

Wolfgang Reisig

Elements
of Distributed Algorithms
Modeling and Analysis
with Petri Nets

With 246 Figures

Springer

Prefae
The appliation and organization of omputing systems is tending towardsdistributed omputing. Proessor lusters, loal and wide area networks, andthe forthoming information highway are evolving new kinds of problems (thesimplest and most basi ones inlude, e.g., distributed organization of mutualexlusion, or distributed detetion of distributed termination). A new kind ofalgorithm, alled distributed algorithms, has emerged during the last deade,aimed at eÆiently solving those problems and, more generally, making dis-tributed omputing systems appliable to real-world problems.A variety of distributed algorithms are presented and proven orret inthis book. A (Petri net based) tehnique to model and to analyze distributedalgorithms is oinidently presented. This tehnique fouses on loal states,independent ations, and synhronization of distributed threads of ontrol.This book's sope is modest, as it stiks to a hoie of small and mediumsize distributed algorithms. Compositionality, stepwise re�nement, interfaespei�ation, abstration, et., are not overed. Nevertheless, this book'slaims are ambitious: Just as PASCAL-like programming strutures andHoare-style proof tehniques appear optimal for a wide lass of sequentialalgorithms, this book's formalism is suggested to be optimal for a wide lassof distributed algorithms.Partiular preliminary knowledge is not assumed in this text, besides ba-sis in formal onepts and a general intuitive understanding of omputersiene.The text provides a basis for university ourses and an help the prati-tioner to design distributed algorithms. The hurried reader may just studythe pitures.AknowledgmentsThis book is the yield of a deade of researh into formal methods for model-ing and analysis of Distributed Algorithms. I onduted this researh togetherwith many olleagues, sta�, and students, both at the Tehnial Universityof Munih and, sine 1993, the Humboldt-Universit�at zu Berlin. It has beensupported by the Deutshe Forshungsgemeinshaft, in the framework of theSonderforshungsbereih 342 as well as in projets on Distributed algorithms

VI Prefaedesign and ompositional veri�ation. The European Union supported thisresearh via the ESPRIT II projets CALIBAN and DEMON.The material matured and the presentation pro�ted from suessiveourses given at the Tehnial University of Munih and Humboldt-Universi-t�at zu Berlin. My enjoyable summer 1997 visit to the International ComputerSiene Institute at Berkeley, California, deisively boosted ompletion of thisbook.With pleasure I aknowledge a number of olleagues who diretly on-tributed to this book: Rolf Walter suggested the onept of rounds and theorresponding theorems of Set. 53. He also designed the rosstalk algorithms,rosstalk based mutex, and distributed rearrangement (Sets. 12, 13.6, and25), and he ontributed to token passing mutex, global mutex, and to theproofs of the Eho algorithm and phase synhronization (Sets. 13.5, 34.1,77, and 81). Ekkart Kindler designed the fairness rules (Sets. 48 and 66). Heonstruted the spanning tree algorithm (Set. 32.3) and ontributed to tokenpassing mutex, global mutex, and rearrangement (Sets. 13.5, 34.1, and 25).J�org Desel ontributed two onventions: how to syntatially represent net-work algorithms (Set. 31) and how to handle equations, inequalities and log-ial expressions (Set. 39). He also ontributed to the global mutex algorithm(Set. 34.1). Hagen V�olzer onstruted the phase synhronization algorithmtogether with its veri�ation (Sets. 36 and 81) and ontributed to the proofof the Eho algorithm (Set. 77). J�orn Freiheit orreted an earlier version ofloal mutual exlusion on networks (Set. 34.3) and ontributed deisive argu-ments to its veri�ation (Set. 79). Tobias Vesper provided the entral proofarguments for the distributed self-stabilization algorithm (Set. 82). WilfriedBrauer onstruted the asynhronous stak (Set. 11). Eike Best referred meto [Dij78℄, the soure of this book's onsensus algorithms (Set. 35).In addition, the above-mentioned ontributed numerous omments andorretions, as likewise did Juliane Dehnert, Adriane Foremniak, DominikGomm, Keijo Heljanko, Bodo Hohberg, Irina Lomazowa, Sibylle Peuker, Tho-mas Ritz, Karsten Shmidt, Einar Smith, and Mihael Weber. Many thanksto all of them, and to the many further asual members of the \Ka�eerunde",for inspiring disussions and ritiism.The burden of never-ending typesetting, hanges of text, and orretionswas shouldered mainly by Thomas Ritz. I am very grateful for his patieneand onstrutive ooperation. The pitures were drawn by J�orn Freiheit andAbdourahaman in quite a painstaking manner. Juliane Dehnert ompiled thereferenes. I am indebted to all of them.I also owe muh to Birgit Heene; her e�etive management of daily se-retarial duties saved me a lot of time that I was able to devote to this book.It is a pleasure to aknowledge the onstrutive, eÆient, and friendlysupport of Hans W�ossner, Ingeborg Mayer, and J. Andrew Ross of Springer-Verlag. Their professional management and areful editing of the manusript

Prefae VIIhave again been perfet, just as I frequently experiened during the last 15years.A Note to the Expert in Petri NetsThis is not a book on Petri nets. It is a book however that heavily em-ploys Petri nets, i.e., a slightly revised form of elementary net systems (en-systems), and \algebrai" high level nets. Revisions are motivated by therealm of distributed algorithms: The role of loops is reonsidered, and as-pets of progress and fairness are added. Altogether, those revisions providethe expressive power neessary to model elementary distributed algorithmsadequately, retaining intuitive larity and formal simpliity.A version of high-level nets is used to model data dependenies and algo-rithms for (lasses of) networks. Tehnially, suh nets are based on oneptsfrom algebrai spei�ation, but they may be understood independently ofthat �eld.Multiple instanes of a token in the same plae will never our, beausethe vast majority of distributed algorithms by their nature do without mul-tiple instanes of tokens. Loal states of nets are hene propositions andprediates, thus providing the elements for logi-based analysis tehniques.Two kinds of properties will be studied, both of them instanes of [AS85℄'ssafety and liveness properties. In this text they will be alled state andprogress properties in order to avoid onfusion with onventional safety andliveness of Petri nets. Again, those notions are motivated by pratial needs.Plae invariants and initialized traps turn out to be useful in analyzing stateproperties. Progress properties have rarely been onsidered in the literatureon Petri nets. New onepts support their analysis, borrowed from temporallogi.Berlin, April 1998 Wolfgang Reisig

Contents
Introdution : 1Part A. Elementary System Models 3I. Elementary Conepts : 51 A First Look at Distributed Algorithms 52 Basi De�nitions: Nets . 143 Dynamis . 174 Interleaved Runs . 215 Conurrent Runs . 226 Progress . 277 Fairness . 308 Elementary System Nets . 31II. Case Studies : 359 Sequential and Parallel Bu�ers . 3510 The Dining Philosophers . 3811 An Asynhronous Stak . 4412 Crosstalk Algorithms . 4513 Mutual Exlusion . 5014 Distributed Testing of Message Lines . 60Part B. Advaned System Models 63III. Advaned Conepts : 6515 Introdutory Examples . 6516 The Conept of System Nets . 7317 Interleaved and Conurrent Runs . 7518 Strutures and Terms . 7819 A Term Representation of System Nets 8020 Set-Valued Terms . 8321 Transition Guards and System Shemata 88

X ContentsIV. Case Studies : 9122 High-Level Extensions of Elementary Net Models 9123 Distributed Constraint Programming 9624 Exlusive Writing and Conurrent Reading 10025 Distributed Rearrangement . 10226 Self Stabilizing Mutual Exlusion . 105V. Case Studies Continued: Aknowledged Messages : : : : : : : 10727 The Alternating Bit Protool . 10728 The Balaned Sliding Window Protool 11229 Aknowledged Messages to Neighbors in Networks 11630 Distributed Master/Slave Agreement . 119VI. Case Studies Continued: Network Algorithms : : : : : : : : : : 12331 Priniples of Network Algorithms . 12332 Leader Eletion and Spanning Trees . 12533 The Eho Algorithm . 12734 Mutual Exlusion in Networks . 13035 Consensus in Networks . 13436 Phase Synhronization on Undireted Trees 13737 Distributed Self Stabilization. 140Part C. Analysis of Elementary System Models 143VII. State Properties of Elementary System Nets : : : : : : : : : : : : 14538 Propositional State Properties . 14539 Net Equations and Net Inequalities . 14740 Plae Invariants of es-nets . 15041 Some Small Case Studies . 15342 Traps . 15643 Case Study: Mutex . 159VIII. Interleaved Progress of Elementary System Nets : : : : : : : 16544 Progress on Interleaved Runs . 16545 The Interleaved Pik-up Rule . 16746 Proof Graphs for Interleaved Progress 17047 Standard Proof Graphs . 17248 How to Pik Up Fairness . 17649 Case Study: Evolution of Mutual Exlusion Algorithms 178IX. Conurrent Progress of Elementary System Nets : : : : : : : 18750 Progress on Conurrent Runs . 18751 The Conurrent Pik-up Rule . 18852 Proof Graphs for Conurrent Progress 190

Contents XI53 Ground Formulas and Rounds. 19154 Rounds of Sequential and Parallel Bu�er Algorithms 19555 Rounds and Ground Formulas of Various Algorithms 19756 Ground Formulas of Mutex Algorithms 200Part D. Analysis of Advaned System Models 205X. State Properties of System Nets : 20757 First-Order State Properties . 20858 Multisets and Linear Funtions . 20959 Plae Weights, System Equations, and System Inequalities . 21060 Plae Invariants of System Nets . 21461 Traps of System Nets . 21962 State Properties of Variants of the Philosopher System 222XI. Interleaved Progress of System Nets : 22763 Progress on Interleaved Runs . 22764 Interleaved Pik-up and Proof Graphs for System Nets 22865 Case Study: Produer/Consumer Systems 23066 How to Pik up Fairness . 231XII. Conurrent Progress of System Nets : 23367 Progress of Conurrent Runs . 23368 The Conurrent Pik-up Rule . 23469 Pik-up Patterns and Proof Graphs . 23570 Ground Formulas and Rounds. 238XIII. Formal Analysis of Case Studies : 24171 The Asynhronous Stak . 24172 Exlusive Writing and Conurrent Reading 24473 Distributed Rearrangement . 24974 Self-Stabilizing Mutual Exlusion . 25375 Master/Slave Agreement . 25576 Leader Eletion . 25877 The Eho Algorithm . 26078 Global Mutual Exlusion on Undireted Trees 26679 Loal Mutual Exlusion . 26980 Consensus in Networks . 27981 Phase Synhronization on Undireted Trees 28582 Distributed Self-Stabilization. 291Referenes : 298

Introdution
An algorithm is said to be distributed if it operates on a physially or logiallydistributed omputing arhiteture. Typially, suh arhitetures lak globalontrol. This requires partiular means to model and to verify distributedalgorithms.This book is based on the assumption that distributed algorithms areimportant and that their present-day treatment an be improved upon. Twoentral problems are takled: how to adequately desribe a distributed algo-rithm and how to prove its deisive properties.The algorithmi idea of most distributed algorithms enters around mes-sages, synhronizing shared use of sare resoures, and ausal dependeniesof ations for some partiular, usually not fully spei�ed, omputing arhi-teture.As an example, the eho algorithm is a shema for aknowledged informa-tion dissemination, to run on any onneted network of omputing agents.From a purely omputational point of view, this algorithm just stipulatesthat eah agent send the same message to all its neighbors. The algorithmiidea, however, is enoded in ausal relations between those messages. Anyadequate desription of this idea should employ formal primitives to repre-sent sending and reeiving of messages; whereas, e.g., the administration ofmessages already reeived in an array is an implementation detail, irrelevantfor the eho algorithm.A distributed algorithm is adequately desribed if the operational primi-tives employed fous on the essential idea of the algorithm. Experiene revealsthat loal states and atomi ations are ruial in this ontext: Ourreneof an atomi ation a�ets a subset of loal states. More involved examplesfurthermore require values to be moved along the system and require a moreabstrat desription of omputing systems (suh as \any onneted networkof agents" in the eho algorithm). Tehnially, an adjusted version of Petrinets o�ers primitives of this kind.The deisive properties of eah distributed algorithm inlude aspets ofsafety and liveness, intuitively haraterized as \nothing bad will ever hap-pen" and \eventually something good will happen", respetively. As an ex-ample, the ore properties of the eho algorithm mentioned above are, �rstly,that the agent starting to disseminate some message will terminate only af-

2 Introdutionter all other agents have been informed and, seondly, that this agent willeventually terminate. Tehnially, temporal logi provides adequate means torepresent and to prove these kinds of property.Hene this book will employ an adjusted version of Petri nets to representdistributed algorithms, and an adjusted version of temporal logi to verifythem. It ombines seleted onepts that reveal transpareny and simpliityof both representation and analysis of distributed algorithms. These inlude{ suitable means to represent the essentials of distributed algorithms (suhas loal states, atomiity of ations, and synhronization), and to avoidunneessary and superuous onepts suh as variables and assignmentstatements;{ a maximally tight ombination of modeling and analysis tehniques, whereloal states are propositional or �rst-order expressions, and ations aremost elementary prediate transformers;{ well-established Petri net analysis tehniques (plae invariants and initial-ized traps, in partiular), immediately yielding logial representations ofsafety properties (in the sequel alled state properties);{ suitable means based on temporal logi to represent and prove livenessproperties, by \piking up" elementary suh properties from the statipresentation of algorithms, and by ombining them in proof graphs (in thesequel alled progress properties);{ new notions of progress and fairness that di�er slightly from onventionalnotions of weak and strong fairness, and yield amazingly simple proof rules.We do not pursue the most expressive means available in an attempt toover virtually all interesting aspets and properties of distributed algorithms.Instead, we restrit our attention to tehnially quite simple means, yet stillovering an overwhelming majority of the problems that arise during theonstrution and analysis of distributed algorithms.Speial features of this text, besides its general aim of ultimate trans-pareny and simpliity, inlude{ the notion of onurrent runs, as a basis for the notions of ground statesand round based algorithms;{ a slightly revised notion of fairness;{ partiularly strong tehniques for piking up safety and liveness propertiesfrom the stati representation of distributed algorithms.

Part AElementary System Models
This part onsists of two hapters. The �rst one introdues the elementaryingredients for modeling distributed algorithms: loal states, atomi ations,the notion of single runs, and the assumption of progress (among others).Altogether, those elementary onepts are amazingly simple. Nevertheless,they provide adequate means to model a large lass of distributed algorithms.The seond hapter demonstrates this by various well-known distributedalgorithms formulated in this setting. It turns out that risp models fre-quently do better without variables, assignment statements, global fairnessassumptions, et.

I. Elementary Conepts
Di�erent representations of an intuitively simple system are presented andompared in Set. 1. One of them is a net, i.e., an instane of the formalismintrodued in the rest of Chap. I. Setion 2 is slightly tehnial as it intro-dues nets, the basi notion of this book. Most of Set. 2 { anyway small {may be skipped upon �rst reading. The elementary formalism for modelingdistributed algorithms is introdued in Set. 3. It essentially omprises thenotions of loal states, loal ations, and their interplay. Two respetive on-eptions of single runs of onurrent systems are onsidered in Sets. 4 and 5:a onventional one, employing global states and sequentially observed events,and a ausality-based notion, emphasizing ausal order and loality of stateourrenes and events. Setion 6 onsiders the { intuitively obvious { as-sumption of progress, i.e., the assumption that an enabled ation will eitherour or be disabled by some ourrene of ompeting ation. The fundamen-tals of priority and fairness follow in Set. 7. Setion 8 onludes the hapterwith remarks on the suggested tehniques.1 A First Look at Distributed AlgorithmsThis setion provides a �rst look at this book's ontents. We start by out-lining the sope of onern, i.e., representations of distributed algorithms.Then di�erent suh representations are presented for a fairly simple, albeitillustrative example. Among them is a Petri net. Petri nets will be employedthroughout this book.1.1 Sope of onernDistributed algorithms help to organize a large lass of tehnial as well asnon-tehnial systems. A system may exist physially or be implementedorganizationally, or it may be a planned, hypothetial reality. Examples ofsystems inlude any kind of workow (e.g., an oÆe for issuing passports)and tehnial systems (e.g., prodution lines in a fatory), and of ourse everykind of omputing devie.A system is assumed to exhibit some quantum of dynami hange. Dy-nami hange is often desribed as a ontinuous funtion over time. However

6 I. Elementary Coneptsit is, frequently more appropriate to identify disrete hange. For example,on the level of register-transfer in a omputer, moving a value into a registeris ahieved by ontinuously hanging voltages. A ontinuous model may de-sribe physial details. The intended e�et, however, i.e., what the hardwareis built for and intended to provide, is nevertheless disrete. This kind ofdisrete e�et will be modeled as an ation.Typial suh ations of omputer systems an be identi�ed in logialswithes, mahine instrutions, ompiling and programming issues, databasetransations, network organization, et.Examples of ations in organizational systems, e.g., in a passport oÆe,inlude �lling in an appliation form, delivering it to a lerk, paying a fee ata ash desk, reeiving a reeipt, et.Ations also desribe a lot of relevant behavior in tehnial systems. Typ-ial ations in hemial proesses inlude heating some liquid, or pouring itinto bottles. Of interest in this ontext are usually measuring instrumentssignaling, e.g., \liquid is hot enough" or \bottle is full".Ations arise in the proess of modeling behavior of systems, by help ofalgorithms. Many di�erent formalisms for desribing suh algorithms havebeen suggested. This book employs the formalism of Petri nets.1.2 Example: A produer-onsumer systemIn the rest of this hapter, a fairly simple, albeit illustrative distributed algo-rithm will be modeled, in the sequel denoted as a produer-onsumer system.This algorithm may originate from quite di�erent areas, inluding databases,ommuniation protools, operating systems, or omputer arhiteture (butalso from areas outside omputer siene): Distinguished items are produed,delivered to a bu�er, later removed from the bu�er, and �nally onsumed.The bu�er is assumed to have apaity for one item. In a onrete instane,\to deliver" may stand for \to send" or \to deposit". Likewise, \to remove"may stand for \to reeive" or \to aept". The items involved may be anygoods, data arries, signals, news, or similar items. We are not interestedhere in any partiular one of those onrete instanes, but in their ommonproperties.Four models of this algorithm will be studied, using four di�erent for-malisms. We start with a programming notation, ontinue with state andtransition based formalisms, and �nally onstrut a Petri net.1.3 A programming notation for the produer-onsumer systemOne may be tempted to represent the produer/onsumer system in termsof programming notations. As an example, assume a variable bu�er, rangingover the two-element domain fempty, �lledg, and the following two programs:

1 A First Look at Distributed Algorithms 7P1: do foreverprodue;if bu�er = empty thenbu�er := �lledend P2: do foreverif bu�er = �lled thenbu�er := empty;onsumeend. (1)Furthermore, let P= (P1 k P2) be a program, representing the parallel exe-ution of P1 and P2.In order to larify the meaning of P, one may assume a ompiler, a runtime system, et., allowing one to exeute P on a given omputing devie.The runs of P then orrespond to the behavior of the produer/onsumersystem: The system is simulated by P.1.4 A state-based representationof the produer-onsumer systemAs a seond approah to represent the system desribed above, we may as-sume three subsystems: the produer, the bu�er, and the onsumer, with thefollowing states and ations:
rd

rp

fd

em

rc

rr

producer: buffer: consumer: (2)Eah subsystem onsists of two loal states whih are visited alternately: theproduer's states are \ready to produe" (rp) and \ready to deliver" (rd).Likewise, the bu�er has the states \empty" (em) and \�lled" (fd), and theonsumer's states are \ready to reeive" (rr) and \ready to onsume" (r).Arrows denote possible steps between the subsystems' states. Arrows withouta soure node indiate initial states.Diagram (2) does not desribe the behavior of the system entirely andorretly: The steps rd! rp and em! fd our oinidently in the system.This applies also for rr!r and fd!em . This information must be given inaddition to (2).1.5 An ation-based representationof the produer-onsumer systemThe above representation is state-based: (loal) states are assumed, and tran-sitions are desribed as funtions over these states. Next we onsider anexample for an ation-based approah. The three subsystems are now de-sribed by their ations: The produer alternates the ations \produe"

8 I. Elementary Conepts(p) and \deliver" (d). The in�nite sequene pdpd: : : of ations desribesits behavior. This behavior an be represented �nitely by the equationproduer = p.d.produer. (3)This equation may be read as \the produer �rst performs p, then d, andthen behaves like the produer". The in�nite sequene pdpd: : : is the solutionof the equation (2) in the set of all (�nite and in�nite) strings onsisting ofp and d.The onsumer likewise alternates the ations \remove" (r) and \onsume"(). Its in�nite behavior rr: : : is given by the equationonsumer = r..onsumer. (4)The bu�er's ations are strongly synhronized with depositing and remov-ing, and are therefore denoted by d and r, respetively. Its behavior drdr : : :is given by bu�er = d:r:bu�er. (5)The overall behavior of the produer/onsumer system is now obtainedfrom the joint behavior of its three subsystems.Assuming a suitable operator \k" for parallel omposition of systems, theoverall system reads produer k bu�er k onsumer: (6)For eah ation x, the operator k must guarantee that x and x ouroinidently.1.6 A net representation of the produer-onsumer systemThe two formalisms of Sets. 1.4 and 1.5 operate with quite �xed onepts:One is state-based, one is ation-based, and both stik to pairwise synhro-nization of ations of sequential proesses. With these kinds of formalism, alot of distributed algorithms an be represented adequately. But we are aftera basi, neutral formalism, treating states and ations on an equal footing,and avoiding the need to �x partiular deompositions of algorithms alreadyat the beginning.Figure 1.1 represents the produer/onsumer system as a Petri net. Itemploys irles and boxes to represent loal states and ations, respetively.Blak dots (\tokens") inside irles haraterize the initial state of the sys-tem. Generally, tokens indiate loal states that are \presently taken" or\reahed". Eah of the four involved ations may our under ertain ir-umstanes, thus hanging the atual distribution of tokens.

1 A First Look at Distributed Algorithms 9
ready to
deliver

ready to
consume

buffer
filled

buffer
empty

remove consume

ready to
remove

ready to
produce

produce deliver

Figure 1.1. A net model of the produer/onsumer system
ready to
deliver

ready to
consume

buffer
filled

buffer
empty

remove consume

ready to
remove

ready to
produce

produce deliver

Figure 1.2. After ourrene of produe

10 I. Elementary ConeptsAtion produe is enabled whenever ready to produe arries a token. O-urrene of produe forwards the token to ready to onsume, thus produingthe global state of Fig. 1.2. Intuitively, ourrene of produe moves a tokenfrom its \ingoing" to its \outgoing" loal state.Ation deliver has two \ingoing" loal states, ready to deliver and bu�erempty. This ation is enabled in Fig. 1.2, beause both of them arry a token.Ourrene of deliver then moves the tokens of all \ingoing" to all \outgoing"loal states, viz. to ready to produe and to bu�er �lled, as in Fig. 1.3.The state shown in Fig. 1.3 exhibits two enabled ations, produe andremove. They may our onurrently (ausally independently). Ourreneof remove then enables onsume in the obvious manner.
ready to
deliver

ready to
consume

buffer
filled

buffer
empty

remove consume

ready to
remove

ready to
produce

produce deliver

Figure 1.3. After ourrene of deliver.Generally, any ation in Figs. 1.1 { 1.3 is enabled i� all \ingoing" loalstates arry a token. Ourrene of an ation then moves the tokens from\ingoing" to \outgoing" loal states.Figure 1.1 shows exatly the loal states disussed in Set. 1.4. The syn-hronization of d and �d disussed in Set. 1.5 is now provided by the jointswapping of two tokens from Fig. 1.2 to Fig. 1.3.1.7 Some harateristis of Petri netsAny formalism for modeling algorithms strongly a�ets omprehension of theunderlying algorithmi idea and the apability to analyze the models. Eahformalism �xes and emphasizes some partiular issues and aspets. Here wedisuss six suh harateristis of the formalism onsidered in this book.Petri nets (in their elementary setting) employ the most elemen-tary onepts of states and transitions. (7)A loal state is just a logial (propositional) atom (e.g. \ready to produe" inFig. 1.1) with a truth value that may hange upon an ation's ourrene. An

1 A First Look at Distributed Algorithms 11ation onsists (as in many formalisms) of an enabling ondition and an e�eton states upon its ourrene. Based on the loal states introdued above, thelogial onjuntion of some loal states (with their atual truth values) serveas an ation's enabling ondition. The e�et of an ation's ourrene onsistsin swapping the atual truth value of some loal states. All ourrenes of anation ause the same loal e�et.Furthermore, ations preserve information: From an ation and the re-sult of its ourrene, the previous state an be reomputed. This stronglysupports analysis tehniques.The propositional harater of loal states will be generalized to prediatesin Part B, thus reeting data values and shemati desriptions of systems.Petri nets emphasize loality of ausation and e�et. (8)Eah loal state is assigned a �xed set of ations that swap (or read) itstruth value. Likewise, eah ation is assigned a �xed set of loal states thatare involved in its ourrene. The graphial representation of nets (suh asin Fig. 1.1) represents this viinity expliitly (by arrows).Petri nets expliitly represent fundamental issues of distributedsystems, suh as atomiity, synhronization, mutual independeneof ations, messages, and shared memory. (9)Conventional ontrol ow, onventional variables, and assignment statementsare no basi features of Petri nets. They an nevertheless be simulated, butproper Petri net representations of distributed algorithms do without thosefeatures.Petri nets are neither state-based nor ation-based. Both statesand ations have a partiular status on their own. (10)This implies that Petri nets an be employed as a referene formalism formany kind of modeling formalism. In fat, the semantis of various onurrentlanguages has been formulated in terms of Petri nets.Petri nets are unstrutured by de�nition. Struture may be puton them additionally. (11)This may be onsidered a disadvantage of Petri nets: Compositional prooftehniques, algebrai representations, and any kind of indutive argumentsan not be applied immediately. However, (11) is also advantageous. As anexample, there exist standard tehniques to gain the three omponents (pro-duer, bu�er, onsumer) of the net in Fig. 1.1 (they are just plae invariants).But a di�erent deomposition may likewise help: The \upper line" from leftto right, arrying produed items, and the \lower line" from right to left,arrying \empty" signals.Petri net models are implementable and are neutral against spe-i� implementation languages. (12)This of ourse is due to (10) and (11).

12 I. Elementary ConeptsTo sum up, Petri nets abstrat from spei� onepts suh as state ori-entation, event orientation, pairwise synhronization, omposability from se-quential omponents, variables, values, assignment statements, hierarhialstruturing, and similar onepts. What remain are fundamentals of modelsfor distributed algorithms. This view is neither partiularly \low" or par-tiularly \high", it is just a partiular level of abstration. The remainingonepts are taken from logi: The onventional tehnique of assigning predi-ates to (global or loal) states has in Petri nets been strengthened to takingpropositions and prediates themselves as loal states.It will turn out that this provides an amazingly useful modeling formalism.It inludes a kind of insight into distributed algorithms and properties thatis hard to �nd or present by other means.1.8 Relationship to other formalismsThe oneption of ations, as introdued in Set. 1.1 and disussed underharateristi (7), is employed in many other formalisms. Examples inludeguarded ommands [Dij75℄, UNITY [CM88℄, and extended transition sys-tems [MP92℄. But emphasis on loal states is typial for Petri nets. Otherformalisms usually work with global states.Use of logial onepts (propositions in Part A and prediates in Part B ofthis book) as loal states is also a spei� issue. Other formalisms use states tostore values of variables and ow of ontrol. They employ prediates on stateswhenever properties of models are to be analyzed. Employing prediates asstate elements is hene a natural hoie.Reversibility of ations is motivated by fundamental onsiderations in,e.g., [FT82℄ and [Ben73℄. They show relevane and universality of reversibleswithing elements.Loality of ausation and e�et, as desribed in (8), is a fundamental issue[Gan80℄. This ontrasts with other formalisms suh as CCS [Mil89℄ and stateharts [Har87℄, where in order to fully oneive an ation, one has to traethe ourrene of a distinguished symbol in the entire system model (i.e., ina term or a graphial representation).Compared with Petri nets, other formalisms ope with fundamental is-sues of distributed algorithms less expliitly. As an example, assumptions onatomiity of parts of assignment statements are frequently not made expliit,though they are ruial for the semantis of parallel programs. Synhroniza-tion issues suh as \wait for messages from all your neighbors, and then : : : "are formulated impliitly, e.g., by ounting the number of arriving messages.Many other modeling formalisms are ompositional and de�ne systemmodels indutively, e.g., CCS [Mil89℄ and state harts [Har87℄. Suh modelssuggest, but also generally �x, ompositional and hierarhial proof stru-tures, term representations, and any kind of indutive arguments. Unstru-tured formalisms suh as Petri nets and transition systems are better at

1 A First Look at Distributed Algorithms 13allowing for example oriented, goal-guided deomposition and struturingwhen it omes to orretness proofs.This book's view an not be retained for large systems. Systemati re�ne-ment of spei�ations and ompositional proof tehniques are inevitable then.However, large algorithms require adequate tehniques for small algorithms.The sequel is intended to provide suh tehniques, in partiular providingsimpler means and arguments for a wide lass of distributed algorithms.1.9 Relationship to other textbooksOne of the earliest textbooks is [CM88℄, providing a simple abstrat oper-ational model, a temporal logi based proof tehnique, and an impressiveolletion of ase studies. In the latter two respets, the sope of this bookalmost oinides with ours. But we employ a fundamentally di�erent opera-tional model, whih expliitly models onurreny (as well as nondetermin-ism) and is implementable in priniple, as it refrains from global fairnessassumptions. Fred Shneider's most reent book [Sh97℄ suggests onven-tional onurrent programs and adjusted, well-established temporal logi-based proof tehniques. Conurreny is operationally treated as a speialase of nondeterminism, and fairness assumptions a�et global states (bothontrasting with our basi assumptions).Some issues treated in [BA90℄ and in our book oinide, inluding al-gorithms for (distributed) mutual exlusion and dining philosophers. [BA90℄onentrates on programming onepts, spei� programming languages, andimplementation strategies, whereas we onentrate on an abstrat imple-mentable operational model and on veri�ation.[RH90℄ disusses a lot of synhronizing algorithms, some of whih we pikup, too. [RH90℄ represents algorithms in semi-formal pseudo ode, where weuse a formal operational model. We give the notion of a \wave", suggestedin [RH90℄, a formal basis, and exploit it in proof tehniques.In the line and style of [BA90℄, [Ray88℄ generalizes that approah to otheralgorithms, and partiularly to ommuniation protools. [Tel94℄, [Bar96℄,and [Lyn96℄ in a similar style o�er broad olletions of algorithms, inludingtemporal aspets suh as timing onstraints, probabilisti algorithms, et. Inpartiular, [Lyn96℄ is an almost omplete ompendium of distributed algo-rithms. All these books represent algorithms in pseudo ode of I/O automata,and employ semi-formal orretness arguments. In ontrast, we onsider feweralgorithms, exluding real-time and probabilisti ones. But we suggest an op-erational model and formal veri�ation tehniques that exploit onurreny.[Bes96℄ o�ers a number of algorithms, some of whih we onsider, too.Among all the textbooks mentioned, this is the only one to model onur-reny expliitly (with the help of Petri nets). It also employs a Petri netbased tehnique (transition invariants) to argue about liveness properties.We suggest a version of temporal logi for this purpose.

14 I. Elementary Conepts[MP92℄ and [MP95℄ suggest a programming representation for algorithms,together with a formal semantis, fousing on temporal logi-based proof ofsafety properties. Liveness was postponed to a forthoming volume. We overliveness, too.Summing up, in ontrast to our approah, none (but [Bes96℄) of the men-tioned textbooks employs an operational model that would represent or ex-ploit onurreny expliitly (though onurreny is an essential feature ofdistributed algorithms). Veri�ation is addressed with a di�erent degree ofrigor in all texts, most formally in [CM88℄, [MP92℄, [MP95℄, [Bes96℄, and[Sh97℄. Formal veri�ation always (exept in [Bes96℄) employs temporal logion transition systems, thus not exploiting onurreny. In ontrast, we sug-gest a version of temporal logi that exploits onurreny.2 Basi De�nitions: NetsThis setion provides the general framework of state elements, transition ele-ments, and their ombination. This framework will later be applied in variousontexts.Figure 1.1 shows an example of a net with a partiular interpretation:irles and boxes represent loal states and ations, respetively.There exist other interpretations of nets, too. But they always follow thesame sheme: Two sorts of omponents are identi�ed, emphasizing \passive"and \ative" aspets, respetively. They are ombined by an abstrat relation,always linking elements of di�erent sorts.2.1 De�nition. Let P and T be two disjoint sets, and let F � (P � T) [(T � P). Then N = (P; T; F) is alled a net.Unless interpreted in a speial manner, we all the elements of P , T , andF plaes, transitions, and ars, respetively. F is sometimes alled the owrelation of the net.We employ the usual graphial representation of nets, depiting plaes,transitions, and ars as irles, boxes, and arrows, respetively. An arrowx! y represents the ar (x; y). Ignoring the blak dots inside some of theirles, Fig. 1.1 shows a net with six plaes and four transitions.As a matter of onveniene, in this text a net will frequently be identi�edby the number of the �gure representing it. As an example, �1:1 denotes thenet in Fig. 1.1.Nets are oasionally denoted in the literature as bipartite graphs. Butnotie that the two nets of Fig. 2.1 are not equivalent in any relevant ontext.The following notational onventions will be employed throughout theentire book:2.2 De�nition. Let N = (P; T; F) be a net.

2 Basi De�nitions: Nets 15
Figure 2.1. Two di�erent netsi. PN , TN , and FN denote P , T , and F , respetively. By abuse of notation,N often stands for the set P [T , and aFb for (a; b) 2 F .ii. As usual, F�1, F+, and F � denote the inverse relation, the transitivelosure, and the reexive and transitive losure of F , respetively, i.e.,aF�1b i� bFa, aF+b i� aF1F2 : : : nFb for some 1; : : : ; n 2 N andaF �b i� aF+b or a = b. For a 2 N , let F (a) = fb j aFbg.iii. Whenever F an be assumed from the ontext, for a 2 N we write �ainstead F�1(a) and a� instead F (a). This notation is translated to subsetsA � N by �A = Sa2A �a and A� = Sa2A a�. �A and A� are alled thepre-set (ontaining the pre-elements) and the post-set (ontaining thepost-elements) of A.The following examples for the above notations apply to �1:1 (i.e., the netin Fig. 1.1): For eah plae p 2 P�1:1 both sets �p and p� have one element.For eah t 2 T�1:1 , j �t j = j t� j. Furthermore, for all a; b 2 �1:1 a(F �N1:1)b.Obviously, for x; y 2 N , x 2 �y i� y 2 x�.The rest of this setion introdues basi notions suh as isomorphism,speial substrutures of nets, and subnets. It may be skipped at �rst reading.Isomorphism between nets is de�ned as an be expeted:2.3 De�nition. Two nets N and N 0 are isomorphi (written: N ' N 0) i�there exists a bijetive mapping � : N ! N 0 between their element sets suhthat �(PN) = PN 0 , �(TN) = TN 0 , and xFNy i� �(x)FN 0�(y).We are mostly not interested in the individuality of plaes and transitionsof a net. Any isomorphi net does the same job, in general. Nets resemblegraphs in this respet. In graphial representations of nets, then, plaes andtransitions remain unnamed. We employed this onvention already in nota-tion (1).The following speial strutures are frequently distinguished:2.4 De�nition. Let N be a net.i. x 2 N is isolated i� �x[x� = ;.ii. x; y 2 N form a loop i� xFNy and yFNxiii. x and y are detahed i� (�x[fxg [x�) \ (�y[fyg [y�) = ;.iv. For A � N , N is A-simple i� for all x; y 2 A : �x = �y and x� = y�imply x = y.v. N is simple i� N is N-simple.

16 I. Elementary Coneptsvi. N is onneted i� for all x; y 2 N : x(F [F�1)�y.vii. N is strongly onneted i� for all x; y 2 N : x(F �)y.As an example, the net �1:1 in Fig. 1.1 has no isolated elements and noloops; it is simple, onneted, and even strongly onneted. State bu�er �lledand ation produe are detahed, whereas bu�er �lled and ready to produe arenot. Eah of the two nets in Fig. 2.1 is onneted, but not strongly onneted.Figure 2.2 gives further examples for the speial strutures desribed above.
N N

not P -simple not T -simplea loopFigure 2.2. Speial strutures in netsIsolated elements sometimes our as a tehnial onstrut. They have nopartiularly reasonable use in many appliations of nets. Loops oasionallyplay a distinguished role. Most nets to be studied will be onneted. But itis oasionally illuminating to onsider two entirely unonneted nets as onenet.Simpliity, as de�ned in Def. 2.4(iv), is quite a natural assumption orproperty in a wide range of appliations. Eah transition t of a TN -simplenet N is uniquely determined by its pre- and postsets �t and t�. Representingeah transition t by (�t; t�), N is uniquely given by PN and TN . Likewise,eah plae p of a PN -simple net N is uniquely determined by �p and p�.To sum up the potential links between two elements of a net, Def. 2.1implies that elements of equal type (i.e., two plaes or two transitions) arenever F -related. Eah pair of elements of di�erent type orrespond in exatlyone out of four alternative ways, as shown in Fig. 2.3.Nets are frequently used in a labeled version, with some symbols or itemsassigned to plaes, transitions, or ars.2.5 De�nition. Let N be a net and let A be any set.i. Let l1: PN ! A, l2: TN ! A, l3: PN [TN ! A and l4: FN ! A bemappings. l1; : : : ; l4 are alled a plae labeling, a transition labeling, anelement labeling, and an ar labeling of N over A, respetively.ii. N is said to be plae labeled (transition labeled, element labeled, arlabeled, respetively) over A i� a orresponding labeling is given eitherexpliitly or impliitly from the ontext.Labelings are graphially represented by means of symbols asribed to theorresponding irles, boxes, or arrows. For example, the dots in some irles

3 Dynamis 17
detached transition detached place

pre-transition post-transition

side-transition

pre-place post-place

side-place

place oriented view transition oriented viewFigure 2.3. The relationship between plaes and transitionsof Figs. 1.1 { 1.3 represent a plae labeling l : P� ! f0; 1g, with l(p) = 1 i�the irle representing p arries a dot.An already labeled net may get additional labelings.3 DynamisFigure 1.1 shows a net with plaes and transitions interpreted as loal statesand ations, respetively. A set of loal states forms a global state. Its elementsare graphially depited by a dot in the orresponding irle. Setion 1.6explained that an ation t is about to our in a global state, provided �tbelongs to that state. Ourrene of t then replaes �t by t�, this way yieldinga new state, as graphially shown in Fig. 3.1.=)Figure 3.1. Ourrene of an ationNets will be denoted by �; plaes and transitions will be alled loal statesand ations, respetively, to underline this interpretation.3.1 De�nition. Let � be a net.i. Any subset a � P� of loal states is alled a (global) state of �.

18 I. Elementary Coneptsii. An ation t 2 T� has onession in a given state a (a enables t) i� �t � aand (t� n �t) \ a = ;.iii. Let a � P� be a state and let t 2 T� be an ation of �. Then e�(a; t) :=(a n �t) [t� is the e�et of t's ourrene on a.iv. Let t 2 T� be an ation with onession in some state a � P�. Then thetriple (a; t; e�(a; t)) is alled a step in � and usually written a t�!e�(a; t).A global state is usually depited by blak dots (\tokens") in the orre-sponding irles of graphial net representations. The statea = fready to produe; bu�er empty ; ready to removegis this way depited in Fig. 1.1. Only one ation, produe, is enabled in thisstate. Ourrene of produe then yields the state shown in Fig. 1.2. The stateof Fig. 1.3 enables two ations, produe, and remove.Intuitively, �t is the set of pre-onditions for the ourrene of ation t,and t� is the set of onditions holding after t's ourrene (we may all thempost-onditions of t).The above de�nition invites a number of observations, to be disussedin the rest of this setion. First of all, a transition involved in a loop, as inFig. 3.2, may very well have onession in some given state a. This deviates

t

pFigure 3.2. A loopessentially from the onventions of elementary net systems [Roz86℄ or on-dition/event systems [Rei85℄. There, a transition involved in a loop is neverenabled. Our onvention �ts with pratial needs [Val86℄.In a step a t�!b, the states a and b are tightly oupled to the transition t: aan be traed bak from b and t. (This ontrasts with assignment statementsx := f(x), where the previous value of x an in general not be traed bakfrom f and the new value of x). In ase � is loop-free, even �t and t� an beretrieved from a and b.3.2 Lemma. Let a t�!b be a step of some net �.i. a = (b n t�) [�t.ii. �t = a n b and t� = b n a i� � is loop-free.In a step a t�!b, a set of plaes may be added or be removed from botha and b, provided is disjoint from �t and from t�:

3 Dynamis 193.3 Lemma. Let a t�! b be a step of some net � and let � P� with \(�t[t�) = ;.i. (a [) t�!(b [) is a step of �.ii. (a n) t�!(b n) is a step of �.We leave proof of Lemmas 3.2 and 3.3 as an exerise for the reader.Generally, steps exhibit a whole bunh of symmetries, partiularly for loop-free es-nets.Two situations deserve partiular attention: Firstly we observe that a-ording to Def. 3.1(ii) there an be two reasons for a transition t not to haveonession in some state a: either some preondition is missing (�t 6� a), orthey are all present (�t � a), but additionally one of the \new" postondi-tions is already present ((t� n �t)\a 6= ;), as in Fig. 3.3. This kind of situationwill be denoted as ontat:3.4 De�nition. Let � be a net with a transition t 2 T� and a state a � P�.Then a is a ontat state with respet to t i� �t � a and (t� n �t) \ a 6= ;.
Figure 3.3. Contat situationHene, in ase of no ontat, the preonditions alone provide the require-ments of enabling.The seond situation onerns two transitions t and u, both enabled insome state a. If they share a ommon pre- or postondition, as in Fig. 3.4,the ourrene of t prevents the ourrene of u (and vie versa); t and u arethen said to be in onit.

t

u

or t

uFigure 3.4. Conit situation

20 I. Elementary Conepts3.5 De�nition. Let � be a net, with two di�erent transitions t; u 2 T� anda state a � P� : a is a onit state with respet to t and u i� both t and uhave onession in a, and are not detahed.The state of the net shown in Fig. 3.5 is oniting with respet to aand b, as well as with respet to a and . The two ations b and are notoniting.
d

D

C B

c

A E

ab

Figure 3.5. Net with onitThe notion of oniting events t and u is immediately obvious for loop-free nets. In this ase, ourrene of t prevents immediate ourrene of u(and vie versa).3.6 Lemma. Let � be a loop-free net. Let a be a onit state with respetto two transitions t and u of �. Then a t�!b implies u not be enabled in stateb. In the ontext of loops, as in Fig. 3.6, onit between t and u preventst and u ourring onurrently. A formal de�nition of events ourring on-urrently is postponed to Set. 5.
t

uFigure 3.6. Loops, preventing onurrent ourrene of t and u

4 Interleaved Runs 214 Interleaved RunsSingle steps of a net �, as onsidered in the previous setion, ompose toruns of �. The most elementary omposition of two steps a t�! b and b u�! is their sequential ombination in the run a t�! b u�! . Generally, one mayonstrut runs a0 t1�!a1 t2�!� � � tn�!an of nets �, provided ai�1 ti�!ai is a stepof �, for i = 1; : : : ; n. Furthermore, we onsider in�nite runs, too:4.1 De�nition. Let � be a net.i. For i = 1; : : : ; n let ai�1 ti�! ai be steps of �. Those steps form a �-based �nite interleaved run w, written a0 t1�! a1 t2�! � � � tn�! an. Eahi 2 f0; : : : ; ng is an index of w.ii. For eah i = 1; 2; : : : let ai�1 ti�! ai be steps of �. Those steps form a�-based in�nite interleaved run w, sometimes outlined a0 t1�! a1 t2�!� � � .Eah i 2 N is an index of w.
A

B

C

D

E

ab c d

Figure 4.1. A net onsisting of independent subnets
A

B

C

D

E

ab c d

Figure 4.2. Extending �4:1 by loopsExamples of �nite runs of the net �1:1 inlude a0 produe�����! a1 deliver����!a2 remove�����! a3 produe�����! a4 and a0 produe�����! a1 deliver����! a2 produe�����! a5 remove�����! a4,

22 I. Elementary Coneptswith a0 as depited in Fig. 1.1 and a1; : : : ; a5 obvious from ontext. Eah�nite run of �1:1 an be extended to in�nitely many �nite and in�nite runs.Figures 4.1 and 4.2 show two di�erent nets. The interleaved runs (both �niteand in�nite) starting at the depited global state are equal for both nets.The runs of a net exhibit some regularities. First we onsider runs on-sisting of two steps. We give a Lemma for loop-free nets and leave the generalase to the reader:4.2 Lemma. Let � be a loop-free net, and let a t�!b u�! be a �-based run.i. �t\ �u = t� \u� = ;.ii. There exists a state d with a u�!d t�! i� t and u are detahed.Eah initial part of a run is a run. Furthermore, \yli" sequenes ofsteps an be repeated:4.3 Lemma. Let � be a net, let a0 t1�!� � � tm�!am be a �-based run, and letn < m.i. a0 t1�!� � � tn�!an and an tn�!� � � tm�!am are also �-based runs.ii. If an = am, then a0 t1�!� � � tm�!am tn+1���!� � � tm�!am is also a �-based run.A state b is reahable from a state a i� there exists an interleaved runfrom a to b:4.4 De�nition. Let � be a net and let a; b � P� be global states of �:b is reahable from a in � i� there exists a �-based �nite interleaved runa0 t1�!a1 t2�! : : : tn�!an with a0 = a and an = b.We leave proof of Lemmas 4.2 and 4.3 as an exerise for the reader.5 Conurrent RunsWe �nished Set. 4 with a disussion of an adequate representation of inde-pendent ation ourrenes. The notion of an interleaved run has been sug-gested, providing a reord of ation ourrenes and loal state ourrenes.The revised approah, to follow here, deserves partiular motivation.A run distinguishes the �rst, seond, et., ourrene of an ation andrelates it to the �rst, seond ,et., ourrene of other ations. Eah singleourrene of an ation will be alled an event. Likewise, eah single our-rene of a loal state will be alled a ondition. Conditions hene serve aspreonditions and postonditions for events. Then, a run onsists of ondi-tions and events, ordered by a \before { after" relation. Interleaved runs,disussed in Set. 4, provide global states and an order on events, motivatedby an \observer" who observes events one after the other. Di�erent observers

5 Conurrent Runs 23may observe di�erent orders of events, hene a net is assoiated with a set ofinterleaved runs.This onept onfuses system-spei�ed, ausal order with order addition-ally introdued by observation. Events that our independently are arbi-trarily ordered by observation. Even if we assume that independene amongevents may not be observable, it may nevertheless be representable. So weask for a representation of objetive, i.e., entirely system-based, ordering ofonditions and events.Before formally de�ning suh a notion, we disuss some of the propertiesto be expeted from this onept.Firstly, independent events should be distinguished from events in arbi-trary order. As an example, ompare �4:1 and �4:2: a and our indepen-dently in �4:1, whereas in �4:2 they our in either order.The essential di�erene between �4:1 and �4:2 is the existene of onitin �4:2: Whenever the state shown in Fig. 4.2 has been reahed, a deision hasto be made onerning the order of a's and 's ourrene. Di�erent outomesof this deision yield di�erent runs. Hene �4:2 evolves di�erent runs, in fatin�nitely many di�erent runs (beause the state of �4:2, shown in Fig. 4.2,is reahed in�nitely often).A state in �4:1 never ours where a deision between enabled ations isto be made: Whenever two ations are enabled, they our mutually inde-pendently.To sum up, an observer-independent notion of runs should reord eventsand onditions. It should make expliit to what extent events and onditionsare ordered due to the underlying system's onstraints. Hene, this kind ofourrene reord partially orders its elements by the relation \x is a ausalprerequisite for y", beause repetitions of the same ation or the same loalstate are reorded as new entries. Unordered elements denote independent(\onurrent") ourrenes. There is a fairly obvious representation of suhreords, namely again as a net. Figures 5.1 { 5.5 show examples.
E

A

D

B

C

A B A

C D C

a ab b

c cd dFigure 5.1. Conurrent run of �4:1Eah transition in Figs. 5.1 and 5.2 represents an event, i.e., the ourreneof an ation. This ation is denoted by the transition's labeling. Distinttransitions with the same labeling denote di�erent ourrenes of the same

24 I. Elementary Coneptsation. Similarly, a plae q shows by its insription b that loal state b hasbeen reahed due to the ourrene of �q and has been left as a result of theourrene of q�.
A AB B

E EEE E

C C DD

a b a

c d cFigure 5.2. Conurrent run of �4:2
AA BB

E EE

C D

E

Aa b a b

cFigure 5.3. Conurrent run of �4:2Figure 5.1 shows that the behavior of �4:1 onsists of two independentsequenes. Figure 5.2 likewise shows a onurrent run of �4:2, where the �rstourrene of is before the �rst ourrene of a, and the seond ourreneof is after the seond ourrene of a. In the run of �4:2 shown in Fig. 5.3,a ours twie before the �rst ourrene of .A onurrent run will be represented formally as an ayli net withunbranhed plaes. Suh nets will be alled ourrene nets.5.1 De�nition. A net K is alled an ourrene net i�i. for eah p 2 PK , j �p j � 1 and j p� j � 1,ii. for eah t 2 TK, j �t j � 1 and j t� j � 1,iii. the transitive losure F+K of FK , frequently written <K , is irreexive (i.e.,x1FKx2FK : : : FKxn implies x1 6= xn),iv. for eah x 2 K, fy j y <K xg is �nite.Figures 5.1{5.3 show labeled ourrene nets. <K is a strit partial orderin eah ourrene net K. In fat, x <K y i� there exists an arrow sequenefrom x to y.

5 Conurrent Runs 25We are partiularly interested in states onsisting of pairwise unorderedplaes:5.2 De�nition. Let K be an ourrene net.i. Two elements p; q 2 K are onurrent i� neither p <K q nor q <K p.ii. A state a � PK is onurrent i� its elements are pairwise onurrent.iii. A state a is maximal onurrent i� a is onurrent and no p 2 a isonurrent to any q 2 K n a.iv. Let ÆK := fk 2 K j �k = ;g and let KÆ := fk 2 K j k� = ;g.Ourrene of ations preserves onurreny:5.3 Lemma. Let K be an ourrene net and let a t�!b be a step of K.i. If a is onurrent, then b is onurrent, too.ii. If a is maximal onurrent, then b is maximal onurrent, too.Proof of this lemma is left as an exerise for the reader.Aording to the intended use (desribed above) of an ourrene net Kto desribe a run of a net �, eah maximal onurrent state a of K representsa state of � that might have been observed during the ourse of K. Two a-enabled ations of K represent onurrent (independent) ourrenes of theorresponding ations of �.
AA BB

E EE

C D

E

Aa b a b

c

u t v

Figure 5.4. A step of a onurrent run of �4:25.4 De�nition. Let � be a net, let K be an ourrene net and let l : K ! �be an element labeling of K. K is a �-based onurrent run i�i. onurrent elements of K are di�erently labeled,ii. for eah t 2 TK, l(t) 2 T�, l(�t) = �l(t) and l(t�) = l(t)�.Aording to this de�nition, Fig. 5.1 in fat shows a�4:1-based onurrentrun. Figures 5.2 and 5.3 likewise show �4:2-based runs. A step u t�! v isadditionally outlined in Fig. 5.4. With l denoting the labeling of Fig. 5.4,l(u) l(t)��! l(v) is the step fA;C;Eg a�!fB;C;Eg of �4:2. Figure 5.5 shows a

26 I. Elementary Conepts
A : ready to produce
B : ready to deliver
C : buffer empty
D : buffer filled
E : ready to remove
F : ready to consume

a : produce
b : deliver
c : remove
d : consume

A

C

a B b A

E c

 a B b A a B

CDCD

F d E c F

Figure 5.5. The unique maximal onurrent run of �1:1further example. Just like �4:1, and in ontrast to �4:2, the net �1:1 evolvesa unique maximal onurrent run.The above de�nition meets the intuition of onurrent runs only as longas no ontat states our (f. Def. 3.4). We stik to suh runs in the sequel.Interleaved and onurrent runs of a net � are tightly related: Eah in-terleaved run of a onurrent run of � represents an interleaved run of �.5.5 De�nition. Let � be a net, let K be a �-based run with labeling l, andlet a � PK be a state of K.i. â := fl(p) j p 2 ag is the �-state of a and a is said to represent â.ii. Let w = a0 t1�! a1 t2�! : : : be a K-based interleaved run suh that TK =ft1; t2; : : : g. Then the sequene l(w) := â0 l(t1)���! â1 l(t2)���! : : : is alled aninterleaving of K.5.6 Lemma. Let � be a net.i. Let K be a �-based onurrent run. Then eah interleaving of K is a�-based interleaved run.ii. Let v be a �-based interleaved run. Then there exists a unique �-basedonurrent run K suh that v is an interleaving of K.Proof of this lemma is left as an exerise for the reader.Writing sets fX;Y; Zg as XY Z, the following are two examples of inter-leaved runs of �4:2:v1 = ACE �!ADE a�!BDE b�!ADE d�!ACE a�!BCE �!BDE, (1)v2 = ACE �!ADE a�!BDE d�!BCE b�!ACE a�!BCE �!BDE. (2)

6 Progress 27There exists two interleaved runs w1 and w2 of the run of �4:2 given inFig. 5.2 suh that v1 = l(w1) and v2 = l(w2).Hene the onurrent runs of a net � partition the set of interleavedruns of � into equivalene lasses, where two interleaved runs v1 and v2 areequivalent i� there exists a onurrent run K of � with two interleaved runsw1 and w2 suh that l(w1) = v1 and l(w2) = v2.6 ProgressAny desription of algorithms usually goes with the impliit assumption ofprogress. As an example, eah exeution of a PASCAL program is assumed toontinue as long as the program ounter points at some exeutable statement;intermediate termination at some exeutable statement is not taken into a-ount. The situation is more involved for distributed algorithms. Progress isusually assumed for most, but not neessarily all ations.As an example, one may intend �1:1 not to terminate in a state s withfready to deliver ; emptyg � s, i.e., with deliver enabled. Likewise one maywant reeive and onsume not to remain enabled inde�nitely. Not enforingprodue may be adequate, however; this ation may depend on omponentsnot represented in Fig. 1.1. So one may be interested in runs that may negletprogress of produe, but respet progress of all other ations.6.1 De�nition. Let � be a net and let t 2 T�.i. A �-based �nite or in�nite interleaved run w = a0 t1�!a1 t2�! : : : negletsprogress of t i� some state ai enables t, and for no index j > i, tj 2 (�t)�.ii. A �-based onurrent run K with labeling l neglets progress of t i�l(KÆ) enables t.iii. An interleaved or onurrent run r respets progress of t i� r does notneglet progress of t.The onurrent run in Fig. 5.1 respets progress of b and d, and negletsprogress of a and . The in�nite run outlined in Fig. 5.5 respets progress ofall ations of �1:1 A run r of the oniting net �3:5 respets progress of allits ations if a is the last ation to our in r, or if d and b our in�nitelyoften and just one in r.Progress is sensitive to loops. For example, Fig. 6.1 shows a net onsistingof two detahed parts, and Fig. 6.2 gives a �6:1-based onurrent run K. Thisrun obviously neglets progress of in K, beause K an be extended, as inFig. 6.3.The run K has a unique interleavingw = fA;Cg a�!fB;Cg b�!fA;Cg a�! : : : (1)whih likewise neglets progress of in �6:1.

28 I. Elementary Conepts
A

ab

B

C DcFigure 6.1. A net onsisting of two detahed parts
ABa abA

CFigure 6.2. �6:1-based onurrent run, negleting progress of
A AB

C D

a ab

cFigure 6.3. �6:1-based onurrent run, respeting progress of
A

ab

B

C DcFigure 6.4. The door ontrol system

6 Progress 29Figure 6.4 now extends �6:1 by a loop (a; C), and Fig. 6.5 gives a �6:4-based onurrent run, K 0. This run respets progress of very well. Unlikethe run K of Fig. 6.2, the run K 0 an not be extended by an ourrene of ,beause C is inde�nitely engaged in the ourrene of a. Just like K, the runK 0 has a unique interleaving; furthermore, it is exatly the same interleavingas K, given in (1). Eah state of (1) is followed by an ourrene of ation a.This ation onits with in �6:4 (a 2 (�)�), hene (1) respets progressof in �6:4.To sum up, ourrene of progress respeting ation t in an interleavedrun w is not guaranteed by its persistent enabling (i.e., enabling in eah stateof w, as of in (1), but only by its persistent and onit free enabling.The following interpretation of �6:4 shows that this ondut of progressperfetly mathes intuition: Assume a rowd of people, oasionally passinga gate (ation a). Loal state A is taken whenever a person is due to passthe gate. Passage is feasible only in ase the gate is not loked (state C).Furthermore, a guard is supposed to lok the gate (ation). Loking andpassing the gate (ations a and) are oniting ations. Progress of a and just ensures that either of them will our in the state shown in Fig. 6.4.The run in Fig. 6.5 shows the ase of ontinuous heavy traÆ at the gate,\preventing" the guard from losing the gate.
A AB

C

a ab

CFigure 6.5. �6:4-based onurrent run, respeting progress of Defs. 6.1(i) and 6.1(ii) of progress are losely related: K respets progressof t i� eah interleaving of K does:6.2 Lemma. Let � be a net, let K be a �-based onurrent run and lett 2 T�. Then K respets progress of t i� eah interleaving of K respetsprogress of t.Proof of this lemma is left as an exerise for the reader.The assumption of progress resembles the well known assumption of weakfairness for some ation t. This assumption rules out an interleaved run w =a0 t1�!a1 t2�! : : : where for some n 2 N all states an+i enable t, but no tn+i isequal to t.Progress and weak fairness oinide for the ase of loop-free systems. Theabove example, however, shows a subtle di�erene in the ase of loops: Theinterleaved run w of (1) is not weakly fair for ation in the net �6:4, but w

30 I. Elementary Coneptsvery well respets progress of in �6:4. Conversely, eah progress respetinginterleaved run is weakly fair.7 FairnessMany distributed algorithms require the assumption of fairness for someations. Intuitively formulated, a single run r neglets fairness of some ationt i� t ours only �nitely often, but is enabled in�nitely often in r. Suh runswill be disarded in ase fairness is assumed for t.
E

dc

D

CBa bA

Figure 7.1. Net with four progressing ationsFigure 7.1 shows a tehnial example. Let r be an interleaved or onur-rent run of �7:1, respeting progress of all ations. Then a ours and b iseventually enabled in r. Either b eventually ours in r, or b is in�nitely oftenenabled in r. In the latter ase, r neglets fairness for b.7.1 De�nition. Let � be a net and let t 2 T�.i. A �-based interleaved run w neglets fairness for t i� t ours only �nitelyoften in w and is enabled in�nitely often in w.ii. A �-based interleaved run w respets fairness for t i� w does not negletfairness for t.iii. A �-based onurrent run K respets fairness of t i� all interleavings ofK respet fairness of t.An example is the in�nite interleaved run of �7:1:AD a�!BD d�!BE �!BD d�! : : : (1)Ation b is enabled in eah ourrene of BD, hene in�nitely often. Fur-thermore, b never ours in (1), hene (1) neglets fairness for b. Likewise,the onurrent run K =

8 Elementary System Nets 31
A a B

D d E c D

(2)of �7:1 neglets fairness of b: The above run (1) is an interleaving of K. Eah�nite pre�x of (1) or (2) respets fairness of all involved ations, but negletsprogress of some ation.As a further example, the run shown in Fig. 6.5 of �6:4, though respetingprogress for , does neglet fairness for .8 Elementary System NetsThe previous hapters provided all means to model a great variety of distrib-uted algorithms; in fat all algorithms whih have a �xed topology, and aregoverned by ontrol rather than by values. Those means inlude loal andglobal states, ations and their ourrene, interleaved and onurrent runs,assumptions of progress and quiesene, and fairness. A net that takes intoaount all suh aspets and additionally �xes a distinguished initial state,is alled an elementary system net:8.1 De�nition. A net � is alled an elementary system net (es-net, forshort) i�i. a state a� � P� is distinguished, alled the initial state of �,ii. eah ation t 2 T� is denoted as either progressing or quiesent,iii. some progressing ations may be distinguished as fair.
q

ready to
deliver

ready to
consume

buffer
filled

buffer
empty

remove consume

ready to
remove

ready to
produce

produce deliver

Figure 8.1. Produer/onsumer system, assuming quiesene for produeand progress for all other ations

32 I. Elementary ConeptsThe graphial representation of an es-net � depits eah element of a�by a dot (\token") in the orresponding irle. Eah square representing aquiesent or a fair ation is insribed \q" or \'", respetively. Figures 8.1and 8.2 show examples. Behavior of es-nets an be based on interleaved aswell as onurrent runs.
waiting to

pass

passingreturning q

passed

gate
open

gate
closed

closing

ϕ

Figure 8.2. The Door ontrol system, assuming progress for passing, quies-ene for returning and fairness for losing8.2 De�nition. Let � be an es-net.i. A �-based interleaved run w = a0 t1�! a1 t2�! : : : is an interleaved runof � i� a0 = a� and w respets progress of all progressing ations andfairness of all fair ations of �.ii. A �-based onurrent run K with labeling l is a onurrent run of � i�l(ÆK) = a�, K respets progress of all progressing ations and fairnessof all fair ations.�8:1 assumes quiesene for produe and progress for all other ations.Hene the runs of �8:1 inlude the in�nite run of Fig. 5.5 as well as allits pre�xes that leave produe enabled. It is easy to see that those pre�xesoinide with the pre�xes K 0 where l(K 0Æ) is the initial state of �1:1.�8:2 assumes progress for ation passing, quiesene for ation returningand fairness for ation losing. Fairness of losing implies that all runs of �8:2are �nite. Eah run may terminate in state fpassed ; gate losedg (as returningis quiesent), or may get stuk in state fwaiting to pass ; gate losedg, afterthe ourrene of losing.The following notions will be used frequently:8.3 De�nition. Let � be an es-net.i. a � P� is a reahable state of � i� a is reahable from a�.ii. t 2 T� is a reahable ation i� t is enabled in some reahable state.

