —ID) hold in 240.1-

Slightly more generally, many place invariants have entries ranging over
{-1,0,+1}, with initial value 0. In Fig. 40.2, i4 is an example. With Corol-
lary 39.4(ii), such place invariants yield formulas of form (p; V...V p) —
(P41 V ...V pg). For example, iy of Fig. 40.2 yields (B V E) — C, and —iy4
implies C — (B V E).

A
c (@) a
D e B
d b
E
outlining i 1 outlining i 2

Figure 40.3. Outlining invariants i; and i» as given in Fig. 40.2

41 Some Small Case Studies 153

41 Some Small Case Studies

41.1 State properties of producer/consumer systems

The producer/consumer systems X 1, Y91, Xg.2, and Xy 3 consist essentially
of small circles, synchronized along common actions. Each circle is charac-
terized by a place invariant, in fact a characteristic vector. In Xy their
equations are

the producer’s invariant i1: A+ B =1 (1)
the first buffer cell’s invariant io: C + D =1 (2)
the second buffer cell’s invariant iz: E+ F =1 (3)
the consumer’s invariant i4: G + H = 1 (4)

Hence in each reachable state, the producer is either ready to produce or ready
to deliver, each buffer cell is either empty or filled, and the consumer is either
ready to remove or ready to consume.

It is not difficult to realize that the above four invariants also apply to
29.2 and 29.3.

The rest of this section is dedicated to the “optimality” of Xy 3, as ex-
plained in Sect. 9: The producer is never forced to access a filled buffer cell
while the other cell is ready to deliver. Furthermore, if at least one buffer cell
is empty, then the token on J or K “points at” an empty buffer cell. This is
represented by

(BA(EVC)) = (BEJV BCK). (5)

Proof of (5) is based on three invariants (6)-(8), of which (7) is outlined in
Fig. 41.1:

Figure 41.1. Place invariant E+ K — C — M =0 of Yy 3

154 VII. State Properties of Elementary System Nets

J+ K =1, hence Yy 5= J VK. (6)

E+K—-C—-M=0,hence Yy3 = EK — CK. (7)

C+J—E—-L=0,hence Yy35=CJ — EJ. (8)
Now we derive

Yoz E(EVC) = (EVCO)A(JVK), by (6). 9)

Yo3sE(EVC) = EJVEKVCJVCK,by (9). (10)

Yo3 E(EVC)— EJVCK, by (10),(7) and (8). (11)

Now (5) follows from (11) by propositional logic.

41.2 Mutual exclusion of the contentious algorithms

Mutual exclusion of two local states p and g of some es-net X is apparently
represented by

TE-pAg). (1)

This can frequently be proven by means of place invariants.

Figure 41.2. Place invariant C + D + G = 1 (boldface) of X35

An example is the mutual exclusion of critical; and critical, in the con-
tentious algorithm X3 5.

Figure 41.2 recalls this algorithm, with renamed elements and boldface
arcs of its invariant C'+ D +G = 1. With Corollary 39.4(i), both the formulas
C — =G and G — =C hold in Y41 o, hence Yy o ': —l(C A G)

41.3 Mutual exclusion of the alternating algorithm

Figure 41.3 recalls the alternating mutex algorithm X;33 with renamed
places. The boldface arcs outline the place invariant C + D + E+ H = 1
which implies =(C A H), viz. mutual exclusion of critical; and critical, in
Y133

41 Some Small Case Studies 155

®o

Figure 41.3. Place invariant (boldface) of the alternating mutex algorithm
Y33

Figure 41.4. Place invariant (boldface) of the token passing mutex algorithm
Yz

156 VII. State Properties of Elementary System Nets

41.4 Mutual exclusion of the token passing algorithm

Figure 41.4 recalls the token passing mutex algorithm X35, with renamed
elements. The boldface arcs depict the place invariant B+E+J+K+M+Q =
1. This invariant immediately implies mutual exclusion of E and @, i.e.,
mutex of 213_5.

41.5 Mutual exclusion of the asymmetrical algorithm

Figure 41.5 recalls the asymmetrical algorithm X3 19, with renamed places.
The boldface arcs depict the place invariant C + D + E + K + G = 1. This
invariant immediately implies mutual exclusion of C' and K, i.e., mutex of
Y13.10-

Figure 41.5. Place invariant (boldface) of the asymmetrical mutex algorithm
239

Place invariants fail to prove mutual exclusion of all other algorithms of
Sect. 13, however, particularly those relying on loops. As loops don’t show up
in the incidence matrix, they cannot be represented and exploited by place
invariants. Removing all loops from X3 4, X138 destroys the mutex property,
but retains the place invariants. Hence place invariants cannot help for those
algorithms. In fact, they also fail for X3 4.

One may employ a different analysis technique to this end, and in fact
such a technique exists. The following section has the details.

42 Traps

This section provides a further technique for proving state properties of es-
nets, useful in many cases where place invariants fail. This technique is based
on traps, i.e., on subsets P C Py, with P®* C *P. A trap {p1,... ,pr} implies
the valid inequality p; +...4+px > 1 and hence the state formula p; V...V pg,
provided one of its places belongs to the initial state. Hence we are mostly
interested in initialized traps:

42 Traps 157

42.1 Definition. Let X be an es-net and let P C Ps;.

i. Pis a trap iff P # () and P®* C °P.
#. P is initialized iff P Nax # 0

Figure 42.1 shows an example of an initialized trap, {4, D}. Figure 42.2 out-

/ if present

then required

Figure 42.2. Graphical outline of a trap

lines the requirement for traps graphically. As a further example, {A, C, D, E}
is an initialized trap of Xyg.1.
Basic rules on sets imply:

42.2 Proposition. The union of traps of a net N is again a trap of N.

Proof. Let A and B be traps of N. Then (AU B)®* = A*UB®* C*AU*B =
*(AuB). 0

Each trap is now assigned its inequality, by analogy to the equation of
place invariants, as defined in Def. 40.3.

42.3 Definition. Let X be an es-net and let P = {p1,... ,pr} C Px be a
trap of X. Then
pi+...+px>1

is the inequality of P.

In fact, the inequality of an initialized trap is valid:

158 VII. State Properties of Elementary System Nets

42.4 Theorem. Let X be an es-net and let P C Py be an initialized trap.
Then the inequality of P is valid in X.

Proof. 1. Let 0 : p1+...+px > 1 be the inequality of P, and let a C Px be
a state of X. Then a solves ¢ iff a(p1) + ...+ a(pr) > 1 iff a(p;) =1 for
at least one 1 < i < k iff p; € a for at least one 1 <i < a iff PNa # 0.
Hence for each state a C Py;,

a solves § iff aN P # §. (1)
Furthermore, for each action t € T's;:
If *tNP # 0 then t* NP # 0 (2)

because P is a trap.

ii. Let a5%b be a step of X and assume
anP #£10. (3)
We distinguish two cases:
If *tNP # () then) # t*NP (by (2)) C ((a \ *t) N P) U (t*NP)
((a*t)Ut*)N P =>bnN P (by Def. 3.1).
Otherwise *tNP = (. Then § # aN P (by (3)) = (anP)\ (*tNP) C
((anP)\ (*tNP))U(t*NP) = ((a*t)Ut*)NP =bN P (by Def. 3.1).
Hence for each step atbof X,
IfanP # 0 then bN P # 0. (4)

iii. To show the theorem, let a be any reachable state of X. Then there exists

an interleaved run ag LA ar LN i)al of X with a9 = ax and a; = a.
Then ap N P # § (by the theorem’s assumption and Def. 42.1). Then
a;NP #Pfori=1,...,1 by (4) and induction on i. Then a; solves § (by
(1)), hence a solves 6. a

The inequality of a trap can be combined with inequalities of other traps
and with equations of place invariants. A small but typical example is the
proof of X451 = B — D, hence the equation

B<D (1)
must hold. Figure 42.1 yields the place invariant

A+ B=1. (2)
Furthermore, the initialized trap {A, D} yields the inequality

A+D >1. (3)
Subtracting (3) from (2) then yields

B_D<0 2) - @3)

which immediately implies (1).
The inequality of an initialized trap P yields the formula \/ P, according
to Corollary 39.7.

43 Case Study: Mutex 159

42.5 Corollary. Let Y be an es-net and let P C Px be an initialized trap.
Then X |=\/ P.

Proof. The proposition follows from Def. 42.3 and Corollary 39.7. O

43 Case Study: Mutex

Mutual exclusion has been shown for a number of algorithms in Sect. 41.
Here we show mutual exclusion for the remaining algorithms of Sect. 13 by
combining equations and inequalities of place invariants and traps.

43.1 Mutex of the state testing algorithm

Figure 43.1 redraws the state testing algorithm, renaming its local states
and outlining its trap {D, E} by boldfaced arcs. Mutual exclusion in this
representation reads Y431 = —-(C A H), hence the equation

C+H<I1 (1)

must hold. Proof of (1) is based on two elementary place invariants with the
equations

C+D=1, (2)

E+H=1, (3)
and the initialized trap {D, E} outlined in Fig. 43.1 which yields

D+E>1. (4)

Subtracting the inequality (4) from the sum of the equations (2) and (3)
yields

C+D+E+H-D-E<1+1-1 (2) + (3) — (4)

which immediately reduces to (1).

Figure 43.1. Trap {D, E} of the state testing mutez algorithm X3 4

160 VII. State Properties of Elementary System Nets

43.2 Mutex of the round-based algorithm

Figure 43.2 redraws the round-based mutex algorithm X;3¢, renaming its
local states and outlining one of its traps by boldfaced arcs. Mutual exclusion

Figure 43.2. Trap {A,C,D,E, J, K} of the round-based mutez algorithm
X136

in this representation reads Y432 = =(IN A R), hence the equation

N+R<1 (1)
must hold. Proof of (1) is based on three place invariants with the equations

A+C+D+J+M+R=1, (2)

D+E+H+J+L+N=1, (3)

K+R+S+T=1, (4)
the initialized trap, outlined in Fig. 43.2 with the inequality

A+C+D+E+J+K>1, (5)
and the obvious inequality

D+H+J+L+M+S+T>0. (6)

Thus we obtain by (2) + (3) + (4) — (5) — (6)

43 Case Study: Mutex 161

N+2R<2ie, ¥ +R<1. (7)
(7) is equivalent to (1), because N and R vary over {0, 1}.

43.3 Mutex of Peterson’s algorithm

Figure 43.3 redraws Peterson’s mutex algorithm Y37, renaming its local
states and outlining its trap {C, F, G, M} by boldfaced arcs. Mutual exclusion

Figure 43.3. Trap {C, F,G, M} in Peterson’s algorithm Y3 7

in this representation reads Y43.5 = —(E A N), hence the equation
E+N<1 (1)

must hold. Proof of (1) is based on three elementary place invariants with
the equations

G+H=1, (2)
C+D+E+F=1, (3)
L+M+N+P=1, (4)
and two initialized traps, one of which is outlined in Fig. 43.3, which yield
C+F+G+M>1, (5)
L+P+H+D>1. (6)

Subtraction of (5) and (6) from the place invariants’ sum, i.e., (2) + (3) +
(4) — (5) — (6), then immediately yields (1).

162 VII. State Properties of Elementary System Nets

43.4 Mutex of Dekker’s algorithm

Figure 43.4 renames the local states of Dekker’s mutex algorithm X;3¢ and
outlines its trap {F, C, P, L}. Mutual exclusion then reads Y43 4 = (DA M),

Figure 43.4. Trap {C, F, L, P} in Dekker’s algorithm Y35

hence the equation
D+M<1 (1)

must hold. Proof of (1) is based on two elementary place invariants with the
equations

F+C+D+E=1, 2)

P+L+M+N =1, (3)
the initialized trap, outlined in Fig. 43.3, with the inequality

F+C+P+L2>1, (4)
and the obvious inequality

E+ N >0. (5)
Then (1) follows with (2) + (3) — (4) — (5).

43 Case Study: Mutex 163

43.5 Mutex of Owicki/Lamport’s algorithm

Figure 43.5 renames the local states of Owicki/Lamport’s algorithm X3
and outlines its trap {C, F,G, K'}. Mutual exclusion of writing and reading
then reads Y435 = —(D A L), hence the equation

D+L<1 (1)

must hold. Proof of (1) is based on two elementary place invariants with the
equations

C+D+F=1, 2)

G+K+L=1, (3)
and an initialized trap, outlined in Fig. 43.5, with the inequality
C+F+G+K>1. (4)

Subtraction of (4) from the sum of (2) and (3), i.e., (2) + (3) — (4), then
reduces to (1).
This completes the proof of mutual exclusion for all algorithms of Sect. 13.

Figure 43.5. Trap {C, F,G, K} in Owicki/Lamport’s asymmetrical mutex
algorithm 213_9

VIII. Interleaved Progress
of Elementary System Nets

As explained in the introductory text of Part C, a progress property of an es-
net X stipulates for a given set M of states that one of them will eventually be
reached. In its conditional form, a progress property stipulates that, starting
at any state in some set L of states, a state in M will eventually be reached.

The notion of progress can be based on interleaved runs as well as on
concurrent runs. This section sticks to the interleaved version. Concurrent
variants will follow in Chap. IX.

44 Progress on Interleaved Runs

We consider progress properties that are constructed from two state proper-
ties, p and ¢: The progress property p leads to g (written p + ¢) holds in an
interleaved run r of some es-net X iff each p-state of r is eventually followed
by some g-state. Furthermore, p — ¢ is said to hold in X' iff p — ¢ holds in
each run of X. For example, the evolution property of a mutex algorithm X
(cf. Sect. 13) then reads

Y k= pending v critical (1)

Technically, leads-to formulas are constructed from state formulas (cf.
Def. 38.1):

44.1 Definition. Let P be a set of symbols and let p,q € sf(P) be state
formulas over P. Then the symbol sequence p — q (“p leads to q”) is a
leads-to formula over P. The set of all such formulas is denoted [f(P).

Leads-to formulas are interpreted over interleaved runs and over es-nets:

44.2 Definition. Let X be an es-net and let p — q € 1f(Px) be a leads-to
formula.

i. p > q is said to hold in an interleaved run w of X (written w = p — q)
iff to each p-state of w with index i there exists a q-state in w with some
index j > 1.

it. p > q is said to hold in X (written X |=p — q) iff w = p— q for each
interleaved run w of X.

166 VIII. Interleaved Progress of Elementary System Nets

For example, in X441, AB — E, A — CD, and A — FE hold, but not
AB +— AD.In Y445, ABC — (FV G) and AB — (F V DG) hold.

A C
c
E
B
b D
Figure 44.1. A~ E
a D C
A F
B
C G
b E d

Figure 44.2. ABC — (F V@), and AB — (F VvV DQG)

Essential properties of the case studies of Chap. IT can be formulated by
means of leads-to formulas. Examples include:

— for buffer systems X as in Figs. 9.1-9.3: Each producer ready to deliver will
eventually return to ready to produce: ¥ = B — A (but A — B does not
hold there!);

— for actor/responder systems X' as in Figs. 12.1, 12.2, 12.3, 12.5: The left
agent will eventually return to its local state: X' = —local; — localy;

— for mutual exclusion algorithms X' as in Figs. 13.4-13.10: Each pending
site will eventually be critical: X' = pending — critical or each prepared
writer will eventually be writing.

The leads-to operator exhibits a couple of useful properties:

44.3 Lemma. Let ¥ an es-net and let p,q,r € sf(Py).

i. If YEp—>qthen Y |=p—gq;

ii. Y Ep—p;

ii. f Y Ep~qand Y Eq— 1 then Y =p—r;

w. If XY =p—rand Xl=q—rthen Y= (pVg) —r.

45 The Interleaved Pick-up Rule 167

Brackets will be avoided in progress formulas by the assumption that the
progress operator — binds more weakly than any propositional operator. For
example, p A g — 7 V s will stand for (p A q) — (rV s).

Proof of this lemma is left as an exercise for the reader.

45 The Interleaved Pick-up Rule

Section 44 introduced means to represent leads-to properties. Now we pursue
a method to prove such properties. To this end we suggest a technique to
“pick up” simple valid leads-to formulas from the static structure of a net.
Further valid formulas can be derived from already established state- and
progress properties by help of the next chapter’s proof graphs.

The forthcoming technique is based on the (admittedly quite obvious)
observation that either an enabled, progressing action occurs itself, or one of
its attached neighbors occurs.

As an example, assume the following piece

A

D
i (1)
c b OE

of an es-net X. {A, B} enables the progressing action a; hence either a or b
occurs eventually. Represented in the framework of Sect. 44, we gain ¥ |=
AB +— DV AE. In general:

45.1 Lemma. Let X' be an es-net and let t € Tx; be progressing. Then X |=
't Ve eff (°t u).

Proof of this lemma is left as an exercise for the reader.
More generally, we may start out with any progress prome set of local
states. As an example, in

168 VIII. Interleaved Progress of Elementary System Nets

the state AC enables e, hence either of e, f, or g will eventually occur. Hence
YEACw (CDVCEV AF).

45.2 Definition. Let X be an es-net and let Q C Psx. Then @ is progress
prone iff Q enables at least one progressing action of X.

As an example, AC is progress prone in (2) whereas BC' is not.

45.3 Lemma. Let X be an es-net and let () C Pyx be progress prone. Then
UE Q- Vg off(Q,u).

Proof of this lemma, is left as an exercise for the reader. Lemma 45.1 is
apparently a special case of Lemma 45.3. As a further example consider the

es-net Y =
B
°D<O\EPOE
A c (3)
d
A F
D

Def. 45.2 implies X' |= BC' — EV BF'. The overall structure of X' further-
more implies ¥ = B — —D. Hence d is prevented in the state BC, and c is
the only action to occur. Thus even X' = BC +— FE holds. Generally, a set @
of local states of an es-net X' prevents an action ¢ iff ¢ is not enabled at any
reachable state a with @ C a. This holds true iff ¥ |= Q — —*t. A change
set of () then includes all ¢t € Q°® that are not prevented by Q:

45.4 Definition. X be an es-net and let Q C Psy;.

i. @ prevents an actiont € Ty iff ¥ = Q — —(*t).
ii. U C Ty is a change set of Q iff U # 0 and Q prevents each t € Q*\U.

Q° is obviously a change set of). In the net X as given in (3), BC' is
progress prone, whereas BD is not. BC prevents d and CD prevents c¢. The
set {c,d} as well as the set {c} are change sets of BC. The set {a,b} is a
change set of A whereas {a} is no change set of A.

45 The Interleaved Pick-up Rule 169

The following theorem describes the most general case to pick up leads-to
formulas from the static structure of a net: Each change set of a progress
prone set () implies a leads-to formula.

45.5 Theorem. Let X be an es-net, let Q C Py be progress prone and let
U be a change set of Q in Y. Then

TEQw \/ eff(Q,u).

uelU

-
f
5 (O
-
C
O
9
b e
e —

Figure 45.1. AC — EC holds, provided A — =D and C — =B hold.

Proof. Let w = ag 11y 60 2 be an interleaved run of X and let a; EQ
for some index ¢ of w. Then there exists a Q-enabled progressing action, ¢.

— Then a; enables ¢ (because *t C @ C a;).

~ Then there exists an index j > i with ¢; € (°t)* (by Def. 8.2(i) and
Def. 6.1).

— Then there exists an index [< j with ¢; € @Q°®. Let k be the smallest such
index.

— Then a; = @ for all i < j < k, and particularly ay—1 = Q.

— Then t; € U (by Def. 45.4), and furthermore a;, |= eff (Q, tr).

— Hence ap = /o eff(Q, u).

The theorem now follows from Def. 44.2. a

Lemma 45.3 is apparently a special case of Theorem 45.5 (with U = Q*).

A further, slightly more involved example is shown in Fig. 45.1: Assuming
A — =D and C — =B to hold in X451, {4, C} prevents both g and f. Hence
U = {e} is a change set of {4, C}. Furthermore, {A, C'} is progress prone,
hence Y451 | AC — EC. As a final example, X5 2 E 7BV —E, hence {A}
prevents b, and Y450 = A — C follows from Theorem 45.5.

170 VIII. Interleaved Progress of Elementary System Nets

Figure 45.2. ¥ = A — C

Small change sets U generate more expressive progress formulas than large
ones. However, it is occasionally useful not to insist on minimal change sets
U: It may be difficult to prove that a set () prevents an action ¢ € Q°, and
the contribution of ¢ to the generated progress formula may be irrelevant for
the intended use. In fact, the special cases of Lemma 45.1 or Lemma 45.3
frequently suffice.

According to its use in correctness proofs, Theorem 45.5 suggests con-
structing a valid progress formula from a set () C Pyx of places according to
the following schema:

45.6 The pick-up rule for leads-to formulas. Let XY be an es-net and
let Q - Py,

1. Make sure () enables some progressing action ¢ € Ty, (i.e., *t C Q).

2. Starting with U := @*, identify some actions prevented by) and remove
them from U.

3. With the remaining set U C Q*® of actions, construct the progress formula

Q= Viyer(@\ *u) Uus.

46 Proof Graphs for Interleaved Progress

Leads-to properties can be proven by help of valid leads-to formulas that are
picked up according to the pick-up rule of Sect. 45, and their combination
according to Lemma 44.3.

Such proofs can conveniently be organized by means of proof graphs. The
nodes of a proof graph are state formulas. The arcs starting at some node p
represent a disjunction of leads-to formulas. A proof graph is acyclic, has one
initial node, p, and one final node, ¢, thus proving p — ¢. As an almost trivial
example, given p — ¢q and g — 7, proof of the formula p — r is represented
by the proof graph

p——=q"——"r. (1)

Assuming standard notions of graphs, we define

46 Proof Graphs for Interleaved Progress 171

46.1 Definition. Let X' be an es-net, let p, q € sf(Ps;) be state formulas and
let G be a graph such that

i. G is directed, finite, and acyclic,
it. The nodes of G are state formulas in sf(Py),
1. p is the only node without predecessor nodes,
w. q s the only node without successor nodes,
v. for each noder, if r1,... ,ry are the successor nodes of v, then X |=r —
(7“1 \/...Vrn).

Then G is a proof graph for p+— ¢ in Y.
The following theorem presents the central property of proof graphs:

46.2 Theorem. Let X be an es-net and let G be a proof graph for p — q in
Y. Then ¥ Epr q.

Proof. The Theorem is shown by induction on the length n of a longest path
in Y. Induction basis: for n = 1, requirements iii and iv of Def. 46.1 imply
p = ¢, hence ¥ = p — ¢ by Lemma 44.3(i).

For the induction step, let a4 ...a, be the sequence of nodes of a longest
path of G, and assume inductively the Theorem holds for each proof graph
with longest paths of length n — 1.

For each successor node r of p in G, let G, be the subgraph of G consisting
of all nodes and arcs between r and ¢. G, is a proof graph for r — gq.
Furthermore, the longest path of G has length n — 1, hence the inductive
assumption implies X' |=r — q.

Now, let 71,...,r,, are the successor nodes of p. Then ¥ = p — (r; V
...V rp) by Def. 46.1(v). Furthermore, X' |= (11 V...V 1) — ¢ by m-fold
application of the above argument, and Lemma 44.3(iv). Hence X' = p +— ¢
by Lemma 44.3(iii). a

An arc from a node p to a node ¢ is usually depicted p — ¢ (as in
(1)). The special case of a progress set U = {uy,...,u,} and a property
Q — V ey eff(Q,u) picked up by Theorem 45.5 is frequently depicted as

u q;
P : (2)
qﬂ

A propositional implication X' |=p — (g1 V...V ¢qy,) is usually represented by

q;
p / (3)
\

Y

172 VIII. Interleaved Progress of Elementary System Nets

A small proof graph for leads-to properties of X351 exemplifies these conven-
tions:

BYS ESECS A (4)

proves Y351 = B +— A as follows: Y351 = B — E follows from Lemma 45.3
with the progress set {b}. The implication X351 E E — EC follows from
the place invariant B+ E — C =0, and ¥ = EC — A follows again from
Lemma 45.3 with the progress set {e}.

47 Standard Proof Graphs

The construction of a proof graph particularly includes determination of cor-
rect successor states of each node, as required in Def. 46.1(v). The pick-up
rule 45.3 fortunately produces valid formulas that perfectly fit this purpose.
Whenever the pick-up rule fails at some node r (as no action is enabled at
), place invariants and traps may specialize r by help of a valid implication
r —ry V...V r,. This again fits into the schema of proof graphs, according
to Lemma 44.3(i). Proof graphs constructed in this way are called standard
proof graphs:

47.1 Definition. Let X be an es-net, let p,q € sf(Pyx) and let G be a proof
graph for p— q in X. G is a standard proof graph iff

i. Fach node r # q is a conjunction r = ry A ... A1, of atomic formulas
ri,...,"n € Py.

1. For each node r and its direct successor nodes ry,...,r, holds: Fither
Y Er— (r1V...Vry), or the pick-up rule yields ¥ = r — (r1V...Vry,).

In fact, all proof graphs of Sect. 46 are standard proof graphs. In addition
to the properties and propositional implications, a question mark indicates
an action that is not guarantees to be enabled, as for Y45 o:

C
N (1)

/ﬁ

D

The motivating examples of Sect. 44 can now be proven by help of stan-
dard proof graphs. For example, Fig. 47.1 shows a standard proof graph
for Y441 E A — E and Fig. 47.2 shows a standard proof graph for
244_2 ': AB (F \ DG)

As a slightly nontrivial example we construct a proof graph to show a
central property of the asymmetrical mutex algorithm X319: The prepared
writer eventually gets writing. In terms of the representation of Fig. 47.3 we
have to show

47 Standard Proof Graphs

Figure 47.1. Standard proof graph for Y44 1 F A — E

1.AB ! 2.BD | 4F 6.(F ODG)

NN

3.AG |—a> 5.DG

Figure 47.2. Standard proof graph for Y442 E AB — (F V DGQG)

173

Figure 47.3. ¥ =B~ C

174 VIII. Interleaved Progress of Elementary System Nets

Yirs |: B - C. (2)

The pick-up rule of Sect. 45 does not apply to B, because B itself is not
progress prone. So we apply the invariant D+ E+ K + G — A — B = 0 which
implies

SisEB—= (DVEVEKVG). (3)

Propositional reasoning implies Y475 = B — (BD V BE V BK V BG),
and Lemma 44.3(i) furthermore yields X475 = B — (BDV BEV BK V BG).
This is the justification for node 1 in the following first step of a proof graph:

. \ (4)

1B—2BD 3BE 4 BK 5BG

To continue the construction of a proof graph, we consider the nodes
involved. Node 2, BD, enables action b. Hence Lemma 45.3 applies. The
place invariant C'+ D+ E+ K + G, as outlined in Fig. 41.5, implies D — =G,
hence {B, D} prevents d. This yields BD — C V BE. Graphically,

e?
2BD ——= 3BE) 6C . (5)

The question mark at “e” indicates that action e is not necessarily en-
abled. Node 3, BE, like node 1 enables none of the actions. Again, a place
invariant helps: The place invariant J — E — F = 0 implies Y473 = E — J,
hence Y47 3 |E BE — BE/J, or graphically,

3BE 7BEJ . (6)

Node 7 now enables f. BEJ implies =D and —G, hence prevents b and
d, leaving change set {f}.

e? f g d
1B 2BD ! 3.BE 7.BEJ! 4.BK 5.BGH 6.BG + 7.C

b

Figure 47.4. Proof graph for Y473 = B— C

Corresponding arguments apply to nodes 4 and 5, resulting in the proof
graph shown in Fig. 47.4. Y473 = DJ — (C V K) is shown likewise in
Fig. 47.5. Tts nodes are justified as follows: Node 1 by invariant C' + D —
F+J+ K+G=1.Node 2: DFJ prevents f, by invariant F + E —.J = 0.
Nodes 3-5: trivial.

47 Standard Proof Graphs 175

1.DJ 2.DFJ ¢ € 3.EJ ¢ f 5.K 6.COK

b?

4.C

Figure 47.5. Proof graph for Y473 = DJ—» CV K

Standard proof graphs are easily understood and checked. However, there
is no formalism to construct small and intuitive normal proof graphs. For
example, loss of information is occasionally mandatory, as in the standard
proof graph

a / b ¥ (8)

AB At C CB! CD

proving Y476 = AB — CD.

Figure 47.6. ¥ = AB — CD

Not each valid progress formula can be proven by a normal proof graph.
An example is Y477 |E AB +— C. This deficit can be repaired by the com-
plement E of B, as in Fig. 47.8. Then Y473 = AB +— C is proven by the
normal proof graph of Fig. 47.9 (with place invariant B + E = 1 for node 3).

Figure 47.7. ¥ = AB + C is not derivable by a standard proof graph

Whether or not each valid progress formula of an es-net can be proven
by a standard proof graph together with complements, is left as an open
problem.

