

EFFICIENT ALGORITHMS
FOR LISTING COMBINATORIAL STRUCTURES

Distinguished Dissertations in Computer Science

Edited by
CJ. van Rijsbergen, University of Glasgow

The Conference of Professors of Computer Science (CPCS) in conjunction
with the British Computer Society (BCS), selects annually for publication up
to four of the best British Ph.D. dissertations in computer science. The scheme
began in 1990. Its aim is to make more visible the significant contribution
made by Britain - in particular by students - to computer science, and to
provide a model for future students. Dissertations are selected on behalf of
CPCS by a panel whose members are:

M. Clint, Queen's University, Belfast
RJ.M. Hughes, University of Glasgow
R. Milner, University of Edinburgh (Chairman)
K. Moody, University of Cambridge
M.S. Paterson, University of Warwick
S. Shrivastava, University of Newcastle upon Tyne
A. Sloman, University of Birmingham
F. Sumner, University of Manchester

EFFICIENT ALGORITHMS FOR LISTING
COMBINATORIAL STRUCTURES

Leslie Ann Goldberg
Sandia National Laboratories

CAMBRIDGE
UNIVERSITY PRESS

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Delhi

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www. Cambridge. org
Information on this title: www.cambridge.org/9780521117883
© Cambridge University Press 1993

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 1993
This digitally printed version 2009

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-45021-8 hardback
ISBN 978-0-521-11788-3 paperback

Table of Contents v

Table of Contents

Abstract vii
General References xi
Index of Notation and Terms xii
1. Introduction 1

1.1. Families of Combinatorial Structures 1
1.2. Motivation 4

1.2.1. Designing Useful Algorithms 4
1.2.2. Discovering General Methods for Algorithm Design 5
1.2.3. Learning about Combinatorial Structures 5

1.3. Listing Algorithms 6
1.4. Efficient Listing Algorithms 8
1.5. Synopsis of the Thesis 10
1.6. Bibliographic Notes 13

2. Techniques for Listing Combinatorial Structures 16
2.1. Basic Building Blocks 16

2.1.1. Recursive Listing 16
2.1.2. Random Sampling 25

2.2. Using Listing Algorithms for Closely Related Families 40
2.2.1. The Interleaving Method 41
2.2.2. The Filter Method 43

2.3. Avoiding Duplicates 47
2.3.1. Probabilistic Algorithms 47

Example 1: A family of colorable graphs 50
Example 2: A family of unlabeled graphs 52

2.3.2. Deterministic Algorithms 56
Example 1: A family of colorable graphs 60
Example 2: A family of unlabeled graphs 73

3. Applications to Particular Families of Structures 84
3.1. First Order Graph Properties 85
3.2. Hamiltonian Graphs 93
3.3. Graphs with Cliques of Specified Sizes 95

3.3.1. Graphs with Small Cliques 96
3.3.2. Graphs with Large Cliques 98

vi Table of Contents

3.3.3. Graphs with Cliques whose Sizes are
Between log(n) and 2 log(ra) 103

3.4. Graphs which can be Colored with a Specified Number
of Colors 104

3.4.1. Digression — The Problem of Listing fc-Colorings 115
4. Directions for Future Work on Listing 119
5. Related Results 129

5.1. Comparing Listing with other Computational Problems 129
5.2. Evaluating the Cycle Index Polynomial 136

5.2.1. Evaluating and Counting Equivalence Classes 140
5.2.2. The Difficulty of Evaluating the Cycle Index

Polynomial 142
5.2.3. The Difficulty of Approximately Evaluating

the Cycle Index Polynomial 151
6. Bibliography 155

Vll

Abstract

This thesis studies the problem of designing efficient algorithms for listing combinator-

ial structures. The main notion of efficiency that we use is due to Johnson, Yannakakis,

and Papadimitriou. It is called polynomial delay. A listing algorithm is said to have

delay d if and only if it satisfies the following conditions whenever it is run with any

input p:

1. It executes at most d(p) machine instructions before either producing the first output
or halting.

2. After any output it executes at most d(p) machine instructions before either producing

the next output or halting.

An algorithm is said to have polynomial delay if its delay is bounded from above by
a polynomial in the length of the input. In the thesis we also define a weaker notion of
efficiency which we call cumulative polynomial delay.

There are some families of combinatorial structures for which it is easy to design a
polynomial delay listing algorithm. For example, it is easy to design a polynomial delay
algorithm that takes as input a unary integer n and lists all n-vertex graphs. In this
thesis we focus on more difficult problems such as the following.

Problem 1 — Listing unlabeled graphs

Design a polynomial delay algorithm that takes as input a unary integer n and
lists exactly one representative from each isomorphism class in the set of n-vertex
graphs.

Problem 2 — Listing Hamiltonian graphs

Design a polynomial delay algorithm that takes as input a unary integer n and lists
all Hamiltonian n-vertex graphs.

We start the thesis by developing general methods for solving listing problems such
as 1 and 2. Then we apply the methods to specific combinatorial families obtaining
various listing algorithms including the following.

1. A polynomial space polynomial delay listing algorithm for unlabeled graphs

2. A polynomial space polynomial delay listing algorithm for any first order one property f

f A first order graph property is called a one property if and only if it is the case that
almost every graph has the property.

vm

3. A polynomial delay listing algorithm for Hamiltonian graphs

4. A polynomial space polynomial delay listing algorithm for graphs with cliques of spe-
cified sizes

5. A polynomial space cumulative polynomial delay listing algorithm for k-colorable

graphs

We conclude the thesis by presenting some related work. First, we compare the com-
putational difficulty of listing with the difficulty of solving the existence problem, the
construction problem, the random sampling problem, and the counting problem. Next,
we consider a particular computational counting problem which is related to a listing
problem described earlier in the thesis. The counting problem that we consider is the
problem of evaluating Polya's cycle index polynomial. We show that the problem of
determining particular coefficients of the polynomial is #P-hard and we use this result
to show that the evaluation problem is #P-hard except in certain special cases. We
also show that in many cases it is NP-hard even to evaluate the cycle index polynomial
approximately.

IX

Acknowledgements

My advisor Mark Jerrum has made a significant contribution to the work described
in this thesis and to my mathematical education. I am grateful to him for suggesting
the topic of this thesis, for teaching me how to develop intuition about mathematical
problems, for reading my work, and for making many helpful suggestions. I am also
grateful to my second advisor, Alistair Sinclair, who has read much of my work and
provided encouragement and useful suggestions. I am grateful to Bob Hiromoto and Olaf
Lubeck of Los Alamos and to Corky Cartwright, Ken Kennedy, and other professors at
Rice for helping me to develop the academic self-confidence that sustained me during
difficult times. Finally, I am grateful to the Marshall Aid Commemoration Commission
of the UK and to the National Science Foundation of the USA for providing the financial
support for my PhD.

Declaration

This thesis was composed by me and the work described in the thesis is my own except

where stated otherwise. Some of the material in chapter 2 has appeared in [Goll 90] and

some of the material in chapter 5 has appeared in [Gol2 90],

Leslie Ann Goldberg, December 1991

XI

General References

Background material and definitions of standard terms and notation can be found in the

following references.

Algorithms and Discrete Mathematics [AHU 74, CLR 90, Knu 73]

Complexity Theory [GJ 79, HU 79]

Graph Theory [Gib 85, Bol 85, Hof 82]

Probability Theory [Fel 68, Bol 85]

Permutation Groups [Led 73, BW 79, Hof 82]

Polya Theory (and Burnside's Lemma) [HP 73, DeB 64, PR 87]

xii Index of Notation and Terms

Index of Notation and Terms

— (the difference operator on families) 40

< (ordering of vertices by index) 18

< (lexicographic ordering on subsets) 18

~ (equivalence relation on colored graphs) 50

« (isomorphism relation on graphs) 52

|Aut(C)| (the size of the automorphism group of every member of C) 54

c9 41

Clj (Clj(n) = set of n-vertex graphs with a j(n)-clique) 95

fh 127

^m 125

Q (Q(n) = set of n-vertex graphs) 1

Q (G(n) = set of isomorphism classes of Q(n)) 3

(Gbk(n) = set of balanced A:(n)-colored n-vertex graphs) 60

(Qbk(n) = set of equivalence classes under ~ of Qbk(n)) 60

Gk (Gk(n) = set of fc(n)-colored n-vertex graphs) 50

Gk (Gk(n) = set of equivalence classes under ~ of Gk(n)) 50

G[V] (the subgraph of G induced by the vertices in V) 68

F* (r*(C) = set of graphs with coloring C) 60

FG(V) (the set of neighbors of v in G) 19

|£| (the length of list C) 43

C[i] (the ith structure on C) 43

C[i,j] (the sub-list £[t] , . . . , C[j]) 43

CIC (the sub-list consisting of all structures on C

that belong to classes in C) 43

log(n) (logarithm of n to the base 2) 12

Pk (Pk(n) = set of ifc(n)-colorings of Vn) 50

(Pbk(n) = set of balanced k(n)-colorings of Vn) 60

(IIjfc(G) = set of fc(n)-colorings of G) 60

90

Index of Notation and Terms xiii

\s\ (the length of string s) 7

SAT (SAT(F) = set of satisfying assignments of F) 2

S(p) (for any family S) 3

Vn (Vn = vertex set {vu... ,vn}) 1

augmentation (of a graph) 18

balanced coloring 60

bias factor 25, 48

BK-Label 53

canonical labeling, canonical representative 53

CHECKERSi 14

CHECKERS2 15

clique 95

color class 50

colorable graph 50

colored graph 50

coloring of a graph 50

coloring of a vertex set 50

coupon collector argument 29

cumulative delay 9

cumulative polynomial delay 9

delay 8

efficient algorithm 1

efficient listing algorithm 8

efficient random sampling algorithm 25, 48

encoding scheme, "reasonable" encoding scheme 6

equivalence classes of a family 3

equivalence relation of a family 3

exponentially small failure probability .. . 7

failure probability 7

family of combinatorial structures 3

xiv Index of Notation and Terms

filter method 43

Gk-Sample 52

(Tk-Sample 52

graph property 42

interleaving method 41

isomorphism-invariant 54

j-colored graph 50

j-coloring of a graph 50

j-coloring of a vertex set 50

Kucera's condition 50

larger vertex 18

lexicographic ordering on subsets 18

ListHk 68

listing algorithm 7

machine instruction, machine language 6

Oberschelp's formula 54

orderly method 57

parameter, parameter value 1

polynomial delay 8

polynomial total time 14

polynomially related families of structures 40

probabilistic listing algorithm 7

random access machine, probabilistic random access machine 6

random sampling algorithm 25, 48

recursively listable family 16

register (of a random access machine) 6

related families of structures 40

rigid 73

self-reducible 21

simple family of combinatorial structures 1,3

Index of Notation and Terms xv

smaller vertex 18

space complexity, space-efficient, polynomial space 9

standard graph listing algorithm 42

"step" of a computation, time step 8

structure of 5 (for any family 5) 3

sub-diagonal function 50

sub-family 40

super-family 40

tape (input or output tape of a random access machine) 6

time step 8

unbiased random sampling algorithm 35

uniform reducer 25

Uniform Reducer 2 30

unlabeled graph 52

uniform distribution of unlabeled graphs 54

1. Introduction 1

1. Introduction

This thesis studies the problem of designing listing algorithms for families of combin-
atorial structures. In particular, it studies the problem of designing listing algorithms
whose implementations do not use overwhelming quantities of computational resources.
The computational resources that are considered are running time and storage space.
Using standard terminology from complexity theory, we indicate that the time and space
requirements of an algorithm are small by saying that the algorithm is "efficient".

Section 1 of this chapter introduces our problem by defining the notion of a family

of structures. It explains informally what we mean by a listing algorithm for a family
of structures without discussing computational details. Section 1.2 motivates the study,
describing three reasons that the problem deserves attention. Section 1.3 gives the phrase
"listing algorithm" a precise meaning. In this section we specify a deterministic compu-
tational machine and a probabilistic machine. We discuss the process of implementing
combinatorial listing algorithms on these machines. Section 1.4 establishes criteria which
we will use to determine whether or not a given listing algorithm is efficient. The criteria
will be sufficiently general that we will be able to change the computational machines
that we consider (within a large class of "reasonable" machines) without changing the
set of families of combinatorial structures that have efficient listing algorithms. Sec-
tion 1.5 contains a synopsis of the thesis. Finally, section 1.6 contains some bibliographic
remarks.

1.1. Families of Combinatorial Structures

A simple family of combinatorial structures is an infinite collection of finite sets of struc-
tures together with a specification of a parameter. Each set in the family is associated
with a particular value of the parameter. Here are three examples of simple families of
combinatorial structures.

Example 1 — The family Q

Every parameter value of Q is a positive integer. The value n is associated with the

set Q(n) which contains all undirected graphs that have vertex set Vn = {vi,..., vn}:

1. Introduction

Example 2 — The family Pa

Every parameter value of Pa is an undirected graph. The value G is associated with the

set Pa(G) which contains all undirected simple paths in G. Suppose that the graphs G\

and C?2 are defined as follows:

Then we have

Pa(G2) = {[vi], [v2], [v3], [vi, v2], K , v3], [V2, ^3], K , v2, t;3], [vi, u3, v2], [r2, «i,

Example 3 — The family SAT

Every parameter value of SAT is a boolean formula. The value F is associated with

1. Introduction 3

the set SAT(F) which contains all satisfying assignments of F. Suppose that F is the
formula F = x\ V ~x~2. Then we have

SAT(F) = {[*, = l,x2 = 1], [Xl = 1,*2 = 0], [Xl =0,x2= 0]}.

We have said that these three families are simple because they treat each combinatorial
structure (i.e. each graph, each path, and each assignment) as being distinct. In general,
a family of combinatorial structures is an infinite collection of finite sets of equivalence

classes of structures together with a specification of a parameter. Once again, each set
in the family is associated with a particular value of the parameter. For example, one
well-known equivalence relation on undirected graphs is graph isomorphism. Using this
relation, we obtain an example of a non-simple family.

Example 3 — The family Q

Every parameter value of Q is a positive integer. The value n is associated with the

set G(n) which contains the isomorphism classes of Q(n):

0(1)

As the examples have demonstrated, we use the notation S(p) to refer to the set of
equivalence classes that is associated with parameter value p in family S. We say that a
structure s is a structure of S if and only if there is a parameter value p of 5 such that s

is a member of an equivalence class in S(p).

4 1. Introduction

A simple family can be viewed more generally as being a family in which the equival-

ence relation is the identity relation. We will view simple families in this way whenever

it is convenient to do so.

In order to associate computational problems with families of combinatorial structures,
we will specify a particular computational machine. A listing algorithm for a family S

of structures is a program written in the language of our machine that takes as input a
value p of the parameter of S and lists exactly one representative from each equivalence
class in S(p). In the next section, we describe three reasons for studying the problem of
designing efficient listing algorithms for families of combinatorial structures.

1.2. Motivation

1.2.1. Designing Useful Algorithms

The most obvious reason for undertaking this study is that it produces useful al-
gorithms. Algorithms for listing combinatorial structures have been used for solving a
variety of practical problems from diverse fields such as chemistry, electrical engineering,
and automatic program optimization (See, for example, the works that are referenced in
[Chr 75, BvL 87, and CR1 79]).

Lists of combinatorial structures are also useful to computer programmers. Despite
theoretical advances in program verification, programmers generally use some empirical
testing in order to convince themselves that their programs are correct. Efficient listing
algorithms can be used to provide valuable sources of test data. Listing algorithms for
non-simple families are particularly useful in this case because the lists of structures that
these algorithms produce do not contain numerous copies of structures that are essentially
"the same". For example, there are many computer programs for solving graph-theoretic
problems which have the property that their behavior is independent of the labeling of
the vertices of the input graph. That is, if G\ and G2 are two isomorphic graphs then
the behavior of such a program is the same when it is run with input G\ as it is when it
is run with input G2. To test such a program one would only require one representative
from each isomorphism class of graphs. Therefore a listing algorithm for Q could be used
to provide test data.

Lists of structures have also been used extensively by combinatorialists. Examining
such a list can suggest conjectures and can provide counter-examples to existing con-
jectures. Furthermore, lists of combinatorial structures contain empirical information
about questions that seem to be difficult to answer theoretically. The usefulness of lists
of combinatorial structures is explained in [Rea 81, NW 78, and SW 86]. McKay and

1. Introduction 5

Royle document some of the efforts that have been made by mathematicians to produce
such lists [MR 86].

1.2.2. Discovering General Methods for Algorithm Design

A second reason for undertaking this study is that it yields general methods for design-
ing algorithms.

It is true that there are already several well-known general techniques which can
be used to obtain efficient algorithms for listing various simple families of combinatorial
structures [NW 78, BvL 87]. However, the families to which the techniques apply all have
the property that the structures of a given size are constructed by augmenting smaller
structures - that is, the families have inductive definitions. It is not clear, however, how
these general techniques should be applied to the problem of listing more complicated
families of structures. For example, it is not clear how the techniques could be applied
to the problem of designing listing algorithms for non-simple families of structures.

Despite the absence of general techniques, various researchers have discovered effi-

cient listing algorithms for some non-simple families of structures (see for example the

algorithms in [BH 80] and [WROM 86] which list unlabeled trees). Unfortunately, it

seems difficult to modify these algorithms to come up with efficient listing algorithms for

other more complicated families such as Q.

In this work, we devise general listing techniques which we use to obtain efficient

listing algorithms for various non-simple families of combinatorial structures including

the family Q.

1.2.3. Learning about Combinatorial Structures

A third reason for studying the problem of designing efficient algorithms for listing
combinatorial structures is that such a study contributes directly to our knowledge about
the structures themselves. In part, this contribution is due to the mathematical content
of the algorithms. Efficient techniques for listing combinatorial structures often depend
upon non-trivial properties of the structures. Therefore, the search for an efficient list-
ing algorithm for a specific family of combinatorial structures can lead to interesting
discoveries about the structures in the family.

More generally, we view the property of having an efficient listing algorithm as being
a mathematical property of a family of structures and we study families of combinatorial
structures by determining whether or not they have efficient listing algorithms. This
thesis concentrates on positive results. That is, we concentrate on showing that particular

6 1. Introduction

families of structures do have efficient listing algorithms. A few negative results are
discussed in the bibliographic note at the end of this chapter and in chapter 5.

Now that we have discussed several reasons for studying the problem of designing

efficient listing algorithms for families of combinatorial structures, we proceed to set up

the framework for the study.

1.3. Listing Algorithms

The machine that we take as our model of deterministic computation is the random access
machine (see [AHU 74]). This machine consists of a read-only input tape, a write-only
output tape, a finite program written in a very simple machine language, and a sequence
of registers ro, n , . . . , each of which is capable of holding an integer of arbitrary size. Each
square on a tape of a random access machine is capable of holding a single character from
a finite input/output language such as the language {0,1, —, [,], (,),,} which is used in
[GJ 79].

The machine that we take as our model of probabilistic computation is the probabilistic
random access machine. This machine is identical to an ordinary random access machine
except that it can execute an additional machine instruction that causes it to flip an
unbiased coin [Gil 77].

In order to write a random access machine program for listing a family of combinatorial
structures, we must encode the relevant parameter values and structures as strings in the
language that the machine uses for input and output. We will measure the efficiency of
our programs in terms of the computational resources that they use when they are given
encoded parameter values of specified lengths. Therefore, the results that we obtain
regarding efficiency will depend upon the encoding schemes that we use. In this section,
we will describe a few criteria that we can apply to determine whether or not a given
encoding scheme is "reasonable". As long as we restrict our attention to "reasonable"
encoding schemes, the results that we obtain will not depend upon the specific scheme
that we use. Therefore, this thesis will often blur the distinction between parameter
values and encoded parameter values and the distinction between structures and encoded
structures. In the course of this work, we will not spell out the encodings that we use but
we will assume that they conform to our established criteria. We will explicitly describe
any encoding schemes that we use that do not conform to the criteria.

The criteria that we will use are the following. First, we will restrict our attention to
encoded families in which structures have concise encodings. That is, we will assume that
each encoded family S that we consider can be associated with a polynomial r in such a

1. Introduction 7

way that for every pair (p, s) in which p is an encoded parameter value of S and s is an
encoded structure whose equivalence class is in S(p) we have \s\ < r(|p|)f. Second, we
will assume that encodings are "reasonable" in the sense of Garey and Johnson [GJ 79]
unless such an assumption causes the first criterion to be violated.

In order to ensure that our model of computation is "realistic", we will not consider
algorithms that use random access machine registers to store extremely large integers.
In fact, any given run of any algorithm that we consider will only store integers whose
binary representations are polynomially long in the number of tape cells that are used
to store the encoded input parameter value.

We are now ready for the following definition. A deterministic listing algorithm for a
family S of combinatorial structures is a random access machine program that takes as
input an encoded value p of the parameter of S and lists exactly one encoded represent-
ative from each equivalence class in S(p).

In most contexts, a probabilistic algorithm for performing a given task is defined to
be a program running on a probabilistic machine that has the property that a given
run of the program with any specific input is very likely to perform the task correctly,
but may in fact fail to do so. In the context of listing combinatorial structures, we
choose a fairly restrictive notion of a probabilistic algorithm. In particular, we require
that when a probabilistic algorithm for listing a family of structures fails to list exactly
one representative from each equivalence class in the appropriate set that it fails by
leaving out some of the equivalence classes entirely. That is, we consider algorithms that
sometimes omit some of the structures that should be output but we do not consider
algorithms that produce outputs that are "wrong".

More formally, a probabilistic listing algorithm with failure probability p for a family S

of combinatorial structures is a random access machine program that takes as input an
encoded value of the parameter p and lists exactly one encoded representative from zero
or more equivalence class in S(p). We require that on a given run of the program with
input p the probability that all of the classes in S(p) are represented in the output is at
least 1 — p(p)- Furthermore, we require that for every parameter value p it is the case
that p{p) < 1/2.

We say that the failure probability p of a probabilistic listing algorithm is exponentially

small if there is a constant c> 1 such that for every parameter value p it is the case that

p(p) <c-lpl.

f The notation |s| denotes the length of the string s.

8 1. Introduction

Following Aho, Hopcroft, and Ullman, we will generally describe algorithms in a rather

high-level language, relying on the fact that it is very easy to translate these algorithms

to random access machine programs.

1.4. Efficient Listing Algorithms

Now that we have explained what we mean by a "listing algorithm" for a family of com-

binatorial structures, we can proceed to explain what we mean by an efficient algorithm

for listing combinatorial structures.

We begin by considering running time. Intuitively, a listing algorithm is "fast" if it

produces outputs in quick succession one after the other. There are several ways in which

this idea can be formalized [JYP 88]. We will discuss two natural formalizations of the

idea which we will refer to throughout the thesis.

We will need the following definition. An algorithm for listing a family of combinat-
orial structures is said to have delay d if and only if it satisfies the following conditions
whenever it is run with any input p:

1. It executes at most d(p) machine instructions! before either outputting the first struc-

ture or halting.

2. After any output it executes at most d(p) machine instructions before either outputting
the next structure or halting.

It is quite natural to say that a listing algorithm with small delay is a "fast" listing
algorithm. Johnson, Yannakakis, and Papadimitriou refer to algorithms whose delay
is bounded from above by a polynomial in the length of the input as polynomial delay

algorithms. Polynomial delay is the strongest notion of "fast" that is considered in their
paper [JYP 88] and is the strongest notion that will be considered in this thesis.

There is a sense, however, in which the notion of polynomial delay seems to be too
strong to be a reasonable definition of "fast". Consider the following deterministic al-
gorithms for listing a simple family S in which \S(p)\ = 2'p'. Algorithm A takes input p
and produces an output from S(p) after every sequence of 2 |p| instructions. Algorithm B
takes the same input p and produces an output from S(p) after every sequence of \p\
instructions until there is just one structure remaining to be output. Then it takes
2'p' instructions to produce the last structure. Clearly, algorithm B is always ahead of

f The amount of time needed to execute a single machine instruction is referred to as a
"time step" or simply as a "step" of a computation.

1. Introduction 9

algorithm A. However, using our definition, we can easily see that algorithm A has
polynomial delay and algorithm B does not.

In order to get around this difficulty, we provide a slightly weaker notion of "fast".
We say that a listing algorithm has cumulative delay d if it is the case that at any
point of time in any execution of the algorithm with any input p the total number of
instructions that have been executed is at most d(p) plus the product of d(p) and the
number of structures that have been output so far. While algorithm B does not have
polynomial delay, its cumulative delay is bounded from above by |p| + 1, so we say that
it has cumulative polynomial delay. It is easy to see that any algorithm that has delay d

has cumulative delay d, so A also has cumulative polynomial delay.

Now that we have established criteria for determining whether or not a given listing

algorithm is fast, we turn to the problem of determining whether or not it uses storage

space efficiently.

We say that an algorithm has space complexity r if it is the case that whenever it is
run with any input p it uses at most r(p) random access machine registers!. We generally
consider an algorithm to be space-efficient if and only if its space complexity is bounded
from above by a polynomial in the length of the input. In this case, we say that the
algorithm is a polynomial space algorithm.

It is easy to see that there are polynomial delay listing algorithms that do not have
polynomially-bounded space complexity. Therefore, in the context of listing, we should
consider the question of whether or not an algorithm is fast independently of the question
of whether or not it is space-efficient J

If we are only concerned with whether or not a given listing algorithm is fast and
we are not concerned with the amount of storage space that it uses then it will not
matter very much whether we take polynomial delay or cumulative polynomial delay as
our notion of "fast". In fact, we could easily transform an algorithm with cumulative
delay d to an algorithm with delay d. We would simply modify the algorithm so that it
places structures in a large buffer rather than outputting them. We would then interrupt
the execution of the algorithm with input p after every d(p) steps in order to output from
the buffer. We would need to use quite a lot of registers to store the buffer, however.

f For technical reasons, we assume that r(p) > 1.
t These two questions cannot be considered independently if our model of computation

is the Turing Machine because the simulation of a single high-level instruction on a
Turing Machine requires the machine to read its entire work tape. Therefore, we have
chosen the random access machine as our model of computation.

10 1. Introduction

In practice, one would probably prefer a cumulative polynomial delay algorithm that
runs in polynomial space to the polynomial delay algorithm that could be obtained by
applying this transformation.

1.5. Synopsis of the Thesis

Before giving a detailed synopsis of the thesis we first describe its general outline.
Chapter 2 discusses general techniques for listing combinatorial structures. We illus-
trate the techniques by applying them to specific families of structures, but the primary
purpose of the chapter is to explain the methods. More comprehensive applications are
presented in chapter 3. The purpose of that chapter is to describe particular algorithms
that we have developed and to describe what we have learned about combinatorial struc-
tures in the course of this work. Chapter 4 discusses open problems and directions for
future work in listing. Finally, chapter 5 contains related results. In this chapter we
compare the computational difficulty of the listing problem with the difficulty of other
computational problems involving combinatorial structures. In addition, we consider a
particular computational counting problem which is related to a listing problem described
in chapter 4.

Now that we have described the general outline of the thesis, we present a more
detailed synopsis. We start by describing chapter 2, which discusses general techniques
for listing combinatorial structures.

In section 2.1 we focus our attention on certain simple families of structures. We
consider two basic methods which can be used to design efficient listing algorithms for
these families. First, in subsection 2.1.1, we consider the class of recursively listable

families. We show how to use the inductive structure of these families to obtain efficient
listing algorithms. There are many known listing algorithms that are based on the idea of
exploiting inductive structure. Since this idea is well understood we do not really pursue
it in this thesis. However, we consider recursively listable families in subsection 2.1.1 so
that we can describe the recursive listing method which we will use as a building block
when we design more powerful listing methods later in the thesis.

In subsection 2.1.2 we consider the class of simple families which have efficient random
sampling algorithms. First, we show how to use an efficient random sampling algorithm
for a simple family of structures to obtain a probabilistic polynomial delay listing al-
gorithm for that family. The listing algorithms that we obtain using this method require
exponential space. We use an information-theoretic argument to show that any uniform

1. Introduction 11

reduction from polynomial delay listing to efficient random sampling must produce ex-
ponential space algorithms. Finally, we show that we can trade delay for space in our
reduction, obtaining listing algorithms which use less space and have longer delays.

In section 2.2 we describe two general methods which we will use in our design of

listing algorithms. The first method is called the interleaving method and the second is

called the filter method.

In section 2.3 we show how the techniques from the first two sections of chapter 2 can
be used to design efficient listing algorithms for non-simple families of structures. We
start by considering probabilistic listing algorithms in subsection 2.3.1. This subsection
defines the notion of an efficient random sampling algorithm for a non-simple family
and demonstrates the fact that random sampling can be used in the design of polyno-
mial delay probabilistic listing algorithms for these families. The subsection contains
two examples that demonstrate the ease with which known results about combinatorial
structures can be combined with random sampling methods to yield efficient probabilistic
listing algorithms for non-simple families. In particular, it contains a polynomial delay
probabilistic algorithm for listing unlabeled graphs and a polynomial delay probabilistic
algorithm which takes input n and lists the k(n)-colorable n-vertex graphs where k is
any function from N to N which satisfies Kucera's condition (see p. 55.)

In subsection 2.3.2 we discuss the problem of designing deterministic listing algorithms
for non-simple families. We present two approaches to solving the problem. One of the
approaches is based on the filter method and the other is based on the interleaving
method. We illustrate the approaches by using them to design two non-trivial listing
algorithms. The first is a polynomial delay listing algorithm for a certain family of
graphs whose members can be colored with a specified number of colors. The second is
a polynomial space polynomial delay listing algorithm for the family Q.

Chapter 3 contains more comprehensive applications of our listing methods. The
purpose of the chapter is to describe particular algorithms that we have developed and
to describe what we have learned about combinatorial structures in the course of the
work. The sections in chapter 3 are fairly independent of each other, although they are
not completely independent.

In section 3.1 we consider the problem of listing first order graph properties. We
distinguish between first order one properties and first order zero properties. We show
that every first order one property has an efficient listing algorithm and we describe a
general method that can be used to obtain a polynomial space polynomial delay listing
algorithm for any first order one property.

12 1. Introduction

In section 3.2 we consider the problem of listing Hamiltonian graphs. We present a
polynomial delay algorithm for listing these graphs.

In section 3.3 we consider the problem of listing graphs with cliques of specified
sizes. We obtain the following results. Suppose that j is a function from N to N
such that j(n) < n for every n G N. If there are positive constants e and n0 such that
j(rc) < (1 — e)log(n)f for every n > no then we can use the interleaving method to design
a polynomial space polynomial delay algorithm that takes input n and lists all n-vertex
graphs that have a clique of size j(n). If, on the other hand, there are positive constants e

and no such that j(n) > (2+e)log(n) for every n > no then we can use the filter method
to design a polynomial delay algorithm that takes input n and lists all n-vertex graphs
containing cliques of size j(n). We discuss the problem of listing graphs with cliques
whose sizes are between log(n) and 21og(n).

In section 3.4 we consider the problem of listing graphs which can be colored with a
specified number of colors. This problem turns out to be rather difficult, so the results
that we obtain are incomplete. However, we do obtain the following results. Suppose
that A: is a function from N to N such that k(n) < n for every n E N. If there is a
positive constant no such that k(n) < -y/n/28 log(n) for every n > no then we are able
to design a deterministic polynomial delay algorithm that takes input n and lists the
fc(n)-colorable n-vertex graphs. If k(n) = 0(1) then we are able to design a deterministic
polynomial space cumulative polynomial delay algorithm that takes input n and lists
the fc(n)-colorable n-vertex graphs. Finally, if there are positive constants e and no
such that for every n > no we have k(n) > (1 + e)n/log(n) then we are able to design a
probabilistic polynomial delay algorithm that takes input n and lists the fc(n)-colorable
n-vertex graphs.

In chapter 4 we discuss open problems and directions for future work on listing. We

focus our attention on two particular problems — the problem of designing efficient listing

algorithms for unlabeled graph properties and the problem of designing efficient listing

algorithms for equivalence classes of functions.

In chapter 5 we describe some work which is related to the work contained in
chapters 1-4. In section 5.1 we compare the computational difficulty of listing with the
difficulty of solving four other computational problems involving combinatorial struc-
tures. In particular, we compare the difficulty of solving the listing problem with the dif-
ficulty of solving the existence problem, the construction problem, the random sampling
problem, and the counting problem.

f All logarithms in this thesis are to the base 2.

1. Introduction 13

In section 5.2 we consider a specific computational counting problem which is related
to a listing problem which was described in chapter 4. In particular, we consider the
computational difficulty of evaluating and approximately evaluating Polya's Cycle Index

Polynomial. We show that the problem of determining particular coefficients of the
polynomial is #P-hard and we use this result to show that the evaluation problem is
#P-hard except in certain special cases, which are discussed in chapter 5. Chapter 5
also contains a proof showing that in many cases it is NP-hard even to evaluate the cycle
index polynomial approximately.

In subsection 5.2.1 we give some corollaries of our results which describe the difficulty

of solving certain counting problems which are related to listing problems which were

discussed in chapter 4.