8 Elementary System Nets 33iii. � is onit free i� no reahable state is a onit state.iv. � is ontat free i� no reahable state is a ontat state.Es-nets onsidered in the sequel will usually be ontat free.8.4 Lemma. Let � be an es-net without quiesent ations. � is onit freei� there exists exatly one onurrent run of �.Proof of this lemma is left as an exerise for the reader.

II. Case Studies
The elementary onepts introdued in Chap. I suÆe to adequately modela broad hoie of distributed algorithms. Suh algorithms typially stik toontrol ow of onurrent systems. Data dependent algorithms will follow inPart B of this book.We onentrate on modeling here. Formulation and proof of propertieswill remain on an intuitive footing.9 Sequential and Parallel Bu�ersThis ase study extends the produer/onsumer system of Fig. 8.1, extendingits one-item bu�er to two ells. This an be done in sequential and in parallelvariants. �9:1 gives the sequential solution: Two bu�er ells are arrangedone after the other. A parallel solution is given with �9:2. Being ready to

A : ready to produce
B : ready to deliver
C : first buffer cell empty
D : first buffer cell filled

a : produce
b : deliver

E : second buffer cell empty
F : second buffer cell filled
G : ready to remove
H : ready to consume

d : remove
e : consume

q

B H

a b d e

A G

D F

C E

c

Figure 9.1. Produer/onsumer with sequential bu�er ells

36 II. Case Studiesdeliver (B), the produer may hoose either of the two bu�er ells (if bothare empty). If one or both are still �lled, the produer may employ the emptyone or the one that gets empty next, respetively.
B b d H

f

GecA

a

F

E

D

C

q

Figure 9.2. Nondeterministi produer/onsumer with parallel bu�er ells�9:2 is intuitively \more onurrent" than �9:1 (a notion whih will bemade more preise later). But \overtaking" is possible in �9:2. As an example,the �rst bu�er ell may be �lled before, but emptied after the seond one.
B b d H

f

GecA

a

F

E

D

C

KJ L Mq

Figure 9.3. Deterministi produer/onsumer with parallel bu�er ellsCan the advantages of �9:1 (no overtaking) and of �9:2 (diret aessto empty bu�er ells) be ombined? �9:3 shows that this is in fat possible:Aess to the bu�er ells is organized alternately. But it remains to be shownthat �9:3 is \optimal" in some sense: The produer is never given aess to a

9 Sequential and Parallel Bu�ers 37�lled bu�er ell while the other ell is empty. Nor is the onsumer ever givenaess to an empty bu�er ell while the other one is �lled.Unique, formal desription of suh properties, as well as proof of theirorretness, are subjet to Part C.Some di�erenes among �9:1, �9:2, and �9:3 an be studied with thehelp of their runs: �9:1 has exatly one maximal run (up to isomorphism, f.Set. 2). Figure 9.4 shows an initial part of this (periodially strutured) run.�9:3 has likewise exatly one maximal run, shown in Fig. 9.6.

A a B A

G

 a B A a B

H e G

FEF

C

E

D

c c

b b b

C D C

d dFigure 9.4. Initial part of the unique maximal onurrent run of �9:1

A a B A

G

 a B A a B

H f

b c

e

CD

E

C

F

c

Figure 9.5. A onurrent run of �9:2Hene, both �9:1 and �9:3 are deterministi (.f. Lemma 8.4). In ontrast,the net �9:2 has in�nitely many di�erent maximal runs: Whenever onditionB holds, there is a hoie between b and . One of the runs of �9:2 an begained from�9:3's run in Fig. 9.6 by skipping all ourrenes of the onditionsJ , K, L and M . A further, extremely \unfair" one is given in Fig. 9.5: the�rst bu�er ell is initially �lled, but never emptied.

38 II. Case Studies
A a B A

G

 a B A a B

H f G

b c

e

D

E

C

F

J

L M

K J

d

E

b

Figure 9.6. Initial part of the unique maximal onurrent run of �9:310 The Dining PhilosophersDistributed systems often onsist of subsystems whih share sare resoures.Suh a resoure (e.g., a shared variable) is aessible by at most one ompo-nent simultaneously. We onsider a partiular suh system on�guration, witheah resoure shared by two subsystems, and eah subsystem simultaneouslyrequiring two resoures. E. W. Dijkstra illustrated this system by \philoso-phers" and \forks" whih stand for subsystems and resoures, respetively.We quote its �rst publiation, [Dij71℄:\Five philosophers, numbered from 0 to 4 are living in a housewhere the table is laid for them, eah philosopher having his ownplae at the table. Their only problem { besides those of philosophy{ is that the dish served is a very diÆult kind of spaghetti, thathas to be eaten with two forks. There are two forks next to eahplate, so that presents no diÆulty, as a onsequene, however, notwo neighbors may be eating simultaneously."Our �rst goal is a representation of this system as an es-net, suh thatthe runs of the net desribe the \meals" of the philosophers' dinner party.Figure 10.1 shows this es-net. The philosophers are denoted A; : : : ; E.Indies p, r, t, e stand for \piks up forks", \returns forks", \thinking", and\eating", respetively. For i = 0; : : : ; 4, ondition ai denotes that fork i isavailable for its users.Eah philosopher may start eating in the initial state. But neighboringphilosophers apparently ompete for their shared fork.A typial interleaved run of �10:1 is

10 The Dining Philosophers 39

q

q

q

q

q

Ep

At

Ae

Ap

Be

Bt

Bp

Ce Ct

Cp

Dr

a0

a2

a1

Er

Ar

Br

Cr

a4

a3

Et

Dt

Ee

De

Dp

Figure 10.1. The �ve dining philosophersa� Ap��!a1 Cp��!a2 Cr�!a3 Ar��!a4 Bp��!a5 Dp��!a6 Br��!a7 Bp��!a8Dr��!a9 Ep��!a10 Er��!a11 Br��!a12 (1)with states a1; : : : ; a12 obvious from the ontext. Philosopher B eats twie inthis run, and every other philosopher just one. The �nal state, a12, oinideswith a� .Turning now to onurrent runs, it is onvenient to introdue a shorthandrepresentation for piees of runs. For philosopher A, all any ourrene ofan eating yle of A. We represent eah eating yle of philosopher A

40 II. Case Studies
a0 a0

a1 a1

t A p A e A r A tA (2)by
A

(3)The upper ingoing and outgoing ars represent the availability of fork 0,the lower two ars represent fork 1. \Thinking" is not expliitly representedin (3).
A B B

C D EFigure 10.2. A shorthand representation of a onurrent run of �10:1Eating yles of other philosophers are likewise abbreviated. In order torepresent a onurrent run, those representations are omposed in the obvi-ous way. Figure 10.2 thus represents a onurrent run of �10:1. In fat, theinterleaved run (1) is one of its interleavings.In the sequel we distinguish a partiularly fair kind of dinner, alled deentdinners:Call a run of �10:1 deent i� neighboring philosophers alternateuse of their shared fork. (4)The runs onsidered in (1) and in Fig. 10.2 are not deent, beause B eatstwie onseutively. Hene the fork shared between A and B is not usedalternately. This applies orrespondingly to the fork shared between B andC. With the shorthand onvention of (2) and (3), Fig. 10.3 shows a onurrentrun of �10:1 that is apparently deent. Obviously, a deent onurrent in�niterun is uniquely determined by the �rst use of the forks.

10 The Dining Philosophers 41
B B B B

A A A A A

E E E E

D D D D D

B B B B

C C C C

glue glue
1 2

glue glue
1 2

Figure 10.3. Run K1 of �10:1; employing shorthands as desribed in (3).Ourrenes of B must be identi�ed in the obvious manner.
B B B B

C C C C

E E E E E

C

D D D D

A A A A

B B B B

glue glue

1 2

glue
1

glue
2

Figure 10.4. Run K2 of �10:1. Conventions as in Fig. 10.3

42 II. Case StudiesIt is now quite interesting to ask how many di�erent deent ausal runsexist for �10:1. In fat, K1 is not the only one. Another one, K2, is shown inFig. 10.4. The two runsK1 andK2 appear struturally quite similar, but theyrepresent essentially di�erent behavior. The di�erene an be desribed bythe relationship between ourrenes of a philosopher's eating yle and theonurrent ourrenes of eating yles of the non-neighboring philosophers:They our lok wise in K1 and anti-lokwise in K2. As an example, in K1to eah eating yle of A there exist onurrent ourrenes of yles of Cand D with C before D. Hene in K1 the left pattern of Fig. 10.1 ours, andin K2 the right pattern.

A

 C

D

A

 D

C

Figure 10.5. Di�erent patterns in K1 and K2AreK1 andK2 the only deent ausal runs of�10:1? They are not, beausedue to a \unluky" hoie of the �rst user of forks, there exist two further,but \less onurrent" ausal runs, one of whih is shown in Fig. 10.6. Theruns K1;K2 and K3, together with the ounterpart of K3 (the onstrutionof whih is left to the reader), are in fat the only deent runs. They givestrutural information on the behavior of �10:1, whih an not be gaineddiretly from interleaved runs.We turn �nally to non-deent ausal runs. Figure 10.7 shows an example,K4, with philosophers A and C eating in�nitely often, and the other philoso-phers eating never. The run K4 sheds new light on the question whether ornot B has a hane to grasp his forks. This question is meaningful only if aglobal view is assumed, allowing for a oinident view at the system's on-ditions whih are represented by a1 and a2 in (1). This assumption is notful�lled in a system with onditions a1 and a2 loally distributed and withphilosopher B not being able to observe both together.

10 The Dining Philosophers 43
B B B

C C C C

E E E E

D D D D

AA A A

BB B

glue glue

1 2

glue
1

glue
2

B

Figure 10.6. Run K3 of �10:1. Conventions as in Fig. 10.3
A A A A

C C C CFigure 10.7. Run K4 of �10:1. Conventions as in Fig. 10.3. Does B get ahane to eat?

44 II. Case Studies11 An Asynhronous StakIn this setion we develop a ontrol sheme for an asynhronous pushdowndevie (a stak). This stak has some properties (to be disussed later) whihno synhronously ontrolled stak an have.A stak of size n is a sequene M1; : : : ;Mn of modules. M1 is alledthe top, Mn the bottom of the stak. For i = 2; : : : ; n, the module Mi�1is the predeessor of Mi, and Mi is the suessor of Mi�1. All modules areonstruted aording to the same sheme. Figure 11.1 depits ow of ontrolin suh module.
values

two
storing

 quiet

storing
no

value

predecessor
from

successor
to

to
predecessor

from
successorFigure 11.1. Flow of ontrol in a moduleIn its quiet state, a moduleM stores exatly one value, v. Two alternativeations may our in this state: Firstly, some value w may arrive from M 'spredeessor module, yielding a state where M is storing two values v and w.Then M propagates the previously held value v to the suessor module andreturns quiet with value w. Seondly, M may send the stored value v to thepredeessor module, yielding a state where M is storing no value. Then Mrequests some value from its suessor module and returns quiet with thisvalue.Figure 11.2 shows a stak onsisting of four suh modules. Push (ationa0) inserts a new value to the bu�er, initiating wave-like driving of storedvalues towards the stak's bottom. The item stored at M4 gets lost (at a4).Likewise, pop (ation b0) removes an item from the bu�er, thus initiatingwave-like popping up of stored values towards the stak's top. M4 gets some\unde�ned" value then (by b4). Eah module is assumed to store this \unde-�ned" value initially.It is intuitively lear that �11:2 in fat models the ontrol struture of aproperly behaved stak. It is also obvious how a stak of size n is extended to a

12 Crosstalk Algorithms 45
push

top

pop

bottomquiet1 quiet2 quiet3 quiet4

a0 a1 a2 a3 a4

b0 b1 b2 b3 b4

q

qFigure 11.2. Flow of ontrol in the asynhronous stak with apaity forfour itemsstak of size n+1, and that this kind of extension does not a�et performaneat the top of the stak. Formal arguments speifying those properties andproving them orret will be disussed in Set. 55.2.12 Crosstalk AlgorithmsIn a network of ooperating agents, eah agent usually has a distinguishedinitial state. Eah time an agent visits its initial state, it ompletes a round,and its next round is about to begin. A network of agents is said to run around poliy (or to be round-based) if eah message sent in the sender's i-thround is reeived in the reeiver's i-th round. Crosstalk arises whenever twoagents send eah other messages in the same round.In this setion we show what round-based networks of asynhronous, mes-sage passing agents may look like. Partiular emphasis is given to the issueof rosstalk.
terminate

pending

act

quiet l quiet r

echo

return

answered
acknowledged

sent

q

Figure 12.1. Ator and responderTo start with, Fig. 12.1 shows a network of two sites l and r (the left andthe right site, respetively) and a ommuniation line that links both sitestogether. In its quiet state, l may spontaneously send a message to r and

46 II. Case Studies
pending l

pending r

quiet l quiet r

echo l

echo r

terminate l

terminate r

return r

return l

acknowledged l

acknowledged r

sent l

sent r

act l

act r

answered l

answered r

q

q

Figure 12.2. Ator/responder sites: deadlok prone
pending l

pending r

quiet l quiet r

echo l

echo r

terminate l

terminate r

return r

return l

acknowledged l

acknowledged r

sent l

sent r

act l

act r

answered l

answered r

cross
talk r

cross
talk l

q

q

Figure 12.3. Ator/responder sites: round errors possible

12 Crosstalk Algorithms 47
A : quiet l
B : pending l
C : sent l
K : answered l

D : quiet r
E : answered r
F : acknowledged r
G : pending r
H : sent r

a : act l
c : echo r
d : return r
e : act r
f : crosstalk l

A B

C

D DE

F

G

H

Ka

c d e

f

Figure 12.4. A run of �12:3
pending l

pending r

quiet l quiet r

echo l

echo r

finished l

finished r

terminate l

terminate r

return r

return l

acknowledged l

acknowledged r

sent l

sent r

act l

act r

answered l

answered r

cross
talk r

cross
talk l

q

q

Figure 12.5. Round-based rosstalk
Inscriptions as in Fig. 12.4.
Additionally:

b : terminate r
L : finished l

A AB

C

D DE

F L

a b

c dFigure 12.6. Round of �12:5, with ator l and responder r

48 II. Case Studies
Inscriptions as in Fig. 12.6.
Additionally:

M : finished r
g : return l
h : crosstalk r

A AB

C

D DEG

H

K

M

L

a

de

f g

hFigure 12.7. Crosstalk round of �12:5

pending l

pending r

quiet l quiet r

echo l

echo r

finished l

finished r

terminate l

terminate r

return r

return l

acknowledged l

acknowledged r

sent l

sent r

act l

act r

answered l

answered r

cross
talk r

cross
talk l

q

q

Figure 12.8. Ordered rosstalk: �rst l, then r

12 Crosstalk Algorithms 49
pending l

pending r

quiet l quiet r

echo l

echo r

finished l

finished r

terminate l

terminate r

return r

return l

acknowledged l

acknowledged r

sent l

sent r

act l

act r

answered l

answered r

q

q

Figure 12.9. Alternately ordered rosstalkremains in the state pending until the reeipt of an aknowledgment. Then lterminates and moves to its quiet state, from where l may start ation again.Upon reeiving a message site r ehoes an aknowledgment, turns answeredand eventually returns to quiet, where r is ready to aept the next message.This interplay of the two sites l and r may be desribed intuitively in termsof rounds. A round starts and ends when both sites are quiet. But notie thatthe site l may start its (i + 1)st round before site r has ompleted its i-thround.Now we plan to extend the two agents l and r so as to behave symmetri-ally (motivated by issues not to be disussed here), i.e., r additionally mayplay the role of a sender and l the role of a reeiver.The symmetrial extension �12:2 of �12:1 apparently fails, as the systemdeadloks in ase both l and r deide to at in the same round: The site lin the state pendingl expets a token on aknowledgedr, but gets one onsentr instead. In this situation, an obvious ontinuation was to aept thetoken on sentr and to return along returnedl to quietl. This is ahieved bythe ation rosstalkl (and likewise rosstalkr) in �12:3. However, �12:3 isnot (yet) aeptable: One of its runs, given in Fig. 12.4, is apparently ill-strutured: The agent l is eventually o�ered an aknowledgment as well as amessage, and l by mistake assumes rosstalk. What atually happened maybe alled a round error: The token on sentr belongs to the seond roundof the system. It reahes l before l ompleted the �rst round, i.e., before lproperly aepted the �rst round's aknowledgment.

50 II. Case StudiesThis kind of error is ruled out in �12:5 by a further message. Intuitively,this message may be understood as a \round end" signal, with eah messagesent in round i being reeived in round i. Formulated more preisely, a roundovers one of the following three sub-runs:l sends a message to r. Upon reeiving it, r returns an aknowl-edgment to l. Then l signals finishedl. Figure 12.6 shows thisround. (1)Symmetrially to (1), r sends a message to l. Upon reeiving it, lreturns an aknowledgment to r. Then r signals finishedr. (2)Both l and r onurrently send messages to eah other. Then land r both reeive their partner's message onurrently and eahof them then returns finished. Figure 12.7 shows this round. (3)The basi onepts of �12:5 inevitably imply the hane of onurrent mes-sages (onurrent ourrenes of atl and atr). Likewise, onurrent aknowl-edged and onurrent �nished messages may our. However, there is alwaysat most one message under way from l to r, and likewise at most one from rto l.This works perfetly as long as l and r are linked by two physial lines,one for messages from l to r and one for messages from r to l. However, if justone line is available, �12:5 may ause mismath: a message from l to r and amessage from r to l may meet on the line. As atl and atr are loal, quiesentations, this mismath an not be ruled out. It an however be deteted and�xed, provided eah sent message, upon meeting some other message at theline, is not entirely destroyed (but only arbitrarily orrupted). For this ase,�12:8 orders the ourrenes of rosstalkl and rosstalkr: l ats before r andonsequently finishedl is before finishedr. Augmenting tokens on finishedwith the round's original message then guarantees perfet ommuniation.For the ase of rosstalk this system guarantees rosstalkl before theorresponding rosstalkr. This is ahieved by taking l's round-end messageas a further preondition of rosstalkr.This poliy may be onsidered an unfair preferene of l over r. A moresymmetrial solution is �12:9, with alternating priority for rosstalk. Thissystem is symmetrial up to an initial bit, with the �rst rosstalk startingwith site l.13 Mutual ExlusionMutual exlusion of loal states in a network of ooperating agents is requiredin a great variety of systems. A lot of phenomena and problems that aretypial for distributed systems our in the attempt to model various oneptsand assumptions on mutual exlusion.

13 Mutual Exlusion 51This setion is intended to glane a ouple of those onepts under theaspet of properly modeling mutual exlusion algorithms. Means to formulateand to prove properties of those algorithms will be disussed in Part C.Two system omponents (sites) are assumed. Eah of them inludes apartiular (\ritial") state. The two sites must synhronize suh that theyalways are able to eventually go ritial, but never are oinidently in theirrespetive ritial state.The mutual exlusion problem is the problem of onstruting algorithmsahieving the two mentioned requirements. Various assumptions on the sites'apabilities and on the available synhronization mehanisms motivate dif-ferent solutions.In the sequel we state the mutual exlusion problem in detail, several solu-tions will be studied, and their respetive advantages and their disadvantageswill be disussed.13.1 The problemConsider a system essentially onsisting of two sites l and r (the left and theright site). Eah site is bound to a yli visit of three loal states, alledquiet, pending, and ritial, as shown in Fig. 13.1, with a quiesent step fromquiet to pending (where the sites' states are indexed l and r, respetively).Two properties are to be guaranteed: �rstly, that l and r never be bothtogether ritial (the mutual exlusion property), and seondly that eahpending omponent eventually reahes ritial and later quiet (the evolutionproperty).
q qa l a r

pending l pending r

critical l critical r

quiet l quiet rFigure 13.1. Basi omponents of mutexA number of well-known algorithms solves this problem, oinidently re-speting various additional requirements. For example, it is frequently re-quired that the two sites l and r ooperate in a spei� way only; they mayshare variables or exhange messages or mutually inspet spei� loal states.Additionally it may be required that a mutual exlusion algorithm is distrib-utedly implementable. We refrain from a formal de�nition of this notion andstik to an apparently neessary ondition, the loality of fairness: A fairtransition together with its pre-set �t must belong to one site and only one

52 II. Case Studies
q

ϕ ϕ

qa l a r

b l b r

c l c r

pending l pending r

critical l critical r

quiet l quiet r

keyFigure 13.2. The ontentious mutex algorithmplae p 2 �t may be forward branhing (i.e., p� % ftg). The partner sitemay be onneted to this plae p in a reading mode at most, i.e., by loops(p; t0) only. This version of fairness is distributedly implementable beauseonventional hardware guarantees that one site's assignment to a variable isnot prevented by the other site's iterated testing of the variable.First we onsider three de�ient algorithms, thus pointing out the diÆ-ulty of meeting mutual exlusion, evolution, and loal fairness at the sametime. Then follow four \perfet" algorithms, eah with its own merits, and�nally we onsider two asymmetrial algorithms, granting the left site somekind of preferene over the right site.13.2 The ontentious mutex algorithmFigure 13.2 shows an algorithm that in fat meets both requirements of mu-tual exlusion and evolution. The loal state key, however, an not be assoi-ated uniquely with one of the sites. Both sites ompete for key and moreoverrepeated onit for key must be resolved fairly for both partners (as bothbl and br are fair ations). Hene, additional global means are neessary toinstall proper management of key nondeterminism. In tehnial terms, thealgorithm neglets loality of fairness for both bl and br and thus is notdistributedly implementable.13.3 The alternating mutex algorithmFigure 13.3 shows an algorithm that respets the requirements of mutualexlusion and loal fairness (as no fair transition at all is involved). However,it neglets evolution. For example, the site r may eventually remain quiet, inwhih ase the site l may get stuk in its state pending. This algorithm maybe used in the ase of greedy sites only, where both sites strive to go ritialas frequently as possible.13.4 The state testing mutex algorithmFigure 13.4 shows an algorithm with loal states nonritl and nonritr, whihan be onsidered as ags, allowing the respetive partner to go into its ritial

13 Mutual Exlusion 53
q

ϕ

qaq d q

c e

b f
pending l

pending r

critical l critical r

quiet l

quiet r

message lr

message rlFigure 13.3. The alternating mutex algorithmstate. Upon moving to ritial along bl, the site l tests the ag nonritr andoinidently removes its own ag nonritl. Ourrene of the ation bl may beprevented forever by in�nitely many ourrenes of br. Hene the assumptionof fairness is inevitable for bl.The pre-set �bl of bl, however, has two forward branhing elements,nonritl and nonritr, thus violating the requirement of loal fairness.
q qal a r

bl

ϕ
b r

ϕ

cl c r

pendingl pending r

criticall critical r

quietl quiet r
noncritl noncrit rFigure 13.4. The state testing mutex algorithm13.5 The token-passing mutex algorithmFigure 13.5 shows an algorithm based on message passing. The essential on-ept of the mutex algorithms in Fig. 13.5 is a token that at eah reahablestate is helt by one of the sites. A site may go ritial only while holding thetoken. The site without token may gain it on demand. In �13:5, the tokenis initially helt by site l in the loal state availl. With the token in availl,the site l is able to move immediately from pendingl by ation a to ritiall.With ation e the site l then returns from ritiall to quietl and makes thetoken again available for l. Furthermore, l may reeive a request for the tokensent by the site r along requestedl. Fairness of guarantees that l eventuallysends the token to grantedr and oinidently turns silentl. The request sent

54 II. Case Studiesby site r along requestedl is due to an ourrene of ation h. Hene site ris at waitingr until the token on grantedr arrives.
ϕ ϕ

quietl pendingl

availl requestedl requested r

silentl

waitingl

grantedl

criticall

quiet rpending r

avail r

silent r

waiting r

granted r

critical r

c j

f n

e m

a b h g

d k

q q

Figure 13.5. A token-passing mutex algorithmOurrene of ation k then brings the site r to ritialr. Site l maymeanwhile be pending again. As site r is now the owner of the token, site lis in silentl and may send a request to r by ourrene of b.The two sites l and r are struturally symmetrial. The initial state, how-ever, is not symmetrial, as site l initially arries the token (at availl), whereassite r is at silentr. Site l (and likewise site r) is no sequential mahine. Ationsf and (ations n and j in site r) may very well our onurrently.The two sites ooperate by message passing, with two types of messages(requested and granted) in eah diretion. Site l has one fair ation, . Theorresponding onit plae availl is not even read by site r. Symmetrially,the onit plaes of j is availr, not read by l.Site l is fault tolerant with respet to ations a and b. Site r's iteratedaess to ritialr is not a�eted in ase a or b maliiously remains enabledforever.

13 Mutual Exlusion 5513.6 The round-based mutex algorithmThe ordered rosstalk algorithm �12:8 an be extended to an algorithm formutual exlusion, as shown in Fig. 13.6. The ordered ourrene of rosstalkland rosstalkr in �12:8 implies that finishedl and finishedr never arrya token at the same time. �13:6 re�nes finishedl into ritl, ation n andterminatedl.
locall local r

q

q

ϕ

ϕ

terminatedl

terminated r

granted r

grantedl

requestedl

requested r

critl

crit r

quietl

quiet r

pend2l

pend2 r

pend1l

pend1 r

servedl

served r

n
b d

m

a
c

j
k

e
g

f h

p

qFigure 13.6. A round-based mutex algorithmfinishedr is re�ned orrespondingly. Loal states and ations of �10:6are re-named aording to their new role in �13:6, and further omponents(quietl, m, pend1l, quietr, p, pend1r) are added, providing the elements asrequired in Fig. 13.1. The system �13:6 operates in rounds: Wanting to go toritial, site l sends a request to site r by ation a and remains in pend2l untilsite r reats with a token on either grantedr or requestedr. Site l beomesritial in both ases by ourrene of ation b or ation j, respetively. Siter likewise may send a request to l by ation g, then r remains in pend2runtil site l reats with a token on grantedl or requestedl. Site r beomesritial in the �rst ase by ation h. The seond ase ours in the situationof rosstalk, where both sites strive at their respetive ritial state in thesame round. Site r has to wait in this ase until l leaves ritl and sends atoken to terminatedl.

56 II. Case StudiesThe two sites l and r are struturally not symmetrial: l preedes r in aseof rosstalk. Site l is no sequential mahine, as n may our onurrently toe and f . In site r the ation q may likewise our onurrently to and d.Fairness of ation a guarantees that site l in state pendl will eventuallybeome ritial. The orresponding onit plae, loall, is not read by siter. Symmetrially, the onit plae loalr of the fair ation g of site r is notread by site l.Site l is fault tolerant only with respet to ation a. Due to the round-based nature of the algorithm, eah step of site r to ritr must expliitly begranted by l. Vie versa, eah step of l to ritl must be granted by r.13.7 Peterson's mutex algorithmThe following algorithm �13:7 is based on two ags (as already used in �13:4)and a token that is shared by the two sites l and r, and held by one of l andr at any time (as in �13:5). The algorithm was �rst published in [Pet81℄ in aprogramming notation.
b j

c kd m

e nf p

g q

pend1l pend1 r

pend2l pend2 r

pend0l pend0 r

atl at r

criticall critical r

finishedl finished r

quietl quiet ra h
q q

ϕ ϕ

Figure 13.7. Peterson's mutex algorithmThe ag finishedl signals to the site r that the site l is presently notstriving to beome ritial. This allows the site r to \easily" aess its ritialregion, by the ation p. Likewise, the ag finishedr allows the site l to aessits ritial state, by the ation f . The shared token alternates between atland atr. The step from pend1l to pend2l results in the token on atl: by ation in ase l obtains the token from atr, or by ation d in ase l held the tokenanyway.

13 Mutual Exlusion 57The step from pend1r to pend2r likewise results in the token on atr. Henethe token is always at the site that exeuted the step from pend1 to pend2most reently.After leaving quietl along the quiesent ation a, the site l takes threesteps to reah its ritial state ritiall. In the �rst step, the fair ation bbrings l from pend0l to pend1l and removes the ag finishedl. Fairness ofb is loal, beause �b = fpend0l; finishedlg is loal to l, with finishedl theonly forward branhing plae in �b, whih is onneted to the right site, r, bya loop (finishedl; p). The seond step, from pend1l to pend2l, results in theshared token on atl, as desribed above. The third step brings l to ritiall,with ation f in ase site r signals with finishedr that it is presently notinterested in going ritial, or with ation e in ase the site r more reentlyexeuted the step from pend1r to pend2r. The algorithm's overall strutureguarantees that one of finishedr or atr will eventually arry a token thatremains there until eventually either f or e ours.The two sites l and r are struturally symmetrial, but the initial statefavors the right site.13.8 Dekker's mutex algorithmThe following algorithm �13:8 is a variant of Peterson's algorithm �13:7. Itemploys the same two ags finishedl and finishedr, and likewise shares atoken, that is either on atl or atr at any time. The essential di�erene to�13:7 is the time at whih the shared token is adjusted: The token is movedto atl before l beomes ritial in �13:7, whereas the token is moved to atl
qg

ne pf

kc md

jb qq

terminated rterminatedl

critical rcriticall

at ratl

pend1 rpend1l

finished rfinishedl

quiet rquietl

pend0 rpend0l ha
ϕϕ

Figure 13.8. Dekker's mutex algorithm

58 II. Case Studiesafter l has been ritial in �13:8. In ase the site r has not raised its agfinishedr, the step from pend1l to ritiall with ation d depends not onlyon the shared token in atr but also on the loal state pend1r of site r.13.9 Owiki/Lamport's mutex algorithmsDi�erent sites may be given di�erent priorities, hene di�erent aess poliiesto their respetive ritial regions. A typial example is a system of a writerand a reader site of a shared variable: Whenever prepared to update the vari-able, the writer may eventually exeute this update in its ritial state. Thereader may be guaranteed less: Whenever pending for reading the variable,the reader will eventually get reading or the writer will eventually update thevariable. Hene the reader may start to aess its ritial state in vain.
writer
involved

writer
detached

ϕ

prep1 prep2 pend2 pend1

failedq q

producing

writing
reading using

reader detached

a

b

c

d

e

f

g

h

j k

Figure 13.9. Owiki/Lamport's mutex algorithm�13:9 shows this algorithm. It uses three ags: The ag writer detahedsignals to the reader that the writer is presently not striving to beomewriting. The ag reader detahed likewise signals to the writer that thereader is presently not striving to beome reading. The ag writer involvedis just the omplement of writer detahed: Exatly one of them is visible atany time.After �nishing the prodution of a new value along the quiesent ationa, the writer takes two steps to reah its ritial state, writing. In the �rststep, the fair ation b just swaps the ag writer detahed to writer involved.Fairness of ation b is apparently loal. The seond step brings the writer toits ritial state, writing, along the ation . The overall struture of thealgorithm guarantees that the ag reader detahed eventually remains until has ourred.

13 Mutual Exlusion 59After using the previous value of the shared variable, the reader may be-ome pending for a new value along the quiesent ation e. It takes the readertwo steps to reah its ritial state, reading. Neither of them is guaranteedto our. Furthermore, the reader in the intermediate state pend2 may befored to return to pend1. By the �rst ation, f , the reader removes thereader detahed ag. Iterated ourrene of ation may prevent the o-urrene of f (by analogy to the door losing problem of �6:4). The seondstep, from pend2 to reading with ation g, is possible only in ase the writeris detahed. In ase the writer is involved instead, ation j releases the agreader detahed, allowing the writer to proeed. The reader remains in statefailed until the writer is detahed. In this ase, the reader may proeed topend1 and start a further attempt to get reading.13.10 The asymmetrial mutex algorithm�13:10 shows a further asymmetrial mutex algorithm that does without anyassumption of fairness. Just like the previous algorithm, the prepared writerwill eventually proeed to writing. The writer, however, may update eahnewly written value and prevent the reader from reading any value.
q q

prepared

producing

writing available

requested

granted

returned

reading

pending

using

b e f

d
a h

c gFigure 13.10. The asymmetrial mutex algorithmThe algorithm uses three types of messages: requested and returned sentfrom the reader to the writer and granted sent from the writer to the reader.After �nishing the prodution of a new value along the quiesent ationa, the writer takes either a step via ation b or one via ation d, to reahits ritial state, writing. A token on available represents the previouslywritten value whih not has been read by the reader. Ation b or d may yieldan updated value. A token on returned represents ontrol over the sharedvariable returned from the reader to the writer, after the reader has read theprevious value. Ations a and d then yield a new value.Along the quiesent ation h, the reader, after �nishing the use of thepreviously read value, sends a request for an updated value to the writer.Upon granting a new value along ation e, the reader starts reading. However,it may happen that the reader remains stuk in its loal state pending forever:

60 II. Case StudiesThe writer either remains produing forever, or the writer produes in�nitelymany new values and neglets fairness for the ation e. The assumption offairness would help in the latter ase.14 Distributed Testing of Message LinesAssume a starter proess s and two follower proesses, l and r (the left andthe right proess, respetively). All three proesses are pairwise onnetedby direted message lines. Figure 14.1 outlines this topology. Eah messagepassing through a line su�ers a �nite, but unpreditable delay. Proessesommuniate along those lines only.
l r

s
starter

followerfollowerFigure 14.1. Topology of message linesA distributed algorithm is to be onstruted, to enable the starter s toquikly test proper funtioning of all message lines. A message line is testedby a test message passing through the line.
of starter

start
waiting
starter

terminated
starter

to r
to l from l

from rFigure 14.2. Behavior of the starter proess sFigure 14.2 shows the starter's behavior: s sends test messages to bothl and r, and remains pending until reeiving test messages from both l andr. Figure 14.3 shows the behavior of the left proess l: It starts by reeivinga message from s or from r. In the �rst ase, l sends a message to r andremains waiting for a message from r. Upon reeipt of this message, l sendsa message to s and terminates. In the seond ase, after reeipt of a messagefrom r, proess l sends a message to s and remains waiting for a message

14 Distributed Testing of Message Lines 61
from s to s

start
of l

waiting
for r

waiting for s

l terminated

to r from rFigure 14.3. Behavior of follower proess l

from s to r from r to s

start of
starter

starter waiting
starter
terminated

from s to l from l to s

start
of l

waiting for r

waiting for s

l terminated

start
of r

waiting for l

waiting for s

r terminatedFigure 14.4. Test algorithm for network (1) (with boldfaed ars for agentsstarter, left, and right)

62 II. Case Studiesfrom s. Upon reeipt of this message, l sends a message to r and terminates.Finally, s terminates, too.It is easy to see that eah proess terminates only after a test messagehas passed through all adjaent message lines. We will prove later on thatthe starter in fat will terminate and that its termination is preeded bytermination of both follower proesses.

Part BAdvaned System Models
Part A introdued a formalism oping with the essentials of onurreny. Itsexpressive power will be inreased in this part, allowing the integration ofdata strutures and the onise representation of unhandily large elemen-tary net systems. A tehnique for modeling real, large systems results. Twoaspets will govern this proedure: Firstly, new onepts are introdued asspeializations (re�nements) of existing ones. Hene, all notions already in-trodued translate anonially to the new ase. Seondly, powerful analysistehniques should be available for the new formalism. Suh tehniques willbe presented in Part D.

III. Advaned Conepts
This hapter provides the entral basis of the modeling tehnique of thisbook: the onept of system nets.The step from elementary to general system nets an be understood intwo di�erent ways. Firstly, as a generalization: While elementary system netsstik to (distributed) ontrol struture, general system nets additionally pro-vide data strutures. Tehnially, the dynami elements (tokens) in a net areno longer blak dots, but any kind of data.The seond view of general system nets oneives them as shorthand oronise representations of elementary system nets: Multiple ourrenes ofsimilarly strutured subnets are folded to a single net struture. Its variousinstanes (unfoldings) are haraterized by insriptions of the net elements.This approah is partiularly suitable, beause all notions and onepts of es-nets translate anonially to system nets. It goes without saying that it is ingeneral not intended to unfold a system net expliitly. Any kind of reasoningon system nets will be exeuted without expliit unfolding.15 Introdutory ExamplesThree motivating examples will be presented in this setion. Tehnial detailsfollow in Set. 16.15.1 The produer/onsumer system revisitedWe return to the very �rst net model of a produer/onsumer system, as dis-played in Figs. 1.1 and 8.1. This net desribes prodution, delivery, removal,and onsumption of any item. No onrete, spei� item has been named. Nowwe assume a spei� item, a; Figure 15.1 represents the produer/onsumersystem for the objet a. In the state shown, the ation produe a is enabled,and its ourrene yields the state shown in Fig. 15.2. Due to the insription\a" at the ar linking produe a and ready to deliver a, the token to our atready to deliver a is no longer a blak dot, but the item a. The ation delivera is enabled in this state, beause the two ingoing ars start from loal statesthat arry items aording to the ars' insriptions: bu�er empty arries a

66 III. Advaned Conepts
ready to
deliver a

ready to
consume a

buffer filled
with a

buffer empty

remove a

consume a

ready to
remove

ready to
produce

produce a

deliver a

a a a a

aa
q

Figure 15.1. Produing and onsuming objets of sort a
a

ready to
deliver a

ready to
consume a

buffer filled
with a

buffer empty

remove a

consume a

ready to
remove

ready to
produce

produce a

deliver a

a a a a

aa
q

Figure 15.2. After ourrene of produe a
a

ready to
deliver a

ready to
consume a

buffer filled
with a

buffer empty

remove a

consume a

ready to
remove

ready to
produce

produce a
q

deliver a

a a a a

aa

Figure 15.3. After ourrene of deliver a

15 Introdutory Examples 67
ready to
deliver a

ready to
consume a

buffer filled
with a

buffer empty

remove a

consume a

ready to
remove

ready to
produce

produce a

deliver a

produce b

deliver b

remove b

consume b

b b b b

bb

ready to
deliver b

ready to
consume b

buffer filled
with b

a a a a

aa
q

q

Figure 15.4. Produing and onsuming objets a or b
item ready to be
delivered

item ready to be
consumed

buffer filled
with x

buffer empty

remove x

consume x

ready to
remove

ready to
produce

produce x
qq

deliver x

x x x x

xx

x ∈ {a,b}Figure 15.5. Produing and onsuming any kind of items

68 III. Advaned Conepts
a

ready to
deliver x

ready to
consume x

buffer filled
with x

buffer empty

remove x

consume x

ready to
remove

x ∈ {a, b}

ready to
produce

produce x
qq

deliver x

x x x x

xx

Figure 15.6. After ourrene of produe x with x = a in �15:5blak dot as required by the uninsribed ar, and ready to deliver arries theitem a as required by the insription a. The ourrene of deliver a then re-veals the state shown in Fig. 15.3. Both ations produe a and remove a areenabled in this state. The ourrene of produe a would ause the seondappearane of \a" at ready to deliver a. The ourrene of remove a wouldenable onsume a in the obvious way.Figure 15.4 now extends �15:1 to enable the treatment of a seond item, b.In the state shown, there is a hoie between produe a and produe b. Choieof produe a would ause the behavior desribed above. Choie of produe bwould orrespondingly ause proessing of the item b.The es-net �15:4 an be represented onisely as a system net, shown inFig. 15.5.The plae item ready to be delivered of �15:5 represents the two loal statesof �15:4, ready to deliver a and ready to deliver b. The insription \a" of thisplae, as in Fig. 15.2, indiates a state that ontains ready to deliver a. Theother plaes of �15:5 represent loal states of �15:4 in the obvious way.The transition produe x of �15:5 likewise represents the two ations pro-due a and produe b of �15:4. Instantiation of the variable x by a onreteitem, a or b, yields the orresponding ation. Its ourrene produes a state,represented as desribed above. As an example, ourrene of produe a in�15:5 yields the state that orresponds to �15:2, and is represented in �15:6.15.2 The dining philosophers revisitedPlain variables, as employed in Set. 15.1, don't help in all ases. As anexample, we return to the system of thinking and eating philosophers, asintrodued in Set. 10. For the sake of simpliity we stik to the ase ofthree philosophers, and for reasons to beome obvious soon, we redraw theorresponding es-net, as shown in Fig. 15.7.

15 Introdutory Examples 69
a re-
turns
forks

b re-
turns
forks

c re-
turns
forks

c thinking
a picks up
forks

c picks up
forks

b picks up
forks

q

q

q

b thinking

a thinking

f1 available

f3 available

f2 available

c eating

a eating

b eatingFigure 15.7. The system of three philosophersWe strive at a more onise representation of the system by exploitingits regular struture. The essential idea is to represent a set s of loal stateswith \similar" behavior as a single plae p and likewise a set of ations with\similar" behavior as a single transition.As an example, the three loal states \a is thinking", \b is thinking", and\ is thinking" in �15:7 may be assigned the plae \thinking philosophers".A state with a and b thinking and not thinking then orresponds to a statewhere \thinking philosophers" is insribed with a and b, but not with . aand b are then in the atual extension of the plae \thinking philosophers",whereas is not.In the framework of es-nets, the loal states may hange upon the o-urrene of ations. This orresponds to a hange in the extension of theorresponding plae.Figure 15.8 shows a orresponding net: The loal states of �15:7 are nowlustered into three plaes, \thinking philosophers", \available forks", and\eating philosophers", respetively. The extension of eah plae is given by itsinsription. Eah ation is now to indiate the items a�eted by its ourrene.This is ahieved by insriptions of the orresponding ars. As an example,the insriptions of the ars adjaent to \a piks up" in �15:8 indiate thatupon the ourrene of this transition, the forks f1 and f3 leave \available

70 III. Advaned Conepts
thinking philosophers

available forks

eating philosophers

a

a b

c b

b

a a

c

cba

f3

f1

f2

f1

f2
f3

c re-
turns

b re-
turns

a re-
turns

f1

f1

f3 q

q

q

a picks
up

c picks
up

b picks
up

f2

f1

f2

cc
b

f3

Figure 15.8. Representation using prediatesforks", and likewise the philosopher a leaves \thinking philosophers" andenters \eating philosophers".In a further transformation, and for reasons to beome obvious shortly,we replae the insriptions of �15:8 as shown in Fig. 15.9: The two forksemployed by any philosopher x are denoted by l(x) and r(x). Hene, l andr represent funtions, assigning eah philosopher x his left and right fork,respetively.In a �nal step, a set of ations is folded to a single transition. As anexample, the three ations \a piks up", \b piks up", and \ piks up" of�15:9 are represented by the transition \pik up" in Fig. 15.10. Return offorks is represented orrespondingly.The instane of a distinguished ation (e.g., \a piks up") is in the foldedversion represented by an assignment of onrete items to the variables o-urring at the surrounding ars. As an example, \a piks up" orresponds in�15:10 to the assignment of a to the variable x. In fat, this assignment yieldsthe insriptions of ars surrounding \a piks up" in �15:9.With �15:10 we have obtained a more abstrat and general representation.15.3 The distributed sieve of EratosthenesHere we onsider the well-known example of identifying the prime numbersin a set of integers, aording to the Sieve of Eratosthenes. The onventional

15 Introdutory Examples 71
thinking philosophers

available forks

eating philosophers

a

a b

c b

b

a a

c

cba

r(c)

l (b)

l (c)

r(a)

r(b)

r(c)

c re-
turns

b re-
turns

a re-
turns

l (b)

r(a)

l (a) q

q

q

a picks
up

c picks
up

b picks
up

l (c)

f1

r(b)

cc
b

l (a)

P={a,b,c}
G={f1 ,f2 ,f3 }
l ,r : P G→

 = = l (a) r(b) f1
 = = l (b) r(c) f2
 = = l (c) r(a) f3Figure 15.9. Representation using funtions

x

thinking philosophers

x

x x

eating philosophers

 (x)

r(x)

available

forks

 (x)

r(x)

a b

c

f1
pick
upqreturn

l l

P={a,b,c}

G={f1,f2,f3}

l ,r : P G→
x : variable over P

 = = l (a) r(b) f1
 = = l (b) r(c) f2
 = = l (c) r(a) f3

Figure 15.10. Representation using parameterized ations

72 III. Advaned Coneptsproedure traverses the numbers from 2 to n, erasing all multiples of 2. In aseond path, all remaining multiples of 3 are erased. Generally, the i-th patherases all remaining multiples of the remaining (i+ 1)-st number.There is apparently no need to erase multiples of numbers in any parti-ular order. The following requirements suÆe for erasing all produts: Eahnumber k may \see" any other number and may erase it, provided it is a mul-tiple of k. Whenever no further erasing is feasible, the remaining numbers arein fat the prime numbers between 2 and n.
2

3

4

5

6

7

8

9

10

Figure 15.11. The distributed sieve of Eratosthenes for n = 10Figure 15.11 shows an es-net of this system for the ase of n = 10: Allnumbers 2; : : : ; 10 belong to the initial state. The prime numbers 2; 3; 5, and7 belong to eah reahable state: They are either engaged only in loops (i.e.,2; 3; 5) or in no ation at all (i.e., 7). 4 is eventually erased, but may beengaged in erasing (i.e., 8) before being erased (by 2). There is a uniquenumber, 3, to erase 9. Numbers 6, 8, and 10 may be erased alternatively bytwo numbers, respetively.

16 The Conept of System Nets 73
k

i k•

k

erase
actual

numbers
2..n

k,i : variables over nat

• : multiplication in natFigure 15.12. The distributed sieve of Eratosthenes for any number nFigure 15.12 shows the folded version for any number, n: atual numbersinitially arries all numbers from 2 to n. Transition erase is enabledwhenever some number k and some multiple i � k of k (for i > 1) ispresent in atual numbers. Both k and i � k are removed, and k returnsto atual numbers .15.4 ConlusionThe above introdutory examples followed a simple idea to onisely rep-resent elementary system nets: Firstly, the loal states are partitioned intoseveral lasses. Eah lass is then \folded" to a single plae. Suh a plae on-tains partiular items, representing the loal states in the orresponding lass.Likewise, the ations are partitioned into lasses, and eah lass is folded toa single transition. Insriptions of the adjaent ars desribe the ations inthe orresponding lass. A distinguished ation an be regained by evaluatingthe variables involved (i.e., by replaing them with onstants). Nets of thiskind are examples of system nets.A formal framework for system nets has to establish the relationship be-tween syntatial insriptions (terms), at ars and plaes, and their onretesemantial denotation. This relationship of syntax and semantis is mathe-matially well established, belonging to the basi onepts of omputer si-ene. Furthermore, it is intuitively obvious, as the above examples show. At�rst reading one may therefore proeed to Set. 17 immediately.16 The Conept of System NetsThe oneptual idea of system nets is quite simple: Eah plae of a systemnet � represents a set of loal states and eah transition of � represents aset of ations. The sets assigned to the plaes form the underlying universe:16.1 De�nition. Let � be a net. A universe A of � �xes for eah plaep 2 P� a set Ap, the domain of p in A.For example, in Fig. 15.10 the domain of thinking philosophers and ofeating philosophers is the set of philosophers, and the domain of availableforks is the set of forks.

74 III. Advaned ConeptsAn atual state �xes for eah plae a subset of its domain. An ationorrespondingly �xes the degree of hange aused by its ourrene:16.2 De�nition. Let � be a net with a universe A.i. A state a of � assigns to eah plae p 2 P� a set a(p) � Ap.ii. Let t 2 T�. An ation m of t assigns to eah adjaent ar f = (p; t) orf = (t; p) a set m(f) � Ap.In fat, the state of �15:10 as shown in Fig. 15.10 assigns to thinkingphilosophers the set fa; bg, to available forks the set ff1g and to eatingphilosophers the set fg. A typial ation m of return in �15:10 was givenby m(eating philosophers ; return) = m(return; thinking philosophers) = fgand m(return; available forks) = ff2; f3g.Conession and e�et of ations, and the notion of steps, are de�ned inorrespondene to Def. 3.1:16.3 De�nition. Let � be a net with some universe A, let a be a state, lett 2 T�, and let m be an ation of t.i. m has onession (is enabled) at a i� for eah plae p 2 �t, m(p; t) � a(p)and for eah plae p 2 t�, (m(t; p) nm(p; t)) � Ap n a(p).ii. The state e�(a;m), de�ned for eah plae p 2 P� bye�(a;m)(p) := 8>>><>>>:a(p) nm(p; t) i� p 2 �t n t�,a(p) [m(t; p) i� p 2 t� n �t,(a(p) nm(p; t)) [m(t; p) i� p 2 t� \ �t,a(p) otherwise,is the e�et of m's ourrene on a.iii. Assume m is enabled at a. Then the triple (a;m; e�(a;m)) is alled astep of t in �, and usually written a m�!e�(a;m).The ation m desribed above of the transition return is enabled at thestate shown in Fig. 15.10 (m is moreover the only enabled ation). Its our-rene yields the state with all philosophers thinking, all forks available, andno philosopher eating.Steps may be desribed onisely by means of a anonial extension ofations:16.4 Proposition. Let � be an es-net, let t 2 T�, and let a m�!b be a step oft. For all (r; s) 62 F�, extend m by m(r; s) := ;. Then for all plaes p 2 P�,b(p) = (a(p) [m(t; p)) nm(p; t).System nets are now de�ned by analogy to elementary system nets inSet. 8: A net with a domain for eah plae and a set of ations for eahtransition is furthermore equipped with an initial state, and distinguishedsubsets of quiesent and fair transitions.

17 Interleaved and Conurrent Runs 7516.5 De�nition. A net � is a system net i�i. For eah plae p 2 P�, a set Ap is assumed (i.e., a universe of �),ii. for eah transition t 2 T�, a set of ations of t is assumed,iii. a state a� is distinguished, alled the initial state of �,iv. eah transition t 2 T� is denoted as either progressing or quiesent,v. some progressing transitions are distinguished as fair.The introdutory examples in Set. 15 employ a partiular representationtehnique for system nets: The initial state is given by plae insriptions, andthe ations of a transition are given by the valuations of the variables as theyour in ar insriptions. Details will follow in Set. 19.17 Interleaved and Conurrent RunsInterleaved runs of system nets an be de�ned anonially as sequenes ofsteps. There is likewise a anonial de�nition of onurrent runs, orrespond-ing to Def. 5.4.Based on the notion of steps given in Def. 16.3, interleaved runs are de�nedby analogy to Def. 4.1:17.1 De�nition. Let � be a system net.i. For i = 1; : : : ; n assume steps ai�1 mi��! ai of �. They form a �-based�nite interleaved run w, written a0 m1��! a1 m2��! : : : mn��! an. Eah i 2f0; : : : ; ng is an index of w.ii. For i = 1; 2; : : : assume steps ai�1 mi��! ai of �. They form a �-basedin�nite interleaved run w, sometimes outlined a0 m1��! a1 m2��! : : : . Eahi 2 N is an index of w.For example, Fig. 17.1 shows an interleaved run of �15:12 for the ase ofn = 10: Eah state a is represented by listing a(A) in a olumn. Eah ationm is represented as a pair (k; l), with m(A; t) = fk; l � kg and m(t; A) = fkg.
 2
 3
 4
 5
 6
 7
 8
 9
10

2
3
4
5
6
7
8
9

2
3
4
5
6
7
8

2
3
4
5
6
7

2
3
4
5
7

2
3
5
7

(5,2) (3,3) (4,2) (3,2) (2,2)

Figure 17.1. Interleaved run of �15:12

76 III. Advaned ConeptsReahable steps, states and ations are de�ned in analogy to Def. 8.3:17.2 De�nition. Let � be a system net.i. A step a m�! b of � is reahable in � i� there exists a �nite interleavedrun a� m1��!a1 m2��!a2�! : : :�!an�1 mn��!an with an�1 mn��!an = a m�!b.ii. A state a of � is reahable in � i� a = a� or there exists a reahablestep formed b m�!a.iii. An ation m is reahable in � i� there exists a reahable step formeda m�!b.
T,b

T,a

A,f

E,c u,m

A,f

T,c

A,f

t,m’ E,a1

2

3 with T : thinking philosophers

A : available forks

E : eating philosophers

t : pick up

u : returnFigure 17.2. Conurrent run of �15:10Conurrent runs are now de�ned in two stages: Firstly, eah ation mis assigned an ation net, representing the ation's details in terms of aninsribed net. In a seond step, those nets are \glued together", forming aonurrent run.17.3 De�nition. Let � be a system net, let t 2 T�, let m be an ation of t,and let N be an injetively labeled net with TN = feg. Furthermore, assumel(e) = (t;m), l(�e) = f(p; a) j p 2 �t , and a 2 m(p; t)g, l(e�) = f(p; a) j p 2t� , and a 2 m(t; p)g. Then N is an ation net of � (for m).For example,

17 Interleaved and Conurrent Runs 77
E,c r,m

A,f

T,c

A,f2

3 with T : thinking philosophers

A : available forks

E : eating philosophers

r : return
(1)is an ation net for the ation m of �15:10 with m(E; r) = fg, m(r; A) =ff2; f3g and m(r; T) = fg.17.4 De�nition. Let � be a system net and let K be an element labeledourrene net. K is a �-based onurrent run i�i. in eah onurrent state a of K, di�erent elements of a are di�erentlylabeled,ii. for eah t 2 TK, (�t[t�; ftg; �t�ftg [ftg � t�) is an ation net of �.As an example, Fig. 17.2 shows a onurrent run of �15:10. The in-volved ations m and m0 are obvious from the ontext. As a further example,Fig. 17.3 shows a onurrent run of �15:12 for the ase of n = 10. Eah plaelabel (A; i) is depited by i and eah transition label (t;m) is represented asa pair (k; l) with m(A; t) = fk; k � lg and m(t; A) = fkg.

2

3

5

6

7

8

9

3

2

3

4

5

10

3,2

4,2 4

2,2

3,3

5,2

Figure 17.3. Conurrent run of �15:12 (plae insriptions (A; i) and transi-tion insriptions (t; (k; i)) are represented by i and k; i, respetively.)

78 III. Advaned Conepts18 Strutures and TermsSystem nets have been represented in Set. 15 by means of sorted terms.Suh terms ground on strutures. This setion provides the formal basis forstrutures and terms.We �rst reall some basi notions on onstants and funtions:18.1 De�nition. Let A1; : : : ; Ak be sets.i. Let a 2 Ai for some 1 � i � k. Then a is alled a onstant in the setsA1; : : : ; Ak and Ai is alled a sort of a.ii. For i = 1; : : : ; n+ 1 let Bi 2 fA1; : : : ; Akg, and let f : B1 � : : :�Bn !Bn+1 be a funtion. Then f is alled a funtion over the sets A1; : : : ; Ak.The sets B1; : : : ; Bn are the argument sorts and Bn+1 is the target sortof f . The n + 1-tuple (B1; : : : ; Bn+1) is the arity of f and is usuallywritten B1 � : : :�Bn ! Bn+1.For example, in Fig. 15.10, b is a onstant in P and G of sort P . Further-more, l is a funtion over P and G with one argument sort P and the targetsort G. Its arity is P ! G.A struture is just a olletion of onstants and funtions over some sets:18.2 De�nition. Let A1; : : : ; Ak be sets, let a1; : : : ; al be onstants inA1; : : : ; Ak and let f1; : : : ; fm be funtions over A1; : : : ; Ak. ThenA = (A1; : : : ; Ak; a1; : : : ; al; f1; : : : ; fm) (1)is a struture. A1; : : : ; Ak are the arrier sets, a1; : : : ; al the onstants, andf1; : : : ; fm the funtions of A.In fat, the system nets �15:4 and �15:6 are based on strutures. Thestruture for the philosophers system �15:10 isPhils = (P;G; a; b; ; f1; f2; f3; l; r) (2)with P;G; l, and r as desribed in Fig. 15.10. Hene this struture has twoarrier sets, six onstants, and two funtions.The struture for the onurrent version of Eratosthenes' n-sieve �15:12is Primes = (N; 2; : : : ; n; �) (3)with N denoting the natural numbers, 2; : : : ; n the numbers between 2 andn for some �xed n 2 N, and � the produt of integers. Hene this struturehas one arrier set, n� 1 onstants, and one funtion.The omposition of funtions of a struture an be desribed intuitively bymeans of terms. To this end, eah onstant a of a struture A is representedby a onstant symbol a and likewise eah funtion f of A by a funtion symbolf. (This hoie of symbols is just a matter of onveniene and onvention.Any other hoie of symbols would do the same job). Furthermore, termsinlude variables:

18 Strutures and Terms 7918.3 De�nition. Let A = (A1; : : : ; Ak; a1; : : : ; al; f1; : : : ; fm) be a stru-ture.i. Let X1; : : : ; Xk be pairwise disjoint sets of symbols. For x 2 Xi, all Aithe sort of x (i = 1; : : : ; k). Then X = X1 [: : :[Xk is a set of A-sortedvariables.ii. Let X be a set of A-sorted variables. For all B 2 fA1; : : : ; Akg we de�nethe sets TB(X) of terms of sort B over X indutively as follows:a) Xi � TAib) for all 1 � i � l, if B is the sort of ai then ai 2 TB(X).) For all 1 � i � m, if B1 � : : : � Bn ! B is the arity of fi and iftj 2 TBj (X) (j = 1; : : : ; n) then f(t1; : : : ; tn) 2 TB(X).iii. The set TA(X) := TA1(X) [: : : [TAk(X) is alled the set of A-termsover X.For example, with respet to the two strutures Phils and Primes on-sidered above, l(b) and r(x) are Phils-terms of sort G over fxg, where thesort of x is P . Likewise, 2 � 5 and 3 � y are Primes-terms of sort N over fyg,where the sort of y is N.In the sequel we always assume some (arbitrarily hosen, but) �xed orderon variables. Generally we use the following notation:18.4 Notation. A setM is said to be ordered if a unique tuple (m1; : : : ;mk)of pairwise di�erent elements mi is assumed suh that M = fm1; : : : ;mkg.We write M = (m1; : : : ;mk) in this ase.Eah term u over an ordered set of sorted variables desribes a uniquefuntion, valu, the valuation of u:18.5 De�nition. Let A be a struture and let X = (x1; : : : ; xn) be an or-dered set of A-sorted variables. For i = 1; : : : ; n let Bi be the sort of xi andlet u 2 TB(X) for any sort B of A. Then B1� : : :�Bn is the set of argumentsfor X and the valuation of u in A is a funtion valu : B1 � : : : � Bn ! B,whih is indutively de�ned over the struture of u:valu(a1; : : : ; an) = 8>>>><>>>>: ai if u = xi for 1 � i � n;a if u = a for some onstant a of A;f(valu1(a1; : : : ; an); : : : ; valuk(a1; : : : ; an))if u = f(u1; : : : ; uk) for some funtionf of A and terms u1; : : : ; uk 2 TA(X):For example, with respet to the struture Primes onsidered above,u = (2 � y) � x is a Primes-term over X = fx; yg. Assuming X is orderedX = (x; y), we get valu(3; 4) = val2�y(3; 4) �valx(3; 4) = val2(3; 4) �valy(3; 4) �3 = (2 � 4) � 3 = 8 � 3 = 24. As a speial ase we onsider terms withoutvariables:18.6 De�nition. Let A be a struture.

