

Jean-Michel Muller

Elementary Functions
Algorithms and Implementation

Second Edition

Birkhäuser
Boston • Basel • Berlin

Jean-Michel Muller
CNRS-Laboratoire LIP
Ecole Normale Superieure de Lyon
46 allee d’Italie
69364 Lyon Cedex 07
France

Cover design by Joseph Sherman.

AMS Subject Classifications: 26A09, 33Bxx, 90Cxx, 65D15, 65K05, 68Wxx, 65Yxx
ACM Subject Classifications: B.2.4, G.1.0., G.1.2, G.4

Library of Congress Cataloging-in-Publication Data
Muller, J. M. (Jean-Michel), 1961-

Elementary functions : algorithms and implementation / Jean-Michel Muller.– 2nd ed.
p. cm.

Includes bibliographical references and index.
ISBN 0-8176-4372-9 (alk. paper)

1. Functions–Data processing 2. Algorithms. I. Title.
QA331.M866 2005

518′.1–dc22 2005048094

ISBN-10 0-8176-4372-9 eISBN 0-8176-4408-3 Printed on acid-free paper.
ISBN-13 978-0-8176-4372-0

c©2006 Birkhäuser Boston, 2nd edition
c©1997 Birkhäuser Boston, 1st Edition
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the
publisher (Birkhäuser Boston, c/o Springer Science+Business Media Inc., 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America. (LAP/HP)

9 8 7 6 5 4 3 2 1

www.birkhauser.com

Contents

List of Figures xi

List of Tables xv

Preface to the Second Edition xix

Preface to the First Edition xxi

1 Introduction 1

2 Some Basic Things About Computer Arithmetic 9
2.1 Floating-Point Arithmetic . 9

2.1.1 Floating-point formats . 9
2.1.2 Rounding modes . 11
2.1.3 Subnormal numbers and exceptions 13
2.1.4 ULPs . 14
2.1.5 Fused multiply-add operations 15
2.1.6 Testing your computational environment 16
2.1.7 Floating-point arithmetic and proofs 17
2.1.8 Maple programs that compute double-precision

approximations . 17
2.2 Redundant Number Systems . 19

2.2.1 Signed-digit number systems 19
2.2.2 Radix-2 redundant number systems 21

I Algorithms Based on Polynomial Approximation and/or
Table Lookup, Multiple-Precision Evaluation of Functions 25

3 Polynomial or Rational Approximations 27
3.1 Least Squares Polynomial Approximations 28

3.1.1 Legendre polynomials . 29
3.1.2 Chebyshev polynomials . 29
3.1.3 Jacobi polynomials . 31

vi Contents

3.1.4 Laguerre polynomials . 31
3.1.5 Using these orthogonal polynomials in any interval 31

3.2 Least Maximum Polynomial Approximations 32
3.3 Some Examples . 33
3.4 Speed of Convergence . 39
3.5 Remez’s Algorithm . 41
3.6 Rational Approximations . 46
3.7 Actual Computation of Approximations 50

3.7.1 Getting “general” approximations 50
3.7.2 Getting approximations with special constraints 51

3.8 Algorithms and Architectures for the Evaluation of Polynomials . 54
3.8.1 The E-method . 57
3.8.2 Estrin’s method . 58

3.9 Evaluation Error Assuming Horner’s Scheme is Used 59
3.9.1 Evaluation using floating-point additions and

multiplications . 60
3.9.2 Evaluation using fused multiply-accumulate

instructions . 64
3.10 Miscellaneous . 66

4 Table-Based Methods 67
4.1 Introduction . 67
4.2 Table-Driven Algorithms . 70

4.2.1 Tang’s algorithm for exp(x) in IEEE floating-point arithmetic 71
4.2.2 ln(x) on [1, 2] . 72
4.2.3 sin(x) on [0, π/4] . 73

4.3 Gal’s Accurate Tables Method . 73
4.4 Table Methods Requiring Specialized Hardware 77

4.4.1 Wong and Goto’s algorithm for computing
logarithms . 78

4.4.2 Wong and Goto’s algorithm for computing
exponentials . 81

4.4.3 Ercegovac et al.’s algorithm 82
4.4.4 Bipartite and multipartite methods 83
4.4.5 Miscellaneous . 87

5 Multiple-Precision Evaluation of Functions 89
5.1 Introduction . 89
5.2 Just a Few Words on Multiple-Precision Multiplication 90

5.2.1 Karatsuba’s method . 91
5.2.2 FFT-based methods . 92

5.3 Multiple-Precision Division and Square-Root 92
5.3.1 Newton–Raphson iteration 92

Contents vii

5.4 Algorithms Based on the Evaluation of
Power Series . 94

5.5 The Arithmetic-Geometric (AGM) Mean 95
5.5.1 Presentation of the AGM . 95
5.5.2 Computing logarithms with the AGM 95
5.5.3 Computing exponentials with the AGM 98
5.5.4 Very fast computation of trigonometric functions 98

II Shift-and-Add Algorithms 101

6 Introduction to Shift-and-Add Algorithms 103
6.1 The Restoring and Nonrestoring Algorithms 105
6.2 Simple Algorithms for Exponentials and Logarithms 109

6.2.1 The restoring algorithm for exponentials 109
6.2.2 The restoring algorithm for logarithms 111

6.3 Faster Shift-and-Add Algorithms 113
6.3.1 Faster computation of exponentials 113
6.3.2 Faster computation of logarithms 119

6.4 Baker’s Predictive Algorithm . 122
6.5 Bibliographic Notes . 131

7 The CORDIC Algorithm 133
7.1 Introduction . 133
7.2 The Conventional CORDIC Iteration 134
7.3 Scale Factor Compensation . 139
7.4 CORDIC With Redundant Number Systems and a Variable Factor 141

7.4.1 Signed-digit implementation 142
7.4.2 Carry-save implementation 143
7.4.3 The variable scale factor problem 143

7.5 The Double Rotation Method . 144
7.6 The Branching CORDIC Algorithm 146
7.7 The Differential CORDIC Algorithm 150
7.8 Computation of cos−1 and sin−1 Using CORDIC 153
7.9 Variations on CORDIC . 156

8 Some Other Shift-and-Add Algorithms 157
8.1 High-Radix Algorithms . 157

8.1.1 Ercegovac’s radix-16 algorithms 157
8.2 The BKM Algorithm . 162

8.2.1 The BKM iteration . 162
8.2.2 Computation of the exponential function (E-mode) 162
8.2.3 Computation of the logarithm function (L-mode) 166

viii Contents

8.2.4 Application to the computation of elementary
functions . 167

III Range Reduction, Final Rounding and Exceptions 171

9 Range Reduction 173
9.1 Introduction . 173
9.2 Cody and Waite’s Method for Range Reduction 177
9.3 Finding Worst Cases for Range Reduction? 179

9.3.1 A few basic notions on continued fractions 179
9.3.2 Finding worst cases using continued fractions 180

9.4 The Payne and Hanek Reduction Algorithm 184
9.5 The Modular Range Reduction Algorithm 187

9.5.1 Fixed-point reduction . 188
9.5.2 Floating-point reduction . 190
9.5.3 Architectures for modular reduction 190

9.6 Alternate Methods . 191

10 Final Rounding 193
10.1 Introduction . 193
10.2 Monotonicity . 194
10.3 Correct Rounding: Presentation of the Problem 195
10.4 Some Experiments . 198
10.5 A “Probabilistic” Approach to the Problem 198
10.6 Upper Bounds on m . 202
10.7 Obtained Worst Cases for Double-Precision 203

10.7.1 Special input values . 203
10.7.2 Lefèvre’s experiment . 203

11 Miscellaneous 217
11.1 Exceptions . 217

11.1.1 NaNs . 218
11.1.2 Exact results . 218

11.2 Notes on xy . 220
11.3 Special Functions, Functions of Complex Numbers 222

12 Examples of Implementation 225
12.1 Example 1: The Cyrix FastMath Processor 225
12.2 The INTEL Functions Designed for the Itanium Processor 226

12.2.1 Sine and cosine . 227
12.2.2 Arctangent . 228

12.3 The LIBULTIM Library . 229
12.4 The CRLIBM Library . 229

12.4.1 Computation of sin(x) or cos(x) (quick phase) 230

Contents ix

12.4.2 Computation of ln(x) . 230
12.5 SUN’s LIBMCR Library . 231
12.6 The HP-UX Compiler for the Itanium Processor 231

Bibliography 233

Index 261

List of Figures

2.1 Different possible roundings of a real number x in a radix-r
floating-point system. In this example, x > 0 12

2.2 Above is the set of the nonnegative, normalized floating-point
numbers (assuming radix 2 and 2-bit mantissas). In that set, a−b
is not exactly representable, and the floating-point computation
of a− b will return 0 in the round to nearest, round to 0 or round
to −∞ rounding modes. Below, the same set with subnormal
numbers. Now, a− b is exactly representable, and the properties
a �= b and a � b �= 0 (where a � b denotes the computed value of
a − b) become equivalent . 14

2.3 Computation of 153120 + 112616 using Avizienis’ algorithm in
radix r = 10 with a = 6 . 21

2.4 A full adder (FA) cell. From three bits x, y, and z, it computes
two bits t and u such that x + y + z = 2t + u 22

2.5 A carry-save adder (bottom), compared to a carry-propagate
adder (top) . 22

2.6 A PPM cell. From three bits x, y, and z, it computes two bits t
and u such that x + y − z = 2t − u 23

2.7 A borrow-save adder . 23

2.8 A structure for adding a borrow-save number and a
nonredundant number (bottom), compared to a carry-propagate
subtractor (top) . 23

3.1 Graph of the polynomial T7(x) . 30

3.2 The exp(−x2) function and its degree-3 minimax approximation
on the interval [0, 3] (dashed line). There are five values where
the maximum approximation error is reached with alternate
signs . 33

3.3 The difference between exp(−x2) and its degree-3 minimax
approximation on the interval [0, 3] 34

xii List of Figures

3.4 The minimax polynomial approximations of degrees 3 and 5
to sin(x) in [0, 4π]. Notice that sin(x) − p3(x) has 6 extrema.
From Chebyshev’s theorem, we know that it must have at least
5 extrema . 34

3.5 Errors of various degree-2 approximations to ex on [−1, 1].
Legendre approximation is better on average, and Chebyshev
approximation is close to the minimax approximation 37

3.6 Comparison of Legendre, Chebyshev, and minimax degree-2
approximations to |x|. 39

3.7 Number of significant bits (obtained as − log2(error)) of the
minimax polynomial approximations to various functions on
[0, 1] . 40

3.8 Difference between P (1)(x) and sin(exp(x)) on [0, 2] 44
3.9 Difference between P (2)(x) and sin(exp(x)) on [0, 2] 45

4.1 An incorrectly rounded result deduced from a 56-bit value that is
within 0.5 ULPs from the exact result. We assume that rounding
to the nearest was desired . 80

4.2 The computation of f(A) using Ercegovac et al.’s algorithm . . . 84
4.3 The bipartite method is a piecewise linear approximation

for which the slopes of the approximating straight lines are
constants in intervals sharing the same value of x0 86

6.1 Value of E3 vs. t . 106
6.2 Value of E5 vs. t . 106
6.3 Value of E11 vs. t . 107
6.4 The restoring algorithm. The weights are either unused or

put on the pan that does not contain the loaf of bread being
weighed. In this example, the weight of the loaf of bread is
w1 + w3 + w4 + w5 + · · · . 107

6.5 The nonrestoring algorithm. All the weights are used, and they
can be put on both pans. In this example, the weight of the loaf
of bread is w1 − w2 + w3 + w4 + w5 − w6 + · · · 110

6.6 Robertson diagram of the “redundant exponential” algorithm . 114
6.7 Robertson diagram for the logarithm. The three straight lines

give λn+1 = λn(1 + dn2−n) + dn2−n for dn = −1, 0, 1 120

7.1 One iteration of the CORDIC algorithm 136
7.2 Robertson diagram of CORDIC 141
7.3 One iteration of the double rotation method 145
7.4 Computation of sign(ẑi) in the differential CORDIC algorithm

(rotation mode) [95] . 151

List of Figures xiii

8.1 Robertson diagram of the radix-16 algorithm for computing
exponentials. Tk is the smallest value of Ln for which the value
dn = k is allowable. Uk is the largest one 158

8.2 The Robertson diagram for Lx
n [18] 163

8.3 The Robertson diagram for Ly
n [18] 165

8.4 Computation of lengths and normalization [18] 169

9.1 The splitting of the digits of 4/π in Payne and Hanek’s reduction
method . 185

10.1 Ziv’s multilevel strategy . 197

List of Tables

2.1 Basic parameters of various floating-point systems (n is the size
of the mantissa, expressed in number of digits in the radix
of the computer system). The “+1” is due to the hidden bit
convention. The values concerning IEEE-754-R may change: the
standard is under revision. The binary 32 and binary 64 formats
of IEEE-754-R are the same as the single- and double-precision
formats of IEEE-754 . 10

3.1 Maximum absolute errors for various degree-2 polynomial
approximations to ex on [−1, 1] 37

3.2 Maximum absolute errors for various degree-2 polynomial
approximations to |x| on [−1, 1] 39

3.3 Number of significant bits (obtained as − log2(absolute error))
of the minimax approximations to various functions on [0, 1] by
polynomials of degree 2 to 8. The accuracy of the approximation
changes drastically with the function being approximated 40

3.4 Absolute errors obtained by approximating the square root on
[0, 1] by a minimax polynomial 46

3.5 Latencies of some floating-point instructions in double-
precision for various processors, after [87, 285, 286, 101] 48

3.6 Errors obtained when evaluating frac1 (x), frac2 (x), or frac3 (x)
in double-precision at 500000 regularly-spaced values between
0 and 1 . 49

4.1 Minimax approximation to sin(x), x ∈ [0, π/4], using one
polynomial. The errors given here are absolute errors 68

4.2 Minimax approximation to sin(x), x ∈ [0, π/4], using two
polynomials. The errors given here are absolute errors 68

4.3 Minimax approximation to sin(x), x ∈ [0, π/4], using four
polynomials. The errors given here are absolute errors 68

4.4 Absolute error of the minimax polynomial approximations to
some functions on the interval [0, a]. The error decreases rapidly
when a becomes small . 69

xvi List of Tables

4.5 Degrees of the minimax polynomial approximations that are
required to approximate some functions with error less than
10−5 on the interval [0, a]. When a becomes small, a very low
degree suffices . 69

4.6 Approximations to ln ((1 + r/2)/(1 − r/2)) on [0, 1/128] 73
4.7 Approximations to sin(r) − r on [−1/32, 1/32] 74
4.8 Approximations to cos(r) − 1 on [−1/32, 1/32] 74

5.1 The first terms of the sequence pk generated by the
Brent–Salamin algorithm. That sequence converges to π
quadratically . 98

5.2 First terms of the sequence xn generated by the NR iteration for
computing exp(a), given here with a = 1 and x0 = 2.718. The
sequence goes to e quadratically 98

5.3 Time complexity of the evaluation of some functions in
multiple-precision arithmetic (extracted from Table 1 of [35]).
M(n) is the complexity of n-bit multiplication 100

6.1 The filing of the different weights 104
6.2 First 10 values and limit values of 2nsn, 2nrn, 2nAn, 2nBn, 2nAn,

and 2nBn . 115
6.3 First values and limits of 2nsn, 2nrn, 2nAn, 2nBn, 2nCn, and

2nDn . 121
6.4 The first digits of the first 15 values wi = ln(1 + 2−i). As i

increases, wi gets closer to 2−i . 123
6.5 Comparison among the binary representations and the

decompositions (given by the restoring algorithm) on the
discrete bases ln(1 + 2−i) and arctan 2−i for some values of x.
When x is very small the different decompositions have many
common terms . 123

6.6 Table obtained for n = 4 using our Maple program 130

7.1 Computability of different functions using CORDIC 138
7.2 Values of σ(n) in Eq. (7.11) and Table 7.1 139
7.3 First values αi that can be used in Despain’s scale factor

compensation method . 140
7.4 First four values of 2nrn, 2nAn and 2nBn 142

8.1 First four values of 16n × mink=−10...9

(
Uk

n − T k+1
n

)
and 16n ×

maxk=−10...9

(
Uk

n − T k+1
n

)
, and limit values for n → ∞ 159

8.2 The interval 16n ×
[
T k

n , Uk
n

]
, represented for various values of n

and k. The integer k always belongs to that interval 160

List of Tables xvii

8.3 Convenient values of � for x ∈ [0, ln(2)]. They are chosen such
that x − � ∈ [T−8

2 , U8
2] and a multiplication by exp(�) is easily

performed . 161

9.1 sin(x) for x = 1022 [244]. It is worth noticing that x is exactly
representable in the IEEE-754 double-precision format (1022 is
equal to 4768371582031250× 221). With a system working in the
IEEE-754 single-precision format, the correct answer would be
the sine of the floating-point number that is closest to 1022; that
is, sin(9999999778196308361216) ≈ −0.73408. As pointed out
by the authors of [244, 245], the values listed in this table were
contributed by various Internet volunteers, so they are not the
official views of the listed computer system vendors, the author
of [244, 245] or his employer, nor are they those of the author of
this book . 176

9.2 sin(x), computed for x = 22 on several computing systems.
Some of these figures are picked up from [68], the other ones
have been computed on more recent systems 177

9.3 Worst cases for range reduction for various floating-point
systems and reduction constants C 183

10.1 Number of occurrences of various k for sin(x) 200

10.2 Upper bounds on m for various values of n 202

10.3 Some results for small values in double-precision, assuming
rounding to the nearest. These results make finding worst cases
useless for negative exponents of large absolute value 204

10.4 Some results for small values in double-precision, assuming
rounding towards −∞. These results make finding worst cases
useless for negative exponents of large absolute value. x− is the
largest FP number strictly less than x 205

10.5 Worst cases for the exponential function in the full
double-precision range (the input values between −2−53

and 2−52 are so small that the results given in Tables 10.3 and
10.4 can be applied, so they are omitted here) [208]. Exponentials
of numbers less than ln(2−1074) are underflows. Exponentials
of numbers larger than ln(21024) are overflows. 159 means “a
chain of 59 consecutive ones” . 206

10.6 Worst cases for the natural (radix e) logarithm in the full
double-precision range [208] . 207

10.7 Worst cases for the radix-2 exponential function 2x in the full
double-precision range. Integral values of x are omitted [208] . . 208

xviii List of Tables

10.8 Worst cases for log2(x) in the full double-precision range. Values
of x that are integer powers of 2 are omitted. For values larger
than 1/2, we only give one of the worst cases: the one with
exponent 512. The other ones have the same mantissa, and
exponents between 513 and 1023. For values smaller than 1/2,
we also give one of the worst cases only: the one with exponent
−513. The other ones have the same mantissa and exponents
between −1024 and −514 [208] 209

10.9 Worst cases for sin(x) in double-precision in the range [2−24, 2+
4675
8192] . 210

10.10 Worst cases for the arc-sine function in double-precision in the
range [sin(2−24), 1] . 211

10.11 Worst cases for cos(x) in double-precision in the range
[2−25, 12867/8192]. 12867/8192 is slightly less than π/2. The
input values less than 2−25 are easily handled 212

10.12 Worst case for arccos(x) in double-precision in
[cos(12867/8192), 1 − 2−53] ≈ [0.0001176, 1 − 2−53]. It must be
noticed that 1 − 2−53 is the largest FP number less than 1 213

10.13 Worst cases for tan(x) in double-precision in [2−25, arctan(2)],
with arctan(2) ≈ 1.107148 . 214

10.14 Worst cases for arctan(x) in double-precision in [tan(2−25), 2] . . 215

11.1 Error, expressed in ulps, obtained by computing xy as
exp(y ln(x)) for various x and y assuming that exp and ln are
exactly rounded to the nearest, in IEEE-754 double-precision
arithmetic. The worst case found during our experimentations
was 1200.13 ulps for 34823062188649005575/35184372088832, but it is
very likely that there are worse cases 221

Preface to the Second Edition

Since the publication of the first edition of this book, many authors have in-
troduced new techniques or improved existing ones. Examples are the bipartite
table method, originally suggested by DasSarma and Matula in a seminal paper
that led Schulte and Stine, and De Dinechin and Tisserand to design interesting
improvements, the work on formal proofs of floating-point algorithms by (among
others) John Harrison, David Russinoff, Laurent Théry, Marc Daumas and Sylvie
Boldo, the design of very accurate elementary function libraries by people such as
Peter Markstein, Shane Story, Peter Tang, David Defour and Florent de Dinechin,
and the recently obtained results on the table maker’s dilemma by Vincent Lefèvre.
I therefore decided to present these new results in a new edition. Also, several
colleagues and readers told me that a chapter devoted to multiple-precision
arithmetic was missing in the previous edition. Chapter 5 now deals with that
topic.

Computer arithmetic is changing rapidly. While I am writing these lines,
the IEEE-754 Standard for Floating Point Arithmetic is being revised.1 Various
technological evolutions have a deep impact on determining which algorithms
are interesting and which are not. The complexity of the architecture of recent
processors must be taken into account if we wish to design high-quality function
software: we cannot ignore the notions of pipelining, memory cache and branch
prediction and still write efficient software. Also, the possible availability of a
fused multiply-accumulate instruction is an important parameter to consider
when choosing an elementary function algorithm.

A detailed presentation of the contents is given in the introduction. After
a preliminary chapter that presents a few notions on computer arithmetic, the
book is divided into three major parts. The first part consists of three chapters
and is devoted to algorithms using polynomial or rational approximations of the
elementary functions and, possibly, tables. The last chapter of the first part deals
with multiple-precision arithmetic. The second part consists of three chapters,
and deals with “shift-and-add” algorithms, i.e., hardware-oriented algorithms
that use additions and shifts only. The last part consists of four chapters. The
first two chapters discuss issues that are important when accuracy is a major
goal (namely, range reduction, monotonicity and correct rounding). The third

1For information, see http://754r.ucbtest.org/.

xx Preface

one mainly deals with exceptions. The last chapter gives some examples of
implementation.

A BIBTEX database containing the references in the bibliography, the Maple
programs presented in the book and possible corrections are available over the
Internet on the web page of the book:

www.springeronline.com/0-8176-4372-9.

Acknowledgments

I would like to thank all those who suggested corrections and improvements
to the first edition, or whose comments helped me to prepare this one. Dis-
cussions with Nick Higham, John Harrison and William Kahan have been
enlightening. Shane Story, Paul Zimmermann, Vincent Lefèvre, Brian Shoe-
maker, Timm Ahrendt, Nelson H. F. Beebe, Tom Lynch suggested many cor-
rections/modifications of the first edition. Nick Higham, Paul Zimmermann,
Vincent Lefèvre, Florent de Dinechin, Sylvie Boldo, Nicolas Brisebarre, Miloš
Ercegovac and Nathalie Revol read preliminary versions of this one. Work-
ing and conversing everyday with Jean-Luc Beuchat, Catherine Daramy, Marc
Daumas, David Defour and Arnaud Tisserand has significantly deepened my
knowledge of floating-point arithmetic and function calculation.

I owe a big “thank you” to Michel Cosnard, Miloš Ercegovac, Peter
Kornerup and Tomas Lang. They helped me greatly when I was a young re-
searcher, and with the passing years they have become good friends.

Working with Birkhäuser’s staff on the publication of this edition and the
previous one has been a pleasure. I have been impressed by the quality of the
help they provide their authors.

Since the writing of the first edition, my life has changed a lot: two won-
derful daughters, Émilie and Camille, are now enlightening my existence. This
book is dedicated to them and to my wife Marie Laure.

This second edition was typeset in LATEX on a DELL laptop. I used the book
document style with a few modifications, and the Xfig drawing tool or Maple
for most figures. The text editor I used is the excellent WinEdt software, by
Aleksander Simonic (see http://www.winedt.com).

Jean-Michel Muller
Lyon

April 2005

Preface to the First Edition

The elementary functions (sine, cosine, exponentials, logarithms...) are the most
commonly used mathematical functions. Computing them quickly and accu-
rately is a major goal in computer arithmetic. This book gives the theoretical
background necessary to understand and/or build algorithms for computing
these functions, presents algorithms (hardware-oriented as well as software-
oriented), and discusses issues related to the accurate floating-point implemen-
tation of these functions. My purpose was not to give “cooking recipes” that
allow to implement some given functions on some given floating-point sys-
tems, but to provide the reader with the knowledge that is necessary to build,
or adapt algorithms to his or her computing environment.

When writing this book, I have had in mind two different audiences: spe-
cialists, who will have to design floating-point systems (hardware or software
parts) or to do research on algorithms, and inquiring minds, who just want to
know what kind of methods are used to compute the math functions in cur-
rent computers or pocket calculators. Because of this, the book is intended to
be helpful as well for postgraduate and advanced undergraduate students in
computer science or applied mathematics as for professionals engaged in the
design of algorithms, programs or circuits that implement floating-point arith-
metic, or simply for engineers or scientists who want to improve their culture in
that domain. Much of the book can be understood with only a basic grounding
in computer science and mathematics: the basic notions on computer arithmetic
that are necessary to understand are recalled in the first chapter.

The previous books on the same topic (mainly Hart et al.’s book Computer
Approximation and Cody and Waite’s book Software Manual for the Elementary
Functions) contained many coefficients of polynomial or rational approxima-
tions of the elementary functions. I have included relatively few such coefficients
here, firstly to reduce the length of the book – since I also wanted to present the
shift-and-add algorithms –, and secondly because today it is very easy to ob-
tain them using Maple or a similar system: my primary concern is to explain
how they can be computed and how they can be used. Moreover, the previous
books on elementary functions essentially focused on software implementations
and polynomial or rational approximations, whereas now these functions are
frequently implemented (at least partially) in hardware, using different meth-
ods (table-based methods or shift-and-add algorithms, such as CORDIC): I have

xxii Preface

wanted to show a large spectrum of methods. Whereas some years ago a library
providing elementary functions with one or two incorrect bits only was consid-
ered adequate, current systems must be much more accurate. The next step will
be to provide correctly rounded functions (at least for some functions, in some
domains), i.e., the returned result should always be the “machine number” that
is closest to the exact result. This goal has already been reached by some im-
plementations in single precision. I try to show that it can be reached in higher
precisions.

Acknowledgments

Many people helped me during the process of writing this book. Many others
gave me, during enlightening conversations, some views on the problem that
deeply influenced me. It is not possible to cite everybody, but among those
persons, I would especially like to thank:

• Jean-Marc Delosme, Warren Ferguson, Tomas Lang, Steve Sommars, Nao-
fumi Takagi, Roger Woods and Dan Zuras, who volunteered to read parts
of this book and gave me good advice, and Charles Dunham, who pro-
vided me with interesting information;

• my former and current students Jean-Claude Bajard, Catherine Billet,
Marc Daumas, Yvan Herreros, Sylvanus Kla, Vincent Lefèvre Christophe
Mazenc, Xavier Merrheim (who invented the tale presented at the begin-
ning of Chapter 6), Arnaud Tisserand and Hong-Jin Yeh;

• the staff of the Computer Science Department and LIP laboratory at ENS
Lyon.

Working with Birkhäuser on the publication of this book was a pleasure.
And of course, I thank my wife, Marie Laure, to whom this book is dedi-

cated, for her patience and help during the preparation of the manuscript.
This book was typeset in LATEX on a SUN workstation and an Apple Mac-

intosh. I used the book document style. The text editors I used are Keheler’s
Alpha and GNU Emacs (Free Software Foundation).

Jean-Michel Muller
Lyon

March 1997

Chapter 1

Introduction

This book is devoted to the computation of the elementary functions. Here, we
call elementary functions the most commonly used mathematical functions: sin,
cos, tan, sin−1, cos−1, tan−1, sinh, cosh, tanh, sinh−1, cosh−1, tanh−1, exponentials,
and logarithms (we should merely say “elementary transcendental functions”:
from a mathematical point of view, 1/x is an elementary function as well as ex.
We do not deal with the basic arithmetic functions in this book). Theoretically,
the elementary functions are not much harder to compute than quotients: it was
shown by Alt [4] that these functions are equivalent to division with respect to
Boolean circuit depth. This means that, roughly speaking, a circuit can output
n digits of a sine, cosine, or logarithm in a time proportional to log n (see also
Okabe et al. [249], and Beame et al. [25]). For practical implementations, however,
it is quite different, and much care is necessary if we want fast and accurate
elementary functions.

This topic has already been dealt with by Cody and Waite [64], and Hart
et al. [160], but at times those functions were implemented in software only
and there was no standard for floating-point arithmetic. Since the Intel 8087
floating-point unit, elementary functions have sometimes been implemented,
at least partially, in hardware, a fact that induces serious algorithmic changes.
Furthermore, the emergence of high-quality arithmetic standards (such as the
IEEE-754 standard for floating-point arithmetic), and the decisive work of math-
ematicians and computer scientists such as W. Kahan, W. Cody, and H. Kuki
(see [2] for a review), have accustomed users to very accurate results (some
existing implementations are graded in [29]). Some years ago a library provid-
ing elementary functions with one or two incorrect bits only was considered
adequate [28], but current circuit or library designers must build algorithms
and architectures that are guaranteed to be much more accurate (at least for
general-purpose systems). Among the various properties that are desirable, one
can cite:

• speed;

• accuracy;

2 Chapter 1. Introduction

• reasonable amount of resource (ROM/RAM, silicon area used by a dedi-
cated hardware, even power consumption in some cases. . .);

• preservation of important mathematical properties such as monotonicity,
and symmetry. As pointed out by Silverstein et al. [287], monotonicity fail-
ures can cause problems in evaluating divided differences;

• preservation of the direction of rounding: for instance, if the active round-
ing mode is round towards −∞ (see Section 2.1.2), the returned result must
be less than or equal to the exact result. This is essential for implementing
interval arithmetic;

• range limits: getting a sine larger than 1 may lead to unpleasant surprises,
for instance, when computing [287]√

1 − sin2 x.

Let us deal with the problem of accuracy. The IEEE-754 standard for
floating-point arithmetic (see Section 2.1) greatly helped to improve the reli-
ability and portability of numerical software. And yet it says nothing about the
elementary functions. Concerning these functions, a standard cannot be widely
accepted if some implementations are better than the standard. This means that
when computing f(x) we must try to provide the “best possible” result, that
is, the exact rounding or correct rounding — see Chapter 2 for an explanation of
“correct rounding” — of the exact result (when that result exists), for all pos-
sible input arguments.1 This has already been mentioned in 1976 by Paul and
Wilson [257]:

The numerical result of each elementary function will be equal to the near-
est machine-representable value which best approximates (rounded or trun-
cated as appropriate) the infinite precision function value for that exact finite
precision argument for all possible machine-representable input operands
in the legal domain of the function.

As noticed byAgarwal et al. [2], correct rounding facilitates the preservation
of monotonicity and, in round-to-nearest mode, symmetry requirements. And
yet, for a few functions, correct rounding might prevent satisfying range limits
(see Chapter 10 for an example). Also, correctly rounded functions are much

1A usual objection to this is that most of the floating-point variables in a program are results
of computations and/or measurements; thus they are not exact values. Therefore, when the least
significant digit of such a floating-point number has a weight larger than π, its sine, cosine, or
tangent have no meaning at all. Of course, this will be frequently true, but my feeling is that the
designer of a circuit/library has no right to assume that the users are stupid. If someone wants
to compute the sine of a very large number, he or she may have a good reason for doing this and
the software/hardware must provide the best possible value.

Chapter 1. Introduction 3

more difficult to implement. They require very accurate intermediate computa-
tions. Consider for example the following number (represented in radix 2, with
the exponent in radix 10).

1.1110010001011001011001010010011010111111100101001101 × 2−10

This number is exactly representable in the IEEE-754 double-precision format
(see Chapter 2). Its radix-2 exponential is

53 bits︷ ︸︸ ︷
1.000000000101001111111100 · · · 0011 0

59 ones︷ ︸︸ ︷
111111111111 · · · 111111111111 010 · · ·

which is very close to the middle of two consecutive floating-point numbers:
deciding whether this value is above or below that middle (and hence, deciding
what value should be returned in round-to-nearest mode) requires a very careful
and accurate intermediate computation. A discussion on what could and/or
should be put in a standardization of mathematical function implementation in
floating-point arithmetic is given in [103].

There is another difference between this book and those previously pub-
lished which have dealt with the same topic: the latter have contained many
coefficients of polynomial and/or rational approximations of functions. Nowa-
days, software such as Maple2 [57] readily computes such coefficients with very
good accuracy, requiring a few minutes of CPU time on a PC or a workstation.
Therefore the goal of this book is to present various algorithms and to provide
the reader with the preliminary knowledge needed to design his or her own
software and/or hardware systems for evaluating elementary functions.

When designing such a system, three different cases can occur, depending
on the underlying arithmetic:

• the arithmetic operators are designed specifically for the elementary function
system;

• the accuracy of the underlying arithmetic is significantly higher than the
target accuracy of the elementary function system (for instance, single-
precision functions are programmed using double-precision arithmetic, or
double-precision functions are programmed using double-extended pre-
cision arithmetic);

• the underlying arithmetic is not significantly more accurate than the el-
ementary function system (this occurs when designing routines for the
highest available precision).

In the third case, the implementation requires much care if we wish to
achieve last-bit accuracy. Some table-based algorithms have been designed to
deal with this case.

2Maple is a registered trademark of Waterloo Maple Software.

4 Chapter 1. Introduction

Chapter 2 of this book outlines several elements of computer arithmetic
that are necessary to understand the following chapters. It is a brief introduction
to floating-point arithmetic and redundant number systems. The reader accus-
tomed to these topics can skip that chapter. However, that chapter cannot replace
a textbook on computer arithmetic: someone who has to implement an elemen-
tary function on a circuit or an FPGA may have to choose between different
addition/multiplication/division algorithms and architectures. Recent books
devoted to computer arithmetic have been written by Swartzlander [298, 299],
Koren [190], Omondi [250], Parhami [256], and Ercegovac and Lang [136]. Di-
vision and square-root algorithms and architectures are dealt with in a book
by Ercegovac and Lang [135]. The reader can also find useful information in
the proceedings of the IEEE Symposia on Computer Arithmetic, as well as in
journals such as the IEEE Transactions on Computers, the Journal of VLSI Signal
Processing, and the Journal of Parallel and Distributed Computing.

Aside from a few cases, the elementary functions cannot be computed ex-
actly. They must be approximated. Most algorithms consist either of evaluating
piecewise polynomial or rational approximations of the function being com-
puted, or of building sequences that converge to the result.

Part 1 deals with the algorithms that are based on polynomial or rational
approximation of the elementary functions, and/or tabulation of those func-
tions. The theory of the approximation of functions by polynomials or rational
functions goes back to the end of the 19th century. The only functions of one
variable that can be computed using a finite number of additions, subtractions,
and multiplications are polynomials. By adding division to the set of the al-
lowed basic operations, we can compute nothing more than rational functions.
As a consequence, it is natural to try to approximate the elementary functions by
polynomial or rational functions. Such approximations were used much before
the appearance of our modern electronic computers.

Accurate polynomial approximation to a function in a rather large interval
may require a polynomial of large degree. For instance, approximating function
ln(1 + x) in [−1/2,+1/2] with an error less than 10−8 requires a polynomial of
degree 12. This increases the computational delay and may also induce problems
of round-off error propagation, since many arithmetic operations need to be
performed (unless a somewhat higher precision is used for the intermediate
calculations). A solution to avoid these drawbacks is to use tables. Tabulating
a function for all possible input values can be done for small word lengths
(say, up to 16 bits). It cannot – at least with current technology –be done for
larger word lengths: with 32-bit floating-point numbers, 16G-bytes of memory
would be required for each function. For such word-lengths, one has to combine
tabulation and polynomial (or rational) approximation. The basic method when
computing f(x) (after a possible preliminary range reduction), is to first locate
in the table the value x0 that is closest to x. Following this, f(x) is taken as

f(x) = f(x0) + correction(x, x0),

Chapter 1. Introduction 5

where f(x0) is stored in the table, and correction(x, x0) — which is much smaller
than f(x0) — is approximated by a low-degree polynomial. There are many
possible compromises between the size of the table and the degree of the poly-
nomial approximation. Choosing a good compromise may require to take into
account the architecture of the target processor (in particular, the cache memory
size [101]). This kind of method is efficient and widely used in current systems,
but some care is required to obtain very good accuracy.

When very high accuracy is required (thousands to billions of bits), the
conventional methods are no longer efficient. One must use algorithms adapted
to multiple-precision arithmetic. The record holder at the time I am working on
this edition is probably Y. Kanada. His team from Tokyo University computed
the first 1, 241, 100, 000, 000 decimal digits of π in 2002, using the following two
formulas [12, 33]:

π = 48 arctan
1
49

+ 128 arctan
1
57

− 20 arctan
1

239
+ 48 arctan

1
110443

π = 176 arctan
1
57

+ 28 arctan
1

239
− 48 arctan

1
682

+ 96 arctan
1

12943
.

This required 600 hours of calculation on a parallel Hitachi computer with
64 processors.

Part 2 is devoted to the presentation of shift-and-add methods, also called
convergence methods. These methods are based on simple elementary steps, ad-
ditions and shifts (i.e., multiplications by a power of the radix of the number
system used), and date back to the 17th century. Henry Briggs (1561–1631), a
contemporary of Napier (who discovered the logarithms), invented an algo-
rithm that made it possible to build the first tables of logarithms. For instance,
to compute the logarithm of x in radix-2 arithmetic, numerous methods (includ-
ing that of Briggs, adapted to this radix) essentially consist of finding a sequence
dk = −1, 0, 1, such that

x
n∏

k=1

(1 + dk2−k) ≈ 1.

Then

ln(x) ≈ −
n∑

k=1

ln(1 + dk2−k).

The values ln(1+dk2−k) are precomputed and stored. Another method belong-
ing to the shift-and-add class is the CORDIC algorithm, introduced in 1959 by
J. Volder and then generalized by J. Walther. CORDIC has great historical im-
portance: as pointed out in [324], it has enabled pocket calculators to compute
most elementary functions, making tables and slide rules obsolete. Nowadays,
CORDIC is less frequently employed than table-based methods, but recent de-
velopments on “redundant CORDIC” algorithms might one day change this
situation. Moreover, CORDIC has a nice feature that is interesting for some

6 Chapter 1. Introduction

applications: it directly computes functions of more than two variables such as
rotations or lengths of 2-D vectors. Shift-and-add methods require less hardware
than the methods presented in Part 1. Yet, they may be slower, and they are less
versatile: they apply to some elementary functions only (i.e., functions f that
satisfy some algebraic property allowing us to easily deduce f(x + y) or f(xy)
from f(x) and f(y)), whereas the methods based on polynomial approximation
and/or tabulation can be used to design algorithms and architectures for any
continuous function.

Another important step when computing an elementary function is range
reduction. Most approximations of functions are valid in a small interval only. To
compute f(x) for any input value x, one must first find a number y such that f(x)
can easily be deduced from f(y) (or more generally from an associated function
g(y)), and such that y belongs to the interval where the approximation holds.
This operation is called range reduction, and y is called the reduced argument.
For many functions (especially the sine, cosine, and tangent functions), range
reduction must be performed cautiously, it may be the most important source
of errors.

The last part of this book deals with the problem of range reduction and
the problem of getting correctly rounded final results.

To illustrate some of the various concepts presented in this introduction,
let us look at an example. Assume that we use a radix-10 floating-point number
system3 with 4-digit mantissas, and suppose that we want to compute the sine
of x = 88.34.

The first step, range reduction, consists of finding a value x∗ belonging to
some interval I such that we have a polynomial approximation or a shift-and-
add algorithm for evaluating the sine or cosine function in I , and such that we
are able to deduce sin(x) from sin(x∗) or cos(x∗). In this example, assume that
I = [−π/4,+π/4]. The number x∗ is the only value x − kπ/2 (k is an integer)
that lies between −π/4 and +π/4. We can easily find k = 56, a consequence of
which is sin(x) = sin(x∗). After this, there are many various possibilities; let us
consider some of them.

1. We simply evaluate x∗ = x−56π/2 in the arithmetic of our number system,
π/2 being represented by its closest 4-digit approximation, namely, 1.571.
Assuming that the arithmetic operations always return correctly rounded-
to-the-nearest results, we get X∗

1 = 0.3640. This gives one significant digit
only, since the exact result is x∗ = 0.375405699485789 · · ·. Obviously, such
an inaccurate method should be prohibited.

2. Using more digits for the intermediate calculations, we obtain the 4-digit
number that is closest to x∗, namely, X∗

2 = 0.3754.

3Of course, in this book, we mainly focus on radix-2 implementations, but radix 10 leads to
examples that are easier to understand. Radix 10 is also frequently used in pocket calculators,
and will be considered in the revision of the IEEE-754 Standard for floating-point arithmetic.

Chapter 1. Introduction 7

3. To make the next step more accurate, we compute an 8-digit approximation
of x∗; that is, X∗

3 = 0.37540570.

4. To make the next step even more accurate, we compute a 10-digit approx-
imation of x∗; that is, X∗

4 = 0.3754056995.

During the second step, we evaluate sin(x∗) using a polynomial approxi-
mation, a table-based method, or a shift-and-add algorithm. We assume that, to
be consistent, we perform this approximation with the same accuracy as that of
the range reduction.

1. From X∗
1 there is no hope of getting an accurate result: sin(X∗

1) equals
0.3560 · · ·, whereas the correct result is sin(x∗) = 0.3666500053966 · · ·.

2. From X∗
2 , we get 0.3666. It is not the correctly rounded result.

3. FromX∗
3 , we get 0.366650006. If we assume an error bounded by 0.5 × 10−8

from the polynomial approximation and the round-off error due to the
evaluation of the polynomial, and an error bounded by the same value
from the range reduction, the global error committed when approximating
sin(x∗)by the computed value may be as large as10−8. This does not suffice
to round-off the result correctly: we only know that the exact result belongs
to the interval [0.366649996, 0.366650016].

4. From X∗
4 , we get 0.36665000541. If we assume an error bounded by

0.5 × 10−10 from the polynomial approximation and the possible round-
off error due to the evaluation of the polynomial, and an error bounded
by the same value from the range reduction, the global error committed
when approximating sin(x∗) by the computed value is bounded by 10−10.
From this we deduce that the exact result is greater than 0.3666500053;
we can now give the correctly rounded result, namely, 0.3667.

Although frequently overlooked, range reduction is the most critical point
when trying to design very accurate libraries.

The techniques presented in this book will of course be of interest for the
implementer of elementary function libraries or circuits. They will also help
many programmers of numerical applications. If you need to evaluate a “com-
pound” function such as f(x) = exp(

√
x2 + 1) in a given domain (say [0, 1])

only a few times and if very high accuracy is not a big issue, then it is certainly
preferable to use the exp and √ functions available on the mathematical library
of your system. And yet, if the same function is computed a zillion times in a
loop and/or if it must be computed as accurately as possible, it might be bet-
ter to directly compute a polynomial approximation to f using for instance the
methods given in Chapter 3.

Chapter 2

Some Basic Things About
Computer Arithmetic

2.1 Floating-Point Arithmetic

The aim of this section is to provide the reader with some basic concepts of
floating-point arithmetic, and to define notations that are used throughout the
book. For further information, the reader is referred to Goldberg’s paper [152],
which gives a good survey of the topic, Kahan’s lecture notes [182], which offer
interesting and useful information, and Overton’s [252] and Higham’s [165]
books. Further information can be found in [39, 66, 73, 74, 136, 157, 183, 190,
195, 250, 256, 320, 325]. Here we mainly focus on the IEEE-754 standard [5]
for radix-2 floating-point arithmetic. The IEEE standard (and its follower, the
IEEE-854 radix-independent standard [176]) was a key factor in improving the
quality of the computational environment available to programmers. Before
the standard, floating-point arithmetic was a mere set of cooking recipes that
sometimes worked well and sometimes did not work at all.1 At the time I am
preparing the second edition of this book, the IEEE Standard for floating-point
arithmetic is under revision.2

2.1.1 Floating-point formats

Definition 1 In a floating-point system of radix (or base) r, mantissa length n, and
exponent range Emin . . . Emax, a number t is represented by a mantissa, or significand
Mt = t0.t1t2 · · · tn−1 which is an n-digit number in radix r, satisfying 0 ≤ Mt < r, a
sign st = ±1, and an exponent Et, Emin ≤ Et ≤ Emax, such that

t = st × Mt × rEt .

1We should mention a few exceptions, such as some HP pocket calculators and the Intel 8087
co-processor, that were precursors of the standard.

2See http://754r.ucbtest.org/.

10 Chapter 2. Some Basic Things About Computer Arithmetic

System r n Emin Emax max. value

DEC VAX 2 24 -128 126 1.7 · · · × 1038

(D format) 2 56 -128 126 1.7 · · · × 1038

HP 28, 48G 10 12 -500 498 9.9 · · · × 10498

IBM 370 16 6 (24 bits) -65 62 7.2 · · · × 1075

and 3090 16 14 (56 bits) -65 62 7.2 · · · × 1075

IEEE-754 2 23+1 -126 127 3.4 · · · × 1038

2 52+1 -1022 1023 1.8 · · · × 10308

IEEE-754-R
“binary 128”

2 112+1 -16382 16383 1.2 · · · × 104932

IEEE-754-R
“decimal 64”

10 16 -383 384 9.999 · · · 9 × 10384

Table 2.1: Basic parameters of various floating-point systems (n is the size of the man-
tissa, expressed in number of digits in the radix of the computer system). The “+1” is
due to the hidden bit convention. The values concerning IEEE-754-R may change: the
standard is under revision. The binary 32 and binary 64 formats of IEEE-754-R are the
same as the single- and double-precision formats of IEEE-754.

For accuracy reasons it is frequently required that the floating-point representa-
tions be normalized, that is, that the mantissas be greater than or equal to 1. This
requires a special representation for the number zero.

An interesting consequence of that normalization, for radix 2, is that the
first mantissa (or significand) digit of a floating-point nonzero number must
always be “1.” Therefore there is no need to store it, and in many computer
systems, it is actually not stored (this is called the “hidden bit” or “implicit bit”
convention). Table 2.1 gives the basic parameters of the floating-point systems
that have been implemented in various machines. Those figures have been taken
from references [165, 182, 190, 250]. For instance, the largest representable finite
number in the IEEE-754 double-precision format [5] is(

2 − 2−52
)

× 21023 ≈ 1.7976931348623157 × 10308

and the smallest positive normalized number is

2−1022 ≈ 2.225073858507201 × 10−308.

Arithmetic based on radix 10 is used in pocket calculators3. Also, it is still
used in financial calculations, and it remains an object of study [76]. A Russian

3A major difference between computers and pocket calculators is that usually computers do
much computation between input and output of data, so that the time needed to perform a radix

2.1. Floating-Point Arithmetic 11

computer named SETUN [51] used radix 3 with digits −1, 0 and 1 (this is called
the balanced ternary system). It was built4 at Moscow University, during the
1960s [187]. Almost all other current computing systems use base 2. Various
studies [39, 66, 195] have shown that radix 2 with the hidden bit convention
gives better accuracy than all other radices (by the way, this does not imply that
operations — e.g., divisions — cannot benefit from being done in a higher radix
inside the arithmetic operators).

2.1.2 Rounding modes

Let us define a machine number to be a number that can be exactly represented in
the floating-point system under consideration. In general, the sum, the product,
and the quotient of two machine numbers is not a machine number and the
result of such an arithmetic operation must be rounded.

In a floating-point system that follows the IEEE-754 standard, the user can
choose an active rounding mode from:

• rounding towards −∞: ∇(x) is the largest machine number less than or
equal to x;

• rounding towards +∞: ∆(x) is the smallest machine number greater than
or equal to x;

• rounding towards 0: Z(x) is equal to ∇(x) if x ≥ 0, and to ∆(x)
if x < 0;

• rounding to the nearest: N (x) is the machine number that is the closest to
x (with a special convention if x is exactly between two machine numbers:
the chosen number is the “even” one, i.e., the one whose last mantissa bit
is a zero).

This is illustrated using the example in Figure 2.1.
If the active rounding mode is denoted by �, and u and v are machine

numbers, then the IEEE-754 standard [5, 80] requires that the obtained result
should always be � (u�v) when computing u�v (� is +, −, ×, or ÷). Thus the
system must behave as if the result were first computed exactly, with infinite
precision, and then rounded. Operations that satisfy this property are called
“correctly rounded” or “exactly rounded.” There is a similar requirement for

conversion is negligible compared to the whole processing time. If pocket calculators used radix
2, they would perform radix conversions before and after almost every arithmetic operation.
Another reason for using radix 10 in pocket calculators is the fact that many simple decimal
numbers such as 0.1 are not exactly representable in radix 2.

4See http://www.icfcst.kiev.ua/MUSEUM/PHOTOS/setun-1.html.

12 Chapter 2. Some Basic Things About Computer Arithmetic

∆(x)

�
�
�
���

Z(x)
N (x)
∇(x)

�
�
���

x

�
�

rk

�

�

Figure 2.1: Different possible roundings of a real number x in a radix-r floating-point
system. In this example, x > 0.

the square root. Such a requirement has a number of advantages:

• it leads to full compatibility5 between computing systems: the same pro-
gram will give the same values on different computers;

• many algorithms can be designed that use this property. Examples include
performing arbitrary precision arithmetic [263], implementing “distil-
lation” (i.e., obtaining the exact sum of several floating-point num-
bers) [181, 262, 263], or making decisions in computational geometry;

• one can easily implement interval arithmetic [196, 197, 233], or more gener-
ally one can get lower or upper bounds on the exact result of a sequence
of arithmetic operations.

A very useful result that can be proved assuming correct rounding is the
following algorithm (the first ideas that underlie it go back to Møller [231]).

Theorem 1 (Fast2Sum algorithm) (Theorem C of [187], page 236). Assume the
radix r of the floating-point system being considered is less than or equal to 3, and
that the used arithmetic provides correct rounding with rounding to the nearest. Here
N (x) means x rounded to the nearest. Let a and b be floating-point numbers, and as-
sume that the exponent of a is larger than or equal to that of b. The following algorithm
computes two floating-point numbers s and t that satisfy:

• s + t = a + b exactly;

• s is the floating-point number that is closest to a + b.

5At least in theory: some compilers have a regrettable tendency to change the order of execution
of operations for the sake of optimization. For more information on that problem, see Kahan’s
lecture notes [182].

2.1. Floating-Point Arithmetic 13

Algorithm 1 (Fast2Sum(a,b))

s := N (a + b);
z := N (s − a);
t := N (b − z).

Unfortunately, there is no correct rounding requirement for the elementary
functions, probably because it has been believed for many years that correct
rounding of the elementary functions would be much too expensive. We an-
alyze this problem in Chapter 10. Another frequently used notion is faithful
rounding: a function is faithfully rounded if the returned result is always one of
the two floating-point numbers that surround the exact result, and is equal to
the exact result whenever this one is exactly representable. Faithful rounding
cannot rigourously be called a rounding since it is not a deterministic function.

2.1.3 Subnormal numbers and exceptions

In the IEEE-754 floating-point standard, numbers are normalized unless they are
very small. Subnormal numbers (also called denormalized numbers) are nonzero
numbers with a non-normalized mantissa and the smallest possible exponent
(i.e., the exponent used for representing zero). This allows underflow to be
gradual (see Figure 2.2). The minimum subnormal positive number in the IEEE-
754 double-precision floating-point format is

2−1074 ≈ 4.94065645841246544 × 10−324.

In a floating-point system with correct rounding and subnormal numbers,
the following theorem holds.

Theorem 2 (Sterbenz Lemma) In a floating-point system with correct rounding and
subnormal numbers, if x and y are floating-point numbers such that

x/2 ≤ y ≤ 2x,

then x − y will be computed exactly.

That result is useful when computing accurate error bounds for some ele-
mentary function algorithms.

The IEEE-754 standard also defines special representations for exceptions:

• NaN (Not a Number) is the result of an invalid arithmetic operation such
as

√−5, ∞/∞, +∞ + (−∞), . . . ;

• ±∞ can be the result of an overflow, or the exact result of a division by
zero; and

14 Chapter 2. Some Basic Things About Computer Arithmetic

0 2Emin 2Emin+1 2Emin+2

0 2Emin 2Emin+1 2Emin+2

aa − b b

aa − b b

Figure 2.2: Above is the set of the nonnegative, normalized floating-point numbers
(assuming radix 2 and 2-bit mantissas). In that set, a − b is not exactly representable,
and the floating-point computation of a− b will return 0 in the round to nearest, round
to 0 or round to −∞ rounding modes. Below, the same set with subnormal numbers.
Now, a− b is exactly representable, and the properties a �= b and a� b �= 0 (where a� b
denotes the computed value of a − b) become equivalent.

• ±0: there are two signed zeroes that can be the result of an underflow, or
the exact result of a division by ±∞.

The reader is referred to [182] for an in-depth discussion on these topics.
Subnormal numbers and exceptions must not be neglected by the designer of an
elementary function circuit and/or library. They may of course occur as input
values, and the circuit/library must be able to produce them as output values
when needed.

2.1.4 ULPs

If x is exactly representable in a floating-point format and is not an integer power
of the radix r, the term ulp (x) (for unit in the last place) denotes the magnitude
of the last mantissa digit of x. That is, if,

x = ±x0.x1x2 · · ·xn−1 × rEx

then ulp (x) = rEx−n+1. Defining ulp (x) for all reals x (and not only for
the floating-point numbers) is desirable, since the error bounds for functions
frequently need to be expressed in terms of ulps. And yet, as noticed by

2.1. Floating-Point Arithmetic 15

Harrison [157], there are several incompatible definitions in the literature (they
differ near the powers of r), and they sometimes have counterintuitive prop-
erties. In this edition, I will follow Harrison’s definition, which slightly differs
from the definition I gave in the first edition of this book. The only modifica-
tion to Harrison’s definition is the handling of numbers larger than the largest
finite floating-point number. See [237] for a discussion of various definitions of
function ulp (x) and their properties.

Definition 2 (Unit in the last place [157, 237]) If x lies between two finite con-
secutive floating-point numbers a and b without being equal to one of them, then
ulp (x) = |b − a|, otherwise ulp (x) is the distance between the two finite floating-
point numbers nearest x.

The major advantage of this definition is that in all cases (even the most
tricky), rounding to nearest corresponds to an error of at most 1/2 ulp of the
real value. This definition assumes that x is a real number. If x is a floating-
point number we must add the requirement ulp (NaN) = NaN, as suggested
by Kahan.

2.1.5 Fused multiply-add operations

Some processors (e.g., the IBM PowerPC or the Intel/HP Itanium [83]) have a
fused multiply-add (FMA, or fused multiply-accumulate, or fused MAC) instruction,
that allows to compute ax±b, where a, x and b are floating-point numbers, with
one final rounding only. Such an instruction may be extremely helpful for the
designer of arithmetic algorithms:

• it facilitates the exact computation of remainders, which allows the design
of efficient software for correctly rounded division [48, 83, 84, 182, 224, 226];

• it makes the evaluation of polynomials faster and – in general – more accu-
rate: when using Horner’s scheme6, the number of necessary operations
(hence, the number of roundings) is halved. This is extremely important
for elementary function evaluation, since polynomial approximations to
these functions are frequently used (see Chapter 3). Markstein and Cornea,
Harrison and Tang devoted very interestings book to the evaluation of
elementary functions using the fused multiply-add operations that are
available on the HP/Intel Itanium processor [83, 224];

• as noticed by Karp and Markstein [185], it makes it possible to easily get
the exact product of two floating-point variables. If N (x) is x rounded to
the nearest, then from two floating-point numbers a and b, the following

6Horner’s scheme consists in evaluating a degree-n polynomial anxn +an−1x
n−1+ · · · +a0 as

(· · · (((anx+an−1)x+an−2)x+an−3) · · ·)x+a0. This requires n multiplications and n additions
if we use conventional operations, or n fused multiply-add operations.

16 Chapter 2. Some Basic Things About Computer Arithmetic

algorithm returns two values p and ρ such that p is the floating-point num-
ber that is closest to ab, and p+ρ = ab exactly. It requires one multiplication
and one fused multiply-add. Although I present it with round-to-nearest
mode, it works as well with the other rounding modes.

Algorithm 2 (Fast2Mult(a,b))

p := N (ab);
ρ := N (ab − p)

Performing a similar calculation without a fused multiply-add operation is pos-
sible [105] but requires many more floating-point operations. Some other inter-
esting arithmetic functions are easily implementable when a fused multiply-add
is available [31, 47].

And yet, as noticed by Kahan [182] a clumsy use (by an unexperienced pro-
grammer or a compiler) of a fused multiply-add operation may lead to problems.
Depending on how it is implemented, function

f(x, y) =
√

x2 − y2

may sometimes return a NaN when x = y. Consider as an example

x = y = 1 + 2−52.

In double-precision arithmetic this number is exactly representable. The double-
precision number that is closest to x2 is

S =
2251799813685249
2251799813685248

=
251 + 1

251 ,

and the double-precision number that is closest to S − y2 is

− 1
20282409603651670423947251286016

= −2−104.

Hence, if the floating-point computation of x2 − y2 is implemented as ((x2) −
y × y), the obtained result will be less than 0 and computing its square root will
generate a NaN, whereas the exact result is 0.

2.1.6 Testing your computational environment

The various parameters (radix, mantissa and exponent lengths, rounding
modes,. . .) of the floating-point arithmetic of a computing system may strongly
influence the result of a numerical program. An amusing example of this is the
following program, given by Malcolm [151, 223], that returns the radix of the
floating-point system being used.

2.1. Floating-Point Arithmetic 17

A := 1.0;
B := 1.0;
while ((A+1.0)-A)-1.0 = 0.0 do A := 2*A;
while ((A+B)-A)-B <> 0.0 do B := B+1.0;
return(B)

Similar — yet much more sophisticated — algorithms are used in
inquiry programs such as MACHAR [69] and PARANOIA [186], that
provide a means for examining your computational environment. Other
programs for checking conformity of your computational system to the
IEEE Standard for Floating Point Arithmetic are Hough’s UCBTEST
(available at http://www.netlib.org/fp/ucbtest.tgz), a recent
tool presented by Verdonk, Cuyt and Verschaeren [315, 316], and the
MPCHECK program written by Revol, Pélissier and Zimmermann (available
at http://www.loria.fr/˜zimmerma/free/).

2.1.7 Floating-point arithmetic and proofs

Thanks to the IEEE-754 standard, we now have an accurate definition of floating-
point formats and operations. This allows the use of formal proofs to verify
pieces of mathematical software. For instance, Harrison used HOL Light to
formalize floating-point arithmetic [157] and check floating-point trigonomet-
ric functions [158] for the Intel-HP IA64 architecture. Russinoff [272] used the
ACL2 prover to check the AMD-K7 Floating-Point Multiplication, Division, and
Square Root Instructions. Boldo, Daumas and Théry use the Coq proof assis-
tant to formalize floating-point arithmetic and prove properties of arithmetic
algorithms [30, 213].

2.1.8 Maple programs that compute double-precision
approximations

The following Maple program implements the round-to-nearest-even round-
ing mode in double-precision. It computes the double-precision floating-point
number that is closest to t for any real number t.

nearestdouble := proc(t)
local x, sign, logabsx, exponent, mantissa, infmantissa;
Digits := 100;
x := evalf(t);
if (x=0) then sign, exponent, mantissa := 1, -1022, 0
else

if (x < 0) then sign := -1
else sign := 1
fi:
x := abs(x);
if x >= 2ˆ(1023)*(2-2ˆ(-53)) then mantissa := infinity;

exponent := 1023

18 Chapter 2. Some Basic Things About Computer Arithmetic

else if x <= 2ˆ(-1075) then mantissa := 0;
exponent := -1022
else

if x <= 2ˆ(-1022) then exponent := -1022
else

x is between 2ˆ(-1022) and 2ˆ(1024)
expmin := -1022; expmax := 1024;
while (expmax-expmin > 1) do

expmiddle := round((expmax+expmin)/2);
if x >= 2ˆexpmiddle then

expmin := expmiddle
else expmax := expmiddle
fi

od;
now, expmax - expmin = 1
and 2ˆexpmin <= x < 2ˆexpmax
so expmin is the exponent of x

exponent := expmin;
fi;
infmantissa := x*2ˆ(52-exponent);
if frac(infmantissa) <> 0.5 then

mantissa := round(infmantissa)
else

mantissa := floor(infmantissa);
if type(mantissa,odd) then

mantissa := mantissa+1 fi
fi;

mantissa := mantissa*2ˆ(-52);
fi;

fi;
fi;
sign*mantissa*2ˆexponent;
end;

The following program evaluates ulp (t) for any real number t.
ulp := proc(t)
local x;
x := abs(t);
if x < 2ˆ(-1021) then res := 2ˆ(-1074)

else if x > (1-2ˆ(-53))*2ˆ(1024) then res := 2ˆ971
else

expmin := -1021; expmax := 1024;
x is between 2ˆexpmin and 2ˆexpmax

while (expmax-expmin > 1) do
expmiddle := round((expmax+expmin)/2);
if x >= 2ˆexpmiddle then

expmin := expmiddle
else expmax := expmiddle
fi;
od;

2.2. Redundant Number Systems 19

now, expmax - expmin = 1
and 2ˆexpmin <= x < 2ˆexpmax

if x = 2ˆexpmin then res := 2ˆ(expmin-53)
else res := 2ˆ(expmin-52)
fi;

fi;
fi;
res;
end;

2.2 Redundant Number Systems

In general, when we represent numbers in radix r, we use the digits 0, 1, 2, . . .
r − 1. And yet, sometimes, number systems using a different set of digits natu-
rally arise. In 1840, Cauchy suggested the use of digits −5 to +5 in radix 10 to
simplify multiplications [52]. Booth recoding [32] (a technique sometimes used
by multiplier designers) generates numbers represented in radix 2, with digits
−1, 0 and +1. Digit-recurrence algorithms for division and square root [135, 270]
also generate results in a “signed-digit” representation.

Some of these exotic number systems allow carry-free addition. This is what
we are going to investigate in this section.

First, assume that we want to compute the sum s = snsn−1sn−2 · · · s0 of
two integers x = xn−1xn−2 · · ·x0 and y = yn−1yn−2 · · · y0 represented in the
conventional binary number system. By examining the well-known equation
that describes the addition process (“∨” is the boolean “or” and “⊕” is the
“exclusive or”):

c0 = 0
si = xi ⊕ yi ⊕ ci

ci+1 = xiyi ∨ xici ∨ yici

(2.1)

we see that there is a dependency relation between ci, the incoming carry at po-
sition i, and ci+1. This does not mean that the addition process is intrinsically
sequential, and that the sum of two numbers is computed in a time that grows
linearly with the size of the operands: the addition algorithms and architectures
proposed in the literature [136, 144, 190, 250, 256] and implemented in current
microprocessors are much faster than a straightforward, purely sequential, im-
plementation of (2.1). Nevertheless, the dependency relation between the carries
makes a fully parallel addition impossible in the conventional number systems.