1.6. Bibliographic Notes

It appears that the first person to study the difficulty of listing from the perspective
of computational complexity was Paul Young [You 69]. Young was primarily concerned
with the difficulty of listing infinite sets. The notion of polynomial enumerability which
follows from Young's definitions is described in [HHSY 91]. It is similar to the notion of
cumulative polynomial delay.

The notion of cumulative polynomial delay does not appear in any of the subsequent

papers studying the difficulty of computational listing. This note surveys the alternatives

which have been considered.

Hartmanis and Yesha's paper [HY 84] introduces the notion of P-printability which
is commonly used as a notion of polynomial enumeration [HHSY 91]. A set 5 is said
to be P-printable if and only if there is a polynomial time Turing machine that takes
input n (in unary) and outputs all elements of S of length at most n. Hartmanis and
Yesha point out that every P-printable set is sparse and in P. As one will see from the
examples in this thesis and elsewhere, algorithm designers are often required to design
fast listing algorithms for dense setsf (and, less often, for sets whose membership problem
is not known to be in P\). For these reasons we choose not to consider the notion of
P-printability in this thesis.

A third notion of polynomial enumeration comes from the paper [HHSY 91] by Hem-
achandra, Hoene, Siefkes, and Young. Hemachandra et al. say that a set S is polynomially

f For example, one may want to list all permutations of { 1 , . . . , n}.
\ See, for example, the algorithm for listing Hamiltonian graphs in section 3.2.

14 1. Introduction

enumerable by iteration if it is of the form S = {x,/(z), / (/ (x)) , . . .} for some polyno-
mial time computable function / . Their definition is analogous to a recursion-theoretic
characterization of recursive enumerability. From the perspective of algorithm design
there seems to be no reason for restricting attention to algorithms which use an iterative
technique. Therefore we have not considered the difficulty of enumeration by iteration
in this thesis.

A fourth notion of polynomial enumeration was introduced in the paper [Tar 73] by
Tarjan. The notion was later called polynomial total time by Johnson, Yannakakis, and
Papadimitriou [JYP 88]. A listing algorithm for a family of combinatorial structures is
said to run in polynomial total time if and only if its running time is bounded from above
by a polynomial in the size of the input and the number of outputs.

It is easy to show that there are families of combinatorial structures which do not
have polynomial total time listing algorithms. In order to describe one such family we
will consider the EXPTIME-complete problem CHECKERS:

CHECKERS

Input: An n x n checkers board with some arrangement of black and white pieces

Question: Can white force a win?

Robson showed in [Rob 84] that there is no polynomial time algorithm for solving
this problem although the problem can be solved in p{n) 5n time for some polynomial p
since there are at most 5n possible n x n checkers boards. We can now observe that the
following family has no polynomial total time listing algorithm.

CHECKERSi — Every parameter value of CHECKERSi is a square checkers board with
some arrangement of black and white pieces. The board B is associated with the set

CHECKERS,^) = ({ V S " } if W h i t C C a"
\ {"no"} otherwise.

While there are families that have no polynomial total time listing algorithms it is
still true that polynomial total time is a weaker criterion for efficiency than cumulative
polynomial delay. To see this, observe that every cumulative polynomial delay algorithm
runs in polynomial total time. On the other hand, the following family has a polynomial
total time listing algorithm and does not have a cumulative polynomial delay listing
algorithm.

1. Introduction 15

CHECKERS2 — Every parameter value of CHECKERS2 is a square checkers board with
some arrangement of black and white pieces. The n x n board B is associated with the
set

r 2 ^
x is an integer between 1 and 5n and ICHECKERS2(S) = (,y)

1 y is a member of CHECKERSi(£)

Lawler, Lenstra, and Rinooy Kan's paper [LLR 80] describes a number of polynomial
total time algorithms for listing combinatorial structures. Many of the algorithms de-
scribed in their paper actually have polynomial delay. However, their listing algorithm
for "on time sets of jobs" is a natural example of a polynomial total time algorithm for
listing a combinatorial family which has no known cumulative polynomial delay listing
algorithm.

The first paper to compare the notion of polynomial total time with other notions
of polynomial enumerability is [JYP 88]. This paper discusses the notion of polynomial
total time and introduces the notion of polynomial delay. It also introduces a new notion
called incremental polynomial time. Listing in incremental polynomial time is more
difficult than listing in polynomial total time and is easier than listing with cumulative
polynomial delay. In particular, an incremental polynomial time algorithm for listing a
family 5 is a polynomial time algorithm which takes as input a parameter value p and a
subset S' of S(p) and returns a member of S(p) — S1 or determines that S(p) = 5'.

We conclude this bibliographic note by mentioning one more criterion for efficient

listing which is being used by researchers. An algorithm for listing a combinatorial

family S is said to run in constant average time [RH 77] if and only if there is a constant c

such that whenever it is run with any parameter value p its computation time is bounded

from above by c|5(p)|. (Note that more time will be needed for printing the output.)

Constant average time algorithms are based on the idea of Gray codes. (See [RH 77],

[NW 78], and [Wil 89]).

16 2. Techniques for Listing Combinatorial Structures

2. Techniques for Listing Combinatorial
Structures

This chapter describes general techniques for listing combinatorial structures. Section 2.1
describes two basic methods for listing certain simple families of structures. Section 2.2
describes two methods that can be used when we have an efficient listing algorithm for
a family S and we want to design an efficient listing algorithm for another family that
is closely related to S. Finally, section 2.3 explains how the techniques from the first
two sections of this chapter can be used to design efficient listing algorithms for non-

simple families of structures. We conclude the chapter by using the methods that we
have described to design two non-trivial listing algorithms. The first is a polynomial
delay listing algorithm for a certain family of graphs whose members can be colored with
a specified number of colors. The second is a polynomial space polynomial delay listing
algorithm for the family Q.

2.1. Basic Building Blocks

In this section we describe two basic methods which can be used to design efficient

listing algorithms for certain simple families of combinatorial structures. First, in sub-

section 2.1.1, we consider a class of families which we call recursively listable families.

We show how to use the inductive structure of these families to obtain efficient listing

algorithms. Next, in subsection 2.1.2, we consider a class of families whose members

have efficient random sampling algorithms. We show how to use the random sampling

algorithms to obtain efficient listing algorithms.

2.1.1. Recursive Listing

The introduction to this thesis points out that there are well-known efficient techniques
for listing certain simple families of structures that have inductive definitions. We call
these families recursively listable families. Since there are known methods for designing
efficient listing algorithms for recursively-listable families we do not study these famil-
ies in this thesis. However, we find it useful to discuss the concept of a "recursively
listable" family. We discuss this concept in this subsection and we show how to use the
inductive definitions of these families to obtain polynomial space polynomial delay listing
algorithms.

There are two reasons for discussing recursively listable families in this subsection.
First, the discussion enables us to recognize recursively listable families. When we come
across such a family later in the thesis we will be able to use its inductive definition to

2. Techniques for Listing Combinatorial Structures 17

obtain an efficient listing algorithm so we will not need to resort to complicated listing

methods. Second, we will use the recursive method that we describe in this subsection

as a building block when we design listing algorithms for more complicated families later

in the theses.

In order to explain the notion of a "recursively listable" family we start by considering

a very elementary example. Let Q be the simple family of graphs which we described in

example 1. Every parameter value of Q is a positive integer which is encoded in unary f.

The value n is associated with the set G{p) which contains all undirected graphs with

vertex set Vn = {vi , . . . , vn}. We will show that Q can be defined inductively and that the

inductive definition can be used to obtain a polynomial space polynomial delay listing

algorithm for Q.

For the base case we observe that the only graph in £7(1) is (Vi,0). For the induct-
ive case we will establish a relationship between the members of Q{n) and the members
of G(n — 1). Our method will be as follows. For every integer n > 1 and every graph
G G G(n) we will designate a particular member of Q{n — 1) which we will call the trun-

cation of G. For every positive integer n and every graph G G G(n) we will define the
set of augmentations of G to be the set {Gf G (?(n-f 1) | G is the truncation of G1}. We
will define truncations in such a way that every graph G G G(n) is guaranteed to have
at least one augmentation. Then we will be able to use the following recursive listing
strategy for G-

Input n

If (n = l)

Output (Vi,0)

Else

For Each graph G G G(n-1)

For Each augmentation G1 of G

Output G'

f The criteria that we established in chapter 1 imply that the parameter values of G
must be encoded in unary. Otherwise, the number of tape cells needed to write down a
structure would be exponential in the size of the input.

18 2. Techniques for Listing Combinatorial Structures

In order to turn this recursive strategy into a polynomial space polynomial delay listing
algorithm for Q we will need a polynomial space polynomial delay algorithm that takes
as input a graph G G G(n) and lists the augmentations of G.

Suppose that we define truncations in the following manner: For every integer n > 1
and every graph G G G(n) the truncation of G is defined to be G—{vn}. Then there is

a polynomial space polynomial delay algorithm for listing augmentations so we obtain

a polynomial space polynomial delay listing algorithm for Q. The algorithm for listing

augmentations is the following:

Procedure Augment

Input G = (Vn,E)

For Each W C Vn

(Vn+i , E U { (vn+i, w) \w G W }) is an augmentation of G

The process of listing the augmentations of a graph G G G(n) is very straightforward.
There are many interesting families of structures (for example, the self-reducible fam-
ilies, which will be discussed later) which have such simple augmentation algorithms.
However, there are many recursively listable families which require much more complic-
ated augmentation algorithms. To illustrate this point, we will consider the algorithm of
Tsukiyama et al. [TIAS 77] which lists maximal independent sets.

We start with some definitions. Suppose that G is an undirected graph with vertex
set V. A subset U of V is called an independent set of G if and only if every pair of
vertices in U is a non-edge of G. An independent set U is called a maximal independent
set if and only if every vertex in V — U is adjacent to some vertex in U. Let MI be the
simple family of structures with the following definition. Every parameter value of MI is
an undirected graph. The value G is associated with the set MI(G) which contains the
maximal independent sets of G.

For convenience, we will assume that every n-vertex graph G has vertex set
Vn = {v\,..., vn}. We will consider the vertices in Vn to be ordered by index. That
is, we will say that vi is smaller than vm if and only if / < m. We will say that a subset U
of Vn is lexicographically smaller than another subset W of Vn (written U < W) if and

2. Techniques for Listing Combinatorial Structures 19

only if the smallest vertex in (U — W) U (W — U) is a member of U. Finally, we will use

the notation To(vi) to denote the set of neighbors of vertex Vi in G.

Following Tsukiyama et al. we will show that MI can be defined inductively and that
the inductive definition can be used to obtain a polynomial space polynomial delay listing
algorithm for ML For the base case note that {v\} is the only maximal independent set
of the graph (Vi, 0) . For the inductive case we will establish a relationship between the
members of MI{G) (for G G G(n)) and the members of MI(G-{vn}).

We will define truncations as follows: Suppose that n is greater than 1, that G is a
member of £(n), and that U is a maximal independent set of G. If vn is a member of U
then we define the truncation of U to be the lexicographically least superset of U—{vn}

which is a maximal independent set of G — {vn}. Otherwise, we define the truncation of U
to be U. In either case, the truncation of U is a maximal independent set of G—{vn}.

Suppose that n is greater than 1, that G is a member of (?(n), and that U is a maximal
independent set of G — {vn}. We define the set of augmentations of U (with respect to G)

to be the set {U1 G MI(G) | U is the truncation of U'}. It is easy to see that if G is a
member of G(n) (for n > 1) and U is a maximal independent set of G—{vn} then U

has at least one augmentation with respect to G. Therefore, we can use the following
recursive listing strategy for MI:

Input (

I f G — yvj, x_yy

Output {v\}

Else

For Each maximal independent set

For Each augmentation U' of U

Output U'

UeMI(G-{vn})
with respect to G

In order to turn this recursive strategy into a polynomial space polynomial delay listing
algorithm for MI we will need a polynomial space polynomial delay algorithm that takes
as input a graph G G Q{n) (for n > 1) and a maximal independent set U of G—{vn} and
outputs the augmentations of U with respect to G. It can be shown by case analysis that
the following algorithm suffices:

20 2. Techniques for Listing Combinatorial Structures

Procedure Augment

Input G G Q{n)

Input a maximal independent set U of G— {vn}

itunrG(vn) = 0
U U {vn} is an augmentation of U

Else
17 is an augmentation of itself

IfU — TG(vn) U {vn} is a maximal independent set of G

If U is the lexicographically least superset of U —

which is a maximal independent set of G— {vn}

U — Tcivn) U {vn} is an augmentation of U

In order to describe the common features of the two inductive definitions that we have
given let 5 stand for an arbitrary family of combinatorial structures and let c be a positive
integer. The inductive definitions have the following form: If p is a parameter value of S
such that \p\ < c then S(p) is defined directly. Otherwise, we define the structures in S(p)

by choosing a shorter parameter value p\ and defining truncations and augmentations in
such a way that S(p) is equal to the set of augmentations (with respect to p) of structures
in S{pi).

In general, there is no reason why we should have to limit ourselves to a single shorter
parameter value pi. Suppose that p is an arbitrary parameter value of 5 and that \p\ > c.

Let pi,...,pm be some parameter values of S such that each pi is shorter than p and S(pi)

is non-empty for each i. We can define S(p) inductively in terms of 5(pi) , . . . , S(pm).

(In such a definition we will refer to p\,... ,pm as the shorter 'parameter values of p.)

Our method will be as follows. For each structure s G S(p) we designate a particular
parameter value pi which we call the shorter parameter value for s. Similarly, we desig-
nate a particular structure st E S(pi) to be the truncation of s. As one would expect, we
define the set of augmentations of a structure st G S(pi) with respect to p to be the set
{s't G S(p) | St is the truncation of sf

t}.

Suppose that we provide an inductive definition for S and that at least one of the
following conditions is satisfied for every parameter value p of S:

2. Techniques for Listing Combinatorial Structures 21

1. \p\ < c

2. For every shorter parameter value pi of p and every structure St £ S(pi) it is the case
that st has at least one augmentation with respect to p

Then we can use the following recursive listing strategy for S:

Input p
If (|p|<c)

Output
Else

every structure in S(p)

For Each shorter parameter value
For Each structure st € S(pi)

For Each augmentation s[

Output s't

Pi

of

of p

st with respect to p

In order to turn the recursive strategy into a polynomial space polynomial delay listing
algorithm for S we will need a polynomial space polynomial delay algorithm which takes
as input a parameter value p and lists the shorter parameter values of p. In addition, we
will need a polynomial space polynomial delay algorithm that takes as input a parameter
value p, a shorter parameter value p, of p, and a structure St E S(pi) and outputs the
augmentations of st with respect to p.

In many cases it is easy to design these algorithms. For example, suppose that 5 is a
simple family of structures which is self-reducible [Sch 76]. Suppose further that there is
a polynomial time algorithm that takes as input a parameter value p of S and determines
whether or not S(p) = 0 . The self-reducibility of 5 can be used to construct an inductive
definition of S. Furthermore, it is easy to design polynomial space polynomial delay
algorithms for listing shorter parameter values and augmentations. Therefore, we obtain
a polynomial space polynomial delay listing algorithm for S |

We will conclude this subsection with a final example of an inductive definition for

a recursively list able family. We start by defining some terms. Suppose that G is a

connected graph with edge set E. A set C C E is a cutset of G if and only if G — C is

f Valiant [Val 79] was the first to observe that a simple recursive strategy yields poly-
nomial delay listing algorithms in this case.

22 2. Techniques for Listing Combinatorial Structures

disconnected. C is a minimal cutset of G if and only if every proper subset of C fails to be
a cutset of G. It is easy to see that every minimal cutset of G divides G into exactly two
connected components. That is, if G is a connected graph and C is a minimal cutset of G
then G—C has two connected components. Let MC be the simple family of structures
with the following definition. Every parameter value of MC is a connected graph. The
value G is associated with the set MC(G) which contains the minimal cutsets of G.

There are several known polynomial space polynomial delay listing algorithms for MC

(see [TSOA 80]). In this subsection we show that MC has an inductive definition and that
we can use the inductive definition to obtain a new recursive listing algorithm for MC

which runs in polynomial space with polynomial delay.

For the base case we observe that a graph must have at least two vertices to have
a cutset. So if G consists of a singleton vertex then MC(G) = 0 . For the inductive
case we will need some notation. Suppose that n is greater than 1 and that G is an
n-vertex graph. Let v be the largest vertex of G (recall that vertices are ordered by
index) and let C?i,..., Gm be the connected components of G—{v}. let 5; be the set of
edges connecting v to the vertices of G,.

2. Techniques for Listing Combinatorial Structures 23

The sets S i , . . . , Sm are minimal cutsets of G. Since these minimal cutsets are easy
to list in polynomial time we will list them directlyf. We will establish a relationship
between the other members of MC(G) and the members of AfC(Gi),..., MC(Gm).

Suppose that C is a minimal cutset of G and that C is not one of S i , . . . , Sm. It is
fairly easy to see that there must be some integer i in the range 1 < i < m such that C is
wholly contained in the subgraph G,USj. We will designate G, as the shorter parameter
value for C. It is not difficult to see that C—Si is a minimal cutset of Gt. We define
the truncation of C to be C—S{. Suppose that Ct is a minimal cutset of Gt. Following
our general recursive strategy we define the set of augmentations of Ct with respect to G

to be the set {C[G MC(G) | Ct is the truncation of C't}. It is easy to see that for every
shorter parameter value G,- of G every minimal cutset of Gi has at least one augmentation.
Therefore, we can use the following recursive strategy for listing MC:

Input G

If G has only one vertex
Return without output

Else
/* let v be the largest vertex of G */
/* let G\,..., Gm be the connected components of G — {v} */
/* let Si be the set of edges of G connecting v to the vertices of Gi */
For i <— 1 To m

Output Si

For Each Ct G MC(Gi)

For Each augmentation C[of Ct

Output C[

It is easy to see that there is a polynomial time algorithm which takes input G and
lists the shorter parameter values of G. In order to turn our recursive strategy into
a polynomial space polynomial delay listing algorithm for MC, we need a polynomial

f We have treated the sets S i , . . . , Sm as being "special" in order to make the presenta-
tion of the recursive strategy on this page simpler. It is possible to re-write the strategy
to make it adhere strictly to the general strategy described on page 21.

24 2. Techniques for Listing Combinatorial Structures

space polynomial delay algorithm that takes as input a graph G (with largest vertex v),
a connected component G, of G—{v}, and a minimal cutset Ct of G{ and outputs the
augmentations of Ct with respect to G. There is a simple polynomial time algorithm for
performing this task. We conclude this subsection by giving an informal description of
the algorithm.

Suppose that Gi is a connected component of G—{v} and that Ct is a minimal cutset

of Gi. Let Hiti and i?tj2 be the two connected components of G, — Ct. Let S^i be the

set of edges of G connecting v to vertices in ifi,! and let 5t)2 be the set of edges of G

connecting v to vertices in .fff)2- There are two cases. If Si,2 is the empty set (or Siti is

the empty set) then Ct is a minimal cutset of G and Ct is an augmentation of itself:

Otherwise, the augmentations of Ct are CtU5t)i and

2. Techniques for Listing Combinatorial Structures 25

We have now seen several examples of recursively listable families and we have shown

how to use the inductive structure of these families to obtain polynomial space polynomial

delay listing algorithms. In the remainder of the thesis we will not discuss recursively

listable families but we will use the recursive method as a building block when we design

listing algorithms for more complicated families of structures.

2.1.2. Random Sampling

This subsection describes another basic technique for listing certain simple families of
combinatorial structures. The families to which this technique applies are simple families
that have efficient random sampling algorithms.

A random sampling algorithm for a simple family S is a probabilistic random access
machine program that takes as input a value p of the parameter, halts if S(p) = 0 , and
returns a randomly chosen member of S(p) otherwise. We say that the algorithm has bias

factor b if, on any given run of the algorithm with any input p such that S(p) is non-empty,
the probability that any given member of S(p) is selected is at least (b(p) x IS(p)l)"1.
We say that a random sampling algorithm is efficient if its expected running time and
its bias factor are bounded from above by a polynomial in the length of its input.

There are many known random sampling algorithms for families of combinatorial

structures. For example, Nijenhuis and Wilf 's book [NW 78] contains random sampling

algorithms for quite a few recursively listable families. Random sampling algorithms for

more complicated families are found in works such as [CDN 89] and [JS 90]. (We will

mention examples of random sampling algorithms from these works later in the thesis.)

In this subsection we will show that efficient probabilistic listing is at least as easy as
efficient random sampling. In fact, we will describe a uniform reduction from (probabil-
istic) polynomial delay listing to efficient random sampling.

We start by defining the terms. A uniform reducer from probabilistic listing to efficient
random sampling is a listing program which contains calls to an external single-parameter
function, S-Sample. The reducer must have the property that whenever it is combined
with any efficient random sampling algorithm S-Sample for any simple family S it be-
comes a probabilistic listing algorithm for 5. (In addition to calling S-Sample, the reducer
may call three external subroutines to obtain information about S-Sample. In particular,
the reducer may call external routines to evaluate three functions, which we will call #,
6, and u. g will be a function which is bounded from above by a polynomial in the length
of its input and is an upper bound on the expected running time of S-Sample. b will be
a function which is bounded from above by a polynomial in the length of its input and
is an upper bound on the bias factor of S-Sample. u will be a function which is bounded

26 2. Techniques for Listing Combinatorial Structures

from above by a polynomial in the length of its input and satisfies two related conditions.
First, u(p) is an upper bound on the size of the encoded structures that are output by
S-Sample when it is run with input p\. Second, u(p) is an upper bound on log(|5(p)|)J.

We will describe a uniform reducer from probabilistic listing to efficient random
sampling and we will show that whenever it is combined with any efficient random
sampling algorithm S-Sample for any simple family S it becomes a probabilistic polyno-

mial delay listing algorithm for S which has o(l) failure probability. Then we will show
how to modify the reducer so that whenever it is combined with any efficient random
sampling algorithm S-Sample for any simple family 5 it becomes a probabilistic polyno-
mial delay listing algorithm for S which has exponentially small failure probability.

Since there are many interesting families of structures for which efficient random
sampling algorithms are known there are many cases in which we can use the reducer to
obtain probabilistic polynomial delay listing algorithms which have exponentially small
failure probability.

The reducer itself is straightforward. It repeatedly calls S-Sample to generate random
structures. It maintains a queue which it uses to store structures that have not yet been
output. In addition, it maintains a dictionary which it uses to keep track of the structures
that have been put on the queue. As it makes calls to S-Sample, it puts new structures
on the queue. After every sequence of q(p) machine instructions (for a function q which
will be defined below) it interrupts itself to output a structure from the queue.

f We have stated in chapter 1 that we are only considering families that have concise

encodings so we can assume that the length of each encoded structure in S(p) is bounded
from above by a polynomial in \p\.
| The second condition can be satisfied by making u(p) sufficiently large relative to the

size of encoded structures in S(p) and the size of the alphabet in which structures are
encoded. For example, it suffices to set u(p) = (c + l)(£(p) + 1) where £(p) denotes the
length of the largest encoded structure in S(p) and c denotes the base 2 logarithm of the
size of the alphabet.

2. Techniques for Listing Combinatorial Structures 27

Uniform Reducer 1

Input p

z(p) «— max(u(p

q(p) <— KP) X

While true Do
simulate q(p) steps of procedure Build-Queue (p)

If the queue is empty Then Halt
Else Output a structure from the queue

Procedure Build-Queue(p)

While true Do

s i— S-Sample(p)\

If (s is not already in the dictionary) Then
put s in the dictionary
put s on the queue

The proof of the following theorem establishes the claims that we have made

about Uniform Reducer 1.

Theorem 1. Whenever Uniform Reducer 1 is combined with any efficient random
sampling algorithm S- Sample for any simple family S it becomes a probabilistic polyno-
mial delay listing algorithm for S which has o(l) failure probability.

Proof: Suppose that Uniform Reducer 1 is combined with an efficient random sampling
algorithm S-Sample for a simple family S. Let g, 6, and u be the functions associated
with S-Sample and let z and q be the functions defined in the algorithm. To avoid
trivialities we will assume that g and u are u;(l). It is easy to see that when Uniform

Reducer 1 is run with input p it outputs only members of S(p) and the structures that
are output are output without duplication. Furthermore, the delay between outputs is
at most q(p), which is bounded from above by a polynomial in |p|. We would like to

f If 5-Sample halts without returning a structure then Uniform Reducer 1 halts
immediately.

28 2. Techniques for Listing Combinatorial Structures

show that on a given run of Uniform Reducer 1 with input p the probability that every

member of S(p) is output is 1—o(l).

On a given run of Uniform Reducer 1 with input p every member of S(p) will be

output unless for some integer j in the range 1 < j < \S(p)\ the simulation of j x q(p)

steps of procedure Build-Queue(p) yields fewer than j distinct members of S(p).

Let r be the function defined by the equation r(p) = 56(p) z(p). On a given run of

Uniform Reducer 1 with input p every member of S(p) will be output unless either

1. For some integer j in the range 1 <j < \S(p)\ the simulation of j x q(p) steps of

procedure Build-Queue(p) completes fewer than j X r(p) iterations of the while loop

or

2. For some integer j in the range 1 < j < \S(p)\ fewer than j distinct members of S(p)
are produced by j x r(p) calls to S-Sample.

We will use the notation p\ to denote the probability of the first event occurring
and p2 to denote the probability of the second event occurring on a given run of Uniform

Reducer 1 with input p. We will show that both p\ and p2 are o(l).

First, consider event 1. If the dictionary in Uniform Reducer 1 is implemented using a
data structure such as a 2-3 tree (see [AHU 74]) then the running time of an iteration of
the while loop in procedure Build.Queue{p) (apart from the time spent in S-Sample(p))

is O(u(p)). We conclude that there is a positive constant c such that event 1 only occurs
if there is an integer j in the range 1 < j• < |5(p)| such that j x r(p) calls to S-Sample(p)

take more than j x q(p) - j x r(p) x cu(p) time steps. Let £ be the function defined by

the equation £(p) = g(p) z(p) ' . Using the facts that g(p) = u;(l) and u(p) = LV(1) and

performing some algebraic manipulation we observe that j x q(p) - j x r(p) x cu(p) is

greater than or equal to j x r(p) x £(p). Therefore, event 1 only occurs if there is an

integer j in the range 1 <j < \S(p)\ such that j X r(p) calls to S-Sample(p) take more

than j x r(p) x £(p) time steps.

So p\ is less than or equal to the probability that for some integer j in the range
1 ^ j ^ r(p) X I'S'CP)! ^ is the case that j calls to S-Sample (p) take more than j £(p) time
steps. Therefore, p\ is at most

Pr(2* calls to S-Sample(p) take more than 2l~1£(p) steps).

2. Techniques for Listing Combinatorial Structures 29

We conclude that

nCKrtW),)! 2,- 2 ^

Now consider event 2. We've defined p2 to be the probability that for some integer j in

the range 1 <j < \S(p)\ fewer than j distinct members of S(p) are produced by j x r(p)

calls to S-Sample. We wish to show that p2 is o(l).

We will start by considering j < |~|S(p)|/2]. Consider the phase during the execution

of the algorithm in which the size of the dictionary is less than |5(p)|/2. During this

phase, the probability that a given sample is not in the dictionary is at least l/26(p).

Therefore, the probability that a set of r(p) samples contains no new structure is

at most (1 — l/26(p))r . We conclude that the probability that for some integer j

in the range 1 < j' < |~|S(p)|/2] fewer than j distinct members of S(p) are produced

by j x r(p) calls to S-Sample is at most [|5(p)|/2] (1 - l/26(p))r(p) which is at most

[|5(p)|/2] exp(—r(p) / 2b(p)). Using the definition of r we can show that this probability

is o(l).

We will conclude the proof by showing that the probability that fewer than |5(p)|

distinct members of S(p) are produced by |~|5(/>)|/2] x r(p) calls to S-Sample is o(l).

We will use the coupon collector argument [DW 83, Fel 68]. This argument says that

the probability that a set of m samples which are chosen uniformly at random from

a set 5 contains every element of 5 is at least 1 — \S\ exp(—m / \S\). Applying the

argument, we find that the probability that a set of [|5(p)|/2] x r(p) samples which

are generated by calls to S-Sample fails to include every member of S(p) is at most

b(p)\S(p)\ exp(—r(p) / 2b(p)). Using the definition of r we can show that this probability

is o(l). We conclude that p2 is o(l), which proves the theorem. •

In theorem 1 we showed that whenever Uniform Reducer 1 is combined with any

efficient random sampling algorithm for any simple family 5 it becomes a probabilistic

polynomial delay listing algorithm for 5. Furthermore, we showed that the failure prob-

ability of the resulting listing algorithm is o(l). We can make the failure probability

exponentially small by making a simple modification to Uniform Reducer 1. The modi-

fied algorithm simulates multiple copies of procedure Build-Queue, sharing the dictionary

and the queue between all copies. In particular, suppose that / is a polynomial and con-

sider the following uniform reducer:

30 2. Techniques for Listing Combinatorial Structures

Uniform Reducer 2

Input p

z(p) <— max(u(p), [log(6(p))l)

q(p) <— b(p) X g(p) X z(pf

While true Do
For j <— 1 To /(|p|)

simulate q(p) steps of the j copy of procedure Build-Queue(p)

If the queue is empty Then Halt
Else Output a structure from the queue

Procedure Build-Queue(p)

While true Do

s <— S~Sample(p)\

If (s is not already in the dictionary) Then
put s in the dictionary
put s on the queue

Observing that the different copies of procedure Build-Queue run independently and
that the probability that any given copy fails to produce enough outputs is less than 1/2,
we obtain the following theorem.

Theorem 2. Whenever Uniform Reducer 2 is combined with any efficient random

sampling algorithm S-Sample for any simple family S it becomes a probabilistic polyno-

mial delay listing algorithm for 5. The listing algorithm has failure probability 2~^'p'\

As we mentioned in the introduction to this subsection, there are many families of com-
binatorial structures for which efficient random sampling algorithms are already known.
Theorem 2 shows that we can use Uniform Reducer 2 to obtain probabilistic polynomial
delay listing algorithms for these families. The listing algorithms that we obtain using
this method have exponentially small failure probability. Unfortunately, however, they
require quite a lot of space. In particular, when Uniform Reducer 2 is combined with a

f If 5-Sample halts without returning a structure then Uniform Reducer 2 halts

immediately.

2. Techniques for Listing Combinatorial Structures 31

random sampling algorithm S-Sample and run with input p the dictionary can contain

up to |5(p)| structures.

In the remainder of this subsection we will show that there is a sense in which the
high space complexity of these listing algorithms is inevitable. In particular, we will show
that for any uniform reducer U from probabilistic listing to efficient random sampling
there is an efficient random sampling algorithm S-Sample for a simple family S which
has the property that when U is combined with S-Sample the product of its delay and
its space complexity is within a factor of a polynomial in |p| of \S(p)\ (and is therefore
exponentially large). We will conclude the subsection by showing how to trade delay for
space to obtain uniform reducers which have larger delay and smaller space requirements.
We start, then, by proving the following theorem.

Theorem 3. Let U be any uniform reducer from probabilistic listing to efficient ran-
dom sampling. There is an efficient random sampling algorithm S-Sample for a simple
family S such that for some polynomial q we have d(p)r(p)q(\p\) = ft(|5(p)|) = f2(2'p')
where d is the cumulative delay of the listing algorithm that we get by combining U with
S-Sample and r is the space complexity of the same listing algorithm.

Proof: We begin the proof by proving a lemma about space-bounded probabilistic listing

algorithms. In order to state the lemma we need some definitions. Suppose that A is a

probabilistic listing algorithm for a simple family S and that p is a parameter value of S.

We say that a set M C S(p) is the |M|-element starting set of a particular run of A with

input p iff the run outputs at least \M\ structures and the first \M\ structures that get

output during the run are members of M. We can now state and prove the lemma.

Lemma 1. Suppose that A is a probabilistic listing algorithm for a simple family 5 and

that A has space complexity r. Then there is a polynomial q such that for every function

m satisfying 1 < m(p) < \S(p)\ and for every parameter value p there is a set \I>(p) that

satisfies the following requirements.

1. The members of \£(p) are ra(p)-element subsets of S(p).

2. |*(p)| < 2q(M)r(p).

3. The probability that a given run of A with input p has an m(p)-element starting
set that is a member of \I>(p) is at least 1/3.

Proof: The proof of the lemma is straightforward but it requires a slightly formal view of
random access machine computation. Let A be the probabilistic random access machine
program that is described in the statement of the lemma. We can describe the state
of a given run of A at any point in time by constructing an instantaneous description

which includes the input p, the position of the tape head on the input tape, the machine

32 2. Techniques for Listing Combinatorial Structures

instruction that will be executed next, and the contents of the r(p) registers. We use the
notation ID(p) to denote the set of instantaneous descriptions that describe states of
runs of A with input p. The restriction that we have placed on the size of integers that
can be stored in random access machine registers ensures that there is a polynomial q
such that 4 |JD(p)| < 2q"p"r(p' for every parameter value p.