80 III. Advaned Coneptsi. The set TA(;) onsists of the A-ground terms and is usually written TA.ii. For eah u 2 TA of sort B, valu is the unique funtion valu : ; ! B,i.e., valu indiates a unique element in B. This element will be denotedvalu.For example, with respet to the struture Phils onsidered above, u =l(b) is a phils-ground term with valu = valf3 = f3.This ompletes the olletion of notions and notations to deal with stru-tures and terms.19 A Term Representation of System NetsBased on strutures and terms as introdued in the previous setion, a repre-sentation of system nets is suggested in the sequel, as already used in Set. 15.The representation of a transition's ations is the essential onept. To thisend, eah transition t is assigned its setMt of ourrene modes. Eah our-rene mode then de�nes an ation. A typial example was
x

f(x)

(x,y)

A

B

C

t

g(x,y) (1)Assume the variable x is of sort M , y of sort N and x ordered before y.Then M �N is the set of ourrene modes of t. Eah pair (m;n) 2M �Nde�nes an ation gmn of t, gained by substituting m and n for x and y inthe adjaent terms. Hene gmn(A; t) = fm; f(m)g,gmn(B; t) = f(m;n)g andgmn(t; C) = fg(m;n)g.The syntatial representation of term-based system nets reads as follows:19.1 De�nition. Let � be a net and let A be a struture. Assumei. eah plae p 2 P� is assigned a arrier set Ap of A and a set a�(p) � TApof ground terms,ii. eah transition t 2 T� is assigned an ordered set Xt of A-sorted variables,iii. eah ar f = (t; p) or f = (p; t) adjaent to a transition t is assigned aset f � TAp(Xt) of Ap-terms over Xt;iv. eah transition t 2 T� is denoted either progressing or quiesent, andsome progressing transitions are distinguished as fair.Then � is alled a term insribed over A.In graphial representations, the plaes p and the ars (r; s) are insribedby a�(p) and rs, respetively. Figures 15.1{15.5, 15.9, and 15.11 show exam-ples. Ourrene modes and ations of a transition are de�ned as follows:

19 A Term Representation of System Nets 8119.2 De�nition. Let � be a term insribed net and let t 2 T� be a transi-tion.i. Let (x1; : : : ; xn) be the ordered set of variables of t and let Mi be the sortof xi (i = 1; : : : ; n). Then Mt :=M1� : : :�Mn is the set of ourrenemodes of t.ii. Let m 2 Mt. For eah adjaent ar f = (p; t) or f = (t; p) and di�erentu; v 2 f assume valu(m) 6= valv(m). Then em is an ation of t, de�nedby em(f) = fvalu(m) j u 2 fg.The ationgmn disussed above is in fat an ation of the transition (1).A term-insribed net obviously represents a system net:
x

thinking philosophers

x

(x,y,z) (x,y,z)

eating philosophers

y

z

available

forks

y

z

a b c

f1 f2 f3
pick
upqreturn

x : variable over {a,b,c}

y,z : variables over {f1 ,f2 ,f3 }Figure 19.1. A variant of �15:1019.3 De�nition. Let � be a net that is term-insribed over a struture Asuh that for all p 2 P� and all di�erent u; v 2 a�(p), valu 6= valv. Then thesystem net of � onsists of{ the universe A,{ for all t 2 T�, the ations of t as de�ned in Def. 19.2(ii),{ the initial state a, de�ned for eah plae p 2 P� bya(p) := fvalu j u 2 a�(p)g,{ the quiesent, progressing, and fair transitions, as de�ned by �.As a variant of the term-represented philosophers system �15:9 we on-sider a more liberal aess poliy to the available forks in �19:1: Assumethat the available forks lie in the middle of the table. Eah philosopher p

82 III. Advaned Conepts
u pend.
 for m u with

data of m

u locally

u pend.
 for n

 u with
data of n

v pending
 for m

 v with
data of m

v locally
v pending
 for n

 v with
data of n

w pending
 for m

 w with
data of m

w locally
w pending
 for n

 w with
data of n

m ready to serve u

n ready to serve u

m ready to serve v m ready to serve w

n ready to serve v n ready to serve wFigure 19.2. Elementary system net for request serviestarts eating by taking any two available forks. Furthermore, p ends eatingby returning the two forks taken at the start. Hene we have to retain in-formation about the forks that an eating philosopher uses. To this end, aneating philosopher is represented on plae eating philosophers together withthe two forks used.Three variables our in �19:1: x, y, and z. The sort of the variable x is P ,the sort of y and z is G. Assuming the order (x; y; z) on the variables, we getMreturn =Mpik up = P �G�G. With the ourrene mode m = (b; f1; f3),the ation em of pik up is given by em(thinking philosophers ; pik up) = fbg,em(available forks ; pik up) = ff1; f3g, and em(pik up; eating philosophers)= f(b; f1; f3)g. This ation is enabled at a�19:1 . Its ourrene then yields thestep a�19:1 em�! s with s(thinking philosophers) = fa; g, s(available forks) =ff2g, and s(eating philosophers) = f(b; f1; f3)g.As a further example we onsider a simple algorithm for deterministi dis-tributed request servie, as shown in the elementary system net of Fig. 19.2.Three data users u, v, and w are to be served by two data managers m andn in yli order. Initially, eah data user works loally. After some time herequires data from both data managers. Upon being served by both m andn, the data user returns to loal work. Eah data manager in a yle �rstserves u, followed by v and w.Figure 19.3 gives a system net representation of this system. The under-lying struture is(Users ;Managers ;Users �Managers ;Managers �Users ; u; v; w;m; n; su) (1)

20 Set-Valued Terms 83
x pending

for y

y ready to serve x

(m,u)
(n,u)

(x,m)
(x,n)

u v w

(x,y)

(y,x) (y,succ(x))

(x,y)

(x,m)
(x,n)x x

x with
data of y

x locally

users = {u,v,w}

managers = {m,n}

succ : users users

succ(u) = v

succ(v) = w

succ(w) = u

var x : users

var y : managers

→

Figure 19.3. A distributed request serviewith details given in Fig. 19.3. In this example, ar insriptions suh as (x;m)are terms inluding variables (e.g., x) as well as onstant symbols (e.g., m).20 Set-Valued TermsThe formalism of Set. 19 is adequate for many system nets. But there existmore general system nets requiring set-valued terms. In order to speify thisissue more preisely, assume an es-net � with a transition t 2 T�, an ationm of t, and a plae p 2 �t[t� with domain A. Then em(p; t) or em(t; p) is asubset of A, with eah single term u 2 pt or u 2 tp ontributing a single ele-ment, valu(m) 2 A. Now we suggest single terms v that ontribute a subsetvalv(m) � A. More preisely, set-valued onstant symbols, set-valued fun-tion symbols, and set-valued variables will be used. We start with motivatingexamples for all three types of terms.As a �rst example we return to the representation of the philosopherssystem in Fig. 15.10. The graphial representation there of three philosophersa; b; and three forks f1; f2; f3 is reasonable and luid. The orrespondingsystem with say, 10, philosophers and 10 forks would beome graphiallymonstrous and for 100 or more items this kind of representation is ertainlyno longer adequate.It is better to employ set-valued onstant symbols P and G. The valuationof P returns the set P = fa; b; g of philosophers and the valuation of G returnsthe set G = ff1; f2; f3g of forks. Figure 20.1 thus shows a typial appliationof those symbols P and G.The next example motivates the use of set-valued funtion symbols: Allversions of the philosophers system onsidered so far assigns exatly two forksto eah eating philosopher. Now we follow the poliy as represented in �20:2:Philosopher a eats with one fork, f1, and philosopher b with two forks, f2 and

84 III. Advaned Conepts
x

thinking philosophers

x

x x

eating philosophers

 (x)

r(x)

available

forks

 (x)

r(x)

P

c

G
pick
upqreturn

l l

P={a,b,c}

G={f1,f2,f3}

l ,r : P G→
x : variable over P

 = = l (a) r(b) f1
 = = l (b) r(c) f2
 = = l (c) r(a) f3

Figure 20.1. Set-valued onstant symbols P and G
a re-
turns
forks

b re-
turns
forks

c re-
turns
forks

c thinking
a picks up
forks

c picks up
forks

b picks up
forks

q

q

q

b thinking

a thinking

f1 available

f3 available

f2 available

c eating

a eating

b eatingFigure 20.2. Three philosophers with di�erent numbers of forks

20 Set-Valued Terms 85f3. Philosopher , �nally, employs all three forks. A onise representation ofthis behavior must be based on the funtion � : P ! P(G) with �(a) = fg1g,�(b) = fg2; g3g, and �() = fg1; g2; g3g. This funtion an not be desribedby a set of funtions f : P ! G. So we employ a set-valued funtion symbol� of arity P ! P(G), with val�(p) = �(p) for eah p 2 P . �20:3 employsthis funtion symbol. A typial run of this system is given in Fig. 20.4.
x

thinking philosophers

x

x x

eathing philosophers

Φ(x)
available

forks

Φ(x)

P

G
pick
upqreturn

P = {a,b,c}
G = {g1,g2,g3}
Φ(a) = {g1}
Φ(b) = {g2,g3}
Φ(c) = {g1,g2,g3}
x : variable over P

Figure 20.3. System net orresponding to �20:2The last item to be motivated is the use of set-valued variables. As anexample we ombine �19:1 and �20:3 into the most liberal aess poliy ofphilosophers to forks: A philosopher hooses any set of forks eah time hestarts eating. This ase is frequently denoted as the drinking philosopherssystem: The philosophers drink oktails in a bar. The bar essentially onsistsof a stok of bottles. When he wants a oktail, a philosopher takes some ofthe bottles from the stok, takes them to his plae, mixes a oktail, drinksit, and then returns the bottles. The same philosopher may hoose a di�erentbottles for eah oktail. Figure 20.4 represents this behavior, using a set-valued variable, Y , of sort set of bottles.The most general ase inludes both kinds of terms: Element-valued termssuh as a, b, , x, y, z in �19:1 and l(x), r(x) in �20:1, and set-valued termssuh as P , G, �(x) in �20:3, and Y , (x; Y) in �20:5. For the sake of uniformmanagement of both ases, the evaluation valu(m) of terms u will be slightlyadjusted, yielding a set setvalu(m) in any ase:20.1 De�nition. Let � be a term insribed net over a struture A.i. Let p 2 P� and let u 2 a�(p). Thensetvalu = (fvalug if the sort of u is Apvalu if the sort of u is P(Ap).

86 III. Advaned Conepts
T,c

T,b

T,a

T,c

T,b

T,a

with T : thinking philosophers t : pick up
A : available forks r : return
E : eating philosophers

A,g3

A,g1

A,g2A,g2

A,g1

A,g3 A,g3

A,g2

A,g1

E,b

E,c

E,at,a

t,b

t,c r,c

r,a

r,b

Figure 20.4. Conurrent run of �20:3
x

thinking philosophers

x

(x,Y) (x,Y)

drinking philosophers

Y
available

bottles

Y

P

G
pick
upqreturn

P = {a,b,c}
G = {b1,b2,b3}

x : variable over P
Y : variable over the
 subsets of G

Figure 20.5. Drinking philosophers

20 Set-Valued Terms 87ii. Let f = (p; t) 2 F� or f = (t; p) 2 F� , let u 2 f , and let m be anargument of Xt. Thensetvalu(m) = (fvalu(m)g if the sort of u is Apvalu(m) if the sort of u is P(Ap).For example, in�20:3 we obtain setvalx(a) = fag for a 2 P and setval�(x)(b) =fg1; g2g.The ations of a term insribed net with both element-valued and set-valued terms is now de�ned as follows:20.2 De�nition. Let � be a term insribed net, let t 2 T�, and let m 2Mt.For eah adjaent ar f = (p; t) or f = (t; p) and di�erent u; v 2 f assumesetvalu(m) \ setvalv(m) = ;. Then em is an ation of t, de�ned by em(f) =Su2f setvalu(m).As an example, the one-element ordered set fxg is the set of variables ofpik up in �20:3. Hene b is an ourrene mode of pik up. The ation eb isthen de�ned by eb(thinking philosophers) = eb(eating philosophers) = fbg andeb(available forks) = ff2; f3g. Likewise, let (x; Y) be the set of variables of tin �20:5. Then m = (b; ff1; f3g) is an ourrene mode of pik up. Then emis de�ned by em(thinking philosophers) = fbg, em(available bottles) = ff1; f3gand em(drinking philosophers) = (b; ff1; f3g). A further ourrene mode of�20:5 was, e.g., (b; ff2g).20.3 Proposition. Let � be a term insribed net, let t 2 T�, let m be anation of t, and let a be a state of �. For all (r; s) 62 F� let rs := ;.i. m is enabled at a i�, for eah p 2 P�, Su2pt setvalu(m) � a(p) and(Su2tp setvalu(m) nSu2pt setvalu(m)) \ a(p) = ;.ii. Let a m�! b be a step of �. Then for eah p 2 P�, b(p) = (a(p) nSu2pt setvalu(m)) [Su2tp setvalu(m).Proof. i. fvalu(m) j u 2 tp n ptg = Su2tp setvalu(m) nSu2pt setvalu(m) byDef. 20.1(ii).ii. By Def. 20.1(ii) and Proposition 16.4. utThe system net of a term-insribed net with both element-valued andset-valued terms is de�ned as a onservative extension of the orrespondingnotion in Set. 19.3 for element-valued terms:20.4 De�nition. Let � be a net that is term-insribed over a struture A,suh that for all p 2 P� and all di�erent u; v 2 a�(p) holds setvalu\setvalv =;. Then the system net of � onsists of{ the universe of A,{ for all t 2 T�, the ations of t as de�ned in Def. 20.2,

88 III. Advaned Conepts{ the initial state a, de�ned for eah plae p 2 P� by a(p) := Su2a�(p) setvalu;{ the quiesent, progressing and fair transitions, as de�ned by �.Figures 20.2 and 20.3 in fat show system nets.21 Transition Guards and System Shemata21.1 Transition guardsAs in sequential programs, a deision between alternative ations frequentlydepends on data. For example, if an integer x and a data item y are pro-dued independently, then proessing y may ontinue in either of two ways,depending on whether x is positive or negative.An intuitively onventional representation for this struture was
x

y
y

yy

y
x

x >0x

x<0

(1)But so far system nets do not inlude transition insriptions suh as \x � 0"or \x < 0". However, suh insriptions an easily be augmented as shorthandsto avoid loops. The lassial representation for (1) then was
x

y
y

yy

y
x

x

0 1 2 3 ...

-1-2-3 ...

x

x

x

x (2)
Generally, eah transition t of a term-insribed net � may be insribed bya term u that involves variables of t only. Eah ourrene mode m then mustyield a truth value valu(m) 2 ftrue; falseg: An interleaved or onurrent runthen must onsist only of ations em with valu(m) = true.This onept is so obvious that we refrain from a formal de�nition.Transition guards are quite useful, as in the following example of thedistributed prediate meeting problem.This slightly abstrat problem assumes a funtion f : N ! N and aprediate Q � N. The task is to �nd any i 2 N suh that f(i) 2 Q. (\Q holdsat f(i)").A sequential solution is shown in �21:1, testing Q(f(1)); Q(f(2)); : : : . Thissolution is turned to a distributed solution in �21:2 for any n 2 N. Intuitively,n onurrent \strands of omputation" try to �nd some proper i 2 N.

21 Transition Guards and System Shemata 89
1 y = f(x) Q(y)

¬ Q(y)
fct f:
fct Q:
var x,y: nat

nat→nat
nat→ {true,false}

x

x x

finished
(x,y) x(x,y)

(x,y)x+1Figure 21.1. Sequential solution to the prediate holding problem
1 ... n y = f(x) Q(y)

¬ Q(y)
fct f:
fct Q:
var x,y: nat

nat→nat
nat→ {true,false}

x

x x

finished
(x,y) x(x,y)

(x,y)x+nFigure 21.2. Distributed solution to the prediate holding problemThis solution raises the problem of \stopping" all strands after the suessof one strand. In a truly onurrent setting this is an amazingly involvedquestion.21.2 System shemataDi�erent term-insribed Petri nets may operate with the same terms. As anexample, a variant of �20:1 may operate withP = fa; bg l(a) = r(b) = f1G = ff1; f2; f3; f4g r(a) = f2l; r : P ! G l(b) = f3 (3)The net with all its insriptions may remain in this ase. There are just theinvolved symbols P , G, l, and r that are evaluated in di�erent ways. Theinsribed net is just a shema for any system that works with two sorts ofitems, alled philosophers and forks, two onstant sets P and G of philoso-phers and forks, respetively, and two funtions that assign a fork to eahphilosopher. This system shema is represented in Fig. 21.3.Generally, a system shema is a term-insribed net with the underlyingstruture not entirely �xed. Thus, a system shema represents a set of systemnets. A representation of a system shema delares some sorts (domains) andsome onstants, funtions, and variables over standard sorts, delared sorts,artesian produts, or powersets of sorts. We furthermore assume standardsorts suh as the natural numbers nat or the truth values bool, together withthe usual operations. Some additional requirements may fous the intendedinterpretations.

90 III. Advaned Conepts
x

thinking philosophers

x

x x

eating philosophers

l (x)

r(x)

available

forks

l (x)

r(x)

P

G
pick

up
qreturn

sorts phils, forks

const P : set of phils

const G : set of forks

fct l , r phils forks

var x : phils

→Figure 21.3. A system shemaMost distributed algorithms, as onsidered in the forthoming hapters,will be represented as system shemata.

IV. Case Studies
A broad hoie of distributed algorithms, modeled as system nets, will bedisussed in this hapter, by analogy to the algorithms modeled as elementarysystem nets in Chap. II.We start out with some extensions of elementary system models fromChap. II, followed by the paradigm of onstraint programming whih is parti-ularly amenable to distributed exeution. Then follow algorithms that orga-nize distributed database updates, onsensus, ommuniation over unreliablehannels, and anonymous networks.22 High-Level Extensions of Elementary Net ModelsMany of the algorithms onsidered in Chap. II an naturally be general-ized, mainly to aspets of data handling, and thus are adequately modeledas system nets. For the simplest produer/onsumer system this has beenarried out already for the motivating examples of Set. 15. Here we startwith slightly more involved produer/onsumer systems.22.1 Produer/onsumer systemsThe introdutory example �1:1 was extended in Figs. 9.1 and 9.2 from oneto two bu�er ells, and in �15:5 from ontrol to data aspets. Here we extend�15:5 furthermore to the ase of n bu�er ells, with n any natural number.In analogy to �9:1 and �9:2, bu�ers an be organized sequentially or onur-rently.In order to desribe (by analogy to Set. 9.1) a system with a sequentialbu�er of some length n, the system shema of Fig. 22.1 employs pairs (a; i)representing item a to be stored at the i-th bu�er ell. Ation forward for-wards items from ell i to ell i + 1. Any reasonable interpretation of thissystem shema should evaluate the onstant n as a natural number and assignnatural numbers to the variable i. The addition symbol + is to be interpretedas addition in N.It might be worth remarking that in onurrent runs of this system, theation forward may onurrently our in di�erent modes (e.g., mode x = a,i = 1 and x = b, i = 2).

92 IV. Case Studies
ready to
deliver

ready to
consume

ready to
produce

ready to
remove

produce
q

deliver

remove

consume

x xxx

1..n

(x,1) (x,n)

filled
buffer
cells

empty
buffer
cells

1 n
forward

(x,i) (x,i+1)

i i+1

sort data
const n : nat
fct + : addition in nat
var x : data
var i : natFigure 22.1. A sequential bu�er with n ells

ready to
deliver

ready to
consume

ready to
produce

ready to
remove

produce
q

deliver

remove

consume

x xxx

1..n

(x,i) (x,i)

i i

filled
buffer
cells

empty
buffer
cells

11

i

i+1 i

i+1

consumer’s
counter

producer’s
counter

sort data
const n : nat
fct + : addition mod n in nat
var x : data
var i : natFigure 22.2. A parallel bu�er with n ells

22 High-Level Extensions of Elementary Net Models 93A parallel version of a bu�er by analogy to Fig. 9.3 is shown in Fig. 22.2:The produer employs a ounter for seleting the next bu�er ell. If this ellis empty (orresponding token in empty bu�er ells), an item may go to thisell by ourrene of deliver . The onsumer likewise employs a ounter toselet the next bu�er ell for removal of an item.22.2 Deent philosophersWe are now behind an extension of �15:10 that implements deent behaviorby philosophers. To this end the plae priority represents eah fork by thepair of its potential users, with the next user mentioned �rst. For example,(A;B) denotes the fork shared by A and B, with A to use the fork next.(B;A) denotes the same fork, but with B as its next user.
A B C D E

(A,E)
(B,C)(D,C)
(D,E)

(A,B)

priority

. . . f5f1

thinking philosophers

eating philosophers

sort phils, forks
const A, ... ,E : phils
const f1 , ... ,f5 : forks

fct ,r : phils → forks
var x,y,z : phils
 (A) = f5 , (B) = f1 , ... , (E) = f4
r(A) = f1 , ... ,r(E) = f5

l

l l l

xx

x x

 (x)l

r(x)
 (x)l

r(x)

available

forks

(x,z)
(x,y)

(z,x)
(y,x)

Figure 22.3. Deent philosophersNow �21:3 is given a new initial state and extended by the plae priorityto represent eah fork's next user, as in Fig. 22.3. In the state shown there,A and D are the philosophers to start eating, and in fat the only behaviorpossible in �22:3 is shown in Fig. 10.3.22.3 Asynhronous stakA ontrol shema for an asynhronous stak was suggested in Set. 11. Thiswill now be extended to over also data ow. By analogy to Fig. 11.1 ow

94 IV. Case Studies
values

two
storing

 quiet

storing
no

value

predecessor
from

successor
to

to
predecessor

from
successor

ai–1 ai

bi–1 bi

vi

(xi,xi–1) (xi,xi–1)

xi xi–1

x x

sort value

const v : value i

var x ,x : valuei-1 i

Figure 22.4. Module Miof values is represented in Fig. 22.4 for a single module, Mi, with an a-tually stored value, vi. A value vi�1, pushed from the predeessor moduleMi�1 (ation ai�1) is intermediately stored together with vi and then storedpersistently in Mi, with vi oinidently pushed down to module Mi+1 (a-tion ai). Correspondingly, if vi is popped up (ation bi�1), the module Miremains intermediately without any stored value. Then Mi pops up a newvalue fromMi+1 (ation ai). Figure 22.5 shows a sequene of four modules, ofwhih Fig. 11.2 shows the orresponding ontrol struture. As a onvention,we assume initially an unde�ned value ? stored in eah ell.
push

top

pop

bottomquiet1 quiet2 quiet3 quiet4

a0 a1 a2 a3 a4

b0 b1 b2 b3 b4

⊥
x

x1 x0

(x1,x0) (x1,x0)

⊥
x

x2 x1

(x2,x1) (x2,x1)

⊥
x

x3 x2

(x3,x2) (x3,x2)

⊥
x

x4 x3

(x4,x3) (x4,x3)

x x x

sort value

const : value

var x0 , x1 , x2 , x3 , x4 , x : value

q

q

⊥

⊥

Figure 22.5. Asynhronous stak with apaity for four itemsThe regular struture of�22:5 allows a parameterized representation of the\inner" modules M2 andM3 and furthermore a generalization to n modules,as in Fig. 22.6.

22 High-Level Extensions of Elementary Net Models 95

a

a

a

b

b

b

0

0

n

n

(1,z,y) (n,y,x)
(i,y,x) (i+1,z,y)

push

pop

(1,z)
(i+1,z) (i,x)

(n,x)

(1,z)
(i+1,z) (i,z)

(n,⊥)

1 i i+1 n

(1,⊥)
...(n,⊥)

q

q

storing two values

from
predecessor

quiet

storing no value

sort value
const ⊥ : value
const n : nat

var x, y, z : value
var i : natFigure 22.6. Asynhronous stak with apaity for n items

96 IV. Case Studies23 Distributed Constraint ProgrammingThe paradigm of onstraint programming advoates the onept of start-ing out with a broad domain of andidates for a problem's solution. Thisdomain then is onstrained during a program's exeution. Elements of thedomain may be extinguished independently of eah other. Hene onurrentexeution is quite natural in onstraint programming. The distributed sieveof Eratosthenes, as disussed in Set. 15, is a typial onstraint program.This setion starts out with a slight generalization of the distributed Er-atosthenes algorithm, followed by distributed onstraint algorithms for maxi-mum �nding, sorting, shortest paths, onnetivity, and onvex hull of graphsand polygons.23.1 Distributed relative prime numbersIn a set M � N of natural numbers, m 2 M is relatively prime in M i� mis no produt of any two numbers a; b 2 M n f1g. (Obviously, m is a primenumber if M is an initial part M = f1; : : : ; ng of the integers). The set ofrelatively prime numbers is apparently unique for eah set M � N. It isomputed by the distributed onstraint program �23:1. A speial ase of thisalgorithm was �15:12.
const M : set of nat

var x, y : nat
MA x divides y

x y

xFigure 23.1. Distributed sieve of Eratosthenes23.2 Distributed maximum �nding�23:2 provides a distributed onstraint program to ompute the maximalelement of any �nite set of numbers. The funtion symbol max denotes thefuntion that returns the greater of two argument numbers. Eah ourreneof transition t onsiders two elements and eliminates the smaller one.The algorithm terminates with one element at plae A, whih then is themaximal element.
const M : set of nat

fct max : nat × nat → nat
var x, y : nat

MA t

x y

max(x,y)Figure 23.2. Distributed maximum �nding

23 Distributed Constraint Programming 9723.3 Distributed sortingAssume a set of n indexed ards, eah holding a ontent, i.e., an alphabetistring and its atual index, i.e., a natural number. Initially eah number1; : : : ; n is the index of exatly one ard. The task is to re-arrange the in-dies suh that eventually the alphabeti order of ontent oinides with thenumerial order of indies.�23:3 provides a distributed solution to this problem: Essentially, the in-dies of two ards are swapped in ase the ontext order disagrees with theindex order. The algorithm terminates with the index ards holding sortedindies.
const M : set of (strings × nat

〈 : alphabetic order on strings

< : order on nat

var a,b : strings

var m,n : nat

M

A

〈
<

a
m

b
n

t
(a,m
(b,n

)
)

(a,n
(b,m

)
)Figure 23.3. Distributed sorting23.4 Distributed shortest pathAssume a �nite, direted graph with eah ar labeled by some non-negativenumber, alled its weight. Let u a�! v denote an ar from node u to node vwith weight a. Ars vi�1 ai�! vi(i = 1; : : : k) form a path from v0 to vk withweight a1 + : : :+ ak. For any two nodes u and v, the distane from u to v isin�nite in ase there exists no path from u to v. Otherwise it is the smallestof all weights of paths from u to v. The task is to ompute for eah pair (u; v)of nodes the distane from u to v.�23:4 shows a distributed solution to this problem.M denotes the initiallygiven graph, representing eah ar u a�!v as (u; v; a). If no ar from u to v ex-ists, M ontains the triple (u; v;1). Transition t replaes the atual distane of an entry (u;w;) by a smaller distane a+b in ase a orresponding pathfrom u along some node v to node w was found. The algorithm terminateswith triples (u; v; a) at p, giving the distane a to the pair (u; v) of nodes.

sort nodes

sort arcs = nodes × nodes × nat

const M : set of arcs

var u,v,w : nodes

var a,b,c : nat ∪ {ω}

M c > a+b t

(u,
(v,
(u,

v,
w,
w,

a)
b)
c)

(u,
(v,
(u,

a)
b)
a+b)

v,
w,
w,Figure 23.4. Distributed shortest path

98 IV. Case Studies23.5 Distributed onnetivityA �nite undireted graph is said to be onneted if eah two nodes u and vare linked (along several other nodes) by a sequene of ars.�23:5 provides a distributed onstraint program to deide whether or nota given graph is onneted. The onstant M onsists of the singleton setsfu1g; : : : ; fukg of the graph's nodes u1; : : : ; uk. Eah ar linking two nodesu and v is in the net represented as (u; v) or as (v; u).Transition t onstruts sets of nodes that represent onneted subgraphs.If t an no longer be enabled, the ontents of A deide the problem: Thegraph G is onneted if and only if A �nally ontains one set (whih thenonsists of all nodes of G).
sort nodes

sort subgraph = set of nodes

sort arcs = nodes × nodes

const M : setof singletons of subgraphs

const N : set of arcs

var X,Y : set of nodes

var x,y : nodes

M NA

t

∈
∈

x
y

X
Y

X,Y

∪X Y

(x,y)

Figure 23.5. Distributed onnetivity23.6 Distributed onvex hullA polygon in the plane is a �nite sequene a0 : : : an of points in the plane. Apolygon de�nes an area with edges (a0; a1); (a1; a2); : : : ; (an�1; an); (an; a0).As an example, Fig. 23.6 outlines the area of the polygon abd. The pointse and f are situated inside and outside this area, respetively. A polygon isonvex if eah edge linking any two points is entirely inside the polygon'sarea. For example, in Fig. 23.6 the outlined polygon abd is onvex, whereasaeb is not.Eah �nite set of P of points in the plane is assigned its onvex hull C(P),whih is the smallest onvex polygon ontaining them all. For example, thepolygon abd desribed above is the onvex hull C(P) for P = fa; b; ; d; egor P = fa; b; ; dg, but not for P = fa; b; g or P = fa; b; ; d; fg. Obviously,the points of C(P) are elements of P . Furthermore, a point p 2 P is not inC(P) i� it is stritly inside some triangle made of three points of C(P).�23:7 provides a distributed onstraint program to ompute the onvexhull of any �nite set P of points. The plae A initially arries all edges betweennodes of P . The prediate inside(a; b; ; d) returns true i� the point d is inside

23 Distributed Constraint Programming 99the triangle ab. Hene transition t eliminates all edges onneted to somepoint inside a triangle. The algorithm terminates with the edges of the onvexhull of P at plae A.
a

b

c

d

e fFigure 23.6. A polygon
sort point

const P : set of points

fct inside : point × point × point × point → bool

var a1,a2,a3,a4,b1,b2,b3,b4 : point

P × P inside(a1,a2,a3,a4)A t

(a1,b1) (a3,b3)
(a2,b2) (a4,b4)

(a1,b1) (a3,b3)
(a2,b2)

Figure 23.7. Distributed onvex hull23.7 Longest upsequene problemLet � = a1 : : : an be a sequene of n numbers. Let 1 � i1 < i2 < : : : <ik = n be an inreasing sequene of k indies of �. Then (ai1 ; : : : ; aik) is anupsequene of � i� ai1 < ai2 < : : : < aik (notie that aik = an). Clearly thereexists a (not neessarily unique) longest upsequene of �. Let up(�) denoteits length.The upsequene length problem is the problem of omputing up(a1 : : : an)for eah index n 2 N of any (in�nite) sequene a1; a2; : : : of numbers.�23:8 solves this problem. Its essential omponent is plae q holding triples(n; x; j). Eah suh triple states that the value of an equals x and thatup(a1 : : : an) � j. Ation t generates those triples by nondeterministiallyhoosing the value x, piking the next index n from plae p and initializing jby 1. \Better" values are omputed by u: if the atual value of up(a1 : : : an) issmaller than or equal to up(a1 : : : am) for a pre�x a1 : : : am of a1 : : : an, thenup(a1 : : : an) is at least up(a1 : : : am) + 1 .

100 IV. Case Studies
m
y
i

<
<
<

n
x
j

1

n

n+1

(n,x,1)

p
t

q
u

(n,x,j+1)
(m,y,j)

x,
y,

i)
j)

(n,
(m,

var n,m,x,y,i,j: natFigure 23.8. Longest upsequene24 Exlusive Writing and Conurrent ReadingAs a variant of the mutual exlusion algorithms of Set. 13, here we onsiderthe ase of onditional exlusive and onurrent aess to a sare resoure,e.g., a variable that may be updated only exlusively by one of its writerproesses, but be read onurrently by its reader proesses.24.1 An unfair solutionFigure 24.1 shows a �rst approah for an algorithm that organizes this versionof mutual exlusion: Any of a set W of initially quiet writer proesses mayspontaneously get pending (quiesent ation a), thus applying for a moveto writing. Likewise, eah of a set R of initially quiet reader proesses mayspontaneously get waiting (quiesent ation d), thus applying for a moveto reading. There is a ontrol token for eah reader proess whih must beavailable upon its move to reading (transition e). All suh ontrol tokensmust oinidently be available for a writer proess to move from pending to
a

b

c

d

e

f

pending

writingquiet

waiting

reading quiet

control

W R

R

qq

x

x

x

x

x

x
y

y

y

y

y

y
y

y

R

R

sorts writer, reader

const W : set of writers

const R : set of readers

var x : writers

var y : readersFigure 24.1. An unfair solution

24 Exlusive Writing and Conurrent Reading 101writing (transition b). The ontrol tokens in fat guarantee the required safetyproperty: Whenever a writer proess is writing, then no other writer proessis writing and no reader proess is reading.However, evolution, as disussed in Set. 13.1, is not guaranteed for writerproesses, and further more annot be ahieved by the assumption of fairness.24.2 A fair solutionEvolution has been ahieved in �24:2, with an additional synhronizing plae,key, and the re�nement of pending and of waiting into two onseutive plaes,respetively. key indiates that no writer proess is at pend2, and key is a sideondition for eah reader proess to move to wait2 (with transition f). Threetransitions, b, f , and g are assumed to be fair.
a

b

c

d

e

f

g

h

pend2pend1

writingquiet

wait2

reading

wait1

quiet

control

key

W R

R

qq

x

x

x

x

x

x

x x

yy

y

y

y

y

y

y

y
y

R

R

ϕ ϕ

ϕ

sorts writer, reader

const W : set of writers

const R : set of readers

var x : writers

var y : readersFigure 24.2. Exlusive writing and onurrent reading24.3 A variant of the solution�24:2 prevents ompetition among reader proesses by a \private" ontroltoken for eah of them. As a generalization we may assume a set U of ontroltokens, independent from the set R of reader proesses (with jU j < jRj), suhthat eah reader proess must get hold of any suh u 2 U in its step fromwait2 to reading. We furthermore may want to redue the number of fairtransitions. Figure 24.3 shows a solution with two fair transitions, b and f .

102 IV. Case Studies
a

b

c

d

e

f

g

h

pend2pend1

writingquiet

wait2

reading

wait1

quiet

control

key

W R

U

qq

x

x

x

x

x

x

x x

yy

z

z

y

y

y

(y,z)

(y,z)
y

U

U

ϕ ϕ

sorts writer, reader, token

const W : set of writers

const R : set of readers

const U : set of tokens

var x : writers

var y : readers

var z : tokensFigure 24.3. A variant to �24:225 Distributed RearrangementThe rearrangement problem assumes a left and a right site that initially hold�nite, nonempty, disjoint sets L and R, respetively, of natural numbers.Those sets are to be rearranged suh that eventually the left site holdsa set L1 of small numbers and the right site a set R1 of large numbers.Furthermore it is assumed that:L [R = L1 [R1 (set preservation) (1)jLj = L1 and jRj = R1 (load balane) (2)max(L1) < min(R1) (rearrangement) (3)A distributed algorithm is to be onstruted that does without additionalstorage for the two sites. Suh an algorithm will be derived in the sequel, ina sequene of re�nement steps.25.1 First steps towards a solutionFigure 25.1 shows a �rst solution to this problem. This solution is not dis-tributed, however, beause ourrene of a requires data-dependent synhro-nization among the two sites; hene the algorithm is not really distributed.Data-dependent synhronization is avoided in the solution �25:2, as any val-ues stored at the two sites may engage in ourrenes of a. But this algorithmis not guaranteed to terminate: If in a state s, the ation a is enabled in modem with m(x) < m(y), the in�nite sequene s m�! s m�! : : : is a feasonable in-terleaved run.

25 Distributed Rearrangement 103
const L,R : set of nat
var x,y : nat

L R = ∩ ∅left L R

a

right

x y

x>y

xyFigure 25.1. Non-distributed rearrangement
const L,R : set of nat
var x,y : nat
fct min,max : nat × nat → nat

L ∩ R = ∅left L R

a

right

x y

min(x,y) max(x,y)Figure 25.2. Non-terminating rearrangement25.2 A handshake solutionThe following step gives eah site ontrol over the next value to be o�ered foromparison: The atual plaes of �25:3 always hold exatly one token, l andr, respetively, to be ompared next or to be replaed by a \better" value.This algorithm still fails to terminate, but termination an be ahieved if eahomparison of values engages at least one \better" value. This is ahieved in�25:4: Eah ompared value is replaed by a better atual value from therespetive storage. Comparison of values requires at least one newly hosenatual value. Hene the algorithm terminates in a state where no site has too�er a fresh atual value. �25:4 is hene a perfet solution with handshakeommuniation.
const l ,r : nat
const L,R : set of nat
var x,y : nat
fct min,max : nat × nat → nat
(L ∪ {l }) ∩ (R ∪ {r}) = ∅

x x

x x

xy

y y

yy

min(x,y) max(x,y)left
storage

actual
left

actual
right

right
storage

L-l x>y l r x>y R-r

Figure 25.3. Rearrangement with distinguished andidates25.3 A distributed solutionThe handshake solution �25:4 now serves as a basis for a distributed solution.To this end, eah of the three ommuniating transitions is replaed by twomessage-passing transitions, as in �25:5. This algorithm an apparently be

104 IV. Case Studies

const l ,r : nat
const L,R : set of nat
var x,y : nat
fct min,max : nat × nat → nat
(L ∪ {l }) ∩ (R ∪ {r}) = ∅

L-l R-rx>y x>y

actual
left l

compared
left

compared
right

actual
right

r

left
storage

right
storage

x
x

x

x

x

x

y

y

y
y y

y

y

min(
x,y

)

m
in

(x
,y

)
min(x,y)

max(x,y)

m
ax

(x
,y)

m
ax

(x
,y

) x

Figure 25.4. Distributed handshake rearrangement

const l ,r : nat
const L,R : set of nat
var x,y,z : nat
fct min,max : nat × nat → nat
(L ∪ {l }) ∩ (R ∪ {r}) = ∅
∃ m ∈ L : max(l ,m) = m

L-l

R-r

y>x

x>y

rl

round end

reaction

new value

new value

reaction

round end

left
storage

right
storage

compared
right

actualr

compared
left

actuall min(x,z)

max(z,y)

max(x,z)

min(x,z) max(x,z)min(y,z)

xx

x
xx

x

y

y

yy

y

y
y

y

y

y

z

zz

z

z

z z

z
z

z

z

z

Figure 25.5. Distributed message passing rearrangement

26 Self Stabilizing Mutual Exlusion 105oneived as a variant of the rosstalk algorithm, �12:5. The algorithm maywork onurrently to the rise of the sets to be rearranged: There may betransitions that ontinuously drop new elements into the left and the rightstorage during the rearrangement operations. To start omputation, assumeat least one m 2 L with max(l;m) = m. The symmetrial argument, at leastone m 2 R with max(r;m) = r, would suÆe, too.26 Self Stabilizing Mutual Exlusion26.1 Self stabilization of mutual exlusionA set of proesses is assumed that inlude partiular loal states alled rit-ial states. A global state is said to guarantee mutual exlusion if at eah ofits reahable states, at most one proess is ritial. An algorithm is to be on-struted whih eventually leads to a state that guarantees mutual exlusion.As a partiular diÆulty, proesses may oasionally exeute irregular steps.Suh a step may result in a state that does not guarantee mutual exlusion.The intended algorithm is supposed to be self stabilizing in this ase, i.e., itshould eventually lead to a state that again guarantees mutual exlusion.In the sequel we solve this problem for sequenes of tightly oupled, se-quential proesses.26.2 Self stabilizing mutual exlusion for a sequene of fourproessesA stabilizing proess onsists of four states, ritial, right, waiting, and leftthat are visited in a irle, as in
critical

a

left waiting

c

right
b

d

(1)The four steps of (1) are alled regular steps. Any other step between twodi�erent loal steps is irregular ; hene (1) exhibits eight irregular steps, notexpliitly represented.Now assume four stable proesses, tightly oupled in a sequene as inFig. 26.1. A stable proess at right or at left is pending for a synhronizedstep with its right or left neighbor, respetively. A stable proess is waitinguntil its right neighbor has reahed its left state. A state a � P�26:1 is feasibleif eah stabilizing proess ontributes exatly one loal state, i.e., a is formed

106 IV. Case Studies
b0

c1 a1 r1

l1 c1
w1

b1

c2
a2 r2

l2 c2
w2

b2

c3
a3 r3

l3 c3
w3

b3

c4
a4 r4

l4 c4
w4 b4Figure 26.1. A sequene of four stable proessesa = fa1; : : : ; a4g with ai 2 fi; ri; wi; lig for i = 1; : : : ; 4. Eah regular orirregular step, as de�ned above, retains feasibility of states.Starting from any feasible state, �26:1 eventually reahes the statefl1; : : : ; l4g. Mutual exlusion is guaranteed from then on, i.e., at most oneproess i is ritial (i.e., at i) at eah state that is reahable from fl1; : : : ; l4g.Formal desription and proof of those properties is postponed to Set. 82.26.3 Self stabilizing mutual exlusion for a sequene of proessesFigure 26.2 shows the self stabilizing mutex algorithm for any sequene of selfstabilizing proesses. Initially, some proesses are ritial, waiting, at right,or at left, respetively. Irregular steps are again not represented expliitly.

critical

min

d

min

left

maxmax

waiting

max

max

e

rightx x

a

b

c

f

r(x)

r(x)

r(x)

r(x) x
x

x

x

sort proc

const min, max : proc

T, U, V, W : set of proc

fct r : proc \ {max} → proc

var x, y : proc

x ≠ y → r(x) ≠ r(y)

∃ n ∈ N : T ∪ U ∪ V ∪ W =

{ ri(min) | 0 ≤ i ≤ n }

T U

W V

Figure 26.2. Self stabilizing mutual exlusion in a sequene of proesses

V. Case Studies Continued:Aknowledged Messages
In networks of ommuniating agents, the senders of messages frequentlyexpet aknowledgments from their reeivers: Transmission lines may be un-reliable or the sender may prevent message overtaking or may wish to wait forfurther ation until a set of messages has reahed their respetive destination.We start with two ommuniation protools, i.e., distributed algorithmsthat detet and repair faulty transmission. Next we disuss algorithms thatorganize aknowledgments of messages to neighboring reeivers in a network.Finally we onsider the asymmetrial ase of a master proess that obtainsaknowledgments or refusals from a set of slave proesses.27 The Alternating Bit ProtoolIn a sequene of steps, a distributed algorithm will be derived that detetsloss of messages and enfores transmission of opies of lost messages.27.1 Unreliable transmission linesA ommuniation protool establishes reliable message passing along unreli-able transmission lines. There exist various forms of unreliability, inludingloss, hange of order, or falsi�ation of messages. This setion will assumethat messages may get lost, but are never falsi�ed. Oasionally their orderis assumed not to hange. Only �nitely many onseutive messages may getlost, however. Figure 27.1 outlines the assumptions desribed above.

send
message

loss
receive
message

x x

x

ϕ
transmission
linex x

sort message
var x : message
transmission line in fifo modeFigure 27.1. The transmission line

108 V. Case Studies Continued: Aknowledged MessagesA sender and a reeiver are assumed with ations send messages and re-eive messages, respetively. Fairness of reeive messages exludes an in�nitesequene of lost messages. Reliable message passing is guaranteed if an in-stane of eah sent message will eventually reah its destination. The sendermay repeat lost messages to this end, and the reeiver may return reeiptsto the sender along another transmission line. Of ourse, this line may beunreliable, too.In a sequene of steps, an algorithm will be derived that establishes reli-able message passing along the unreliable transmission line of Fig. 27.1.27.2 A �rst solutionFor the sake of simpliity, in addition to the unreliable transmission line ofFig. 27.1, we temporarily assume a reliable transmission line from the reeiverto the sender. As a very �rst idea, the reeiver may aknowledge reeipt ofeah message, as shown in Fig. 27.2. However loss of a message bloks thesystem. So, the sender may repeat a message, as in Fig. 27.3. In ontrast toSets. 16 and 19, in this setion we allow many idential tokens at a plae. Inpartiular, the transmission line may hold several indistinguishable tokens.
send
message

loss receive
message

x x

x

send receiptreceive receipt

ϕ

ready to
send

message

ready to
send

receipt

transmission
line

transmission line

x x

sort message
var x : message
transmission lines in fifo modeFigure 27.2. Sending of reeiptsThis algorithm fails in two respets, however: The reeiver is unable todistinguish a new, original message from opies of old messages, and thesender may entirely ignore the arrival of reeipts, thus forever repeating opiesof a message, instead of eventually reeiving its reeipt.

27 The Alternating Bit Protool 109
send
message

loss receive
message

x

x x

x

send
copyx

x

x

x

send receiptreceive receipt

ϕ

ready to
send

message

waiting for
receipt ready to

send
receipt

transmission
line

transmission line

x x

sort message
var x : message
transmission lines in fifo modeFigure 27.3. Repetition of messages
send
message

loss receive
message

(x,n)

(x,n) (x,n)

n nn (x,n)
send
copy(x,n)

(x,n)

(x,n)

n+1 (x,n) n+1 n

send receiptreceive receipt
ϕ

n n

ϕ

1 id for
next

message

waiting for
receipt

1
expected
id ready to

send
receipt

transmission
line

transmission line

x x

sort message
var x : message

var n : nat
transmission lines in fifo modeFigure 27.4. Unique identi�ation numbers (id)

110 V. Case Studies Continued: Aknowledged MessagesBoth problems have been overome in �27:4: Eah message is given aunique identi�ation number (id), with eah opy assigned the id of the re-spetive original message. The reeiver then aepts one instane for eahid, either the original message or one of its opies. Furthermore, the require-ment of fairness for reeive reeipt exludes the sender to ignore the arrivalof reeipts.27.3 Redundant opies and inreasing id numbers�27:4 in fat establishes reliable message passing along the unreliable trans-mission line: Eah �nite sequene of sent messages eventually oinides withthe sequene of reeived messages. However, �27:4 has two shortomings (be-sides the assumption of a reliable transmission line from the reeiver to thesender): its lak of garbage olletion of redundant opies, and the unlimitedinrease in id numbers. Redundant opies are garbage olleted in �27:5 bymeans of the transition reeive opy.
send
message

loss receive
message

(x,n)

(x,n) (x,n)

n nn (x,n)
send
copy

receive
copy n

n

(x,n)

(x,n)

(x,n) (x,m)
m<n

n+1 (x,n) n+1 n

send receiptreceive receipt
n n

ϕ

ϕ

1 id for
next

message

waiting for
receipt

1
expected
id ready to

send
receipt

transmission
line

transmission line

x x

sort message
var x : message

var m,n : nat
transmission lines in fifo modeFigure 27.5. Garbage olletion of redundant opiesInreasing id numbers an be avoided by help of the additional assumptionthat overtaking is exluded: Eah transmission line should behave like a queue(�fo). In this ase the id numbers of all messages and all aknowledgmentson both lines vary only over two onseutive numbers. Hene it suÆes to useonly two id numbers and to employ them alternately, �27:6 makes do withthe id numbers 0 and 1 and the swap operation n := 1� n.

27 The Alternating Bit Protool 111
send
message

loss receive
message

(x,n)

(x,n) (x,n)

n nn (x,n)
send
copy

receive
copy n

n

(x,n)

(x,n)

(x,n) (x,n)

n (x,n) n n

send receiptreceivereceipt
n n

ϕ

ϕ

1 id for
next

message

waiting for
receipt

1
expected
id ready to

send
receipt

transmission
line

transmission line

x x

sort message
var x : message

var n : {0,1}
 n = 1 - n

transmission lines in fifo modeFigure 27.6. Alternating identi�ation numbers
send
message

loss receive
message

(x,n)

(x,n) (x,n)

n nn (x,n)
send
copy

receive
copy n

n

(x,n)

(x,n)

(x,n) (x,n)

n (x,n)
(x,n)

(x,n) n

n

nn

n

n n

send
receipt

loss

receive
receipt

n n

receive
receipt

send
receipt

ϕ

ϕϕ

ϕϕ

ϕ

1
actual
bit

repeated
bit 1

repeated
bit

actual
bit

transmission
line

transmission
line

x x

sort message
var x : message

var n : {0,1}
 n = 1 - n
transmission lines in fifo modeFigure 27.7. The alternating bit protool

112 V. Case Studies Continued: Aknowledged Messages27.4 The �nal solutionThe �nal step revokes the assumption of a reliable transmission line from thereeiver to the sender. The means to ope with this problem are struturallyidential to the means desribed above to manage an unreliable line from thesender to the reeiver. This yields the �nal algorithm of Fig. 27.7.The issue of fairness is now more subtle: There may arise onit betweenthe sender's send opy and reeive reeipt. If one of those ations were in-�nitely negleted, no new message would ever be transmitted. So, fairnessmust be assumed for both of them. This argument likewise applies to thereeiver's reeive opy and send reeipt.The reeiver may extend reeipts to full-edged messages to be transmit-ted to the sender. This would result in a symmetrial algorithm, with bothsites playing the role of sender as well as of reeiver.28 The Balaned Sliding Window ProtoolThe alternating bit protool follows quite a strit poliy: The sender reeivesa reeipt for the i-th message before sending its (i + 1)st message. Here weonsider a more liberal protool that moves a \window" along the messagesequene, onsisting of two indies. Any data between both indies may besent by the sender. The order of reeipts likewise varies in a \window". As a�rst version of suh a protool, Fig. 28.1 shows the ase of transmitting eahmessage together with its index in the message sequene. The next diagram�28:2 will make do with a �nite set of transmitted identi�ers instead.Both sites of the algorithm are struturally and behaviorally almost iden-tial, and both start in symmetrial states. The following desription of thealgorithm onentrates on the left site, leaving the orresponding argumentsfor the right site as an exerise.28.1 The atual window of the left siteIn eah reahable state, the left site has its atual window, i.e., a pair (a; b)of indies suh that the left site may freely hoose an index i with a < i � band send the i-th message (i; x) (a lr-message) to the right site. The atualwindow (a; b) onsists of the lower window index a = k, expliitly representedin �28:1, and the upper window index b = j+w, with j the atual value of theplae smallest index of still expeted rl-messages. The value w is alled thewindow onstant, i.e., an integer onstant of the system. Transition a henesends lr-messages within the atual window.28.2 Window bounds of the left siteWith a message (i; x) reeived by the left site, the right site aknowledgesreeipt of all messages with indies from 1 up to i � w. Hene the left site

28 The Balaned Sliding Window Protool 113

sort message
const w : nat

var x : message
var i, j, k : nat

transition lines in fifo mode

k<i≤ j+w
ϕ

k<i≤ j+w
ϕ

max(k,i-w)

max(k,i-w)

00

0

1

i < j i≤ j

loss

loss

intermediate
storage

intermediate
storage

transmission
line

transmission
line

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

left lower
window index

right lower
window index

k

k k

k k

k

j

j

j

jj

j

j

j

i

i-1

i+1

i

ordered output of lr-messages

ordered output of rl-messages

greatest index
of consecutively
accepted
lr-messages

smallest index of still
expected rl-messages

lr-messages

rl-messages

ϕ

ϕ
a

b

c d

e

f

g
h

Figure 28.1. Balaned sliding window protool with unbounded indies

sort message
const a1,...,ak,b1,...,bk : message
const w : nat
var x,y : message

var i, j, k : nat
k = 4w + 2
k 1 = 1
transmission lines in fifo mode

+

x (i,x)

(i,y)

x

(i,x)

(i,y)

k< i≤ j w+
ϕ

k< i≤ j w+
ϕ

max(k,i w)-

max(k,i w)-

00

0

1

j-2w-1 < i ≤ j j-2w-1 < i ≤ j

loss

loss

intermediate
storage

intermediate
storage

transmission
line rl

transmission
line lr

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

(i,x)

left lower
window index

right lower
window index

k

k
k

k
k

k

j

j

j

jj

j

j

j

i

i 1-

i

i 1+
i w-

i w-

i

i

ordered
output of

lr-messages

ordered
output of
rl-messages

greatest index
of consecutively
accepted lr-messages

smallest index of still
expected rl-messages

lr-messages

(1,a),...,(k,a)1 k

(1,a),...,(k,a)1 k

rl-messages

ϕ

ϕ
a

b

c d

e

f

g h

Figure 28.2. Balaned sliding window protool with bounded indies

114 V. Case Studies Continued: Aknowledged Messagesshould stop sending messages with any index up to i � w. Hene i� w is alower bound for the lower index of the left site's atual window. Transition bupdates this index, k, whenever a message (i; x) arrives at the left site withi�w > k. The role of k then is obvious in the requirement k < i of transitiona. A message (i; x), sent by the left site, aknowledges the left site's reeiptof all rl-messages up to index j := i � w. With j the smallest index of stillexpeted rl-messages, the left site should send no messages with an indexgreater than j + w. Hene j + w is an upper bound for the upper index ofthe left site's window. Hene the requirement i � j + w of transition a.28.3 The atual window sizeFor a given atual window (a; b), the left site may send any message (i; x)with a < i � b, i.e., may hoose out of b� a messages.b� a is the atual window size (1)of the site. It will turn out that the atual window size varies between 1and 2w + 1. It remains \large", i.e., varies between 1 and 2w + 1 in asethe rl-messages arrive in order, i.e., in a sequene with the form (i; xi)(i +1; xi+1) : : : , and if the ourrenes of b and alternate. It shrinks to the size ofone index, j, in ase no message with index j arrives at the left site, whereas,(j+1; xj+1); (j+2; xj+2); : : : do arrive: The lower window index, k, inreasesin this ase by j�w, j�w+1, j�w+2; : : : , due to ourrenes of transition b,whereas (and d) are not enabled. The messages (j+1; xj+1); (j+2; xj+2); : : :remain at the intermediate storage. Hene the smallest index of still expetedrl-messages remains j, and the upper window index remains j + w.Next we alulate the maximal as well as the minimal window size: Forthe maximal window size let j be the atual smallest index of still expeted rl-messages. Then an rl-message with index j�1 is guaranteed to have reahedthe left site along transition b in this ase. Hene for the lower window indexk holds: k � j �w� 1. As the upper window index is j +w, (1) implies thatthe atual window size does not exeed j + w � (j � w � 1) = 2w + 1.For the minimal window size let j be the atual smallest index of stillexpeted rl-messages. As the index i of all lr-messages (i; x) does not exeedj + w, the greatest index of onseutively aepted lr-messages is j + w, too.Hene the atual upper window index of the right site does not exeed j+2w.Hene the index i of eah rl-message does not exeed j+2w. Those messages,arriving at transition b, yield an index k whih does not exeed j + w. As kis the lower index of the atual window of the left site, the atual windowsize may shrink to zero with a message (j; x) at the left site's intermediatestorage. Ourrene of then yields j+1 as the smallest index of still expetedrl-messages, bringing the window size to 1.

28 The Balaned Sliding Window Protool 11528.4 The right site's windowThe two sites essentially di�er only in one aspet: The ation inreases thesmallest index of still expeted rl-messages, whereas the ation h does not in-rease the greatest index of onseutively aepted lr-messages. However, thisdi�erene does not really a�et the site's behavior, given a slight adjustmentat the guards of transitions f and g.28.5 Bounded indiesThe above version�28:1 of the sliding window works with a stritly inreasingsequene of indies. A �nite set of indies, applied in yli order, is suÆient,however.To this end we assume { by analogy to the alternating bit protool { thatovertaking is exluded: Eah transmission line should behave as a queue. Se-ondly we have to estimate the number of di�erent messages that oinidentlymay exist in the system. This number essentially depends on the window on-stant, w. With j the smallest index of still expeted rl-messages, the messagesin the lr transmission line may be indexed from j�w� 1 to j+w, aordingto the onsiderations of Set. 28.3. Messages at the right site's intermediatestorage and at the greatest index of onseutively aepted messages vary inthe same range. Due to the guards of transition f , messages in the rl trans-mission line are indexed between j � 2w � 1 and j + 2w. A message (i; x) inthe left site's intermediate store is a opy of a previously reeived message ifi varies between j�2w�1 and j. Hene the guard of transition d. The guardof transition g follows the same line of arguments. Altogether, inluding bothlimits, there may be messages around with up to 4w + 2 di�erent indies.Hene it suÆes to employ 4w + 2 identi�ation numbers and to employthem in yli order. �28:2 uses the id numbers 1; : : : ; 4w + 2.28.6 Speializations and generalizationsThe alternating bit protool is essentially a speial ase of the sliding windowprotool, with window onstant w = 0. Reeive message and reeive opy of�27:7 then orrespond to the transitions h and g of �28:2. Transitions e andf of �28:2 just organize the window's slide.As a generalization, eah site may employ its own window onstant. Theatual window size may shrink to zero or to some number k > 1 in this ase.This requires more subtle fairness assumptions.

116 V. Case Studies Continued: Aknowledged Messages29 Aknowledged Messages to Neighbors in NetworksA (distributed) network inludes a �nite set of sites. Two sites may be neigh-bors, i.e., be linked by a transmission line for messages to be transmittedin either diretion. A site may send messages to its neighbors and expetreeipts that aknowledge the messages. This setion presents some aspetsof algorithms that organize aknowledged messages to neighbors in networks.29.1 One senderLet i be a site in a network (the initiator) and let U be the set of its neighbors.Figure 29.1 shows the basis of an aknowledged message sent by i to allits neighbors. After sending the message to eah neighbor (ation a), theinitiator remains waiting until reeipts have arrived from all neighbors. Thenthe initiator terminates (ation b). Eah single uninformed neighbor x 2 Ureeives the message (ation) and returns a reeipt (ation d). The algorithmlikewise works in a round-based version, as in Fig. 29.2.
i

messages

receipts

start

terminated

a

waiting pending

unin-
formed

informed
db

c

x

x x

x

x

x

x

x

x

xU

U
U

sort site
const i : site
const U : set of sites

var x : site
i ∉ UFigure 29.1. Basis of aknowledged messages to neighbors29.2 Many sendersMatters are more involved in the ase of more than one initiator: Eah mes-sage and eah reeipt must inlude its target as well as its soure. In Fig. 29.3,messages and reeipts are represented as pairs (target, soure). For eah siteu 2 U , pr1(N(u))(= pr2(N(u))) is the set of neighbors of u. Furthermore,N(u) and N(u) are the sets of messages sent by u and reeipts reeived byu, respetively.

29 Aknowledged Messages to Neighbors in Networks 117
i q

messages

receipts

start

terminated

e

a

waiting pending

unin-
formed

informed
db

c

f

x

x x

x

x

x x

x

x x

x

x

xU

U

x

U

sort site
const i : site
const U : set of sites

var x : site
i U∉Figure 29.2. Round-based message passing

V q

messages

receipts

start

terminated

e

a

waiting pending

unin-
formed

informed
db

c

f

xx

xx

x

x x

x

x (x,y)

(x,y)

(x,y)

(y,x)N(x)

N(x)

x

U

sort site
sort message = site × site
const U, V: set of sites
fct N, N: site → set of messages

var x, y : site
N(x) ⊆ U × {x}
(y,x) ∈ N(x) iff (x,y) ∈ N(x)
U ∩ V = ∅Figure 29.3. Message passing by many initiators

118 V. Case Studies Continued: Aknowledged Messages

sort site
sort message = site × site
const U, V: set of sites
fct N, N: site → set of messages

var x, y : site
N(x) ⊆ U × {x}
(y,x) ∈ N(x) iff (x,y) ∈ N(x)

q

messages

receipts

terminated

e

a

waiting pending

informed
db

c

f

x

x

x

x

x

x x

x

x (x,y)

(x,y)

(x,y)

(y,x)N(x)

N(x) x

idle sites

U

control

Figure 29.4. Sites ating as sender or as reeiver
U q

messages

receipts

start

terminated

e

a

waiting pending

unin-
formed

informed

db

c

f

xx

x
x

x

x x

x

x (x,y)

(x,y)

(x,y)

(y,x)N(x)

N(x)

x

U

sort site
sort message = site × site
const U: set of sites
fct N, N: site → set of messages

var x, y : site
N(x) ⊆ U × {x}
(y,x) ∈ N(x) iff (x,y) ∈ N(x)

x

xx
x

x

x

x

x

U idle

Figure 29.5. Sites ating as sender and as reeiver

30 Distributed Master/Slave Agreement 11929.3 VariantsAs a variant, a site may deide to at either as a sender or as a reeiver ofmessages, as in Fig. 29.4. This algorithm would deadlok if more than onesite ould at as a sender at the same time.
V q
start

terminated

e

a

waiting pending

unin-
formed

informed

db

c

f

x

x

x

x x

x

x x

x

(x,y)

(x,y)
(x,y)

(y,x)N(x)

N(x)
x

U

sort site
sort message = site × site
const U, V: set of sites
fct N, N: site → set of messages

var x, y : site
N(x) ⊆ U × {x}
(y,x) ∈ N(x) iff (x,y) ∈ N(x)

messages

Figure 29.6. Joint messages and reeiptsAs a further variant, eah site may at as a sender and as a reeiver.This an easily be ahieved: In Fig. 29.3 replae the requirement U \ V = ;by U = V . Eah site then onsists of two independent, onurrently atingomponents: a sender and a reeiver. One may replae them by one sequential,nondeterministi omponent, as in Fig. 29.5.Finally we observe that the distintion of messages and reeipts is su-per�ial, as they are learly identi�ed by their respetive soure and target.Both will be alled messages in the sequel. In Fig. 29.6, the plae messagesinludes all messages that have been sent but not yet reeived.30 Distributed Master/Slave AgreementA partiular form of message aknowledgment ours in the following pro-tool: Assume a \master" proess and a set U of \slave" proesses. Updateorders launhed by the master are to be exeuted by the slaves, providedno slave refuses. In order to ahieve this behavior, the master �rst sends aninquiry to eah slave. Eah slave heks the inquiry and reports aeptaneor refusal to the master. In ase all slaves aept, the master sends an updateorder to eah slave. In ase one slave refuses, the master sends a anellationto eah slave.