2.2.1 Signed-digit number systems

In 1961, Avizienis [11] studied different number systems called signed-digit num-
ber systems. Let us assume that we use radix r. In a signed-digit number system,
the numbers are no longer represented using digits between 0 and r − 1, but
with digits between −a and a, where a ≤ r − 1. Every number is representable

20 Chapter 2. Some Basic Things About Computer Arithmetic

in such a system, if 2a ≥ r − 1. For instance, in radix 10 with digits between
−5 and +5, every number is representable. The number 15725 can be repre-
sented by the digit chain 24325 (we use 4 to represent the digit −4); that is,
15725 = 2 × 104 + (−4) × 103 + (−3) × 102 + 2 × 101 + 5.

The same number can also be represented by the digit chain 24335. If
2a ≥ r, then some numbers have several possible representations, which means
that the number system is redundant. As shown later, this is an important
property.

Avizienis also proposed addition algorithms for these number systems.
The following algorithm performs the addition of two n-digit numbers x =
xn−1xn−2 · · ·x0 and y = yn−1yn−2 · · · y0 represented in radix r with digits be-
tween −a and a, where a ≤ r − 1 and7 2a ≥ r + 1.

Algorithm 3 (Avizienis)
Input : x = xn−1xn−2 · · ·x0 and y = yn−1yn−2 · · · y0
Output : s = snsn−1sn−2 · · · s0

1. in parallel, for i = 0, . . . , n − 1, compute ti+1 (carry) and wi (intermediate sum)
satisfying: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ti+1 =

⎧⎪⎨⎪⎩
+1 if xi + yi ≥ a

0 if −a + 1 ≤ xi + yi ≤ a − 1
−1 if xi + yi ≤ −a

wi = xi + yi − r × ti+1.

(2.2)

2. in parallel, for i = 0, . . . , n, compute si = wi + ti, with wn = t0 = 0.

By examining the algorithm, we can see that the carry ti+1 does not de-
pend on ti. There is no longer any carry propagation: all digits of the result can
be generated simultaneously. The conditions “2a ≥ r + 1” and “a ≤ r − 1”
cannot be simultaneously satisfied in radix 2. Nevertheless, it is possible to per-
form parallel, carry-free additions in radix 2 with digits equal to −1, 0, or 1, by
using another algorithm, also due to Avizienis (or by using the borrow-save adder
presented in the following).

Figure 2.3 presents an example of the execution of Avizienis’ algorithm in
the case r = 10, a = 6.

Redundant number systems are used in many instances: recoding of
multipliers, quotients in division and division-like operations, on-line arith-
metic [137], etc. Redundant additions are commonly used within arithmetic
operators such as multipliers and dividers (the input and output data of such
operators are represented in a non-redundant number system, but the internal

7This condition is stronger than the condition 2a ≥ r − 1 that is required to represent every
number.

2.2. Redundant Number Systems 21

xi 1 5 3 1 2 0

yi 1 1 2 6 1 6

xi + yi 2 −6 1 7 −1 −6

ti+1 0 −1 0 1 0 −1

wi 2 4 1 −3 −1 4

si 1 4 2 3 2 4

Figure 2.3: Computation of 153120 + 112616 using Avizienis’ algorithm in radix
r = 10 with a = 6.

calculations are performed in a redundant number system). For instance, most
multipliers use (at least implicitly) the carry-save number system, whereas the
divider of the Pentium actually uses two different redundant number systems:
the division iterations are performed in carry-save, and the quotient is first gen-
erated in radix 4 with digits between −2 and +2, then converted to the usual
radix-2 number system. This is typical when implementing an SRT division
algorithm [135]. The reader interested in redundant number systems can find
useful information in [11, 136, 253, 254, 255, 259].

2.2.2 Radix-2 redundant number systems

Now let us focus on the particular case of radix 2. In this radix, the two com-
mon redundant number systems are the carry-save (CS) number system, and
the signed-digit number system. In the carry-save number system, numbers are
represented with digits 0, 1, and 2, and each digit d is represented by two bits d(1)

and d(2) whose sum equals d. In the signed-digit number system, numbers are
represented with digits −1, 0, and 1. In that system, we can represent the digits
with the borrow-save (BS) encoding, also called (p, n) encoding [253]: each digit d
is represented by two bits d+ and d− such that d+ −d− = d (different encodings
of the digits also lead to fast and simple arithmetic operators [61, 300]). Those
two number systems allow very fast additions and subtractions. The carry-save
adder (see, for instance, [190]) is a very well-known structure used for adding
a number represented in the carry-save system and a number represented in
the conventional binary system. It consists of a row of full-adder cells, where
a full-adder cell computes two bits t and u, from three bits x, y, and z, such
that 2t + u equals x + y + z (see Figure 2.4). A carry-save adder is presented in
Figure 2.5.

An adder structure for the borrow-save number system can easily be built
using elementary cells slightly different from the FA cell. Let us present the
algorithm for adding two BS numbers.

22 Chapter 2. Some Basic Things About Computer Arithmetic

t = xy + xz + yz

u = x ⊕ y ⊕ z

ut

zyx

FA

Figure 2.4: A full adder (FA) cell. From three bits x, y, and z, it computes two bits t
and u such that x + y + z = 2t + u.

FAFAFAFA

FAFAFAFA

0

s
(1)
4 s

(2)
0s

(1)
0s

(2)
1s

(1)
1s

(2)
2s

(1)
2s

(2)
3s

(1)
3s

(2)
4

a
(1)
0a

(1)
1a

(1)
2a

(1)
3 a

(2)
0a

(2)
1a

(2)
2a

(2)
3 b0b3

a3 b3 a2 b2 a1 b1 a0 b0 0

s0
s1s2s3s4

b2 b1

0

Figure 2.5: A carry-save adder (bottom), compared to a carry-propagate adder (top).

Algorithm 4 (Borrow-Save addition)

• input: two BS numbers a = an−1an−2 · · · a0 and b = bn−1bn−2 · · · b0, where the
digits ai and bi belong to {−1, 0, 1}, each digit d being represented by two bits
d+ and d− such that d+ − d− = d.

• output: a BS number s = snsn−1 · · · s0 satisfying s = a + b.

For each i = 0, . . . , n − 1, compute two bits c+
i+1 and c−

i such that 2c+
i+1 − c−

i =
a+

i + b+
i − a−

i ;
For each i = 0, . . . , n − 1, compute s−

i+1 and s+
i such that 2s−

i+1 − s+
i = c−

i + b−
i − c+

i

(with c+
0 = c−

n = 0, and s+
n = c+

n).

Both steps of this algorithm require the same elementary computation: from
three bits x, y, and z we must find two bits t and u such that 2t−u = x+y−z. This
can be done using a PPM cell (“PPM” stands for “Plus Plus Minus”), depicted
in Figure 2.6, which is very similar to the FA cell previously described. Using

2.2. Redundant Number Systems 23

t = xy + xz̄ + yz̄
+
+−

−
−++

+

x y z

t u ut

zyx

−
−

u = x ⊕ y ⊕ z

Figure 2.6: A PPM cell. From three bits x, y, and z, it computes two bits t and u such
that x + y − z = 2t − u.

0

0
− +

− − +
− +

− − +
− +

− − +
− +

− − +

+ −
+ + −

+ −
+ + −

+ −
+ + −

+ −
+ + −

a+
3 a+

2 a+
1 a+

0b+
3 b+

2 b+
1 b+

0a−
3 a−

2 a−
1 a−

0b−
3 b−

2 b−
1 b−

0

s+
4 s+

3 s+
2 s+

1 s+
0s−

4 s−
3 s−

2 s−
1 s−

0

Figure 2.7: A borrow-save adder.

0

s−
4 s+

0s−
0s+

1s−
1s+

2s−
2s+

3s−
3s+

4

a−
0a−

1a−
2a−

3
a+
0a+

1a+
2a+

3 b0b3

+ +−
+ −

+ +−
+ −

+ +−
+ −

+ +−
+ −

+ +−
+ −

+ +−
+ −

+ +−
+ −

+ +−
+ −

a3 b3 a2 b2 a1 b1 a0 b0 0

s0s1s2s3s4

b2 b1

0

Figure 2.8: A structure for adding a borrow-save number and a nonredundant number
(bottom), compared to a carry-propagate subtractor (top).

24 Chapter 2. Some Basic Things About Computer Arithmetic

PPM cells, one can easily derive the borrow-save adder of Figure 2.7 from the
algorithm. It is possible to add a number represented in the borrow-save system
and a number represented in the conventional, non-redundant, binary system
by using only one row of PPM cells.8 This is described in Figure 2.8. More details
on borrow-save based arithmetic operators can be found in [17].

8The carry-save and borrow-save systems are roughly equivalent: everything that is com-
putable using one of these systems is computable at approximately the same cost as with the
other one.

Part I

Algorithms Based on Polynomial
Approximation and/or

Table Lookup,
Multiple-Precision Evaluation of

Functions

Chapter 3

Polynomial or Rational
Approximations

Using a finite number of additions, subtractions, multiplications, and compar-
isons, the only functions of one variable that one can compute are piecewise
polynomials. If we add division to the set of available operations, the only func-
tions one can compute are piecewise rational functions. Therefore it is natural to try
to approximate the elementary functions by polynomials or rational functions.
The questions that immediately spring to mind are:

• How can we compute such polynomial or rational approximations?

• What is the best way (in terms of accuracy and/or speed) to evaluate a
polynomial or a rational function?

• The final error will be the sum of two errors: the approximation error (i.e., the
“distance” between the function being approximated and the polynomial
or rational function), and the evaluation error due to the fact that the poly-
nomial or rational function are evaluated in finite precision floating-point
arithmetic. Can we compute tight bounds on these errors?

Throughout this chapter we denote by Pn the set of the polynomials of
degree less than or equal to n with real coefficients, and by Rp,q the set of the
rational functions with real coefficients whose numerator and denominator have
degrees less than or equal to p and q, respectively.

Let us focus first on the problem of building polynomial approximations.
Of course, it is crucial to compute the coefficients of such approximations using
a precision significantly higher than the “target precision” (i.e., the precision of
the final result). We want to approximate a function f by an element p∗ of Pn on
an interval [a, b]. The methods presented in this chapter can be applied to any
continuous function f (they are not limited to the elementary functions). Two
kinds of approximations are considered here: the approximations that minimize
the “average error,” called least squares approximations, and the approximations

28 Chapter 3. Polynomial or Rational Approximations

that minimize the worst-case error, called least maximum approximations, or min-
imax approximations. In both cases, we want to minimize a “distance” ||p∗ − f ||.
For least squares approximations, that distance is

||p∗ − f ||2 =

√∫ b

a
w(x) (f(x) − p∗(x))2 dx,

where w is a continuous, nonnegative, weight function, that can be used to se-
lect parts of [a, b] where we want the approximation to be more accurate. For
minimax approximations,1 the distance is

||p∗ − f ||∞ = max
a≤x≤b

w(x)|p∗(x) − f(x)|.

3.1 Least Squares Polynomial Approximations

We are looking for a polynomial of degree ≤ n,

p∗(x) = p∗
nxn + p∗

n−1x
n−1 + · · · + p∗

1x + p∗
0

that satisfies∫ b

a
w(x) (f(x) − p∗(x))2 dx = min

p∈Pn

∫ b

a
w(x) (f(x) − p(x))2 dx. (3.1)

Define 〈f, g〉 as

〈f, g〉 =
∫ b

a
w(x)f(x)g(x)dx.

The approximation p∗ can be computed as follows:

• Build a sequence (Tm), (m ≤ n) of polynomials such that (Tm) is of de-
gree m, and such that 〈Ti, Tj〉 = 0 for i �= j. Such polynomials are called
orthogonal polynomials;

• compute the coefficients:

ai =
〈f, Ti〉
〈Ti, Ti〉 ; (3.2)

• compute

p∗ =
n∑

i=0

aiTi.

The proof is rather obvious and can be found in most textbooks on nu-
merical analysis [150]. Some sequences of orthogonal polynomials, associated
with simple weight functions w, are well known, so there is no need to compute
them again. Let us now present some of them. More information on orthogonal
polynomials can be found in [1, 149].

1This kind of approximation is sometimes called Chebyshev approximation. Throughout
this book, Chebyshev approximation means least squares approximation using Chebyshev polynomi-
als. Chebyshev worked on both kinds of approximation.

3.1. Least Squares Polynomial Approximations 29

3.1.1 Legendre polynomials

• weight function: w(x) = 1;

• interval [a, b] = [−1, 1];

• definition: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
T0(x) = 1

T1(x) = x

Tn(x) =
2n − 1

n
xTn−1(x) − n − 1

n
Tn−2(x);

• values of the scalar products:

〈Ti, Tj〉 =

⎧⎪⎨⎪⎩
0 if i �= j

2
2i + 1

otherwise.

3.1.2 Chebyshev polynomials

• weight function: w(x) = 1/
√

1 − x2;

• interval [a, b] = [−1, 1];

• definition: ⎧⎪⎨⎪⎩
T0(x) = 1
T1(x) = x
Tn(x) = 2xTn−1(x) − Tn−2(x) = cos

(
n cos−1 x

)
;

• values of the scalar products:

〈Ti, Tj〉 =

⎧⎪⎨⎪⎩
0 if i �= j
π if i = j = 0
π/2 otherwise.

An example of a Chebyshev polynomial (T7) is plotted in Fig. 3.1.
Chebyshev polynomials play a central role in approximation theory.

Among their many properties, the following three are frequently used. A much
more detailed presentation of the Chebyshev polynomials can be found
in [36, 269].

Theorem 3 For n ≥ 0, we have

Tn(x) =
n

2

�n/2�∑
k=0

(−1)k (n − k − 1)!
k!(n − 2k)!

(2x)n−2k.

Hence, the leading coefficient of Tn is 2n−1. Tn has n real roots, all strictly between −1
and 1.

30 Chapter 3. Polynomial or Rational Approximations

–1

–0.5

0.5

1

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

x

Figure 3.1: Graph of the polynomial T7(x).

Theorem 4 There are n + 1 points x0, x1, x2, . . . , xn satisfying

−1 = x0 < x1 < x2 < · · · < xn = 1

such that
Tn(xi) = (−1)n−i max

x∈[−1,1]
|Tn(x)| ∀i, i = 0, . . . , n.

That is, the maximum absolute value of Tn is attained at the xi’s, and the sign of Tn

alternates at these points.

Let us call a monic polynomial a polynomial whose leading coefficient is 1.
We have,

Theorem 5 (Monic polynomials of smallest norm) Let a, b be real numbers,
with a ≤ b. The monic degree-n polynomial P that minimizes

max
x∈[a,b]

|P (x)|

is
(b − a)n

22n−1 Tn

(
2x − b − a

b − a

)
.

3.1. Least Squares Polynomial Approximations 31

3.1.3 Jacobi polynomials

• weight function: w(x) = (1 − x)α(1 + x)β (α, β > 1);

• interval [a, b] = [−1, 1];

• definition:

Tn(x) =
1
2n

n∑
m=0

(
n + α

m

)(
n + β

n − m

)
(x − 1)n−m(x + 1)m;

• values of the scalar products:

〈Ti, Tj〉 =

{
0 if i �= j
hi otherwise.

with

hi =
2α+β+1

2i + α + β + 1
Γ(i + α + 1)Γ(i + β + 1)

i!Γ(i + α + β + 1)
.

3.1.4 Laguerre polynomials

• weight function: w(x) = e−x;

• interval [a, b] = [0,+∞];

• definition:
Tn(x) =

ex

n!
dn

dxn
(xne−x);

• values of the scalar products:

〈Ti, Tj〉 =

{
0 if i �= j
1 otherwise.

3.1.5 Using these orthogonal polynomials in any interval

Except for the Laguerre polynomials, for which [a, b] = [0,+∞], the orthogonal
polynomials we have given are for the interval [−1, 1]. Getting an approximation
for another interval [a, b] is straightforward:

• for u ∈ [−1, 1], define

g(u) = f

(
b − a

2
u +

a + b

2

)
;

notice that x = ((b − a)/2)u + ((a + b)/2) ∈ [a, b];

• compute a least squares polynomial approximation q∗ to g in [−1, 1];

32 Chapter 3. Polynomial or Rational Approximations

• get the least squares approximation to f , say p∗, as

p∗(x) = q∗
(

2
b − a

x − a + b

b − a

)
.

3.2 Least Maximum Polynomial Approximations

As in the previous section, we want to approximate a function f by a polynomial
p∗ ∈ Pn on a closed interval [a, b]. Let us assume the weight function w(x) equals
1. In the following, ||f − p||∞ denotes the distance:

||f − p||∞ = max
a≤x≤b

|f(x) − p(x)|.

We look for a polynomial p∗ that satisfies:

||f − p∗||∞ = min
p∈Pn

||f − p||∞.

The polynomial p∗ is called the minimax degree-n polynomial approxima-
tion to f on [a, b]. In 1885, Weierstrass proved the following theorem, which
shows that a continuous function can be approximated as accurately as desired
by a polynomial.

Theorem 6 (Weierstrass, 1885) Let f be a continuous function. For any ε > 0 there
exists a polynomial p such that ||p − f ||∞ ≤ ε.

Another theorem, due to Chebyshev, gives a characterization of the minimax
approximations to a function.

Theorem 7 (Chebyshev) p∗ is the minimax degree-n approximation to f on [a, b] if
and only if there exist at least n + 2 values

a ≤ x0 < x1 < x2 < · · · < xn+1 ≤ b

such that:

p∗(xi) − f(xi) = (−1)i [p∗(x0) − f(x0)] = ±||f − p∗||∞.

This theorem is illustrated in Figures 3.2 and 3.3 for the case n = 3.
Chebyshev’s theorem shows that if p∗ is the minimax degree-n approxima-

tion to f , then the largest approximation error is reached at least n + 2 times,
and that the sign of the error alternates. That property allows us to directly find
p∗ in some particular cases, as we show in Section 3.3. It is used by an algorithm,
due to Remez [160, 265] (see Section 3.5), that computes the minimax degree-n
approximation to a continuous function iteratively. The reader can consult the
seminal work by de La Vallée Poussin [99], Rice’s book [267], and a survey by
Fraser [146].

3.3. Some Examples 33

32.521.510.5

1

0.8

0.6

0.4

0.2

0

Figure 3.2: The exp(−x2) function and its degree-3 minimax approximation on the
interval [0, 3] (dashed line). There are five values where the maximum approximation
error is reached with alternate signs.

It is worth noticing that in some cases, p∗ − f may have more than n + 2
extrema. Figure 3.4 presents the minimax polynomial approximations of degrees
3 and 5 to the sine function in [0, 4π]. For instance, sin(x) − p∗

3(x) (where p∗
3 is

the degree-3 minimax approximation) has 6 extrema in [0, 4π].

3.3 Some Examples

Example 1 (Approximations to ex by Degree-2 Polynomials) Assume now that
we want to compute a degree-2 polynomial approximation to the exponential function
on the interval [−1, 1]. We use some of the methods previously presented, to compute
and compare various approximations.

34 Chapter 3. Polynomial or Rational Approximations

32.521.510.5

0.06

0.04

0.02

0

-0.02

-0.04

-0.06

Figure 3.3: The difference between the exp(−x2) function and its degree-3 minimax
approximation on the interval [0, 3].

x
6 12104

0,5

0 2

-1

8

1

0

-0,5

sin(x)

degree-3 approximation

degree-5 approximation

Figure 3.4: The minimax polynomial approximations of degrees 3 and 5 to sin(x) in
[0, 4π]. Notice that sin(x) − p3(x) has 6 extrema. From Chebyshev’s theorem, we know
that it must have at least 5 extrema.

3.3. Some Examples 35

Least squares approximation using Legendre polynomials

The first three Legendre polynomials are:

T0(x) = 1
T1(x) = x

T2(x) =
3
2
x2 − 1

2
.

The scalar product associated with Legendre approximation is

〈f, g〉 =
∫ 1

−1
f(x)g(x)dx.

One easily gets:
〈ex, T0〉 = e − 1/e
〈ex, T1〉 = 2/e
〈ex, T2〉 = e − 7/e
〈T0, T0〉 = 2
〈T1, T1〉 = 2/3
〈T2, T2〉 = 2/5.

Therefore the coefficients ai of Eq. (3.2) are a0 = (1/2) (e − 1/e), a1 = 3/e,
a2 = (5/2) (e − 7/e), and the polynomial p∗ = a0T0 + a1T1 + a2T2 is equal to:

15
4

(
e − 7

e

)
x2 +

3
e
x +

33
4e

− 3e

4
� 0.5367215x2 + 1.103683x + 0.9962940.

Least squares approximation using Chebyshev polynomials

The first three Chebyshev polynomials are:

T0(x) = 1
T1(x) = x
T2(x) = 2x2 − 1.

The scalar product associated with Chebyshev approximation is

〈f, g〉 =
∫ 1

−1

f(x)g(x)√
1 − x2

dx.

Using any numerical integration algorithm, one can get:

〈ex, T0〉 = 3.977463261 · · ·
〈ex, T1〉 = 1.775499689 · · ·
〈ex, T2〉 = 0.426463882 · · · .

Therefore, since 〈T0, T0〉 = π, and 〈Ti, Ti〉 = π/2 for i > 0, the coefficients ai

of Eq. (3.2) are a0 = 1.266065878, a1 = 1.130318208, a2 = 0.2714953395, and the
polynomial p∗ = a0T0 + a1T1 + a2T2 is approximately equal to

0.5429906776x2 + 1.130318208x + 0.9945705392.

36 Chapter 3. Polynomial or Rational Approximations

Minimax approximation

Assume that p∗(x) = a0 + a1x + a2x
2 is the minimax approximation to ex on [−1, 1].

From Theorem 7, there exist at least four values x0, x1, x2, and x3 where the maximum
approximation error is reached with alternate signs. The convexity of the exponential
function implies x0 = −1 and x3 = +1. Moreover, the derivative of ex −p∗(x) is equal
to zero for x = x1 and x2. This gives:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a0 − a1 + a2 − 1/e = ε
a0 + a1x1 + a1x

2
1 − ex1 = −ε

a0 + a1x2 + a2x
2
2 − ex2 = ε

a0 + a1 + a2 − e = −ε
a1 + 2a2x1 − ex1 = 0
a1 + 2a2x2 − ex2 = 0.

(3.3)

The solution of this nonlinear system of equations is:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a0 = 0.98903973 · · ·
a1 = 1.13018381 · · ·
a2 = 0.55404091 · · ·
x1 = −0.43695806 · · ·
x2 = 0.56005776 · · ·
ε = 0.04501739 · · ·

(3.4)

Therefore the best minimax degree-2 polynomial approximation to ex in [−1, 1] is
0.98903973 + 1.13018381x + 0.55404091x2, and the largest approximation error is
0.045.

Table 3.1 presents the maximum errors obtained for the various polynomial ap-
proximations examined in this example, and the error obtained by approximating the
exponential function by its degree-2 Taylor expansion at 0, namely,

ex ≈ 1 + x +
x2

2
.

One can see that the Taylor expansion is much worse than the other approxima-
tions. This happens usually: Taylor expansions only give local (i.e., around one value)
approximations, and should not be used for global (i.e., on an interval) approximations.
The differences between the exponential function and its approximants are plotted in
Figure 3.5: we see that Legendre approximation is the best “on average,” that the mini-
max approximation is the best in the worst cases, and that Chebyshev approximation is
very close to the minimax approximation.

As shown in the previous example, Taylor expansions generally give poor
polynomial approximations when the degree is sufficiently high, and should
be avoided.2 Let us consider another example. We wish to approximate the

2An exception is multiple-precision computations (see Chapter 5), since it is not possible to
pre-compute and store least-squares or minimax approximations for all possible precisions.

3.3. Some Examples 37

Taylor Legendre Chebyshev Minimax
Max. Error 0.218 0.081 0.050 0.045

Table 3.1: Maximum absolute errors for various degree-2 polynomial approximations
to ex on [−1, 1].

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

exp(x)-Legendre
exp(x)-Chebyshev

exp(x)-Minimax

Figure 3.5: Errors of various degree-2 approximations to ex on [−1, 1]. Legendre ap-
proximation is better on average, and Chebyshev approximation is close to the minimax
approximation.

sine function in [0, π/4] by a degree-11 polynomial. The error of the minimax
approximation is 0.5 × 10−17, and the maximum error of the Taylor expansion
is 0.7 × 10−11. In this example, the Taylor expansion is more than one million
times less accurate.

It is sometimes believed that the minimax polynomial approximation to a
function f is obtained by computing an expansion of f on the Chebyshev poly-
nomials. This confusion is probably due not only to the fact that Chebyshev
worked on both kinds of approximations, but also to the following property. As
pointed out by Hart et al. [160], if the function being approximated is regular
enough, then its Chebyshev approximation is very close to its minimax approx-
imation (this is the case for the exponential function; see Figure 3.5). Roughly

38 Chapter 3. Polynomial or Rational Approximations

speaking, if f is regular enough, the coefficients

ai =
〈f, Ti〉
〈Ti, Ti〉 =

∫ +1

−1

f(x)Ti(x)√
1 − x2

dx∫ +1

−1

(Ti(x))2√
1 − x2

dx

quickly decrease, so an+1Tn+1 is close to the difference between f and its
degree-n Chebyshev approximation p∗

n, that is,
∑n

i=0 aiTi. Since Tn+1(x) =
cos

(
(n + 1) cos−1 x

)
, the maximum value of Tn+1 between −1 and 1 is reached

n + 2 times, with alternate signs. Therefore p∗
n “almost” satisfies the condition

of Theorem 7. Of course, this is a rough explanation, not a proof. A proof can
be given in some cases: Li [212] showed that when the function being approxi-
mated is an elementary function, the minimax approximation is at most one bit
more accurate than the Chebyshev approximation.

We must notice, however, that for a “general” and irregular enough func-
tion, the Chebyshev approximation can be rather far from the minimax approx-
imation: this is illustrated by the next example.

Example 2 (Approximations to |x| by Degree-2 Polynomials) In the previous
example, we tried to approximate a very regular function (the exponential) by a poly-
nomial. We saw that even with polynomials of degree as small as 2, the approximations
were quite good. Irregular functions are more difficult to approximate. Let us study the
case of the approximation to |x|, between −1 and +1, by a degree-2 polynomial. By
performing computations similar to those of the previous example, we get:

• Legendre approximation:

15
16

x2 +
3
16

= 0.9375x2 + 0.1875;

• Chebyshev approximation:

8
3π

x2 +
2
3π

� 0.8488263x2 + 0.21220659;

• Minimax approximation:

x2 +
1
8
.

Those functions are plotted in Figure 3.6, and the worst-case errors are presented
in Table 3.2.

Table 3.2 and Figure 3.6 show that in the case of the function |x|, the Chebyshev
and the minimax approximations are quite different (the worst-case error is less for the
Legendre approximation than for the Chebyshev approximation).

3.4. Speed of Convergence 39

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

|x|
minimax

Chebyshev
Legendre

Figure 3.6: Comparison of Legendre, Chebyshev, and minimax degree-2 approximations
to |x|.

Legendre Chebyshev Minimax
Max. Error 0.1875 0.2122 0.125

Table 3.2: Maximum absolute errors for various degree-2 polynomial approximations
to |x| on [−1, 1].

3.4 Speed of Convergence

We have seen in the previous sections that any continuous function can be ap-
proximated as closely as desired by a polynomial. Unfortunately, to reach a given
approximation error, the degree of the required approximation polynomial may
be quite large. A theorem due to Bernstein [160] shows that the convergence of
the degree-n minimax approximations towards the function may be very slow.
If we select a “speed of convergence” by choosing a decreasing sequence (εn)
of positive real numbers such that εn → 0, there exists a continuous function
f such that the approximation error of the minimax degree-n polynomial ap-
proximation to f is equal to εn; that is, the sequence of minimax polynomials
converges to f with the “speed of convergence” that we have chosen.

Table 3.3 presents the speed of convergence of the polynomial approxima-
tions to some usual functions. One can see that the speed of convergence is
difficult to predict. Figure 3.7 plots the figures given in the table.

40 Chapter 3. Polynomial or Rational Approximations

Function\Degree 2 3 4 5 6 7 8 9

sin(x) 7.8 12.7 16.1 21.6 25.5 31.3 35.7 41.9

ex 6.8 10.8 15.1 19.8 24.6 29.6 34.7 40.1

ln(1 + x) 8.2 11.1 14.0 16.8 19.6 22.3 25.0 27.7

(x + 1)x 6.3 8.5 11.9 14.4 18.1 20.0 22.7 25.1

arctan(x) 8.7 9.8 13.2 15.5 17.2 21.2 22.3 24.5

tan(x) 4.8 6.9 8.9 10.9 12.9 14.9 16.9 19.0√
x 3.9 4.4 4.8 5.2 5.4 5.6 5.8 6.0

arcsin(x) 3.4 4.0 4.4 4.7 4.9 5.1 5.3 5.5

Table 3.3: Number of significant bits (obtained as − log2(absolute error)) of the min-
imax approximations to various functions on [0, 1] by polynomials of degree 2 to
8. The accuracy of the approximation changes drastically with the function being
approximated.

0

5

10

15

20

25

30

35

2 3 4 5 6 7 8

N
um

be
r o

f b
its

Degree of the approximation

exp(x)
log(1+x)

sqrt(x)
tan(x)

Figure 3.7: Number of significant bits (obtained as − log2(error)) of the minimax
polynomial approximations to various functions on [0, 1].

3.5. Remez’s Algorithm 41

3.5 Remez’s Algorithm

Since Remez’s algorithm plays a central role in least maximum approximation
theory, we give a brief presentation of it. We must warn the reader that, even
if the outlines of the algorithm are reasonably simple, making sure that an im-
plementation will always return a valid result is sometimes quite difficult [146].
An experienced user might prefer to write his/her own minimax approxima-
tion programs, to have a better control of the various parameters. A beginner
or an occasional user will probably be well advised to use the polynomial ap-
proximation routines provided by packages such as Maple (see Section 3.7) or
Mathematica.

For approximating a function f in the interval [a, b] Remez’s algorithm
consists in iteratively building the set of points x0, x1, . . . , xn+1 of Theorem 7.
We proceed as follows.

1. We start from an initial set of points x0, x1, . . . , xn+1 in [a, b].

2. We consider the linear system of equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p0 + p1x0 + p2x
2
0 + · · · + pnxn

0 − f(x0) = +ε
p0 + p1x1 + p2x

2
1 + · · · + pnxn

1 − f(x1) = −ε
p0 + p1x2 + p2x

2
2 + · · · + pnxn

2 − f(x2) = +ε
· · · · · ·
p0 + p1xn+1 + p2x

2
n+1 + · · · + pnxn

n+1 − f(xn+1) = (−1)n+1ε.

It is a system of n + 2 linear equations, with n + 2 unknowns: p0, p1, . . . ,
pn and ε. Therefore in all non-degenerated cases, it will have one solution
(p0, p1, . . . , pn, ε). Solving this system gives a polynomial P (x) = p0 +
p1x + · · · + pnxn.

3. We now compute the set of points yi in [a, b] where P − f has its extremes,
and we start again (step 2), replacing the x′

is by the yi’s.

It can be shown [146] that this is a convergent process, and that the speed
of convergence is quadratic [314]. In general, starting from the initial set
of points

xi =
a + b

2
+

(b − a)
2

cos
(

iπ

n + 1

)
, 0 ≤ i ≤ n + 1,

i.e., the points at which |Tn+1((2x−b−a)/(b−a))| = 1, where Ti is the Chebyshev
polynomial of degree i, is advisable. This comes from the fact that minimax
approximation and approximation using Chebyshev polynomials are very close
in most usual cases. The following Maple program, derived from one due to Paul
Zimmermann, implements this algorithm. It is a “toy program” whose purpose
is to help the reader to play with the algorithm. It will work reasonably well

42 Chapter 3. Polynomial or Rational Approximations

provided that we always find exactly n + 2 points in [a, b] where P − f has
its extremes, and that a and b are among these points. This will be the case in
general.

First, this is a procedure that computes all roots of a given function g in the
interval [a, b], assuming that no interval of the form [a+kh, a+(k +1)h], where
h = (b − a)/200, contains more than one root.

AllRootsOf := proc(g,a,b);
divides [a,b] into 200 sub-intervals
and assumes each sub-interval contains at most
one root of function g
ListOfSol := [];
h := (b-a)/200;
for k from 0 to 199 do

left := a+k*h;
right := left+h;
if evalf(g(left)*g(right)) <= 0 then

sol := fsolve(g(x),x,left..right);
ListOfSol := [op(ListOfSol),sol]

end if;
end do;
ListOfSol
end;

Now, here is Remez’s algorithm.

Remez := proc(f, x, n, a, b)
P := add(p[i]*xˆi, i = 0 .. n);
pts := sort([seq(evalf(1/2*a + 1/2*b

+ 1/2*(b - a)*cos(Pi*i/(n + 1))),
i = 0 .. n + 1)]);

we initialize the set of points xi with the Chebyshev
points

ratio := 2;
Count := 1; threshold := 1.000005;

while ratio > threshold do
sys := {seq(evalf(subs(x =

op(i + 1, pts), P - f)) = (-1)ˆi*eps,
i = 0 .. n + 1)};

printf("ITERATION NUMBER: %a\n",Count);
printf("Current list of points: %a\n",pts);
Count := Count+1;
printf("Linear system: %a\n",sys);

sys := solve(sys, {eps, seq(p[i], i = 0 .. n)});
we compute the polynomial associated with the list of
points

oldq := q;

3.5. Remez’s Algorithm 43

q := subs(sys, P);
printf("Current polynomial: %a\n",q);

we now compute the new list of points
by looking for the extremes of q-f
derivative := unapply(diff(q-f,x),x);
pts := AllRootsOf(derivative,a,b);
no := nops(pts);
if no > n+2 then print("Too many extreme values,

try larger degree")
elif no = n then pts := [a,op(pts),b]

elif no = n+1 then
if abs((q-f)(a)) > abs((q-f)(b))

then pts := [a,op(pts)]
else pts := [op(pts),b]

end if
elif no < n then print("Not enough oscillations")

end if;
lprint(pts);

Emax := evalf(subs(x=pts[1],abs (q-f)));
Emin := Emax;
for i from 2 to (n+2) do

Ecurr := evalf(subs(x=pts[i],abs (q-f)));
if Ecurr > Emax then Emax := Ecurr

elif Ecurr < Emin then Emin := Ecurr fi
end do;

ratio := Emax/Emin;
We consider that we have found the Minimax polynomial
(i.e., that the conditions of Chebyshev’s
theorem are met)
when 1 < Emax/Emin < threshold
threshold must be very slightly above 1

printf("error: %a\n",Emax);
end do;
q

end proc;

To illustrate the behavior of Remez’s algorithm, let us consider the computation,
with the above given Maple program, of a degree-4 minimax approximation to
sin(exp(x)) in [0, 2].

We start from the following list of points: 0, 0.1909830057, 0.6909830062,
1.309016994, 1.809016994, 2, i.e., the points

1 + cos
(

iπ

5

)
, i = 0, . . . , 5,

that is, the points at which |T5(x − 1)| = 1.

44 Chapter 3. Polynomial or Rational Approximations

–0.1

0

0.1

0.2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

Figure 3.8: Difference between P (1)(x) and sin(exp(x)) on [0, 2].

The corresponding linear system is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0 −0.8414709848 = ε
p0 +0.1909830057p1 +0.03647450847p2 +0.00696601126p3

+0.00133038977p4 −0.9357708449 = −ε
p0 +0.6909830062p1 +0.4774575149p2 +0.3299150289p3

+0.2279656785p4 −0.9110882027 = ε
p0 +1.309016994p1 +1.713525491p2 +2.243033987p3

+2.936169607p4 +0.5319820928 = −ε
p0 +1.809016994p1 +3.272542485p2 +5.920084968p3

+10.70953431p4 +0.1777912944 = ε
p0 +2p1 +4p2 +8p3

+16p4 −0.8938549549 = −ε.

Solving this system gives the following polynomial:

P (1)(x) = 0.7808077493 + 1.357210937x
−0.7996276765x2 − 2.295982186x3 + 1.189103547x4.

The difference P (1)(x) − sin(exp(x)) is plotted in Figure 3.8.
We now compute the extremes of P (1)(x)−sin(exp(x)) in [0, 2], which gives

the following new list of points: 0, 0.3305112886, 0.9756471625, 1.554268282,

3.5. Remez’s Algorithm 45

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

Figure 3.9: Difference between P (2)(x) and sin(exp(x)) on [0, 2].

1.902075854, 2. Solving the linear system associated to this list of points gives
the polynomial

P (2)(x) = 0.6800889007 + 2.144092090x
−1.631367834x2 − 2.226220290x3 + 1.276387351x4.

The difference P (2)(x) − sin(exp(x)) is plotted in Figure 3.9. One immediately
sees that the extreme values of |P (2)(x)−sin(exp(x))| are very close together: P (2)

“almost” satisfies the condition of Theorem 7. This illustrates the fast conver-
gence of Remez’s algorithm: after two iterations, we already have a polynomial
that is very close to the minimax polynomial.

Computing the extremes ofP (2)(x)−sin(exp(x)) in [0, 2], gives the following
new list of points: 0, 0.3949555564, 1.048154245, 1.556144609, 1.879537115, 2.
From that list, we get the polynomial

P (3)(x) = 0.6751785998 + 2.123809689x
−1.548829933x2 − 2.293147068x3 + 1.292365352x4.

The next polynomial

P (4)(x) = 0.6751752198 + 2.123585326x
−1.548341910x2 − 2.293483579x3 + 1.292440070x4

46 Chapter 3. Polynomial or Rational Approximations

Degree Error
4 0.034
5 0.028
6 0.023
7 0.020
8 0.017
9 0.016
10 0.014
11 0.013
12 0.012

Table 3.4: Absolute errors obtained by approximating the square root on [0, 1] by a
minimax polynomial.

is such that the ratio between the largest distance |P (4)(x) − sin(exp(x))| at one
of the extremes and the smallest other distance is less than 1.000005: we can
sensibly consider that we have found the minimax polynomial.

3.6 Rational Approximations

Table 3.4 gives the various errors obtained by approximating the square root
on [0, 1] by polynomials. Even with degree-12 polynomials, the approximations
are bad. A rough estimation can show that to approximate the square root on
[0, 1] by a polynomial3 with an absolute error smaller than 10−7, one needs a
polynomial of degree 54.

One could believe that this phenomenon is due to the infinite derivative of
the square root function at 0. This is only partially true: a similar phenomenon
appears if we look for approximations on [1/4, 1]. The minimax degree-25 poly-
nomial approximation to

√
x on [1/4, 1] has an approximation error equal to

0.13 × 10−14, whereas the minimax approximation of the same function by a
rational function whose denominator and numerator have degrees less than or
equal to 5 gives a better approximation error, namely, 0.28 × 10−15. This shows
that for some functions in some domains, polynomial approximations may not

3Of course, this is not the right way to implement the square root function: first, it is straight-
forward to reduce the domain to [1/4, 1], second, Newton–Raphson’s iteration for

√
a:

xn+1 =
1
2

(
xn +

a

xn

)
,

or (to avoid divisions) Newton–Raphson’s iteration for 1/
√

a:

xn+1 =
xn

2

(
3 − ax2

n

)
followed by a multiplication by a, or digit-recurrence methods [135] are preferable.

3.6. Rational Approximations 47

be suitable. One has to try rational approximations.4 Concerning rational approx-
imations, there is a characterization theorem, similar to Theorem 7, that is also
due to Chebyshev. Remind that Rp,q is the set of the rational functions with real
coefficients whose numerator and denominator have degrees less than or equal
to p and q, respectively.

Theorem 8 (Chebyshev) An irreducible rational functionR∗ = P/Q is the minimax
rational approximation to f on [a, b] among the rational functions belonging to Rn,m

if and only if there exist at least

k = 2 + max {m + degree(P), n + degree(Q)}

values
a ≤ x0 < x1 < x2 < · · · < xk−1 ≤ b

such that:

R∗(xi) − f(xi) = (−1)i [R∗(x0) − f(x0)] = ±||f − R∗||∞.

There exists a variant of Remez’s algorithm for computing such approx-
imations. See [160, 219] for more details. Litvinov [219] notices that the prob-
lem of determining the coefficients is frequently “ill-posed,” so the obtained
coefficients may be quite different from the exact coefficients of the minimax
approximation. And yet, it turns out that the computed fractions are high-
quality approximants whose errors are close to the best possible. This is due
to a phenomenon of “autocorrection,” analyzed by Litvinov.

Another solution for getting rational approximations is to compute Padé ap-
proximants [19, 20], but such approximants have the same drawbacks as Taylor
expansions: they are local (i.e., around one value) approximations only5. Algo-
rithms that give “nearly best” approximations (even in regions of the complex
plane) are given in [125]. There also exists a notion of orthogonal rational func-
tions [50, 113]. See [27] for recent suggestions on rational approximation.

It seems quite difficult to predict if a given function will be much bet-
ter approximated by rational functions than by polynomials. It makes sense to
think that functions that have a behavior that is “highly nonpolynomial” (fi-
nite limits at ±∞, poles, infinite derivatives. . .) will be poorly approximated by
polynomials.

For instance, the minimax degree-13 polynomial approximation of tanx in
[−π/4,+π/4] is

1.00000014609x + 0.333324808x3 + 0.13347672x5 + 0.0529139x7

+0.0257829x9 + 0.0013562x11 + 0.010269x13

4Another solution is to drastically reduce the size of the interval where the function is being
approximated. This is studied in the next chapter.

5And yet, they can have better global behaviour than expected. See for instance reference [143].

48 Chapter 3. Polynomial or Rational Approximations

Processor FP Add FP Mult FP Div

Pentium 3 3 39
Pentium Pro 3 5 18-38
Pentium III 3 5 32
Pentium IV 5 7 38
PowerPC 601 4 4 31
PowerPC 750 3 4 31
MIPS R10000 2-3 2-3 11-18
UltraSPARC III 4 4 24
Cyrix 5x86 and 6x86 4-9 4-9 24-34
Alpha21264 4 4 15
Athlon K6-III 3 3 20

Table 3.5: Latencies of some floating-point instructions in double-precision for various
processors, after [87, 285, 286, 101].

with an absolute approximation error equal to 8 × 10−9, whereas the minimax
rational approximation with numerator of degree 3 and denominator of degree
4 of the same function is

0.9999999328x − 0.095875045x3

1 − 0.429209672x2 + 0.009743234x4

with an absolute approximation error equal to 7 × 10−9. In this case, to get
the same accuracy, we need to perform 14 arithmetic operations if we use the
polynomial approximation,6 and 8 if we use the rational approximation.

Of course, the choice between polynomial or rational approximations
highly depends on the ratio between the cost of multiplication and the cost
of division. Table 3.5 gives typical figures for current processors. Those figures
clearly show that for the moment, division is much slower than multiplication,
so it is frequently preferable to use polynomial approximations.7 This might
change in the future: studies by Oberman and Flynn [246, 247] tend to show
that fast division units could contribute to better performance in many areas.8

As a consequence, future processors might offer faster divisions.
6Assuming that Horner’s scheme is used, and that we first compute x2.
7Unless some parallelism is available in the processor being used or the circuit being designed.

For instance, as pointed out by Koren and Zinaty [191], if we can perform an addition and a mul-
tiplication simultaneously, then we can compute rational functions by performing in parallel an
add operation for evaluating the numerator and a multiply operation for evaluating the denom-
inator (and vice versa). If the degrees of the numerator and denominator are large enough, the
delay due to the division may become negligible.

8The basic idea behind this is that, although division is less frequently called than multiplica-
tion, it is so slow (on most existing computers) that the time spent by some numerical programs
in performing divisions is not at all negligible compared to the time spent in performing other
arithmetic operations.

3.6. Rational Approximations 49

frac1 frac2 frac3

worst-case error 0.3110887e − 14 0.1227446e − 14 0.1486132e − 14

average error 0.3378607e − 15 0.1847124e − 15 0.2050626e − 15

Table 3.6: Errors obtained when evaluating frac1 (x), frac2 (x), or frac3 (x) in double-
precision at 500000 regularly-spaced values between 0 and 1.

Another advantage of rational approximations is their flexibility: there are
many ways of writing the same rational function. For instance, the expressions

frac1 (x) =
3 − 9x + 15x2 − 12x3 + 7x4

1 − x + x2 ,

frac2 (x) = 3 − 5x + 7x2 − x

1 − x + x2 ,

frac3 (x) = 3 + x × −6 + 12x − 12x2 + 7x3

1 − x + x2 ,

represent the same function. One may try to use this property to find, among the
various equivalent expressions, the one that minimizes the round-off error. This
idea seems due to Cody [68]. It has been used by Hamada [154]. For instance,
I evaluated the previous rational fraction in double-precision arithmetic (with-
out using extended precision registers) using the three forms given previously,
with the following parentheses (Pascal-like syntax):

function frac1(x: real):real;
begin

frac1 := ((((7*x -12)*x+15)*x-9)*x+3) / ((x*x) - x + 1)
end;

function frac2(x:real):real;
begin

frac2 := ((7*x -5)*x+3) - (x / ((x*x) - x + 1))
end;

function frac3(x:real):real;
begin

frac3 := 3 + (x * (((7 * x-12)*x+12)*x -6))
/ ((x*x) - x + 1)

end;

The fraction was evaluated at 500000 regularly-spaced values between 0
and 1, and compared with the exact result. The errors are given in Table 3.6.

50 Chapter 3. Polynomial or Rational Approximations

We immediately see that in [0, 1], expression frac2 is significantly better than
frac1, and slightly better than frac3.

3.7 Actual Computation of Approximations

3.7.1 Getting “general” approximations

It is no longer necessary to write specific software or to perform long paper
and pencil calculations in order to compute polynomial or rational approxima-
tions of functions. Software such as Maple [57] readily computes minimax or
Chebyshev approximations. For instance, using Maple, the minimax polyno-
mial approximants of degree 1 to 3 of the exponential function on [0, 1] and the
corresponding errors are obtained as follows.

> with(numapprox);

[chebpade, chebyshev, confracform, hornerform, infnorm,
laurent, minimax, pade, remez, taylor]

> Digits:=40;

Digits := 40

> for i from 1 to 3
> do
> minimax(exp(x),x=0..1,[i,0],1,’err’);
> err;
> od;

.8940665837605580966094830294702438342075

+ 1.718281828459045235360287471352662497757 x

.105933416239441903390516970529756165793

1.008756022111995144557594671802439543032 + (

.8547425734137733779593711082348038561836

+ .8460272108212815682857270195129795555104 x) x

.008756022111995144557594671802439543032

.9994552084356675209500290036688779203157 + (

1.016602326350653740263964831809759812173 + (

3.7. Actual Computation of Approximations 51

.4217030131291780394406041742700751700336

+ .279976488979213455655718465272827515552 x) x) x

.000544791564332589764342588176415270745

The line

minimax(exp(x),x=0..1,[i,0],1,’err’);

means that we are looking for a minimax approximation of the exponential
function on [0, 1] by a rational function with a degree-i numerator and a degree-
0 denominator (i.e., a degree-i polynomial !) with a weight function equal to 1,
and that we want the variable err to be equal to the approximation error. From
this example, one can see that the absolute error obtained when approximating
the exponential function by a degree-3 minimax polynomial on [0, 1] is 5.4×10−4.

3.7.2 Getting approximations with special constraints

It is sometimes desirable to have polynomial or rational approximations with a
particular form (for instance,x+x3p(x2) for the sine function: this preserves sym-
metry and makes the number of multiplications used for evaluation smaller),
or with a fixed value at zero, or that are provably monotone. Such approxima-
tions have been studied by Dunham [115, 117, 118, 120, 121, 122]. Moreover,
although the methods we presented in this chapter help to bound the absolute
approximation error, one may be interested in bounding the relative error. Let
us examine an example, inspired by reference [120].

Example 3 (Sine function on [0, π/8]) Assume thatwewant to approximate the sine
function on [0, π/8], with a relative error bounded by ε, by a polynomial of the form:

x + a3x
3 + a5x

5 + · · · + a2n+1x
2n+1 = x + x3p(x2),

where p(x) = a3 + a5x + a7x
2 + · · · + a2n+3x

n. We want∣∣∣∣∣sin(x) − x − x3p(x2)
sin(x)

∣∣∣∣∣ ≤ ε. (3.5)

This is equivalent to ∣∣∣∣∣∣∣∣
sin(x)

x3 − 1
x2 − p(x2)

sin(x)
x3

∣∣∣∣∣∣∣∣ ≤ ε.

Now, define X = x2. Equation (3.5) is equivalent to:∣∣∣∣∣∣∣∣∣
sin(

√
X)

X3/2 − 1
X

− p(X)

sin(
√

X)
X3/2

∣∣∣∣∣∣∣∣∣ ≤ ε. (3.6)

52 Chapter 3. Polynomial or Rational Approximations

Therefore our problem is reduced to finding a minimax polynomial approximation
p(X) to

sin(
√

X)
X3/2 − 1

X

with a weight function X3/2/sin(
√

X) for X ∈ [0, π2/64]. Using the Taylor expansion:

sin(
√

X)
X3/2 − 1

X
= −1

6
+

X

120
− X2

5040
+ · · · +

(−1)2n+1Xn

(2n + 3)!
+ · · · ,

we can find p(X) using the Maple function

minimax(-1/6+X/120-Xˆ2/5040+Xˆ3/362880-Xˆ4/39916800
+Xˆ5/6227020800,X=0..Piˆ2/64,[2,0],
((sqrt(Xˆ3))/sin(sqrt(X))),’err’);

which returns the result

-.16666666480509 + (.0083332602856 - .000197596738 X) X.

Maple also gives the approximation error:

> err;
-10

.14363 10 .

Therefore the following polynomial approximates sin(x) on [0, π/8] with a relative
error less than 2 × 10−11,

x − 0.16666666480509x3 + 0.0083332602856x5 − 0.000197596738x7.

It is possible to recompute the approximation error as follows. The Maple command

> infnorm((x - 0.16666666480509*xˆ3+0.0083332602856*xˆ5-
0.000197596738*xˆ7-sin(x))/sin(x),x=0..Pi/8);

gives

-10
.143663703077561 10 .

For software implementations, when the polynomial or rational approx-
imations are to be evaluated in a precision that is not higher than the target
precision, it is important to get approximations with coefficients that are ma-
chine numbers.9 A similar method can be used again, as follows. Compute the
approximation with extra precision, round the leading coefficient to the clos-
est machine number, then recompute an approximation where you impose the
leading coefficient to be the previously rounded one.

9Or the sum of two machine numbers for the leading coefficients when very high accuracy is
at stake.

3.7. Actual Computation of Approximations 53

Example 4 (Computation of 2x) For instance, assume that we wish to approximate
2x on [0, 1/32] by a polynomial a0 + a1x + a2x

2 + a3x
3 of degree 3, and that we plan

to use the approximation in IEEE-754 single-precision arithmetic. We first compute, in
extended-precision arithmetic the minimax approximation:

0.999999999927558511254956761285
+(0.693147254659769878047982577293
+(0.240214666378173867533469171927
+0.0561090023893935052398838228928*x)*x)*x.

After this, we impose the coefficient of degree 0 to be a0 = 1, and the coefficient of
degree 1 to be the single-precision number that is closest to the coefficient of degree 1 of
the previously computed approximation; that is,

a1 = 0.693147242069244384765625 =
11629081

224 .

Now if ε is the approximation error of the new approximation we wish to compute, and
if we define p(x) to be the degree-1 polynomial a2 + a3x, we want:∣∣∣(2x − 1 − a1x) − x2p(x)

∣∣∣ ≤ ε.

This is equivalent to ∣∣∣∣∣∣∣∣
2x − 1 − a1x

x2 − p(x)

1
x2

∣∣∣∣∣∣∣∣ ≤ ε.

Therefore it suffices to compute a degree-1 minimax approximation of

2x − 1 − a1x

x2

with a weight function x2. This gives:

a2 = 0.24021510205
a3 = 0.05610760819,

and the approximation error is roughly equal to 10−10.

The methods we have given so far in this section frequently work well, and
yet, in general, they do not give the best polynomial (or rational) approximation
among the ones that satisfy the constraints.

Let us now describe how to get such best approximations. The following
method was suggested by Brisebarre, Muller and Tisserand [49]. Assume we
wish to find the best polynomial approximation p∗(x) = p∗

0 + p∗
1x + · · · + p∗

nxn

to f(x) in [a, b], with the constraint that p∗
i must be a multiple of 2−mi (that is,

its binary representation has at most mi fractional bits). Define p as the usual

54 Chapter 3. Polynomial or Rational Approximations

minimax approximation to f in [a, b] without that constraint, and p̂ as the poly-
nomial obtained by rounding the degree-i coefficient of p to the nearest multiple
of 2−mi , for all i. Define

ε = maxx∈[a,b] |f(x) − p(x)|
ε̂ = maxx∈[a,b] |f(x) − p̂(x)|.

We obviously have
ε ≤ max

x∈[a,b]
|f(x) − p∗(x)| ≤ ε̂.

The technique suggested in [49] consists in first finding a polytope (i.e., a bounded
polyedron) where p∗ necessarily lies,10 and then to scan all possible candidate
polynomials (a candidate polynomial is a degree-n polynomial whose degree
i coefficient is a multiple of 2−mi for all i, and that lies inside the polytope.
These constraints imply that the number of candidate polynomials is finite)
using recent scanning algorithms [6, 77, 308], and computing the distance to f
for each of these polynomials. If we look for a polynomial p∗ such that

max
x∈[a,b]

|f(x) − p∗(x)| ≤ K,

then one can build a polytope by choosing at least n + 1 points

a ≤ x0 < x1 < x2 < · · · < xm ≤ b, m ≥ n

and imposing the linear11 constraints12

f(xj) − K ≤ p∗
0 + p∗

1xj + p∗
2x

2
j + · · · + p∗

nxn
j ≤ f(xj) + K, ∀j. (3.7)

If K < ε, then the polytope defined by (3.7) contains no candidate polynomial. If
K ≥ ε̂, it contains at least one candidate polynomial (that is, p̂), and in practice it
may contain too many candidate polynomials, which would make the scanning
of the polytope very long. In practice, one has to start the algorithm with K
significantly less than ε̂. See [49] for more details.

3.8 Algorithms and Architectures for the Evaluation of
Polynomials

In the previous sections, we have studied how a function can be approximated
by a polynomial or a rational function. When actually implementing the approx-
imation, one has to select the way to evaluate a polynomial in order to minimize
the error and/or to maximize the speed.

10The polytope is located in a space of dimension n + 1. A degree-n polynomial is a point in
that space, whose coordinates are its coefficients.

11Linear in the coefficients p∗
i .

12In practice, we use slightly different constraints: we modify (3.7) so that we can work with
rational numbers only.

3.8. Algorithms and Architectures for the Evaluation of Polynomials 55

Using existing operators for addition and multiplication, we can only give
some advice:

• never evaluate a polynomial a4x
4 + a3x

3 + a2x
2 + a1x + a0 using the

sequence of operations:

a_4*x*x*x*x + a_3*x*x*x + a_2*x*x + a_1*x + a_0;

or, even worse:

a_4*power(x,4)+a_3*power(x,3)+a_2*power(x,2)
+a_1*x+a_0;

• in general, if the coefficients of the polynomial do not satisfy a specific
property (e.g., a simple factorization) that could help to accelerate the
computation, it is advisable to use Horner’s scheme :

(((a_4*x+a_3)*x+a_2)*x+a_1)*x+a_0.

Although commonly attributed to Horner, this method was used previously by
Newton [187].

Some processors (for instance the Power PC, or the Itanium) have a “fused
multiply-add” (FMA, fused MAC) instruction; that is, an expression of the form
±a × x + b can be evaluated just with one instruction, and there is only one
rounding error at the end. These properties can be used to quickly and accurately
evaluate a polynomial. If the depth of the pipeline that performs the fused
multiply-add is small, then Horner’s scheme is interesting. Otherwise, Estrin’s
method (see Section 3.8.2) may become attractive.

If the degree of the polynomial is large,13 one can use a method called
“adaptation of coefficients,” that was analyzed by Knuth [187]. This method
consists of computing once and for all some “transformation” of the polynomial
that will be used later on for evaluating it using fewer multiplications than with
Horner’s scheme. It is based on the following theorem.

Theorem 9 (Knuth) Let u(x) be a degree-n polynomial

u(x) = unxn + un−1x
n−1 + · · · + u1x + u0.

Let m = �n/2� − 1. There exist parameters c, α1, α2, . . . , αm and β1, β2, . . . , βm such
that u(x) can be evaluated using at most �n/2� + 2 multiplications and n additions by
performing the following calculations:

y = x + c
w = y2

z = (uny + α0)y + β0 if n is even
z = uny + β0 if n is odd
u(x) = (. . . ((z(w − α1) + β1)(w − α2) + β2) . . .)(w − αm) + βm.

13Which sometimes occurs, see for instance [83], page 267.

56 Chapter 3. Polynomial or Rational Approximations

The preceding expression that gives u(x) as a function of the parameters c,
α1, α2, . . . , αm, and β1, β2, . . . , βm leads to a nonlinear system of equations. In
this system, the number of unknown variables is 1 or 2 plus the number of
equations; therefore, in general, there are solutions for most values of c. If n = 8
and if we choose c = 1, the system of equations becomes:⎧⎪⎪⎨⎪⎪⎩

u7 = 8u8 + α0
u6 = 25u8 + 7α0 + β0 + u8(1 − α1) + u8(1 − α2) + u8(1 − α3)
u5 = 38u8 + 18α0 + 6β0 + (2u8 + α0)(1 − α1) + 4u8(1 − α1)

+(4u8 + α0)(1 − α2) + 2u8(1 − α2) + (6u8 + α0)(1 − α3)
u4 = (u8 + α0 + β0)(1 − α1) + β1 + 28u8 + 20α0 + 12β0

+4(2u8 + α0)(1 − α1) + (5u8 + 3α0 + β0 + u8(1 − α1))(1 − α2)
+4u8(1 − α1) + 2(4u8 + α0)(1 − α2)+
(13u8 + 5α0 + β0 + u8(1 − α1) + u8(1 − α2))(1 − α3)

u3 = 4(u8 + α0 + β0)(1 − α1) + 4β1 + (2u8 + 2α0 + 2β0 + (2u8
+α0)(1 − α1))(1 − α2) + 8u8 + 8α0 + 8β0 + 4(2u8 + α0)(1 − α1)
+2(5u8 + 3α0 + β0 + u8(1 − α1))(1 − α2)
+(12u8 + 8α0 + 4β0 + (2u8 + α0)(1 − α1)
+2u8(1 − α1) + (4u8 + α0)(1 − α2))(1 − α3)

u2 = ((u8 + α0 + β0)(1 − α1) + β1)(1 − α2) + β2
+4(u8 + α0 + β0)(1 − α1) + 4β1
+2(2u8 + 2α0 + 2β0 + (2u8 + α0)(1 − α1))(1 − α2)
+((u8 + α0 + β0)(1 − α1) + β1 + 4u8 + 4α0 + 4β0
+2(2u8 + α0)(1 − α1)
+(5u8 + 3α0 + β0 + u8(1 − α1))(1 − α2))(1 − α3)

u1 = 2((u8 + α0 + β0)(1 − α1) + β1)(1 − α2) + 2β2
+(2(u8 + α0 + β0)(1 − α1) + 2β1
+(2u8 + 2α0 + 2β0 + (2u8 + α0)(1 − α1))(1 − α2))(1 − α3)

u0 = (((u8 + α0 + β0)(1 − α1) + β1)(1 − α2) + β2)(1 − α3) + β3.

Computing the coefficients c, α1, α2, . . . , αm, and β1, β2, . . . , βm is rather
complicated. In practice, it may be a long trial-and-error process (most values of
c will give inconvenient solutions), but this is done once and for all. For instance,
if n = 8, ui = 1/i for i ≥ 1, u0 = 1, and c = 1, there are several solutions to the
system of equations. One of them is:

α0 = −0.85714285714286
α1 = −1.01861477121502
α2 = 0
α3 = −4.58138522878498
β0 = 1.96666666666667
β1 = −6.09666666666667
β2 = 20.7534008337147
β3 = −94.7138478361582.

In this case, the transformation allows us to evaluate the polynomial us-
ing six multiplications, instead of eight with Horner’s scheme. More details on
polynomial evaluation can be found in [187, 188].

3.8. Algorithms and Architectures for the Evaluation of Polynomials 57

When designing specific hardware, it may be possible to use some algo-
rithms and architectures for evaluating polynomials that have been proposed
in the past. Let us examine two such solutions.

3.8.1 The E-method

The E-method, introduced by M.D. Ercegovac in [128, 129], allows efficient evalu-
ation of polynomials and certain rational functions on simple and regular hard-
ware. Here we concentrate on the evaluation of polynomials assuming radix-2
arithmetic.

Consider the evaluation of p(x) = pnxn + pn−1x
n−1 + · · · + p0. One can

easily show that p(x) is equal to y0, where [y0, y1, . . . , yn]t is the solution of the
following linear system.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −x 0 · · · 0
0 1 −x 0 · · · 0
0 0 1 −x 0 · · · 0

.
...

. 0
...

. 0
1 −x

0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0
y1
y2

...

yn−1
yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0
p1
p2

...

pn−1
pn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.8)

The radix-2 E-method consists of solving this linear system by means of
the basic recursion

w(0) = [p0, p1, . . . , pn]t

w(j) = 2 ×
[
w(j−1) − Ad(j−1)

]
,

(3.9)

where A is the matrix of the linear system. This gives, for i = 0, . . . , n,

w
(j)
i = 2 ×

[
w

(j−1)
i − d

(j−1)
i + d

(j−1)
i+1 x

]
,

where d
(j)
i ∈ {−1, 0, 1}. Define the number

D
(j)
i = d

(0)
i .d

(1)
i d

(2)
i . . . d

(j)
i .

The d
(k)
i are the digits of a radix-2 signed-digit (see Chapter 2) representation of

D
(j)
i . One can show that if for any i the sequences |w(j)

i | are bounded, then D
(j)
i

goes to yi as j goes to infinity.
The problem at step j is to find a selection function that gives a value of

the terms d
(j)
i from the terms w

(j)
i such that the values w

(j+1)
i remain bounded.

In [129], the following selection function (a form of rounding) is proposed,

s(x) =

{
sign (x) × �|x + 1/2|� , if |x| ≤ 1
sign (x) × �|x|� , otherwise,

(3.10)

58 Chapter 3. Polynomial or Rational Approximations

and applied to the following cases.

1. d
(j)
i = s(w(j)

i); that is, the selection requires nonredundant w
(j)
i ;

2. d
(j)
i = s(ŵ(j)

i), where ŵ
(j)
i is an approximation of w

(j)
i . In practice, ŵ

(j)
i is

deduced from a few digits of w
(j)
i by means of a rounding to the nearest

or a truncation.