176 VIII. Interleaved Progress of Elementary System Nets

e

Figure 47.8. Extending X477 by local state E, representing —B

f
1.AB —— 2.DE —3— 3 AE ——— 4EC — 6.C

e 5.BC

Figure 47.9. Standard proof graph for X473 = AB — C

48 How to Pick Up Fairness

Progress properties frequently depend on fairness assumptions. For example,
none of the essential progress properties of the mutex algorithms in Sect. 13
holds if fairness is neglected.

A pick-up rule for leads-to properties will be given in this section, ex-
ploiting fairness assumptions. It applies to fair transitions that are conflict
reduced. This property has been discussed informally in the introduction of
Sect. 13 already: A conflict reduced transition ¢ has at most one forward
branching place in *t. In fact, almost all algorithms considered so far deal
with fair transitions that are conflict reduced. The state testing mutex algo-
rithm Y3 4 is the only exception.

48.1 Definition. Let X be an es-net and let t € Tx;. t is conflict reduced
iff there exists at most one p € *t with p*® 2 {t}. In this case, p is called the
conflict place of ¢.

48.2 Theorem. Let X be an es-net and let t € T be fair and conflict
reduced, with conflict place p. For Q := *t\{p} assume furthermore ¥ |=
Q= p. Then ¥ = Q — t°.

Proof. Let w = ag a1 - ... be an interleaved run of X. For each Q-state
ay, of w,

thrr =t or ap1 FEQ (1)
because t is conflict reduced. Furthermore, to each ()-state aj there exists a
p-state ay with I" > k (by the theorem’s assumption of X' = @ — p). Let [
be the smallest such index. Then for all k < i < I, t; # ¢ (because p € *t),
hence a; = @ (by (1), with induction on i), hence a; = *t.

Summing up, to each @)-state ay there exists an index [> k with

a1 E=* and (4=t or a Q). (2)

48 How to Pick Up Fairness 177

Figure 48.1. ¥ =B~ C

To show w = @ — t*, let a; be any @-state. Then there exists an index
Il > k with #, = ¢ or a sequence lp < [; < ... of indices with a;, |= °t, for
i=0,1,... (by (2) and induction on [). Then

(a) there exists an index [> k with ¢, =t or
(b) w neglects fairness for ¢ (by Def. 7.1(i))

Case (b) is ruled out by the theorem’s assumption of fairness for ¢. Hence
w E Q — t* by Def. 44.2(i). The theorem follows with Def. 44.2(ii). |

As an example, action b of X451 is fair and conflict reduced, with conflict
place D. In order to show (*b\{D}) — b°, i.e.,

Y1 EB—C (3)
we first show Y451 | B — D by the proof graph
R
1B 2.BE —5— 3BD 4D (4)

where node 1 is based on the place invariant A+ B — D — E = 0, and node 2
on the place invariant C' + D + E = 1. Then the above theorem implies (3)
(with t = b and Q = {B}).

Figure 48.2. ¥ =C+— D

178 VIII. Interleaved Progress of Elementary System Nets

The conflict place p of a fair, conflict reduced transition ¢ is frequently
linked to other transitions by loops only, as e.g. in Fig. 48.2 with ¢ = ¢ and
p = C. Then a variant of the above Theorem applies:

48.3 Corollary. Let X be an es-net, let t € Ty, be fair and conflict reduced,
with conflict place p. For each u € p* assume u =t or u € *p. Then ¥ |
*t o,

Proof of this Corollary tightly follows the proof of Theorem 48.2, and is
left as an exercise to the reader. As an example, this Theorem immediately
yields 248.2 ': Cw D.

49 Case Study:
Evolution of Mutual Exclusion Algorithms

We are now prepared to prove the evolution property of the mutual exclusion
algorithms of Sect. 13. Evolution of the alternating algorithm X33 is not
guaranteed, and evolution of the state testing algorithm X34 cannot be
proven by means of Theorem 48.2, because the fair transitions b; and b,
are not conflict reduced. The round-based algorithm X3¢ is postponed to
Sect. 56. Evolution of the asymmetrical algorithm X519 has already been
proven in Sect. 47. Evolution of all other algorithms of Sect. 13 will be proven
in the sequel.

49.1 Evolution of the contentious algorithm

Figure 49.1 recalls the contentious algorithm, with renamed places. Due to

Figure 49.1. Renamed contentious mutex algorithm X3 5

the algorithm’s symmetry we stick to evolution of the left site, i.e.,

B C. (1)

The fair action b is conflict reduced, with conflict place D. First we show
B — D by means of the proof graph

49 Case Study: Evolution of Mutual Exclusion Algorithms 179

N (2)

1.B—2G+———>3D

Its node 1 is justified by the place invariant A + B — D — G = 0. Node 2 is
trivial with Lemma 45.1.
Theorem 48.2 now immediately yields (1), with ¢ = b, p = D and Q =

{B}.
49.2 Evolution of the token passing algorithm

The token passing algorithm of Fig. 13.5 is redrawn in Fig. 49.2 with renamed
places. Due to the symmetry of the algorithm it suffices to show the evolution

Figure 49.2. Renamed token passing mutex algorithm X3 5

of the left site, viz X35 | pending; — critical;. In the version of Fig. 49.2
this reads Xy9o E A — E.

In a separate calculation we first show Y490 = H — HM.

This property will be used twice: as part of the proof graph in Fig. 49.4,
and as argument in the justification of one of its nodes, employing the fairness
rule.

180 VIII. Interleaved Progress of Elementary System Nets

Figure 49.3 gives a proof graph for Y49 = H — HDM. Its nodes are
justified as follows: node 1: inv C + H — K — Q — M = 0; node 2: inv
G + K — P = 0; node 3: P prevents j with M + N + P + @ = 1; node 4: Q
prevents j with M + N+ P+ Q = 1.

N

1H 2.HK 3.HKP 4HQ! 5.HM

/

Figure 49.3. Proof graph for Xy E H— HM

/—\ Fig.
2 b 49.3 j d

C~
1.A—2.AB——— 3 AC—— 4 H—— 5.HW 6.J 7.JD¢ 8.E
N /

Figure 49.4. Evolution of the token passing algorithm

Figure 49.4 now proves the evolution property Y492 = A — E. Its nodes
are justified as follows: node 1: inv F + A — B — C = 0; node 2: B prevents b
with inv B4+C+ D+ FE = 1; node 3: C prevents a with inv B+C+D+FE = 1;
node 4: proof graph Fig. 49.2; node 5: fairness rule 48.1 with conflict place M,
proof graph Fig. 49.2 and the propositional tautology = HM — M; node 6:
place invariant H + J — D = 0; node 7: change set {d}.

49.3 Evolution of Peterson’s algorithm

The algorithm of Fig. 13.7 is redrawn in Fig. 49.5 with renamed places as
in Fig. 43.3. Due to the symmetry of the algorithm it suffices to show the
evolution of the left site, viz. X137 |= pend0; — critical;. In the version of
Fig. 49.5 this reads Y49 5 |= B — E. Figure 49.6 gives a proof graph for this
property.

The following place invariants will contribute to justify its nodes:

invl: A+ B - F =0;

inv2: G+H=1;

inv3: L+M+N+P=1,

inv4: C+D+E+F=1.

The nodes of Fig. 49.6 are justified as follows:

49 Case Study: Evolution of Mutual Exclusion Algorithms 181

Figure 49.5. Renamed Peterson’s mutex algorithm X3 7

node 1: invl;
node 2: Corollary 48.3;
node 3: inv2;
node 4: inv3;
node 5: H prevents d with inv2 and C prevents e with inv4;
node 6: G prevents ¢ with inv2, M prevents k with inv3 and C prevents
p with inv4;
node 7: G prevents ¢ with inv2 and N prevents both k£ and n with inv3;
node 8: @ prevents ¢ with inv2 and P prevents both k and n with inv3;
node 9: G prevents both ¢ and m with inv2 and L prevents n with inv3;
6.CGM 12.DGM
n n
7.CGN 13.DGN
1B—2BF2:3.C —4.CG—8.CGP! q 11.DG 14DGP—— 5 17E
\ J / \ J
9.CGL (o 15.DGL
_ C - e
k k
5.CH'm> 10.CHM 16.DHM

Figure 49.6. Evolution of Peterson’s algorithm

182 VIII.

node 10:

node 11:
node 12:

node 13:

node 14:

node 15:

node 16:

Interleaved Progress of Elementary System Nets

H prevents both d and n with inv2, M prevents m with inv3
and C prevents both e and p with inv4;

inv3;

G prevents e with inv2, M prevents both f and &k with inv3 and
D prevents both d and p with inv4;

G prevents e with inv2, N prevents f, k, and n with inv3 and
D prevents d with inv4;

G prevents e with inv2, D prevents d with inv4 and P prevents
both k& and n with inv3;

G prevents both e and m with inv2, L prevents both f and n
with inv3 and D prevents d with inv4;

M prevents f and m with inv3, D prevents ¢ and p with inv4
and H prevents n with inv2.

49.4 Evolution of Dekker’s algorithm

The algorithm of Fig. 13.8 is redrawn in Fig. 49.7. By analogy to the previous

Figure 49.7. Renamed Dekker’s mutex algorithm X3 g

section, Fig. 49.8 shows a proof graph for Y497 = B — D. The following
place invariants will contribute to justify its nodes:

invl:
inv2:
inv3:
inv4:

A+ B—-F =0;
G+ H-=1;
L+M+N+P=1;
C+D+E+F=1.

49 Case Study: Evolution of Mutual Exclusion Algorithms 183

TG\\\

5.CGN ' q 6.CGP+ > 7.CGL > 8.CGM

c
1B——2BF |L>3.C 14.D

p ‘q/“r’ ST

10.CHM%W1&CHL
9.CH

Figure 49.8. Evolution of Dekker’s algorithm

The nodes of Fig. 49.8 are justified as follows:

node 1: invl;

node 2: Corollary 48.3;

node 3: inv2;

node 4: inv3;

node 5: N prevents ¢, d, m, and n with inv3, C prevents f with inv4:

node 6: P prevents d, m, and n with inv3 and C prevents f with inv4;

node 7: L prevents ¢ and n with inv3, G prevents d with inv2 and C'
prevents both f and k with inv4;

node 8: M prevents ¢, d, and m with inv3, G prevents p with inv2 and
C prevents f with inv4;

node 9: inv3;

node 10: M prevents ¢, m, and d with inv3, H prevents n with inv2 and
C prevents e with inv4;

node 11: N prevents ¢, d, m, and p with inv3, C prevents e with inv4;

node 12: P prevents d, m, and p with inv3 and C prevents e with inv4,;

node 13: L prevents both ¢ and p with inv3, H prevents m with inv2 and
C prevents both e and k£ with inv4.

49.5 Evolution of Owicki/Lamport’s asymmetrical mutex

The algorithm of Fig. 13.9 is redrawn in Fig. 49.9. We will show different
properties of the writer and the reader site, respectively. First we show that
the pending writer will eventually be writing; formally: X159 = prepl —
writing. In the version of Fig. 49.9 this reads Y499 E B — D. Figure 49.10
gives a proof graph for this property.

The following invariants will contribute to justify its nodes:

invl: A+ B-F =0;
inv2ze H+J+K+L+M=1;
inv3: C+D—-E=0;
invd: G+ K+L=1,

184 VIII. Interleaved Progress of Elementary System Nets

Figure 49.9. Renamed Owicki/Lamport’s asymmetrical mutex algorithm
Y139

invh: A+ B+C+D=1;
inv6: C+D+F =1,
invi: E+F =1,

b .
1.B—— 2.BF——3.C 4.CLt 5.CGt 6.CK: 7.CKE|—J>8.CGM 'C—>9.D

Figure 49.10. Evolution of the writer in Owicki/Lamport’s algorithm

The nodes of Fig. 49.10 are justified as follows:

node 1: invl;

node 2: Corollary 48.3;

node 3: inv4;

node 4: L prevents ¢ by inv4;

node 5: trivial;

node 6: inv3;

node 7: K prevents ¢ by inv4; E prevents g by inv7; C' prevents d by inv5;
node 8: M prevents f by inv2 and C prevents k by inv6.

If the reader is pending, the algorithm guarantees that eventually the
reader will be reading or the writer will be writing; formally: X539 =
pendl — (writing V reading). In the version of Fig. 49.9 this reads Y499 =
J—=LVD.

49 Case Study: Evolution of Mutual Exclusion Algorithms 185

4 KA— 8.KAF

Ia &
5KB— 9.KBFOg—> 11.L
7 b \
f j c

3.K 6.KC lO.KCE'—J> 12.MCEG———>13.0——>14.L0D

e

Figure 49.11. Evolution of the reader in Owicki/Lamport’s algorithm

Figure 49.11 shows a proof graph for this property. In addition to the
above invariants invl, ..., inv7, the following invariant will contribute to
justify the nodes of this proof graph:

inv8:

H+J-G=0.

The nodes of Fig. 49.11 are justified as follows:

node 1:
node 2:
node 3:
node 4:
node 5:
node 6:
node 7:
node 8&:

node 9:
node 10:

node 11:
node 12:

node 13:

inv§;

trivial;

inv;

invl;

invl;

inv3;

trivial;

K prevents k by inv2; A prevents b by inv5 and F' prevents j
by inv7;

K prevents k by inv2 and F' prevents j by invT7;

K prevents ¢ by inv4, C' prevents d by invh and E prevents g
by inv7;

trivial;

M prevents both j and f by inv2; C prevents d by inv5 and E
prevents k by inv7;

trivial.

IX. Concurrent Progress
of Elementary System Nets

The interleaving based leads-to operator —, considered in Chap. VIII, ad-
equately describes important properties of a wide range of distributed al-
gorithms. But a variety of progress properties, typical and specific for dis-
tributed algorithms, are not expressible by this operator. This particularly
includes rounds, as informally described in the case studies of Chap. III.

A new operator “—” will be introduced in Sect. 50 with p < ¢ (“p causes
q”) interpreted over concurrent runs K: In K holds p — ¢ iff each reachable
p-state of K is followed by a reachable g-state.

50 Progress on Concurrent Runs

As an introductory example we return to the producer/consumer system
Ys.1. Its behavior was intuitively described as a sequence of rounds, with each
round consisting of an item’s production, delivery, removal, and consumption.
Each such round starts and ends in the initial state. The rounds of a run of
XYg.1 are depicted in Fig. 50.1. We shall present means to represent and to
reason about rounds of this kind and other progress properties based on
concurrent runs. We start with syntax corresponding to Def. 44.1:

50.1 Definition. Let P be a set of symbols and let p,q € sf(P) be state
formulas over P. Then the symbol sequence p — q (“p causes ¢”) is a causes
formula over P. The set of all such formulas will be denoted cf(P).

Causes formulas are interpreted over concurrent runs and over es-nets:

50.2 Definition. Let X' be an es-net and let p — q € cf(P) be a causes
formula.

i. p = q is said to hold in a concurrent run K of X' (written K |=p < q)
iff to each reachable p-state C' of K there exists a q-state D of K that is
reachable from C.

it. p <> q is said to hold in X' (written ¥ = p — q) iff K = p — q for each
concurrent run K of X.

As an example, the formulas BC < BE and A < C'D both hold in X5¢ 5
(whereas BC'+— BE and A — CD don’t hold).
The following lemma resembles Lemma 44.3:

188 IX. Concurrent Progress of Elementary System Nets

end of end of
first round second round

: ready to remove
: ready to consume

A : ready to produce a: produce
B : ready to deliver b: deliver
C: buffer empty c: remove
D: buffer filled d: consume
E

F

Figure 50.1. Rounds in the infinite run of X ;. Inscriptions as in Fig. 5.5

[e

L

Figure 50.2. ¥ = BC — BE and ¥ = A — CD

50.3 Lemma. Let ¥ be an es-net and let p,q,r € sf(Py).

i. YEp—p;
i. fYEposqand X Eqorthen Y =p—r;
. f YEposrad X Eq—rthen Y= (pVq) —r.

In general, causes is weaker then leads-to. They coincide in special cases:
50.4 Lemma. Let ¥ be an es-net and let p,q,r € sf(Py).

i. If YEp—qthen Y Ep—q;
ii. Let Q C Py andlet q=\/ Q. If ¥ =p— q then ¥ |=p—q.

51 The Concurrent Pick-up Rule

Section 50 introduced means to represent causes properties. Means to prove
such properties will be derived in the sequel. Valid causes formulas can be

51 The Concurrent Pick-up Rule 189

picked up from the static structure of a net. A corresponding pick-up rule will
be based on change sets, as introduced for the leads-to-operator in Sect. 45.6.

The forthcoming pick-up rule highlights one distinguished feature: Picked
up causes formulas p < ¢ can be embedded into a context, r, yielding

rAp—rAgq. (1)

First we consider a special case of the forthcoming most general pick-up
rule, in Theorem 51.1.
As an example, from an es-net X with a part

A a B

ffffff O @

the property ¥ | A — B can be picked up immediately. This in turn can
be embedded into the context of any local state C, yielding

Y= CA— CB. (3)
As a more general example, from
A a c
(4)
B b D

Y E AB — BC V D can be picked up immediately. This again can be
embedded into the context of any local state E, yielding

EAB — EBCV ED. (5)

Abstractly formulated, let Q C Py be progress prone and let U C Q°® be a
change set of Q. Then ¥ |= Q — \/, oy eff(Q,u). This of course resembles
the pick-up rule for the leads-to operator —, as stated in Lemma 45.3. But
in contrast to picked up yields formulas, the above causes formula can be
embedded in a context R C Py, yielding

TERUQ < RU(V ey eff(Q,u)), (6)

provided *U C @ and Q N R = 0.

Rule (6) suffices in most cases, and will be considered in Corollary 51.2.
Rule (6) is occasionally too strict, as the following example shows: In (4), {A}
is progress prone and {a, b} is a change set of {A}. Hence ¥ |= A — CVD can
be picked up immediately. But a context cannot be applied to this formula
by means of (6) because *{a,b} Z {A}. So, in (6) we skip the requirement of

*U C @, but allow context to eff(Q,u) only in case *u C Q. For example, in
(4) the formula A < C'V D can now be embedded into the context of any
local state E for the occurrence of a (because *a C {A}), but not for the
occurrence of b (because *b € {A}), yielding

190 IX. Concurrent Progress of Elementary System Nets

S EEA< ECVD. (7)

Generally formulated, the change set U of a progress prone set () is parti-
tioned into U = V' VW such that *V C Q. Then a context R is applied to V
only. Hence the following theorem:

51.1 Theorem. Let X be an es-net, let Q C Px be progress prone and let
U =VUW be a change set of Q with *V C Q. Furthermore, let R C Px with
RN*V =0. Then ¥ = RUQ <= (RUV oy eff(Q,u)) V (V ey eff (Q, u)).

Proof. Let K be a concurrent run of X' and let C' be a reachable RU @Q)-state.
With ¢ := (RUV/ v eff (Q,u)) V (V,cw eff(Q,u)) we have to show:

K has a p-state that is reachable from C. (1)

There exists a subset Cg C C with I(Cg) = Q. Then I(Cg) enables at least
one progressing action u (by the theorem’s assumption that @ is progress
prone). Then Cg K° (by Def. 8.2(ii)). Furthermore, u € U (as U is a change
set of). Then there exists some ¢t € Co® with [(t) = u (by Def. 5.4(ii)).
If w € V, then *u C @ (by the theorem’s assumption *V C @), hence
*t C Cg. Then D := (C'\ *t) Ut* is reachable from C. Even more, D is an
eff (Q, u)-state. Furthermore, there exists a subset Cr C C with [(Cr) = R
(by construction of C). Furthermore, [(Cg) NI(*t) = RN *u = () (by the
Theorem’s assumption RN *U =). Hence Cr N *t = () (by Def. 5.4). Hence
Cr C D. Hence D is also a R-state. Hence -state, reachable from C'. Hence
(1).
In case of u € W, let t' be a minimal (with respect to <x) element with
t' € Cp® and I(t) = u. Then there exists a state E, reachable from C, with
CU®t C E. Then F := (E\ *t')Ut'® is an eff (QQ, u)-state, reachable from C,
hence (1). a

According to this theorem, in fact (7) is valid in (4). The following special
case with W =) (hence V = U) suffices in most cases (e.g., for the validity
of (5) and (4)).

51.2 Corollary. Let X' be an es-net, let Q C Px be progress prone and let
U C Ts be a change set of Q with *U C Q. Furthermore, let R C Px with
RNQ =0. Then ¥ = RUQ — RU\/ ,yeff(Q,u).

The opposite special case (i.e., V = R = () mirrors the interleaved pick-up
rule.

52 Proof Graphs for Concurrent Progress
Picked-up causes formulas can be composed in proof graphs. The successor

nodes r1,...,r, of a node r then represent r < (ry V...V ry,). All other
aspects of such proof graphs coincide with proof graphs for leads-to formulas:

53 Ground Formulas and Rounds 191

52.1 Definition. Let X' be an es-net, let p,q € sf(Pyx) be state formulas,
and let G be a graph meeting Def. 46.1(i)—(iv) and

vi. for each node r, if r1,... ,r, are the successor nodes of r, then ¥ |= r —
(riV...Vry).

Then G is a proof graph for p < ¢ in Y.
Proof graphs for causes formulas in fact prove validity of those formulas:

52.2 Theorem. Let X be an es-net and let G be a proof graph for p — q in
Y. Then ¥ =p < q.

Proof of this theorem is essentially the same as the proof of Theorem 46.2
and is left as an exercise to the reader.

Standard proof graphs are constructed from propositional implications
and picked-up formulas:

52.3 Definition. Let X be an es-net, let p,q € sf(Px), and let G be a proof
graph for p — q in X. G is a standard proof graph iff

i. Fach node r # q is a conjunction r = ry A ... A1, of atomic formulas
ri,...,"n € Py.

ii. For each node r and its direct successor nodes ri,...,ry, either ¥ |=
r— (ri V...V ry) or the pick-up rule Theorem 51.1 yields ¥ = r —
(7“1 \/...Vrn).

Leads-to properties p — ¢ can frequently be proven by means of short
proof graphs for p < ¢, together with Lemma 50.4(ii). For example, the
property Y441 |E A — E, as proven in Fig. 47.1, can likewise be proven by
means of the — shorter — proof graph in Fig. 52.1 for Y441 F A — E, and
Lemma 50.4(ii). The forthcoming concept of rounds provides further means
for short proof of both causes and leads-to formulas.

1.A 2AB <P, 3AD < @, 40D C,5E

Figure 52.1. Standard proof graph for Y4y F A = E

53 Ground Formulas and Rounds

A state formula p € sf(Py) of an es-net X is said to be a ground formula of ¥
if in each concurrent run, each reachable state of X' is followed by a p-state;
formally

Y E true < p. (1)

192 IX. Concurrent Progress of Elementary System Nets

Distributed algorithms can frequently be properly comprehended and verified
using ground formulas. Interesting ground formulas are mostly conjunctions
(viz. subsets) of atoms p C Py, or even distinguished reachable states. Such
a state is said to be a ground state. For example, the initial state AC'E of the
producer/consumer system X 1, as redrawn in Y53 1, is a ground state, and
in fact the only ground state of Y53 ;.

Claim (1) implies that each finite run of X' ends at a p-state, and that
each infinite run of X' has infinitely many p-states. Distributed algorithms are
frequently round-based. A round of an es-net X is a finite, X-based concurrent
run that starts and ends at a ground state. X is round-based if there exists a
finite set R of rounds such that each concurrent run K of X' can be conceived
as a finite or infinite sequence of rounds of R. As an example, there exists a
unique round of Y531, as outlined in Fig. 50.1.

53.1 Definition. Let X be an es-net and let p € sf(Pyx) be a state formula.
p is a ground formula of ¥ iff ¥ |= true < p.

®

Figure 53.1. Ground formula ACE

There is an operational characterization of ground formulas p C Py. It is
based on the notion of change sets as introduced in Def. 45.4(ii) already.

53.2 Theorem. Let X be an es-net and let p C Ps; with

i. Y Eay < p, and
it. for some change set U of p and each uw € U, ¥ = eff (p,u) — p.

Then p is a ground formula.

Proof. Let K be a concurrent run of X, and let A, B C Pg be two reachable
states of K.
A transition t € Tk is said to be between A and B iff for some a €
A and some b € B holds: a <g t <g b. Let dist(A, B) denote the 2)
set of all transitions between A and B. Obviously dist(A, B) = 0)
iff B is reachable from A.

53 Ground Formulas and Rounds 193

The proof essentially bases on the following proposition:

Let dist(A,B) # 0 and let A be a p-state. Then there exists a 3)
reachable p-state D of K with dist(D,B) G dist(A, B).

This proposition is proven as follows: dist(4, B) # implies a transition
t € A® with t < b for some b € B. Then there exists a transition u with
‘v C A and u < b, because t has only finitely many predecessors in K.
Let C := (A \ *u) Uu®. Then dist(C,B) = dist(A,B) \ {u}. If C is a p-
state, we are done (with D := C'). Otherwise [(u) € p®, hence I(u) € U for
each change set U of p. Furthermore {(C) is an eff(A4,u)-state of X. Then
Y E I(C) < p by the Theorem’s assumption. Then there exists a p-state D
of K, reachable from C. Furthermore, dist(A, B) G dist(C, B) C dist(D, B).
Hence the proposition (2).

Now let B be any reachable state of K. The Theorem’s assumption X' |=
ay, < p implies a reachable p-state, A of K. A dist(A, B) is finite, finitely
many applications of the proposition (2) yield a reachable p-state D of K
with dist(D,B) = (. Then (1) implies D be reachable from B hence the
Theorem. O

As an example, we prove that the initial state ACE is a ground formula
of Y53.1 by means of Theorem 53.2. The first condition, ¥ |= ay, — ACE,
is trivially fulfilled with Lemma 50.3(i). For the second condition of Theo-
rem 53.2 observe that U = {a} is a change set of ACE, because A prevents
b by inv A+ B =1 and C prevents ¢ by inv C + D = 1. Hence we have to
show: X531 |= BCE — ACE. The proof graph

1.BOE%2.ADE<3. ACF<54.ACE (4)
shows this property. Its nodes are justified as follows:

node 1: context E;
node 2: context A;
node 3: context AC.

Hence (4) proves that ACE will eventually be reached from any reachable
state, though (4) does not refer to all reachable states of X531, and ignores,
e.g., BDE or BDF!

As a further, technical example we show that the initial state AD of X535
is a ground state: According to Theorem 53.2 it suffices to show that

BD < AD, and (5)

AE < AD (6)

both hold in Y530, as {a,d} is a change set of AD. Figure 53.3 shows a proof
graph for (5). Its nodes are justified as follows:

node 1: Theorem 51.1, with V = {b}, W = {¢}, R = {D};
node 2: context F’;

194 IX. Concurrent Progress of Elementary System Nets

node 3: context A;
node 4: context D.

Corollary 51.2 was not sufficient to justify node 1.
Proof of (6) is left to the reader, due to the symmetrical structure of Y53 o.

Figure 53.2. AD is a ground state

b

3.cpC—C% 4D

2?2
1B0C— 97 ,o¢cFC

Figure 53.3. Y530 |: BD — AD

Ground formulas support the proof of any causes formulas:
In Theorem 51.1, the requirement that @) is progress prone may be replaced
by the requirement to imply —p for some ground formula p. An element ¢ of
the change set U with *¢t C @ is obsolete in this case. Hence:

53.3 Theorem. Let X' be an es-net and let p be a ground formula of X. Let
Q C Py with ¥ |= Q — —p and let U be a change set of Q in X. Then

TEQ= Vyepeff(Q,u).

Proof. Let K be a concurrent run of X', let C' be a @-state of K, and let
Co C C with [(Cg) = Q. Then there exists a p-state D of K that is reachable
from C, because p is a ground formula. From ¥ |= @ — —p follows Cg € D.
Hence there exists a transition t € Cg® in K, with [(t) € U. Hence the
proposition. a

As an example we show that the filled buffer of the producer/consumer
system Y531 will eventually be empty:

Ys3q |: D~ C. (7)

Based on the above proven ground formula ACE we apply Theorem 53.3 as
follows: The buffer is filled in some state a C Px,,, iff D € a. Furthermore,
Y531 |: D — =C by inv D+ C =]., hence Y531 ': D — -ACE. U = {C}

54 Rounds of Sequential and Parallel Buffer Algorithms 195

is a change set of D and eff(D,c) = CF. Hence with Theorem 53.3: X531 |=
D < C, hence (7) with Lemma 50.4(ii).

54 Rounds of Sequential and Parallel Buffer Algorithms

54.1 Rounds of the sequential two-cell algorithm

The initial state ACE of the basic producer/consumer algorithm Yg i, as
redrawn in Fig. 53.1, is a ground state, i.e., a ground formula that even is a
reachable state of X531. This has been proven in Sect. 53 already, and has
been outlined in Fig. 50.1. The sequential buffer with two cells, as outlined
in Fig. 9.1, has a unique ground state, too, i.e., its initial state ACEG. Proof
of this property strictly follows the corresponding proof of X531, and is left
as an exercise to the reader.