120 V. Case Studies Continued: Aknowledged Messages
q
a

master pending

inquiries

checking slaves

accepting slaves

refusing
slaves

b c

d e

cancellations

orders
k l

pending slaves

answered slaves

h j

g

master inactive inactive slaves
U

idlebusyf

m n

U-x

U
x x

x

x

x
x

x x

U

x

x
x x

xx

x x

x x

U

x
x

x

x

x

x x

xxU

x

x x

sort slaves
const U : set of slaves
var x : slaveFigure 30.1. Distributed master/slave agreementFigure 30.1 shows an algorithm that organizes this behavior. Initially,the master and all slaves are inative, and the only ativated transition isthe quiesent transition a. Its ourrene starts the agreement proedure bythe master's sending of inquiries to all slaves. Then eah slave x on its ownturns heking (ation g(x)) and nondeterministially hooses to aept or torefuse the master's inquiry (ation h(x) or j(x)). In ase all slaves x 2 Uare aepting, the master sends orders to all slaves (ation b). Otherwise atleast one slave x is refusing and thus enables (x). Then eah other slavey is noti�ed to anel: either by d(y) (in ase y had aepted the master'so�er) or by e(y) (in ase y had refused). Eventually, all slaves x 2 U haveanswered and are sent anellations. Altogether, all slaves x are forwardedeither orders, or anellations and so they all turn either busy or idle (ationk(x) or l(x), respetively).

30 Distributed Master/Slave Agreement 121Hene the algorithm guarantees thatmaster pending is eventually followedby master inative together with either all slaves busy or all slaves idle. Thisproperty will formally be shown in Part D.

VI. Case Studies Continued:Network Algorithms
A distributed algorithm is said to be a network algorithm if it is not intendedto run on just one �xed network. Rather, a network algorithm is a shema ofalgorithms, to run on any in a whole lass of networks, suh as the onnetednetworks, the ring- or tree-shaped networks, et.Network algorithms have many features in ommon, and it is quite on-venient to represent equal features always alike. Some intuition-guided on-ventions and priniples for the representation of network algorithms will bepresented in this hapter. They have already been employed in the abovealgorithms, and will likewise be used in all algorithms of this hapter, in-luding algorithms for mutual exlusion, onsensus, and self-stabilization innetworks.31 Priniples of Network AlgorithmsThe fundamental idea of the representation of network algorithms is thegeneri representation of loal algorithms, and the expliit representationof messages under way. This implies a anonial representation of networkalgorithms, aording to the loality priniple and the message priniple.31.1 Generi loal algorithmsMany sites of a network usually run the same loal algorithm. A networkalgorithm usually onsists of a few, up to about three, di�erent loal algo-rithms. In a system net representation, eah loal algorithm is representedgenerially, with a variable denoting the network sites. All loal algorithmsare onneted to a plae, usually alled messages, that inludes all messagesalready sent by their soure site and not yet reeived by their target site.In tehnial terms, a network algorithm is represented as a net shema.Eah loal algorithm employs a variable (usually x) for the ative site. Eahation is supposed to be exeuted by the site x. The following loality prinipleguarantees that eah ation employs only data that are loal to x:

124 VI. Case Studies Continued: Network Algorithms31.2 The loality prinipleFor eah transition t, eah ingoing ar of t is insribed by a set of n-tuples ofvariables (mostly just one n-tuple, often a pair or even just a single variable).The �rst variable of all n-tuples of all ingoing ars of t are idential (usuallyx). In fat, all nets in Sets. 29 and 33 follow the loality priniple, withthe exeption of �29:4: Transition a has a dot insribed ingoing ar. In fat,this algorithm is not a network algorithm due to the plae ontrol : All sitesmay ompete for its token. Hene, ontrol does not establish ommuniationbetween just two sites.The following priniple of message representation is an o�spring of theabove loality priniple.31.3 The message prinipleEah message is represented as a n-tuple (x1; : : : ; xn) with x1 the reeiver andx2 the sender of the message. x3; : : : ; xn may ontain any kind of information.(The ase of n = 2 is quite frequent).In fat this priniple has been applied throughout Sets. 27 and 30, andwill likewise be followed in forthoming setions.Summing up, the above representation rules provide a syntatial riterionfor the distributedness of an algorithm. It supports larity and readability ofnetwork algorithms, inluding a standard representation of messages.31.4 Some notions, notations, and onventionsAs usual, for a set U and a relation W � U � U , let uWv i� (u; v) 2 W .Furthermore,i. W1 := fu 2 U j ex. v 2 U with uWvg,W2 = fv 2 U j ex. u 2 U with uWvgii. W (u) := fv 2 U j uWvgiii. W�1 := f(v; u) j uWvg (frequently written W)iv. uW+v i� for some n � 1 and some u0; : : : ; un 2 U , u0 = u, un = v, andu0Wu1 : : : un�1Wunv. uW �v i� uW+v or u = v.The forthoming system shemata all assume any underlying network.In an abstrat, tehnial setting, a network is a graph; it will usually bedesribed by its sets U of nodes and W of ars. Eah ar is a pair of nodes.W (x) denotes the set of neighbors of a node x. The network is frequentlysymmetrial (W =W�1) and onneted (xW �y for all x; y 2 U). W usuallyovers exatly the nodes of U (W1 [W2 = U).

32 Leader Eletion and Spanning Trees 125W is a tree with root u i� eah node is reahable from u (8x 2 U : uW �y),W is yle free (xW+y ! x 6= y), and eah node has at most one predeessor(yWx ^ zWx! y = z).W is an undireted tree i�W is symmetrial, onneted, and no undiretedsequene of ars forms a yle (x0Wx1 : : : xnWxn+1 ^ xi�1 6= xi+1 (i =1; : : : ; n) ! x0 6= xn).32 Leader Eletion and Spanning Trees32.1 The basi leader eletion algorithmThe sites of a network are frequently supposed to elet one site as their leader.In ase the leader site rashes, a new leader must be eleted. The sites aregiven unique names to this end (e.g., integer numbers) and a total order isassumed on those names.
(x,y)

(x,y)

(x,y)

(x,y)

(x,y)

(x,z)

(x,z)

(x,z)

M(x,y)

z ≤ y

z > y

V

a

b

c

pending

messages
updating

sort site

sort state : site × site

const U : set of sites

const V,W : set of states

≤ : total order on U

fct M : state → set of states

var x, y, z : site

x,y ∈ U → x W* y

W1 ∪ W2 = U

V = {(u,u) | u ∈ U}

M(x,y) = W(x) × {y}Figure 32.1. Basi leader eletionFigure 32.1 gives a distributed algorithm for the eletion of a leader in anyonneted network. Initially, eah site is pending and assumes its own nameas a andidate for the leader. In later states, a pending site holds a betterandidate, i.e., one with a larger name. Generally, a pending site u togetherwith its atual andidate v is represented as a state (u; v). Upon pendingwith v, u informs eah neighbor in W (u) about v by ation a(u; v) and thenbeomes updating. An updating site u with its atual leader andidate v mayreeive a message (u;w). In ase the newly suggested andidate, w, does notexeed v, the site u remains updating with v (ation b(u; v; w)). Otherwise u

126 VI. Case Studies Continued: Network Algorithmsgoes pending with the new andidate w (ation (u; v; w)) and ontinues asdesribed above.A message (w; v) 2 M(u; v) takes the form of a state, with u informingthe site w about v as a andidate for the leader. There may our multipleopies of idential messages (as in ase of ommuniation protools). Thisan easily be �xed, by extending eah message with its sender.�32:1 does not perfetly meet the message priniple Set. 31: A message(u; v) in �32:1 onsists of its reeiver u and a further piee of information, v.The sender is not mentioned expliitly (though it was easy to do so).Given a onneted network with a �nite set U of sites and a total order �on U , the algorithm terminates with updating all pairs (u;w), where u 2 Uand w is the maximal element of U .32.2 A variant of the basi algorithmIn the more general ase of a partial order eah site may selet one of thelargest sites as its leader. This is easily ahieved: In Fig. 32.1, replae therequirement of � to be a total order just by � to be a partial order. Thealgorithm is guaranteed to terminate also in this ase with updating pairs(u;w), where u 2 U and w is one of the largest sites.32.3 Construting a spanning treeThe above algorithm terminates with eah site holding the leader's name.As a variant, eah site will now be informed about its distane to the leaderand about a distinguished neighbor loser to the leader. A site then maye�etively ommuniate with the leader along its distinguished neighbor. Therespetive paths to distinguished neighbors form a minimal spanning tree inthe underlying network. Figure 32.2 gives the algorithm.Initially, the leader r is pending with itself as a path to the leader andi-date, and distane 0 to the leader. All other sites are initially updating withthe unspei�ed leader andidate ? and in�nite distane. In later phases, apending token (u; v; n) indiates that there is a path of length n from u alongv to the leader. A pending site u forwards its atual distane n to all itsneighbors (by ation a(u; v; n)) and then turns updating. An updating to-ken (u; v; n) may reeive a message (u;w;m). In ase the reported distanem of w to the leader would not improve the atual distane n, the site uremains with distane n along neighbor v (ation b(u; v; w; n;m), with or-dered set (x; y; z; i; j) of variables). Otherwise u goes pending with distanem+1 along neighbor w (ation (u; v; w; n;m), with ordered set (x; y; z; i; j)of variables).This algorithm an be generalized to a set R � U of leaders in the obviousway: Initially, pending arries f(r; r; 0) j r 2 Rg and updating f(u;?; !) j u 2U nRg. The algorithm then terminates with updating triples (u; v; n), where

33 The Eho Algorithm 127
(x,y,i)

(x,y,i)

(x,y,i)

(x,y,i)

(x,y,i)

(x,z,j+1)

(x,z,j)

(x,z,j)

N(x,i)

j+1 ≥ i

j+1 < i

(r,r,0)

a

b

c

pending

messages
updatingV

sort site

sort state = site × site × (nat ∪ {ω})

const ⊥ , r : site

const U : set of sites

const V : set of states

const W : set of (sites × sites)

≤ : total order on U

fct N : site × nat → set of states

var i, j : nat

var x, y, z : site

x,y ∈ U → x W*y

W1 ∪ W2 = U

r ∈ U

⊥ ∉ U

V = {(u,⊥ ,w) | u ∈ U \ {r}}

N(x,y,i) = W(x) × {y} × {i}Figure 32.2. Shortest distane to a rootn is the minimal distane to a leader and v the name of a neighbor loser toa leader.33 The Eho AlgorithmGiven a �nite, onneted network with a partiular initiator site, the eho al-gorithm organizes aknowledged broadast of the initiator's message through-out the entire network to all sites: The initiator will terminate only after allother sites are informed.33.1 One initiator in one roundFigure 33.1 shows one round of messages, sent by the initiator i to all itsneighbors, just as in Fig. 29.1. Furthermore, messages and reeipts are jointlyrepresented in one plae, in aordane with Fig. 29.6. The entral idea of theeho algorithm is now overed in the step from �33:1 to �33:2: Upon reeivingthe initiator's message, a neighbor of the initiator forwards the message to allits neighbors but the initiator, and remains pending until reeiving messagesfrom all those neighbors. Eah site is eventually addressed in this shema.Eah uninformed site u 2 U reeives in general more than one message, heneu selets one ourrene mode (u; v) of ation . In this ase, v is alled theparent site of u. The pairs (u; v) with v the parent site of u, form a spanningtree in the underlying network: For eah site u 2 U there exists a unique

128 VI. Case Studies Continued: Network Algorithmssequene u0 : : : un of sites with u0 = u, un = i and ui the parent site of ui�1(i = 1; : : : ; n). A site u is a leaf of the spanning tree if no neighbor of u eletsu as its parent node.
i

start

terminated

a

waiting pending

unin-
formed

informed

db

c

x

x x

x

x

x

(x,y)

(x,y)

(x,y)

(y,x){x} × U

U × {x}

U

sort site
const i: site
const U: set of sites

var x,y: sites
i ∉ U

messages

Figure 33.1. The initiator informs its neighborsFor eah pending leaf (u; v), the plae messages eventually holds all mes-sages M(u) � (u; v), hene the leaf beomes informed by ourrene of d inmode (u; v). The leaves are the �rst to beome (onurrently) informed. Thenall sites are onseutively informed, ausally ordered along the spanning tree.Finally, the initiator's transition b is enabled, and the waiting initiator turnsterminated.33.2 One initiator in many roundsThe above one round eho algorithm likewise works also in a yli environ-ment, as in Fig. 33.3.33.3 Many initiatorsMatters are more involved in the ase of more than one initiator: The initia-tor's identity must be forwarded together with eah message. Hene in �33:4,eah message is a triple (x; y; z) with reeiver x, sender y and initiator z.A message (x; y; z) is sent by an initiator z if y = z and is reeived by aninitiator z if x = z. All non-initiators just forward the third omponent ofmessages.

33 The Eho Algorithm 129
i

messages

start

terminated

a

waiting pending

unin-
formed

informed

db

c

x

x

x

x

x

x

(x,y)

(x,y)
(x,y)

(y,x)M(x)

M(x)

M(x)--(y,x)

M(x)--(x,y)

U

sort site
sort message = site × site
const i : site
const U: set of sites
const W : set of (sites × sites)
fct M, M: site → set of messages
var x,y: site

W = W--1

x,y ∈ U ∪ {i} → x W*y
W1 = U ∪ {i}
i ∉ U
M(x) = W(x) × {x}
M(x) = M(x)--1Figure 33.2. One-round eho algorithm

i q

messages

start

terminated

eq

a

waiting pending

unin-
formed

informed
db

c

f

x

x

x

x

x

x

x

x

x (x,y)

(x,y)
(x,y)

(y,x)M(x)

M(x)
x

U

sort site
sort message = site × site
const i : site
const U : set of sites
const W : set of (sites × sites
fct M, M: site → set of messages
var x, y: site

W = W--1

x,y ∈ U ∪ {i} → x W*y
W1 = U ∪ {i}
i ∉ U
M(x) = W(x) × {x}
M(x) = M(x)--1

M(x)--(x,y)

M(x)--(y,x)

Figure 33.3. Cyli eho algorithm

130 VI. Case Studies Continued: Network Algorithms
V q

messages

start

terminated

eq

a

waiting pending

unin-
formed

informed
db

c

f

x

x

x

x

x

x x

x

x (x,y,z)

(x,y,z)
(x,y,z)

(y,x,z)M(x,x)

M(x,x)
x

U

sort site
sort message = site × site × site
const U,V: set of sites
const W: set of (sites × sites)
fct M, M: site × site → set of messages
var x, y: site

W = W--1

x,y ∈ U ∪ V → x W*y
W1 = U ∪ V
U ∩ V = ∅
M(x,z) = W(x) × {x} ×{z}
M(x,z) = {x} × W(x) ×{z}

M(x,z)--(x,y,z)

M(x,z)--(y,x,z)

Figure 33.4. Cyli eho algorithm with many initiators34 Mutual Exlusion in NetworksTwo algorithms will be disussed in this setion. The �rst algorithm guaran-tees global mutual exlusion: In the entire network, at most one site is ritialat eah time. The seond algorithm guarantees loal mutual exlusion: Neigh-boring sites are never ritial at the same time. Both algorithms guaranteeevolution, as disussed in Set. 13. The global mutex algorithm assumes a�xed spanning tree on the given network. Essentially it is an algorithm onundireted trees. It an be applied to any network, by �rstly �xing a spanningtree. This in turn an be done by help of a variant of the eho algorithm,with eah node informing its parent node that their joint ommuniation linebelongs to the tree.34.1 Global mutual exlusion on undireted treesGlobal mutual exlusion an be organized by means of a unique token, alwayshelt by one site, suh that a site an be ritial only if it holds the token.In the sequel, the underlying network of sites will be assumed to be anundireted tree. Then, at eah reahable state, to eah site u0 there exists aunique sequene of transmission lines, u0 : : : un with un the atual owner ofthe token. In ase n 6= 0, i.e., u0 not the owner of the token, the transmissionline (u0; u1) is the atual token line of u0. The atual token lines of all sitesindue an order on the ars of the underlying undireted tree, resulting in adireted tree with the owner of the token as its root. �34:1 organizes globalmutual exlusion on trees: The plae token holds the atual owner of thetoken; N is a direted tree on the sites of the network, suh that the atual

34 Mutual Exlusion in Networks 131
pending

critical

quiet

compass

token

(x,y)

(x,y)

(x,y) (x,z)

(x,x)

(x,x)

(z,x)

(x,y)

a

b

c

d

e

N

U

ϕ

ϕq

x y≠
ϕ

u

x

x

x
x

x x

x

y

sort site
const u : site
const U : set of sites
const N : set of (sites × sites)
var x,y,z : site
N1∪ N2 = U
u ∈ U
∀ x ∈ U: u N*x
x N+y → x ≠ y
y N x ∧ z N x → y = zFigure 34.1. Global mutex on undireted treesowner of the token is the root of the tree. A quiet site u may strive forthe token by ourrene of a(u) and then go ritial by ourrene of b(u),provided u presently owns the token.If u does not own the token, either ompass holds the token line (u; v) ofu, or the reverse (v; u) of the token line is pending. Intuitively formulated,(u; v) at ompass states that in order to obtain the token, u must send aorresponding request to v, by ourrene of d(u; v). A pending token (u; v)states that u has the duty to get hold of the token and to hand it over to v.If u holds the token already, u hands it over to v by e(u; v). Otherwise u hasa token line, (u;w), at ompass, and u sends a request for the token to w, byd(u; v).Three ompeting transitions, b, d, and e, are assumed to be fair in �34:1.34.2 A version with a simple fairness requirementFigure 34.2 shows a variant of �34:1 that requires only two transitions to betreated fairly. To this end, the plae pending of �34:1 has been re�ned intothe sequene of plae job, ation f , and plae serving in �34:2. Eah site u isonurrently serving at most one neighbor site, due to the plae idle.The essential di�erene between �34:1 and �34:2 is obvious wheneverseveral sites, v1; : : : ; vn, say, are requesting the token from the same site,u. In �34:1 this is represented by n tokens (u; v1); : : : ; (u; vn) at pending.With (u;w) at ompass, some vj auses u to demand the token from w, byd(vj ; u; w). After eventually having obtained the token, u selets a site v outof v1; : : : ; vn and hands the token over to v (by e(u; v)), in ase v 6= u.In �34:2 only one request, (u; v), is serving whereas all other pendingrequests, (u; vi) with vi 6= v, are at job. With (u; v) at ompass, v will demandthe token from w, by d(v; u; w). After eventually having obtained the token,u hands it over to v, by e(u; v), or goes ritial by b(u) in ase v = u.

132 VI. Case Studies Continued: Network Algorithms
a

q

b

c

d

e

f

U

U

u

Nϕ

ϕ

x y≠

quiet

critical

job

idle serving

compass

(x,z)

(x,y)

(x,y)
(x,y)

(x,x)

(x,y)

(x,y)

(z,x)
(x,x)

(x,y)

x

x

x
x

x

x

x

x

x x
y

token

sort site
const u : site
const U : set of sites
const N : set of (sites × sites)
var x,y,z : site
N1∪ N2 = U
u ∈ U
∀ x ∈ U: u N*x
x N+y → x ≠ y
y N x ∧ z N x → y = z

Figure 34.2. A version with a simple fairness requirement34.3 Loal mutual exlusion on networksHere we onsider networks without any restrition on their topology. Byanalogy to �13:1, eah site is assumed to be bound to the yli visit of es-sentially three loal states, alled quiet, pending, and ritial, with a quiesentstep from quiet to pending. In �34:3, pending is re�ned to two states, pend1and pend2. Two sites are neighboring in the network if and only if they sharea sare resoure. Eah resoure is shared by two sites.An algorithm on a network with this kind of site guarantees loal mutualexlusion i� neighboring sites are never both ritial at the same time. Itguarantees evolution i� eah pending site will eventually be ritial.As a speial ase, the system �10:1 of thinking and eating philosophersguarantees loal mutual exlusion (with eating the respetive ritial state).However, this algorithm neither guarantees evolution, nor is it distributed.Figure 34.3 shows a distributed algorithm that guarantees loal mutualexlusion and evolution on networks. A resoure shared by two sites u andv is represented by (u; v) or (v; u). Eah resoure at any time is on hand(though not neessarily in use) of one of its users. Aording to the loalitypriniple (Set. 31.2), (u; v) indiates that the resoure shared between uand v is presently on hand at u. Ourrene of the quiesent ation a(u)indiates that the site u is about to get ritial, in analogy to the ations aland ar of Fig. 13.1. The step from pend1 to pend2 (ation b(u)) demandsr(u) at ready, i.e., that u has re-organized all its resoures after its last visitof ritial. Details on this issue follow later. The ruial step of a site u, frompend2 to ritial (ation (u)) requires the set r(u) of all resoures of u to be

34 Mutual Exlusion in Networks 133
q ϕ

available

pend2

criticalquiet

pend1
missing

message

repeated ready

after use

demanded

first
time

hf

e

a c

b

d

P

P

N--P
x

x x

x

xx

xx

U

(x,y)

(x,y)

(y,x)

(x,y)

(x,y) (x,y)

r(x)

r(x)

r(x)

r(x)

N

g

(x,y)(x,y)

(x,y)(x,y)
(x,y)
(x,y)

(x,y)

(y,x)

(x,y)

(x,y)

(x,y)

(x,y)

sort site
sort neighbors = site × site
const U : set of sites
const N, P : set of neighbors
fct r : site → set of neighbors
var x, y : site

N = N--1

N1 = U
P ∪ P--1 = N
P ∩ P--1 = ∅
x P+ y → x ≠ y
r(x) = {x} × N(x)Figure 34.3. Loal mutual exlusion on networksavailable to u. Upon returning bak to quiet by d(u), eah resoure (u; v) isto be re-organized along after use.Eah resoure that u shares with some neighbor v is in one of three states:i. (u; v) is in repeated. In this ase, the resoure is on hand at u, and u hasbeen its last user. Upon request of v by message (u; v), the site u mayhand the resoure over to v, by ation g(u; v).ii. (u; v) is missing. In this ase, the resoure is on hand at v. In ase udemands the resoure (u; v), u sends a message (v; u) to v by atione(u; v) and will eventually obtain the resoure, by ation g(v; u).iii. (u; v) is in �rst time. In this ase, u will eventually obtain the resourefrom v and will not hand it over to v again before having been ritialat least one.A site u goes ritial by ourrene of (u). This requires r(u) be availableto u. A resoure (u; v) in repeated may be available to u, but u may deideto hand it over to v, by g(u; v). For eah resoure (u; v) not available, u haspreviously sent a message (v; u) to v, by b(u) and e(u; v), and v will eventuallyhand over (u; v) to u, by g(v; u). The resoure (u; v) is at �rst time in thisase. The site u retains all forks at �rst time after having been ritial.Eah resoure that a ritial site u shares with a neighbor v is eitherfreshly handed over to u, i.e., (u; v) is at �rst time or u has used it beforealready, i.e., (u; v) is at repeated. This implies two di�erent ations for (u; v) atafter use: In ase of �rst time, f(u; v) will our and bring (u; v) to repeated.

134 VI. Case Studies Continued: Network AlgorithmsOtherwise, (u; v) is at repeated already and (u; v) is still demanded. Heneh(u; v) properly re-organizes the resoure in this ase.35 Consensus in NetworksA onsensus algorithm organizes onsensus about some ontrat or agree-ment, among the sites of a network. This is not trivial if message passing isthe only available ommuniation medium. A basi suh algorithm will bepresented in this setion, followed by two more involved extensions.The entral ativity of all three forthoming algorithms is broadast andreeipt of proposals for a joint ontrat. Initially, eah site may spontaneouslybroadast suh a proposal to its neighbors. Upon reeiving suh a proposal,a site either aepts it or broadasts a new proposal. Neither algorithm guar-antees that onsensus will ever be reahed. But onsensus is guaranteed tobe stable: One reahed, it remains.The forthoming algorithms onsider neither the ontents of messagesnor the riteria for a site to aept or refuse a proposed ontrat. Hene eahmessage is represented as a pair (x; y), with x its reeiver and y its sender.
agreed
sites

pending
sites

completed requests

initiated requests

U b a

c

d

M

x

x

x

x

x

x

x
x

(y,x) (y,x)

(x,y)(x,y)

r(x)r(x)

r(x)

r(x)

sort site

sort message = site × site

const U : set of sites

const M : set of messages

fct r, r :site → set of messages

var x, y : site

r(x) = {x} × M(x)

r(x) = M(x) ×{x}Figure 35.1. Basi algorithm for distributed onsensus

35 Consensus in Networks 135

sort site

sort message = site × site

const U : set of sites

const M : set of messages

fct r, r :site → set of messages

var x, y : site

r(x) = {x} × M(x)

r(x) = M(x) × {x}

agreed
sites

demanded
sites

initiated1

U
quiet
sites

U
pending
sites

completed messages

initiated2

M

x

xx

x

x

x

x
x

(y,x)

(x,y)

(y,x)

(x
,y)

r(x)r(x)

(x,y)

(x,y)(x
,y

)

(x,y)(x,y) (x,y)

xx xx

x

x

r(x)

r(x)

ab c

d

e
f g

Figure 35.2. Distributed onsensus with demanded negotiators35.1 A basi onsensus algorithmFigure 35.1 shows an algorithm that organizes onsensus. Initially, eah siteis pending and eah message is ompleted (i.e., in the hands of its sender).In this situation, any site x may send eah neighbor y a message (y; x)(ation a(x)). Upon reeiving a message, a site x reads its ontents andreturns it to its sender y, by ation b(x; y) or ation (x; y). Both ationsb(x; y) and (x; y) furthermore make the reeiver x pending. Finally, eahpending site x may turn agreed, provided all its messages r(x) are ompleted(ation d(x)).Obviously, at any time, a site is either pending or agreed, and a messageis either ompleted or initiated. The algorithm does not guarantee that thesites eventually are all agreed. However, the algorithm guarantees stability:It is terminated if and only if all sites are agreed.

136 VI. Case Studies Continued: Network Algorithms

sort site

sort message = site × site

const U : set of sites

const M : set of messages

fct r, r :site→set of messages

var x, y : site

r(x) = {x} × M(x)

r(x) = M(x) × {x}

agreed
sites

demanded
sites

initiated1
quiet
sites

U

U

pending
sites

completed folders

initiated2

M

x

xx

x

x

x

x
x

(y,x)

(x,y)

(y,x)

(x
,y)

r(x)r(x)

(x,y)

(x,y)(x
,y

)

(x,y)(x,y) (x,y)

xx xx

x
x

r(x)

r(x)

ab c

d

e
f g

Figure 35.3. A variant of �35:235.2 An advaned onsensus algorithmThe system �35:2 extends �35:1 by two further states, demanded sites andquiet sites. All sites are initially quiet. Eah newly sent message (x; y) at theplae initiated1 may ause its reeiver x to swap from demanded to quietor vie versa. This is tehnially implemented in �35:2 as a nondeterministihoie between ations e(x; y) and g(x; y), or e(x; y) and f(x; y), respetively.A demanded site u is not quiet. If demanded and pending, the immediatestep to agreed is ruled out. If no other site is going to send a message, u isenfored to initiate a new proposal (ation a(u)). Messages (v; u) then mayprovoke reations of a site v, i.e., new proposals sent to its neighbors g(v)(ation a(v)). Then g(u; v) may turn u to quiet. Again, this algorithm isterminated if and only if all sites are agreed.

36 Phase Synhronization on Undireted Trees 13735.3 A further variant of a onsensus algorithmIn �35:2, initiation of a new proposal, viz. ourrene of ation a(x), requiresy to be pending. This side ondition is replaed in �35:3 by x to be demanded.Hene in �35:2 a site x may initiate a new proposal even if x is quiet; whereasin �35:3, x may initiate a new proposal even if x is agreed. Again, this algo-rithm is terminated if and only if all sites are agreed.36 Phase Synhronization on Undireted Trees36.1 The problem of phase synhronizationNetwork algorithms work frequently in rounds or phases : Eah site eventuallyreturns to its initial state, thus entering its next phase.A synhronization mehanism is oasionally required, that guaranteessynhronized exeution of rounds: No site begins its (k+1)st phase unless allsites have ompleted their k-th phase. Stated di�erently, two sites that arebusy at the same time are exeuting the same round. The rosstalk algorithm(Set. 12) and all derived algorithms suh as rosstalk based mutual exlusion(Set. 13) and the distributed rearrangement algorithm (Set. 25) have beenexamples for synhronized exeution of rounds of two neighbored sites.A phase synhronization algorithm is derived in the sequel, apt for anyundireted tree network (suh networks have been onsidered in Set. 34.1already).36.2 The algorithmFigure 36.1 provides phase synhronization on undireted trees: Eah sitealternates between two states, busy and pending. Initially, eah site is busyin its zero round. A site u may ommuniate its atual round number n toone of its neighbors v by help of the message (v; u). A site u that is busyin its n-th round goes pending upon reeiving messages from all but oneneighbor, v, by ation a(u; v; n) (with the ordered set (x; y; i) of variables).As no message is available initially, the leaves of the underlying undiretedtree start the algorithm. A pending site u at round n goes busy in round n+1upon reeiving the missing message (u; v), by ation b(u; v; n). Intuitivelyformulated, the leafs start waves of messages that are sent to inner nodes,thus involving more and more nodes. Eventually, two neighbored sites getmessages from all their neighbors. In this ase, the messages are reeted,i.e., are returned to their respetive senders, whih oinidently start theirnew round (transition b).As an interesting observation, two idential messages may our and mustbe treated as two di�erent tokens (similar situations ourred in the alter-nating bit protool of Set. 27 and the sliding window protool of Set. 28).An example was the network formed

138 VI. Case Studies Continued: Network Algorithms
(x,i+1)

(x,y,i)

(x,i)

(x,y,i)

(y,x)(x,y)

r(x)--(y,x) r(x)--(x,y)

ab

busy

pending

messages

U×{0}

sort site

sort message = site × site

const U: set of sites

const W : set of (sites × sites)

fct r, r : site → set of messages

var x, y : site

var i : nat

W = W--1

x,y ∈ U → x W*y

W1 = U

x0W x1 ... xnW xn+1 ∧
xi--1≠ xi+1 for i=1,...,n

→ x0≠ xn

r(x) = W(x) × {x}

r(x) = r(x)--1Figure 36.1. Phase synhronization
(x,i+1)

(x,y,i)

(x,i)

(x,y,i)

(y,x,i)(x,y,i)

r(x,i)--(y,x,i) r(x,i)--(x,y,i)

ab

busy

pending

messages

U×{0}

sort site

sort message = site × site × nat

const U: set of sites

const W : set of (sites × sites)

fct r, r : site × nat → set of messages

var x, y : site

var i : nat

W = W--1

x,y ∈ U → x W*y

W1 = U

x0W x1 ... xnW xn+1 ∧
xi--1≠ xi+1 for i=1,...,n

→ x0≠ xn

r(x,i) = W(x) × {x} × {i}

r(x,i) = {x} × W(x) × {i}Figure 36.2. Messages with round number

36 Phase Synhronization on Undireted Trees 139A B C (1)with a state onsisting of the empty plae busy, two opies ofmessages (B;C),and pending ontaining (A; 0), (B; 0), and (C; 1). From the initial state, thisstate is reahable by the sequene of ations a(A;B; 0), a(B;C; 0), a(C;B; 0),b(C;B; 0), a(C;B; 1). The orresponding state of �36:1 inludes two di�erentmessages, (B;C; 0), and (B;C; 1).36.3 Variants of the algorithmOurrene of two idential messages in �36:1 an be avoided: Just extendeah message by the orresponding round number, as in �36:2. The twomessages (B;C) shown above to our in the network (1) are (B;C; 0) and(B;C; 1) in �36:2.As a further variant, a pending site (u; v; n) of �36:1 is not required toretain v; hene the version of �36:3.
(x,i+1)

(x,i)

(x,i)

(x,i)

(y,x)(x,y)

r(x)--(y,x) r(x)--(x,y)

ab

busy

pending

messages

U×{0}

sort site

sort message = site × site × nat

const U: set of sites

const W : set of (sites × sites)

fct r, r : site × nat → set of messages

var x, y : site

var i : nat

W = W--1

x,y ∈ U → x W*y

W1 = U

x0W x1 ... xnW xn+1 ∧
xi--1≠ xi+1 for i=1,...,n

→ x0≠ xn

r(x) = W(x) × {x}

r(x) = r(x)--1Figure 36.3. Pending without neighbor

140 VI. Case Studies Continued: Network Algorithms37 Distributed Self Stabilization37.1 Load balane in ringsA servie site is intended to exeute tasks, provided by the site's environment.At any reahable state a servie site has its atual workload, i.e., a set of tasksstill to be exeuted. The workload inreases or dereases due to interationwith the environment.Now assume a set of servie sites, eah one autonomously interating withits environment. Their individual workload may be heavy or low in a givenstate, and it is worthwhile to balane them: A site with heavy workload maysend some tasks to sites with less heavy workload. The overall workload ina set of servie sites is balaned whenever the ardinality of the workload oftwo sites di�ers at most by one.A distributed algorithm is onstruted in the sequel, organizing load bal-aning in a set of servie sites. The ommuniation lines among sites areassumed to form a ring. Eah agent u alternately sends a workload messageto its right neighbor, r(u), and a task message to its left neighbor, l(u). Aworkload message of u informs r(u) about the ardinality of the atual work-load of u. A task message of u depends on the previous workload message ofl(u): If this message reports less tasks than u has, the next task message ofu transfers one of u's tasks to l(u). Otherwise, the next task message of utransfers no task to l(u). Intuitively formulated, a site u forwards a task tol(u) whenever the workload of u exeeds the workload of l(u).37.2 A distributed load balane algorithmFigure 37.1 shows a load balane algorithm with �xed workload: The overallnumber of tasks remains onstant. Eah state of a site u is represented as apair (u; n), with n the ardinality of u's atual workload. The task transferedfrom u to l(u) by a task message (l(u); 1), is not represented itself.With the ordered set (x; i; j) of variables, ation inform right desribesommuniation with right neighbors: A site u with atually n tasks withation informed right(u; n;m) reeives a task message (u;m) (with m = 0 orm = 1) from r(u), updates its atual workload, n, and returns a orrespondingworkload message (r(u); n +m) bak to r(u), indiating that u has atuallyn+m tasks.With the same ordered set of variables, ations send left no task andsend left one task desribe ommuniation with left neighbors: A site u withatually n tasks reeives a workload message (u;m) from l(u), ompares nand m, and returns a task with ation send left one task(u; n;m) in ase itsatual workload, n, exeeds l(u)'s reported workload, m. Otherwise, u sendsa task message with send left no task(u; n;m), to l(u), ontaining no task.Initially, eah site u informs r(u) about its atual workload.

37 Distributed Self Stabilization 141
update
message

(x,j)

receive
from right

(x,i+j)
state 1

V
(x,i)

inform
right

(r(x),i)

workload
message

(x,j)

(x,j)

send left one task

send left no task

(l (x),1)

(l (x),0)

i>j

i≤ j

(x,i)

(x,i)

(x,i)

(x,i) (x,i)

(x,i-1)

state 2state 3

sort site var i, j : nat
sort alloc = site× nat var x,y : site

∀ x ∈ U ∃ 1i ∈ nat : (x,i) ∈ V
const U : set of sites x ≠ y ⇒ r(x) ≠ r(y)
const V : set of alloc ∃ n ∈ nat : rn(x) = x
fct l , r : site → site ∀ x ∀ y ∃ n ∈ nat: y = rn(x)

l (r(x)) = xFigure 37.1. Distributed load balaning37.3 Deisive properties of the algorithmThe above algorithm never terminates; eah run is in�nite. The overall work-load is eventually balaned, as desribed above. Two ases may be distin-guished, depending on the overall workload w := �v2V2u and the numberjU j of sites:In ase w is a multiple of jU j, a state will be reahed where transition sendleft one task remains inative forever, and state1, state2, and state3 togetherontain the tokens (u; n) with u 2 U and n = wjUj . Otherwise a state will bereahed where for all tokens (u; n) and (v;m) in state1, state2, and state3holds jm � nj � 1, and this remains valid forever. The algorithm behavesquite regularly: With initially V at state1, it evolves exatly one onurrentrun. This run is stritly organized in rounds: All sites onurrently exeuteation inform right and produe a workload message for their respetive rightneighbor. Then all sites onurrently exeute send left no task or send leftone task, thus produing a task message for their respetive left neighbor.Finally, reeive from right ompletes a round.37.4 Load balaning in a oating environmentThe load balane algorithm should work onurrently to other parts of theservie sites, in partiular to inrease and derease of their respetive work-load. But it interferes with those ations. From the perspetive of the load

142 VI. Case Studies Continued: Network Algorithmsbalane algorithm, this interferene shines up as nondeterministi hange ofthe ardinality of the sites' workload. Figure 37.2 represents this behaviorwith the transition hange.
update
message

(x,i) (x,j)

(x,j)

receive
from right

(x,i+j)

change

state 1

V
(x,i)

inform
right

(r(x),i)

workload
message

(x,j)

(x,j)

send left one task

send left no task

(l (x),1)

(l (x),0)

i>j

i≤ j

(x,i)

(x,i)

(x,i)

(x,i) (x,i)

(x,i-1)

state 2state 3

sort site var i, j : nat
sort alloc = site× nat var x,y : site

∀ x ∈ U ∃ 1i ∈ nat : (x,i) ∈ V
const U : set of sites x ≠ y ⇒ r(x) ≠ r(y)
const V : set of alloc ∃ n ∈ nat : rn(x) = x
fct l , r : site → site ∀ x ∀ y ∃ n ∈ nat: y = rn(x)

l (r(x)) = xFigure 37.2. Distributed load balaning in a oating environmentThe properties disussed in Set. 37.3 are not guaranteed any more in�37:2. A balaned state will be reahed whenever hange ours seldomly,and do not drastially hange the workload.

Part CAnalysis of Elementary System Models
The term \analysis" refers to means to show that a system has partiularproperties. Examples of systems and typial orresponding properties inlude1. a mutual exlusion algorithm, preventing two sites oiniding in theirrespetive ritial setions;2. a produer/onsumer system, ensuring that the bu�er never arries morethan one item;3. a pushdown devie, guaranteeing the equation pop(push(x)) = x;4. a mutual exlusion algorithm, ensuring that eah pending site will even-tually go ritial;5. a resoure alloation proedure, eventually serving all demands;6. a termination detetion algorithm, establishing that all omponents of adistributed program are terminated.System properties an be lassi�ed by various aspets. Two lasses of prop-erties will be onsidered in the sequel, alled state and progress properties,respetively. Intuitively formulated, a state property stipulates that \some-thing bad" never happens. A progress property stipulates that eventually\something good" will happen.A slightly more formal explanation of safety and progress properties isbased on global states s � P� , be they reahable or not. For a set M ofglobal states, all s an M-state i� s 2 M . A state property has the typialform \eah reahable state is anM -state". A progress property has the typialform \some M -state will eventually be reahed" or, in its onditional form,\from eah L-state someM -state will eventually be reahed". The properties1, 2, and 3 desribed above are state properties, whereas 4, 5, and 6 areprogress properties.Part C provides tehniques to desribe and to prove suh properties. Par-tiular formulas will be employed for this purpose, adopting onepts of tem-poral logi. However, we do not propose a full-edged logi with ompletenessresults, minimal sets of operators, or eÆient model heking proedures. For-mulas are just used to make intuitive statements and onlusions transparentand preise, this way deepening the reader's insight into the funtioning ofsystems.Tehnially, elementary properties (viz. valid formulas) will be derivedfrom the stati struture of a net, i.e., without onstruting its runs. More

144 Part C. Analysis of Elementary System Modelsinvolved valid formulas are gained by means of rules from already derivedformulas.

VII. State Properties of Elementary SystemNets
Here we onsider properties of elementary system models that an be de-sribed by \at eah reahable state holds p", with p a propositional expres-sion. A typial example was mutual exlusion, with p = :(rit l ^ ritr).Tehniques to verify suh properties inlude plae invariants and initializedtraps.38 Propositional State PropertiesA property p that at eah state a of an es-net � either holds or fails is alleda state property of �. p will be said to hold in � i� p holds at eah reahablestate of �. Suh properties an onveniently be represented by means ofpropositional formulas built from the onventional propositional operators :(not), ^ (and), _ (or), ! (implies), et. Loal states of es-nets will serve asatoms of suh formulas.38.1 De�nition. Let P be a set of symbols. Then the set sf(P) of stateformulas over P is the smallest set of symbol sequenes suh thati. P � sf(P), andii. if p; q 2 sf(P) then :p 2 sf(P) and (p ^ q) 2 sf(P).The onventional propositional shorthands will be employed, and sets offormulas are quanti�ed as usual.38.2 Notation. Let P be a set of symbols and let p; q 2 sf(P).i. We usually write(p _ q) for :(:p ^ :q), and (p! q) for (:p _ q).ii. For a set Q = fq1; : : : qng � sf(P) of formulas we often write WQ insteadof q1 _ : : : _ qn. Likewise, for q1 ^ : : : ^ qn we often write VQ or Q orq1 : : : qn. The operator ^ is assumed to bind more strongly than any otheroperator.iii. p is an atom i� p 2 P .State formulas will be onstruted from the loal states of es-nets �. Astate formula p will be said to hold or to fail in any global state a of �.Holding of state formulas is de�ned as follows:

146 VII. State Properties of Elementary System Nets38.3 De�nition. Let P be a set of symbols, let a � P and let p; q 2 sf(P).Then a j= p (p holds at a, a is a p-state) is indutively de�ned as follows:i. a j= p i� p 2 a, for atoms p 2 P ,ii. a j= :p i� not a j= p,iii. a j= p ^ q i� a j= p and a j= q,This de�nition in fat returns the expeted meaning for the shorthandsof Notation 38.2, i.e.,a j= p _ q i� a j= p or a j= q,and a j= V a. a j= p! q i� a j= q whenever a j= pA formula p is said to hold in an es-net � i� p holds in eah reahable stateof �:38.4 De�nition. Let � be an es-net and let p 2 sf(P�). Then p is said tohold in � (p is a valid state property of �), written � j= p, i� a j= p foreah reahable state a of �.
A

BCD

E

a

b

c

d

e

Figure 38.1. � j= (B ! C) ^ (A! :C)As an example, in �38:1 the two formulas B ! C and A ! :C hold.Further examples are �9:1 j= A _ B, �9:3 j= FC ! K and �13:2 j=:(ritiall ^ ritialr).38.5 Lemma. Let � be an es-net and let p; q; r; s 2 sf(P�).i. � j= p and � j= q i� � j= p ^ qii. If � j= p and � j= p! q then � j= qiii. If � j= p! q and � j= r ! s then � j= (p ^ r)! (q ^ s).Proof of this lemma is left as an exerise for the reader.Some general properties of es-nets an be haraterized by means of stateformulas. Referring to Set. 3, ontat freeness is represented as follows:

39 Net Equations and Net Inequalities 14738.6 Lemma. An es-net � has no reahable ontat state i�� j= t̂2T(^� t! :_(t� n �t)):Proof. � has no reahable ontat state i�, for eah reahable state a andeah t 2 T�, if �t � a then (t� n �t) \ a = ;. This holds i� � j= Vt2T (V �t!:W(t� n �t)). utA further formula desribes that eah reahable state enables at least oneation:38.7 De�nition. An es-net � is stuk-free i� � j= Wt2T (V �t^:W(t� n �t)).39 Net Equations and Net InequalitiesState properties an frequently be proven by means of equations and inequali-ties, whih in turn an be derived from the stati struture of any given es-net.To this end, eah plae p of an es-net � is taken as a variable, ranging overf0; 1g, and eah state a � P� is represented by its harateristi funtiona : P� ! f0; 1g, with a(p) = 1 i� p 2 a. Equations and inequalities with theformn1 � p1 + : : :+ nk � pk = m and (1)n1 � p1 + : : :+ nk � pk � m (2)will be onstruted (where p1; : : : ; pk are variables orresponding to P� andn1; : : : ; nk;m are integers), whih holds in � if the harateristi funtion ofeah reahable state of � solves (1) and (2). Valid state properties an thenbe \piked up" from valid equations and inequalities.39.1 De�nition. Let � be an es-net.i. For eah state a � P�, the harateristi funtion a : P� ! f0; 1g of ais de�ned by a(p) = 1 if p 2 a and a(p) = 0 if p 62 a.ii. Let fp1; : : : ; pkg � P� and let p1; : : : ; pk be variables, ranging over f0; 1g.Furthermore let n1; : : : ; nk;m 2 Z. Then� : n1 � p1 + : : :+ nk � pk = mis a �-equation, andÆ : n1 � p1 + : : :+ nk � pk � mis a �-inequality.iii. Let � and Æ be as above, and let a � P� be a state. Then a solves � i�n1�a(p1)+: : :+nk �a(pk) = m, and a solves Æ i� n1�a(p1)+: : :+nk �a(pk) �m.iv. A �-equation � or a �-inequality Æ is valid in � (� or Æ holds in �) i�eah reahable state of � solves � or Æ, respetively.

148 VII. State Properties of Elementary System NetsAddition and subtration of valid �-equations and �-inequalities obvi-ously retains validity.We employ the usual onventions of integer terms, suh as skipping 0 �pi.For example, valid �38:1-equations inlude A+ C +D = 1, B � C + E = 0,and 2A+B+C+2D+E = 2. Likewise, the inequality A+B+C+D+E � 1holds in �38:1.A valid �-equation immediately implies valid state properties. For ex-ample, the valid �38:1-inequalities A + C � 1 and B � C + E = 0 yield�38:1 j= A ! :C and �38:1 j= B ! C, respetively. Eah valid �-equation� implies a strongest valid state property of �, alled the state property of�. Most appliations involve speial ases of �-equations, with quite intu-itive state properties. We start with the most general ase, whih may beskipped upon �rst reading, and will formulate the pratially relevant asesas orollaries.39.2 De�nition. Let � be an es-net and let � be a �-equation.i. Let the summands of � be ordered suh that � reads n1�p1+: : :+nk�pk = m,with n1 + : : :+ nl = m, for some 1 � l � k. Then p1 ^ � � � ^ pl ^ :pl+1 ^� � � ^ :pk is a standard formula of �.ii. Let � be the set of all standard formulas of �. Then �(�) := W� is thestate property of �.For example, the equation 2A + B + C = 1 has two standard formulas(up to propositional equivalene), B ^:A^:C and C ^:A^:B. Likewise,2A + B + C = 2 has the standard formulas A ^ :B ^ :C and B ^ C ^ :A,and the equation A � B � C = 0 has the standard formulas A ^ B ^ :C,A ^ C ^ :B, and :A ^ :B ^ :C.The state property of eah valid �-equation holds in �:39.3 Theorem. Let � be an es-net and let � be a valid �-equation. Then� j= �(�).Proof. i. Let a � P� be a reahable state of �. Then � an be written� : n1 � p1 + : : :+ nl � pl + nl+1 � pl+1 + : : :+ nk � pk = m, withp1; : : : ; pl 2 a and pl+1; : : : ; pk 62 a. (1)Then m = n1 � a(p1) + : : :+ nk � a(pk) (by Def. 39.1(iii))= n1 � 1 + : : :+ nl � 1 + nl+1 � 0 + : : :+ nk � 0 (by def. of a and (1))= n1 + : : :+ nl.Then �a := p1 ^ : : : ^ pl ^ :pl+1 ^ : : : ^ :pk is a standard formula of �.Furthermore,a j= �a (by (1) and Def. 38.3). (2)ii. The set � of all standard formulas ontains the formula �a for eahreahable state a of � (by onstrution of �a). Hene �(�) holds for eahreahable state (by (2)), whih implies the Theorem (by Def. 38.4). ut

39 Net Equations and Net Inequalities 149Appliations mostly require propositional impliations of state propertiesof quite speial �-equations. The two most important ases are overed bythe following orollary:39.4 Corollary. Let � be an es-net.i. Let p1 + : : :+ pk = 1 be a valid �-equation. Then � j= p1 _ : : : _ pk and� j= p1 ! (:p2 ^ : : : ^ :pk).ii. With n1; : : : ; nk > 0, let n1 �p1+ : : :+nl �pl�nl+1 �pl+1� : : :�nk �pk = 0be a valid �-equation. Then � j= (p1 _ : : : _ pl)! (pl+1 _ : : : _ pk).Proof. i. The standard formulas of the given equation are pi ^ Vj 6=i :pj ,for i = 1; : : : ; k. The properties laimed are implied by the disjuntion ofthose formulas.ii. For eah standard formula q1 ^ � � � ^ qm ^:qm+1 ^ � � � ^ :qn of the givenequation holds: If for some 1 � i � l, pi 2 fq1; : : : ; qmg, then for somem + 1 � j � n, pj 2 fq1; : : : ; qmg, by onstrution of the equation. Theproperty laimed is implied by the disjuntion of those formulas. utBy analogy to Def. 39.2, Theorem 39.3, and Corollary 39.4, eah �-inequality Æ an be assigned a set of standard formulas whih yield a stateproperty �(Æ) that holds in �, provided Æ is valid in �. Again, there is amost important speial ase:39.5 De�nition. Let � be an es-net and let Æ be a �-inequality.i. Let the summands of Æ be ordered suh that Æ reads n1�p1+: : :+nk�pk � m,with n1 + : : :+ nl � m for some 1 � l � k. Then p1 ^ : : : ^ pl ^ :pl+1 ^: : : ^ :pk is a standard formula of Æ.ii. Let � be the set of all standard formulas of Æ. Then �(Æ) := W� is thestate property of Æ.For example, 2A+B�C � 2 has the three standard formulas A^B ^C,A ^ B ^ :C and A ^ :B ^ :C.The state property of eah valid �-inequality holds in �:39.6 Theorem. Let � be an es-net and let Æ be a valid �-inequality. Then� j= �(Æ).Proof of this theorem tightly follows the proof of Theorem 39.3 and is leftas an exerise for the reader.The most important speial ase of the above theorem is aptured by thefollowing orollary:39.7 Corollary. Let � be an es-net and let p1 + : : : + pk � 1 be a valid�-inequality. Then � j= p1 _ : : : _ pk.

150 VII. State Properties of Elementary System Nets40 Plae Invariants of es-netsValid �-equations an be gained from solutions of systems of linear, homoge-neous equations. To this end, a matrix � is assigned to eah es-net �. Thismatrix employs the plaes and transitions of � as line and row indies:
A

BCD

E

a

b

c

d

e

� a b d eA �1 �1 1B 1 �1C 1 1 �1D 1 �1E 1 1 �1
a�A 1BCDEFigure 40.1. �38:1 with matrix � and vetor a�40.1 De�nition. Let � be an es-net.i. For t 2 T� let t be the P�-indexed vetor where for eah p 2 P�t[p℄ := 8><>:+1 i� p 2 t� n �t�1 i� p 2 �t n t�0 otherwise.ii. Let � be the matrix with index sets P� and T�, suh that for eah p 2 P�and t 2 T�, �[p; t℄ := t[p℄.� a b d eA �1 �1 1B 1 �1C 1 1 �1D 1 �1E 1 1 �1

i1 i2 i3 i4A 1 1 2B 1 1 1C 1 1 �1D 1 1 2E 1 1 1Figure 40.2. Matrix and four plae invariants of �38:1Figure 40.1 represents the matrix of �38:1, as well as the harateristi fun-tion of the initial state. Intuitively, �[p; t℄ desribes the hange of the numberof tokens on the plae p upon any ourrene of t. The matrix � desribesthe stati struture of � uniquely in ase � is loop-free.

40 Plae Invariants of es-nets 151The matrix � of an es-net � will now be used to onstrut the system�� �x = 0 of homogeneous linear equations. Here �� denotes the transposedmatrix of �, 0 the P�-indexed vetor with zero entries, and � the usual innerprodut of matries and vetors. The solutions of this system of equationsare alled plae invariants.40.2 De�nition. Let � be an es-net and let i : P� ! Z be a mapping.Then i is alled a plae invariant of � i� �� � i = 0 (i.e., for eah t 2 T�,t � i = �p2P� t[p℄ � i(p) = 0).Figure 40.2 realls the matrix of �40:1 and shows plae invariants i1; : : : i4of �40:1.Eah plae invariant is now assigned its harateristi equation:40.3 De�nition. Let � be an es-net with P� = fp1; : : : ; pkg and let i be aplae invariant of �.i. m := i(p1) � a�(p1) + : : :+ i(pk) � a�(pk) is the initial value of i.ii. The �-equation i(p1) � p1 + : : :+ i(pk) � pk = m is the equation of i.In fat, the equation of a plae invariant is valid in the underlying es-net�:40.4 Theorem. Let � be an es-net and let i be a plae invariant of �. Thenthe equation of i is valid in �.Proof. Let � : n1 � p1 + : : :+ nk � pk = m be the equation of i. Then for eaht 2 T�,�ki=1ni � t[pi℄ = 0, (1)by Defs. 40.3(ii) and 40.2.Now let a t�!b be any step of �. Then for eah p 2 P� ,b(p) = a(p) + t[p℄ (2)by Def. 40.1(i). Furthermore,if a solves � then b solves �, too, (3)shown as follows. Assume a solves �. Thenm = �ki=1ni � a(pi) (by Def. 39.1(iii))= (�ki=1ni � a(pi)) + (�ki=1ni � t[pi℄) (by (1))= �ki=1(ni � a(pi)) + (ni � t[pi℄) = �ki=1ni � (a(pi) + t[pi℄)= �ki=1ni � b(pi) (by (2)).Then b solves � (by Def. 39.1(iii)).

152 VII. State Properties of Elementary System NetsTo show the theorem, let a be any reahable state of �. Then there existsan interleaved run a0 t1�!a1 t2�! : : : tl�!al of � with a0 = a� and al = a. Thena0 solves � (by Def. 40.3(i)). Then eah aj (j = 0; : : : ; l) solves � (by (3) andindution on j). Hene the theorem, by Def. 39.1(iv). utThe equations of i1; : : : ; i4 as given in Fig. 40.2 are A + C + D = 1,A + B + D + E = 1, 2A + B + C + 2D + E = 2, and B � C + E = 0,respetively. They are in fat valid, due to Theorem 40.4.Important state properties an frequently be proven by means of equationsof plae invariants with entries ranging over f0; 1g and initial value equalto 1. Examples are i1 and i2 of Fig. 40.2. The equation of suh a plaeinvariant is formed p1 + : : :+ pk = 1, with P = fp1; : : : ; pkg � P� . It an begraphially depited with boldfaed ars adjaent to plaes in P . Figure 40.3shows examples. The plaes in P together with the adjaent transitions inP � [�P from a \subnet" with j �t j = j t� j = 1 for eah ation t. Ourreneof t (whih may depend on loal states not in P) then swaps the unique tokenwithin P .Aording to Corollary 39.4(i), suh plae invariants yield valid state prop-erties. For example, with invariant i1 of Fig. 40.2, the state formulas A_C_Dand A! (:C ^ :D) hold in �40:1.Slightly more generally, many plae invariants have entries ranging overf�1; 0;+1g, with initial value 0. In Fig. 40.2, i4 is an example. With Corol-lary 39.4(ii), suh plae invariants yield formulas of form (p1 _ : : : _ pl) !(pl+1 _ : : : _ pk). For example, i4 of Fig. 40.2 yields (B _ E) ! C, and �i4implies C ! (B _ E).
BCD

E
bd

e

outlining i 1

A
ac

BCD

E
bd

e

outlining i 2

A
ac

Figure 40.3. Outlining invariants i1 and i2 as given in Fig. 40.2

41 Some Small Case Studies 15341 Some Small Case Studies41.1 State properties of produer/onsumer systemsThe produer/onsumer systems �8:1, �9:1, �9:2, and �9:3 onsist essentiallyof small irles, synhronized along ommon ations. Eah irle is hara-terized by a plae invariant, in fat a harateristi vetor. In �9:1 theirequations arethe produer's invariant i1: A+B = 1 (1)the �rst bu�er ell's invariant i2: C +D = 1 (2)the seond bu�er ell's invariant i3: E + F = 1 (3)the onsumer's invariant i4: G+H = 1 (4)Hene in eah reahable state, the produer is either ready to produe or readyto deliver, eah bu�er ell is either empty or �lled, and the onsumer is eitherready to remove or ready to onsume.It is not diÆult to realize that the above four invariants also apply to�9:2 and �9:3.The rest of this setion is dediated to the \optimality" of �9:3, as ex-plained in Set. 9: The produer is never fored to aess a �lled bu�er ellwhile the other ell is ready to deliver. Furthermore, if at least one bu�er ellis empty, then the token on J or K \points at" an empty bu�er ell. This isrepresented by(B ^ (E _ C))! (BEJ _ BCK). (5)Proof of (5) is based on three invariants (6)-(8), of whih (7) is outlined inFig. 41.1:
B b d H

f

GecA

a

F

E

D

C

KJ L Mq

Figure 41.1. Plae invariant E +K � C �M = 0 of �9:3

154 VII. State Properties of Elementary System NetsJ +K = 1, hene �9:3 j= J _K. (6)E +K � C �M = 0, hene �9:3 j= EK ! CK. (7)C + J �E � L = 0, hene �9:3 j= CJ ! EJ . (8)Now we derive�9:3 j= (E _ C)! (E _ C) ^ (J _K), by (6). (9)�9:3 j= (E _ C)! EJ _ EK _ CJ _ CK, by (9). (10)�9:3 j= (E _ C)! EJ _ CK, by (10),(7) and (8). (11)Now (5) follows from (11) by propositional logi.41.2 Mutual exlusion of the ontentious algorithmsMutual exlusion of two loal states p and q of some es-net � is apparentlyrepresented by� j= :(p ^ q). (1)This an frequently be proven by means of plae invariants.
q qa d

b e

c f

B F

C G

A E

D

ϕ ϕ

Figure 41.2. Plae invariant C +D +G = 1 (boldfae) of �13:2An example is the mutual exlusion of ritiall and ritialr in the on-tentious algorithm �13:2.Figure 41.2 realls this algorithm, with renamed elements and boldfaears of its invariant C+D+G = 1. With Corollary 39.4(i), both the formulasC ! :G and G! :C hold in �41:2, hene �41:2 j= :(C ^G).41.3 Mutual exlusion of the alternating algorithmFigure 41.3 realls the alternating mutex algorithm �13:3 with renamedplaes. The boldfae ars outline the plae invariant C + D + E + H = 1whih implies :(C ^ H), viz. mutual exlusion of ritiall and ritialr in�13:3.