Assume ⎧⎪⎨⎪⎩
∀i, |pi| ≤ ξ
|x| ≤ α

|w(j)
i − ŵ

(j)
i | ≤ ∆

2 .

The E-method gives a correct result if the previously defined bounds ξ, α,
and ∆ satisfy ⎧⎪⎨⎪⎩

ξ = 1
2(1 + ∆)

0 < ∆ < 1
α ≤ 1

4(1 − ∆).
(3.11)

For instance, if ∆ = 1/2, one can evaluate p(x) for x ≤ 1/8 and max |pi| ≤
3/4. Those bounds may seem quite restrictive, but in practice there exist scaling
techniques [129] that allow us to compute p(x) for any x and p.

3.8.2 Estrin’s method

Assume that we want to evaluate a degree-7 polynomial:

a7x
7 + a6x

6 + · · · + a1x + a0.

If we are able to perform multiplications and accumulations in parallel (or
in a pipe-lined fashion), we can use Estrin’s algorithm [187].

Algorithm 5 (Estrin)

• input values: a7, a6, a5, a4, a3, a2, a1, a0, and x,

• output value: p(x) = a7x
7 + a6x

6 + · · · + a1x + a0.

Perform the following steps:

1. In parallel, compute X(1) = x2, a
(1)
3 = a7x + a6, a

(1)
2 = a5x + a4, a

(1)
1 =

a3x + a2, and a
(1)
0 = a1x + a0,

2. in parallel, compute X(2) =
(
X(1)

)2
, a

(2)
1 = a

(1)
3 X(1) + a

(1)
2 , and a

(2)
0 =

a
(1)
1 X(1) + a

(1)
0 ,

3. compute p(x) = a
(2)
1 X(2) + a

(2)
0 .

3.9. Evaluation Error Assuming Horner’s Scheme is Used 59

This algorithm, given for degree-7 polynomials for the sake of simplicity, can be
easily extended to polynomials of any degrees.

Estrin’s method is used for instance in some of INTEL’s elementary function
programs for the Itanium [83]. The basic idea behind the Polynomier [123] con-
sists of performing the multiplications and accumulations required by Estrin’s
method in pipeline, using a modified Braun’s multiplier [37, 174]. A prototype
of the Polynomier was designed in the Swiss Federal Institute of Technology
of Lausanne [81]. Estrin’s method becomes very interesting to consider when
programming a polynomial evaluation on a machine with a pipelined fused
multiply-add. For instance, implementation on the Intel Itanium circuit is dis-
cussed in [83] (pp. 62 and seq.).

3.9 Evaluation Error Assuming Horner’s Scheme is Used

So far, we have focused on the maximum error obtained when approximating a
function by a polynomial. Another error must be taken into account: when the
polynomial approximation is evaluated in finite precision arithmetic, round-
ing errors will occur at (almost) each arithmetic operation. These errors will
result in a final evaluation error. We therefore have to find sharp bounds on that
evaluation error. We assume here that the computations are performed using
floating-point arithmetic.

Let
p(x) = anxn + an−1x

n−1 + · · · + a1x + a0

be a degree-n polynomial. We assume that the ai’s are exactly representable
in the floating-point format being used. We also assume that the polynomial is
evaluated using Horner’s scheme. We wish to tightly bound the largest possible
evaluation error, for x ∈ [xmin, xmax].

There are some interesting results in the literature, for instance (see
Higham’s book [165] for more information),

Theorem 10 ([165], Corollary 3 of [24]) The error in the evaluation of

p(x) =
n∑

i=0

aix
i

using Horner’s scheme is bounded by

2 × ulp (1) × n ×
n∑

i=0

|aix
i| + O(ulp (1)2).

This last result might suffice when a very tight bound is not needed (for
instance when the intermediate calculations are performed with a precision that
is significantly larger than the target precision). When a very sharp bound is

60 Chapter 3. Polynomial or Rational Approximations

needed, we must use other techniques such as the one we are going to examine
now. It can of course be used for computing error bounds by paper and pencil
calculations. And yet, that would be so error-prone, that I strongly recommend
that these calculations be automated. In this section, I give small and simple
Maple programs for performing them. These programs can be generalized to
cases where algorithms such as the Fast2Sum and Fast2Mult algorithms (see
Chapter 2) are used — at least with the leading coefficients — to get very accurate
results. They use the function ulp given in Section 2.1.8. Let us first assume that
the polynomial will be evaluated using conventional floating-point additions
and multiplications (that is, there is no available fused multiply-add instruction).

3.9.1 Evaluation using floating-point additions and
multiplications

Definitions

We assume that we evaluate p(x) using Horner’s rule. We also assume that the
basic operations used are floating-point additions and multiplications, and that
round-to-nearest mode is selected. Define{

P ∗[i] = anxn−i+1 + an−1x
n−i + · · · + aix

S∗[i − 1] = anxn−i+1 + an−1x
n−i + · · · + aix + ai−1.

These variables denote the “exact” values that would be successively com-
puted (from i = n to 0), during Horner’s evaluation of p(x), for a given
x ∈ [xmin, xmax] if there were no rounding errors. The exact value of p(x)
is S∗[0]. We will also denote P [i] and S[i] the computed values of P ∗[i] and S∗[i],
using the relations {

P [i − 1] = S[i − 1] ⊗ x
S[i − 1] = P [i] ⊕ ai−1,

where ⊕ and ⊗ are the floating-point addition and multiplication, respectively,
with S[n] = an. The computed value of p(x) is S[0]. We are going to build lower
bounds Pmin[i] and Smin[i], and upper bounds Pmax[i] and Smax[i], on P [i] and
S[i]. These bounds, of course, will hold for any x ∈ [xmin, xmax]. To compute
them, we will need other variables: P̂min[i] and P̂max[i] will bound the exact
value of S[i]x, and Ŝmin[i − 1] and Ŝmax[i − 1] will bound the exact value of
P [i] + ai−1.

To compute an upper bound on the error occurring when evaluating p(x)
in floating-point arithmetic, we will need to evaluate the following intermediate
error bounds:

• δ[i] is an upper bound on the error due to the floating-point multiplication

P [i] = S[i] ⊗ x;

3.9. Evaluation Error Assuming Horner’s Scheme is Used 61

• ε[i − 1] is an upper bound on the error due to the floating-point addition

S[i − 1] = P [i] ⊕ ai−1.

Now, define err [i] as an upper bound on |S∗[i] − S[i]|. We wish to compute the
value of err [0]: this is the bound on the final evaluation error we are looking
for. We will compute it iteratively, starting from err [n] = 0.

Computing the error bounds iteratively

We first start from the straightforward values Smin[n] = Smax[n] = an, and we
define err [n] = 0. Now, assume that we know Smin[i], Smax[i] and err [i]. Let
us see how to deduce Smin[i − 1], Smax[i − 1] and err [i − 1]. First, we obviously
find (this is the usual interval multiplication)

P̂min[i] = min {Smin[i]xmin, Smin[i]xmax, Smax[i]xmin, Smax[i]xmax}

and

P̂max[i] = max {Smin[i]xmin, Smin[i]xmax, Smax[i]xmin, Smax[i]xmax} .

Since we use correctly rounded multiplication, in round-to-nearest mode, the
rounding error that occurs when computing S[i] ⊗ x is upper-bounded by

1
2

ulp (S[i]x).

Since ulp (t) is an increasing function of |t|, and since S[i]x ∈ [P̂min[i], P̂max[i]],
we get the following bound on that rounding error

δ[i] =
1
2

ulp
(
max

{
|P̂min[i]|, |P̂max[i]|

})
.

We immediately deduce the following lower and upper bounds on P [i]:{
Pmin[i] = P̂min[i] − δ[i]
Pmax[i] = P̂max[i] + δ[i].

Similarly, we find
Ŝmin[i − 1] = Pmin[i] + ai−1

and
Ŝmax[i − 1] = Pmax[i] + ai−1.

From these values, we deduce a bound on the error that occurs when computing
S[i − 1] = P [i] ⊕ ai−1:

ε[i − 1] =
1
2

ulp
(
max

{
|Ŝmin[i − 1]|, |Ŝmax[i − 1]|

})
,

62 Chapter 3. Polynomial or Rational Approximations

which gives the following lower and upper bounds on S[i − 1]:{
Smin[i − 1] = Ŝmin[i − 1] − ε[i − 1]
Smax[i − 1] = Ŝmax[i − 1] + ε[i − 1].

We now have all the information we need to compute err [i − 1]:

err [i − 1] = err [i] max {|xmin|, |xmax|} + δ[i] + ε[i − 1].

The following Maple program uses these relations for deducing err [0] from
an array a containing the coefficients of p (a[i] is the coefficient of degree i), a
variable n representing the degree of p, and the bounds xmin and xmax on x.

Errevalpol := proc(a,n,xmin,xmax);
smin[n]:= a[n];
smax[n]:= a[n];
err[n]:= 0;
for i from n by -1 to 1 do

pminhat[i] := min(smin[i]*xmin,smin[i]*xmax,smax[i]*xmin,
smax[i]*xmax);

pmaxhat[i] := max(smin[i]*xmin,smin[i]*xmax,smax[i]*xmin,
smax[i]*xmax);

delta[i]:=0.5*ulp(max(abs(pminhat[i]),abs(pmaxhat[i])));
pmin[i] := pminhat[i]-delta[i];
pmax[i] := pmaxhat[i]+delta[i];
sminhat[i-1] := pmin[i]+a[i-1];
smaxhat[i-1] := pmax[i]+a[i-1];
epsilon[i-1] := 0.5*ulp(max(abs(sminhat[i-1]),

abs(smaxhat[i-1])));
smin[i-1] := sminhat[i-1]-epsilon[i-1];
smax[i-1] := smaxhat[i-1]+epsilon[i-1];
err[i-1] := err[i]*max(abs(xmin),abs(xmax))

+epsilon[i-1]+delta[i]
od;
err[0];
end;

Two examples, and some refinement

Consider the degree-5 polynomial

p(x) = 1 +
2251799813685251
2251799813685248

x +
2251799813675657
4503599627370496

x2

+
3002399772526855
18014398509481984

x3 +
3002379076408669
72057594037927936

x4

+
4822644803220247

576460752303423488
x5.

3.9. Evaluation Error Assuming Horner’s Scheme is Used 63

That polynomial, whose coefficients are exactly representable in the IEEE-754
double-precision format, is an approximation to the exponential function in
[0, 1/128].

Our Maple program makes it possible to get a bound on the error committed
when evaluating p(x) in double-precision arithmetic, for x ∈ [0, 1/128]. This is
done (assuming that a[i] contains the degree-i coefficient of p) by typing

> Errevalpol(a,5,0,1/128);

which returns 1.128×10−16. It is worth noticing that in this case the error bound
given by procedure Errevalpol is rather tight: by computing p(x) in double-
precision for 200 randomly chosen values of x and comparing with the exact
values, the largest obtained error was 1.114 × 10−16. Since in the considered
domain, ulp (p(x)) = ulp (exp(x)) = 2−52, we deduce that we evaluate p in
[0, 1/128] with error less than 1.128 × 10−16 × 252 = 0.508 ulps. We can easily
bound the evaluation error obtained if we now assume that an internal extended-
precision format is available (as on Intel processors). This is done by redefining
function ulp of Section 2.1.8 to take into account the new format, and by adding
1/2 ulp of the double-precision format (that is, in the present example, 2−53) to the
obtained error, to take into account the final rounding of the obtained double-
extended precision result to the target double-precision format. This leads to an
evaluation of p with an error less than 0.50025 ulps.

Now, let us switch to another example. Consider, for x ∈ [0, 1], the
polynomial

q(x) =
4502715367124429
4503599627370496

− 5094120834338589
9007199254740992

x

+
3943097548915637
4503599627370496

x2 − 272563672039763
562949953421312

x3

+
6289926120511169
36028797018963968

x4.

It is a (rather poor, but this does not matter here) approximation tox! = Γ(x+1) in
[0, 1]. Using function Errevalpol, we get an error bound equal to 4.025×10−16

(i.e., 3.625 ulps), whereas the largest error we have actually obtained through
experiments is around 1.495 ulps, which is 2.4 times less.

This large difference comes from a well-known problem in interval arith-
metic. The bounds P̂min[i] and P̂max[i] are obtained by an interval multiplication
of [Smin[i], Smax[i]] by [xmin, xmax]. For getting the bounds of that interval prod-
uct, depending on i, it is sometimes xmin that is used, and sometimes xmax: we
lose the essential information that, in actual polynomial evaluations, it is “the
same x” that is used at all steps of Horner’s method. This problem did not oc-
cur in the previous example, because, since the polynomial coefficients were all

64 Chapter 3. Polynomial or Rational Approximations

positive, and since xmin ≥ 0, it was always xmin that was used to get the lower
bounds P̂min[i], and it was always xmax that was used to get the upper bounds
P̂max[i].

The best way to make that problem negligible is to split the input interval
[xmin, xmax] into several sub-intervals, to use Errevalpol in each sub-domain,
and to consider the largest returned error bound. This is done by the following
Maple program

RefinedErrPol := proc(a,n,xmin,xmax,NumbOfIntervals);
errmax := 0;
Size := (xmax-xmin)/NumbOfIntervals;
for i from 0 to NumbOfIntervals-1 do
err := Errevalpol(a,n,xmin+i*Size,xmin+(i+1)*Size);
if err > errmax then errmax := err fi
od;
errmax
end;

In our example, if we cut the initial input interval into 64 sub-intervals, by
calling RefinedErrPol(a,4,0,1,64), we get a better error bound: 2.93 ×
10−16, that is, around 2.64 ulps.

3.9.2 Evaluation using fused multiply-accumulate
instructions

Definitions

Let us now assume that on the target architecture a fused-multiply accumulate
instruction is available, and that we use that instruction to implement the poly-
nomial evaluation by Horner’s scheme. This makes it possible to evaluate an
expression ax + b with one final rounding only.

As previously, we define

S∗[i] = anxn−i + an−1x
n−i−1 + · · · + ai,

we also define S[i] as the computed value, for a given x, of S∗[i] using:

S[i − 1] = (S[i]x + ai−1) rounded to nearest,

with S[n] = an. We will compute lower and upper bounds Smin[i] and Smax[i]
on S[i]. To do that, we use intermediate variables Ŝmin[i − 1] and Ŝmax[i − 1]
that bound the exact value of (S[i]x + ai−1), and a variable ε[i] that bounds the
rounding error occurring when computing S[i] from S[i + 1].

As in Section 3.9.1, err [i] is an upper bound on |S∗[i] − S[i]|. We wish to
compute err [0]: this is the final evaluation error we are looking for. We will
compute it iteratively, starting from err [n] = 0.

3.9. Evaluation Error Assuming Horner’s Scheme is Used 65

Iteratively computing the evaluation error

The iterative process that gives err [0] is very similar to the one described in
Section 3.9.1. We first start from the straightforward values: Smin[n] = Smax[n] =
an and err [n] = 0.

Now, assume that we know Smin[i], Smax[i] and err [i]. Let us see how to
deduce Smin[i − 1], Smax[i − 1] and err [i − 1]. We find

Ŝmin[i − 1] = ai−1 + min {Smin[i]xmin, Smin[i]xmax, Smax[i]xmin, Smax[i]xmax}

and

Ŝmax[i − 1] = ai−1 + max {Smin[i]xmin, Smin[i]xmax, Smax[i]xmin, Smax[i]xmax} .

We then deduce

ε[i − 1] =
1
2

ulp
(
max

{
|Ŝmin[i − 1]|, |Ŝmax[i − 1]|

})
,

which gives the following lower and upper bounds{
Smin[i − 1] = Ŝmin[i − 1] − ε[i − 1]
Smax[i − 1] = Ŝmax[i − 1] + ε[i − 1].

We now have all the information we need to compute err [i − 1]:

err [i − 1] = err [i] max {|xmin|, |xmax|} + ε[i − 1].

The following Maple program uses these relations for deducing err [0] from
an array a containing the coefficients of p, a variable n representing the degree
of p, and the bounds xmin and xmax on x.

ErrevalpolFMA := proc(a,n,xmin,xmax);
smin[n]:= a[n];
smax[n]:= a[n];
err[n]:= 0;
for i from n by -1 to 1 do

sminhat[i-1] := a[i-1] + min(smin[i]*xmin,smin[i]*xmax,
smax[i]*xmin,smax[i]*xmax);

smaxhat[i-1] := a[i-1] + max(smin[i]*xmin,smin[i]*xmax,
smax[i]*xmin,smax[i]*xmax);

epsilon[i-1] := 0.5*ulp(max(abs(sminhat[i-1]),
abs(smaxhat[i-1])));

smin[i-1] := sminhat[i-1]-epsilon[i-1];
smax[i-1] := smaxhat[i-1]+epsilon[i-1];
err[i-1] := err[i]*max(abs(xmin),abs(xmax))+epsilon[i-1]
od;
err[0];
end;

66 Chapter 3. Polynomial or Rational Approximations

Examples

Let us first consider the degree-5 polynomial p(x) of Section 3.9.1, still assuming
double-precision arithmetic, but using FMAs instead of floating-point additions
and multiplications. The error bound we get, for x ∈ [0, 1/128], using procedure
ErrevalpolFMA is 1.119 × 10−16. Since, for x ∈ [0, 1/128], ulp (x) = ulp (1),
this error bound is 0.504 ulps.

If we evaluate p(x) in double-extended precision, and round the obtained
final result to double-precision, the error bound becomes 1.110770 × 10−16 ≈
0.50027 ulps.

Now, let us focus on the degree-4 polynomial q(x) of Section 3.9.1, with
double-precision arithmetic. We get an error bound equal to 2.498 × 10−16 =
2.25 ulps, and, using a refinement technique similar to the one suggested in
Section 3.9.1 (by dividing the input interval into 256 sub-intervals), the error
bound becomes 1.752 ulps. The largest error found (through evaluation of q for
400 random input values very close to 1) is 1.567 ulps.

The Gappa software14 developed by Melquiond automatically computes
bounds on the roundoff error that occurs during some numerical computations
such as the ones considered in this section, and generates formal proofs of these
bounds.

3.10 Miscellaneous

Polynomial and rational approximations of functions have been widely stud-
ied [62, 64, 65, 99, 116, 125, 141, 142, 146, 160, 191, 265]. Good references on
approximation are the books by Cheney [59], Rice [267], Rivlin [268] and Lau-
rent [201]. Some of the ideas presented in this chapter can be extended to complex
elementary functions. Braune [38] and Krämer [193] suggested algorithms that
evaluate standard functions and inverse standard functions for real and complex
point and interval arguments with dynamic accuracy. Midy and Yakovlev [230]
and Hull et al. [172] suggested algorithms for computing elementary functions
of a complex variable. The CELEFUNT package, designed by W.J. Cody [72],
is a collection of test programs for the complex floating-point elementary func-
tions. Minimax approximation by polynomials on the unit circle is considered
in [16, 313], with applications to digital filtering. When evaluating a given poly-
nomial may lead to underflow or overflow, there exist scaling procedures [155]
that prevent overflow and reduce the probability of occurrence of underflow.
Also, when high precision is not at stake, one can try to use the multimedia SIMD
features available on some recent processors to accelerate polynomial evalua-
tion, as suggested by Bandera et al. [23]. In his PhD dissertation, Liddicoat [215]
presents an arithmetic operator that evaluates polynomial approximations to
functions.

14http://lipforge.ens-lyon.fr/www/gappa/.

Chapter 4

Table-Based Methods

4.1 Introduction

Evaluating a function by approximating it in a rather large domain using the
techniques presented in Chapter 3 may require polynomial or rational functions
of large degrees. This may lead to long delays of computation, and this may
also make the numerical error control difficult. A natural way to deal with this
problem is to split the interval where the function is to be approximated into
several smaller subintervals. It suffices to store in a table, for each subinterval,
the coefficients of a low-degree approximation that is valid in that interval. Such
a method is not new (a PDP-9 implementation is reported in [10]), but it may
become very attractive nowadays, since memory is less and less expensive. And
yet, for software-based implementation, the use of large tables may increase the
probability of a cache miss. See [100, 101] for a discussion on this problem. This
is why some implementations of some functions do not use tables at all (for
instance the arctangent function described in [83, 159] uses a polynomial of
degree 47 and no table).

Let us consider the following example.

Example 5 (Sine function on [0, π/4]) We wish to approximate the sine function in
[0, π/4], with an error less than 10−8. Table 4.1 shows that if we do not split the interval
[0, π/4], and use one polynomial approximation only, then a polynomial of degree 6 is
necessary. Table 4.2 shows that if we split the interval into two subintervals of equal
size, then degree-5 polynomial approximations suffice. Table 4.3 shows that if we split
[0, π/4] into 4 subintervals, then approximations of degree 4 suffice.

This example shows that a significant amount of computation time can be
saved by splitting the original domain. Many compromises between the amount
of computation and the amount of storage can be found. Much care is needed
at the boundaries of the subdomains if we wish to preserve properties such
as monotonicity. Tables 4.4 and 4.5 show for various functions that reducing
the size of the interval where a function is approximated allows the use of a

68 Chapter 4. Table-Based Methods

Interval Degree Error
5 0.609 × 10−7

[0, π/4] 6 0.410 × 10−8

7 0.418 × 10−10

Table 4.1: Minimax approximation to sin(x), x ∈ [0, π/4], using one polynomial. The
errors given here are absolute errors.

Interval Degree Error

4 0.148 × 10−6

[0, π/8] 5 0.486 × 10−9

6 0.342 × 10−10

4 0.126 × 10−6

[π/8, π/4] 5 0.138 × 10−8

6 0.289 × 10−10

Table 4.2: Minimax approximation to sin(x), x ∈ [0, π/4], using two polynomials. The
errors given here are absolute errors.

Interval Degree Error

3 0.478 × 10−7

[0, π/16] 4 0.472 × 10−8

5 0.382 × 10−11

3 0.140 × 10−6

[π/16, π/8] 4 0.454 × 10−8

5 0.113 × 10−10

3 0.228 × 10−6

[π/8, 3π/16] 4 0.418 × 10−8

5 0.183 × 10−10

3 0.307 × 10−6

[3π/16, π/4] 4 0.367 × 10−8

5 0.246 × 10−10

Table 4.3: Minimax approximation to sin(x), x ∈ [0, π/4], using four polynomials.
The errors given here are absolute errors.

4.1. Introduction 69

a arctan, degree 10 exp, degree 4 ln(1 + x), degree 5

5 0.00011 0.83 0.0021

2 1.0 × 10−6 0.0015 0.00013

1 1.9 × 10−9 0.000027 8.7 × 10−6

0.1 3.6 × 10−19 1.7 × 10−10 6.1 × 10−11

0.01 4.3 × 10−30 1.6 × 10−15 7.9 × 10−17

Table 4.4: Absolute error of the minimax polynomial approximations to some functions
on the interval [0, a]. The error decreases rapidly when a becomes small.

a arctan exp ln(1 + x)

10 19 16 15
1 6 5 5
0.1 3 2 3
0.01 1 1 1

Table 4.5: Degrees of the minimax polynomial approximations that are required to
approximate some functions with error less than 10−5 on the interval [0, a]. When a
becomes small, a very low degree suffices.

polynomial of very small degree. With the most common functions, it is not
necessary to recalculate and store a new polynomial or rational approximation
for each subinterval; one can use some simple algebraic properties such as ea+b =
eaeb. For instance, when computing the exponential function in a domain of the
form [0, a], with equally sized sub-intervals, it suffices to have an approximation
valid in the first interval. In the subinterval [ak, ak+1], the exponential of x is
eak times the exponential of x − ak, and x − ak obviously belongs to the first
subinterval. Similar tricks can be obtained for the trigonometric functions and
the logarithms.

In this chapter, we study three different classes of table-based methods. The
choice among the different methods depends on the kind of implementation
(software, hardware) and on the possible availability of a “working precision”
(i.e., the precision used for the intermediate calculations) significantly higher
than the “target precision” (i.e., the output format):

• first, methods using a “standard table” (i.e., the function is tabulated at
regularly spaced values), and a polynomial or rational approximation.
To provide last-bit accuracy, those methods must be implemented using

70 Chapter 4. Table-Based Methods

(or simulating [102]) a precision that is somewhat larger than the target
precision; by simply tabulating the function in the target precision, an error
that can be close to 1/2 ulp is committed, so that there is no hope of hav-
ing the final error bounded by 1/2 ulp or slightly more than 1/2 ulp. Due
to this problem, such methods are better suited either for hardwired im-
plementation, or when a larger precision is available at reasonable cost.
This is the case on Intel processors that offer, since the 8087, an internal
80-bit format. Tang’s “table-driven” algorithms [304, 305, 306, 307] (see
Section 4.2) belong to this class of methods;

• second, methods that use “accurate tables” (i.e., the function is tabulated
at almost regularly spaced points, for which the value of the function is
very close to a machine number). Such methods are attractive for software
implementations. With some care, they can be implemented using the tar-
get precision only. Gal’s “accurate tables method” (see section 4.3) belongs
to this class of methods;

• third, methods using several consecutive lookups in tables, and dedi-
cated operators. Examples of such methods are Wong and Goto’s algo-
rithms, presented in Section 4.4.1 or the bipartite method, presented in
Section 4.4.4. Such methods require hardware implementation.

4.2 Table-Driven Algorithms

In [304, 305, 306, 307], P.T.P. Tang proposes some guidelines for the implemen-
tation of the elementary functions using table-lookup algorithms. For the com-
putation of f(x), his algorithms use three elementary steps:

reduction: from the input argument x (after a possible preliminary range re-
duction; see Chapter 9), one deduces a variable y belonging to a very small
domain, such that f(x) can easily be deduced from f(y) (or, possibly, from
some function g(y)). This step can be merged with the preliminary range
reduction;

approximation: f(y) (or g(y)) is computed using a low-degree polynomial
approximation;

reconstruction: f(x) is deduced from f(y) (or g(y)).

Now we consider some examples. We first examine in detail the algo-
rithm suggested by Tang for exp(x) in double-precision IEEE floating-point
arithmetic [304]. After this, we briefly give Tang’s guidelines for ln(x) and
sin(x) [306].

4.2. Table-Driven Algorithms 71

4.2.1 Tang’s algorithm for exp(x) in IEEE floating-point arithmetic

Assume we wish to evaluate exp(x) in IEEE double-precision floating-point
arithmetic.1 Tang [304] suggests first reducing the input argument to a value r
in the interval [

− ln(2)
64

,+
ln(2)
64

]
,

second to approximate exp(r)−1 by a polynomial p(r), and finally to reconstruct
exp(x) by the formula

exp(x) = 2m(2j/32 + 2j/32p(r)),

where j and m are such that

x = (32m + j)
ln(2)
32

+ r, 0 ≤ j ≤ 31. (4.1)

These various steps are implemented as follows.

reduction: To make the computation more accurate, Tang represents the re-
duced argument r as the sum of two floating-point numbers r1 and r2
such that r2 � r1 and r1 + r2 approximates r to a precision higher than
the working precision. To do this, Tang uses three floating-point numbers
Lleft, Lright and Λ, such that:

• Λ is 32/ ln(2) rounded to double-precision;

• Lleft has a few trailing zeros;

• Lright � Lleft, and Lleft +Lright approximates ln(2)/32 to a precision
much higher than the working one.

The numbers r1 and r2 are computed as follows. Let N be x×Λ rounded to
the nearest integer. Define N2 = N mod 32 and N1 = N−N2. We compute,
in the working precision:

r1 = x − N × Lleft

and
r2 = −N × Lright.

The values m and j of 4.1 are m = N1/32 and j = N2. An analysis of this
reduction method is given in reference [139]. Other reduction methods,
that may be more accurate for large values of x, are presented in Chapter 9.

1For single-precision, see [304].

72 Chapter 4. Table-Based Methods

approximation: p(r) is computed as follows. First, we compute r = r1 + r2 in
the working precision. Second, we compute

Q = r × r × (a1 + r × (a2 + r × (a3 + r × (a4 + r × a5)))),

where the ai are the coefficients of a minimax approximation. Finally,
we get

p(r) = r1 + (r2 + Q).

The term r2 is used at order 1 only.

reconstruction: The values sj = 2j/32, j = 0, . . . , 31, are precomputed in higher

precision and represented by two double-precision numbers sleft
j and s

right
j

such that:

• sleft
j � s

right
j ;

• the six trailing bits of sleft
j are equal to zero;

• sj = sleft
j + s

right
j to around 100 bits.

Let Sj be the double-precision approximation of sj . We compute

exp(x) = 2m ×
(
sleft
j +

(
s

right
j + Sj × p(r)

))
.

4.2.2 ln(x) on [1, 2]

reduction: If x − 1 is very small (Tang suggests the threshold e1/16 for x), then
we approximate lnx by a polynomial. Otherwise, we find “breakpoints”
ck = 1 + k/64, k = 1, 2, . . . , 64, such that

|x − ck| ≤ 1
128

.

We define r = 2 (x − ck) / (x + ck). Hence |r| ≤ 1/128.

approximation: we approximate

ln
(

x

ck

)
= ln

(
1 + r/2
1 − r/2

)
for r ∈ [0, 1/128] by a polynomial p(r) of the variable r. Depending on the
required accuracy, one can use one of the polynomials given in Table 4.6.

reconstruction: we get ln(x) from

ln(x) = ln(ck) + ln(x/ck)
≈ ln(ck) + p(r).

The values ln(ck) are tabulated.

4.3. Gal’s Accurate Tables Method 73

Degree Error Polynomial

3 0.48 × 10−13 r

+0.0833339964r3

5 0.10 × 10−18
r

+0.0833333333290521r3

+0.01250020282r5

7 0.27 × 10−24

r

+0.08333333333333335805r3

+0.0124999999978878r5

+0.002232197165r7

9 0.80 × 10−30

r

+0.083333333333333333333200498r3

+0.012500000000000017673r5

+0.0022321428563634129r7

+0.000434041799769r9

Table 4.6: Approximations to ln ((1 + r/2)/(1 − r/2)) on [0, 1/128].

If a larger accuracy is required, one can use more breakpoints; with
256 breakpoints and a polynomial of degree 7, the approximation error will be
0.1 × 10−29. Using 512 breakpoints, the approximation error will be 0.2 × 10−32

with a polynomial of degree 7, and 0.92 × 10−40 with a polynomial of degree 9.

4.2.3 sin(x) on [0, π/4]

reduction: If |x| is very small (the threshold chosen by Tang in [306] is 1/16),
then sinx is approximated by a polynomial. Otherwise, we find the “break-
point” cjk = 2−j (1 + k/8), with j = 1, 2, 3, 4 and k = 0, 1, 2, . . . , 7, that is
closest to x. Define r = x − cjk. We have |r| ≤ 1/32.

approximation: We approximate sin(r) − r and cos(r) − 1, for instance, using
one of the polynomials given in Table 4.7 for the first function, and one of
the polynomials given in Table 4.8 for the second one.

reconstruction: We reconstruct sin(x) using:

sin(x) = sin(cjk) cos(r) + cos(cjk) sin(r).

4.3 Gal’s Accurate Tables Method

This method is due to Gal [147], and was implemented for IBM/370-type ma-
chines [2]. A more recent implementation, especially suited for machines using
the IEEE-754 floating-point arithmetic, was described by Gal and Bachelis [148]

74 Chapter 4. Table-Based Methods

Degree Error Polynomial

3 0.33 × 10−10 −0.1666596r3

5 0.15 × 10−15 −0.16666666656924r3

+0.008333044883r5

7 0.45 × 10−21
−0.16666666666666602381875r3

+0.008333333329900320r5

−0.0001984071815851r7

9 0.10 × 10−26

−0.16666666666666666666421r3

+0.008333333333333312907r5

−0.0001984126983563939r7

+0.00000275566861r9

Table 4.7: Approximations to sin(r) − r on [−1/32, 1/32].

Degree Error Polynomial

2 0.68 × 10−8 −0.49996629r2

4 0.50 × 10−13 −0.49999999942942r2

+0.04166477827r4

6 0.21 × 10−18
−0.49999999999999576r2

+0.041666666640330r4

−0.0013888423656r6

8 0.54 × 10−24

−0.4999999999999999999825089r2

+0.041666666666666492647r4

−0.0013888888883507292r6

+0.0000248009314r8

10 0.98 × 10−30

−0.49999999999999999999999995425696r2

+0.0416666666666666666660027496r4

−0.001388888888888885759632r6

+0.0000248015872951505636r8

−0.000000275567182072r10

Table 4.8: Approximations to cos(r) − 1 on [−1/32, 1/32].

in 1991. It is very attractive when the accuracy used for the intermediate
calculations is equal to the target accuracy.2 It consists of tabulating the func-
tion being computed at almost-regularly spaced points that are “machine num-
bers” (i.e., that are exactly representable in the floating-point system being
used), where the value of the function is very close to a machine number.3

2We call target accuracy the accuracy of the number system used for representing the results.
3We must notice that with the most common functions (exp, ln, sin, cos, arctan), there are no

nontrivial machine numbers where the value of the function is exactly a machine number. This is
a consequence of a theorem due to Lindemann, which shows that the exponential of a possibly
complex algebraic nonzero number is not algebraic. This property is also used in Chapter 10.

4.3. Gal’s Accurate Tables Method 75

By doing this, we simulate a larger accuracy. Let us consider the following
example.

Example 6 (computation of the exponential function) Assume that we use a
base-10 computer with 4-digit-mantissas, and that we want to evaluate the exponential
function on the interval [1/2, 1]. A first solution is to store the five values e0.55, e0.65,
e0.75, e0.85, and e0.95 in a table, and to approximate, in the interval [i/10, (i + 1)/10](i =
5, . . . , 9), the exponential ofx by exp((i + 1/2)/10) (which is stored) plus — or times —
a polynomial function of x − i+1/2

10 . The values stored in the table are:

x ex Value Stored | Error |
0.55 1.733253 · · · 1.733 2.5 × 10−4

0.65 1.915540 · · · 1.916 4.6 × 10−4

0.75 2.117000 · · · 2.117 1.7 × 10−8

0.85 2.339646 · · · 2.340 3.5 × 10−4

0.95 2.585709 · · · 2.586 2.9 × 10−4

The rounding error committed when storing the values is 4.6 × 10−4 in the worst case,
and has an average value equal to 2.7 × 10−4. Now let us try to use Gal’s method. We
store the values of the exponential at points Xi that satisfy the following conditions.

1. They should be exactly representable in the number system being used (base 10,
4 digits);

2. they should be close to the values that were previously stored;

3. eXi should be very close to a number that is exactly representable in the number
system being used.

Such values can be found by an exhaustive or a random search. One can take the
values:

Xi eXi Value Stored | Error |
0.5487 1.73100125 · · · 1.731 1.2 × 10−6

0.6518 1.91899190 · · · 1.919 8.1 × 10−6

0.7500 2.11700001 · · · 2.117 1.7 × 10−8

0.8493 2.33800967 · · · 2.338 9.6 × 10−6

0.9505 2.58700283 · · · 2.587 2.8 × 10−6

Now, the rounding error becomes 9.6 × 10−6 in the worst case, and has an average
value equal to 4.3 × 10−6. Thus this table is 60 times more accurate than the previous
one for the average case, and 50 times for the worst case.

76 Chapter 4. Table-Based Methods

Now let us study Gal and Bachelis’ algorithm for computing sines and
cosines in IEEE-754 double-precision floating-point arithmetic [148]. We assume
that a range reduction has been performed (see Chapter 9), so that our problem
is reduced to evaluating the sine or cosine of u + du, where u is a “machine
number” of absolute value less than π/4, and du is a correction term, much
smaller than u.

• To compute sin(u + du), if u is small enough (in Gal and Bachelis’ method
the bound is 83/512), it suffices to use a polynomial approximation of the
form

(((C9 × u2 + C7) × u2 + C5) × u2 + C3) × u2 × u + du + u,

where u2 = u2. Now, if u is larger, we must use “accurate tables.” Gal and
Bachelis use values sin(Xi) and cos(Xi), where the terms Xi = i/256 + εi

(for 16 ≤ i ≤ 201), are chosen so that sin(Xi) and cos(Xi) should contain
at least 11 zeros after bit 53. After this, if i is the integer that is nearest to
256u, and if z = (u − Xi) + du, we use the well-known formula

sin(Xi + z) = sin(Xi) × cos(z) + cos(Xi) × sin(z),

where sin(z) and cos(z) are evaluated using polynomial approximations
of low degrees (4 for cos(z) and 5 for sin(z)).

• To compute cos(u + du), in a similar fashion, Gal and Bachelis use a poly-
nomial approximation if u is small enough, and the formula

cos(Xi + z) = cos(Xi) × cos(z) − sin(Xi) × sin(z)

for larger values of u.

Using this method, Gal and Bachelis obtained last-bit accuracy in about
99.9 percent of the tested cases. This shows that for software implementation, a
careful programming of the accurate tables method is an interesting choice.4

Now let us concentrate on the cost of producing such accurate tables. We
are looking for “machine numbers” Xi such that the value of one or more func-
tions5 at the point Xi is very close to a machine number. Let us assume that
we use an n-bit-mantissa, radix-2, floating-point number system. We assume
that if f is one of the usual elementary functions and x is a machine number,
then the bits of f(x) after position n can be viewed as if they were random se-
quences of 0s and 1s, with probability 1/2 for 0 as well as for 1 (we need the
same assumption in Chapter 10 for studying the possibility of always comput-
ing exactly rounded results). We also assume that when we need to tabulate

4But it seems difficult to always get correctly rounded results without performing the inter-
mediate calculations using or simulating an accuracy that is significantly larger than the target
accuracy.

5We need one function for computing exponentials, two for computing sines or cosines.

4.4. Table Methods Requiring Specialized Hardware 77

several functions f1, f2, . . . , fk, the bits of f1(x), f2(x), . . . , fk(x) can be viewed
as “independent.”

Using our assumptions, one can easily see that the “probability” of having
p 0s or p 1s after position n in f1(x), f2(x), . . . , fk(x) is 2−kp+k. There are two
consequences of this:

• if we want q such values Xi, and if we try to find them by means of an
exhaustive or random search, we will have to test around q×2kp−k values.
For instance, to find values Xi suitable for Gal and Bachelis’ algorithm for
sines and cosines (given previously), for which k = 2, q = 185, and p = 11,
we have to test a number of values whose order of magnitude is 2 × 108;

• we want the values Xi to be “almost regularly spaced;” that is, each value
Xi must be located in an interval of size, say, 2ε. Assuming that in this
interval all floating-point numbers have the same exponent α, the number
of machine numbers included in the interval is around 2n−αε. Therefore, to
make sure that there exist such values Xi, 2kp−k must be small compared
to 2n−αε.

Luther [220] described a fast method for obtaining highly accurate tables by
using Bresenham’s algorithm. Stehlé and Zimmermann recently suggested im-
provements to the accurate tables method [293]. Using algorithms originally
designed for finding worst cases of the table maker’s dilemma (see Chapter 10
and references [206, 208, 211, 292]), they generate values Xi that are extremely
good values, faster than when using Gal’s original searching method.

4.4 Table Methods Requiring Specialized Hardware

The methods previously presented in this chapter may be implemented in soft-
ware as well as in hardware. Now if we want to take advantage of a hardware
implementation, we may try to find methods that are faster, but that require spe-
cialized hardware. Wong and Goto [324] suggested using a specialized hardware
for implementing a table-based method. To evaluate the elementary functions
in the IEEE-754 double-precision floating-point format (see Chapter 2), they use
a rectangular multiplier, more precisely, a 16×56-bit multiplier6 that truncates the
final result to 56 bits. As they point out, such multipliers already exist in actual
floating-point circuits: the Cyrix 83D87 coprocessor had a 17 × 69 bit multiply
and add array [45]. Arectangular multiplier is faster than a full double-precision
multiplier. According to Wong and Goto, the rectangular multipliers required
by their algorithms operate in slightly more than half the time required to per-
form a full double-precision multiplication. Let us now examine some of Wong
and Goto’s algorithms.

6For most of their algorithms, a 56 × 12 bit rectangular multiplier suffices.

78 Chapter 4. Table-Based Methods

4.4.1 Wong and Goto’s algorithm for computing
logarithms

Assume we wish to compute the logarithm of a normalized IEEE-754 double-
precision floating-point number:

x = m × 2exponent.

We evaluate lnx as follows. First, we evaluate lnm. Then we add lnm
and exponent × ln 2 (the number exponent × ln 2 can be found in a table or
computed using a rectangular multiplier). If exponent = −1, this final addition
may lead to a catastrophic cancellation.7 To avoid this, we assume exponent �= −1
(if exponent = −1, then m is one bit right-shifted, and exponent is replaced by
zero). As a consequence, we must assume8:

1
2

≤ m < 2.

In the following,
[z]a−b

denotes the number obtained by zeroing all the bits of z but the bits a to b. For
instance, if m = m0.m1m2m3m4 . . ., then

[m]1−3 = 0.m1m2m3000

Let us focus on the computation of lnm. The basic trick consists of finding
a number K1 such that K1m ≈ 1, and such that the multiplication K1 ×m can be
performed using a rectangular multiplier (i.e., K1 must be representable with a
few bits only, and close to 1/m). This gives:

ln(m) = ln(K1m) − ln(K1),

where ln(K1) is looked up in a table. Then we continue: we find a number
K2 such that K1K2m is even closer to 1. After this our problem is reduced to
evaluate the logarithm of (K1K2m). We continue until our problem is reduced
to the evaluation of a number that is so close to 1 that a simple low-order Taylor
expansion suffices to get its logarithm. Now let us give the algorithm with more
details (proofs can be found in [324]).

7A catastrophic cancellation is the total loss of accuracy that may occur when two numbers
that are very close to each other are subtracted. It is worth noticing that there may be an error only
in the case where at least one of the operands is inexact (i.e., it is the rounded result of a previous
computation). Otherwise, the result of the subtraction is exact. As we have seen in Chapter 2
(Theorem 2), if x and y are floating-point numbers in the same format such that x/2 ≤ y ≤ 2x,
then the subtraction y − x is exactly performed on any machine compliant with the IEEE-754
standard.

8But we must keep in mind that 1/2 ≤ m < 1 if exponent = 0 only; otherwise, we could have
a catastrophic cancellation for exponent = 1 and m close to 1/2.

4.4. Table Methods Requiring Specialized Hardware 79

1. First, we obtain from tables the numbers

K1 =

[
1

[m]0−10 + 2−10

]
0−10

and
[ln (K1)]1−56 ;

2. using a rectangular multiplier, we multiply m by K1. The result is equal to
1−α, where 0 < α < 2−8. Since we now want to find a value K2 such that
K1K2m is very close to 1, K2 = 1 + α would be convenient (this would
give |K1K2m − 1| = |(1 − α2) − 1| < 2−16). Unfortunately, multiplying
K1m by 1 + α would require a full double-precision multiplier. To avoid
this, we choose a slightly different value of K2, representable with 10-bits.
If α is equal to 0.00000000α9α10 · · ·α18α19 · · · , we define a 10-bit number
a = 0.00000000a9a10 · · · a18:

a9a10 · · · a18 =

{
α9α10 · · ·α17α18 + 1 if α9 = 1
α9α10 · · ·α170 otherwise,

(4.2)

and we choose K2 equal to 1.00000000a9a10 · · · a18. Then, from tables, we
obtain [ln(K2)]1−56.

3. Using a rectangular multiplier, we multiply (mK1) by K2. The result is
equal to 1 − β, where (thanks to (4.2)) 0 ≤ β < 2−16. From tables, we
obtain

[ln(1.0000000000000000β17β18β19 · · ·β26)]1−56 .

Now, as in the previous step, we define a 10-bit number

b = 0.0000000000000000b17b18 · · · b26

as follows

b9b17 · · · b26 =

{
β17β18β19 · · ·β25β26 + 1 if β17 = 1
β17β18β19 · · ·β250 otherwise,

(4.3)

and we define K3 as 1.0000000000000000b17b18b19 · · · b26. From tables, we
obtain [lnK3]1−56.

4. Using a rectangular multiplier, we multiply (mK1K2) by K3. The result
is equal to 1 − γ, where 0 ≤ γ < 2−24. Now 1 − γ is so close to 1 that the
degree-3 Taylor approximation

ln(1 − γ) ≈ −γ − γ2

2
− γ3

3

suffices to get its logarithm with good accuracy.

80 Chapter 4. Table-Based Methods

should have been returned
53-bit value that

�

56-bit value to the nearest
obtained by rounding the
returned 53-bit result

�

56-bit computed value

�

exact result

�

56-bit numbers

�
�
�
�
�	��

53-bit numbers

�

�
�
�
�
��

Figure 4.1: An incorrectly rounded result deduced from a 56-bit value that is
within 0.5 ULPs from the exact result. We assume that rounding to the nearest was
desired.

5. Using a full multiplication, we compute[
γ2

2

]
1−56

and from tables, we obtain [
[γ]325−33

3

]
1−56

.

6. We then compute the final result:

ln(x) ≈ exponent × ln(2) − lnK1 − lnK2

− lnK3 − γ −
[
γ2

2

]
1−56

−
[
[γ]325−33

3

]
1−56

.

In [324] Wong and Goto give an error analysis of this algorithm, and claim
that the error is within 0.5 ulps (see Chapter 2 for an explanation of what a ulp is).
This is slightly misleading. They actually compute a 56-bit number that is within
0.5 ulps of the “target format” (i.e., the 53-mantissa bit IEEE double-precision
format). When rounding the 56-bit result to the target format, an extra rounding
error is committed; hence the final 53-bit result is within 1 ulp of the exact result.
Figure 4.1 illustrates this. Getting correctly rounded results would require an

4.4. Table Methods Requiring Specialized Hardware 81

intermediate computation with many more than 56 bits (see Chapter 10 for a
discussion of this topic).

The algorithm we have given here computes natural logarithms. Slight (and
rather straightforward) modifications would give algorithms for base-2 or base-
10 logarithms. Adaptations to smaller (single-precision) or larger (extended or
quad-precision) formats can also be derived.

4.4.2 Wong and Goto’s algorithm for computing
exponentials

Assume that we want to compute ex, where x is a normalized double-precision
floating-point number:

x = s × m × 2exponent.

The largest representable finite number in the IEEE-754 double-precision
format is (

1 − 2−53
)

× 2210 ≈ 1.7976931348623157 × 10308,

the logarithm of which is A = 709.7827128933839967 · · ·. Therefore, if x is larger
than A, when we evaluate exp(x), we must return9 +∞.

Therefore we can assume that x can be rewritten as the sum of a 10-bit
integer and a 56-bit fixed-point fractional number:

x ≈ x̂ = s × (p + 0.x1x2x3 · · ·x56) , 1 ≤ p < 210.

If |x| ≥ 1/8, this is done without any loss of accuracy, and if |x| < 1/8, we
have

|ex − ex̂| ≤ 2−57e1/8 ≤ 1.14 × 2−57,

assuming that x is rounded to the nearest to get x̂. Therefore we can replace x
by x̂.

The basic idea behind the algorithm consists of rewriting the number
0.x1x2x3 · · ·x56 as a sum

α1 + α2 + · · · + αn,

where n is small, and where the αis are representable using a few bits only, so
that we can look eαi up in a table of reasonable size. Then

ex = ep × f1 × f2 × · · · × fn, (4.4)

where fi = eαi .
Unfortunately, this cannot be done without modifications, since (4.4) would

require full double-precision multiplications. We have to get values fi that are
representable with a few bits only. To do this we proceed as follows. First, α1 is

9Unless we wish to evaluate the exponential function in round towards0or round towards−∞
mode: in such a case, we must return the largest finite representable number, that is,

(
1 − 2−53

)
×

2210
, unless x is equal to +∞.

82 Chapter 4. Table-Based Methods

the number constituted by the first 9 bits of 0.x1x2x3 · · ·x56. Second, we look up
in a table the value:

f1 = [eα1](−1)−9 .

Using a rectangular multiplier, we can compute K1 = ep × f1. Since f1 is an
approximation to eα1 only, ex is not equal to K1 ×e0.000000000x10x11···x56 , therefore
we have to perform a slight correction by looking up in a table ln f1 ≈ α1, and
computing

r1 = 0.x1x2x3 · · ·x56 − ln f1.

After this, ex = K1 × er1 , and we continue by choosing α2 equal to the 9 most
significant bits of r1. Let us now give the algorithm with more details.

1. Rewrite x in a 56-fractional-bit, 10-integer-bit fixed-point representation:

x = s × (p + 0.x1x2x3 · · ·x56) , 1 ≤ p < 210.

If x is too large to do that, return +∞ (if s = +1) or 0 (if s = −1), or the
largest representable number, or the smallest nonzero positive number,
depending on the rounding mode.

2. Look the following values up from tables.

• f0 = ep if s = +1, or e−p if s = −1,

• f1 = [eα1]0−9, where α1 = 0.x1x2 · · ·x9,

• lf1 = [ln f1]1−56.

3. Compute r1 = 0.x1x2 · · ·x56 − lf1. One can show that r1 < 2−8. Look the
following values up from tables.

• f2 = [eα2]0−17, where α2 = 0.00000000r1,9r1,10r1,11 · · · r1,17,

• lf2 = [ln f2]1−56.

4. Compute r2 = r1 − lf2. One can show that r2 < 2−16. Then get the final
result:

ex ≈ f0 × f1 × f2

×
[
1 + r2 +

[r2]17−24

2

(
[r2]25−32 + [r2]33−40

)
+

[r2]
2
17−24

2
+

[r2]
2
25−32

2
+

[r2]
3
17−24

6

]
.

4.4.3 Ercegovac et al.’s algorithm

Ercegovac, Lang, Muller and Tisserand [126] suggest to first perform a range
reduction so that the input argument A becomes less than 2−k for some k. For

4.4. Table Methods Requiring Specialized Hardware 83

computation of reciprocals, square roots and square-root reciprocals, this is done
by computing

A = Y × R̂ − 1,

where Y is the initial input argument (assumed between 1 and 2) and R̂ is
a (k + 1)-bit approximation to 1/Y , obtained through table lookup in a table
addressed by the first k bits of Y .

After that, for computing f(A), where

A = A2z
2 + A3z

3 + A4z
4 + · · · , with z = 2−k,

and assuming that the Taylor expansion of f is

f(A) = C0 + C1A + C2A
2 + C3A

3 + · · · , (4.5)

they use the following formula:

f(A) ≈ C0A + C1A + C2A
2
2z

4 + 2C2A2A3z
5 + C3A

3
2z

6. (4.6)

That formula is obtained by expanding the series (4.5) and dropping the
terms of the form Wzj that are less than or equal to 2−4k.

For instance, for square root, we get

√
1 + A = 1 +

A

2
− 1

8
A2

2z
4 − 1

4
A2A3z

5 +
1
16

A3
2z

6,

while for reciprocals, we get

1
1 + A

≈ (1 − A) + A2
2z

4 + 2A2A3z
5 − A3

2z
6.

In practice, when computing (4.6), another approximation is made: to com-
pute A3

2, once A2
2 is obtained, we take the k most significant bits of A2

2 only,
and multiply them by A2. Figure 4.2 presents the “evaluation module” that
computes f(A).

4.4.4 Bipartite and multipartite methods

In [296], Sunderland et al. needed to approximate the sine of a 12-bit number x
less than π/2, using tables. They decided to split the binary representation of x
into three 4-bit words, and to approximate the sine of x = A + B + C, where
A < π/2, B < 2−4π/2 and C < 2−8π/2, using

sin(A + B + C) ≈ sin(A + B) + cos(A) sin(C). (4.7)

By doing that, instead of one table with 12 address bits (i.e., with 212 elements),
one needed two tables (one for sin(A + B) and one for cos(A) sin(C)), each of
them with 8 address bits only. To my knowledge, this was the first use of what
is now called the bipartite method.

84 Chapter 4. Table-Based Methods

A

2

A2 3
2A

2A()high

A

2

00...00 A4A3A2

A

B

^2

3

k

k

2

2k 2k

k

2k 2k

4k

asb

k

k MSD

CTRL

asb = adder and shift block

3k

Figure 4.2: The computation of f(A) using Ercegovac et al.’s algorithm.

That method was re-discovered (and named bipartite) by DasSarma and
Matula [275]. Their aim was to quickly generate seed values for computing
reciprocals using the Newton–Raphson iteration.

Assume we want to evaluate function f , and that the input and output
values are represented on an n-bit fixed-point format and belong to [α, 1), where
α > 0 is some real number.Also, assume n = 3k.Astraightforward tabulation of
function f would require a table with n address bits. The size of that table would
be n×2n bits. The first idea behind the bipartite method consists in splitting the
input n-bit value x into three k-bit subwords x0, x1 and x2. We have

x = x0 + 2−kx1 + 2−2kx2

where xi is a multiple of 2−k and 0 ≤ xi < 1. The Taylor expansion of f near
x0 + 2−kx1 gives

f(x) = f(x0 + 2−kx1) + 2−2kx2.f
′(x0 + 2−kx1) + ε1

where |ε1| ≤ 2−4k−1 max[α,1] |f ′′|. Now, we can replace f ′(x0 + 2−kx1) by its
order-0 Taylor expansion near x0:

f ′(x0 + 2−kx1) = f ′(x0) + ε2

4.4. Table Methods Requiring Specialized Hardware 85

where |ε2| ≤ 2−k max[α,1] |f ′′|. This gives the bipartite formula:

f(x) = A(x0, x1) + B(x0, x2) + ε

where
A(x0, x1) = f(x0 + 2−kx1)

B(x0, x2) = 2−2kx2.f
′(x0)

ε ≤
(
2−4k−1 + 2−3k

)
max[α,1] |f ′′|.

(4.8)

If the second derivative of f remains in the order of magnitude of 1, then the
error ε of this approximation is of the order of the representation error of this
number system (namely around 2−3k). The second idea behind the bipartite
method consists in tabulating A and B instead of tabulating f . Since A and B
are functions of 2k = 2n/3 bits only, if A is rounded to the nearest n-bit number,
if 22kB is rounded to the nearest k = n/3-bit number, and if the values of A and
B are less than 1, then the total table size is(

4n

3

)
22n/3 bits

which is a very significant improvement. Here, we implicitly assume that f and
f ′′ have orders of magnitude that are close together. In other cases, the method
must be adapted. For n = 15, the table size is 60 kbytes with a straightforward
tabulation, and 2.5 kbytes with the bipartite method. The error of the approxi-
mation will be ε plus the error due to the rounding of functions A and B. It will
then be bounded by (

2−4k−1 + 2−3k
)

max
[α,1]

|f ′′| + 2−3k.

For instance, for getting approximations to 1/x (which was Das Sarma and
Matula’s goal), we choose f(x) = 1/x and α = 1/2. Hence,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A(x0, x1) = 1/(x0 + 2−kx1)

B(x0, x2) = −2−2kx2/x2
0

ε ≤ 16
(
2−4k−1 + 2−3k

)
.

To get better approximations, one can store A and B with some additional
guard bits.Also, n can be chosen slightly larger than the actual word size.Acom-
promise must be found between table size and accuracy. Of course, that com-
promise depends much on the function being tabulated.

Schulte and Stine [279, 280] gave the general formula (4.8). They also sug-
gested several improvements. The major one was to perform the first Taylor

86 Chapter 4. Table-Based Methods

{ These input numbers
share the same x1

These input numbers
share the same x0

Figure 4.3: The bipartite method is a piecewise linear approximation for which the slopes
of the approximating straight lines are constants in intervals sharing the same value
of x0.

expansion near10 x0 +2−kx1 +2−2k−1 instead of x0 +2−kx1, and the second one
near x0 + 2−k−1 instead of x0:

• this makes the maximum possible absolute value of the remaining term
(namely, 2−2kx2 −2−2k−1) smaller, so that the error terms ε1 and ε2 become
smaller;

• B becomes a symmetric function of 2−2kx2 − 2−2k−1. Hence we can store
its values for the positive entries only. This allows us to halve the size of
the corresponding table.

The bipartite method can be viewed as a piecewise linear approximation for
which the slopes of the approximating straight lines are constants in intervals
sharing the same value of x0. This is illustrated by Figure 4.3. Let us now give
an example.

Example 7 (Cosine function on [0, π/4].) Assume we wish to provide the cosine of
16-bit numbers between 0 and π/4. We use the bipartite method, with the improvements
suggested by Schulte and Stine. Since 16 is not a multiple of 3, we choose k = 6 and we
split x into sub-words of different sizes: x0 and x1 are 6-bit numbers, and x2 is a 4-bit

10That is, near the middle of the interval constituted by the numbers whose first bits are those
of x0 and x1, instead of near the smallest value of that interval.

4.4. Table Methods Requiring Specialized Hardware 87

number. The functions A and B that will be tabulated are⎧⎨⎩A(x0, x1) = cos(x0 + 2−kx1 + 2−2k−1)

B(x0, x2) = −(2−2kx2 − 2−2k−1) sin(x0 + 2−k−1).

If A and B were stored exactly (which, of course, is impossible), the approximation error
ε would be less than or equal to 2−3k−2 + 2−4k−3 = 2−20 + 2−27. Assume the tables
for functions A and B store values correctly rounded up to the bit of weight 2−20. The
total error, including the rounding of the values stored in the tables, becomes less than
2−19 + 2−27. Since each word of A is stored with 20 bits of precision and each word of
B is stored with 8 bits of precision (including the sign bit), the size of the tables is

20 × 212 + 8 × 210 bits = 11 kbytes .

Obtaining a similar accuracy with a direct tabulation would require a table with

18 × 216 bits = 144 kbytes .

Schulte and Stine [283, 294] and Muller [238] independently generalized
the bipartite table method to various multipartite table methods. With these
methods, the results are obtained by summing values looked-up in parallel
in three tables or more. De Dinechin and Tisserand [97, 98] improved these
multipartite methods and showed that optimal (in terms of total table size)
multipartite table methods can be designed at a reasonable cost. A descrip-
tion of their method, as well as a Java program that builds the tables can be
obtained at

http://www.ens-lyon.fr/LIP/Arenaire/Ware/Multipartite/.

The AMD-K7 floating-point unit uses bipartite ROM tables for the recipro-
cal and square root initial approximations [248].

4.4.5 Miscellaneous

Jain and Lin [178] use a combination of tabulation and “matched interpolation
polynomials”. Lee, Luk, Villasenor and Cheung [202, 203] suggest to use poly-
nomial approximation with non-uniform segments. Lee, Mencer, Pearce and
Wayne automate table-with-polynomial function evaluation for FPGAs [204].
Detrey and Dinechin [112] give a very efficient second order method, that
requires one multiplication only. They have implemented it on FPGAs.

Chapter 5

Multiple-Precision Evaluation of
Functions

5.1 Introduction

Multiple-precision arithmetic is a useful tool in many domains of contemporary
science. Some numerical applications are known to sometimes require signifi-
cantly more precision than provided by the usual double and extended-precision
formats [15]. Some computations in “experimental mathematics” [33] are per-
formed using hundreds or thousands of bits. For instance, multiple-precision
calculations allowed Borwein, Plouffe and Bailey to find an algorithm for com-
puting individual1 hexadecimal digits of π. When we design algorithms for
computing functions in single, double, extended, or quad-precision, the various
constants used in these algorithms (e.g., minimax polynomial or rational coef-
ficients) need to be computed using a precision that is significantly higher than
the target precision. Also, the availability of an efficient and reliable multiple-
precision library is of great help for testing floating-point software [44]. It may be
useful to mix multiple-precision arithmetic with interval arithmetic, where the
intervals may become too large if we use standard (i.e., fixed-precision) interval
arithmetic [233, 266].

A full account of Multiple-precision calculation algorithms for the el-
ementary functions is beyond the purpose of this book (it would proba-
bly require another full book). And yet, the reader may be interested in
knowing, at least roughly, the basic principles of the algorithms used by the
existing multiple-precision packages. Additional information can be found
in [15, 327].

In this domain, the pioneering work was done by Brent [40, 41] and
Salamin [274]. Brent designed an arithmetic package named MP [43, 42]. It was

1That is, there is no need to compute any of the previous digits. For instance [33], the2.5×1014th
hexadecimal digit of π is an E.

90 Chapter 5. Multiple-Precision Evaluation of Functions

the first widely diffused package that was portable and contained routines for
all common elementary and special functions. Bailey designed two packages,
MPFUN [13] and ARPREC2 [15]. In both packages, the high-level algorithms
are similar, but ARPREC reaches high performance by a clever use of low-
level algorithms similar to the Fast2Sum and Fast2Mult algorithms presented in
Chapter 2 of this book. The PARI package3, originally designed by Cohen and
his research group, was especially designed for number theory and multiple-
precision. The MPFR library[91] designed by Zimmermann and his research
group is a C library for multiple-precision floating-point computations with
correct rounding. It is based on Granlund’s GMP[153] multiple-precision li-
brary. MPFI is an extension of MPFR that implements multiple-precision interval
arithmetic [266].

In general, when the required precision is not huge (say, when we only
want up to a few hundreds or thousands of bits), Taylor series of the elementary
functions are used. For very large precision calculations, quadratically conver-
gent methods, that are based on the arithmetic-geometric mean (see Section 5.5)
are used.

The number of digits used for representing data in a multiple-precision
computation depends much on the problem being dealt with. Many numeri-
cal applications only require, for critical parts of calculations, a precision that
is slightly larger than the available (double, extended or quad) floating-point
precisions (i.e., a few hundreds of bits only). On the other hand, experiments
in number theory may require the manipulation of numbers represented by
millions of bits.

5.2 Just a Few Words on Multiple-Precision
Multiplication

It may seem strange to discuss multiplication algorithms in a book devoted
to transcendental functions. Multiplication is not what we usually call an ele-
mentary function4, but the performance of a multiple-precision system depends
much on the performance of the multiplication programs: all other operations
and functions use multiplications. For very low precisions, the grammar school
method is used. When the desired precision is around a few hundreds of bits,
Karatsuba’s method (or one of its variants) is preferable. For very high preci-
sions (thousands of bits), methods based on the Fast Fourier Transform (FFT)
are used.

2See http://crd.lbl.gov/˜dhbailey/mpdist/.
3See http://pari.math.u-bordeaux.fr/.
4In fact, it is an elementary function. The functions we deal with in this book should be called

elementary transcendental functions.

5.2. Just a Few Words on Multiple-Precision Multiplication 91

5.2.1 Karatsuba’s method

Assume we want to multiply two n-bit integers5

A = an−1an−2an−3 · · · a0

and
B = bn−1bn−2bn−3 · · · b0,

and assume that n is even. We want to compute AB using n/2-bit ×n/2-bit
multiplications. Define the following n/2-bit numbers:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A(1) = an−1an−2an−3 · · · an/2

A(0) = an/2−1an/2−2an/2−3 · · · a0

B(1) = bn−1bn−2bn−3 · · · bn/2

B(0) = bn/2−1bn/2−2bn/2−3 · · · b0.