54.2 A ground formula of the nondeterministic parallel algorithm

Figure 9.2 has no ground state. As Fig. 9.5 exemplifies, one of the buffer cells
may remain filled forever. However, the algorithm has a ground formula, AG,
indicating that the producer always returns to ready to produce, and the
consumer to ready to remove. This property can easily be proven by means
of Theorem 53.2: ax,, — AG is a propositional tautology, hence trivially
ax,, < AG. Furthermore, {a,d, e} is a change set of AG, hence we have to
show

BG — AG, AFEH — AG, and ACH — AG. (1)
The first of those propositions follows from the standard proof graph

d f c ¢
1.BG 2.BFGC 3.BEHC 5.BEG 7.AG
b 2)
e? c b
4.BCH % 6.BCG

Justification of its nodes as well as proof of the rest of (1) is left as an exercise
to the reader.

54.3 A ground formula of the deterministic parallel algorithm

The deterministic parallel producer/consumer of Fig. 9.3 has likewise no
ground state: Some of its finite runs terminate in the initial state, and some
terminate in the state ACEGK M. But ACEG is a ground formula of Xy 3,
indicating the producer and the consumer ready and both buffer cells empty.

196 IX. Concurrent Progress of Elementary System Nets

This again can be shown using the Theorem 53.2: ax, , = ACEG is a propo-
sitional tautology. {a} is a change set of ACEG, because A prevents b and
cbyinv A+ B =1, E prevents d by inv £+ F = 1, and C prevents e by
inv C' + D = 1. Hence one has to show Yy 3 = BCEG — ACEG. This can
be achieved by means of a standard proof graph, left as an exercise to the
reader.

54.4 Rounds of the two consumers algorithm

Figure 54.1 shows a system with two consumers. Its initial state is a ground
state. This follows from Theorem 53.2 by means of the proof graph

3. ACFG
, N AV
1. BCEG < 2. ADEG 5. ACEG (3)

Figure 54.1. Two consumers

As a variant one may turn Y54 1 into a deterministic algorithm, serving the
consumers alternately. This is easily achieved by means of the synchronization

circuit
J o.‘ K (4)
||

55 Rounds and Ground Formulas of Various Algorithms 197

augmented to X541. The above ground formula ACEG then is no longer a
ground state, but only a ground formula.

55 Rounds and Ground Formulas of Various Algorithms

Virtually all algorithms of Chap. II are round-based or at least have ground
formulas. Being aware of rounds and ground formulas, the reader obtains
better intuitive perception of an algorithm. In this section we discuss rounds
of various algorithms introduced in Chap. I, including the philosophers, the
asynchronous pushdown, and the crosstalk algorithm. Rounds and ground
formulas of mutual exclusion algorithms are postponed to Sect. 56.

55.1 Rounds of the philosophers algorithm

The algorithm for thinking and eating philosophers, as given in Fig. 10.1,
operates in five rounds, one for each philosopher. Each round comprises an
instance of picking up and releasing a philosopher’s forks, as outlined in (2)
of Sect. 10.

Upon proving this property, we first observe that the initial state o of
X101 enables five actions, A,, By, Cp, D,, and E,, i.e., each philosopher
is able to pick up his forks. In fact, U = {4,,...,E,} is a change set of
0. Let 0a,... ,0r be the states reached after the occurrence of 4,,... , Ep,

. Ap Ep .
respectively. Hence there are five steps 0 — 04, ... ,0 — o starting at o.
In order to show that o is in fact a ground state, with Theorem 53.2 we have
to show 04 < 0,... ,05 < 0. This in turn is almost trivial, because one can

pick up o4 é) O,...,0F ‘E—T>O' immediately, according to Corollary 51.2 (with
empty context).

As a consequence, each concurrent run has a linearization (in general not
unique) that consists of a sequence of eating cycles, as represented in (2) and
(3) of Sect. 10.

55.2 Rounds of the asynchronous pushdown algorithm

The algorithm that organizes control in an asynchronous stack with capacity
for four items has been given in Fig. 11.2, and is redrawn in Fig. 55.1, with
renamed places. It operates in two rounds, one to push a value into the stack,
and one to pop a value. Each round comprises either an entire “wave” of
pushing down data along the actions ag, . .. , a4, or an entire wave of soliciting
data along by, ... ,bs.

Upon proving this fact, we first observe that the initial state o of X551
enables two actions, ag and by, i.e., the initial state is enabled for both a push
round and a pop round. In fact, U = {ag, bo} is a change set of o. Hence two

198 IX. Concurrent Progress of Elementary System Nets

bottom

bo C, by C, b, Cy b3 Cy by

Figure 55.1. Renamed asynchronous stack X1; o

steps 0 —% By A, A3 A4 and 0A01A2A3A4 start at . In order to show that
o is a ground state, with Theorem 53.2 we have to show By AsA34, — o
and Cy A3 A3z A4 < o. This is easily achieved by two proof graphs

B1A2A3A4E)AlB2A3A4&A1A2B3A4$>A1A2A3.B4£)U (1)
and
ByCyAs Ay S Ay CoAs Ay S Ay AyCs Ay &S AL Ay AsCy &S o (2)

Their nodes are justified by place invariants A; + B;+C; = 1fori =1,... 4.
We leave the details as an exercise to the reader.

As a consequence, each concurrent run of the asynchronous stack has a
linearization that consists in a sequence of rounds, each of which describes
either an entire push-wave or an entire pop-wave of the stack.

55.3 Rounds of the crosstalk algorithm

Figure 55.2 recalls the crosstalk algorithm Y5 5 with renamed places. This
algorithm operates in three rounds, as already discussed in Sect. 12. Here we
are going to prove that the initial state AFE is in fact a ground state. The
following place invariants of Y55 2 will be used:

invl: A+ B+G=1,
inv2: E+K+F =1,
inv3: A+C+D+J+M=1,
invd: D+ E+H+J+L=1

55 Rounds and Ground Formulas of Various Algorithms 199

Figure 55.2. Renamed crosstalk X5 5

First we observe that
{a, g} is a change set of AE: (1)
A prevents ¢ by inv3 and F prevents e by inv4. Figure 55.3 shows
eff(AE,a) — AE (2)
(as eff(AE,a) = BCE). The nodes of Fig. 55.3 are justified as follows:

node 1: context B, and E prevents k by inv2;

node 2: context BH, K prevents ¢ by inv2, and C' prevents h by inv3;
node 3: context F'M, B prevents e by invl, and H prevents b by inv4;
node 4: context GM;

node 5: context E;

node 6: context F', D prevents 7 by inv4;

node 7: context A.

1BcE <9 oBCHK CL)&BFHM A arcLm Ci>5.EGM C—f>8.AE

C

b d
6.BDF C———7ALF C

Figure 55.3. Proof of eff (AE,a) — AFE

200 IX. Concurrent Progress of Elementary System Nets

Figure 55.4 shows likewise
eff(AE,g) — AE (3)
(as eff (AE,g) = AHK).

k i f
1AHK 2 soBCHK C53BFHM U aFGLM Ci>5.EGM C—>B8.AE

e

h f
6.GJK C———7GEM C

Figure 55.4. Proof of eff (AE, g) — AFE

The two proof graphs in Figs. 55.3 and 55.4 reflect the three rounds of
X55.2: The upper line of each proof graph describes the case of crosstalk. The
lower line of Fig. 55.3 reflects a message from R to L, and the lower line of
Fig. 55.4 a message from L to R. We leave the justification of the nodes of
Fig. 55.4 as an exercise to the reader.

With Theorem 53.2 it follows immediately from (1), (2), and (3) that AE
is in fact a ground state of Y5 5.

56 Ground Formulas of Mutex Algorithms

56.1 Construction of ground formulas

A mutex algorithm can never reach a state that is entirely symmetrical with
respect to the two sites involved. If it could, then both sites could continue
to always act symmetrically and thus would never reach a state with one site
critical and the other site not critical. In fact, each algorithm of Sect. 11 is
either asymmetrical by structure (such as the synchronized algorithm, Ow-
icki/Lamport’s algorithm, and the asymmetrical algorithm) or is asymmet-
rical by initial state (such as the token passing algorithm, Peterson’s algo-
rithm, and Dekker’s algorithm). The contentious, the alternating, and the
state-testing algorithms are symmetrical both in structure and initial state,
but have been ruled out as acceptable mutex algorithms.

Asymmetry of the initial state is inherited to each reachable state, and
thus the token-passing, Peterson’s, and Dekker’s algorithm don’t have a
ground state. But the local quiet states of the two sites [and r constitute a
ground formula

quiet; N\ quiet, (1)

in each mutex algorithm. The initial state of the three structurally asymmet-
rical algorithms are even ground states.

56 Ground Formulas of Mutex Algorithms 201

Proof of (1) can again be based on Theorem 53.2. In each mutex algorithm
X, the initial state ax enables two actions which constitute a change set of ax,
and lead to pend; and pend,. (or similarly denoted local states), respectively.
So we have to show

pend; A quiet, — ayx;, and quiet; A pend, — ax. (2)

Evolution of X' gives pend; < crit; and pend, < crit,.. A proof of evolution
of various algorithms, as given in Sect. 49, can easily be modified to proofs
of

pend; A\ quiet, — crit; A quiet,, and (3)
quiet; A\ pend,. — quiet; A crit,.
Furthermore,

crit; A\ quiet, < ayx;, and quiet; A crit, < ax. (4)

can immediately be picked up by Corollary 51.2 (with context quiet, and
quiet;, respectively).

Hence (2) follows from (3) and (4), and the transitivity of the causes
operator —.

All this does not yet apply to the round-based mutex algorithm X3¢,
because its evolution remains to be proven.

56.2 A ground formula of the round-based mutex algorithm

Figure 56.1 recalls the round-based mutex algorithm X3¢, with renamed
places. We will show

AFE is a ground formula of Y561 (1)
Proof of (1) employs the following place invariants of Xsg 1:

invl: A+ B+G=1,

inv2: E+F+K=1,

inv: A+C+D+J+M+R=1,
invd: D+E+H+J+L+N=1.

First we observe that
{a, g} is a change set of AFE (2)

as A prevents ¢ by inv3 and E prevents e by inv4. As a technicality, Fig. 56.2
shows BCHK < AE. The nodes of Fig. 56.2 are justified as follows:

node 1: context C' K, C prevents b by inv3 and B prevents e by inv1;

node 2: context CGK;

node 3: context (G, K prevents ¢ by inv2, K prevents d by inv2 and C'
prevents h by inv3;

node 4: context EG,

node 5: context E.

202 IX. Concurrent Progress of Elementary System Nets

Figure 56.1. Renamed round-based mutex algorithm X3 g

i k f
1BcHk Usocekn @Mzcekl Csaeer Y9 ss5EeM s eAE

Figure 56.2. Y561 |: BCHK — AE

Now Fig. 56.3 shows
eff(AE,a) — AE (3)

b h d
1BCE % soBoF 2 s3arn 1 saar Y i6aE
a?

5BCHK C Fig.56.2

Figure 56.3. Y551 = eff(AE,a) — AE

The nodes of Fig. 56.3 are justified as follows:

node 1: context B, and E prevents k by inv2;
node 2: context F', and D prevents j by inv4;
node 3: context AF
node 4: context A, and F' prevents k by inv2;
node 5: Figure 56.2.

Finally, Fig. 56.4 shows

56 Ground Formulas of Mutex Algorithms 203

h
1AHK & socik ' s3EGR 9 saEGM s 6AE
a?

5BCHK C

Figure 56.4. Y55, = eff (AE, g) — AE

eff(AE, g) — AE (4)
The nodes of Fig. 56.4 are justified as follows:

node 1: context K, and A prevents j by invl;
node 2: context (G, and J prevents k by inv3;
node 3: context EG,;

node 4: context FE;

node 5: Figure 56.2.

Altogether, (2), (3), and (4) imply (1) by Theorem 53.2.

56.3 Evolution of the round-based mutex algorithm

Due to the asymmetry of the round-based mutex algorithm we have to show
both Y1356 |E pendl; — crit; and X136 = pendl, — crit,.. In the represen-
tation of Fig. 56.1 this reads

Y61 EQ— N, and (1)

256.1 |: T— R (2)

Proof of these properties employs the ground formula AE: First we observe
that the ground formula AFE implies true < A (by Def. 53.1), hence Q — A
(by propositional logic), hence @ — A (by Lemma 50.4(ii)). This in turn
implies

Y561 FQ— B (3)

by Theorem 48.2. Furthermore, Y561 = B — —A (by invl) and {b,j} is a
change set of {B}. Hence Y451 = B < N (by Theorem 53.3), hence

256.1 |: B— N (4)

by Lemma 50.4(ii). Thus (1) follows from (3) and (4) with Lemma 44.3(iii).
Likewise, one shows X561 =T +— K and Y561 E K — R, which implies (2).

Part D
Analysis of Advanced System Models

In analogy to the analysis of elementary system nets as described in Part C,
state properties and progress properties will be considered separately for
system nets, too.

X. State Properties of System Nets

State properties have been defined for elementary system nets as proposi-
tional combinations on a system’s local states. Particularly important state
properties have been derived from valid equations and inequalities formed
ny-p1+---+nk-px=mand ng -ps + -+ ng - px > M, respectively. Each
integer n; provides a weight for p;. This kind of equation or inequality holds
at a state s if valuation of variables p; by the integer s(p;) solves the equation
or inequality.

For advanced system nets, any domain D may provide weights f(p;) € D
for a place p;. The function f must be applicable to the contents s(p;) of p;
at any reachable state, s. In fact, this approach is followed for system nets in
the sequel. As an example, in the term represented system net

sort dom
X f(x) const u :dom 1
A @ 9(x) < >B fct f,g:dom - dom ()
t var X :dom

the number of tokens remains invariant, provided the tokens on A are counted
twice: For each reachable state s, 2 |s(A)| + |s(B)| = 2. As a shorthand this
is represented by the symbolic equation

2|A| + |B| = 2. (2)

A more informative state property is gained by weight functions f and g,
canonically extended to sets and coincidentally applied to the token load of A.
In fact, at each reachable state s, f(s(A4))Ug(s(A))Us(B) = {f(u),g(u)}. As
a matter of convention and unification, this will be expressed by the symbolic
equation

f(A) +g(A) + B = f(u) + g(u). (3)

The unifying formal background for both (2) and (3) are multisets of
items, in which an item may occur more than once. Multisets and linear
functions on multisets provide means to construct equations, inequalities,
place invariants, and initialized traps for system nets. All those concepts are
generalizations of the corresponding concepts for es-nets given in Chap. VII.

208 X. State Properties of System Nets

57 First-Order State Properties

Formulas to represent properties of states of advanced system nets will be
employed, by analogy to formulas to represent properties of states of elemen-
tary system nets, as introduced in Sect. 38.S Terms as introduced in Sect. 19
(there used as arc inscriptions) will serve in a first-order logic, with places of
system nets as predicate symbols (by analogy to Sect. 39.1, where places of
elementary system nets served as propositional variables).

We start with the syntax of formulas over a structure A.

57.1 Definition. Let A be a structure, let X be a set of A-sorted variables,
and let P be any set of symbols. Then the set F(A, X, P) of state formulas
over A, X, and P is the smallest set of symbol chains such that for all t €
T4(X) and all p,q € P,

i. pt,p=t, and pC q€ F(A X, P)
it. if f,g€ F(A,X,P) then fAge F(A,X,P) and -f € F(A, X, P).

The following notations will be used, by analogy to Sect. 38.2:

57.2 Notations. In the sequel we employ the conventional propositional
symbols V and —, and for any set Q = {q,... ,qn} the shorthands \/ Q
for i V...V qn, and \ Q or just Q for g1 A ... A qn. Furthermore, we write
Ay, ..., uy as a shorthand for Auy A ... A Auy,.

Each advanced system net X' is assigned its set of state formulas. Those
formulas are constructed from the structure of X, with the places of X serving
as predicate symbols. The token load s(p) of place p at a state s, as well as
the inscriptions in f of an arc f, are terms that may occur in state formulas.

57.3 Definition. Let A be a structure, let X be an A-sorted set of variables,
and let X be a net, term-inscribed over A and X .

i. Each f € F(A,X, Py;) is a state formula of X.
ii. For each state s of X, the state formula § of X is defined by § :=

APGPE S(p))

Such formulas are interpreted as follows:

57.4 Definition. Let X be an es-net, let f be a state formula of X, let v be
an argument for its variables, and let s be a state of X.

i. s = f(v) (“ais an f(v)-state”) is inductively defined over the structure
of f. To this end, let w € T4(X), p,q € Py and g,h € F(A, X, P).

s | p.t(v) iff setval”(v) C s(p), and

s E (p=t)(v) iff setval”(v) = s(p).

~skEpCaqiff s(p) C s(q).

sEgAhiffs=g and s = h.

- skE g iff notsl=g.

58 Multisets and Linear Functions 209

it. s = f iff, for all arguments u of X, s = f(u).
ii. X = f iff, for all reachable states s of X, s = f.

Apparently, for each state a, a = a.

58 Multisets and Linear Functions

State properties can frequently be proven by means of equations and inequal-
ities, which in turn can be derived from the static structure of a given system
net, by analogy to equations and inequalities of es-nets. Each place of the
net will serve as a variable, ranging over the subsets of the places’ domains.
Terms will employ linear extensions of functions of the underlying algebra.
Each structure A canonically induces multisets of its carrier sets and linear
extensions of its functions. Intuitively, a multiset B over a set A assigns to
each a € A a multiplicity of occurrences of a. As a special case, a conventional
subset of a sticks to the multiplicities 0 and 1. For technical convenience we
allow negative multiplicities, too, But proper multisets have no negative entry.

58.1 Definition. Let A be a set.

i. Any function M : A — 7 is called a multiset over A. Let A™ denote the
set of all multisets over A.
ii. Let M € A™ and z € ZZ. Then zM € A™ is defined for each a € A by
zM(a) := z- M(a).
iii. Let L,M € A™. Then L + M € A™ is defined for each a € A by
(L+ M)(a) := L(a) + M(a).
. A multiset M € A™ is proper iff M(a) > 0 for all a € A.

Sets can be embedded canonically into multisets, and some operations on
sets conditionally correspond to operations on multisets:

58.2 Definition. Let A be a set, let a € A and B C A. If A is obvious from
the context, a™ and B™ denote multisets over A, defined by a™(x) = 1 if
x = a and a™(x) = 0 otherwise; and B™(z) = 1 if x € B and B™(z) = 0,
otherwise.

Union and difference of sets correspond to addition and subtraction of the
corresponding multisets, given some additional assumptions:

58.3 Lemma. Let A be a set and let B,C C A.

i. (BUC)™=DB™+C™, provided BNC =0 and
i. (B\C)™ =B™ - C™, provided C C B.

58.4 Notations.

i. By abuse of notation we usually write just A instead of A™.

210 X. State Properties of System Nets

ii. Addition B + C and subtraction B — C' are written for ordinary sets B
and C only if BNC = () and C C B, respectively. Particularly, for a € A
and B C A, B — a is written only if a € B.

There is a canonically defined scalar product and a sum of functions over
multisets:

58.5 Definition. Let A and B be sets:

i. Any function o : A — B™ is called a multiset function from A to B.

ii. Let o : A — B™ be a multiset function and let z € Z. Then zp : A™ —
B™ is defined for each M € A™ by zp(M) := z - (p(M)).

iii. Let o, : A™ — B be two multiset functions. Then @ +1) : A” — BM™
is defined for each M € A™ by (o +) (M) := (M) + (M).

iv. Qap denotes the zero-valuating multiset function from A to B, i.e.,
Oap (M) = Qg for each M € A™. The index AB is skipped whenever it
can be assumed from the context.

Each function f : A — B and each set-valued function g : A — B™ of
a structure A can be extended canonically to a multiset function g : A™ —
B™.

58.6 Definition. Let A and B be sets and let f : A — B or f: A — B™
be a function. Then the multiset function f : A™ — B™ s defined for each
M € A™ and each b € B by f(m)(b) = Zoep-15)M(a).

By abuse of notation we write f instead of f whenever the context ex-
cludes confusion. The induced functions f are linear:

58.7 Lemma. Let A and B be sets, let f : A — B be a function, let L, M €
M(A), and let z € Z. Then for the multiset extension of f, f(L+ M) =

F(L) + f(M), and f(z- M) == - f(M).
Proof. Let b € B and let C := f1(b).

i f(L+ M)(b) = Zaec(L + M)(a) = Taco(L)(a) + Taco(M)(a) =
f(L)(a) + f(M)(a) = (f(L) + f(M))(a).)

ii. f(z-M)(b) = Yoec(z-M)(a) = Xocoz-M(a) = z2-XoccM(a) = z- f(M).

a

59 Place Weights, System Equations,
and System Inequalities

State properties are essentially based on weighted sets of tokens, formally
given by multiset valued mappings on the places’ domains.

59 Place Weights, System Equations, and System Inequalities 211

59.1 Definition. Let X be a system net over a universe A, let p € Py, and
let B be any multiset. Then a mapping I : A, — B is a place weight of p. I
is natural if B =N.

Place weights are frequently extended to set-valued arguments and then
applied to the token load s(p) of the token at place p in a global state, s. In
this case, a multiset I(s(p)) is called a weighted token load of p.

Place weights can be used to describe invariant properties of system nets
by help of equations that hold in all reachable states:

59.2 Definition. Let X be a system net over a universe A, let B be any
multiset and let P = {py,...,pn} C Ps. For j = 1,...,k, let I/ : Ap, =+ B
be a place weight of p;.

i. {I',...,I*} is a Y-invariance with value B if for each reachable state s
of ¥,
I'(s(p1)) + -+ + I*(s(p)) = B.

ii. A X-invariance {I', ..., I*} is frequently written as a symbolic equation
I'(p1) + -+ I"(px) = B
and this equation is said to hold in X,

In a Y-equation I'(py) + --- + I*(px) = B, the value of B is apparently
equal to I'(sx(p1)) + -+ I*(sx(py)), with sx the initial state of X.

As a technical example, in the term inscribed representation of a system
net X,

sort dom
X f(x) const u,v:dom (1)
" g(x) ® fet f,g :dom - dom
t var x :dom

let {u,v} be the domain of both A and B, and for = € {a,b} let I (z) =
f(z) + g(x) and I®(x) = z. Then {I4,IP} is a Y-invariance with value
U= f(u)+ g(u) + f(v) + g(v), symbolically written

f(A) +9(A)+B=U. (2)

One of the reachable states is s, with s(4) = u and s(B) = f(v) + g(v). Then
in fact I4(s(A4)) + IB(s(B)) = I (u) + IB(f(v)) + IB(g9(v)) = U.
Intuitively formulated, according to this invariance, the element w is at
A, or both f(u) and g(u) are at B. The corresponding property for v holds
accordingly in Y.
As a further example, in X =

a|:| fi C
2 B sort dom

const u, v:dom
A ft f,g,f-1, g=1:dom — dom (3)
X var x:dom
g(x) f=1(f(x)) =x
b 9=1g() =x

212 X. State Properties of System Nets

let again {u, v} be the domain of all places A, B, and C, and for z € {u,v} let
I(z) =z, IB(z) = f~'(z) and I¢(z) = g~'(x). Then {I4, 1P, 1} is a X-
invariance with value u+wv, symbolically written A+ f~1(B)+g¢~1(C) = u+v.
One of the reachable states is s, with s(4) = u, s(B) = f(v) and s(C) = 0.
Then in fact I4(s(A)) + I8 (s(B)) +I°(s(0)) = I (u) + IB(f(v)) + I€(0) =
u+ fHf(w) =u+ov.
As a final technical example, in X =

X
sort dom
const u:dom
fct f :dom - dom (4)
var x:dom

- f(F(x)) = x

let U = {u} and I*(z) = = + f(z). Then {I} is a Y-invariance with value
u + f(u), symbolically written

A+ f(A) =u+ f(u).

A
@ sort phils, forks
X X const a, b, c :phils
B const fy,fy,f3: forks

u LX) (>¢> t fct 1, r: phils - forks
r(x) rx) var x: phils

1@ =r(b) = f,

1(b) =1(c) =1,

L(c) =r(a) =f3

Cc

Figure 59.1. Renamed philosophers system X5 19

A more realistic example is the philosophers system X519, redrawn in
Fig. 59.1. This system has three interesting equations:

A+C=a+b+c,
B+I1(C)+r(C)=fi+ fo+ fs, and

r(A) +1(A) =B =fi+ fa+ fs.

In analogy to Sect. 39 we also consider inequalities that hold in all reachable
states:

59 Place Weights, System Equations, and System Inequalities 213

x f(x)

sort dom var x:dom
const U, V: set of dom fu)y=Vv
fct f:dom - dom

Figure 59.2. f(A) + B >V is a valid inequality

59.3 Definition. Let X be a system net over a universe A, let B be any
multiset, and let P = {p1,...,pr} C Ps. For j =1,...,k let I/ : Ap, =+ B
be a place weight of p.
{I',..., I} yields a X-socket with value B if for each reachable state s
of X,
I'(s(p)) + -+ I*(s(pr)) > B.

A X-socket {I',... I*} is frequently written as a symbolic inequality
I'(ps) +-- + I"(p) > B,

and this inequality is said to hold in Y.

f(x)

sort dom var x:dom
const u,v:dom f(f(x)) = x
fct f:dom - dom fluy=v

Figure 59.3. f(A4) + f(C) + D > u is a valid inequality

214 X. State Properties of System Nets

Figures 59.2 and 59.3 provide typical examples.

In Y595 let T4 and I® be place weights of A and B, respectively, with
IA(x) = f(x) for each z € U and IP(y) =y for each y € V. Then {I4, P}
is a X-socket with value V. As a symbolic inequality it reads f(A4) + B > V.

Likewise, in X59.3, let T4, IB, and I¢ be place weights of A, B, and C,
respectively, with I4(z) = I(z) = f(x) and IP (x) = =, for each = € {u,v}.
Then {I4,1¢, TP} is a ¥-socket with value {f(v),u} = {u}. As a symbolic
inequality this reads f(A4) + f(C) + D > u.

60 Place Invariants of System Nets

We are now seeking a technique to prove Y-invariances without explicitly
visiting all reachable states. To this end we construct place invariants for
system nets, in analogy to place invariants of es-nets: A set of place weights
is a place invariant if each occurrence mode m of each transition ¢ yields
a balanced weighted effect to the places involved, i.e., the weighted set of
removed tokens is equal to the weighted set of augmented tokens; formally,
for place weights I', ..., I* of places pi,...,p,

I'(m(t,pr))+- -+ T8 (m(t, pr)) = I' (m(py, 1))+ +T* (m(pr,t). (1)
A more concise representation of (1) is gained by a slightly different per-
spective on transitions and their actions: Each arc 8 = (p,t) or 8 = (t,p)
defines a mapping (3 that assigns each action m of ¢ the corresponding subset

m(B3) of A,. Furthermore, this subset is canonically conceived as a multiset,
i.e., an element of Agn:

60.1 Definition. Let X be a system over a structure A. Let t € T, be a
transition with My its set of actions and let 3 = (t,p) or B = (p,t) be an arc

of . Then the function (8 : My — A is defined by B(m) = m(B).

The function E is canonically extended to g(m) = () if 8 is no arc. For
example, in

(3)

tA(u,v) = tB(u,v) = Ct(u,v) = 0.

According to Def. 58.5, tp — pt is a multiset valued function that assigns
each occurrence mode m of ¢ its effect on p, i.e., the tokens removed from p
or augmented to p upon t’s occurrence in mode m.

60 Place Invariants of System Nets 215

Each place weight I? : A, — B of a place p can canonically be extended to
the set valued arguments I? : AY* — B™ by Def. 58.6. This function in turn
can be composed with ¢p — pt, yielding a function I? o (tp — pt) : My — B™.

A set of place weights is a place invariant if the sum of weighted effects
of all involved places reduces to the zero function Q. The walue of a place
invariant is derived from the net’s initial state:

60.2 Definition. Let X be a system net and let p1,...,px € Ps. For j =
1,...,k let I’ be a place weight of p;j. Then I = {I',... I*} is a place
invariant of X' if for each transition t € T,

I' o (tpy = pat) + -+ 1* o (tpx — pt) = O.
The multiset I' (ss(p1)) + - + I*(ss(pr)) is the value of I.

As an example, for the net (2) let I4, T2, and I¢ be place weights for A, B,
and O, respectively, with I4(z) = f(z) for each z € U, I®(y) = g(y) for each
y €V, and I°(z) = z for each z € W. Then the set {I*, 7,1} is a place
invariant of (2): With (3) follows IA0(54—,@)+130(1;§—E5)+I00(£5—52) =
fo(O—At)+go(Q—Bt)+tC —O=—foAt — go Bt +tC. Then for all
(u,v) € U xV, again with (2), (—foz;f—gofé;f-l-;é)(u,v) = —f(Z;f(u,v)) -
g(Bt(u,v)) + tC(u,v) = — f(u,v) — g(u,v) + f(u,v) + g(u,v) = Q. The value
of this place invariant is I (u) + IZ(v) + I9(0) = f(u) + g(v).