41 Some Small Case Studies 155
q

ϕ

qaq d q

c e

b f
B

G

C H

A

F

D

EFigure 41.3. Plae invariant (boldfae) of the alternating mutex algorithm�13:3

c j

F A

B G H

C

D

J

E

RL

M

N

P

K

Q

f n

e m

a b h g

d k

q q

ϕ ϕ

Figure 41.4. Plae invariant (boldfae) of the token passing mutex algorithm�13:5

156 VII. State Properties of Elementary System Nets41.4 Mutual exlusion of the token passing algorithmFigure 41.4 realls the token passing mutex algorithm �13:5, with renamedelements. The boldfae ars depit the plae invariantB+E+J+K+M+Q=1. This invariant immediately implies mutual exlusion of E and Q, i.e.,mutex of �13:5.41.5 Mutual exlusion of the asymmetrial algorithmFigure 41.5 realls the asymmetrial algorithm �13:10, with renamed plaes.The boldfae ars depit the plae invariant C +D + E +K +G = 1. Thisinvariant immediately implies mutual exlusion of C and K, i.e., mutex of�13:10.
B

A

C D

F

E

G

K

J

H

b e f

d
qa q h

c gFigure 41.5.Plae invariant (boldfae) of the asymmetrial mutex algorithm�13:9Plae invariants fail to prove mutual exlusion of all other algorithms ofSet. 13, however, partiularly those relying on loops. As loops don't show upin the inidene matrix, they annot be represented and exploited by plaeinvariants. Removing all loops from �13:4, �13:8 destroys the mutex property,but retains the plae invariants. Hene plae invariants annot help for thosealgorithms. In fat, they also fail for �13:6.One may employ a di�erent analysis tehnique to this end, and in fatsuh a tehnique exists. The following setion has the details.42 TrapsThis setion provides a further tehnique for proving state properties of es-nets, useful in many ases where plae invariants fail. This tehnique is basedon traps, i.e., on subsets P � P� with P � � �P . A trap fp1; : : : ; pkg impliesthe valid inequality p1+ : : :+pk � 1 and hene the state formula p1_ : : :_pk,provided one of its plaes belongs to the initial state. Hene we are mostlyinterested in initialized traps:

42 Traps 15742.1 De�nition. Let � be an es-net and let P � P�.i. P is a trap i� P 6= ; and P � � �P .ii. P is initialized i� P \ a� 6= ;Figure 42.1 shows an example of an initialized trap, fA;Dg. Figure 42.2 out-
D

C

A

B

ab

c

dFigure 42.1. Initialized trap fA;Dg
trap

if present

then requiredFigure 42.2. Graphial outline of a traplines the requirement for traps graphially. As a further example, fA;C;D;Egis an initialized trap of �40:1.Basi rules on sets imply:42.2 Proposition. The union of traps of a net N is again a trap of N .Proof. Let A and B be traps of N . Then (A [B)� = A� [B� � �A[�B =�(A [B). utEah trap is now assigned its inequality, by analogy to the equation ofplae invariants, as de�ned in Def. 40.3.42.3 De�nition. Let � be an es-net and let P = fp1; : : : ; pkg � P� be atrap of �. Then p1 + : : :+ pk � 1is the inequality of P .In fat, the inequality of an initialized trap is valid:

158 VII. State Properties of Elementary System Nets42.4 Theorem. Let � be an es-net and let P � P� be an initialized trap.Then the inequality of P is valid in �.Proof. i. Let Æ : p1+ : : :+pk � 1 be the inequality of P , and let a � P� bea state of �. Then a solves Æ i� a(p1) + : : :+ a(pk) � 1 i� a(pi) = 1 forat least one 1 � i � k i� pi 2 a for at least one 1 � i � a i� P \ a 6= ;.Hene for eah state a � P� ,a solves Æ i� a \ P 6= ;. (1)Furthermore, for eah ation t 2 T�:If �t\P 6= ; then t� \P 6= ; (2)beause P is a trap.ii. Let a t�!b be a step of � and assumea \ P 6= ;. (3)We distinguish two ases:If �t\P 6= ; then ; 6= t� \P (by (2)) � ((a n �t) \ P) [(t� \P) =((a n �t) [t�) \ P = b \ P (by Def. 3.1).Otherwise �t\P = ;. Then ; 6= a \ P (by (3)) = (a \ P) n (�t\P) �((a \ P) n (�t\P)) [(t� \P) = ((a n �t) [t�) \ P = b \ P (by Def. 3.1).Hene for eah step a t�!b of �,If a \ P 6= ; then b \ P 6= ;. (4)iii. To show the theorem, let a be any reahable state of �. Then there existsan interleaved run a0 t1�! a1 t2�! : : : tl�!al of � with a0 = a� and al = a.Then a0 \ P 6= ; (by the theorem's assumption and Def. 42.1). Thenai \P 6= ; for i = 1; : : : ; l by (4) and indution on i. Then al solves Æ (by(i)), hene a solves Æ. utThe inequality of a trap an be ombined with inequalities of other trapsand with equations of plae invariants. A small but typial example is theproof of �42:1 j= B ! D, hene the equationB � D (1)must hold. Figure 42.1 yields the plae invariantA+B = 1. (2)Furthermore, the initialized trap fA;Dg yields the inequalityA+D � 1. (3)Subtrating (3) from (2) then yieldsB �D � 0 (2)� (3)whih immediately implies (1).The inequality of an initialized trap P yields the formula WP , aordingto Corollary 39.7.

43 Case Study: Mutex 15942.5 Corollary. Let � be an es-net and let P � P� be an initialized trap.Then � j= WP .Proof. The proposition follows from Def. 42.3 and Corollary 39.7. ut43 Case Study: MutexMutual exlusion has been shown for a number of algorithms in Set. 41.Here we show mutual exlusion for the remaining algorithms of Set. 13 byombining equations and inequalities of plae invariants and traps.43.1 Mutex of the state testing algorithmFigure 43.1 redraws the state testing algorithm, renaming its loal statesand outlining its trap fD;Eg by boldfaed ars. Mutual exlusion in thisrepresentation reads �43:1 j= :(C ^H), hene the equationC +H � 1 (1)must hold. Proof of (1) is based on two elementary plae invariants with theequationsC +D = 1, (2)E +H = 1, (3)and the initialized trap fD;Eg outlined in Fig. 43.1 whih yieldsD +E � 1. (4)Subtrating the inequality (4) from the sum of the equations (2) and (3)yieldsC +D +E +H �D �E � 1 + 1� 1 (2) + (3)� (4)whih immediately redues to (1).
q qa l a r

b l b r

c l c r

B G

C H

A F

ϕ ϕ

D EFigure 43.1. Trap fD;Eg of the state testing mutex algorithm �13:4

160 VII. State Properties of Elementary System Nets43.2 Mutex of the round-based algorithmFigure 43.2 redraws the round-based mutex algorithm �13:6, renaming itsloal states and outlining one of its traps by boldfaed ars. Mutual exlusion
A E

q

q

L

M

D

J

C

H

N

R

P

S

B

K

Q

T

G

F

n
b d

m

a
c

j
k

e
g

f h
q

p

ϕ

ϕ

Figure 43.2. Trap fA;C;D;E; J;Kg of the round-based mutex algorithm�13:6in this representation reads �43:2 j= :(N ^ R), hene the equationN +R � 1 (1)must hold. Proof of (1) is based on three plae invariants with the equationsA+ C +D + J +M +R = 1, (2)D +E +H + J + L+N = 1, (3)K +R+ S + T = 1, (4)the initialized trap, outlined in Fig. 43.2 with the inequalityA+ C +D +E + J +K � 1, (5)and the obvious inequalityD +H + J + L+M + S + T � 0. (6)Thus we obtain by (2) + (3) + (4)� (5)� (6)

43 Case Study: Mutex 161N + 2R � 2, i.e., N2 +R � 1. (7)(7) is equivalent to (1), beause N and R vary over f0; 1g.43.3 Mutex of Peterson's algorithmFigure 43.3 redraws Peterson's mutex algorithm �13:7, renaming its loalstates and outlining its trap fC;F;G;Mg by boldfaed ars. Mutual exlusion
C L

F P

D M

E N

G H

b j

c kmd

ne f p

g q
a hA J

B K

q q

ϕ ϕ

Figure 43.3. Trap fC;F;G;Mg in Peterson's algorithm �13:7in this representation reads �43:3 j= :(E ^N), hene the equationE +N � 1 (1)must hold. Proof of (1) is based on three elementary plae invariants withthe equationsG+H = 1, (2)C +D +E + F = 1, (3)L+M +N + P = 1, (4)and two initialized traps, one of whih is outlined in Fig. 43.3, whih yieldC + F +G+M � 1, (5)L+ P +H +D � 1. (6)Subtration of (5) and (6) from the plae invariants' sum, i.e., (2) + (3) +(4)� (5)� (6), then immediately yields (1).

162 VII. State Properties of Elementary System Nets43.4 Mutex of Dekker's algorithmFigure 43.4 renames the loal states of Dekker's mutex algorithm �13:8 andoutlines its trap fF;C; P; Lg. Mutual exlusion then reads �43:4 j= :(D^M),
qg

ne pf

kc md

ϕϕ

NE

MD

HG

LC

PF

jb qq
ha

JA

KB

Figure 43.4. Trap fC;F; L; Pg in Dekker's algorithm �13:8hene the equationD +M � 1 (1)must hold. Proof of (1) is based on two elementary plae invariants with theequationsF + C +D +E = 1, (2)P + L+M +N = 1, (3)the initialized trap, outlined in Fig. 43.3, with the inequalityF + C + P + L � 1, (4)and the obvious inequalityE +N � 0. (5)Then (1) follows with (2) + (3)� (4)� (5).

43 Case Study: Mutex 16343.5 Mutex of Owiki/Lamport's algorithmFigure 43.5 renames the loal states of Owiki/Lamport's algorithm �13:9and outlines its trap fC;F;G;Kg. Mutual exlusion of writing and readingthen reads �43:5 j= :(D ^ L), hene the equationD + L � 1 (1)must hold. Proof of (1) is based on two elementary plae invariants with theequationsC +D + F = 1, (2)G+K + L = 1, (3)and an initialized trap, outlined in Fig. 43.5, with the inequalityC + F +G+K � 1. (4)Subtration of (4) from the sum of (2) and (3), i.e., (2) + (3) � (4), thenredues to (1).This ompletes the proof of mutual exlusion for all algorithms of Set. 13.
E

F

ϕ

B C K J

Mq q

A D L H

G

a

b

c

d

e

f

g

h

j k

Figure 43.5. Trap fC;F;G;Kg in Owiki/Lamport's asymmetrial mutexalgorithm �13:9

VIII. Interleaved Progressof Elementary System Nets
As explained in the introdutory text of Part C, a progress property of an es-net � stipulates for a given setM of states that one of them will eventually bereahed. In its onditional form, a progress property stipulates that, startingat any state in some set L of states, a state in M will eventually be reahed.The notion of progress an be based on interleaved runs as well as ononurrent runs. This setion stiks to the interleaved version. Conurrentvariants will follow in Chap. IX.44 Progress on Interleaved RunsWe onsider progress properties that are onstruted from two state proper-ties, p and q: The progress property p leads to q (written p 7! q) holds in aninterleaved run r of some es-net � i� eah p-state of r is eventually followedby some q-state. Furthermore, p 7! q is said to hold in � i� p 7! q holds ineah run of �. For example, the evolution property of a mutex algorithm �(f. Set. 13) then reads� j= pending 7! ritial (1)Tehnially, leads-to formulas are onstruted from state formulas (f.Def. 38.1):44.1 De�nition. Let P be a set of symbols and let p; q 2 sf(P) be stateformulas over P . Then the symbol sequene p 7! q (\p leads to q") is aleads-to formula over P . The set of all suh formulas is denoted lf(P).Leads-to formulas are interpreted over interleaved runs and over es-nets:44.2 De�nition. Let � be an es-net and let p 7! q 2 lf(P�) be a leads-toformula.i. p 7! q is said to hold in an interleaved run w of � (written w j= p 7! q)i� to eah p-state of w with index i there exists a q-state in w with someindex j � i.ii. p 7! q is said to hold in � (written � j= p 7! q) i� w j= p 7! q for eahinterleaved run w of �.

166 VIII. Interleaved Progress of Elementary System NetsFor example, in �44:1, AB 7! E, A 7! CD, and A 7! E hold, but notAB 7! AD. In �44:2, ABC 7! (F _G) and AB 7! (F _DG) hold.
A

B

a

b

C

D

c
EFigure 44.1. A 7! E

A

B

C

a

b

D

E

c

d

F

GFigure 44.2. ABC 7! (F _G), and AB 7! (F _DG)Essential properties of the ase studies of Chap. II an be formulated bymeans of leads-to formulas. Examples inlude:{ for bu�er systems � as in Figs. 9.1{9.3: Eah produer ready to deliver willeventually return to ready to produe: � j= B 7! A (but A 7! B does nothold there!);{ for ator/responder systems � as in Figs. 12.1, 12.2, 12.3, 12.5: The leftagent will eventually return to its loal state: � j= :loall 7! loall;{ for mutual exlusion algorithms � as in Figs. 13.4{13.10: Eah pendingsite will eventually be ritial: � j= pending 7! ritial or eah preparedwriter will eventually be writing.The leads-to operator exhibits a ouple of useful properties:44.3 Lemma. Let � an es-net and let p; q; r 2 sf(P�).i. If � j= p! q then � j= p 7! q;ii. � j= p 7! p;iii. If � j= p 7! q and � j= q 7! r then � j= p 7! r;iv. If � j= p 7! r and � j= q 7! r then � j= (p _ q) 7! r.

45 The Interleaved Pik-up Rule 167Brakets will be avoided in progress formulas by the assumption that theprogress operator 7! binds more weakly than any propositional operator. Forexample, p ^ q 7! r _ s will stand for (p ^ q) 7! (r _ s).Proof of this lemma is left as an exerise for the reader.45 The Interleaved Pik-up RuleSetion 44 introdued means to represent leads-to properties. Now we pursuea method to prove suh properties. To this end we suggest a tehnique to\pik up" simple valid leads-to formulas from the stati struture of a net.Further valid formulas an be derived from already established state- andprogress properties by help of the next hapter's proof graphs.The forthoming tehnique is based on the (admittedly quite obvious)observation that either an enabled, progressing ation ours itself, or one ofits attahed neighbors ours.As an example, assume the following piee
A

B

C

a

b

D

E

(1)of an es-net �. fA;Bg enables the progressing ation a; hene either a or bours eventually. Represented in the framework of Set. 44, we gain � j=AB 7! D _ AE. In general:45.1 Lemma. Let � be an es-net and let t 2 T� be progressing. Then � j=�t 7! Wu2(�t)� e�(�t; u).Proof of this lemma is left as an exerise for the reader.More generally, we may start out with any progress prone set of loalstates. As an example, in

168 VIII. Interleaved Progress of Elementary System Nets
A

e
D

B
f

E

C g
Fq

(2)
the state AC enables e, hene either of e, f , or g will eventually our. Hene� j= AC 7! (CD _ CE _ AF).45.2 De�nition. Let � be an es-net and let Q � P�. Then Q is progressprone i� Q enables at least one progressing ation of �.As an example, AC is progress prone in (2) whereas BC is not.45.3 Lemma. Let � be an es-net and let Q � P� be progress prone. Then� j= Q 7! Wu2Q� e�(Q; u).Proof of this lemma is left as an exerise for the reader. Lemma 45.1 isapparently a speial ase of Lemma 45.3. As a further example onsider thees-net � =

A

a

b

B

C

D

c

d

E

F

(3)
Def. 45.2 implies � j= BC 7! E_BF . The overall struture of � further-more implies � j= B ! :D. Hene d is prevented in the state BC, and isthe only ation to our. Thus even � j= BC 7! E holds. Generally, a set Qof loal states of an es-net � prevents an ation t i� t is not enabled at anyreahable state a with Q � a. This holds true i� � j= Q ! : �t. A hangeset of Q then inludes all t 2 Q� that are not prevented by Q:45.4 De�nition. � be an es-net and let Q � P�.i. Q prevents an ation t 2 T� i� � j= Q! :(�t).ii. U � T� is a hange set of Q i� U 6= ; and Q prevents eah t 2 Q� nU .Q� is obviously a hange set of Q. In the net � as given in (3), BC isprogress prone, whereas BD is not. BC prevents d and CD prevents . Theset f; dg as well as the set fg are hange sets of BC. The set fa; bg is ahange set of A whereas fag is no hange set of A.

45 The Interleaved Pik-up Rule 169The following theorem desribes the most general ase to pik up leads-toformulas from the stati struture of a net: Eah hange set of a progressprone set Q implies a leads-to formula.45.5 Theorem. Let � be an es-net, let Q � P� be progress prone and letU be a hange set of Q in �. Then� j= Q 7! _u2U e�(Q; u):
A

e
E

B
f

F

C

g
GDFigure 45.1. AC 7! EC holds, provided A! :D and C ! :B hold.Proof. Let w = a0 t1�! a1 t2�! : : : be an interleaved run of � and let ai j= Qfor some index i of w. Then there exists a Q-enabled progressing ation, t.{ Then ai enables t (beause �t � Q � ai).{ Then there exists an index j > i with tj 2 (�t)� (by Def. 8.2(i) andDef. 6.1).{ Then there exists an index l � j with tl 2 Q�. Let k be the smallest suhindex.{ Then aj j= Q for all i � j < k, and partiularly ak�1 j= Q.{ Then tk 2 U (by Def. 45.4), and furthermore ak j= e�(Q; tk).{ Hene ak j= Wu2U e�(Q; u).The theorem now follows from Def. 44.2. utLemma 45.3 is apparently a speial ase of Theorem 45.5 (with U = Q�).A further, slightly more involved example is shown in Fig. 45.1: AssumingA! :D and C ! :B to hold in �45:1, fA;Cg prevents both g and f . HeneU = feg is a hange set of fA;Cg. Furthermore, fA;Cg is progress prone,hene �45:1 j= AC 7! EC. As a �nal example, �45:2 j= :B _ :E, hene fAgprevents b, and �45:2 j= A 7! C follows from Theorem 45.5.

170 VIII. Interleaved Progress of Elementary System Nets
A B

a b c d

C D EFigure 45.2. � j= A 7! CSmall hange sets U generate more expressive progress formulas than largeones. However, it is oasionally useful not to insist on minimal hange setsU : It may be diÆult to prove that a set Q prevents an ation t 2 Q�, andthe ontribution of t to the generated progress formula may be irrelevant forthe intended use. In fat, the speial ases of Lemma 45.1 or Lemma 45.3frequently suÆe.Aording to its use in orretness proofs, Theorem 45.5 suggests on-struting a valid progress formula from a set Q � P� of plaes aording tothe following shema:45.6 The pik-up rule for leads-to formulas. Let � be an es-net andlet Q � P� .1. Make sure Q enables some progressing ation t 2 T� (i.e., �t � Q).2. Starting with U := Q�, identify some ations prevented by Q and removethem from U .3. With the remaining set U � Q� of ations, onstrut the progress formulaQ 7! Wu2U (Q n �u) [u�.46 Proof Graphs for Interleaved ProgressLeads-to properties an be proven by help of valid leads-to formulas that arepiked up aording to the pik-up rule of Set. 45, and their ombinationaording to Lemma 44.3.Suh proofs an onveniently be organized by means of proof graphs. Thenodes of a proof graph are state formulas. The ars starting at some node prepresent a disjuntion of leads-to formulas. A proof graph is ayli, has oneinitial node, p, and one �nal node, q, thus proving p 7! q. As an almost trivialexample, given p 7! q and q 7! r, proof of the formula p 7! r is representedby the proof graph
p q r . (1)Assuming standard notions of graphs, we de�ne

46 Proof Graphs for Interleaved Progress 17146.1 De�nition. Let � be an es-net, let p; q 2 sf(P�) be state formulas andlet G be a graph suh thati. G is direted, �nite, and ayli,ii. The nodes of G are state formulas in sf(P�),iii. p is the only node without predeessor nodes,iv. q is the only node without suessor nodes,v. for eah node r, if r1; : : : ; rn are the suessor nodes of r, then � j= r 7!(r1 _ : : : _ rn).Then G is a proof graph for p 7! q in �.The following theorem presents the entral property of proof graphs:46.2 Theorem. Let � be an es-net and let G be a proof graph for p 7! q in�. Then � j= p 7! q.Proof. The Theorem is shown by indution on the length n of a longest pathin �. Indution basis: for n = 1, requirements iii and iv of Def. 46.1 implyp = q, hene � j= p 7! q by Lemma 44.3(i).For the indution step, let a1 : : : an be the sequene of nodes of a longestpath of G, and assume indutively the Theorem holds for eah proof graphwith longest paths of length n� 1.For eah suessor node r of p in G, let Gr be the subgraph of G onsistingof all nodes and ars between r and q. Gr is a proof graph for r 7! q.Furthermore, the longest path of Gr has length n � 1, hene the indutiveassumption implies � j= r 7! q.Now, let r1; : : : ; rm are the suessor nodes of p. Then � j= p 7! (r1 _: : : _ rm) by Def. 46.1(v). Furthermore, � j= (r1 _ : : : _ rm) 7! q by m-foldappliation of the above argument, and Lemma 44.3(iv). Hene � j= p 7! qby Lemma 44.3(iii). utAn ar from a node p to a node q is usually depited p 7! q (as in(1)). The speial ase of a progress set U = fu1; : : : ; ung and a propertyQ 7! Wu2U e�(Q; u) piked up by Theorem 45.5 is frequently depited as
p

q
1

q
n

u
n

u
1 (2)A propositional impliation � j= p! (q1_ : : :_ qn) is usually represented by

p

q
1

q
n

(3)

172 VIII. Interleaved Progress of Elementary System NetsA small proof graph for leads-to properties of �38:1 exempli�es these onven-tions: B b7! E�!EC e7! A (4)proves �38:1 j= B 7! A as follows: �38:1 j= B 7! E follows from Lemma 45.3with the progress set fbg. The impliation �38:1 j= E ! EC follows fromthe plae invariant B + E � C = 0, and � j= EC 7! A follows again fromLemma 45.3 with the progress set feg.47 Standard Proof GraphsThe onstrution of a proof graph partiularly inludes determination of or-ret suessor states of eah node, as required in Def. 46.1(v). The pik-uprule 45.3 fortunately produes valid formulas that perfetly �t this purpose.Whenever the pik-up rule fails at some node r (as no ation is enabled atr), plae invariants and traps may speialize r by help of a valid impliationr ! r1 _ : : : _ rn. This again �ts into the shema of proof graphs, aordingto Lemma 44.3(i). Proof graphs onstruted in this way are alled standardproof graphs:47.1 De�nition. Let � be an es-net, let p; q 2 sf(P�) and let G be a proofgraph for p 7! q in �. G is a standard proof graph i�i. Eah node r 6= q is a onjuntion r = r1 ^ : : : ^ rn of atomi formulasr1; : : : ; rn 2 P�.ii. For eah node r and its diret suessor nodes r1; : : : ; rn holds: Either� j= r ! (r1_ : : :_rn), or the pik-up rule yields � j= r 7! (r1_ : : :_rn).In fat, all proof graphs of Set. 46 are standard proof graphs. In additionto the properties and propositional impliations, a question mark indiatesan ation that is not guarantees to be enabled, as for �45:2:
 A

C

D

a

b? : (1)The motivating examples of Set. 44 an now be proven by help of stan-dard proof graphs. For example, Fig. 47.1 shows a standard proof graphfor �44:1 j= A 7! E and Fig. 47.2 shows a standard proof graph for�44:2 j= AB 7! (F _DG).As a slightly nontrivial example we onstrut a proof graph to show aentral property of the asymmetrial mutex algorithm �13:10: The preparedwriter eventually gets writing. In terms of the representation of Fig. 47.3 wehave to show

47 Standard Proof Graphs 173
1.A 2.AB

3.BC

4.AD

5.CD 6.E

a b

b a

cFigure 47.1. Standard proof graph for �44:1 j= A 7! E
1.AB 2.BD

3.AG

4.F

5.DG

6.(F ∨ DG)
a c

?d ?d

aFigure 47.2. Standard proof graph for �44:2 j= AB 7! (F _DG)
B

A

C D

F

E

G

K

J

H

b e f

d
qa q h

c gFigure 47.3. � j= B 7! C

174 VIII. Interleaved Progress of Elementary System Nets�47:3 j= B 7! C. (2)The pik-up rule of Set. 45 does not apply to B, beause B itself is notprogress prone. So we apply the invariant D+E+K+G�A�B = 0 whihimplies �47:3 j= B ! (D _ E _K _G): (3)Propositional reasoning implies �47:3 j= B ! (BD _ BE _ BK _ BG),and Lemma 44.3(i) furthermore yields �47:3 j= B 7! (BD_BE_BK_BG).This is the justi�ation for node 1 in the following �rst step of a proof graph:
1 B 2 BD 3 BE 4 BK 5 BG

(4)To ontinue the onstrution of a proof graph, we onsider the nodesinvolved. Node 2, BD, enables ation b. Hene Lemma 45.3 applies. Theplae invariant C+D+E+K+G, as outlined in Fig. 41.5, implies D ! :G,hene fB;Dg prevents d. This yields BD 7! C _ BE. Graphially,
2 BD 3 BE 6 C .

e?

b
(5)The question mark at \e" indiates that ation e is not neessarily en-abled. Node 3, BE, like node 1 enables none of the ations. Again, a plaeinvariant helps: The plae invariant J �E � F = 0 implies �47:3 j= E ! J ,hene �47:3 j= BE ! BEJ , or graphially,

3 BE 7 BEJ . (6)Node 7 now enables f . BEJ implies :D and :G, hene prevents b andd, leaving hange set ffg.
1.B 2.BD 3.BE 7.BEJ 4.BK 5.BGH 6.BG 7.C

e?

b

df gFigure 47.4. Proof graph for �47:3 j= B 7! CCorresponding arguments apply to nodes 4 and 5, resulting in the proofgraph shown in Fig. 47.4. �47:3 j= DJ 7! (C _ K) is shown likewise inFig. 47.5. Its nodes are justi�ed as follows: Node 1 by invariant C + D �F + J +K +G = 1. Node 2: DFJ prevents f , by invariant F + E � J = 0.Nodes 3{5: trivial.

47 Standard Proof Graphs 175
1.DJ 2.DFJ 3.EJ 5.K 6.C ∨ K

4.C
b?

e fFigure 47.5. Proof graph for �47:3 j= DJ 7! C _KStandard proof graphs are easily understood and heked. However, thereis no formalism to onstrut small and intuitive normal proof graphs. Forexample, loss of information is oasionally mandatory, as in the standardproof graph
AB A C CB CD

a b
(8)proving �47:6 j= AB 7! CD.

A
a

C

B

b

c
DFigure 47.6. � j= AB 7! CDNot eah valid progress formula an be proven by a normal proof graph.An example is �47:7 j= AB 7! C. This de�it an be repaired by the om-plement E of B, as in Fig. 47.8. Then �47:8 j= AB 7! C is proven by thenormal proof graph of Fig. 47.9 (with plae invariant B+E = 1 for node 3).

A

B

C

D

e

f

g

Figure 47.7. � j= AB 7! C is not derivable by a standard proof graphWhether or not eah valid progress formula of an es-net an be provenby a standard proof graph together with omplements, is left as an openproblem.

176 VIII. Interleaved Progress of Elementary System Nets
A

B

C

D

e

f

g

EFigure 47.8. Extending �47:7 by loal state E, representing :B
1.AB 2.DE 3.AE 4.EC 6.C

5.BCe

f g eFigure 47.9. Standard proof graph for �47:8 j= AB 7! C48 How to Pik Up FairnessProgress properties frequently depend on fairness assumptions. For example,none of the essential progress properties of the mutex algorithms in Set. 13holds if fairness is negleted.A pik-up rule for leads-to properties will be given in this setion, ex-ploiting fairness assumptions. It applies to fair transitions that are onitredued. This property has been disussed informally in the introdution ofSet. 13 already: A onit redued transition t has at most one forwardbranhing plae in �t. In fat, almost all algorithms onsidered so far dealwith fair transitions that are onit redued. The state testing mutex algo-rithm �13:4 is the only exeption.48.1 De�nition. Let � be an es-net and let t 2 T�. t is onit reduedi� there exists at most one p 2 �t with p� % ftg. In this ase, p is alled theonit plae of t.48.2 Theorem. Let � be an es-net and let t 2 T� be fair and onitredued, with onit plae p. For Q := �t nfpg assume furthermore � j=Q 7! p. Then � j= Q 7! t�.Proof. Let w = a0 t1�!a1 t2�! : : : be an interleaved run of �. For eah Q-stateak of w,tk+1 = t or ak+1 j= Q (1)beause t is onit redued. Furthermore, to eah Q-state ak there exists ap-state al0 with l0 � k (by the theorem's assumption of � j= Q 7! p). Let lbe the smallest suh index. Then for all k < i � l, ti 6= t (beause p 2 �t),hene ai j= Q (by (1), with indution on i), hene al j= �t.Summing up, to eah Q-state ak there exists an index l > k withal�1 j= �t and (tl = t or al j= Q). (2)

48 How to Pik Up Fairness 177
E

dc

D

CBa b
ϕ

A

Figure 48.1. � j= B 7! CTo show w j= Q 7! t�, let ak be any Q-state. Then there exists an indexl > k with tl = t or a sequene l0 < l1 < : : : of indies with ali j= �t, fori = 0; 1; : : : (by (2) and indution on l). Then(a) there exists an index l > k with tl = t or(b) w neglets fairness for t (by Def. 7.1(i))Case (b) is ruled out by the theorem's assumption of fairness for t. Henew j= Q 7! t� by Def. 44.2(i). The theorem follows with Def. 44.2(ii). utAs an example, ation b of �48:1 is fair and onit redued, with onitplae D. In order to show (�b nfDg) 7! b�, i.e.,�48:1 j= B 7! C (3)we �rst show �48:1 j= B 7! D by the proof graph
1.B 2.BE 3.BD 4.D

c (4)where node 1 is based on the plae invariant A+B�D�E = 0, and node 2on the plae invariant C +D + E = 1. Then the above theorem implies (3)(with t = b and Q = fBg).
A

ba

B

q
C Dc

ϕ

Figure 48.2. � j= C 7! D

178 VIII. Interleaved Progress of Elementary System NetsThe onit plae p of a fair, onit redued transition t is frequentlylinked to other transitions by loops only, as e.g. in Fig. 48.2 with t = andp = C. Then a variant of the above Theorem applies:48.3 Corollary. Let � be an es-net, let t 2 T� be fair and onit redued,with onit plae p. For eah u 2 p� assume u = t or u 2 �p. Then � j=�t 7! t�.Proof of this Corollary tightly follows the proof of Theorem 48.2, and isleft as an exerise to the reader. As an example, this Theorem immediatelyyields �48:2 j= C 7! D.49 Case Study:Evolution of Mutual Exlusion AlgorithmsWe are now prepared to prove the evolution property of the mutual exlusionalgorithms of Set. 13. Evolution of the alternating algorithm �13:3 is notguaranteed, and evolution of the state testing algorithm �13:4 annot beproven by means of Theorem 48.2, beause the fair transitions bl and brare not onit redued. The round-based algorithm �13:6 is postponed toSet. 56. Evolution of the asymmetrial algorithm �13:10 has already beenproven in Set. 47. Evolution of all other algorithms of Set. 13 will be provenin the sequel.49.1 Evolution of the ontentious algorithmFigure 49.1 realls the ontentious algorithm, with renamed plaes. Due to
q qa d

b e

c f

B F

C G

A E

D

ϕ ϕ

Figure 49.1. Renamed ontentious mutex algorithm �13:2the algorithm's symmetry we stik to evolution of the left site, i.e.,B 7! C. (1)The fair ation b is onit redued, with onit plae D. First we showB 7! D by means of the proof graph

49 Case Study: Evolution of Mutual Exlusion Algorithms 179
1.B 2.G 3.D

f (2)Its node 1 is justi�ed by the plae invariant A + B �D � G = 0. Node 2 istrivial with Lemma 45.1.Theorem 48.2 now immediately yields (1), with t = b, p = D and Q =fBg.49.2 Evolution of the token passing algorithmThe token passing algorithm of Fig. 13.5 is redrawn in Fig. 49.2 with renamedplaes. Due to the symmetry of the algorithm it suÆes to show the evolution
c j

F A

B G H

C

D

J

E

RL

M

N

P

K

Q

f n

e m

a b h g

d k

q q

ϕ ϕ

Figure 49.2. Renamed token passing mutex algorithm �13:5of the left site, viz �13:5 j= pendingl ! ritiall. In the version of Fig. 49.2this reads �49:2 j= A 7! E.In a separate alulation we �rst show �49:2 j= H 7! HM .This property will be used twie: as part of the proof graph in Fig. 49.4,and as argument in the justi�ation of one of its nodes, employing the fairnessrule.

180 VIII. Interleaved Progress of Elementary System NetsFigure 49.3 gives a proof graph for �49:2 j= H 7! HM . Its nodes arejusti�ed as follows: node 1: inv C + H � K � Q � M = 0; node 2: invG +K � P = 0; node 3: P prevents j with M +N + P +Q = 1; node 4: Qprevents j with M +N + P +Q = 1.
1.H 3.HKP

k
2.HK 5.HM4.HQ

mFigure 49.3. Proof graph for �49:2 j= H 7! HM
1.A 5.HM3.AC

c?
7.JD

d
2.AB

a

6.J
b

4.H
j

Fig.
49.3

8.EFigure 49.4. Evolution of the token passing algorithmFigure 49.4 now proves the evolution property �49:2 j= A 7! E. Its nodesare justi�ed as follows: node 1: inv F +A�B�C = 0; node 2: B prevents bwith inv B+C+D+E = 1; node 3: C prevents a with inv B+C+D+E = 1;node 4: proof graph Fig. 49.2; node 5: fairness rule 48.1 with onit plaeM ,proof graph Fig. 49.2 and the propositional tautology j= HM !M ; node 6:plae invariant H + J �D = 0; node 7: hange set fdg.49.3 Evolution of Peterson's algorithmThe algorithm of Fig. 13.7 is redrawn in Fig. 49.5 with renamed plaes asin Fig. 43.3. Due to the symmetry of the algorithm it suÆes to show theevolution of the left site, viz. �13:7 j= pend0l 7! ritiall. In the version ofFig. 49.5 this reads �49:5 j= B 7! E. Figure 49.6 gives a proof graph for thisproperty.The following plae invariants will ontribute to justify its nodes:inv1: A+B � F = 0;inv2: G+H = 1;inv3: L+M +N + P = 1;inv4: C +D +E + F = 1.The nodes of Fig. 49.6 are justi�ed as follows:

49 Case Study: Evolution of Mutual Exlusion Algorithms 181
C L

F P

D M

E N

G H

b j

c kmd

ne f p

g q
a hA J

B K

q q

ϕ ϕ

Figure 49.5. Renamed Peterson's mutex algorithm �13:7node 1: inv1;node 2: Corollary 48.3;node 3: inv2;node 4: inv3;node 5: H prevents d with inv2 and C prevents e with inv4;node 6: G prevents with inv2,M prevents k with inv3 and C preventsp with inv4;node 7: G prevents with inv2 and N prevents both k and n with inv3;node 8: G prevents with inv2 and P prevents both k and n with inv3;node 9: G prevents both and m with inv2 and L prevents n with inv3;
6.CGM

7.CGN

8.CGP

9.CGL

10.CHM

1.B 2.BF 3.C 4.CG

5.CH

11.DG
b

m

n

q

j

k

c
c

d

d

d

d

12.DGM

13.DGN

14.DGP

15.DGL

16.DHM

17.E

q

j

k

f

e

n

Figure 49.6. Evolution of Peterson's algorithm

182 VIII. Interleaved Progress of Elementary System Netsnode 10: H prevents both d and n with inv2, M prevents m with inv3and C prevents both e and p with inv4;node 11: inv3;node 12: G prevents e with inv2,M prevents both f and k with inv3 andD prevents both d and p with inv4;node 13: G prevents e with inv2, N prevents f , k, and n with inv3 andD prevents d with inv4;node 14: G prevents e with inv2, D prevents d with inv4 and P preventsboth k and n with inv3;node 15: G prevents both e and m with inv2, L prevents both f and nwith inv3 and D prevents d with inv4;node 16: M prevents f and m with inv3, D prevents and p with inv4and H prevents n with inv2.49.4 Evolution of Dekker's algorithmThe algorithm of Fig. 13.8 is redrawn in Fig. 49.7. By analogy to the previous
qg

ne pf

kc md

ϕϕ

NE

MD

HG

LC

PF

jb qq
ha

JA

KB

Figure 49.7. Renamed Dekker's mutex algorithm �13:8setion, Fig. 49.8 shows a proof graph for �49:7 j= B 7! D. The followingplae invariants will ontribute to justify its nodes:inv1: A+B � F = 0;inv2: G+H = 1;inv3: L+M +N + P = 1;inv4: C +D +E + F = 1.

49 Case Study: Evolution of Mutual Exlusion Algorithms 183
1.B 2.BF 3.C 14.D

8.CGMm

4.CG

9.CH

10.CHM

c

6.CGPq

12.CHP

c

5.CGN

b

11.CHN

n

7.CGL
j?

13.CHL
dp q j?Figure 49.8. Evolution of Dekker's algorithmThe nodes of Fig. 49.8 are justi�ed as follows:node 1: inv1;node 2: Corollary 48.3;node 3: inv2;node 4: inv3;node 5: N prevents , d, m, and n with inv3, C prevents f with inv4:node 6: P prevents d, m, and n with inv3 and C prevents f with inv4;node 7: L prevents and n with inv3, G prevents d with inv2 and Cprevents both f and k with inv4;node 8: M prevents , d, and m with inv3, G prevents p with inv2 andC prevents f with inv4;node 9: inv3;node 10: M prevents , m, and d with inv3, H prevents n with inv2 andC prevents e with inv4;node 11: N prevents , d, m, and p with inv3, C prevents e with inv4;node 12: P prevents d, m, and p with inv3 and C prevents e with inv4;node 13: L prevents both and p with inv3, H prevents m with inv2 andC prevents both e and k with inv4.49.5 Evolution of Owiki/Lamport's asymmetrial mutexThe algorithm of Fig. 13.9 is redrawn in Fig. 49.9. We will show di�erentproperties of the writer and the reader site, respetively. First we show thatthe pending writer will eventually be writing; formally: �13:9 j= prep1 7!writing. In the version of Fig. 49.9 this reads �49:9 j= B 7! D. Figure 49.10gives a proof graph for this property.The following invariants will ontribute to justify its nodes:inv1: A+B � F = 0;inv2: H + J +K + L+M = 1;inv3: C +D �E = 0;inv4: G+K + L = 1;

184 VIII. Interleaved Progress of Elementary System Nets
E

F

ϕ

B C K J

Mq q

A D L H

G

a

b

c

d

e

f

g

h

j k

Figure 49.9. Renamed Owiki/Lamport's asymmetrial mutex algorithm�13:9inv5: A+B + C +D = 1;inv6: C +D + F = 1;inv7: E + F = 1;
1.B 2.BF 3.C 4.CL 5.CG 6.CK 7.CKE 8.CGM 9.D

c

b h f? cjFigure 49.10. Evolution of the writer in Owiki/Lamport's algorithmThe nodes of Fig. 49.10 are justi�ed as follows:node 1: inv1;node 2: Corollary 48.3;node 3: inv4;node 4: L prevents by inv4;node 5: trivial;node 6: inv3;node 7: K prevents by inv4; E prevents g by inv7; C prevents d by inv5;node 8: M prevents f by inv2 and C prevents k by inv6.If the reader is pending, the algorithm guarantees that eventually thereader will be reading or the writer will be writing; formally: �13:9 j=pend1 7! (writing _ reading). In the version of Fig. 49.9 this reads �49:9 j=J 7! L _D.

49 Case Study: Evolution of Mutual Exlusion Algorithms 185
1.J 2.JG 3.K 6.KC 10.KCE 12.MCEG 13.D 14.L ∨ D

7.KD

5.KB

4.KA

9.KBF

8.KAF

11.L

g

g
a

b

c?

f j c

Figure 49.11. Evolution of the reader in Owiki/Lamport's algorithmFigure 49.11 shows a proof graph for this property. In addition to theabove invariants inv1, : : : , inv7, the following invariant will ontribute tojustify the nodes of this proof graph:inv8: H + J �G = 0.The nodes of Fig. 49.11 are justi�ed as follows:node 1: inv8;node 2: trivial;node 3: inv5;node 4: inv1;node 5: inv1;node 6: inv3;node 7: trivial;node 8: K prevents k by inv2; A prevents b by inv5 and F prevents jby inv7;node 9: K prevents k by inv2 and F prevents j by inv7;node 10: K prevents by inv4, C prevents d by inv5 and E prevents gby inv7;node 11: trivial;node 12: M prevents both j and f by inv2; C prevents d by inv5 and Eprevents k by inv7;node 13: trivial.

IX. Conurrent Progressof Elementary System Nets
The interleaving based leads-to operator 7!, onsidered in Chap. VIII, ad-equately desribes important properties of a wide range of distributed al-gorithms. But a variety of progress properties, typial and spei� for dis-tributed algorithms, are not expressible by this operator. This partiularlyinludes rounds, as informally desribed in the ase studies of Chap. III.A new operator \,!" will be introdued in Set. 50 with p ,! q (\p ausesq") interpreted over onurrent runs K: In K holds p ,! q i� eah reahablep-state of K is followed by a reahable q-state.50 Progress on Conurrent RunsAs an introdutory example we return to the produer/onsumer system�8:1. Its behavior was intuitively desribed as a sequene of rounds, with eahround onsisting of an item's prodution, delivery, removal, and onsumption.Eah suh round starts and ends in the initial state. The rounds of a run of�8:1 are depited in Fig. 50.1. We shall present means to represent and toreason about rounds of this kind and other progress properties based ononurrent runs. We start with syntax orresponding to Def. 44.1:50.1 De�nition. Let P be a set of symbols and let p; q 2 sf(P) be stateformulas over P . Then the symbol sequene p ,! q (\p auses q") is a ausesformula over P . The set of all suh formulas will be denoted f(P).Causes formulas are interpreted over onurrent runs and over es-nets:50.2 De�nition. Let � be an es-net and let p ,! q 2 f(P) be a ausesformula.i. p ,! q is said to hold in a onurrent run K of � (written K j= p ,! q)i� to eah reahable p-state C of K there exists a q-state D of K that isreahable from C.ii. p ,! q is said to hold in � (written � j= p ,! q) i� K j= p ,! q for eahonurrent run K of �.As an example, the formulas BC ,! BE and A ,! CD both hold in �50:2(whereas BC 7! BE and A 7! CD don't hold).The following lemma resembles Lemma 44.3:

188 IX. Conurrent Progress of Elementary System Nets

A : ready to produce
B : ready to deliver
C : buffer empty
D : buffer filled
E : ready to remove
F : ready to consume

a : produce
b : deliver
c : remove
d : consume

A

C

a B b A

E Ec

 a B b A a B

CDCD

F d dE c F

end of
first round

end of
second round

Figure 50.1. Rounds in the in�nite run of �8:1. Insriptions as in Fig. 5.5
A

B

C

D

E

F
a

b

c

d

eFigure 50.2. � j= BC ,! BE and � j= A ,! CD50.3 Lemma. Let � be an es-net and let p; q; r 2 sf(P�).i. � j= p ,! p;ii. If � j= p ,! q and � j= q ,! r then � j= p ,! r;iii. If � j= p ,! r and � j= q ,! r then � j= (p _ q) ,! r.In general, auses is weaker then leads-to. They oinide in speial ases:50.4 Lemma. Let � be an es-net and let p; q; r 2 sf(P�).i. If � j= p 7! q then � j= p ,! q;ii. Let Q � P� and let q = WQ. If � j= p ,! q then � j= p 7! q.51 The Conurrent Pik-up RuleSetion 50 introdued means to represent auses properties. Means to provesuh properties will be derived in the sequel. Valid auses formulas an be

51 The Conurrent Pik-up Rule 189piked up from the stati struture of a net. A orresponding pik-up rule willbe based on hange sets, as introdued for the leads-to-operator in Set. 45.6.The forthoming pik-up rule highlights one distinguished feature: Pikedup auses formulas p ,! q an be embedded into a ontext, r, yieldingr ^ p ,! r ^ q: (1)First we onsider a speial ase of the forthoming most general pik-uprule, in Theorem 51.1.As an example, from an es-net � with a part
A a B (2)the property � j= A ,! B an be piked up immediately. This in turn anbe embedded into the ontext of any loal state C, yielding� j= CA ,! CB. (3)As a more general example, from

A a C

B Db

(4)� j= AB ,! BC _ D an be piked up immediately. This again an beembedded into the ontext of any loal state E, yieldingEAB ,! EBC _ED. (5)Abstratly formulated, let Q � P� be progress prone and let U � Q� be ahange set of Q. Then � j= Q ,! Wu2U e�(Q; u). This of ourse resemblesthe pik-up rule for the leads-to operator 7!, as stated in Lemma 45.3. Butin ontrast to piked up yields formulas, the above auses formula an beembedded in a ontext R � P� , yielding� j= R [Q ,! R [(Wu2U e�(Q; u)), (6)provided �U � Q and Q \ R = ;.Rule (6) suÆes in most ases, and will be onsidered in Corollary 51.2.Rule (6) is oasionally too strit, as the following example shows: In (4), fAgis progress prone and fa; bg is a hange set of fAg. Hene � j= A ,! C_D anbe piked up immediately. But a ontext annot be applied to this formulaby means of (6) beause �fa; bg 6� fAg. So, in (6) we skip the requirement of�U � Q, but allow ontext to e�(Q; u) only in ase �u � Q. For example, in(4) the formula A ,! C _ D an now be embedded into the ontext of anyloal state E for the ourrene of a (beause �a � fAg), but not for theourrene of b (beause �b 6� fAg), yielding

190 IX. Conurrent Progress of Elementary System Nets� j= EA ,! EC _D. (7)Generally formulated, the hange set U of a progress prone set Q is parti-tioned into U = V _W suh that �V � Q. Then a ontext R is applied to Vonly. Hene the following theorem:51.1 Theorem. Let � be an es-net, let Q � P� be progress prone and letU = V [W be a hange set of Q with �V � Q. Furthermore, let R � P� withR \ �V = ;. Then � j= R [Q ,! (R [Wu2V e�(Q; u)) _ (Wu2W e�(Q; u)).Proof. Let K be a onurrent run of � and let C be a reahable R[Q-state.With ' := (R [Wu2V e�(Q; u)) _ (Wu2W e�(Q; u)) we have to show:K has a '-state that is reahable from C. (1)There exists a subset CQ � C with l(CQ) = Q. Then l(CQ) enables at leastone progressing ation u (by the theorem's assumption that Q is progressprone). Then CQ 6� KÆ (by Def. 8.2(ii)). Furthermore, u 2 U (as U is a hangeset of Q). Then there exists some t 2 CQ� with l(t) = u (by Def. 5.4(ii)).If u 2 V , then �u � Q (by the theorem's assumption �V � Q), hene�t � CQ. Then D := (C n �t) [t� is reahable from C. Even more, D is ane�(Q; u)-state. Furthermore, there exists a subset CR � C with l(CR) = R(by onstrution of C). Furthermore, l(CR) \ l(�t) = R \ �u = ; (by theTheorem's assumption R \ �U = ;). Hene CR \ �t = ; (by Def. 5.4). HeneCR � D. Hene D is also a R-state. Hene '-state, reahable from C. Hene(1).In ase of u 2 W , let t0 be a minimal (with respet to <K) element witht0 2 CQ� and l(t) = u. Then there exists a state E, reahable from C, withC [�t � E. Then F := (E n �t0)[t0� is an e�(Q; u)-state, reahable from C,hene (1). utAording to this theorem, in fat (7) is valid in (4). The following speialase with W = ; (hene V = U) suÆes in most ases (e.g., for the validityof (5) and (4)).51.2 Corollary. Let � be an es-net, let Q � P� be progress prone and letU � T� be a hange set of Q with �U � Q. Furthermore, let R � P� withR \Q = ;. Then � j= R [Q ,! R [Wu2U e�(Q; u).The opposite speial ase (i.e., V = R = ;) mirrors the interleaved pik-uprule.52 Proof Graphs for Conurrent ProgressPiked-up auses formulas an be omposed in proof graphs. The suessornodes r1; : : : ; rn of a node r then represent r ,! (r1 _ : : : _ rn). All otheraspets of suh proof graphs oinide with proof graphs for leads-to formulas:

53 Ground Formulas and Rounds 19152.1 De�nition. Let � be an es-net, let p; q 2 sf(P�) be state formulas,and let G be a graph meeting Def. 46.1(i){(iv) andvi. for eah node r, if r1; : : : ; rn are the suessor nodes of r, then � j= r ,!(r1 _ : : : _ rn).Then G is a proof graph for p ,! q in �.Proof graphs for auses formulas in fat prove validity of those formulas:52.2 Theorem. Let � be an es-net and let G be a proof graph for p ,! q in�. Then � j= p ,! q.Proof of this theorem is essentially the same as the proof of Theorem 46.2and is left as an exerise to the reader.Standard proof graphs are onstruted from propositional impliationsand piked-up formulas:52.3 De�nition. Let � be an es-net, let p; q 2 sf(P�), and let G be a proofgraph for p ,! q in �. G is a standard proof graph i�i. Eah node r 6= q is a onjuntion r = r1 ^ : : : ^ rn of atomi formulasr1; : : : ; rn 2 P�.ii. For eah node r and its diret suessor nodes r1; : : : ; rn, either � j=r ! (r1 _ : : : _ rn) or the pik-up rule Theorem 51.1 yields � j= r ,!(r1 _ : : : _ rn).Leads-to properties p 7! q an frequently be proven by means of shortproof graphs for p ,! q, together with Lemma 50.4(ii). For example, theproperty �44:1 j= A 7! E, as proven in Fig. 47.1, an likewise be proven bymeans of the { shorter { proof graph in Fig. 52.1 for �44:1 j= A ,! E, andLemma 50.4(ii). The forthoming onept of rounds provides further meansfor short proof of both auses and leads-to formulas.
1.A 2.AB 3.AD 4.CD 5.Eb a cFigure 52.1. Standard proof graph for �44:1 j= A ,! E53 Ground Formulas and RoundsA state formula p 2 sf(P�) of an es-net � is said to be a ground formula of �if in eah onurrent run, eah reahable state of � is followed by a p-state;formally� j= true ,! p. (1)

192 IX. Conurrent Progress of Elementary System NetsDistributed algorithms an frequently be properly omprehended and veri�edusing ground formulas. Interesting ground formulas are mostly onjuntions(viz. subsets) of atoms p � P� , or even distinguished reahable states. Suha state is said to be a ground state. For example, the initial state ACE of theproduer/onsumer system �8:1, as redrawn in �53:1, is a ground state, andin fat the only ground state of �53:1.Claim (1) implies that eah �nite run of � ends at a p-state, and thateah in�nite run of � has in�nitely many p-states. Distributed algorithms arefrequently round-based. A round of an es-net � is a �nite, �-based onurrentrun that starts and ends at a ground state. � is round-based if there exists a�nite set R of rounds suh that eah onurrent run K of � an be oneivedas a �nite or in�nite sequene of rounds of R. As an example, there exists aunique round of �53:1, as outlined in Fig. 50.1.53.1 De�nition. Let � be an es-net and let p 2 sf(P�) be a state formula.p is a ground formula of � i� � j= true ,! p.
B F

D

C

c d

EA

a q b

Figure 53.1. Ground formula ACEThere is an operational haraterization of ground formulas p � P� . It isbased on the notion of hange sets as introdued in Def. 45.4(ii) already.53.2 Theorem. Let � be an es-net and let p � P� withi. � j= a� ,! p, andii. for some hange set U of p and eah u 2 U , � j= e�(p; u) ,! p.Then p is a ground formula.Proof. Let K be a onurrent run of �, and let A;B � PK be two reahablestates of K.A transition t 2 TK is said to be between A and B i� for some a 2A and some b 2 B holds: a �K t �K b. Let dist(A;B) denote theset of all transitions between A and B. Obviously dist(A;B) = ;i� B is reahable from A. (2)

53 Ground Formulas and Rounds 193The proof essentially bases on the following proposition:Let dist(A;B) 6= ; and let A be a p-state. Then there exists areahable p-state D of K with dist(D;B) $ dist(A;B). (3)This proposition is proven as follows: dist(A;B) 6= ; implies a transitiont 2 A� with t < b for some b 2 B. Then there exists a transition u with�u � A and u < b, beause t has only �nitely many predeessors in K.Let C := (A n �u) [u�. Then dist(C;B) = dist(A;B) n fug. If C is a p-state, we are done (with D := C). Otherwise l(u) 2 p�, hene l(u) 2 U foreah hange set U of p. Furthermore l(C) is an e�(A; u)-state of �. Then� j= l(C) ,! p by the Theorem's assumption. Then there exists a p-state Dof K, reahable from C. Furthermore, dist(A;B) $ dist(C;B) � dist(D;B).Hene the proposition (2).Now let B be any reahable state of K. The Theorem's assumption � j=a� ,! p implies a reahable p-state, A of K. A dist(A;B) is �nite, �nitelymany appliations of the proposition (2) yield a reahable p-state D of Kwith dist(D;B) = ;. Then (1) implies D be reahable from B hene theTheorem. utAs an example, we prove that the initial state ACE is a ground formulaof �53:1 by means of Theorem 53.2. The �rst ondition, � j= a� ,! ACE,is trivially ful�lled with Lemma 50.3(i). For the seond ondition of Theo-rem 53.2 observe that U = fag is a hange set of ACE, beause A preventsb by inv A + B = 1 and C prevents by inv C +D = 1. Hene we have toshow: �53:1 j= BCE ,! ACE. The proof graph1:BCE b,!2:ADE ,!3:ACF d,!4:ACE (4)shows this property. Its nodes are justi�ed as follows:node 1: ontext E;node 2: ontext A;node 3: ontext AC.Hene (4) proves that ACE will eventually be reahed from any reahablestate, though (4) does not refer to all reahable states of �53:1, and ignores,e.g., BDE or BDF !As a further, tehnial example we show that the initial state AD of �53:2is a ground state: Aording to Theorem 53.2 it suÆes to show thatBD ,! AD, and (5)AE ,! AD (6)both hold in �53:2, as fa; dg is a hange set of AD. Figure 53.3 shows a proofgraph for (5). Its nodes are justi�ed as follows:node 1: Theorem 51.1, with V = fbg, W = fgg, R = fDg;node 2: ontext F ;

194 IX. Conurrent Progress of Elementary System Netsnode 3: ontext A;node 4: ontext D.Corollary 51.2 was not suÆient to justify node 1.Proof of (6) is left to the reader, due to the symmetrial struture of �53:2.
A

D

B

E

C

F

a b c

d e f

g

q

qFigure 53.2. AD is a ground state
1.BD 2.CF 3.CD 4.AD

g ? f c

bFigure 53.3. �53:2 j= BD ,! ADGround formulas support the proof of any auses formulas:In Theorem 51.1, the requirement that Q is progress prone may be replaedby the requirement to imply :p for some ground formula p. An element t ofthe hange set U with �t � Q is obsolete in this ase. Hene:53.3 Theorem. Let � be an es-net and let p be a ground formula of �. LetQ � P� with � j= Q ! :p and let U be a hange set of Q in �. Then� j= Q ,! Wu2U e�(Q; u).Proof. Let K be a onurrent run of �, let C be a Q-state of K, and letCQ � C with l(CQ) = Q. Then there exists a p-state D of K that is reahablefrom C, beause p is a ground formula. From � j= Q! :p follows CQ 6� D.Hene there exists a transition t 2 CQ� in K, with l(t) 2 U . Hene theproposition. utAs an example we show that the �lled bu�er of the produer/onsumersystem �53:1 will eventually be empty:�53:1 j= D 7! C. (7)Based on the above proven ground formula ACE we apply Theorem 53.3 asfollows: The bu�er is �lled in some state a � P�53:1 i� D 2 a. Furthermore,�53:1 j= D ! :C by inv D + C = 1; hene �53:1 j= D ! :ACE. U = fg

54 Rounds of Sequential and Parallel Bu�er Algorithms 195is a hange set of D and e�(D;) = CF . Hene with Theorem 53.3: �53:1 j=D ,! C, hene (7) with Lemma 50.4(ii).54 Rounds of Sequential and Parallel Bu�er Algorithms54.1 Rounds of the sequential two-ell algorithmThe initial state ACE of the basi produer/onsumer algorithm �8:1, asredrawn in Fig. 53.1, is a ground state, i.e., a ground formula that even is areahable state of �53:1. This has been proven in Set. 53 already, and hasbeen outlined in Fig. 50.1. The sequential bu�er with two ells, as outlinedin Fig. 9.1, has a unique ground state, too, i.e., its initial state ACEG. Proofof this property stritly follows the orresponding proof of �53:1, and is leftas an exerise to the reader.54.2 A ground formula of the nondeterministi parallel algorithmFigure 9.2 has no ground state. As Fig. 9.5 exempli�es, one of the bu�er ellsmay remain �lled forever. However, the algorithm has a ground formula, AG,indiating that the produer always returns to ready to produe, and theonsumer to ready to remove. This property an easily be proven by meansof Theorem 53.2: a�9:2 ! AG is a propositional tautology, hene triviallya�9:2 ,! AG. Furthermore, fa; d; eg is a hange set of AG, hene we have toshowBG ,! AG, AEH ,! AG, and ACH ,! AG. (1)The �rst of those propositions follows from the standard proof graph
1.BG 2.BFG 3.BEH

4.BCH

5.BEG

6.BCG

7.AG
d

e ?

f

f

b

c

c b
(2)Justi�ation of its nodes as well as proof of the rest of (1) is left as an exeriseto the reader.54.3 A ground formula of the deterministi parallel algorithmThe deterministi parallel produer/onsumer of Fig. 9.3 has likewise noground state: Some of its �nite runs terminate in the initial state, and someterminate in the state ACEGKM . But ACEG is a ground formula of �9:3,indiating the produer and the onsumer ready and both bu�er ells empty.

196 IX. Conurrent Progress of Elementary System NetsThis again an be shown using the Theorem 53.2: a�9:3 ! ACEG is a propo-sitional tautology. fag is a hange set of ACEG, beause A prevents b and by inv A + B = 1, E prevents d by inv E + F = 1, and C prevents e byinv C +D = 1. Hene one has to show �9:3 j= BCEG ,! ACEG. This anbe ahieved by means of a standard proof graph, left as an exerise to thereader.54.4 Rounds of the two onsumers algorithmFigure 54.1 shows a system with two onsumers. Its initial state is a groundstate. This follows from Theorem 53.2 by means of the proof graph1: BCEG b,! 2: ADEG ,!,!e 3: ACFG4: ACHE ,!,!df5: ACEG (3)
B

F

H

D

C

c

e

d

f

E

G

A

a q b

Figure 54.1. Two onsumersAs a variant one may turn�54:1 into a deterministi algorithm, serving theonsumers alternately. This is easily ahieved by means of the synhronizationiruit
J K

c

e

(4)

55 Rounds and Ground Formulas of Various Algorithms 197augmented to �54:1. The above ground formula ACEG then is no longer aground state, but only a ground formula.55 Rounds and Ground Formulas of Various AlgorithmsVirtually all algorithms of Chap. II are round-based or at least have groundformulas. Being aware of rounds and ground formulas, the reader obtainsbetter intuitive pereption of an algorithm. In this setion we disuss roundsof various algorithms introdued in Chap. II, inluding the philosophers, theasynhronous pushdown, and the rosstalk algorithm. Rounds and groundformulas of mutual exlusion algorithms are postponed to Set. 56.55.1 Rounds of the philosophers algorithmThe algorithm for thinking and eating philosophers, as given in Fig. 10.1,operates in �ve rounds, one for eah philosopher. Eah round omprises aninstane of piking up and releasing a philosopher's forks, as outlined in (2)of Set. 10.Upon proving this property, we �rst observe that the initial state � of�10:1 enables �ve ations, Ap, Bp, Cp, Dp, and Ep, i.e., eah philosopheris able to pik up his forks. In fat, U = fAp; : : : ; Epg is a hange set of�. Let �A; : : : ; �E be the states reahed after the ourrene of Ap; : : : ; Ep,respetively. Hene there are �ve steps � Ap��!�A; : : : ; � Ep��!�E starting at �.In order to show that � is in fat a ground state, with Theorem 53.2 we haveto show �A ,! �; : : : ; �E ,! �. This in turn is almost trivial, beause one anpik up �A Ar,!�; : : : ; �E Er,!� immediately, aording to Corollary 51.2 (withempty ontext).As a onsequene, eah onurrent run has a linearization (in general notunique) that onsists of a sequene of eating yles, as represented in (2) and(3) of Set. 10.55.2 Rounds of the asynhronous pushdown algorithmThe algorithm that organizes ontrol in an asynhronous stak with apaityfor four items has been given in Fig. 11.2, and is redrawn in Fig. 55.1, withrenamed plaes. It operates in two rounds, one to push a value into the stak,and one to pop a value. Eah round omprises either an entire \wave" ofpushing down data along the ations a0; : : : ; a4, or an entire wave of soliitingdata along b0; : : : ; b4.Upon proving this fat, we �rst observe that the initial state � of �55:1enables two ations, a0 and b0, i.e., the initial state is enabled for both a pushround and a pop round. In fat, U = fa0; b0g is a hange set of �. Hene two

198 IX. Conurrent Progress of Elementary System Nets
push

top

pop

bottomA1 A2 A3 A4

a0 a1 a2 a3 a4

b0 b1 b2 b3 b4

B1 B2 B3 B4

C1 C2 C3 C4

q

qFigure 55.1. Renamed asynhronous stak �11:2steps � a0�!B1A2A3A4 and � b0�!C1A2A3A4 start at �. In order to show that� is a ground state, with Theorem 53.2 we have to show B1A2A3A4 ,! �and C1A2A3A4 ,! �. This is easily ahieved by two proof graphsB1A2A3A4 a1,!A1B2A3A4 a2,!A1A2B3A4 a3,!A1A2A3B4 a4,!� (1)andB1C2A3A4 b1,!A1C2A3A4 b2,!A1A2C3A4 a3,!A1A2A3C4 a4,!� (2)Their nodes are justi�ed by plae invariants Ai+Bi+Ci = 1 for i = 1; : : : ; 4.We leave the details as an exerise to the reader.As a onsequene, eah onurrent run of the asynhronous stak has alinearization that onsists in a sequene of rounds, eah of whih desribeseither an entire push-wave or an entire pop-wave of the stak.55.3 Rounds of the rosstalk algorithmFigure 55.2 realls the rosstalk algorithm �12:5 with renamed plaes. Thisalgorithm operates in three rounds, as already disussed in Set. 12. Here weare going to prove that the initial state AE is in fat a ground state. Thefollowing plae invariants of �55:2 will be used:inv1: A+B +G = 1,inv2: E +K + F = 1,inv3: A+ C +D + J +M = 1,inv4: D +E +H + J + L = 1.