A is obviously equal to 2n/2A(1) + A(0), and B is equal to 2n/2B(1) + B(0).
Therefore,

AB = 2nA(1)B(1) + 2n/2(A(1)B(0) + A(0)B(1)) + A(0)B(0). (5.1)

Hence, we can perform one n×n-bit multiplication using four (n/2)× (n/2)-bit
multiplications. If we do that recursively (by decomposing the (n/2) × (n/2)-
bit multiplications into (n/4) × (n/4)-bit multiplications and so on), we end-up
with an algorithm that multiplies two n-bit numbers in a time proportional to
n2, which is not better than the usual pencil and paper algorithm.

In 1962, Karatsuba and Ofman [184] noticed that6

AB = 2nA(1)B(1)

+ 2n/2
(
(A(1) − A(0))(B(0) − B(1)) + A(0)B(0) + A(1)B(1)

)
+A(0)B(0).

(5.2)

Using (5.2), we can perform one n × n-bit multiplication using three (n/2) ×
(n/2)-bit multiplications only: we compute the products A(1)B(1), A(0)B(0), and
(A(1) − A(0))(B(0) − B(1)). When this decomposition is applied recursively, this
leads to an algorithm that multiplies two n-bit numbers in a time proportional to

n
ln(3)
ln(2) ≈ n1.585.

5I give this presentation assuming radix 2 is used. Generalization to other radices is straight-
forward.

6This is not exactly Katatsuba and Ofman’s presentation. We give here Knuth’s version of the
algorithm [187], which is slightly better.

92 Chapter 5. Multiple-Precision Evaluation of Functions

Similar (and asymptotically more efficient) decompositions of a product can
be found in the literature [187, 312, 330]. Montgomery [232] recently presented
several Karatsuba-like formulae.

5.2.2 FFT-based methods

A. Schönhage and V. Strassen [278] noticed that Cooley and Tukey’s FFT algo-
rithm [79] can be used to perform fast multiplication of huge numbers. Their
method allows one to multiply two n-bit numbers in time O(n lnn ln lnn).

The FFT-based multiplication requires significantly more memory than
Karatsuba-like methods. As noted by Bailey and Borwein [33], in several of
his record-breaking computations of π, Kanada used a Karatsuba method at
the highest precision levels, and switched to a FFT-based scheme only when
the recursion reached a precision level for which there was enough memory to
use FFTs.

In the following, we call M(n) the delay of n-bit multiplication.

5.3 Multiple-Precision Division and Square-Root

5.3.1 Newton–Raphson iteration

The Newton–Raphson iteration (NR for short) is a well-known and very ef-
ficient technique for finding roots of functions. It was introduced by Newton
around 1669 [243], to solve polynomial equations (without an explicit use of
the derivative), and generalized by Raphson a few years later [284]. NR-based
division and/or square-root have been implemented on many recent proces-
sors [224, 226, 248, 264, 272].

Assume we want to compute a root α of some function ϕ. The NR iteration
consists in building a sequence

xn+1 = xn − ϕ(xn)
ϕ′(xn)

. (5.3)

If ϕ has a continuous derivative and if α is a single root (that is, ϕ′(α) �= 0), then
the sequence converges quadratically to α, provided that x0 is close enough to
α: notice that global convergence (i.e., for any x0) is not guaranteed.

Interestingly enough, the classical NR iteration for evaluating
square-roots,

xn+1 =
1
2

(
xn +

a

xn

)
,

obtained by choosing ϕ = x2−a, goes back to very ancient times. Al-Khwarizmi
mentions this method in his arithmetic book [90]. Moreover, it was already

5.3. Multiple-Precision Division and Square-Root 93

used by Heron of Alexandria (this is why it is frequently quoted as “Heron
iteration”), and seems to have been known by the Babylonians 2000 years before
Heron [145].

The NR iteration is frequently used for evaluating some arithmetic and
algebraic functions. For instance:

• By choosing

ϕ(x) =
1
x

− a

one gets
xn+1 = xn(2 − axn).

This sequence goes to 1/a: hence it can be used for computing reciprocals.

• As said above, by choosing

ϕ(x) = x2 − a

one gets

xn+1 =
1
2

(
xn +

a

xn

)
.

This sequence goes to
√

a. Note that this iteration requires a division,
usually a fairly “expensive” operation, and thus often avoided.

• By choosing

ϕ(x) =
1
x2 − a

one gets

xn+1 =
xn

2

(
3 − ax2

n

)
.

This sequence goes to 1/
√

a. It is also frequently used to compute
√

a,
obtained by multiplying the final result by a.

A very interesting property of the NR iteration is that it is “self-correcting”:
a small error in the computation of xn does not change the value of the limit.
This makes it possible to start the iterations with a very small precision, and to
double the precision with each iteration. A consequence of this is that, under
reasonable hypotheses7, the complexity of square root evaluation or division

7It is assumed that there exist two constants α and β, 0 < α, β < 1, such that the delay M(n)
of n-bit multiplication satisfies M(αn) ≤ βM(n) if n is large enough [41]. This assumption is
satisfied by the grammar school multiplication method, as well as by the Karatsuba-like and the
FFT-based algorithms.

94 Chapter 5. Multiple-Precision Evaluation of Functions

is the same as that of multiplication: the time required to get n = 2k bits of a
quotient is

O
(
M(1) + M(2) + M(4) + M(8) + · · · + M

(
2k−1

)
+ M

(
2k
))

= O
(
M

(
2k
))

= O(M(n)).

5.4 Algorithms Based on the Evaluation of
Power Series

When a rather moderate precision (say, up to a few hundreds of bits) is at stake,
power series are frequently used to approximate functions (it is of course not
possible to dynamically generate minimax or least-squares polynomials for all
possible precisions, therefore the methods of Chapter 3 cannot be used).

For instance, in Bailey’s MPFUN library [13], the evaluation of exp(x) is
done as follows.

• range reduction We compute

r =
x − n × ln(2)

256

where n is an integer, chosen such that

− ln(2)
512

≤ r ≤ ln(2)
512

;

• Taylor approximation

exp(x) =

(
1 + r +

r2

2!
+

r3

3!
+

r4

4!
+ · · ·

)256

× 2n = exp(r)256 × 2n,

where elevating exp(r) to the power 256 only requires 8 consecutive squar-
ings, since

a256 =

⎛⎜⎜⎝
⎛⎜⎝
⎛⎜⎝
⎛⎝(((a2

)2
)2
)2
⎞⎠2

⎞⎟⎠
2⎞⎟⎠

2⎞⎟⎟⎠
2

;

whereas the logarithm of a is computed using the previous algorithm and the
Newton iteration (5.3) with ϕ(x) = exp(x) − a:

xn+1 = xn +
a − exp(xn)

exp(xn)
.

5.5. The Arithmetic-Geometric (AGM) Mean 95

This gives
xn → ln(a).

5.5 The Arithmetic-Geometric (AGM) Mean

5.5.1 Presentation of the AGM

When a very high precision is required8, Taylor series are no longer of interest,
and we must use the arithmetic-geometric mean [34], defined as follows. Given
two positive real numbers a0 and b0, one can easily show that the two sequences
(an) and (bn) defined below have a common limit, and that their convergence
is quadratic: ⎧⎪⎪⎨⎪⎪⎩

an+1 =
an + bn

2

bn+1 =
√

anbn.

A(a0, b0) is called the arithmetic-geometric mean (AGM for short) of a0 and b0.
Gauss noticed that A(1, x) is equal to

π

2F (x)
,

where F is the elliptic function:

F (x) =
∫ π/2

0

dθ√
1 − (1 − x2) sin2 θ

.

It is worth noticing that the AGM iteration is not self-correcting: we can-
not use the trick of doubling the precision at each iteration, that we use with
the Newton–Raphson iterations. All iterations must be performed with full
precision.

5.5.2 Computing logarithms with the AGM

The AGM gives a fast way of computing function F (x). This might seem of little
use, but now, if we notice that

F (4/s) = ln(s) +
4 ln(s) − 4

s2 +
36 ln(s) − 42

s4

+
1200 ln(s) − 1480

3s6 + O

(
1
s8

)
,

(5.4)

8According to Borwein and Borwein [35], the switchover is somewhere in the 100 to 1000
decimal digit range.

96 Chapter 5. Multiple-Precision Evaluation of Functions

good approximation to ln(s). One can easily see what “large enough” means
here: if we wish around p bits of accuracy in the result, then the second term
of the series (5.4) must be at least 2p times smaller than the leading term, i.e.,
s2 must be larger than 2p. To evaluate ln(x) with around p bits of accuracy,
we will therefore first compute a real number s and an integer m such that
s = x2m > 2p/2. Then ln(x) will be obtained as

ln(x) ≈ π

2A(1, 4/s)
− m ln(2). (5.5)

Example: computation of ln(25).

Assume we wish to evaluate ln(25) with around 1000 bits of accuracy (i.e.,
slightly more than 301 decimal digits), using the previous method.

The smallest integer m such that

25 × 2m > 2500

is 496. Therefore, we choose {
m = 496
s = 25 × 296.

We therefore have to compute A(1, 4/s) using the AGM iteration, with

4/s = 7.820637090558987986053067246626861311460871015865156
25956765160776010656390328437171675452187651898433760
03908955915959176137047751789669625219407723543497974
54654516566458501688411107378001622274090262189901259
48905897827823885444189434604211742729022741015352086
3867397426179826271260399111884428996564061487 · · ·
×10−151

After 16 iterations, we get

A(1, 4/s) = 0.0045265312714725009607298302105133029129827347015
838281713121606744869043995737579479233857801905741
770037145467600936407413152647303583085784505801479
749735211920340350195806608450270179187235763847014
380400860627155440407449068573750007868721884144720
106915779836916467810901775610571341899657231876311
04650339 · · ·

5.5. The Arithmetic-Geometric (AGM) Mean 97

Hence,

ln(25) ≈ π

2A(1, 4/s)
− m ln(2)

≈ 3.218875824868200749201518666452375279051202708537035
4438252957829483579754153155292602677561863592215
9993260604343112579944801045864935239926723323492
7411455104359274994366491306985712404683050114540
3103872017595547794513763870814255323094624436190
5589704258564271611944513534457057448092317889635
67822511421 · · ·

All the digits displayed above but the last nine coincide with those of the decimal
representation of ln(25). The obtained relative error is 2−992.5.

Computation of π and ln(2).

Using (5.5) requires the knowledge of at least p bits of π and ln(2). For small
values of p, these bits will be precomputed and stored, but for large values,
they will be dynamically computed. Concerning ln(2) we can directly use (5.4):
if we want around p bits of accuracy, we approximate ln(2p/2) = p ln(2)/2 by
F (2−p/2+2) using (5.4) and the AGM iteration. This gives

ln(2) ≈ π

pA(1, 2−p/2+2)
. (5.6)

There are several ways of computing π [14]. We can for instance use the
following algorithm, due to Brent [41] and Salamin [274], based on the AGM:

a0 = 1

b0 =
1√
2

s0 =
1
2

ak =
ak−1 + bk−1

2

bk =
√

ak−1bk−1

sk = sk−1 − 2k(a2
k − b2

k)

pk =
2a2

k

sk
.

The sequence pk, whose first terms are given in Table 5.1, converges quadrati-
cally to π.

98 Chapter 5. Multiple-Precision Evaluation of Functions

k pk

1 3.18767264271210862720192997052536923265105357185936922648763

2 3.14168029329765329391807042456000938279571943881540283264419

3 3.14159265389544649600291475881804348610887923726131158965110

4 3.14159265358979323846636060270663132175770241134242935648685

5 3.14159265358979323846264338327950288419716994916472660583470

6 3.14159265358979323846264338327950288419716939937510582097494

Table 5.1: The first terms of the sequence pk generated by the Brent–Salamin algorithm.
That sequence converges to π quadratically.

n xn

1 2.71828181384870854839394204546332554936588598573150616522 · · ·
2 2.71828182845904519609615815000766898668384995737383488643 · · ·
3 2.71828182845904523536028747135266221418255751906243823415 · · ·
4 2.71828182845904523536028747135266249775724709369995957496 · · ·
5 2.71828182845904523536028747135266249775724709369995957496 · · ·

Table 5.2: First terms of the sequence xn generated by the NR iteration for computing
exp(a), given here with a = 1 and x0 = 2.718. The sequence goes to e quadratically.

5.5.3 Computing exponentials with the AGM

The exponential of x is computed using the previous algorithm for evaluat-
ing logarithms and the Newton–Raphson iteration. More precisely, to compute
exp(a), we use iteration (5.3) with ϕ(x) = ln(x) − a. This gives

xn+1 = xn (1 + a − ln(xn)) , (5.7)

where ln(xn) is evaluated using the method given in Section 5.5.2. An example
(computation of exp(1)) is given in Table 5.2. A fast and easy way of generating
a seed value x0 close to exp(a) is to compute in conventional (single- or double-
precision) floating-point arithmetic an approximation to the exponential of the
floating-point number that is nearest a.

5.5.4 Very fast computation of trigonometric functions

The methods presented in the previous sections, based on the AGM, for com-
puting logarithms and exponentials, can be extended to trigonometric functions

5.5. The Arithmetic-Geometric (AGM) Mean 99

(which is not surprising: (5.4) remains true if s is a complex number). Several
variants have been suggested for these functions. Here is Brent’s algorithm for
computing arctan(x), with 0 < x ≤ 1, to approximately p bits of precision. We
first start with ⎧⎪⎨⎪⎩

s0 = 2−p/2

v0 = x/(1 +
√

1 + x2)
q0 = 1

and we iterate: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qi+1 = 2qi/(1 + si)

ai = 2sivi/(1 + v2
i)

bi = ai/(1 +
√

1 − a2
i)

ci = (vi + bi)/(1 − vibi)

vi+1 = ci/(1 +
√

1 + c2
i)

si+1 = 2
√

si/(1 + si)

until 1 − sj ≤ 2−p. We then have

arctan(x) ≈ qj ln

(
1 + vj

1 − vj

)
.

The convergence is quadratic, and using this algorithm we can evaluate
n bits of an arctangent in time O(M(n) ln n) [41]. Using the Newton–Raphson
iteration, we can now evaluate the tangent function: assume we wish to compute
tan(θ). With ϕ(x) = arctan(x) − θ, iteration (5.3) becomes

xn+1 = xn − (1 + x2
n)(arctan(xn) − θ). (5.8)

The sequence xn converges to tan(θ) quadratically provided that x0 is close
enough to tan(θ). Again, a good seed value x0 is easily obtained by comput-
ing tan(θ) in conventional floating-point arithmetic. Using the “self-correcting”
property of the Newton–Raphson iteration, as we did with division, we double
the working precision at each iteration, performing the last iteration only with
full precision, so that computing a tangent is done in time O(M(n) ln n) [41], i.e.,
with the same complexity as the arctangent function. As suggested by Brent,

100 Chapter 5. Multiple-Precision Evaluation of Functions

function complexity

addition O(n)

multiplication O(n ln(n) ln ln(n)))

division, sqrt O(M(n))

ln, exp O(M(n) ln(n))

sin, cos, arctan O(M(n) ln(n))

Table 5.3: Time complexity of the evaluation of some functions in multiple-precision
arithmetic (extracted from Table 1 of [35]). M(n) is the complexity of n-bit multiplica-
tion.

sin(θ) and tan(θ) can then be computed using

x = tan
(

θ

2

)

sin(θ) =
2x

1 + x2

cos(θ) =
1 − x2

1 + x2 .

There are similar algorithms for many usual functions. Table 5.3 gives the
time complexity for the evaluation of the most common ones.

Part II

Shift-and-Add Algorithms

Chapter 6

Introduction to Shift-and-Add
Algorithms

At the beginning of the 17th century, there was a terrible food shortage. To curb
it, the King decided to implement a tax on bread consumption. The tax would
be proportional to the exponential of the weight of the bread! Bakers and math-
ematicians had the same question in mind: how could they quickly compute
the price of bread? An old mathematician, called Briggs, found a convenient
solution. He said to the King,

“To calculate the tax, all I need is a pair of scales and a file.”

Rather surprised, the King nevertheless asked his servants to give him the
required material. First, Briggs spent some time filing the different weights of
the pair of scales. (Table 6.1 gives the weight of the different weights after the
filing). Then he said,

“Give me a loaf of bread.”

He weighed the loaf of bread, and found an apparent weight — remember,
the weights were filed ! — equal to 0.572 pounds. Then he said,

“I write 0.572; I replace the leading zero by a one; this gives 1.572.
NowIcalculate theproductof thefirst two fractionaldigits (i.e.,5×7),
and I divide this by 1, 000. This gives 0.035. I calculate the product
of the first and the third fractional digits (i.e., 5 × 2), and I divide
this by 10, 000. This gives 0.001. I add 0.035 and 0.001 to 1.572, and
I obtain the exponential of the weight, which is 1.608.”

The King was rather skeptical. He asked his servants to find the actual weight
of the bread (using unfiled weights!), and they came up with 0.475 pounds.
Next he asked his mathematicians to compute the exponential of 0.475. After

104 Chapter 6. Introduction to Shift-and-Add Algorithms

Original Weight Weight After Filing

0.5 0.405

0.4 0.336

0.3 0.262

0.2 0.182

0.1 0.095

0.09 0.086

0.08 0.077

0.07 0.068

0.06 0.058

0.05 0.048

0.04 0.039

less than 0.03 unchanged

Table 6.1: The filing of the different weights.

long calculations, they found the result: 1.608014 · · · Briggs’ estimation was not
too bad!

Let us explain how Briggs’ method worked: first, the weights were filed so
that a weight of x pounds actually weighed ln(1 + x) pounds after the filing.
Therefore if the “apparent” weight of the bread was, say, 0.x1x2x3 pounds, then
its real weight was:

ln
(

1 +
x1

10

)
+ ln

(
1 +

x2

100

)
+ ln

(
1 +

x3

1, 000

)
pounds, the exponential of which is:

(
1 +

x1

10

)(
1 +

x2

100

)(
1 +

x3

1, 000

)
� 1 +

x1

10
+

x2

100
+

x3

1, 000
+

x1x2

1, 000
+

x1x3

10, 000
.

Although this story is pure fiction (it was invented by Xavier Merrheim to
defend his Ph.D. dissertation [229]), Henry Briggs (1561–1631) did actually exist.
He was a contemporary of Napier (1550–1617, the inventor of the logarithms),
and he designed the first convenient algorithms for computing logarithms [276].
He published 15-digit accurate tables in his Arithmetica Logarithmica (1624).

Briggs’ algorithm was the first shift-and-add algorithm. Shift-and-add algo-
rithms allow the evaluation of elementary functions using very simple elemen-
tary operations: addition, multiplication by a power of the radix of the number system

6.1. The Restoring and Nonrestoring Algorithms 105

being used (in fixed-point arithmetic, such multiplications are performed by the
means of simple shifts), and multiplication by one radix-r digit. In this chapter, we
present simple shift-and-add algorithms in order to introduce basic notions that
are used in the following chapters. This class of algorithms is interesting mainly
for hardware implementations.

6.1 The Restoring and Nonrestoring Algorithms

Now let us examine a very simple algorithm (quite close to Briggs’ algorithm)
to exhibit the properties that make it work.

Algorithm 6 (exponential 1)
input values: t, N (N is the number of steps)
output value: EN

define
t0 = 0
E0 = 1;

build two sequences tn and En as follows

tn+1 = tn + dn ln (1 + 2−n)

En+1 = En (1 + dn2−n) = En + dnEn2−n

dn =

⎧⎪⎨⎪⎩
1 if tn + ln (1 + 2−n) ≤ t

0 otherwise.

(6.1)

This algorithm only requires additions and multiplications by powers of 2.
Such multiplications reduce to shifts when implemented in radix-2 arithmetic.
Figures 6.1 through 6.3 plot the values of E3, E5, and E11 versus t.

By examining those figures, one can see that there is an interval I ≈ [0, 1.56]
in which En seems to converge towards a regular function of t as n goes towards
infinity. Let us temporarily admit that this function is the exponential function. One
can easily verify that En is always equal to etn . Therefore, a consequence of our
temporary assumption is

limn→+∞ tn = t. (6.2)

Since tn is obviously equal to
∑n−1

i=0 dn ln (1 + 2−n), this implies

t =
∞∑
i=0

dn ln
(
1 + 2−n) . (6.3)

Thus it seems that our algorithm makes it possible to decompose any num-
ber t belonging to I into a sum

t = d0w0 + d1w1 + d2w2 + · · · ,

106 Chapter 6. Introduction to Shift-and-Add Algorithms

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 6.1: Value of E3 versus t.

1

1.5

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 6.2: Value of E5 versus t.

where wi = ln
(
1 + 2−i

)
. Now let us try to characterize sequences (wi) such

that similar decompositions are possible, and to find algorithms that lead to
those decompositions. We already know one such sequence: if wi = 2−i, then
the selection of the digits of the binary expansion of t for the dis provides a
decomposition of any t ∈ [0, 2) into a sum of diwis.

6.1. The Restoring and Nonrestoring Algorithms 107

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 6.3: Value of E11 versus t.

w1

w3
w4 w5

w2

w6
w7

Figure 6.4: The restoring algorithm. The weights are either unused or put on the pan
that does not contain the loaf of bread being weighed. In this example, the weight of the
loaf of bread is w1 + w3 + w4 + w5 + · · ·.

The following theorem gives an algorithm for computing such a decom-
position, provided that the sequence (wi) satisfies some simple properties. This
algorithm can be viewed as equivalent to the weighing of t using a pair of scales,
and weights (the terms wi) that are either unused or put in the pan that does not
contain t. Figure 6.4 illustrates this.

108 Chapter 6. Introduction to Shift-and-Add Algorithms

Theorem 11 (restoring decomposition algorithm) Let (wn) be a decreasing se-
quence of positive real numbers such that the power series

∑∞
i=0 wi converges. If

∀n, wn ≤
∞∑

k=n+1

wk, (6.4)

then for any t ∈ [0,
∑∞

k=0 wk], the sequences (tn) and (dn) defined as

t0 = 0

tn+1 = tn + dnwn

dn =

⎧⎪⎨⎪⎩1 if tn + wn ≤ t

0 otherwise

(6.5)

satisfy

t =
∞∑

n=0
dnwn = lim

n→∞ tn.

Proof
Let us prove by induction that for any n,

0 ≤ t − tn ≤
∞∑

k=n

wk. (6.6)

Since the power series
∑∞

i=0 wi converges, the remainder
∑∞

k=n wk goes to
zero as n goes to infinity; therefore proving (6.6) would suffice to prove the
theorem. Relation (6.6) is obviously true for n = 0. Let us assume it is true for
some n.

• If dn = 0, then tn+1 = tn, and tn satisfies tn + wn > t. Therefore 0 ≤
t − tn+1 = t − tn < wn. Using (6.4), we get 0 ≤ t − tn+1 ≤ ∑∞

k=n+1 wk.

• If dn = 1, then tn+1 = tn + wn; therefore t − tn+1 ≤ ∑∞
k=n wk − wn =∑∞

k=n+1 wk. Moreover (after the choice of dn), tn + wn ≤ t; therefore t −
tn+1 = t − tn − wn ≥ 0, q.e.d.

Asequence (wn) that satisfies the conditions of Theorem 11 is called a discrete
base [234, 235, 236].

The algorithm given by (6.5) is called here the “restoring algorithm”,
by analogy with the restoring division algorithm [135] (if we choose wi =
y2−i, we get the restoring division algorithm; we obtain t =

∑∞
i=0 diy2−i,

which gives t/y = d0.d1d2d3 · · ·). To our knowledge, this analogy between
some division algorithms and most shift-and-add elementary function algo-
rithms was first pointed out by Meggitt [228], who presented algorithms sim-
ilar to those in this chapter as “pseudomultiplication” and “pseudodivision”
methods. Other “pseudodivision” algorithms were suggested by Sarkar and

6.2. Simple Algorithms for Exponentials and Logarithms 109

Krishnamurthy [273]. An algorithm very similar to the restoring exponential
algorithm was suggested by Chen [58]. The following theorem presents another
algorithm that gives decompositions with values of the dis equal to −1 or +1.
This algorithm, called the “nonrestoring algorithm” by analogy with the non-
restoring division algorithm, is used in the CORDIC algorithm (see Chapter 7).

Theorem 12 (nonrestoring decomposition algorithm) Let (wn) be a decreasing
sequence of positive real numbers such that

∑∞
i=0 wi converges. If

∀n, wn ≤
∞∑

k=n+1

wk, (6.7)

then for any t ∈ [−∑∞
k=0 wk,

∑∞
k=0 wk], the sequences (tn) and (dn) defined as

t0 = 0

tn+1 = tn + dnwn

dn =

⎧⎪⎨⎪⎩ 1 if tn ≤ t

−1 otherwise

(6.8)

satisfy

t =
∞∑

n=0
dnwn = lim

n→∞ tn.

The proof of this theorem is very similar to the proof of Theorem 11. The non-
restoring algorithm can be viewed as the weighing of t using a pair of scales,
and weights (the terms wi) which must be put in one of the pans (no weight is
unused). Figure 6.5 illustrates this.

6.2 Simple Algorithms for Exponentials and Logarithms

6.2.1 The restoring algorithm for exponentials

We admit that the sequences ln (1 + 2−n) and arctan 2−n are discrete bases, that
is, that they satisfy the conditions of Theorems 11 and 12 (see [234] for proof).
Now let us again find Algorithm 6.1 using Theorem 11. We use the discrete base
wn = ln (1 + 2−n). Let t ∈ [0,

∑∞
k=0 wk] ≈ [0, 1.56202 · · ·]. From Theorem 11, the

sequences (tn) and (dn) defined as

t0 = 0

tn+1 = tn + dn ln (1 + 2−n)

dn =

⎧⎪⎨⎪⎩
1 if tn + ln (1 + 2−n) ≤ t

0 otherwise

110 Chapter 6. Introduction to Shift-and-Add Algorithms

w4 w5

w6

w2
w3

w1

Figure 6.5: The nonrestoring algorithm. All the weights are used, and they can be put
on both pans. In this example, the weight of the loaf of bread is w1 − w2 + w3 + w4 +
w5 − w6 + · · ·.

satisfy

t =
∞∑

n=0
dn ln

(
1 + 2−n) = lim

n→∞ tn.

Now let us try to build a sequence En such that at any step n of the algo-
rithm,

En = exp (tn) . (6.9)

Since t0 = 0, E0 must be equal to 1. When tn+1 is different from tn (i.e.,
when dn = 1), tn+1 is equal to tn +ln (1 + 2−n). To keep relation (6.9) invariable,
one must multiply En by exp ln (1 + 2−n) = (1 + 2−n). Since tn goes to t, En

goes to et, and we find Algorithm 6.1 again.
It is worth noticing that when building this algorithm, we never really used

the fact that the logarithms that appear are natural (i.e., base-e) logarithms. If we
replace, in the algorithm, the constants ln (1 + 2−n) by loga (1 + 2−n), then we
obtain an algorithm for computing at. Its convergence domain is[

0,
∞∑

n=0
loga

(
1 + 2−n)] .

Error evaluation

Let us estimate the error on the result En if we stop at step n of the algorithm, that
is, if we approximate the exponential of t by En. From the proof of Theorem 11,

6.2. Simple Algorithms for Exponentials and Logarithms 111

we have

0 ≤ t − tn ≤
∞∑

k=n

ln
(
1 + 2−k

)
;

since ln(1 + x) < x for any x > 0, we have

∞∑
k=n

ln
(
1 + 2−k

)
≤

∞∑
k=n

2−k = 2−n+1.

Therefore
0 ≤ t − tn ≤ 2−n+1.

Now from En = exp (tn) we deduce:

1 ≤ exp (t − tn) ≤ exp
(
2−n+1

)
.

This gives ∣∣∣∣∣et − En

et

∣∣∣∣∣ ≤ 1 − e−2−n+1 ≤ 2−n+1. (6.10)

Therefore, when stopping at step n, the relative error on the result1 is
bounded by 2−n+1 (i.e., we roughly have n − 1 significant bits).

6.2.2 The restoring algorithm for logarithms

From the previous algorithm, we can easily deduce another algorithm that eval-
uates logarithms. Let us assume that we want to compute � = ln(x). First, as-
suming that � is known, we compute its exponential x using the previously
studied algorithm. This gives:

t0 = 0

E1 = 1

tn+1 = tn + dn ln (1 + 2−n)

En+1 = En + dnEn2−n

(6.11)

with

dn =

⎧⎨⎩1 if tn + ln (1 + 2−n) ≤ �

0 otherwise.
(6.12)

The previous study shows that, using this algorithm:

limn→∞ tn = �

limn→∞ En = exp(�) = x.

1In this estimation, we do not take the rounding errors into account.

112 Chapter 6. Introduction to Shift-and-Add Algorithms

Of course, this algorithm cannot be used to compute � since (6.12) requires the
knowledge of � ! However, since the sequence En was built such that at any step
n, En = exp (tn), the test performed in (6.12) is equivalent to the test:

dn =

{
1 if En × (1 + 2−n) ≤ x
0 otherwise.

(6.13)

Consequently, if we replace (6.12) by (6.13) in the previous algorithm, we will
get the same results (including the convergence of the sequence tn to �) without
now having to know � in advance!. This gives the restoring logarithm algorithm.

Algorithm 7 (restoring logarithm)

• input values: x, n (n is the number of steps), with

1 ≤ x ≤
∞∏
i=0

(
1 + 2−i

)
≈ 4.768;

• output value: tn ≈ lnx.

Define
t0 = 0
E0 = 1.

Build two sequences ti and Ei as follows

ti+1 = ti + ln
(
1 + di2−i

)
Ei+1 = Ei

(
1 + di2−i

)
= Ei + diEi2−i

di =

⎧⎪⎪⎨⎪⎪⎩
1 if Ei + Ei2−i ≤ x

0 otherwise.

(6.14)

As in the previous section, if we replace, in the algorithm, the con-
stants ln (1 + 2−n) by loga (1 + 2−n), we get an algorithm that evaluates base-a
logarithms.

Error evaluation

From the proof of Theorem 11, we have

0 ≤ � − tn ≤
∞∑

k=n

ln
(
1 + 2−k

)
≤ 2−n+1.

Therefore, if we stop the algorithm at step n, the absolute error on the result
is bounded2 by 2−n+1.

2In this estimation, we do not take the rounding errors into account.

6.3. Faster Shift-and-Add Algorithms 113

6.3 Faster Shift-and-Add Algorithms

In the previous sections we studied algorithms that were similar to the restoring
and nonrestoring division algorithms. Our aim now is to design faster algo-
rithms, similar to the SRT division algorithms [135, 270, 271], using redundant
number systems. The algorithms presented in this section are slight variations
of algorithms proposed by N. Takagi in his Ph.D. dissertation [300].

6.3.1 Faster computation of exponentials

First, we try to compute exponentials in a more efficient way. Let us start from
the basic iteration (6.1). Defining Ln = t − tn and noticing that

dn ln
(
1 + 2−n) = ln

(
1 + dn2−n)

for dn = 0 or 1, we get:

Ln+1 = Ln − ln (1 + dn2−n)

En+1 = En (1 + dn2−n)

dn =

⎧⎪⎪⎨⎪⎪⎩
1 if Ln ≥ ln (1 + 2−n)

0 otherwise.

(6.15)

If L0 = t is less than
∑∞

n=0 ln (1 + 2−n), this gives:

Ln → 0
n → +∞.

and
En → E0e

L0

n → +∞.

To accelerate the computation, we try to perform this iteration using a redundant
(e.g., carry-save or signed-digit) number system (see Chapter 2). The additions
that appear in this iteration are quickly performed, without carry propagation.
Unfortunately, the test “Ln ≥ ln (1 + 2−n)” may require the examination of a
number of digits that may be close to the word-length.3 This problem is solved
by adding some “redundancy” to the algorithm. Instead of only allowing the
values di = 0, 1, we also allow di = −1. Since ln

(
1 − 2−0) is not defined, we must

3If dn was chosen by means of a comparison, computation would be slowed down — the time
saved by performing fully parallel additions would be lost — and huge tables would be required
if dn was given by a table lookup — and if we were able to implement such huge tables efficiently,
we would simply tabulate the exponential function.

114 Chapter 6. Introduction to Shift-and-Add Algorithms

dn = 1

�
�
��

dn = 0
�
�
�
�
�

dn = −1

�
�
�
���

Bn

An

AnBn

rn+1

sn+1

rnsn

Ln+1

Ln
�
�
�
�
�
�
��

�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
�
��

�

Figure 6.6: Robertson diagram of the “redundant exponential” algorithm.

start at step n = 1. To ensure that the algorithm converges, we must find values
dn such that Ln will go to zero. This can be done by arranging that Ln ∈ [sn, rn],
where

rn =
∞∑

k=n

ln
(
1 + 2−k

)

sn =
∞∑

k=n

ln
(
1 − 2−k

)
.

(6.16)

Figure 6.6 presents the different possible values of Ln+1 versus Ln (follow-
ing (6.15)) depending on the choice of dn. This figure is very close to the Robertson
diagrams that appear in the SRT division algorithm [135, 270], so we call it the
Robertson diagram of iteration (6.15).

Assume that Ln ∈ [sn, rn]. We want Ln+1 to be in [sn+1, rn+1]. The diagram
shows that we may select:

• dn = −1 if Ln ≤ An;

• dn = 0 if Bn ≤ Ln ≤ Bn;

• dn = 1 if Ln ≥ An.

6.3. Faster Shift-and-Add Algorithms 115

n 2nsn 2nrn 2nBn 2nAn 2nAn 2nBn

1 −2.484 1.738 −1.098 −0.460 −0.287 0.927

2 −2.196 1.854 −1.045 −0.190 −0.152 0.961

3 −2.090 1.922 −1.022 −0.088 −0.079 0.980

4 −2.043 1.960 −1.011 −0.043 −0.041 0.990

5 −2.021 1.980 −1.005 −0.021 −0.021 0.995

6 −2.011 1.990 −1.003 −0.010 −0.010 0.997

7 −2.005 1.995 −1.001 −0.005 −0.005 0.999

8 −2.003 1.997 −1.001 −0.003 −0.003 0.999

9 −2.001 1.999 −1.000 −0.001 −0.001 1.000

10 −2.001 1.999 −1.000 −0.001 −0.001 1.000

∞ −2 2 −1 0 0 1

Table 6.2: First 10 values and limit values of 2nsn, 2nrn, 2nAn, 2nBn, 2nAn, and
2nBn.

The values An, Bn, An, and Bn of Figure 6.6 satisfy:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

An = sn+1 + ln (1 + 2−n)

Bn = rn+1

An = rn+1 + ln (1 − 2−n)

Bn = sn+1.

(6.17)

Using these relations and the Taylor expansion of the function ln(1+x), one can
show that: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2nAn ≤ 0

2nBn ≥ 1/2

2nAn ≥ −1/2

2nBn ≤ −1.

(6.18)

Table 6.2 gives the first 10 values of 2nsn, 2nrn, 2nAn, 2nBn, 2nAn, and 2nBn.
We can see that there is an overlap between the area where dn = −1 is a

correct choice and the area where dn = 0 is a correct choice. There is another
overlap between the area where dn = 0 is a correct choice and the area where
dn = +1 is a correct choice. This allows us to choose a convenient value of dn

by examining a few digits of Ln only. Let us see how this choice can be carried
out in signed-digit and carry-save arithmetic.

116 Chapter 6. Introduction to Shift-and-Add Algorithms

Signed-digit implementation

Assume we use the signed-digit system. Define L∗
n as 2nLn truncated after the

first fractional digit. We have

|L∗
n − 2nLn| ≤ 1/2.

Therefore if we choose4

dn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1 if L∗

n ≤ −1

0 if −1/2 ≤ L∗
n ≤ 0

1 if L∗
n ≥ 1/2,

(6.19)

then Ln+1 will be between sn+1 and rn+1.

Proof

• If L∗
n ≤ −1, then 2nLn ≤ −1/2; therefore 2nLn ≤ 2nAn. This implies

Ln ≤ An; therefore (see Figure 6.6) choosing dn = −1 will ensure sn+1 ≤
Ln+1 ≤ rn+1.

• If −1/2 ≤ L∗
n ≤ 0, then5 −1 ≤ 2nLn ≤ 1/2; therefore Bn ≤ Ln ≤ Bn.

Therefore choosing dn = 0 will ensure sn+1 ≤ Ln+1 ≤ rn+1.

• If L∗
n ≥ 1/2, then 2nLn ≥ 0; therefore Ln ≥ An, and choosing dn = 1 will

ensure sn+1 ≤ Ln+1 ≤ rn+1.

Therefore one fractional digit of L∗
n suffices to choose a correct value of dn. Now

let us see how many digits of the integer part we need to examine. One can easily
show: {

−5/2 < 2nsn

2nrn < 2;
(6.20)

therefore, for any n,
−5/2 < 2nLn < 2.

Since |2nLn − L∗
n| ≤ 1/2, we get

−3 < L∗
n <

5
2
,

and, since L∗
n is a multiple of 1/2,

−5
2

≤ L∗
n ≤ 2.

4Remember, L∗
n is a multiple of 1/2; therefore L∗

n > −1 implies L∗
n ≥ −1/2.

5Since L∗
n is a multiple of 1/2, “−1/2 ≤ L∗

n ≤ 0” is equivalent to “L∗
n ∈ {−1/2, 0}.”

6.3. Faster Shift-and-Add Algorithms 117

Define L̂∗
n as the 4-digit number obtained by truncating the digits of L∗

n of a
weight greater than or equal to 8 = 23; that is, if

L∗
n = · · ·L∗

n,4L
∗
n,3L

∗
n,2L

∗
n,1L

∗
n,0.L

∗
n,−1,

then

L̂∗
n = L∗

n,2L
∗
n,1L

∗
n,0.L

∗
n,−1.

It is worth noticing that L̂∗
n and L∗

n may have different signs: for instance, if
L∗

n = 1101.0, then L∗
n is negative, whereas L̂∗

n = 101.0 is positive.

We have

• −8 + 1/2 ≤ L̂∗
n ≤ 8 − 1/2;

• L∗
n − L̂∗

n is a multiple of 8.

Therefore,

• If −8 + 1/2 ≤ L̂∗
n ≤ −6, then the only possibility compatible with −5/2 ≤

L∗
n ≤ 2 is L∗

n = L̂∗
n + 8. This gives 1/2 ≤ L∗

n ≤ 2. Therefore dn = 1 is a
correct choice.

• If −6 + 1/2 ≤ L̂∗
n ≤ −3, there is no possibility compatible with −5/2 ≤

L∗
n ≤ 2. This is an impossible case.6

• If−5/2 ≤ L̂∗
n ≤ −1, then the only possibility isL∗

n = L̂∗
n. Thereforedn = −1

is a correct choice.

• If −1/2 ≤ L̂∗
n ≤ 0, then the only possibility is L∗

n = L̂∗
n. Therefore dn = 0

is a correct choice.

• If 1/2 ≤ L̂∗
n ≤ 2, then the only possibility is L∗

n = L̂∗
n, and dn = 1 is a

correct choice.

• If 2+1/2 ≤ L̂∗
n ≤ 5, there is no possibility compatible with −5/2 ≤ L∗

n ≤ 2.
This is an impossible case.

• If 5 + 1/2 ≤ L̂∗
n ≤ 7, then the only possibility is L∗

n = L̂∗
n − 8. This gives

−5/2 ≤ L∗
n ≤ −1. Therefore dn = −1 is a correct choice.

• If L̂∗
n = 7 + 1/2, then the only possibility is L∗

n = L̂∗
n − 8. This gives

L∗
n = −1/2. Therefore dn = 0 is a correct choice.

Therefore the choice of dn only needs the examination of four digits of Ln.
This choice can be implemented by first converting L̂∗

n to nonredundant repre-
sentation (using a fast 4-bit adder), then by looking up in a 4-address bit table,
or by directly looking up in a 8-address bit table, without preliminary addition.

6Thus, if the selection of dn is implemented by a PLA, any value that minimizes the size of
the PLA can be chosen.

118 Chapter 6. Introduction to Shift-and-Add Algorithms

The digits of weight greater than or equal to 23 of 2nLn will never be used again;
therefore there is no need to store them. This algorithm is very similar to an
SRT division [135]. A slightly different solution, used by Takagi [300], consists
of rewriting Ln so that the digit L∗

n,2 becomes null. This is always possible since
|2nLn| is less than 5/2. After this, we only need to examine three digits of Ln

at each step, instead of four. Takagi’s solution is explained with more details in
Section 7.5.

Carry-Save implementation

Assume now that we use the carry-save system. Define L∗
n as 2nLn truncated

after the first fractional digit. We have

0 ≤ 2nLn − L∗
n ≤ 1;

therefore, if we choose

dn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1 if L∗

n ≤ −3/2

0 if −1 ≤ L∗
n ≤ −1/2

1 if L∗
n ≥ 0,

(6.21)

then Ln+1 will be between sn+1 and rn+1. The proof is very similar to the proof
of the signed-digit algorithm.

As in the previous section, we define L̂∗
n as the 4-digit number obtained by

truncating, in the carry-save representation of L∗
n, the digits of a weight greater

than or equal to 23; that is, if

L∗
n = · · ·L∗

n,4L
∗
n,3L

∗
n,2L

∗
n,1L

∗
n,0.L

∗
n,−1

with L∗
n,3 = 0, 1, 2, then

L̂∗
n = L∗

n,2L
∗
n,1L

∗
n,0.L

∗
n,−1.

We have

• 0 ≤ L̂∗
n ≤ 15,

• L∗
n − L̂∗

n is a multiple of 8.

Moreover, from −5/2 < 2nLn < 2 and 0 ≤ 2nLn − L∗
n ≤ 1, we get −7/2 <

L∗
n < 2 and, since L∗

n is a multiple of 1/2, this gives −3 ≤ L∗
n ≤ 3/2. Therefore:

• If 0 ≤ L̂∗
n ≤ 3/2, then the only possibility compatible with −3 ≤ L∗

n ≤ 3/2
is L∗

n = L̂∗
n; therefore dn = 1 is a correct choice.

• If 2 ≤ L̂∗
n ≤ 4+1/2, there is no possibility compatible with −3 ≤ L∗

n ≤ 3/2.
This is an impossible case.

6.3. Faster Shift-and-Add Algorithms 119

• If 5 ≤ L̂∗
n ≤ 6 + 1/2, then L∗

n = L̂∗
n + 8 and dn = −1 is a correct choice.

• If 7 ≤ L̂∗
n ≤ 7 + 1/2, then L∗

n = L̂∗
n + 8 and dn = 0 is a correct choice.

• If 8 ≤ L̂∗
n ≤ 9 + 1/2, then L∗

n = L̂∗
n + 8 and dn = 1 is a correct choice.

• If 10 ≤ L̂∗
n ≤ 12 + 1/2, there is no possibility compatible with −3 ≤ L∗

n ≤
3/2. This is an impossible case.

• If 13 ≤ L̂∗
n ≤ 14 + 1/2, then L∗

n = L̂∗
n + 16 and dn = −1 is a correct choice.

• If L̂∗
n = 15, then L̂∗

n = −1 and dn = 0 is a correct choice.

Therefore the choice ofdn only needs the examination of four digits ofLn.As
for the signed-digit version of the algorithm, this choice can be implemented by
first converting L̂∗

n to nonredundant representation (using a fast 4-digit adder),
then by looking up in a 4-address bit table.

6.3.2 Faster computation of logarithms

Now assume that we want to compute logarithms quickly. Some notations
adopted here are taken from [239], and Asger-Munk Nielsen helped to perform
this study. We start from (6.14), that is, from the basic iteration:⎧⎨⎩tn+1 = tn + ln (1 + dn2−n)

En+1 = En (1 + dn2−n) = En + dnEn2−n,

with n ≥ 1, and slightly modify it as follows,⎧⎨⎩Ln+1 = Ln − ln (1 + dn2−n)

En+1 = En (1 + dn2−n) = En + dnEn2−n,
(6.22)

where, as in the previous section, Ln = t − tn. Since En × exp(Ln) remains
constant, if we are able to find a sequence of terms dk ∈ {−1, 0, 1} such that
En goes to 1, then we will have Ln → L1 + ln (E1). Define λn = En − 1. To
compute logarithms, we want λn to go to zero as k goes to infinity. The Robertson
diagram in Figure 6.7 displays the value of λn+1 versus λn (i.e., λn+1 = λn(1 +
dn2−n)+dn2−n), for all possible values of dn. In this diagram, rn satisfies rn+1 =
(1 − 2−n) rn − 2−n, and sn satisfies sn+1 = (1 + 2−n) sn + 2−n. This gives:

rn =
∞∑

k=n

2−k
k∏

j=n

1
1 − 2−j

sn = −
∞∑

k=n

2−k
k∏

j=n

1
1 + 2−j

.

120 Chapter 6. Introduction to Shift-and-Add Algorithms

Dn

Cn

Bn

An

rn+1

sn+1

rnsn

λn+1

λn

dn = −1

�

dn = 0

�

dn = 1
�
�
�
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�

�

�

Figure 6.7: Robertson diagram for the logarithm. The three straight lines give λn+1 =
λn(1 + dn2−n) + dn2−n for dn = −1, 0, 1.

One can show that rn and sn go to 0 as n goes to +∞. According to this dia-
gram (and assuming An ≤ Bn ≤ Cn ≤ Dn), any choice of dn that satisfies (6.23)
will ensure λn ∈ [sn, rn], which implies λn → 0.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if λn < An then dn = 1

if An ≤ λn ≤ Bn then dn = 1 or 0

if Bn < λn < Cn then dn = 0

if Cn ≤ λn ≤ Dn then dn = 0 or − 1

if Dn < λn then dn = −1.

(6.23)

The values An, Bn, Cn, and Dn satisfy

An = sn+1

Bn =
rn+1 − 2−n

1 + 2−n

Cn =
sn+1 + 2−n

1 − 2−n

Dn = rn+1.

It follows, using these relations, that An < Bn < Cn < Dn for all n ≥ 1. Table 6.3
gives the first values and limits of 2n times these values.

6.3. Faster Shift-and-Add Algorithms 121

n 2nsn 2nrn 2nAn 2nBn 2nCn 2nDn

1 −1.161 4.925 −0.74 0.30 0.51 1.46

2 −1.483 2.925 −0.85 0.15 0.19 1.19

3 −1.709 2.388 −0.92 0.08 0.09 1.09

4 −1.844 2.179 −0.96 0.04 0.04 1.04

5 −1.920 2.086 −0.98 0.02 0.02 1.02

∞ −2 2 −1 0 0 1

Table 6.3: First values and limits of 2nsn, 2nrn, 2nAn, 2nBn, 2nCn, and 2nDn.

One can show that for any n ≥ 1:

2nsn ≥ −2
2nrn ≤ 5
2nAn ≤ −1/2
2nBn ≥ 0
2nCn ≤ 1
2nDn ≥ 1.

Moreover, if n ≥ 2, then 2nCn ≤ 1/2 and 2nrn ≤ 3. Let us see how the choice of
dn can be carried out using signed-digit arithmetic.

Signed-digit implementation

Assume that we use the radix-2 signed-digit system. Define λ∗
n as 2nλn truncated

after the first fractional digit. We have

|λ∗
n − 2nλn| ≤ 1

2
.

Therefore, if n is greater than or equal to 2, we can choose

dn =

⎧⎪⎪⎨⎪⎪⎩
+1 if λ∗

n ≤ −1/2
0 if λ∗

n = 0 or 1/2
−1 if λ∗

n ≥ 1.

(6.24)

If n = 1, then we need two fractional digits of the signed-digit representation
of λ1. And yet, in many cases, λ1 will be in conventional (i.e., nonredundant,
with digits 0 or 1) binary representation (in practice, if we want to compute
the logarithm of a floating-point number x, λ1 is obtained by suppressing the
leading “1” of the mantissa of x; incidentally, this “1” may not be stored if the

122 Chapter 6. Introduction to Shift-and-Add Algorithms

floating-point format uses the “hidden bit” convention — see Section 2.1.1).
Knowing this, if λ∗

1 = 2λ1 truncated after the first fractional bit, then

0 ≤ λ1 − λ∗
1 ≤ 1/2

and we can choose

d1 =

{
0 if λ∗

1 = 0, 1/2
−1 if λ∗

1 ≥ 1.

Therefore (6.24) can be used for alln, provided thatλ1 is represented in the nonre-
dundant binary number system. The convergence domain of the algorithm is

L1 ∈ [s1 + 1, r1 + 1] = [0.4194 · · · , 3.4627 · · ·].

6.4 Baker’s Predictive Algorithm

If i is large enough, then ln(1 + 2−i) and arctan 2−i are very close to 2−i (this
can be seen by examining Table 6.4). Baker’s predictive algorithm [22], originally
designed for computing the trigonometric functions7 but easily generalizable
to exponentials and logarithms, is based on this remark. We have already seen
how the sequence ln(1+2−i) can be used for computing functions. The sequence
arctan 2−i is used by the CORDIC algorithm (see next chapter). From the power
series

ln(1 + x) = x − 1
2
x2 +

1
3
x3 − 1

4
x4 + · · ·

one can easily show that

0 < 2−i − ln(1 + 2−i) < 2−2i−1. (6.25)

Similarly, one can show that

0 < 2−i − arctan(2−i) <
1
3
2−3i. (6.26)

This means that if x is small enough, the first terms of the decomposition of
x on the discrete base ln(1+2−i) or arctan 2−i are likely to be the same as the first
terms of its decomposition on the base (2−i), that is, its binary decomposition.
This is illustrated by Table 6.5.

Let wi be ln(1 + 2−i) or arctan(2−i) depending on the function we wish to
compute. Assume that we are at some step n ≥ 2 of a decomposition method.
We have a value xn that satisfies:

0 ≤ xn ≤
∞∑

k=n

wk <
∞∑

k=n

2−k = 2−n+1

7Using a modified CORDIC algorithm; CORDIC is presented in the next chapter.

6.4. Baker’s Predictive Algorithm 123

i ln(1 + 2−i)

0 0.101100010111001000010111111101111101000111 · · ·
1 0.011001111100110010001111101100101111111001 · · ·
2 0.001110010001111111101111100011110011010100 · · ·
3 0.000111100010011100000111011011100010101011 · · ·
4 0.000011111000010100011000011000000000100010 · · ·
5 0.000001111110000010100110110000111001111000 · · ·
6 0.000000111111100000010101000101100001111110 · · ·
7 0.000000011111111000000010101001101011000100 · · ·
8 0.000000001111111110000000010101010001010110 · · ·
9 0.000000000111111111100000000010101010011010 · · ·

10 0.000000000011111111111000000000010101010100 · · ·
11 0.000000000001111111111110000000000010101010 · · ·
12 0.000000000000111111111111100000000000010101 · · ·
13 0.000000000000011111111111111000000000000010 · · ·
14 0.000000000000001111111111111110000000000000 · · ·
15 0.000000000000000111111111111111100000000000 · · ·

Table 6.4: The first digits of the first 15 values wi = ln(1 + 2−i). As i increases, wi

gets closer to 2−i.

x wi decomposition

2−i (binary) 010000000000000000000
1
2 ln(1 + 2−i) 010011000110011011101

arctan 2−i 010001001010011110000

2−i (binary) 000011001100110011001
1
10 ln(1 + 2−i) 000011010001101011101

arctan 2−i 000011001100111111001

2−i (binary) 00000000001000000000000000000000000000
1

1024 ln(1 + 2−i) 00000000001000000000001111111111010101
arctan 2−i 0000000000100000000000000000000010101

Table 6.5: Comparison among the binary representations and the decompositions (given
by the restoring algorithm) on the discrete bases ln(1 + 2−i) and arctan 2−i for some
values of x. When x is very small the different decompositions have many common
terms.

124 Chapter 6. Introduction to Shift-and-Add Algorithms

and we need to find values dn, dn+1, dn+2 . . . , such that

xn =
∞∑

k=n

dkwk.

Let
0.00000 · · · 0d(n)

n d
(n)
n+1d

(n)
n+2d

(n)
n+3 · · ·

be the binary representation of xn, that is,

xn =
∞∑

k=n

d
(n)
k 2−k.

Since wp is very close to 2−p, the basic idea is to choose:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dn = d
(n)
n

dn+1 = d
(n)
n+1

...

d� = d
(n)
� ,

(6.27)

for some �. This gives values (di) without having to perform any comparison
or table lookup. Of course, since the sequences (wp) and (2−p) are not exactly
equal, this process will not always give a correct result without modifications.
A correction step is necessary. Define

x̃�+1 = xn − dnwn − dn+1wn+1 − · · · − d�w�.

We have:

x̃�+1 = xn −
�∑

k=n

dkwk = xn −
�∑

k=n

dk2−k +
�∑

k=n

dk(2−k − wk).

Therefore

0 ≤ x̃�+1 ≤ 2−� +
�∑

k=n

(2−k − wk).

• If wi = ln
(
1 + 2−i

)
, using (6.25), this gives

0 ≤ x̃�+1 < 2−� +
2−2n+1

3
, (6.28)

• and if wi = arctan 2−i, using (6.26), this gives

0 ≤ x̃�+1 < 2−� +
2−3n+3

21
. (6.29)

6.4. Baker’s Predictive Algorithm 125

In both cases, x̃�+1 is small. Now let us find a convenient value for �.

• If wi = ln
(
1 + 2−i

)
, let us choose � = 2n − 1. This gives

0 ≤ x̃2n ≤ 2−2n+1
(

1 +
1
3

)
.

The “correction step” consists of again using the constant w� = w2n−1 in
the decomposition.8 Define δ� as 1 if x̃�+1 > wl, else 0, and x2n = x�+1 =
x̃�+1 − δ�wl. We get:

– if δ� = 0, then 0 ≤ x�+1 ≤ w� ≤ ∑∞
k=l+1 wk;

– if δ� = 1, then from (6.28) and the Taylor expansion of the logarithm,
we get:

0 ≤ x�+1 = x̃�+1 − wl ≤ 2−2n+1
(

1 +
1
3

)
− 2−2n+1

+
1
2
2−4n+2

≤ 2−2n

(
2
3

+ 2−2n+1
)

≤ 2−2n

(since n ≥ 2)

≤
∞∑

k=l+1

wk.

• If wi = arctan 2−i, let us choose � = 3n − 1. This gives

0 ≤ x̃3n ≤ 2−3n+1
(

1 +
1
3

)
.

The “correction step” consists of using the constant w� = w3n−1 again in
the decomposition. Define δ� as 1 if x̃�+1 > w�, else 0, and x�+1 = x3n =
x̃�+1 − δ�w�. We get

– if δ� = 0, then

0 ≤ x�+1 ≤ w� ≤
∞∑

k=�+1

wk;

8This can be viewed as the possible use of di = 2 for a few values of i, or as the use of a new
discrete base, obtained by repeating a few terms of the sequence (wi).

126 Chapter 6. Introduction to Shift-and-Add Algorithms

– if δ� = 1, then, from (6.29) and the Taylor expansion of the arctangent
function, we get:

0 ≤ x�+1 = x̃�+1 − w� ≤ 25
21

2−3n+1 − 2−3n+1 +
2−9n+3

3

≤ 2−3n

(
8
21

+
8
3
2−6n

)
≤ 2−3n(since n ≥ 2)

≤
∞∑

k=�+1

wk.

Therefore, in both cases, we have got a new value n′ (n′ = � + 1) that satisfies:

0 ≤ xn′ ≤
∞∑

k=n′
wk,

and we can start the estimation of the next terms of the decomposition from the
binary expansion of xn′ .

Assume that we use the sequence wn = ln (1 + 2−n). We cannot start the
method from n = 0 or n = 1 (n = 0 would give � = −1, and n = 1 would
give � = 1). Starting from a small value of n larger than 1 would not allow us
to predict many values di: n = 3 would give � = 5. This would allow us to find
d3, d4, and d5, but we would have to perform a “correction step” immediately
afterwards. To make Baker’s method efficient, we must handle the first values
of n using a different algorithm. Asolution is to use a small table. Let us examine
how this can be done.

For an m-bit chain (α0, α1, . . . , αm−1) define Iα0,α1,...,αm−1 as the inter-
val containing all the real numbers whose binary representation starts with
α0.α1α2 · · ·αm−1, that is,

Iα0,α1,...,αm−1 =
[
α0.α1α2 · · ·αm−1, α0.α1α2 · · ·αm−1 + 2−m−1

]
.

For an n-bit chain (d0, d1, . . . , dn−1), define Jd0,d1,...,dn−1 as the interval

Jd0,...,dn−1 =

[
d0w0 + · · · + dn−1wn−1, d0w0 + · · · + dn−1wn−1 +

∞∑
i=n

wi

]
.

The interval Jd0,d1,...,dn−1 contains the numbers t that can be written

t =
∞∑

k=0

δkwk,

where δk = dk for k ≤ n − 1 and δk = 0, 1 for k ≥ n.

6.4. Baker’s Predictive Algorithm 127

We can start Baker’s algorithm at step n if there exists a number m
such that for every possible m-bit chain (α0, α1, α2, . . . , αm−1) such that
x0 = α0.α1α2 · · ·αm−1 · · · belongs to the convergence domain of the restoring
algorithm,9 there exists an n-bit chain (d0, d1, . . . , dn−1) such that Jd0,d1,...,dn−1

contains Iα0,α1,...,αm−1 .
If this is true, once we have computed d0, . . . , dn−1 for every possible

value of α0, α1, α2, . . . , αm−1, it suffices to store the values d0, d1, . . . , dn−1 in
an m-address-bit table. Unfortunately, m turns out to be too large for conve-
nient values of n: After some experiments, m seems to be larger than 2n (for
2 ≤ n ≤ 8, and wk = ln

(
1 + 2−k

)
, m is equal to 2n + 1). A solution is to

perform a correction step after the initial table lookup. Instead of providing,
for each m-bit chain (α0α1α2 · · ·αm−1), an n-bit chain such that Jd0,d1,...,dn−1

contains Iα0,α1,...,αm−1 , we give an n-bit chain such that J ′
d0,d1,...,dn−1

contains
Iα0,α1,...,αm−1 , where J ′

d0,d1,...,dn−1
is the interval[

d0w0 + · · · + dn−1wn−1, d0w0 + · · · + dn−1wn−1 + wn−1 +
∞∑

i=n

wi

]
.

This requires smaller values of m. For 2 ≤ n ≤ 10, m = n+1 suffices. Once
d0, d1, . . . , dn−1 is obtained from the table, it suffices to compute

x(0)
n = x0 − d0w0 − d1w1 − · · · − dn−1wn−1

and
x(1)

n = x0 − d0w0 − d1w1 − · · · − dn−1wn−1 − wn−1

using redundant additions and a final conversion to nonredundant representa-
tion. Then we can start Baker’s algorithm from

xn =

⎧⎨⎩x
(0)
n if x

(1)
n < 0

x
(1)
n otherwise.

The following Maple program computes the value of m and builds the table
from any value of n, for wk = ln

(
1 + 2−k

)
.

find_Baker := proc(n)
finds the smallest number m of digits of the input number
that allows us to start Baker’s algorithm at step n
and builds the table
we start with m = n+1, if we succeed, we build the table
else we increment m

global m, TAB, failure;
Digits := 30;

recalculation of the convergence domain [0,A]

9That is, 0 ≤ x0 ≤ ∑∞
k=0 wk.

128 Chapter 6. Introduction to Shift-and-Add Algorithms

A := evalf(log(2));
for i from 1 to 100 do

A := A+evalf(log(1+2ˆ(-i))) od;
First, we build the J intervals

remainder := evalf(log(1+2ˆ(-n)));
for i from (n+1) to 100 do

remainder := remainder+evalf(log(1+2ˆ(-i)))
od;
for counter from 0 to (2ˆn-1) do

computation of d_0, d_1, ... d_n-1
where the d_i’s are the digits of the binary representation
of counter

decomp := counter;
for k from 1 to n do

d[n-k] := decomp mod 2;
decomp := trunc(decomp/2)

od;
Jleft[counter] := evalf(d[0]*log(2));
for i from 1 to (n-1) do

Jleft[counter] := Jleft[counter]
+ evalf(d[i]*log(1+2ˆ(-i)))

od;
Jright[counter] := Jleft[counter]

+ remainder+evalf(log(1+2ˆ(-n+1)));
od;

now we try successive values of m
m := n;
failure := true;

failure = true means that m is not large enough
while (failure) do

m := m+1;
powerof2 := 2ˆ(m-1);
Ileft[0] := 0; Iright[0] := evalf(1/powerof2);
for counter from 1 to 2ˆm-1 do ;

Ileft[counter] := Iright[counter-1];
Iright[counter] := evalf((counter+1)/powerof2);

od;
Now we must check if for each I-interval included in the
convergence domain of the algorithm
there exists a J-interval that
contains it

countermax := trunc(A*2ˆ(m-1))-1;
Jstart := 0;
failure := false;
counter := 0;
while (not failure) and (counter <= countermax) do

while Jright[Jstart] < Iright[counter] do
Jstart := Jstart+1

od;
if Jleft[Jstart] <= Ileft[counter] then

TAB[counter] := Jstart else failure := true
fi;
counter := counter+1

od;

6.4. Baker’s Predictive Algorithm 129

if (failure=false)
then

print (m);
for counter from 0 to countermax do

print(counter,TAB[counter])
od

fi
od;

end;

Now let us examine an example.

Example 8 (Computation of the exponential function) We want to compute the
exponential of x = 0.1100101102 = 0.7929687510 using Baker’s method, and we use
Table 6.6, which was built using the previously presented method, with n = 4 and
m = 5. In our example, the table gives d0 = 0, d1 = 1, d2 = 1, and d3 = 0. So we
compute

x
(0)
4 = x0 − d0w0 − d1w1 − d2w2 − d3w3

and

x
(1)
4 = x0 − d0w0 − d1w1 − d2w2 − d3w3 − w3;

this gives ⎧⎨⎩x
(0)
4 = 0.16436009 · · ·10

x
(1)
4 = 0.04657705 · · ·10 .

Since x
(1)
4 ≥ 0, we start Baker’s method from x4 = x

(1)
4 . Since n = 4, � = 7

so we can deduce d4, d5, d6, and d7 from the binary representation of x4, that is,
0.0000101111101100011110 · · ·2. This gives

d4 = 0, d5 = 1, d6 = 0, d7 = 1;

therefore
x̃8 = x4 − d4w4 − d5w5 − d6w6 − d7w7

= 0.0080232558 · · ·10
= 0.0000001000001101110 · · ·2 .

Now we have to perform a correction step. Let us subtract w7 from x̃8. This gives
0.0002411153 · · ·10, which is positive. Therefore δ7 = 1 and

x8 = x̃8 − δ7w7
= 0.0002411153 · · ·10
= 0.00000000000011111100110100111110101 · · ·2 .

130 Chapter 6. Introduction to Shift-and-Add Algorithms

First 5 Bits of x First Terms di

00000 0000

00001 0000

00010 0000

00011 0001

00100 0001

00101 0010

00110 0010

00111 0011

01000 0011

01001 0100

01010 0101

01011 0101

01100 0110

01101 0111

01110 0111

01111 1001

10000 1010

10001 1010

10010 1011

10011 1011

10100 1100

10101 1101

10110 1101

10111 1110

Table 6.6: Table obtained for n = 4 using our Maple program.