Let m be a function satisfying 1 < m(p) < \S(p)\. We will construct the set \I>(p) as

follows. An ra(p)-element set U C S(p) is a member of \I>(p) if and only if the probability

that a given run of A with input p lists all of the structures in S(p) conditioned on the

fact that U is the ra(p)-element starting set of the run is at least 1/4.

The probability that a given run of A with input p lists all of the structures in S(p) is

at least 1/2. Therefore, the probability that a given run with input p has an ra(p)-element

starting set that is a member of \£(p) is at least 1/3.

We will show that \^(p)\ < 4\ID(p)\, which proves the lemma. Let p(i,p,U) denote
the probability that the computation described by the ith instantaneous description in
ID(p) outputs the structures in U and then halts. If U is a member of \I>(p) then it must
be the case that the sum over all instantaneous descriptions i G ID(p) of p(i,p, S(p) — U)
is at least 1/4. Therefore

£ £ p(hP,s(P)-u)>*(P)\/4.

It follows that |\£(p)| < 4 |JZ>(p)|, which proves the lemma. •

Having proved lemma 1, we can now prove the theorem. Let U be any uniform reducer
from probabilistic listing to efficient random sampling. We wish to exhibit a simple
family 5, an efficient random sampling algorithm S-Sample for 5, and a polynomial q
such that d(p)r(p)q(\p\) = Q,(\S(p)\) = Q(2M) where d is the cumulative delay of the
listing algorithm that we get by combining U with S-Sample and r is the space complexity
of the same listing algorithm.

We will define S to be the simple family in which every parameter value is a unary
integer and the value p is associated with the set S(p) which contains all binary integers
of length p.

It is easy to see how to write a probabilistic polynomial time algorithm which takes as
input a unary integer p and returns a binary integer of length p in such a way that each
binary integer of length p is equally likely to be output on any given run with input p.
Let S-Sample be such an algorithm.

2. Techniques for Listing Combinatorial Structures 33

We will now define the functions g, 6, and u which will be associated with S-Sample.

For reasons which will become clear later we will define g to be a function which is

larger than the expected running time of S-Sample. In particular, we will define g to

be a function which is bounded from above by a polynomial in the length of its input

and is an upper bound on the expected running time of an algorithm called S1-Sample,

which we will describe shortly. Similarly, we will define the function 6 by the equation

b(jp) = 3/2 even though S-Sample has bias factor 1. We will define the function u by the

equation u(p) = \p\.

Let A be the algorithm that we get by combining U with S-Sample. Let d denote the

delay of A and let r denote the space complexity of A. We wish to show that there is a

polynomial q such that d(p) r(p)q(\p\) = f)(|5(p)|).

We will start by proving the following claim:

Claim 1. When algorithm A is run with input p it only outputs structures which

have been generated by calling S-Sample(p).

We will prove the claim by contradiction. Suppose that for some parameter value p

of S there is a run of A with input p in which A outputs a structure s' G S(p) even

though s1 has not been generated by calling S-Sample (p1).

Let 5 ; be the simple family with the following definition. Every parameter value of S'

is a unary integer. The sets in S1 are defined as follows.

S(P) = I .
t S(p) otherwise

Let S'-Sample be the following random sampling algorithm for 5':

Function S'-S ample (p)

s <— S-Sample{p)

If (p = p

If (s

s

Return s

')

= -')
<— 5 — 1 (mod2")

34 2. Techniques for Listing Combinatorial Structures

We assumed earlier that the function g which is associated with S-Sample is sufficiently
large that for every fixed parameter value p the expected running time of S'-Sample is
bounded from above by g\. It is easy to see that the bias factor of S'-Sample is bounded
from above by 6. The encoded structures which are output by calls to S'-Sample(p) are
no longer than the structures which are output by calls to S-Sample(p). Therefore, we
can associate the functions g, b, and u with S1-Sample.

Let A! be the algorithm that we get by combining U with S'-Sample. Since there is
a run of A with input p in which A outputs s' even though s' has not been generated
by calling S-Sample(p) there must be a run of A1 with input p in which A! outputs s .

But s' is not a member of S'(p'). Therefore A1 is not a listing algorithm for 5'. We
conclude that U is not a uniform reducer, which is a contradiction. Therefore, the claim
must be correct.

Having proved lemma 1 and claim 1 we are now ready to prove the theorem. Consider
algorithm A with space complexity r and let q be the polynomial whose existence is
guaranteed by lemma 1. Let m(p) denote tf(|p|)r(p). If m{p) = £l(\S(p)\) then the
theorem is true. Otherwise, let \I>(p) denote the set described in the lemmaj. The
lemma establishes the fact that the probability that a given run of A with input p has
an ra(p)-element starting set that is a member of \£(p) is at least 1/3.

Since A has cumulative delay d we know that every run of A that outputs m(p)

structures does so after executing at most e/(p)ra(p) machine instructions. Therefore
every run of A that has an m(p)-element starting set from \t(p) outputs all of the elements
from some set in ^(p) before the random sampler has produced more than d(p) m(p)

samples from 5(p). Furthermore, by claim 1 every element which is output is produced
by a call to S-Sample(p). The probability that a set of d(p)m(p) (or fewer) samples
produced by S-Sample(p) contains some member of ^(p) is at most

1 (2d(p)m(p) \m(p)

J \d(p) m(p)J ~
(< (

m(p) ~ m(p)J \d(p) m(p)J ~ \ \S(p)\ - m(p) + 1

The theorem follows from the fact that this probability is at least 1/3. a

f The running time of S1-Sample does not depend on the value of p since at most p+1
bits of p will ever be accessed.
% The lemma only applies if 1 < m(p) < |5(p)| for every parameter value p. Technically

this condition may not be satisfied even though ra(p) = o(|5(p)|). If the condition is not
satisfied then let m be some function satisfying 1 < m(p) < \S(p)\ such that for every
large enough parameter value p we have ra(p) =

2. Techniques for Listing Combinatorial Structures 35

Remark 1. In order to prove theorem 3 we carefully defined the family 5, the sampler
S-Sample, and the associated functions g, 6, and u. However, the proof itself only made
very limited use of our definitions. In particular, we used only two facts:

1. The functions g and b are large enough that they can be associated with a modified

random sampling algorithm, S'-Sample.

2. S-Sample has bias factor 1. (We call a random sampling algorithm unbiased if its
bias factor is 1. We used the fact that S-Sample is unbiased when we calculated the
probability at the end of the proof.)

Using the same arguments that we used to prove theorem 3 we could prove the fol-
lowing stronger theorem.

Theorem 3 (strengthened). Let U be any uniform reducer from probabilistic listing
to efficient random sampling. Let S-Sample be any unbiased efficient random sampling
algorithm for any simple family S. There are functions #, 6, tx, and q satisfying the
following conditions. Each of g, 6, and u is bounded from above by a polynomial in
the length of its input, q is a polynomial. Whenever g, b and u are associated with S-
Sample we have d(p) r(p) q(\p\) = O(|S(p)|) where d is the cumulative delay of the listing
algorithm that we get by combining U with S-Sample and r is the space complexity of
the same listing algorithm.

We could strengthen the theorem further by observing that S-Sample doesn't really
have to be unbiased (for example, it would suffice to require that on any given run of
S-Sample with any input p the probability that any given member of S(p) is selected is
at most ^(|p|)|S(p)|~ for some polynomial £.) The calculations at the end of the proof

would have to be modified slightly to account for the bias of S-Sample, however.

Remark 2. The statement of theorem 3 demonstrates a sense in which the high
space complexity of the listing algorithms discussed in this subsection is inevitable. In
addition, the-proof of the theorem points to a different but related reason that the high
space complexity is inevitable.

In order to explain the reason we need the following definition. A probabilistic listing
algorithm for a simple family S is said to uniformly sample S without replacement if it
is the case that on any given run of the listing algorithm with any input p the members
of S(p) are equally likely to be output in any order.

The proof of theorem 3 can easily be modified to prove the following theorem about
sampling without replacement.

36 2. Techniques for Listing Combinatorial Structures

Theorem 4. Suppose that 5 is a simple family of structures and that A is a prob-
abilistic listing algorithm that uniformly samples S without replacement. There is a
polynomial q such that the space complexity of A is fi(|5(p)| / q(\p\))-

Whenever we combine Uniform Reducer 2 with an unbiased efficient random sampling
algorithm S-Sample we obtain a probabilistic listing algorithm which uniformly samples
without replacement. By theorem 4 we must end up with a listing algorithm with expo-
nential space complexity.

Remark 3. Let 5 be the simple family of structures which was defined in the proof
of theorem 3. Let S-Sample be the random sampling algorithm for S which we defined
previously. Let A be the listing algorithm that we get by combining Uniform Reducer 2

with S-Sample. Let d denote the delay of A and let r denote the space complexity of A.

We know from the proof of theorem 2 that d is bounded from above by a polynomial
in \p\ and that there is a polynomial q such that r(p) = 0(^(|p|) x |S(p)|). We know
from theorem 3 that there is a polynomial q such that d(p)r(p) = £l(\S(p)\ / q'(\p\)).

Therefore, the space complexity of algorithm A could only be improved by a polynomial
factor without increasing the delay. If we are willing to increase the delay, however, we
can improve the space complexity to within a polynomial factor of the limit imposed by
theorem 3. We will conclude this subsection by showing how to trade delay for space
in uniform reductions, obtaining listing algorithms with larger delay and smaller space
requirements.

We start with the following definition. A space bounded uniform reducer from prob-
abilistic listing to efficient random sampling is a listing program which contains calls
to an external function S-Sample, to external subroutines for evaluating the functions
which are associated with S-Sample, and to an external subroutine for evaluating the
space function A. The reducer must satisfy the following condition: Suppose that 5-
Sample is any efficient random sampling algorithm for any simple family S. Suppose
that A is any function such that 1 < X(p) < \S(p)\. Suppose that there is a polyno-
mial q such that the space complexity of S-Sample is O(g(|p|) x A(p)). If the reducer
is combined with S-Sample and A it becomes a probabilistic listing algorithm for S.

Furthermore, there is a polynomial q' such that the space complexity of the resulting
algorithm is 0{q(\p\) X \{p)).

We will describe a space bounded uniform reducer from probabilistic listing to efficient
random sampling. We will show that it satisfies the following condition. Suppose that
S-Sample is any efficient random sampling algorithm for any simple family S. Suppose
that A is any function such that 1 < X(p) < \S(p)\. Suppose that there is a polynomial q
such that the space complexity of S-Sample is 0(#(|p|) x A(p)). If the uniform reducer is

2. Techniques for Listing Combinatorial Structures 37

combined with S-Sample and A it becomes a probabilistic listing algorithm for 5. Fur-

thermore, there are polynomials q\ and q2 such that the space complexity of the resulting

algorithm is O(gi(|p|) x A(p)), the delay of the algorithm is O(q2(\p\) \S(p)\ / A(p)), and

the failure probability of the algorithm is exponentially small.

The basic idea behind the reducer is to divide S(p) into |~|S(p)| / A(p)] blocks

Si(p), i?2(p), • • • > e a c n °f which contains X(p) structures except for the last block, which

contains up to A(p) structures. The blocks will be ordered lexicographically, so the

structures in B\(jp) will be the lexicographically smallest encoded structures in S(p)

and the structures in I?2(p) will be the lexicographically smallest encoded structures

in S(p) — Bi(p), and so on.

The reducer consists of a while loop in which the fcth iteration outputs the members

of Bk{p) in an arbitrary order, using the dictionary and the queue to store the members

of Bk(p) and the members of 2?*+i(p):

Uniform Reducer 3

Input p

z(p) <— max(u(p),
q(p) < b(p) X g(p) X z(pf

maxso-far <— a structure x such that Vs G S(p) . x < s

While true Do /* The fcth iteration outputs Bk(p) */

i 4— 0
max-prev <— maxso-far /* maxjprev is the maximum structure */

/* that was output */
/* during the previous iteration */

While i < A(p)

For j <— 1 To u(p) + \p\

simulate ^r(p)f|S'(p)| / A(p)] steps
of the j% copy of proc Build-Queue(p)

If the queue is empty then Halt
Else

Output 5, the smallest structure in the queue
maxso-far <— maximum(mci_30_/ar,5)
t <— i + 1

38 2. Techniques for Listing Combinatorial Structures

Procedure Build-Queue(p)

While true Do
s <— S-Sample (p) f

If (s < maxjprtv)

/* ignore s because it is too small to be in Bk(p) */

Else If s is in the dictionary

/* ignore s because it is not new */

Else If the dictionary contains fewer than 2 X(p) structures
put s in the dictionary and on the queue

Else If the minimum member of the dictionary is < max.prev

/* The dictionary contains a structure that is "left over" */
/* from block Bk-i(p). It will be removed to make room for s */

let s' be the minimum member of the dictionary
remove s from the dictionary and from the queue if it is there
put s in the dictionary and on the queue

Else If the maximum member of the dictionary is smaller than s

/* ignore s because it is too big to be in Bk(p) or in Bk+i(p) */

Else
/* the dictionary contains some structure that is too big */

/* to be in Bk(p) or in 2?*+i(p) */
let s1 be the maximum member of the dictionary
remove s' from the dictionary and from the queue if it is there
put s in the dictionary and on the queue

The proof of the following theorem verifies the claims that we have made about Uni-

form Reducer 3.

f If 5-Sample halts without returning a structure then Uniform Reducer 3 halts

immediately.

2. Techniques for Listing Combinatorial Structures 39

Theorem 5. Suppose that S-Sample is an efficient random sampling algorithm for a
simple family S. Suppose that A is a function such that 1 < A(p) < |iS(p)|. Suppose that
there is a polynomial q such that the space complexity of S-Sample is 0((?(|p|) x A(p)).
If Uniform Reducer 3 is combined with S-Sample and A it becomes a probabilistic listing
algorithm for 5. Furthermore, there are polynomials q\ and q<i such that the space
complexity of the resulting algorithm is 0(<7i(|p|) x A(p)), the delay of the algorithm
is 0(^2(|p|) \S(p)\ I A(p)), and the failure probability of the algorithm is exponentially
small.

Proof: Suppose that S-Sample is an efficient random sampling algorithm for a simple
family S. Suppose that A is a function such that 1 < A(p) < |S(p)|. Suppose that q is a
polynomial such that the space complexity of S-Sample is O(g(|p|) x A(p)). Let A denote
the listing algorithm that we get by combining Uniform Reducer 3 with S-Sample and A.

It is easy to see that when A is run with input p it outputs only members of S(p). It
is more time-consuming to verify that the structures that are output are output without
duplication but verifying this fact is straightforward. Furthermore, it is straightfor-
ward to verify that there are polynomials q\ and q<i such that the space complex-
ity of A is 0(<7i(|p|) A(p)) and the delay between outputs is bounded from above by
0((?2 (|p|) 1*5(̂)1 / ^(p))- We would like to show that on a given run of A with input p the
probability that every member of S(p) is output is at least 1 — 2~'p'.

Let pk denote the probability that a given run of A with input p fails to output all
of the structures in Bk(p) conditioned on the fact that it did output all of the struc-
tures in #i(p), . . . ,£*_i(p). We wish to show that £r|5(j>)l/A(j»)l pk < 2- |P | I t guf_
fices, therefore, to prove that for every k in the range 1 < k < \\S(p)\ / A(p)] we have
\\S(p)\/\(p)-\xPk<2-M.

We start by proving that [|5(p)| / A(p)] x p\ < 2~'PL To do so we mimic the proofs
of theorems 1 and 2, showing that p\ < 2~^p^p^. (In the proof of theorem 1 we
showed that with high probability the queue did not become empty before every member
of S(p) was output. This is analogous to showing that in this case with high probability
the queue does not run out of members of B\(p) until every member of B\(p) has been
output.) We use the fact that if the dictionary and the queue in Uniform Reducer 3 are
implemented using 2-3 trees with ordered leaves (see [AHU 74]) then the running time
of an iteration of the while loop in procedure Build.Queue(p) (apart from the time spent
in S-Sample{p)) is O(u(pf).

To prove that [|5(p)| / A(p)] x pk < 2~'p' for k > 1 we use the coupon collector argu-
ment to show that all of the members of a given block Bk(p) are very likely to be found
during iteration k — 1 of the while loop. •

40 2. Techniques for Listing Combinatorial Structures

In this subsection we have described several uniform reducers. The first two uniform
reducers which we have described provide a very simple and straightforward method
for converting "off the shelf" random sampling algorithms into polynomial delay listing
algorithms. We will mention some applications in which these uniform reducers can be
used later in the thesis. In general, however, the thesis will focus on developing listing
algorithms which have both small delay and small space complexity. In light of theorem 3,
it will be necessary to develop different listing methods.

2.2. Using Listing Algorithms for Closely Related Families

In this short section we describe two methods for designing listing algorithms. The
methods can be used when we have an efficient listing algorithm for a family S' and
we want to design an efficient listing algorithm for another family that is closely related
to S". For example, suppose that we want to design an efficient listing algorithm for
a family S. If S is closely related to a recursively listable family or to a simple family
that has an efficient random sampling algorithm then we can combine the techniques
from section 2.1 with the techniques described in this section to obtain an efficient listing
algorithm for 5. We will see further applications of the techniques described in this
section when we consider the problem of listing non-simple families in section 2.3.

We start by defining the terms. (The following definitions will apply to non-simple
families of structures as well as to simple families of structures.) We say that two families
of combinatorial structures are related if and only if they have the same parameter spe-
cification. We say that two related families, S and S1, are polynomially related if and only
if there is a polynomial q which satisfies \S(p)\ < q(\p\) \S'(p)\ and IS'O?)! < q(\p\) \S(p)\.

Suppose that S and S1 are related families and that S'(p) is a subset of S(p) for every
parameter value p. In this case we say that 5' is a sub-family of S and that S is a
super-family of S'. We use the notation S — S' to stand for the family that is defined by
(S-S')(p) = S(p)-S'(P).

We will describe two methods in this section. The interleaving method can be used to
design an efficient listing algorithm for a family S if we have an efficient listing algorithm
for a polynomially related sub-family of S. The filter method, on the other hand, can
be used to design an efficient listing algorithm for a family S if we have an efficient
listing algorithm for a polynomially related super-family of S. First, we describe the
interleaving method.

2. Techniques for Listing Combinatorial Structures 41

2.2.1. The Interleaving Method

Suppose that we want to design a polynomial delay listing algorithm for a family 5 and
that we have a polynomial delay listing algorithm for 5', which is a sub-family of 5
that is polynomially related to S. Suppose further that we have a listing algorithm
for S — S1 and that there is a polynomial £ such that this algorithm executes at most
^(IPI) X (I'S'(P)I + 1) machine instructions when it is run with input p. Then we can
interleave the listing algorithm for 5' with the listing algorithm for S — Sf to obtain a
polynomial delay listing algorithm for 5.

This simple idea turns out to be very powerful and we use it repeatedly in section 3 of
this chapter and in chapter 3. We make the idea more precise in the following observation.

Observation 1. Suppose that 5 is a family of combinatorial structures and that S1 is
a sub-family of 5. Suppose further that there is a polynomial q satisfying the equation
\S(p)\ < g(|p|) |S'(p)|. Suppose that there is a listing algorithm A1 for 5' and that the
delay of Af is d!. Suppose further that there is a listing algorithm A!' for S — S1 and
that £ is a function such that this algorithm executes at most ^(|p|) x (|5(p)| + 1) ma-
chine instructions when it is run with input p. Then there is a listing algorithm for 5
whose delay, d, satisfies d(p) < c3 £(\p\) q(\p\) + d\p) + cs, where cs is a positive constant
representing the cost of doing the simulation in the following algorithm.

Proof: It is easy to see that the following algorithm is a listing algorithm for S and that
its delay is sufficiently small.

Algorithm Interleave

Input p

While true
simulate
simulate

If A'(P)

Do

4IPI)«(IPI) steps of A"(p)
A'(p) until it outputs or halts
halted Then Halt

Remark 1. Suppose that A1 and A" are probabilistic listing algorithms for S' and
S — S' and that they have failure probabilities p\ and p2 respectively. If p\(p) and />2(p)
are each less than or equal to 1/4 for every parameter value p then algorithm Interleave
is a probabilistic listing algorithm for 5 with failure probability

42 2. Techniques for Listing Combinatorial Structures

Remark 2. li A' and A" are polynomial space algorithms then so is algorithm
Interleave.

Remark 3. Observation 1 remains true if we replace the word "delay" with "cumu-

lative delay".

Application. Recall the family Q, which was defined in the introduction to this thesis.
A sub-family of Q is called a graph property. Many of the combinatorial families that
we consider in chapter 3 are graph properties. Therefore, we find it useful to state
general conditions under which the interleaving method yields polynomial delay listing
algorithms for graph properties.

Suppose that S is a graph property. We say that a listing algorithm for S is a standard

graph listing algorithm if it is of the following form.

Algorithm Standard

Input n

For Each G G Q{n)
If G G S(n)

Output G

Using the notion of a standard graph listing algorithm, we make the following obser-
vation.

Observation 2. Suppose that S is a graph property and that S has a sub-family E.

Suppose that there is a polynomial q such that the following conditions are satisfied.

1. q(n) \E(n)\ > 2 ^ for every large enough integer n.

2. There is a polynomial delay listing algorithm for E.

3. There is a polynomial expected time algorithm that takes as input a graph G G G(n)
and determines whether or not G is a member of S{n) — E{n).

Then the interleaving method can be used to obtain a polynomial delay list-
ing algorithm for S. When the listing algorithm is given an input n satisfying
q(n) \E(n)\ > 2v2^ it interleaves the listing algorithm for E with a standard graph listing
algorithm for S — E. If the listing algorithms for E and S — E run in polynomial space
then so does the listing algorithm for S.

2. Techniques for Listing Combinatorial Structures 43

2.2.2. The Filter Method

Suppose that we have a cumulative polynomial delay listing algorithm ListS for some

family 5 and that we are interested in designing an efficient listing algorithm for S', which

is a sub-family of S that is polynomially related to 5. The method that we use to solve

this problem is called the filter method. It is very straightforward. Essentially, we write

a program called Filter which takes as input a parameter value p of S and a structure s

which belongs to an equivalence class in S(p). Filter(p,s) returns "yes" if s belongs to

an equivalence class in S'(p) and "no" otherwise. We combine the algorithm List.S with

subroutine Filter to obtain a listing algorithm for 5 .

We will see later in the thesis that this simple method leads to efficient listing al-

gorithms for interesting families of combinatorial structures. In the remainder of this

subsection we will derive general conditions under which the method can be used to

obtain efficient listing algorithms.

In order to describe the conditions we will need some notation for describing lists of

combinatorial structures. If £ is a list of structures we will use the notation \C\ to denote

the length of C. We will use the notation C[i] to denote the i structure on C and the

notation C[i,j] to denote the sub-list £[i], . . . ,C\j]. If C is a set of equivalence classes of

structures we will use the notation C / C to denote the sub-list consisting of all structures

on C which belong to equivalence classes in C.

So suppose that S and 5' are families of structures as described above and that List.S

is a cumulative polynomial delay listing algorithm for S. Suppose that Filter is a sub-
routine behaving as described above. We will use the notation Sp to denote the list of
structures that are output when algorithm ListS is run with input p. We will use the
symbol T to denote the time complexity of Filter. We will consider the efficiency of the
following listing algorithm for 5':

Algorithm ListS'

Input p

Forj 4— lTo|5(p) |

continue simulating List.S{p) to obtain Sp[j]

If Filter (p,Sp\j]) = "yes"

Output Sp\j]

44 2. Techniques for Listing Combinatorial Structures

We start with the following observation which follows directly from the definition
of cumulative polynomial delay and from the fact that algorithm ListS has cumulative
polynomial delay.

Observation 3. If there exists a polynomial r such that for every integer i in the range

1 < i < \S(p)\ we have

then algorithm ListS' has cumulative polynomial delay.

While the statement of observation 3 is very straightforward, we can make the obser-
vation easier to use by re-writing it in a slightly different form. In particular, it is useful
to consider the list Sp as being broken up into "chunks". Suppose that m(p) is a posit-
ive integer (the number of "chunks") and that Sp is the concatenation of the m(p) lists
5p,i, . . . , Sp,m{p)- The following observation follows easily from observation 3.

Observation 4. If there exists a polynomial r such that the following conditions are
satisfied then algorithm ListS' has cumulative polynomial delay.

Condition 1. For every integer i in the range 1 < i < \SP)\\ we have

J2T(p,S,\j)) < r(\p\) x \Sp[l,i]/S'(p)\

Condition 2. For every integer / in the range range 1 < 1 < m(p) we have

Ic I
PPf'+i|

£ T(p,Sp,l+1[j}) < r(|p|) x \SP,i/S'(p)\

Condition 2 of observation 4 bounds the time needed to filter the structures in the
/ + l s "chunk" of Sp in terms of the number of structures that are output in the /

"chunk".

When we use the filter method in this thesis we will be able to define the "chunks"
of Sp in such a way that every member of SP}\ is a member of 5'(p). Therefore, it is not
necessary to filter the structures on SPi\. In practice, we may want to run subroutine
Filter on these structures in order to obtain side-effects (such as putting the structures

2. Techniques for Listing Combinatorial Structures 45

into a dictionary). However, it is not too restrictive to require that Filter run in poly-

nomial time on these inputs. We can simplify condition 1 of observation 4 by making

this requirement. We do so in the following observation, which follows directly from

observation 4.

Observation 5. If every member of SPti is a member of S'(p) and there exists a
polynomial r such that the following conditions are satisfied then algorithm ListS1 has
cumulative polynomial delay.

Condition 1. For every integer i in the range 1 < i < |5Pji| we have

T(p,Sp\i))<r(\p\)

Condition 2. For every integer / in the range range 1 < / < m(jp) we have

j]) < r(\p\) x \SPil/S\p)\

The statement of observation 5 seems rather technical but we will see that it is easy
to use in section 2.3 and in chapter 3. We conclude this section with a few remarks.

Remark 1. If algorithm ListS and algorithm Filter run in polynomial space then so

does algorithm ListS1.

Remark 2. Our description of the filter method assumes that algorithm ListS is a
deterministic algorithm. We could instead assume that ListS is a probabilistic listing

algorithm and we could make an observation similar to observation 5. However, all of the

probabilistic listing algorithms that are studied in this thesis involve random sampling.

When random sampling is involved, it is generally easiest to apply the filtering directly

to the sampler. We conclude this subsection by showing how to design efficient listing

algorithms by filtering existing random sampling algorithms and using the techniques

from section 2.1. We start by proving the following lemma.

Lemma 2. Suppose that 5 is a simple family of combinatorial structures which has
an efficient random sampling algorithm S-Sample. Suppose that S' is a sub-family of 5
that is polynomially related to 5. Suppose further that there is a polynomial expected-
time algorithm Filter that takes as input a parameter value p of 5 and an output s of
S-Sample(p) and returns "yes" if and only if s is a member of S'(p). Then S' has an
efficient random sampling algorithm.

46 2. Techniques for Listing Combinatorial Structures

Proof: The algorithm is as follows:

Algorithm S1-Sample

Input p

Do forever

s <— S-Sample(p) f

If (Filterfas) = "yes")

Return s

In order to prove that S1-Sample is efficient we need some notation. Let b be the

bias factor of S-Sample and let g be the expected running time of S-Sample. Let q be

a polynomial such that \S(p)\ < q(\p\) x |5'(p)|. Let t(p) denote the expected running

time of Filter(p,s) when s is an output of S-Sample(p). Let p(p) denote the probability

that Filter(p,s) = "yes" when s is an output of S-Sample(p) and let x(p) = l — p(p).

Since the bias factor of S-Sample is b we know that p(p) > |5'(p)| / b(p) \S(p)\. There-

fore, since \S(p)\ < <?(|p|) X \S\p)\ we have x(p) < 1 - l/6(p)?(|p|).

The expected running time of S1-Sample is

o ((sip) + tip)) (i + x(p) + z{p)2 + . . .)) = o ((9(p) + tiP)) r - i ^)

= O((gip) + tip))b(p)q(\p\))

The probability that any given member of S'(p) is selected is at least l/b(p) \S(p)\

which is at least l/b(p)q(\p\) \S'(p)\. So S1-Sample has bias factor b' where

b'(p) = KP)Q(\P\)-

We conclude that Sf-Sample is efficient, D

We now show how to use lemma 2 to design efficient listing algorithms. Suppose that S

is a simple family of combinatorial structures which has an efficient random sampling

algorithm S-Sample. Suppose that S' is a sub-family of 5 that is polynomially related

to 5. Suppose further that there is a polynomial expected-time algorithm Filter that

f If 5-Sample halts without returning a structure then S'-Sample halts immediately
without returning a structure.

2. Techniques for Listing Combinatorial Structures 47

takes as input a parameter value p of 5 and an output s of S-Sample(p) and returns
"yes" if and only if s is a member of S'(p). Then we can use the method described in
the proof of lemma 2 to obtain an efficient random sampling algorithm for S'. Having
done so, we can use the methods from subsection 2.1.2 to obtain a probabilistic listing
algorithm for 5' that has polynomial delay and exponentially small failure probability.

Application. It is easy to see that there is an efficient random sampling algorithm

for Q. Therefore, we obtain the following observation concerning graph properties.

Observation 6. Suppose that 5 is a graph property and that the following conditions

are satisfied.

1. There is a polynomial q such that q(n) \S(n)\ > 2*' for every positive integer n.

2. There is a polynomial expected time algorithm that takes as input a graph G G G(n)

and determines whether or not G is a member of S(n).

Then there is a probabilistic polynomial delay listing algorithm for S that has expo-

nentially small failure probability.

Remark 3. In remark 2 we assume that S is a simple family of combinatorial structures.
This assumption is not necessary — in section 2.3 we will extend the definition of a
random sampling algorithm so that it applies to non-simple families of combinatorial
structures.

2,3. Avoiding Duplicates

Section 2.1 introduced two basic techniques that can be used to design efficient listing
algorithms for certain simple families of combinatorial structures. Section 2.2 extended
these techniques by describing two methods that can be used when we have an efficient
listing algorithm for a family S and we want to design an efficient listing algorithm for
another family that is closely related to 5. In the present section we further extend the
techniques that we have developed by applying them to the problem of designing listing
algorithms for families of structures that are not simple. We begin by discussing methods
for designing probabilistic listing algorithms for non-simple families and then we consider
the design of deterministic algorithms.

2.3.1. Probabilistic Algorithms

In subsection 2.1.2 we restricted our attention to simple families of combinatorial struc-

tures and we showed that for these families we could reduce polynomial delay probabilistic

listing to efficient random sampling. In this subsection we show that the reductions still

work even if we consider non-simple families of structures.

48 2. Techniques for Listing Combinatorial Structures

We start by defining the notion of an efficient random sampling algorithm for a non-
simple family of structures. The definitions are similar to the corresponding definitions
in the simple case except that a random sampling algorithm for a simple family takes as
input a parameter value and returns a structure whereas a random sampling algorithm
for a non-simple family takes as input a parameter value and returns a structure along

with the name of its equivalence class.

Before formalizing the notion of a random sampling algorithm for a non-simple family
we formalize the notion of an equivalence class naming function. Suppose that 5 is a
non-simple family of structures. The relevant domain is the set of pairs (p, s) in which p
is a parameter value of 5 and s is a member of an equivalence class in S(p). The relevant
range is the set of strings in the language in which structures of S are encoded. A
function Af from the specified domain to the specified range is called an equivalence class

naming function for 5 if and only if the following conditions are satisfied.

1. For every parameter value p of 5 and every pair (si ,62) of structures of S it is the case
that N(p, s\) = ./V(p, 52) if and only if s\ and s2 are members of the same equivalence
class in S(p).

2. There is a polynomial q such that \Af(p, s)\ < q(\p\) for every domain element (p, s).

If AT is an equivalence class naming function for S we refer to -A/"(p, s) as the "name"
of the equivalence class of s in S(p). Every family of combinatorial structures that we
consider has an equivalence class naming function since the size of the encoded struc-
tures in the family (and therefore the number of equivalence classes in any given set) is
restricted in chapter 1.

We are now ready to continue with our definitions. A random sampling algorithm for

a family S of combinatorial structures is a probabilistic random access machine program

satisfying the following conditions:

1. The program is associated with a function Af which is an equivalence class naming
function for 5.

2. The program takes as input a value p of the parameter of S, halts if S(p) = 0 , and
returns a randomly chosen pair (s,.A/"(p, s)) otherwise, where s is a member of an
equivalence class in S(p).

We say that the algorithm has bias factor b if, on any given run of the algorithm with
any input p such that S(p) is non-empty, the probability that any given equivalence class
in S(p) is represented in the output is at least (6(p) x IS(p)l)"1. We say that a random
sampling algorithm for a non-simple family is efficient if its expected running time and
its bias factor are bounded from above by a polynomial in the length of its input.