55 Rounds and Ground Formulas of Various Algorithms 199
B

a

A E

c

F
D

C

b d

K

ge

G
J

H

f h

kj

L

M

q

q

Figure 55.2. Renamed rosstalk �12:5First we observe thatfa; gg is a hange set of AE: (1)A prevents by inv3 and E prevents e by inv4. Figure 55.3 showse�(AE; a) ,! AE (2)(as e�(AE; a) = BCE). The nodes of Fig. 55.3 are justi�ed as follows:node 1: ontext B, and E prevents k by inv2;node 2: ontext BH , K prevents by inv2, and C prevents h by inv3;node 3: ontext FM , B prevents e by inv1, and H prevents b by inv4;node 4: ontext GM ;node 5: ontext E;node 6: ontext F , D prevents j by inv4;node 7: ontext A.
1.BCE 2.BCHK

6.BDF

3.BFHM

7.ALF

4.FGLM 5.EGM 8.AE
g k

b
c

j d

d

fFigure 55.3. Proof of e�(AE; a) ,! AE

200 IX. Conurrent Progress of Elementary System NetsFigure 55.4 shows likewisee�(AE; g) ,! AE (3)(as e�(AE; g) = AHK).
1.AHK 2.BCHK

6.GJK

3.BFHM

7.GEM

4.FGLM 5.EGM 8.AE
a k

h
e

j d

f

fFigure 55.4. Proof of e�(AE; g) ,! AEThe two proof graphs in Figs. 55.3 and 55.4 reet the three rounds of�55:2: The upper line of eah proof graph desribes the ase of rosstalk. Thelower line of Fig. 55.3 reets a message from R to L, and the lower line ofFig. 55.4 a message from L to R. We leave the justi�ation of the nodes ofFig. 55.4 as an exerise to the reader.With Theorem 53.2 it follows immediately from (1), (2), and (3) that AEis in fat a ground state of �55:2.56 Ground Formulas of Mutex Algorithms56.1 Constrution of ground formulasA mutex algorithm an never reah a state that is entirely symmetrial withrespet to the two sites involved. If it ould, then both sites ould ontinueto always at symmetrially and thus would never reah a state with one siteritial and the other site not ritial. In fat, eah algorithm of Set. 11 iseither asymmetrial by struture (suh as the synhronized algorithm, Ow-iki/Lamport's algorithm, and the asymmetrial algorithm) or is asymmet-rial by initial state (suh as the token passing algorithm, Peterson's algo-rithm, and Dekker's algorithm). The ontentious, the alternating, and thestate-testing algorithms are symmetrial both in struture and initial state,but have been ruled out as aeptable mutex algorithms.Asymmetry of the initial state is inherited to eah reahable state, andthus the token-passing, Peterson's, and Dekker's algorithm don't have aground state. But the loal quiet states of the two sites l and r onstitute aground formula quietl ^ quietr (1)in eah mutex algorithm. The initial state of the three struturally asymmet-rial algorithms are even ground states.

56 Ground Formulas of Mutex Algorithms 201Proof of (1) an again be based on Theorem 53.2. In eah mutex algorithm�, the initial state a� enables two ations whih onstitute a hange set of a� ,and lead to pendl and pendr (or similarly denoted loal states), respetively.So we have to showpendl ^ quietr ,! a� , and quietl ^ pendr ,! a� . (2)Evolution of � gives pendl ,! ritl and pendr ,! ritr. A proof of evolutionof various algorithms, as given in Set. 49, an easily be modi�ed to proofsof pendl ^ quietr ,! ritl ^ quietr, andquietl ^ pendr ,! quietl ^ ritr. (3)Furthermore,ritl ^ quietr ,! a� , and quietl ^ ritr ,! a�. (4)an immediately be piked up by Corollary 51.2 (with ontext quietr andquietl, respetively).Hene (2) follows from (3) and (4), and the transitivity of the ausesoperator ,!.All this does not yet apply to the round-based mutex algorithm �13:6,beause its evolution remains to be proven.56.2 A ground formula of the round-based mutex algorithmFigure 56.1 realls the round-based mutex algorithm �13:6, with renamedplaes. We will showAE is a ground formula of �56:1 (1)Proof of (1) employs the following plae invariants of �56:1:inv1: A+B +G = 1,inv2: E + F +K = 1,inv3: A+ C +D + J +M +R = 1,inv4: D +E +H + J + L+N = 1.First we observe thatfa; gg is a hange set of AE (2)as A prevents by inv3 and E prevents e by inv4. As a tehniality, Fig. 56.2shows BCHK ,! AE. The nodes of Fig. 56.2 are justi�ed as follows:node 1: ontext CK, C prevents b by inv3 and B prevents e by inv1;node 2: ontext CGK;node 3: ontext G, K prevents by inv2, K prevents d by inv2 and Cprevents h by inv3;node 4: ontext EG;node 5: ontext E.

202 IX. Conurrent Progress of Elementary System Nets
A E

q

q

L

M

D

J

C

H

N

R

P

S

B

K

Q

T

G

F

n
b d

m

a
c

j
k

e
g

f h
q

p

ϕ

ϕ

Figure 56.1. Renamed round-based mutex algorithm �13:6
1.BCHK 2.CGKN 3.CGKL 4.EGR 5.EGM 6.AE

j n k q fFigure 56.2. �56:1 j= BCHK ,! AENow Fig. 56.3 showse�(AE; a) ,! AE (3)
1.BCE 2.BDF 3.AFN

5.BCHK

4.AFL 6.AE
c b

a ?

h d

Fig.56.2Figure 56.3. �56:1 j= e�(AE; a) ,! AEThe nodes of Fig. 56.3 are justi�ed as follows:node 1: ontext B, and E prevents k by inv2;node 2: ontext F , and D prevents j by inv4;node 3: ontext AF ;node 4: ontext A, and F prevents k by inv2;node 5: Figure 56.2.Finally, Fig. 56.4 shows

56 Ground Formulas of Mutex Algorithms 203
1.AHK 2.GJK 3.EGR

5.BCHK

4.EGM 6.AE
e h

a ?

qFigure 56.4. �56:1 j= e�(AE; g) ,! AEe�(AE; g) ,! AE (4)The nodes of Fig. 56.4 are justi�ed as follows:node 1: ontext K, and A prevents j by inv1;node 2: ontext G, and J prevents k by inv3;node 3: ontext EG;node 4: ontext E;node 5: Figure 56.2.Altogether, (2), (3), and (4) imply (1) by Theorem 53.2.56.3 Evolution of the round-based mutex algorithmDue to the asymmetry of the round-based mutex algorithm we have to showboth �13:6 j= pend1l 7! ritl and �13:6 j= pend1r 7! ritr. In the represen-tation of Fig. 56.1 this reads�56:1 j= Q 7! N , and (1)�56:1 j= T 7! R (2)Proof of these properties employs the ground formula AE: First we observethat the ground formula AE implies true ,! A (by Def. 53.1), hene Q ,! A(by propositional logi), hene Q 7! A (by Lemma 50.4(ii)). This in turnimplies�56:1 j= Q 7! B (3)by Theorem 48.2. Furthermore, �56:1 j= B ! :A (by inv1) and fb; jg is ahange set of fBg. Hene �48:1 j= B ,! N (by Theorem 53.3), hene�56:1 j= B 7! N (4)by Lemma 50.4(ii). Thus (1) follows from (3) and (4) with Lemma 44.3(iii).Likewise, one shows �56:1 j= T 7! K and �56:1 j= K 7! R, whih implies (2).

Part DAnalysis of Advaned System Models
In analogy to the analysis of elementary system nets as desribed in Part C,state properties and progress properties will be onsidered separately forsystem nets, too.

X. State Properties of System Nets
State properties have been de�ned for elementary system nets as proposi-tional ombinations on a system's loal states. Partiularly important stateproperties have been derived from valid equations and inequalities formedn1 � p1 + � � �+ nk � pk = m and n1 � p1 + � � �+ nk � pk � m, respetively. Eahinteger ni provides a weight for pi. This kind of equation or inequality holdsat a state s if valuation of variables pi by the integer s(pi) solves the equationor inequality.For advaned system nets, any domain D may provide weights f(pi) 2 Dfor a plae pi. The funtion f must be appliable to the ontents s(pi) of piat any reahable state, s. In fat, this approah is followed for system nets inthe sequel. As an example, in the term represented system net

u

t

x f(x)

g(x)
BA

sort dom

const u : dom

fct f, g : dom dom→
var x : dom

(1)the number of tokens remains invariant, provided the tokens on A are ountedtwie: For eah reahable state s, 2 � js(A)j+ js(B)j = 2. As a shorthand thisis represented by the symboli equation2jAj+ jBj = 2. (2)A more informative state property is gained by weight funtions f and g,anonially extended to sets and oinidentally applied to the token load of A.In fat, at eah reahable state s, f(s(A))[g(s(A))[s(B) = ff(u); g(u)g. Asa matter of onvention and uni�ation, this will be expressed by the symboliequationf(A) + g(A) +B = f(u) + g(u). (3)The unifying formal bakground for both (2) and (3) are multisets ofitems, in whih an item may our more than one. Multisets and linearfuntions on multisets provide means to onstrut equations, inequalities,plae invariants, and initialized traps for system nets. All those onepts aregeneralizations of the orresponding onepts for es-nets given in Chap. VII.

208 X. State Properties of System Nets57 First-Order State PropertiesFormulas to represent properties of states of advaned system nets will beemployed, by analogy to formulas to represent properties of states of elemen-tary system nets, as introdued in Set. 38.S Terms as introdued in Set. 19(there used as ar insriptions) will serve in a �rst-order logi, with plaes ofsystem nets as prediate symbols (by analogy to Set. 39.1, where plaes ofelementary system nets served as propositional variables).We start with the syntax of formulas over a struture A.57.1 De�nition. Let A be a struture, let X be a set of A-sorted variables,and let P be any set of symbols. Then the set F(A; X; P) of state formulasover A, X , and P is the smallest set of symbol hains suh that for all t 2TA(X) and all p; q 2 P ,i. p:t, p = t, and p � q 2 F(A; X; P)ii. if f; g 2 F(A; X; P) then f ^ g 2 F(A; X; P) and :f 2 F(A; X; P).The following notations will be used, by analogy to Set. 38.2:57.2 Notations. In the sequel we employ the onventional propositionalsymbols _ and !, and for any set Q = fq1; : : : ; qng the shorthands WQfor q1 _ : : : _ qn, and VQ or just Q for q1 ^ : : : ^ qn. Furthermore, we writeA:u1; : : : ; un as a shorthand for A:u1 ^ : : : ^ A:un.Eah advaned system net � is assigned its set of state formulas. Thoseformulas are onstruted from the struture of �, with the plaes of � servingas prediate symbols. The token load s(p) of plae p at a state s, as well asthe insriptions in f of an ar f , are terms that may our in state formulas.57.3 De�nition. Let A be a struture, let X be an A-sorted set of variables,and let � be a net, term-insribed over A and X.i. Eah f 2 F(A; X; P�) is a state formula of �.ii. For eah state s of �, the state formula ŝ of � is de�ned by ŝ :=Vp2P� s(p).Suh formulas are interpreted as follows:57.4 De�nition. Let � be an es-net, let f be a state formula of �, let v bean argument for its variables, and let s be a state of �.i. s j= f(v) (\a is an f(v)-state") is indutively de�ned over the strutureof f . To this end, let u 2 TA(X), p; q 2 P� and g; h 2 F(A; X; P).{ s j= p:t(v) i� setvalu(v) � s(p), ands j= (p = t)(v) i� setvalu(v) = s(p).{ s j= p � q i� s(p) � s(q).{ s j= g ^ h i� s j= g and s j= h.{ s j= :g i� not s j= g.

58 Multisets and Linear Funtions 209ii. s j= f i�, for all arguments u of X, s j= f(u).iii. � j= f i�, for all reahable states s of �, s j= f .Apparently, for eah state a, a j= â.58 Multisets and Linear FuntionsState properties an frequently be proven by means of equations and inequal-ities, whih in turn an be derived from the stati struture of a given systemnet, by analogy to equations and inequalities of es-nets. Eah plae of thenet will serve as a variable, ranging over the subsets of the plaes' domains.Terms will employ linear extensions of funtions of the underlying algebra.Eah strutureA anonially induesmultisets of its arrier sets and linearextensions of its funtions. Intuitively, a multiset B over a set A assigns toeah a 2 A a multipliity of ourrenes of a. As a speial ase, a onventionalsubset of a stiks to the multipliities 0 and 1. For tehnial onveniene weallow negative multipliities, too, But proper multisets have no negative entry.58.1 De�nition. Let A be a set.i. Any funtion M : A! Z is alled a multiset over A. Let AM denote theset of all multisets over A.ii. Let M 2 AM and z 2 ZZ. Then zM 2 AM is de�ned for eah a 2 A byzM(a) := z �M(a).iii. Let L;M 2 AM. Then L + M 2 AM is de�ned for eah a 2 A by(L+M)(a) := L(a) +M(a).iv. A multiset M 2 AM is proper i� M(a) � 0 for all a 2 A.Sets an be embedded anonially into multisets, and some operations onsets onditionally orrespond to operations on multisets:58.2 De�nition. Let A be a set, let a 2 A and B � A. If A is obvious fromthe ontext, am and Bm denote multisets over A, de�ned by am(x) = 1 ifx = a and am(x) = 0 otherwise; and Bm(x) = 1 if x 2 B and Bm(x) = 0,otherwise.Union and di�erene of sets orrespond to addition and subtration of theorresponding multisets, given some additional assumptions:58.3 Lemma. Let A be a set and let B;C � A.i. (B [C)m = Bm + Cm, provided B \ C = ; andii. (B n C)m = Bm � Cm, provided C � B.58.4 Notations.i. By abuse of notation we usually write just A instead of Am.

210 X. State Properties of System Netsii. Addition B + C and subtration B � C are written for ordinary sets Band C only if B\C = ; and C � B, respetively. Partiularly, for a 2 Aand B � A, B � a is written only if a 2 B.There is a anonially de�ned salar produt and a sum of funtions overmultisets:58.5 De�nition. Let A and B be sets:i. Any funtion ' : AM ! BM is alled a multiset funtion from A to B.ii. Let ' : AM ! BM be a multiset funtion and let z 2 Z. Then z' : AM !BM is de�ned for eah M 2 AM by z'(M) := z � ('(M)).iii. Let '; : AM ! BM be two multiset funtions. Then '+ : AM ! BMis de�ned for eah M 2 AM by ('+)(M) := '(M) + (M).iv. OAB denotes the zero-valuating multiset funtion from A to B, i.e.,OAB (M) = OB for eah M 2 AM. The index AB is skipped whenever itan be assumed from the ontext.Eah funtion f : A ! B and eah set-valued funtion g : A ! BM ofa struture A an be extended anonially to a multiset funtion g : AM !BM:58.6 De�nition. Let A and B be sets and let f : A ! B or f : A ! BMbe a funtion. Then the multiset funtion f̂ : AM ! BM is de�ned for eahM 2 AM and eah b 2 B by f̂(m)(b) = �a2f�1(b)M(a).By abuse of notation we write f instead of f̂ whenever the ontext ex-ludes onfusion. The indued funtions f̂ are linear :58.7 Lemma. Let A and B be sets, let f : A! B be a funtion, let L;M 2M(A), and let z 2 Z. Then for the multiset extension of f , f̂(L +M) =f̂(L) + f̂(M), and f̂(z �M) = z � f̂(M).Proof. Let b 2 B and let C := f�1(b).i. f̂(L + M)(b) = �a2C(L + M)(a) = �a2C(L)(a) + �a2C(M)(a) =f̂(L)(a) + f̂(M)(a) = (f̂(L) + f̂(M))(a).ii. f̂(z �M)(b) = �a2C(z �M)(a) = �a2Cz �M(a) = z ��a2CM(a) = z �f̂(M).ut59 Plae Weights, System Equations,and System InequalitiesState properties are essentially based on weighted sets of tokens, formallygiven by multiset valued mappings on the plaes' domains.

59 Plae Weights, System Equations, and System Inequalities 21159.1 De�nition. Let � be a system net over a universe A, let p 2 P�, andlet B be any multiset. Then a mapping I : Ap ! B is a plae weight of p. Iis natural if B = N.Plae weights are frequently extended to set-valued arguments and thenapplied to the token load s(p) of the token at plae p in a global state, s. Inthis ase, a multiset I(s(p)) is alled a weighted token load of p.Plae weights an be used to desribe invariant properties of system netsby help of equations that hold in all reahable states:59.2 De�nition. Let � be a system net over a universe A, let B be anymultiset and let P = fp1; : : : ; png � P�. For j = 1; : : : ; k, let Ij : Apj ! Bbe a plae weight of pj.i. fI1; : : : ; Ikg is a �-invariane with value B if for eah reahable state sof �, I1(s(p1)) + � � �+ Ik(s(pk)) = B.ii. A �-invariane fI1; : : : ; Ikg is frequently written as a symboli equationI1(p1) + � � �+ Ik(pk) = Band this equation is said to hold in �.In a �-equation I1(p1) + � � �+ Ik(pk) = B, the value of B is apparentlyequal to I1(s�(p1)) + � � �+ Ik(s�(pk)), with s� the initial state of �.As a tehnial example, in the term insribed representation of a systemnet �,
u v

t

x f(x)

g(x)
BA

sort dom

const u, v : dom

fct f, g : dom dom→
var x : dom

(1)let fu; vg be the domain of both A and B, and for x 2 fa; bg let IA(x) =f(x) + g(x) and IB(x) = x. Then fIA; IBg is a �-invariane with valueU = f(u) + g(u) + f(v) + g(v), symbolially writtenf(A) + g(A) +B = U . (2)One of the reahable states is s, with s(A) = u and s(B) = f(v)+g(v). Thenin fat IA(s(A)) + IB(s(B)) = IA(u) + IB(f(v)) + IB(g(v)) = U .Intuitively formulated, aording to this invariane, the element u is atA, or both f(u) and g(u) are at B. The orresponding property for v holdsaordingly in �.As a further example, in � =
A

B

C

x

x

a

b

f(x)

g(x)

u v

sort dom
const u, v : dom
fct f, g, f-1, g-1 : dom → dom
var x : dom
f-1(f(x)) = x
g-1(g(x)) = x

(3)

212 X. State Properties of System Netslet again fu; vg be the domain of all plaes A, B, and C, and for x 2 fu; vg letIA(x) = x, IB(x) = f�1(x) and IC(x) = g�1(x). Then fIA; IB ; ICg is a �-invariane with value u+v, symbolially written A+f�1(B)+g�1(C) = u+v.One of the reahable states is s, with s(A) = u, s(B) = f(v) and s(C) = ;.Then in fat IA(s(A))+ IB(s(B))+ IC(s(C)) = IA(u)+ IB(f(v))+ IC(;) =u+ f�1(f(v)) = u+ v.As a �nal tehnial example, in � =
x

f(x)

aA u

sort dom

const u : dom

fct f : dom dom

var x : dom

f(f(x)) = x

→ (4)let U = fug and IA(x) = x + f(x). Then fIAg is a �-invariane with valueu+ f(u), symbolially writtenA+ f(A) = u+ f(u).
x

A

x

x x

C

 (x)

r(x)

B
 (x)

r(x)

a b

c

f1
tu

l l

sort phils, forks

const a, b, c : phils

const f1,f2,f3 : forks

lfct , r: phils → forks

var x : phils

 = = l (a) r(b) f1

 = = l (b) r(c) f2

 = = l (c) r(a) f3Figure 59.1. Renamed philosophers system �15:10A more realisti example is the philosophers system �15:10, redrawn inFig. 59.1. This system has three interesting equations:A+ C = a+ b+ ,B + l(C) + r(C) = f1 + f2 + f3, andr(A) + l(A)�B = f1 + f2 + f3.In analogy to Set. 39 we also onsider inequalities that hold in all reahablestates:

59 Plae Weights, System Equations, and System Inequalities 213
C

A

B

D

a

b

c

d

x

xx

x

x

x

x

x

f(x)

f(x)

f(x)

f(x)

sort dom
const U, V : set of dom
fct f : dom → dom

var x : dom
 f(U) = V

U V

Figure 59.2. f(A) +B � V is a valid inequality59.3 De�nition. Let � be a system net over a universe A, let B be anymultiset, and let P = fp1; : : : ; pkg � P�. For j = 1; : : : ; k let Ij : Apj ! Bbe a plae weight of p.fI1; : : : ; Ikg yields a �-soket with value B if for eah reahable state sof �, I1(s(p1)) + � � �+ Ik(s(pk)) � B.A �-soket fI1; : : : ; Ikg is frequently written as a symboli inequalityI1(p1) + � � �+ Ik(pk) � B,and this inequality is said to hold in �.
f(x)

a b

c

d

e

A

B

C

D

E

F

v
u

f(x)

f(x)

x

x

x

x x

x

x

f(x)
x

x
x

sort dom
const u, v : dom
fct f : dom → dom

var x : dom
f(f(x)) = x
f(u) = vFigure 59.3. f(A) + f(C) +D � u is a valid inequality

214 X. State Properties of System NetsFigures 59.2 and 59.3 provide typial examples.In �59:2 let IA and IB be plae weights of A and B, respetively, withIA(x) = f(x) for eah x 2 U and IB(y) = y for eah y 2 V . Then fIA; IBgis a �-soket with value V . As a symboli inequality it reads f(A) +B � V .Likewise, in �59:3, let IA, IB , and IC be plae weights of A, B, and C,respetively, with IA(x) = IC(x) = f(x) and ID(x) = x, for eah x 2 fu; vg.Then fIA; IC ; IDg is a �-soket with value ff(v); ug = fug. As a symboliinequality this reads f(A) + f(C) +D � u.60 Plae Invariants of System NetsWe are now seeking a tehnique to prove �-invarianes without expliitlyvisiting all reahable states. To this end we onstrut plae invariants forsystem nets, in analogy to plae invariants of es-nets: A set of plae weightsis a plae invariant if eah ourrene mode m of eah transition t yieldsa balaned weighted e�et to the plaes involved, i.e., the weighted set ofremoved tokens is equal to the weighted set of augmented tokens; formally,for plae weights I1; : : : ; Ik of plaes p1; : : : ; pk,I1(m(t; p1))+� � �+Ik(m(t; pk)) = I1(m(p1; t))+� � �+Ik(m(pk ; t)). (1)A more onise representation of (1) is gained by a slightly di�erent per-spetive on transitions and their ations: Eah ar � = (p; t) or � = (t; p)de�nes a mapping e� that assigns eah ation m of t the orresponding subsetm(�) of Ap. Furthermore, this subset is anonially oneived as a multiset,i.e., an element of AMp :60.1 De�nition. Let � be a system over a struture A. Let t 2 T� be atransition with Mt its set of ations and let � = (t; p) or � = (p; t) be an arof �. Then the funtion e� :Mt ! AMp is de�ned by e�(m) = m(�).The funtion e� is anonially extended to e�(m) = ; if � is no ar. Forexample, in
A

B

C

u

v

x

y
t

f(x,y)
g(x,y)

sort U, V, W
const u : U
const v : V
fct f, g : U V W× →
var x : U
var y : V

(2)the set of ations of t is U � V . Then eah ation (u; v) yieldsfAt(u; v) = fug, fBt(u; v) = fvg, ftC(u; v) = ff(u; v); g(u; v)g, andftA(u; v) = ftB(u; v) = fCt(u; v) = ;. (3)Aording to Def. 58.5, etp� ept is a multiset valued funtion that assignseah ourrene mode m of t its e�et on p, i.e., the tokens removed from por augmented to p upon t's ourrene in mode m.

60 Plae Invariants of System Nets 215Eah plae weight Ip : Ap ! B of a plae p an anonially be extended tothe set valued arguments Ip : AMp ! BM, by Def. 58.6. This funtion in turnan be omposed with etp� ept, yielding a funtion Ip Æ (etp� ept) :Mt ! BM.A set of plae weights is a plae invariant if the sum of weighted e�etsof all involved plaes redues to the zero funtion O . The value of a plaeinvariant is derived from the net's initial state:60.2 De�nition. Let � be a system net and let p1; : : : ; pk 2 P�. For j =1; : : : ; k let Ij be a plae weight of pj . Then I = fI1; : : : ; Ikg is a plaeinvariant of � if for eah transition t 2 T�,I1 Æ (ftp1 � fp1t) + � � �+ Ik Æ (ftpk � fpkt) = O.The multiset I1(s�(p1)) + � � �+ Ik(s�(pk)) is the value of I.As an example, for the net (2) let IA, IB , and IC be plae weights forA, B,and C, respetively, with IA(x) = f(x) for eah x 2 U , IB(y) = g(y) for eahy 2 V , and IC(z) = z for eah z 2 W . Then the set fIA; IB ; ICg is a plaeinvariant of (2): With (3) follows IAÆ(ftA�fAt)+IBÆ(ftB�fBt)+ICÆ(ftC�fCt) =f Æ (O �fAt) + g Æ (O � fBt) +ftC � O = �f ÆfAt� g Æ fBt+ftC. Then for all(u; v) 2 U �V , again with (2), (�f ÆfAt�g ÆfBt+ftC)(u; v) = �f(fAt(u; v))�g(fBt(u; v)) +ftC(u; v) = �f(u; v)� g(u; v)+ f(u; v)+ g(u; v) = O . The valueof this plae invariant is IA(u) + IB(v) + IC(O) = f(u) + g(v).A plae invariant provides in fat a valid �-equation:60.3 Theorem. Let � be a system net, let p1; : : : ; pk 2 P�, and for j =1; : : : ; k, let Ij be a plae weight of �. Let fI1; : : : ; Ikg be a plae invariantof � and let U be its value. Then the equationI1(p1) + � � �+ Ik(pk) = Uholds in �.Proof. i. Let r t;m��!s be a step of �. Then for eah p 2 P� , s(p) = r(p) +m(t; p)�m(p; t), by Proposition 16.4. Then�kj=1Ij(s(pj)) = �kj=1Ij(r(pj) +m(t; pj)�m(pj ; t))= �kj=1Ij(r(pj)) +�kj=1Ij(m(t; pj)�m(pj ; t)) by Def. 58.1= �kj=1Ij(r(pj)) +�kj=1Ij((gt; pj)(m) � (gpj ; t)(m)) by Def. 19.2= �kj=1Ij(r(pj)) +�kj=1Ij((gt; pj)� (gpj ; t))(m) by Lemma 58.7= �Ij(r(pj)) + O(m) = �Ij(r(pj))

216 X. State Properties of System Netsii. Now let s be a reahable state of �. Then there exists an inter-leaved run of � formed s0 t1;m1���! s1 t2;m2���! : : : tl;ml���! sl with sl = s.Then �kj=1Ij(s0(pj)) = U , by Def. 60.2. Then for eah i = 1; : : : ; l,�kj�1Ij(si(pj)) = U , by i. This yields the proposition for i = l. utPlae invariants an be mimiked symbolially in term-insribed repre-sentations of system nets. To this end, the funtions etp, ept, etp � ept, and Ipwill be represented symbolially. The omposition Ip Æ (etp� ept) of funtionsIp and (etp� ept) then is symbolially exeutable as substitution of terms.De�nition 19.1 assigns eah ar � = (t; p) or � = (p; t) of a term-insribednet � a set � � TAp(Xt) of Ap-terms over Xt. For eah u 2 �, valu (asde�ned in Def. 18.5) is a mapping from Mt to Ap. This mapping an beextended anonially to valu : Mt ! AMp . Mappings of this kind an besummed up, giving rise to the mapping e� : Mt ! AMp of Def. 60.1, de�nedby e�(m) := valu1(m) + � � �+ valuk(m), with Xt = fu1; : : : ; ukg. Hene e� anbe represented symbolially ase� = u1 + � � �+ uk (1)in this ase.The multiset extension Ip : AMp ! B of a plae weight I : Ap ! B anbe represented as a term with one variable, ranging over AMp . For the sake ofonveniene we always hoose the variable p, hene the orresponding termis an element of TB(fpg).The omposed funtion Ip Æ (etp � ept) : Mt ! B is now symboliallyrepresented by the multiset term� = Ip[etp� ept=p℄ (2)whih is gained from Ip by replaing eah ourrene of the variable p in Ipby the term etp � ept. Hene � is a term in TB(Xt), and its valuation val� isequal to Ip Æ (etp� ept).
A

B

C

u v x
a

f(x)

g(x)

sort dom
const u, v : dom
fct f, g : dom dom→
var x : doma s� IA �x u+ v f(A) + g(A)B f(x) BC g(x) CFigure 60.1. System net with matrix, initial state s� , and a plae invariant

60 Plae Invariants of System Nets 217The analogy to Set. 40 ontinues, as a term-insribed net � is representedas a matrix � with row indies P� , olumn indies T�, and entries �(p; t) =etp� ept. Its initial state s� , as well as eah plae invariant I , an be representedas a olumn vetor, representing the initial token load s�(p) as a variable freeground term of sort Ap and eah entry I(p) as the term Ip, introdued above.Moreover, plae invariants I an be haraterized as solutions of� � I = (O ; : : : ;O) (3)with O a symbol for the zero multiset funtion, as desribed in Def. 58.5. Ithen is a vetor of plae weights, one for eah plae. The produt of a om-ponent Ip of I with a matrix entry �(p; t) is the substitution Ip[�(p; t)=p℄,addition of terms is the symboli sum of multiset terms.As an example, Fig. 60.1 shows a system net together with its matrix andthe vetor representation of its initial state and a plae invariant. Substitutionof matrix entries into the omponents of I yieldsIA[aA�Aa=A℄ = IA[�x=A℄= f(A) + g(A)[�x=A℄= f(�x) + g(�x)= �f(x)� g(x);IB [aB �Ba=B℄ = IB [f(x)=B℄= B[f(x)=B℄= f(x);IC [aC � Ca=C℄ = IC [g(x)=C℄= C[g(x)=C℄= g(x):Figure 60.2 likewise provides the matrix, the initial state, and a plaeinvariant of the net (3) of Set. 59. Substitution of entries of the �rst olumnof the matrix into the omponents of I yields

218 X. State Properties of System NetsIA[aA�Aa=A℄ = IA[�x=A℄= A[�x=A℄= �x;IB [bB �Bb=B℄ = IB [f(x)=B℄= f�1(B)[f(x)=B℄= f�1(f(x))= x;IC [O ℄ = O
A

B

C

x

x

f(x)

g(x)

u v

a

b

sort dom
const u, v : dom
fct f, g, f-1, g-1: dom → dom
var x : dom
f-1(f(x)) = x
g-1(g(x)) = xa b s� IA �x �x u+ v AB f(x) f�1(B)C g(x) g�1(C)Figure 60.2. Matrix, initial state, and a plae invariant to (2) of Set. 59As a �nal tehnial example, Fig. 60.3 gives matrix, initial state, and aplae invariant to (4) of Set. 59. Substitution of the matrix entry into theinvariant yields IA[aA�Aa=A℄ = IA[f(x)� x=A℄= A+ f(A)[f(x)� x=A℄= f(x)� x+ f(f(x)� x)= f(x)� x+ f(f(x))� f(x)= f(x)� x+ x� f(x)= O

61 Traps of System Nets 219
f(x)

x

A au
sort dom
const u : dom
var x : dom

fct f : dom dom→
f(f(x)) = xA s� Ia f(x)� x u A+ f(A)Figure 60.3. Matrix, initial state, and a plae invariant to (3) of Set. 59To �nish this setion, Fig. 60.4 shows matrix, initial state, and three plaeinvariants for the philosophers system of Fig. 59.1.

x

A

x

x x

C

 (x)

r(x)

B
 (x)

r(x)

a b

c

f1
tu

l l

sort phils, forks

const a, b, c : phils

const f1,f2,f3 : forks

lfct , r : phils → forks

var x : phils

 = = l (a) r(b) f1

 = = l (b) r(c) f2

 = = l (c) r(a) f3t u s� I1 I2 I3A �x x a+ b A l(A) + r(A)B �l(x)� r(x) l(x) + r(x) f1 B �BC x �x C l(C) + r(C)Figure 60.4. Matrix, initial state, and three plae invariants to �59:161 Traps of System NetsWe are now seeking a tehnique to prove �-sokets without visiting all reah-able states. To this end we onstrut initialized traps for system nets, inanalogy to initialized traps of elementary system nets.Informally stated, a trap of a system net is a set fI1; : : : ; Ikg of weights ofplaes p1; : : : ; pk suh that for eah element b of a given set B, eah transitionthat removes at least one token with weight b from those plaes returns at

220 X. State Properties of System Netsleast one token with weight b to those plaes. This gives rise to an inequalityof the formI1(p1) + � � �+ Ik(pk) � B. (1)Traps are essentially a matter of plain sets (whereas plae invariants arebased on multisets). For an ar (p; t) and an ourrene mode m of t, m(p; t)is a plain set aording to Def. 16.2. Then I(m(p; t)) := fI(u) j u 2 m(p; t)gis a set, for any plae weight I . Constrution of traps now goes with set union(not with multiset addition).61.1 De�nition. Let � be a system net and let p1; : : : ; pk 2 P�. For j =1; : : : ; k, let Ij be a plae weight of pj . Then I = fI1; : : : ; Ikg is a trap of �if for eah transition t 2 T� and eah ourrene mode m,I1(m(p1; t)) [� � � [Ik(m(pk; t)) � I1(m(t; p1)) [� � � [Ik(m(t; pk)).The set I1(s�(p1)) [� � � [Ik(s�(pk)) is the initialization of I.As an example, in �59:2, let IA and IB be plae weights for A and B,respetively, with IA(x) = ff(x)g for eah x 2 U and IB(y) = fyg for eahy 2 V . In the sequel we showfIA; IBg is a trap of �59:2. (2)To this end, we �rst observe that the ourrene modes of both transitionsa and b are given by the set U . Then for eah m 2 U :IA(m(A; a)) [IB(m(B; a)) = IA(fmg) [IB(ff(m)g)= ff(m)g [ff(m)g= ff(m)g= ff(m)g [;= IA(fmg) [IB(;)= IA(m(a;A)) [IB(m(a;B)).Likewise, for the transition b,IA(m(A; b)) [IB(m(B; b)) = IA(fmg) [IB(ff(m)g)= ff(m)g [ff(m)g= ff(m)g= ; [ff(m)g= IA(m(b; A)) [IB(m(b; B)).Finally, for t = and t = d,

61 Traps of System Nets 221IA(m(A; t)) [IB(m(B; t)) = IA(;) [IB(;)= ; [;= ;� IA(m(t; A)) [IB(m(t; B)).Hene, fIA; IBg is in fat a trap of �59:2. Its initialization is IA(U) [IB(;) = f(U) [; = V . An initialized trap in fat provides a valid �-inequality:61.2 Theorem. Let � be a system net, let p1; : : : ; pk 2 P�, and for j =1; : : : ; k, let Ij be a plae weight of �. Let fI1; : : : ; Ikg be a trap of � withinitialization B. Then the inequalityI1(p1) [� � � [Ik(pk) � Bholds in �.Proof. i. Let r t;m��!s be a step of �. ThenSkj=1 Ij(s(pj)) = Skj=1 Ij((r(pj) nm(pj ; t)) [m(t; pj)) by Def. 16.3= Skj=1 Ij(r(pj) nm(p; t)) [Skj=1 Ij(m(t; pj)) by rules on sets� Skj=1(Ij(r(pj)) n Ij(m(p; t))) [Skj=1 Ij(m(t; pj)) by rules on sets� (Skj=1 Ij(r(pj)) nSkj=1 Ij(m(p; t))) [Skj=1 Ij(m(t; pj))by rules on sets= Skj=1 Ij(r(pj)) [Skj=1 Ij(m(t; pj)) by Def. 61.1� Skj=1 Ij(r(pj)) by rules on sets.ii. Now let s be a reahable state of �. Then there exists an inter-leaved run of � formed s0 t1;m1���! s1 t2;m2���! : : : tl;ml���! sl with sl = s.Then Skj=1 Ij(s0(pj)) � B, by Def. 61.1. Then for eah i = 1; : : : ; l,Skj=1 Ij(si(pj)) � B, by i and indution on i. Then the ase of i = limplies the proposition. utProof of traps an be mimiked symbolially in term-insribed systemnets. To this end, plae weights I , and funtions e� assigned to ars �, arerepresented symbolially as desribed in Set. 60. The funtion I Æ� an thenbe represented symbolially by the multiset term� = Ip[e�=p℄ (3)

222 X. State Properties of System Netsin analogy to (2) of Set. 60. Union of funtions then an be expressed byset union of singleton sets f�g. Eah valuation of the variable p in � by somem 2 Ap then desribes the item IpÆe�(m) = Ip(e�(m)). O denotes the funtionthat returns no value at all.As an example, the trap in (2) an be veri�ed symbolially as follows:IA Æ (gA; a) [IB Æ (gB; a) = f(A) Æ ex [B Æ gf(x)= f(A)[x=A℄ [B[f(x)=B℄= ff(x)g [ff(x)g= ff(x)g= ff(x)g [O= f(A)[x=A℄ [O= IA Æ ex [IB Æ O= IA Æ (ga;A) [IB Æ (ga;B).Likewise, IA Æ (gA; b) [IB Æ (gB; b) = f(A) Æ ex [B Æ gf(x)= ff(x)g= O [B[f(x)=B℄= IA Æ O [IB Æ gf(x)= IA Æ (gb; A) [IB Æ (gb; B).Finally, for t = or t = d,IA Æ (gA; t) [IB Æ (gB; t) = O [O= O� IA Æ (gt; A) [IB Æ (gt; B).The initialization of the trap fIA; IBg is given symbolially byIA(U) [IB(;) = f(A)[U=A℄ [B[;=B℄= f(U) [;= f(U)= V .62 State Properties of Variantsof the Philosopher System62.1 State properties of nondeterministi philosophersWe start with state properties of the philosophers system, as onsidered inSets. 19 and 20. Figure 62.1 redraws �19:1, with renamed plaes. It shows

62 State Properties of Variants of the Philosopher System 223
x

A

B

x

(x,y,z) (x,y,z)

C

zz

a b c

f1 f2 f3
tq

u
y y

sort phils, forks

const a, b, c : phils

const f1,f2,f3 : forks

var x : phils

var y, z : forks

Figure 62.1. System shema for �19:1the ase of a philosopher taking any two forks. An obvious plae invariantthen isA+ pr1(C) = a+ b+ , (1)on�rming that eah philosopher is either thinking or eating. The plae in-variantB + pr2(C) + pr3(C) = f1 + f2 + f3 (2)states that eah fork is either available or in use.The plaes A and B are quite loosely onneted: Eah philosopher orre-sponds to any two forks, hene it is just the number of philosophers at A andthe number of forks at B that an be ombined in a plae invariant overingA and B. More preisely, philosophers ount twie as muh as forks do:2jAj � jBj = 3. (3)62.2 State properties in the ontext of set-valued funtionsFigure 62.2 shows a system shema, with eah philosopher x taking a �xedset �(x) of forks. �20:3 is an instantiation of this shema. Plae invariants of�62:2 are easily gained and interpreted:A+ C = P (4)states that eah philosopher is either thinking or eating.B + �(C) = G (5)states that eah fork is either available or in use by exatly one philosopher,and

224 X. State Properties of System Nets
x

A

x

x x

C

 (x)
B

 (x)

P

G tq

u
Φ Φ

sort phils, forks

const P : set of phils

const G : set of forks

fct : phils → set of forksΦ

var x : phils

Figure 62.2. System shema for �20:3�(A) �B = �(P) �G (6)states that eah philosopher orresponds to the set of his or her forks.62.3 State properties of the drinking philosophersFinally, Fig. 62.3 shows a system shema for the drinking philosophers. �20:5provides an instantiation of this shema.
x

A

x

(x,Y)
(x,Y)

C

B

P

G tq

u
Y Y

sort phils, bottles

const P : set of phils

const G : set of bottles

var x : phils

var Y : set of bottles

Figure 62.3. System shema for �20:5Its matrix, initial state, and two plae invariants are given in Fig. 62.4.The plae invariant I1 yields the equation

62 State Properties of Variants of the Philosopher System 225t u M0 I1 I2A �x x P AB �Y Y G BC (x; Y) �(x; Y) pr1(C) pr2(C)Figure 62.4. Matrix, initial state, and two plae invariants of the drinkingphilosophers system, �62:3A+ pr1(C) = P , (7)stating that eah philosopher is either thinking or eating. Likewise, I2 yieldsB + pr2(C) = G, (8)stating that eah bottle is either available or in use. There is no plae invariantonneting A and B.

XI. Interleaved Progress of System Nets
Two progress operators have been suggested for elementary system models:the interleaved progress operator 7! (\leads to") and the onurrent progressoperator ,! (\auses"). They both an be adapted anonially to the aseof advaned system nets. The auses operator will turn out more importantbeause of its ability for parallel omposition. In analogy to elementary systemnets, we start with progress on interleaved runs.63 Progress on Interleaved RunsIn analogy to Set. 44, a progress property p 7! q (p leads to q) is onstrutedfrom two state properties p and q. Now, p and q are �rst-order state proper-ties, as de�ned in Set. 57. Again, as in Set. 44, p 7! q holds in an interleavedrun w if eah p-state of w is followed by a q-state. p 7! q holds in a systemnet � if p 7! q holds in eah of its interleaved runs. Tehnially, leads-toformulas are onstruted from state formulas:63.1 De�nition. Let A be a struture, let X be a set of A-sorted variables,let P be a set of symbols, and let p; q 2 F(A; X; P) be state formulas. Thenthe symbol sequene p 7! q (p leads to q) is a �rst-order leads-to formula.Leads-to formulas are interpreted over interleaved runs and over systemnets:63.2 De�nition. Let � be a net that is term-insribed over a struture Aand a set X of variables. Let p; q 2 F(A; X; P�) and let w be an interleavedrun of �.i. For an argument u of X let w j= (p 7! q)(u) i� for eah p(u)-state withindex i, there exists a q(u)-state with index j � i.ii. p 7! q is said to hold in w (written w j= p 7! q) i� for eah argument uof X, w j= (p 7! q)(u).iii. p 7! q is said to hold in � (written � j= p 7! q) i� w j= p 7! q for eahinterleaved run w of �.As an example, in Fig. 63.1 the formula A:u ^A:v 7! C:f(u; v) is true.

228 XI. Interleaved Progress of System Nets
u v

x
A B

(x,y)
C

f(x,y)x
a bFigure 63.1. A:u ^ A:v 7! C:f(u; v)64 Interleaved Pik-upand Proof Graphs for System NetsThe pik-up rule for es-nets, as stated in Set. 45, is anonially extendedto system nets. The only slightly nontrivial new notion is the postset s� ofa state s of a system net �. In fat, s� ontains ations of transitions of�. More preisely, an ation m of a transition t is in s� if ourrene of mredues the token load of some plae p, i.e., if m(p; t) 6= ;.64.1 De�nition. Let � be a system net and let s be a state of �.i. s is progress prone i� s enables at least one ation of some progressingtransition of �.ii. Let t 2 T� and let m be an ation of t. s prevents m i� � j= ŝ !:m(p; t).iii. Let t 2 T� and let m be an ation of t. m 2 s� if for some plae p of �,s(p) \m(p; t) 6= ;.iv. A set M of ations of some transitions of � is a hange set of s if M 6= ;and s prevents eah m 2 s� nM .The following theorem desribes the most general ase for piking upleads-to formulas from the stati struture of a system net: Eah hange setof a progress prone state s yields a leads-to formula:64.2 Theorem. Let � be a system net, let s be a progress prone state, andlet M be a hange set of s. Then� j= s 7! _m2M e�(s;m).Proof of this theorem follows the proof of Theorem 45.5 and is left as anexerise for the reader.64.1 Pik-up patternsRules for piking up valid leads-to formulas from term-insribed nets will bepresented in the sequel. A most general, fully edged syntatial pik-up rule,i.e., a syntatial representative of Theorem 64.2, is tehnially ompliatedand unwieldy. Some typial patterns will be onsidered instead, suÆient forverifying an overwhelming majority of ase studies.We start with forward branhing plaes that lead to a disjuntion:

64 Interleaved Pik-up and Proof Graphs for System Nets 229
A

B

C

x

x

f(x)

g(x)

u v A:x 7! B:f(x) _ C:g(x). (1)Synhronization is as expeted:
A

B

C

u

v

x

y
t

f(x,y) A:x ^ B:y 7! C:f(x; y). (2)More generally, and with the piked-up formula written as a proof graph,
A

B

C F

D

E

x

x

x

y

e

f

g

f(x)

g(x,y)

h(x)

A.u
C.v

D:f(u)

E.g(u,y)

F.h(v)

. (3)
In ase additionally A:u ! :B:y, all ations formed f(u;w) are ruled outand one may pik up

A.u
C.v

D.f(u)

F.h(v). (4)Summing up, the interleaved pik-up rule of Set. 45 anonially generalizesto system nets and will be used aordingly.64.2 Proof graphsProof graphs for interleaved progress of system nets an be onstruted instrit aordane with the ase of elementary system nets, as introdued in
A.u
A.v

B.u
A.v

A.u
B.v

B.u
B.v

a(v)

a(u)a(v)

a(u)

b(u,v)
C.f(u,v)Figure 64.1. Proof graph for �63:1 j= A:u ^A:v 7! C:f(u; v)

230 XI. Interleaved Progress of System NetsSets. 46 and 47. We refrain from a formal de�nition here; the general asean easily be derived from the proof graph for �63:1 j= A:u^A:v 7! C:f(u; v),given in Fig. 64.1.65 Case Study: Produer/Consumer SystemsWe are now prepared to show for produer/onsumer systems that eah pro-duer item will eventually be onsumed. Figure 65.1 shows a system shema,
B F

D

C

c d

EA

a q b

x
x x x

xx

sort dom
var x : domFigure 65.1. System shema for produer/onsumer systemswith instantiation as in �15:5. Eah item ready to be delivered should even-tually beome ready to be onsumed. In terms of �65:1 this readsB:u 7! F:u. (1)Figure 65.2 shows a proof graph for (1). Its nodes are justi�ed as follows:node 1: inv. C + jDj = 1node 2: inv. E + jF j = 1node 3: D:x prevents b(u) by inv. C + jDj = 1 and F:x prevents (x) byinv. E + jF j = 1node 4: D:x prevents b(u) and eah (y) for y 6= x, by inv. C + jDj = 1node 5: C prevents (x) by inv. C + jDj = 1 and B(u) prevents b(x) forx 6= u by inv. A+ jBj = 1node 6: C prevents (x) by inv. C + jDj = 1 and B(u) prevents b(x) forx 6= u by inv. A+ jBj = 1node 7: D:u prevents (x) for x 6= u by inv. C + jDj = 1node 8: inv. E + jF j = 1node 9: F:x prevents (u) by inv. E + jF j = 1.

66 How to Pik up Fairness 231
1) B.u 2) B.u

D.x

B.u
3) D.x

F.x

d(x) B.u
4) D.x

E

c(x) B.u
5) C

F.x

d(x) B.u
6) C

E

b(u)
7) D.u

E

c(u)
10) F.u

b(u)
9) D.u

F.x

d(x)

8) B.u
C

Figure 65.2. Proof graph for �65:1 j= B:u 7! F:u66 How to Pik up FairnessA pik-up rule for leads-to properties is onstruted in the sequel that exploitsthe assumption of fairness of ations. Some tehnialities are required �rst,inluding the pre- and postsets of ations, and persistene of states. Thepostset s� of a state s has already been de�ned in Set. 64.1.66.1 De�nition. Let � be a system net, let t 2 T�, and let m 2 Mt be anation of t.i. The preset �m and the postset m� of m are states of �, de�ned for eahplae p 2 P� by �m(p) = m(p; t) and m�(p) = m(t; p), respetively.ii. For two states r and s, let r n s be the state de�ned for eah plae p of �by (r n s)(p) := r(p) n s(p).As an example, in Fig. 66.1, x = u de�nes an ationm of b, with �m(B) =fug, �m(D) = fvg, and �m(A) = �m(C) = �m(E) = ;. A substate s is
E

v w
xx

xx

dc

D f(x)

CBa b
ϕ

A
u

x x x f(x)
sort dom

const u, v, w : dom

fct f : dom → dom

var x, y : dom

f(u) = v

Figure 66.1. s is m-persistent, with u 2 s(B) and m(x) = u

232 XI. Interleaved Progress of System Netspersistent with respet to an ation m if s an be hanged only by ourreneof m:66.2 De�nition. Let � be a system net, let t 2 T�, m 2 Mt, and s � �m.Then s is m-persistent if s� = fmg and � j= s 7! �m ns.For example, eah state s of �66:1 with u 2 s(B) is m-persistent forthe ation m of b de�ned by x = u. As a variant of �66:1, replae the arinsription f(t) of (D; b) by a variable y. No reahable state has a persistentation of b in this ase.An ation m of a fair transition will our at eah m-persistent state:66.3 Theorem. Let � be a system net, let t 2 T� be fair, let m 2Mt, andlet s be a m-persistent state. Then � j= s 7! m�.Proof. Let w = s0 (t1;m1)�����!s1 (t2;m2)�����!s2 : : : be an interleaved run of �. Let skbe an s-state, i.e., sk j= s. Then tk+1 = (t;m) or sk+1 j= s beause s� = fmg.Furthermore, there exists an �m-state sl0 , with l0 � k, beause � j= s 7! �m.Let l be the smallest suh index. Then sl�1 j= �m. Henefor some l > k, tl = (t;m) or sl j= s. (1)To show w j= s 7! m�, let sk be an s-state. By iteration of (1), eithertl = (t;m) for some l > k (and hene sl+1 j= s), or there exists an in�nitesequene of s-states. But the latter ase is ruled out due to the assumptionof fairness for t. utReturning to �66:1, the proof graph
B.u E.v D.v

(2)proves B:u 7! D:v, i.e., for eah state s with u 2 s(B) and eah ation m ofb with m(x) = u, s j= �m ns. Eah suh state is m-persistent. Hene�66:1 j= B:u 7! C:f(u) (3)by Theorem 66.3.The above fairness rule, Theorem 66.3, deserves a slight generalization: Itlikewise holds in a ontext, �, and furthermore bears additional alternatives.66.4 Corollary. Let � be a system net, let t 2 T� be fair, let m 2 Mt,and let �, q be state formulas. Furthermore, let s be a state of � suh that� j= (� ^ s) 7! (� ^ �m) _ q. Then � j= (� ^ s) 7! (� ^m�) _ q.A anonial extension of the proof of Theorem 66.3 proves this orollary.

XII. Conurrent Progress of System Nets
The above interleaving-based progress operator for advaned system netsis now omplemented by a onurreny-based operator ,!, in analogy toonurrent progress of elementary system nets, as disussed in Chap. IX.67 Progress of Conurrent RunsFirst-order auses formulas are onstruted from state formulas as de�ned inDef. 57.1, and the elementary auses operator from Def. 50.2.67.1 De�nition. Let A be a struture, let X be a set of A-sorted variables,let P be a set of symbols, and let p; q 2 F(A; X; P) be state formulas. Thenthe symbol sequene p ,! q (\p auses q") is a �rst-order auses formula.Causes formulas are interpreted over onurrent runs and over systemnets:67.2 De�nition. Let � be a net that is term-insribed over a struture Aand a set X of variables. Let p; q 2 F(A; X; P�) and let K be a onurrentrun of �.i. For an argument u of X, let K j= (p ,! q)(u) i� to eah reahable p(u)-state C of K there exists a q(u)-state D of K that is reahable fromC.ii. p ,! q is said to hold in K (written K j= p ,! q) i� for eah argumentu of X, K j= (p ,! q)(u).iii. p ,! q is said to hold in � (written � j= p ,! q) i� K j= p ,! q for eahonurrent run K of �.As an example, A:fu; vg ,! B:fu; vg holds in

A B

C

D

u v

g(x)

f(x)

a

b

c

x
xx

x

(1)As disussed in Lemmas 50.3 and 50.4, properties of the propositionalauses operator likewise apply to the �rst-order auses operator:

234 XII. Conurrent Progress of System Nets67.3 Lemma. Let � be a system net that is term-insribed over a strutureA and let p; q 2 sf(A; X; P�).i. � j= p ,! p.ii. If � j= p ,! q and � j= q ,! r then � j= p ,! r.iii. If � j= p ,! r and � j= q ,! r then � j= (p _ q) ,! r.iv. If � j= p 7! q then � j= p ,! q.v. If q inludes no logial operator and � j= p ,! q then � j= p 7! q.68 The Conurrent Pik-up RuleA rule to pik up auses properties from a system net is now derived, in anentirely semantial framework. The problem of piking up auses formulasfrom a term-insribed representation of system nets, is postponed to the nextsetion.We start with some properties and notations of states of system nets.68.1 De�nition. Let � be a system net and let r; s be two states of �.i. The state r [s of � is de�ned for eah plae p 2 P� by (r [s)(p) :=r(p) [s(p).ii. Let r � s i� for eah plae p 2 P�, r(p) � s(p).iii. r is disjoint with s i� for eah p 2 P�, r(p) \ s(p) = ;.iv. For an ation m of some transition t, let �m be a state of �, de�ned foreah plae p 2 P� by �m(p) = m(p; t). For a set M of ations, let �Mbe the state de�ned for eah p 2 P� by �M(p) = Sfm(p) j m 2Mg.Change sets of system nets, as de�ned in Def. 64.1 for interleaved progress,an likewise be used for onurrent progress properties:68.2 Theorem. Let � be a system net and let r; s be states of �. Assume sis progress prone, and let U = V [W be a hange set of s, with �V � s and rdisjoint with �V . Then � j= r[s ,! (r[Wu2V e�(s; u))_(Wu2W e�(r[s; u)).Proof of this theorem follows proof of Theorem 51.1 and is left as anexerise for the reader.Many appliations of this theorem deal with the speial ase of W = ;,i.e., �U � s and r disjoint from �U :68.3 Corollary. Let � be a system net, let s be a progress prone state of �,and let U be a hange set of s with �U � s. Furthermore, let r be a state thatis disjoint with s. Then � j= r [s ,! r [(Wu2U e�(s; u)).

69 Pik-up Patterns and Proof Graphs 23569 Pik-up Patterns and Proof GraphsIn analogy to the pattern of Set. 64.1, valid auses formulas an be pikedup from term-insribed nets with the help of pik-up patterns, as suggestedin the sequel.We stik to elementary formulas, avoiding the negation operator :.69.1 Notations. Let � be an es-net that is term-insribed over a strutureA and a set X of variables.i. A state formula p in sf(A; X; P�) is elementary if the negation symbol: does not our in p.ii. For a plae p 2 P� and a state formula q, we write p 62 q if p does notour in q.In ase p 62 q, the plae p, onsidered as a state, is disjoint to state q.69.1 The elementary patternMost elementary is the ase of a forward unbranhed plae, A, linked to abakward unbranhed transition, a:
A B

f(x)

a

xLet � be an elementary state formula with A;B 62 �.i. � ^ A:xa(x),! � ^ :A:x ^B:f(x)ii. � ^ A:(x+ U)a(x),! � ^ A:U ^ B:f(x)iii. � ^ A = U a(U),! � ^ A = 0 ^B:f(U)69.2 The alternative patternThe typial free hoie alternative is likewise easy:
A

B

C

g(x)

f(x)
a

b

x

xLet � be an elementary state formula with A;B;C 62 �.i. � ^ A:x ,! � ^ :A:x ^ (B:f(x) _ C:g(x))ii. � ^ A:(x+ U) ,! � ^ A:U ^ (B:f(x) _ C:g(x))iii. � ^ A = U ,! � ^A = 0 ^ B:f(V) ^ C:g(W) ^ U = V [W

236 XII. Conurrent Progress of System Nets69.3 The synhronizing patternSynhronization of plaes without alternatives goes as an be expeted:
A

B

Ca
f(x)

g(x)
xLet � be an elementary state formula with A;B;C 62 �.i. � ^ A:x ^ B:f(x)a(x),! :A:x ^ :B:f(x) ^ C:g(x)ii. � ^ A = U ^ f(A) � B a(A),! � ^ A = ; ^ C:g(U)69.4 The pattern for alternative synhronizationChoie between synhronized transitions yields important patterns:

A

B

C

D

E

f(x)

y

b
k(x)

h(x)

a

y

x

Let � be an elementary state formula with A; : : : ; E 62 �.i. � ^ A:x ^ B:f(x) ,! � ^D:h(x) _ E:f(x)ii. Let A:x prevent b(f(x)). Then � ^ A:x ^ B:f(x)a(x),! D:h(x)iii. A = U ^ f(A) � B ,! D:h(V) ^ E:f(W) ^ U = V [WA frequent speial ase of this pattern is
A

B

Ca

x
xwith B an elementary, propositional plae and x varying over the set U . Theni. � ^ A:x ^ B ,! � ^Wy2U C:yii. Let inv jAj � 1 be a valid inequality. Then A:x ^ B ,! C:x.