From the binary representation of x8, we can deduce d8, d9, . . . , d15. This gives

d8 = d9 = d10 = d11 = d12 = 0, d13 = d14 = d15 = 1.

Therefore, taking into account the correction steps, we find

x = w1 + w2 + w3 tabulation and correction
+w5 + w7 + w7 1st step of Baker’s method
+w13 + w14 + w15 + · · · 2nd step of Baker’s method.

6.5. Bibliographic Notes 131

This gives

ex =
(

1 +
1

2−1

)(
1 +

1
2−2

)(
1 +

1
2−3

)
(

1 +
1

2−5

)(
1 +

1
2−7

)(
1 +

1
2−7

)
(

1 +
1

2−13

)(
1 +

1
2−14

)(
1 +

1
2−15

)
≈ 2.2099.

6.5 Bibliographic Notes

The CORDIC algorithm (see Chapter 7) is a shift-and-add algorithm that al-
lows evaluation of trigonometric and hyperbolic functions. It was introduced
by Volder in 1959 [317]. Meggitt [228] presented the same basic iterations slightly
differently, and saw them as “pseudomultiplication” and “pseudodivision” pro-
cesses. The basic iterations for computing logarithms and exponentials (as well
as iterations similar to CORDIC for the elementary functions) were presented
by Specker [290] in 1965. Similar algorithms were studied by Linhardt and
Miller [218]. An analysis of shift-and-add algorithms for computing the ele-
mentary functions was given by DeLugish [108] in 1970.

Chapter 7

The CORDIC Algorithm

7.1 Introduction

The CORDIC algorithm was introduced in 1959 by Volder [317, 318]. In Volder’s
version, CORDIC makes it possible to perform rotations (and therefore to com-
pute sine, cosine, and arctangent functions) and to multiply or divide numbers
using only shift-and-add elementary steps. To quote Volder [318], the CORDIC
technique was born out of necessity, the incentive being the replacement of the
analog navigation computer of the B-58 bomber aircraft by a digital computer.
The main challenge was the real-time determination of present position on a
spherical earth.

The Hewlett-Packard 9100 desktop calculator, built in 19681, used CORDIC
for the trigonometric functions.

In 1971, Walther [321, 322] generalized this algorithm to compute log-
arithms, exponentials, and square roots. CORDIC is not the fastest way to
perform multiplications or to compute logarithms and exponentials but, since
the same algorithm allows the computation of most mathematical functions
using very simple basic operations, it is attractive for hardware implemen-
tations. CORDIC has been implemented in many pocket calculators since
Hewlett Packard’s HP 35 [63], and in arithmetic coprocessors such as the
Intel 8087 [241]. Some authors have proposed the use of CORDIC processors
for signal processing applications (DFT [26, 111, 329], discrete Hartley trans-
form [56], filtering [109], SVD [53, 54, 134, 169, 200]), or for solving linear
systems [3].

1See http://www.decodesystems.com/hp9100.html.

134 Chapter 7. The CORDIC Algorithm

7.2 The Conventional CORDIC Iteration

Volder’s algorithm is based upon the following iteration,⎧⎪⎪⎪⎨⎪⎪⎪⎩
xn+1 = xn − dnyn2−n

yn+1 = yn + dnxn2−n

zn+1 = zn − dn arctan 2−n.

(7.1)

The terms arctan 2−n are precomputed and stored, and the dis are equal to
−1 or +1. In the rotation mode of CORDIC, dn is chosen equal to the sign of zn

(i.e., +1 if zn ≥ 0, else −1). If |z0| is less than or equal to
∞∑

k=0

arctan 2−k = 1.7432866204723400035 · · · ,

then

limn→∞

⎛⎜⎝ xn

yn

zn

⎞⎟⎠ = K ×
⎛⎜⎝ x0 cos z0 − y0 sin z0

x0 sin z0 + y0 cos z0
0

⎞⎟⎠ , (7.2)

where the scale factor K is equal to
∏∞

n=0
√

1 + 2−2n = 1.646760258121 · · · . For
instance, to compute the sine and the cosine of a number θ, with |θ| ≤ θmax =∑∞

k=0 arctan 2−k , we choose:

x0 = 1/K = 0.6072529350088812561694 · · ·
y0 = 0
z0 = θ.

Now let us show how CORDIC works. That algorithm is based on the
decomposition of θ = z0 on the discrete base (see Chapter 6) wn = arctan 2−n,
using the nonrestoring algorithm (see Theorem 12). The nonrestoring algorithm
gives a decomposition of θ:

θ =
∞∑

k=0

dkwk, dk = ±1, wk = arctan 2−k.

The basic idea of the rotation mode of CORDIC is to perform a rotation of
angle θ as a sequence of elementary rotations of angles dnwn. We start from
(x0, y0), and obtain the point (xn+1, yn+1) from the point (xn, yn) by a rotation
of angle dnwn. This gives:

nonrestoring decomposition

t0 = 0
tn+1 = tn + dnwn

dn =

{
1 if tn ≤ θ

−1 otherwise;

(7.3)

7.2. The Conventional CORDIC Iteration 135

nth rotation(
xn+1
yn+1

)
=

(
cos(dnwn) − sin(dnwn)
sin(dnwn) cos(dnwn)

)(
xn

yn

)
. (7.4)

This can be simplified, first by noticing that, since dn = ±1, cos(dnwn) =
cos(wn) and sin(dnwn) = dn sin(wn), then by using the relation tanwn = 2−n.
We then replace (7.4) by:(

xn+1
yn+1

)
= cos (wn)

(
1 −dn2−n

dn2−n 1

)(
xn

yn

)
. (7.5)

In (7.5), the multiplication by cos(wn) = 1/
√

1 + 2−2n is the only “true”
multiplication, since in radix 2 a multiplication by 2−n reduces to a shift. To
avoid this multiplication, instead of (7.5), we perform:(

xn+1
yn+1

)
=

(
1 −dn2−n

dn2−n 1

)(
xn

yn

)
, (7.6)

which is the basic CORDIC step, in the trigonometric type of iteration: it is no
longer a rotation of angle wn, but a similarity, or a “rotation-extension” (i.e., the
combination of a rotation and a multiplication by a real factor) of angle wn and
factor 1/ cos wn. The choice of dn given by (7.3) can be slightly simplified. If we
define zn = θ − tn, we get:

z0 = θ
zn+1 = zn − dnwn

dn =

{
1 if zn ≥ 0

−1 otherwise.

(7.7)

To sum up, the sequence (xn, yn) defined by Eq. (7.6) and (7.7) will not
converge to the rotation of angle θ of (x0, y0) but to the result of a similarity of
angle θ, whose factor is the product K of all the elementary factors, applied to
(x0, y0). This gives (7.2). Figure 7.1 presents one step of the algorithm.

Now let us focus on the vectoring mode of CORDIC. This mode is used
for computing arctangents. Assume that we wish to evaluate θ = arctan y0/x0.
The following algorithm converges provided that θ belongs to the convergence
domain of the rotation mode (i.e., |θ| ≤ ∑∞

i=0 arctan 2−i). To simplify, we assume
here that both x0 and y0 are positive. First, imagine that we already know θ (this
is a reasoning similar to the one used for deducing the restoring algorithm for
logarithms from the algorithm for exponentials in Section 6.2.2). If we start from
(x0, y0) and perform a rotation2 of angle −θ, using the rotation mode, then we
compute the sequence ⎧⎪⎨⎪⎩

xn+1 = xn − dnyn2−n

yn+1 = yn + dnxn2−n

zn+1 = zn − dn arctan 2−n

2Or, more precisely, a similarity.

136 Chapter 7. The CORDIC Algorithm

(xi+1, yi+1)

(xi, yi)
tan−1 2−i

zi

z0

Figure 7.1: One iteration of the CORDIC algorithm.

with z0 = −θ and

dn =

{
1 if zn ≥ 0

−1 otherwise.
(7.8)

This gives

xn → K
√

x2
0 + y2

0
yn → 0
zn → 0.

Now define a new variable z′
n equal to θ + zn. Since zn ≥ 0 ⇔ z′

n ≥ θ, we can
perform the same iteration as previously and get the same results by choosing,
instead of (7.8):

dn =

{
1 if z′

n ≥ θ
−1 otherwise

(7.9)

with z′
0 = 0. This gives z′

n → θ.
Now we have to take into account that θ is unknown: it is precisely the

value we wish to compute! z′
n measures the opposite of the angle by which

(x0, y0) must be rotated to get3 (xn, yn). If we have rotated by an angle whose

3Neglecting the scale factor.

7.2. The Conventional CORDIC Iteration 137

opposite is greater than θ, then (xn, yn) is below the x-axis; hence yn is neg-
ative. Otherwise, yn is positive. Therefore the test z′

n ≥ θ can be replaced
by yn ≤ 0.

By doing this, we no longer need to know θ, and we get the vectoring mode
of CORDIC . In that mode, dn is chosen equal to the sign of (−yn) (i.e., +1 if
yn ≤ 0, else −1). This gives:

lim
n→∞

⎛⎜⎜⎜⎜⎜⎝
xn

yn

zn

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
K
√

x2
0 + y2

0

0

z0 + arctan
y0

x0

⎞⎟⎟⎟⎟⎟⎠ , (7.10)

where the constant K is the same as in the rotation mode.
Since trigonometric and hyperbolic functions are closely related, one may

expect that a slight modification of Volder’s algorithm could be used for the
computation of hyperbolic functions. In 1971, John Walther [321] found the
correct modification, and obtained the generalized CORDIC iteration:

⎧⎪⎨⎪⎩
xn+1 = xn − mdnyn2−σ(n)

yn+1 = yn + dnxn2−σ(n)

zn+1 = zn − dnwσ(n),

(7.11)

where the results and the values of dn, m, wn, and σ(n) are presented in
Tables 7.1 and 7.2.

In the hyperbolic type of iteration (m = −1), the terms i = 4, 13, 40, . . ., k,
3k + 1, . . . (i.e., the terms i = (3j+1 − 1)/2) of the sequence tanh−1 2−i are used
twice (this is why we need to use the function σ). This is necessary since the
sequence tanh−1 2−n does not satisfy the condition of Theorem 12. The sequence
tanh−1 2−σ(n), obtained from the sequence tanh−1 2−n by repeating the terms
4, 13, 40, . . . satisfies that condition. The new scaling factor

K ′ =
∞∏
i=1

√
1 − 2−2σ(i)

equals 0.82815936096021562707619832 · · · . Therefore, to compute cosh θ and
sinh θ, one should choose:

x1 = 1/K ′ = 1.20749706776307212887772 · · ·
y1 = 0
z1 = θ.

In the rotation mode, the maximum value for |θ| is 1.1181730155265 · · ·.

138
C

hapter
7.

T
he

C
O

R
D

IC
A

lgorithm

Type m wk

dn = signzn

(Rotation Mode)

dn = −signyn

(Vectoring Mode)

circular 1 arctan 2−k

xn → K (x0 cos z0 − y0 sin z0)

yn → K (y0 cos z0 + x0 sin z0)

zn → 0

xn → K
√

x2
0 + y2

0

yn → 0

zn → z0 + arctan y0
x0

linear 0 2−k

xn → x0

yn → y0 + x0z0

zn → 0

xn → x0

yn → 0

zn → z0 + y0
x0

hyperbolic −1 tanh−1 2−k

xn → K ′ (x1 cosh z1 + y1 sinh z1)

yn → K ′ (y1 cosh z1 + x1 sinh z1)

zn → 0

xn → K ′
√

x2
1 − y2

1

yn → 0

zn → z1 + tanh−1 y1
x1

Table 7.1: Computability of different functions using CORDIC.

7.3. Scale Factor Compensation 139

Circular (m = 1) σ(n) = n

Linear (m = 0) σ(n) = n

Hyperbolic (m = −1)

σ(n) = n − k
where k is the largest

integer such that
3k+1 + 2k − 1 ≤ 2n

Table 7.2: Values of σ(n) in Eq. (7.11) and Table 7.1.

In Walther’s version, CORDIC makes it possible to compute many mathe-
matical functions. For instance, ex is obtained by adding cosh x and sinhx, and
lnx is obtained using the relation:

ln(x) = 2 tanh−1
(

x − 1
x + 1

)
whereas the square root of x is obtained as

√
x = K ′

√(
x +

1
4K ′2

)2
−
(

x − 1
4K ′2

)2
.

7.3 Scale Factor Compensation

As we have seen before, in the trigonometric type of iteration, we do not perform
a rotation of the initial vector (x0, y0), but the combination of a rotation and a
multiplication by the factor

K =
+∞∏
i=0

√
1 + 2−2i.

As we have seen previously, if we just want to evaluate sines and cosines,
this multiplication by a scale factor is not a problem. And yet, if we actually
want to perform rotations, we have to compensate for this multiplication. De-
spain [111] and Haviland and Tuszinsky [162] have suggested finding values
αi = −1, 0,+1, for i = 0, 1, 2 . . . such that

+∞∏
i=0

(1 + αi2−i) =
1
K

and merging the CORDIC iterations with multiplications (that reduce to shifts
and additions) by the terms (1 + αi2−i), that is, performing iterations of the
form:

xn+1 = (xn − dnyn2−n) (1 + αn2−n)
yn+1 = (yn + dnxn2−n) (1 + αn2−n) .

140 Chapter 7. The CORDIC Algorithm

i αi

0 0
1 −1
2 1
3 −1
4 1
5 1
6 1
7 −1
8 1
9 1

10 −1

Table 7.3: First values αi that can be used in Despain’s scale factor compensation
method.

There are several possible solutions for the sequence (αn). One of them is
given in Table 7.3.

The following Maple session shows how the terms αi can be computed.

> Digits := 30;
Digits := 30

> Ksquare := 1;
Ksquare := 1

> for j from 0 to 60 do
> Ksquare := Ksquare * (1.0 + 2ˆ(-2*j)) od:
> Ksquare;

2.71181934772695876069108846971

> K := sqrt(Ksquare);
K := 1.64676025812106564836605122228

> A := K;
A := 1.64676025812106564836605122228

> for i from 1 to 60 do
> if A > 1 then alpha[i] := -1: A := A*(1-2ˆ(-i))
> else alpha[i] := 1: A := A*(1+2ˆ(-i)) fi od;
> for i from 1 to 4 do print(alpha[i]) od;

-1
1

-1
1

7.4. CORDIC With Redundant Number Systems and a Variable Factor 141

dn = 1
�
���

dn = 0�
�
�
���

dn = −1
�
���

Bn

An

−An

−Bn

rn+1

−rn+1

−rn rn

zn+1

zn

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�� �

�
�
�
�
�
�
�
�
�
��

�

�

Figure 7.2: Robertson diagram of CORDIC.

Other scale factor compensation methods have been suggested. For in-
stance, Deprettere, Dewilde, and Udo [109] choose, instead of rotation angles
of the form arctan 2−n, angles of the form arctan (2−n ± 2−m), where the terms
±2−m are chosen so that the scale factor becomes 1 (or 2). A discussion on scale
factor compensation methods can be found in [310].

7.4 CORDIC With Redundant Number Systems and a
Variable Factor

In order to accelerate the CORDIC iterations, one can use redundant number
systems, as we did for exponentials and logarithms in the previous chapter, but it
is more difficult, because of the scale factor. With redundant representations, the
main problem is the evaluation of dn: the arithmetic operations themselves are
quickly performed. Assume that we are in rotation mode. We want to evaluate
dn as quickly as possible. When performing the “nonredundant” iteration, dn is
equal to 1 if zn ≥ 0, and to −1 otherwise, where zn+1 = zn −dn arctan 2−n. Now
we also allow the choice dn = 0. The various functions zn+1 = zn−dn arctan 2−n

(for dn = −1, 0, 1) are drawn on the Robertson diagram given in Figure 7.2.
The values rn, An, and Bn in Figure 7.2 satisfy:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

rn =
∞∑

k=n

arctan 2−k

Bn = rn+1

An = −rn+1 + arctan 2−n.

142 Chapter 7. The CORDIC Algorithm

n 2nrn 2nAn 2nBn

0 1.74328 −0.172490 0.957888

1 1.91577 −0.061186 0.988481

2 1.97696 −0.017134 0.997048

3 1.99409 −0.004417 0.999257

4 1.99851 −0.001113 0.999814

∞ 2 0 1

Table 7.4: First four values of 2nrn, 2nAn and 2nBn.

Table 7.4 gives the first four values of 2nrn, 2nAn, and 2nBn. One can easily
show that:

An ≤ 0

2nBn > 1/2.

The Robertson diagram shows that:

• if zn ≤ −An, then dn = −1 is an allowable choice;

• if −Bn ≤ zn ≤ Bn, then dn = 0 is an allowable choice;

• if zn ≥ An, then dn = +1 is an allowable choice.

Now let us see what would be obtained if we tried to implement this re-
dundant CORDIC iteration in signed-digit or carry-save arithmetic.

7.4.1 Signed-digit implementation

Assume that we use the radix-2 signed-digit system to represent zn. Assume
that −rn ≤ zn ≤ rn. Defining z∗

n as 2nzn truncated after its first fractional digit,
we have

|z∗
n − 2nzn| ≤ 1/2.

Therefore if we choose

dn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1 if z∗

n < 0

0 if z∗
n = 0

1 if z∗
n > 0,

(7.12)

then zn+1 is between −rn+1 and rn+1; this suffices for the algorithm to converge.

7.4. CORDIC With Redundant Number Systems and a Variable Factor 143

Proof

• If z∗
n < 0, then, since z∗

n is a 1-fractional digit number, z∗
n ≤ −1/2; therefore

2nzn ≤ 0, and hence zn ≤ −An. Therefore (see Figure 7.2) choosing dn =
−1 will ensure −rn+1 ≤ zn+1 ≤ rn+1.

• If z∗
n = 0, then −1/2 ≤ 2nzn ≤ 1/2; hence −2nBn ≤ 2nzn ≤ 2nBn; that is,

−Bn ≤ zn ≤ Bn. Therefore (see Figure 7.2) choosing dn = 0 will ensure
−rn+1 ≤ zn+1 ≤ rn+1.

• If z∗
n > 0, with a similar deduction, one can show that choosing dn = +1

will ensure −rn+1 ≤ zn+1 ≤ rn+1.

7.4.2 Carry-save implementation

Assume now that we use the carry-save system for representing zn. Define z∗
n

as 2nzn truncated after its first fractional digit. We have

0 ≤ 2nzn − z∗
n ≤ 1;

therefore, if we choose

dn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1 if z∗

n < −1/2

0 if z∗
n = −1/2

1 if z∗
n > −1/2,

(7.13)

then zn will be between −rn+1 and rn+1. The proof is similar to the proof for the
signed-digit case.

7.4.3 The variable scale factor problem

Unfortunately, the “redundant methods” previously given cannot be easily used
for the following reason. The scale factor K is equal to

∞∏
i=0

√
1 + d2

k2−2k.

If (as in the nonredundant CORDIC algorithm), dn = ±1, then K is a
constant. However, if dn is allowed to be zero, then K is no longer a constant.
Two classes of techniques have been proposed to overcome this drawback:

• one can compute the value of K (or, merely, 1/K) on the fly, in parallel
with the CORDIC iterations. This was suggested by Ercegovac and Lang
[131, 134];

• one can modify the basic CORDIC iterations so that the scaling factor
becomes a constant again.

This last solution is examined in the next sections.

144 Chapter 7. The CORDIC Algorithm

7.5 The Double Rotation Method

This method was suggested independently by Takagi et al. [300, 301, 302] and
by Delosme [106, 167], with different purposes. Takagi wanted to get a constant
scaling factor when performing the iterations in a redundant number system,
and Delosme wanted to perform simultaneously, in a conventional number sys-
tem, the vectoring operation and the rotation by half the resulting angle. The
basic idea behind the double rotation method, illustrated in Figure 7.3 is to
perform the similarities of angle di arctan 2−i twice. Assume that we are in the
circular (m = 1) type of iterations, in rotation mode. Instead of using the discrete
base (see Chapter 6) wn = arctan 2−n, we use the base

w′
n = 2 arctan 2−n−1.

Once dn is found, the elementary similarity of angle 2dn arctan 2−n−1 is
performed as follows.

• If dn = 1, then we perform two similarities of angle arctan 2−n−1;

• if dn = −1, then we perform two similarities of angle − arctan 2−n−1;

• if dn = 0, then we perform a similarity of angle + arctan 2−n−1, followed
by a similarity of angle − arctan 2−n−1.

The basic iteration of the double rotation method becomes:⎧⎪⎪⎨⎪⎪⎩
xn+1 = xn − dn2−nyn + (1 − 2d2

n)2−2n−2xn

yn+1 = yn + dn2−nxn + (1 − 2d2
n)2−2n−2yn

zn+1 = zn − dnw′
n = zn − 2dn arctan 2−n−1.

(7.14)

The new scaling factor is:

Kdouble =
∞∏
i=1

(
1 + 2−2i

)
= 1.3559096738634793803 · · · .

The convergence domain is I = [−A,+A], where

A = 2
∞∑
i=1

arctan 2−i = 1.91577691 · · · .

The constant-scale factor redundant CORDIC algorithm that uses the dou-
ble rotation method was first suggested by N. Takagi in his Ph.D. disserta-
tion [300]. It consists of performing (7.14) with the following choice of dn.

dn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1 if

[
z
(n−1)
n z

(n)
n z

(n+1)
n

]
< 0

0 if
[
z
(n−1)
n z

(n)
n z

(n+1)
n

]
= 0

+1 if
[
z
(n−1)
n z

(n)
n z

(n+1)
n

]
> 0,

(7.15)

7.5. The Double Rotation Method 145

Figure 7.3: One iteration of the double rotation method.

where zn = z0
n.z1

nz2
nz3

nz4
n · · ·. This algorithm works if we make sure that z

(n−1)
n is

the most significant digit of zn. This is done by first noticing that

|zn| ≤
∞∑

k=n

(
2 arctan 2−k−1

)
< 2−n+1.

Define ẑn as the number 0.0000 · · · 0z
(n−2)
n z

(n−1)
n z

(n)
n z

(n+1)
n · · · obtained by

suppressing the possible digits of zn of weight greater than 2−n+2. The number
zn − ẑn is a multiple of 2−n+3, therefore:

1. if z
(n−2)
n = −1, then

• if z
(n−1)
n = −1, then ẑn is between −2−n+3 and −2−n+2; therefore the

only possibility compatible with |zn| < 2−n+1 is zn = ẑn + 2−n+3.
Thus we can rewrite zn with the most significant digit at position
n − 1 by replacing z

(n−1)
n by 1 and zeroing all the digits of zn at the

left of z
(n−1)
n (of course, in practice, these digits are not “physically”

zeroed: we just no longer consider them);

• if z
(n−1)
n = 0, then ẑn is between −3 × 2−n+1 and −2−n+1; therefore

there is no possibility compatible with |zn| < 2−n+1: this is an impos-
sible case;

146 Chapter 7. The CORDIC Algorithm

• if z
(n−1)
n = 1, then ẑn is between −2−n+2 and 0; therefore the only

possibility compatible with |zn| < 2−n+1 is zn = ẑn. Thus we can
rewrite zn by replacing z

(n−1)
n by −1 and zeroing all the digits of zn

at the left of z
(n−1)
n .

2. if zn−2
n = 0, then

• if z
(n−1)
n = −1, then ẑn is between −2−n+2 and 0; therefore zn = ẑn.

We do not need to modify z
(n−1)
n ;

• similarly, if z
(n−1)
n is equal to 0 or 1, there is no need to modify it;

3. if z
(n−2)
n = +1, we are in a case that is similar (symmetrical, in fact) to the

case z
(n−2)
n = −1.

Therefore it suffices to examine z
(n−2)
n : if it is nonzero, we negate z

(n−1)
n .

After this, we can use (7.15) to find dn using a small table. Of course, an-
other solution is to directly use a larger table that gives dn as a function of[
z
(n−2)
n z

(n−1)
n z

(n)
n z

(n+1)
n

]
as we did, for instance, in Section 6.3.1.

Another redundant CORDIC method with constant scale factor, suggested
by Takagi et al. [302], is the correcting rotation method. With that method, at each
step,dn is chosen by examining a “window” of digits of zn. If the window suffices
to make sure that zn ≥ 0, then we choose dn = +1, and if the window suffices to
make sure that zn ≤ 0, then we choose dn = −1. Otherwise, we choose dn equal
to +1 (a similar algorithm is obtained by choosing −1). By doing this, an error
may be made, but that error is small (because the fact that we are not able to find
the sign of zn implies that zn is very small). One can show that this error can
be corrected by repeating an extra iteration every m steps, where m can be an
arbitrary integer (of course, the size of the “window” of digits depends on m).

7.6 The Branching CORDIC Algorithm

This algorithm was introduced by Duprat and Muller [124]. Corrections and
improvements have been suggested by Phatak [260, 261]. To implement the al-
gorithm, we must assume that we have two “CORDIC modules,” that is, that we
are able to perform two conventional CORDIC iterations in parallel. The mod-
ules are named “module +” and “module −.” The basic idea is the following:
first we perform the conventional CORDIC iterations on one module; the only
values of dn that are allowed are −1 and +1. At step n, we try to estimate dn

by examining a “window” of digits of zn. If this examination suffices to know
the sign of zn, then we choose dn = sign(zn), as usual. Otherwise, we split the
computations (this is what we call a “branching”): module “+” tries dn = +1
and then continues to perform the conventional CORDIC iterations, and mod-
ule “−” tries dn = −1. If no module creates a new branching (i.e., if in both

7.6. The Branching CORDIC Algorithm 147

modules the “windows” of digits always suffice to estimate the sign of zk), then
both modules give a correct result. If a module creates a branching, say, at step
m, this means that its value of zm is very small, hence the choice of dn tried by
this module at the previous branching was a correct one. Therefore we can stop
the computation that was performed by the other module, both modules are
ready to carry on the computations needed by the new branching. This shows
that even if many branchings are created, there is never any need for more than
two modules.

The algorithm uses a function “eval” such that,4 at step n, we have:{
eval(zn) �= 0 ⇒ sign(zn) = eval(zn)
eval(zn) = 0 ⇒ |zn| ≤ 2−n+1.

(7.16)

The algorithm manipulates two values zn, the one of module “+”, named
z+
n , and the one of module “−”, named z−

n . One can show that:

• at least one of the terms |z+
n | and |z−

n | is less than or equal to

∞∑
k=n

arctan 2−k;

• both terms are less than 3 × 2−n+1.

The algorithm (extracted from [124]) is given in the following (in pseudo-
Pascal). the variables zplus[n] and zminus[n] represent |z+

n | and |z−
n |; and

dplus[n] and dminus[n] denote the variable dn of module “+” and module
“−”, respectively.

Algorithm 8 (Branching CORDIC)

Algorithm branching-CORDIC

procedure updatez(n);
begin

in parallel
zplus[n+1] := zplus[n] - dplus[n] w[n];
{in module "+"}
zminus[n+1] := zminus[n] - dminus[n] w[n];
{in module "-"}

4In the original paper [124], there was an error. Instead of the correct assumption

eval(zn) = 0 ⇒ |zn| ≤ 2−n+1,

the authors assumed
eval(zn) = 0 ⇒ |zn| ≤ 2−n−1.

The correction was suggested by Phatak [260].

148 Chapter 7. The CORDIC Algorithm

in parallel
splus := eval(zplus[n+1]);
sminus := eval(zminus[n+1]);

end;

begin
i := 0; {initializations}
zplus[0] := zminus[0] := theta;
splus := sminus := eval(theta);

1: while splus <> 0 and sminus <> 0 do
{while no branching}

begin
dplus[i] := splus;
dminus[i] := sminus;
updatez(i);
i := i+1

end;
2: {a branching is occurring}

dplus[i] := 1;
dminus[i] := -1;
updatez(i);
i := i+1;

3: while (splus = -1) and (sminus = +1) do
{while branching}

begin
dplus[i] := splus;
dminus[i] := sminus;
updatez(i);
i := i+1

end;
{new branching, or end of branching}
if splus = 0 then

{module "+" performed the good computation}
begin

zminus[i] := zplus[i];
goto 2 {new branching}

end
else if splus = +1 then

{module "+" performed the good computation}
begin

zminus[i] := zplus[i];
sminus := splus;
goto 1 {branching terminated}

end
else if sminus = 0 then

{module "-" performed the good computation}
begin

zplus[i] := zminus[i];
goto 2 {new branching}

end

7.6. The Branching CORDIC Algorithm 149

else if sminus = -1 then
{module "-" performed the good computation}

begin
zplus[i] := zminus[i];
splus := sminus;
goto 1

{branching terminated}
end;

end.

Now let us focus on the implementation of the function eval. Let zn be z+
n

or z−
n . Relation (7.16) must be satisfied by eval(zn). This is done as follows (in

a way very similar to what we did in Section 6.3.1). Assume we use the radix-2
signed-digit number system for representing zn (this would be very similar if
the carry-save number system were used). Let z∗

n be 2n−1zn truncated after the
radix point. We have: ∣∣∣z∗

n − 2n−1zn

∣∣∣ ≤ 1.

Since |zn| < 3×2−n+1, |z∗
n| is less than or equal to 3. Now define ẑ∗

n as the 3-digit
number obtained by suppressing the digits of z∗

n of a weight greater than or
equal to 23. We have:

−7 ≤ ẑ∗
n ≤ +7

|ẑ∗
n − z∗

n| is a multiple of 8;

therefore

• if −7 ≤ ẑ∗
n ≤ −5, then z∗

n = ẑ∗
n + 8 ≥ 1; therefore zn ≥ 0. We must choose

eval(zn) = 1;

• ẑ∗
n = −4 is an impossible case;

• if −3 ≤ ẑ∗
n ≤ −1, then z∗

n = ẑ∗
n; therefore zn ≤ 0. We must choose

eval(zn) = −1;

• if ẑ∗
n = 0, then −1 ≤ 2n−1zn ≤ +1. We must choose eval(zn) = 0;

• if 1 ≤ ẑ∗
n ≤ 3, then zn ≥ 0. We must choose eval(zn) = +1;

• ẑ∗
n = 4 is an impossible case;

• if ẑ∗
n ≥ 5, then zn ≤ 0. We must choose eval(zn) = −1.

A comparison of some variants of the Branching CORDIC algorithm are
provided in [288].

150 Chapter 7. The CORDIC Algorithm

7.7 The Differential CORDIC Algorithm

This algorithm was introduced by Dawid and Meyr [95]. It allows a constant
scale factor redundant implementation without additional operations.

First let us focus on the rotation mode. We start from an initial value z0,
−∑∞

n=0 arctan 2−n ≤ z0 ≤ +
∑∞

n=0 arctan 2−n, and the problem is to find, as
fast as possible, values dn, dn = ±1 such that z0 =

∑∞
n=0 dn arctan 2−n. We

actually compute the values dn that would have been given by the conventional
algorithm (see Section 7.2), in a faster way. Since dn = ±1, the scaling factor
K =

∏∞
n=0

√
1 + d2

n2−2n remains constant.
Instead of the sequence zn, we manipulate a new sequence (ẑn), defined as

ẑn+1 = sign(zn) × zn+1. From dn = sign(zn) and zn+1 = zn − dn arctan 2−n, we
find

zn+1 × sign(zn) = |zn| − arctan 2−n.

Therefore {
|ẑn+1| = ||ẑn| − arctan 2−n|
dn+1 = dn × sign (ẑn+1) .

(7.17)

Assume that ẑn is represented in the binary signed-digit number system
(radix 2, digits −1, 0, and 1). Relations (7.17) allow us to partially separate the
computation of the absolute value of ẑn+1 and the computation of its sign. To
compute the absolute value of a binary signed-digit number x = x0.x1x2x3x4 · · ·
as well as its sign, we proceed on-line (i.e., in a digit-serial fashion, most signif-
icant digit first5). We examine its digits from left to right. If the first digits are
equal to zero, we do not immediately know the sign of x, but we can output
digits of |x| anyway, it suffices to output zeroes. As soon as we see a nonzero
digit xi, we know the sign of x (it is the sign of that digit), and we can continue
to output the digits of |x|. They are the digits of x if x is positive; otherwise, they
are their negation.

Therefore we can implement iteration (7.17) in a digit-pipelined fashion:
as soon as we get digits of |ẑn|, we can subtract (without carry propagation)
arctan 2−n from zn and then generate the absolute value of the result to get
digits of |ẑn+1|. |ẑn+1| is generated from |ẑn| with on-line delay 1: as soon as we
get the ith digit of |ẑn|, we can compute the i−1st digit of |ẑn+1|. This is because
adding a signed-digit binary number (|ẑn|) and a number represented in the
conventional nonredundant number system (− arctan 2−n) can be done with
on-line delay 1: the ith digit of the sum only depends on the ith and i+1st digits
of the input operands (more details can be found, for instance, in [17]). This can
be viewed in Figure 2.8.

The on-line delay required to get the sign — that is, to get a new value di

using (7.17) — may be as large as the word length (if the only nonzero digit

5On-line arithmetic was introduced in 1977 by Ercegovac and Trivedi [137]. It requires the
use of a redundant number system and introduces parallelism between sequential operations by
overlapping them in a digit-serial fashion. See [130] for a survey.

7.7. The Differential CORDIC Algorithm 151

ITERATION 0 ITERATION 1 ITERATION 2

+

+

+

+

+

+

+

+

+

+

+

++

+

+

sign(z0) sign(ẑ2) sign(ẑ3)

| · |

| · |

| · |

| · |

| · |

| · |

| · |

| · |

| · |

| · |

| · |

| · |

| · |

| · |

| · | | · |

| · |

| · |

| · |

| · |

sign(ẑ1)

− arctan(2−0)0 − arctan(2−1)0 − arctan(2−2)0

Figure 7.4: Computation of the values sign(ẑi) in the differential CORDIC algorithm
(rotation mode) [95].

of a number is the least significant one, its sign is unknown until all the digits
have been scanned), but it is clear from Figure 7.4 that this appears only once
in the beginning. Using the operators depicted in that figure, the following
algorithm makes it possible to perform the CORDIC rotations quickly, with
constant scaling factor (the same factor as that of the conventional iteration).

Algorithm 9 (Differential CORDIC, rotation mode)

• input values: x0, y0 (input vector), z0 (rotation angle),

• output values: xn+1, yn+1 (scaled rotated vector).

ẑ0 = |z0| , d0 = sign (z0)
for i = 0 to n do ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

|ẑi+1| =
∣∣|ẑi| − arctan 2−i

∣∣
di+1 = di × sign(ẑi+1)

xi+1 = xi − diyi2−i

yi+1 = yi + dixi2−i.

Dawid and Meyr also suggested a slightly more complex algorithm for
the vectoring mode (i.e., for computing arctangents). As in the conventional

152 Chapter 7. The CORDIC Algorithm

vectoring mode, the iterations are driven by the sign of yn, and that sign is
computed using variables x̂n and ŷn defined by{

x̂n+1 = sign(xn) × xn+1
ŷn+1 = sign(yn) × yn+1.

The relations allowing us to find the sign of yn are{
|ŷn+1| = ||ŷn| − x̂n2−n|
sign(yn+1) = sign(ŷn+1) × sign(yn).

They can be implemented using an architecture very similar to that
of Figure 7.4. Using that architecture, the following algorithm performs the
CORDIC iterations in vectoring mode with a constant scale factor.

Algorithm 10 (Differential CORDIC, vectoring mode)

• input values: x0, y0 (input vector), z0 = 0,

• output values: xn+1 (scaled magnitude of the input vector),
zn+1 (arctan y0/x0).

x̂0 = x0
ŷ0 = |y0|
for i = 0 to n do ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

|ŷi+1| =
∣∣|ŷi| − x̂i2−i

∣∣
di+1 = di × sign(ŷi+1)

x̂i+1 = x̂i +
∣∣ŷi2−i

∣∣
zi+1 = zi + di arctan 2−i.

The differential CORDIC algorithm can be extended to the hyperbolic
mode in a straightforward manner. At first glance, it seems that Dawid and
Meyrs’ technique gives nonrestoring decompositions only; that is, it can be used
to find decompositions z0 =

∑∞
n=0 dnwn with dn = ±1 only.

Yet it would be useful to generalize that technique to get decompositions
with dn = 0, 1 (i.e., “restoring decompositions”), since they would allow us to
get an efficient algorithm for computing the exponential function6 using wn =
ln (1 + 2−n) (see Chapter 6). Such a generalization is simple. Assume that we

6If we only wanted to compute exponentials, it would be simpler to implement than the
hyperbolic mode of CORDIC. Of course, if we wished to design an architecture able to compute
more functions, CORDIC might be preferred.

7.8. Computation of cos−1 and sin−1 Using CORDIC 153

want to get a restoring decomposition of a number x, 0 ≤ x ≤ ∑∞
n=0 wn, that is,

to get

x =
∞∑

n=0
dnwn, dn = 0, 1. (7.18)

Defining S =
∑∞

n=0 wn, this gives 2x − S =
∑∞

n=0(2dn − 1)wn, that is,

2x − S =
∞∑

n=0
δnwn, δn = ±1,

with δn = 2dn − 1.
Therefore, to get decomposition (7.18), it suffices to use the architecture

described in Figure 7.4 with 2x − S as input. This gives values δn = ±1, and
each time we get a new δn, we deduce the corresponding term dn = 0, 1 as
dn = (δn + 1)/2.

7.8 Computation of cos−1 and sin−1 Using CORDIC

Now we present another application [227] of the double rotation method (see
Section 7.5). Assume that we want to compute θ = cos−1 t. When we perform a
rotation of angle θ of the point (1, 0)t using CORDIC, we perform:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ0 = 0

x0 = 1

y0 = 0

dn =

⎧⎪⎨⎪⎩
1 if θn ≤ θ

−1 otherwise⎛⎜⎝xn+1

yn+1

⎞⎟⎠ =

⎛⎜⎝ 1 −dn2−n

dn2−n 1

⎞⎟⎠
⎛⎜⎝xn

yn

⎞⎟⎠
θn+1 = θn + dn arctan 2−n,

(7.19)

and the sequence θn goes to θ as n goes to +∞. Since the value of θ is not known
(it is the value that we want to compute), we cannot perform the test

dn =

⎧⎨⎩ 1 if θn ≤ θ

−1 otherwise
(7.20)

154 Chapter 7. The CORDIC Algorithm

that appears in Eq. (7.19). However, (7.20) is equivalent to:

dn =

⎧⎨⎩ sign(yn) if cos(θn) ≥ cos(θ)

−sign(yn) otherwise,
(7.21)

where sign(yn) = 1 if yn ≥ 0, else −1. Since the variables xn and yn obtained at
step n satisfy xn = Kn cos θn and yn = Kn sin θn, where Kn =

∏n−1
i=0

√
1 + 2−2i,

(7.21) is equivalent to

dn =

⎧⎨⎩ sign(yn) if xn ≥ Knt

−sign(yn) otherwise.
(7.22)

If we assume that the values tn = Knt are known, the algorithm

Algorithm 11 (cos−1: first attempt)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ0 = 0

x0 = 1

y0 = 0

dn =

⎧⎪⎨⎪⎩
sign(yn) if xn ≥ tn

−sign(yn) otherwise⎛⎜⎝xn+1

yn+1

⎞⎟⎠ =

⎛⎜⎝ 1 −dn2−n

dn2−n 1

⎞⎟⎠
⎛⎜⎝xn

yn

⎞⎟⎠
θn+1 = θn + dn arctan 2−n

(7.23)

gives θn →n→∞ cos−1 t.

The major drawback of this algorithm is the need to know tn. To compute
tn, the relation tn+1 = tn

√
1 + 2−2n cannot be realistically used since it would

imply a multiplication by
√

1 + 2−2n at each step of the algorithm. We overcome
this drawback by performing double rotations: at each step of the algorithm, we
perform two rotations of angle dn arctan 2−n. In step n, the factor of the similarity
becomes 1 + 2−2n; now a multiplication by this factor reduces to an addition
and a shift. We obtain the following algorithm.

7.8. Computation of cos−1 and sin−1 Using CORDIC 155

Algorithm 12 (cos−1 with double-CORDIC iterations)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ0 = 0

x0 = 1

y0 = 0

t0 = t

dn =

⎧⎪⎨⎪⎩
sign(yn) if xn ≥ tn

−sign(yn) otherwise⎛⎜⎝xn+1

yn+1

⎞⎟⎠ =

⎛⎜⎝ 1 −dn2−n

dn2−n 1

⎞⎟⎠
2⎛⎜⎝xn

yn

⎞⎟⎠
θn+1 = θn + 2dn arctan 2−n

tn+1 = tn + tn2−2n.

(7.24)

The final value of θn is cos−1 t with an error close to 2−n, for any t ∈ [−1, 1].
The next algorithm is similar.

Algorithm 13 (sin−1 with double-CORDIC iterations)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ0 = 0

x0 = 1

y0 = 0

t0 = t

dn =

⎧⎪⎨⎪⎩
sign(xn) if yn ≤ tn

−sign(xn) otherwise⎛⎜⎝xn+1

yn+1

⎞⎟⎠ =

⎛⎜⎝ 1 −dn2−n

dn2−n 1

⎞⎟⎠
2⎛⎜⎝xn

yn

⎞⎟⎠
θn+1 = θn + 2dn arctan 2−n

tn+1 = tn + tn2−2n.

(7.25)

The final value of θn is sin−1 t with an error close to 2−n.
Another method has been suggested by Lang and Antelo [198, 199] to com-

pute sin−1 and cos−1 without the necessity of performing double rotations. This

156 Chapter 7. The CORDIC Algorithm

is done by building an approximation Ant to Knt that is good enough to ensure
convergence if used in Equation (7.22) instead of Knt and easy to calculate.

7.9 Variations on CORDIC

Daggett [89] suggests the use of CORDIC for performing decimal-binary con-
version. Schmid and Bogacki [277] suggest an adaptation of CORDIC to radix-10
arithmetic. Decimal CORDIC can be used in pocket calculators.7 Decimal algo-
rithms are briefly presented by Kropa [194]. Radix-4 CORDIC algorithms are
suggested by Antelo et al. [8, 251]. An algorithm for very high radix CORDIC
rotation was suggested later by Antelo, Lang and Bruguera [9]. A software im-
plementation of CORDIC is reported by Andrews and Mraz [7]. CORDIC has
been used for implementing the elementary functions in various coprocessors
(such as the Intel 8087 and its successors until the 486, and the Motorola 68881).
CORDIC was chosen for the 8087 because of its simplicity: the microcode size
was limited to about 500 lines for the whole transcendental set [241]. Many other
CORDIC chips are reported [78, 85, 110, 162, 297, 311, 326]. Some pipelined
CORDIC architectures are suggested in [109, 189]. Adaptations of CORDIC
to perform rotations in spaces of dimension higher than 2 are suggested by
Delosme [107], Hsiao and Delosme [167], and Hsiao, Lau and Delosme [168].
An angle recoding method that allows the reduction of the number of itera-
tions when the angle of rotation is known in advance is suggested by Hu and
Naganathan [171]. Wang and Swartzlander [323] suggest to pair-off some itera-
tions to lower the hardware complexity of a CORDIC processor. Timmermann
et al. propose an algorithm [309] that is based on Baker’s prediction method
(see Section 6.4). Adaptations of CORDIC to on-line arithmetic were suggested
by Ercegovac and Lang [132, 133, 134], Lin and Sips [216, 217], Duprat and
Muller [124], and Hemkumar and Cavallaro [164]. Kota and Cavallaro [192]
show that in the vectoring mode of CORDIC small input values can result in
large numerical errors, and they give methods to tackle this problem. Floating-
point CORDIC algorithms have been suggested by Cavallaro and Luk [55],
and by Hekstra and Deprettere [163]. An error analysis of CORDIC is given by
Hu [170].

7Pocket calculators frequently use radix 10 for internal calculations and storage to avoid the
radix conversion that would be required during inputs and outputs if they used radix 2.

Chapter 8

Some Other Shift-and-Add
Algorithms

8.1 High-Radix Algorithms

The shift-and-add algorithms presented in the previous chapters allow us to
obtain an n-bit approximation of the function being computed after about n
iterations. This property makes most of these algorithms rather slow; their major
interest lies in the simplicity of implementation, and in the small silicon area of
designs.

One can try to make these algorithms faster by implementing them in
radices higher than 2: roughly speaking, a radix-2k algorithm will only require
n/k iterations to give an n-bit approximation of the function being computed.
As for division and square root algorithms [135], the price to pay is more com-
plicated elementary iterations.

8.1.1 Ercegovac’s radix-16 algorithms

The methods presented here are similar to methods suggested by
Ercegovac [127]. They are generalizable to higher radices, different from 16.
Some variants have been proposed by Xavier Merrheim [229]. Assume that we
want to compute the exponential of t. To do this, we use a basic iteration very
close to (6.15); that is:

Ln+1 = Ln − ln (1 + dn16−n)
En+1 = En (1 + dn16−n) ,

(8.1)

where thedis belong to a “digit set” {−a,−a+1, . . . , 0, 1, . . . , a}, with 8 ≤ a ≤ 15.
Let us focus on the computation of the exponential function. One can easily see
that if the dis are selected such that Ln converge to 0, then En will converge
to E0 exp(L0). As in Section 6.3.1, this is done by arranging that Ln ∈ [sn, rn],
where sn → 0 and rn → 0. Following Ercegovac [127], we choose a = 10.

158 Chapter 8. Some Other Shift-and-Add Algorithms

rn+1

sn+1

Ln+1

sn rn
Ln

dn = k
dn = k + 1 dn = k + 2

Uk−1
n Uk

n Uk+1
n

T k
n T k+1

n T k+2
n

Figure 8.1: Robertson diagram of the radix-16 algorithm for computing exponentials. Tk

is the smallest value of Ln for which the value dn = k is allowable. Uk is the largest one.

The Robertson diagram given in Figure 8.1 gives the various possible values of
Ln+1 versus Ln, depending on the choice of dn.

One can easily show that the bounds sn, rn, sn+1, and rn+1 that appear
in the diagram of Figure 8.1 satisfy rn+1 = rn − ln (1 + 10 × 16−n) and sn+1 =
sn − ln (1 − 10 × 16−n), which gives:

rn =
∞∑

k=n

ln
(
1 + 10 × 16−k

)
sn =

∞∑
k=n

ln
(
1 − 10 × 16−k

)
.

(8.2)

For instance:

r1 =
∞∑

n=1
ln
(
1 + 10 × 16−n) ≈ 0.526427859674

s1 =
∞∑

n=1
ln
(
1 − 10 × 16−n) ≈ −1.023282325006.

(8.3)

Define T k
n as the smallest value of Ln such that the choice dn = k is allow-

able (i.e., such that Ln+1 belong to [sn+1, rn+1]), and Uk
n as the largest one (see

Figure 8.1). We find:

T k
n = sn+1 + ln (1 + k × 16−n)

Uk
n = rn+1 + ln (1 + k × 16−n) .

8.1. High-Radix Algorithms 159

n 16n × mink=−10...9

(
Uk

n − T k+1
n

)
16n × maxk=−10...9

(
Uk

n − T k+1
n

)
1 −1.13244 0.70644
2 0.29479 0.36911
3 0.33101 0.33565
4 0.33319 0.33348
∞ 1/3 1/3

Table 8.1: First four values of 16n × mink=−10...9

(
Uk

n − T k+1
n

)
and 16n ×

maxk=−10...9

(
Uk

n − T k+1
n

)
, and limit values for n → ∞.

One can easily deduce from the Robertson diagram that if Uk
n ≥ T k+1

n for any
k ∈ {−10, . . . ,+9}, then for any Ln ∈ [sn, rn] it is possible to find a value of dn

that is allowable. Moreover, if the values Uk
n −T k+1

n are large enough, the choice
of dn will be possible by examining a small number of digits of Ln only. Table 8.1
gives 16n × mink=−10...9

(
Uk

n − T k+1
n

)
and 16n × maxk=−10...9

(
Uk

n − T k+1
n

)
for

the first values of n.
One can see from Table 8.1 that the condition “Uk

n ≥ T k+1
n ” is not satisfied

for all values of k if n = 1. This means that the first step of the algorithm will
have to differ from the following ones.

Define L∗
n as 16nLn. We get:

L∗
n+1 = 16L∗

n − 16n+1 ln
(
1 + dn16−n) . (8.4)

The choice dn = k is allowable if and only if 16nT k
n ≤ L∗

n ≤ 16nUk
n . One can

show that for any k ≥ 2,
16nT k

n < k < 16nUk
n .

This is illustrated by Table 8.2.
It is worth noticing that for n ≥ 3, or n = 2 and −8 ≤ k ≤ 8, the interval

where dn = k is a convenient choice (i.e., [T k
n , Uk

n]), is much larger than the
interval of the numbers that round to k (i.e., [k −1/2, k +1/2]). If n ≥ 3, or n = 2
and −8 ≤ k ≤ 8, then

k + 1/2 + 1/32 < Uk
n

and
k − 1/2 − 1/32 > T k

n .

This means that if n ≥ 3, or n = 2 and T−8
2 ≤ L2 ≤ U8

2 , dn can be obtained by
rounding to the nearest integer1 either the number obtained by truncating the
binary representation of L∗

n after its fifth fractional digit, or the number obtained
by truncating the carry-save representation of L∗

n after its sixth fractional digit.

1More precisely, to the nearest integer in {−10, . . . , 10} if n ≥ 3; in {−8, . . . , 8} if n = 2.

160 Chapter 8. Some Other Shift-and-Add Algorithms

n = 2 n = 3 n = ∞

k = −10 [−10.87,−9.53] [−10.68,−9.35]
[
− 10 − 2

3 ,−10 + 2
3

]
k = −9 [−9.83,−8.496] [−9.68,−8.34]

[
− 9 − 2

3 ,−9 + 2
3

]
k = −8 [−8.80,−7.4618] [−8.67,−7.34]

[
− 8 − 2

3 ,−8 + 2
3

]
k = −7 [−7.76,−6.43] [−7.67,−6.34]

[
− 7 − 2

3 ,−7 + 2
3

]
k = −6 [−6.74,−5.41] [−6.67,−5.34]

[
− 6 − 2

3 ,−6 + 2
3

]
k = −5 [−5.72,−4.38] [−5.67,−4.34]

[
− 5 − 2

3 ,−5 + 2
3

]
k = −4 [−4.70,−3.37] [−4.67,−3.34]

[
− 4 − 2

3 ,−4 + 2
3

]
k = −3 [−3.69,−2.35] [−3.67,−2.33]

[
− 3 − 2

3 ,−3 + 2
3

]
k = −2 [−2.68,−1.34] [−2.67,−1.33]

[
− 2 − 2

3 ,−2 + 2
3

]
k = −1 [−1.67,−0.36] [−1.67,−0.33]

[
− 1 − 2

3 ,−1 + 2
3

]
k = 0 [−0.67, 0.67] [−0.67, 0.67]

[
− 2

3 ,+2
3

]
k = 1 [0.33, 1.66] [0.33, 1.67]

[
1 − 2

3 , 1 + 2
3

]
k = 2 [1.32, 2.66] [1.33, 2.67]

[
2 − 2

3 , 2 + 2
3

]
k = 3 [2.32, 3.65] [2.33, 3.67]

[
3 − 2

3 , 3 + 2
3

]
k = 4 [3.30, 4.63] [3.33, 4.66]

[
4 − 2

3 , 4 + 2
3

]
k = 5 [4.28, 5.62] [4.33, 5.66]

[
5 − 2

3 , 5 + 2
3

]
k = 6 [5.26, 6.60] [5.33, 6.66] [6 − 2

3 , 6 + 2
3

]
k = 7 [6.24, 7.57] [6.33, 7.66]

[
7 − 2

3 , 7 + 2
3

]
k = 8 [7.21, 8.5434] [7.33, 8.66]

[
8 − 2

3 , 8 + 2
3

]
k = 9 [8.18, 9.5113] [8.32, 9.66]

[
9 − 2

3 , 9 + 2
3

]
k = 10 [9.14, 10.48] [9.32, 10.65]

[
10 − 2

3 , 10 + 2
3

]

Table 8.2: The interval 16n ×
[
T k

n , Uk
n

]
, represented for various values of n and k. The

integer k always belongs to that interval.

There are two possibilities: First, we can start the iterations with n = 2; the
convergence domain becomes [T−8

2 , U8
2] ≈ [−0.03435, 0.03337], which is rather

small. Or, we can implement a special first step. To do this, several solutions are
possible. Assume that the input value x belongs to [0, ln(2)] (range reduction

8.1. High-Radix Algorithms 161

x ∈ �

[0, 1/32] 0
[1/32, 3/32] ln (1 + 2/32)
[3/32, 4/32] ln (1 + 4/32)
[4/32, 5/32] ln (1 + 5/32)
[5/32, 6/32] ln (1 + 6/32)
[6/32, 7/32] ln (1 + 7/32)
[7/32, 8/32] ln (1 + 9/32)
[8/32, 9/32] ln (1 + 10/32)
[9/32, 10/32] ln (1 + 11/32)
[10/32, 11/32] ln (1 + 13/32)
[11/32, 12/32] ln (1 + 14/32)
[12/32, 14/32] ln (1 + 16/32)
[14/32, 15/32] ln (1 + 19/32)
[15/32, 16/32] ln (1 + 20/32)
[16/32, 17/32] ln (1 + 22/32)
[17/32, 18/32] ln (1 + 24/32)
[18/32, 20/32] ln (1 + 26/32)
[20/32, 21/32] ln (1 + 29/32)
[21/32, 22/32] ln (1 + 31/32)
[22/32, 23/32] ln(2)

Table 8.3: Convenient values of � for x ∈ [0, ln(2)]. They are chosen such that x − � ∈
[T−8

2 , U8
2] and a multiplication by exp(�) is easily performed.

to this domain is fairly easy using the relation exp(x + k ln(2)) = exp(x) × 2k),
and compute from x a new initial value x∗ and a correction factor M defined as
follows. If x is between k/16 and (k + 1)/16, then x∗ = x − (2k + 1)/32 belongs
to [T−8

2 , U8
2], and exp(x) is obviously equal to M × exp(x∗), where

M = e(2k+1)/32.

There is a probably better solution, one that avoids the multiplication by
a complicated factor M . It consists of finding from x a value � such that x∗ =
x − � belongs to [T−8

2 , U8
2] and a multiplication by exp(�) is easily reduced to a

multiplication by a very small integer (which is easily performed using a small
dedicated hardware) and a shift. In practice, we choose values of the form

� = ln
(

1 +
k

32

)
, k = 1 . . . 32,

and we have
ex = ex∗

(
1 +

k

32

)
.

Convenient values of � are given in Table 8.3.

162 Chapter 8. Some Other Shift-and-Add Algorithms

8.2 The BKM Algorithm

As shown in Chapter 7, CORDIC allows the computation of many functions. For
this reason, it has been implemented in many pocket calculators and floating-
point coprocessors. Its major drawback arises when performing the iterations
using a redundant (e.g. carry-save or signed-digit) number system: to make the
evaluation of dn easier (see Chapter 7), we must accept dn = 0, and this implies
a nonconstant scale factor K, unless we accept performing more iterations, or
more complicated iterations, or unless we use Dawid and Meyr’s method. We
now examine an algorithm due to Bajard et al. [18], that allows us to perform
rotations and to compute complex functions without scaling factors.

8.2.1 The BKM iteration

In the following, we assume a radix-2 conventional or signed-digit num-
ber system. Extension to binary carry-save representation is straightforward.
Let us consider the basic step of CORDIC in trigonometric mode (i.e., itera-
tion (7.1)). If we define a complex number En as En = xn + iyn, we obtain
En+1 = En (1 + idn2−n), which is close to the basic step of Algorithm 6.1. This
remark brings us to a generalization of that algorithm: we could perform multi-
plications by terms of the form (1 + dn2−n), where the dns are complex numbers,
chosen such that a multiplication by dn can be reduced to a few additions. In
the following, we study the iteration:

{
En+1 = En (1 + dn2−n)
Ln+1 = Ln − ln (1 + dn2−n)

(8.5)

with dn ∈ {−1, 0, 1,−i, i, 1 − i, 1 + i,−1 − i,−1 + i}.
We define ln z as the number t such that et = z, and whose imaginary part

is between −π and π. Exactly as in Chapter 6:

• If we are able to find a sequence dn such that En goes to 1, then we will
obtainLn → L1+ln(E1). This iteration mode is the L-mode of the algorithm.

• If we are able to find a sequence dn such that Ln goes to 0, then we will
obtain En → E1e

L1 . This is the E-mode of the algorithm.

8.2.2 Computation of the exponential function (E-mode)

As pointed out at the end of the previous section, to compute eL1 using BKM,
one must find a sequence dn, dn = −1, 0, 1,−i, i, i − 1, i + 1,−i − 1,−i + 1, such
that limn→∞ Ln = 0. Defining dx

n and dy
n as the real and imaginary parts of dn

(they belong to {−1, 0, 1}) and Lx
n and Ly

n as the real and imaginary parts of Ln,

8.2. The BKM Algorithm 163

Lx
n

Lx
n+1

dn = 1

AnBn

An

rx
n+1

Bn

dn = −1 ± i
dn = −1

dn = ±i
dn = 0

dn = 1 ± i

rx
n−sx

n

−sx
n+1

Figure 8.2: The Robertson diagram for Lx
n [18].

we find: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Lx

n+1 = Lx
n − 1

2
ln
[
1 + dx

n2−n+1 +
(
dx

n
2 + dy

n
2
)

2−2n
]

Ly
n+1 = Ly

n − dy
n arctan

(
2−n

1 + dx
n2−n

)
.

(8.6)

Now we give an algorithm that computes the sequence dn for any L1 be-
longing to a rectangular setR1 = [−sx

1 , rx
1]+i [−ry

1 , ry
1]. The proof of the algorithm

is based on the construction of a sequence Rn = [−sx
n, rx

n] + i [−ry
n, ry

n] of rect-
angular sets that contain zero, whose length goes to zero as n goes to infinity,
and such that for any Ln ∈ Rn, dn ensures that Ln+1 ∈ Rn+1. The “real part”
dx

n is chosen by examining a few digits of Lx
n and the “imaginary part” dy

n is
chosen by examining a few digits of Ly

n. These properties allow a simple and
fast implementation of the choice of dn.

Choice of dx
n

The Robertson diagram presented in Figure 8.2 shows the different parameters
involved in determining dx

n. The diagram is constructed as follows.

• We assume that Lx
n belongs to the interval [−sx

n, rx
n], which is the real part

of Rn.

• Lx
n+1 is equal to Lx

n − (1/2) ln
[
1 + dx

n2−n+1 +
(
dx

n
2 + dy

n
2
)

2−2n
]
, so the

value of Lx
n+1 versus Lx

n is given by various straight lines parameterized
by dx

n and dy
n.

• dx
n must be such that for any possible value of dy

n, Lx
n+1 ∈ [−sx

n+1, r
x
n+1

]
.

164 Chapter 8. Some Other Shift-and-Add Algorithms

Parameter rx
n is equal to

∞∑
k=n

ln
(
1 + 2−k

)
,

and sx
n is equal to

−1
2

∞∑
k=n

ln
(
1 − 2−k+1 + 2−2k+1

)
.

The terms Ān, An, B̄n, and Bn appearing in the diagram shown in Fig-
ure 8.2 are:

• Ān = rx
n+1 + ln(1 − 2−n);

• B̄n = −sx
n+1 + (1/2) ln(1 + 2−2n);

• An = −sx
n+1 + (1/2) ln(1 + 2−n+1 + 2−2n+1);

• Bn = rx
n+1.

One can prove that B̄n < Ān, and that An < Bn. From this, for any Lx
n ∈

[−sx
n, rx

n], these choices will give a value of Lx
n+1 between −sx

n+1 and rx
n+1:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

if Lx
n < −B̄n then dx

n = −1
if −B̄n ≤ Lx

n < Ān then dx
n = −1 or 0

if Ān ≤ Lx
n < An then dx

n = 0
if An ≤ Lx

n ≤ Bn then dx
n = 0 or 1

if Bn < Lx
n then dx

n = 1.

(8.7)

Choice of dy
n

We use the relation

Ly
n+1 = Ly

n − dy
n arctan

(
2−n

1 + dx
n2−n

)
.

Figure 8.3 shows the Robertson diagram associated with the choice of dy
n. We

want our choice to be independent of the choice of dx
n. From this, we deduce:

ry
n =

∞∑
k=n

arctan

(
2−k

1 + 2−k

)
.

The terms Cn and Dn appearing in the diagram are

Cn = −ry
n+1 + arctan

(
2−n

1 − 2−n

)

8.2. The BKM Algorithm 165

−ry
n ry

n

ry
n+1

−ry
n+1

−Dn

Dn

dn = −i

dn = 1 − i

dn = −1 − i

dn = 1 + i
dn = i
dn = −1 + i

Cn

−Cn

Ly
n+1

Ly
n

Figure 8.3: The Robertson diagram for Ly
n [18].

and
Dn = ry

n+1.

One can prove that Cn < Dn. Thus, for any Ly
n ∈ [−ry

n, ry
n], these choices

will give a value of Ly
n+1 between −ry

n+1 and +ry
n+1:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

if Ly
n < −Dn then dy

n = −1
if −Dn ≤ Ly

n < −Cn then dy
n = −1 or 0

if −Cn ≤ Ly
n < Cn then dy

n = 0
if Cn ≤ Ly

n ≤ Dn then dy
n = 0 or 1

if Dn < Ly
n then dy

n = 1.

(8.8)

The convergence domain R1 of the algorithm is:

−0.8298023738 · · · = −sx
1 ≤ Lx

1 ≤ rx
1 = 0.8688766517 · · ·

−0.749780302 · · · = −ry
1 ≤ Ly

1 ≤ ry
1 = 0.749780302 · · · .

The algorithm

Relations (8.7) and (8.8) make it possible to find a sequence dn such that, for
L1 ∈ R1, limn→∞ Ln = 0. Now let us try to simplify the choice of dn: (8.7) and
(8.8) involve comparisons that may require the examination of all the digits of
the variables; we want to replace these comparisons by the examination of a
small number of digits. The parameters Ā = −1/2, A = 1/4, C = 3/4, p1 = 3,
and p2 = 4 satisfy, for every n:⎧⎪⎪⎨⎪⎪⎩

2nB̄n ≤ Ā − 2−p1 < Ā ≤ 2nĀn

2nAn ≤ A < A + 2−p1 ≤ 2nBn

2nCn ≤ C < C + 2−p2 ≤ 2nDn.