2. Techniques for Listing Combinatorial Structures 49

We could easily modify the uniform reducers described in subsection 2.1.2 to make
them list non-simple families of structures as well as simple families. The modified
reducers would store names of equivalence classes in their dictionaries rather than storing
structures. For example, the modified version of Uniform Reducer 2 is the following:

Uniform Reducer 4

Input p

z(p) <— max(u(p),
q(p) <— b(p) X g(p) X z(pf

While true Do
For j *— lTo/(|p|)

simulate q(p) steps of the j 1 copy of procedure Build-Queue (p)

If the queue is empty Then Halt
Else Output a structure from the queue

Procedure Build-Queue(p)

While t rue Do
(s,v) <— S-Sample(p)\

If {y is not already in the dictionary) Then
put v in the dictionary
put s on the queue

We could easily prove the following theorem by mimicking the proof of theorem 2.

Theorem 6. Whenever Uniform Reducer 4 is combined with any efficient random

sampling algorithm S-Sample for any family S it becomes a probabilistic polynomial

delay listing algorithm for S. The listing algorithm has failure probability 2~"^'p'\

We conclude this subsection with two examples which demonstrate the ease with which
we can use Uniform Reducer 4 to obtain probabilistic polynomial delay listing algorithms
for interesting families of structures.

f If 5-Sample halts without returning an output then Uniform Reducer 4 halts
immediately.

50 2. Techniques for Listing Combinatorial Structures

Example 1. A family of colorable graphs

We start by defining the family. Recall that the notation Vn is used to denote the
vertex set {vi , . . . , vn}. Suppose that n is a positive integer and that j is a positive integer
that is less than or equal to n. A j-coloring of Vn is a partition C = (Ci, • • •, Cj) that
divides the vertices of Vn between j disjoint subsets, C i , . . . , Cj, such that 1 < / < m < j
implies that |C/| > \Cm\ or that |C/| = \Cm\ and C\ < Cm. Each set C, is called a color
class of C . (Note that the definition of a j-coloring does not forbid empty color classes.)
Let G be a member of Q(n) and let C be a j-coloring of Vn. C is a j-coloring of G if and
only if it has the property that no two vertices that belong to the same color class are
connected by an edge of G. A j-colored graph is a pair (C, G) such that C is a j-coloring
of G.

We will say that a function k from N to N is a sub-diagonal function if and only if
k(n) < n for every n £ N. For every sub-diagonal function k let P^f be the family defined
as follows. Every parameter value of P* is a positive integer (encoded in unary). The
value n is associated with the set Pk(n) which contains all fc(n)-colorings of Vn. Let Qk

be the related family defined by the following equation:

Qh{n) = {(C, G)\(Ce Pk(n)) A (G G G{n)) A (C is a fc(n)-coloring of G)}.

(Qk(n) is the set of fc(n)-colored n-vertex graphs.) Let ~ be the equivalence relation
on colored graphs that ignores the coloring, (i.e. (Ci,Gi) ~ (C21G2) if and only if
G\ =G2-) Let Qk be the family with the following definition. Every parameter value
of Qk is a positive integer. The value n is associated with the set Qk{p>) which contains
the equivalence classes under ~ of £/fc(n). Each equivalence class in Qk{p) is associated
with a particular fc(n)-colorable graph G G Q(n).

We say that a sub-diagonal function k satisfies Kucera's condition if and only if there is
a positive constant no such that for every n > no we have k(n) < y/n/28 log(n). Suppose
that k is any sub-diagonal function that satisfies Kucera's condition. In the remainder of
this example we will design an efficient random sampling algorithm, Qk-Sample, for Qk.

f The notation defined here will be used in subsection 2.3.2 and in chapter 3. It will
help the reader to realize that colorings are denoted by symbols such as "C". Families
of colorings are denoted by symbols such as "P" and "II" (since colorings are partitions

of vertex sets). Graphs are denoted by symbols such as "G" and families of graphs and
of colored graphs by symbols such as uQn and "F".

2. Techniques for Listing Combinatorial Structures 51

Qk-Sample can be combined with Uniform Reducer 4 to obtain a probabilistic polynomial

delay listing algorithm for Qk which has exponentially small failure probability.

We start by defining the equivalence class naming function AT, which will be associated

with Qk-Sample. The function will be defined by the equation AT(n, (C, G)) = G. That

is, for every colored graph (C, G) G Gk(n) the name of the equivalence class of (C, G)

in Gk(n) is G.

In order to design an efficient random sampling algorithm for Qk we first consider the
problem of designing an efficient random sampling algorithm for the simple family Qk.
We make the following observation.

Observation 7. There is an efficient random sampling algorithm for Qk.

Proof: We will not give the details of the algorithm here but we will give an informal
description. In order to simplify the description we will first assume that the algorithm
is to be implemented on a random access machine that has the ability to flip biased

coinsf. Then we will appeal to a result of Sinclair which shows that the algorithm can
be efficiently simulated on an ordinary probabilistic random access machine.

Let f(m,j,i) denote the number of '̂-colored graphs with vertex set Vm in which the
largest color class has size i. The algorithm begins by doing dynamic programming to
compute the value of /(ro, j , i) for 1 < i < m < n and 1 < j < k(n).

Then the algorithm uses the values of f(m,j,i) (and its biased coins) to select a

coloring C. The probability with which any given coloring C is selected is proportional

to the number of members of Qk(n) that have coloring C.

Finally, the algorithm selects a graph G £ Q(n) such that C is a k(n)-coloring of G.

The graph is selected by considering each pair of vertices from different color classes of C
and making it an edge of G with probability 1/2.

It is easy to see that there is a polynomial time implementation of this algorithm on

a probabilistic random access machine that has biased coins. Furthermore, the imple-

mentation is an unbiased random sampling algorithm for Qk.

Using the techniques from section 1.3 of [Sin 88] we can simulate this algorithm on
an ordinary probabilistic random access machine. The simulation does not increase the
expected running time or ihe bias factor of the algorithm by more than a factor of a
polynomial in n so the resulting algorithm is an efficient random sampling algorithm
for Qk. •

f That is, we will assume that for every rational q in the range [0,1] the random access
machine can flip a coin which has probability q of coming up "heads".

52 2. Techniques for Listing Combinatorial Structures

Let Qk-Sample be an efficient random sampling algorithm for Qk- Let b denote the
bias factor of Qk-Sample. Consider the following random sampling algorithm for Qk.

Algorithm Qk-Sample

Input n (in unary)
(C,G)<— Qk-Sample(n)

Output ((C, G), G)

We will prove the following observation.

Observation 8. If k satisfies Kucera's condition then Qk-Sample is an efficient random

sampling algorithm for Qk.

Proof: Since the expected running time of Qk-Sample is bounded from above by a
polynomial in n the expected running time of Qk-Sample is bounded from above by a
polynomial in n. Furthermore, Kucera has shown that for every sub-diagonal function k

that satisfies Kucera's condition it is the case that |<?fc(n)| = (1 — o(l))|<7jfe(n)|. Therefore
the bias factor of Qk-Sample is 6(l+o(l)). D

Finally, we use observation 8 to obtain a corollary of theorem 6.

Corollary 1. If k satisfies Kucera's condition then there is a probabilistic polynomial

delay listing algorithm for Qk which has exponentially small failure probability.

Proof: The algorithm is obtained by combining Qk-Sample with Uniform Reducer 4- D

Example 2. A family of unlabeled graphs

Let « be the isomorphism relation on undirected graphs. Let Q be the family of
unlabeled graphs which we defined in the introduction of this thesis.

The problem of designing an efficient listing algorithm for Q has been studied in the

past [Rea 78, CR2 79, Rea 81, DW 83f]. However, previous notions of "efficient" are less

f Dixon and Wilf's paper contains the following observation. Suppose that samples
are drawn from Q(n) in such a way that each sample is equally likely to belong to any
class in Q(n). The coupon collector argument shows that the probability that a set of
| Q(n) | x log(| C/(n) |/e) such samples contains a representative of every class is at least
1 —e. This observation led to my development of the methods in section 2.1.2 and to
their application to the problem of listing unlabeled graphs.

2. Techniques for Listing Combinatorial Structures 53

demanding than the notion studied in this thesis. Furthermore, known listing algorithms
for Q are not efficient using our definition of the word. Later in this section we will
present a deterministic listing algorithm for Q which has polynomial delay and runs
in polynomial space. In this subsection we show how to combine existing algorithms
to obtain an efficient random sampling algorithm Q-Sample for Q. Q-Sample can be
combined with Uniform Reducer 4 to obtain a probabilistic polynomial delay listing
algorithm for Q which has exponentially small failure probability.

We start by defining the equivalence class naming function, Af, which will be associ-
ated with Q-Sample. This function is based on Babai and Kucera's canonical labeling
algorithm from [BK 79], which we refer to as BK-Label. BK-Label takes as input a graph
G £ G{n) and returns a permutation p of Vn which is called a canonical labeling of G.

If the vertices of G are permuted by p and the edges are permuted accordingly then
the result, denoted />(G), is the canonical representative of G's isomorphism class. We
define AT(n, G) to be equal to p(G) for every graph G £ G(n).

The random sampling algorithm Q-Sample is based on an algorithm of Wormald [Wor 87]
which we call W-Sample. W-Sample takes as input a unary integer n and outputs a mem-
ber of Q(n). On any given run of W-Sample with any input n, the output is equally likely
to be a member of any isomorphism class in Q{n). Furthermore, the expected running
time of W-Sample is bounded from above by a polynomial in n. The algorithm Q-Sample
is as follows:

Algorithm Q- Sample

Input n (in unary)

G <— W-Sample(n)

p <— BK-Label{G)

Output (G, p(G))

We will devote the rest of this subsection to the proof of the following lemma about
Q-Sample. At the end of the subsection we will use the lemma to argue that Q-Sample
can be combined with Uniform Reducer 4 to obtain a probabilistic polynomial delay
listing algorithm for Q which has exponentially small failure probability.

54 2. Techniques for Listing Combinatorial Structures

Lemma 3. Q-Sample is an efficient random sampling algorithm for Q.

In order to prove lemma 3 we must show that the expected running time and the bias
factor of G-Sample are bounded from above by a polynomial in n. The claims that we
have already made about W-Sample demonstrate that Q-Sample is unbiased. In order
to show that its expected running time is bounded from above by a polynomial in n

we must show that when inputs to BK-Label are drawn from the output distribution
of W-Sample(n), the expected running time of BK-Label is bounded from above by a
polynomial in n. The proof of this fact is straightforward but it requires some basic
definitions and facts. In the remainder of this subsection we provide the definitions and
facts that we need. Then we prove the result.

Here and elsewhere in the thesis, we will use Oberschelp's formula (See [HP 73] p. 196).
This formula says that | Q{n) \ = [n\\~l2&)[l + O(n2/2n)]. We will also need the follow-
ing definitions. We say that a probability distribution on Q{n) is a uniform distribution

of unlabeled graphs if a given sample is equally likely to belong to any class in Q{n). (The
output distribution of W-Sample(n) is a uniform distribution of unlabeled graphs.) Sup-
pose that / is a function whose domain is the set of undirected graphs. We say that / is
isomorphism-invariant if it is the case that for any two isomorphic graphs G\ and G2,
f(G1) = f(G2).

The size of the automorphism group of a graph is isomorphism-invariant. Therefore,

for every isomorphism class C E G(n) we can use the notation |Aut(C)| to denote the

size of the automorphism group of every member of C. Given a uniform distribution of

unlabeled graphs, the expected size of the automorphism group of a randomly chosen

n-vertex graph is 1 4- o(l). This fact does not seem to be proved in the literature, so we

provide a short proof here:f

Lemma 4. J] |Aut(C)| = (1 + o(l)) \G{n)\.

ceG(n)

Proof: We know from a simple application of Burnside's lemma that each isomorphism

class in G(n) is represented n\ times in {(G,TT)| G G G{n) A TT G Aut(G) }. Therefore

£ iAut(c)i = i Y, E iAut(G)i = h E iAu

ceg(n) ' GeG() TrGAut(G)

f L. Babai pointed out that this result follows from [BK 79].

2. Techniques for Listing Combinatorial Structures 55

[BK 79] shows that for any i in the range 2 < t < ri* the probability that a random

member of Q(n) has more than (t — 1)! automorphisms is at most exp(—ctn) for a positive

constant c. Therefore

|Aut(C)| < 1 1+ JZ exp(-c*n)[*!]2+exp(-cra*)[n!]2

t=2

n!

The result now follows from Oberschelp's formula. •

In order to prove lemma 3 we must show that when inputs to BK-Label are drawn
from the output distribution of W-Sample(n), the expected running time of BK-Label is
bounded from above by a polynomial in n. We now proceed with this proof.

Let T(G) denote the number of machine instructions that are executed in a call to BK-

Label(G). Suppose that inputs to BK-Label are chosen uniformly at random from Q(n).

Babai and Kucera showed that for fixed j the expected value of T(G)3 is 0(n2 j) . Since
T(G) is isomorphism-invariant, we can compute the expected value of T(G)J for a uniform
distribution of unlabeled graphs. Given an isomorphism class C EQ(n), let T(C) denote
the running time of Babai and Kucera's algorithm when it is given as input a member
of C. We can now prove the following lemma.

Lemma 5. If j is a constant greater than or equal to 1 and G is selected randomly
from a uniform distribution of unlabeled n-vertex graphs then E(T(G)J) = 0(n2^).

Proof: If G is selected randomly from a uniform distribution of unlabeled n-vertex
graphs then

E(T(G)7) = -J— Y T(C)j.
\o()\ y

Applying Burnside's lemma (as in the proof of lemma 4) we obtain

= ^ — ~, Y\ |Aut(G)|

Using Oberschelp's formula to approximate the size of G(n), the right hand side becomes

56 2. Techniques for Listing Combinatorial Structures

E(T(G)') = - ± - - ^ V |Aut(G)|

For any real numbers x and y it is the case that xy < (x2 + y2)/2. Setting x = nJ | Aut(G?)|

and y = n~J T(G)J we obtain

|Aut(G)|

We showed in the proof of lemma 4 that ^ |Aut(G)|2 < 2^)(1 + o(l))

so the left hand summation is at most 2v2'O(n2j).

Babai and Kucera showed that] T T(G)2j = 2
GeQ(n)

so the right hand term is 2v2^O(n2>7), which proves the lemma. •

Since the output distribution of W-Sample is a uniform distribution of unlabeled
graphs, we conclude that the expected running time of BK-Label is bounded from above
by a polynomial in n when inputs to BK-Label are drawn from the output distribution
of W-Sample(n). Therefore we have proved lemma 3.

We conclude the subsection by using lemma 3 to obtain a corollary of theorem 6.

Corollary 2. There is a probabilistic polynomial delay listing algorithm for Q which
has exponentially small failure probability.

Proof: The algorithm is obtained by combining Q-Sample with Uniform Reducer 4- D

2.3.2. Deterministic Algorithms

In this subsection we discuss the problem of designing deterministic listing algorithms
for families of structures that are not simple. The framework that we consider is the
following. Suppose that 5 is a simple family of combinatorial structures and that ~ is
an equivalence relation on the structures of S that divides each set S(p) into disjoint
equivalence classes. Let S be the family in which S(p) denotes the set of equivalence
classes in S(p). The problem that we address in this subsection is "How do we design
an efficient listing algorithm for 5?" In many cases we will be able to use the methods
described in sections 2.1 and 2.2 to design an efficient listing algorithm for the simple

2. Techniques for Listing Combinatorial Structures 57

family 5. In some cases we will be able to modify the listing algorithm for 5 to obtain an
efficient listing algorithm for 5. In other cases, the listing algorithm for 5 will be used
indirectly in the design of the listing algorithm for 5.

Before considering the general problem of designing an efficient listing algorithm for 5,
we consider an example. Consider the family Q, which was discussed in the introduction
to this thesis. We have used the notation « to denote the isomorphism relation on graphs
and the notation Q to denote the family in which Q{n) is the set of isomorphism classes
in Q{n). We described an efficient listing algorithm for Q in section 2.1. We would like to
modify this algorithm to obtain an efficient listing algorithm for Q. We start by writing
down the recursive listing algorithm for Q which we described in subsection 2.1.1.

Algorithm Li$t.Q

Input n (in unary)
If (n = 1) Then Output (Vi, 0)
Else For Each (n-l)-vertex graph (Vn-UE)

For Each set W C Vn_i
G' <— (Vn,EU{(vn,w)\w e W})

Output(G')

Our goal will be to modify algorithm List.Q to obtain an efficient listing algorithm
for Q. The crucial problem will be to prevent the modified algorithm from listing more
than one representative of any given isomorphism class.

Most known solutions to this problem are based on a method which Read and Col-
bourn call the "classical method" [Rea 78, CR2 79]. The basic idea is to check each
augmentation G' against the list of graphs that have already been output, outputting Gl

if and only if it is the first representative of its isomorphism class. It is easy to see that
solutions which are based on this method require quite a lot of space to store the list of
graphs. Furthermore, they require quite a lot of time to do the checking so they have
large delay.

In [Rea 78] Read describes his "orderly method" which is substantially more efficient
than the classical method. In order to obtain an "orderly" listing algorithm for Q, Read
and Colbourn devised a scheme for identifying a particular canonical representative of

58 2. Techniques for Listing Combinatorial Structures

each equivalence class in Q(n). They chose the canonical representatives in such a way
that each n-vertex canonical representative is an augmentation of exactly one (n — 1)-
vertex canonical representative. Then they obtained the following polynomial space
listing algorithm for Q [CR2 79].

Algorithm Orderly

Input n (in unary)

If (n = 1) Then Output (VU0)

Else For Each (n —1)-vertex canonical representative
For Each set W C Vn-i

G' <— (VniEU{(vn,w)\w e W})

If G1 is canonical Then Output(G')

In terms of space efficiency!, Read and Colbourn's algorithm is vastly superior to the
algorithms which are based on the classical method and to the probabilistic algorithm
that we described in subsection 2.3.1. Furthermore, Read and Colbourn save time by
eliminating much of the search space that is examined by the algorithms which use the
classical method. However, if our goal is to design a polynomial delay algorithm, then
there are two problems with their approach.

1. The number of n-vertex augmentations that are constructed by algorithm Orderly is
approximately n times the number of augmentations that get output. The algorithm

contains no mechanism to ensure that there is no "gap" in which exponentially many

augmentations are considered, each augmentation being found to be non-canonical.

2. The question "Is G1 canonical?", which is answered before each output, is unlikely to
be answerable in polynomial time.

Later in this subsection we will see how to get around these problems and we will
present a deterministic polynomial space polynomial delay listing algorithm for Q. First,
however, we observe that the problems that we have identified come up in the context
of the general framework that we described at the beginning of this subsection. Suppose

f In [Rea 78], Read presents a convincing argument that space complexity is more
important than time complexity in real applications, which necessarily involve small
values of n.

2. Techniques for Listing Combinatorial Structures 59

that S is a simple family of combinatorial structures, that ~ is an equivalence relation
as defined previously, and that we attempt to modify an efficient listing algorithm for 5
to obtain an efficient listing algorithm for S. We will encounter the following problems:

1. Since |5(p)| can be much bigger than |5(p)|, the new algorithm may contain "gaps"

in which an exponential number of members of S(p) are considered, none of which are

output.

2. Once a member of S(p) has been constructed, it may take an exponential number of
computational steps to determine whether or not it should be output.

In this thesis we will take two approaches to solving the problems.

1. If 5 and 5 are polynomially related then we may be able to use the filter method to
obtain an efficient listing algorithm for S. Let Sp be the list of structures that are
output when we run the listing algorithm for S with input p. Let S'(p) be the set of
structures s G S(p) that satisfy "s is the first member of its equivalence class in S(p)

on the list Sp". If we can use the filter method to design a cumulative polynomial
delay listing algorithm for 5' then we can simply use the listing algorithm for 5' as a
listing algorithm for S. Informally, this approach works when the list Sp is guaranteed
to have two properties: First, there must be plenty of structures near the front of the
list that are members of S'(p) (that is, there must not be large "gaps" near the front
of the list). Second, there must not be too many structures s near the front of the list
for which the question "Is s a member of S'(p)?" is computationally difficult.

2. We may be able to use the interleaving method to obtain an efficient listing algorithm
for 5. Our strategy would be to try to define a sub-family E of S such that E is
polynomially related to S and E has a polynomial delay listing algorithm. We would
then need to find a polynomial £ such that we could implement a listing algorithm
for S — E which executes at most £(\p\) x (|5(p)| + 1) machine instructions when it is
run with input p. If S and S are polynomially related then the listing algorithm for
S — E could be based on filtering the listing algorithm for S. Otherwise the listing
algorithm for 5 can be used indirectly in the design of the listing algorithms for E

and S-E.

In the remainder of this subsection we consider two examples of non-simple combinat-
orial families. We use the examples to illustrate the approaches that we have described
in this subsection. First, we use the filter method to design an efficient listing algorithm
for a certain family of colorable graphs. Second, we use the interleaving method to design
an efficient listing algorithm for Q.

60 2. Techniques for Listing Combinatorial Structures

Example 1. A family of colorable graphs.

Consider the families P* and (/*, which were defined in subsection 2.3.1. It will be

helpful to define two additional families, 11* and F*. Every parameter value of II* is an
undirected graph. The value G G Q(n) is associated with the set II* (G) which contains

all fc(n)-colorings of G. Every parameter value of F* is a fc(n)-coloring of some vertex

set Vn. The value C G P*(n) is associated with the set F*(G) which is defined to be

{G G £/(ra) | G G II*(G)}. Using the new definitions, we can see that

Qk(n) =. \(C, G)\(GE G{n)) A (C € Uk(G))}

= {(C,G)|(C ePk(n))A(G€Tk(C))}.

In chapter 3 we will use the families P*, (/*, 11*, and F* to develop an efficient listing
algorithm for Qk (provided that k satisfies certain conditions). At present, we will illus-
trate the filter method by using it to design an efficient listing algorithm for a sub-family
of Qk (again, provided that k satisfies certain conditions).

We start by defining the sub-family. We say that a coloring C G P*(ra) is
balanced if and only if it is the case that 3n/2k(n) > \d\ > n/2k(n) for each
color class C% of C. Let Pft* be the sub-family of P* defined by the relation
Pbk(n) = {C£Pk(n)\C is balanced}. Furthermore, let 116* be the sub-family of 11*
defined by the relation Ubk(G) = {C G II*(G) | C is balanced}. Let Qbk be the sub-family
of Qk defined by

Qbk(n) = {(C,G)\(Ge Q(n)) A (C G Hbk(G))}

= {(C, G) | (C G Pbk(n)) A (G G F*(C))}.

Finally, let Qbk(n) be the set of equivalence classes under ~ of Qbk(n).

Lemma 1 of [Kuc 89] shows that Qbk and Qbk are polynomially related when k satisfies

Kucera's condition. We will show that in this case we can use the filter method and

an efficient listing algorithm for Qbk to obtain a cumulative polynomial delay listing

algorithm for Qbk. By the end of the example we will have proved the following theorem.

Theorem 7. If k satisfies Kucera's condition then there is a cumulative polynomial

delay listing algorithm for

2. Techniques for Listing Combinatorial Structures 61

We start by presenting a polynomial space cumulative polynomial delay listing al-

gorithm for Qbk. The general framework for the algorithm is the following:

Algorithm ListjQbk

Input n (in unary)
For Each C G Pbk(n)

For Each G G Tk(C)

Output(C,G)

In order to fill in the details of algorithm List-Qbk, we will need to show how to implement
polynomial space cumulative polynomial delay listing algorithms for the families Pbk

and r*. We start by considering Pbk. We will describe a polynomial space cumulative
polynomial delay listing algorithm for Pbk in the proof of the following lemma. The
algorithm will be called List-Pbk - We will use the notation Pbk,n to denote the list of
colorings of Vn that are produced when List-Pbk is run with input n. The following
lemma describes some properties of Pbk,n>

Lemma 6. There is a polynomial space cumulative polynomial delay listing algorithm
for Pbk which takes input n (in unary) and outputs the list Pbkjn- Pbk,n has the following
properties.

1. (i < j) ^ (\Tk(Ph,n\i})\ > \Tk(Pbk,n\j])\)-

2. There is a polynomial space polynomial time algorithm that takes as input two mem-

bers C and C' of the list Pbkyn and determines which of C and C1 comes first on Pbk,n-

Proof: For every C = (Cu... ,C*(n)) G Pbk(n) let Si(C) denote \d\ and let M(C)

denote X)i=i [*̂ *(̂)] • ^ is easy to see that

= 2^'<; Siic)Sj(c) = 2 (" 2 - .

Therefore, condition 1 can be re-stated as

(t < j) => (M(Pbk,n[i\) < M(Pbk,n[j})).

For any positive integer j and any sequence (s i , . . . ,3j) of positive integers let
(i(si,... ,Sj) = Y^i=i si2- Let I be the simple family with the following description. Each
parameter value of / is a tuple (j, n,m,u, I) of positive integers (each integer is encoded

62 2. Techniques for Listing Combinatorial Structures

in unary). I(j, n, ra, u, I) is the set of sequences (s\,..., Sj) of positive integers such that
J2l-i si = n and /x(si,... ,Sj) = ra and u>si>-->Sj>l. Let \I>(j,n,ra, if,/) be the
boolean predicate whose value is "true" if and only if the set / (j , n, ra, u, Z) is non-empty.

Suppose that n is a positive integer. Then the values of ty(j,n,m,u,l) for
1 < j < &(n)> 1 — m — n2> 3Ii^L 1 <l <u <n can be computed in polynomial time us-
ing dynamic programming. (If j > 1 then ^(j,n,ra,u,/) is "true" if and only if
ty(j — l,n — 51,772 — si2,Min(si,n — <si),/) is "true" for some si such that u> si > /.)

It is fairly easy to see that there is a polynomial space polynomial delay listing al-
gorithm for / which uses the values of *f?(j,n,m,u,l). Given such an algorithm we can
implement a polynomial space polynomial delay listing algorithm for

Algorithm List-Pbk

Input n (in unary)

K <— k(n)

For ra <— 1 To n2

For Each ($ i , . . . ,sK) G

For Each C € Pk(n)

Output C

/(K , n , ra , 3TI/2K

such that Si(C) =
,n/2/c)
5, for 1 < i < K

The fact that this algorithm satisfies condition 1 is immediate. It is not difficult to fill

in the details in such a way that condition 2 is satisfied. •

Now that we have shown that there is a polynomial space cumulative polynomial delay
listing algorithm for P6&, we turn to the problem of showing that there is a polynomial
space cumulative polynomial delay listing algorithm for F^. It is easy to use the definition
of F* to design such an algorithm since Tk(C) is simply the set of all spanning subgraphs
of a certain complete fc-partite graph. Alternatively, we can observe that Tk is recursively
listable and we can use the techniques from subsection 2.1.1 to design a polynomial space
polynomial delay listing algorithm for IV

Now that we have shown that Pbk and Tk have polynomial space cumulative poly-
nomial delay listing algorithms we can conclude that algorithm List-Qbk is a polynomial
space cumulative polynomial delay listing algorithm for Qbk- We wish to prove theorem 7
by showing how to use the filter method and algorithm List-Qbk to obtain a cumulative
polynomial delay listing algorithm for Qbk, assuming that k satisfies Kucera's condition.

2. Techniques for Listing Combinatorial Structures 63

We start by defining some notation. Let Tktc denote the list of graphs output by
the listing algorithm for Tk when it is run with input C. Suppose that the / coloring
on Pbkjn is C and that Tk}C is Gi ,G2, . . . Then the /th "chunk" of the list output by
algorithm ListJybk is (C, Gi), (C, G2),... We refer to this chunk as £/6fc,n,/- We use the
notation Qbk^n to denote the concatenation of the lists £/&jfc,n,i,£/&fc,n,2,... Clearly, Gbk,n

is the list of colored graphs that is output when algorithm List-Qbk is run with input n.

Let Qb'k(n) be the set of colored graphs (C,G) e Qbk(n) that satisfy "(C, G) is the
first member of its equivalence class in Qbk(n) on the list Gbk,n>" We will show that
when k satisfies Kucera's condition we can use the filter method and algorithm List.Qbk

to obtain a cumulative polynomial delay listing algorithm for Qb'k. Then we will have
proved theorem 7.

In order to use the filter method we will need to invent a subroutine Filterk, which
takes as input an integer n and a colored graph (C, G) G Qbk{n) and returns "yes" if and
only if the colored graph is a member of Qb'k{n). Then we can use the following listing
algorithm for Qb'k:

Algorithm ListJSb'k
Input n
For j 4— 1 To \Qbk{n)\

continue simulating List.Qbk(n) to obtain Gbkyn[j]
If Filterk(n,Gbk,n[j])= "yes"

Output Gbktn\j]

Suppose that we invent a subroutine Filterk with time complexity Tk. The following

observation follows directly from observation 5 and remark 1 of subsection 2.2.2 and from

the fact that every member of £&jfc,n,i is a member of Qb'k{n).

64 2. Techniques for Listing Combinatorial Structures

Observation 9. Algorithm ListjQb'k will run in polynomial space if and only if al-
gorithm Filterk runs in polynomial space. Furthermore, algorithm ListjQb'k will have cu-
mulative polynomial delay if k satisfies Kucera's condition and there exists a polynomial r
such that the following conditions are satisfied:

Condition 1. For every integer i in the range 1 < i < |£6*,n,i| we have

Tk(n,gbktn\j]) < r(n).

Condition 2. For every integer / in the range range 1 < / < \Pbk(n)\ we have

< r(n) x \Gbk^ / Qb'k{n)\.

In the remainder of this example we will prove theorem 7 by designing an al-
gorithm Filterk whose time complexity, T*, satisfies the conditions in observation 9.
First, we make our task easier by simplifying condition 2. Lemma 1 of [Kuc 89] shows
that if k satisfies Kucera's condition then

\Gh,n,l I Gb'k{n)\ > (1 - o(l))|a&*,n,/|

for every I in the appropriate range . Furthermore, condition 1 of lemma 6 guarantees
that |£/&fc,n,/| ^ |£/&fcjn)/-fi| f°r every / in the appropriate range. Combining these two
observations, we can replace condition 2 with the following (possibly stronger) condition:

Condition 2'. For every integer / in the range 2 < / < |P6fc(ra)| we have

< r(n) x

Observation 10 incorporates the simplification that we have discussed, rewriting con-
dition 2; in an equivalent form. The notation Gc is used to denote a member of
chosen uniformly at random.

2. Techniques for Listing Combinatorial Structures 65

Observation 10. Algorithm ListJQb'k will run in polynomial space if and only if al-
gorithm Filter k runs in polynomial space. Furthermore, algorithm List-Qb'k will have cu-
mulative polynomial delay if k satisfies Kucera's condition and there exists a polynomial r
such that the following conditions are satisfied:

Condition 1. For every integer i in the range 1 < i < \Gbk,n,i\ we have

Tk(n,gbk,n\i]) < r(n).

Condition 2. For every C G Pbk(n) (except possibly C = P6fc>n[l]) we have

E(Tk(n,(C,Gc))) < r(n).

In the remainder of our treatment of this example, we assume that k satisfies Kucera's
condition. We consider the problem of designing an algorithm Filterk whose time
complexity, T*, satisfies the conditions in observation 10. First, we consider a simple
dictionary-based implementation of Filter k. We argue that its time complexity satisfies
the conditions. Therefore, it can be combined with algorithm ListjQb'k to obtain a cumu-
lative polynomial delay listing algorithm for Qbk. At this point we will have finished the
proof of theorem 7, which merely says that if k satisfies Kucera's condition then there is
a cumulative polynomial delay listing algorithm for Qbk. We next consider the problem
of designing a polynomial space algorithm Filter k whose time complexity, Tfc, satisfies
the conditions in observation 10. We are unable to solve this problem in the general
case (this problem is discussed further in chapter 3) but we succeed in doing so when
fc(ra) = 0(1). Thus, we prove the following theorem.

Theorem 8. If k{n) = 0(1) then there is a polynomial space cumulative polynomial

delay listing algorithm for Qbk.

We start, then, by presenting the simple dictionary-based implementation of Filter k.
Recall that Filterk takes as input an integer n and a colored graph (C, G) G Qbk{n). The
output of Filterk(n,(C,G)) should be "yes" if and only if (C, G) is the first member
of Qbkfn which contains the graph G. By the time that algorithm List.Qb'k makes the
call Filter*(n,(C,G)) it will already have called Filterk(n, (C1 ,G')) for every colored
graph (C", G1) which precedes (C, G) on Qbk,n. Therefore, the implementation of Filterk

could be based on a dictionary of n-vertex graphs. The dictionary should be made empty
at the beginning of algorithm List.Qb'k. Filterk would have the following form:

66 2. Techniques for Listing Combinatorial Structures

Algorithm Filter*(n, (C, G))

If G is in the dictionary
Return "no"

Else
put G in the dictionary
Return "yes"

Suppose that k satisfies Kucera's condition and that we use algorithm Filterk as a sub-
routine in algorithm List-Qb^, implementing the dictionary as a 2-3 tree (see [AHU 74]).
Then the time complexity of Filter k, T*, will be bounded from above by a polynomial
in the size of its input. Therefore (by observation 10) algorithm List-Qb'k will be a
cumulative polynomial delay listing algorithm for GH- We have now proved theorem 7.