69 Pik-up Patterns and Proof Graphs 23769.5 The pattern for synhronized alternativesThere frequently our two or more alternatives that are synhronized alonga bakwards branhed plae:
A

B

C

D

E

x

y

a

b

cz

g(x)

f(x,y)

h(y)y

x

Let � be an elementary state formula with A; : : : ; E 62 �.i. � ^ A:x ^ B:y ,! � ^D:f(x; y) _ C:g(x) _ E:h(y)ii. Let A:x prevent (y; z) and let B:y prevent a(x). Then A:x ^ B:y ,!D:f(x; y).69.6 Proof graphs for auses formulasBased on Lemma 67.3, proof graphs for auses formulas an be onstrutedas usual.As an example we turn bak to the produer/onsumer system. Fig-ure 65.2 shows that eah produed item will eventually be onsumed; teh-nially, B:u 7! F:u for eah item u. As an alternative we observe withLemma 67.3(v) that it was suÆient to prove B:u ,! F:u instead. Figure 69.1
1) B.u 2) B.u

D.x

B.u
3) D.x

F.x

d(x) B.u
4) D.x

E

c(x) B.u
5) C

F.x

d(x) B.u
6) C

E

b(u)
7) D.u

E

c(u)
9) F.u

8) B.u
C

Figure 69.1. �65:1 j= B:u ,! F:ushows a orresponding proof graph. In omparison to Fig. 65.2, one node hasvanished. More important is the simpli�ation in the nodes' justi�ation:node 1: inv. C + jDj = 1,node 2: inv. E + jF j = 1,node 3: pattern of Set. 69.1, ontext B:u ^D:x,node 4: pattern of Set. 69.4, D:x prevents (y) for eah y 6= x by inv.C + jDj = 1, ontext B:u,

238 XII. Conurrent Progress of System Netsnode 5: pattern of Set. 69.1, ontext B:u ^ C,node 6: pattern of Set. 69.4, B:u prevents eah b(x) for x 6= u by inv.A+ jBj = 1, ontext E,node 7: pattern of Set. 69.4, D:u prevents eah (x) for x 6= u by inv.C + jDj = 1, ontext E,node 8: inv. E + jF j = 1.Further deisive simpli�ation of the proof will be gained by help of roundsin the next setion.70 Ground Formulas and RoundsGround formulas and rounds of elementary system nets are now anoniallyextended to advaned system nets:70.1 De�nition. Let � be a system net and let p be a state formula of �.Then p is a ground formula of � if � j= true ,! p.70.2 Theorem. Let � be a system net and let s be a state of �. Then s isa ground formula of � i� � j= a� ,! s and there exists a hange set U of ssuh that for eah u 2 U , � j= e�(s; u) ,! s.As an example, for the produer/onsumer system in Fig. 65.1 we proveACE is a ground formula of �65:1. (1)The �rst ondition of Theorem 70.2, � j= a� ,! ACE, is trivially ful�lled,as a� = ACE. For the seond ondition we observe that fa(u) j u 2 domg isa hange set of ACE, beause for all x 2 dom, A prevents b(x) by the plaeinvariant A+ jBj = 1, C prevents (x) by C + jDj = 1, and E prevents d(x)by E + jF j = 1. Hene we have to show for all x 2 dom: B(x) ,! ACE. Theproof graph
B

D

(m,u)
(n,u)

(x,m)
(x,n)

u v w

(x,y)

(y,x) (y,succ(x))

(x,y)

(x,m)
(x,n)x x

C

AFigure 70.1. Renamed distributed request servie �19:3

70 Ground Formulas and Rounds 2391)B:x^C ^E b(x),! 2)A^D:x^E (x),! 3)A^C ^F:xd(x),! 4)A^C ^E (2)shows this property. Its nodes are justi�ed as follows, with all formulas dueto the elementary pik-up pattern of Set. 69.1:node 1: pattern of Set. 69.4,B:x prevents b(y) for y 6= x by inv. A+jBj =1, ontext E,node 2: pattern of Set. 69.4,D:x prevents (y) for y 6= x by inv. C+jDj =1, ontext A,node 3: pattern of Set. 69.4, ontext A ^ C.As a further example we show that the initial state of the Distributed Re-quest Servie of Fig. 19.3 is a ground state. Figure 70.1 renames this system.As a tehnial simpli�ation, pairs (x; y) will be written xy; hene we haveto showD:mu; nu ^ A:u; v; w is a ground formula of �70:1. (3)The set fa(x) j x 2 fu; v; wgg apparently is a hange set of a�70:1 . Fur-thermore, let x; y; z 2 fu; v; wg be pairwise di�erent. Then (3) follows withTheorem 70.2 from the following proof graph:e�(a� ; a(x)) = 1)D:mu; nu ^ A:y; z ^ B:xm; xn,! 2)D:mu; nu ^ B:xm; xn; ym; yn; zm; zn= 3)D:mu; nu ^ B:um; un; vm; vn; wm;wn,! 4)D:mv; nv ^ B:vm; vn; wm;wn ^ C:mu; nu,! 5)D:mw; nw ^ B:wm;wn ^ C:mu; nu;mv; nv,! 6)D:mu; nu ^ C:mu; nu;mv; nv;mw; nw,! 7)D:mu; nu ^ A:u; v; w.All nodes are justi�ed by the elementary pik-up pattern of Set. 69.1.70.3 Theorem. Let � be a system and let p be a ground formula of �. Lets be a state of � with � j= s ! :p, and let U be a hange set of s. Then� j= s ,! Wu2U e�(s; u).This theorem simpli�es proof of leads-to formulas in many ases. As anexample, Fig. 69.1 provides a proof of �65:1 j= B:u ,! F:u. This propertyalso follows from the proof graph1)B:u b(u),! 2)D:u(u),! 3)F:u. (4)Its nodes are justi�ed as follows:node 1: B:u prevents b(y) for y 6= x, and B:u! :ACE, by inv. A+jBj =1. Hene the proposition with (1) and Theorem 70.3.node 2: D:u prevents (y) for y 6= x, andD:u! :ACE, by inv. C+jDj =1. Hene the proposition with (1) and Theorem 70.3.

XIII. Formal Analysis of Case Studies
The ase studies of Part B, as introdued in Chaps. IV, V, and VI, are nowreonsidered and formally veri�ed.71 The Asynhronous Stak71.1 Properties of modulesThe entral state property of the asynhronous stak �22:6 states that eahmodule Mi is always quiet, or storing two values, or storing no value. In thestak's representation of Fig. 71.1, the equationA1 +B1 + C = (1) + � � �+ (n), (1)states this property. Brakets indiate that numbers 1; : : : ; n are to be onsid-ered as data values, and addition as multiset addition of singleton sets. Proofof (1) is easy: (1) is the equation of the plae invariant given in Fig. 71.2.71.2 Balaned statesA state of the asynhronous stak is balaned if eah module Ai is at its quietstate, storing exatly one value. In terms of Fig. 71.1, a state is balaned inase there exist values u1; : : : ; un withA:(1; u1); : : : ; (n; un). (2)A balaned state enables the ations b0(u1) and a0(v; u1), for all values v.b0(u1) pops u1 out of the stak, yielding the intermediate stateC:1 ^A:(2; u2); : : : ; (n; un). (3)This state is eventually followed by the balaned stateA:(1; u1); : : : ; (n� 1; un); (n;?), (4)as shown by the following proof graph:C:1 ^ A:(2; u2); : : : ; (n; un) b(1;u2),!C:2 ^ A:(1; u2); (3; u3); : : : ; (n; un) b(2;u3),!

242 XIII. Formal Analysis of Case Studies
a

a

a

b

b

b

0

0

n

n

(1,z,y) (n,y,x)
(i,y,x) (i+1,z,y)

(1,z)
(i+1,z) (i,x)

(n,x)

(1,z)
(i+1,z) (i,z)

(n,⊥)

1 i i+1 n

(1,⊥)
...(n,⊥)

q

q

B

from
predecessor

A

C

sort value
const ⊥ : value
const n : nat

var x, y, z : nat
var i : natFigure 71.1. Renamed asynhronous stak �22:6a0 a an b0 b bn iA �(1; z) (i; x) (n; x) �(1; z) (i; z) �(n;?) pr1(A)�(i+ 1; z) �(i+ 1; z)B (1; z; y) (i + 1; z; y) �(n; y; x) pr1(B)�(i; y; x)C 1 (i+ 1) �n C�(i)Figure 71.2. Matrix and plae invariant to �71:1

71 The Asynhronous Stak 243...C:i ^ A:(1; u2); : : : ; (i� 1; ui); (i+ 1; ui+1); : : : ; (n; un) b(i;ui+1),!...C:n ^ A:(1; u2); : : : ; (n� 1; un) bn,!A:(1; u2); : : : ; (n� 1; un); (n;?)The pattern of Set. 69.4 and the above equation (1) justify this proof graph.Likewise, an ation a0(v; u1) pushes v into the stak, yielding the intermediatestateB:(1; u1; v) ^ A:(2; u2); : : : ; (n; un). (5)This state is eventually followed by the balaned stateA:(1; v); (2; u1); : : : ; (n; un�1), (6)as shown by the following proof graph:B:(1; u1; v) ^ A:(2; u2); : : : ; (n; un)a(1;u1;v),!B:(2; u2; u1) ^ A:(1; v); (3; u3); : : : ; (n; un)a(2;u2;u1),!...B:(i; ui; ui�1) ^ A:(1; v); (2; u1); : : : ; (i� 1; ui�2);(i+ 1; ui+1); : : : ; (n; un)a(i;ui;ui�1),!...B:(n; un; un�1) ^A:(1; v); (2; u1); : : : ; (n� 1; un�2)a(n;un�1;un),!A:(1; v); (2; u1); : : : ; (n; un�1).The pattern of Set. 69.4 and the above plae invariant (1) justify this proofgraph.71.3 A ground formulaThe balaned states of �71:1 are haraterized by the formulapr1(A):1; : : : ; n. (7)Given a balaned state s with A:u1, the ations b0(u1) and all ations a0(v; u1)(for all values v) form a progress set of s. With the above proof graphsand Def. 70.1 it follows that (7) is a ground formula of �71:1. Hene, eahreahable state of the asynhronous stak is eventually followed by a balanedstate. Furthermore, with the proof graphs above, a push followed by a popreturns the original stak up to the stak's last element, whih will ontainthe unde�ned element, ?:A:(1; u1); : : : ; (n; un)a0(v;u1),!

244 XIII. Formal Analysis of Case Studies...A:(1; v); (2; u1); : : : ; (n; un�1) b0(v),!...A:(1; u1); : : : ; (n� 1; un�1); (n;?).72 Exlusive Writing and Conurrent ReadingTwo algorithms of Set. 24 are now proven orret. Three properties are to beshown for eah of them: exlusive writing, onurrent reading, and evolution.To improve the tehnial treatment, the two algorithms' plaes have beenrelabeled in Figs. 72.1 and 72.3, respetively.72.1 Proof of exlusive writing and onurrent reading of �24:2Exlusive writing of �24:2, as redrawn in Fig. 72.1, an easily be shown byhelp of the plae invarianteR(D) + F +K = R (1)with eR(x) := R for eah x 2 W . This invariant immediately impliesjDj � 1, i.e., no two writer proesses are writing oinidently. It further-more implies D = x ! K = 0, i.e., if one proess is writing, no proessis reading. Conurrent reading an easily be demonstrated by means of a
a

b

c

d

e

f

g

h

CB

DA

J

K

H

G

F

E

W R

R

qq

x

x

x

x

x

x

x x

yy

y

y

y

y

y

y

y
y

R

R

ϕ ϕ

ϕ

Figure 72.1. Renamed writers/readers �24:2pre�x w of an interleaved run of �72:1. The sequene of ations of w ise(r1); : : : ; e(rn); f(r1); : : : ; f(rn); g(r1); : : : ; g(rn) where R = fr1; : : : ; rng. wterminates in a state a with a j= K(R), i.e., all reader proesses are reading.

72 Exlusive Writing and Conurrent Reading 24572.2 Proof of evolution of writers for �24:2Evolution of writers of �24:2, as redrawn in Fig. 72.1, reads�72:1 j= B:x 7! D:x . (2)Its proof is essentially based on the property�72:1 j= C:x ,! D:x ^ E . (3)This property in turn holds due to the proof graph of Fig. 72.2. Its nodes are
1. C.x

2. C.x D=0

3. C.x D=0 J F

4. C.x D=0 J=0

5. C.x D=0 J=0 K=0

6. C.x J=0 F=R

7. C.x J=R F=R

8. D.x E

∧

∧ ∧ ⊆

∧ ∧

∧ ∧ ∧

∧ ∧

∧ ∧

∧

g(J)

c(x)?

c(x)

h(K)

d(D)

Figure 72.2. Proof graph for �72:1justi�ed as follows:1: pattern of Set. 69.1 and ontext C:x.2: inv eR(D) + F � J �H �G = 0.3: C:x ^ x 6= z ! :C:z with inv jCj + jEj = 1, hene C:x prevents C:zfor x 6= z, hene C:x ^ J:y ^ F:y ,! K:y _ (D:x ^ E) with pattern ofSet. 69.4(i) and ation g(y) or (x), hene C:x^J � F ,! J:0_(D:x^E) with pattern of Set. 69.4(iii), hene the proposition with ontextD = 0.4: K h(K),! K:0 by pattern of Set. 69.1, hene the proposition with ontextC:x ^ J = 0 ^D = 0.5: inv eR(D) + F +K = R.6: inv G +H + J +K = R and inv J + J = R, with J the omplementof J .7: C:x ^ x 6= z ! :C:z with inv jCj + jEj = 1, hene C:x prevents(z) for z 6= x. C:x ! :E by inv jCj + jEj = 1, hene C:x preventsf(y). J:R ! J:0 by inv J + J = R, hene J prevents g(y). Hene theproposition with pattern of Set. 69.4(ii).

246 XIII. Formal Analysis of Case StudiesFurthermore, proof of (2) requires�72:1 j= B:x 7! E. (4)This an be shown by the proof graph
1. B.x 2. C.z 3. EIts nodes are justi�ed as follows:1: inv jCj+ jEj = 1.2: property (3), with Lemma 67.3(v).Proof of (2) is now gained by the proof graph1:B:x 7! 2:C:x 7! 3:D:x.Its nodes are justi�ed as follows:1: by (4) and Theorem 66.3.2: by property (3), with Lemma 67.3(v).72.3 Proof of evolution of readers of �24:2Evolution of readers of �24:2 means�72:1 j= H:y 7! K:y. (5)Its proof is based on�72:1 j= H:y 7! E, (6)to be shown by analogy to (4). Furthermore, we require�72:1 j= J:y 7! F:y, (7)whih holds due to the proof graph1:J:y d(D),! 2:D = 0h(K),! 3:D = 0 ^K = 0! 4:F = R! 5:F:y.Its nodes an be justi�ed by analogy to the nodes of the proof graph of (3),left as an exerise to the reader.Proof of (5) now follows with the proof graph1:H:y 7! 2:J:y 7! 3:K:y.Its nodes are justi�ed as follows:1: Theorem 66.3, with (6).2: Theorem 66.3, with (7).

72 Exlusive Writing and Conurrent Reading 247
a

b

c

d

e

f

g

h

CB

DA

J

K

H

G

F

E

W R

R

qq

x

x

x

x

x

x

x x

yy

z

z

y

y

y

(y,z)

(y,z)
y

U

U

ϕ ϕ

Figure 72.3. Renamed writers/readers �24:372.4 Proof of exlusive writing and onurrent reading of �24:3By analogy to the ase of �24:2 exlusive writing of �24:3 as redrawn inFig. 72.3 an easily be shown by means of the plae invarianteU(D) + F + pr2(K) = U (8)with eU(x) := U for eah x 2 W . This invariant immediately implies jDj � 1,i.e., no two writer proesses are writing oinidently. Furthermore, D = x!K = 0, i.e., if one proess is writing, then no proess is reading. Conurrentreading is in fat possible for up to jU j reader proesses, in ase jU j � jRj.This an be demonstrated by means of a pre�x w of an interleaved run of�72:3. The sequene of ations of w ise(r1); : : : ; e(rn); f(r1); g(r1; u1); : : : ; f(rm); g(rm; um),where R = fr1; : : : ; rng and U = fu1; : : : ; umg. w terminates in a state awith a j= K(f(r1; u1); : : : ;(rm; um)g), i.e., m = jU j reader proesses reading.72.5 Proof of evolution of writing for �24:3Evolution of writers of �24:3 means�72:3 j= B:x 7! D:x. (9)Its proof is essentially based on�72:3 j= C:x ,! D:x ^ E. (10)This property holds due to the proof graph

248 XIII. Formal Analysis of Case Studies
1. C.x

2. C.x D=0

3. C.x D=0 K=0

4. C.x F=U

5. D.x E

∧

∧ ∧

∧

∧

h(K)

c(x)?

d(D)

c(x)Justi�ation of its nodes follows the proof graph of (3) and is left as anexerise to the reader.Proof of (9) furthermore requires�72:3 j= B:x 7! E. (11)This property follows from the proof graph
1. B.x 2. C.z 3. EIts nodes are justi�ed as follows:1: inv jCj+ jEj = 1.2: property (10).Now, (9) follows from the proof graph1:B:x 7! 2:C:x 7! 3:D:x.Its nodes are justi�ed as follows:1: by the fairness rule (Theorem 66.3) with (11).2: by property (10).72.6 Proof of evolution of readers of �24:3Evolution of readers of �24:3 means�72:3 j= H:y 7! K:(y; z). (12)Its proof is based on�72:3 j= H:y 7! E, (13)to be shown by analogy to (11). Furthermore, we require�72:1 j= J:y 7! K:(y; z),whih holds due to the proof graph1:J:y d(D),! 2:J:y ^D = 0h(K),! 3:J:y ^D = 0 ^K = 0! 4:J:y ^ U = F ,! 5:K:(y; z). (14)Its nodes are justi�ed as follows:

73 Distributed Rearrangement 2491: D d(D),! D:0 with pattern of Set. 69.1(iii) and ontext J:y.2: K h(K),! K:0 with pattern of Set. 69.1(iii) and ontext J:y ^D = 0.3: inv eU(D) + F + pr2(K) = U .4: J:y ^ y 6= z ! :J:z by inv jEj+ jJ j+ jCj = 1, hene J:y prevents g(z)for z 6= y. J:y ! :C:x by inv jEj + jJ j + jCj = 1, hene J:y prevents(x). Hene the proposition with pattern of Set. 69.4(iii).This ompletes the proof of properties of the writer/reader system of Set. 24.73 Distributed RearrangementFigure 73.1 rewrites �25:5, with renamed plaes. We �rst onstrut a groundformula, ground. This formula enables at least one transition, unless the twosets are rearranged. A desending funtion will show that ground will bereahable only �nitely often.

const l ,r : nat
const L,R : set of nat
var x,y,z : nat
fct min,max : nat × nat → nat
(L ∪ {l }) ∩ (R ∪ {r}) = ∅
∃ m ∈ L : max(l ,m) = m

L-l

R-r

y>x

x>y

rl

Lb d

D

C

H
e

g

J

Mf h

N a
c

P

E

KG

A
j k

B F
min(x,z)

max(z,y)
max(x,z)

min(x,z) max(x,z)min(y,z)

xx

x
xx

x

y

y

yy

y

y
y

y

y

y

z

zz

z

z

z z

z
z

z

z

z

Figure 73.1. Renamed distributed message passing rearrangement �25:5

250 XIII. Formal Analysis of Case Studies73.1 Some basisWe assume a �xed interpretation of the symbols in �25:5, withdom := L [R (1)the set of numbers involved, as initially given. The formulaground := (N + P +A+E = dom) ^ A:x ^ E:y ^ A < E (2)will turn out to be a ground formula: Both sites arry a test number on Aand E, respetively, with A < E. All other numbers are olleted at N andP , respetively. The degree of disorder at a ground state between the twosites is measured bydis := jf(u; v) 2 (N [A)� (P [E) j u > vgj, (3)hene the two sites are rearranged in a ground state if disorder has disap-peared:rearr := (dis = 0). (4)73.2 Two proof graphsThe forthoming arguments are essentially based on the following four plaeinvariants:inv 1: jEj+ jKj+ jF j = 1.inv 2: jDj+ jEj+ jH j+ jJ j+ jLj+ jM j = 1.inv 3: jAj+ jBj+ jGj = 1.inv 4: jAj+ jCj+ jDj+ jJ j+ jM j+ jRj = 1.
(5)
N.U
P.V
B.u
C.u
E.v

(6)
N.U
P.V
B.u
F.max(u,v)
D.min(u,v)

(9)
N.U
P.V--w+v
K.w
C.u
B.u
H.w
v > w

(7)
N.U
P.V
F.max(u,v)
A.min(u,v)
L

(10)
N.U
P.V--w+v
K.w
C.u
G.min(u,w)
L
v > w

(8)
N.U
P.V
A.min(u,v)
E.max(u,v)

(11)
N.U
P.V--w+v
G.min(u,w)
L
F.max(u,w)
M
v > w

(12)
N.U
P.V--w+v
L
F.max(u,w)
A.min(u,w)
v > w

(13)
N.U
P.V--w+v
A.min(u,w)
E.max(u,w)
v > w

ground
d(max(u,v))b(y,z)

d(max(u,w))f(min(u,w))k(u)j(u,w)

c(
v,

u)

g(v,w)

Figure 73.2. Proof graph for �73:1

73 Distributed Rearrangement 251Figure 73.2 shows a proof graph (its node numbering ontinues the abovenumbered lines), with nodes justi�ed as follows (we refrain from expliitlymentioning the respetive patterns of Set. 69):node 5: g(v; w) is atually a shema for all w 2 V with v > w. Further-more, ontextN:U^B:u;E:v exludes k(u;w) for eah w 2 dom,by inv 1.node 6: ontext N:U ^P:V ^F:max(u; v); D:min(u; v) exludes j(u;w)for eah w 2 dom, by inv 2.node 7: ontext N:U ^ P:V ^ A:min(u; v).node 8: propositional reasoning.node 9: ontext N:U ^ P:V � w + v ^K:w ^ C:u; H:w exludes b(u; z)by inv 2; B:u exludes e(u;w) for eah u 2 dom, by inv 3.node 10: ontext N:U ^ P:V � w + v ^ G:min(u;w) ^ L; K:w exludes(u;w) for eah w 2 dom by inv 1; C(u) exludes h(w; u) foreah u 2 dom, by inv 4.node 11: ontext N:U ^ P:V � w + v ^ L ^ F:max(u;w).node 12: ontext N:U ^ P:V � w + v ^ L ^ A:min(u;w).node 13: propositional reasoning.Figure 73.3 outlines a proof graph that, symmetrially to Fig. 73.2, swapsthe left and the right site of Fig. 73.2.
(14)

N.U

P.V

K.v

H.v

A.u

(15)

N.U

P.V

A.min(u,v)

E.max(u,v)

(16)

N.U--w+v

P.V

A.min(u,v)

E.max(u,v)

v > w

ground

Figure 73.3. Proof graph for �73:1First we proof that ground is in fat a ground formula:73.3 A ground formulaground is a ground formula of �73:1.Proof. i. s�73:3 ,! (5) aording to the spei�ation in Fig. 73.3. Further-more, (5) ,! ground by Fig. 73.2. Hene s�73:3 ,! ground .ii. ground prevents eah ation of e by inv 2 and eah ation of f by inv 4,hene a progress set of ground is given by all ations a(u;w) with A:uand N:w and w > u, together with all ations g(v; w) with E:v and P:w

252 XIII. Formal Analysis of Case Studiesand v > w. Ations a(u;w) and g(v; w) lead to states shaped as (5) and(14), respetively. The proposition then follows from the proof graphs inFigs. 73.2 and 73.3, and Theorem 70.2. ut73.4 Proof of rearrangementIn ase of ground states, disorder (.f. (3)) an be haraterized in terms ofthe derivation of the test elements in A and E from the minimum of N andthe maximum of P , respetively. To this end, letdevl := fw 2 N j u 2 A ^ w > ugdevr := fw 2 P j u 2 E ^ u < wg. (17)Then, at eah ground state holds obviouslydis = devl + devr. (18)In the proof graph of Fig. 73.2, the ation g(v; w) dereases devr; and noother ation would a�et devl or devr. Hene, eah node may be extendedby the requirement devl < n ^ devr � m, whih yields(5) ^ devl < n ^ devr � m ,! ground ^ devl < n ^ devr � m. (19)Likewise follows with the proof graph of Fig. 73.3:(14) ^ devl � n ^ devr < m ,! ground ^ devl � n ^ devr < m. (20)
(21)
ground
dis = k
> 0

(22)
ground
devl ≤ n
dev r≤ m
n+m = k

a(v,
u)

g(v,u)

(23)
(5) ∧
devl < n
dev r≤ m
n+m = k

(25)
(14) ∧
devl ≤ n
dev r< m
n+m = k

(24)
ground
devl < n
dev r≤ m
n+m = k

(26)
ground
devl ≤ n
dev r< m
n+m = k

(27)
ground
devl + devm< k

ground
dis < k

Figure 73.4. Proof graph for �73:1We are now prepared to justify the nodes of the proof graph in Fig. 73.3:(21) by (18)

74 Self-Stabilizing Mutual Exlusion 253(22) inv2 prevents e, and inv4 prevents , pik-up pattern of Set. 69.5(23) by (19)(24) by propositional reasoning(25) by (20)(26) by propositional reasoning(27) by (18)To eah ground -state there exists an index k with dis = k. Then �nitelymany instantiations of the proof graph of Fig. 73.1 yieldsground ,! ground ^ dis = 0. (28)With the proposition of Set. 73.3 and Theorem 70.2 followss�73:1 ,! ground . (29)Hene (28) and (29) together with (4) gives�73:1 ,! rearr, (30)whih desribes, as intended, that rearrangement will be reahed inevitably.74 Self-Stabilizing Mutual Exlusion74.1 Properties to be shownFigure 74.1 realls algorithm �26:2, renaming its plaes. Assuming a onrete
A

min

d

min

D

maxmax

C

max

max

e

Bx x

a

b

c

f

l (x)

l (x)

l (x)

l (x) x
x

x

x

sort proc

const min, max : proc

T, U, V, W : set of proc

fct r : proc \ {max} → proc

var x, y : proc

x ≠ y → r(x) ≠ r(y)

x ≠ r(y) ⇔ x = min

∃ n ∈ N : T∪ U ∪ V ∪ W

= {ri(min) | 0 ≤ i ≤ n }

T U

W V

Figure 74.1. Renamed self-stabilizing mutex �26:2interpretation of the involved onstant symbols, let R = fu1; : : : ; ung be theset of proesses (i.e., R = T [U [V [W , with u1 = min, un = max, andr(ui) = ui+1 (i = 1; : : : ; n)).A state is feasible if it ful�lls the equation

254 XIII. Formal Analysis of Case StudiesA+B + C +D = R. (1)Two properties of �74:1 are to be shown: Firstly, eah feasible state leadsto a state with all proesses at D:feasible 7! D:R, (2)and seondly, for eah state reahable from a D:R-state holds:jAj � 1. (3)74.2 Proof of (2)For eah non-D:R-state s, all i the smooth index of s if s j= :D:ui ands j= D:ui+1; : : : ; un. By de�nition let 0 be the smooth index of the stateD:R. The proof graph
¬D.un A.un B.un C.un D.un

a(un) e f (4)shows that eah feasible state with smooth index n leads to a state with asmaller smooth index.Indutively, we show that eah state with smooth index i leads to a statewith a smaller smooth index. To this end we introdue shorthands ij :=C:ui ^ : : : ^ C:uj and Æij := D:ui ^ : : : ^ D:uj . Figure 74.2 then shows therequired property. A D:R-state will be reahed after at most n iterations.
¬D.ui

δn
i+1

A.ui

δn
i+1

B.ui

δn
i+1

γi
i

A.ui+1

δn
i+2

…a(ui) b(ui) a(un-1) b(un-1)γi
n-2

B.un-1

δn
n

γi
n-1

A.un

γi
n-1

B.un

γi
n γi

n-1

δn
n

γi
n-2

δn
n-1

γi
i

δn
i+1

δn
ia(un) e f c(un-1) c(un-2) … c(un-1) c(un)Figure 74.2. Proof graph for �74:174.3 Proof of (3)Here we assume D:R as the initial state of �74:1. Then for eah u 2 R, u 6=min, the set fC:u;D:r(u)g is a trap. Hene for all u 6= min, C:u+D:r(u) � 1(by Theorem 61.2), hene

75 Master/Slave Agreement 255jCj+ jDj � n� 1. (5)Furthermore, (1) impliesjAj+ jBj+ jCj+ jDj = n. (6)Then the inequality (6)�(5)= jAj+ jBj � 1 immediately yields (3).75 Master/Slave Agreement75.1 The essential propertyFigure 75.1 realls the master/slave algorithm �30:1, renaming its plaes.The essential aspet of �30:1 is to guarantee that master pending is even-tually followed by master inative together with either all slaves busy or allslaves pending. In the redrawn version �75:1 of �30:1 this property is formallyrepresented by�75:1 j= B ,! A ^ (N:U _ P:U). (1)
q
a

B

E

L

F

G

b c

d e

H

J
k l

M

C

h j

g

A K
U

PN

D

f

m n

U-x

U
x x

x

x

x
x

x x

U

x

x
x x

xx

x x

x x

U

x
x

x

x

x

x x

xxU

x

x x

Figure 75.1. Renamed master/slave agreement �30:1

256 XIII. Formal Analysis of Case Studies75.2 State propertiesProof of (1) is based on the following plae invariants of �75:1:inv1: E + L+ F +G�D � U � jBj = 0inv2: F +G+H + J +N + P +K + L = Uinv3: U �A+ U �B + C +D = Uinv4: F +G+ J +H �M = 0inv5: H + J +N + P +K �E � U �A� C = 0inv6: L+M +N + P +K = Uinv4 and inv6 imply F +G+ J +H � U . (2)75.3 A proof graph for the essential propertyFigure 75.2 shows a proof graph for (1). As a shorthand it employs� = B ^ (E + L+ F +G � U). (3)
1) B

2) α ∧ H ≤ M l (H)

3) α ∧ H = 0

4) α ∧ H = 0 ∧ J ≤ M k(J)

5) α ∧ H = 0 ∧ J = 0 m(N)

6) α ∧ H = 0 ∧ J = 0 ∧ N = 0 n(P)

7) α ∧ H = 0 ∧ J = 0 ∧ N = 0 ∧ P = 0

8) α ∧ E ≤ K g(E)

9) α ∧ E = 0

10) α ∧ E = 0 ∧ L = 0

11) B ∧ F + G ≥ U

12) B ∧ F.U b(U)

14) A ∧ J.U

15) A ∧ J.U ∧ M.U k(U)

16) A ∧ N.U

13) B ∧ G.x ∧ F + G ≥ U

17) B ∧ G.x ∧ F = V ∧ G = x + W ∧ x + V + W = U c(x)

18) C.x ∧ H.x ∧ D.V + W ∧ F = V ∧ G = W ∧ x + V + W = U d(V)

19) C.x + V ∧ H.x + V ∧ D.W ∧ G = W ∧ x + V + W = U e(W)

20) C.x + V + W ∧ H.x + V + W ∧ x + V + W = U

21) C.U ∧ H.U f

22) A ∧ H.U

23) A ∧ H.U ∧ M.U l (U)

24) A ∧ P.U

25) A ∧ (N.U ∨ P.U)Figure 75.2. Proof graph for (1), with shorthand (3)Four setions an be distinguished in this proof graph: The steps from line2 to line 7 �nish the previous round. Line 7 to line 11 start the atual round,

75 Master/Slave Agreement 257proeeding until eah slave has made its hoie. The left branh desribes thease of all sites agreed, with ourrene of b(U) and k(U). The right branhdesribes the ase of at least one slave refusing, with ourrene of , d, e,and, most important, l(U).The nodes of this proof graph are justi�ed as follows, with rule numbersreferring to Set. 69:1. inv1, inv4.2. H:x! :J:x by (2), hene H:x prevents k(x), hene the proposition withpattern of Set. 69.4.3. inv4.4. J:x! :H:x by inv7, hene J:x prevents l(x), hene the proposition withpattern of Set. 69.4.5. pattern of Set. 69.1.6. pattern of Set. 69.1.7. inv5.8. pattern of Set. 69.3.9. pattern of Set. 69.2.10. de�nition of �.11. propositional logi, inv2.12. F:U ! G = 0 by (2), hene F:U prevents (x). Furthermore, B ! D =0 by inv3, hene B prevents d. Hene the proposition with pattern ofSet. 69.5.14. inv4.15. J:U ! H = 0 by (2), hene J:U prevents l(x). Furthermore, J � M ,with inv4. Hene the proposition with pattern of Set. 69.4.16. propositional logi.13. inv2.17. G:x ! :F:U by (2), hene G:x prevents b. Furthermore, B ! D = 0by inv3, hene B prevents e(x). Hene the proposition with pattern ofSet. 69.5.18. The ase of V +W = 0 diretly implies 21. Otherwise C < U by inv6,whih prevents f . Furthermore, C:x ! :B by inv3, hene C:x preventsb. Finally, F:V ! G \ V = ; by inv2, hene F:V prevents e(y) for eahy 2 V . Hene the proposition with pattern of Set. 69.4 and ontextH:x ^D:W ^G =W .19. The ase of W = 0 diretly implies 21. Otherwise C < U by inv6, whihprevents f . Furthermore, C:x! :B by inv3, hene C:x prevents (y) foreah y 2 W . Finally, G:W ! F \W = ; by inv2, hene G:W preventsd(y) for eah y 2 W . Hene the proposition with pattern of Set. 69.4and ontext C:V ^H:x + V .20. propositional impliation.21. pattern of Set. 69.1 with ontext H:U .22. inv4.

258 XIII. Formal Analysis of Case Studies23. H:U ! J = 0 by (2), hene H:U prevents k(x). Furthermore, H � Mwith inv4. Hene the proposition with pattern of Set. 69.4.24. propositional logi.76 Leader EletionFigure 76.1 realls�32:1 with renamed plaes. Withmax the maximal elementof U , the property to be shown iss�76:1 ,! B:U � fmaxg ^ A = ; ^ C = ;. (1)
(x,y)

(x,y)

(x,y)

(x,y)

(x,y)

(x,z)

(x,z)

(x,z)

M(x,y)

z ≤ y

z > y

V

a

b

c

A

C
B

sort site

sort state : site × site

const U : set of sites

const V,W : set of states

≤ : total order on U

fct M : state → set of states

var x, y, z : site

x,y ∈ U → x W* y

W1 ∪ W2 = U

V = {(u,u) | u ∈ U}

M(x,y) = W(x) × {y}Figure 76.1. Renamed leader eletion �32:176.1 Fundamental state propertiesAn obvious plae invariant implies that eah site is either pending or updating :A1 +B1 = U . (2)Furthermore, a site v, already knowing the leader, is related to its neigh-bors by a property derived from a trap. To this end, assume a state s andtwo neighboring sites u; v 2 U , and s j= B:(u;max). s has been reahedby ourrene of a(u;max). This ation also produed C:(v;max). With sonsidered as (a new) initial state, an initialized trap yields the inequalityA:(u;max) + C:(v;max) + A:(v;max) + B:(v;max) � 1. Together with (2)this yields the valid propositional formula

76 Leader Eletion 259B:(u;max) _ C:(v;max) _ A:(v;max) _ B:(v;max). (3)Intuitively formulated, eah neighbor of a site already updating with theleader is also aware of the leader, or a orresponding message is pending.76.2 A fundamental progress propertyA weight funtion f will be required, that assigns eah state (u; v) its \better"andidates. So, for all u; v 2 U letf(u; v) = f(u;w) j w > vg. (4)Obviously, f(u; v) = ; if v = max.We stik to states with all sites updating (B1:U) in the sequel. This in-ludes the terminal state with no pending messages (C = ;) and emptyweights f(u; v) for all sites u (f(B) = ;). The proof graph of Fig. 76.2 states
Let ϕ := B1.U ∧

B2.max b(u,v,w) 5) ϕ
C ⊂ N

f(B) = M

1) ϕ
C = N

f(B) = M ≠ ∅

c(u,v,w)2) ϕ
C = N ≠ ∅
f(B) = M

a(u,w)3)

B1.U\{u}

B2.max

A.(u,w)

w > v

4) ϕ
f(B) ⊂ M

6) ϕ
((C ⊂ N ∧ f(B) = M)

∨ f(B) ⊂ M)Figure 76.2. Proof graph for �76:1that one of the sites not yet knowing the leader (f(B) =M 6= ;) will eventu-ally hold a \better" andidate (f(B) � M), or will have skipped a pendingmessage (C � N). The proof graph's nodes are justi�ed as follows:node 1: B2:max, f(B) 6= ; and the graph's onnetedness implyneighboring sites u and w, B:(u;max), and B:(v; i) withi < max. Then C:(u;max) by (3) and (2).node 2: C 6= ; implies some C:(u;w), and ' implies some B:(u; v).This enables b(u; v; w) or (u; v; w). Hene, C 6= ; ^ ' isprogress prone. Then apply the pattern of Set. 69.5.node 3: pattern of Set. 69.2.nodes 4 and 5: propositional logi.

260 XIII. Formal Analysis of Case Studies76.3 Proof of (1)The proof graph in Fig. 76.2 shows' ,! 'C = N ((C � N ^ f(B) =M)f(B) =M 6= ; _f(B) �M) . (5)C may shrink �nitely often only, hene �nitely many iterations of (5) yield' ,! 'C = N f(B) �Mf(B) =M 6= ; . (6)A remaining message is leared by' ,! 'C = N C � Nf(B) = ; f(B) = ; , (7)as C:(u; v)^f(B) = ; implies C:(u; v)^B:(u;max), hene enables b(u; v;max).The following proof graph now proves (1):
1) s∑

a(V) 2) B.V 3) ϕ
C = N

f(B) = M ≠ ∅

4) ϕ
f(B) = ∅

5) ϕ

f(B) = ∅
C = ∅

6) C = ∅
B.U × {max}

A = ∅Its nodes are justi�ed as follows:node 1: pattern of Set. 69.1.node 2: propositional reasoning, with C = ; ^ f(B) = ; i� jU j = 1.node 3: �nitely many iterations of (6).node 4: �nitely many iterations of (7).node 5: by onstrution of '.77 The Eho Algorithm77.1 Properties to be provenFigure 77.1 provides a redrawn version of the Eho Algorithm of Fig. 33.2. Ithas two deisive properties: Firstly, the initiator terminates only if all othersites have been informed before. In Fig. 77.1, this readsC:i! G:U (1)and is a typial state property. Seondly, the initiator will eventually termi-nate, i.e.,

77 The Eho Algorithm 261
A

E

C

GF

D

B

(y,x)

x
c

d

a b

(x,y) (x,y)

i i i i

(x,y)

i

U

sort site

sort message = site × site

const i : site

const U : set of sites

const W : set of (sites × sites)

fct M, M : site → set of messages

var x,y : site

W = W--1

x,y ∈ U ∪ {i} → x W*y

W1 = U ∪ {i}

i ∉ U

M(x) = W(x) × {x}

M(x) = M(x)--1

M(i) M(i)

M(x)--(x,y)M(x)
--(y

,x)

Figure 77.1. Redrawn eho algorithm �33:2s�77:1 7! C:i, (2)whih is a typial liveness property. Both (1) and (2) will be veri�ed in thesequel.There is no straightforward plae invariant or trap that would prove (1).Nor is there a proof graph for (2), with steps piked up aording to thepatterns of Set. 69. Rather, one has to argue indutively along a spanningtree that yields at plae F .77.2 Three plae invariantsFigure 77.1 has three important plae invariants, as given in Fig. 77.2. Twoof them are indutively quite obvious, representing the \life lines" of theinitiator i and of all other sites, respetively.The equation of I1 is A+B + C = i. This impliesA:i+B:i+ C:i = 1, (3)hene the initiator is always either at its start or is waiting, or is terminated.The equation furthermore implies8x 2 U : A:x+B:x+ C:x = 0, (4)hene no non-initiator site ever �nds at A, B, or C.Correspondingly, the equation of I2 is E + F1 +G = U . This implies

262 XIII. Formal Analysis of Case Studiesa b d s� I1 I2 I3A �i i A M(A)B i �i BC i C M(C)D M(i) �M(i) M(x) �M(x) D�(x; y) +(x; y)�(y; x) +(y; x)E �x U E M(E)F (x; y) �(x; y) F1 F+ FG x G M(G)I � s� i U M(U 0)Let F = F�1 and U 0 = U [fIgFigure 77.2. Matrix, initial state, and three plae invariants of �77:18x 2 U : E:x+ F1:x+G:x = 1, (5)hene eah non-initiator is always either uninformed or pending or informed.The equation furthermore implies8x 62 U : E:x+ F1:x+G:x = 0, (6)hene the initiator never �nds on E, F , or G.I3, �nally, represents the potential messages of the system. Its equationis M(A) +M(C) +D+M(E) +F +F +M(G) =M(U 0), implying for eahmessage (y; x) 2M(U 0) the propertyM(A):(y; x)+M (C):(y; x)+D:(y; x)+M(E):(y; x) + F:(y; x) + F :(y; x) +M(G):(y; x) = M:(y; x), whih in turnredues to8x 2 U 0 8y 2W (x) :A:x+ C:y +D:(y; x) +E:x+ F:(y; x) + F:(x; y) +G:y = 1. (7)Hene for eah message (y; x) holds: Its sender x is still starting or unin-formed, or the message has already been sent but not reeived yet, or one ofy and x has reeived the message from x to y, respetively, or the message'sreeiver y is terminated or informed.77.3 The pending site's rooted treeA further state property will be required, stating that the tokens on F alwaysform a tree with root i. This will be formulated with the help of the followingnotation:A sequene u0 : : : un of sites ui 2 U 0 is a sequene of F at a states i� s j= F:(ui�1; ui) for i = 1; : : : ; n. (8)For eah reahable state s we will now prove the following two properties:For eah F1:u there is a unique sequene u0 : : : un of F with u0 = uand un = i, (9)

77 The Eho Algorithm 263andthe elements of eah sequene of F are pairwise di�erent. (10)Both properties now are together shown by indution on the reahability ofstates:Both (9) and (10) hold initially, as s�77:1 j= F = ;. Now, let r be a reahablestate, let r m�! s be a step of some transition t, and indutively assume (9)and (10) for r.The ase of t = a or t = b implies r(F) = s(F), hene the step r m�! sretains both (9) and (10) for s. For t = or t = d let m(x) = u and m(y) = v.The ase of t = goes as follows: Enabledness of (m) at r now for rimplies D:(u; v) and E:u. Then r j= F1:v, aording to the following sequeneof impliations:1. 2. 3. 4. 5.D:(u; v) D:(u; v) :E:v :E:v F1:v .E:u E:u E:u :G:vv 2 W (u) v 2 W (u)Its nodes are justi�ed as follows:node 1: (6);node 2: (7) with x = v, y = u;node 3: (7) with x = u, y = v;node 4: (5).Now, r j= F1:v and the indutive assumption of (9) imply a unique se-quene v : : : i of F at state r. Then uv : : : i is a sequene of F at state s,beause s(F) = r(F) + (u; v). Together with (5), this implies (9) for s. Fur-thermore, r j= u 62 F1 (by (5)) and u 6= i by (4), hene (10) for s.Correspondingly, enabledness of d(m) at r now for r implies D:M(u) �(u; v) and F:(u; v). Then r j= F2:u aording to the following sequene ofimpliations:1. 2. 3. 4. 5. 6.D:M(u) D:M(u) F \ (M(u) F \ (M(u) F \M(u) = ; :F2:u�(u; v) �(u; v) �(u; v)) = ; �(v; u)) = ;F:(u; v) :F:(v; u) :F:(v; u) :F:(v; u)Its nodes 1 and 2 are justi�ed by (7), nodes 3, 4, and 5 by properties of M .With r j= :F2:u, for eah sequene u0 : : : un of F , u1; : : : ; un 6= u. Thisimplies (9) for the state s, beause s(F) = r(F)� (u; v). (10) is then trivial,beause s(F) � r(F).

264 XIII. Formal Analysis of Case Studies77.4 Proof of the state property (1)(1) is indiretly proven in three steps:i. Assume F 6= ;. Then there exists some w 2 U 0 with F:(w; i), by (9).Then :C:i by (7).ii. For all u 2 U 0 we show E:u! :C:i (*)by indution on the distane of u to i: For u = i, (*) holds trivially,as :E:i by (6). Indutively assume (*), let v 2 W (u), and assume E:v.Then u 2 W (v), hene :G:u, by (7). Then F1:u or E:u, by (5). The aseof F1:u implies F 6= ;, hene :C:i by (i). The ase of E:u implies :C:iby indutive assumption.iii. C:i! E = F = ;, by (i) and (ii). Then (1) follows from (5).77.5 Progress from uninformed to pendingHere we show that eah uninformed site u 2 U will eventually go pending. Interms of �77:1 this reads:Let U = V [W , V 6= ;, W 6= ;. ThenE:V ^ F1:W ,! Wv2V (E:V � v ^ F1:W + v). (11)This property holds due to the following proof graph:1) E:V ^ F1:W ^ V 6= ; ^W 6= ; !2) E:V ^ F1:W ^ ex. v 2 V ^ ex. w 2W [fig with D:(v; w) ,!3) E:V � v ^ F1:W + vIts nodes are justi�ed as follows:node 1: Connetedness of U 0 implies some neighbors v; w suh that E:v,and F1:w or w = i. Furthermore,i. F1:w implies w 2 U by (6), hene :A:w by (4). w = i andW 6= ; imply some F:(u; i) by (9), hene :A:i by (7).ii. E:v implies v 2 U by (6), then :C:v by (4).iii. F1:w implies :E:w by (5) and w = i implies :E:w by (6).iv. E:v implies :F1:v by (9), hene :F:(v; w).v. Let u0 : : : un be a sequene of F with u0 = w and un = i,aording to (9). The ase of n = 1 implies u1 = i 6= v, hene:F:(w; v). Otherwise, F1:u1. Then E:v implies u1 6= v by (5).Hene :F:(w; v).vi. E:v implies :G:v by (5).Now (i),: : : ,(vi), and (7) imply D:(v; w).node 2: pattern of Set. 69.5.

77 The Eho Algorithm 26577.6 Progress from pending to informedHere we show that eah pending site will eventually be informed. In terms of�77:1 this reads:Let U = V [W with V 6= ;. ThenF1:V ^G:W ,! Wv2V (F1:V � v ^G:W + v). (12)This property holds due to the following proof graph:1) F1:V ^G:W ^ V [W = U ^ V 6= ; !2) ex. v 2 V ex. w 2 U :F1:V ^G:W ^ V [W = U ^D:(M(v) � (v; w)) ,!3) ex. v 2 V ex. w 2 U with F1:V � w ^G:W + v.Its nodes are justi�ed as follows:node 1: Let u0 : : : un be a maximal sequene of F . This exists due to(9) and (10). In ase u1 is the only neighbor of u0, D:(M(u0) �(u0; u1)) = D:((u0; u1) � (u0; u1)) = D:; whih holds trivially.Otherwise, let (u0; v) 2M(u0)� (u0; u1). Then the following sixproperties hold:i. (9) implies some F:(w; i), hene :A:i by (7), hene :A:v inase i = v. Otherwise, v 2 U , hene :A:v by (4).ii. u0 2 U by onstrution, hene :C:u0 by (4).iii. E = ; by (5) and V [W = U , hene :E:v.iv. Maximality of u0 : : : un implies :F:(v; u0).v. F:(u0; u1) implies :F:(u0; v) as the path from u0 to i is uniqueby (9).vi. F1:u0 implies :G:u0.Now (i),: : : ,(vi), and (7) imply D:(u0; v). This argument appliesto all (u0; v) 2M(u0)� (u0; u1), hene D:M(u0)� (u0; u1).node 2: pattern of Set. 69.4.77.7 Proof of the liveness property (2)(2) is now proven with the help of the proof graph of Fig. 77.3. Its nodes arejusti�ed as follows:node 1: de�nition of a�node 2: pattern of Set. 69.1, ontext Enode 3: :(u; i) is enabled for eah u 2M(i); pattern of Set. 69.4node 4: jV j-fold appliation of (11)node 5: jU j-fold appliation of (12)node 6: we distinguish three ases:i. u 2M(i) implies u 6= i, hene :A:u by (4)ii. G:U implies E = F = ; by (5) and (6). Hene :E:u,:F:(i; u), and :F:(u; i).

266 XIII. Formal Analysis of Case Studies
iii.

1) s∑77.1
2) E = U ∧ A.i a(i)

3) E = U ∧ D.M(i) c(u,i)

4) E.V ∧ F1.W ∧ W ≠ ∅∧ V ∪ W = U

5) F1.U

6) G.U

7) D.M(i)

8) D.M(i) ∧ B.i b(i)

9) C.iFigure 77.3. A proof graph for s�77:1 ,! C:ii 62 U implies :G:i by (6).Now, (i), (ii), and (iii) with (7) implyD:(i; u)_C:i. This argumentapplies to all (i; u) 2M(i), hene D:M(i) _ C:i.node 7: :C:i by (7); :A:i beause s�77:1 ! :D:M(i), the only initialstep is s�77:1 a�!B:i, and fB:i; C:ig is a trap, initialized after thisstep. Hene the proposition by (3).node 8: pattern of Set. 69.178 Global Mutual Exlusion on Undireted Trees78.1 The property to be provenHere we onsider the version of Fig. 34.2. There is one progress propertyto be shown for this algorithm: eah request of a site u for going ritial(i.e., job:(u; u)) is eventually served (i.e., ritial :u). In terms of the redrawnversion as in Fig. 78.1, this readsB:(x; x) 7! D:x. (1)Proof of (1) is based on state properties, to be onsidered �rst.78.2 State propertiesThe forthoming two state properties exploit the yle free struture of theunderlying network. A basi state property of �78:1 is a tree on E [B [Cwith its root in G (where E stands for E�1). More preisely,With G:u, the tokens on E [B [C onsist of paths from u toall sites v. Those paths form a tree. Tokens formed (u; u) mayadditionally our at B or C. (2)This property an easily be proven by indution on the reahability of states:(2) obviously holds initially, due to the assumption given in Fig. 78.1. Our-renes of d, f , or e in any mode apparently preserve the tree on E [B [C.

78 Global Mutual Exlusion on Undireted Trees 267
a

q

b

c

d

e

f

U

U

u

Nϕ

ϕ

x y≠

A

D

B

F
C

E

(x,z)

(x,y)

(x,y)
(x,y)

(x,x)

(x,y)

(x,y)

(z,x)
(x,x)

(x,y)

x

x

x
x

x

x

x

x

x x
y

G

sort site
const u : site
const U : set of sites
const N : set of (sites × sites)
var x,y,z : site
N1∪ N2 = U
u ∈ U
∀ x ∈ U : u N*x
x N+y → x ≠ y
y N x ∧ z N x → y = z

Figure 78.1. Renamed global mutex on trees, �34:2Ourrenes of a and b add and remove pairs formed (u; u) to and from C,respetively. Ation , �nally, does not touh E, B, or C.A further state property is based on the left tree, de�ned for eah pair(u; v) of neighboring sites u and v: Any site w belongs to the left tree of(u; v) if in the underlying network, the undireted path onneting w and udoes not inlude v. The following property of left trees will be exploited inindutive proofs:If w and v are neighbors of u, then the left tree of (w; u) is smallerthan the left tree of (u; v). (3)Apparently, we have for G:r and eah site u:If r 6= u, there is a unique neighbor site w of u, with r in the lefttree of (w; u). (4)Then with (2),if E:(v; u) or B:(u; v) or C:(u; v), and if G:w, then w is in the lefttree of (u; v). (5)78.3 Progress propertiesTwo properties of pairs (u; v) of neighboring sites u and v are onsideredhere:C:(x; y) 7! C:(x; y) ^G:x (6)B:(x; y) 7! C:(x; y) (7)

268 XIII. Formal Analysis of Case StudiesThey are proven by indution on the size of the left tree of (x; y).As indution basis, let (u; v) be a pair of neighboring sites and assumeits left tree has one element only. This, of ourse, is u. Then with (2), G:u,whih implies (6). Proof of (7) requiresB:(u; v)! B:(u; v) ^ F:u. (8)This holds as the indution basis implies that v is the only neighbor of u;hene :C:(u;w) for all sites w (with (2)), hene F:u by the plae invariantF:u+ pr1(C):u = 1.Now, B:(u; v) 7! C:(u; v) follows from property (8) and the fairness ruleTheorem 66.3.Indutively assume (6) and (7) for all neighboring pairs of sites with lefttrees of size smaller than n. Let (u; v) be a pair with left tree of size n, letG:r, and let w be the neighbor of u, onstruted aording to (4).Then the following proof graph proves (6) for (x; y) = (u; v):
1

C.(u,v)

d(u,v,w)2
C.(u,v)
E.(u,w)

3
C.(u,v)
B.(w,u)

4
C.(u,v)
C.(w,u)

5
C.(u,v)
C.(w,u)
G.w

6
C(u,v)
G.u

e(w,u) (9)Its nodes are justi�ed as follows:node 1: by (4) and (2).node 2: fairness rule Theorem 66.3.node 3: indutive assumption of (7) for (x; y) = (w; u), and (3).node 4: indutive assumption of (6) for (x; y) = (w; u), and (3).node 5: pik-up rule of Set. 69.3.Proof of (7) requires the proof graph
1) B.(u,v) 2) C.(u,v’) 3) C.(u,v’)

G.u
4) F.ue(u,v’) (10)Its nodes are justi�ed as follows:node 1: plae invariant C2:u+ F:u = 1.node 2: v0 6= w by (2); then w onstruted aording to (4) for v and forv0 oinide; then (9) with v replaed by v0.node 3: pik-up rule of Set. 69.3.Now, B:(u; v) 7! C:(u; v) follows with property (10) and the fairness ruleTheorem 66.3.

79 Loal Mutual Exlusion 26978.4 Proof of (1)Two properties are required, provided by the following two proof graphs:
1) B.(u,u) 2) C.(u,v) 3) C.(u,v) ∧ G.u 4) F.ue(u,v) (11)node 1: plae invariant C2:u+ F:u = 1.node 2: property (6).node 3: pik-up rule of Set. 69.2.The seond proof graph is

1)
C.(u,u)
¬G.u

d(u,u,w)2)
C.(u,u)
E.(u,w)

3)
C.(u,u)
B.(w,u)

4)
C.(u,u)
C.(w,u)

5)
C.(u,u)
C.(w,u)
G.w

6)
C(u,u)
G.u

e(w,u) (12)node 1: Let w be the neighbor of u, onstruted aording to (4). Thenapply (2).node 2: fairness rule Theorem 66.3.node 3: property (7).node 4: property (6).node 5: pik-up rule of Set. 69.3.Now, (1) is proven by the following proof graph for x = u:
1)

B.(u,u)

2)

C.(u,u)

3)

C.(u,u)

¬G.u

4)

C.(u,u)

G.u

5)

D.u
(13)withnode 1: property (11), fairness rule Theorem 66.3.node 2: propositional argument.node 3: property (12).node 4: pik-up rule of Set. 69.3.79 Loal Mutual Exlusion79.1 Properties to be provenAs in most ases, safety and liveness properties are to be proven. A safetyproperty guarantees that neighboring sites are never both ritial at the sametime. In terms of the redrawn representation of Fig. 79.1 this readsD:x ^ y 2 r(x) ! :D:y. (1)

270 XIII. Formal Analysis of Case Studies
q ϕ

G

C

DA

B
H

L

K M

F

E

J

hf

e

a c

b

d

P

P

N-P
x

x x

x

xx

xx

U

(x,y)

(x,y)

(y,x)

(x,y)

(x,y) (x,y)

r(x)

r(x)

r(x)

r(x)

N

g

(x,y)(x,y)

(x,y)(x,y)
(x,y)
(x,y)

(x,y)

(y,x)

(x,y)

(x,y)

(x,y)

(x,y)

sort site
sort neighbors = site × site
const U : set of sites
const N, P : set of neighbors
fct r : site → set of neighbors
var x, y : site

N = N-1

N1 = U
x P+ y → x ≠ y
P ∪ P-1 = N
P ∩ P-1 = ∅
r(x) = {x} × N(x)Figure 79.1. Renamed mutex on networks �34:3A liveness property guarantees evolution: Eah pending site is eventuallyritial :B:x 7! D:x. (2)Proof of (1) and (2) starts with some state properties of �79:1, derivedfrom plae invariants or from indutive arguments. There is always a dis-tinguished partial order on the sites, desribing priority of aess to sharedresoures. Upon going ritial, a site may have priority for some, but notneessarily all resoures.79.2 State propertiesWe start with eleven state properties from plae invariants of �79:1:A+B + C +D = U , hene for eah u 2 UA:u+B:u+ C:u+D:u = 1. (3)r(C) + r(D) + F +M = N , hene for eah (u; v) 2 NC:u+D:u+ F:(u; v) +M:(u; v) = 1. (4)r(C) + r(D) + F � J �E = 0, hene for eah (u; v) 2 NC:u+D:u+ F:(u; v)� J:(u; v)�E:(u; v) = 0. (5)r(C) + r(D) + F +K +H �E = N , hene for eah (u; v) 2 N

79 Loal Mutual Exlusion 271C:u+D:u+ F:(u; v) +K:(u; v) +H:(u; v)�E:(u; v) = 1. (6)E + J +M = N , hene for eah (u; v) 2 NE:(u; v) + J:(u; v) +M:(u; v) = 1. (7)H + J +K = N , hene for eah (u; v) 2 NH:(u; v) + J:(u; v) +K:(u; v) = 1. (8)G+G+ r(D) + r(D) + F + F = P + P = N , hene for eah (u; v) 2 NG:(u; v) +G:(v; u) +D:u+D:v + F:(u; v) + F:(v; u) = 1. (9)G+ r(D) + F +H + L = N , hene for eah (u; v) 2 NG:(u; v) +D:u+ F:(u; v) +H:(u; v) + L:(v; u) = 1. (10)L+ L+H � J �K = 0, hene for eah (v; u) 2 NL:(v; u) + L:(u; v) +H:(u; v)� J:(v; u)�K:(v; u) = 0. (11)r(C) � J �E �G�H � L = N , hene for eah (v; u) 2 NC:v � J:(v; u)�E:(v; u)�G:(v; u)�H:(v; u)� L:(u; v) = 1. (12)r(C) +K �E �G� L = 0, hene for eah (u; v) 2 NC:u+K:(u; v)�E:(u; v)�G:(u; v)� L:(v; u) = 0. (13)In addition, the following two properties will be required:K:(u; v)! G:(u; v) _D:u _ F:(u; v). (14)This property holds initially and is apparently preserved by ourrenes of(u) and d(u). Ourrene of f(u; v) or h(u; v) lead to both K:(u; v) andG:(u; v). Ourrene of g(u; v) leads to both :G:(u; v) and :K:(u; v). Noother ourrenes of ations touh (14).L:(v; u)! J:(u; v). (15)This property holds initially and is apparently preserved by ourrene ofe(u; v). L:(v; u) prevents f(u; v) by (10). No other ourrenes of ationstouh (15).79.3 Priority among neighborsIn eah reahable state, neighboring sites are related by priority : A site uhas priority over its neighbor v i� v has been ritial more reently. Hene,u gains priority over v upon ourrene of (v), and looses priority uponourrene of (u). No other ation a�ets priority among neighbors u andv. Consequently, the e�et of (v), whih is D:v, immediately shows priorityof u over v. Ourrene of d(v) does not e�et priority, hene F:(v; u) alsoshows priority of u over v. Likewise, ourrenes of f(v; u) and g(v; u) retain

272 XIII. Formal Analysis of Case Studiesu's priority over v. Their e�et is G:(v; u) ^K:(v; u) and G:(v; u) ^M:(v; u).Both formulas imply G:(v; u)^:J:(v; u) (by (8) and (7), respetively), whihwill turn out suÆient to haraterize priority. Finally, g(v; u) retains u'spriority over v, yielding G:(u; v). This ation an our only in the ontextof J:(u; v). Altogether, priority of some site u over one of its neighbors v isde�ned bynprior(u; v) i�D:v _ F:(v; u) _ (G:(v; u) ^ :J:(v; u)) _ (G:(u; v) ^ J:(u; v)). (16)In the rest of this setion we will prove that nprior in fat is well de�ned,i.e., exatly one of two neighbors u and v has priority at eah reahable state;formallynprior(u; v) i� :nprior(v; u). (17)This is equivalent to the two propositionsnprior(u; v)! :nprior(v; u). (18)and:nprior(v; u)! nprior(u; v). (19)The following shorthands will simplify proof of (18) and (19): Let� := D:v _ F:(v; u) _ (G:(v; u) ^ :J:(v; u));� := G:(u; v) ^ J:(u; v); := D:u _ F:(u; v) _ (G:(u; v) ^ :J:(u; v));Æ := G:(v; u) ^ J:(v; u).Then, (18) is equivalent to :(�^)^:(�^Æ)^:(�^)^:(�^Æ). The �rst andthird sub-formula, :(�^) and :(� ^), follow from the invariant property(9). The seond and third sub-formulas are propositional tautologies.Correspondingly, (19) is equivalent to �_ � _ _ Æ, whih in turn followsfrom (9).Priority hanges only upon ourrene of transition : Let r t�!s be a step.Thenr j= nprior(u; v) implies s j= nprior(u; v) or t = (u). (20)Upon proving (20), assume r j= nprior(u; v). Then (16) implies four ases:i. r j= D:v. Then t = d(v) yields s j= F:(v; u); hene (20).ii. r j= F:(v; u). Then t = f(v; u) yields s j= G:(v; u) ^ K:(v; u); henes j= G:(v; u)^:J:(v; u) with (8), swapping u and v; hene (20). t = h(v; u)yields s j= G:(v; u) ^M:(v; u); hene s j= G:(v; u) ^ :J:(v; u) with (7),swapping u and v; hene (20).iii. r j= G:(v; u)^:J:(v; u). Then t = g(v; u) yields s j= G:(u; v); furthermore,enabling of g(v; u) requires r j= L:(v; u), hene r j= J:(u; v) by (15), henes j= G:(u; v) ^ J:(u; v), hene (20). t = (v) yields s j= D:v, hene (20).t = e(v; u) is prevented by G:(v; u) and (10), swapping u and v.