(8.9)

166 Chapter 8. Some Other Shift-and-Add Algorithms

Therefore if we call L̃x
n the number obtained by truncating 2nLx

n after its p1th
fractional digit, and L̃y

n the number obtained by truncating 2nLy
n after its p2th

fractional digit, we obtain, from (8.7) through (8.9):

• if L̃x
n ≤ Ā − 2−p1 , then Lx

n ≤ Ān; therefore dx
n = −1 is a valid choice;

• if Ā ≤ L̃x
n ≤ A, then B̄n ≤ Lx

n ≤ Bn; therefore dx
n = 0 is a valid choice2;

• if A + 2−p1 ≤ L̃x
n, then An ≤ Lx

n; therefore dx
n = 1 is a valid choice;

• if L̃y
n ≤ −C − 2−p2 , then Ly

n ≤ −Cn; therefore dy
n = −1 is a valid choice;

• if −C ≤ L̃y
n ≤ C, then −Dn ≤ Ly

n ≤ Dn; therefore dy
n = 0 is a valid choice;

• if C + 2−p2 ≤ L̃y
n, then Cn ≤ Ly

n; therefore dy
n = 1 is a valid choice.

Number of iterations

After n iterations of the E-mode, we obtain a relative error approximately equal
to 2−n.

8.2.3 Computation of the logarithm function (L-mode)

Computing the logarithm of a complex number E1 using the L-mode requires
the calculation of a sequence dn, dn = −1, 0, 1,−i, i, i − 1, i + 1,−i − 1,−i + 1,
such that:

limn→∞ En = 1. (8.10)

The following algorithm had been found through simulations before being
proved. See [18] for more details.

BKM Algorithm — L-mode

• Start with E1 belonging to the trapezoid T delimited by the straight lines
x = 1/2, x = 1.3, y = x/2, y = −x/2. T is the domain where the conver-
gence is proven, but experimental tests show that the actual convergence
domain of the algorithm is larger.

• Iterate:

{
En+1 = En (1 + dn2−n)
Ln+1 = Ln − ln (1 + dn2−n)

with dn = dx
n + idy

n chosen as follows:

– define εx
n and εy

n as the real and imaginary parts of

εn = 2n(En − 1)

2Since Ā,A, and L̃x
n have at most p1 fractional digits, if L̃x

n > Ā − 2−p1 , then L̃x
n ≥ Ā.

8.2. The BKM Algorithm 167

and ε̃x
n and ε̃y

n as the values obtained by truncating these numbers
after their fourth fractional digits;

– at step 1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if ε̃x
1 ≤ −7/16 and 6/16 ≤ ε̃y

1 then d1 = 1 − i

if ε̃x
1 ≤ −7/16 and ε̃y

1 ≤ −6/16 then d1 = 1 + i

if −6/16 ≤ ε̃x
1 and 8/16 ≤ ε̃y

1 then d1 = −i

if −6/16 ≤ ε̃x
1 and ε̃y

1 ≤ −9/16 then d1 = i

if ε̃x
1 ≤ −7/16 and |ε̃y

1| ≤ 5/16 then d1 = 1

if −6/16 ≤ ε̃x
1 and |ε̃y

1| ≤ 1/2 then d1 = 0;

– at step n, n ≥ 2:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
if ε̃x

n ≤ −1/2 then dx
n = 1

if −1/2 < ε̃x
n < 1/2 then dx

n = 0

if 1/2 ≤ ε̃x
n then dx

n = −1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
if ε̃y

n ≤ −1/2 then dy
n = 1

if −1/2 < ε̃y
n < 1/2 then dy

n = 0

if 1/2 ≤ ε̃y
n then dy

n = −1;

• result: limn→∞ Ln = L1 + ln(E1).

In a practical implementation, instead of computing En and examining the
first digits of εn = 2n(En − 1), one would directly compute the sequence εn.
See [18] for a proof of the algorithm.

8.2.4 Application to the computation of elementary
functions

As shown in the previous sections, the algorithm makes it possible to compute
the functions:

• in E-mode, E1e
L1 , where L1 is a complex number belonging to R1,

• in L-mode, L1 + ln(E1), where E1 belongs to the trapezoid T .

Therefore one can compute the following functions of real variables.

168 Chapter 8. Some Other Shift-and-Add Algorithms

Functions computable using one mode of BKM

• Real sine and cosine functions. In the E-mode, one can compute the ex-
ponential of L1 = 0 + iθ and obtain

En = cos θ + i sin θ ± 2−n.

• Real exponential function. If L1 is a real number belonging to
[−0.8298023738,+0.8688766517], the E-mode will give a value En equal to

E1e
L1 ± 2−n.

• Real logarithm. If E1 is a real number belonging to [0.5, 1.3], the E-mode
will give a value Ln equal to

L1 + ln(E1) ± 2−n.

• 2-D rotations. The 2-D vector (c d)t obtained by rotating (a b)t by an
angle θ satisfies: c + id = (a + ib)eiθ; therefore (c d)t is computed using
the E-mode, with E1 = a + ib and L1 = iθ.

• real arctan function. From the relation

ln(x + iy) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2

ln(x2 + y2) + i arctan
y

x
mod(2iπ) (x > 0)

1
2

ln(x2 + y2) + i

(
π + arctan

y

x

)
mod(2iπ) (x < 0)

one can easily deduce that, if x + iy belongs to the convergence domain
of the L-mode, then arctan y/x is the limit value of the imaginary part of
Ln, assuming that the L-mode is used with L1 = 0 and E1 = x + iy. The
same operation also gives ln(x2 + y2)/2.

Functions computable using two consecutive modes of BKM

Using two BKM operations, one can compute many functions. Some of these
functions are:

• Complex multiplication and division. The product zt is evaluated as
z.eln t, and z/t is evaluated as z.e− ln t. One can compute (ab)ez or (a/b) ez ,
where a, b, and z are complex numbers, using the same operator, by choos-
ing Lx

1 equal to the real part of z, and Ly
1 equal to the imaginary part of z.

• Computation of x
√

a and y
√

a in parallel (x, y and a are real numbers):
we use the relation

√
a = eln(a)/2. One can also compute x/

√
a and y/

√
a.

8.2. The BKM Algorithm 169

y/
√

a2 + b2

x/
√

a2 + b2

change of sign

-�

L

Ey
n

Ex
n

Ly
n

Lx
n

Ey
1

Ex
1

Ly
1

Lx
10

0
a

b

0
0

E

Ey
n

Ex
n

Ly
n

Lx
n

Ey
1

Ex
1

Ly
1

Lx
1

0

x

y

y
√

a2 + b2

x
√

a2 + b2

Ey
n

Ex
n

Ly
n

Lx
n

Ey
1

Ex
1

Ly
1

Lx
1

L

Ey
n

Ex
n

Ly
n

Lx
n

Ey
1

Ex
1

Ly
1

Lx
1

E
0
0

y

x

0

b

a

0
0

Figure 8.4: Computation of lengths and normalization [18].

• Computation of lengths and normalization of 2D-vectors. As shown
previously, the L-mode allows the computation of F = ln(a2 + b2)/2 =
ln

√
a2 + b2, where a and b are real numbers. Using the E-mode, we can

compute eF or e−F (see Figure 8.4).

A generalization of BKM to radix 10 arithmetic was suggested by Imbert,
Muller and Rico [175]. A High-Radix version of BKM was described by Didier
and Rico [114].

Part III

Range Reduction, Final
Rounding and Exceptions

Chapter 9

Range Reduction

9.1 Introduction

The algorithms presented in the previous chapters for evaluating the elementary
functions only give a correct result if the argument is within a given bounded
interval. To evaluate an elementary function f(x) for any x, one must find some
“transformation” that makes it possible to deduce f(x) from some value g(x∗),
where

• x∗, called the reduced argument, is deduced from x;

• x∗ belongs to the convergence domain of the algorithm implemented for
the evaluation of g.

In practice, there are two kinds of reduction:

• Additive reduction. x∗ is equal to x − kC, where k is an integer and C
a constant (for instance, for the trigonometric functions, C is a multiple
of π/4).

• Multiplicative reduction. x∗ is equal to x/Ck, where k is an integer and C a
constant (for instance, for the logarithm function, a convenient choice for
C is the radix of the number system).

Example 9 (cosine function) We want to evaluate cos(x), and the convergence do-
main of the algorithm used to evaluate the sine and cosine of the reduced argument
contains [−π/4,+π/4]. We choose C = π/2, and the computation of cos(x) is decom-
posed in three steps:

• compute x∗ and k such that x∗ ∈ [−π/4,+π/4] and x∗ = x − kπ/2;

174 Chapter 9. Range Reduction

• compute g(x∗, k) = ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
cos(x∗) if k mod 4 = 0

− sin(x∗) if k mod 4 = 1
− cos(x∗) if k mod 4 = 2

sin(x∗) if k mod 4 = 3;

(9.1)

• obtain cos(x) = g(x∗, k).

The previous reduction mechanism is an additive range reduction. Let us exam-
ine another example of additive reduction.

Example 10 (exponential function) We want to evaluate ex in a radix-2 number
system, and the convergence domain of the algorithm used to evaluate the exponential of
the reduced argument contains [0, ln(2)]. We can chooseC = ln(2), and the computation
of ex is then decomposed in three steps:

• compute x∗ ∈ [0, ln(2)] and k such that x∗ = x − k ln(2);

• compute g(x∗) = ex∗
;

• compute ex = 2kg(x∗).

The radix-2 number system makes the final multiplication by 2k straightforward.

There are other ways of performing the range reduction for the exponential
function. A solution (with an algorithm whose convergence domain is [0, 1]) is
to choose x∗ = x − �x�, k = �x�, and g(x∗) = ex∗

. Then ex = g(x∗) × ek, and
ek can either be evaluated by performing a few multiplications — since k is an
integer — or by table lookup. In one of his table-driven algorithms, Tang [307]
uses

C =
ln(2)
32

so that the argument is reduced to the small interval[
− ln(2)

64
,+

ln(2)
64

]
.

In any case, range reduction is more a problem for trigonometric functions
than for exponentials, since, in practice, we never have to deal with exponentials
of very large numbers: they are overflows! For instance in IEEE-754 double-
precision arithmetic, exponentials of numbers less than ln(2−1074) ≈ −744.44
are underflows, and exponentials of numbers larger than ln(21024) ≈ +709.78
are overflows.

Example 11 (logarithm function) We want to evaluate ln(x), x > 0, in a radix-2
number system, and the convergence domain of the algorithm used to compute the
logarithm of the reduced argument contains [1/2, 1]. We can choose C = 2, and the

9.1. Introduction 175

computation of ln(x) is then decomposed in three steps:

• compute x∗ ∈ [1/2, 1] and k such that x∗ = x/2k (if x is a normalized radix-2
floating-point number, x∗ is its mantissa, and k is its exponent);

• compute g(x∗, k) = ln(x∗);

• compute ln(x) = g(x∗, k) + k ln(2).

The previous mechanism is a multiplicative reduction.

In practice, multiplicative reduction is not a problem: when computing the
usual functions, it only occurs with logarithms and nth roots. With these func-
tions, as in the preceding example, C can be chosen equal to a power of the radix
of the number system. This makes the computation of x/Ck straightforward and
errorless. Therefore, in the following, we concentrate on the problem of additive
range reduction only.

It is worth noticing that, whereas the original argument x is a “machine
number,” the computed reduced argument x∗ should, in general, not be a ma-
chine number: depending on the kind of implementation it should be repre-
sented in a larger format, or by several (in most cases, two) machine numbers.
This must be taken into account when designing an algorithm for evaluating
the approximation.

A poor range reduction method may lead to catastrophic accuracy prob-
lems when the input arguments are large. Table 9.1 gives the computed value
of sin(1022) on various computing systems (the figures in that table were picked
up from [244, 245] and from various contributors belonging to the Computer
Science Department of École Normale Supérieure de Lyon). Some results are
very bad. Returning a NaN is probably better than returning a totally inaccu-
rate result; however, this is not the right solution. Unless we design a special-
purpose system, for which particular range and accuracy requirements may be
known, we must always return results as close as possible to the exact values.
On some machines, what is actually approximated is not the sine function, but
the function

fsin(x) = sin
(

πx

fpi

)
where fpi is the floating-point number that is closest to π (for instance, in
Table 9.1, the number 0.8740 · · · returned by the Silicon Graphics Indy com-
puter is equal to fsin(1022)). This makes range reduction easier, but there are
strange “side effects”: when x is so small that no range reduction is necessary,
returning the floating-point number that is closest to fsin(x) is not equivalent
to returning the floating-point number that is closest to sin(x). For instance,
in IEEE-754 double-precision arithmetic, the machine number that is closest to
fsin(1/4) is

1114208378708655
4503599627370496

176 Chapter 9. Range Reduction

Computing System sinx

Exact result −0.8522008497671888017727 · · ·
Vax VMS (g or h format) −0.852200849 · · ·
HP 48 GX −0.852200849762

HP 700 0.0

HP 375, 425t (4.3 BSD) −0.65365288 · · ·
matlab V.4.2 c.1 for Macintosh 0.8740

matlab V.4.2 c.1 for SPARC −0.8522

Silicon Graphics Indy 0.87402806 · · ·
SPARC −0.85220084976718879

IBM RS/6000 AIX 3005 −0.852200849 · · ·
IBM 3090/600S-VF AIX 370 0.0

PC: Borland TurboC 2.0 4.67734e − 240

Sharp EL5806 −0.090748172

DECstation 3100 NaN

Casio fx-8100, fx180p, fx 6910 G Error

TI 89 Trig. arg. too large

Table 9.1: sin(x) for x = 1022 [244]. It is worth noticing that x is exactly representable
in the IEEE-754 double-precision format (1022 is equal to 4768371582031250 × 221).
With a system working in the IEEE-754 single-precision format, the correct an-
swer would be the sine of the floating-point number that is closest to 1022; that
is, sin(9999999778196308361216) ≈ −0.73408. As pointed out by the authors
of [244, 245], the values listed in this table were contributed by various Internet
volunteers, so they are not the official views of the listed computer system ven-
dors, the author of [244, 245] or his employer, nor are they those of the author of
this book.

whereas the machine number that is closest to sin(1/4) is

4456833514834619
18014398509481984

.

The difference between both values is equal to 1 ulp.
Even when x is not large, if it is close to a multiple of π/4, then a poor range

reduction may lead to a very inaccurate evaluation of sin(x) or tan(x). In [68],
Cody gives the example of the computation of sin(22) on many computing
systems. Some of Cody’s figures, along with new figures computed on current
systems, are given in Table 9.2.

9.2. Cody and Waite’s Method for Range Reduction 177

Computing System sin(22)

Exact value −8.85130929040388e−3

TI 59 −8.851309285516e−3

TI 25 −8.8487e−3

TI 89 −8.8513092904e−3

HP 65 −8.851306326e−3

HP 34C −8.851309289e−3

HP 48SX −8.8513092904e−3

Casio FX-702P −8.851309219e−3

PC: Borland Turbo Pascal 7.0 −8.8513093008e−3

Table 9.2: sin(x), computed for x = 22 on several computing systems. Some of these
figures are picked up from [68], the other ones have been computed on more recent
systems.

It is easy to understand why a bad range reduction algorithm gives inac-
curate results. The naive method consists of performing the computations

k =
⌊

x

C

⌋
x∗ = x − kC

using the machine precision. When kC is close to x, almost all the accuracy, if not
all, is lost when performing the subtraction x − kC. For instance, on a radix-10
computer with 10 mantissa digits, if C = π/2 and x = 8248.251512, then x∗ =
−0.0000000000021475836702 · · ·. If the range reduction is not accurate enough to
make sure that numbers that small are handled accurately, the computed result
may be quite different from the actual value of x∗.

Afirst solution consists of using multiple-precision arithmetic, but this may
make the computation much slower. Moreover, it is not that easy to predict the
precision with which the computation should be performed.After a first method
due to Cody and Waite [64, 68], that works for rather small input arguments only
but is very inexpensive, we present results due to Kahan [179] that allow us to
find the worst cases for range reduction. Then we give two algorithms, one due
to Payne and Hanek [258], another one due to Daumas et al. [93, 94] that make
it possible to perform an accurate range reduction, without actually needing
multiple-precision calculations.

9.2 Cody and Waite’s Method for Range Reduction

The method suggested by Cody and Waite [64, 68] consists of finding two values
C1 and C2 that are exactly representable in the floating-point system being used,

178 Chapter 9. Range Reduction

and such that:

• C1 is very close to C, and is representable using a few digits1 only (i.e., C1
is a machine number containing the first few digits of C). A consequence
is that for values of k that are not too large, kC1 is exactly representable in
the floating-point system.

• C = C1 + C2 to beyond working precision.

Then, instead of evaluating x − kC, we evaluate2

(x − kC1) − kC2. (9.2)

When doing this, if k is such that kC1 is exactly representable, the subtrac-
tion (x−kC1) is performed without any error.3 Therefore (9.2) simulates a larger
precision (the precision with which C1 + C2 approximates C). For instance, if
C = π, typical values for C1 and C2, given by Cody and Waite [64] are:

• in the IEEE-754 single-precision format:

C1 = 201/64 = 3.140625
C2 = 9.67653589793 × 10−4;

• in the IEEE-754 double-precision format:

C1 = 3217/1024 = 3.1416015625
C2 = −8.908910206761537356617 × 10−6.

This method helps to reduce the error due to the cancellation at a low cost.
It can easily be generalized: C can be represented as the sum of three values C1,
C2 and C3. However, if last-bit accuracy is required, and if we want to provide
a correct result for all possible input values (even if they are very large), it will
be used for small arguments only. For instance, the double-precision CRLIBM
library4 [92] (see Section 12.4) uses four possible methods, depending on the
magnitude of the input number:

• Cody and Waite’s method with two constants (the fastest);

• Cody and Waite’s method with three constants (almost as fast);

• Cody and Waite’s method with three constants, using a double-double
arithmetic and a 64-bit integer format for k;

• Payne and Hanek’s algorithm (see Section 9.4) for the largest arguments.
1In the radix of the floating-point system — 2 in general — not in radix 10.
2Gal and Bachelis [148] use the same kind of range reduction, but slightly differently. Some

accuracy is lost when subtracting kC2 from x−kC1. To avoid this, they keep these terms separate.
This is also done by Tang (see section 4.2.1).

3Unless subtraction is performed without any guard digit. To my knowledge, there is no
current computer with such a poor arithmetic.

4http://lipforge.ens-lyon.fr/projects/crlibm/.

9.3. Finding Worst Cases for Range Reduction? 179

9.3 Finding Worst Cases for Range Reduction?

9.3.1 A few basic notions on continued fractions

To estimate the potential loss of accuracy that can occur when performing range
reduction, we use the theory of continued fractions. We just recall here the el-
ementary results that we need in the following. For more information, a good
reference on continued fractions is Stark’s book [291].

In all this section, let α be an irrational number. The sequence of the con-
vergents to α (or continued fraction approximations to α) is defined as follows.
First, from α we build two sequences (ai) and (ri):⎧⎪⎪⎪⎨⎪⎪⎪⎩

r0 = α

ai = �ri�
ri+1 =

1
ri − ai

.

(9.3)

These sequences are defined for any i (i.e., ri is never equal to ai; this is due
to the irrationality of α), and the rational number

Pi

Qi
= a0 +

1

a1 +
1

a2 +
1

a3 +
1

. . . +
1
ai

is called the ith convergent to α. One can easily show that the Pis and the Qis can
be deduced from the ais using the following recurrences,

P0 = a0

P1 = a1a0 + 1

Q0 = 1

Q1 = a1

Pn = Pn−1an + Pn−2

Qn = Qn−1an + Qn−2.

The main interest of continued fractions lies in the following theorem.

Theorem 13 For all irrational α, if the convergents to α are the terms Pi/Qi and if
i ≥ 2, then for any rational number p/q, that satisfies p/q �= Pi/Qi, p/q �= Pi+1/Qi+1,
and q ≤ Qi+1, we have ∣∣∣∣α − Pi

Qi

∣∣∣∣ <
q

Qi

∣∣∣∣α − p

q

∣∣∣∣ .

180 Chapter 9. Range Reduction

A consequence of this is that if a rational number p/q approximates α better than Pi/Qi,
then q > Qi.

In other words, Pi/Qi is the best approximation to α among the rational
numbers whose denominator is less than or equal to Qi.

Moreover, one can show that∣∣∣∣α − Pi

Qi

∣∣∣∣ <
1

QiQi+1
.

We write:

α = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . . .

For instance

π = 3 +
1

7 +
1

15 +
1

1 +
1

292 +
1

. . . ,

which gives the following rational approximations to π,

P0

Q0
= 3

P1

Q1
=

22
7

P2

Q2
=

333
106

P3

Q3
=

355
113

P4

Q4
=

103993
33102

and √
2 = 1 +

1

2 +
1

2 +
1

2 +
1

2 +
1

. . . .

9.3.2 Finding worst cases using continued fractions

Now let us turn to the application of continued fractions to range reduction. We
assume we use a radix-r number system, with n-digit mantissas, and exponents
between emin and emax. We also assume that we want to perform an additive
range reduction, and that the constant C is an irrational number (this is always
the case, since in practice, C is a multiple of π/8 — for trigonometric functions —
or a simple rational number times the logarithm of the radix of the number

9.3. Finding Worst Cases for Range Reduction? 181

system being used — for exponentials). Suppose that an input number x is the
floating-point number:

x = x0.x1x2x3 · · ·xn−1 × rexponent, with x0 �= 0.

We can rewrite x with an integral mantissa:

x = M × rexponent−n+1,

where M = x0x1x2x3 · · ·xn−1 satisfies rn−1 ≤ M ≤ rn − 1. Performing
the range reduction is equivalent to finding an integer p and a real number
s, |s| < 1 such that

x

C
= p + s. (9.4)

The number x∗ of the introduction of this chapter is equal to sC. We can
rewrite (9.4) as

rexponent−n+1

C
=

p

M
+

s

M
.

If the result x∗ of the range reduction is a very small number ε, this means
that

rexponent−n+1

C
=

p

M
+

ε

MC
≈ p

M
. (9.5)

In such a case, p/M must be a very good rational approximation to the ir-
rational number rexponent−n+1/C. To estimate the smallest possible value of ε,
it suffices to examine the sequence of the “best” possible rational approxima-
tions to rexponent−n+1/C, that is, the sequence of its convergents. We proceed as
follows: for each considered value of exponent (of course, the exponents cor-
responding to a value of x smaller than C do not need to be considered), we
compute the first terms Pi and Qi of the convergents to rexponent−n+1/C. We then
select the approximation Pj/Qj whose denominator is the largest less than rn.
From Theorem 13, we know that for any rational number P/M , with M ≤ rn−1,
we have

M

Qj

∣∣∣∣∣ PM − rexponent−n+1

C

∣∣∣∣∣ ≥
∣∣∣∣∣Pj

Qj
− rexponent−n+1

C

∣∣∣∣∣ .
Therefore ∣∣∣∣∣ PM − rexponent−n+1

C

∣∣∣∣∣ ≥ Qj

M

∣∣∣∣∣Pj

Qj
− rexponent−n+1

C

∣∣∣∣∣ .
Therefore

MC

∣∣∣∣∣ PM − rexponent−n+1

C

∣∣∣∣∣ ≥ CQj

∣∣∣∣∣Pj

Qj
− rexponent−n+1

C

∣∣∣∣∣ .

182 Chapter 9. Range Reduction

Hence the lowest possible value5 of ε is attained for M = Qj and P = Pj , and
is equal to

CQj

∣∣∣∣∣Pj

Qj
− rexponent−n+1

C

∣∣∣∣∣ .
To find the worst case for range reduction, it suffices to compute Pj and Qj

for each value of the exponent that allows the representation of numbers greater
than C. This method was first suggested by Kahan [179] (a C-program that
implements this method without needing extra-precision arithmetic was written
by Kahan and McDonald). A similar method was found later by Smith [289].
The following Maple program implements this method.

worstcaseRR := proc(B,n,emin,emax,C,ndigits)
local epsilonmin,powerofBoverC,e,a,Plast,r,Qlast,

Q,P,NewQ,NewP,epsilon,
numbermin,expmin,ell;
epsilonmin := 12345.0 ;
Digits := ndigits;
powerofBoverC := Bˆ(emin-n)/C;
for e from emin-n+1 to emax-n+1 do

powerofBoverC := B*powerofBoverC;
a := floor(powerofBoverC);
Plast := a;
r := 1/(powerofBoverC-a);
a := floor(r);
Qlast := 1;
Q := a;
P := Plast*a+1;
while Q < Bˆn-1 do

r := 1/(r-a);
a := floor(r);
NewQ := Q*a+Qlast;
NewP := P*a+Plast;
Qlast := Q;
Plast := P;
Q := NewQ;
P := NewP

od;

5If Qj is less than rn−1, this value does not actually correspond to a floating-point number
of exponent exponent. In such a case, the actual lowest value of ε is larger. However, the value
corresponding to Qj is actually attained for another value of the exponent: let � be the integer
such that rn−1 ≤ r�Qj < rn; from

CQj

∣∣∣∣ Pj

Qj
− rexponent−n+1

C

∣∣∣∣ = Cr�Qj

∣∣∣∣ Pj

r�Qj
− rexponent−�−n+1

C

∣∣∣∣
we deduce that the value of ε corresponding to Qj is actually attained when the exponent equals
exponent−�. Therefore the fact that Qj may be less than rn−1 has no influence on the final result,
that is, the search for the lowest possible value of ε.

9.3. Finding Worst Cases for Range Reduction? 183

r n C emax Worst Case − logr(ε)

2 24 π/2 127 16367173 × 2+72 29.2

2 24 π/4 127 16367173 × 2+71 30.2

2 24 ln(2) 127 8885060 × 2−11 31.6

2 24 ln(10) 127 9054133 × 2−18 28.4

10 10 π/2 99 8248251512 × 10−6 11.7

10 10 π/4 99 4124125756 × 10−6 11.9

10 10 ln(10) 99 7908257897 × 10+30 11.7

2 53 π/2 1023 6381956970095103 × 2+797 60.9

2 53 π/4 1023 6381956970095103 × 2+796 61.9

2 53 ln(2) 1023 5261692873635770 × 2+499 66.8

2 113 π/2 1024 614799 · · · 1953734 × 2+797 122.79

Table 9.3: Worst cases for range reduction for various floating-point systems and re-
duction constants C.

epsilon :=
evalf(C*abs(Plast-Qlast*powerofBoverC));

if epsilon < epsilonmin then
epsilonmin := epsilon; numbermin := Qlast;
expmin := e

fi
od;
print(’mantissa’,numbermin);
print(’exponent’,expmin);
print(’epsilon’,epsilonmin);
ell := evalf(log(epsilonmin)/log(B),10);
print(’numberofdigits’,ell)

end

Various results obtained using this program are given in Table 9.3. These
results can be used to perform range reduction accurately using one of the
algorithms given in the next sections, or simply to check whether the range
reduction is accurately performed in a given package.

In Table 9.3, the number − logr(ε) makes it possible to deduce the precision
with which the computations must be carried out to get the reduced argument
with a given accuracy. Assume that we want to get the reduced argument x∗

with, say, m significant radix-r digits. Since x∗ may be as small as ε, it must
be computed with an absolute error less than r−m−logr(ε). Roughly speaking,
− logr(ε) is the number of “guard digits” that are necessary to perform the range
reduction accurately.

184 Chapter 9. Range Reduction

By examining Table 9.3, we can see that − logr(ε) is always close to the
number of digits of the number system (i.e., n plus the number of exponent
digits). This is not surprising: if we assume that the digits of the fractional parts
of the reduced arguments are independent random variables with probability
1/r for each possible digit, then we can show that the most probable value for
− logr(ε) is close to n plus the radix-r logarithm of the number of exponent
digits. A similar probabilistic argument is used when examining the possibility
of correctly rounding the elementary functions (see Section 10.5).

9.4 The Payne and Hanek Reduction Algorithm

We assume in the following that we want to perform the range reduction for the
trigonometric functions, with C = π/4, and that the convergence domain of the
algorithm used for evaluating the functions contains I = [0, π/4]. An adaptation
to different values of C and I is quite straightforward.

From an input argument x, we want to find the reduced argument x∗ and
an integer k, that satisfy:

k =
⌊

4
π

x

⌋
x∗ =

π

4

(
4
π

x − k

)
.

(9.6)

One can easily see that, once x∗ is known, it suffices to know k mod 8 to
deduce sin(x) or cos(x) from x∗. If x is large, or if x is very close to a multiple
of π/4, the direct use of (9.6) to determine x∗ may require the knowledge of 4/π
with very large precision, and a cost-expensive multiple-precision computation
if we wish the range reduction to be accurate.

Let us consider the following example. Assume a 16-bit mantissa,
radix-2, floating-point number system, with rounding to the nearest. If x =
1.011000000000000 × 24 = 2210, then (4/π)x = 11100.00000010111 to the ma-
chine precision. Therefore k = 28 and (4/π)x − k = 1.0111 × 2−7. This gives
x∗ = 1.001000010000010×2−7, whose sine is 1.001000010000010×2−7, whereas
the sine of x is

−1.0010001000001 × 2−7.

We only have 8 significant bits!
Now let us present Payne and Hanek’s reduction method [258, 289]. As-

sume an n-bit mantissa radix-2 floating point format (the number of bits n
includes the possible hidden bit; for instance, with an IEEE double-precision
format, n = 53). Let x be the floating-point argument to be reduced; let e be its
unbiased exponent. One can write:

x = X × 2e−n+1

9.4. The Payne and Hanek Reduction Algorithm 185

Left(e,p)︷ ︸︸ ︷
α0.α−1 · · ·αn−e+2

Med(e,p)︷ ︸︸ ︷
αn−e+1 · · ·α−n−e−1−p

Right(e,p)︷ ︸︸ ︷
α−n−e−2−pα−n−e−3−p · · ·

Figure 9.1: The splitting of the digits of 4/π in Payne and Hanek’s reduction method.

where X is an n-bit integer satisfying 2n−1 ≤ X < 2n. We can assume e ≥ −1
(since if e < −1, no reduction is necessary). Let

α0 · α−1α−2α−3α−4α−5 · · ·
be the infinite binary expansion of α = 4/π. The first 1000 bits of α are:

1.0100010111110011000001101101110010011100100010000010101001010011111110000
100111010101111101000111110101001101001101110111000000110110110110001010010
101100110010011110001000011100100000100000111111110010100010110001110101011
110111101011101111000101011000011011011100100100011011100011101001000010010
011011101001011100000000001100100100100101110111010100000100111010001100100
100001110011111110000111011110101100011100101100010010100110100111001111101
110100010000010001101011111010100101110101110110100010010000100111010011001
110001110000001001101011010001011111011111100100000100111001100100011101011
000111001100000110101001100111001111101001001110010000100010111111000101110
111101111110010010100000111011000111111111100010010111111111111101111000000
101100110000000111111101111001011110001000110001011010110100000101001101101
000111110110110100110110011111101100111100100111110010110000100110110111010
011110100011000111111011001101001111001011111111010100010110101110101001001
11101110101100011111101011

Now let us introduce an integer parameter p (that is used to specify the
required accuracy of the range reduction). One can rewrite α = 4/π as6

Left(e, p) × 2n−e+2 + (Med(e, p) + Right(e, p)) × 2−n−e−1−p,

where ⎧⎪⎨⎪⎩
Left(e, p) = α0α−1 · · ·αn−e+2
Med(e, p) = αn−e+1αn−e · · ·α−n−e−1−p

Right(e, p) = 0.α−n−e−2−pα−n−e−3−pα−n−e−4−pα−n−e−5−p · · · .

Figure 9.1 shows this splitting of the binary expansion of α.
For instance, if n = 16, p = 10, and e = 31, the numbers Left(e, p), Med(e, p),

and Right(e, p) are:⎧⎪⎨⎪⎩
Left(e, p) = 10100010111110
Med(e, p) = 011000001101101110110111111101110001000011010
Right(e, p) = 0.00111011010100000100110101000101001 · · · .

6When n − e + 2 ≥ 0, Left(e, p) does not exist, and the splitting of α starts with Med(e, p).

186 Chapter 9. Range Reduction

The basic idea of the Payne–Hanek reduction method is to notice that, if p
is large enough, Med(e, p) contains the only digits of α = 4/π that matter for
the range reduction. Since

4
π

x = Left(e, p) × X × 8 + Med(e, p) × X × 2−2n−p

+ Right(e, p) × X × 2−2n−p,

the number Left(e, p) × X × 8 is a multiple of 8, so that once multiplied by
π/4 (see Eq. (9.6)), it will have no influence on the values of the trigonometric
functions. Right(e, p) × X × 2−2n−p is less than 2−n−p; therefore it can be made
as small as desired. For instance, if we want a reduced argument with at least m
significant bits, and if the number − log2(ε) found using the algorithm presented
in Section 9.3.2 is less than some integer j, then p = j + m − n is convenient.

Payne and Hanek’s algorithm is accurate and efficient even for large ar-
guments. It has been widely used, for instance in some of Sun Microsystems
libraries [244]. Now let us examine an example of a range reduction using Payne
and Hanek’s algorithm.

Example 12 (Payne and Hanek’s algorithm) Assume that we want to evaluate the
sine of x = 1.12 ×2200, and that we use an IEEE-754 double-precision arithmetic. Also
assume that we choose p = 20. We get the following values:

n = 53
e = 200
X = x × 2n−1−e = 6755399441055744
Med(e, p) = 229675453026782336712678467109489850659.

Define h as Med(e, p) × X × 2−2n−p. We have

h = 18238375864616442.953781343111871 · · · ,
therefore �h� mod 8 = 2, therefore sin(x) is approximated by cos(frac(h) × π/4). The
approximation is good: if we compute cos(frac(h) × π/4), we get

0.732303330876108523957991 · · · ,
whereas sin(x) is equal to

0.732303330876108523957972 · · · .
Now, assume that we want to evaluate the cosine of

x = 6381956970095103 × 2797

on the same arithmetic, with p = 20. This is the worst case for double-precision (see
Table 9.3). We get the following parameters:

n = 53
e = 849
X = x × 2n−1−e = 6381956970095103
Med(e, p) = 241424418249504403613332835084906292214.

9.5. The Modular Range Reduction Algorithm 187

The number h = Med(e, p) × X × 2−2n−p is equal to

18111549684342730.000000000000000000596757467738309
107351120472437 · · · ,

therefore �h� mod 8 = 2, therefore cos(x) is approximated by − sin(frac(h) × π/4).
The approximation is inaccurate: if we compute − sin(frac(h) × π/4), we get

−4.68692219155 · · · × 10−19,

whereas cos(x) is equal to

−4.68716592425462761112 · · · × 10−19.

A larger value of p must be chosen. If we perform the same computation with p = 60,
we get a much better approximation of cos(x):

− sin(frac(h) × π/4) = −4.6871659242546274384634 · · · × 10−19.

9.5 The Modular Range Reduction Algorithm

Now we assume that we have an algorithm able to compute the function g of
the introduction of this chapter in an interval I of the form [−C/2− ε,+C/2+ ε]
(we call this case “symmetrical reduction”) or [−ε, C +ε] (we call this case “positive
reduction”), with ε ≥ 0. We still want to find x∗ ∈ I and an integer k such that:

x∗ = x − kC. (9.7)

If ε > 0, then x∗ and k are not uniquely defined by Eq. 9.7. In such a
case, the problem of deducing these values from x is called “redundant range
reduction.” For example, if C = π/2, I = [−1, 1], and x = 2.5, then k = 1
and x∗ = 0.929203 · · · or k = 2 and x∗ = −0.641592 · · · are possible values.
As in many fields of computer arithmetic, redundancy will allow faster algo-
rithms. It is worth noticing that with the usual algorithms for evaluating the
elementary functions, one can assume that the length of the convergence do-
main I is greater than C, that is, that we can perform a redundant range reduc-
tion. For instance, with the CORDIC algorithm, when performing rotations (see
Chapter 7), the convergence domain is [−1.743 . . . ,+1.743 . . .], which is much
larger than [−π/2,+π/2]. With polynomial or rational approximations, the con-
vergence domain can be enlarged if needed by adding one coefficient to the
approximation.

We present here an algorithm proposed by Daumas et al. [93, 94]. This
algorithm is called the modular range reduction algorithm (MRR).

188 Chapter 9. Range Reduction

9.5.1 Fixed-point reduction

First of all, we assume that the input operands are fixed-point radix-2 numbers,
less than 2N . These numbers have an N -bit integer part and a p-bit fractional
part. So the digit chain:

xN−1xN−2xN−3 · · ·x0.x−1x−2 · · ·x−p, where xi ∈ {0, 1}
represents the number

N−1∑
i=−p

xi2i.

We assume that we should perform a redundant range reduction, and we
call ν the integer such that 2ν < C ≤ 2ν+1.

Let us define, for i ≥ ν, the number mi ∈ [−C/2, C/2) such that (2i − mi)/C
is an integer (in the following, we write “mi ≡ 2i mod C”). The Modular Range
Reduction (MRR) algorithm consists of performing the following steps.

First reduction We compute the number7:

r = (xN−1mN−1) + (xN−2mN−2) + · · · + (xνmν)
+xν−1xν−2xν−3 · · ·x0.x−1x−2 · · ·x−p.

(9.8)

Since the xis are equal to 0 or 1, this computation is reduced to the sum
of at most N − ν + 1 terms. The result r of this first reduction is between
−(N − ν + 2)C/2 and +(N − ν + 2)C/2. This is a consequence of the fact
that all the ximi have an absolute value smaller than C/2, and

xν−1xν−2xν−3 · · ·x0.x−1x−2 · · ·x−p

has an absolute value less than 2ν , which is less than C.

Second reduction We define the ris as the digits of the result of the first
reduction:

r = r�r�−1r�−2 · · · r0.r−1r−2 · · · ,
where � = �log2((N − ν + 2)C/2)�.

We also define r̂ as the number obtained by truncating the binary repre-
sentation of r after the �− log2(ε)�th fractional bit, that is:

r̂ = r�r�−1r�−2 · · · r0.r−1r−2 · · · r�log2(ε)�;

r̂ is an m-digit number, where the number

m = �log2((N − ν + 2)C/2)� + �− log2(ε)�
7This formula looks correct only for positive values of ν. It would be more correct, although

maybe less clear, to write: r =
∑N−1

i=ν
ximi +

∑ν−1
i=−p

xi2i.

9.5. The Modular Range Reduction Algorithm 189

is very small in all practical cases (see the following example). If we define
k as8 �r̂/C� (resp., �r̂/C�) then r − kC will belong to [−C/2 − ε,+C/2 + ε]
(resp., [−ε, C + ε]); that is, it will be the correct result of the symmetrical
(resp., positive) range reduction.

Proof

1. In the symmetrical case. We have |k − r̂/C| ≤ 1/2; therefore |r̂ − kC| ≤ C/2.
From the definition of r̂, we have

|r − r̂| ≤ 2�log2(ε)� ≤ ε;

therefore:
|r − kC| ≤ C

2
+ ε.

2. In the positive case. We have k ≤ r̂/C < k + 1; therefore 0 ≤ r̂ − kC < C;
therefore −ε ≤ r − kC < C + ε.

Since k can be deduced from r̂, this second reduction step will be implemented
by looking up the value kC in a 2m-bit entry table at the address constituted by
the bits of r̂.

During this reduction process, we perform the addition of N −ν +1 terms.
If these terms (namely, the mis and the value kC of the second reduction step)
are represented in fixed-point with q fractional bits (i.e., the error on each of
these terms is bounded by 2−q−1), then the difference between the result of the
computation and the exact reduced argument is bounded by 2−q−1(N − ν + 1).
In order to obtain the reduced argument x∗ with the same absolute accuracy as
the input argument x (i.e., p significant fixed-point fractional digits), one needs
to store the mis and the values kC with p + �log2(N − ν + 1)� fractional bits.

Example 13 Assume we need to compute sines of angles between −220 and 220, and
that the algorithm used with the reduced arguments is CORDIC (see Chapter 7). The
convergence interval I is [−1.743, · · · ,+1.743 · · ·]; therefore (since 1.743 > π/2)
we have to perform a symmetrical redundant range reduction, with C = π and
ε = +1.743 · · ·−π/2 = 0.172 · · · > 2−3. We immediately get the following parameters.

• N = 20 and ν = 2.

• The first range reduction consists of the addition of 19 terms.

• r ∈ [−10π,+10π]; therefore, since 10π < 25, the second reduction step requires
a table with 5 + �− log2 ε� = 8 address bits.

• To obtain the reduced argument with p significant fractional bits, one needs to
store the mis and the values kC with p + 5 bits.

8We denote �x� the integer that is nearest to x.

190 Chapter 9. Range Reduction

Assume we compute sin(355). The binary representation of 355 is 101100011. Therefore
during the first reduction, we have to compute m8 + m6 + m5 + m1 + 1, where:

• m8 = 256 − 81 × π = 1.530995059226747684 · · ·
• m6 = 64 − 20 × π = 1.1681469282041352307 · · ·
• m5 = 32 − 10 × π = 0.5840734641020676153 · · ·
• m1 = 2 − π = −1.141592653589793238462 · · ·.

We get m8 +m6 +m5 +m1 +1 = 3.1416227979431572921 · · ·. The second reduction
consists in subtracting π from that result, which gives

0.00003014435336405372 · · · ,
the sine of which is 0.000030144353359488449 · · ·. Therefore

sin(355) = −0.000030144353359488449 · · · .

9.5.2 Floating-point reduction

Now assume that the input value x is a radix-2 floating-point number:

x = x0.x1x2x3 · · ·xn−1 × 2exponent.

The range reduction can be performed exactly as in the fixed-point case. During
the first reduction, we replace the addition of the terms mi by the addition of the
terms mexponent−i ≡ 2exponent−i mod C. During the reduction process, we just
add numbers (the mis) of the same order of magnitude, represented in fixed-
point. This helps to make the reduction accurate. One can easily show that if the
mis and the terms kC of the second reduction are represented with q fractional
bits, then the absolute error on the reduced argument is bounded by (n+1)2−q−1.
If we want a reduced argument with at least t significant bits, and if the number
− log2(ε) found using the algorithm presented in Section 9.3.2 is less than some
integer j, then q = j + t − 1 + �log2(n + 1)� is convenient.

9.5.3 Architectures for modular reduction

The first reduction consists of adding N − ν + 1 numbers. This addition can be
performed in a redundant number system in order to benefit from the carry-
free ability of such a system, and/or with a tree of adders. This problem is
obviously closely related to the problem of multiplying two numbers (multi-
plying x =

∑q
i=0 xi2i by y =

∑q
j=0 yi2j reduces to computing the sum of the

q + 1 terms yj2jx). Therefore, almost all the classical architectures proposed in
the multiplication literature (see for instance [37], [88], [156], [240], [303], [319]),
can be slightly modified in order to be used for range reduction. This similar-
ity between modular range reduction and multiplication makes it possible to

9.6. Alternate Methods 191

perform both operations with the same hardware, which can save some silicon
area on a circuit. To accelerate the first reduction, we can perform a Booth re-
coding [32], or merely a modified Booth recoding [174], of x. This would give
a signed digit (with digits -1, 0, and 1) representation of x with at least half of
the digits equal to zero. Then the number of terms to be added during the first
reduction would be halved.

A modified version of the MRR algorithm that works “on the fly” was
introduced by Lefèvre and Muller [209].

9.6 Alternate Methods

Defour, Kornerup, Muller and Revol [46, 104] present an algorithm for dealing
with arguments of “reasonable size” (for small arguments, variants of Cody and
Waite’s algorithm are very efficient, and for very large arguments they suggest
to use Payne and Hanek’s algorithm). Their method can be viewed as a high
radix modular algorithm: the input argument is split into eight 8-bit parts, and
each part is used to address tables of double-precision numbers.

Li, Boldo and Daumas [213] give conditions that help to design efficient
range reduction algorithms when a fused multiply-add instruction is available.

Chapter 10

Final Rounding

10.1 Introduction

This chapter is devoted to the problems of preserving monotonicity and always
getting correctly rounded results when implementing the elementary functions
in floating-point arithmetic.

Preserving monotonicity is important. That is, if a function f is monotoni-
cally increasing (resp., decreasing) over an interval, then its computer approx-
imation must also be monotonically increasing (resp., decreasing). As pointed
out by Silverstein et al. [287], monotonicity failures can cause problems, for
example, in evaluating divided differences.

Requiring correctly rounded results not only improves the accuracy of com-
putations: it is the only way to make numerical software portable. Portability
would need a standardization of the elementary functions, and a standard can-
not be widely accepted if some implementations are better than the standard
(see [103] for suggestions on what could be put in a standard). Moreover, as
noticed by Agarwal et al. [2], correct rounding facilitates the preservation of
useful mathematical properties such as monotonicity,1 symmetry,2 and impor-
tant identities. And yet, in some very rare cases, correct rounding may prevent
satisfying the range limits requirement [2] (see Chapter 1). For instance, assume
that we use an IEEE-754 single-precision arithmetic. The machine number which
is closest to π/2 is

� =
13176795
8388608

= 1.57079637050628662109375 >
π

2
.

If the arctangent function is implemented in round-to-nearest mode, then the
computed value of the arctangent of any number greater than or equal to

1For any rounding mode, if the “exact” function is monotonic, and if exact rounding is pro-
vided, then the “computed function” is monotonic too.

2Correct rounding preserves symmetry if we round to the nearest or towards zero, that is, if
the rounding function itself is symmetrical.

194 Chapter 10. Final Rounding

62919776 will be �, and therefore will be larger than π/2. A consequence of
that is that for any single-precision number x ≥ 62919776,

tan (arctan(x)) = −22877332 = tan(�).

In this chapter, we want to implement a functionf in a radix-2 floating-point
number system, with n mantissa bits, and exponents between Emin and Emax.
Let x be a machine number. We assume that we first compute an approximation
F (x) of f(x) with extra accuracy, so that an error bounded by some ε is made.
After that, this intermediate result is rounded to then-bit-mantissa target format,
according to the active rounding mode. Our goal is to estimate what value of ε
must be chosen to make sure that the implementation satisfies the monotonicity
criterion, or that the results are always equal to what would be obtained if f(x)
were first computed exactly, and then rounded.

10.2 Monotonicity

Without loss of generality, let us assume that the function f to be computed is
increasing in the considered domain, and that its approximation3 F is such that
an absolute error bounded by ε is made. Let x be a machine number. We have

f (x + ulp(x)) > f(x).

The computed value F (x + ulp(x)) is larger than or equal to f (x + ulp(x)) −ε,
and F (x) is less than or equal to f(x) + ε. Therefore, to make sure that

F (x + ulp(x)) ≥ F (x)

it is sufficient that f (x + ulp(x)) − f(x) ≥ 2ε. There exists a number ξ ∈
[x, x + ulp(x)] such that

f (x + ulp(x)) − f(x) = ulp(x) × f ′(ξ).

Therefore if
ε ≤ 1

2
ulp(x) × min

t∈[x,x+ulp(x)]

∣∣f ′(t)
∣∣ , (10.1)

then the obtained implementation of f will be monotonic. Let us examine an
example.

Example 14 (Monotonic evaluation of sines)
Assume that we want to evaluate the sine function on [−π/4,+π/4]. If f(x) = sin(x),
then

min
[−π/4,+π/4]

∣∣f ′∣∣ = cos
π

4
= 0.707 · · · .

3Computed with a precision somewhat larger than the “target precision.”

10.3. Correct Rounding: Presentation of the Problem 195

Therefore if

ε ≤ 1
2

× ulp(x) × 0.707 · · · ,
then condition (10.1) is satisfied. For x ∈ [−π/4,+π/4], we obviously have

1
2

≤ ulp(sin(x))
ulp(x)

≤ 1.

Therefore if
ε

ulp(sin(x))
≤ 1

2
× 0.707,

then condition (10.1) is satisfied. This means that if the error of the approximation is
less than 0.354 ulps of the target format, then the approximation is monotonic. Roughly
speaking, an approximation of the sine function on [−π/4,+π/4] that is accurate ton+2
bits of precision will necessarily be monotonic when rounded to n bits of precision [141].

Ferguson and Brightman [141] gave techniques that can be used to prove that
an approximation is monotonic. Their main result is the following theorem.

Theorem 14 (Ferguson and Brightman) Let f(x) be a monotonic function defined
on the interval [a, b]. Let F (x) be an approximation of f(x) whose associated relative
error is less than or equal to ε, ε < 1. If for every pair m < m+ of consecutive machine
numbers in [a, b]

ε <
|f(m+) − f(m)|
|f(m+)| + |f(m)| ,

then F (x) exhibits on the set of machine numbers in [a, b] the same monotonic behavior
exhibited by f(x) on [a, b].

10.3 Correct Rounding: Presentation of the Problem

We assume that from any real number x and any integer m (with m > n), we
are able to compute an approximation to f(x) with an error in its mantissa y
less than or equal to 2−m. The computation can be carried out using a larger
fixed-point or floating-point format, with one of the algorithms presented in
this book.

Therefore the problem is to get an n-bit floating-point correctly rounded
result from the mantissa y of an approximation of f(x), with error ±2−m. One
can easily see that this is not possible if y has the form:

• in rounding to the nearest mode,

m bits︷ ︸︸ ︷
1.xxxxx · · ·xxx︸ ︷︷ ︸

n bits

1000000 · · · 000000 xxx · · ·

196 Chapter 10. Final Rounding

or
m bits︷ ︸︸ ︷

1.xxxxx · · ·xxx︸ ︷︷ ︸
n bits

0111111 · · · 111111 xxx · · · ;

• in rounding towards +∞, or towards −∞ modes,

m bits︷ ︸︸ ︷
1.xxxxx · · ·xxx︸ ︷︷ ︸

n bits

0000000 · · · 000000 xxx · · ·

or
m bits︷ ︸︸ ︷

1.xxxxx · · ·xxx︸ ︷︷ ︸
n bits

1111111 · · · 111111 xxx · · · .

This problem is known as the Table Maker’s Dilemma (TMD) [152].
Let us denote � the rounding function. We will call a breakpoint a value z

where the rounding changes, that is, if t1 and t2 are real numbers satisfying
t1 < z < t2, then �(t1) < �(t2).

For “directed” rounding modes (i.e., towards +∞, −∞ or 0), the break-
points are the floating-point numbers. For rounding to the nearest mode, they
are the exact middle of two consecutive floating-point numbers. The TMD oc-
curs for function f at point x (x is a floating-point number) if f(x) is very close
to a breakpoint.

For example, assuming a floating-point arithmetic with 6-bit mantissa,

sin(11.1010) = 0.0 111011 01111110 · · · ,
a problem may occur with rounding to the nearest if the sine function is not
computed accurately enough.

The worst case for the natural logarithm in the full IEEE-754 double-
precision range [208] is attained for

x = 1.011000101010100010000110000100110110001010
0110110110 × 2678

whose logarithm is

log x =
53 bits︷ ︸︸ ︷

111010110.0100011110011110101 · · · 110001
000000000000000000 · · · 000000000000000︸ ︷︷ ︸

65 zeros
1110 · · ·

This is a “difficult case” in a directed rounding mode, since it is very near a
floating-point number. One of the two worst cases for radix-2 exponentials in
the full double-precision range [208] is

1.1110010001011001011001010010011010111111
100101001101 × 2−10

10.3. Correct Rounding: Presentation of the Problem 197

m = ?

m = n+20

m = n+40

m = 2n

failure
success

rounded

result

Figure 10.1: Ziv’s multilevel strategy.

whose radix-2 exponential is

53 bits︷ ︸︸ ︷
1.0000000001010011111111000010111 · · · 0011

0 11111111111111111 · · · 1111111111111111︸ ︷︷ ︸
59 ones

0100 · · ·

It is a difficult case for rounding to the nearest, since it is very close to the middle
of two consecutive floating-point numbers.

Ziv’s “multilevel strategy” [328], illustrated in Figure 10.1, consists of start-
ing to approximate the function with error ±2−m0 , where m0 is small but larger
than n (say, m0 ≈ n+10 or n+20). In most cases,4 that approximation will suffice
to get the correctly rounded result. If it does not suffice, then another attempt
is made with a significantly larger value of m, say m1. Again, in most cases,
the new approximation will suffice. If it does not, further approximations are
computed with larger and larger values of m. This strategy was implemented in
the LIBULTIM library (see Section 12.3). Of course, when m increases, comput-
ing the approximations requires more and more time, but the probability that a
very large m is needed is so small that in practice, the average computation time
is only slightly larger than the time required with m = m0. Our problem is to
know if the process always ends (i.e., if there is a maximum value for m), and to
know the way in which the process can be slow (i.e., to estimate the maximum
possible value of m, if there is any).

In 1882, Lindemann showed that the exponential of an algebraic num-
ber (possibly complex) different from zero is not algebraic [19]. The machine

4The probability of a failure is about one over one million with m0 = n + 20.

198 Chapter 10. Final Rounding

numbers are rational; thus they are algebraic. From this we deduce that the
sine, cosine, exponential, or arctangent of a machine number different from
zero cannot be a breakpoint, and the logarithm of a machine number different
from 1 cannot be a breakpoint. There is a similar property for functions 2x, 10x,
log2(x) and log10(x), since if a machine number x is not an integer, then 2x and
10x do not have a finite binary representation.5 Therefore, for any x (we do not
consider the trivial cases such as exp(0) = 1 or ln(1) = 0), there exists m such
that the TMD cannot occur. Since there is a finite number of machine numbers
x, there exists a value of m such that for all x the TMD does not occur. Unfortu-
nately, this reasoning does not allow us to know what is the order of magnitude
of this value of m.

In the following, we try to estimate this value of m. Since the cost of evalu-
ating the elementary functions increases with m, we have to make sure that m
is not too large.

10.4 Some Experiments

Schulte and Swartzlander [281, 282] proposed algorithms for producing cor-
rectly rounded results for the functions 1/x, square root, 2x, and log2 x in single-
precision. To find the correct value of m, they performed an exhaustive search
for n = 16 and n = 24. For n = 16, they found m = 35 for log2 and m = 29 for
2x, and for n = 24, they found m = 51 for log2 and m = 48 for 2x. One would
like to extrapolate those figures and find m ≈ 2n. To check that assumption,
an exhaustive search was started, for some functions and domains, assuming
double-precision arithmetic, in the Arénaire project of LIP laboratory (Lyon,
France), using algorithms designed by Lefèvre [205, 206]. Before giving the ob-
tained results, let us explain why in practice we always find that the required
value of m is around 2n (or slightly above 2n).

10.5 A “Probabilistic” Approach to the Problem

The approach chosen in this section is not rigorous: we are going to apply prob-
abilistic concepts to a purely deterministic problem. What we want is just to
understand why we get m ≈ 2n. To simplify the presentation, we assume round-
ing to the nearest only. Generalization to other rounding modes is straightfor-
ward. Such a probabilistic study has been done by Dunham [119] and by Gal
and Bachelis [148]. Stehlé and Zimmermann [293] also use this kind of proba-
bilistic argument to implement a variant of Gal’s Accurate Tables Method (see
Chapter 4).

Let f be an elementary function. We assume in the following that when x
is an n-bit mantissa floating-point number, the bits of f(x) after the nth position

5This is not always true for some other functions, such as xy .

10.5. A “Probabilistic” Approach to the Problem 199

can be viewed as if they were random sequences of zeroes and ones, with proba-
bility 1/2 for 0 as well as for 1. This can be seen as an application of the results of
Feldstein and Goodmann [138], who estimated the statistical distribution of the
trailing digits of the variables of a numerical computation. For many functions,
this assumption will not be reasonable for very small arguments (for instance, if
x is small, then exp(x) is very close to x + 1). The case of small arguments must
be dealt with separately (see Tables 10.3 and 10.4). We also assume that the bit
patterns (after position n) obtained during computations of f(x1) and f(x2) for
different values of x1 and x2 can be considered “independent.” We made the
same assumption in Chapter 4 to estimate the cost of building “accurate tables.”
When we compute the mantissa y of f(x), the result has the form:

y = y0.y1y2 · · · yn−1

kbits︷ ︸︸ ︷
01111111 · · · 11 xxxxx · · ·

or

y = y0.y1y2 · · · yn−1

kbits︷ ︸︸ ︷
10000000 · · · 00 xxxxx · · ·

with k ≥ 1. What we want to estimate is the maximum possible value of k.
That value, added with n, will give the value of m that must be chosen. From
our probability assumptions, the “probability” of getting k ≥ k0 is 21−k0 . We
assume that the input numbers are n-mantissa bit normalized floating-point
numbers, and that there are ne different possible exponents. Therefore there are
N = 2 × ne × 2n−1 floating-point numbers. The probability of having at least
one input number leading to a value of k greater than or equal to k0 is:

Pk0 = 1 −
[
1 − 21−k0

]N
. (10.2)

Now we are looking for the value k0 such that the probability of getting at
least one value of k greater than k0 (among the N different floating-point results)

should be less than 1/2. Pk0 ≤ 1/2 as soon as 1/2 ≤
[
1 − 21−k0

]N
, that is, as

soon as
ln

1
2

≤ N × ln
[
1 − 21−k0

]
. (10.3)

Define t as 21−k0 . If t is small enough, we can approximate ln
[
1 − 21−k0

]
=

ln(1 − t) by −t. Therefore Eq. (10.3) is roughly equivalent to

Nt − ln 2 ≤ 0.

Therefore Pk0 ≤ 1/2 as soon as 21−k0 ≤ ln 2/N , that is, when:

k0 ≥ 1 − ln(ln 2)
ln 2

+ log2 N � 1.529 + log2 N ;

200 Chapter 10. Final Rounding

k
n 1 2 3 4 5 6 7 8 9 10 11
1 1 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0
3 1 2 0 1 0 0 0 0 0 0 0
4 3 3 1 1 0 0 0 0 0 0 0
5 9 4 0 2 1 0 0 0 0 0 0
6 16 7 6 2 1 0 0 0 0 0 0
7 33 14 8 3 2 2 2 0 0 0 0
8 67 27 16 11 5 1 0 0 0 0 1
9 132 57 34 20 8 1 1 1 0 2 0

10 255 128 71 27 15 7 4 2 2 0 1
11 506 265 113 62 35 18 15 4 3 1 2
12 1012 528 232 153 54 29 21 7 8 4 0
13 2049 1046 449 267 131 79 39 16 14 3 2
14 4080 2072 966 517 287 146 65 24 18 7 2
15 8160 4087 2152 994 502 247 133 53 28 13 8
16 16397 8151 4191 2043 1010 463 255 131 62 35 16
17 32764 16350 8170 4168 2080 1036 473 228 127 72 31

Table 10.1: Number of occurrences of various k for sin(x).

that is,
k0 ≥ n + log2(ne) + 1.529. (10.4)

Therefore if we only consider a small number of values of ne (which is the case in
practice for many elementary functions6), the maximum value of k encountered
will be (on average) slightly greater than n. Since the value of m that must be
chosen is equal to n plus the maximum value of k, we deduce that in practice,
m must be slightly greater than 2n. The probabilistic assumptions that we used
cannot be proved, but we can try to check them. Table 10.1 shows the number
of occurrences of the various possible values of k for sinx (with 1 ≤ x < 2)
and n between 1 and 17. In each row, one can easily recognize numbers that are
close to the powers of 2; this tends to show that our probabilistic arguments are
realistic.

Until we get sure bounds7 on m, our probabilistic assumptions can help
to design algorithms that are very likely to always return correctly rounded

6The exponential of a large number is an overflow, whereas the exponential of a very small
number, when rounded to the nearest is 1. Thus there is no need to consider many different
exponents for the exponential function. Concerning the trigonometric functions, I think that a
general-purpose implementation should ideally provide correctly rounded results whenever the
function is mathematically defined. And yet, many may argue that the sine, cosine, or tangent
of a huge number is meaningless and I must recognize that in most cases, it does not make much
sense to evaluate a trigonometric function of a number with a large exponent.

7For IEEE-754 double-precision, we have obtained the bounds for many functions and do-
mains (see Section 10.7.2). For double-extended precision, the bounds should be obtained within
a few years. Higher precisions seem out of reach.

10.5. A “Probabilistic” Approach to the Problem 201

results. Let us examine two examples.

• If we want to evaluate exponentials of IEEE-754 double-precision floating-
point numbers, the largest possible exponent for the input value is 9 (since
e210

is too large to be representable). Moreover, if a number x has an abso-
lute value less than 2−54, then one can easily deduce the value that must
be returned (1 in round-to-nearest mode, 1 + ulp(1) if x > 0 in round to-
wards +∞ mode. . . see Tables 10.3 and 10.4). Therefore we must consider
64 possible exponents. Thus the number N of floating-point numbers to
be considered in (10.2) is 2 × 64 × 252. If we apply (10.2), we find that

– if m = 113 (i.e., k = 60), then the probability of having incorrectly
rounded values is about 0.6;

– if m = 120, then the probability of having incorrectly rounded values
is about 0.007.

Concerning this function, the worst cases are known (see Table 10.5).
For double-precision input numbers of absolute values larger than 2−30,
m = 114 suffices. For input numbers of absolute value less than 2−30, our
probabilistic assumptions are no longer valid.

• If we want to evaluate sines and cosines of IEEE-754 double-precision
floating-point numbers, the largest possible exponent for the input value
is 1023, and if a number x has an absolute value less than 2−27 one can
easily deduce the values that must be returned (see Tables 10.3 and 10.4).
Therefore we must consider 1051 possible exponents. Thus N equals 2 ×
1051 × 252. If we apply (10.2), we find that

– if m = 120 (i.e., k = 67), then the probability of having incorrectly
rounded values is about 0.12;

– if m = 128 (i.e., k = 75), then the probability of having incorrectly
rounded values is about 0.0005.

Concerning these functions, we still do not know what is the worst case
in the full IEEE-754 double-precision range. We only know worst cases
for input values less than 12867/8192 ≈ 1.5706787 (see Table 10.11) for the
cosine function, and less than 2 + 4675/8192 ≈ 2.5707 (see Table 10.9) for
the sine function.

We must understand that in the preceding examples “the probability of
having incorrectly rounded values” does not mean “given x, the probability
that exp(x) or sin(x) is not correctly rounded.” This last probability is much
smaller (in the given cases, it is null or of the order of magnitude of 1/N). What
we mean is “the probability that among all the N possible values, at least one is
not correctly rounded.”

202 Chapter 10. Final Rounding

n Range for exp m

24 ln 2 494416
10 3074888

53 ln 2 1038560
10 5234891

112 ln 2 2527507
10 10409113

Table 10.2: Upper bounds on m for various values of n.

10.6 Upper Bounds on m

The probabilistic arguments of the preceding section make it possible to have an
intuition of the accuracy required during the intermediate computation to get a
correctly rounded result. They do not constitute a proof. An exhaustive search
has been done for single-precision. Such an exhaustive search is almost finished
for double-precision [210, 208] (see Section 10.7), and has recently been launched
for double-extended precision [292]. However, for larger precisions (e.g., quad-
precision), an exhaustive search is far beyond the abilities of the most powerful
current computers. Only theoretical results could allow us to manage such cases.
To the knowledge of the author, the best current result is the following [242].