A place invariant provides in fact a valid X-equation:

60.3 Theorem. Let X be a system net, let pi,...,pr € Ps, and for j =
1,...,k, let I’ be a place weight of X. Let {I',... , I*} be a place invariant
of X and let U be its value. Then the equation

I'"py) +--+1"py) =U
holds in X.

Proof. i. Letr L s be a step of X. Then for each p € Ps;, s(p) = r(p) +
m(t,p) — m(p,t), by Proposition 16.4. Then

Tia L (s(py) = Zio P (r(pg) + m(t, pj) — m(p;, 1))

=X B (r(py)) + X4, I (m(t,p;) — m(pj, 1)) by Def. 58.1
= Eg]'c:1ﬁ(7“(17j)) + Eg]'ﬂ:Jj((tfavpj)(m) - (/j\,/t)(m)) by Def. 19.2
= EJ]'C=1Ij(T(pj)) + Ef:l-”((ﬁﬁj) - (Eﬁ))(m) by Lemma 58.7

= YT (r(pj)) + O(m) = ZI(r(p)))

216 X. State Properties of System Nets

. Now let s be a reachable state of X. Then there exists an inter-

leaved run of ¥ formed sy —= 5 22, Mo Gith s = s.
Then X% I(so(p;)) = U, by Def. 60.2. Then for each i = 1,. ,l,
E]’-“Sllj (si(pj)) = U, by i. This yields the proposition for ¢ = 1. a

Place invariants can be mimicked symbolically in term-inscribed repre-
sentations of system nets. To this end, the functions tp, pt, tp pt, and IP
will be represented symbolically. The composition I* o (tp pt) of functions
I? and (tp pt) then is symbolically executable as substitution of terms.

Definition 19.1 assigns each arc 8 = (¢,p) or 8 = (p,t) of a term-inscribed
net ¥ a set f C Ta,(X¢) of Ap-terms over X;. For each u € B, val* (as
defined in Def. 18.5) is a mapping from M; to A,. This mapping can be
extended canonically to val* : M; — A?)n. Mappings of this kind can be

summed up, giving rise to the mapping E My — Agﬂ of Def. 60.1, defined
by B(m) := val“* (m) + - - - +val** (m), with X; = {us, ..., u;}. Hence 3 can
be represented symbolically as

Gout o tu (1)
in this case.

The multiset extension I? : A — B of a place weight I : A, — B can
be represented as a term with one variable, ranging over Agﬁ. For the sake of
convenience we always choose the variable p, hence the corresponding term
is an element of T5({p}).

The composed function I? o (tp — pt) : M; — B is now symbolically
represented by the multiset term

T = I?[ip — pt/p] (2)
which is gained from I by replacing each occurrence of the variable p in I?

by the term tp pt Hence 7 is a term in Tr(X}), and its valuation val™ i
equal to I? o (tp — pt).

B
a yO sort dom
() X l:l const u, v : dom
A fct f,g:dom - dom
N var x:dom
C

| _a| ss| I
A —z | u+v | f(A)+ g(h)
B | f(z) B
C | g(z) C

Figure 60.1. System net with matrix, initial state sy, and a place invariant

60 Place Invariants of System Nets 217

The analogy to Sect. 40 continues, as a term-inscribed net Y is represented
as a matrix X with row indices Py, column indices T's;, and entries X(p,t) =
tp—pt. Its initial state sy, as well as each place invariant I, can be represented
as a column vector, representing the initial token load sx(p) as a variable free
ground term of sort 4, and each entry I(p) as the term I, introduced above.
Moreover, place invariants I can be characterized as solutions of

Y. 1=(0,...,0) (3)

with @ a symbol for the zero multiset function, as described in Def. 58.5. T
then is a vector of place weights, one for each place. The product of a com-
ponent I? of I with a matrix entry X (p,t) is the substitution IP[X(p,t)/p],
addition of terms is the symbolic sum of multiset terms.

As an example, Fig. 60.1 shows a system net together with its matrix and
the vector representation of its initial state and a place invariant. Substitution
of matrix entries into the components of I yields

1[aA — Aa/A] = I*[~z/A]
= f(8) + g(A)[—z/A]
= f(-z) + g(-2)
= —f(z) — g(2),

IP[aB - Ba/8] = I°[f(x) /8]
— B[f(x) /3]

I[aC — Ca/c] = Ig(x)/C]
= Clg(z)/C]
=g().
Figure 60.2 likewise provides the matrix, the initial state, and a place

invariant of the net (3) of Sect. 59. Substitution of entries of the first column
of the matrix into the components of I yields

218 X. State Properties of System Nets

I[aA — Aa/A] = I [—2/A]
= A[-z/A]

= —_’L’,

1568 — B/8] = 1°[/(x)/8]

= f~(B)[f(z)/B]
= 1(f(=)
=z,
IC[@] =0
a f(x) B sort dom
X const u, v:dom
fct f,g,f~1, g1 dom - dom
A X var x:dom
=1(f(x)) = x
o) C glgl) =x
b
o b| se| 1
A -z -z |u+tvw A
B | f(z) f(8)
C g9(z) 9(C)

Figure 60.2. Matrix, initial state, and a place invariant to (2) of Sect. 59

As a final technical example, Fig. 60.3 gives matrix, initial state, and a
place invariant to (4) of Sect. 59. Substitution of the matrix entry into the
invariant yields

I[aA —Aa/A] = I'[f(z) — z/A]
= A+ f(A)[f(z) —x/A]
=f@) —z+ f(f(z) —2)
= f(@) -z + f(f(x) - f(x)
=fl@) —z+z—f(z)
=0

61 Traps of System Nets 219

X sort dom fct f:dom - dom
A a const u:dom f(f(x)) = x
f(x) var X : dom
| A | Sy | I

a| fle)—z | u|A+f()

Figure 60.3. Matrix, initial state, and a place invariant to (3) of Sect. 59

To finish this section, Fig. 60.4 shows matrix, initial state, and three place
invariants for the philosophers system of Fig. 59.1.

A
@ sort phils, forks
X X const a, b, c : phils
B const fq,f5,f3: forks

" 1(x) C 1(x) t fct 1, r:phils - forks
r(x) r(x) var x:phils

L(a) =r(b) = fy

L(b) =r(c) =f,

X X
I(c) =r(a) = f3
C
| t u | Sy | I1 I2 IB
A —x z|a+b| A [(A) +r(A)
B | —l(z) —r(x) l(z)+r(z) f1 B -B
C T -z c| C UC)+r(C)

Figure 60.4. Matrix, initial state, and three place invariants to X591

61 Traps of System Nets

We are now seeking a technique to prove X'-sockets without visiting all reach-
able states. To this end we construct initialized traps for system nets, in
analogy to initialized traps of elementary system nets.

Informally stated, a trap of a system net is a set {I', ..., I*} of weights of
places p1, . .., pi such that for each element b of a given set B, each transition
that removes at least one token with weight b from those places returns at

220 X. State Properties of System Nets

least one token with weight b to those places. This gives rise to an inequality
of the form

I'(p) + -+ I*(pr) > B. (1)

Traps are essentially a matter of plain sets (whereas place invariants are
based on multisets). For an arc (p,t) and an occurrence mode m of ¢, m(p,t)
is a plain set according to Def. 16.2. Then I(m(p,t)) := {I(u) | u € m(p,t)}
is a set, for any place weight I. Construction of traps now goes with set union
(not with multiset addition).

61.1 Deﬁniti_on. Let X be a system net and let p1,...,pr € Px. For j =
.k, let IV be a place weight of pj. Then I = {I',...,I*} is a trap of ¥
if for each transition t € Ty, and each occurrence mode m,

I (m(py,) U+ - U T (m(py, 1)) C I' (m(t,pr)) U -+ U I" (m(t, pr))-
The set I'(ss(p1)) U---UT*(ss(py)) is the initialization of I.

As an example, in Y59, let T4 and I® be place weights for A and B,
respectively, with T4 (z) = {f(z)} for each x € U and I®(y) = {y} for each
y € V. In the sequel we show

{I4,IB} is a trap of Tsg 5. (2)

To this end, we first observe that the occurrence modes of both transitions
a and b are given by the set U. Then for each m € U:

A{mp) VTP ({f(m)})
(m)} U {f(m)}
(m)}
(m)} U
(
(

I*(m(4,a)) UT® (m(B, a))

Il
3

f
f
f
A

{m})UI®(®)
m(a, A)) UI" (m(a, B)).

A

I
{
{
{
I
I

Likewise, for the transition b,

I*(m(A,b)) UI®(m(B,b)) = I*({m}) UT® ({f(m)})
={f(m)}U{f(m)}
={f(m)}
=0u{f(m)}
= I (m(b, A)) U I®(m(b, B)).

Finally, for t = cand t = d,

61 Traps of System Nets 221

I (m(A, 1)) U TP (m(B, 1)) = I (B) U I7(9)

uo

I
0
0
I

N

A(m(t, A)) UIP (m(t, B)).

Hence, {74, 1%} is in fact a trap of Ys9o. Its initialization is I (U) U

IB(@) = f(U)U® = V. An initialized trap in fact provides a valid X-
inequality:

61.2 Theorem. Let X be a system net, let pi,...,pr € Ps, and for j =

1,.

.k, let I be a place weight of X. Let {I*,...,I*} be a trap of X with

initialization B. Then the inequality

I'(py)U---UI*(py) > B

holds in X.

Proof. i. Let r2™ s be a step of X'. Then

ii.

US_i T (s(py) = U=y T ((r(p) \ m(p;, 1) Um(t, p))) by Def. 16.3
= U;?:l I’ (r(pj) \ m(p,t)) U U;?:l I (m(t,p;)) by rules on sets
D UL (T (r(py)) \ P (m(p, 1)) U5, PP (m(t, p))) by rules on sets

D (UL, F(r(p)) \ US=y P (m(p, 1)) UUS_, T (mi(t, py))

by rules on sets

= Ui F(r(p;) WU, T (m(t,p))) by Def. 61.1
2 U§:1 I (r(p;)) by rules on sets.
Now let s be a reachable ﬁtate of % Then tthere exists an inter-
leaved run of ¥ formed sp ———ty g —2 . 2T o with s; = s.

Then U§:1 I'(so(p;)) 2 B, by Def. 61.1. Then for each i = 1,...,1,

U?:l I’(si(p;j)) 2 B, by i and induction on i. Then the case of i = [
implies the proposition. O

Proof of traps can be mimicked symbolically in term-inscribed system

nets. To this end, place weights I, and functions 3 assigned to arcs 3, are
represented symbolically as described in Sect. 60. The function I o can then
be represented symbolically by the multiset term

r=1[5/p] ®)

222 X. State Properties of System Nets

in analogy to (2) of Sect. 60. Union of functions then can be expressed by
set union of singleton sets {7}. Each valuation of the variable p in 7 by some

m € A, then describes the item I703(m) = I*(B(m)). O denotes the function
that returns no value at all.
As an example, the trap in (2) can be verified symbolically as follows:
Yo (A,a)uI” o (B,a) —f<A>oas’UBoJT>
f(A)[z/A]U B[f(x)/B]
={f(@)}u{f(=)}

= {f(2)}
)
[

8

= {f(w Juo
f(A)[z/A]U
= IA oz U IB o0
= "o (@, A)UT” o (a, B).
Likewise,
Ao (A40)UIP o (B,b) = f(A) oFUBo f(x)
={f(=2)}
= 0U BI[f(x)/B]
=IY00QUIB o f(z)
— [*o (b, A)UI" o (b, B).
Finally, for t = cor t = d,
Ao (A)UTP o (B,t)=0UO
=0
CI'o(t,A)UI" o (t,B).
The initialization of the trap {I*, I?} is given symbolically by
)y uIP(0) = f(A)[U/A] U B[I/B]
= fU)UD
=f(U)
=V.

62 State Properties of Variants
of the Philosopher System
62.1 State properties of nondeterministic philosophers

We start with state properties of the philosophers system, as considered in
Sects. 19 and 20. Figure 62.1 redraws Y19 1, with renamed places. It shows

62 State Properties of Variants of the Philosopher System 223

A
p X sort phils, forks
const a, b, c :phils
u B

y y t const fy,f,,f3: forks
q
z z ar x : phils

var y, z : forks

<

(*.y,2) (xy.2)

Figure 62.1. System schema for X9 1

the case of a philosopher taking any two forks. An obvious place invariant
then is

A+pri(C)=a+b+c, (1)

confirming that each philosopher is either thinking or eating. The place in-
variant

B+ pry(C) +pr3(C) = fi + fo + f3 (2)

states that each fork is either available or in use.

The places A and B are quite loosely connected: Each philosopher corre-
sponds to any two forks, hence it is just the number of philosophers at A and
the number of forks at B that can be combined in a place invariant covering
A and B. More precisely, philosophers count twice as much as forks do:

2|A| - |B| = 3. (3)

62.2 State properties in the context of set-valued functions

Figure 62.2 shows a system schema, with each philosopher = taking a fixed
set @(x) of forks. Yy 3 is an instantiation of this schema. Place invariants of
Y20 are easily gained and interpreted:

A+C=P (4)
states that each philosopher is either thinking or eating.
B+®(C) =G (5)

states that each fork is either available or in use by exactly one philosopher,
and

224 X. State Properties of System Nets

sort phils, forks
const P : set of phils

®(x) C : D(x) t const G : set of forks
|-
fet

®: phils - set of forks

o

var x : phils

Figure 62.2. System schema for Yy 3

#(A) —B=®(P) -G (6)
states that each philosopher corresponds to the set of his or her forks.

62.3 State properties of the drinking philosophers

Finally, Fig. 62.3 shows a system schema for the drinking philosophers. X5 5
provides an instantiation of this schema.

sort phils, bottles

const P : set of phils

const G : set of bottles

%

var X :phils

var Y :setof bottles

x.Y)
(xY)

Figure 62.3. System schema for Xy 5

Its matrix, initial state, and two place invariants are given in Fig. 62.4.
The place invariant I; yields the equation

62 State Properties of Variants of the Philosopher System 225

| t u | Mo | Il I2
A —x x P A
B -Y Y G B
C (.’17, Y) - (.’17, Y) pri (C) pra (C)

Figure 62.4. Matrix, initial state, and two place invariants of the drinking
philosophers system, Xgs.3

A+pri(C) =P, (7)
stating that each philosopher is either thinking or eating. Likewise, I5 yields
B +pr2(C) =G, (8)

stating that each bottle is either available or in use. There is no place invariant
connecting A and B.

XI. Interleaved Progress of System Nets

Two progress operators have been suggested for elementary system models:
the interleaved progress operator — (“leads to”) and the concurrent progress
operator — (“causes”). They both can be adapted canonically to the case
of advanced system nets. The causes operator will turn out more important
because of its ability for parallel composition. In analogy to elementary system
nets, we start with progress on interleaved runs.

63 Progress on Interleaved Runs

In analogy to Sect. 44, a progress property p — ¢ (p leads to q) is constructed
from two state properties p and q. Now, p and ¢ are first-order state proper-
ties, as defined in Sect. 57. Again, as in Sect. 44, p — ¢ holds in an interleaved
run w if each p-state of w is followed by a g-state. p — ¢ holds in a system
net Y if p — ¢ holds in each of its interleaved runs. Technically, leads-to
formulas are constructed from state formulas:

63.1 Definition. Let A be a structure, let X be a set of A-sorted variables,
let P be a set of symbols, and let p,q € F(A, X, P) be state formulas. Then
the symbol sequence p — q (p leads to q) is a first-order leads-to formula.

Leads-to formulas are interpreted over interleaved runs and over system
nets:

63.2 Definition. Let X be a net that is term-inscribed over a structure A
and a set X of variables. Let p,q € F(A, X, Px;) and let w be an interleaved
run of X.

i. For an argument u of X let w |= (p — q)(u) iff for each p(u)-state with
index i, there exists a q(u)-state with index j > 1.
ii. p > q is said to hold in w (written w = p — q) iff for each argument u
of X, w (p = q)(u).
iii. p — q 1s said to hold in X' (written X = p — q) iff w |E p — q for each
interleaved run w of X.

As an example, in Fig. 63.1 the formula A.u A A.v — C.f(u,v) is true.

228 XI. Interleaved Progress of System Nets

A a B b

: X I:l X C (xy) |:| f(x,y) OC

Figure 63.1. AuA Av— C.f(u,v)

64 Interleaved Pick-up
and Proof Graphs for System Nets

The pick-up rule for es-nets, as stated in Sect. 45, is canonically extended
to system nets. The only slightly nontrivial new notion is the postset s® of
a state s of a system net X. In fact, s® contains actions of transitions of
Y. More precisely, an action m of a transition ¢ is in s® if occurrence of m
reduces the token load of some place p, i.e., if m(p,t) # 0.

64.1 Definition. Let X be a system net and let s be a state of X.

i. s is progress prone iff s enables at least one action of some progressing

transition of X.

it. Let t € Tx and let m be an action of t. s prevents m iff ¥ = § —
—m(p,).

iti. Let t € Ts; and let m be an action of t. m € s® if for some place p of X,
s(p) Nm(p,t) # 0.

. A set M of actions of some transitions of X is a change set of s if M # ()
and s prevents each m € s*\M.

The following theorem describes the most general case for picking up
leads-to formulas from the static structure of a system net: Each change set
of a progress prone state s yields a leads-to formula:

64.2 Theorem. Let Y be a system net, let s be a progress prone state, and
let M be a change set of s. Then

YEs— \/ eff(s,m).

meM

Proof of this theorem follows the proof of Theorem 45.5 and is left as an
exercise for the reader.

64.1 Pick-up patterns

Rules for picking up valid leads-to formulas from term-inscribed nets will be
presented in the sequel. A most general, fully fledged syntactical pick-up rule,
i.e., a syntactical representative of Theorem 64.2, is technically complicated
and unwieldy. Some typical patterns will be considered instead, sufficient for
verifying an overwhelming majority of case studies.

We start with forward branching places that lead to a disjunction:

64 Interleaved Pick-up and Proof Graphs for System Nets 229

(%) B

Ax v B.f(x)V C.g(z). (1)

AxANByw C.f(z,y). (2)

g

CC x] h(x) C F

In case additionally A.u — —B.y, all actions formed f(u,w) are ruled out
and one may pick up

D.f(u)

(4)

A.u
Cv

/\

F.h(v),
Summing up, the interleaved pick-up rule of Sect. 45 canonically generalizes
to system nets and will be used accordingly.

64.2 Proof graphs

Proof graphs for interleaved progress of system nets can be constructed in
strict accordance with the case of elementary system nets, as introduced in

B.u
WA.V w\
b(u,
AV 2y e ciuy
hA.U A’
B.v

Figure 64.1. Proof graph for X431 = Au A Av— C.f(u,v)

230 XI. Interleaved Progress of System Nets

Sects. 46 and 47. We refrain from a formal definition here; the general case
can easily be derived from the proof graph for Xg3 1 = A.uAA.v — C.f(u,v),
given in Fig. 64.1.

65 Case Study: Producer/Consumer Systems

We are now prepared to show for producer/consumer systems that each pro-
ducer item will eventually be consumed. Figure 65.1 shows a system schema,

C

sort dom
var X : dom

Figure 65.1. System schema for producer/consumer systems

with instantiation as in Y5 5. Fach item ready to be delivered should even-
tually become ready to be consumed. In terms of Y45 1 this reads

B.u— Fu. (1)
Figure 65.2 shows a proof graph for (1). Its nodes are justified as follows:

node 1: inv. C +|D| =1

node 2: inv. E+ |F| =1

node 3: D.x prevents b(u) by inv. C'+ |D| =1 and F.z prevents ¢(z) by
inv. E+|F|=1

node 4: D.x prevents b(u) and each ¢(y) for y # x, by inv. C' + |[D| =1

node 5: C prevents ¢(z) by inv. C' + |D| = 1 and B(u) prevents b(z) for
x#ubyinv. A+ |B| =1

node 6: C prevents ¢(z) by inv. C' + |D| =1 and B(u) prevents b(x) for
x#ubyinv. A+ |B| =1

node 7: D.u prevents ¢(z) for x # u by inv. C'+ |D| =1

node 8: inv. E+ |F| =1

node 9: F.x prevents c(u) by inv. E + |F| = 1.

66 How to Pick up Fairness 231

LN

B.u d(x) B.u c(x) B.u d(x) B.u b(u) c(u)
1)Bu——2)Bu—3)D.x 4)D.x t 5 : '
D.x X

) C 6) C 7)D.u 't
F E F.x E E
\ / . /
N 9 D dx)

F.x

10) F.u

Figure 65.2. Proof graph for Y51 E B.u — Fu

66 How to Pick up Fairness

A pick-up rule for leads-to properties is constructed in the sequel that exploits
the assumption of fairness of actions. Some technicalities are required first,
including the pre- and postsets of actions, and persistence of states. The
postset s® of a state s has already been defined in Sect. 64.1.

66.1 Definition. Let X be a system net, let t € T, and let m € M; be an
action of t.

i. The preset *m and the postset m® of m are states of X', defined for each
place p € Py, by *m(p) = m(p,t) and m*(p) = m(t,p), respectively.
ii. For two states r and s, let r \ s be the state defined for each place p of ¥

by (r\ s)(p) :=r(p) \ s(p)-

As an example, in Fig. 66.1, x = u defines an action m of b, with *m(B) =
{u}, *m(D) = {v}, and *m(A) = *m(C) = *m(E) = 0. A substate s is

sort dom

const u,v,w:dom
fct f:dom - dom
var X,y :dom

flu)=v

Figure 66.1. s is m-persistent, with u € s(B) and m(z) = u

232 XI. Interleaved Progress of System Nets

persistent with respect to an action m if s can be changed only by occurrence
of m:

66.2 Definition. Let X be a system net, let t € Ts;, m € My, and s C *m.
Then s is m-persistent if s* = {m} and ¥ |E s — *m\s.

For example, each state s of Xg5.1 with u € s(B) is m-persistent for
the action m of b defined by = u. As a variant of Ygg.1, replace the arc
inscription f(t) of (D, b) by a variable y. No reachable state has a persistent
action of b in this case.

An action m of a fair transition will occur at each m-persistent state:

66.3 Theorem. Let X be a system net, let t € T's; be fair, let m € My, and
let s be a m-persistent state. Then ¥ |= s — m?®.

t1, ta, .
Proof. Let w = sg (h ml), s1 (t2 m2), S ... be an interleaved run of X. Let sy,

be an s-state, i.e., sy = s. Then ¢x11 = (t,m) or sg4+1 |E s because s®* = {m}.
Furthermore, there exists an *m-state sy, with I’ > k, because X = s — *m.
Let [be the smallest such index. Then s;_; = *m. Hence

for some | > k, t; = (t,m) or s; | s. (1)

To show w |= s — m®, let s; be an s-state. By iteration of (1), either
t; = (t,m) for some ! > k (and hence s;41 = s), or there exists an infinite
sequence of s-states. But the latter case is ruled out due to the assumption
of fairness for . O

Returning to Yg6.1, the proof graph
/ N (2)
B.u E.vt D.v
proves B.u — D.v, i.e., for each state s with u € s(B) and each action m of
b with m(z) = u, s | *m\s. Each such state is m-persistent. Hence

by Theorem 66.3.
The above fairness rule, Theorem 66.3, deserves a slight generalization: It
likewise holds in a context, c, and furthermore bears additional alternatives.

66.4 Corollary. Let X be a system net, let t € Tx be fair, let m € M,
and let a, q be state formulas. Furthermore, let s be a state of X such that
YE(@As)— (aA*m)Vq. Then ¥ = (aAs)— (aAm®)Vq.

A canonical extension of the proof of Theorem 66.3 proves this corollary.

XII. Concurrent Progress of System Nets

The above interleaving-based progress operator for advanced system nets
is now complemented by a concurrency-based operator —, in analogy to
concurrent progress of elementary system nets, as discussed in Chap. IX.

67 Progress of Concurrent Runs

First-order causes formulas are constructed from state formulas as defined in
Def. 57.1, and the elementary causes operator from Def. 50.2.

67.1 Definition. Let A be a structure, let X be a set of A-sorted variables,
let P be a set of symbols, and let p,q € F(A, X, P) be state formulas. Then
the symbol sequence p — q (“p causes q”) is a first-order causes formula.

Causes formulas are interpreted over concurrent runs and over system
nets:

67.2 Definition. Let X be a net that is term-inscribed over a structure A
and a set X of variables. Let p,q € F(A, X, Px) and let K be a concurrent
run of X.

i. For an argument u of X, let K |= (p = q)(u) iff to each reachable p(u)-
state C' of K there exists a q(u)-state D of K that is reachable from
C.
it. p <> q is said to hold in K (written K = p — q) iff for each argument
uof X, K= (p= q)(u).
i4i. p = q 1s said to hold in X' (written ¥ =p — q) iff K = p — q for each
concurrent run K of X.

As an example, A.{u,v} < B.{u, v} holds in

As discussed in Lemmas 50.3 and 50.4, properties of the propositional
causes operator likewise apply to the first-order causes operator:

234 XII. Concurrent Progress of System Nets

67.3 Lemma. Let X be a system net that is term-inscribed over a structure
A and let p,q € sf(A, X, Pyx).

i. Y Ep<=p.

it. fYEp—oqand X =q—r then ¥ =p—r.

ii. f YEp—orand X Eq—rthen ¥ = (pVq) —r.

w. If Y =p+— q then ¥ =p— q.

v. If q includes no logical operator and ¥ = p < q then ¥ Ep+— q.

68 The Concurrent Pick-up Rule

A rule to pick up causes properties from a system net is now derived, in an
entirely semantical framework. The problem of picking up causes formulas
from a term-inscribed representation of system nets, is postponed to the next
section.

We start with some properties and notations of states of system nets.

68.1 Definition. Let X be a system net and let r,s be two states of X.

i. The state r Us of X is defined for each place p € Py by (r U s)(p) :=
r(p)Us(p).
it. Let r C s iff for each place p € Px, r(p) C s(p).
. r is disjoint with s iff for each p € Px, r(p) Ns(p) = 0.
iv. For an action m of some transition t, let *m be a state of X, defined for
each place p € Ps; by *m(p) = m(p,t). For a set M of actions, let *M
be the state defined for each p € Py, by *M(p) = U{m(p) | m € M}.

Change sets of system nets, as defined in Def. 64.1 for interleaved progress,
can likewise be used for concurrent progress properties:

68.2 Theorem. Let X be a system net and let r, s be states of X. Assume s
is progress prone, and let U = VUW be a change set of s, with *V C s and r
disjoint with *V. Then X' |= rUs — (rU\/ oy eff (s,u))V (Ve eff(rUs, u)).

Proof of this theorem follows proof of Theorem 51.1 and is left as an
exercise for the reader.

Many applications of this theorem deal with the special case of W = {),
i.e.,, *U C s and r disjoint from *U:

68.3 Corollary. Let X be a system net, let s be a progress prone state of X,
and let U be a change set of s with *U C s. Furthermore, let v be a state that
is disjoint with s. Then ¥ |=rUs < rU (Vo eff(s,u)).

69 Pick-up Patterns and Proof Graphs 235

69 Pick-up Patterns and Proof Graphs

In analogy to the pattern of Sect. 64.1, valid causes formulas can be picked
up from term-inscribed nets with the help of pick-up patterns, as suggested
in the sequel.

We stick to elementary formulas, avoiding the negation operator —.

69.1 Notations. Let X be an es-net that is term-inscribed over a structure
A and a set X of variables.

i. A state formula p in sf(A, X, Px) is elementary if the negation symbol
= does not occur in p.

ii. For a place p € Py and a state formula q, we write p € q if p does not
occur in q.

In case p € q, the place p, considered as a state, is disjoint to state q.

69.1 The elementary pattern

Most elementary is the case of a forward unbranched place, A, linked to a
backward unbranched transition, a:

A a B

Let o be an elementary state formula with A, B € a.

i aAn A.wa‘g)a AN=A.x AB.f(x)

ii. oz/\A.(x-l—U)a‘g)a/\A.U/\B.f(a:)
i and=USana=0nBrO)

69.2 The alternative pattern

The typical free choice alternative is likewise easy:

2) B

X 9(x)

b c

Let a be an elementary state formula with A, B,C & a.

i aNAx— aA-AzA(B.f(zx)VCyg(z))
ii. aNA(z+U) > aNAUA(B.f(z)V C.g(x))
fi. aANA=U< aAA=0AB.f(V)ACgW)AU =VUW

236 XII. Concurrent Progress of System Nets

69.3 The synchronizing pattern

Synchronization of places without alternatives goes as can be expected:

Let o be an elementary state formula with A, B,C & a.

i. aNAxAB.f(z) G‘E)) —Ax A-B.f(z) AC.g(x)
i aAA=UAFA) BB and=0rcyU)

69.4 The pattern for alternative synchronization

Choice between synchronized transitions yields important patterns:

Let a be an elementary state formula with 4,... FE & a.
i. aNAxAB.f(z) - aAD.h(zx)V E.f(z)
a(z)

ii. Let A.z prevent b(f(z)). Then a A A.x A B.f(x) < D.h(z)
li. A=UAf(A)CB—=DAV)ANE.f(W)AU=VUW

A frequent special case of this pattern is

with B an elementary, propositional place and z varying over the set U. Then

LaNAzAB<=aAV,Cy
ii. Let inv |4| < 1 be a valid inequality. Then A.z A B — C.x.