In the remainder of our treatment of this example we will assume that k = 0(1) and we
will present a polynomial space implementation of Filter k- We will demonstrate (using
observation 10) that the resulting algorithm ListjQb'k is a polynomial space cumulative
polynomial delay listing algorithm for C/6*. Thus, we will prove theorem 8.

Recall that every member of Qbk,n,i is a member of Qb'k{n). Therefore,
Filterfc(n,(C, G)) should always output "yes" if C = Pbk[l]. Furthermore, recall from
lemma 6 that there is a polynomial space polynomial time algorithm that takes as input
two members C and C1 of Pbk(n) and determines which of C and C' comes first on the
list Pbk,n- The general form of the algorithm Filterk is as follows:

2. Techniques for Listing Combinatorial Structures 67

Algorithm Filter k(n, (C, G))

IfC = Pbk[l]

Return "yes"
Else

old <— false
For Each C" G Uk(G)

If C1 is balanced

If C' precedes C on P6*,r

o/rf <— true
If (o/d = true)

Return "no"
Else

Return "yes"

Before we can make any claims about the time complexity, T*, of Filterk', we must spe-
cify the listing algorithm that we will use for Iljt. Later in this subsection we will present
a polynomial space algorithm ListJlk which takes as input a graph G G G(n) and lists the
members of 11* (G). Let tk denote the overall time complexity of ListJlk. We will show
that there is a polynomial r such that for every C G Pbk{n) we have E(£jt(Gc)) < r(n).

Suppose that we implement algorithm Filterk using ListJlk a s a sub-routine. It is easy
to see that algorithm Filterk runs in polynomial space and that its time complexity
satisfies the conditions in observation 10. Therefore if we use algorithm Filterk as a
sub-routine in algorithm List.Qb'k we will find that algorithm List.Gb'k is a polynomial
space cumulative polynomial delay listing algorithm for Qbk. Thus, we will have proved
theorem 8.

We will conclude our treatment of this example, then, by presenting a polynomial
space algorithm ListJlk which takes as input a graph G G G(n) and lists the members
of Uk(G). We will show that there is a polynomial r such that for every C G Pbk(n) we
have Fi(tk(Gc)) < r(n) where tk is the time complexity of ListJlk.

In order to describe algorithm ListJlk we require some notation. Suppose that
C = (Ci , . . . , Ck) is a Ar-coloring of Vn and that C' = (C j , . . . , C'k) is a fc-coloring of a
subset of Vn. We will use the notation {C1} to stand for the vertex set C[U • • • U C'k. We

68 2. Techniques for Listing Combinatorial Structures

say that Cf is a sub-coloring of C if and only if Cj C Cj for 1 < j < k. (We say that C is a
super-coloring of G' in this case.) If C' is a sub-coloring of C and |Gj| = • • • = \C'k\ = i
then we say that C1 is an i-sub-coloring of C.

Suppose that G is a member of C/(n) and that V' is a subset of Vn. We use the
notation G[Vf] to represent the subgraph of G induced by the vertices in V'. Suppose
that C' is a fc-coloring of G[F']. An extension of C1 to G is a super-coloring C of C1 which
is a fc-coloring of G. We say that C1 directly forces a vertex v, of G if there is at most
one extension of C' to G[V' U {vi}]. We use the notation DF(Cf,G) to stand for the
set of vertices of G that are directly forced by G'. If C" is extendible to G[DF(Cf, G)]

then the unique extension of C' to ^[/^^(C', G)] is called the direct forced extension

of G' to G. Otherwise, C' is said to directly clash with G. Suppose that C' does not
directly clash with G. We say that C1 indirectly forces a vertex V{ of G if the direct forced
extension of C' to G directly forces v,-. We use the notation IF(C\ G) to stand for the
set of vertices of G that are indirectly forced by C". If G' is extendible to G[IF(C, G)}

then the unique extension of C1 to G[IF(C', G)] is called the indirect forced extension

of C1 to G. Otherwise, G' is said to indirectly clash with G. (We say that C' clashes

with G if it directly clashes with G or indirectly clashes with G.) We can now describe
algorithm

2. Techniques for Listing Combinatorial Structures 69

Algorithm ListJIk

Input G

let n be the number of vertices of G

b <— Jfc! x [log(n)l
list all A:-cliques in G

use the greedy heuristic to construct a list of

vertex-disjoint fc-cliques in G

If fewer than b vertex-disjoint fc-cliques are found

BruteForce(G)

Else

let G' be a subgraph of G consisting of b vertex-disjoint fc-cliques

flag <— false

For Each C" G Uk(G
f)

If C1 does not clash with G

If \IF{C\G)\ < n-fc[log(n)l

flag <— true

If (flag = true)

BruieForce(G)

Else

For Each C" € II^G')

If C" does not clash with G

let Cf be the indirect forced extension of C' to G

For Each extension C" of Cf to G

Output C"

70 2. Techniques for Listing Combinatorial Structures

Procedure BruteForce(G)

let n be the number of vertices of G

For Each C G Pk(n)

If C is a fc-coloring of G

Output(C)

It is easy to see that algorithm ListJIk runs in polynomial space and that it produces

the correct output. If procedure BruteForce is run with an input G G G{n) then it will

execute at most qi(n)kn machine instructions for some polynomial q\. The number of

machine instructions executed by algorithm ListJIk when it is given an input G G G(n),

exclusive of calls to procedure BruteForce, is at most ^ (^) for some polynomial q^.

We wish to show that there is a polynomial r such that for every C G Pbk(n) we have

E(tk(Gc)) < r(n). This fact follows from the following lemma.

Lemma 7. Let C = (Ci , . . . , Ck) be a member of Pbk(n) and let Gc be a member

of r*(C), chosen uniformly at random. If n is sufficiently large then the probability that

procedure BruteForce will be called in a run of algorithm ListJIk with input Gc is at

most k~n.

Proof: Let ci, c2 , . . . stand for constants whose values are greater than 1. We will prove

the lemma by proving the following two facts:

Fact 1. The probability that ListJIk calls BruteForce at the first opportunity is c^n .

Fact 2. The probability that ListJIk calls BruteForce at the second opportunity

We start by proving fact 1. We wish to show that with probability 1 — c~[n the greedy

heuristic yields at least 6 vertex-disjoint fc-cliques in Gc- Let m denote n/2k — b and let e

be a constant in the range 0 < e < 1. Let rrik denote m and for 0 < j < k let rrij denote

|"mj+i(l — e)/2~|. Suppose that the greedy heuristic yields fewer than b vertex-disjoint

A;-cliques in Gc> Then since the size of each color class Ci of C is at least n/2k there is

an m-sub-coloring C' of C such that GctiC*'}] contains no A;-clique. Fact 1 now follows

from fact 3:

2. Techniques for Listing Combinatorial Structures 71

Fact 3. Suppose that j is an integer in the range 1 < j < k and that C' = (C[,..., Cj)

is an rrij-sub-coloring of (Ci, • • •»Cj)- The probability that Gc[{C}] contains a j-clique

is at least (1 - c 3 ~ m 2) J .

We will prove fact 3 by induction on j . The base case (j = 1) is trivial (provided that n
is sufficiently large). So suppose that j > 1. Fix any vertex v E Cj and any integer / in the
range 1 < / < j . Let C[[v\ stand for the set of vertices in C\ that are adjacent to v in Gc-
Using Chernoff's bound [HR 90], we find that the probability that |C|[v]| > rrij-i is at
least 1 — c4~m. So the probability that |C|[u]| > rrij-i for every / in the range 1 < / < j
is at least (1 — C4~m)J~1 which is at least 1 — C5~~m since j < k. Finally, we see that the
probability that there exists a vertex v E Cj such that |Cj[v]| > rrij-i for every / in the
range 1 < / < j is at least (1 — [c5~m]m') = 1 — c3~m . If there is such a vertex v then
let C'[v] = (C{[i>],... ,Cj_i [*>])• We can use the inductive hypothesis to show that the

probability that Gc[{C'M}] contains a (j — l)-clique is at least (1 — c3~m)

We have now finished the proof of fact 1 and we proceed to the proof of fact 2. We
start by defining some notation. Suppose that C' = (C{, . . . , C'k) is a sub-coloring of C.

We say that C' is i-close to C if |C/ — C\\ < i for 1 < / < k. We say that C' is i-forcing

for Gc if there is a sub-coloring C" = (Cj ' , . . . , Ck) of C which is i-close to C and has
the property that each vertex in {C"} is directly forced by C'. Our proof of fact 2 will
use the following fact:

Fact 4. Suppose that i and % are positive integers in the range k < i,i' < n. The
probability that every i-sub-coloring of C is i'-forcing is at least 1 — c6

n~u .

Before proving fact 4, we will use it to prove fact 2. Suppose that ListJlk is run with

input Gc and that it constructs a subgraph G'c consisting of b vertex-disjoint fc-cliques

from Gc- We wish to show that with probability 1 — c^n o g W every fc-coloring C' of G'c
that does not clash with Gc satisfies \IF(C',GC)\ > n - fc[log(n)~|.

Let 8 denote [n/4fcj and let 8f denote [n/2fc] — 8. Fact 4 shows that the prob-
ability that there exists a [log(n)]-sub-coloring of C which is not ^-forcing is at
most C6n~^og ' x . Similarly, fact 4 shows that the probability that there exists
a ^'-sub-coloring of C which is not [log(n)]-forcing is at most C6»-R°g(n)lx6' S u p .
pose that every [log(n)]-sub-coloring of C is <5-forcing and that every 8'-sub-coloring
of C is [log(n)] -forcing (we now know that this occurs with probability at least

stant C2).

72 2. Techniques for Listing Combinatorial Structures

Let C' = (C{,...,C£) be any fc-coloring of G'c that does not clash with Gc- We

will show that \IF(C',Gc)\ > n — fc|~log(n)] which proves fact 2. If C1 is a sub-coloring

of C then the proof is easy: C1 is a super-coloring of a |"log(n)~] -sub-coloring of C so it

is (̂ -forcing. Furthermore, the direct forced extension of C' is a super-coloring of a 8'-

sub-coloring of C so it is |"log(n)~|-forcing. By the definition of IF(C\ Gc) we find that

\IF(C', Gc)\ > n — k [log(rc)]. If C' is not a sub-coloring of C then we cannot conclude

that C1 is a super-coloring of a flog(n)] -sub-coloring of C However, a simple counting

argument shows that there is a permutation p of [1 , . . . , k] such that \C'p^ fl C/| > [log(n)]

for 1 < / < k. Let C{' denote C'pW H Ci and let C" = (C" , . . . , C*')- Then we can use the

arguments that we used above to prove \IF(C",Gc)\ > n — fc|~log(ra)~| which implies

\IF(C', Gc)\ > n - fcflog(n)] and therefore proves fact 2.

Having proved fact 2, we return to the proof of fact 4. Suppose that i and i are

positive integers in the range k < i,i* < n. Let C' = (C{, . . . , C'k) be any z-sub-coloring

of C. Let C" be {v G C\ \ v is directly forced by C'}. Let M/ = \Ci\-i. The probability

that \Ci-C'i\ > % is at most

)

x l x [(fc-l)2-*]'~J < Mt2
Ml

which is at most

J] 2M/

j=o

We conclude that the probability that any particular z-sub-coloring of C is not i'-

forcing is at most kc-jn~u . Therefore, the probability that there exists an z-sub-coloring

of C that is not i'-forcing is at most kn kc7n~u . n

Now that we have proved lemma 7 we can conclude that there is a polynomial r

such that for every C G Pbk(n) the expected value of tk(Gc) is bounded from above

by r(n). Therefore the time complexity of algorithm Filterk satisfies the conditions in

observation 10. We conclude that algorithm List.Qb'k is a polynomial space cumulative

polynomial delay listing algorithm for Qbk and we have therefore proved theorem 8.

2. Techniques for Listing Combinatorial Structures 73

Example 2. A family of unlabeled graphsf.

Recall the framework that we described at the beginning of this subsection. We
postulated the existence of a simple family S and an equivalence relation ~ on the
structures of 5 that divides each set S(p) into disjoint equivalence classes. We let 5 be
the family in which S(p) denotes the set of equivalence classes in 5(p). The problem
that we posed was "How do we design an efficient listing algorithm for 5?" We noted
that in many cases we could use the methods described in sections 2.1 and 2.2 to design
an efficient listing algorithm for the simple family 5 and that in some cases we could
modify the listing algorithm for S to obtain an efficient listing algorithm for 5. We
identified two sources of difficulty which could hinder our attempts to come up with
an efficient modified algorithm. First, since |5(p)| could be much bigger than |5(p)|, a
modified listing algorithm for S could contain "gaps" in which an exponential number
of members of S(p) are considered, none of which are output. Second, once a member
of S(p) has been constructed, it could take an exponential number of computational
steps to determine whether or not it should be output. We suggested two approaches to
overcoming these difficulties. The first approach uses the filter method. It was illustrated
in example 1. The second approach uses the interleaving method. The general idea is
to try to define a sub-family E of S such that E is polynomially related to S and E

has a polynomial delay listing algorithm. Having defined E, we would then have to
find a polynomial £ such that we could implement a listing algorithm for S — E which
executes at most £(\p\) x (|5(p)| + 1) machine instructions when it is run with input p.

We observed that the listing algorithm for 5 can be used indirectly in the design of
the listing algorithms for E and S — E. We will conclude this subsection by illustrating
the second approach. We will use the interleaving method to design a polynomial space
polynomial delay listing algorithm for Q.

We begin by describing the background material that we will need. We say that a
graph is rigid if its automorphism group is the trivial group ID which contains only one
element. Let Qnr{p) denote the set of non-rigid graphs in G(n) and let Gnr(n) denote the
set of equivalence classes in G(n) whose members are not rigid. We will use the following
lemma.

f The author is grateful to Brendan McKay for a helpful discussion concerning the
problem of listing unlabeled graphs.

74 2. Techniques for Listing Combinatorial Structures

Lemma 8. For any polynomial q it is the case that

|Aut(C)| = o(q{n)-l)\G{n)\.

Proof: Applying Burnside's lemma (as in the proof of lemma 4) we obtain

|Aut(C)| = 1 £ |Aut(G)|2.

The result now follows from the proof of lemma 4 and from Oberschelp's formula. •

Our listing algorithm will use a modified version of subroutine BK-Label. The modified

version takes as input an n-vertex graph G and returns both a canonical labeling of G

and the automorphism group of G.

Before we can describe the appropriate modifications to BK-Label, we must designate

the method that we will use to computationally represent permutation groups. The

method that we will use is due to Sims, Furst, Hopcroft, and Luks. It is described

thoroughly in [Hof 82]. For completeness, we provide a brief description here.

Suppose that F is a group of permutations of { 1 , . . . , n}. Let F, denote the pointwise

stabilizer of {i , . . . , n} in F for 1 < i < n. Let Fn+i denote F. For each integer i in the

range 1 < i < n we can establish an equivalence relation on the elements in F,+i (see

[Hof 82], pp. 14-15) in which TTI is related to TT2 if and only if TT^TTI £ F,. (Note that

composition is written from right to left.) The equivalence classes of F,+i are called the

right cosets of F, in F,+i- A complete right transversal for F, in F,+i is a set which

contains exactly one member of each right coset of F, in Fj+i. If Ui is a complete right

transversal for F, in Fj+i for every integer i in the range 1 < i < n then every permutation

7T G F can be written as 7rn7rn_i • • • TTI where TT,- E Ui (See [Hof 82], p. 28). Therefore,

we can recover any information about F if we store the members of a complete right

transversal for F, in F,+i for every i in the range 1 < i < n.

It is easily shown (see [Hof 82], theorem 3) that each right coset of F, in Fl+i can

be associated with a particular integer j < i such that the members of the coset are

precisely the members of F,-+i that map i to j . Therefore, a complete right transversal

for Ft- in F;+i is simply a set which contains, for each integer j in the range 1 < j < i,

either a member of F which pointwise stabilizes {z + 1 , . . . , n} and maps i to j or nothing

if no such member exists.

2. Techniques for Listing Combinatorial Structures 75

We will represent the automorphism group of an n-vertex graph as an n x n table
in which the {i,j} entry is any automorphism which pointwise stabilizes t>i
and maps V{ to Vj. (The {i,j} entry will be empty if no such automorphism exists.)
Given a list of the automorphisms of an n-vertex graph G we can construct such a table
in 0(n2 + n |Aut(G)|) time steps. Once we have a table representing the automorphism
group of an n-vertex graph G, we can list the automorphisms of G with O(n2) delay and
we can determine in 0(1) time steps whether G has an automorphism which maps vn to
any specified vertex.

At certain times during the execution of our listing algorithm we will wish to combine
the automorphisms of a given graph with 0(n) new generators to obtain a larger group.
In order to save time we will simply store a list of the new generators until we actually
need to know the elements of the new group. When we do need to know the elements
of the new group we will use Furst, Hopcroft, and Luks' algorithm from [FHL 80] to
construct a new table in 0(n6) time steps.

We are now ready to describe the modified version of BK-Label. We start by defining
some notation. Suppose that s is a sequence of vertices from a graph G. Then the
trace of a vertex Vj relative to s (denoted tr(vj,s)) is simply a list b\,..., b\s\ of binary
digits in which 6, = 1 if Vj is adjacent to the il element of the sequence and bi = 0
otherwise. We say that a sequence s is trace-distinguishing if all of the vertices outside
of s have different traces relative to s. BK-Label works in the following manner: after
receiving as input a graph G G G(n), it divides the vertices of G into equivalence classes
according to their degrees. The equivalence classes, Ci,C2,.. . are indexed by integers
so that for any u G C,, v G C%+\ it is the case that deg(u) < deg(u). Having divided the
vertices into equivalence classes, BK-Label attempts to refine the equivalence relation by
considering the number of neighbors that each vertex has in each equivalence class. After
two refinement steps, it calculates the size of the equivalence classes. If every equivalence
class has size one, the canonical labeling of G is simply the permutation which maps the
vertex in equivalence class j to Vj for 1 < j < n. In this case, the automorphism group
of G is simply the trivial group. If there is an equivalence class which contains more
than one vertex then BK-Label searches for a small trace-distinguishing sequence s. If
the smallest trace-distinguishing sequence which it finds has size 2, then it uses 0(n3nz)
time steps to find a canonical labeling of G. We can arrange for the canonical labeling
to map a vertex of maximum degree to vn. Once it has chosen s, the modified version of
BK-Label uses the following method to find a list of the automorphisms of G in 0(q(n)nz)
time steps (for some polynomial q).

76 2. Techniques for Listing Combinatorial Structures

Procedure List-Automorphisms(G, s)

/* G is a member of (?(n) */

/* s is a trace-distinguishing sequence of vertices from G */

/* bad(X) becomes true as soon as it is discovered */

/* that no extension of A is an automorphism of G. */

For each function A: s —> Vn

bad(X) <— false
W <— the image of s under A

For each v G Vn — W

If there exists a vertex u G Vn — s such that tr(u,s) = tr(v, W)

\{u) <— v

Else bad(X) <— true

If (bad(X) = false)

If A is a permutation of Vn

If (A(G) = G)

put A in the table representing the automorphism group of G

In subsection 2.3.1 we used the notation T(G) to stand for the number of machine

instructions that are executed when BK-Label is run with input G. We showed that when

inputs to BK-Label are drawn from a uniform distribution of unlabeled graphs and j is

a constant which is at least 1 we have E{T(G)3) = 0(n2<?). Since the time complexity

of the modified version of BK-Label is not much greater than the time complexity of

the unmodified version this result remains true when we use the notation T(G) to stand

for the number of machine instructions that are executed when the modified version of

BK-Label is run with input G.

We are now ready to use the interleaving method to obtain an efficient listing algorithm

for Q. Our strategy will be to define a sub-family E of Q such that E is polynomially

related to Q and E has a polynomial delay listing algorithm. We start by reconsidering

algorithm Orderly. This algorithm determines whether or not to output a given aug-

mentation by deciding whether or not the augmentation is the canonical representative

of its isomorphism class. Since there is no known polynomial-time algorithm for determ-

ining whether a given graph is the canonical representative of its isomorphism class, our

2. Techniques for Listing Combinatorial Structures 77

listing algorithm for E will have to replace the canonicity test in algorithm Orderly with
another testf. In order to efficiently implement the new test, we maintain the auto-
morphism groups of the graphs that are constructed. That is, instead of simply listing
n-vertex graphs, our algorithm will list a series of pairs (G, Aut(G)) in which G is an
n-vertex graph and Aut(G) is the automorphism group of G, represented in the manner
that we described. We will say that a pair (G, Aut(G)) is the algorithmic representative
of its class in Q(n) if (G, Aut(G)) is output by our algorithm. (Sometimes we refer to G

as the algorithmic representative of its class.)

We can now define the sub-family E. We will say that an n-vertex graph G is easy to
process if and only if it satisfies at least one of the following conditions:

(i) G has a vertex with degree n — 1.

(ii) G has a unique vertex v of maximum degree and G — v is rigid.

The property of being easy to process is isomorphism-invariant. We can therefore

define E(n) to be the set of all classes in Q{n) whose members are easy to process. We

will use the symbol H to stand for the family Q — E.

Let ce and Ch be positive constants (which will be defined implicitly later in this
subsection). We give an inductive definition for the polynomials d and e:

d(0) = 0.

d{n) = 2cschn
4 + e(n) + cs for n > 0.

e(n) = cen + d(n — 1).

Observation 1 shows that the interleaving method gives a polynomial space listing
algorithm for Q with delay d provided that the following three conditions are satisfied:

(i) |a(n)|<2|f(n)|.
(ii) There is a polynomial space listing algorithm for E which has delay e.

(iii) There is a polynomial space listing algorithm for H which executes at

most Chn4(\G(n)\ + 1) machine instructions when it is run with input n.

In the remainder of this subsection we give an inductive proof that these conditions
can be satisfied. We therefore prove the following theorem

Theorem 9. There is a polynomial space polynomial delay listing algorithm for Q.

The proof consists of three lemmas.

f The idea of avoiding canonical labeling when alternative tests are more efficient was
used in [MR 86].

78 2. Techniques for Listing Combinatorial Structures

Lemma 9. \(j{n)\ < 2 \E(n)\.

Proof: [Bol 85 p. 64] shows that at most o(l) of the 2V2J graphs in G(n) fail to have a
unique vertex of maximum degree. The number of n-vertex graphs G which have a unique
vertex v of maximum degree such that G—v is not rigid is at most a factor of n2n~ larger
than the number of non-rigid (n —1)-vertex graphs. By [BK 79] the number of non-rigid
(n-l)-vertex graphs is at most c"*"""1^"*1) for some fixed c > 1. Thus [1 - o(l)]2(*)
graphs in Q(n) are easy to process. We conclude that at least [1 — o(l)]2^2^[n!]~1 classes
in G(n) must be members of E(n). Using Oberschelp's formula, we find that more than
half of the classes in Q(n) are members of E{n).

Lemma 10. There is a polynomial space listing algorithm for E which has delay e.

Proof: The following algorithm suffices:

Algorithm £

Input n
For each algorithmic representative (G, Aut(G)) of a class

Aut(G') <— the group

and {(vi,
Output (G',Aut(G'))

If G is rigid

For all subsets W C

<n}
in §(n - 1)

generated by the generators of Aut(G)
vn) | Vi has degree n — 2 in G}

Vn-i such that

vn is the unique vertex of maximum degree in G U
Output (G U {(w »B)|u»GW},ID>

{{w,vn)\weW}

If we maintain an array which allows the degree of each vertex to be obtained in a
constant number of steps, we can implement this algorithm with at most d(n — 1) + 0(n)
delay.

Lemma 11. There is a polynomial space listing algorithm for H which executes at
most Cftn4|C/(n)| machine instructions when it is run with input n.

Proof: The basic outline of the algorithm is the following:

2. Techniques for Listing Combinatorial Structures 79

Algorithm H

Input n

For each algorithmic representative (G, Aut(G))

If G is rigid

For all subsets W C Vn_i such that

of a class in Q(n —

vn is a non-unique vertex of maximum degree in G U {(w, vn

Test-Augmentation(G U {(w,vn) \ w €

Else For all subsets W C Vn-\ such that

vn is a vertex of maximum degree in G U

If Is_Smalle8t(W, Aut(G))

Test-Augmentation(G U {(iu,un) |

:W})

{(w,vn)\wew)

wew})

i)

) | w € W)

The algorithm uses two subroutines, Test-Augmentation and IsSmallest:

Procedure Te3t-Augmentation(Gr)

/* G' is a graph with vertex set {ui , . . . , un} */

(p,Aut(G')) <— BK-Label(G')

If 3?r G Aut(G') such that ?r(vn) = p " 1 ^) Then Output (G\ Aut(G'))

80 2. Techniques for Listing Combinatorial Structures

Function Is-Smallest(W, Group)

/* W is a subset of {vi, . . . , vn} */
/* Group is a group of permutations of {vi, . . . , vn} */
WJs.Smallest <— true
For all 7T G Group

If the image of W under TT is lexicographically smaller than W

W-IsSmallest <— false
Return(W-Is.Smallest)

Before considering the running time of algorithm 7i we prove that it is correct by

establishing the following facts:

(i) Algorithm 7i never outputs a graph whose isomorphism class is in E(n).

The proof of this fact is straightforward. •

(ii) Algorithm H outputs at least one representative of each class C G H(n).

Let CR be the canonical representative of a class in H(n). Let G be the algorithmic
representative of the class of CR — vn and let TTI be an isomorphism mapping CR — vn

to G. Let W be the image in G under TTI of the neighbors of vn in CR. Let TT2 be
an automorphism of G mapping W to a set W' such that W' is lexicographically
as small as possible over all automorphisms of G. Finally, extend TTI and TT2 to the
domain {vu . . . , vn} by setting 7Ti(vn) = 7T2(vn) = vn:

2. Techniques for Listing Combinatorial Structures 81

As mentioned earlier, we can arrange to make vn a vertex of maximum degree in CR.

Therefore, H will construct the augmentation G1 = (G U {(w, vn) \ w E W'}) when it

examines G. Test-Augmentation(G') will compute a canonical labeling p of G'. It is

easy to see that the automorphism p~l-K\~x-K2~l maps vn to p~1(vn)^ so Gf will be

output. •

(iii) Algorithm H outputs at most one representative of each class C € H(n).

Suppose G\ and G2 are two isomorphic graphs and that the test in Test-Augmentation

succeeds for both of them. The test in Test-Augmentation guarantees that there is an
isomorphism from G\ to its canonical representative which fixes vn and that there is
an isomorphism from G2 to the same canonical representative which fixes vn, so there
must be an isomorphism from G\ to G2 which fixes vn. Let G be the algorithmic
representative of G\ — vn and G2 — vn. Let TTI be an isomorphism mapping G\ — vn

to G and let W\ be the image in G under iz\ of the neighbors of vn in G\. Let TT2 be
an isomorphism mapping G2 — vn to G and let W2 be the image in G under TT2 of the
neighbors of vn in G2:

82 2. Techniques for Listing Combinatorial Structures

Grvn G

Clearly G has an automorphism mapping W\ to W2. Therefore calls to IsSmallest will

prevent 7i from calling both of Test-Augmentation(G\) and Test^Augmentation{G2)• D

At this point we have shown that 7i lists exactly one representative from each iso-

morphism class in H(n). It remains to show that the algorithm runs in Chn \G(n)\ time

steps.

We know from the inductive hypothesis that the delay of the outer for loop is
bounded by d(n — 1). We will charge the selection of W to the appropriate call to
Test-Augmentation if G is rigid and to the appropriate call to IsSmallest otherwise.
Therefore we need only show that the number of time steps which are spent in calling
IsSmallest and Test-Augmentation is bounded by Chn4\Q(n)\.

For each non-rigid algorithmic representative G of a class in Q{n — 1) we will make at
most 2n~1 calls to IsSmallest. The time complexity of a single call is at most 0(n6) +
O(n2)|Aut(G)|. (The 0(n6) time steps are used to construct a table of generators for
Aut(G) in the case that we have a list of new generators which need to be added to the
existing table.) Therefore the number of time steps which T~L spends calling IsSmallest
is bounded by O(n6)2n~1 J^ « |Aut(C)| . Lemma 8 shows that this expression

is bounded from above by o(l)|(y(n)|.

2. Techniques for Listing Combinatorial Structures 83

If we consider a uniform distribution of unlabeled graphs, the expected time of
Test-Augmentation is 0(n2). We will show that 7i calls Test-Augmentation for at most n2

members of each class in G(n), which establishes the result:

The only way that 7i can produce a graph whose canonical representative
is CR is to augment the algorithmic representative G, of the isomorphism class
of CR — Vi for some V{ in {vi , . . . ,u n} . Suppose that the algorithmic represent-
ative G{ of the class CR — V{ contains two sets of vertices, W\ and W2, such
that (GiU{(w,vn)\weWi}) and (Gi U {(w, vn) \ w G W2}) are both members of
CiTs isomorphism class. Suppose further that there are canonical labelings TTI
of (Gi U {(w, vn) I w G Wi}) and TT2 of (Gi U {(it;, vn) \ w G W2}) such that 7Ti(t;n) =

n

Then it is easy to see that Gi has an automorphism mapping W\ to W2 • Therefore calls
to IsSmallest will prevent W from calling both Test-Augmentation(Gi U {(w, t?n) | u; G
and

Test-Augmentation(Gi U {(u>,un) | it; G W2}). We conclude that at most n augmenta-
tions of Gi will be tested. •

We have now shown that algorithm E can be interleaved with algorithm H to obtain
a polynomial space polynomial delay listing algorithm for Q. We have therefore proved
theorem 9.

})

84 3. Applications to Particular Families of Structures

3, Applications to Particular Families of
Structures

Chapter 2 described several general methods for listing combinatorial structures. In or-
der to illustrate the methods we applied them to a few specific families of structures. In
addition, we made some observations concerning the application of the methods to vari-
ous classes of combinatorial families including graph properties and recursively listable
families.

While the examples in chapter 2 involved particular combinatorial families, the focus
of our attention was on the general listing methods. In this chapter we will shift the
focus of our attention to applications. We will be interested in looking at the particular
algorithms that we have developed in the course of this work and in finding out what we
have learned about particular combinatorial families in the course of the work.

We start by considering a few results from chapter 2 which we will not pursue farther in
this chapter. First, consider Uniform Reducer 2 which we described in subsection 2.1.2.
In theorem 2 we proved that whenever Uniform Reducer 2 is combined with any efficient
random sampling algorithm S-Sample for any simple family 5 it becomes a probabil-
istic polynomial delay listing algorithm for S. The listing algorithm has exponentially
small failure probability. This theorem leads immediately to efficient probabilistic list-
ing algorithms for a number of interesting families of structures since other people have
developed random sampling algorithms for these families.

For example, let Sp be the family with the following definition. Every parameter

value of Sp is an undirected graph. The value G is associated with the set Sp(G) which

contains all spanning trees of G. There is an efficient random sampling algorithm for Sp

(see [CDN 89]). Therefore, we can use Uniform Reducer 2 to obtain an efficient listing

algorithm for Sp].

As another example, let Gdeg be the family with the following definition. Every para-
meter value of Qdeg is a finite sequence of non-negative numbers. The sequence must
satisfy a condition described in [JS 90]. The value (di , . . . , dn) is associated with the set
£/deg(di,..., dn) which contains all undirected graphs with degree sequence (o?i,..., dn).
[JS 90] contains an efficient random sampling algorithm for Gdeg- Therefore, we can use

| We mention this example only to illustrate the use of theorem 2. The algorithm
that we obtain by applying the theorem is not the first (or even the best) listing al-
gorithm for Sp. A deterministic polynomial space polynomial delay algorithm is described
in [RT 75].

3. Applications to Particular Families of Structures 85

Uniform Reducer 2 to obtain an efficient listing algorithm for Gdeg- [JMS 89] shows that
the condition in [JS 90] is sufficiently general that this result is interesting. For example,
all regular sequences satisfy the condition.

Next, consider observation 6 of subsection 2.2.2. This observation says that if S is a
graph property such that S(n) is large enough and there is a polynomial expected time
algorithm that takes as input a graph G £ G(ji) and determines whether or not G is a
member of S{n) then there is a probabilistic polynomial delay listing algorithm for S that
has exponentially small failure probability. This observation seems to be fairly general
and is likely to be useful for practical applications.

Finally, consider the polynomial space polynomial delay listing algorithm for Q which
is described in subsection 2.3.2. It has been known for some time that algorithms for
listing unlabeled graphs can be used to solve a variety of practical problems (see, for
example, [Rea 81]). Our algorithm is particularly useful since it is the most efficient
known algorithm for listing unlabeled graphs. (Our algorithm is the only known de-
terministic listing algorithm for Q which can be proven to have polynomial delay. Since
Read and Colbourn's algorithm is unlikely to have a polynomial delay implementation
(see chapter 2) our algorithm is likely to be the only known deterministic polynomial
delay listing algorithm for Q.) Moreover, our algorithm would be fairly easy to imple-
ment. It does not depend upon any of the group-theoretic concepts which are currently
being used for moderately exponential graph isomorphism algorithms. (The only group-
theoretic result which is used is the application in [FHL 80] of the "tower of groups"
idea.)