Let p/q be a rational number, with q > 0 and gcd(p, q) = 1. Define H(p/q) =
max{|p|, q}.

Theorem 15 (Y. Nesterenko and M. Waldschmidt (1995)) Let α, β be rational
numbers. Let A, B, and E be positive real numbers with E ≥ e satisfying

A ≥ max (H(α), e) , B ≥ H(β).

Then
|eβ − α| ≥
exp

(
−211 × (lnB + ln lnA + 2 ln(E|β|+) + 10)

× (lnA + 2E|β| + 6 lnE) × (3.3 ln(2) + lnE) × (lnE)−2
)
,

where |β|+ = max(1, |β|).
We can apply this theorem with α and β being machine numbers. By doing

this, we get a lower bound on the distance between a machine number and
the exponential of a machine number (or a bound on the distance between a
machine number and the logarithm of a machine number). This is exactly what
we need. Table 10.2 gives the values ofmobtained using this theorem, for various
values of n.

As a consequence, in the very worst cases, we may have to compute ex-
ponentials or logarithms with a number of bits whose order of magnitude is a

10.7. Obtained Worst Cases for Double-Precision 203

few millions (around 10 millions for exponentials of quad-precision numbers
less than 10). We must keep in mind that, following our probabilistic study,
the existence of such cases is extremely unlikely. Using algorithms based on the
arithmetic-geometric mean (AGM) (See Chapter 5), computing exponentials
with a few millions of bits would require a few minutes on current computers.

10.7 Obtained Worst Cases for Double-Precision

The previous section may seem disappointing. For instance, in double-precision
arithmetic, although we are almost certain (from our probabilistic estimates) that
it suffices to evaluate the functions with an intermediate accuracy that is around
120 bits, it seems that to be able to certify that we always return a correctly
rounded result we must evaluate the functions8 with millions of bits. The only
way to solve this problem is to actually compute the worst cases (that is, the
hardest to round cases), at least for the most common functions and domains.

10.7.1 Special input values

For most functions, we can easily deal with the input arguments that are ex-
tremely close to 0. For example, consider the exponential of a very small positive
number ε, on a floating-point format with n-bit mantissas, assuming rounding
to nearest. If ε < 2−n, then (since ε is an n-bit number), ε ≤ 2−n − 2−2n. Hence,

eε ≤ 1 + (2−n − 2−2n) +
1
2
(2−n − 2−2n)2 + · · · < 1 + 2−n,

therefore

exp(ε) < 1 +
1
2

ulp (exp(ε)).

Thus, the correctly rounded value of exp(ε) is 1. A similar reasoning can be done
for other functions and rounding modes. Some results are given in Tables 10.3
and 10.4.

10.7.2 Lefèvre’s experiment

In his PhD dissertation [206], Lefèvre gives algorithms for finding the worst
cases of the table maker’s dilemma. These algorithms use linear approxima-
tions and massive parallelism. A recent presentation of these algorithms, with
some improvements, can be found in [207]. We have run Lefèvre’s algorithms
to find worst cases in double-precision for the most common functions and do-
mains. The results obtained so far, first published in [208] are given in Tables 10.5
to 10.14.

8In the worst case: we can use Ziv’s strategy.

204 Chapter 10. Final Rounding

This function
can be

replaced by
when

exp(ε), ε ≥ 0 1 ε < 2−53

exp(ε), ε ≤ 0 1 |ε| ≤ 2−54

ln(1 + ε) ε |ε| <
√

2 × 2−53

2ε, ε ≥ 0 1 ε < 1.4426 · · · × 2−53

2ε, ε ≤ 0 1 |ε| < 1.4426 · · · × 2−54

10ε, ε ≥ 0 1 ε < 1.7368 × 2−55

10ε, ε ≤ 0 1 |ε| < 1.7368 × 2−56

sin(ε), arcsin(ε), sinh(ε), sinh−1(ε) ε |ε| ≤ 1.4422 · · · × 2−26

cos(ε) 1 |ε| <
√

2 × 2−27

cosh(ε) 1 |ε| < 2−26

tan(ε), tanh(ε), arctan(ε), tanh−1(ε) ε |ε| ≤ 1.817 · · · × 2−27

Table 10.3: Some results for small values in double-precision, assuming rounding to
the nearest. These results make finding worst cases useless for negative exponents of
large absolute value.

If a and b belong to the same “binade” (they have the same sign and satisfy
2p ≤ |a|, |b| < 2p+1, where p is an integer), let us call their mantissa distance the
distance

|a − b|
2p

.

For instance, the mantissa distance between 14 and 15 is (15 − 14)/8 = 1/8.
Tables 10.5 to 10.14 allow to deduce properties such as the following ones [208].

Theorem 16 (Computation of exponentials) Let y be the exponential of a double-
precision number x. Let y∗ be an approximation to y such that the mantissa distance9

between y and y∗ is bounded by ε.

• for |x| ≥ 2−30, if ε ≤ 2−53−59−1 = 2−113, then for any of the four rounding
modes, rounding y∗ is equivalent to rounding y;

• for2−54 ≤ |x| < 2−30, if ε ≤ 2−53−104−1 = 2−158 then roundingy∗ is equivalent
to rounding y;

The case |x| < 2−54 is easily dealt with using Tables 10.3 and 10.4.

9If one prefers to think in terms of relative error, one can use the following well-known prop-
erties: in radix-2 floating-point arithmetic, if the mantissa distance between y and y∗ is less than
ε, then their relative distance |y − y∗|/|y| is less than ε. If the relative distance between y and y∗

is less than εr , then their mantissa distance is less than 2εr .

10.7. Obtained Worst Cases for Double-Precision 205

This function
can be

replaced by
when

exp(ε), ε ≥ 0 1 ε < 2−52

exp(ε), ε < 0 1− = 1 − 2−53 |ε| ≤ 2−53

ln(1 + ε), ε �= 0 ε− |ε| <
√

2 × 2−52

2ε, ε ≥ 0 1 ε < 1.4426 · · · × 2−52

2ε, ε < 0 1− = 1 − 2−53 |ε| < 1.4426 · · · × 2−53

10ε, ε ≥ 0 1 ε < 1.7368 × 2−54

10ε, ε < 0 1− = 1 − 2−53 |ε| < 1.7368 × 2−55

sin(ε), sinh−1(ε), ε > 0 ε− ε ≤ 1.817 · · · × 2−26

sin(ε), sinh−1(ε), ε ≤ 0 ε |ε| ≤ 1.817 · · · × 2−26

arcsin(ε), sinh(ε), ε ≥ 0 ε ε ≤ 1.817 · · · × 2−26

arcsin(ε), sinh(ε), ε < 0 ε− ε ≤ 1.817 · · · × 2−26

cos(ε), ε �= 0 1− = 1 − 2−53 |ε| < 2−26

cosh(ε), ε �= 0 1 |ε| <
√

2 × 2−26

tan(ε), tanh−1(ε), ε ≥ 0 ε ε ≤ 1.4422 · · · × 2−26

tan(ε), tanh−1(ε), ε < 0 ε− |ε| ≤ 1.4422 · · · × 2−26

tanh(ε), arctan(ε), ε > 0 ε− ε ≤ 1.4422 · · · × 2−26

tanh(ε), arctan(ε), ε ≤ 0 ε |ε| ≤ 1.4422 · · · × 2−26

Table 10.4: Some results for small values in double-precision, assuming rounding
towards −∞. These results make finding worst cases useless for negative exponents of
large absolute value. x− is the largest FP number strictly less than x.

Theorem 17 (Computation of logarithms) Let y be the natural (radix-e) logarithm
of a double-precision number x. Let y∗ be an approximation to y such that the mantissa
distance between y and y∗ is bounded by ε. If ε ≤ 2−53−64−1 = 2−118 then for any of
the 4 rounding modes, rounding y∗ is equivalent to rounding y.

Stehlé, Lefèvre and Zimmermann are working on methods that could,
one day, allow us to get the worst cases for precisions higher than double-
precision [292]. They have already obtained the worst cases for function 2x in
double-extended precision, with 1/2 ≤ x ≤ 1.

Conclusion

We have shown that correct rounding of the elementary functions, at least in
some domains, is possible. It may seem expensive, but we have to consider that
using Ziv’s multilevel strategy, evaluating an elementary function with correct
rounding usually requires the time needed to evaluate it with slightly more

206
C

hapter
10.

FinalR
ounding

Interval worst case (binary)

[ln(2−1074), −2−30]
exp(−1.1110110100110001100011101111101101100010011111101010 × 2−27)

= 1.1111111111111111111111111000010010110011100111000100 1 1590001... × 2−1

[−2−30, ln(1 − 2−46)]
exp(−1.0100110010 × 2−46)

= 1.1101100000 0 0841010... × 2−1

[ln(1 − 2−46), −2−53)
exp(−1.0001 × 2−51)

= 1.1100 0 01001010... × 2−1

(2−52, ln(1 + 2−45)]
exp(1.11 × 2−53)

= 1.00 1 11040101...

[ln(1 + 2−45), 2−30]
exp(1.1110000000 × 2−46)

= 1.0001111111 1 1830101...

exp(1.000110101111 × 2−45)

= 1.0010001111 1 1830000...

[2−30, ln(21024)]
exp(110.00001111010100101111001101111010111011001111110100)

= 110101100.01010000101101000000100111001000101011101110 0 0571000...

Table 10.5: Worst cases for the exponential function in the full double-precision range (the input values between −2−53 and 2−52 are so
small that the results given in Tables 10.3 and 10.4 can be applied, so they are omitted here) [208]. Exponentials of numbers less than
ln(2−1074) are underflows. Exponentials of numbers larger than ln(21024) are overflows. 159 means “a chain of 59 consecutive ones.”

10.7.
O

btained
W

orstC
ases

for
D

ouble-P
recision

207

Interval worst case (binary)

[2−1074, 1)
log(1.1110101001110001110110000101110011101110000000100000 × 2−509)

= −101100000.00101001011010100110011010110100001011111111 1 1600000...

log(1.1001010001110110111000110000010011001101011111000111 × 2−384)

= −100001001.10110110000011001010111101000111101100110101 1 0601010...

log(1.0010011011101001110001001101001100100111100101100000 × 2−232)

= −10100000.101010110010110000100101111001101000010000100 0 0601001...

log(1.0110000100111001010101011101110010000000001011111000 × 2−35)

= −10111.111100000010111110011011101011110110000000110101 0 1600011...

(1, 21024]
log(1.0110001010101000100001100001001101100010100110110110 × 2678)

= 111010110.01000111100111101011101001111100100101110001 0 0641110...

Table 10.6: Worst cases for the natural (radix e) logarithm in the full double-precision range [208].

208
C

hapter
10.

FinalR
ounding

Interval worst case (binary)

[−1074, 0)
2 ∗ ∗(−1.0010100001100011101010111010111010101111011110110010 × 2−15)

= 0.11111111111111100110010100011111010001100000111101111 0 0571110...

2 ∗ ∗(−1.0100000101101111011011000110010001000101101011001111 × 2−20)

= 0.11111111111111111111001000010011001010111010011001110 1 1570000...

2 ∗ ∗(−1.0000010101010110000000011100100010101011001111110001 × 2−32)

= 0.11111111111111111111111111111111010010101101101100001 1 1570000...

2 ∗ ∗(−1.0001100001011011100011011011011011010101100000011101 × 2−33)

= 0.11111111111111111111111111111111100111101101010111100 0 0571100...

(0, 1024]
2 ∗ ∗(1.1011111110111011110111100100010011101101111111000101 × 2−25)

= 1.0000000000000000000000001001101100101100001110000101 0 0591011...

2 ∗ ∗(1.1110010001011001011001010010011010111111100101001101 × 2−10)

= 1.0000000001010011111111000010111011000010101101010011 0 1590100...

Table 10.7: Worst cases for the radix-2 exponential function 2x in the full double-precision range. Integral values of x are omitted [208].

10.7.
O

btained
W

orstC
ases

for
D

ouble-P
recision

209

Interval worst case (binary)

(0, 1/2)
log2(1.0110000101010101010111110111010110001000010110110100 × 2−513)

= −1000000000.1000100011111101001011111100001011001000110 0 0551100...

(1/2, 21024)
log2(1.0110000101010101010111110111010110001000010110110100 × 2512)

= 1000000000.0111011100000010110100000011110100110111001 1 1550011...

Table 10.8: Worst cases for log2(x) in the full double-precision range. Values of x that are integer powers of 2 are omitted. For values
larger than 1/2, we only give one of the worst cases: the one with exponent 512. The other ones have the same mantissa, and exponents
between 513 and 1023. For values smaller than 1/2, we also give one of the worst cases only: the one with exponent −513. The other ones
have the same mantissa and exponents between −1024 and −514 [208].

210
C

hapter
10.

FinalR
ounding

Interval worst case (binary)

[2−24, 2−17]
sin 1.11100111000010 × 2−20

= 1.1101111111111111111111111111111111111111000000101110 0 0721110... × 2−20

[2−17, 1/32]
sin 1.0101100110001011101011101001111001100011001011110110 × 2−7

= 1.0101100110001010000010101110101001001000100110010110 0 1590000... × 2−7

[1/32, 1]
sin 1.1111111001110110011101110011100111010000111101101101 × 2−2

= 1.1110100110010101000001110011000011000100011010010101 1 1650000... × 2−2

[1, 2 + 4675
8192]

sin 1.1001001000011111101101010100010001000010110100011000

= 0.111 1 1540110...

sin 1.0110011101010110011101000101011101110000101001010001 × 21

= 1.0100111111110011010100001110010000010010100000100001 0 0541010... × 2−2

Table 10.9: Worst cases for sin(x) in double-precision in the range [2−24, 2 + 4675
8192].

10.7.
O

btained
W

orstC
ases

for
D

ouble-P
recision

211

Interval worst case (binary)

[sin(2−24), sin(2−19)]
arcsin 1.1101111111111111111111111111111111111111000000101110 × 2−20

= 1.11100111000001 1 1720001... × 2−20

[sin(2−19), sin(2−18)]
arcsin 1.1101111111111111111111111111111111111100000010111000 × 2−19

= 1.1110000000000000000000000000000000000000011100000111 1 1660001... × 2−19

[sin(2−18), 1]
arcsin 1.1110100110010101000001110011000011000100011010010110 × 2−2

= 1.1111111001110110011101110011100111010000111101101101 0 0641000... × 2−2

Table 10.10: Worst cases for the arc-sine function in double-precision in the range [sin(2−24), 1].

212
C

hapter
10.

FinalR
ounding

Interval worst case (binary)

[2−25, 2−22]
cos 1.10001001 × 2−23

= 0.11101110000 0 0881101...

[2−22, 2−18]
cos 1.1000100100 × 2−22

= 0.1110111000000 0 0821101...

[2−18, 2−17]
cos 1.0010000000000000000000000000000000000000111100110000 × 2−18

= 0.11111111111111111111111111111111111101011110000000000 0 0601001...

[2−17, 1/256]
cos 1.0000011010110101000001010101010100001110011010110010 × 2−9

= 0.11111111111111111101111001001101000111111101111111110 0 0581100...

[1/256, 1]
cos 1.1001011111001100110100111101001011000100001110001111 × 2−6

= 0.11111111111010111011001101011101010000111000010101000 1 1550111...

[1, 12867
8192]

cos(1.0110101110001010011000100111001111010111110000100001)

= 1.0011001101111111110001011011000001110010110001010010 1 0541011... × 2−3

Table 10.11: Worst cases for cos(x) in double-precision in the range [2−25, 12867/8192]. 12867/8192 is slightly less than π/2. The input
values less than 2−25 are easily handled.

10.7.
O

btained
W

orstC
ases

for
D

ouble-P
recision

213

Interval worst case (binary)

[cos
(

12867
8192

)
, 1 − 2−53]

arccos(1.1111110101110011011110111110100100010100010101111000 × 2−11)

= 1.1001000111100000000001101101010000011101100011011000 1 1620010...

Table 10.12: Worst case for arccos(x) in double-precision in [cos(12867/8192), 1 − 2−53] ≈ [0.0001176, 1 − 2−53]. It must be noticed
that 1 − 2−53 is the largest FP number less than 1.

214
C

hapter
10.

FinalR
ounding

Interval worst case (binary)

[2−25, 2−18]
tan 1.11011100011111 × 2−22

= 1.11100101010001 0 1780100...2−22

[2−18, 2−17]
tan 1.0110011111111111111111111111111111111010000100010100 × 2−18

= 1.0110100000000000000000000000000000001000111001100001 1 1570100...2−18

[2−17, arctan
(1

2

)
]

tan(1.0101000001001000011010110010111110000111000000010100 × 2−5)

= 1.0101000001111000110011101011111111111001110001110010 1 0571001... × 2−5

[arctan
(1

2

)
, arctan(2)]

tan(0.10100011010101100001101110010001001000011010100110110)

= 0.10111101110100100100111110111001110011000001010011110 1 1540011...

Table 10.13: Worst cases for tan(x) in double-precision in [2−25, arctan(2)], with arctan(2) ≈ 1.107148.

10.7.
O

btained
W

orstC
ases

for
D

ouble-P
recision

215

Interval worst case (binary)

[tan(2−25), tan(2−18)]
arctan 1.1110000000000000000000000000000000000000010101000110 × 2−21

= 1.1101111111111111111111111111111111111111110001111100 0 0721011... × 2−21

[tan(2−18), tan
(

1
128

)
]

arctan 1.0010001011101000110101110101111000101011110001111111 × 2−11

= 1.0010001011101000110101010110100101001010110100101011 1 0591101... × 2−11

[tan
(

1
128

)
, 1

2]
arctan(1.1010100100110011111111100001011101101011001101110101 × 2−3)

= 1.1010001100111111001100101010110001011100111010110100 1 1550110... × 2−3

[12 , 2]
arctan(0.10111101110100100100111110111001110011000001010011111)

= 0.10100011010101100001101110010001001000011010100110110 0 0551111...

Table 10.14: Worst cases for arctan(x) in double-precision in [tan(2−25), 2].

216 Chapter 10. Final Rounding

than n digits, that is, the time already needed by current machines to compute
an elementary function without guaranteed correct rounding. Indeed, the new
SUN’s Libmcr10 and LIP-Arenaire’s Crlibm11 libraries provide correct rounding
and have good performances. Research is active in this area.

Due to the knowledge of the worst cases, computing correctly rounded
elementary functions will become easier during the next few years. It is therefore
high time to think about a standard. Among the many questions that could be
raised when elaborating a standard, there are:

• should the standard provide correct rounding only, or should it also pro-
vide “cheaper” rounding modes for applications where speed prevails ?

• if “cheaper” rounding modes are provided, should a flag be raised when
the result is not correctly rounded ?

• providing exactly rounded functions in the entire range might be expen-
sive: the domain where the functions are correctly rounded should be
discussed.

These issues have been discussed by de Dinechin and Gast [96]. Defour,
Hanrot, Lefèvre, Muller, Revol and Zimmermann [103] recently presented some
aspects of what a standard for the implementation of the mathematical functions
could be.

10See http://www.sun.com/download/products.xml?id=41797765.
11See https://lipforge.ens-lyon.fr/projects/crlibm/.

Chapter 11

Miscellaneous

11.1 Exceptions

The handling of the exceptional cases (underflow, overflow, Not A Number,
“inexact” flag. . .) requires even more caution with the elementary functions
than with the basic operations +, −, ×, ÷, and the square root. This is due
to the high nonlinearity of the elementary functions: when one obtains +∞ as
the result1 of a calculation that only contains the four basic operations and the
square root, this does not necessarily mean that the exact result is infinite or too
large to be representable, but at least the exact result is likely to be fairly large.
Similarly, when one obtains 0, the exact result is likely to be small.2 With the
elementary functions, this is not always true. Consider the following examples.

• Although when X is +∞, the only reasonable value to return when com-
puting ln(X) is +∞, this may lead to computed results far from the actual
results. For instance, in the IEEE-754 double-precision format, the compu-
tation of ln(exp(750)) will give +∞, whereas the correct answer should
have been 750;

• similarly, when X is equal to 0, the only reasonable value to be returned
as ln(X) is −∞. This may also lead to computed values far from the exact
results.

Furthermore, whereas the four arithmetic operations are almost always
mathematically defined (the only exception is division by zero, and, incidentally,

1Here, we mean +∞ as the result of an overflow, not the “exact” +∞ that results for instance
from a division by zero.

2And yet, this is not always true. Consider the following example, due to Lynch and Swartz-
lander [221] Let us compute

f(x) =
x2

√
x3 + 1

.

If x is large enough but not too large, the computation of x3 returns +∞, whereas x2 is still finite.
As a consequence, the returned result is 0, and the exact result is large (close to

√
x).

218 Chapter 11. Miscellaneous

it is actually defined in the IEEE-754 standard), there are many more values for
which the elementary functions are not defined or may underflow or overflow,
and handling these cases is not always simple. Let us consider the example of the
tangent function. The value tan(x) is infinite if x is π/2 plus an integer multiple
of π. In practice, this never occurs if x is a floating-point number: “machine
numbers” are rational numbers, so they cannot be of the form π/2 + kπ. And
yet, a natural question arises: are there machine numbers x so close to a number
π/2 + kπ that their tangent is too large to be represented in the floating-point
format being used? We can use the results presented in Chapter 9, where we
saw (Table 9.3) that the IEEE double-precision number closest to a multiple
of π/2 is 6381956970095103 × 2+797, whose tangent is −2.13 · · · × 1018, to see
that the problem can never occur in the IEEE double-precision format.3 The
same argument shows that the sine or cosine of a normalized double precision
floating-point number cannot be a subnormal number. However, this does not
mean that this problem will never occur in another floating-point format.

11.1.1 NaNs

Each time f(x) is not mathematically defined and cannot be defined using con-
tinuity, NaN should be returned.4 Examples are sin(±∞), cos ±∞, or ln(−1). We
must keep in mind that NaN means “Not a Number”, which is quite different
from “the system is unable to deliver the right result.” For instance, it cannot be
used to compensate for the lack of a careful range reduction. There are still too
many systems that return an error message or a NaN when the sine or cosine of a
large number is requested. If the correct result does exist, its adequate represen-
tation (normalized or subnormal number, ±∞, ±0) must be returned. In [182],
W. Kahan gives examples of functions for which there are differences of opin-
ion about whether they should be invalid or defined by convention at internal
continuities. One of these examples is 1.0∞, for which Kahan suggests NaN.

11.1.2 Exact results

It is difficult to know when functions such as xy give an exact result. However,
using a theorem due to Lindemann,5 one can show that the sine, cosine, tangent,

3And it never occurs in the IEEE single-precision format either.
4An exception is 00. There seems to be a general consensus to return 1 (mainly because some

mathematical relations that are true for all the integers but 0 remain true for 0with this convention;
this is discussed in [161]), although it cannot really be defined using continuity: for any positive
number y there exist a sequence (un) and a sequence (vn), both going to zero as n goes to infinity,
and such that uvn

n goes to y. One can choose, for instance, un = 1/n and vn = − ln(y)/ ln(n).
Goldberg [152] justifies the choice 00 = 1 by noticing that if f and g are analytical functions that
take on the value 0 at 0, then

lim
x→0

f(x)g(x) = 1.

5That theorem, already used in the previous chapter, shows that if x is a nonzero algebraic
number, then exp(x) is transcendental.

11.1. Exceptions 219

exponential, or arctangent of a nonzero finite machine number, or the logarithm
of a finite machine number different from 1 is not a machine number, so that
its computation in floating-point arithmetic is always inexact. With the most
common functions, the only “exact” operations are:

• for the radix-e logarithm and exponential functions:

1. ln(0) = −∞6 ;

2. ln(+∞) = +∞ ;

3. ln(1) = 0 ;

4. e0 = 1 ;

5. e−∞ = 0 ;

6. e+∞ = +∞ ;

• for the radix-2 logarithm and exponential functions (assuming a radix-2
representation):

1. log2(0) = −∞ ;

2. log2(+∞) = +∞ ;

3. log2(1) = 0 ;

4. for any integer p such that 2p is exactly representable (i.e., p is be-
tween the smallest possible exponent — unless denormal numbers
are allowed — and the largest one), log2(1.0 × 2p) = p ;

5. 20 = 1 ;

6. 2−∞ = 0 ;

7. 2+∞ = +∞ ;

8. for any integer p between the smallest possible exponent (Emin) and
the largest one, 2p = 1.0 × 2p. If denormal numbers are allowed,
values of p between Emin minus the number of mantissa bits and
Emin must be added ;

• for the sine, cosine, tangent, and arctangent functions:

1. sin(0) = 0 ;

2. cos(0) = 1 ;

3. tan(0) = 0 ;

4. arctan(0) = 0 ;

6Gal and Bachelis [148] suggest returning NaN when ln(−0) is computed, since −0 can be
obtained from a negative underflow (i.e., the exact result can be a nonzero negative number).
I prefer to behave as if the input value were exact.

220 Chapter 11. Miscellaneous

• for the hyperbolic sine, cosine, tangent, and arctangent functions:

1. sinh(0) = 0 ;
2. sinh(−∞) = −∞ ;
3. sinh(+∞) = +∞ ;
4. cosh(0) = 1 ;
5. cosh(−∞) = +∞ ;
6. cosh(+∞) = +∞ ;
7. tanh(0) = 0 ;
8. tanh(−∞) = −1 ;
9. tanh(+∞) = 1 ;

10. tanh−1(0) = 0 ;
11. tanh−1(−1) = −∞ ;
12. tanh−1(1) = +∞.

11.2 Notes on xy

The power function f(x, y) = xy is very difficult to implement if we want good
accuracy [64, 287]. A straightforward use of the formula

xy = exp(y ln(x))

is to be avoided. First, it would always produce NaNs for negative values of x,
although xy is mathematically defined when x < 0 and y is an integer.7 Second,
unless the intermediate calculations are performed with a significantly larger
precision, that formula may lead to very large relative errors.Assume that y ln(x)
is computed with relative error ε, that is, that the computed value p of y ln(x)
satisfies:

p = (1 + ε)y ln(x).

If we neglect the error due to the implementation of the exponential function
itself, we find that the computed value of xy will be:

exp(p)

= exp(y ln(x) + yε ln(x))

= xy × eεy ln(x).

7We should notice that for this function, although it is the best that can be done, returning
the machine number that best represents the exact result — according to the active rounding
mode — can be misleading: there may be some rare cases where x < 0 and y is an inexact result
that is, by chance, approximated by an integer. In such cases, returning a NaN would be a better
solution, but in practice, we do not know whether y is exact. This problem (and similar ones)
could be avoided in the future by attaching an “exact” bit flag in the floating-point representation
of numbers.

11.2. Notes on xy 221

xy Error in ulps

(113/64)2745497944039423/2199023255552 1121.39

2994 718.00

3559 955.17

5441 790.61

56156 1052.15

100149 938.65

220124 889.07

299387 898.33

34823062188649005575/35184372088832 1200.13

Table 11.1: Error, expressed in ulps, obtained by computing xy as exp(y ln(x)) for
various x and y assuming that exp and ln are exactly rounded to the nearest, in IEEE-
754 double-precision arithmetic. The worst case found during our experimentations was
1200.13 ulps for 34823062188649005575/35184372088832, but it is very likely that there are
worse cases.

Therefore, the relative error on the result,∣∣∣eεy ln(x) − 1
∣∣∣ > εy ln(x)

can be very large.8 We must realize that even if the exp and ln functions were
correctly rounded (which is not yet guaranteed by most existing libraries; see
Chapter 10 for a discussion on that problem), the error could be large. Table 11.1
gives the error obtained by computing xy as exp(y ln(x)) in IEEE-754 double-
precision arithmetic for various values of x and y and assuming that exp and ln
are correctly rounded to the nearest.

Now, to estimate the accuracy with which the intermediate calculation must
be carried out, we have to see for which values x and y the number y ln(x) is
maximum. It is maximum when xy is the largest representable number, that is,

xy ≈ 2Expmax+1,

which gives y ln(x) = (Expmax + 1) ln(2). If we want a relative error on the
result less than α, we must compute y ln(x) with a relative error less than ε,
where ∣∣∣eyε ln(x) − 1

∣∣∣ < α,

8Some programming languages avoid this problem by simply not offering function xy . Of
course, this is the best way to make sure that most programmers will use the bad solution
exp(y ln(x)).

222 Chapter 11. Miscellaneous

which is approximately equivalent to

yε ln(x) < α.

This gives
ε <

α

(Expmax + 1) ln(2)
.

Therefore we must have

− log2(ε) > − log2(α) + log2(Expmax + 1) + log2(ln(2)).

Thus to get a correct result, we must get ln(x) with a number of additional
bits of precision that is slightly more than the number of exponent bits.

All this shows that, although requiring correct rounding for sin, cos, exp,
2x, ln, log2, arctan, tan, and the hyperbolic functions would probably be a good
step towards high quality arithmetic environments, such a requirement seems
difficult to fulfill for the power function if speed is at stake. The SUN LIBMCR
(see Section 12.5) provides a correctly rounded power function in double pre-
cision, by increasing the precision of the intermediate calculations until we can
guarantee correct rounding. Unfortunately, since the hardest to round cases are
not known for this function, this process can sometimes be rather slow. This
function should at least be faithfully rounded, that is, that the returned value
should be one of the two machine numbers closest to the exact result. In any
case, it is important, when xy is exactly representable in the target format, that
it is computed exactly.

11.3 Special Functions, Functions of Complex Numbers

A huge work on the evaluation of special functions (such as the gamma, erf,
Jacobi and Bessel functions) has been done by Cody, who initially wrote a pack-
age named FUNPACK [67], and later wrote a more portable package, SPEC-
FUN [71]. Macleod designed a package named MISCFUN for the evaluation of
several special functions which are not used often enough to have been included
in the standard libraries [222]. Cody also worked on the performance evaluation
of programs for these functions [70, 75].

The evaluation of functions of a complex variable can be done using the
real functions. The most usual formulas can be found, for instance, in refer-
ence [21], and a discussion on the definition of these functions can be found in
reference [82].And yet, a naive use of these formulas will frequently lead to inac-
curate functions, wrong branch cuts, and under/overflows during the interme-
diate computations. Kahan’s paper on branch cuts [180] brings this problem to
the fore and gives elegant solutions. Hull, Fairgrieve and Tang give reliable and
accurate algorithms for the common complex elementary functions [172, 173].
Cody wrote a package named CELEFUNT [72] for testing a complex elementary
function library.

11.3. Special Functions, Functions of Complex Numbers 223

One can also define square roots and elementary functions of matrices
(for instance, an exponential or cosine of a matrix can be defined by the usual
Taylor series). This has many numerical applications, for solving some differ-
ential equations. There is a large literature on this domain. For instance, Cheng
and others deal with the logarithm of a matrix [60], Higham and Smith give
an algorithm for computing cosines of matrices [166], and Iserles and Zanna
recently published a paper on the computation of matrix exponentials [177].

Chapter 12

Examples of Implementation

This chapter is far from being exhaustive. The implementations it describes
may not be the best ones, and certainly will at least slightly vary between when
this chapter is written and when you read it. Some of these implementations
are rather old. My purpose, here, is to show, through some examples, how the
various techniques described in this book can be used.

12.1 Example 1: The Cyrix FastMath Processor

In the Cyrix Fastmath processor [86, 140], five “core” functions are directly im-
plemented: sine, tangent, arctangent, 2x −1, and log2(x+1). The other functions
are implemented using the core functions. The approximations used are shown
to be monotonic [141]. For example:

• to compute 2x − 1 on [−1, 1], a rational approximation of 2x/2 − 1 is first
computed, and then the identity

2x − 1 =
(
2x/2 − 1

) [(
2x/2 − 1

)
+ 2

]
is used;

• to compute sin(x) on [−π/4,+π/4], an odd polynomial approximation of
the form xP (x2) is used. The cosine is obtained as

cos(x) = ±
√

1 − sin2(x).

On the Cyrix FastMath processor, the square root is almost as fast as divi-
sion, so there is little penalty from using it;

• to compute log2(x + 1) on [1/
√

2 − 1,
√

2 − 1], the number

g =
x

x + 2

226 Chapter 12. Examples of Implementation

is computed, so that

log2 (1 + x) = log2

(
1 + g

1 − g

)
is an odd function of g. Then an odd rational approximation of the form
g × Q(g2) is used. Using an odd approximation reduces the number of
multiplications required to evaluate it:

• to compute tan(x) on [−π/4,+π/4], an odd polynomial approximation of
the form xP (x2)/Q(x2) is used;

• to compute arctan(x) on [−π/32,+π/32], a five-segment1 odd rational ap-
proximation of the form xP (x2)/Q(x2) is used.

All approximations have the general form xR(x), where R(x) is a rational
function or a polynomial. In each case, the graph of R is relatively flat and
stays well away from zero, so R can be efficiently and accurately evaluated in
fixed-point.

12.2 The INTEL Functions Designed for
the Itanium Processor

As explained by Harrison, Kubaska, Story and Tang [159], the IA-64 instruction
set, whose first implementation is the INTEL/HP Itanium processor, has several
key features that can be used for designing fast and/or accurate elementary
function algorithms:

• some parallelism is available, since there are several floating-point units,
and each of them is pipelined;

• the internal extended-precision format can be used to make double-
precision programs very accurate;

• the fused multiply-add instruction (see Section 2.1.5) makes polynomial
evaluation faster and in general more accurate than what we would get by
using separate additions and multiplications. This and the parallelism also
make the latency of the “computational part” of the function evaluation
(mainly polynomial evaluation) much shorter than memory references,
which must be taken into account: large tables should be avoided when-
ever it is possible.

1The interval is split into five sub-intervals, and a different approximation is chosen for each
sub-interval. The advantages of such a method are described in the next chapter.

12.2. The INTEL Functions Designed for the Itanium Processor 227

The designers of Intel’s library for the IA-64 architecture [83, 159, 295] there-
fore made the following choices:

• to avoid loading constants, a very simple range reduction technique is
used;

• polynomials of large degree are favored: this allows the domain where
they approximate well the function to be large (which simplifies range
reduction and requires less memory), and this is not a large penalty
in terms of speed (since Estrin’s method — see Section 3.8.2 — can be
used thanks to the available parallelism), nor in terms of accuracy when
double-precision is at stake (thanks to the availability of an internal
extended-precision format).

The latency of their double-precision functions varies from 52 cycles (for
the natural logarithm) to 70 cycles (for the sine or cosine). The accuracy of most
of their functions is within 0.51 ulps. The number of double-extended table
entries required varies from none at all (tangent and arctangent) to 256 (natural
logarithm).

Let us now give two examples, drawn from [159].

12.2.1 Sine and cosine

sin(x) is computed as follows

1. range reduction: compute the closest integer N to 16x/π, then compute

r = (x − NP1) − NP2

using two consecutive fused multiply-adds, whereP1 andP2 are extended-
precision numbers such that x − NP1 is exactly computed and P1 + P2
is as close as possible to π/16. This is Cody and Waite’s method —
see Section 9.2 —, made more accurate by the availability of the fused
multiply-add instruction and the internal extended-precision format;

2. polynomial approximation: we compute two polynomials, an odd
polynomial

p(r) = r + p1r
3 + p2r

5 + · · · + p4r
9

that approximates sin(r) and an even polynomial

q(r) = q1r
2 + q2r

4 + · · · + q4r
8

that approximates cos(r) − 1. Such approximations with particular forms
are computed using methods similar to those presented in Section 3.7.2;

228 Chapter 12. Examples of Implementation

3. reconstruction: the returned result is

Cp(r) + (S + Sq(r))

where C is cos(Nπ/16) and S is sin(Nπ/16), read from a table.

The cosine is computed very similarly: it suffices to add 8 to N once it is
obtained.

12.2.2 Arctangent

No range reduction is performed. Only two cases are considered: |x| ≥ 1 and
|x| < 1. Having such large intervals requires the use of polynomials of large
degree. Indeed, a polynomial of degree 47 is used. The case of input arguments
greater than 1 is dealt with using

arctan(x) = sign (x)
π

2
− arctan

(
1
x

)
(12.1)

but since a direct use of (12.1) might sometimes lead to inaccuracies and requires
a time-consuming division, some care is taken. More precisely:

1. If |x| < 1, the authors of [159] suggest to approximate arctan(x) by a
polynomial of the form

x + x3
(
p0 + p1y + p2y

2 + · · · + p22y
22
)

where y = x2. Again, such approximations with particular forms are com-
puted using methods similar to those presented in Section 3.7.2.

2. If |x| ≥ 1, arctan(x) is approximated by

sign (x)
π

2
− c45r(β)q(x)

where

• c is an approximation to 1/x (with relative error less than 2−8.886)
obtained using the frcpa instruction that is available on the Itanium;

• β = 1 − xc is close to 0;

• r(β) = 1 + r1β + r2β
2 + · · · + r10β10 is a degree-10 polynomial ap-

proximation to (1 − β)−45;

• q(x) = q0 + q1y + q2y
2 + · · · + q22y

22, with y = x2, is a degree-44
polynomial approximation to x45 arctan(1/x).

12.3. The LIBULTIM Library 229

12.3 The LIBULTIM Library

The LIBULTIM library (also called MathLib) was developed by Ziv and col-
leagues at IBM. Although it seems that it is no longer supported, that library is
of great historical importance, since it was the first one that provided correctly
rounded transcendental functions. Since at the time it was developed, the worst
cases for correct rounding in double-precision were not known (they still are un-
known for many functions and domains), the authors assumed that performing
the intermediate calculations with 800 bits of precision was enough. Of course,
all calculations were not performed with such a huge precision, Ziv’s “multi-
level strategy” [328] (see Chapter 10) was used: the function being considered
was first evaluated with rather low precision, and the precision was increased
in case the previous calculation did not suffice to guarantee correct rounding.

12.4 The CRLIBM Library

The CRLIBM library2 [92] was developed by the Arenaire research group in
Lyon, France. It aims at returning correctly rounded results in double-precision,
and uses the worst cases for rounding generated using Lefèvre’s algorithms [206,
208] (see Chapter 10). The first functions of CRLIBM were written by Defour
during the preparation of his PhD [101].

Ziv’s multilevel strategy is used, but to guarantee correct roundings, two
steps only are necessary here: the knowledge of the worst cases for correct
rounding allows us to avoid overestimating the necessary intermediate pre-
cision. More precisely:

• during the first step, the function is evaluated with between 60 and 80
bits of accuracy (depending on the function). In most cases this suffices
to return a correctly rounded result. In the following, we call this step the
quick phase of the algorithm;

• when the quick phase does not suffice, we use a more accurate yet slower
method, tightly targeted at the precision given by Lefèvre’s cases. In the
following, we call this step the accurate phase of the algorithm.

The authors of CRLIBM publish, with each function, a proof of its behavior.
An ad-hoc multiple-precision library, called SCSLIB [102], was designed for the
accurate phase.Although that may seem strange at first glance, the second phase
is much simpler than the first one: first, performance is not that much an issue
for the accurate phase, since that step will rarely be taken, second, the SCSLIB
library provides much precision (indeed, more than what is actually needed).
On the other hand, for the quick phase, performance is a primary concern, and

2See http://lipforge.ens-lyon.fr/projects/crlibm/.

230 Chapter 12. Examples of Implementation

tight error bounds must be obtained (using for instance methods such as the
one presented in Section 3.9).

Let us now give two examples.

12.4.1 Computation of sin(x) or cos(x) (quick phase)

Assume we wish to evaluate sin(x) or cos(x). The trigonometric range
reduction algorithm of crlibm computes an integer k and a reduced argument
y such that

x = k.π/256 + y

where the reduced argument y is computed as a “double-double” yh+y� (i.e., the
sum of two double-precision numbers) and belongs to [−π/512, π/512]. Notice
that π/512 < 2−7. Then we read from a table{

sh(k) + s�(k) ≈ sin(kπ/256)
ch(k) + c�(k) ≈ cos(kπ/256)

and we use{
sin(kπ/256 + y) = sin(kπ/256) cos(y) + cos(kπ/256) sin(y)
cos(kπ/256 + y) = cos(kπ/256) cos(y) − sin(kπ/256) sin(y)

where cos(y) and sin(y) are evaluated by first approximating, using a small
polynomial, two double-precision numbers, e and f , defined by cos(y) = 1 + e
and sin(y) = (yh + y�)(1 + f). This gives 14 extra bits of accuracy, so this first
step is very accurate.

12.4.2 Computation of ln(x)

The quick phase is accurate to 57 or 64 bits, depending on the execution path.
The accurate phase is accurate to 120 bits, which suffices to guarantee correct
rounding (see Table 10.6).

Subnormal input numbers are handled using

ln(x) = −52 ln(2) + ln
(
252x

)
.

Now, if x is a normalized positive floating-point number, range reduction is
very simple. First, the mantissa of x is divided by 2 if needed, so that we
can write

x = y2E

with
11
16

< y <
23
16

.

The interval [11/16, 23/16] is split into 8 subintervals. The final range reduction
is done by subtracting from y the middle value of the subinterval where it lies,
to get a new value z. This is done without error (see Theorem 2, in Chapter 2).

12.5. SUN’s LIBMCR Library 231

ln(y) is then approximated by a degree-12 polynomial function of z (the
coefficients of the polynomial depend on the subinterval where y lies), whose
first two coefficients are exactly representable as the sum of two double-precision
numbers.

12.5 SUN’s LIBMCR Library

The LIBMCR library3 was developed by K.C. Ng, N. Toda and others at SUN
Microsystems. The first beta version was published in December 2004, soon
before the writing of this edition, so I have not yet much information on this
library. It provides correctly rounded functions in double-precision.

As an example, let us show how natural logarithms are evaluated by
LIBMCR:

• first, the exceptional cases are processed (log(1) = 0 and log(+∞) = +∞,
log(0) = −∞, log(negative) = NaN);

• then, an “almost correctly rounded” function is called;

• if the result is too close to the middle of two consecutive floating-point
numbers,4 then a multiple-precision program is called with increasing
precision until we can guarantee correct rounding.

Let us summarize the “almost correctly rounded” step. Assume we wish
to compute log(x). First, x is expressed as r × 2n. Then, from a table, we read a
value y such that y is close to r (more precisely, |y − r| < 2−5 + 2−12) and log(y)
is very close to a double-precision number (at a distance less than 2−24 ulps).
This is Gal’s accurate-table method, described in Section 4.3. We therefore have

log(x) = n log(2) + log(y) + log(r/y).

Define s = (r − y)/(r + y). |s| is less than 0.01575, and log(r/y) is computed
using the Taylor approximation

log
(

r

y

)
= log

(
1 + s

1 − s

)
= 2s +

2
3
s3 +

2
5
s5 + · · · +

2
13

s13.

Much care is taken for evaluating the series with 77-bit accuracy.

12.6 The HP-UX Compiler for the Itanium Processor

As noticed by Markstein [225], it is very frequent that a program invokes both the
sine and cosine routines for the same argument (e.g., in rotations, Fourier trans-
forms, etc). These routines share many common calculations: range reduction,

3See http://www.sun.com/download/products.xml?id=41797765.
4Assuming rounding to the nearest.

232 Chapter 12. Examples of Implementation

computation of the sine and cosine of the reduced argument. Hence Markstein
suggests using this property for performing these common calculations only
once. The HP-UX compiler for Itanium [214] has implemented this methodol-
ogy. The library does not provide correct rounding, and yet its accuracy is, in
general, very good (for instance, the largest observed — i.e., not proven — error
for trigonometric functions in double-precision is 0.502 ulps [214]).

Markstein’s algorithms for elementary functions on the Itanium are pre-
sented in his excellent book [224]. For instance, exp(x) is computed as

2mtn2u,

where m = �x/ ln(2)�, n is constituted by the leading L bits of the fractional part
of x/ ln(2), u is the remaining part of that fractional part, and tn is

22−Ln

read from a table. A typical value of L is 10. The number 2u is approximated by
a polynomial.

Bibliography

[1] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with
formulas, graphs and mathematical tables. Applied Math. Series 55. National
Bureau of Standards, Washington, D.C., 1964.

[2] R. C. Agarwal, J. C. Cooley, F. G. Gustavson, J. B. Shearer, G. Slishman,
and B. Tuckerman. New scalar and vector elementary functions for the
IBM system/370. IBM Journal of Research and Development, 30(2):126–144,
March 1986.

[3] H. M. Ahmed, J. M. Delosme, and M. Morf. Highly concurrent computing
structures for matrix arithmetic and signal processing. Computer, 15(1):
65–82, January 1982.

[4] H. Alt. Comparison of arithmetic functions with respect to Boolean cir-
cuits. In Proceedings of the 16th ACM STOC, pages 466–470, 1984.

[5] American National Standards Institute and Institute of Electrical and
Electronic Engineers. IEEE standard for binary floating-point arithmetic.
ANSI/IEEE Standard, Std 754-1985, New York, 1985.

[6] C. Ancourt and F. Irigoin. Scanning polyhedra with do loops. In Proceed-
ings of the 3rd ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming (PPoPP’91), pages 39–50. ACM Press, New York, NY, 1991.

[7] M. Andrews and T. Mraz. Unified elementary function generator. Micro-
processors and Microsystems, 2(5):270–274, October 1978.

[8] E. Antelo, J. D. Bruguera, J. Villalba, and E. Zapata. Redundant CORDIC
rotator based on parallel prediction. In Knowles and McAllister, editors,
Proceedings of the 12th IEEE Symposium on Computer Arithmetic, pages 172–
179. IEEE Computer Society Press, Los Alamitos, CA, 1995.

[9] E. Antelo, T. Lang, and J. D. Bruguera. Very-high radix CORDIC rotation
based on selection by rounding. Journal of VLSI Signal Processing Systems,
25(2):141–154, June 2000.

234 Bibliography

[10] H. M. Aus and G. A. Korn. Table-lookup/interpolation function genera-
tion for fixed-point digital computations. IEEE Transactions on Computers,
C-18(8):745–749, August 1969.

[11] A. Avizienis. Signed-digit number representations for fast parallel arith-
metic. IRE Transactions on electronic computers, 10:389–400, 1961. Reprinted
in E. E. Swartzlander, Computer Arithmetic, Vol. 2, IEEE Computer Society
Press, Los Alamitos, CA, 1990.

[12] D. Bailey. Some background on kanada’s recent pi calculation. Technical
report, Lawrence Berkeley National Laboratory, 2003. Available at http:
//crd.lbl.gov/˜dhbailey/dhbpapers/index.html.

[13] D. H. Bailey. Algorithm 719, multiprecision translation and execution of
FORTRAN programs. ACM Transactions on Mathematical Software, 19(3):
288–319, September 1993.

[14] D. H. Bailey, J. M. Borwein, P. B. Borwein, and S. Plouffe. The quest for pi.
Mathematical Intelligencer, 19(1):50–57, 1997.

[15] D. H. Bailey, Y. Hida, X. S. Li, and B. Thompson. ARPREC: an arbi-
trary precision computation package. Technical report, Lawrence Berke-
ley National Laboratory, 2002. Available at http://crd.lbl.gov/
˜dhbailey/dhbpapers/arprec.pdf.

[16] B. Le Bailly and J. P. Thiran. Computing complex polynomial chebyshev
approximants on the unit circle by the real remez algorithm. SIAM Journal
on Numerical Analysis, 36(6):1858–1877, 1999.

[17] J. C. Bajard, J. Duprat, S. Kla, and J. M. Muller. Some operators for on-
line radix 2 computations. Journal of Parallel and Distributed Computing,
22(2):336–345, August 1994.

[18] J. C. Bajard, S. Kla, and J. M. Muller. BKM: A new hardware algorithm
for complex elementary functions. IEEE Transactions on Computers, 43(8):
955–963, August 1994.

[19] G. A. Baker. Essentials of Padé Approximants. Academic Press, New York,
NY, 1975.

[20] G. A. Baker. Padé Approximants. Number 59 in Encyclopedia of Mathe-
matics and its Applications. Cambridge University Press, New York, NY,
1996.

[21] H. G. Baker. Less complex elementary functions. ACM SIGPLAN Notices,
27(11):15–16, 1992.

[22] P. W. Baker. Suggestion for a fast binary sine/cosine generator. IEEE
Transactions on Computers, C-25(11), November 1976.

Bibliography 235

[23] G. Bandera, M. Gonzalez, J. Villalba, J. Hormigo, and E. L. Zapata. Eval-
uation of elementary functions using multimedia features. In Proceed-
ings of the 18th International Parallel and Distributed Processing Symposium
(IPDPS’04). IEEE Computer Society Press, Los Alamitos, CA, 2004.

[24] R. Barrio. A unified rounding error bound for polynomial evaluation.
Advances in Computational Mathematics, 19(4):385–400, 2003.

[25] P. Beame, S. Cook, and H. Hoover. Log depth circuits for division and
related problems. SIAM Journal on Computing, 15:994–1003, 1986.

[26] M. Bekooij, J. Huisken, and K. Nowak. Numerical accuracy of fast fourier
transforms with CORDIC arithmetic. Journal of VLSI Signal Processing
Systems, 25(2):187–193, June 2000.

[27] J.-P. Berrut and H. D. Mittelmann. Adaptive point shifts in rational ap-
proximation with optimized denominator. Journal of Computational and
Applied Mathematics, 164–165:81–92, 2004.

[28] C. M. Black, R. P. Burton, and T. H. Miller. The need for an industry stan-
dard of accuracy for elementary-function programs. ACM Transactions on
Mathematical Software, 10(4):361–366, December 1984.

[29] G. Bohlender, W. Krämer, and W. L. Miranker. Grading of basic arithmeti-
cal operations and functions. Technical Report RC 19593 (86059), IBM
Research Division, T. J. Watson Research Center, 1994.

[30] S. Boldo, M. Daumas, and L. Théry. Formal proofs and computations in
finite precision arithmetic. In Hardin and Rioboo, editors, Proceedings of the
11th Symposium on the Integration of Symbolic Computation and Mechanized
Reasoning, 2003. Available at http://ftp.lip6.fr/lip6/reports/
2003/lip6.2003.010.pdf.

[31] S. Boldo and J.-M. Muller. Some functions computable with a fused-mac.
In Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH-
17). IEEE Computer Society Press, Los Alamitos, CA, 2005.

[32] A. D. Booth. Asigned binary multiplication technique. Quarterly Journal of
Mechanics and Applied Mathematics, 4(2):236–240, 1951. Reprinted in E. E.
Swartzlander, Computer Arithmetic, Vol. 1, IEEE Computer Society Press,
Los Alamitos, CA, 1990.

[33] J. Borwein and D. Bailey. Mathematics by Experiment: Plausible Reasoning
in the 21st Century. A. K. Peters, Natick, MA, 2004.

[34] J. M. Borwein and P. B. Borwein. The arithmetic-geometric mean and fast
computation of elementary functions. SIAM Review, 26(3):351–366, July
1984.

236 Bibliography

[35] J. M. Borwein and P. B. Borwein. On the complexity of familiar functions
and numbers. SIAM Review, 30(4):589–601, December 1988.

[36] P. Borwein and T. Erdélyi. Polynomials and Polynomials Inequalities. Grad-
uate Texts in Mathematics, Vol. 161. Springer-Verlag, New York, NY, 1995.

[37] E. L. Braun. Digital computer design. Academic Press, New York, NY, 1963.

[38] K. Braune. Standard functions for real and complex point and interval
arguments with dynamic accuracy. Computing, Suppl., 6:159–184, 1988.

[39] R. P. Brent. On the precision attainable with various floating point number
systems. IEEE Transactions on Computers, C-22(6):601–607, June 1973.

[40] R. P. Brent. Multiple precision zero-finding methods and the complexity
of elementary function evaluation. In J. F. Traub, editor, Analytic Compu-
tational Complexity. Academic Press, New York, NY, 1975.

[41] R. P. Brent. Fast multiple precision evaluation of elementary functions.
Journal of the ACM, 23:242–251, 1976.

[42] R. P. Brent. Algorithm 524, mp, a fortran multiple-precision arithmetic
package. ACM Transactions on Mathematical Software, 4(1):71–81, 1978.

[43] R. P. Brent. A fortran multiple-precision arithmetic package. ACM Trans-
actions on Mathematical Software, 4(1):57–70, 1978.

[44] R. P. Brent. Unrestricted algorithms for elementary and special functions.
In S. H. Lavington, editor, Information Processing 80, pages 613–619. North-
Holland, Amsterdam, 1980.

[45] W. S. Briggs and D. W. Matula. A 17 x 69 bit multiply and add unit with
redundant binary feedback and single cycle latency. In E. E. Swartzlander,
M. J. Irwin, and J. Jullien, editors, Proceedings of the 11th IEEE Symposium
on Computer Arithmetic, pages 163–171. IEEE Computer Society Press, Los
Alamitos, CA, 1993.

[46] N. Brisebarre, D. Defour, P. Kornerup, J.-M. Muller, and N. Revol. A new
range reduction algorithm. IEEE Transactions on Computers, 54(3):331–339,
March 2005.

[47] N. Brisebarre and J.-M. Muller. Correctly rounded multiplication by ar-
bitrary precision constants. In Proceedings of the 17th IEEE Symposium
on Computer Arithmetic (ARITH-17). IEEE Computer Society Press, Los
Alamitos, CA, 2005.

[48] N. Brisebarre, J.-M. Muller, and S. Raina. Accelerating correctly rounded
floating-point division when the divisor is known in advance. IEEE Trans-
actions on Computers, 53(8):1069–1072, August 2004.

Bibliography 237

[49] N. Brisebarre, J.-M. Muller, and A. Tisserand. Computing machine-
efficient polynomial approximations. Draft, LIP Laboratory, http://
perso.ens-lyon.fr/jean-michel.muller/bmt-toms.ps, 2004.

[50] A. Bultheel, P. Gonzales-Vera, E. Hendriksen, and O. Njastad. Orthogo-
nal Rational Functions, volume 5 of Cambridge Monographs on Applied and
Computational Mathematics. Cambridge University Press, New York, NY,
1999.

[51] J. W. Carr, III, A. J. Perlis, J. E. Robertson, and N. R. Scott. A visit to
computation centers in the Soviet Union. Commun. ACM, 2(6):8–20, 1959.

[52] A. Cauchy. Sur les moyens d’éviter les erreurs dans les calculs
numériques. Comptes Rendus de l’Académie des Sciences, Paris, 11:789–798,
1840. Republished in: Augustin Cauchy, oeuvres complètes, 1ère série,
Tome V, pp 431-442.Available athttp://gallica.bnf.fr/scripts/
ConsultationTout.exe?O=N090185.

[53] J. R. Cavallaro and N. D. Hemkumar. Efficient complex matrix transfor-
mations with CORDIC. In E. E. Swartzlander, M. J. Irwin, and J. Jullien,
editors, Proceedings of the 11th IEEE Symposium on Computer Arithmetic,
pages 122–129. IEEE Computer Society Press, Los Alamitos, CA, 1993.

[54] J. R. Cavallaro and F. T. Luk. CORDIC arithmetic for an SVD processor. In
M. J. Irwin and R. Stefanelli, editors, Proceedings of the 8th IEEE Symposium
on Computer Arithmetic, pages 113–120. IEEE Computer Society Press, Los
Alamitos, CA, 1988.

[55] J. R. Cavallaro and F. T. Luk. Floating-point CORDIC for matrix computa-
tions. In Proceedings of the 1988 IEEE International Conference on Computer
Design, pages 40–42, 1988.

[56] L. W. Chang and S. W. Lee. Systolic arrays for the discrete Hartley trans-
form. IEEE Transactions on Signal Processing, 39(11):2411–2418, November
1991.

[57] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan,
and S. M. Watt. Maple V Library Reference Manual. Springer-Verlag, Berlin,
1991.

[58] T. C. Chen. Automatic computation of logarithms, exponentials, ratios
and square roots. IBM Journal of Research and Development, 16:380–388,
1972.

[59] E. W. Cheney. Introduction to Approximation Theory. International Series in
Pure and Applied Mathematics. McGraw Hill, New York, NY, 1966.

238 Bibliography

[60] S. H. Cheng, N. J. Higham, C. S. Kenney, and A. J. Laub. Approximating
the logarithm of a matrix to specified accuracy. SIAM Journal on Matrix
Analysis and Applications, 22(4):1112–1125, 2001.

[61] C. Y. Chow and J. E. Robertson. Logical design of a redundant binary
adder. In Proceedings of the 4th IEEE Symposium on Computer Arithmetic.
IEEE Computer Society Press, Los Alamitos, CA, 1978.

[62] C. W. Clenshaw. Rational approximations for special functions. In D. J.
Evans, editor, Software for Numerical Mathematics. Academic Press, New
York, NY, 1974.

[63] D. Cochran. Algorithms and accuracy in the HP 35. Hewlett Packard
Journal, 23:10–11, June 1972.

[64] W. Cody and W. Waite. Software Manual for the Elementary Functions.
Prentice-Hall, Englewood Cliffs, NJ, 1980.

[65] W. J. Cody. A survey of practical rational and polynomial approximation
of functions. SIAM Review, 12(3):400–423, July 1970.

[66] W. J. Cody. Static and dynamic numerical characteristics of floating-point
arithmetic. IEEE Transactions on Computers, C-22(6):598–601, June 1973.

[67] W. J. Cody. Funpack, a package of special function subroutines. Technical
Memorandum 385, Argonne National Laboratory, Argonne, IL, 1981.

[68] W. J. Cody. Implementation and testing of function software. In P. C.
Messina and A. Murli, editors, Problems and Methodologies in Mathematical
Software Production, Lecture Notes in Computer Science 142. Springer-
Verlag, Berlin, 1982.

[69] W. J. Cody. MACHAR: A subroutine to dynamically determine machine
parameters. ACM Transactions on Mathematical Software, 14(4):301–311,
December 1988.

[70] W. J. Cody. Performance evaluation of programs for the error and com-
plementary error functions. ACM Transactions on Mathematical Software,
16(1):29–37, March 1990.

[71] W. J. Cody. Algorithm 715: SPECFUN – a portable FORTRAN package
for special function routines and test drivers. ACM Transactions on Math-
ematical Software, 19(1):22–32, March 1993.

[72] W. J. Cody. CELEFUNT: A portable test package for complex elementary
functions. ACM Transactions on Mathematical Software, 19(1):1–21, March
1993.

Bibliography 239

[73] W. J. Cody and J. T. Coonen. Algorithm 722: Functions to support the
IEEE standard for binary floating-point arithmetic. ACM Transactions on
Mathematical Software, 19(4):443–451, December 1993.

[74] W. J. Cody, J. T. Coonen, D. M. Gay, K. Hanson, D. Hough, W. Kahan,
R. Karpinski, J. Palmer, F. N. Ris, and D. Stevenson. Aproposed radix-and-
word-length-independent standard for floating-point arithmetic. IEEE
MICRO, 4(4):86–100, August 1984.

[75] W. J. Cody and L. Stoltz. The use of taylor series to test accuracy of
function programs. ACM Transactions on Mathematical Software, 17(1):
55–63, March 1991.

[76] M. Colishaw. Decimal floating-point: Algorism for computers. In Bajard
and Schulte, editors, Proceedings of the 16th IEEE Symposium on Computer
Arithmetic (ARITH-16), pages 104–111. IEEE Computer Society Press, Los
Alamitos, CA, 2003.

[77] J.-F. Collard, P. Feautrier, and T. Risset. Construction of do loops from
systems of affine constraints. Parallel Processing Letters, 5:421–436, 1995.

[78] V. Considine. CORDIC trigonometric function generator for DSP. In Pro-
ceedings of 1989 International Conference on Acoustics, Speech and Signal
Processing, pages 2381–2384, 1989.

[79] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of
complex fourier series. Mathematics of Computation, 19(90):297–301, 1965.

[80] J. T. Coonen. An implementation guide to a proposed standard for
floating-point arithmetic. Computer, January 1980.

[81] G. Corbaz, J. Duprat, B. Hochet, and J. M. Muller. Implementation of a
VLSI polynomial evaluator for real-time applications. In Proceedings of
ASAP91, 1991.

[82] Robert M. Corless, David J. Jeffrey, Stephen M. Watt, and James H.
Davenport. “According to Abramowitz and Stegun” or arccoth needn’t
be uncouth. SIGSAM Bull., 34(2):58–65, 2000.

[83] M. Cornea, J. Harrison, and P. T. P. Tang. Scientific Computing on Itanium-
Based Systems. Intel Press, Hillsboro, OR, 2002.

[84] M. A. Cornea-Hasegan, R. A. Golliver, and P. Markstein. Correctness
proofs outline for newton-raphson based floating-point divide and square
root algorithms. In Koren and Kornerup, editors, Proceedings of the 14th
IEEE Symposium on Computer Arithmetic (Adelaide, Australia), pages 96–105.
IEEE Computer Society Press, Los Alamitos, CA, 1999.

240 Bibliography

[85] M. Cosnard, A.Guyot, B. Hochet, J. M. Muller, H. Ouaouicha, P. Paul, and
E. Zysman. The FELIN arithmetic coprocessor chip. In M. J. Irwin and
R. Stefanelli, editors, Proceedings of the 8th IEEE Symposium on Computer
Arithmetic (Arith-8). IEEE Computer Society Press, LosAlamitos, CA, 1987.

[86] TX Cyrix Corporation, Richardson. FastMath Accuracy Report, August
1989.

[87] TX Cyrix Corporation, Richardson. Cyrix 6x86 Processor Data Book, 1996.

[88] L. Dadda. Some schemes for parallel multipliers. Alta Frequenza, 34:349–
356, March 1965. Reprinted in E. E. Swartzlander, Computer Arithmetic,
Vol. 1, IEEE Computer Society Press, Los Alamitos, CA, 1990.

[89] D. H. Daggett. Decimal-binary conversion in CORDIC. IRE Transactions
on Electronic Computers, EC-8(3):335–339, 1959.

[90] A. Dahan-Dalmedico and J. Pfeiffer. Histoire des Mathématiques. Editions
du Seuil, Paris, 1986. In French.

[91] D. Daney, G. Hanrot, V. Lefèvre, V. Rouillier, and P. Zimmermann. The
MPFR library. http://www.mpfr.org.

[92] Catherine Daramy, David Defour, Florent de Dinechin, and Jean-Michel
Muller. CR-LIBM, a correctly rounded elementary function library. In
SPIE 48th Annual Meeting International Symposium on Optical Science and
Technology, 2003.

[93] M. Daumas, C. Mazenc, X. Merrheim, and J. M. Muller. Fast and ac-
curate range reduction for computation of the elementary functions. In
Proceedings of the 14th IMACS World Congress on Computational and Applied
Mathematics, pages 1196–1198. IMACS, Piscataway, NJ, 1994.

[94] M. Daumas, C. Mazenc, X. Merrheim, and J. M. Muller. Modular range
reduction: A new algorithm for fast and accurate computation of the el-
ementary functions. Journal of Universal Computer Science, 1(3):162–175,
March 1995.

[95] H. Dawid and H. Meyr. The differential CORDIC algorithm: Con-
stant scale factor redundant implementation without correcting iterations.
IEEE Transactions on Computers, 45(3):307–318, March 1996.