69 Pick-up Patterns and Proof Graphs 237

69.5 The pattern for synchronized alternatives

There frequently occur two or more alternatives that are synchronized along
a backwards branched place:

g(x)

Let o be an elementary state formula with 4,... F & a.

i. aNAxABy— aAD.f(z,y)VC.g(z)V E.h(y)
ii. Let A.z prevent c(y,z) and let B.y prevent a(z). Then A.x A B.y —

D.f(z,y).

69.6 Proof graphs for causes formulas

Based on Lemma 67.3, proof graphs for causes formulas can be constructed
as usual.

As an example we turn back to the producer/consumer system. Fig-
ure 65.2 shows that each produced item will eventually be consumed; tech-
nically, B.u — F.u for each item u. As an alternative we observe with
Lemma 67.3(v) that it was sufficient to prove B.u < F.u instead. Figure 69.1

8) B.u

¢ \ \
B.u _d(x) B.u _c(x) B.u _d(x) B.u _ b(u) c(u)
1)B.u‘>2)g.uH3)D.x(4)Dx © 5)C 6)C C 7)D.u

X

F.x E F.x

S

Figure 69.1. Y451 = B.u— Fu

9) F.u

shows a corresponding proof graph. In comparison to Fig. 65.2, one node has
vanished. More important is the simplification in the nodes’ justification:

node 1: inv. C 4+ |D| =1,

node 2: inv. E + |F| =1,

node 3: pattern of Sect. 69.1, context B.u A D.x,

node 4: pattern of Sect. 69.4, D.x prevents c(y) for each y # z by inv.
C + |D| =1, context B.u,

238 XII. Concurrent Progress of System Nets

node 5: pattern of Sect. 69.1, context B.u A C,

node 6: pattern of Sect. 69.4, B.u prevents each b(x) for z # u by inv.
A+ |B| =1, context E,

node 7: pattern of Sect. 69.4, D.u prevents each c¢(x) for x # u by inv.
C +|D| =1, context E,

node 8: inv. B+ |F| = 1.

Further decisive simplification of the proof will be gained by help of rounds
in the next section.

70 Ground Formulas and Rounds

Ground formulas and rounds of elementary system nets are now canonically
extended to advanced system nets:

70.1 Definition. Let X be a system net and let p be a state formula of X.
Then p is a ground formula of X if X' = true — p.

70.2 Theorem. Let X be a system net and let s be a state of X. Then s is
a ground formula of X iff ¥ |= ax < s and there exists a change set U of s
such that for each u € U, X = eff (s, u) < s.

As an example, for the producer/consumer system in Fig. 65.1 we prove
ACE is a ground formula of Yg5 1. (1)

The first condition of Theorem 70.2, ¥ = ax — ACE, is trivially fulfilled,
as ay = ACE. For the second condition we observe that {a(u) | v € dom} is
a change set of ACE, because for all x € dom, A prevents b(x) by the place
invariant A 4+ |B| =1, C prevents c(z) by C + |D| = 1, and E prevents d(z)
by E + |F| = 1. Hence we have to show for all € dom: B(xz) — ACE. The
proof graph

Figure 70.1. Renamed distributed request service X9 3

70 Ground Formulas and Rounds 239

)BaACAE S NAND e AEE YAnCAFeE yancne (2

shows this property. Its nodes are justified as follows, with all formulas due
to the elementary pick-up pattern of Sect. 69.1:

node 1: pattern of Sect. 69.4, B.x prevents b(y) for y # = by inv. A+|B| =
1, context F,

node 2: pattern of Sect. 69.4, D.x prevents c¢(y) for y # z by inv. C+|D| =
1, context A,

node 3: pattern of Sect. 69.4, context A A C.

As a further example we show that the initial state of the Distributed Re-
quest Service of Fig. 19.3 is a ground state. Figure 70.1 renames this system.
As a technical simplification, pairs (z,y) will be written zy; hence we have
to show

D.mu,nu A A.u,v,w is a ground formula of Yrq 1. (3)

The set {a(z) | © € {u,v,w}} apparently is a change set of ax.,,. Fur-
thermore, let z,y,z € {u,v,w} be pairwise different. Then (3) follows with
Theorem 70.2 from the following proof graph:

eff(ay,a(z)) = 1)D.mu,nu A Ay, z A B.xm,zn
D.mu,nu A B.xm, zn,ym,yn, zm, zn

D.mu,nu A B.um,un,vm, on, wm, wn

)D.muv,nv A B.om, vn, wm,wn A C.mu,nu
)D.mw,nw A B.wm,wn A C.mu,nu, mv, nv
)D.mu,nu A C.mu, nu, mv, nv, mw, nw

D.mu,nu N A, v,w.
All nodes are justified by the elementary pick-up pattern of Sect. 69.1.

70.3 Theorem. Let X' be a system and let p be a ground formula of X. Let
s be a state of ¥ with ¥ |= s — —p, and let U be a change set of s. Then

YEs—= Vyepeff(s,u).

This theorem simplifies proof of leads-to formulas in many cases. As an
example, Fig. 69.1 provides a proof of Y451 |= B.u < F.u. This property
also follows from the proof graph

b(u c(u
1)Bu' Y 2)D.u 3)Fu. (4)

Its nodes are justified as follows:

node 1: B.u prevents b(y) fory # z, and B.u — -ACE, by inv. A+|B| =
1. Hence the proposition with (1) and Theorem 70.3.

node 2: D.u prevents ¢(y) for y # z, and D.u - -ACE, by inv. C+|D| =
1. Hence the proposition with (1) and Theorem 70.3.

XIII. Formal Analysis of Case Studies

The case studies of Part B, as introduced in Chaps. IV, V, and VI, are now
reconsidered and formally verified.

71 The Asynchronous Stack

71.1 Properties of modules

The central state property of the asynchronous stack Xs» ¢ states that each
module M; is always quiet, or storing two values, or storing no value. In the
stack’s representation of Fig. 71.1, the equation

Ai+Bi+C=(1)+ -+ (n), (1)

states this property. Brackets indicate that numbers 1,...,n are to be consid-
ered as data values, and addition as multiset addition of singleton sets. Proof
of (1) is easy: (1) is the equation of the place invariant given in Fig. 71.2.

71.2 Balanced states

A state of the asynchronous stack is balanced if each module A; is at its quiet
state, storing exactly one value. In terms of Fig. 71.1, a state is balanced in
case there exist values uy,...,u, with

A'(laul)a"'a(naun)' (2)

A balanced state enables the actions by(u1) and ag(v,u;), for all values v.
bo(u1) pops uy out of the stack, yielding the intermediate state

C1ANA(2uz),...,(n,uy). (3)
This state is eventually followed by the balanced state
A'(laul)a---a(n_laun)a(naJ-)a (4)

as shown by the following proof graph:

b(1,
C1NAA(2uz),...,(n,up) (1(_1;2)
b(2,u3)

C2NA.(Luz), (3,u3),...,(n,up) —

242 XIII.

Formal Analysis of Case Studies

(lYZ’y) .
(iy:x)

(ny.x)

ap an
q from a
predecessor
(i+1,2)
bo bn
q b
1 i i+1 n
C
sort value var Xx,Y,z:nat
const (J:value var i:nat
const n:nat
Figure 71.1. Renamed asynchronous stack Yss g
| a0 a an bo b b i
A _(17z) (27m) (nam) _(17z) (Z7Z) _(naJ—) pTl(A)
_(Z+17Z) _(Z+17z)
B (17Z7y) (Z +.17Z7y) —(n,y,:c) prl(B)
_(7’7 Y, (L')
c 1 (t+1 -n c
—(1)

Figure 71.2.

Matrix and place invariant to Xy 1

71 The Asynchronous Stack 243

b(i,uit1)

CinA(Lug),. ..., —1,u), (i + 1, uiz1),...,(n,uy)

CnAA(Lus),...,(n— l,un)‘b—">

A.(Lu2), ..., (n—1,uy),(n, L)
The pattern of Sect. 69.4 and the above equation (1) justify this proof graph.

Likewise, an action ag(v, u1) pushes v into the stack, yielding the intermediate
state

B.(1,u1,v) AN A(2,u2),...,(n,uy,). (5)
This state is eventually followed by the balanced state

A.(1,v),(2,u1),..., (N, Un_1), (6)
as shown by the following proof graph:

a(l,u1,v)

B.(1,uy,v) AN A.(2,u2),...,(n,uy)
B.(2,u2,u1) A A(1,v), (3,u3), ..., (n,un)a(27u27u1)

B.(i,ui,ui_l) A A.(l,’l}), (2,11,1), ey ('L - l,ui_2),
a(t,ui,ui—1)

('L + 17Ui+1)7 cey (n,un)

a(n,Un—1,Un)
—

B.(n,up, un—1) N A(1,v),(2,u1),...,(n — L, u,_2)
A(L,0),(2,u1), ..y (N, Up—1).

The pattern of Sect. 69.4 and the above place invariant (1) justify this proof
graph.

71.3 A ground formula

The balanced states of X';1 ; are characterized by the formula
pri(A4).1,...,n. (7)

Given a balanced state s with A.uq, the actions bg(u1) and all actions ag (v, u1)
(for all values v) form a progress set of s. With the above proof graphs
and Def. 70.1 it follows that (7) is a ground formula of X7 ;. Hence, each
reachable state of the asynchronous stack is eventually followed by a balanced
state. Furthermore, with the proof graphs above, a push followed by a pop
returns the original stack up to the stack’s last element, which will contain
the undefined element, L:

ao(v,u1)

A(Lur), ooy (nyuy) <

244 XIII. Formal Analysis of Case Studies

A.(L,v),(2,u1),..., (n,unfl)b‘c)_(f)

A1)y (n =1, un 1), (n, 1)

72 Exclusive Writing and Concurrent Reading

Two algorithms of Sect. 24 are now proven correct. Three properties are to be
shown for each of them: exclusive writing, concurrent reading, and evolution.
To improve the technical treatment, the two algorithms’ places have been
relabeled in Figs. 72.1 and 72.3, respectively.

72.1 Proof of exclusive writing and concurrent reading of X34 5

Exclusive writing of Y54 5, as redrawn in Fig. 72.1, can easily be shown by
help of the place invariant

R(D)+F+K=R (1)

with R(z) := R for each # € W. This invariant immediately implies
|D| < 1, i.e., no two writer processes are writing coincidently. It further-
more implies D = ¢z — K = 0, i.e., if one process is writing, no process
is reading. Concurrent reading can easily be demonstrated by means of a

Figure 72.1. Renamed writers/readers Y4 0

prefix w of an interleaved run of X7, ;. The sequence of actions of w is

6(7‘1), te 7e(rn)7 f(rl)a te 7f(rn))g(rl)a te ,g(rn) where R = {Tla v ,T‘n}. w
terminates in a state a with a = K(R), i.e., all reader processes are reading.

72 Exclusive Writing and Concurrent Reading 245

72.2 Proof of evolution of writers for Y54 >

Evolution of writers of Y54 5, as redrawn in Fig. 72.1, reads

Yo |: B.x— D.x . (2)
Its proof is essentially based on the property
Yo |: Cx—DzxANE. (3)

This property in turn holds due to the proof graph of Fig. 72.2. Its nodes are

d(D)
1.Cx &

2.C.x D=0 —

3.Cx 0D=00 JOF € c)?

KR

4. C.x OD=00 J=0

5.Cx0D=00 J=0J K=0 —
6.Cx0J=00 FFR —>

7.C.x 0J=RO F=R

8. D.x UE

Figure 72.2. Proof graph for Y7o 1

justified as follows:

1: pattern of Sect. 69.1 and context C.z.

2:invRD)+F—-J—-H-G=0.

3: Cx Nz # z = ~C.z with inv |C| + |E| = 1, hence C.z prevents C.z
for x # z, hence C.x A Jy A F.y — K.y V (D.x A E) with pattern of
Sect. 69.4(i) and action g(y) or ¢(z), hence C.xAJ C F — JOV(D.xA
E) with pattern of Sect. 69.4(iii), hence the proposition with context
D =0.

4: K hf(—1>() K.0 by pattern of Sect. 69.1, hence the proposition with context
CaAJ=0AD=0.

5: inv R(D) + F + K = R.

6: inv G+ H+J+ K =R and inv J + J = R, with J the complement
of J.

7. Cx ANz # 2z = —=C.z with inv |C] + |E| = 1, hence C.z prevents
¢(z) for z # x. C.x — —F by inv |C| + |E| = 1, hence C.z prevents
f(y). J.R — J.0 by inv J 4+ .J = R, hence J prevents g(y). Hence the
proposition with pattern of Sect. 69.4(ii).

246 XIII. Formal Analysis of Case Studies

Furthermore, proof of (2) requires
272_1 |: B.x — E. (4)

This can be shown by the proof graph

N

1.B.x 2.Czt 3.E
Its nodes are justified as follows:
1: inv |C| + |E| = 1.
2: property (3), with Lemma 67.3(v).

Proof of (2) is now gained by the proof graph
1.B.x— 2.C.x — 3.D.x.
Its nodes are justified as follows:

1: by (4) and Theorem 66.3.
2: by property (3), with Lemma 67.3(v).

72.3 Proof of evolution of readers of Y54 o

Evolution of readers of Y54 5 means

Y1 FEHyw Kuy. (5)
Its proof is based on

Y1 EFHy— E, (6)
to be shown by analogy to (4). Furthermore, we require

Y1 |E Jy e Fuy, (7)
which holds due to the proof graph

d(D) h(K)
1.Jy —>2D=0=3D=0NK=0—-4F=R—5.Fy.

Its nodes can be justified by analogy to the nodes of the proof graph of (3),
left as an exercise to the reader.
Proof of (5) now follows with the proof graph

1.Hyw—2Jy— 3.K.y.
Its nodes are justified as follows:

1: Theorem 66.3, with (6).
2: Theorem 66.3, with (7).

72 Exclusive Writing and Concurrent Reading 247

Figure 72.3. Renamed writers/readers Ys4 3

72.4 Proof of exclusive writing and concurrent reading of X5, 3

By analogy to the case of Y545 exclusive writing of Y543 as redrawn in
Fig. 72.3 can easily be shown by means of the place invariant

U(D) + F + pro(K) = U 8)

with U(z) := U for each z € W. This invariant immediately implies |D| < 1,
i.e., no two writer processes are writing coincidently. Furthermore, D = z —
K =0, i.e., if one process is writing, then no process is reading. Concurrent
reading is in fact possible for up to |U| reader processes, in case |U| < |R|.
This can be demonstrated by means of a prefix w of an interleaved run of
Y72.3. The sequence of actions of w is

6(7‘1), B '7e(rn))f(r1)>g(rlaul)> e ,f(rm),g(rm,um),
where R = {r1,...,rp} and U = {u1,... ,un}. w terminates in a state a

with a = K({(r1,u1),.-.,(Pm,um)}), i.e., m = |U| reader processes reading.

72.5 Proof of evolution of writing for Yo, 3

Evolution of writers of Y54 3 means

Y3 |E B~ D, 9)
Its proof is essentially based on

Yrs3=Cx—= DxzAE. (10)
This property holds due to the proof graph

248 XIII. Formal Analysis of Case Studies

c c(x)?

3.Cx0OD=00 K=0 —

c(x)
4, Cx0OF=U C——

5.D.x UE
Justification of its nodes follows the proof graph of (3) and is left as an
exercise to the reader.

Proof of (9) furthermore requires

Y7o 3 |: Bzx— E. (11)

This property follows from the proof graph

N

1.B.x 2.Czt 3.E
Its nodes are justified as follows:

1: inv |C| + |E| = 1.

2: property (10).

Now, (9) follows from the proof graph
1.B.x— 2.C.x — 3.D.x.
Its nodes are justified as follows:

1: by the fairness rule (Theorem 66.3) with (11).
2: by property (10).

72.6 Proof of evolution of readers of Y54 3

Evolution of readers of Y54 3 means

Y3 E Hy— K(y,z). (12)
Its proof is based on

YwnsEHy— E, (13)
to be shown by analogy to (11). Furthermore, we require

Yoro1 = Jy— K.(y,2),

which holds due to the proof graph

(D) h(K)
1.Jy =+ 2JyAD =0 <=3 JyAD=0AK =0 (14)

—=4.JyANU=F < 5K.(y,z).

Its nodes are justified as follows:

73 Distributed Rearrangement 249

d(D
1: D f(—>)D.O with pattern of Sect. 69.1(iii) and context J.y.

h(K
2: K ‘(—>)K.O with pattern of Sect. 69.1(iii) and context J.y A D = 0.

3: inv U(D) + F 4 pro(K) = U.

4: JyAy #z — —J.z by inv |E| +|J|+ |C| = 1, hence J.y prevents g(z)
for z #y. Jy —» ~C.z by inv |E| + |J| +|C| = 1, hence J.y prevents
¢(x). Hence the proposition with pattern of Sect. 69.4(iii).

This completes the proof of properties of the writer /reader system of Sect. 24.

73 Distributed Rearrangement

Figure 73.1 rewrites Xo5. 5, with renamed places. We first construct a ground
formula, ground. This formula enables at least one transition, unless the two
sets are rearranged. A descending function will show that ground will be
reachable only finitely often.

const L,r s nat

const L,R : set of nat

var X,Y,Z : nat

fct min,max :nat x nat -~ nat

(LO{pnROM=0
OmOL:max(l,m)=m

Figure 73.1. Renamed distributed message passing rearrangement X5 5

250 XIII. Formal Analysis of Case Studies

73.1 Some basics

We assume a fixed interpretation of the symbols in Y55 5, with

dom:=LUR (1)
the set of numbers involved, as initially given. The formula
ground :=(N+ P+ A+ E=dom)ANAxANEyANA<E (2)

will turn out to be a ground formula: Both sites carry a test number on A
and E, respectively, with A < E. All other numbers are collected at N and
P, respectively. The degree of disorder at a ground state between the two
sites is measured by

dis == |{(u,v) € (N UA) x (PUE) | u> v}, (3)

hence the two sites are rearranged in a ground state if disorder has disap-
peared:

rearr := (dis = 0). (4)

73.2 Two proof graphs

The forthcoming arguments are essentially based on the following four place
invariants:

inv 1: |E| + |K|+|F| =1.
inv2: |D|+|E|+ |H|+|J|+|L|+ M| =1
inv3: |A|+|B|+|G| =1
inv4d: |A|+|C|+|D|+|J|+|M]|+ |R| =1.

b(y,z) d(max(u,v))

(6) c (1) c ()
ONU N.U N T — e
o PV PV PV
(5) B.u F.max(u,v) A.min(u,v)
N. F.max(u,v) A.min(u,v) E.max(u,v)
P.V S D.min(u,v) L
Bu % ! .
cu ©) c j(u,w) (10) c k(u) a1 Cf(mln(u,w)) 12 Cd(max(u,w)) 13)
E.v N.U N.U N.U N.U N.U
P.V-w+v P.V-w+v P.V-w+v P.V-w+v P.V-w+v
K.w K.w G.min(u,w) L A.min(u,w)
Cu Cu L F.max(u,w) E.max(u,w)
B.u G.min(u,w) F.max(u,w) A.min(u,w) vV>w
H.w L M V>w
vV>w v>w vV>w

Figure 73.2. Proof graph for Y73 ;

73 Distributed Rearrangement 251

Figure 73.2 shows a proof graph (its node numbering continues the above
numbered lines), with nodes justified as follows (we refrain from explicitly
mentioning the respective patterns of Sect. 69):

node 5:

node 6:

node 7:
node 8:
node 9:

node 10:

node 11:

node 12:
node 13:

g(v,w) is actually a schema for all w € V with v > w. Further-
more, context N.UAB.u; E.v excludes k(u, w) for each w € dom,
by inv 1.

context N.U A P.V A F.max(u,v); D.min(u,v) excludes j(u,w)
for each w € dom, by inv 2.

context N.U A P.V A A.min(u,v).

propositional reasoning.

context N.UA PV —w+ v A Kaw A Cau; Hw excludes b(u, z)
by inv 2; B.u excludes e(u,w) for each u € dom, by inv 3.
context NNUA PV —w + v A G.min(u,w) A L; K.w excludes
c(u,w) for each w € dom by inv 1; C(u) excludes h(w,u) for
each u € dom, by inv 4.

context NNUA PV —w +v A LA F.max(u,w).

context NUAPV —w+vALAA min(u,w).

propositional reasoning.

Figure 73.3 outlines a proof graph that, symmetrically to Fig. 73.2, swaps
the left and the right site of Fig. 73.2.

(15)
N \
(/ g P'V. ground

(14) A.min(u,v) a6 ——m
N.U E.max(u,v) N.U-w+v
PV PV
Ky &————-—--------- — A.min(u,v)
H.v E.max(u,v)
A.u v>w

Figure 73.3. Proof graph for X734

First we proof that ground is in fact a ground formula:

73.3 A ground formula

ground is a ground formula of Y73 ;.

Proof. i. sx,,, < (5) according to the specification in Fig. 73.3. Further-
more, (5) < ground by Fig. 73.2. Hence sx., , — ground.

ii. ground prevents each action of e by inv 2 and each action of f by inv 4,
hence a progress set of ground is given by all actions a(u,w) with A.u
and N.w and w > u, together with all actions g(v,w) with E.v and Pw

252 XIII. Formal Analysis of Case Studies

and v > w. Actions a(u,w) and g(v,w) lead to states shaped as (5) and
(14), respectively. The proposition then follows from the proof graphs in
Figs. 73.2 and 73.3, and Theorem 70.2. O

73.4 Proof of rearrangement

In case of ground states, disorder (c.f. (3)) can be characterized in terms of
the derivation of the test elements in A and E from the minimum of N and
the maximum of P, respectively. To this end, let

devi:={weN|u€e ANw > u} (17)
dev,:={w e P|lu€ EAu<w}.

Then, at each ground state holds obviously
dis = dev; + dev,. (18)

In the proof graph of Fig. 73.2, the action g(v,w) decreases dev,; and no
other action would affect dev; or dev,. Hence, each node may be extended
by the requirement dev; < n A dev,, < m, which yields

(5) Adev; < n Adev, <m < ground A dev; < n Adev, < m. (19)
Likewise follows with the proof graph of Fig. 73.3:
(14) Adev; < n Adev, <m < ground A dev; < n A dev, < m. (20)
(23) (24)
5) 0 ground
dey<n c__, dey<n
dev,< m dev,sm
@9\ n+m =k n+m =k
?
(21) (22)
ground ground 27)
dis =k , dey<n ground ground
>0 dev,sm dey +devy, <k dis < k
n+m =k
9
@xj (25) (26)
140 ground
deysn c__, dey<n
dev,<m dev,<m
n+m=k n+m =k

Figure 73.4. Proof graph for X734

We are now prepared to justify the nodes of the proof graph in Fig. 73.3:
(21) by (18)

74 Self-Stabilizing Mutual Exclusion 253

inv2 prevents e, and inv4 prevents ¢, pick-up pattern of Sect. 69.5

by (19)
by propositional reasoning
b

y (20)
by propositional reasoning

(27) by (18)

To each ground-state there exists an index k with dis = k. Then finitely
many instantiations of the proof graph of Fig. 73.1 yields

ground — ground A dis = 0. (28)
With the proposition of Sect. 73.3 and Theorem 70.2 follows

85,4, < ground. (29)
Hence (28) and (29) together with (4) give

S3.4, < LEQIT, (30)

which describes, as intended, that rearrangement will be reached inevitably.

74 Self-Stabilizing Mutual Exclusion

74.1 Properties to be shown

Figure 74.1 recalls algorithm X5 o, renaming its places. Assuming a concrete

sort proc
const min, max : proc
T, U, V, W : set of proc

fct r:proc\{max} - proc
var X, y:proc
X%y - 1(x) £ 1(y)
X # 1y) « X=min
OnON:TOUDOVOW

={f(min) |0 <i<n}

Figure 74.1. Renamed self-stabilizing mutex Y4 o

interpretation of the involved constant symbols, let R = {uy,...,u,} be the
set of processes (i.e., R=TUU UV UW, with u; = min, u, = max, and
r(u) =uip (0 =1,...,n)).

A state is feasible if it fulfills the equation

254 XIII. Formal Analysis of Case Studies

A+B+C+D=R. (1)

Two properties of X741 are to be shown: Firstly, each feasible state leads
to a state with all processes at D:

feasible — D.R, (2)
and secondly, for each state reachable from a D.R-state holds:

Al < 1. (3)

74.2 Proof of (2)

For each non-D.R-state s, call i the smooth index of s if s | =D.u; and
s = D.ujy1,...,up. By definition let 0 be the smooth index of the state
D.R. The proof graph

/ a(up) _‘B.uni e\’ f (4)

-D.u, Aup! C.upt D.u,

shows that each feasible state with smooth index n leads to a state with a
smaller smooth index.

Inductively, we show that each state with smooth index 7 leads to a state
with a smaller smooth index. To this end we introduce shorthands 7]’: =
Caui A ... ACauyj and 85 := D.u; A... A D.uj. Figure 74.2 then shows the
required property. A D.R-state will be reached after at most n iterations.

-D.y; AU, a(uy) B.u;, b(u) yii e a(un-1) yin-2 }b(un—l) yin—l o
i+l 5t it A.Uisq B.Up1 A.u,
&' &
a(un) yin_l ' € y'n ' f yin.]_IC(un_l) yin.ZIC(un_Z) Ic(un—l) y: ' C(Un) 6[']
B.up 3N 51 i+l

Figure 74.2. Proof graph for Y74 ;

74.3 Proof of (3)

Here we assume D.R as the initial state of X74.1. Then for each u € R, u #
min, the set {C.u, D.r(u)} is a trap. Hence for all u # min, C.u+ D.r(u) > 1
(by Theorem 61.2), hence

75 Master/Slave Agreement 255

ICl+|D]>n—1. (5)
Furthermore, (1) implies
[A] + B+ |C| + |D] = n. (6)

Then the inequality (6)—(5)= |A| + |B| < 1 immediately yields (3).

75 Master/Slave Agreement

75.1 The essential property

Figure 75.1 recalls the master/slave algorithm X301, renaming its places.
The essential aspect of Y31 is to guarantee that master pending is even-
tually followed by master inactive together with either all slaves busy or all
slaves pending. In the redrawn version X751 of X391 this property is formally
represented by

Srs1 = B AN (N.UV PU). (1)

A

Figure 75.1. Renamed master/slave agreement Y301

256 XIII. Formal Analysis of Case Studies

75.2 State properties

Proof of (1) is based on the following place invariants of X5 1:

invl: E+ L+ F+G-D-U=%|B|=0

inv2: F+G+H+J+N+P+K+L=U
inv3: UxA+UxB+C+D=U

invd: F+G+J+H —-M=0

invd: H+J+ N+ P+ K-E-UxA-C=0
inve: L+ M+ N+P+K=U

inv4 and inv6 imply F+ G+ J+ H < U. (2)

75.3 A proof graph for the essential property

Figure 75.2 shows a proof graph for (1). As a shorthand it employs
a=BA(E+L+F+G>U). (3)

1)B —
2
3

)

) L(H)

) —_
4)aDH 00Jsm c kKO

)

)

)

)

aDH<MC—)

aOH=00J]=0 ﬂ)()
n(P

aOH=00J=00ON=0 ") |
aOH=00J=00N=00P=0 —>

6
;
8
Q)GDE 0 ¢ ,

10) « DE=0 0L =0 ——
11)B OF +G 2U

b(V)

12)B OF.U PV | 13)B 0GX OF +G 2U—

14A0IU — 17)B 0Gx OF =V 0G =x +W Ox +V +W =U ¢ ¢® |

15A 03U oMU ¢ XY | 1g)cx OHx ODV +W OF =V 0G =W Ox +V +w =u ¢ 9V |
16) A ON.U 19)Cx +V OH.x +V ODW 0G =W Ox +V +W =U c &W) |

200)CXx +V +W OHX +V +W Ox +V +W =U ——
21cu oHUc_f
22)A OHU ——

23)A OHU OMU ¢ L)

24)A OP.U

o

25) A O(N.U OP.U)

Figure 75.2. Proof graph for (1), with shorthand (3)

Four sections can be distinguished in this proof graph: The steps from line
2 to line 7 finish the previous round. Line 7 to line 11 start the actual round,

75 Master/Slave Agreement 257

proceeding until each slave has made its choice. The left branch describes the
case of all sites agreed, with occurrence of b(U) and k(U). The right branch
describes the case of at least one slave refusing, with occurrence of ¢, d, e,
and, most important, {(U).