In this chapter we consider various other applications of our listing methods. First, in
section 3.1, we apply our methods to the problem of designing efficient listing algorithms
for first order graph properties. In section 3.2 we apply the methods to the problem of
designing efficient listing algorithms for Hamiltonian graphs. In section 3.3 we apply the
methods to the problem of designing efficient listing algorithms for graphs with cliques
of specified size. Finally, in section 3.4 we apply the methods to the problem of designing
efficient listing algorithms for graphs which can be colored with a specified number of
colors.

3.1. First Order Graph Properties

The first order language of graphs consists of the following symbols:

1. Variables x\, a?2, • •., ranging over vertices

2. The binary predicate "=", representing equality of vertices

86 3. Applications to Particular Families of Structures

3. The binary predicate "A", representing adjacency of vertices

4. The propositional connectives "-.", "A", "V", and "=>"

5. The quantifiers "3" and "V"

6. The constants "true" and "false"

7. parentheses

Formulas and sentences in this language are constructed in the same manner as sen-
tences in any other first order language (see [BH 79]). Given a sentence 6 in the first order
language of graphs and a graph G = (Vn, E) in Q(n) we say that 0(6?) = true if and only if
the sentence 6 evaluates to true when the variables in 9 are allowed to range over the ver-
tices in Vn and the adjacency predicate A is defined by A(v,-, Vj) = true <=$> (vi,Vj) G E.

The graph property corresponding to 8 is denoted Fs and is defined as follows:
Fe(n) = {G G Q(n) \ 0(G) = true}. Many graph properties can be described by first or-
der sentences. For example, consider the formula ij> = 3x{tf X2~iA(xi,X2). F$(ri) is the
set of n-vertex graphs that have one or more isolated vertices.

It is fairly easy to design a polynomial space polynomial delay listing algorithm for F^.

Furthermore, given any particular graph property F$, it seems to be easy to design a
polynomial space polynomial delay listing algorithm for F$. It would be interesting to
know whether it is the case that all first order graph properties are easy to list. That
is, it would be interesting to know whether there exists a first order graph property
which has no efficient listing algorithm. If there is no such graph property then it would
be interesting to know whether there is a general method that can be used to obtain a
polynomial space polynomial delay listing algorithm for any first order graph property F$.

We do not provide complete answers to these questions in this thesis. The answers
that we do provide depend upon a result of Fagin. Fagin showed in [Fag 76] that for
every sentence 6 in the first order language of graphs either |i^(n)| = (1— o(l)) |£/(n)|
or |i^(n)| = o(l) |£7(rc)|. In the former case, we say that F$ is a first order one property.

Otherwise, we say that it is a first order zero property. In this thesis we do not study first
order zero properties. However, we are able to give complete answers to the questions
concerning the difficulty of listing first order one properties. That is, we show that
every first order one property has an efficient listing algorithm and we describe a general
method that can be used to obtain a polynomial space polynomial delay listing algorithm

3. Applications to Particular Families of Structures 87

for any first order one property F$. The method is based upon a modification of Spencer

and Raghavan's method of pessimistic estimators] [Spe 87,Rag 88].

We will begin this section by showing that if a graph property V satisfies certain
conditions then the method of pessimistic estimators can be used to obtain an efficient
construction algorithm for V. Next, we will show that if V satisfies certain (stronger)
conditions then a modified method of pessimistic estimators can be used to obtain an
efficient listing algorithm for V. Finally, we will show that every first order one property
satisfies the stronger conditions.

We start with some definitions. For every positive integer n let U(n) be
{(viivj) 11 < *<j < n}. Let Q' be the family with the following description. Every
parameter value of Qf is a triple (n,E,N) in which n is a positive integer (encoded
in unary) and E and N are disjoint subsets of U(n). Q'(n,E,N) = {G E £(n) |
the edge set of G contains every member of E and no member of N}. The measure of a
parameter value (n,E,N) is the size of the set U(n) — E — N. We will use the fact that
|C/'(p)| is equal to 2 raised to the power of the measure of p. Suppose that p = (n, E, N)

is a parameter value of Q1 whose measure is positive and that (v{,Vj) is the lexico-
graphically smallest pair in U(n) — E — N. We use the notation p[l] to stand for the
parameter value (n,EU{(vj, Vj)},N) and the notation p[0] to stand for the parameter
value (n.E.NUKvi.vj)}).

Suppose that V is a graph property. Let V' be the sub-family of Q' defined by the
relation V\n, E, N) = V{n) H £'(n, E, N). It is easy to see that V\n, 0 , 0) = V(n) for
every positive integer n. Suppose that there is a polynomial-time computable function e
that maps each parameter value p of V' to a positive real number e(p) which satisfies
e(p) > \G'(p)'-/Pl(p)\- e is called a pessimistic estimator function for V. e is a good pess-
imistic estimator function if and only if e(p) > 2 min(e(p[0]), e(p[l])) for every parameter
value p of V1 whose measure is positive.

Suppose that e is a pessimistic estimator function for V and that p is a parameter

value of Q1 such that e(p) < \G'(p)* Then G'(p) contains a member of V'(p). If e is a

f Although Raghavan distinguishes between "the method of conditional probabilities"
and the refinement of it which he calls "the method of pessimistic estimators", the two
methods are often referred to together as the "method of conditional probabilities".

88 3. Applications to Particular Families of Structures

good pessimistic estimator function then we can find a member of V'(p) by running the
following binary search algorithm.

Procedure Search(p)

/* Search(p) uses the method of pessimistic estimators */

/* to find a member of V'(p) in Q\p) */

If e(p) > \G'(p)\ Then Return
If the measure of p is 0

Output the only member of G\p)

Else
choose 6 E {0,1} such that e(p[b]) < e(p[l-b])

Search(p[b])

Lemma 12. Procedure Search runs in polynomial time. If e(p) > \G'(p)\ then Search(p)

returns without output. If e is a good pessimistic estimator function for V and
e(p) < \G'(j>)\ t n e n Search(p) outputs some G G V(p).

Proof: It is easy to see that procedure Search runs in polynomial time and that
Search(p) returns without output if e(p) > |£7'(p)|. Suppose that e is a good pessim-
istic estimator function for V and that e(p) < |£7'(p)|. The fact that Search(p) outputs
some G G V\p) can be proved by induction on the measure of p. (In the proof of the
inductive step we use the fact that e(p) < \G'(p)\ and the fact that e is good to show that
e(p[b}) < \6'(p[b})\.)

Corollary 3. Suppose that V is a graph property and that e is a good pessimistic
estimator function for V which satisfies e (n ,0 ,0) < |£?(n)| for every positive integer n.
Then there is a polynomial time algorithm that takes input n (in unary) and outputs a
member of V(n).

We have now shown that if a graph property V satisfies certain conditions then the
method of pessimistic estimators can be used to obtain an efficient construction algorithm
for V. Next, we will show that if V satisfies certain (stronger) conditions then a modified
method of pessimistic estimators can be used to obtain an efficient listing algorithm for V.
The modified method combines the method of pessimistic estimators with the interleaving
method from chapter 2. We start by strengthening the notion of a good, pessimistic estim-
ator function. Suppose that e is a pessimistic estimator function for a graph property V.
We say that e is a recursive pessimistic estimator function if e(p) > e(p[0]) + e(p[l]) for

3. Applications to Particular Families of Structures 89

every parameter value p of V' whose measure is positive. Suppose that e is a recursive

pessimistic estimator function for V and consider the following listing algorithm.

Procedure List(p)

If e(p) > \G'(p)\ Then Return
If the measure of p is 0

Output the only member of Q\p)

Else
List(p[0))

List(p[l])

Let C'(p) be the set of graphs that are output by this algorithm when it is run with
input p. We will use the following facts, each of which can be proved by induction on
the measure of p.

Fact 1. £{p) C V'(p).

Fact 2. \C'(p)\ > \G\P)\ - e(p).

We will also use the following fact.

Fact 3. Procedure List runs in polynomial space with polynomial delay.

Proof: It is easy to see that List runs in polynomial space. To see that it has polynomial
delay, note that at every level of recursion it is the case that if e(p) > \G'(p)\ then List(p)
returns without recursing further. If e(p) < \G'(p)\ then we know from fact 2 that List(p)
will produce an output. •

Suppose that V is a graph property. Let C be the sub-family of V defined by the
relation C(n) = C'(n,@,®). (We can use fact 1 to show that C is indeed a sub-family
of V.) Procedure List can be used as a polynomial delay listing algorithm for C If the
sets in C are sufficiently large and there is a standard graph listing algorithm for V — C
which is sufficiently fast then we can interleave procedure List with the standard graph
listing algorithm to obtain a polynomial delay listing algorithm for V. We refer to this
particular application of the interleaving method as "the modified method of pessim-
istic estimators". The following lemma establishes certain conditions whose satisfaction
guarantees that the modified method of pessimistic estimators yields an efficient listing
algorithm.

90 3. Applications to Particular Families of Structures

Lemma 13. Suppose that V is a graph property and that e is a recursive pess-
imistic estimator function for V. Suppose that there is a polynomial q such that
e(ra, 0 , 0) < (1 — ^(n)"1) \G(n)\ for every large enough integer n. Suppose further that
there is a polynomial space polynomial expected time algorithm that takes as input a
graph G G Q(n) and determines whether or not G G V(n). Then procedure List and a
standard graph listing algorithm for V—C can be interleaved to obtain a polynomial
space polynomial delay listing algorithm for V.

Proof: We can use fact 2 and the condition on e to show that for every large enough
integer n it is the case that q(n) \C(n)\ > |£7(n)|. Fact 3 shows that procedure List can
be used as a polynomial space polynomial delay listing algorithm for C It is easy to
see that there is a polynomial time algorithm that takes as input a graph G &G(n) and
determines whether or not G G C(n). The result now follows from observation 2. •

In order to make it easier to apply lemma 13 to the problem of listing first order
one properties we will now consider a particular class of graph properties which Blass
and Harary used in their combinatorial proof of Fagin's result [BH 79]. Suppose that V
and W are disjoint subsets of Vn and that G is a member of Q{n). We say that a vertex
u G Vn is good for (V, W) in G if u is a member of Vn — W which is adjacent in G to every
vertex in V but to no vertex in W. Otherwise, we say that it is bad for (V, W) in G.

We say that a pair ((V, W), G) is bad if V and W are subsets of the vertex set of G and
every vertex in G is bad for (V, W) in G. Suppose that k is a positive integer. For every
graph G let Bk(G) = {(V, W) | ((V, W\ G) is bad and \V\ = \W\ = k} and let Vk be the
graph property defined by the relation tf *(n) = {G G Q(n) | Bk(G) = 0 } .

Let e be the function whose domain is the set of parameter values of Q1 and which

satisfies e(p) =]T „ , \Bk{G)\. The following fact is easily established:

Fact 4. e(p)>|0'(p)-*i(p)|.

Since G'(p) = Gf(p[0]) W £'(p[l]) for every parameter value p whose measure is positive
we also have:

Fact 5. e(p) = e(p[0]) + e(p[l]) for every parameter value p whose measure is positive.

To compute the value of e(n,E,N) we can simply consider each of the (fc)(n^*)
pairs (V, W) such that V and W are subsets of Vn and \V\ = \W\ = k. Given a particular
pair (V, W), we need only count the graphs G G G'(n, E, N) such that ((V, W), G) is bad.
It is easy to see that this can be accomplished in polynomial time. Therefore, we have:

Fact 6. There is a polynomial time algorithm that takes input p and computes e(p).

3. Applications to Particular Families of Structures 91

Furthermore, the value of e(ra, 0 , 0) is

) C
(See [HP 73] for a justification of this calculation.) Therefore, we have established:

Fact 7. There is a polynomial q such that e (n ,0 ,0) < (1 — q(n)~) |£/(n)| for every

large enough integer n.

Using facts 4-7 we get the following corollary of lemma 13:

Corollary 4. Suppose that V is a graph property and that there is a positive integer k
such that V is a super-family of ^jt. Suppose further that there is a polynomial space
polynomial expected time algorithm that takes as input a graph G G G{n) and determines
whether or not G G ^(n). Then the modified method of pessimistic estimators can be
used to obtain a polynomial space polynomial delay listing algorithm for V.

Proof: The fact that V is a super-family of &k implies that \G\p) — V(p)\ is at most
\Q\p) — \&k(p)|. Using facts 4 and 5 we see that e is a recursive pessimistic estimator
function for V. The result now follows from lemma 13 and from fact 7.

The main result of this section follows immediately from corollary 4.

Theorem 10. Suppose that F$ is a first order one property. The modified method of

pessimistic estimators can be used to obtain a polynomial space polynomial delay listing

algorithm for F$.

Proof: Blass and Harary show that there is a positive constant k (which depends on 6)
such that F$ is a super-family of *!>*. It is easy to see that there is a polynomial time
algorithm that takes as input a graph G G G(n) and determines whether or not G G Fg(n).
The result now follows from corollary 4.

We will further illustrate the strength of corollary 4 by describing some particular
graph properties that meet the conditions in the corollary. These graph properties are
described more fully in section 2 of [BH 79] which lists a number of interesting graph
properties and shows that each is a super-family of \I>fc for some positive integer k.
For many graph properties V on Blass and Harary's list it is the case that there is a
well known polynomial space polynomial expected time algorithm that takes as input a
graph G G G(n) and determines whether or not G G V{n). The following corollaries follow
directly from corollary 4 and from [BH 79].

92 3. Applications to Particular Families of Structures

Corollary 5. Let Hi be an induced subgraph of ff2- Let GHUH2
 De *ne graph property

with the following definition. A graph G G G(n) is a member of GHlfH2(n) ^ a n d only
if it is the case that every isomorphism from H\ onto an induced subgraph of G can
be extended to an isomorphism from H2 onto a induced subgraph of G. The modified
method of pessimistic estimators can be used to obtain a polynomial space polynomial
delay listing algorithm for GH\,H2*

Corollary 6. Let H be any graph. Let GH be the graph property with the following
definition. A graph G G G{ji) is a member of GH(P) if a n d only if G has an induced
subgraph which is isomorphic to H. The modified method of pessimistic estimators can
be used to obtain a polynomial space polynomial delay listing algorithm for GH-

Corollary 7. Let P be the graph property with the following definition. A graph
G G G(n) is a member of P(n) if and only if G is non-planar. The modified method of
pessimistic estimators can be used to obtain a polynomial space polynomial delay listing
algorithm for P.

Corollary 8. Let j be a positive integer and let Cj be the graph property with the fol-
lowing definition. A graph G G G(n) is a member of Cj{n) if and only if G is j-connected.
The modified method of pessimistic estimators can be used to obtain polynomial space
polynomial delay listing algorithms for Cj.

Corollary 9. Let j be a positive integer. Let Nj be the graph property with the
following definition. A graph G G G(n) is a member of Nj(n) if and only if G has
no j -coloring. The modified method of pessimistic estimators can be used to obtain a
polynomial space polynomial delay listing algorithm for Nj.

(The proof of corollary 9 depends upon the existence of a polynomial space polynomial

expected time algorithm that takes as input a graph G G G(n) and determines whether

or not G G Nj(n). It is easy to see that such an algorithm exists since the probability

that a random graph G G G(n) has a clique of size j-f 1 is at least 1— j ~ n (See [Bol 85]).

We conclude this section by making a remark about the modified method of pessimistic
estimators. We have presented this method as a technique for designing listing algorithms
for graph properties. However, it is easy to see that the method could be generalized and
used to design listing algorithms for other combinatorial families. For example, suppose
that ra: N —> N is a function which is bounded from above by a polynomial and that Im is
a family in which each parameter value is a positive integer encoded in unary and Im(n)
is the set of binary words of length ra(n). It is easy to see that we could revise our
description of the modified method so that it can be used to design listing algorithms for
sub-families of Jm.

3. Applications to Particular Families of Structures 93

3.2. Hamiltonian Graphs

Let H be the graph property defined by the formula

W(n) = {G G G(n) | G contains a Hamiltonian cycle}.

In this section we prove the following theorem.

Theorem 11. There is a deterministic polynomial delay listing algorithm for H.

We start by observing that the results that we obtained in section 3.1 do not tell us
how to design an efficient listing algorithm for H. In fact, corollary 2 of section 3.1 is
provably inapplicable to this problem since Blass and Harary showed in [BH 79] that
there is no positive integer k such that 7i is a super-family of \I>fc. Nevertheless, we
show in this section that the interleaving method can be used to design a polynomial
delay listing algorithm for 7i. The algorithm that we describe requires exponential space
so we conclude the section by discussing the prospects for designing a 'polynomial space
polynomial delay listing algorithm for H.

Let £ be the graph property with the following definition. A graph G G G(n) is a
member of £{n) if and only if n > 2 and G is 2-connected and every pair of vertices (w, v) G
Vn x Vn satisfies \T G{u)UT G(v)\ > [2n-l]/3. [FGJS 89] shows that £ is a sub-family
of 7i. In the remainder of this section we will prove three lemmas about £ and 7i. The
lemmas state that £ and Ti satisfy the conditions in observation 2. Therefore, we can
conclude that the interleaving method can be used to obtain a polynomial delay listing
algorithm for Ti. The algorithm itself consists of interleaving a polynomial delay listing
algorithm for £ (which is described in the proof of lemma 15) with a standard graph
listing algorithm for Ti—£.

Lemma 14. \£(n)\ = (l-o(l)) \Q{n)\.

Proof: For every integer n > 2 let Gn denote a randomly chosen member of Q(n). It
is well known (see, for example, [HP 73]) that the probability that Gn is 2-connected is
1 —o(l). Let u and v be two (arbitrarily chosen) members of Vn. The probability that
a vertex w G Vn-{u,v] is in TGn(u) U TGn{v) is 3/4. Using ChernofTs bound [HR 90],
we see that the probability that \TGn(u) U TGn(v)\ < [2n — l]/3 is at most c~n for some
fixed c > 1. Therefore the probability that Vn contains two vertices u and v such that
\TGn(u) U TGn(v)\ < [2n - l]/3 is at most ©c"7 1 = o(l) D

94 3. Applications to Particular Families of Structures

Lemma 15. There is a polynomial delay listing algorithm for £.

Proof: It is easy to design a polynomial delay listing algorithm for £ because the

following conditions are satisfied.

1. There is a polynomial time algorithm for determining whether or not a given member

of G(ri) is in £{n).

2. £ is a monotonic graph property. (That is, if G G £{p>) then every n-vertex super-graph
of G is a member of £(n).)

We will use some notation from section 3.1. For every positive integer n let U(n) be
{(vi,Vj)\l <i <j <n}. Let m denote (£) and let the (lexicographically ordered) mem-
bers of U(n) be written as u i , . . . , um. For every pair (E, N) of disjoint subsets of U(n) let
G'(n, E, N) = {G G Q{n) | the edge set of G contains every member of E and no member of N
Since £ is monotonic we know that G'(n, E, N) contains a member of £{n) if and only if
the graph (Vn, U(n) — N) is a member of £{ri). Using this observation we see that the
following listing algorithm for £ has polynomial delay. •

Algorithm List-£

Input n
SpeciaLList (n, 0 ,0 ,0)

Procedure SpeciaLList(n,j,E

/• 0 < j < ft) */
/* (E,N) is a partition of {i/i
I f (i = (2))

It((Vn,E)e£(n))
Output (Vn,^1)

Else
If (G'(n,E,N) contains a

SpeciaLList(n, j + l,El

SpeciaLList(n,j + 1,-5,

,N)

,...,Uj} for j > 1 */

member of £(n))

J {UJ+I},N)

NU{uj+1})

Lemma 16. There is a polynomial expected time algorithm that takes as input a graph

G G G(n) and determines whether or not G is a member of H(n) — £(n).

3. Applications to Particular Families of Structures 95

Proof: It is easy to see that there is a polynomial time algorithm that takes as input
a graph G € &{p) and determines whether or not G is a member of £{n). It is proved in
[BFF 85] that there is also a polynomial expected time algorithm that takes as input a
graph G £Q(n) and determines whether or not G is a member of 7i{n). •

Remark. It would be useful to have a polynomial space polynomial delay listing al-
gorithm for 7i. The algorithm described in this section does not run in polynomial space
because the polynomial expected time algorithm for determining whether a graph is
Hamiltonian [BFF 85] requires exponential space. The probability that Bollobas, Fen-
ner, and Frieze's algorithm fails to run in polynomial space is o(2~~n). Therefore, it
would suffice to find a polynomial space algorithm which finds a Hamiltonian cycle in an
n-vertex graph (or determines that none exists) in 0(q(n)2n) time steps for some poly-
nomial q. Determining whether or not such an algorithm exists may be an interesting
problem in its own right.

3.3. Graphs with Cliques of Specified Sizes

Let G be an undirected graph. A clique^ of G is a subgraph of G in which every pair
of vertices is connected by an edge. The size of a clique is the number of vertices that
it contains. Suppose that j is a sub-diagonal function and let Clj be the graph property
defined by the relation Clj{n) = {G G Q{p) \ G contains a clique of size j(n)}.

If j[n) = 0(1) then the methods from section 3.1 can be used to design a polynomial

space polynomial delay listing algorithm for Clj. (See corollary 6 of section 3.1.) If

j(n) = u;(l), however, the methods from section 3.1 are inapplicable. In this section we

study the general problem of designing an efficient listing algorithm for Clj. The results

that we obtain depend upon the function j . We consider several cases, depending on

whether or not j satisfies one of the following conditions.

Condition 1. There are positive constants e and n0 such that j(n) < (1 — e)log(n) for
every n > no.

Condition 2. There are positive constants e and n0 such that j(n) > (2 + e)log(n) for
every n > no.

The remainder of this section has the following structure. In subsection 3.3.1 we
show that if j satisfies condition 1 then we can use the interleaving method to obtain a

f Note that some texts such as [Bol 85] use the word clique to mean a maximal complete
subgraph.

96 3. Applications to Particular Families of Structures

polynomial space polynomial delay listing algorithm for Clj. In subsection 3.3.2 we show
that if j satisfies condition 2 then we can use the filter method to obtain a polynomial
delay listing algorithm for Clj. (This algorithm uses exponential space.) Finally, in
subsection 3.3.3 we discuss the problem of designing an efficient listing algorithm for Clj

when j fails to satisfy either of conditions 1 and 2.

3.3.1. Graphs with Small Cliques

In this subsection we prove the following theorem.

Theorem 12. If j satisfies condition 1 then there is a polynomial space polynomial
delay listing algorithm for Clj.

We will use the interleaving method to prove the theorem. We start with some
definitions. Given a graph G G G(n) and two cliques C\ and Ci of G we say
that C\ is lexicographically smaller than C2 if and only if the vertex set of C\ is
lexicographically smaller than the vertex set of C2. Let VV7 be the simple fam-
ily with the following definition. Every parameter value of Wj is a positive in-
teger. The value n is associated with the set Wj(n) = {W CVn \ \W\=j(n)}. Let Wj

be the sub-family of Wj defined by the relation W'j{n) = {W eWj(n)\v1 eW}.

Let Lj be the simple family with the following definition. Every para-
meter value of Lj is a pair (n,W) such that W E W^(n). Lj(n,W) is the set
{G G Clj(n) I C?[W] contains the lexicographically smallest fc-clique in G for every k < j(n)}.

Finally, let Ej be the graph property defined by the relation Ej(n) = UV^GW' (n) A?(n> ^0-
In the remainder of this subsection we will prove three lemmas about Ej and Clj. The
lemmas state that Ej and Clj satisfy the conditions in observation 2. Therefore, we
can conclude that the interleaving method can be used to obtain a polynomial space
polynomial delay listing algorithm for Clj. The algorithm itself consists of interleaving
a polynomial space polynomial delay listing algorithm for Ej (which is described in the
proof of lemma 18) with a standard graph listing algorithm for Clj — Ej.

Lemma 17. If j satisfies condition 1 then \Ej(n)\ > (1 — (Y^))) |£(n)|-

Proof: Let Gn be a member of £(n), chosen uniformly at random. The probability

that Gn is not in Ej(n) is less than or equal to the probability that for some r < j(n)

there exists an r-clique of Gn which cannot be extended to an (r + l)-clique. Following

Turner [Tur 88] and letting j denote i(n), we see that this probability is at most:

3. Applications to Particular Families of Structures 97

If j satisfies condition 1 then this probability is easily shown to be less than (/ \v - l
. •

Lemma 18, There is a polynomial space polynomial delay listing algorithm for Ej.

Proof: the general form of the algorithm is the following:

Algorithm ListJEj
Input n

For Each W G Wj(n)
For Each G G £>(n, W)

Output G

The fact that algorithm ListJEj lists the members of Ej(n) (without duplicates) fol-
lows from the fact that if W\ and W2 are distinct members of W'j(n) then Lj(n,W\)
and Lj(n, W2) are disjoint. It is easy to see that there is a polynomial space polynomial
delay listing algorithm for W'j and that every set Lj(n, W) is non-empty. Therefore
algorithm List-Ej can be made to run in polynomial space with polynomial delay so
long as there is a polynomial space polynomial delay listing algorithm for Lj. To see
that there is a polynomial space polynomial delay listing algorithm for Lj observe that

Lj(n, W) is simply the set of graphs G G G(n) satisfying:

1. W is a clique of G.

2. For every vertex v G Vn — W either

a. v is larger than every vertex in W,

or b. there is a vertex w G W such that w < v and (t>, w) is not an edge of G. •

Lemma 19. If j satisfies condition 1 then there is a polynomial space polynomial
expected time algorithm that takes as input a graph G G G(n) and determines whether
or not G is a member of Clj(n) — Ej(n).

Proof: The algorithm is straightforward: Take input G G G(n). Using the "greedy
heuristic" (see section 4 of [GM 75]), attempt to construct a set W G VV (̂n) such that
G G Lj{n, W). If a suitable W is constructed then G G Ej(n). Otherwise, consider each
of the (i(^j) subsets W G Wj(n). If G[W] is a clique for some W G Wj(n) then G is
in Clj(n) — Ej(n). Otherwise it is not. To see that the algorithm runs in polynomial
expected time note that the greedy heuristic runs in polynomial time and that (see

98 3. Applications to Particular Families of Structures

lemma 17) the probability that G £ Ej(n) is at most (.?,) . It is easy to see that the

space requirement of the algorithm is bounded from above by a polynomial.

3.3.2. Graphs with Large Cliques

In this subsection we prove the following theorem.

Theorem 13. If j satisfies condition 2 then there is a polynomial delay listing algorithm

forClj.

We will use the filter method to prove the theorem. We start with some definitions.

Let Wj denote the family that was defined in subsection 3.3.1. Let Cl denote the family

with the following definition. Every parameter value of Cl is a pair (ra, W) such that

W C Vn. The set Cl(n, W) is defined by the equation

C/(n, W) = {Ge Q{n) \ G[W] is a clique of G}.

Let Cl1 be the sub-family of Cl which is defined by the following equation.

Cl'(n, W)={ce Cl(n, W) G[W] * t h e lexicoSraPhical ly s m a l l e s t \ .
I clique of its size in G J

Let Cj be the family defined by the relation

Cj(n)= | J {(G,W)\GECl(n,W)}

and let Cj be the sub-family defined by the relation

Using the notation that we have defined, we can see that

Clj{n) = {Ge g(n) | (G, W) GC'^n) for some W G Wj(n)}.

Furthermore, for every pair W,Wf G Wj(n) it is the case that at most one of (G, W)

and (G, W1) is a member of Cj(n). Therefore, we can use a listing algorithm for Cj as a

listing algorithm for Clj. In the remainder of this subsection we will show that when j

satisfies condition 2 we can use the filter method and an efficient listing algorithm for Cj

3. Applications to Particular Families of Structures 99

to obtain a cumulative polynomial delay listing algorithm for Cj]. We start by observing
that when ,; satisfies condition 2, Cj and Cj are polynomially related. This fact can be
deduced from the following lemma:

Lemma 20. Suppose that j satisfies condition 2. Then there is a positive integer ni
such that for every n>ni and for every W G Wj(n) we have |C/'(n, W)\ > \Cl(n, W)\/2.

Proof: Suppose that n is a positive integer. Let W be a member of W j(n) and let Gn, w
be a member of CZ(ra, W), chosen uniformly at random. Let j denote j(n). By definition,
Gn,w[VF] is a clique of Gn,w- The expected number of additional cliques of size j in Gn, w
is

\ r 7 r 2 2
r=l x / \J / r = 1 r = 1

Using the fact that j satisfies condition 2 and the fact that n can be assumed to be
suitably large, we can do some elementary calculations which show that the expected
number of additional cliques is at most 1/2. We conclude that at least half of the
members of Cl(n, W) are members of C/'(n, W) n

As we stated before, we wish to show how to use the filter method and an efficient
listing algorithm for Cj to obtain a cumulative polynomial delay listing algorithm for Cj.

We start by developing a polynomial space polynomial delay listing algorithm for Cj.

It is easy to see that there are polynomial space polynomial delay listing algorithms for
the families Wj and C/, which were defined earlier. In particular, there is a polynomial
space polynomial delay listing algorithm for Wj which takes input n and lists the mem-
bers of Wj(n) in lexicographical order. Suppose that we choose this listing algorithm
for Wj and some polynomial space polynomial delay listing algorithm for Cl and that
we use them as subroutines in the following polynomial space polynomial delay listing
algorithm for Cj:

| The cumulative polynomial delay listing algorithm can be converted to a polynomial
delay listing algorithm using the method described in the introduction to this thesis.

100 3. Applications to Particular Families of Structures

Algorithm ListJZj
Input n

For Each W G VVJ

For Each G G
Output (G

i(n)
Cl(n,

,W)
W)

We now wish to show how to use the filter method and algorithm ListJZj to obtain a
cumulative polynomial delay listing algorithm for Cj. We start by defining some notation.
Let C;,n,/ be the list of members of Cj(n) that are output during the / iteration of the
loop "For Each W G Wj(n)n when algorithm ListJZj is run with input n. Let CjiU be
the concatenation of the lists Cj,n)i,C^n,2? • • •

In order to use the filter method we will need to invent a subroutine Filter j , which

takes as input an integer n and a pair (G, W) £Cj(n) and returns "yes" if and only

if (G, W) is a member of Cj(n). Then we can use the following listing algorithm for Cy.

Algorithm ListdCj

Input n

For / i— 1 To \Cj(n)\

continue simulating

If Filterj(nXjA1))
Output Cjfn[l]

ListXj(n) to obtain Cjin[l]

= "yes"

Suppose that we invent a subroutine Filter j with time complexity Tj. The following

observation follows directly from observation 5 and remark 1 of subsection 2.2.2 and

from the fact that (since the members of Wj(n) are listed in lexicographical order) every

member of C;>,i is a member of Cj(n).

3. Applications to Particular Families of Structures 101

Observation 11. Algorithm ListXj will run in polynomial space if and only if al-
gorithm Filter j runs in polynomial space. Furthermore, algorithm ListXj will have cu-
mulative polynomial delay if j satisfies condition 2 and there exists a polynomial r such
that the following conditions are satisfied:

Condition A. For every integer i in the range 1 < i < |Cj,n,i | we have Tj(n, CjiU [i]) < r(n).

Condition B. For every integer / in the range range 1 < / < |Wj(n)| we have

< r(n) x

In the remainder of this subsection we will show how to make ListXj a cumulative
polynomial delay listing algorithm by designing an algorithm Filter j whose time com-
plexity, Tj, satisfies the conditions in observation 11. First, we make our task easier
by using lemma 20 to simplify condition B. We start by observing that |Cj,n,/ / Cj(n) |
is greater than or equal to |CjjU)/|/2 for every / in the appropriate range. Furthermore,
|CjjU)/| = |Cj,n,/+i| for every appropriate value of /. Combining these two observations, we
can replace condition B with the following (possibly stronger) condition:

Condition B'. For every integer / in the range 2 < I < |VVj(n)| we have

< r(n) x |CJ>f,|.

Observation 12 incorporates the simplification that we have discussed, rewriting con-

dition B; in an equivalent form. Once again, the notation GUiw is used to denote a

member of C/(n, W), chosen uniformly at random.

Observation 12. Algorithm ListXj will run in polynomial space if and only if al-
gorithm Filter j runs in polynomial space. Furthermore, algorithm ListXj will have cu-
mulative polynomial delay if j satisfies condition 2 and there exists a polynomial r such
that the following conditions are satisfied:

Condition A. Forevery integer i in the range 1 < i < \CjfTlii\ we have Tj(n,Cj,n[i]) < r(n).

Condition B. For every W G VV,(n) we have E(T7(n, (Gn>w, W))) < r(n).

102 3. Applications to Particular Families of Structures

As in section 2.3.2, we could use a dictionary-based approach to the problem of
designing algorithm Filter j . Recall that Filterj takes as input an integer n and a pair
(G, W) € Cj(n). The output of Filterj(n, (G, W)) should be "yes" if and only if G[W] is
the lexicographically smallest clique in G. Since the listing algorithm for Wj lists the
members of Wj(n) in lexicographical order, G[W] will be the lexicographically smallest
clique in G if and only if (G, W) is the first member of Cj>n which contains the graph G.