79 Loal Mutual Exlusion 273iv. r j= G:(u; v) ^ J:(u; v). Then t = g(u; v) is prevented by J:(u; v) and (8).t = f(u; v) is prevented by G:(u; v) and (9).No other ourrenes of ations t 6= (u) a�et r j= nprior(u; v). This om-pletes proof of (20).For a step r t�!s likewise holdss j= nprior(u; v) implies r j= nprior(u; v) or t = (v), (21)whih an be proven in analogy to (20).Finally, for a step r t�!s with r 6j= nprior(u; v) and s j= nprior(u; v) holdsfor all w 2 r(v), s 6j= nprior(v; w). (22)The assumption of (22) with (21) imply t = (v); then (22) follows with (16).As a tehniality, it will turn out onvenient to assign eah site u the set�(u) of all pairs (u; v), where u has priority over a neighbor, v:�(u) := fug � nprior(u). (23)79.4 Priority in the networkPriority among any two sites u; v 2 U is the transitive losure of priorityamong neighbors:prior := nprior+. (24)As in ase of nprior we have to show that prior is well de�ned, i.e., isasymmetrial:prior(u; v)! :prior(v; u). (25)Proof of (25) starts with the initial state s�79:1 . For this state, (16) andFig. 79.1 imply nprior(u; v) i� P:(u; v), hene prior(u; v) i� P+:(u; v). ThenP+:(u; v) ! :P+:(v; u) by the assumption of xP+y ! x 6= y, as stated inFig. 79.1.Indutively, let r t�!s be a step and assume r j= (25). If s 6j= prior(u; v), theproposition s j= (25) is trivial. Otherwise, there exist sites u0; : : : ; un, n � 1with u0 = u, un = v, suh that with � := u0 nprioru1 : : : un�1 npriorunholds: s j= �. If r j= �, then u0 6= un follows from the indutive assumption.Otherwise, there exists an index, i, with r 6j= ui�1 npriorui. Then for allw 2 r(ui), s 6j= nprior(ui; w), by (22). Then i = n, by onstrution of �.Then there is no w 2 r(v) with s j= v npriorw (beause un = v). Thens j= :prior(v; u), by (24).The reverse of (25) is not neessarily valid, i.e., detahed sites may beunrelated by priority.Both above properties implynprior(v; u)! prior(v) � prior(u), (26)

274 XIII. Formal Analysis of Case Studies
1.

C.u ∧
E.u

2.

C.u ∧
E.u ∧

¬D.u ∧
¬F.(u,v)

3.

C.u ∧
E.(u,v) ∧

¬D.u ∧
¬F.(u,v) ∧

K.(u,v)

5.

C.u ∧
E.(u,v) ∧

¬D.u ∧
¬F.(u,v) ∧

H.(u,v)

4.

C.u ∧
G.(u,v)

6.

C.u ∧
L(v,u))

e(u,v)

Figure 79.2. Proof graph for (27)as follows: prior = nprior+ by (24). Then prior(u) = Sv2nprior(u)fvg [nprior(v). Furthermore, prior(u; v)! :prior(v; u), by (25), and v 2 nprior(u)i� nprior(v; u). This implies (26).79.5 Demanded resouresIssuing a demand for its resoures is the �rst step of a site on its way toritial. A demanded resoure (u; v) of a pending site u will eventually beavailable to u, or u will send a message (v; u) to v:C:u ^E:(u; v) 7! C:u ^ (L:(v; u) _G:(u; v)). (27)The proof graph of Fig. 79.2 proves (27). Its nodes are justi�ed as follows:node 1: by (4),node 2: by (6),node 3: by (14),node 5: H:(u; v) exludes (u) by (10), :D:u exludes d(u), :F:(u; v) ex-ludes h(u; v).The formula (27) is now embedded into a ontext, �. The formula �addresses the set �(u) of resoures of u for whih u has priority. Some of themare available to u for its �rst time after being used by v. They onstitute adistinguished set, Q. Furthermore, a priorized resoure (u; v) is assumed. So,let � := �(u) = R ^Q [f(u; v)g � �(u) ^G:Q ^ J:Q. (28)Priority for u may inrease whenever one of its neighbors goes ritial:

79 Loal Mutual Exlusion 275� (w)���!�(u) = R [f(u;w)g for all w 2 r(u), (29)whih follows diretly from (16) and the struture of �79:1.A step r t�!s a�ets � only if u or one of its neighbors goes ritial:� t�!� for all t 6= (w), with w 2 r(u) [fug. (30)(20) and (21) imply that �(u) is not touhed by ourrene of t. Further-more, G:Q prevents f(u; v) by (9), and J:Q prevents g(u; v) by (8) for allv 2 r(u); hene (30).Context � yields a further alternative result for (27), with u gaining pri-ority over more neighbors:C:u ^ � ^E:(u; v) 7! (C:u ^ � ^ (L:(v; u) _G:(u; v))) _ �(u) � R. (31)The proof graph of Fig. 79.2 an systematially be turned into a proofgraph for (31): Replae eah node, n, by n ^ � and augment the followingadditional outgoing ars:n(w)7! 9:D:w ! 10:�(u) = R [f(u;w)g (32)with w 2 prior(u).Additionally, extend justi�ation of eah node, n, as follows: J:(u; v) pre-vents g(u;w) by (8) (replaing v by w), and G:(u; v) prevents f(u;w) by (10)(replaing v by w). The proposition then follows with (30). Node 9 is justi�edby (29).79.6 Messages are eventually onsideredA site v holding a resoure (u; v) without priority for the resoure, wil even-tually hand it over to u upon request of u, i.e., upon a message (v; u). Con-sideration of the message is a matter of fairness of v.We start with a tehniality, ruial for the forthoming fairness argument:A repeatedly used resoure is eventually available:K:(u; v) 7! G:(u; v), (33)whih holds due to the proof graph
1) K.(u,v) 2) D.u 3) F.(u,v) 4) F.(u,v) ∧ E.(u,v)

5) F.(u,v) ∧ J.(u,v)

6) G.(u,v)h(u,v)

f(u,v)with the following justi�ation of nodes:node 1: by (14);node 2: by pik-up rule of Set. 64.1;node 3: by (5);node 4: by pik-up rule of Set. 64.2; E:(u; v) prevents f(u; v) by (7);

276 XIII. Formal Analysis of Case Studiesnode 5: by pik-up rule of Set. 64.2; J:(u; v) prevents h(u; v) by (7).Eah message of a priorized site is eventually granted by the respetive neigh-bor:C:u ^ prior(u; v) ^ L:(v; u) 7! C:u ^G:(u; v). (34)1: C:u ^ prior(u; v) ^ L:(v; u)!2: C:u ^ prior(u; v) ^ L:(v; u) ^D:v d(v)7!3: C:u ^ prior(u; v) ^ L:(v; u) ^ F:(v; u)!4: C:u ^ prior(u; v) ^ L:(v; u) ^ F:(v; u) ^ (E:(v; u) _ J:(v; u)) 7!5: C:u ^ prior(u; v) ^ L:(v; u) ^G:(v; u)!6: C:u ^ L:(v; u) ^G:(v; u) ^ :J:(v; u)!7: C:u ^ L:(v; u) ^K:(v; u) 7!8: C:u ^G:(u; v)Figure 79.3. Proof graph for (34)The proof graph of Fig. 79.3 proves (34). Its nodes are justi�ed as follows:node 1: by (16); L:(v; u)! :G:(u; v), by (10);node 2: D:v exludes (u), g(v; u), and (v), by (9);node 3: D:v ! :M:(v; u) by (4) (swapping u and v), hene the proposi-tion by (7) (swapping u and v);node 4: by ourrene of f(v; u) or g(v; u); F:(v; u) exludes (u), g(v; u),and (v), by (9);node 5: G:(v; u) implies :D:v ^ :F:(v; u) ^ :G:(u; v), by (9), hene theproposition by (16);node 6: L:(v; u) ^ :J:(v; u) imply K:(v; u), by (11);node 7: Fairness rule of Theorem 66.3 and (33).In analogy to the step from (27) to (31), formula (34) an be embeddedinto the ontext �. Again, gaining priority over more neighbors arises as anadditional alternative:C:u ^ � ^ L:(v; u) 7! (C:u ^ � ^G:(u; v)) _ �(u) � R. (35)The proof graph of Fig. 79.3 an systematially be turned into a proof graphfor (35) in exat orrespondene to (32), inluding the extended justi�ationof nodes as given for (32). Fairness rule of Theorem 66.3 is then to be replaedby Corollary 66.4.

79 Loal Mutual Exlusion 277
1.

C.u ∧

α

2.

C.u ∧

α ∧

E.(u,v)

3.

C.u ∧

α ∧

L.(v,u)

4.

C.u ∧

α ∧

G.(u,v)

5.

(C.u ∧

α ∧

G.(u,v) ∧

J(u,v))

∨ π (u) ⊃ RFigure 79.4. Proof graph for (36)79.7 A pending site obtains its priorized resouresA resoure with priority for u is eventually available for u, retaining all alreadyavailable resoures. Alternatively, u may gain priority over more resoures:C:u ^ � 7! (C:u ^ � ^G:(u; v) ^ J:(u; v)) _ �(u) � R. (36)Figure 79.4 provides a proof graph for (36). Its nodes are justi�ed as follows:node 1: by (13);node 2: by (31);node 3: by (35);node 4: by (16), (5), (9).Iteration of (36) may extend �(u), but this is limited by r(u). As � retains allresoures in G \ J , all resoures with priority for u are eventually availableto u:C:u 7! C:u ^G:�(u) ^ J:�(u). (37)The following proof graph proves (37):1: C:u! 2: C:u ^ � 7! 3: C:u ^G:�(u) ^ J:�(u). (38)Its nodes are justi�ed as follows:node 1: Def. (28);node 2: at most jr(u)j iteration of (36).79.8 A pending site goes ritialEah pending site u may lak priority over some neighbors. It neverthelessgoes eventually ritial : u either gains priority over all its resoures, or goesritial with some resoures over whih u has no priority:C:u 7! D:u. (39)This will be proven by indution on jprior(u)j. The proof graph of Fig. 79.5overs the ase of prior(u) = ;. Its nodes are justi�ed as follows:

278 XIII. Formal Analysis of Case Studies1: ! 2: 7! 3: (u)7! 4:C:u^ C:u^ C:u^ D:uprior(u) = ; �(u) = r(u) G:r(u)^J:r(u)Figure 79.5. Proof graph for the indution basis of (39)node 1: by (17), (23);node 2: by (37);node 3: J:r(u) prevents g(u; v) by (8), G:r(u) prevents f(u; v) by (6).Now let prior(u) = M and indutively assume C:v 7! D:v wheneverprior(v) � M . Then Fig. 79.6 provides a proof graph for the indutive step.Its nodes are justi�ed as follows:node 1: by (37);node 2: propositional logi;node 3: by pik-up rule of Set. 64.2; for eah v 2 nprior(u), J:�(u) pre-vents g(u; v);node 4: by (4);node 5: by (16);node 6: by (12);node 7: by (26);node 8: indutive assumption;1: C:u7!2: C:u ^G:�(u) ^ J:�(u)3: C:u ^G:r(u) ^ J:�(u) (u)7! g(u; v)4: C:u ^ nprior(v; u) ^ :G:(u; v)5: C:u ^ nprior(v; u) ^ :G:(u; v) ^ :D:u ^ :F:(u; v)!6: C:u ^ nprior(v; u) ^G:(v; u) ^ J:(v; u)!7: C:u ^ nprior(v; u) ^ C:v !8: C:u ^ prior(v) � prior(u) ^ C:v 7!9: C:u ^D:v 7!10: D:uFigure 79.6. Proof graph for the indution step of (39)

80 Consensus in Networks 279node 9: at node 8, let M := prior(u). Then at node 9, prior(u) �M , by(29) and (30). Hene the proposition by indutive assumption.79.9 Proof of the essential propertiesWe are now prepared to prove the essential properties (1) and (2). The safetyproperty (1) follows from a plae invariant, by means of the following proofgraph (in fat, a sequene of impliations), with u 2 U and v 2 r(u):1) D:u ! 2) r(D):(u; v) ! 3) :r(D):(v; u) ! 4) :D:v.Justi�ation of nodes:node 1: by de�nition of r(D) in Fig. 79.1node 2: by (9)node 3: by de�nition of r(D) in Fig. 79.1The liveness property (2) is shown by the following proof graph, with u 2 U :1) B:u 7! 2) C:u 7! 3) D:u.Justi�ation of nodes:node 1: pik-up pattern of Set. 64.1node 2: by (39).80 Consensus in NetworksThe essential property of the onsensus algorithm of Set. 35 is stability ofonsensus:In ase all sites are agreed, no request remained initiated. (1)Furthermore, no ation is enabled in this ase. We disuss this property forall three algorithms of Set. 35.80.1 Stability of the basi onsensus algorithmFigure 80.1 realls the basi onsensus algorithm of Fig. 35.1 with renamedplaes. We have to show:B:U ! D = ;. (2)To this end we onsider two plae invariantsA+B = U (3)andC +D =M , (4)

280 XIII. Formal Analysis of Case Studies
BA

C

D

U b a

c

d

M

x

x

x

x

x

x

x
x

(y,x) (y,x)

(x,y)(x,y)

r(x)r(x)

r(x)

r(x)

sort site

sort message = site × site

const U : set of sites

const M : set of messages

fct r, r :site → set of messages

var x, y : site

r(x) = {x} × M(x)

r(x) = M(x) × {x}Figure 80.1. Renamed basi onsensus algorithm �35:1as well as the trapr(A) + C � r(U). (5)The insriptions of Fig. 35.1 furthermore implyr(U) =M . (6)Then (3) and (6) implyr(A) + r(B) = r(U) =M . (7)Subtration of (5) from the sum of (4) and (7) yields (4)+(7)�(5):r(B) +D �M . (8)Now we onludeB:U ! r(B):M ! D = ; (9)by (6) and (8). Obviously, D = ; ! D = ;, hene (2).80.2 Stability of the advaned onsensus algorithmFigure 80.2 realls the advaned onsensus algorithm of Fig. 35.2, with re-named plaes. We are to show three properties.Firstly, a site u may be agreed as well as demanded only if an initiatedmessage for u is pending, i.e., u not �nally agreed. In Fig. 80.2 this reads

80 Consensus in Networks 281

sort site

sort message = site × site

const U : set of sites

const M : set of messages

fct r, r :site → set of messages

var x, y : site

r(x) = {x} × M(x)

r(x) = M(x) × {x}

B

E F U G

UA

C

D

M

x

xx

x

x

x

x
x

(y,x)

(x,y)

(y,x)

(x
,y)

r(x)r(x)

(x,y)

(x,y)(x
,y

)

(x,y)(x,y) (x,y)

xx xx

x

x

r(x)

r(x)

ab c

d

e
f g

Figure 80.2. Renamed advaned onsensus algorithm �35:2B:u ^ E:u! pr1(D):u. (10)Proof of (10) is again based on two plae invariants,A+B = U (11)andE +G = U , (12)as well as the trapA+G+ pr1(D) � U . (13)Now, (13) is subtrated from the sum of (11) and (12), yielding (11)+(12)�(13):B +E � pr1(D) � U , (14)

282 XIII. Formal Analysis of Case StudiesheneB:u+E:u � pr1(D):u+ 1. (15)This immediately implies (10).The seond property to be proven about �35:2 is stability, as stated in(1). In terms of Fig. 35.2 this readsB = U ! D = ; (16)Proof of (16) employs (11), the plae invariantC + F +D =M (17)and the trapr(A) + C �M . (18)Now, (11) impliesr(A) + r(B) = r(U) =M (19)and subtration of (18) from the sum of (17) and (19) yields (17)+(19)�(18):r(B) + F +D �M . (20)Now, de�nition of r and (20) implyB = U ! r(B) =M ! D = 0! D = ;, (21)hene (16).The third property to be proven about �35:2 states that no site is de-manded (hene eah site is quiet, by (12)) in ase all neighbors are agreed.In terms of �80:2 this readsB = U ! E = ;. (22)Upon proving (22) we observe that (11), (12), (13), and (16) implyr(A) + r(B) =M , (23)r(E) + r(G) =M , (24)r(A) + r(G) +D �M , (25)r(B) = r(U)! D = ;. (26)Now, (25) is subtrated from the sum of (23) and (24), yielding (23)+(24)�(25):r(B) + r(E) �D �M , (27)hene with (26),r(B) =M ! r(B) + r(E) �M , (28)heneB = U ! B +E � U , (29)whih implies (22).

80 Consensus in Networks 283

sort site

sort message = site×site

const U : set of sites

const M : set of messages

fct r, r :site → set of messages

var x, y : site

r(x) = {x} × M(x)

r(x) = M(x) × {x}

B

E F G

U

U

A

C

D

M

x

xx

x

x

x

x
x

(y,x)

(x,y)

(y,x)

(x
,y)

r(x)r(x)

(x,y)

(x,y)(x
,y

)

(x,y)(x,y) (x,y)

xx xx

x
x

r(x)

r(x)

ab c

d

e
f g

Figure 80.3. Renamed variant of the advaned onsensus algorithm �35:380.3 Stability of the further variantFigure 80.3 realls the advaned onsensus algorithm, with renamed plaes.Its veri�ation is based on three plae invariants:A+B = U , hene for eah u 2 UA:u+B:u = 1; (30)E +G = U , hene for eah u 2 UE:u+G:u = 1; (31)C + F +D =M , hene for eah (u; v) 2MC:(v; u) + F:(u; v) +D:(u; v) = 1; (32)and two traps A+G + pr1(D) � U , hene for eah u 2 U there exists somev 2 U with

284 XIII. Formal Analysis of Case StudiesA:u+D:(u; v) +G:u � 1; (33)r(A) + C + r(pr1(D)) + r(E) �M , hene for all (u; v); (u;w) 2MA:u+ C:(u;w) +D:(u; v) +E:(u; v) � 1. (34)Properties (30){(34) give rise toB:u ^ C:(v; u)! C:(u;w) (35)for all (v; u); (u; v) 2 M , whih holds due to the following proof graph (justa sequene of impliations):1) B:u ^ C:(v; u)!2) :A:u ^ C:(v; u)!3) :A:u ^ :D:(u; v)!4) :A:u ^ :D:(u; v) ^G:u!5) :A:u ^ :D:(u; v) ^ :E:u!6) C:(u;w).Its nodes are justi�ed as follows:node 1: by (30),node 2: by (32),node 3: by (33),node 4: by (31),node 5: by (34).Now, for i 2 N letMi := r(Sij=0 qj(u)). (36)We showB:U ^ C:(v; u)! C:Mi (37)by indution on i.For the indution basis, (35) implies B:u ^ C:(v; u) ! C:r(u), whih is (37)for i = 0. For the indution step, assume (37) and let (u0; w0) 2Mi+1. Thenthere exists some (v0; u0) 2Mi, by onstrution of Mi. Then1) B:U ^ C:(v; u)!2) B:U ^ C:(v0; u0)!3) C:(u0; w0),withnode 1: due to the indution hypothesis andnode 2: due to (35).

81 Phase Synhronization on Undireted Trees 285This goes for eah (u0; w0) 2 Mi+1, hene B:U ^ C:(v; u) ! C:Mi+1, whihompletes the indution step.Obviously, M = S1i=0Mi. Then (37) impliesB:U ^ C:(v; u)! C:M (38)Furthermore,B:U ^ C:(v; u)! C:M ^G:U (39)due to the following proof graph (just a sequene of impliations):1) B:U ^ C:M !2) :A:U ^ C:M !3) :A:U ^D = ; !4) G:U ,withnode 1: by (30).node 2: by (32).node 3: by (33).Stability of �80:3 is now proven by means of an unonventional argument,along interleaved runs:Let s be a reahable state with s j= B:U . Then there exists an interleavedrun s0 t1�!s1 t2�! : : : tn�!sn with sn = s. Then there exists a smallest index, i,with si j= B:U . Furthermore, i > 0, beause :(s0 j= B:U). Then ti = d(u),for some u 2 U . Then si j= B:U ^ C:(v; u) for eah v 2 q(u). Then si j=C:M ^ G:U , by (39). Then i = n, beause no ation is enabled at si. Henes j= B:U implies s j= B:U ^ C:M ^G:U . This with (32) impliesB:U ! D = ; ^G:Uwhih is the stability property for �80:3.81 Phase Synhronization on Undireted Trees81.1 Properties to be provenFigure 81.1 is a redrawn version of the phase synhronizations algorithm ofFig. 36.1. It has two deisive properties: Firstly, busy sites are always in thesame round. In Fig. 81.1 this readsA:(u; n) ^ A:(v;m)! n = m (1)and is a typial state property. Seondly, eah site will onseutively inreaseits round number. In Fig. 81.1 this readsA:(u; n) 7! A:(u; n+ 1) (2)

286 XIII. Formal Analysis of Case Studies
(x,i+1)

(x,y,i)

(x,i)

(x,y,i)

(y,x)(x,y)

r(x)--(y,x) r(x)--(x,y)

ab

A

C

B

U×{0}

sort site

sort message = site × site × nat

const U: set of sites

const W : set of (sites × sites)

fct r, r : site × nat → set of messages

var x, y : site

var i : nat

W = W-1

x,y ∈ U → x W*y

W1 = U

x0W x1 ... xnW xn+1 ∧
xi--1≠ xi+1 for i=1,...,n

→ x0≠ xn

r(x) = W(x) × {x}

r(x) = r(x)-1Figure 81.1. Renamed phase synhronization, �36:1for eah u 2 U and eah n 2 N, hene a typial liveness property. Both (1)and (2) will be veri�ed in the sequel.As a matter of onveniene we slightly generalize the onventions ofSet. 31.4 for projetion of pairs and triples:(a; b;)1 = aand(a; b;)1;2 = (a; ; b)1;3 = (b; a;)2;1 = (a; b).Furthermore, four funtions �; �; �; � : U � N ! M(U � U) will be em-ployed, de�ned by�(u; n) := 2n � r(u),�(u; n) := 2n � r(u),�(u; n) := (2n+ 1) � r(u),�(u; n) := (2n+ 1) � r(u)Those four funtions, as well as the above generalized projetions, will anon-ially be lifted to multisets, as desribed in Def. 58.6.

81 Phase Synhronization on Undireted Trees 28781.2 Plae invariants�81:1 has four important plae invariants. Three of them are quite intuitive.First of all, jAj+ jCj = jU j, whih immediately impliesjC1j = jC1;2j, (3)hene eah site u has always a unique round number, and if pending, it ispending with a unique site, v.Seondly, A1 + C1 = U , whih for eah u 2 U impliesA1:u+ C1:u = 1. (4)Hene eah site is always either busy or pending.The plae invariant B+B+r(C1)+r(C1) = 2(C1;2+C2;1) relates pendingneighbors to their mutual messages. For eah pair (u; v) of neighboring sitesthis impliesB:(u; v) +B:(v; u) + r(C1):(u; v) + r(C1):(v; u)= 2 � C1;2:(u; v) + 2 � C1;2:(v; u). (5)Furthermore, :C1:u^C1:v implies r(C1):(u; v) = C1;2:(u; v) = 0^r(C1):(v; u) =C1;2:(v; u) = 1, hene B:(u; v) +B:(v; u) = 1, by (5), hene with (4),A1:u ^ :A1:v ! B:(u; v) ^ B:(v; u). (6)The plae invariant above furthermore impliesjBj+ jBj = 2jC1;2 + C2;1j � jr(C1)j � jr(C1)j. (7)The fourth plae invariant is �(A) + B + �(C1;3) = �(A) +B + �(C1;3),whih implies for all u; v 2 U :�(A):(u; v) +B:(v; u) + �(C1;3):(u; v) =�(A):(v; u) +B:(u; v) + �(C1;3):(v; u). (8)This invariant links all plaes of �81:1.81.3 Busy neighbors don't exhange messagesIn ase two neighboring sites u and v are both busy, there is no messageavailable from u to v or from v to u. In terms of �81:1 this reads for all u 2 Uand v 2 q(u):A1:u ^ A1:v ! B:(u; v) = B:(v; u) = 0. (9)Upon proving (9), assume a state s with s j= A1:u ^ A1:v. Then at s holdsA1:u = A1:v = 1, hene C1:u = C1:v = 0 (by (4)), hene C1;2:(u; v) =C1;2:(v; u) = 0 (by (3)), hene the proposition, by (5). ut

288 XIII. Formal Analysis of Case Studies81.4 A property of neighboring pending sitesA neighbor v of a pending site u is pending with u, or u is pending with v.In terms of �81:1, for u 2 U and v 2 q(u),C1:u! C1;2:(u; v) _ C1;2:(v; u). (10)Proof of (10) assumes a state s with s j= C1:u = 1. Then at s holds forall w 2 q(u) : r(C1):(u;w) = 1, hene partiularly r(C1):(u; v) = 1, heneC1;2:(u; v) + C1;2:(v; u) � 1, by (5), hene the proposition. ut81.5 A site is pending with a busy neighborA pending site v with a busy neighbor u is pending with u. (Hene, with (3),at most one neighbor of a pending site is busy). In terms of �81:1, for u 2 Uand v 2 q(u),A1:u ^ C1:v ! C1;2:(v; u). (11)Proof of (11) ombines two properties of�81:1: First, C1:v implies C1;2:(u; v)_C1;2:(v; u) by (10). Seond, A1:u implies :C1:u by (4), hene :C1;2:(u; v). ut81.6 Three pending neighbors form a sequeneAssume a site v, pending with w. Then eah other pending neighbor u of vis pending with v. In �81:1 this reads for v 2 U and u;w 2 q(v):C1:u ^ C1;2:(v; w)! C1;2:(u; v). (12)Proof of (12) ombines two properties of�81:1: First, C1:u implies C1;2:(u; v)_C1;2:(v; u) by (10). Seond, C1;2:(v; w) implies :C1;2:(v; u), by (4). ut81.7 Busy neighbors are in the same roundIf two neighbors u and v are both busy, they operate in the same round. In�81:1 this reads for u 2 U , v 2 q(u), and n;m 2 N:A:(u; n) ^ A:(v;m)! n = m. (13)To prove (13), let s be a reahable state of �81:1 with s j= A1:u^A1:v. Thenat s holds C1:u = C1:v = 0 by (4), hene �(C1;3):(u; v) = �(C1;3):(v; u) = 0.Furthermore, B:(u; v) = B:(v; u) = 0, by (9). Combining both properties, (8)yields �(A):(u; v) = �(A):(v; u). Then for eah n 2 N, A:(u; n) = A:(v; n).Then (13) follows with (4). ut

81 Phase Synhronization on Undireted Trees 28981.8 A property of hainsGiven u0; : : : ; un 2 U , the sequene u0 : : : un is a hain if ui�1 2 r(ui) fori = 1; : : : ; n, and ui�1 6= ui+1 for i = 1; : : : ; n� 1.Assume a hain u0 : : : un, starting with a busy site, u0, followed by apending site, u1. Then all follower sites u2; : : : ; un are pending. In �81:1 thisreadsA1:u0 ^ C1:u1 ! C1:ui for all i = 1; : : : ; n. (14)To prove (14), let s be a reahable state with s j= A1:u0 ^ C1:u1. Then at sholds C1;2:(u1; u0) by (11). Then:C1;2:(u1; u2) (*)by (4). Now, ontraditing (14), assume an index 1 � i � n with s j= :C1:ui.Let j be the smallest of those indies. Then at s holds A1:uj by (4), heneC1;2:(uj�1; uj), by (11). Then C1;2:(ui�1; ui) for i = 2; : : : ; n by iteratedappliation of (12). Then in partiular C1;2:(u1; u2), whih ontradits (*).ut81.9 Proof of the state property (1)We are now prepared to prove (1) as follows:Let s be a reahable state with s j= A:(u; n)^A:(v;m). Then there exists ahain u0 : : : un in U with u0 = u and un = v. Then s j= A1:ui for i = 0; : : : ; n,by (14) and (4). Then at s holds A:(ui; n) for i = 0; : : : ; n by iteration of (13).Hene n = m.81.10 Pending sites have pending messagesHere we start proof of the liveness property (2). First, we observe pendingmessages in ase all sites are pending:C1:U ! jBj > 0. (15)Proof of (15) is based on the observation that an undireted tree with n nodeshas n� 1 ars. Hene, in �81:1,jr(U)j = jr(U)j = jU j � 1. (16)Then C1:U ! jBj + jBj = 2jC1;2 + C2;1j � jr(C1)j � jr(C1)j (by (7)) =2jU j � 2(jU j � 1) (by (16)) = 2.

290 XIII. Formal Analysis of Case Studies81.11 �81:1 is deadlok freeEah reahable state of �81:1 enables at least one ation. (17)Proof. Let s be a reahable state of �81:1. 1st ase: s j= A1:u for at least oneu 2 U . Then there exists a hain u0 : : : un, n � 0, of sites with s j= A1:uifor all i = 0; : : : ; n, and :A:v for all v 2 q(un) � un�1. Hene for all suh vholds s j= B:(v; u) _ B:(u; v), by (6). Now we distinguish two ases: Firstly,s j= B:(u; v) for all v 2 q(un)�un�1. Then s enables a(un; un�1; k), where s j=A:(un; k). Otherwise, there exists some v 2 r(un)� un�1 with s j= B:(v; u).Furthermore, s j= C:(v; u; k) for some k 2 N (with (4)). Then s enablesb(v; u; k). 2nd ase: There is no u 2 U with s j= A1:u. Then s j= C1:U (with(4)). Then jBj > 0, by (15). Hene there exist u; v 2 U with s j= B:(u; v).Then s j= C:(u; v; k) for some k 2 N, by (5). Then s enables b(u; v; k). ut81.12 The weight funtion A funtion (u; v) will be onsidered, whih for neighbors u and v yieldsan integer value (u; v) at any given state s. Values (ui�1; ui) remain in alimited interval for all hains u0 : : : un, and ourrenes of transitions inreasethose values. For u; v 2 U , let(u; v) := B:(v; u) +�n2N2n �A:(u; n) + (2n+ 1) � C1;3:(u; n). (18)Then (8) implies(u; v) = (v; u). (19)Furthermore, for neighbors w of u, C1;2:(u;w) i� r(C1):(u;w); heneB:(w; u) � 2 (by (5)), henej(u; v)� (u;w)j � 2, (20)again by (5). Then for eah sequene u0 : : : uk of sites, (19) and (20) implyj(u0; u1)� (un�1; un)j � 2(k � 1). (21)81.13 Proof of the liveness property (2)Inspetion of �81:1 yields for eah step r t�! s with t = a(u; v; i) or t =b(u; v; i):If (u; v) = n at state r, then (u; v) > n at state s. (22)Property (17) implies at least one pair (u; v) of neighbors with in�nitelymany ourrenes of a(u; v; i) and b(u; v; i). Then in the set of all reahablestates, (u; v) is not limited, by(22). This applies to all neighbors u, v, by(21). Hene (2).

82 Distributed Self-Stabilization 29182 Distributed Self-Stabilization82.1 Properties to be provenFigure 82.1 is a redrawn version of the distributed self stabilization algorithm.We have to show that the overall workload remains onstant, eventually isbalaned, and heneforth remains balaned.
E

(x,j)
d

(x,i+j)
A

V
(x,i)

a
(r(x),i)

D

(x,j)

(x,j)

c

b

(l (x),1)

(l (x),0)

i>j

i≤ j

(x,i)

(x,i)

(x,i)

(x,i) (x,i)

(x,i-1)

BC

sort site var i, j : nat
sort alloc = site× nat var x,y : sitesort alloc = site× nat var x,y : site

∀ x ∈ U ∃ 1i ∈ nat : (x,i) ∈ V
const U : set of sites x ≠ y ⇒ r(x) ≠ r(y)
const V : set of alloc ∃ n ∈ nat : rn(x) = x
fct l , r : site → site ∀ x ∀ y ∃ n ∈ nat: y = rn(x)

l (r(x)) = xFigure 82.1. Renamed distributed load balaningA formal representation of those properties in terms of �82:1 an be basedon the following funtions. For any plae p 2 fA;B;C;Eg and any site u 2 U ,let �(p; u) := (0 i� :p1:un i� p:(n; u) ;�(u) := �fA;B;C;Eg�(p; u), and� := �u2U�(u): (1)These funtions desribe the workload of site u at plae p, the entire workloadof u and the overall workload in the system, respetively. The initial overallworkload is k i� a�82:1 j= � = k. A balaned state meets the prediatebalaned := u; v 2 U ! j�(u)� �(v)j � 1. (2)

292 XIII. Formal Analysis of Case StudiesSo we have to show the state property�82:1 j= � = k (3)and the progress property�82:1 j= a� 7! balaned. (4)Furthermore, we have to show that all states reahable from a balaned stateare balaned, i.e., for eah step r t�!s,balaned(r) ! balaned(s). (5)82.2 Plae invariantsWe have two quite obvious plae invariants. First, eah site is always in oneof the three states of �37:1 (together with its token load): A1+B1+C1 = U(with V1 = U aording to the spei�ation of Fig. 82.1). Hene in partiularfor eah u 2 U holdsA1:l(u) +B1:l(u) + C1:l(u) = 1. (6)Seond, eah site is either in the quiet state1 or has sent a workload messageto its right neighbor (i.e., is the left neighbor of the �rst omponent of aworkload message), or is to reeive an update message: A1+r(D1)+E1 = U .Hene for eah u 2 U follows A1:l(u) + r(D1):l(u) + E1:l(u) = 1, whih inturn yieldsA1:l(u) +D1:u+E1:l(u) = 1. (7)82.3 Further properties of �82:1Two basi properties are required in the sequel: The ground formula A1:U ,and an upper bound for the workload of the sender of a workload message.To start with, we �rst showA1:U is a ground formula. (8)Upon proving (8), observe that all steps starting at A1:U are shapedA1 a(u;n)����!A1:U � u ^ B1:u ^D1:r(u), for some u 2 U and n 2 N. Then (8)follows from Theorem 70.2 and the following proof graph:1) A1:U � u ^ B1:u ^D1:r(u) ,!2) B1:U ^D1:U ,!3) C1:U ^ E1:U ,!4) A1:U .Its nodes are justi�ed by the pik-up pattern of Set. 69.1 together with thefollowing:

82 Distributed Self-Stabilization 2931) by ourrene of a(v; n) for all (v; n) 2 V; v 6= u2) by ourrene of b(v; n;m) or (v; n;m) for all v 2 U3) by ourrene of d(v; n;m) for all v 2 U .Seond, we show that a workload message tops its sender's token load:D:(u; n)! �(l(u)) � n. (9)(9) is obviously true at the initial state. Indutively assume a step r t�!s withr j= (9). Upon proving s j= (9) two ases are distinguished:i. Assume r 6j= D:(u; n) and s j= D:(u; n). Then t = a(l(u); n) (by thestruture of the net). Then s j= B:(l(u); n) (by the ourrene rule).Hene s j= B1:l(u), hene s j= :A1:l(u)^:C1:l(u), by (6). Furthermore,the assumption of s j= D:(u; n) implies s j= D1:u, hene s j= :E1:l(u)(by (7)). Both arguments together imply �(l(u)) � �(B:l(u)). Then s j=B:(l(u); n) implies the proposition.ii. Assume r j= �(l(u)) � n and s 6j= �(l(u)) � n. Then t = (u; n;m), forsome n;m 2 N (by the struture of the net). Then s j= E1:(l(u); n) (by theourrene rule). Then s j= :D1:(u; n) (by (7)), hene the proposition.82.4 A dereasing weightA weight funtion � on states will be employed, de�ned for eah state s of�82:1 by �(s) = n i� s j=�u2U�(u)2 = n. (10)It will turn out that no step inreases � . Furthermore, � dereases uponourrene of (u; n;m), provided m+ 1 is smaller than n.First we show that 3 does not inrease � : Let r (u;n;m)�����!s be a step. Then�(r) � �(s). (11)In order to show (11), observe that at r holds (�) B:(u; n) as well as (��)D:(u;m), due to the ourrene rule. Furthermore, with r j= �(l(u)) = a ^�(u) = b, at r holds b � n by (�), n > m by insription of transition , andm � �(l(u)), by (��) and (9); hene (���) (a� b+ 1) � 0. Now,�(s) = �(r) � a2 � b2 + (a+ 1)2 + (b� 1)2 (by the struture of (u; n;m))= �(r) � a2 � b2 + a2 + 2a+ 1 + b2 � 2b+ 1= �(r) + 2(a� b+ 1)� � , by (���), hene (11).(11) an be strengthened in ase �(u) > �(l(u)) + 1: Let r (u;n;m)�����! s be astep of �82:1 with m+ 1 < n. Then�(r) > �(s) (12)

294 XIII. Formal Analysis of Case StudiesProof of (12) is a slight variant of the above proof graph of (11): m+ 1 < nnow implies b > n, hene (a � b + 1) < 0. Then the last two lines read�(r) + 2(a� b+ 1) < �(r).Generalizing (11), no step at all inreases � : Let r t�!s be a step of �82:1.Then�(r) � �(s). (13)To prove (13), observe that �(r) 6= �(s) implies t = (u; n;m) for some u 2 Uand n;m 2 N, by de�nition of � and �, and the struture of �82:1. Then (13)follows from (11).82.5 DesentsA desent of length k onsists of a sequene u; l(u); l2(u); : : : ; lk+1(u) of sites,with token loads dereasing by 1 from u to l(u) and by any number from lk(u)to lk+1(u), and idential token load of l(u); : : : ; lk(u). More preisely, for anysite u 2 U and any state s, the desent of u at s amounts to k (written:Æ(u) = k) i� there exists some n 2 N with�(u) = n+ 1, �(li(u)) = n (i = 1; : : : ; k), �(ln+1(u)) � n� 1. (14)Figure 82.2 outlines examples.In general, there may exist states s with unde�ned desent Æ(u). Evenmore, obviously holds for all states s of �82:1:s is balaned i� no site has a desent at s. (15)In the sequel we will show that large desents redue to small ones and smalldesents redue the weight � . Eah large desent redues to a smaller one, asexempli�ed in Fig. 82.2.
u

after n = 2
δ(l (u)) = 2

u

before n = 2
δ(u) = 4

Figure 82.2. Redution of a large desentA1:U ^ Æ(u) = k ^ k � 2 ,! A1:U ^ Æ(l(u)) = k � 2. (16)This proposition follows from the following proof graph:

82 Distributed Self-Stabilization 2951) A1:U ^ Æ(u) = k ^ k � 2!2) A1:U ^A:(u; n+1)^A:(li(u); n) (i = 1; : : : ; k) ^A:(lk+1(u); n� j) ,!3) B1:U ^ D1:U ^ B:(u; n + 1) ^ B:(li(u); n) (i = 1; : : : ; k) ^ D:(u; n) ^D:(li(u); n) (i = 1; : : : ; k � 1) ^D:(lk(u); n� j) ,!4) C1:U ^ E1:U ^ C:(li(u); n) (i = 1; : : : ; k � 1) ^ C:(lk(u); n � j) ^E:(l(u); 1) ^ E:(li(u); 0) (i = 2; : : : ; k) ,!5) A1:U^A:(l(u); n+1)^A:(li(u); n) (i = 2; : : : ; k�1) ^A:(lk(u); n�1)!6) A1:U ^ Æ(l(u)) = k � 2.Its nodes are justi�ed as follows:node 1: there exist n; j � 1 with the desribed properties, aording to(14)node 2: by ourrene of fa(v;m) j v 2 U ^ A:(v;m)gnode 3: by ourrene of (u; n + 1; n), b(li(u); n; n) for i = 1; : : : ; k �1, (lk(u); n; n � j), and b(v;m;m0) or (v;m;m0) for all v 6=li(u) (i = 0; : : : ; k)node 4: by ourrene of fd(v;m;m0) j v 2 U ^ C:(v;m) ^ E:(v;m0)gnode 5: by (14).Eah desent of length 0 redues the weight � , as outlined in Fig. 82.3.
u

after no descent σ(u)2 + σ(l (u))2 = 8

u

before n = 2 σ(u)2 + σ(l (u))2 = 10
δ(u) = 0

Figure 82.3. Desent of length 0Formally,A1:U ^ Æ(u) = 0 ^ � = m ,! � < m. (17)This proposition follows from the following proof graph:1) A1:U ^ Æ(u) = 0 ^ � = m!2) A:(u; n+ 1) ^ A:(l(u); n� j) ^ � = m ,!3) B:(u; n+ 1) ^D:(u; n� j) ^ � � m(u;n+1;n�j),!4) � < m.Its nodes are justi�ed as follows:node 1: there exist n; j � 1 with the desribed properties, aording to(14)

296 XIII. Formal Analysis of Case Studiesnode 2: by ourrene of a(u; n+ 1) and a(l(u); n� j)node 3: by (12).Eah desent of length 1 likewise redues the weight � , as outlined in Fig. 82.4.
u

after no descent σ(u)2 + σ(l (u))2

+ σ(l 2 (u))2 = 12

u

before n = 2
δ(u) = 1

σ(u)2 + σ(l (u))2

+ σ(l 2 (u))2 = 14

Figure 82.4. Desent of length 1Formally,A1:U ^ Æ(u) = 1 ^ � = m ,! � < m. (18)This proposition follows from the following proof graph:1) A1:U ^ Æ(u) = 1 ^ � = m!2) A1:U ^ A:(u; n+ 1) ^ A:(l(u); n) ^ A:(l2(u); n� j) ^ � = m ,!3) B:(u; n+1)^D:(u; n)^B:(l(u); n)^D:(l(u); n� j)^ � � m(u;n+1;n),!4) E:(l(u); 1) ^ B:(l(u); n) ^D:(l(u); n� j) ^ � � m(l(u);n;n�j),!5) � < m.Its nodes are justi�ed as follows:node 1: there exist n; j � 1 with the desribed properties, aording to(14)node 2: by ourrene of a(u; n+ 1), a(l(u); n), and a(l2(u); n� 1)node 3: by the ourrene rulenode 4: by (12).The weight � is reduible as long as there exists a desent:� = m ,! � < m _ 8u 2 U : Æ(u) is unde�ned. (19)This proposition follows from the following proof graph:1) � = m ,!2) A1:U ^ � � m! 3) 8u 2 U : Æ(u) unde�ned!4) A1:U ^ � � m ^ 9u 2 U; k 2 N with Æ(u) = k ,!5) A1:U ^ � � m ^ 9u 2 U with Æ(u) � 1 ,!6) � < m!7) � < m _ 8u 2 U : Æ(u) unde�ned

82 Distributed Self-Stabilization 297Its nodes are justi�ed as follows:node 1: by (8) and (13)node 2: propositional loginode 3: propositional loginode 4: by bk2 fold appliation of (16)node 5: by (17) if Æ(u) = 0, and by (18) if Æ(u) = 1node 6: propositional logi.82.6 Proof of the essential propertiesTo show (3), let r t�!s be any step of �82:1, and assume �r = k. Then �s = kfollows due to the struture of �81:1. Finally, (3) follows by indution on thelength of interleaved runs of �82:1To prove (5), �rst onsider the ase of t = (u; n;m) for some u 2 U andn;m 2 N. Then at r holds B:(u; n)^D:(u;m)^n > m. Furthermore, �(u) � nby (1) and m � �(l(u)), by (9). Hene �(u) = n and �(l(u)) = n� 1, as r isbalaned. Then at s holds �(u) = n� 1 and �(l(u)) = n. The workload �(v)remains unhanged for all v 6= u. Hene s is balaned, too.All ations t not involving do not touh �(u) for any u 2 U , hene theproposition.Proof of (4) requiresa� ,! balaned, (20)proven by the following proof graph:a� ! � = m ,! � = n1 < m ,! � = n2 < n1 ,! : : : ,! � = nm = 0,! ,! ,! ,!8u 2 U : Æ(u) is unde�ned!balanedwhih is justi�ed as follows: The �rst impliation states that � has some value,m, at the initial state a� . All other nodes in the upper line are justi�ed by(19). The last impliation holds by (15).In order to show (4), let w be an interleaved run of �82:1. Then there existsa onurrent run K of �82:2, inluding all ations of w. K has a reahable,balaned state, s, (by (20)). Then w has a reahable state, s0, suh that allations of K, ourring before s, are ations of w, ourring before s0. Then�82:2 j= s 7! s0 and s0 is balaned by (5), hene the proposition.

Referenes
[Agh86℄ G. A. Agha. A Model of Conurrent Computation in Distributed Sys-tems. MIT Press, Cambridge, Mass., 1986.[AS85℄ B. Alpern and F. B. Shneider. De�ning liveness. InformationProessing Letters, 21:181{185, 1985. Safety/Liveness Deomposition.[BA90℄ M. Ben-Ari. Priniples of Conurrent and Distributed Programming.International Series in Computer Siene. Prentie Hall, EnglewoodCli�s, N. J., 1990.[Bar96℄ V. Barbosa. An Introdution to Distributed Algorithms. MIT Press,Cambridge, Mass., 1996.[BB82℄ G. Berry and G. Boudol. The hemial abstrat mahine. TCS, 1982.[BCM88℄ J.-P. Banâtre, A. Coutant, and D. le Metaye. A parallel mahine formultiset transformation and its programming style. Future Genera-tions Computer Systems, 4:133{144, 1988.[BE96℄ G. Burns and J. Esparza. Trapping mutual exlusion in the boxalulus. Theoretial Computer Siene. Speial Volume on Petri Nets,153(1{2), January 1996.[Ben73℄ C. H. Bennett. Logial reversibility of omputation. IBM Journal ofResearh and Development, 6:525{532, 1973.[Bes96℄ E. Best. Semantis of Sequential and Parallel Programs. InternationalSeries in Computer Siene. Prentie Hall, Englewood Cli�s, N. J.,1996.[BF88℄ E. Best and C. Fern�andez. Nonsequential Proesses, volume 13 ofEATCS Monographs on Theoretial Computer Siene. Springer-Verlag, Berlin, 1988.[BGW89℄ G. M. Brown, M. G. Gouda, and C. Wu. Token systems that self-stabilize. IEEE Transation on Computers, 38(6):845{852, 1989.[BP89℄ J. E. Burnes and J. Pahl. Uniform self-stabilizing rings. ACM Trans-ations on Programming Languages and Systems, 11(2):330{344, April1989.[Bro87℄ M. Broy. Semantis of �nite and in�nite networks of onurrent om-muniating agents. Distributed Computing, 2:13{31, 1987.[Cha82℄ E. J. H. Chang. Eho algorithms: Depth parallel operations on generalgraphs. IEEE Transations on Software Engineering, SE-8(4):391{401, 1982.[CM84℄ K. M. Chandy and J. Misra. The drinking philosophers problem. ACMTransations on Programming Languages and Systems, 6(4):632{646,Otober 1984.[CM88℄ K. M. Chandy and J. Misra. Parallel Program Design: A Foundation.Addison-Wesley, Reading, Mass., 1988.[Des97℄ J. Desel. How distributed algorithms play the token game. InC. Freksa, M. Jantzen, and R. Valk, editors, Foundations of Computer

300 ReferenesSiene, volume 1337 of LNCS Leture Notes in Computer Siene,pages 297{306. Springer-Verlag, 1997.[Dij71℄ E. W. Dijkstra. Hierarhial ordering of sequential proesses. AtaInformatia, 1:115{138, 1971.[Dij74℄ E. W. Dijkstra. Self-stabilizing systems in spite of distributed ontrol.Communiations of the ACM, 17(11):643{644, 1974.[Dij75℄ E. W. Dijkstra. Guarded ommands, nondeterminany, and formalderivation of programs. Communiations of the ACM, 18(8):453{457,1975.[Dij78℄ E. W. Dijkstra. Finding the orretness proof of a onurrent pro-gram. Pro. Koninklijke Nederlandse Akademie van Wetenshappen,81(2):207{215, 1978.[DK98℄ J. Desel and E. Kindler. Proving orretness of distributed algorithmsusing high-level Petri nets { a ase study. In 1998 International Con-ferene on Appliation of Conurreny to System Design, pages 177{186, Fukushima, Japan, Marh 1998. IEEE Computer Soiety Press.[DKVW95℄ J. Desel, E. Kindler, T. Vesper, and R. Walter. A simpli�ed proof fora self-stabilizing protool: A game of ards. Information ProessingLetters, 54:327{328, 1995.[DKW94℄ J. Desel, E. Kindler, and R.Walter. A game of tokens: A proof ontest.Petri Net Newsletter, 47:3 { 4, Otober 1994.[DS80℄ E. W. Dijkstra and C. S. Sholten. Termination detetion for di�usingomputations. Information Proessing Letters, 4:1{4, 1980.[Fin79℄ S. G. Finn. Resynh proedures and a fail safe network protool.IEEE Transations on Communiations, COM-27:840{845, 1979.[FT82℄ E. Fredkin and T. To�oli. Conservative logi. International Journalof Theoretial Physis, 21(3/4):219{253, 1982.[Gan80℄ R. Gandy. Churh's thesis and priniples for mehanisms. In TheKleene Symposium, pages 123{274, North-Holland, Amsterdam, 1980.J. Barwise et al., editors.[GPR97℄ J. E. Gehrke, C. G. Plaxton, and R. Rajaraman. Rapid onver-gene of a loal load balaning algorithm for asynhronous rings.In M. Mavroniolas and P. Tsigas, editors, Distributed Algorithms,WDAG, volume 1320 of LNCS Leture Notes in Computer Siene,pages 81{95. Springer-Verlag, September 1997.[Har87℄ D. Harel. Stateharts: A visual formalism for omputer systems. Si-ene of Computer Programming, 8(3):231{274, 1987.[Jen92℄ K. Jensen. Coloured Petri Nets, volume 1 of EATCS Monographs onTheoretial Computer Siene. Springer-Verlag, 1992.[Kin95℄ E. Kindler. Modularer Entwurf verteilter Systeme mit Petrinetzen.PhD thesis, Tehnishe Universit�at M�unhen, 1995.[KRVW97℄ E. Kindler, W. Reisig, H. V�olzer, and R. Walter. Petri net basedveri�ation of distributed algorithms: An example. Formal Aspets ofComputing, 1997.[KW95℄ E. Kindler and R. Walter. Message passing mutex. In J. Desel, editor,Strutures in Conurreny Theory, Workshops in Computing, pages205{219, Berlin, May 1995. Springer-Verlag.[Lam86℄ L. Lamport. The mutual exlusion problem: Part I { a theory of in-terproess ommuniation. Journal of the ACM, 33(2):313{326, 1986.[Lyn96℄ N. A. Lynh. Distributed Algorithms. Morgan Kaufmann Publishers,San Franiso, Calif., 1996.[Mat89℄ F. Mattern. Verteilte Basisalgorithmen. Informatik-Fahberihte 226,Springer-Verlag, Berlin, 1989.

Referenes 301[Mil89℄ R. Milner. Communiation and Conurreny. International Series inComputer Siene. Prentie Hall, Englewood Cli�s, N. J., 1989.[Mis91℄ J. Misra. Phase synhronization. Information Proessing Letters,38:101{105, 1991.[MP92℄ Z. Manna and A. Pnueli. The Temporal Logi of Reative and Con-urrent Systems. Springer-Verlag, Berlin, 1992.[MP95℄ Z. Manna and A. Pnueli. Temporal Veri�ation of Reative Systems.Springer-Verlag, Berlin, 1995.[NTA96℄ M. Naimi, M. Trehel, and A. Arnold. A log(n) distributed mutualexlusion algorithm based on path reversal. Journal of Parallel andDistributed Computing, 34:1{13, 1996.[OL82℄ S. Owiki and L. Lamport. Proving liveness properties of onur-rent programs. ACM Transations on Programming Languages andSystems, 4(3):455{495, 1982.[Pet81℄ G. L. Peterson. Myths about the mutual exlusion problem. Infor-mation Proessing Letters, 12(3):115{116, June 1981.[PM96℄ W. Peng and K. Makki. Petri nets and self-stabilization of ommuni-ation protools. Informatia, 20:113{123, 1996.[Ray88℄ M. Raynal. Distributed Algorithms and Protools. Wiley Series inparallel omputing. J. Wiley and Sons, 1988.[Ray89℄ K. Raymond. A tree-based algorithm for distributed mutual exlusion.ACM Transations on Computer Systems, 7(1):61{77, February 1989.[Rei85℄ W. Reisig. Petri Nets, volume 4 of EATCS Monographs on TheoretialComputer Siene. Springer-Verlag, Berlin, 1985.[Rei95℄ W. Reisig. Petri net models of distributed algorithms. In Jan vanLeeuven, editor, Computer Siene Today. Reent Trends and Devel-opments, volume 1000 of LNCS Leture Notes in Computer Siene,pages 441{454. Springer-Verlag, Berlin, 1995.[Rei96a℄ W. Reisig. Interleaved progress, onurrent progress, and loalprogress. In D. A. Peled, V. R. Pratt, and G. J. Holzmann, edi-tors, Partial Order Methods in Veri�ation, volume 29, pages 24{26.DIMACS Series in Disrete Mathematis and Theoretial ComputerSiene, Amerian Mathematial Soiety, 1996.[Rei96b℄ W. Reisig. Modeling and veri�ation of distributed algorithms. InU. Montanari and V. Sassone, editors, CONCUR 96: ConurrenyTheory, volume 1119 of LNCS Leture Notes in Computer Siene,pages 79{95. Springer-Verlag, 1996.[RH90℄ M. Raynal and J.-M. Helary. Synhronization and Control of Distrib-uted Systems and Programs. Wiley Series in parallel omputing. J.Wiley and Sons, 1990.[RK97℄ W. Reisig and E. Kindler. Veri�ation of distributed algorithms withalgebrai Petri nets. In C. Freksa, M. Jantzen, and R. Valk, editors,Foundations of Computer Siene | Potential, Theory, Cognition,volume 1337 of LNCS Leture Notes in Computer Siene, pages 261{270. Springer-Verlag, 1997.[Roz86℄ G. Rozenberg. Behaviour of elementary net systems. In W. Brauer,W. Reisig, and G. Rozenberg, editors, Petri Nets: Central Models andTheir Properties, volume 254 of LNCS Leture Notes in ComputerSiene, pages 60{94. Springer-Verlag, 1986.[Sh97℄ F. B. Shneider. On Conurrent Programming. Springer, 1997.[Seg83℄ A. Segall. Distributed network protools. IEEE Transations on In-formation Theory, IT 29-1:23{35, 1983.

302 Referenes[SF86℄ N. Shavit and N. Franez. A new approah to detetion of loallyindiative stability. In L. Kott, editor, Proeedings of the 13th ICALP,volume 226 of LNCS Leture Notes in Computer Siene, pages 344{358. Springer-Verlag, 1986.[Tel91℄ G. Tel. Topis in Distributed Algorithms, volume 1 of CambridgeInternational Series on Parallel Computation. Cambridge UniversityPress, Cambridge, U.K., 1991.[Tel94℄ G. Tel. Introdution to Distributed Algorithms. Cambridge UniversityPress, Cambridge, U.K., 1994.[V�ol97℄ H. V�olzer. Verifying fault tolerane of distributed algorithms for-mally: A ase study. Informatik-Berihte 84, Humboldt-Universit�atzu Berlin, May 1997. (appears in: Proeedings of CSD98, Interna-tional Conferene on Appliation of Conurreny to System Design,Aizu-Wakamatsu City, Marh 1998, IEEE Computer Soiety Press).[Val86℄ R. Valk. In�nite behaviour and fairness. In W. Brauer, W. Reisig, andG. Rozenberg, editors, Petri Nets: Central Models and Their Proper-ties, volume 254 of LNCS Leture Notes in Computer Siene, pages377{396. Springer-Verlag, 1986.[Wal95℄ R. Walter. Petrinetzmodelle verteilter Algorithmen. PhD thesis,Humboldt-Universit�at zu Berlin, Institut f�ur Informatik. Edition Ver-sal, vol. 2. Bertz Verlag Berlin, 1995.[Wal97℄ R. Walter. The asynhronous stak revisited: Rounds set the twilightreeling. In C. Freksa, M. Jantzen, and R. Valk, editors, Foundations ofComputer Siene, volume 1337 of LNCS Leture Notes in ComputerSiene, pages 307{312. Springer-Verlag, 1997.[WWV+98℄ M. Weber, R. Walter, H. V�olzer, T. Vesper, W. Reisig, S. Peuker,E. Kindler, J. Freiheit, and J. Desel. DAWN: Petrinetzmodelle zurVeri�kation verteilter Algorithmen. Informatik-Beriht 88, Humboldt-Universit�at zu Berlin, 1998.

	Introduction
	Part A. Elementary System Models
	I. Elementary Concepts
	1 A First Look at Distributed Algorithms
	2 Basic Definitions: Nets
	3 Dynamics
	4 Interleaved Runs
	5 Concurrent Runs
	6 Progress
	7 Fairness
	8 Elementary System Nets

	II. Case Studies
	9 Sequential and Parallel Buffers
	10 The Dining Philosophers
	11 An Asynchronous Stack
	12 Crosstalk Algorithms
	13 Mutual Exclusion
	14 Distributed Testing of Message Lines

	Part B. Advanced System Models
	III. Advanced Concepts
	15 Introductory Examples
	16 The Concept of System Nets
	17 Interleaved and Concurrent Runs
	18 Structures and Terms
	19 A Term Representation of System Nets
	20 Set-Valued Terms
	21 Transition Guards and System Schemata

	IV. Case Studies
	22 High-Level Extensions of Elementary Net Models
	23 Distributed Constraint Programming
	24 Exclusive Writing and Concurrent Reading
	25 Distributed Rearrangement
	26 Self Stabilizing Mutual Exclusion

	V. Case Studies Continued: Acknowledged Messages
	27 The Alternating Bit Protocol
	28 The Balanced Sliding Window Protocol
	29 Acknowledged Messages to Neighbors in Networks
	30 Distributed Master/Slave Agreement

	VI. Case Studies Continued: Network Algorithms
	31 Principles of Network Algorithms
	32 Leader Election and Spanning Trees
	33 The Echo Algorithm
	34 Mutual Exclusion in Networks
	35 Consensus in Networks
	36 Phase Synchronization on Undirected Trees
	37 Distributed Self Stabilization

	Part C. Analysis of Elementary System Models
	VII. State Properties of Elementary System Nets
	38 Propositional State Properties
	39 Net Equations and Net Inequalities
	40 Place Invariants of es-nets
	41 Some Small Case Studies
	42 Traps
	43 Case Study: Mutex

	VIII. Interleaved Progress of Elementary System Nets
	44 Progress on Interleaved Runs
	45 The Interleaved Pick-up Rule
	46 Proof Graphs for Interleaved Progress
	47 Standard Proof Graphs
	48 How to Pick Up Fairness
	49 Case Study: Evolution of Mutual Exclusion Algorithms

	IX. Concurrent Progress of Elementary System Nets
	50 Progress on Concurrent Runs
	51 The Concurrent Pick-up Rule
	52 Proof Graphs for Concurrent Progress
	53 Ground Formulas and Rounds
	54 Rounds of Sequential and Parallel Buffer Algorithms
	55 Rounds and Ground Formulas of Various Algorithms
	56 Ground Formulas of Mutex Algorithms

	Part D. Analysis of Advanced System Models
	X. State Properties of System Nets
	57 First-Order State Properties
	58 Multisets and Linear Functions
	59 Place Weights, System Equations, and System Inequalities
	60 Place Invariants of System Nets
	61 Traps of System Nets
	62 State Properties of Variants of the Philosopher System

	XI. Interleaved Progress of System Nets
	63 Progress on Interleaved Runs
	64 Interleaved Pick-up and Proof Graphs for System Nets
	65 Case Study: Producer/Consumer Systems
	66 How to Pick up Fairness

	XII. Concurrent Progress of System Nets
	67 Progress of Concurrent Runs
	68 The Concurrent Pick-up Rule
	69 Pick-up Patterns and Proof Graphs
	70 Ground Formulas and Rounds

	XIII. Formal Analysis of Case Studies
	71 The Asynchronous Stack
	72 Exclusive Writing and Concurrent Reading
	73 Distributed Rearrangement
	74 Self-Stabilizing Mutual Exclusion
	75 Master/Slave Agreement
	76 Leader Election
	77 The Echo Algorithm
	78 Global Mutual Exclusion on Undirected Trees
	79 Local Mutual Exclusion
	80 Consensus in Networks
	81 Phase Synchronization on Undirected Trees
	82 Distributed Self-Stabilization

	References