The nodes of this proof graph are justified as follows, with rule numbers
referring to Sect. 69:

1. invl, inv4.

2. H.x — —J.x by (2), hence H.z prevents k(z), hence the proposition with

pattern of Sect. 69.4.

inv4.

J.x — —H.z by inv7, hence J.z prevents [(z), hence the proposition with

pattern of Sect. 69.4.

5. pattern of Sect. 69.1.
6. pattern of Sect. 69.1.
7. invh.

8. pattern of Sect. 69.3.
9. pattern of Sect. 69.2.

10. definition of a.

11. propositional logic, inv2.

12. F.U — G = 0 by (2), hence F.U prevents ¢(z). Furthermore, B - D =
0 by inv3, hence B prevents d. Hence the proposition with pattern of
Sect. 69.5.

14. inv4.

15. JU — H = 0 by (2), hence J.U prevents [(z). Furthermore, J < M,
with inv4. Hence the proposition with pattern of Sect. 69.4.

16. propositional logic.

13. inv2.

17. G.x — —F.U by (2), hence G.z prevents b. Furthermore, B — D = 0
by inv3, hence B prevents e(z). Hence the proposition with pattern of
Sect. 69.5.

18. The case of V + W = 0 directly implies 21. Otherwise C' < U by inv6,
which prevents f. Furthermore, C.z — =B by inv3, hence C.z prevents
b. Finally, F.V — G NV = by inv2, hence F.V prevents e(y) for each
y € V. Hence the proposition with pattern of Sect. 69.4 and context
HxADWAG=W.

19. The case of W = 0 directly implies 21. Otherwise C' < U by inv6, which
prevents f. Furthermore, C.z — —B by inv3, hence C.z prevents c(y) for
each y € W. Finally, GW — FNW = () by inv2, hence G.W prevents
d(y) for each y € W. Hence the proposition with pattern of Sect. 69.4
and context C.V AH.x + V.

20. propositional implication.

21. pattern of Sect. 69.1 with context H.U.

22. inv4.

-

258 XIII. Formal Analysis of Case Studies

23. HU — J = 0 by (2), hence H.U prevents k(x). Furthermore, H < M
with inv4. Hence the proposition with pattern of Sect. 69.4.
24. propositional logic.

76 Leader Election

Figure 76.1 recalls Y35 ; with renamed places. With maz the maximal element
of U, the property to be shown is

S35, > BU X {max} AA=0AC = 0. (1)

sort site var XY, z:site
sort state : site x site xy OU - xW*y
const U : set of sites W, 0 Wy=U
const V,W : set of states V ={(u,u) |u O U}

< :total order on U M(x,y) = W(x) x {y}

fct ~ M:state - set of states

Figure 76.1. Renamed leader election X351

76.1 Fundamental state properties

An obvious place invariant implies that each site is either pending or updating:
A+ B, =U. (2)

Furthermore, a site v, already knowing the leader, is related to its neigh-
bors by a property derived from a trap. To this end, assume a state s and
two neighboring sites u,v € U, and s | B.(u,max). s has been reached
by occurrence of a(u, max). This action also produced C.(v,max). With s
considered as (a new) initial state, an initialized trap yields the inequality
A.(u,max) + C.(v,max) + A.(v,max) + B.(v,max) > 1. Together with (2)
this yields the valid propositional formula

76 Leader Election 259

B.(u,max) V C.(v,max) V A.(v,max) V B.(v, max). (3)

Intuitively formulated, each neighbor of a site already updating with the
leader is also aware of the leader, or a corresponding message is pending.

76.2 A fundamental progress property

A weight function f will be required, that assigns each state (u,v) its “better”
candidates. So, for all u,v € U let

f(u,0) = {(u,w) | w > v} (4)

Obviously, f(u,v) = 0 if v = max.

We stick to states with all sites updating (B;.U) in the sequel. This in-
cludes the terminal state with no pending messages (C = () and empty
weights f(u,v) for all sites u (f(B) = 0). The proof graph of Fig. 76.2 states

Let ¢ :=B;.U O

By.max b(u,v,w) 5 0

C ON
f(B) =M

Do — > 2 ¢ CAM)_);_:,) CAM)_>4)¢ — 5 8) ¢

C =N C=N=z0 B1.U\{u} f(B) UM ((C ON f(B) =M)
f(B) =M = O f(B) =M B,.max f(B) O M)
A.(u,w)
w >v

Figure 76.2. Proof graph for X7 1

that one of the sites not yet knowing the leader (f(B) = M # () will eventu-
ally hold a “better” candidate (f(B) C M), or will have skipped a pending
message (C' C N). The proof graph’s nodes are justified as follows:

node 1: Bs.max, f(B) # () and the graph’s connectedness imply
neighboring sites v and w, B.(u, max), and B.(v,i) with
i < max. Then C.(u, max) by (3) and (2).

node 2: C # () implies some C.(u,w), and o implies some B.(u,v).
This enables b(u,v,w) or c¢(u,v,w). Hence, C # O A p is
progress prone. Then apply the pattern of Sect. 69.5.

node 3: pattern of Sect. 69.2.

nodes 4 and 5: propositional logic.

260 XIII. Formal Analysis of Case Studies

76.3 Proof of (1)

The proof graph in Fig. 76.2 shows

4 - P
C=N (CCNAf(B)=M) . (5)
f(B)=M#0 Vf(B) C M)

C may shrink finitely often only, hence finitely many iterations of (5) yield
4 - P
C=N f(Byc M . (6)
f(B)=M#0

A remaining message is cleared by
14 — ¥
C=N CcN | (7)

f(B)=10 f(B)=10

as C.(u,v)Af(B) = 0 implies C.(u, v)AB.(u, max), hence enables b(u, v, max).
The following proof graph now proves (1):

s, @Y 2By 3¢ C 4 ¢ c 5) ¢ 6)C =0
C =N f(B) = O c=10 B.U x {max}
f(B) =M # O f(B) = O A=0

Its nodes are justified as follows:

node 1: pattern of Sect. 69.1.

node 2: propositional reasoning, with C = 0 A f(B) =0 iff |U| = 1.
node 3: finitely many iterations of (6).

node 4: finitely many iterations of (7).

node 5: by construction of .

77 The Echo Algorithm

77.1 Properties to be proven

Figure 77.1 provides a redrawn version of the Echo Algorithm of Fig. 33.2. Tt
has two decisive properties: Firstly, the initiator terminates only if all other
sites have been informed before. In Fig. 77.1, this reads

Ci— GU (1)

and is a typical state property. Secondly, the initiator will eventually termi-
nate, i.e.,

77 The Echo Algorithm 261

sort site w=w-1

sort message =site X site xy OU O{} - xW*y
const i:site Wy =U O({i}

const U : set of sites igu

const W : set of (sites x sites) M(x) =W(x) x {x}

fet M, M : site - set of messages M) =Mx)~1

var X,y : site

Figure 77.1. Redrawn echo algorithm Y53 5

S¥urq 7 C.i, (2)

which is a typical liveness property. Both (1) and (2) will be verified in the
sequel.

There is no straightforward place invariant or trap that would prove (1).
Nor is there a proof graph for (2), with steps picked up according to the
patterns of Sect. 69. Rather, one has to argue inductively along a spanning
tree that yields at place F'.

77.2 Three place invariants

Figure 77.1 has three important place invariants, as given in Fig. 77.2. Two
of them are inductively quite obvious, representing the “life lines” of the
initiator 7 and of all other sites, respectively.

The equation of I} is A + B + C' = i. This implies

Ai+Bi+Ci=1, (3)

hence the initiator is always either at its start or is waiting, or is terminated.
The equation furthermore implies

VeeU:Axz+Bax+Cx=0, (4)

hence no non-initiator site ever finds at A, B, or C.
Correspondingly, the equation of I is E + F} + G = U. This implies

262 XIII. Formal Analysis of Case Studies

a b C d Sy I1 I2 I3
R —; 7 | & M (R)
B i i B
C i c M(C)
D | M@ -D@) () —M() D
—(w,y) +($7y)
—(y,a:) +(y7$)
E —z U E M(E)
F (il',‘, y) —(il',', y) Fy F_+ F
G x G M(G)
T s iU MUY

Let F=F !and U' = U U{I}

Figure 77.2. Matrix, initial state, and three place invariants of X771

VeeU:Ex+ Fix+Gazx=1, (5)

hence each non-initiator is always either uninformed or pending or informed.
The equation furthermore implies

Ve gU:Ex+ Fix+Gax=0, (6)

hence the initiator never finds on E, F', or G.

I3, finally, represents the potential messages of the system. Its equation
is M(A)+M(C)+ D+ M(E)+F+F+ M(G) = M(U'"), implying for each
message (y,z) € M(U') the property M(A).(y,z)+ M (C).(y,x) + D.(y,x) +
M(E).(y,z) + F.(y,2) + F.(y,2) + M(G).(y,z) = M.(y,z), which in turn
reduces to

VeeU' VYyeW(x): 7)

Az+Cy+D.(y,z)+ Ex+ F.(y,z) + F(z,y) +Gy = 1.

Hence for each message (y,x) holds: Its sender z is still starting or unin-
formed, or the message has already been sent but not received yet, or one of
y and z has received the message from x to y, respectively, or the message’s
receiver y is terminated or informed.

77.3 The pending site’s rooted tree

A further state property will be required, stating that the tokens on F' always
form a tree with root i. This will be formulated with the help of the following
notation:
A sequence uyg . ..u, of sites u; € U’ is a sequence of F' at a state (8)
siff s E Fu(uj—1,u;) fori=1,...,n.

For each reachable state s we will now prove the following two properties:

(9)

For each F).u there is a unique sequence ug . . . 4, of F' with ug = u
and u, =1,

77 The Echo Algorithm 263

and
the elements of each sequence of F' are pairwise different. (10)

Both properties now are together shown by induction on the reachability of
states:
Both (9) and (10) hold initially, as sx,,, = F = 0. Now, let 7 be a reachable
state, let r % s be a step of some transition ¢, and inductively assume (9)
and (10) for r.
The case of t = a or t = b implies r(F) = s(F), hence the step r —= s
retains both (9) and (10) for s. For t = cor t = d let m(z) = w and m(y) = v.
The case of ¢t = ¢ goes as follows: Enabledness of ¢(m) at r now for r
implies D.(u,v) and E.u. Then r |= F}.v, according to the following sequence
of implications:

1. 2. 3. 4. d.
D.(u,v) D.(u,v) -E.w -Ev Fw
Eu Eu Eu -G.v

veWu) veW(u)
Its nodes are justified as follows:

node 1: (6);
node 2: (7) with x = v, y = u;
node 3: (7) with x = u, y = v;
node 4: (5).

Now, r = Fj.v and the inductive assumption of (9) imply a unique se-
quence v...i of F' at state r. Then wv...i is a sequence of F at state s,
because s(F) = r(F) + (u,v). Together with (5), this implies (9) for s. Fur-
thermore, r =u € Fy (by (5)) and u # @ by (4), hence (10) for s.

Correspondingly, enabledness of d(m) at r now for r implies D.M (u) —
(u,v) and F.(u,v). Then r |= Fr.u according to the following sequence of
implications:

1. 2. 3. 4. . 6.
DM(u) D.Mu) Fn(Mu) Fn(Mu FNMu)=0 -Fu
—(U,’U) _(uvv) —(U,’U) = w —(v,u)) = w
F.(u,v) ~F.(v,u) -F.(v,u) —F.(v,u)

Its nodes 1 and 2 are justified by (7), nodes 3, 4, and 5 by properties of M.

With r |= =Fy.u, for each sequence ug...u, of F, uy,...,u, # uw. This
implies (9) for the state s, because s(F) = r(F) — (u,v). (10) is then trivial,
because s(F') C r(F).

264 XIII. Formal Analysis of Case Studies

77.4 Proof of the state property (1)

(1) is indirectly proven in three steps:

i. Assume F # (. Then there exists some w € U’ with F.(w,i), by (9).
Then —C.i by (7).
ii. For all w € U’ we show

Bu—-Ci ()

by induction on the distance of v to i: For u = i, (*) holds trivially,
as = FE.i by (6). Inductively assume (*), let v € W (u), and assume E.v.
Then u € W (v), hence =G.u, by (7). Then Fy.u or E.u, by (5). The case
of Fy.u implies F' # (), hence =C.i by (i). The case of E.u implies —~C.i
by inductive assumption.

ili. Cii > E=F =10, by (i) and (ii). Then (1) follows from (5).

77.5 Progress from uninformed to pending

Here we show that each uninformed site u € U will eventually go pending. In
terms of Y77 1 this reads:

Let U=VUW,V #0, W # 0. Then 1
EVAFRW <\, (BV —v A LW +0v). (11)

This property holds due to the following proof graph:

1) EVAR WAV AOAW £0 —
2) EVAFRL.W Aex.veV Aex. w € WU {i} with D.(v,w) —
3) EV-uvAFR.W+w

Its nodes are justified as follows:

node 1: Connectedness of U’ implies some neighbors v, w such that E.v,
and Fi.w or w = i. Furthermore,
i. Fi.w implies w € U by (6), hence ~A.w by (4). w = i and
W # () imply some F.(u,%) by (9), hence —A.i by (7).
ii. E.vimplies v € U by (6), then =C.v by (4).
iii. Fy.w implies =E.w by (5) and w = ¢ implies =E.w by (6).
iv. E.v implies —=F;.v by (9), hence —~F.(v,w).
v. Let ug...u, be a sequence of F with ug = w and u, = i,
according to (9). The case of n = 1 implies u; =i # v, hence
—F.(w,v). Otherwise, F.u;. Then E.v implies u; # v by (5).
Hence —F.(w,v).
vi. E.w implies ~G.v by (5).
Now (i),...,(vi), and (7) imply D.(v,w).
node 2: pattern of Sect. 69.5.

77 The Echo Algorithm 265

77.6 Progress from pending to informed

Here we show that each pending site will eventually be informed. In terms of
Y771 this reads:

Let U=V UW with V # (). Then
FVAGW <V, v (FLV — v AGW +).

This property holds due to the following proof graph:

1) A VAGWAVUW =UAV #0 —
) ex.veVexwelU:

FLVAGWAVUW =UAD.(M(v) — (v,w)) <
3) ex.v€eVex.weUwith F1.V—-wAGW +v.

(12)

Its nodes are justified as follows:

node 1: Let ug...u, be a maximal sequence of F. This exists due to
(9) and (10). In case u; is the only neighbor of ug, D.(M (ug) —
(wo,u1)) = D.((ug,u1) — (ug,u1)) = D.0 which holds trivially.
Otherwise, let (ug,v) € M (ug) — (uo,u1). Then the following six
properties hold:
i. (9) implies some F.(w,), hence = A.i by (7), hence =A.v in
case i = v. Otherwise, v € U, hence ~A.v by (4).
ii. up € U by construction, hence =C.ug by (4).
ili. E=0Dby (5) and VUW =U, hence —E.v.
iv. Maximality of ug . ..u, implies —=F.(v, ug).
v. F.(ugp,u1) implies =F.(ug, v) as the path from ug to ¢ is unique
by (9).
vi. Fj.ug implies =G.ug.
Now (i),...,(vi), and (7) imply D.(ug,v). This argument applies
to all (ug,v) € M(ug) — (uo,u1), hence D.M (up) — (ug,u1).
node 2: pattern of Sect. 69.4.

77.7 Proof of the liveness property (2)

(2) is now proven with the help of the proof graph of Fig. 77.3. Its nodes are
justified as follows:

node 1: definition of ax
node 2: pattern of Sect. 69.1, context E
node 3: ¢.(u,1) is enabled for each u € M (i); pattern of Sect. 69.4
node 4: |V]-fold application of (11)
node 5: |Ul-fold application of (12)
node 6: we distinguish three cases:
i. u € M(i) implies u # i, hence ~A.u by (4)
ii. G.U impliess E = F = { by (5) and (6). Hence —E.u,
—F.(i,u), and —F.(u,1).

266 XIII. Formal Analysis of Case Studies

1)5277.1 .

2E=UnAicd) |

3)E=uODMi) W) |
HEVOFWOW2 @D VOW=U ¢,
5FU

6) G.U

7) D.M(i) ——

8) DM() OB.ic PO
iii. 9)Ci.i

Figure 77.3. A proof graph for sx., , = C.i

i ¢ U implies =G.i by (6).
Now, (i), (ii), and (iii) with (7) imply D.(é,u)VC.i. This argument
applies to all (i,u) € M (i), hence D.M(i) v C.i.
node 7: =C.i by (7); =A.i because sx.,, — —D.M(i), the only initial
step is sx,, , — B.i, and {B.i, C.i} is a trap, initialized after this
step. Hence the proposition by (3).
node 8: pattern of Sect. 69.1

78 Global Mutual Exclusion on Undirected Trees

78.1 The property to be proven

Here we consider the version of Fig. 34.2. There is one progress property
to be shown for this algorithm: each request of a site u for going critical
(i.e., job.(u,u)) is eventually served (i.e., critical.u). In terms of the redrawn
version as in Fig. 78.1, this reads

B.(z,z) — D.x. (1)

Proof of (1) is based on state properties, to be considered first.

78.2 State properties

The forthcoming two state properties exploit the cycle free structure of the
underlying network. A basic state property of X7s 1 is a tree on EUBUC
with its root in G' (where E stands for E~1). More precisely,

With G.u, the tokens on E U B U C consist of paths from u to

all sites v. Those paths form a tree. Tokens formed (u,u) may (2)

additionally occur at B or C.
This property can easily be proven by induction on the reachability of states:
(2) obviously holds initially, due to the assumption given in Fig. 78.1. Occur-
rences of d, f, or e in any mode apparently preserve the tree on EU B U C.

78 Global Mutual Exclusion on Undirected Trees 267

sor site

const u: site

const U : set of sites

const N : set of (sites x sites)
var X,Y,Z : site

YyNxOzNX -y=2z

Figure 78.1. Renamed global mutex on trees, X340

Occurrences of a and b add and remove pairs formed (u,u) to and from C,
respectively. Action ¢, finally, does not touch E, B, or C.

A further state property is based on the left tree, defined for each pair
(u,v) of neighboring sites u and v: Any site w belongs to the left tree of
(u,v) if in the underlying network, the undirected path connecting w and u
does not include v. The following property of left trees will be exploited in
inductive proofs:

If w and v are neighbors of u, then the left tree of (w,u) is smaller

(3)

than the left tree of (u,v).

Apparently, we have for G.r and each site u:

If r # u, there is a unique neighbor site w of u, with r in the left (4)
tree of (w,u).

Then with (2),

if E.(v,u) or B.(u,v) or C.(u,v), and if G.w, then w is in the left
tree of (u,v).

(5)

78.3 Progress properties

Two properties of pairs (u,v) of neighboring sites v and v are considered
here:

C.z,y)— C.(x,y) NGz (6)

B.(z,y) = C.(z,y) (7)

268 XIII. Formal Analysis of Case Studies

They are proven by induction on the size of the left tree of (z,y).

As induction basis, let (u,v) be a pair of neighboring sites and assume
its left tree has one element only. This, of course, is u. Then with (2), G.u,
which implies (6). Proof of (7) requires

B.(u,v) = B.(u,v) A F.u. (8)

This holds as the induction basis implies that v is the only neighbor of u;
hence —C.(u,w) for all sites w (with (2)), hence F.u by the place invariant
Fu+pri(C)u=1.

Now, B.(u,v) — C.(u,v) follows from property (8) and the fairness rule
Theorem 66.3.

Inductively assume (6) and (7) for all neighboring pairs of sites with left
trees of size smaller than n. Let (u,v) be a pair with left tree of size n, let
G.r, and let w be the neighbor of u, constructed according to (4).

Then the following proof graph proves (6) for (z,y) = (u,v):

1 2 Jdlvw) T3 \4 ,

_ewu) g

C.(uv) C.(uv) C.(u,v) C.(u,v) C.(u,v) C(u,v) (9)
E.(u,w) B.(w,u) C.(w,u) C.(w,u) G.u
G.w
Its nodes are justified as follows:
node 1: by (4) and (2).
node 2: fairness rule Theorem 66.3.
node 3: inductive assumption of (7) for (z,y) = (w,u), and (3).
node 4: inductive assumption of (6) for (z,y) = (w,u), and (3).
node 5: pick-up rule of Sect. 69.3.
Proof of (7) requires the proof graph
euv) 4 Fu (10)

)B(uv) — s 2)C(uVv) — 3)8(u,v‘)
.u

Its nodes are justified as follows:

node 1: place invariant Cy.u + F.u = 1.

node 2: v' # w by (2); then w constructed according to (4) for v and for
v’ coincide; then (9) with v replaced by v'.

node 3: pick-up rule of Sect. 69.3.

Now, B.(u,v) — C.(u,v) follows with property (10) and the fairness rule
Theorem 66.3.

79 Local Mutual Exclusion 269

78.4 Proof of (1)

Two properties are required, provided by the following two proof graphs:

1) B.(u,u)

node 1:
node 2:
node 3:

e(u,v) (11)
[

sy 2C(uv) 4 3)C(uv) OGu 4)F.u

place invariant Cy.u + F.u = 1.

property (6).
pick-up rule of Sect. 69.2.

The second proof graph is

C.(u,u)
-G.u

node 1:

node 2:
node 3:
node 4:
node 5:

2) duuw) 7 LN 5 WY, 6 (g
C.(u,u) C.(u,u) C.(u,u) C.(u,u) C(u,u)
E.(u,w) B.(w,u) C.(w,u) C.(w,u) G.u

G.w

Let w be the neighbor of u, constructed according to (4). Then
apply (2).

fairness rule Theorem 66.3.

property (7).

property (6).

pick-up rule of Sect. 69.3.

Now, (1) is proven by the following proof graph for x = u:

~
D — 2 3) 49 +— 9 (13)
B.(u,u) C.(u,u) C.(u,u) C.(u,u) D.u
-G.u G.u
with
node 1: property (11), fairness rule Theorem 66.3.
node 2: propositional argument.
node 3: property (12).
node 4: pick-up rule of Sect. 69.3.

79 Local Mutual Exclusion

79.1 Properties to be proven

As in most cases, safety and liveness properties are to be proven. A safety
property guarantees that neighboring sites are never both critical at the same
time. In terms of the redrawn representation of Fig. 79.1 this reads

DaxANyer(z) > -D.uy. (1)

270 XIII. Formal Analysis of Case Studies

b r(x)

d
sort site N=N-1
sort neighbors = site x site N;=U
const U : set of sites xPty . xzy
const N, P : set of neighbors POP-l=N
fct r: site - set of neighbors PaP-l=g
var X,y : site r(x) = {x} x N(x)

Figure 79.1. Renamed mutex on networks Y3y 3

A liveness property guarantees evolution: Each pending site is eventually
critical:

B.x v D.z. (2)

Proof of (1) and (2) starts with some state properties of X7, derived
from place invariants or from inductive arguments. There is always a dis-
tinguished partial order on the sites, describing priority of access to shared
resources. Upon going critical, a site may have priority for some, but not
necessarily all resources.

79.2 State properties

We start with eleven state properties from place invariants of Xrg 1:

A+ B+ C+ D =U, hence for each u € U

Au+ Bau+Cu+ Du=1. (3)
r(C) +r(D)+ F + M = N, hence for each (u,v) € N

Cu+ D.u+ F.(u,v) + M.(u,v) = 1. (4)
r(C) +r(D)+ F —J— E =0, hence for each (u,v) € N

Cu+ D+ F.(u,v) — J.(u,v) — E.(u,v) = 0. (5)

r(C)+r(D)+F+ K+ H — E = N, hence for each (u,v) € N

79 Local Mutual Exclusion 271

Cu+ Du+ F.(u,v)+ K.(u,v) + H.(u,v) — E.(u,v) = 1. (6)
E+ J+ M = N, hence for each (u,v) € N

E.(u,v) + J.(u,v) + M.(u,v) = 1. (7)
H + J+ K = N, hence for each (u,v) € N

H.(u,v) + J.(u,v) + K.(u,v) = 1. (8)
G+G+r(D)+r(D)+F+F =P+ P =N, hence for each (u,v) € N

G.(u,v) + G.(v,u) + Dau+ D.v+ F.(u,v) + F.(v,u) = 1. 9)
G +7r(D)+F+ H + L= N, hence for each (u,v) € N

G.(u,v) + D+ F.(u,v) + H.(u,v) + L.(v,u) = 1. (10)
L+ L+ H—.J—K =0, hence for each (v,u) € N

L.(v,u) + L.(u,v) + H.(u,v) — J.(v,u) — K.(v,u) = 0. (11)
r(C)—J—E—-G-H—L= N, hence for each (v,u) € N

Cw—J(v,u) — E.(v,u) — G.(v,u) — H.(v,u) — L.(u,v) = 1. (12)
r(C)+ K — E — G — L =0, hence for each (u,v) € N

Cu + K.(u,v) — E.(u,v) — G.(u,v) — L.(v,u) = 0. (13)

In addition, the following two properties will be required:
K.(u,v) = G.(u,v) VD.uV F.(u,v). (14)

This property holds initially and is apparently preserved by occurrences of
c(u) and d(u). Occurrence of f(u,v) or h(u,v) lead to both K.(u,v) and
G.(u,v). Occurrence of g(u,v) leads to both =G.(u,v) and =K.(u,v). No
other occurrences of actions touch (14).

L.(v,u) = J.(u,v). (15)

This property holds initially and is apparently preserved by occurrence of
e(u,v). L.(v,u) prevents f(u,v) by (10). No other occurrences of actions
touch (15).

79.3 Priority among neighbors

In each reachable state, neighboring sites are related by priority: A site u
has priority over its neighbor v iff v has been critical more recently. Hence,
u gains priority over v upon occurrence of c(v), and looses priority upon
occurrence of ¢(u). No other action affects priority among neighbors u and
v. Consequently, the effect of ¢(v), which is D.v, immediately shows priority
of u over v. Occurrence of d(v) does not effect priority, hence F.(v,u) also
shows priority of u over v. Likewise, occurrences of f(v,u) and g(v,u) retain

272 XIII. Formal Analysis of Case Studies

u’s priority over v. Their effect is G.(v,u) A K.(v,u) and G.(v,u) A M.(v,u).
Both formulas imply G.(v,u) A=J.(v,u) (by (8) and (7), respectively), which
will turn out sufficient to characterize priority. Finally, g(v,u) retains u’s
priority over v, yielding G.(u,v). This action can occur only in the context
of J.(u,v). Altogether, priority of some site u over one of its neighbors v is
defined by

nprior(u,v) iff

DoV F.(v,u) V (G.(v,u) A=J.(v,u) V (G.(u,v) A J.(u,v)).

In the rest of this section we will prove that nprior in fact is well defined,
i.e., exactly one of two neighbors u and v has priority at each reachable state;
formally

(16)

nprior(u,v) iff ~mprior(v,u). (17)

This is equivalent to the two propositions

nprior(u,v) — —mprior(v, u). (18)
and
—nprior(v,u) — nprior(u, v). (19)

The following shorthands will simplify proof of (18) and (19): Let

a:=DuwV F.(v,u)V(G.(v,u) A =J.(v,u)),

8= G.(u,v) A J.(u,v),

v:=D.uV F.(u,v) V(G.(u,v) A =J.(u,v)),

0:=G.(v,u) A J.(v,u).
Then, (18) is equivalent to =(aAy) A= (aA§) A=(BAY)A=(BAS). The first and
third sub-formula, —=(a A) and =(3 A+), follow from the invariant property
(9). The second and third sub-formulas are propositional tautologies.

Correspondingly, (19) is equivalent to aV 3V vV 4, which in turn follows
from (9).

Priority changes only upon occurrence of transition c: Let r Lsbea step.
Then

r |= nprior(u,v) implies s |= nprior(u,v) or t = c(u). (20)
Upon proving (20), assume r |= nprior(u, v). Then (16) implies four cases:

i. r E D.v. Then t = d(v) yields s = F.(v,u); hence (20).

ii. » = F.(v,u). Then t = f(v,u) yields s E G.(v,u) A K.(v,u); hence
s E G.(v,u)A—J.(v,u) with (8), swapping u and v; hence (20). ¢t = h(v,u)
yields s = G.(v,u) A M.(v,u); hence s = G.(v, u) A =J.(v,u) with (7),

swapping u and v; hence (20).

ili. = G.(v,u)A=J.(v,u). Thent = g(v,u) yields s = G.(u,v); furthermore,
enabling of g(v, u) requires r = L.(v,u), hence r |= J.(u,v) by (15), hence
s E G.(u,v) A J.(u,v), hence (20). t = ¢(v) yields s = D.v, hence (20).
t = e(v,u) is prevented by G.(v,u) and (10), swapping v and v.