By the time that algorithm ListXj makes the call Filter j(n, (G, W)) it will already have
called Filterj(n, (G', W')) for every pair (G', W') which precedes (G, W) on Ci>n. There-
fore, the implementation of Filter j could be based on a dictionary of n- vertex graphs.
The dictionary should be made empty at the beginning of algorithm ListJZ'-. Filter j

would then have the following form:

Algorithm Filterj(n,(G,W))

If G is in the dictionary
Return "no"

Else
put G in the dictionary
Return "yes"

Suppose that j satisfies condition 2 and that we use algorithm Filter j as a subroutine
in algorithm ListJZ1^ implementing the dictionary as a 2-3 tree (see [AHU 74]). Then
the time complexity of Filter j will be bounded from above by a polynomial in the size of
its input. Therefore (by observation 12) algorithm ListJCj will have cumulative polyno-
mial delay. We conclude that algorithm ListdCj is a cumulative polynomial delay listing
algorithm for Clj and that it can be converted to a polynomial delay listing algorithm
using the method described in the introduction to this thesis. Therefore, we have proved
theorem 13.

The space requirement of algorithm ListdCj will be at least as large as the space re-
quirement of Filter j . In particular, it will be super-polynomial. It would be interesting to
know whether there is a polynomial space cumulative polynomial delay listing algorithm
for Clj. This question is not answered in this thesis.

3. Applications to Particular Families of Structures 103

3.3.3. Graphs with Cliques whose Sizes are Between log(n) and 21og(n)

Suppose that j is a sub-diagonal function. In subsection 2.3.1 we showed that if there
are positive constants e and no such that j(n) < (1 — e)log(n) for every n > no then the
interleaving method can be used to obtain a polynomial delay listing algorithm for Clj.

In subsection 2.3.2 we showed that if there are positive constants e and no such that
j{p>) > (2+e)log(n) for every n>n0 then the filter method can be used to obtain a
polynomial delay listing algorithm for Clj. Of course we can combine these results to get
the following theorem:

Theorem 14. Suppose that j is a sub-diagonal function. If there are posit-
ive constants e and no such that for every n > no either j(n) < (1 — e)log(n) or
j(n) > (2+e)log(n) then there is a polynomial delay listing algorithm for Clj.

Let H be the set of sub-diagonal functions which fail to satisfy the conditions of

theorem 14. That is, let

= <j:N - • N

for every positive constant e
j(n) < n and (l-e)log(n) <j(n) < (2 + e)log(n)

infinitely often

It is clear that there are functions j E7{ such that Clj has a polynomial delay listing
algorithm. For example, it is fairly easy to see that the proofs in subsection 2.3.2 would
still work if we replaced condition 2 with the following weaker but more cumbersome
condition:

Condition 2;. There is a positive constant no such that

j(n) > 21og(n)+41og(j(n))+3

for every n>no.

Furthermore, it is easy to see that there are members of 7i which satisfy condition 21.

The methods that we have described in this section are likely to fail for many functions
j € W, however. Let

n1 = I j en
There exists a positive constant e such that'
(l + 6)log(n) <j(n) < (2-6)log(n)
infinitely often

Suppose that j is a member of H' and consider the listing algorithms for Clj which were
described in subsections 2.3.1 and 2.3.2. These algorithms do not have polynomial delay

104 3. Applications to Particular Families of Structures

when j GW'. Furthermore, it is unlikely that they can be modified so that they do have

polynomial delay in this case.

First consider the (interleaving) listing algorithm from subsection 2.3.1. This al-
gorithm contains a subroutine (which is described in the proof of lemma 19) that takes as
input a graph G G G(n) and finds a j(n)-clique in G or determines that none exists. The
argument that the listing algorithm has polynomial delay depends upon the fact that
the subroutine runs in polynomial expected time. However, the expected running time
of the subroutine is super-polynomial (see [GM 75], theorem 7) if there exists a positive
constant e such that j(n) > (l+€)log(n) infinitely often. Furthermore, there is evidence
[Jer 90] supporting the conjecture that there is no polynomial expected time algorithm
that performs the task of the subroutine in this case.

Next, consider the (filter) listing algorithm from subsection 2.3.2. This algorithm com-
bines an efficient listing algorithm for Cj with an efficient filtering subroutine to obtain
a cumulative polynomial delay listing algorithm for Cj. However, if there is a positive
constant e such that j(n) < (2 —e)log(n) infinitely often (and j{n) —UJ{\)) then the ex-
pected number of cliques of size j(n) in a random n-vertex graph is super-polynomial
in n. Therefore, Cj and Cj are not polynomially related so we cannot use the filter method
and an efficient listing algorithm for Cj to obtain a cumulative polynomial delay listing
algorithm for Cj.

It would be interesting to determine for which of the functions j £ H there is a poly-

nomial delay listing algorithm for Clj. We leave this question as an open problem.

3.4. Graphs which can be Colored with a Specified
Number of Colors

Suppose that k is a sub-diagonal function. Consider the families Gk and Qk which
were defined in chapter 2. (£/*(n) is the set of k(n)-colored n-vertex graphs and each
equivalence class in Gk(n) is associated with a particular k(n)-colorable graph G G G(n)-)
In this section we consider the problem of designing efficient listing algorithms for Gk-

This turns out to be a much more difficult problem than the other problems that we have
considered so far in this chapter. Therefore, the results that we obtain are less complete.

In order to state the results that are described in this section we require the follow-
ing definition. We say that a sub-diagonal function k satisfies the greedy condition if
and only if there are positive constants e and no such that for every n>no we have
k(n)>(l + e)n/log(n).

The results that we obtain are the following:

3. Applications to Particular Families of Structures 105

Theorem 15. If k satisfies Kucera's condition then there is a deterministic cumulative
polynomial delayf listing algorithm for Gk- (The algorithm requires exponential space.)

Theorem 16. If k(n) = 0(1) then there is a deterministic polynomial space cumulative

polynomial delay listing algorithm for Gk-

Theorem 17. If k satisfies the greedy condition then there is a probabilistic polynomial

delay listing algorithm for Gk- (The algorithm requires exponential space.)

It is easy to see that there are many sub-diagonal functions that fail to satisfy either
Kucera's condition or the greedy condition. If k is one of these functions then the problem
of designing an efficient listing algorithm for Gk remains open. In the final portion of
this section we address this problem. There we discuss the prospects of strengthening
theorems 15 and 17 by weakening the relevant conditions.

There are many interesting questions that are suggested by the results presented in this
section. For example, is there a deterministic polynomial space cumulative polynomial
delay listing algorithm for Gk for any k(n) = u>(l)? Is there a deterministic polynomial
space polynomial delay listing algorithm for Gk when k(n) = 0(1)? Is there a deterministic
polynomial delay listing algorithm for Gk when k satisfies the greedy condition? These
questions remain open. I hope to resolve them in the future.

We begin this section by defining a sub-family Gk oiGk- The definition of Gk is based

on the definition of the family Gbk-, which was given in chapter 2.

Recall that

Gk(n) = {(C, G)\Ge G{n) and C is a k (n)- coloring of G)

and that ~ is the equivalence relation on colored graphs that ignores the coloring. Gk(n)

is the set of equivalence classes under ~ of Gk(n)- Furthermore,

Gbk(n) = {(C,G) | G e G(n) and C is a balanced k(n)-coloring of G}

and Gbk{n) is the set of equivalence classes under ~ of Gbk(n).

Let Gk be the sub-family of Gk defined as follows:

Gk (n) = {E E £*(n) I There exists a (C, G) E E such that C is balanced}.

f Of course, we can convert this algorithm to a polynomial delay algorithm using the
method described in the introduction to this thesis.

106 3. Applications to Particular Families of Structures

It is easy to see that there is a one-to-one correspondence between the equivalence

classes in Qk (n) and Qbk(n). In fact, there is a one-to-one correspondence which has

the property that each equivalence class in Qbk(n) is a subset of the corresponding class

in Qk (n)- Therefore, we can use a listing algorithm for Qbk as a listing algorithm for Qk •

Suppose that k satisfies Kucera's condition. In this case we will be able to show that Qk

and Qk are polynomially related. Furthermore, the listing algorithm for Qbk which is

described in subsection 2.3.2 has cumulative polynomial delay. Using this algorithm (as

a listing algorithm for Qk) and the interleaving method, we will obtain a cumulative

polynomial delay listing algorithm for Qk.

Suppose further that fc(n) = 0(1). In this case there is a polynomial space cumulative

polynomial delay listing algorithm for Qbk which is described in subsection 2.3.2. Using

this algorithm (as a listing algorithm for Qk) and the interleaving method, we will obtain

a polynomial space cumulative polynomial delay listing algorithm for Qk.

We start, then, by assuming that k satisfies Kucera's condition and showing that Qk

and Qk are polynomially related. We mentioned in chapter 2 that when k satis-

fies Kucera's condition Qk and Qk are polynomially related. Furthermore, we men-

tioned that under the same condition Qbk and Qbk are polynomially related. Since

|C/&*(n)| = \Qk (n)|, it follows that Qbk and Qk are polynomially related. The property

of being polynomially related is transitive so it suffices to show that when h satisfies

Kucera's condition Qk and Qbk are polynomially related.

To show that Qk and Qbk are polynomially related when k satisfies Kucera's condition

we must show that in this case there is a polynomial q such that \Qk(n)\/\Qbk(n)\ <q(n)-

The following technical lemma establishes a stronger result assuming a weaker condition.

(We will use the results in the lemma later in the section.) The proof of the lemma

is a modification of proofs found in [Wri 61] and [Wri 64]. We repeat details found in

Wright's proofs for the sake of completeness.

Lemma 21. Let k be a sub-diagonal function. If there are positive constants e and n0

such that for every n > n0 we have k(n) < n2 / 3"c then \Qk{n)-Qbk{n)\ = o(l) \Qk(n)\.

Furthermore, if there are positive constants e and no such that for every n > no we have

k(n) < nl'2-(then \Gk(n)-Gh(n)\ x k(n)n = o(l) \Qk(n)\.

Proof: We start by defining some notation. We say that sequence s = (si,..., Sk(n)) of

non-negative integers is a k-of-n sequence if s\ > • • • > Sk(n)
 and Z)i=i si = n- Note that

every fc(ra)-coloring C = (Ci, • • •, Ck(n)) of Vn can be associated with a k-of-n sequence

3. Applications to Particular Families of Structures 107

s — (s i , . . . , Sk(n)) such that |C,| = s,- for every integer i in the range 1 < i < k(n). We use
the notation Col(s) to denote the set of colorings

{C = (Ci, • • •, Ck(n)) € Pk(n) | |Cj| = S{ for every integer i in the range 1 < i < k(n)}.

Suppose that s = (s i , . . . ,s*(n)) is a fc-of-n sequence and that C is a coloring in Col(s).

We established in the proof of lemma 6 that \Tk(C)\ = 2 (n 2 " ^ . **)/2. Therefore,

Col(s)\x2(n2-Zi*^2 (1)

where the sum is over fc-of-n sequences s. Let k denote k(n) and let K denote (1 — k~x)/2.

In [Wri 61] Wright noted that

(n2 - £ ,2)/2 = Xn2 - (1/2A;2) £ (ib^ - n)2.

He re-wrote (1) as

Using the idea from the proof of theorem 1 of [Wri 61], we observe that |£/*(n) — Qbk{n)\

can be written

\Gk(n)-gbk(n)\ = 2Kn' Y!3 \Col(s)\ x

where Y^3 ranges over all fc-of-n sequences s = (s i , . . . ,s*) such that \ks{ — n\ > n/2 for

some i in the range 1 < i < k. For these fc-of-n sequences we have Y^i (ksi — n)2 > n2/4.

Therefore, observing that ^2S \Col(s)\ < fcn, we get

\Gk(n) - Gh(n)\ < 2Kn*kn2-n2/8k2 (3)

In order to derive a lower bound for the size of (/fc(n) we need a lower bound for the size
of Col(s). This requires a bit more notation. Suppose that s = (s i , . . . ,$*) is a k-oi-n
sequence. Let |s| be the positive integer such that si > 0 for every / < |s| and si = 0
for / in the range \s\ < I < k. Finally, let perm(s) be the number of permutations TT of
(s i , . . . ,«S|a|) such that (s i , . . . ,5|s|) = (TT(,SI), . . . ,7T(S|S|)). NOW it is easy to see that

\Col(s)\ = , " ! , ^ (4)
5 i ! • • -Ski perm(s)

108 3. Applications to Particular Families of Structures

Let N denote \n/k\ and let s1 = (s[,... ,sk) be the fc-of-n sequence in which s\•, = N + l
for 1 < i < n-kN and s\ = N for n-kN < i<k. Wright shows in [Wri 64] that
nl/s'j! • • • s'k\ > kn~k{n + k)~ . For completeness, we include his derivation of this fact:

n! n! n!

((N + l)l)n-k

(kN + (n - fciV)) - - - (kN +
(AT + l)n~*N(JV!)*

(kN)\ = (kN + k-l)\
. * (5)

Now
k-l N (N \ k

= kkN(N\)k (6)
1=0 t=l

Combining (5) and (6) we get

, > _
i • • • « * ! " (kN + k - 1) - - -

Returning to equation (2) note that

kkN kn-k

>

2 e 4 - ^ks>i ~n) 2 ?(**"n / k) -k/2 (8)

t i

Furthermore in (4)

perm(s) < k\ (9)

Finally, we combine (2), (4), (7), (8), and (9) to get

Combining (3) and (10) and using the fact that k(n) < n we get

\Qk(n)-Gbk(n)\ kh(n + k)k k\2k'2

\Qk(n)\

for a positive constant c. It is easy to see that the right hand side of (11) is o(l) if

there are positive constants e and no such that for every n > no we have k(n) < n2'3~c.

3. Applications to Particular Families of Structures 109

Furthermore, the right hand side of (11) is fc~no(l) if there are positive constants e and no
such that k(n) < n1'2~€ for every n>no. a

So far, then, we have established the following facts:

1. If fc satisfies Kucera's condition then Qk and Qk are polynomially related.

2. If A: satisfies Kucera's condition then there is a cumulative polynomial delay listing
algorithm for Qk . (This algorithm is described in subsection 2.3.2.)

3. If k(n) = 0(1) then there is a polynomial space cumulative polynomial delay listing

algorithm for Qk • (This algorithm is described in subsection 2.3.2.)

After reading the description of the interleaving method in subsection 2.2.1, we can

make the following observations.

Observation 13. Suppose that k satisfies Kucera's condition and that / is a poly-

nomial. Suppose further that there a listing algorithm for Qk — Qk which executes at

most l(n) |£/fc(n)| machine instructions when it is run with input n. Then we can inter-

leave the cumulative polynomial delay listing algorithm for Qk with the listing algorithm

for Qk — Qk to obtain a cumulative polynomial delay listing algorithm for Qk.

Observation 14. Suppose that k(n) = 0(1) and that / is a polynomial. Suppose fur-

ther that there is a polynomial space listing algorithm for Qk — Qk which executes at

most /(n) |£?fc(n)| machine instructions when it is run with input n. Then we can inter-

leave the polynomial space cumulative polynomial delay listing algorithm for Qk with

the listing algorithm for Qk — Qk to obtain a polynomial space cumulative polynomial

delay listing algorithm for Qk.

In order to prove theorems 15 and 16, then, we need only design listing algorithms
for Qk — Qk which satisfy the conditions in observations 13 and 14. We start with some
definitions. Let Puk denote the family Pk — Pbk. (Puk(n) is the set of unbalanced k(n)-

colorings of Vn.) It is fairly easy to see that there is a polynomial space polynomial
delay listing algorithm for Puk. (For example, we could design a dynamic programming
listing algorithm for Puk which would be similar to the listing algorithm for Pbk that
we described in chapter 2.) Let List-Puk be a polynomial space polynomial delay listing
algorithm for Puk and let Pujt,n be the list of unbalanced fc(n)-colorings that are output
by List-Puk when it is run with input n. Recall from chapter 2 that there are polynomial
space polynomial delay listing algorithms for Yk and Pbk. Once again, let the listing
algorithm for Pbk be called List-Pbk and let Pbk,n be the list of balanced fc(n)-colorings
that are output by ListJPbk when it is run with input n.

110 3. Applications to Particular Families of Structures

Suppose that k satisfies Kucera's condition and consider the following listing algorithm

for ft - ft'.

Algorithm Listk
Input n
construct an empty dictionary (to contain n-vertex graphs)

For j «— 1 To \Ph(n)\

simulate List-Pbk to obtain Pbk,n\j]
For E*chGeTk(Pbk,n[j})

put G in the dictionary
For j *— 1 To \Puk(n)\

simulate List-Puk to obtain Pv,ktn[j]
For Each G G Tk(Pbk,n\j])

If G is not in the dictionary
Output (Pt*M[/],G)
put G in the dictionary

It is easy to see that algorithm List k outputs exactly one member of each equivalence
class in Qk(n) — Gk (n) when it is run with input n. Furthermore, if the dictionary is
implemented using an efficient data structure such as a 2-3 tree (see [AHU 74]) then
the algorithm will execute at most q(n) \Gk(n)\ machine instructions when it is run with
input n, for some polynomial q. Since Gk and Gk are polynomially related, there is a
polynomial / such that q(n) |£*(n)| < l(n) |£fc(n)|. We conclude that algorithm Listk sat-
isfies the condition in observation 13. Therefore, it can be interleaved with a cumulative
polynomial delay listing algorithm for Gk to obtain a cumulative polynomial delay listing
algorithm for Gk- We have now proved theorem 15.

Now suppose that k(ri) = 0(1) and consider the following listing algorithm for

3. Applications to Particular Families of Structures 111

Algorithm List'k
Input n

For i <— 1 To \Puk(n)\

simulate List-Puk to obtain Pu*,»*[*]
For Each G eTk(Pukyn[t])

bad <— false
For j +— 1 To \Pbk(n)\

simulate List.Pbk to obtain PbkfU[j]

If Pbk,n[j] is a fc(n)-coloring of G
bad <— true

For j <— 1 To i — 1

simulate List-Puk to obtain Pukin[j]

If Pukin[j] is a k(n)-coloring of G
bad <— true

If bad = false
Output (PukiTl\i],G)

It is easy to see that algorithm List'k lists exactly one member of each equivalence
class in Gk{n) — Gk (ft) when it is run with input n. Furthermore, the algorithm will ex-
ecute at most q(n) x |£?fc(n) — Qbk(n)\ x |Pjt(n)| machine instructions when it is run with
input n, for some polynomial q. Now, |Pjfc(rc)| < kn. Furthermore, by lemma 21 we have
\Gk{n) — Gbk(n)\ x kn = o(l)\Gk(n)\. Since Qk and Qk are polynomially related, we con-
clude that there is a polynomial / such that the algorithm executes at most l(n) \Gk(n)\

machine instructions when it is run with input n. Furthermore, algorithm List'k is a
polynomial space algorithm. We conclude that algorithm Lisi'k satisfies the conditions
in observation 14. Therefore it can be interleaved with a polynomial space cumulat-
ive polynomial delay listing algorithm for Qk to obtain a polynomial space cumulative
polynomial delay listing algorithm for Qk. We have now proved theorem 16.

Now that we have proved theorems 15 and 16, we will proceed to prove theorem 17
— if k satisfies the greedy condition then there is a probabilistic polynomial delay listing
algorithm for Qk.

112 3. Applications to Particular Families of Structures

We will need to use two known graph coloring algorithms. The first (which we refer
to as Greedy-Color) is a polynomial time algorithm that takes as input a graph G and
uses the "greedy heuristic" to construct a coloring of G. It then outputs the coloring.
Algorithm Greedy.Color is described in [McD 79] and in [Bol 85]. In [McD 79] McDi-
armid provesf that the probability that algorithm Greedy.Color returns a coloring with
more than (l-fe)n/log(n) color classes when it is given as input a randomly chosen
member of Q{n) is at most 2.5~n. The second coloring algorithm (which we refer to
as Lawler.Color is described in [Law 76]. It takes as input a graph G and returns a
coloring of G. The coloring that is returned is guaranteed to have as few color classes as
possible. Lawler proves in [Law 76] that the time complexity of his algorithm is 0(2.5n).

Suppose that k satisfies the greedy condition. We can combine algorithms Greedy. Color

and Lawler.Color to obtain a deterministic polynomial expected time algorithm (which
we refer to as Colork) that takes as input an n-vertex graph G and returns a fc(n)-coloring
of G if G has a Ar(n)-coloring and "false" otherwise. Let Colork(G) denote the output
of Colork when it is run with input G.

Let Ck be the family of structures defined by the relation

Ck(n) = {(C,G) | GeG(n) and C = Colork(G)}.

Let C'k be the sub-family of Ck defined by the relation

C'k(n) = Ck(n)ngk(n) = {(C,G)eCk(n) \ C ^ "false"}.

It is easy to see that Ck(n) contains exactly one representative from each equivalence

class in Qk{n). We will show that if k satisfies the greedy condition then there is a

probabilistic polynomial delay listing algorithm for Ck.

We start by observing that if k satisfies the greedy condition then Ck and Ck are
polynomially related. (This fact follows from McDiarmid's proof concerning algorithm
Greedy.Color.) Furthermore, there is an efficient random sampling algorithm for Ck.
(The algorithm simply chooses a random rc-vertex graph, G, and runs Colork{G).) Fi-
nally, there is a polynomial time algorithm that takes as input a pair (C, G) G Ck(n) and
determines whether or not (C, G) E C[(n). Using the method discussed in remark 2 of
subsection 2.2.2, we can construct an efficient random sampling algorithm for Ck. Then
we can apply the methods from subsection 2.1.2 to obtain a probabilistic listing algorithm

f McDiarmid actually proves a stronger result. See [McD 79] and [Bol 85].

3. Applications to Particular Families of Structures 113

for C'k that has polynomial delay and exponentially small failure probability. As we in-
dicated previously, this algorithm can be used as a listing algorithm for Qk- So we have
proved theorem 17.

Now that we have proved theorems 15-17 we discuss the prospects for strengthening
the theorems. We begin by observing that we could combine theorems 15 and 17 to get
the following theorem:

Theorem 18. Suppose that k is a sub-diagonal function. If there are posit-
ive constants e and no such that for every n > no either k(ri) < yn/281og(n) or
k(n) > (l + €)n/log(n) then there is a probabilistic polynomial delay listing algorithm

It is clear that there are many sub-diagonal functions which fail to satisfy the condi-
tions of the theorem. If k is such a function then it is unknown whether or not there
is an efficient listing algorithm for Gk> One approach to resolving this open question is
to attempt to strengthen theorem 15 and 17 by weakening the relevant conditions. We
discuss this approach here.

First, consider theorem 15.

Theorem 15. If A; satisfies Kucera's condition then there is a deterministic cumulative

polynomial delay listing algorithm for (/*.

In order to prove this theorem we developed a deterministic listing algorithm for Qk,
The algorithm is based on interleaving a cumulative polynomial delay listing algorithm
for Qk (which is described in chapter 2) with a dictionary-based listing algorithm for
Qk — Qk - The proof that the final algorithm has cumulative polynomial delay uses the
fact that when k satisfies Kucera's condition the following statements are true:

1. For every member C of Pbk{n) the probability that Gc is uniquely fc(n)-colorable is

1—o(l), where Gc stands for a member of Iljfc(C), chosen uniformly at random.

2. Qk, Qk, Qbki and Qbk are all polynomially related.

The proof does not use any other facts that depend upon the function k (except that k is
assumed to be a sub-diagonal function). It would be interesting to see whether we could
strengthen theorem 15 by assuming that k satisfies some condition which is weaker than
Kucera's condition and proving statements 1 and 2. (It is clear that at least some of
the relationships described in statement 2 hold under conditions which are weaker than
Kucera's condition — see lemma 21 for details.)

Next, consider theorem 17.

114 3. Applications to Particular Families of Structures

Theorem 17. If k satisfies the greedy condition then there is a probabilistic polynomial
delay listing algorithm for Gk-

Consider the probabilistic listing algorithm for Gk which we designed in order to prove
this theorem. The fact that the algorithm has polynomial delay when k satisfies the
greedy condition depends upon the fact that C* and C'k are polynomially related in this
case. Equivalently, it depends upon the fact that when k satisfies the greedy condition
there is a polynomial q such that at least q(n)~l of the graphs in Q{n) have chromatic
number less than or equal to k{n).

Suppose that k is a sub-diagonal function. We say that k satisfies Bollobds 's condition

if and only if there is a positive constant no such that for every n > no we have

[21og(n) - loglog(n) + 21og(e/2) + 1] '

In [Bol 88] Bollobas shows that if k satisfies Bollobas's condition then at least 1—o(l) of
the graphs in (?(n) have chromatic number less than or equal to fc(n).

It is possible that we could strengthen theorem 17 by using Bollobas's condition instead
of the greedy condition. However, to do so we would need to design a polynomial expected
time algorithm that takes as input an n-vertex graph G and returns a A;(n)-coloring of G
if G has a fc(n)-coloring and "false" otherwise.

If we could design such an algorithm for a sub-diagonal function k which fails to
satisfy the greedy condition then we would be improving the best known clique-finding
algorithm. (This observation follows from the fact that every fc(n)-coloring of an n-
vertex graph contains an independent set of size at least n/k(n).) We conclude from the
discussion in section 3.3 (see especially subsection 3.3.3) that designing such an algorithm
is a difficult (if not impossible) task.

Now that we have discussed the prospects for strengthening theorems 15 and 17 by

weakening the relevant conditions we discuss the possibility of strengthening theorem 16

in this manner. Recall the statement of theorem 16.

Theorem 16. If k(n) = 0(1) then there is a deterministic polynomial space cumulative

polynomial delay listing algorithm for Gk-

In order to prove this theorem we designed a deterministic polynomial space cumu-

lative polynomial delay listing algorithm for Gk- The algorithm is based on interleaving

a polynomial space cumulative polynomial delay listing algorithm for Gk (which is de-

scribed in chapter 2) with a polynomial space listing algorithm for Gk — Gk - The question

3. Applications to Particular Families of Structures 115

that we consider now is — can we modify the algorithm so that it has polynomial space

and cumulative polynomial delay even when k(n) = u;(l)?

We start by observing that the listing algorithm for Gk — Gk runs in polynomial space
for any sub-diagonal function k. Furthermore, it is sufficiently fast as long as there are
positive constants e and no such that for every n > no we have k(n) < n1^2"6. (In this case,
lemma 21 shows that \Gk{p) — Gbk(n)\ is sufficiently small and Kucera's paper [Kuc 89]

shows that Gk and Gk are polynomially related.)
-—-I

However the listing algorithm for Gk does not have cumulative polynomial delay unless

k(n) — 0(1). In particular, algorithm LisiJIk does not run in polynomial expected time if
k(n) = u;(l). It would be interesting to see whether a polynomial expected time algorithm
could be designed which performs the task of algorithm ListJIk for k(n) = u;(l). Such an
algorithm would be interesting in its own right (see the note at the end of this section)
and it would enable us to design a polynomial space cumulative polynomial delay listing
algorithm for Gk when k(n) = u;(l).

3.4.1. Digression — The Problem of Listing fc-Colorings

Consider the family 11*, which was defined in chapter 2. Every parameter of II* is an

undirected graph. The value G £ G(n) is associated with the set II* (G) which contains

the fc(n)-colorings of G. In chapter 2 we described a listing algorithm for II*. In this

note we consider the performance of that algorithm and we compare the algorithm with

other known graph coloring algorithms.

We start out by observing that the problem of coloring graphs is likely to be compu-
tationally difficult. In particular, suppose that k is a positive integer which is greater
than or equal to 3. It is well known that the problem of determining whether or not an
undirected graph is fc-colorable is NP-complete (see [GJ 79]). Therefore, it is unlikely
that there is a polynomial time algorithm that takes as input a parameter value G of II*
and returns a coloring in II*(G) if II*(G) is non-empty.

Nevertheless, various researchers have developed graph-coloring algorithms which per-
form fairly well in a probabilistic sense. For example, Turner [Tur 88] designed a
polynomial-time algorithm that takes as input a graph G G 5(«) and either returns a
member of II*(G) or halts without output. He showed that his algorithm constructs a
fc-coloring for all but o(l) of the fc-colorable n-vertex graphs. In fact, Turner showed that
his algorithm constructs a k(n)-coloring for almost every fc(n)-colorable n-vertex graph,
provided that k satisfies k(n) < (1 — e)log(n).

Turner's result is improved by Kucera in [Kuc 89]. Kucera develops a new

polynomial-time graph coloring algorithm and shows that his algorithm constructs a

116 3. Applications to Particular Families of Structures

fc(n)-coloring for almost every fc(n)-colorable n-vertex graph, provided that k satisfies

*(n) < v/n/1961og(n).

The fraction of n-vertex graphs which Kucera's algorithm fails to fc(n)-color in polyno-
mial time is u){k~n). Similarly, the fraction of n-vertex graphs which Turner's algorithm
fails to fc(n)-color is w(k~n). Therefore, neither of these two coloring algorithms could
be combined with a brute force coloring algorithm to obtain a polynomial expected time

algorithm for constructing fc(n)-colorings.

Nevertheless, Dyer and Frieze have developed a probabilistic graph coloring algorithm
which does run in polynomial expected time when k(n) = 0(1). In particular, suppose
that k is a fixed positive integer. Dyer and Frieze's algorithm [DF 89] takes as input
an undirected graph G and outputs a member of IU(G) if Uk(G) is non-empty. If the
input is chosen uniformly at random from the set of fc-colorable n-vertex graphs then the
expected running time of the algorithms is bounded from above by a polynomial in n.

Kucera has shown in [Kuc 89] that if fc(n) < y/n/28log(n) then almost every k(n)-
colorable n-vertex graph has only one fc(n)-coloring. Nevertheless, it seems unlikely that
Dyer and Frieze's algorithm could be modified to provide a polynomial expected time
listing algorithm for 11*.

We have provided such an algorithm in this thesis. In particular, algorithm ListJIk
from chapter 2 takes as input an undirected graph G and lists the members of 11^(G).
We will prove the following theorem.

Theorem 19. If k(n) = 0(1) and the input to algorithm ListJIk is chosen uniformly
at random from the set of fc-colorable n-vertex graphs then the expected running time
of ListJIk is bounded form above by a polynomial in n.

Proof: In order to prove this theorem we will need some notation. Let tk denote the
time complexity of ListJIk. Recall that C/*(n) is the set of fc(n)-colored n-vertex graphs
and that each equivalence class in Gk(n) corresponds to a particular fc(n)-colorable n-
vertex graph. If E is an equivalence class in £/fc(n) then we will write tk(E) to denote
the running time of ListJIk when it is given as input the k(n)-colorable graph which
corresponds to E. We will prove that if k(n) = 0(1) then there is a polynomial p such
that

In the proof we will use the notation Uk(n) to refer to the set of fc(n)-colored n-vertex
graphs which belong to singleton equivalence classes in ĵfc(n). The definitions that we
have provided show that

3. Applications to Particular Families of Structures 117

Kucera shows in [Kuc 89] that |£7fc(n)|/|l/fc(n)| = 1 + o(l)- Therefore we will complete
the proof by showing that the parenthesized expression (which is the expected running
time of ListJIk when it is run with a random k-colored n-vertex graph) is bounded from
above by a polynomial in n. Recall that Qbt is a sub-family of Qk- (Qbk was defined in
chapter 2.) In addition, recall that there is a polynomial p such that tk(G) < p(n) x kn.
(This observation was made in subsection 2.3.2.) Using these observations, we see that

tkiG)

(C,G)€Gbk(n)

We know from lemma 21 that \Gk(n)-Gh(n)\ x fc(n)n = o(l) \Gk(n)\. Therefore, the
right hand term is bounded from above by a polynomial in n. To show that the left hand
term is bounded from above by a polynomial in n we use the definitions from chapter 2 .. .

{CyG)£Gbk(n)

We showed in chapter 2 (see the paragraph preceding lemma 7) that there is a poly-
nomial r such that for every C G Pbk(n) the value of the parenthesized expression is at
most r(n). Therefore, the right hand side is at most

r(n)

We have now proved theorem 19. •

118 3. Applications to Particular Families of Structures

We complete this subsection by observing that we can use algorithm ListJlk to remove
the bias from algorithm Qk-Sample from chapter 2. The revised algorithm is an unbiased
random sampling algorithm for Qk. It has the following form:

Procedure Unbiased-Qk-Sample

Input n (in unary)
Do forever

(C,G)<— Qk-Sample(n)

use algorithm ListJlk to compute |IIjb(G)|
with probability 1/|II*

Output ((C,G),G)
Halt

The proof of theorem 19 shows that the expected running time of ListJlk is bounded
from above by a polynomial in n when it is run with a random fc-colored n-vertex graph.
The probability that procedure Unbiased-Qk-Sample halts during any given iteration of
the "Do forever" loop is at least 1/2 since almost every fc-colored graph is uniquely k-

colorable [Kuc 89]. Therefore, the expected number of iterations of the loop is at most 2
(to understand why see the proof of lemma 2 in subsection 2.2.2). We conclude that the
expected running time of Unbiased-Qk-Sample is bounded from above by a polynomial
in n and that we have therefore proved the following theorem.