[96] F. de Dinechin and N. Gast. Towards the post-ultimate libm. Research
Report 2004-47, LIP, École normale supérieure de Lyon, 2004. Available
at http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2004/
RR2004-47.pdf.

Bibliography 241

[97] F. de Dinechin and A. Tisserand. Some improvements on multipartite
table methods. In Burgess and Ciminiera, editors, Proceedings of the 15th
IEEE Symposium on Computer Arithmetic (ARITH 15), pages 128–135. IEEE
Computer Society Press, Los Alamitos, CA, June 2001.

[98] F. de Dinechin and A. Tisserand. Multipartite table methods. IEEE Trans-
actions on Computers, 54(3):319–330, March 2005.

[99] C. J. de La Vallée Poussin. L’approximation des Fonctions d’une Variable Réelle
(in French). Gauthier-Villars, Paris, 1919.

[100] D. Defour. Cache-optimised methods for the evaluation of elemen-
tary functions. Technical Report RR2002-38, LIP Laboratory, ENS
Lyon, ftp:ftp.ens-lyon.fr/pub/LIP/Rapports/RR/RR2002/
RR2002-38.ps.gz, October 2002.

[101] D. Defour. Fonctions élémentaires : algorithmes et implémentations efficaces
pour l’arrondi correct en double précision (in French). PhD thesis, Ecole Nor-
male Supérieure de Lyon, September 2003.

[102] D. Defour and F. de Dinechin. Software carry-save for fast multiple-
precision algorithms. In 35th International Congress of Mathematical Soft-
ware, pages 29–40, 2002.

[103] D. Defour, G. Hanrot, V. Lefèvre, J.-M. Muller, N. Revol, and
P. Zimmermann. Proposal for a standardization of mathematical func-
tion implementation in floating-point arithmetic. Numerical Algorithms,
37(1–4):367–375, 2004.

[104] D. Defour, P. Kornerup, J.-M. Muller, and N. Revol. A new range reduc-
tion algorithm. In Proc. 35th Asilomar Conference on Signals, Systems, and
Computers, 2001.

[105] T. J. Dekker. A floating-point technique for extending the available preci-
sion. Numerische Mathematik, 18:224–242, 3 1971.

[106] J. M. Delosme. A processor for two-dimensional symmetric eigenvalue
and singular value arrays. In 21st Asilomar Conference on Circuits, Systems
and Computers, pages 217–221, 1987.

[107] J. M. Delosme. Bit-level systolic algorithms for real symmetric and her-
mitian eigenvalue problems. Journal of VLSI Signal Processing, 4:69–88,
1992.

[108] B. DeLugish. A class of algorithms for automatic evaluation of functions and
computations in a digital computer. PhD thesis, Dept. of Computer Science,
University of Illinois, Urbana-Champaign, IL, 1970.

242 Bibliography

[109] E. Deprettere, P. Dewilde, and R. Udo. Pipelined CORDIC architectures
for fast VLSI filtering and array processing. In Proceedings of ICASSP’84,
pages 41.A.6.1–41.A.6.4, 1984.

[110] E. F. Deprettere and A. J. de Lange. Design and implementation of a
floating-point quasi-systolic general purpose CORDIC rotator for high-
rate parallel data and signal processing. In P. Kornerup and D. W. Matula,
editors, Proceedings of the 10th IEEE Symposium on Computer Arithmetic,
pages 272–281. IEEE Computer Society Press, Los Alamitos, CA, 1991.

[111] A. M. Despain. Fourier transform computers using CORDIC iterations.
IEEE Transactions on Computers, C-33(5), May 1974.

[112] J. Detrey and F. de Dinechin. Second order function approximation using a
single multiplication on fpgas. In 14th Intl Conference on Field-Programmable
Logic and Applications, pages 221–230. LNCS 3203, 2004.

[113] J. Van Deun and A. Bultheel. An interpolation algorithm for orthogonal
rational functions. Journal of Computational and Applied Mathematics, 164–
165:749–762, 2004.

[114] L.S. Didier and F. Rico. High radix bkm algorithm. Numerical Algorithms,
37(1–4):113–125, 2004.

[115] C. B. Dunham. Rational approximation with a vanishing weight function
and with a fixed value at zero. Mathematics of Computation, 30(133):45–47,
January 1976.

[116] C. B. Dunham. Choice of basis for Chebyshev approximation. ACM Trans-
actions on Mathematical Software, 8(1):21–25, 1982.

[117] C. B. Dunham. Provably monotone approximations, I. SIGNUM Newslet-
ter, 22:6–11, April 1987.

[118] C. B. Dunham. Provably monotone approximations, II. SIGNUM Newslet-
ter, 22:30–31, July 1987.

[119] C. B. Dunham. Feasibility of “perfect” function evaluation. SIGNUM
Newsletter, 25(4):25–26, October 1990.

[120] C. B. Dunham. Fitting approximations to the Kuki-Cody-Waite form.
International Journal of Computer Mathematics, 31:263–265, 1990.

[121] C. B. Dunham. Provably monotone approximations, IV. Technical Re-
port 422, Dept. of Computer Science, The University of Western Ontario,
London, Canada, 1994.

[122] Charles B. Dunham. Approximation with taylor matching at the origin.
Int. J. Comput. Math., 80(8):1019–1024, 2003.

Bibliography 243

[123] J. Duprat and J. M. Muller. Hardwired polynomial evaluation. Journal of
Parallel and Distributed Computing, Special Issue on Parallelism in Com-
puter Arithmetic(5), 1988.

[124] J. Duprat and J. M. Muller. The CORDIC algorithm: New results for
fast VLSI implementation. IEEE Transactions on Computers, 42(2):168–178,
February 1993.

[125] S. W. Ellacott. On the Faber transform and efficient numerical rational ap-
proximation. SIAM Journal of Numerical Analysis, 20(5):989–1000, October
1983.

[126] M. Ercegovac, T. Lang, J.M. Muller, and A. Tisserand. Reciprocation,
square root, inverse square root and some elementary functions unsing
small multipliers. IEEE Transactions on Computers, 49(7), July 2000.

[127] M. D. Ercegovac. Radix 16 evaluation of certain elementary functions.
IEEE Transactions on Computers, C-22(6), June 1973. Reprinted in E. E.
Swartzlander, Computer Arithmetic, Vol. 1, IEEE Computer Society Press,
Los Alamitos, CA, 1990.

[128] M. D. Ercegovac. A general method for evaluation of functions and computation
in a digital computer. PhD thesis, Dept. of Computer Science, University
of Illinois, Urbana-Champaign, IL, 1975.

[129] M. D. Ercegovac. A general hardware-oriented method for evaluation of
functions and computations in a digital computer. IEEE Transactions on
Computers, C-26(7):667–680, 1977.

[130] M. D. Ercegovac. On-line arithmetic:An overview. InSPIE, Real Time Signal
Processing VII, pages 86–93. SPIE-The International Society for Optical
Engeneering, Bellingham, WA, 1984.

[131] M. D. Ercegovac and T. Lang. Fast cosine/sine implementation using on-
line CORDIC. In Proceedings of the 21st Asilomar Conference Signals, Systems,
Computers, 1987.

[132] M. D. Ercegovac and T. Lang. On-the-fly conversion of redundant into
conventional representations. IEEE Transactions on Computers, C-36(7),
July 1987. Reprinted in E. E. Swartzlander, Computer Arithmetic, Vol. 2,
IEEE Computer Society Press, Los Alamitos, CA, 1990.

[133] M. D. Ercegovac and T. Lang. On-line scheme for computing rotation
factors. Journal of Parallel and Distributed Computing, Special Issue on Par-
allelism in ComputerArithmetic(5), 1988. Reprinted in E. E. Swartzlander,
Computer Arithmetic, Vol. 2, IEEE Computer Society Press, Los Alamitos,
CA, 1990.

244 Bibliography

[134] M. D. Ercegovac and T. Lang. Redundant and on-line CORDIC: Applica-
tion to matrix triangularization and SVD. IEEE Transactions on Computers,
39(6):725–740, June 1990.

[135] M. D. Ercegovac and T. Lang. Division and Square Root: Digit-Recurrence Al-
gorithms and Implementations. Kluwer Academic Publishers, Boston, MA,
1994.

[136] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann
Publishers, San Francisco, CA, 2004.

[137] M. D. Ercegovac and K. S. Trivedi. On-line algorithms for division and
multiplication. IEEE Transactions on Computers, C-26(7):681–687, 1977.
Reprinted in E. E. Swartzlander, Computer Arithmetic, Vol. 2, IEEE Com-
puter Society Press, Los Alamitos, CA, 1990.

[138] A. Feldstein and R. Goodman. Convergence estimates for the distribution
of trailing digits. Journal of the ACM, 23:287–297, 1976.

[139] W. Ferguson. Exact computation of a sum or difference with applications
to argument reduction. In S. Knowles and W. McAllister, editors, Proceed-
ings of the 12th IEEE Symposium on Computer Arithmetic, pages 216–221.
IEEE Computer Society Press, Los Alamitos, CA, 1995.

[140] W. Ferguson. Private communication. Unpublished, 1997.

[141] W. Ferguson and T. Brightman. Accurate and monotone approximations
of some transcendental functions. In P. Kornerup and D. W. Matula, edi-
tors, Proceedings of the 10th IEEE Symposium on Computer Arithmetic, pages
237–244. IEEE Computer Society Press, Los Alamitos, CA, 1991.

[142] C. T. Fike. Methods for evaluating polynomial approximations in function
evaluation routines. Communications of the ACM, 10(3):175–178, 1967.

[143] B. P. Flannery, W. H. Press, S. A. Teukolsky, and W. T. Vetterling. Numerical
recipes in C, 2nd Edition. Cambridge University Press, New York, NY, 1992.

[144] M. J. Flynn and S. F. Oberman. Advanced Computer Arithmetic Design. John
Wiley, New York, NY, 2001.

[145] D. Fowler and E. Robson. Square root approximations in old babylonian
mathematics: YBC 7289 in context. Historia Mathematica, 25:366–378, 1998.

[146] W. Fraser. Asurvey of methods of computing minimax and near-minimax
polynomial approximations for functions of a single independent vari-
able. Journal of the ACM, 12(3):295–314, July 1965.

Bibliography 245

[147] S. Gal. Computing elementary functions: A new approach for achieving
high accuracy and good performance. In Accurate Scientific Computations.
Lecture Notes in Computer Science, volume 235, pages 1–16. Springer-Verlag,
Berlin, 1986.

[148] S. Gal and B. Bachelis. An accurate elementary mathematical library for the
IEEE floating point standard. ACM Transactions on Mathematical Software,
17(1):26–45, March 1991.

[149] W. Gautschi, G. H. Golub, and G. Opfer, editors. Applications and Compu-
tation of Orthogonal Polynomials. International Series of Numerical Math-
ematics. Birkhäuser, Basel, 1999.

[150] Walter Gautschi. Numerical Analysis: an Introduction. Birkhäuser, Boston,
MA, 1997.

[151] W. M. Gentleman and S. B. Marovitch. More on algorithms that reveal
properties of floating-point arithmetic units. Communications of the ACM,
17(5):276–277, May 1974.

[152] D. Goldberg. What every computer scientist should know about floating-
point arithmetic. ACM Computing Surveys, 23(1):5–47, March 1991.

[153] T. Granlund. The GNU multiple precision arithmetic library, release 4.1.4.
Accessible electronicaly athttp://www.swox.com/gmp/gmp-man-4.
1.4.pdf, September 2004.

[154] H. Hamada. A new approximation form for mathematical functions. In
Proceedings of SCAN-95, IMACS/GAMM Symposium on Scientific Comput-
ing, Computer Arithmetic and Validated Numerics, 1995.

[155] E. R. Hansen, M. L. Patrick, and R. L. C. Wang. Polynomial evaluation
with scaling. ACM Trans. Math. Softw., 16(1):86–93, 1990.

[156] Y. Harata, Y. Nakamura, H. Nagase, M. Takigawa, and N. Takagi. A
high-speed multiplier using a redundant binary adder tree. IEEE Journal
of Solid-State Circuits, SC-22(1):28–34, February 1987. Reprinted in E. E.
Swartzlander, Computer Arithmetic, Vol. 2, IEEE Computer Society Press,
Los Alamitos, CA, 1990.

[157] J. Harrison. A machine-checked theory of floating-point arithmetic.
In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, edi-
tors, Theorem Proving in Higher Order Logics: 12th International Conference,
TPHOLs’99, volume 1690 of Lecture Notes in Computer Science, pages 113–
130. Springer-Verlag, Berlin, 1999.

246 Bibliography

[158] J. Harrison. Formal verification of floating point trigonometric functions.
In W.A. Hunt and S.D. Johnson, editors, Proceedings of the 3rd Interna-
tional Conference on Formal Methods in Computer-Aided Design, FMCAD
2000, number 1954 in Lecture Notes in Computer Science, pages 217–233.
Springer-Verlag, Berlin, 2000.

[159] J. Harrison, T. Kubaska, S. Story, and P.T.P. Tang. The computation of tran-
scendental functions on the IA-64 architecture. Intel Technology Journal, Q4,
1999. Available at http://developer.intel.com/technology/
itj/q41999/articles/art_5.htm.

[160] J. F. Hart, E. W. Cheney, C. L. Lawson, H. J. Maehly, C. K. Mesztenyi,
J. R. Rice, H. G. Thacher, and C. Witzgall. Computer Approximations. Wiley,
New York, 1968.

[161] J. R. Hauser. Handling floating-point exceptions in numeric programs.
Technical Report UCB//CSD-95-870, Computer Science Division, Uni-
versity of California, Berkeley, CA, March 1995.

[162] G. H. Haviland and A. A. Tuszinsky. A CORDIC arithmetic processor
chip. IEEE Transactions on Computers, C-29(2), February 1980.

[163] G. H. Hekstra and E. F. A. Deprettere. Floating-point CORDIC. In E. E.
Swartzlander, M. J. Irwin, and J. Jullien, editors, Proceedings of the 11th
IEEE Symposium on Computer Arithmetic, pages 130–137. IEEE Computer
Society Press, Los Alamitos, CA, 1993.

[164] N. D. Hemkumar and J. R. Cavallaro. Redundant and on-line CORDIC
for unitary transformations. IEEE Transactions on Computers, 43(8):941–
954, August 1994.

[165] N. Higham. Accuracy and Stability of Numerical Algorithms, Second Edition.
SIAM, Philadelphia, PA, 2002.

[166] N. J. Higham and M. I. Smith. Computing the matrix cosine. Numerical
Algorithms, 34:13–26, 2003.

[167] S. F. Hsiao and J. M. Delosme. Householder CORDIC algorithms. IEEE
Transactions on Computers, 44(8):990–1000, August 1995.

[168] S.F. Hsiao, C.Y. Lau, and J.-M. Delosme. Redundant constant-factor imple-
mentation of multi-dimensional CORDIC and its application to complex
SVD. Journal of VLSI Signal Processing Systems, 25(2):155–166, June 2000.

[169] X. Hu, S. C. Bass, and R. G. Harber. An efficient implementation of singular
value decomposition rotation transformations with CORDIC processors.
Journal of Parallel and Distributed Computing, 17:360–362, 1993.

Bibliography 247

[170] Y. H. Hu. The quantization effects of the CORDIC algorithm. IEEE Trans-
actions on Signal Processing, 40(4):834–844, 1992.

[171] Y. H. Hu and S. Naganathan. An angle recoding method for CORDIC
algorithm implementation. IEEE Transactions on Computers, 42(1):99–102,
January 1993.

[172] T. E. Hull, T. F. Fairgrieve, and P. T. P. Tang. Implementing complex ele-
mentary functions using exception handling. ACM Transactions on Math-
ematical Software, 20(2):215–244, June 1994.

[173] T. E. Hull, T. F. Fairgrieve, and P. T. P. Tang. Implementing the complex arc-
sine and arccosine functions using exception handling. ACM Transactions
on Mathematical Software, 23(3):299–335, September 1997.

[174] K. Hwang. Computer Arithmetic Principles, Architecture and Design. John
Wiley, New York, NY, 1979.

[175] L. Imbert, J. M. Muller, and F. Rico. Radix-10 BKM algorithm for comput-
ing transcendentals on a pocket computer. Journal of VLSI Signal Process-
ing, 25(2):179–186, June 2000.

[176] American National Standards Institute, Institute of Electrical, and Elec-
tronic Engineers. IEEE standard for radix independent floating-point
arithmetic. ANSI/IEEE Standard, Std 854-1987, New York, 1987.

[177] A. Iserles and A. Zanna. Efficient computation of the matrix exponential
by generalized polar decompositions. SIAM Journal on Numerical Analysis,
42(5):2218–2256, 2005.

[178] V. K. Jain and L. Lin. High-speed double precision computation of non-
linear functions. In S. Knowles and W. McAllister, editors, Proceedings
of the 12th IEEE Symposium on Computer Arithmetic, pages 107–114. IEEE
Computer Society Press, Los Alamitos, CA, 1995.

[179] W. Kahan. Minimizing q*m-n. Text accessible electronically at http:
//http.cs.berkeley.edu/˜wkahan/. At the beginning of the file
"nearpi.c", 1983.

[180] W. Kahan. Branch cuts for complex elementary functions. In A. Iserles
and M. J. D. Powell, editors, The State of the Art in Numerical Analysis, pages
165–211. Clarendon Press, Oxford, 1987.

[181] W. Kahan. Paradoxes in concepts of accuracy. In Lecture notes from Joint
Seminar on Issues and Directions in Scientific Computations, U.C. Berkeley,
1989.

248 Bibliography

[182] W. Kahan. Lecture notes on the status of IEEE-754. PDF file accessible
electronically through the Internet at the address http://www.cs.
berkeley.edu/˜wkahan/ieee754status/IEEE754.PDF, 1996.

[183] W. Kahan. IEEE 754: An interview with William Kahan. Computer, 31(3):
114–115, March 1998.

[184] A. Karatsuba and Yu Ofman. Multiplication of many-digital numbers
by automatic computers. Doklady Akad. Nauk SSSR, 145:293–294, 1962.
Translation in Physics-Doklady 7, 595-596, 1963.

[185] Alan H. Karp and Peter Markstein. High-precision division and square
root. ACM Transactions on Mathematical Software, 23(4):561–589, December
1997.

[186] R. Karpinsky. PARANOIA: A floating-point benchmark. BYTE, 10(2),
1985.

[187] D. Knuth. The Art of Computer Programming, 3rd edition, volume 2.
Addison-Wesley, Reading, MA, 1998.

[188] D. E. Knuth. Evaluation of polynomials by computer. Commun. ACM,
5(12):595–599, 1962.

[189] D. König and J. F. Böhme. Optimizing the CORDIC algorithm for pro-
cessors with pipeline architectures. In L. Torres, E. Masgrau, and M. A.
Lagunas, editors, Signal Processing V: Theories and Applications. Elsevier
Science, Amsterdam, 1990.

[190] I. Koren. Computer arithmetic algorithms. Prentice-Hall, Englewood Cliffs,
NJ, 1993.

[191] I. Koren and O. Zinaty. Evaluating elementary functions in a numeri-
cal coprocessor based on rational approximations. IEEE Transactions on
Computers, 39(8):1030–1037, August 1990.

[192] K. Kota and J. R. Cavallaro. Numerical accuracy and hardware tradeoffs
for CORDIC arithmetic for special-purpose processors. IEEE Transactions
on Computers, 42(7):769–779, July 1993.

[193] W. Krämer. Inverse standard functions for real and complex point and
interval arguments with dynamic accuracy. Computing, Suppl., 6:185–212,
1988.

[194] J. Kropa. Calculator algorithms. Mathematics Magazine, 51(2):106–109,
March 1978.

[195] H. Kuki and W. J. Cody. Astatistical study of the accuracy of floating point
number systems. Communications of the ACM, 16(14):223–230, April 1973.

Bibliography 249

[196] U. W. Kulisch. Mathematical foundation of computer arithmetic. IEEE
Transactions on Computers, C-26(7):610–621, July 1977.

[197] U. W. Kulisch and W. L. Miranker. Computer arithmetic in theory and prac-
tice. Academic Press, New York, NY, 1981.

[198] T. Lang and E. Antelo. CORDIC-based computation of arccos and arc-
sin. In ASAP’97, The IEEE International Conference on Application-Specific
Systems, Architectures and Processors. IEEE Computer Society Press, Los
Alamitos, CA, 1997.

[199] T. Lang and E. Antelo. Cordic-based computation of arccos and
√

1 − t2.
J. VLSI Signal Process. Syst., 25(1):19–38, 2000.

[200] T. Lang and J. A. Lee. SVD by constant-factor-redundant CORDIC. In
P. Kornerup and D. W. Matula, editors, Proceedings of the 10th IEEE Sympo-
sium on Computer Arithmetic, pages 264–271. IEEE Computer Society Press,
Los Alamitos, CA, 1991.

[201] P. J. Laurent. Approximation et Optimisation. Enseignement des Sciences
(in French). Hermann, Paris, France, 1972.

[202] D.-U Lee, W. Luk, J. Villasenor, and P. Y. K. Cheng. Non-uniform seg-
mentation for hardware function evaluation. In Proceedings of the Interna-
tional Conference on Field-Programmable Logic and Applications, number 2778
in Lecture Notes in Computer Science, pages 796–807. Springer-Verlag,
Berlin, 2003.

[203] D.-U. Lee, W. Luk, J. Villasenor, and P. Y. K. Cheung. Hierarchical seg-
mentation schemes for function evaluation. In Proceedings of the IEEE int.
Conference on Field-Programmable Technology, pages 92–99, 2003.

[204] D.-U. Lee, O. Mencer, D. J. Pearce, and W. Luk. Automating opti-
mized table-with-polynomial function evaluation for fpgas. In J. Becker,
M. Platzner, and S. Vernalde, editors, Proceedings of FPL 2004, number 3203
in Lecture Notes in Computer Science, pages 364–373. Springer-Verlag,
Berlin, 2004.

[205] V. Lefèvre. Developments in Reliable Computing, chapter An Algorithm That
Computes a Lower Bound on the Distance Between a Segment and Z2,
pages 203–212. Kluwer Academic Publishers, Dordrecht, 1999.

[206] V. Lefèvre. Moyens Arithmétiques Pour un Calcul Fiable. PhD thesis, École
Normale Supérieure de Lyon, Lyon, France, 2000.

[207] V. Lefèvre. New results on the distance between a segment and z2. ap-
plication to the exact rounding. In Proceedings of the 17th IEEE Symposium
on Computer Arithmetic (ARITH-17). IEEE Computer Society Press, Los
Alamitos, CA, 2005.

250 Bibliography

[208] V. Lefèvre and J.-M. Muller. Worst cases for correct rounding of the ele-
mentary functions in double precision. In Burgess and Ciminiera, editors,
Proc. of the 15th IEEE Symposium on Computer Arithmetic (Arith-15). IEEE
Computer Society Press, Los Alamitos, CA, 2001.

[209] V. Lefèvre and J.-M. Muller. On-the-fly range reduction. Journal of VLSI
Signal Processing, 33(1/2):31–35, February 2003.

[210] V. Lefèvre, J. M. Muller, and A. Tisserand. Towards correctly rounded
transcendentals. In Proceedings of the 13th IEEE Symposium on Computer
Arithmetic. IEEE Computer Society Press, Los Alamitos, CA, 1997.

[211] V. Lefèvre, J. M. Muller, and A. Tisserand. Toward correctly rounded tran-
scendentals. IEEE Transactions on Computers, 47(11):1235–1243, November
1998.

[212] R.-C. Li. Near optimality of Chebyshev interpolation for elementary func-
tion computation. IEEE Transactions on Computers, 53(6):678–687, June
2004.

[213] R.-C. Li, S. Boldo, and M. Daumas. Theorems on efficient argument reduc-
tion. In Bajard and Schulte, editors, Proceedings of the 16th IEEE Symposium
on Computer Arithmetic (ARITH16), pages 129–136. IEEE Computer Society
Press, Los Alamitos, CA, 2003.

[214] R.-C. Li, P. Markstein, J. P. Okada, and J. W. Thomas. The libm library
and floating-point arithmetic in hp-ux for itanium 2. Technical report,
Hewlett-Packard Company, 2002. http://h21007.www2.hp.com/
dspp/files/unprotected/libm.pdf.

[215] A.A. Liddicoat. High-Performance Arithmetic for Division and the Elementary
Functions. PhD thesis, Dept. of Electrical Engineering, Stanford University,
Palo Alto, CA, February 2002.

[216] H. Lin and H. J. Sips. On-line CORDIC algorithms. In M. D. Ercegovac
and E. Swartzlander, editors, Proceedings of the 9th IEEE Symposium on Com-
puter Arithmetic, pages 26–33. IEEE Computer Society Press, LosAlamitos,
CA, 1989.

[217] H. Lin and H. J. Sips. On-line CORDIC algorithms. IEEE Transactions on
Computers, 39(8), August 1990.

[218] R. J. Linhardt and H. S. Miller. Digit-by-digit transcendental function com-
putation. RCA Review, 30:209–247, 1969. Reprinted in E. E. Swartzlander,
Computer Arithmetic, Vol. 1, IEEE Computer Society Press, Los Alamitos,
CA, 1990.

Bibliography 251

[219] G. L. Litvinov. Approximate construction of rational approximations and
the effect of error autocorrection. Applications. Technical Report 8, Insti-
tute of Mathematics, University of Oslo, May 1993.

[220] W. Luther. Highly accurate tables for elementary functions. BIT, 35:352–
360, 1995.

[221] T. Lynch and E. E. Swartzlander. Aformalization for computer arithmetic.
In L. Atanassova and J. Hertzberger, editors, Computer Arithmetic and En-
closure Methods, pages 137–145. Elsevier Science, Amsterdam, 1992.

[222] Allan J. MacLeod. Algorithm 757; miscfun, a software package to compute
uncommon special functions. ACM Trans. Math. Softw., 22(3):288–301,
1996.

[223] M. A. Malcolm. Algorithms to reveal properties of floating-point arith-
metic. Communications of the ACM, 15(11):949–951, November 1972.

[224] P. Markstein. IA-64 and Elementary Functions : Speed and Precision. Hewlett-
Packard Professional Books. Prentice Hall, Englewood Cliffs, NJ, 2000.

[225] P. Markstein. Accelerating sine and cosine evaluation with compiler as-
sistance. In Bajard and Schulte, editors, Proceedings of the 16th IEEE Sym-
posium on Computer Arithmetic (ARITH16), pages 137–140. IEEE Computer
Society Press, Los Alamitos, CA, 2003.

[226] P. W. Markstein. Computation of elementary functions on the IBM risc
system/6000 processor. IBM Journal of Research and Development, 34(1):111–
119, January 1990.

[227] C. Mazenc, X. Merrheim, and J. M. Muller. Computing functions cos−1

and sin−1 using CORDIC. IEEE Transactions on Computers, 42(1):118–122,
January 1993.

[228] J. E. Meggitt. Pseudo division and pseudo multiplication processes. IBM
Journal of Research and Development, 6:210–226, 1962.

[229] X. Merrheim. Bases discrètes et calcul des fonctions élémentaires par matériel
(in French). PhD thesis, École Normale Supérieure de Lyon and Université
Lyon I, France, February 1994.

[230] P. Midy and Y. Yakovlev. Computing some elementary functions of a
complex variable. Mathematics and Computers in Simulation, 33:33–49, 1991.

[231] O. Møller. Quasi double-precision in floating-point addition. BIT, 5:37–50,
1965.

[232] P. Montgomery. Five, six, and seven-term Karatsuba-like formulae. IEEE
Transactions on Computers, 54(3):362–369, March 2005.

252 Bibliography

[233] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1963.

[234] J. M. Muller. Discrete basis and computation of elementary functions.
IEEE Transactions on Computers, C-34(9), September 1985.

[235] J. M. Muller. Méthodologies de calcul des fonctions élémentaires (in French).
PhD thesis, Institut National Polytechnique de Grenoble, France, Sep-
tember 1985.

[236] J. M. Muller. Une méthodologie du calcul hardware des fonctions
élémentaires (in French). M2AN, 20(4):667–695, December 1986.

[237] J.-M. Muller. On the definition of ulp(x). Technical Report 2005-09,
LIP Laboratory, ENS Lyon, ftp://ftp.ens-lyon.fr/pub/LIP/
Rapports/RR/RR2005/RR2005-09.pdf, 2005.

[238] J. M. Muller. A few results on table-based methods. Reliable Computing,
5(3):279–288, August 1999.

[239] A. Munk-Nielsen and J. M. Muller. On-line algorithms for computing
exponentials and logarithms. In Proceedings of Europar’96, Lecture Notes in
Computer Science 1124. Springer-Verlag, Berlin, 1996.

[240] S. Nakamura. Algorithms for iterative array multiplication. IEEE Trans-
actions on Computers, C-35(8), August 1986.

[241] R. Nave. Implementation of transcendental functions on a numerics pro-
cessor. Microprocessing and Microprogramming, 11:221–225, 1983.

[242] Y. V. Nesterenko and M. Waldschmidt. On the approximation of the values
of exponential function and logarithm by algebraic numbers (in russian).
Mat. Zapiski, 2:23–42, 1996.

[243] I. Newton. Methodus Fluxionem et Serierum Infinitarum. 1664–1671.

[244] K. C. Ng. Argument reduction for huge arguments: Good to
the last bit (can be obtained by sending an e-mail to the author:
kwok.ng@eng.sun.com). Technical report, SunPro, 1992.

[245] K. C. Ng and K. H. Bierman. Getting the right answer for the trigonometric
functions. SunProgrammer, Spring 1992.

[246] S. Oberman and M. J. Flynn. Implementing division and other floating-
point operations: A system perspective. In Alefeld, Fromer, and Lang, ed-
itors, Scientific Computing and Validated Numerics (Proceedings of SCAN’95),
pages 18–24. Akademie Verlag, Berlin, 1996.

[247] S. F. Oberman. Design issues in high performance floating point arithmetic
units. PhD thesis, Dept. of Electrical Engineering, Stanford University,
Palo Alto, CA, November 1996.

Bibliography 253

[248] S. F. Oberman. Floating-point division and square root algorithms and
implementation in the AMD-k7 microprocessor. In Koren and Kornerup,
editors, Proceedings of the 14th IEEE Symposium on Computer Arithmetic
(Adelaide, Australia), pages 106–115. IEEE Computer Society Press, Los
Alamitos, CA, 1999.

[249] Y. Okabe, N. Takagi, and S. Yajima. Log-depth circuits for elementary
functions using residue number system. Electronics and Communications
in Japan, Part 3, 74:8, 1991.

[250] A. R. Omondi. Computer Arithmetic Systems, Algorithms, Architecture and
Implementations. Prentice-Hall International Series in Computer Science,
Englewood Cliffs, NJ, 1994.

[251] R. R. Osoroi, E. Antelo, J. D. Bruguera, J. Villalba, and E. Zapata. Digit
on-line large radix CORDIC rotator. In P. Cappello, C. Mongenet, G. R.
Perrin, P. Quinton, and Y. Robert, editors, Proceedings of ASAP-95 (Stras-
bourg, France), pages 246–257. IEEE Computer Society Press, LosAlamitos,
CA, 1995.

[252] M. A. Overton. Numerical Computing with IEEE Floating-Point Arithmetic.
SIAM, Philadelphia, PA, 2001.

[253] B. Parhami. Carry-free addition of recoded binary signed-digit numbers.
IEEE Transactions on Computers, C-37:1470–1476, 1988.

[254] B. Parhami. Generalized signed-digit number systems: A unifying frame-
work for redundant number representations. IEEE Transactions on Com-
puters, 39(1):89–98, January 1990.

[255] B. Parhami. On the implementation of arithmetic support functions for
generalized signed-digit number systems. IEEE Transactions on Computers,
42(3):379–384, March 1993.

[256] B. Parhami. Computer Arithmetic : Algorithms and Hardware Designs. Oxford
University Press, New-York, NY, 2000.

[257] G. Paul and M. W. Wilson. Should the elementary function library be
incorporated into computer instruction sets? ACM Transactions on Math-
ematical Software, 2(2), June 1976.

[258] M. Payne and R. Hanek. Radian reduction for trigonometric functions.
SIGNUM Newsletter, 18:19–24, 1983.

[259] D. Phatak, T. Goff, and I. Koren. Constant-time addition and simultane-
ous format conversion based on redundant binary representations. IEEE
Transactions on Computers, 50(11):1267–1278, November 2001.

254 Bibliography

[260] D. S. Phatak. Comments on Duprat and Muller’s branching CORDIC.
IEEE Transactions on Computers, 47(9):1037–1040, September 1998.

[261] D. S. Phatak. Double step branching CORDIC: A new algorithm for fast
sine and cosine generation. IEEE Transactions on Computers, 47(5):587–602,
May 1998.

[262] M. Pichat. Correction d’une somme en arithmétique à virgule flottante
(in french). Numerische Mathematik, 19:400–406, 1972.

[263] D. M. Priest. Algorithms for arbitrary precision floating point arithmetic.
In P. Kornerup and D. W. Matula, editors, Proceedings of the 10th IEEE Sym-
posium on Computer Arithmetic (Arith-10), pages 132–144. IEEE Computer
Society Press, Los Alamitos, CA, 1991.

[264] C. V. Ramamoorthy, J. R. Goodman, and K. H. Kim. Some properties of
iterative square-rooting methods using high-speed multiplication. IEEE
Transactions on Computers, C-21:837–847, 1972. Reprinted in E. E. Swart-
zlander, Computer Arithmetic, Vol. 1, IEEE Computer Society Press, Los
Alamitos, CA, 1990.

[265] E. Remez. Sur un procédé convergent d’approximations successives pour
déterminer les polynômes d’approximation. C.R. Académie des Sciences,
Paris, 198:2063–2065, 1934.

[266] N. Revol and F. Rouillier. Motivations for an arbitrary precision interval
arithmetic and the MPFI library. Reliable Computing, 11:1–16, 2005.

[267] J. R. Rice. The approximation of functions. Addison-Wesley, Reading, MA,
1964.

[268] T. J. Rivlin. An Introduction to the approximation of functions. Blaisdell
Publishing Company, Walham, MA, 1969. Republished by Dover, 1981.

[269] T. J. Rivlin. Chebyshev polynomials. From approximation theory to algebra
(Second edition). Pure and Applied Mathematics. John Wiley, New York,
NY, 1990.

[270] J. E. Robertson. Anew class of digital division methods. IRE Transactions on
Electronic Computers, EC-7:218–222, 1958. Reprinted in E. E. Swartzlander,
Computer Arithmetic, Vol. 1, IEEE Computer Society Press, Los Alamitos,
CA, 1990.

[271] J. E. Robertson. The correspondence between methods of digital divi-
sion and multiplier recoding procedures. IEEE Transactions on Computers,
C-19(8), August 1970.

Bibliography 255

[272] D. Rusinoff. A mechanically checked proof of IEEE compliance of a
register-transfer-level specification of the AMD-k7 floating-point multi-
plication, division, and square root instructions. LMS Journal of Computa-
tion and Mathematics, 1:148–200, 1998.

[273] B. V. Sakar and E. V. Krishnamurthy. Economic pseudodivision processes
for obtaining square root, logarithm and arctan. IEEE Transactions on Com-
puters, C-20(12), December 1971.

[274] E. Salamin. Computation of π using arithmetic-geometric mean. Mathe-
matics of Computation, 30:565–570, 1976.

[275] D. Das Sarma and D. W. Matula. Faithful bipartite ROM reciprocal tables.
In Knowles and McAllister, editors, Proceedings of the 12th IEEE Symposium
on Computer Arithmetic (ARITH-12), pages 17–28. IEEE Computer Society
Press, Los Alamitos, CA, 1995.

[276] C. W. Schelin. Calculator function approximation. American Mathematical
Monthly, 90(5), May 1983.

[277] H. Schmid and A. Bogacki. Use decimal CORDIC for generation of many
transcendental functions. EDN, pages 64–73, February 1973.

[278] A. Schönhage and V. Strassen. Schnelle multiplikation grosser zahlen.
Computing, 7:281–292, 1971. In German.

[279] M. J. Schulte and J. Stine. Symmetric bipartite tables for accurate function
approximation. In In T. Lang, J.M. Muller, and N. Takagi, editors, Proceed-
ings of the 13th IEEE Symposium on Computer Arithmetic. IEEE Computer
Society Press, Los Alamitos, CA, 1997.

[280] M. J. Schulte and J. E. Stine. Accurate function evaluation by symmetric
table lookup and addition. In Thiele, Fortes, Vissers, Taylor, Noll, and
Teich, editors, Proceedings of the IEEE International Conference on Application-
Specific Systems, Architectures and Processors (Zurich, Switzerland), pages
144–153. IEEE Computer Society Press, Los Alamitos, CA, 1997.

[281] M. J. Schulte and E. E. Swartzlander. Exact rounding of certain elementary
functions. In E. E. Swartzlander, M. J. Irwin, and G. Jullien, editors, Pro-
ceedings of the 11th IEEE Symposium on Computer Arithmetic, pages 138–145.
IEEE Computer Society Press, Los Alamitos, CA, 1993.

[282] M. J. Schulte and E. E. Swartzlander. Hardware designs for exactly
rounded elementary functions. IEEE Transactions on Computers, 43(8):
964–973, August 1994.

[283] M. J. Schulte and J. E. Stine. Approximating elementary functions with
symmetric bipartite tables. IEEE Transactions on Computers, 48(8):842–847,
August 1999.

256 Bibliography

[284] P. Sebah and X. Gourdon. Newton’s method and high-order iterations.
Technical report, 2001. http://numbers.computation.free.fr/
Constants/Algorithms/newton.html.

[285] A. Seznec and F. Lloansi. Étude des architectures des microproceseurs
MIPS R10000, Ultrasparc et Pentium Pro (in french). Technical Report
1024, IRISA Rennes, France, May 1996.

[286] A. Seznec and T. Vauléon. Étude comparative des architectures des micro-
processeurs Intel Pentium et PowerPC 601 (in french). Technical Report
835, IRISA Rennes, France, June 1994.

[287] J. D. Silverstein, S. E. Sommars, and Y. C. Tao. The UNIX system math
library, a status report. In USENIX — Winter’90, 1990.

[288] A. Singh, D. Phatak, T. Goff, M. Riggs, J. Plusquellic, and C. Patel. Compar-
ison of branching CORDIC implementations. In E. Deprettere, S. Bhat-
tacharyya, J. Cavallaro, A. Darte, and L. Thiele, editors, ASAP’03, The
IEEE International Conference on Application-Specific Systems, Architectures
and Processors, pages 215–225. IEEE Computer Society Press, LosAlamitos,
CA, 2003.

[289] R. A. Smith. A continued-fraction analysis of trigonometric argument
reduction. IEEE Transactions on Computers, 44(11):1348–1351, November
1995.

[290] W. H. Specker. A class of algorithms for ln(x), exp(x), sin(x), cos(x),
tan−1(x) and cot−1(x). IEEE Transactions on Electronic Computers, EC-14,
1965. Reprinted in E. E. Swartzlander, Computer Arithmetic, Vol. 1, IEEE
Computer Society Press, Los Alamitos, CA, 1990.

[291] H. M. Stark. An Introduction to Number Theory. MIT Press, Cambridge,
MA, 1981.

[292] D. Stehlé, V. Lefèvre, and P. Zimmermann. Searching worst cases of a one-
variable function. IEEE Transactions on Computers, 54(3):340–346, March
2005.

[293] D. Stehlé and P. Zimmermann. Gal’s accurate tables method revisited. In
Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH-17).
IEEE Computer Society Press, Los Alamitos, CA, 2005.

[294] J. E. Stine and M. J. Schulte. The symmetric table addition method for
accurate function approximation. Journal of VLSI Signal Processing, 21:
167–177, 1999.

[295] S. Story and P. T. P. Tang. New algorithms for improved transcendental
functions on IA-64. In Proceedings of the 14th IEEE Symposium on Computer

Bibliography 257

Arithmetic, Adelaide, Australia, pages 4–11. IEEE Computer Society Press,
Los Alamitos, CA, 1999.

[296] D. A. Sunderland, R. A. Strauch, S. W. Wharfield, H. T. Peterson, and C. R.
Cole. CMOS/SOS frequency synthesizer LSI circuit for spread spectrum
communications. IEEE Journal of Solid State Circuits, sc-19(4):497–506, 1984.

[297] T. Y. Sung and Y. H. Hu. Parallel VLSI implementation of Kalman filters.
IEEE Transactions on Aerospace and Electronic Systems, AES 23(2), March
1987.

[298] E. E. Swartzlander. Computer Arithmetic, volume 1. IEEE Computer Soci-
ety Press, Los Alamitos, CA, 1990.

[299] E. E. Swartzlander. Computer Arithmetic, volume 2. IEEE Computer Soci-
ety Press, Los Alamitos, CA, 1990.

[300] N. Takagi. Studies on hardware algorithms for arithmetic operations with a re-
dundant binary representation. PhD thesis, Dept. Info. Sci., Kyoto University,
Japan, 1987.

[301] N. Takagi, T. Asada, and S. Yajima. A hardware algorithm for comput-
ing sine and cosine using redundant binary representation. Systems and
Computers in Japan, 18(8), 1987.

[302] N. Takagi, T. Asada, and S. Yajima. Redundant CORDIC methods with
a constant scale factor. IEEE Transactions on Computers, 40(9):989–995,
September 1991.

[303] N. Takagi, H. Yasukura, and S. Yajima. High speed multiplication algo-
rithm with a redundant binary addition tree. IEEE Transactions on Com-
puters, C-34(9), September 1985.

[304] P. T. P. Tang. Table-driven implementation of the exponential function
in IEEE floating-point arithmetic. ACM Transactions on Mathematical Soft-
ware, 15(2):144–157, June 1989.

[305] P. T. P. Tang. Table-driven implementation of the logarithm function in
IEEE floating-point arithmetic. ACM Transactions on Mathematical Soft-
ware, 16(4):378–400, December 1990.

[306] P. T. P. Tang. Table lookup algorithms for elementary functions and their
error analysis. In P. Kornerup and D. W. Matula, editors, Proceedings of the
10th IEEE Symposium on Computer Arithmetic, pages 232–236. IEEE Com-
puter Society Press, Los Alamitos, CA, 1991.

[307] P. T. P. Tang. Table-driven implementation of the expm1 function in
IEEE floating-point arithmetic. ACM Transactions on Mathematical Soft-
ware, 18(2):211–222, June 1992.

258 Bibliography

[308] The Polylib Team. Polylib, a library of polyhedral functions, version 5.20.0.
http://icps.u-strasbg.fr/polylib/, 2004.

[309] D. Timmermann, H. Hahn, and B. J. Hosticka. Low latency time CORDIC
algorithms. IEEE Transactions on Computers, 41(8):1010–1015,August 1992.

[310] D. Timmermann, H. Hahn, B. J. Hosticka, and B. Rix. A new addition
scheme and fast scaling factor compensation methods for CORDIC algo-
rithms. INTEGRATION, the VLSI Journal, 11:85–100, 1991.

[311] D. Timmermann, H. Hahn, B. J. Hosticka, and G. Schmidt. A pro-
grammable CORDIC chip for digital signal processing applications. IEEE
Journal of Solid-State Circuits, 26(9):1317–1321, September 1991.

[312] A. L. Toom. The complexity of a scheme of functional elements realizing
the multiplication of integers. Soviet Mathematics Doklady, 3:714–716, 1963.

[313] C.-Y. Tseng. A multiple-exchange algorithm for complex chebyshev ap-
proximation by polynomials on the unit circle. SIAM Journal on Numerical
Analysis, 33(5):2017–2049, 1996.

[314] L. Veidinger. On the numerical determination of the best approximations
in the Chebyshev sense. Numerische Mathematik, 2:99–105, 1960.

[315] B. Verdonk, A. Cuyt, and D. Verschaeren. A precision- and range-
independent tool for testing floating-point arithmetic i: basic operations,
square root, and remainder. ACM Trans. Math. Softw., 27(1):92–118, 2001.

[316] B. Verdonk, A. Cuyt, and D. Verschaeren. A precision- and range-
independent tool for testing floating-point arithmetic ii: conversions.
ACM Trans. Math. Softw., 27(1):119–140, 2001.

[317] J. E. Volder. The CORDIC computing technique. IRE Transactions on Elec-
tronic Computers, EC-8(3):330–334, 1959. Reprinted in E. E. Swartzlander,
Computer Arithmetic, Vol. 1, IEEE Computer Society Press, Los Alamitos,
CA, 1990.

[318] J. E. Volder. The birth of CORDIC. Journal of VLSI Signal Processing Systems,
25(2):101–105, June 2000.

[319] C. S. Wallace. A suggestion for a fast multiplier. IEEE Transactions on Elec-
tronic Computers, pages 14–17, February 1964. Reprinted in E. E. Swart-
zlander, Computer Arithmetic, Vol. 1, IEEE Computer Society Press, Los
Alamitos, CA, 1990.

[320] P. J. L. Wallis, editor. Improving Floating-Point Programming. John Wiley,
New York, NY, 1990.

Bibliography 259

[321] J. S. Walther. A unified algorithm for elementary functions. In Joint Com-
puter Conference Proceedings, 1971. Reprinted in E. E. Swartzlander, Com-
puter Arithmetic, Vol. 1, IEEE Computer Society Press, Los Alamitos, CA,
1990.

[322] J. S. Walther. The story of unified CORDIC. Journal of VLSI Signal Processing
Systems, 25(2):107–112, June 2000.

[323] S. Wang and E. E. Swartzlander. Merged CORDIC algorithm. In 1995
IEEE International Symposium on Circuits and Systems, 1995.

[324] W. F. Wong and E. Goto. Fast hardware-based algorithms for elementary
function computations using rectangular multipliers. IEEE Transactions
on Computers, 43(3):278–294, March 1994.

[325] J. M. Yohe. Roundings in floating-point arithmetic. IEEE Transactions on
Computers, C-22(6):577–586, June 1973.

[326] H. Yoshimura, T. Nakanishi, and H. Tamauchi. A 50MHz geometrical
mapping processor. In Proceedings of the 1988 IEEE International Solid-
State Circuits Conference, 1988.

[327] P. Zimmermann. Arithmétique en précision arbitraire. Réseaux et Systèmes
Répartis, Calculateurs Parallèlles, 13(4–5):357–386, 2001. In French.

[328] A. Ziv. Fast evaluation of elementary mathematical functions with
correctly rounded last bit. ACM Transactions on Mathematical Software,
17(3):410–423, September 1991.

[329] F. Zou and P. Kornerup. High speed DCT/IDCT using a pipelined
CORDIC algorithm. In Knowles and McAllister, editors, Proceedings of the
12th IEEE Symposium on Computer Arithmetic, pages 180–187. IEEE Com-
puter Society Press, Los Alamitos, CA, 1995.

[330] D. Zuras. More on squaring and multiplying large integers. IEEE Trans-
actions on Computers, 43(8):899–908, August 1994.

Index

accurate tables method, 73
adaptation of coefficients, 55
addition, 19
Agarwal, 2, 193
AGM iteration, 95, 203

for ln(2), 97
for π, 97
for exponentials, 98
for logarithms, 95

Antelo, 156
arithmetic-geometric mean, 95, 203
ARPREC, 90
Avizienis’ algorithm, 20

Bailey, 90, 94
Baker’s predictive algorithm, 122
balanced ternary, 11
base, 9
bipartite method, 83
BKM

algorithm, 162
E-mode, 162
iteration, 162
L-mode, 162, 166

Bogacki, 156
borrow-save

addition, 21
number system, 21

branching cordic algorithm, 146
branch cuts, 222
Braune, 66
breakpoint, 196, 198
Brent, 89, 97, 99
Brent–Salamin algorithm for π, 97
Briggs, 5, 103, 104

carry-save
addition, 21
computation of exponentials, 118
number system, 21, 113, 143

carry propagation, 19

Cavallaro, 156
CELEFUNT, 66, 222
Chebyshev, 37

approximation to ex, 35
approximation to functions, 29
polynomials, 29, 35
theorem, 32, 36
theorem for rational

approximations, 47
Cody, 1, 66, 176, 177, 222
Cohen, 90
complex arguments, 66
complex elementary functions, 222
continued fractions, 179
convergents, 179, 181
CORDIC, 5, 109, 133

arcos, 153
arcsin, 153
branching, 146
decimal, 156
differential, 150–152
double rotation, 144
exponentials, 139
hyperbolic mode, 137
iteration, 137
logarithms, 139
on line, 156
rotation mode, 134, 138
scale factor compensation, 139
sine and cosine, 134
vectoring mode, 137, 138

correct rounding, 2, 11, 193, 195
CRLIBM, 178, 229
Cyrix

83D87, 77
FastMath, 225

Daggett, 156
Dawid and Meyr, 150
Defour, 216, 229
Delosme, 144, 156

262 Index

DeLugish, 131
Deprettere, 141, 156
Despain, 139
Dewilde, 141
differential CORDIC, 150–152
discrete base, 108, 134
distillation, 12
double rotation method, 144
Dunham, 51

E-method, 57
Ercegovac, 4, 150, 156

E-method, 57
radix-16 algorithms, 157

Estrin’s method, 58, 227
exact rounding, 2, 11, 195
exceptions, 13, 217, 218
exponent, 9
exponential

Baker’s method, 129
BKM, 162
fast shift and add algorithm, 113
multiple-precision, 94, 98
radix-16, 157
restoring algorithm, 105, 109
table-driven, 71
Tang, 71
Wong and Goto, 81

faithful rounding, 13
Fast2Mult, 16
Fast2Sum, 13
fast2sum, 12
Fast Fourier Transform, 90, 92
Feldstein, 199
FFT, 90, 92
FFT-based multiplication, 92
final rounding, 193
floating-point

division, 48
floating-point arithmetic, 9, 11, 13, 14,

16
test of, 16

Flynn, 48
FMA, 15, 16, 55, 191, 226, 227
Formal proofs, 17
Fourier transform, 133
FUNPACK, 222
fused multiply-add, 15, 16, 55, 191,

226, 227

fused MAC, 15, 16, 55, 191,
226, 227

Gal
accurate tables method, 73

GMP, 90
Goldberg, 9
Goodman, 199
gradual underflow, 13
Granlund, 90

Hamada, 49
Hanek, 177
Harrison, 17
Hartley transform, 133
Haviland, 139
Hekstra, 156
Hemkumar, 156
Heron iteration, 93
Hewlett Packard’s HP 35, 133
hidden bit, 10
high-radix algorithms, 157
Horner’s scheme, 55, 56, 59
HP

Itanium, 15, 55, 59, 226, 231
HP-UX Compiler, 231
Hsiao, 156
Hu, 156

IBM
LIBULTIM, 197, 229

IBM/370, 73
IEEE-754 standard, 1, 2, 10, 11, 13, 77,

217
implicit bit, 10
infinity, 13
Intel

8087, 1, 9, 133, 156
Itanium, 15, 55, 59, 226, 231
Pentium, 21

interval arguments, 66
interval arithmetic, 12
Itanium, 15, 55, 59, 226, 231

Jacobi
approximation to functions, 31
polynomials, 31

Kahan, 1, 9, 16, 177, 179, 218, 222
Karatsuba multiplication algorithm, 91
Karp, 15

Index 263

Koren, 4, 48
Kota, 156
Kramer, 66
Krishnamurthy, 109
Kropa, 156
Kuki, 1

Laguerre
approximation to functions, 31
polynomials, 31

Lang, 4, 156
Lau, 156
least maximum

approximation to ex, 36
approximation to functions, 32

least squares approximations, 28
Lefèvre, 198, 203, 216, 229
Legendre

approximation to ex, 35
approximation to functions, 29
polynomials, 29, 35

LIBMCR, 222, 231
LIBULTIM, 197, 229
Lin, 156
Lindemann theorem, 197
Linhardt, 131
Litvinov, 47
logarithm

BKM, 166
fast shift and add algorithm, 119
multiple-precision, 95, 96
restoring algorithm, 111
restoring algorithm, 112
table-driven, 72
Tang, 72
Wong and Goto, 78

Luk, 156
Lynch, 217

MACHAR, 17
Malcolm, 16
mantissa, 9, 10
mantissa distance, 204
Maple, 3, 50
Markstein, 15, 231
matrix

logarithm, 223
square exponential, 223
square root, 223

Matula, 84

Meggitt, 108, 131
Miller, 131
minimax

approximation to ex, 36
minimax approximations, 32
MISCFUN, 222
modular range reduction, 187
monic polynomial, 30
monotonicity, 2, 193, 194
Montgomery, 92
Motorola

68881, 156
Power PC, 55

MP, 89
MPCHECK, 17
MPFR, 90
MPFUN, 90
multipartite methods, 83, 87
multiple-Precision

AGM, 95
division, 92
power-series, 94
square-root, 92
trigonometric functions, 98

multiple-precision, 89, 177
exponentials, 94, 98
logarithms, 94, 96
multiplication, 90

multiply-accumulate, 15, 16, 55, 191,
226, 227

multiply-add, 15, 16, 55, 191, 227

Naganathan, 156
NaN (Not a Number), 13, 218
Nesterenko, 202
Newton, 55
Newton–Raphson iteration, 84, 92
Ng, 231
nonrestoring algorithm, 109, 134
normalized numbers, 10

Oberman, 48
Okabe, 1
Omondi, 4
orthogonal polynomials, 28
orthogonal rational functions, 47

Padé approximants, 47
PARANOIA, 17
PARI, 90

264 Index

Payne, 177
Phatak, 146
pocket calculators, 10, 133, 156
polynomial approximations, 27–29,

31–33, 36, 38, 39, 48
least maximum, 32
least squares, 28
particular form, 51, 227, 228
speed of convergence, 39

polynomial evaluation, 54
adaptation of coefficients, 55
E-method, 57
error, 59
Estrin’s method, 55, 58, 227
Horner’s scheme, 55

Polynomier, 59
polytope, 54
power function, 220
predictive algorithm, 122
pseudodivision, 108, 131
pseudomultiplication, 108, 131

radix, 9
radix-16 algorithms, 157
radix 10 arithmetic, 10
radix 3, 11
range limits, 2, 193
range reduction, 6, 71, 173–177, 179,

182–188, 218
additive, 173
Cody and Waite, 177, 227
modular, 187
multiplicative, 173
Payne and Hanek, 178, 184
positive, 187
redundant, 187
symmetrical, 187
Tang, 71
worst cases, 179

rational approximations, 46–49
equivalent expressions, 49
particular form, 51

reduced argument, 173
redundant number systems, 19–21,

113, 119, 127, 141, 142, 144,
146, 162, 190

Remez, 47
Remez’s Algorithm, 32, 41
restoring algorithm, 108

Robertson diagrams, 114, 119, 141, 158,
163, 164

rounding modes, 11, 13, 195

Salamin, 89, 97
Sarkar, 108
scale factor compensation, 139
Schönhage, 92
Schmid, 156
Schulte and Swartzlander, 198
segmentation methods, 87
SETUN computer, 11
shift-and-add

algorithms, 103–105, 108, 113, 119,
131, 133, 157

exponentials in a redundant num-
ber system,
113

logarithms in a redundant num-
ber system,
119

signed-digit
computation of exponentials, 116
number system, 19, 21, 113, 142

signed zeroes, 14
significand, 9, 10
sine

special polynomial approximation,
51

table-driven, 73
Tang, 73

sine and cosine
accurate tables, 76
CORDIC, 134

Sips, 156
SPECFUN, 222
Special functions, 222
Specker, 131
square root, 46, 139
SRT division, 118
Strassen, 92
subnormal numbers, 13, 218
SUN

LIBMCR, 222, 231
SVD, 133
Swartzlander, 4, 217
symmetry, 2, 193

table-based methods, 67
table-driven algorithms, 70–73

Index 265

table maker’s dilemma, 193, 196
deterministic approach, 202
probabilistic approach, 198

Takagi, 113, 144
Tang

table-driven algorithms, 70
Taylor expansions, 36, 90
Timmermann, 156
Trivedi, 150
Tuszinsky, 139

UCBTEST, 17
Udo, 141
ULP (unit in the last place), 14, 80

Volder, 131, 133
CORDIC iteration, 134

Waite, 1, 177
Waldschmidt, 202
Walther, 133

CORDIC iteration, 137
Weierstrass theorem, 32
weight function, 28, 29, 31, 51–53
Wong and Goto’s algorithm, 77

Zimmermann, 90
Zinaty, 48
Ziv, 197, 229

	Cover
	Elementary Functions: Algorithms and Implementation (Second Edition)
	Copyright
	9780817643720

	Contents
	List of Figures
	List of Tables
	Preface to the Second Edition
	Preface to the First Edition
	1 Introduction
	2 Some Basic Things About Computer Arithmetic
	2.1 Floating-Point Arithmetic
	2.1.1 Floating-point formats
	2.1.2 Rounding modes
	2.1.3 Subnormal numbers and exceptions
	2.1.4 ULPs
	2.1.5 Fused multiply-add operations
	2.1.6 Testing your computational environment
	2.1.7 Floating-point arithmetic and proofs
	2.1.8 Maple programs that compute double-precision approximations

	2.2 Redundant Number Systems
	2.2.1 Signed-digit number systems
	2.2.2 Radix-2 redundant number systems

	I: Algorithms Based on Polynomial Approximation and/or Table Lookup, Multiple-Precision Evaluation of Functions
	3 Polynomial or Rational Approximations
	3.1 Least Squares Polynomial Approximations
	3.1.1 Legendre polynomials
	3.1.2 Chebyshev polynomials
	3.1.3 Jacobi polynomials
	3.1.4 Laguerre polynomials
	3.1.5 Using these orthogonal polynomials in any interval

	3.2 Least Maximum Polynomial Approximations
	3.3 Some Examples
	3.4 Speed of Convergence
	3.5 Remez's Algorithm
	3.6 Rational Approximations
	3.7 Actual Computation of Approximations
	3.7.1 Getting “general” approximations
	3.7.2 Getting approximations with special constraints

	3.8 Algorithms and Architectures for the Evaluation of Polynomials
	3.8.1 The E-method
	3.8.2 Estrin’s method

	3.9 Evaluation Error Assuming Horner's Scheme is Used
	3.9.1 Evaluation using floating-point additions and multiplications
	3.9.2 Evaluation using fused multiply-accumulate instructions

	3.10 Miscellaneous

	4 Table-Based Methods
	4.1 Introduction
	4.2 Table-Driven Algorithms
	4.2.1 Tang’s algorithm for exp(x) in IEEE floating-point arithmetic
	4.2.2 ln(x) on [1, 2]
	4.2.3 sin(x) on [0, π/4]

	4.3 Gal's Accurate Tables Method
	4.4 Table Methods Requiring Specialized Hardware
	4.4.1 Wong and Goto’s algorithm for computing logarithms
	4.4.2 Wong and Goto’s algorithm for computing exponentials
	4.4.3 Ercegovac et al.’s algorithm
	4.4.4 Bipartite and multipartite methods
	4.4.5 Miscellaneous

	5 Multiple-Precision Evaluation of Functions
	5.1 Introduction
	5.2 Just a Few Words on Multiple-Precision Multiplication
	5.2.1 Karatsuba’s method
	5.2.2 FFT-based methods

	5.3 Multiple-Precision Division and Square-Root
	5.3.1 Newton–Raphson iteration

	5.4 Algorithms Based on the Evaluation of Power Series
	5.5 The Arithmetic-Geometric (AGM) Mean
	5.5.1 Presentation of the AGM
	5.5.2 Computing logarithms with the AGM
	5.5.3 Computing exponentials with the AGM
	5.5.4 Very fast computation of trigonometric functions

	II: Shift-and-Add Algorithms
	6 Introduction to Shift-and-Add Algorithms
	6.1 The Restoring and Nonrestoring Algorithms
	6.2 Simple Algorithms for Exponentials and Logarithms
	6.2.1 The restoring algorithm for exponentials
	6.2.2 The restoring algorithm for logarithms

	6.3 Faster Shift-and-Add Algorithms
	6.3.1 Faster computation of exponentials
	6.3.2 Faster computation of logarithms

	6.4 Baker's Predictive Algorithm
	6.5 Bibliographic Notes

	7 The CORDIC Algorithm
	7.1 Introduction
	7.2 The Conventional CORDIC Iteration
	7.3 Scale Factor Compensation
	7.4 CORDIC With Redundant Number Systems and a Variable Factor
	7.4.1 Signed-digit implementation
	7.4.2 Carry-save implementation
	7.4.3 The variable scale factor problem

	7.5 The Double Rotation Method
	7.6 The Branching CORDIC Algorithm
	7.7 The Differential CORDIC Algorithm
	7.8 Computation of cos^{-1} and sin^{-1} Using CORDIC
	7.9 Variations on CORDIC

	8 Some Other Shift-and-Add Algorithms
	8.1 High-Radix Algorithms
	8.1.1 Ercegovac’s radix-16 algorithms

	8.2 The BKM Algorithm
	8.2.1 The BKM iteration
	8.2.2 Computation of the exponential function (E-mode)
	8.2.3 Computation of the logarithm function (L-mode)
	8.2.4 Application to the computation of elementary functions

	III: Range Reduction, Final Rounding and Exceptions
	9 Range Reduction
	9.1 Introduction
	9.2 Cody and Waite's Method for Range Reduction
	9.3 Finding Worst Cases for Range Reduction?
	9.3.1 A few basic notions on continued fractions
	9.3.2 Finding worst cases using continued fractions

	9.4 The Payne and Hanek Reduction Algorithm
	9.5 The Modular Range Reduction Algorithm
	9.5.1 Fixed-point reduction
	9.5.2 Floating-point reduction
	9.5.3 Architectures for modular reduction

	9.6 Alternate Methods

	10 Final Rounding
	10.1 Introduction
	10.2 Monotonicity
	10.3 Correct Rounding: Presentation of the Problem
	10.4 Some Experiments
	10.5 A "Probabilistic" Approach to the Problem
	10.6 Upper Bounds on m
	10.7 Obtained Worst Cases for Double-Precision
	10.7.1 Special input values
	10.7.2 Lefevre’s experiment

	11 Miscellaneous
	11.1 Exceptions
	11.1.1 NaNs
	11.1.2 Exact results

	11.2 Notes on x^y
	11.3 Special Functions, Functions of Complex Numbers

	12 Examples of Implementation
	12.1 Example 1: The Cyrix FastMath Processor
	12.2 The INTEL Functions Designed for the Itanium Processor
	12.2.1 Sine and cosine
	12.2.2 Arctangent

	12.3 The LIBULTIM Library
	12.4 The CRLIBM Library
	12.4.1 Computation of sin(x) or cos(x) (quick phase)
	12.4.2 Computation of ln(x)

	12.5 SUN's LIBMCR Library
	12.6 The HP-UX Compiler for the Itanium Processor

	Bibliography
	Index
	A, B, C, D
	D, E, F, G, H, I, J, K
	K, L, M, N, O, P
	P, R, S, T
	T, U, V, W, Z