79 Local Mutual Exclusion 273

iv. r = G.(u,v) A J.(u,v). Then ¢t = g(u,v) is prevented by J.(u,v) and (8).
t = f(u,v) is prevented by G.(u,v) and (9).

No other occurrences of actions ¢ # ¢(u) affect r |= nprior(u,v). This com-
pletes proof of (20).

For a step r 4 5 likewise holds
s | nprior(u,v) implies r = nprior(u,v) or t = ¢(v), (21)

which can be proven in analogy to (20).

Finally, for a step r L s with r = nprior(u,v) and s = nprior(u, v) holds
for all w € r(v), s & nprior(v, w). (22)

The assumption of (22) with (21) imply ¢ = ¢(v); then (22) follows with (16).
As a technicality, it will turn out convenient to assign each site u the set
m(u) of all pairs (u,v), where u has priority over a neighbor, v:

7(u) := {u} X nprior(u). (23)

79.4 Priority in the network

Priority among any two sites u,v € U is the transitive closure of priority
among neighbors:

prior := nprior™. (24)

As in case of nprior we have to show that prior is well defined, i.e., is
asymmetrical:

prior(u, v) — —prior(v, u). (25)

Proof of (25) starts with the initial state sy,, . For this state, (16) and
Fig. 79.1 imply nprior(u,v) iff P.(u,v), hence prior(u,v) iff P*.(u,v). Then
Pt (u,v) — =P*.(v,u) by the assumption of Pty — x # y, as stated in
Fig. 79.1.

Inductively, let r Hsbea step and assume r = (25). If s [~ prior(u,v), the
proposition s = (25) is trivial. Otherwise, there exist sites ug, ..., u,, n > 1
with w9 = u, u, = v, such that with 8 := wgnprioru; ...u,_1 nprioru,
holds: s |= 8. If r |= 8, then ug # u, follows from the inductive assumption.
Otherwise, there exists an index, i, with 7 £~ w;_y nprioru;. Then for all
w € r(u;), s ¥ nprior(u;,w), by (22). Then i = n, by construction of £.
Then there is no w € r(v) with s = vnpriorw (because u, = v). Then
s |= —prior(v, u), by (24).

The reverse of (25) is not necessarily valid, i.e., detached sites may be
unrelated by priority.

Both above properties imply

nprior(v,u) — prior(v) C prior(u), (26)

274 XIII. Formal Analysis of Case Studies

3. s 4

Cu O Cu O
E.(uyv) O G.(u,v)
-D.u 0O
=F.(uv) O
L — 2 K.(u,v)
Cu O Cu O
E.u Eu O
-D.u O
~Rw 5., euv) g
Cu O Cu O
E.(uyv) O L(v,u))
-D.u O
=F.(uv) O
H.(u,v)

Figure 79.2. Proof graph for (27)

as follows: prior = nprior{ by (24). Then prior(u) = Uvem(u){”} U

nprior(v). Furthermore, prior(u,v) — —prior(v, u), by (25), and v € nprior(u)
iff nprior(v,w). This implies (26).

79.5 Demanded resources

Issuing a demand for its resources is the first step of a site on its way to
critical. A demanded resource (u,v) of a pending site u will eventually be
available to u, or u will send a message (v,u) to v:

Cu A E.(u,v) = CuA (L.(v,u) VG.(u,v)). (27)
The proof graph of Fig. 79.2 proves (27). Its nodes are justified as follows:

node 1: by (4),

node 2: by (6),

node 3: by (14),

node 5: H.(u,v) excludes ¢(u) by (10), =D.u excludes d(u), =F.(u,v) ex-
cludes h(u,v).

The formula (27) is now embedded into a context, a. The formula o
addresses the set 7(u) of resources of u for which u has priority. Some of them
are available to u for its first time after being used by v. They constitute a
distinguished set, @. Furthermore, a priorized resource (u,v) is assumed. So,
let

a:=m(u) =RAQU{(u,v)} Cn(u) N\G.Q A J.Q. (28)

Priority for u may increase whenever one of its neighbors goes critical:

79 Local Mutual Exclusion 275

aﬂ)w(u) = RU{(u,w)} for all w € r(u), (29)

which follows directly from (16) and the structure of Xrg ;.

A step r-t s affects o only if u or one of its neighbors goes critical:

a-ta for all ¢ # c(w), with w € r(u) U {u}. (30)

(20) and (21) imply that 7(u) is not touched by occurrence of ¢. Further-
more, G.Q) prevents f(u,v) by (9), and J.QQ prevents g(u,v) by (8) for all
v € r(u); hence (30).

Context « yields a further alternative result for (27), with « gaining pri-
ority over more neighbors:

CulhaAE.(u,v) = (CunaA (L.(v,u)VG.(u,v)))Va(u) DR. (31)

The proof graph of Fig. 79.2 can systematically be turned into a proof
graph for (31): Replace each node, n, by n A @ and augment the following
additional outgoing arcs:

n°89.D.w — 10.7(u) = RU {(u, w)} (32)
with w € prior(u).

Additionally, extend justification of each node, n, as follows: J.(u,v) pre-
vents g(u, w) by (8) (replacing v by w), and G.(u, v) prevents f(w,w) by (10)
(replacing v by w). The proposition then follows with (30). Node 9 is justified
by (29).

79.6 Messages are eventually considered

A site v holding a resource (u,v) without priority for the resource, wil even-
tually hand it over to u upon request of u, i.e., upon a message (v,u). Con-
sideration of the message is a matter of fairness of v.

We start with a technicality, crucial for the forthcoming fairness argument:
A repeatedly used resource is eventually available:

K.(u,v) = G.(u,v), (33)
which holds due to the proof graph

N h
DKUY 2)Dur)RV 4 F@uy) DE@uY,MUY., 6 c.uv

5)F.(uv) OJ.(uy) < (W)
with the following justification of nodes:
node 1: by (14);
node 2: by pick-up rule of Sect. 64.1;

node 3: by (5);
node 4: by pick-up rule of Sect. 64.2; E.(u,v) prevents f(u,v) by (7);

276 XIII. Formal Analysis of Case Studies

node 5: by pick-up rule of Sect. 64.2; J.(u,v) prevents h(u,v) by (7).

Each message of a priorized site is eventually granted by the respective neigh-
bor:

C.u A prior(u,v) A L.(v,u) = C.au A G.(u,v). (34)

1. C.u A prior(u,v) A L.(v,u) —
(2. C.u A prior(u,v) A L.(v,u) A Doty

3. C.u A prior(u,v) A L.(v,u) A F.(v,u) —
4. C.u A prior(u,v) A L.(v,u) A F.(v,u) A (E.(v,u) V J.(v,u)) —
5. C.u A prior(u,v) A L.(v,u) A G.(v,u) —
6. CuNL.(v,u) ANG.(v,u) A=J.(v,u) =
7.CuAL.(v,u) AN K.(v,u) —
8. CuNG.(u,v)

Figure 79.3. Proof graph for (34)

The proof graph of Fig. 79.3 proves (34). Its nodes are justified as follows:

node 1: by (16); L.(v,u) = =G.(u,v), by (10);

node 2: D.v excludes c(u), g(v,u), and ¢(v), by (9);

node 3: D.v = —M.(v,u) by (4) (swapping u and v), hence the proposi-
tion by (7) (swapping u and v);

node 4: by occurrence of f(v,u) or g(v,u); F.(v,u) excludes ¢(u), g(v,u),
and c(v), by (9);

node 5: G.(v,u) implies ~D.v A =F.(v,u) A =G.(u,v), by (9), hence the
proposition by (16);

node 6: L.(v,u) A =J.(v,u) imply K.(v,u), by (11);

node 7: Fairness rule of Theorem 66.3 and (33).

In analogy to the step from (27) to (31), formula (34) can be embedded
into the context a. Again, gaining priority over more neighbors arises as an
additional alternative:

CuhaAL(v,u) = (CuraAG.(u,v))Vra(u) DR. (35)

The proof graph of Fig. 79.3 can systematically be turned into a proof graph
for (35) in exact correspondence to (32), including the extended justification
of nodes as given for (32). Fairness rule of Theorem 66.3 is then to be replaced
by Corollary 66.4.

79 Local Mutual Exclusion 277

~ AN

1. 2. 3. 4. 5.

Cu O Cu O Cu O Cu O (Cu O

a aOd ad ad ad
E.(u,v) L.(v,u) G.(u,v) G.(uv) O

S J(u,v))
On@u) OR

Figure 79.4. Proof graph for (36)

79.7 A pending site obtains its priorized resources

A resource with priority for u is eventually available for u, retaining all already
available resources. Alternatively, u may gain priority over more resources:

Cuna— (CunhaAG.(u,v)AJ(u,v))Vr(u) DR. (36)
Figure 79.4 provides a proof graph for (36). Its nodes are justified as follows:
node 1: by (13);

node 2: by (31);
node 3: by (35);
node 4: by (16), (5), (9).

Iteration of (36) may extend 7 (u), but this is limited by r(u). As a retains all
resources in G N J, all resources with priority for u are eventually available
to u:

Cur CulGra(u)AJr(u). (37)
The following proof graph proves (37):
1.Cu—2. Cuhar 3. CulGra(u) AJra(u). (38)

Its nodes are justified as follows:

node 1: Def. (28);
node 2: at most |r(u)| iteration of (36).

79.8 A pending site goes critical

Each pending site v may lack priority over some neighbors. It nevertheless
goes eventually critical: u either gains priority over all its resources, or goes
critical with some resources over which « has no priority:

Cu— D.u. (39)

This will be proven by induction on |prior(u)|. The proof graph of Fig. 79.5
covers the case of prior(u) = . Its nodes are justified as follows:

278 XIII. Formal Analysis of Case Studies

c(u)

1. — 2. = 3. =4
C.un C.un Cun D
prior(u) =0 w(u) =r(u) G.r(u)A
Jor(w)

Figure 79.5. Proof graph for the induction basis of (39)

node 1: by (17), (23);

node 2: by (37);

node 3: J.r(u) prevents g(u,v) by (8), G.r(u) prevents f(u,v) by (6).
Now let prior(u) = M and inductively assume C.v + D.v whenever

prior(v) C M. Then Fig. 79.6 provides a proof graph for the inductive step.
Its nodes are justified as follows:

node 1: by (37);

node 2: propositional logic;

node 3: by pick-up rule of Sect. 64.2; for each v € nprior(u), J.w(u) pre-

vents g(u,v);

node 4: by (4);

node 5: by (16);

node 6: by (12);

node 7: by (26);

node 8: inductive assumption;

1. Cu
1

2. CuhNG.w(u) A Jr(u)

3. CuNGru)AJr(u) ¢ cu)
19(u,v)

=G.(u,v)
=G.(u,v) A=D.u A =F.(u,v) =

4. C.u A nprior(v,u) A

5. C.u A nprior(v,u) A

6. C.u A nprior(v,u) A G.(v,u) A J.(v,u) =
7. C.u A nprior(v,u) A C.v —

8

9

. C.u A prior(v) C prior(u) A C.v —
[.CuAnDovw~
10. D.u

Figure 79.6. Proof graph for the induction step of (39)

80 Consensus in Networks 279

node 9: at node 8, let M := prior(u). Then at node 9, prior(u) C M, by
(29) and (30). Hence the proposition by inductive assumption.

79.9 Proof of the essential properties

We are now prepared to prove the essential properties (1) and (2). The safety
property (1) follows from a place invariant, by means of the following proof
graph (in fact, a sequence of implications), with « € U and v € r(u):

1) Du — 2) r(D).(u,v) — 3) —r(D).(v,u) — 4) ~D.v.
Justification of nodes:

node 1: by definition of r(D) in Fig. 79.1
node 2: by (9)
node 3: by definition of r(D) in Fig. 79.1

The liveness property (2) is shown by the following proof graph, with u € U:
1) Bu — 2) Cu — 3) D.u.
Justification of nodes:

node 1: pick-up pattern of Sect. 64.1
node 2: by (39).

80 Consensus in Networks
The essential property of the consensus algorithm of Sect. 35 is stability of
consensus:

In case all sites are agreed, no request remained initiated. (1)

Furthermore, no action is enabled in this case. We discuss this property for
all three algorithms of Sect. 35.

80.1 Stability of the basic consensus algorithm

Figure 80.1 recalls the basic consensus algorithm of Fig. 35.1 with renamed
places. We have to show:

B.U = D =0. (2)
To this end we consider two place invariants

A+B=U (3)
and

C+D=M, (4)

280 XIII. Formal Analysis of Case Studies

sort site fet r, T :site » set of messages
sort message = site x site var X, y:site
const U : set of sites r(x) = {x} x M(x)
const M : set of messages T(X) = M(x) x {x}

Figure 80.1. Renamed basic consensus algorithm Y55 1

as well as the trap

r(4) + C > r(U). (5)
The inscriptions of Fig. 35.1 furthermore imply

r({U) =M. (6)
Then (3) and (6) imply

r(4A) +r(B)=rU)= M. (7)
Subtraction of (5) from the sum of (4) and (7) yields (4)+(7)—(5):

r(B)+D < M. (8)

Now we conclude

BU = r(B).M - D=0 (9)

by (6) and (8). Obviously, D =) - D = 0, hence (2).

80.2 Stability of the advanced consensus algorithm

Figure 80.2 recalls the advanced consensus algorithm of Fig. 35.2, with re-
named places. We are to show three properties.

Firstly, a site u may be agreed as well as demanded only if an initiated
message for u is pending, i.e., u not finally agreed. In Fig. 80.2 this reads

80 Consensus in Networks

sort site fect r, T :site -~ set of messages
sort message = site x site var X,V :site
const U : set of sites r(x) = {x} x M(x)
const M : set of messages T(x) = M(x) x {x}

Figure 80.2. Renamed advanced consensus algorithm X35 5

Bau A E.u— pri(D).u.

Proof of (10) is again based on two place invariants,

A+B=U
and
E+G=U,

as well as the trap

A+G+pri(D)>U.

281

(13)

Now, (13) is subtracted from the sum of (11) and (12), yielding (11)+(12)

—(13):
B+ E—-pri(D)<U,

(14)

282 XIII. Formal Analysis of Case Studies

hence

Bau+ Ew < pri(D).u+1. (15)
This immediately implies (10).

The second property to be proven about X35 is stability, as stated in
(1). In terms of Fig. 35.2 this reads

B=U—=D=1 (16)
Proof of (16) employs (11), the place invariant

C+F+D=M (17)
and the trap

r(A)+C > M. (18)
Now, (11) implies

r(A)+r(B)=r(U)=M (19)
and subtraction of (18) from the sum of (17) and (19) yields (17)+(19)—(18):

r(B)+F+D < M. (20)
Now, definition of r and (20) imply

B=U—=r(B)=M—>D=0- D=4, (21)
hence (16).

The third property to be proven about Y35 states that no site is de-
manded (hence each site is quiet, by (12)) in case all neighbors are agreed.
In terms of Xgg o this reads

B=U—E=. (22)
Upon proving (22) we observe that (11), (12), (13), and (16) imply

r(A) +r(B) = (23)
r(E) +r(G) = (24)
r(4) +r(G) +D > M, (25)
r(B) =r(U) - D =10. (26)

Now, (25) is subtracted from the sum of (23) and (24), yielding (23)+(24)
—(25):

r(B)+r(E)—D< M, (27)
hence with (26),

r(B)y=M —-r(B)+r(E)< M, (28)
hence

B=U—-B+E<U, (29)

which implies (22).

80 Consensus in Networks 283

sort site fect r, T :site -~ set of messages
sort message = site xsite var X,V :site
const U : set of sites r(x) = {x} x M(x)
const M : set of messages T(x) = M(x) x {x}

Figure 80.3. Renamed variant of the advanced consensus algorithm X35 3

80.3 Stability of the further variant

Figure 80.3 recalls the advanced consensus algorithm, with renamed places.
Its verification is based on three place invariants:
A+ B = U, hence for each u € U

Au+ Bu=1; (30)
E + G = U, hence for each u € U

Fu+Gu=1; (31)
C + F + D = M, hence for each (u,v) € M

C.(v,u) + F.(u,v) + D.(u,v) = 1; (32)

and two traps A + G + pri(D) > U, hence for each u € U there exists some
v € U with

284 XIII. Formal Analysis of Case Studies

Au+ D.(u,v) +Gu > 1; (33)
r(A) + C + r(pri(D)) + r(E) > M, hence for all (u,v), (u,w) € M
Au+ C.(u,w) + D.(u,v) + E.(u,v) > 1. (34)

Properties (30)—(34) give rise to
BauAC.(v,u) = C.(u,w) (35)

for all (v,u), (u,v) € M, which holds due to the following proof graph (just
a sequence of implications):

1) BunC.(v,u) —

2) "AuNnC.(v,u) =

3) mA.uA-D.(u,v) =

4) =AuA-D.(u,v) ANGu —
5) “AuA-D.(u,v) A\=E.u —
6) C.(u,w).

Its nodes are justified as follows:

node 1: by (30),
node 2: by (32),
node 3: by (33),
node 4: by (31),
node 5: by (34).

Now, for i € N let

M; == r(Uj=o ¢’ (w))- (36)
We show
B.UAC.(v,u) = C.M; (37)

by induction on .

For the induction basis, (35) implies B.u A C.(v,u) — C.r(u), which is (37)
for i = 0. For the induction step, assume (37) and let (u',w’) € M;+1. Then
there exists some (v',u') € M;, by construction of M;. Then

1) BUAC.(v,u) —
2) BUAC.(v',u') —
3) C.(u,w'),
with
node 1: due to the induction hypothesis and
node 2: due to (35).

81 Phase Synchronization on Undirected Trees 285

This goes for each (u',w") € Mit1, hence B.U A C.(v,u) = C.M;41, which
completes the induction step.
Obviously, M = |J;2, M;. Then (37) implies

B.UAC.(v,u) » C.M (38)
Furthermore,
BUAC.(v,u) » C.MANGU (39)

due to the following proof graph (just a sequence of implications):

1) BUANC.M —
2) " AUANCM —
3) " AUAD =0 —
4) G.U,
with
node 1: by (30).
node 2: by (32).
node 3: by (33).
Stability of Xgg.3 is now proven by means of an unconventional argument,

along interleaved runs:
Let s be a reachable state with s = B.U. Then there exists an interleaved

run sp LN S1 LN sp with s, = s. Then there exists a smallest index, i,

with s; = B.U. Furthermore, i > 0, because =(sg = B.U). Then t; = d(u),

for some u € U. Then s; E B.U A C.(v,u) for each v € ¢(u). Then s;

C.M AG.U, by (39). Then i = n, because no action is enabled at s;. Hence

s = B.U implies s E B.U AC.M A G.U. This with (32) implies
BU—-D=0ANG.U

which is the stability property for Xgg 3.

81 Phase Synchronization on Undirected Trees

81.1 Properties to be proven

Figure 81.1 is a redrawn version of the phase synchronizations algorithm of
Fig. 36.1. It has two decisive properties: Firstly, busy sites are always in the
same round. In Fig. 81.1 this reads

A.(u,n) AN A.(v,m) > n=m (1)

and is a typical state property. Secondly, each site will consecutively increase
its round number. In Fig. 81.1 this reads

A(u,n) = A(u,n+1) (2)

286 XIII. Formal Analysis of Case Studies

sort site w=w1

sort message = site x site x nat xy OU - X W*y
const U: set of sites W, =U

const W : set of (sites x sites) XoW X ... XgW X4 0
fct r, T:site x nat - set of messages Xi—1# Xj+1 fori=1,..n
var X,y :site - Xg# Xp
var i:nat r(x) = W(x) x {x}

Fx) = r(x) 2

Figure 81.1. Renamed phase synchronization, Y 1

for each u € U and each n € N, hence a typical liveness property. Both (1)
and (2) will be verified in the sequel.

As a matter of convenience we slightly generalize the conventions of
Sect. 31.4 for projection of pairs and triples:

(a’a b7 c)l =a
and
(a7b7 c)1,2 = (G,,C, b)1,3 = (b7a70)271 = (a'ab)'

Furthermore, four functions o, @, 3,3 : U x N = 9(U x U) will be em-
ployed, defined by

a(u,n) :=2n - r(u),
a(u,n) :=2n-7(u),

B(u,n) := 2n+ 1) - r(u),

B(u,n) :=(2n+1)-7(u)

Those four functions, as well as the above generalized projections, will canon-
ically be lifted to multisets, as described in Def. 58.6.

81 Phase Synchronization on Undirected Trees 287

81.2 Place invariants

Xg1.1 has four important place invariants. Three of them are quite intuitive.
First of all, |A| + |C| = |U|, which immediately implies

IC1] = |C1 2], (3)
hence each site v has always a unique round number, and if pending, it is

pending with a unique site, v.
Secondly, A; + C; = U, which for each u € U implies

Al.u—i—C'l.u: 1. (4)

Hence each site is always either busy or pending.

The place invariant B+ B+7(C1)+7(C1) = 2(C1 2+Cs 1) relates pending
neighbors to their mutual messages. For each pair (u,v) of neighboring sites
this implies

B.(u,v) + B.(v,u) + r(C1).(u,v) + r(Cy).(v, u) (5)
=2- 01,2.(11,’[}) +2- 01,2.(1),”).

Furthermore, =Cy .uACy .0 implies r(C1).(u,v) = C1 2.(u,v) = 0Ar(Ch).(v,u) =
Ci2.(v,u) =1, hence B.(u,v) + B.(v,u) = 1, by (5), hence with (4),

AjuAN—Arv = B.(u,v) A B.(v,u). (6)
The place invariant above furthermore implies
Bl +|B| = 2|C12 + Ca| = [r(C1)| = [F(C1)]. (7)

The fourth place invariant is a(4) + B + 3(C1 3) = @(A) + B + B(C1.3),
which implies for all u,v € U:

a(A).(u,v) + B.(v,u) + B(C1,3).(u,v) = (8)

a(A).(v,u) + B.(u,v) + B(C1,3).(v,u).

This invariant links all places of Xgy 1.

81.3 Busy neighbors don’t exchange messages

In case two neighboring sites u and v are both busy, there is no message
available from u to v or from v to u. In terms of X'g; 1 this reads for all u € U
and v € q(u):

AjuNArv— B.(u,v) = B.(v,u) =0. 9)

Upon proving (9), assume a state s with s | Aj.u A Aj.v. Then at s holds
Ajw = Ajv = 1, hence Ch.u = Cr.v = 0 (by (4)), hence Ci2.(u,v) =
C12.(v,u) =0 (by (3)), hence the proposition, by (5). a

288 XIII. Formal Analysis of Case Studies

81.4 A property of neighboring pending sites

A neighbor v of a pending site u is pending with u, or u is pending with v.
In terms of Xg; 1, for u € U and v € q(u),

Cl.u — 01’2.(11,’[}) \ 01,2.(’[},114). (10)

Proof of (10) assumes a state s with s = Ci.u = 1. Then at s holds for
all w € g(u) : r(Cy).(u,w) = 1, hence particularly r(C4).(u,v) = 1, hence
Ci2.(u,v) + C12.(v,u) > 1, by (5), hence the proposition. O

81.5 A site is pending with a busy neighbor

A pending site v with a busy neighbor u is pending with u. (Hence, with (3),
at most one neighbor of a pending site is busy). In terms of Xg; 1, foru € U
and v € q(u),

Al.u/\Cl.v — 0172.(1),11,). (].].)

Proof of (11) combines two properties of Xg; 1: First, C;.v implies Cy 5.(u,v)V
C1,2.(v,u) by (10). Second, A;.u implies =C4.u by (4), hence =C ».(u,v). O

81.6 Three pending neighbors form a sequence

Assume a site v, pending with w. Then each other pending neighbor u of v
is pending with v. In ¥g; ; this reads for v € U and u,w € q(v):

Cl.u A 0172.(’1},’[1}) — 0172.(11,,1)). (].2)

Proof of (12) combines two properties of Xgq 1: First, Cy.u implies C1 ».(u,v)V
C1,2.(v,u) by (10). Second, C1 2.(v, w) implies =C ».(v,u), by (4). a

81.7 Busy neighbors are in the same round

If two neighbors v and v are both busy, they operate in the same round. In
Yg1.1 this reads for u € U, v € ¢(u), and n,m € N:

A.(u,n) AN A.(v,m) = n=m. (13)

To prove (13), let s be a reachable state of Xg; 1 with s = Aj.uA Aj.v. Then
at s holds C1.u = Cy.v =0 by (4), hence 5(C1,3).(u,v) = B(C1 3).(v,u) = 0.
Furthermore, B.(u,v) = B.(v,u) = 0, by (9). Combining both properties, (8)
yields a(A).(u,v) = a(A).(v,u). Then for each n € N, A.(u,n) = A.(v,n).
Then (13) follows with (4). a

81 Phase Synchronization on Undirected Trees 289

81.8 A property of chains

Given uo,...,u, € U, the sequence ug...u, is a chain if u;—; € r(u;) for
i=1,...,n,and u;_1 #uyq fori=1,...,n— 1.

Assume a chain wug...u,, starting with a busy site, ug, followed by a
pending site, u;. Then all follower sites us, ..., u, are pending. In Yg; 1 this
reads

AjugNCruy = Cruu; foralli =1,...,n. (14)

To prove (14), let s be a reachable state with s | Aj.ug A Cy.uy. Then at s
holds 0172.(11,1,11,0) by (11) Then

=01 2.(uy,u2) (*)

by (4). Now, contradicting (14), assume an index 1 < i < n with s = =C}.u;.
Let j be the smallest of those indices. Then at s holds A;.u; by (4), hence
Ci,2.(uj—1,uj), by (11). Then Cya.(u—1,u;) for i = 2,...,n by iterated
application of (12). Then in particular Ci ».(u1,us), which contradicts (*).
O

81.9 Proof of the state property (1)

We are now prepared to prove (1) as follows:

Let s be a reachable state with s = A.(u,n)AA.(v,m). Then there exists a
chain ug . .. uy, in U with ug = uw and u, = v. Then s = Ay.u; fori =0,...,n,
by (14) and (4). Then at s holds A.(u;,n) for i =0, ...,n by iteration of (13).
Hence n = m.

81.10 Pending sites have pending messages

Here we start proof of the liveness property (2). First, we observe pending
messages in case all sites are pending:
C1.U — |B| > 0. (15)

Proof of (15) is based on the observation that an undirected tree with n nodes
has n — 1 arcs. Hence, in Xg; 1,

r(@)| = [FU)] = U] - 1. (16)

Then C,.U — |B| + |B| = 2|Ci2 + Ca.1] — |[r(Cy)| = [F(Cy)] (by (7)) =
2[U] - 2(|U] ~ 1) (by (16)) = 2.

290 XIII. Formal Analysis of Case Studies

81.11 Xgi.1 is deadlock free

Each reachable state of Y51 1 enables at least one action. (17)

Proof. Let s be a reachable state of Xg; 1. 1st case: s |= A;.u for at least one
u € U. Then there exists a chain ug ... u,, n > 0, of sites with s | Ay.u;
forall i =0,...,n, and =A.v for all v € g(u,) — up—1. Hence for all such v
holds s E B.(v,u) V B.(u,v), by (6). Now we distinguish two cases: Firstly,
s E B.(u,v) for all v € g(u,)—upn_1. Then s enables a(un, un—1, k), where s |=
A.(up, k). Otherwise, there exists some v € 7(u,) — up_1 with s = B.(v,u).
Furthermore, s | C.(v,u,k) for some k € N (with (4)). Then s enables
b(v,u, k). 2nd case: There is no u € U with s |= Aj.u. Then s = C1.U (with
(4)). Then |B| > 0, by (15). Hence there exist u,v € U with s |= B.(u,v).
Then s = C.(u,v, k) for some k € N, by (5). Then s enables b(u, v, k). a

81.12 The weight function ~

A function y(u,v) will be considered, which for neighbors u and v yields
an integer value v(u,v) at any given state s. Values y(u;_1,u;) remain in a
limited interval for all chains ug . .. u,, and occurrences of transitions increase
those values. For u,v € U, let

Y(u,v) := B.(v,u) + Zpen2n - A(u,n) + 2n+ 1) - Cy 3.(u,n). (18)
Then (8) implies
7(u,v) = y(v, u). (19)

Furthermore, for neighbors w of u, C} 2.(u,w) iff #(C4).(u,w); hence
B.(w,u) <2 (by (5)), hence

|’Y(’U,, ’U) - ’)/(U, w)| < 27 (20)
again by (5). Then for each sequence ug . .. uy, of sites, (19) and (20) imply
[y (o, u1) = ¥(un—1,un)| < 2(k —1). (21)

81.13 Proof of the liveness property (2)

Inspection of Yg;1 yields for each step r L s with t = a(u,v,i) or t =
b(u,v,1):
If v(u,v) = n at state r, then y(u,v) > n at state s. (22)
Property (17) implies at least one pair (u,v) of neighbors with infinitely
many occurrences of a(u,v,i) and b(u,v,i). Then in the set of all reachable

states, v(u,v) is not limited, by(22). This applies to all neighbors u, v, by
(21). Hence (2).

82 Distributed Self-Stabilization 201

82 Distributed Self-Stabilization

82.1 Properties to be proven

Figure 82.1 is a redrawn version of the distributed self stabilization algorithm.
We have to show that the overall workload remains constant, eventually is
balanced, and henceforth remains balanced.

.0 (i) (x.i) (r(x).i)

(1 (x),0) (x,i-1)

(I (x,1) 5
L= r
c
sort site var i,j:nat
sort alloc = site x nat var X,y :site
Ox0OU 0400 nat: (x,i))0 V

const U : set of sites x#zy O rx) #r(y)
const V: setofalloc On O nat:r(x) =x
fct l,r:site - site Ox Oy On O nat:y =r"(x)

L(r(x)) = x

Figure 82.1. Renamed distributed load balancing

A formal representation of those properties in terms of Ygs 1 can be based
on the following functions. For any place p € {4, B, C, E} and any site u € U,
let

(p,) 0 iff -p1.u
o(p,u) = . ,
P n iff p.(n,u)

(1)

U(U’) = Z{A,B,C’,E}U(pa U’)7 and
o := Yyevo(u).
These functions describe the workload of site u at place p, the entire workload

of u and the overall workload in the system, respectively. The initial overall
workload is k iff ay,, , |E o = k. A balanced state meets the predicate

balanced :=u,v € U — |o(u) —o(v)| < 1. (2)

292 XIII. Formal Analysis of Case Studies

So we have to show the state property

Yeoo1Fo=k (3)
and the progress property

Ys2.1 |E ax — balanced. (4)

Furthermore, we have to show that all states reachable from a balanced state
are balanced, i.e., for each step r i>s,

balanced(r) — balanced(s). (5)

82.2 Place invariants

We have two quite obvious place invariants. First, each site is always in one
of the three states of Y371 (together with its token load): Ay + B +Cy =U
(with Vi = U according to the specification of Fig. 82.1). Hence in particular
for each u € U holds

Second, each site is either in the quiet statel or has sent a workload message
to its right neighbor (i.e., is the left neighbor of the first component of a
workload message), or is to receive an update message: A; +r(D1)+E; =U.
Hence for each u € U follows A;.l(u) 4+ r(D1).l(u) + Ey.l(u) = 1, which in
turn yields

Al.l(u) + Dl.u + Ell(u) =1. (7)

82.3 Further properties of Xgs;

Two basic properties are required in the sequel: The ground formula A,.U,
and an upper bound for the workload of the sender of a workload message.
To start with, we first show

A;.U is a ground formula. (8)
Upon proving (8), observe that all steps starting at A;.U are shaped
Ay M>Al.U —u A By.u A Dy.r(u), for some u € U and n € N. Then (8)
follows from Theorem 70.2 and the following proof graph:

1) A1 U —uAByuADyr(u) —
2) B1.UND .U <

3) Cl.U/\El.U‘—>

4) A,.U.

Its nodes are justified by the pick-up pattern of Sect. 69.1 together with the
following:

82 Distributed Self-Stabilization 293

1) by occurrence of a(v,n) for all (v,n) € Vv # u
2) by occurrence of b(v,n,m) or ¢(v,n,m) for all v € U
3) by occurrence of d(v,n,m) for all v € U.

Second, we show that a workload message tops its sender’s token load:

D.(u,n) = o(l(u)) < n. 9)

(9) is obviously true at the initial state. Inductively assume a step r L s with
r = (9). Upon proving s = (9) two cases are distinguished:

i. Assume r (£ D.(u,n) and s E D.(u,n). Then t = a(l(u),n) (by the
structure of the net). Then s = B.(I(u),n) (by the occurrence rule).
Hence s |= By.l(u), hence s | —A;.l(u) A=Cy.l(u), by (6). Furthermore,
the assumption of s = D.(u,n) implies s = D;.u, hence s = ~E;.l(u)
(by (7)). Both arguments together imply o(I(u)) < o(B.l(u)). Then s =
B.(I(u),n) implies the proposition.

ii. Assume 7 = o(l(u)) < n and s }£ o(l(u)) < n. Then ¢t = ¢(u,n,m), for
some n, m € N (by the structure of the net). Then s = E;.(I(u), n) (by the
occurrence rule). Then s = =D;.(u,n) (by (7)), hence the proposition.

82.4 A decreasing weight

A weight function 7 on states will be employed, defined for each state s of
Ygo1 by T(s) =niff s |=
Suevo(u)? = n. (10)

It will turn out that no step increases 7. Furthermore, 7 decreases upon

occurrence of ¢(u,n,m), provided m + 1 is smaller than n.

First we show that ¢z does not increase 7: Let r M s be a step. Then

7(r) > 7(s). (11)

In order to show (11), observe that at r holds *) B.(u,n) as well as (**)
D.(u,m), due to the occurrence rule. Furthermore, with r = o(l(u)) = a A
o(u) = b, at r holds b > n by), n. > m by inscription of transition ¢, and
m > o(l(u)), by **) and (9); hence ***) (a — b+ 1) < 0. Now,

7(s) = 7(r) —a® = b> + (a + 1)® 4+ (b — 1)* (by the structure of ¢(u,n,m))
7(r) —a®> = b +a’ +2a+1+b0>—2b+1
T(r)+2(a—b+1)

7, by ***) hence (11).

IN

c(u,n,m)

(11) can be strengthened in case o(u) > o(l(u)) + 1: Let r ——— s be a
step of Xgs 1 with m + 1 < n. Then

7(r) > 7(s) (12)

294 XIII. Formal Analysis of Case Studies

Proof of (12) is a slight variant of the above proof graph of (11): m+1<n
now implies b > n, hence (a — b+ 1) < 0. Then the last two lines read
7(r) +2(a— b+ 1) < 7(r).

Generalizing (11), no step at all increases 7: Let rL s bea step of Ygs 1.
Then

7(r) > 7(s). (13)

To prove (13), observe that 7(r) # 7(s) implies t = ¢(u,n, m) for some v € U
and n,m € N, by definition of 7 and ¢, and the structure of Xgs 1. Then (13)
follows from (11).

82.5 Descents

A descent of length k consists of a sequence u,l(u),1%(u), ..., ¥ (u) of sites,
with token loads decreasing by 1 from u to I(u) and by any number from ¥ (u)
to 11 (u), and identical token load of I(u),...,I*(u). More precisely, for any
site uw € U and any state s, the descent of u at s amounts to k (written:
0(u) = k) iff there exists some n € N with

ow)=n+1,0(li(u)=n (Gi=1,...,k), c(("(u)) <n-1. (14)

Figure 82.2 outlines examples.
In general, there may exist states s with undefined descent é(u). Even
more, obviously holds for all states s of Xgo 1:

s is balanced iff no site has a descent at s. (15)

In the sequel we will show that large descents reduce to small ones and small
descents reduce the weight 7. Each large descent reduces to a smaller one, as
exemplified in Fig. 82.2.

before n=2
8(u) = 4
u
after n=2
3(1(u) =2
u
Figure 82.2. Reduction of a large descent
A UAN) =kAkE>2 AL UANI(I(uw) =k —2. (16)

This proposition follows from the following proof graph:

82 Distributed Self-Stabilization 295

1) A UANS(u)=kANE>2—

2) AL UANA(u,n+1D)AA(P(u),n) (i=1,....k) NA.(* (u),n—j) —
3) B1.U AD,.UA B.(u, n+1)/\B (l'(u),n) (i =1,...,k) AD.(u,n)A
D.(I'(u),n) (i = 1,. ' 1) AD.(I*(u),n —j) =
4) C1.U N EL.U A C.(l’(u),n) (i =1,....,k—1) AC.(I*(u),n — j) A
E.(I(u),1) A E.(I'(u),0) (i = 2,.

5) Ar.UAA(I(u), n+D)AA (11 (u),n) (i
6) Av.UAS(I(w)) = k — 2.

Its nodes are justified as follows:

node 1: there exist n,j > 1 with the described properties, according to
(14)

node 2: by occurrence of {a(v,m) |v € UA A.(v,m)}

node 3: by occurrence of c(u,n + 1,n), b(l*(u),n,n) for i = 1,...,k —
1, c¢(I*(u),n,n — j), and b(v,m,m') or c(v,m,m') for all v #
li(u) (i=0,...,k)

node 4: by occurrence of {d(v,m,m') |v € UAC.(v,m) A E.(v,m’)}

node 5: by (14).

Each descent of length 0 reduces the weight 7, as outlined in Fig. 82.3.

before n=2 o(uf +o(l (u))2 =10
S(u)=0
u
after no descent G(Lﬁ +o(l (u))2 =8

u

Figure 82.3. Descent of length 0

Formally,
A UANS(u) =0AT=m = T<m. (17)
This proposition follows from the following proof graph:
AL UAS(u)=0AT=m —

1)
2) A(u,n+ 1) ANA(I(w),n—j)AT=m—
3) B

nt+ln—j
(u,n+1)/\D.(u,n—j)/\TSmc(um—)n 7

4) T <m.
Its nodes are justified as follows:

node 1: there exist n,j > 1 with the described properties, according to
(14)

296 XIII. Formal Analysis of Case Studies

node 2: by occurrence of a(u,n + 1) and a(l(u),n — j)
node 3: by (12).

Each descent of length 1 likewise reduces the weight 7, as outlined in Fig. 82.4.

before n=2 o(uy*+ o(l (U)f
3uy=1 + o(l?(u)’ =14

u
after no descent 0(“)22+ o(é(“))z
+ o(l°(u)° =12

u

Figure 82.4. Descent of length 1

Formally,
A UAuw)=1AT=m <=1 <m. (18)
This proposition follows from the following proof graph:
A UAS(u)=1AT=m —
AL UNA(uyn+ 1) AA(L(u),n) AA(P(u),n —j) AT=m <
3) B.(u,n+1) A D.(u,n) A B.(I(u),n) A D.(I(w)yn —) AT <m ™

4) E.(I(u), 1) A B.(I(u),n) A D.(l(u),n —) AT <m 5"
5) T < m.

1)
2)
) B
) E

Its nodes are justified as follows:

node 1: there exist n,j > 1 with the described properties, according to
(14)

node 2: by occurrence of a(u,n + 1), a(l(u),n), and a(l*(u),n — 1)

node 3: by the occurrence rule

node 4: by (12).
The weight 7 is reducible as long as there exists a descent:

T=m<=71<mVVYu€eU:d(u) is undefined. (19)
This proposition follows from the following proof graph:

) r=m<

2) Ay UNT <m — 3)Vu €U : §(u) undefined

1

A UAT<mATJueUkeN with §(u) =k —
AL UANT<mATu €U with 6(u) <1<
T<m—
T <mVVYu €U :d(u) undefined

4)
5)
6)
7)

82 Distributed Self-Stabilization 297

Its nodes are justified as follows:

node 1: by (8) and (13)

node 2: propositional logic

node 3: propositional logic

node 4: by | %] fold application of (16)

node 5: by (17) if §(u) = 0, and by (18) if d(u) =1
node 6: propositional logic.

82.6 Proof of the essential properties

To show (3), let r L s be any step of Xgs1, and assume o, = k. Then s = k
follows due to the structure of Yg; ;. Finally, (3) follows by induction on the
length of interleaved runs of Xgs 1

To prove (5), first consider the case of t = ¢(u,n, m) for some v € U and
n,m € N. Then at r holds B.(u,n)AD.(u, m)An > m. Furthermore, o(u) > n
by (1) and m > o(I(u)), by (9). Hence o(u) =n and o(l(u)) =n — 1, as r is
balanced. Then at s holds o(u) =n — 1 and o(I(u)) = n. The workload o (v)
remains unchanged for all v # u. Hence s is balanced, too.

All actions ¢ not involving ¢ do not touch o(u) for any u € U, hence the
proposition.

Proof of (4) requires

ay < balanced, (20)
proven by the following proof graph:

Ay, > T=MSST=nN1 <M T=N3<N] ... >T=n,, =0

~ { A ©
Vu € U : §(u) is undefined
1
balanced

which is justified as follows: The first implication states that 7 has some value,
m, at the initial state ax. All other nodes in the upper line are justified by
(19). The last implication holds by (15).

In order to show (4), let w be an interleaved run of Xgs 1. Then there exists
a concurrent run K of Xjgs o, including all actions of w. K has a reachable,
balanced state, s, (by (20)). Then w has a reachable state, s', such that all
actions of K, occurring before s, are actions of w, occurring before s’. Then
Ygo.2 E s+ s and s’ is balanced by (5), hence the proposition.

References

[Aghs6]
[AS85]

[BA9O]
[Bar96]
[BBS2]
[BCMSS]

[BE96]

[Ben73]

[Bes96]

[BF8S]

[BGWS9)

[BPS9)

[Bro87]

[Cha82]

[CM84]

[CM8S]

[Des97]

G. A. Agha. A Model of Concurrent Computation in Distributed Sys-
tems. MIT Press, Cambridge, Mass., 1986.

B. Alpern and F. B. Schneider. Defining liveness. Information
Processing Letters, 21:181-185, 1985. Safety/Liveness Decomposition.
M. Ben-Ari. Principles of Concurrent and Distributed Programming.
International Series in Computer Science. Prentice Hall, Englewood
Cliffs, N. J., 1990.

V. Barbosa. An Introduction to Distributed Algorithms. MIT Press,
Cambridge, Mass., 1996.

G. Berry and G. Boudol. The chemical abstract machine. T'CS, 1982.
J.-P. Banatre, A. Coutant, and D. le Metaye. A parallel machine for
multiset transformation and its programming style. Future Genera-
tions Computer Systems, 4:133-144, 1988.

G. Burns and J. Esparza. Trapping mutual exclusion in the box
calculus. Theoretical Computer Science. Special Volume on Petri Nets,
153(1-2), January 1996.

C. H. Bennett. Logical reversibility of computation. IBM Journal of
Research and Development, 6:525-532, 1973.

E. Best. Semantics of Sequential and Parallel Programs. International
Series in Computer Science. Prentice Hall, Englewood Cliffs, N. J.,
1996.

E. Best and C. Ferndndez. Nonsequential Processes, volume 13 of
EATCS Monographs on Theoretical Computer Sciemce. Springer-
Verlag, Berlin, 1988.

G. M. Brown, M. G. Gouda, and C. Wu. Token systems that self-
stabilize. IEEE Transaction on Computers, 38(6):845-852, 1989.

J. E. Burnes and J. Pachl. Uniform self-stabilizing rings. ACM Trans-
actions on Programming Languages and Systems, 11(2):330-344, April
1989.

M. Broy. Semantics of finite and infinite networks of concurrent com-
municating agents. Distributed Computing, 2:13-31, 1987.

E. J. H. Chang. Echo algorithms: Depth parallel operations on general
graphs. IEEE Transactions on Software Engineering, SE-8(4):391-
401, 1982.

K. M. Chandy and J. Misra. The drinking philosophers problem. ACM
Transactions on Programming Languages and Systems, 6(4):632-646,
October 1984.

K. M. Chandy and J. Misra. Parallel Program Design: A Foundation.
Addison-Wesley, Reading, Mass., 1988.

J. Desel. How distributed algorithms play the token game. In
C. Freksa, M. Jantzen, and R. Valk, editors, Foundations of Computer

300 References

[Dij71]
[Dij74]

[Dij75]

[Dij78]

[DKOS]

[DKVW95]

[DKW94]
[DS80]
[Fin79)]
[FT82]

[Gan80]

[GPR7]

[Har87]
[Jen92]
[Kin95]

[KRVWO7]

[KWO5]

[Lam86]
[Lyn96]

[Mat89]

Science, volume 1337 of LNCS Lecture Notes in Computer Science,
pages 297-306. Springer-Verlag, 1997.

E. W. Dijkstra. Hierarchical ordering of sequential processes. Acta
Informatica, 1:115-138, 1971.

E. W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Communications of the ACM, 17(11):643-644, 1974.

E. W. Dijkstra. Guarded commands, nondeterminancy, and formal
derivation of programs. Communications of the ACM, 18(8):453-457,
1975.

E. W. Dijkstra. Finding the correctness proof of a concurrent pro-
gram. Proc. Koninklijke Nederlandse Akademie van Wetenschappen,
81(2):207-215, 1978.

J. Desel and E. Kindler. Proving correctness of distributed algorithms
using high-level Petri nets — a case study. In 1998 International Con-
ference on Application of Concurrency to System Design, pages 177—
186, Fukushima, Japan, March 1998. IEEE Computer Society Press.
J. Desel, E. Kindler, T. Vesper, and R. Walter. A simplified proof for
a self-stabilizing protocol: A game of cards. Information Processing
Letters, 54:327-328, 1995.

J. Desel, E. Kindler, and R. Walter. A game of tokens: A proof contest.
Petri Net Newsletter, 47:3 — 4, October 1994.

E. W. Dijkstra and C. S. Scholten. Termination detection for diffusing
computations. Information Processing Letters, 4:1-4, 1980.

S. G. Finn. Resynch procedures and a fail safe network protocol.
IEEE Transactions on Communications, COM-27:840-845, 1979.

E. Fredkin and T. Toffoli. Conservative logic. International Journal
of Theoretical Physics, 21(3/4):219-253, 1982.

R. Gandy. Church’s thesis and principles for mechanisms. In The
Kleene Symposium, pages 123-274, North-Holland, Amsterdam, 1980.
J. Barwise et al., editors.

J. E. Gehrke, C. G. Plaxton, and R. Rajaraman. Rapid conver-
gence of a local load balancing algorithm for asynchronous rings.
In M. Mavronicolas and P. Tsigas, editors, Distributed Algorithms,
WDAG, volume 1320 of LNCS Lecture Notes in Computer Science,
pages 81-95. Springer-Verlag, September 1997.

D. Harel. Statecharts: A visual formalism for computer systems. Sci-
ence of Computer Programming, 8(3):231-274, 1987.

K. Jensen. Coloured Petri Nets, volume 1 of EATCS Monographs on
Theoretical Computer Science. Springer-Verlag, 1992.

E. Kindler. Modularer Entwurf verteilter Systeme mit Petrinetzen.
PhD thesis, Technische Universitdt Miinchen, 1995.

E. Kindler, W. Reisig, H. Volzer, and R. Walter. Petri net based
verification of distributed algorithms: An example. Formal Aspects of
Computing, 1997.

E. Kindler and R. Walter. Message passing mutex. In J. Desel, editor,
Structures in Concurrency Theory, Workshops in Computing, pages
205-219, Berlin, May 1995. Springer-Verlag.

L. Lamport. The mutual exclusion problem: Part I — a theory of in-
terprocess communication. Journal of the ACM, 33(2):313-326, 1986.
N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers,
San Francisco, Calif., 1996.

F. Mattern. Verteilte Basisalgorithmen. Informatik-Fachberichte 226,
Springer-Verlag, Berlin, 1989.

[Mil89]
[Mis91]
[MP92]
[MP95]

[NTA96]

[OL82]

[Pet81]
[PMO6]
[Ray88]
[Ray89]
[Rei85]

[Rei95]

[Rei96a]

[Rei96b]

[RH90]

[RK97]

[Roz86]

[Sch97]
[Seg83]

References 301

R. Milner. Communication and Concurrency. International Series in
Computer Science. Prentice Hall, Englewood Cliffs, N. J., 1989.

J. Misra. Phase synchronization. Information Processing Letters,
38:101-105, 1991.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Con-
current Systems. Springer-Verlag, Berlin, 1992.

Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems.
Springer-Verlag, Berlin, 1995.

M. Naimi, M. Trehel, and A. Arnold. A log(n) distributed mutual
exclusion algorithm based on path reversal. Journal of Parallel and
Distributed Computing, 34:1-13, 1996.

S. Owicki and L. Lamport. Proving liveness properties of concur-
rent programs. ACM Transactions on Programming Languages and
Systems, 4(3):455-495, 1982.

G. L. Peterson. Myths about the mutual exclusion problem. Infor-
mation Processing Letters, 12(3):115-116, June 1981.

W. Peng and K. Makki. Petri nets and self-stabilization of communi-
cation protocols. Informatica, 20:113-123, 1996.

M. Raynal. Distributed Algorithms and Protocols. Wiley Series in
parallel computing. J. Wiley and Sons, 1988.

K. Raymond. A tree-based algorithm for distributed mutual exclusion.
ACM Transactions on Computer Systems, 7(1):61-77, February 1989.
W. Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, Berlin, 1985.

W. Reisig. Petri net models of distributed algorithms. In Jan van
Leeuven, editor, Computer Science Today. Recent Trends and Devel-
opments, volume 1000 of LNCS Lecture Notes in Computer Science,
pages 441-454. Springer-Verlag, Berlin, 1995.

W. Reisig. Interleaved progress, concurrent progress, and local
progress. In D. A. Peled, V. R. Pratt, and G. J. Holzmann, edi-
tors, Partial Order Methods in Verification, volume 29, pages 24-26.
DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, American Mathematical Society, 1996.

W. Reisig. Modeling and verification of distributed algorithms. In
U. Montanari and V. Sassone, editors, CONCUR 96: Concurrency
Theory, volume 1119 of LNCS Lecture Notes in Computer Science,
pages 79-95. Springer-Verlag, 1996.

M. Raynal and J.-M. Helary. Synchronization and Control of Distrib-
uted Systems and Programs. Wiley Series in parallel computing. J.
Wiley and Sons, 1990.

W. Reisig and E. Kindler. Verification of distributed algorithms with
algebraic Petri nets. In C. Freksa, M. Jantzen, and R. Valk, editors,
Foundations of Computer Science — Potential, Theory, Cognition,
volume 1337 of LNCS Lecture Notes in Computer Science, pages 261—
270. Springer-Verlag, 1997.

G. Rozenberg. Behaviour of elementary net systems. In W. Brauer,
W. Reisig, and G. Rozenberg, editors, Petri Nets: Central Models and
Their Properties, volume 254 of LNCS Lecture Notes in Computer
Science, pages 60-94. Springer-Verlag, 1986.

F. B. Schneider. On Concurrent Programming. Springer, 1997.

A. Segall. Distributed network protocols. IEEE Transactions on In-
formation Theory, IT 29-1:23-35, 1983.

302 References

[SF86]

[Tel91]

[Tel94]

[V&197]

[Valg6]

[Wal95]

[Wal97]

[WWV 98]

N. Shavit and N. Francez. A new approach to detection of locally
indicative stability. In L. Kott, editor, Proceedings of the 13th ICALP,
volume 226 of LNCS Lecture Notes in Computer Science, pages 344—
358. Springer-Verlag, 1986.

G. Tel. Topics in Distributed Algorithms, volume 1 of Cambridge
International Series on Parallel Computation. Cambridge University
Press, Cambridge, U.K., 1991.

G. Tel. Introduction to Distributed Algorithms. Cambridge University
Press, Cambridge, U.K., 1994.

H. Vélzer. Verifying fault tolerance of distributed algorithms for-
mally: A case study. Informatik-Berichte 84, Humboldt-Universitét
zu Berlin, May 1997. (appears in: Proceedings of CSD98, Interna-
tional Conference on Application of Concurrency to System Design,
Aizu-Wakamatsu City, March 1998, IEEE Computer Society Press).
R. Valk. Infinite behaviour and fairness. In W. Brauer, W. Reisig, and
G. Rozenberg, editors, Petri Nets: Central Models and Their Proper-
ties, volume 254 of LNCS Lecture Notes in Computer Science, pages
377-396. Springer-Verlag, 1986.

R. Walter. Petrinetzmodelle verteilter Algorithmen. PhD thesis,
Humboldt-Universitat zu Berlin, Institut fiir Informatik. Edition Ver-
sal, vol. 2. Bertz Verlag Berlin, 1995.

R. Walter. The asynchronous stack revisited: Rounds set the twilight
reeling. In C. Freksa, M. Jantzen, and R. Valk, editors, Foundations of
Computer Science, volume 1337 of LNCS Lecture Notes in Computer
Science, pages 307-312. Springer-Verlag, 1997.

M. Weber, R. Walter, H. Volzer, T. Vesper, W. Reisig, S. Peuker,
E. Kindler, J. Freiheit, and J. Desel. DAWN: Petrinetzmodelle zur
Verifikation verteilter Algorithmen. Informatik-Bericht 88, Humboldt-
Universitat zu Berlin, 1998.

Copyrighted Material

ing the principal comput-
ing, communication, and

*In this textbook a variety of distributed algorithms are presented

} ' independently of particular programming languages or hardware,
using the graphically suggestive technigue of Petri nets which is
both easy to comprehend intuitively and formally rigorous. By

Prof. Dr. rer. nat. Wolfgang Reisig

Author of numerous books and publications
on Petri nets, including the classic Petri Nets —
An Introduction” (Springer-Verlag 1985).
Assistant to C. A. Petri 1984-1988, Professor at
the Technical University of Munich 1988-1993,
at Humboldt University Berlin since 1993.

ements of Distributed Algorit

ISBN 3-540-62752-9

FETBI5A0T627524

htip:ffwww.springer.de

	Introduction
	Part A. Elementary System Models
	I. Elementary Concepts
	1 A First Look at Distributed Algorithms
	2 Basic Definitions: Nets
	3 Dynamics
	4 Interleaved Runs
	5 Concurrent Runs
	6 Progress
	7 Fairness
	8 Elementary System Nets

	II. Case Studies
	9 Sequential and Parallel Buffers
	10 The Dining Philosophers
	11 An Asynchronous Stack
	12 Crosstalk Algorithms
	13 Mutual Exclusion
	14 Distributed Testing of Message Lines

	Part B. Advanced System Models
	III. Advanced Concepts
	15 Introductory Examples
	16 The Concept of System Nets
	17 Interleaved and Concurrent Runs
	18 Structures and Terms
	19 A Term Representation of System Nets
	20 Set-Valued Terms
	21 Transition Guards and System Schemata

	IV. Case Studies
	22 High-Level Extensions of Elementary Net Models
	23 Distributed Constraint Programming
	24 Exclusive Writing and Concurrent Reading
	25 Distributed Rearrangement
	26 Self Stabilizing Mutual Exclusion

	V. Case Studies Continued: Acknowledged Messages
	27 The Alternating Bit Protocol
	28 The Balanced Sliding Window Protocol
	29 Acknowledged Messages to Neighbors in Networks
	30 Distributed Master/Slave Agreement

	VI. Case Studies Continued: Network Algorithms
	31 Principles of Network Algorithms
	32 Leader Election and Spanning Trees
	33 The Echo Algorithm
	34 Mutual Exclusion in Networks
	35 Consensus in Networks
	36 Phase Synchronization on Undirected Trees
	37 Distributed Self Stabilization

	Part C. Analysis of Elementary System Models
	VII. State Properties of Elementary System Nets
	38 Propositional State Properties
	39 Net Equations and Net Inequalities
	40 Place Invariants of es-nets
	41 Some Small Case Studies
	42 Traps
	43 Case Study: Mutex

	VIII. Interleaved Progress of Elementary System Nets
	44 Progress on Interleaved Runs
	45 The Interleaved Pick-up Rule
	46 Proof Graphs for Interleaved Progress
	47 Standard Proof Graphs
	48 How to Pick Up Fairness
	49 Case Study: Evolution of Mutual Exclusion Algorithms

	IX. Concurrent Progress of Elementary System Nets
	50 Progress on Concurrent Runs
	51 The Concurrent Pick-up Rule
	52 Proof Graphs for Concurrent Progress
	53 Ground Formulas and Rounds
	54 Rounds of Sequential and Parallel Buffer Algorithms
	55 Rounds and Ground Formulas of Various Algorithms
	56 Ground Formulas of Mutex Algorithms

	Part D. Analysis of Advanced System Models
	X. State Properties of System Nets
	57 First-Order State Properties
	58 Multisets and Linear Functions
	59 Place Weights, System Equations, and System Inequalities
	60 Place Invariants of System Nets
	61 Traps of System Nets
	62 State Properties of Variants of the Philosopher System

	XI. Interleaved Progress of System Nets
	63 Progress on Interleaved Runs
	64 Interleaved Pick-up and Proof Graphs for System Nets
	65 Case Study: Producer/Consumer Systems
	66 How to Pick up Fairness

	XII. Concurrent Progress of System Nets
	67 Progress of Concurrent Runs
	68 The Concurrent Pick-up Rule
	69 Pick-up Patterns and Proof Graphs
	70 Ground Formulas and Rounds

	XIII. Formal Analysis of Case Studies
	71 The Asynchronous Stack
	72 Exclusive Writing and Concurrent Reading
	73 Distributed Rearrangement
	74 Self-Stabilizing Mutual Exclusion
	75 Master/Slave Agreement
	76 Leader Election
	77 The Echo Algorithm
	78 Global Mutual Exclusion on Undirected Trees
	79 Local Mutual Exclusion
	80 Consensus in Networks
	81 Phase Synchronization on Undirected Trees
	82 Distributed Self-Stabilization

	References