Theorem 20. There is an efficient unbiased random sampling algorithm for Qk.

4. Directions for Future Work on Listing 119

4. Directions for Future Work on Listing

In chapter 3 we described various applications of our listing methods. As we described
each specific application we mentioned one or more related open problems. In this chapter
we take a more comprehensive look at open problems in listing and we discuss directions
for future work on listing combinatorial structures.

We start by observing that there are several aspects of computational listing which
we have not considered in this thesis. It is likely that consideration of these aspects of
listing could lead to interesting results. In particular, it would be interesting to study
the problem of listing combinatorial structures in a specified order (see [JYP 88]). It
would also be interesting to study the problem of designing efficient parallel algorithms
for listing combinatorial structures.

While it would be interesting to study these new aspects of computational listing it

would be equally interesting to consider the plethora of open problems which crop up

within the context already studied in this thesis. We will discuss some of these problems
here.

First, we observe that there are interesting families of combinatorial structures for

which there are no known cumulative polynomial delay listing algorithms. Designing

efficient listing algorithms for some of these families may require new methods. For

example, it would be interesting to know whether or not there is a cumulative polynomial

delay listing algorithm for Q—Clj when j is a sub-diagonal function such that j(n) = u>(l).

It is not clear how the methods from this thesis could be used to solve this problem.

Another interesting problem comes from example 2 of subsection 2.3.2. In that ex-

ample we used the interleaving method to obtain a polynomial space polynomial delay

listing algorithm for Q. In fact, the delay of the algorithm that we presented is 0(n5). It

would be interesting to see whether the algorithm could be modified to yield an optimal

algorithm (i.e. one which has 0(n2) delay.) It would also be interesting to see whether

or not the techniques from this thesis could be used to design efficient listing algorithms

for certain sub-families of Q. (Sub-families of Q are called unlabeled graph properties.)

The orderly method has been used to design listing algorithms for various unlabeled
graph properties including unlabeled Hamiltonian graphs [CR1 79], unlabeled graphs
with a given clique [CR1 79], unlabeled Ar-colorable graphs [CR1 79], and unlabeled
connected cubic graphs [MR 86]. As we explained in chapter 2, the orderly method
does not yield polynomial delay listing algorithms. Therefore it would be interesting to

120 4. Directions for Future Work on Listing

determine whether or not the methods from this thesis could be used to design polynomial

delay listing algorithms for unlabeled graph properties.

The unlabeled graph properties that we will consider will be described in the following
manner. Suppose that 5 is a graph property which is isomorphism-invariant. That is,
suppose that for any two isomorphic n-vertex graphs, G\ and G2, G\ is a member of S{n)

if and only if G2 is a member of S(n). Then we can define an unlabeled graph property S

using the relation

S(n) = {C € G(n) | The graphs in isomorphism class C are members of 5(n)}.

It is clear that there are some cases in which the methods from this thesis can be used
to design efficient listing algorithms for S. For example, suppose that S is polynomially
related to Q. Suppose further that there is a polynomial expected time algorithm that
takes as input the canonical representative G of some isomorphism class in G(n) and re-
turns "yes" if and only if G is a member of S(n). Then we can use the algorithm Q-Sample

from subsection 2.3.1 and the method described in remark 2 of subsection 2.2.2 to ob-
tain a probabilistic listing algorithm for S which has polynomial delay and exponentially
small failure probability.

We have not yet considered the possibilities for applying the deterministic methods
from this thesis to the problem of designing efficient listing algorithms for interesting
unlabeled graph properties. However we give some evidence that the methods may be
applicable by using them to derive an efficient listing algorithm for a rather "easy"
unlabeled graph property.

Recall that Clj is the graph property defined by the relation

Clj(n) = {G £ G(n) \ G contains a clique of size j(n)}.

Suppose that j(n) = 0(1). It is not difficult to see that we can modify the algorithm

from example 2 of subsection 2.3.2 to obtain a polynomial space polynomial delay listing

algorithm for Clj.

In particular, we modify the definition of "easy to process" as follows. We say that an
n-vertex graph G is easy to process if and only if it satisfies at least one of the following
conditions:

(i) G has a vertex v with degree n — 1 and G — v has a j-clique,

(ii) G has a unique vertex v of maximum degree and G — v is rigid and G — v has a j-clique.

4. Directions for Future Work on Listing 121

Following example 2, we define Ej to be the set of all classes in Clj(n) whose members

are easy to process and we use the symbol Hj to stand for the family Clj — Ej. Our
algorithm interleaves a polynomial delay listing algorithm for Ej with a listing algorithm

for Wj.

The listing algorithm for Ej is the same as the listing algorithm for E which we
described in example 2, except that it starts by constructing the representatives of classes
in Clj{n — 1) rather than the representatives of classes in Q(n — 1).

For convenience, we provide an outline of the listing algorithm for Hj.

Algorithm Hj

Input n

For each algorithmic representative (G, Aut(G)) of a class in Q{n — 1)
If G has a (j — l)-clique and no j-clique

G' <— GU{(vi9vn)\i<n}

Aut(G') <— the group generated by the generators of Aut(G)
and {(vi, vn) | v, has degree n —2 in G}

Output (G',Aut(G')>
If G is rigid

If G has a j-clique
For all subsets W C Vn-\ such that
vn is a non-unique vertex of maximum degree in G U {(w, vn) \ w G W}

Test-Augmentation(G U {(w, vn) | w £ W})

Else

For all subsets W C Vn-\ such that

vn is a vertex of maximum degree in G U {(w, vn) \ w G W}

If G U {(w, vn) \w£ W} has a j -clique

Test-Augmentation(G U {(w, vn) \ w G W})

Else For all subsets W C Vn-\ such that
vn is a vertex of maximum degree in GU {(w,vn) | w G W}

If IsSmallest(W, Aut(G))
If (G U {(w, vn) | w G W}) has a j-clique

Test-Augmentation(G U {(w,vn) \ w G

122 4. Directions for Future Work on Listing

We conjecture that the algorithm from example 2 of section 2.3.2 can be modified to

obtain an efficient listing algorithm for Clj in some cases in which j(n) = u;(l). The ne-

cessary modifications would be more complicated than the ones described here, however.

We conclude our discussion of unlabeled graph properties by observing that it would
be useful to have a polynomial delay algorithm which lists unlabeled graphs with specified
numbers of edges.

Having considered the problem of designing efficient listing algorithms for unlabeled
graph properties we now consider alternative directions for future work on listing. The
remaining questions that we will consider are generalizations of questions that we have
considered earlier in the thesis.

In section 3.1 we considered the problem of designing listing algorithms for graph
properties which are defined by formulas in the first order language of graphs. It would
be interesting to extend this research by considering the problem of designing listing
algorithms for graph properties which are defined by formulas in other languages (see,
for example, the languages described in [Imm 87]).

In section 3.3 we considered the problem of designing listing algorithms for graphs with
cliques of specified sizes. It would be interesting to generalize this problem by considering
the design of listing algorithms for graphs with induced subgraphs of specified sizes. The
general framework that we have in mind is similar to one of the frameworks studied
in [Rue 87]. We give a brief description here.

Recall from subsection 2.1.1 that we augment a graph G G G{p) by selecting a subset W
of Vn and adding a new vertex vn+i which is adjacent to the members of W. A sequence
H = H\,H2,... of undirected graphs is called an augmentation sequence if H\ = (V\, 0)
and Hi is an augmentation of J?,-i for every i > 1.

Suppose that H is an augmentation sequence and that j is a sub-diagonal function.
Let QHJ be the graph property defined by the relation

GH,j(n) = {G G G(n) \ G contains an induced subgraph which is isomorphic to Hj^}.

It is now clear that the family Clj which we studied in section 3.3 is identical to GKJ

where K = K\, K<i,... is an augmentation sequence in which K{ is the complete graph
on Vi. Therefore, it is possible that the techniques from section 3.3 could be generalized
to yield efficient listing algorithms for GHJ]>

f We are assuming here that j(n) = o;(l). If j(n) = 0(1) then we can use corollary 6 of
section 3.1 to obtain a polynomial space polynomial delay listing algorithm for GHJ-

4. Directions for Future Work on Listing 123

The final problem that we discuss in this chapter is a generalization of the problem of
designing an efficient algorithm for listing unlabeled graphs.

Before describing the general problem we discuss a particular encoding for graphs

and unlabeled graphs. Suppose that p is a positive integer and that H is a member

of £(p)f- We can encode if as a function / from the set { 1 , . . . , (£)} to the set {1,2}.

The encoding that we use is straightforward. We order the (£) 2-element subsets of Vp

lexicographically. Then we define / as follows:

1 if the i 2-element subset of Vp is an edge of H
2 otherwise

For example, suppose that H\ is defined as follows:

The 2-element subsets of V4 are ordered {ui, v2}, {*>i, V3}, {vi,u4}, {^2,^3},
3,^4}. Therefore, the encoding of H\ is the function f\:

f Our description of the generalized problem will use the notation in the literature,
using the symbol "G" to stand for a permutation group and the symbol "n" to refer to
the degree of G. To avoid confusion, we will use the symbol uHn to stand for a graph
and the symbol "p" to stand for the number of vertices (or points) of H.

124 4. Directions for Future Work on Listing

Let Sp denote the symmetric group acting on the set {1 , . . . ,p}. The pair group] of Sp

(denoted 5^) is the group of permutations of { 1 , . . . , (^)} defined as follows. For every
permutation ?r G Sp there is a permutation n1 £ Sp. If {a, 6} is the z1 2-element subset
of {1 , . . . ,p} and {?r(a), TT(&)} is the j 2-element subset of {1 , . . . ,p} then 7r'(z) = j .

For example, suppose that ?r is the permutation (1 2) (3 4). The permutation TT' cor-
responding to 7T is defined by TT' = (2 5) (3 4).

We will use the permutation group Sp to define an equivalence relation ~ on encoded

graphs. Suppose that f\ and J2 are two functions from { 1 , . . . , (£)} to {1,2}. We will

say that f\ is related to fa by ~ if and only if there is a permutation ?r G S^ such that

/ITT = /zj . It is not too difficult to see that f\ is related to fi by ~ if and only if the

graphs encoded by f\ and $2 are isomorphic. That is, ~ is the usual graph isomorphism

relation.

For example, let /2 be the function with the following definition and let H2 denote

the graph encoded by /2:

f For a more detailed description of pair groups see [HP 73].
{ Note that composition of functions is written from right to left.

4. Directions for Future Work on Listing 125

Ad) = 1 A(4) = 2

/i<2) = 2 /2(5)=1

/2(3) = 2 /2(6)=1

J?2 is isomorphic to the graph H\ which we described earlier. Furthermore, the per-

mutation TT' satisfies f\TT' = /b.

To generalize the framework that we have just described suppose that n and m are
positive integers and that G is a group of permutations of {1 , . . . ,n}. We will use the
permutation group G to define an equivalence relation ~G,m on the set of functions
from { 1 , . . . , n} to { 1 , . . . , m}. Suppose that f\ and fi are two functions from { 1 , . . . , n}

to { l , . . . , ra} . We will say that f\ is related to fa by ~G,m if and only if there is a
permutation TT G G such that f\ TT = $2.

For every positive integer m we can use the equivalence relations that we have defined

to define an interesting family of combinatorial structures, which we will call Tm- Every

parameter value of Tm is a group of permutations. Suppose that n is a positive integer

and that G is a group of permutations of {1 , . . . ,n}. We will define Jr
m{G) to be the

set of equivalence classes in the set of functions from { l , . . . ,n} to {l , . . . , ra} under the

equivalence relation ~G,m-

Given these definitions it is easy to verify that each equivalence class in ^(Sp) contains

the (encoded) members of an isomorphism class in G(p)> Therefore, the problem of
designing an efficient listing algorithm for Q can be viewed as a special case of the
problem of designing an efficient listing algorithm for T<i.

126 4. Directions for Future Work on Listing

In the following paragraphs we will further generalize the framework that we have
described. We start by reconsidering our encoded unlabeled graphs. A graph is said to
be self-complementary [Rea 63, Pal 70] if it is isomorphic to the graph that is obtained
by turning all of its edges into non-edges and its non-edges into edges. For example,
the graph H2 is self-complementary because it is isomorphic to its complement, which is
depicted below:

Suppose that / is an encoded p-vertex graph (i.e. / is a function from { 1 , . . . , (2)}
to {1,2}). Using the definition of "self-complementary" we see that / is self-
complementary if and only if it is related by ~ to to the function (1 2)/ where compos-
ition of functions is written from right to left and ~ is the isomorphism relation that we
defined earlier.

It is easy to see that the property of being self-complementary is isomorphism-

invariant. That is, every isomorphism class C G ^(S*) has the property that either every

graph in C is self-complementary or none of the graphs in C are self-complementary. We

will say that an isomorphism class is self-complementary if and only if its members are.

We can generalize the notion of a self-complementary graph by returning to our gen-
eral framework. Suppose that n and m are positive integers and that G is a group of
permutations of { 1 , . . . , n). Suppose further that ft is a permutation of { 1 , . . . , m}. We
will say that a function / from { l , . . . ,n} to { l , . . . ,m} is invariant with respect to h if
and only if / is related to hf by ~G,m- Once again, the notion of invariance is isomorph-
ism invariant. We will say that an equivalence class C G J~m(n) is invariant with respect
to h if and only if its members are.

4. Directions for Future Work on Listing 127

For every positive integer m and every permutation h of {1 , . . . , ra} we will use the
notion of invariance to define an interesting sub-family of Tm which we will call Th>

Suppose that m is a positive integer and that ft is a permutation of {1 , . . . , ra}. Sup-
pose further that G is a group of permutations. We will define Th{G) to be the set of
equivalence classes in Tm(G) which are invariant with respect to h.

Let m be 2 and consider the permutation (1 2) of {1,2}. It is easy to use the defin-
itions that we have provided to show that each equivalence class in T(\2)(Sp) contains

the (encoded) members of a self-complementary isomorphism class in G(p). Therefore,
the problem of designing an efficient listing algorithm for self-complementary unlabeled
graphs can be viewed as a special case of the problem of designing an efficient listing
algorithm for T{\ 2).

Suppose that m is a positive integer and that idm is the identity permutation acting
on the set { 1 , . . . , ra}. It is easy to see that the family Tm is identical to the family Tidm •
Therefore the generalized framework that we have just described subsumes the original
framework.

We have already shown that by choosing the permutation h appropriately we can use
an efficient listing algorithm for Th as an efficient listing algorithm for unlabeled graphs
and as an efficient listing algorithm for self-complementary unlabeled graphs. There are
many other interesting combinatorial families that can be described in this framework.
See, for example, the papers by De Bruijn [DeB 63,DeB 64], the translation of Polya's
paper, and the accompanying paper by Read in [PR 87]. The examples described in these
papers will convince the reader that it would be extremely useful to have an efficient
listing algorithm for Th (or a method for designing such an algorithm given a positive
integer m and a permutation ftof{l,...,ra}).

As a first step, it would be useful to have a method for designing an efficient listing
algorithm for Tm given a positive integer ra. Following Polya's work in 1937 there have
been various published listing algorithms for Tm (see the references in [PR 87]). Most of
these algorithms have been designed and used by chemists in their efforts to list chemical
compounds. However, none of these methods seems to be computationally efficient,
except in special cases. In [BFP 89] Brown, Finkelstein, and Purdom have combined
various heuristics to obtain a general backtracking listing algorithm for Tm • They state
that their algorithm is useful in practice, although it does not have polynomial delay.

Brown, Finkelstein, and Purdom point out that the problem of designing an efficient
listing algorithm for Tm is made easier if we restrict the inputs of the algorithm to the

128 4. Directions for Future Work on Listing

set of p-groups. They point out that in this restricted case Luks's methods from [Luk 82]
can be used to perform the symmetry testing in their algorithm.

Thus, if we want to design a polynomial delay listing algorithm for Tm & good starting

point might be to restrict the parameter values of Tm to the set of p-groups and to

consider ways of combining the methods of [BFP 89] and the methods of [Luk 82].

An alternative approach (which may also work well in the restricted case) is to attempt
to use the random sampling methods from subsections 2.1.2 and 2.3.1. Designing an
efficient random sampling algorithm for Tm could, however, turn out to be a difficult
problem. The interested reader should start by consulting [DW 83] and [Wor 87].

5. Related Results 129

5. Related Results

The two sections in this chapter contain work which is related to the work described

in chapters 1-4. In section 5.1 we compare the computational difficulty of the listing

problem with the difficulty of other computational problems involving combinatorial

structures. In section 5.2 we consider a particular computational counting problem which

is related to a listing problem described in chapter 4.

5.1. Comparing Listing with other Computational
Problems

In this section we compare the listing problem with other computational prob-

lems involving combinatorial structures. The problems that we consider are described

in [JVV 86]. For completeness, we provide a description of the problems here. Suppose

that 5 is a family of combinatorial structures. We consider five computational problems

associated with 5. In each case the input is a parameter value p of S:

Problem 1 — The Existence Problem

Determine whether or not S(p) = 0 .

Problem 2 — The Construction Problem

If S(p) is non-empty then output a member of an equivalence class in S(p). Otherwise,
halt without output.

Problem 3 — The Listing Problem

If S(p) is non-empty then output one representative from each equivalence class
in S(p). Otherwise, halt without output.

Problem 4 — The Random Sampling Problem

If S(p) is non-empty then "randomly" choose an equivalence class in S(p) and output
a member of that equivalence class. Otherwise, halt without output.

Problem 5 — The Counting Problem

Output the size of S(p).

In order to compare the computational difficulty of the listing problem with the dif-
ficulty of the other four problems we must establish criteria by which we can evaluate
algorithms which solve the problems. The existence, construction, and counting prob-
lems which we described here have already been studied extensively from the perspective
of computational complexity [Sim 77, GJ 79, Val 79]. We will use the standard criterion

130 5. Related Results

for efficiency, saying that an algorithm that solves one of these problems is efficient if and
only if its running time is bounded from above by a polynomial in the size of the input.

We discussed the notion of an efficient random sampling algorithm in chapter 2. In
that chapter, we defined the bias factor of a random sampling algorithm. The bias
factor measures the extent to which the probability distribution from which the algorithm
samples equivalence classes deviates from the uniform distribution. We said that a ran-
dom sampling algorithm is efficient if and only if its expected running time and its bias
factor are bounded from above by polynomials in the size of the input.

Throughout this thesis we have said that a listing algorithm is efficient if and only if
it has cumulative polynomial delay. We maintain that criterion in this section. However,
we will sometimes get stronger results by considering a weaker criterion. In particular,
we will sometimes consider the notion of polynomial total time. This notion was defined
in the bibliographic note at the end of chapter one. Quite simply, a listing algorithm for
a family of combinatorial structures is said to run in polynomial total time if and only if
its running time is bounded from above by a polynomial in the size of the input and in
the number of outputs.

Having established these criteria for efficiency we can now compare the computational
difficulty of the listing problem with the difficulty of the other problems that we have
described. We start by comparing the difficulty of the listing problem with the difficulty
of the existence and construction problems.

Let Ex denote the set of families of combinatorial structures whose existence problems
can be solved in polynomial time. Let Con denote the set of families whose construction
problems can be solved in polynomial time. Let PTT denote the set of families with
polynomial total time listing algorithms and let CPD denote the set of families with
cumulative polynomial delay listing algorithms. The following diagram illustrates the
relationship between these sets.

5. Related Results 131

The relationships indicated in the diagram are established in the following observa-
tions:

Observation 15. CPD C Con, CPD C PTT, Con C Ex, and PTT C Ex.

Proof: All of the inclusions are straightforward except the last. Suppose that A is a

polynomial total time listing algorithm for a family S. By the definition of polynomial

total time there is a polynomial q such that whenever A is run with an input p such that

S(p) = 0 the number of machine instructions that it executes is bounded from above

by #(|p|). Given this fact it is clear that A could be modified to obtain a polynomial

time algorithm for solving the existence problem that is associated with S. o

Observation 16. There is a family which is a member of Ex but is not a member

of Con or PTT.

Proof: Consider the family CHECKERSi which was defined in the bibliographic note
at the end of chapter one. •

132 5. Related Results

Observation 17. There is a family which is a member of Con but is not a member

of PTT.

Proof: To obtain an example of such a family we need only make a slight modifica-
tion to the family CHECKERSi. Let CHECKERS3 be the family with the following
definition. Every parameter value of CHECKERS3 is a square checkers board with
some arrangement of black and white pieces. The board B is associated with the set
CHECKERS3(£) = {1} U CHECKERS!(J5).D

Observation 18. There is a family which is a member of PTT but is not a member

of Con.

Proof: Consider the family CHECKERS2 which was defined in the bibliographic note
at the end of chapter one. D

Observation 19. There is a family which is a member of Con fl PTT but is not a
member of CPD.

Proof: To obtain an example of such a family we need only make a slight modifica-

tion to CHECKERS2. In particular, let CHECKERS4 be the family with the following

definition. Every parameter value of CHECKERS4 is a square checkers board with some

arrangement of black and white pieces. The n x n board B is associated with the set

CHECKERS4(B) = {1} U CHECKERS2(B). D

Observation 20. There is a family which is a member of CPD.

Proof: We have seen lots of examples of members of CPD in this thesis. Take, for

example, the family Q. a

Now that we have compared the difficulty of the listing problem with the difficulty
of the existence and construction problems we proceed to compare the difficulty of the
listing problem with the difficulty of the random sampling problem. Let RS denote
the set of families which have efficient random sampling algorithms. Let PPD denote
the set of families with probabilistic listing algorithms which have polynomial delay and
exponentially small failure probability. The following diagram illustrates the relationship
between these sets, assuming that RP ^ NP.

5. Related Results 133

PPD

We established in chapter 2 (theorem 2) that RS C PPD. Therefore, the claim follows

from the following observation.

Observation 21. If RP ^ NP then there is a family which is a member of PPD and
is not a member of RS.

Proof: Let Cycles be the family with the following definition. Every parameter value
of Cycles is a directed graph. The value G is associated with the set Cycles(G) which
contains all simple cycles in G. Johnson's paper [Joh 75] contains a polynomial delay
listing algorithm for Cycles. However [JVV 86] shows that there is no efficient random
sampling algorithm for Cycles unless RP = NP. •

Now that we have compared the difficulty of the listing problem with the difficulty
of the existence, construction, and random sampling problems we proceed to compare
the difficulty of the listing problem with the difficulty of the counting problem. Let C
denote the set of families whose counting problems can be solved in polynomial time.
The following diagram illustrates the relationship between C, CPD, and PTT.

134 5. Related Results

PTT

The relationships indicated in the diagrams are established in the following observa-
tions.
Observation 22. There is a family which is a member of C and is not a member

of PTT.

Proof: Consider the family CHECKERSi, which was defined in the bibliographic note

at the end of chapter one. D

Observation 23. There is a family which is a member of C fl PTT and not a member
of CPD.

Proof: Consider the family CHECKER^, which was defined in the bibliographic note

at the end of chapter one. •

Observation 24. There is a family which is a member of CPD n C.

Proof: Consider the family Q. a

Observation 25. There is a family which is a member of CPD but not a member of C.

5. Related Results 135

Proof: Consider the family CHECKERS5 which is defined as follows. Every parameter
value of CHECKERS5 is a square checkers board with some arrangement of black and
white pieces. The n x n board B is associated with the set

CHECKERS.**) = / { l , -<}U {«yes"} i
l { l , - , 5 - >

if white can force a win on B

otherwise •

Observation 26. There is a family which is a member of PTT but not a member of

CPD U C.

Proof: Consider the family CHECKERS6 which is defined as follows. Every parameter
value of CHECKERS6 is a square checkers board with some arrangement of black and
white pieces. The n x n board B is associated with the set

I CHECKERS2(F) U {"yes"} if white can force a win on B

CHECKERS^) = 1 CHECKERS2(F) otherwise u

We have now compared the difficulty of the listing problem with the difficulty of each
of the problems described in [JVV 86]. While our results are conclusive, the constructions
used in this section have been rather artificial. It would be interesting to find examples
of natural combinatorial families which separate the complexity classes that we have
separated in this section. We conclude the section by describing one natural candidate
for the class Con - PTT.

In order to define the candidate we need some definitions. A monotone boolean formula

is a boolean formula in which the negation symbol does not appear. An implicant of
such formula is a subset / of its variables, such that, whenever each of the variables in
I is set to true, the value of the formula is true. A prime implicant is an implicant
that does not contain any other implicant as a proper subset. The family PI is defined
as follows. Every parameter value of PI is a monotone boolean formula. The value F is
associated with the set PI(F) which contains the prime implicants of F.

It is easy to design a polynomial time algorithm which solves the construction problem
that is associated with PL (For example, there is a simple algorithm which uses the greedy
heuristic to solve this problem.)

However, there is no polynomial total time listing algorithm for PI unless P = NP.
We demonstrate this fact by reduction from SAT. Suppose that F is a boolean formula (a
parameter value of SAT) with variables x\,..., xn. Let Fm denote the monotone boolean
formula that is formed by replacing each unnegated variable X{ by t{ and each negated

136 5. Related Results

variable ~x~l by /,. Let F^ be the formula t\fi V . . . V tnfn V Fm. The claim is established
by observing that F is unsatisfiable if and only if P l (i ^) = {£1/1,..., tnfn}].

We have now shown that PI is a member of Con but that it is not a member of PTT
unless P = NP. This fact explains the inefficiency of the many published listing al-
gorithms for PI [Bre 72,Obe 83]. It also demonstrates the fact that PI is not likely to be
self-reducible since self-reducible families with easy existence problems have polynomial
delay listing algorithms (see chapter 2).

5.2. Evaluating the Cycle Index Polynomial

In this section, we will investigate the computational difficulty of evaluating and
approximately evaluating Polya's cycle index polynomial. The results that we obtain
will have corollaries concerning the difficulty of solving the counting problems that are
associated with the families Tm and Th-

Before describing the computational problems that we study in this section, we provide
the necessary definitions. Suppose that G is a group of permutations of { l , . . . , n } .
We will use the notation \G\ to denote the number of permutations in G. It is well
known that each permutation g G G decomposes the set {1 , . . . ,n} into a collection of
cycles, which we will call the cycles of g. We will use the notation c(g) to denote the
number of cycles in this decomposition and the notation Ci(g) to denote the number
of cycles of length i. The cycle index polynomial of G is the n-variable polynomial

The first computational problem that we discuss is the generic cycle index evaluation
problem:

Generic Cycle Index Evaluation

Input: A set of generators for a degree n permutation group G

n non-negative rational numbers y\,..., yn

Output: PG(yi,...,!/n).

It is easy to see that we could implement an algorithm that solves the generic cycle
index evaluation problem by summing over the permutations in the group G . However,
the size of a permutation group can be exponential in the size of its smallest generating

f The idea behind this construction is taken from [LLR 80] where it is presented in
terms of maximal independent sets.

5. Related Results 137

setf, so this method is infeasible computationally. In fact, no feasible method for solving
this problem is known to exist. Furthermore, the construction from Lubiw's #P-hardness
proof for #Fixed-Point-Free Automorphism [Lub 81] can be used to show that the generic
cycle index evaluation problem is #P-hard.

Although the cycle index polynomial can be used to solve the counting problems that
are associated with Tm and Thy a proof that the generic cycle index evaluation problem
is #P-hard does not necessarily imply that the counting problems are #P-hard. On
the contrary, the counting problems that are associated with Tm and Th correspond to
special cases of the generic cycle index evaluation problem. In particular, each positive
integer m and each permutation h of { 1 , . . . , m} can be associated with a specific sequence
Vi»2/2 > • • • of non-negative rational numbers in such a way that counting the equivalence
classes in Th(G) for a degree n permutation group G is equivalent to evaluating the cycle
index polynomial of G at the point (t/ i , . . . , yn).

In order to obtain interesting results about the difficulty of solving the counting prob-
lems associated with Tm and Th and in order to obtain the strongest possible results
about the difficulty of evaluating the cycle index polynomial we will let y\, y<i,... stand
for an arbitrary fixed sequence of non-negative rational numbers and we will study the
computational difficulty of the following cycle index evaluation problem:

Cycle Index Evaluation(y\, ?/2> • • •)

Input: A set of generators for a degree n permutation group G.

Output: Pc?(yi,...,yn).

In order to show that the cycle index evaluation problem is #P-hard we will consider

the difficulty of determining a particular coefficient of the cycle index polynomial. In

particular, we will consider the following problem in which i is taken to be a fixed

positive integer.

Cycle Index Coefficient^)

Input: A set of generators for a permutation group G whose degree, n,
is a multiple of i.

Output: The coefficient of xn
{'

x in the cycle index polynomial of G.

We will obtain the following result:

f A degree n permutation group can contain up to n\ permutations. However, every
degree n permutation group has a generating set of size at most n — 1, as [Jer 86]
demonstrates.

138 5. Related Results

Theorem 21. Let i > 1 be a fixed positive integer. Cycle Index Coefficient^) is

hard.

The coefficient of x"'1 in PQ is 1/|C?| times the number of permutations in G that
have n/i cycles of length i. Therefore theorem 21 implies that it is #P-hard to determine
how many permutations in a group have a given cycle structure.

As well as being interesting in its own right, theorem 21 is the main tool which we use
to establish the computational difficulty of cycle index evaluation. Using theorem 21 we
obtain the following result:

Theorem 22. If yi,t/2>• • • is a sequence of non-negative rational numbers and there
exists an i such that y,- ^ y[and y* ^ 0 then Cycle Index Evaluation(yi, y2,...) is #P-
hard.

Theorem 22 has some interesting corollaries which describe the computational dif-
ficulty of solving the counting problems that are associated with Tm and Th> The
corollaries will be discussed in subsection 5.2.1.

It would be interesting to determine the computational difficulty of Cycle Index Eval-
uation(yi,y2,...) when yi,y2,... is a sequence for which the condition in theorem 22 is
false. We have not solved this problem in this work, although we make the following
observations:
Observation 27. Let yi,y2,... be a fixed sequence of non-negative rational num-

bers such that for every positive integer j we have yj =y-[. Then Cycle Index Evalu-

ation(yi, y2,...) can be solved in polynomial time.

Observation 28. Let yi,y2,. • • be a fixed sequence of non-negative rational numbers
such that for every integer j > 1 we have yj = 0. Then Cycle Index Evaluation(y\, ?/2, • • •)
can be solved in polynomial time.

We conjecture that Cycle Index Evaluation(yi,y2,...) is #P-hard for every sequence
yi, y2t • • • which fails to satisfy the conditions in observation 27 and observation 28. The
techniques which we use to prove theorem 24 can be adapted to establish the #P-hardness
of Cycle Index Evaluation(y\, y2,...) for many such sequences.

Since Cycle Index Evaluaiion(yi,y2,...) is almost always #P-hard we will be inter-
ested in determining the computational difficulty of approximately solving the cycle index
evaluation problem. In particular, suppose that q is a function from N to N and consider
the following approximation problem:

5. Related Results 139

Cycle Index Approximaiion(q, y\, t/2,...)

Input: A set of generators for a degree n permutation group G.

Output: A rational number z such that

^ " ^ y n) <z <q{n)PG{yl^..,yn).
q(n)

We will obtain the following result concerning the computational difficulty of Cycle

Index Approximation(q, yi, y2, • • •)•

Theorem 23. If yi,2/2> ••• 1S a sequence of non-negative rational numbers and there

exists an i such that y, > y\ then Cycle Index Approximation(q,yi ,y2,...) is NP-hard

for every polynomial q.

As one would expect, we will be able to use theorem 23 to derive corollaries about the

computational difficulty of approximately solving the counting problems.

It seems to be difficult to determine the computational complexity of Cycle Index

Approximation(q, y\, y2,.. •) when t/i, 2/2? • • • is a fixed sequence such that the conditions

in observation 27, observation 28, and theorem 23 are false.

We consider the special case in which y\ = yi = • • • = y for some positive rational

number y and we obtain the following theorem.

Theorem 24. [Goldberg, Jerrum] If y is a positive rational number that is not an

integer then Cycle Index Approximation^,y, y,...) is NP-hard for every polynomial q.

It will be clear from the proof of theorem 24 that our technique does not say any-

thing about the difficulty of Cycle Index Approximation(q, y,y,...) when y is an integer.

The condition that y be a non-integer seems rather odd at first but we will see in sub-

section 5.2.1 that it is precisely the integer values of y for which Po^y^y,.. •) has a

combinatorial meaning. Therefore, our theorem leaves open the possibility that the com-

binatorial interpretation of Pciy*, • • •, y) in the integer case could be exploited to provide

a fast algorithm.

The structure of this section is the following: Subsection 5.2.1 describes the relation-

ship between the counting problems that are associated with Tm and Th a n d the prob-

lems Cycle Index Evaluation(y\,y2,...) and Cycle Index Approximation^, y\, y2,...). In

subsection 5.2.1 we derive some corollaries of theorems 22 and 23 which relate to the

difficulty of counting equivalence classes. Subsection 5.2.2 discusses the computational

difficulty of evaluating the cycle index polynomial. It contains a proof of theorems 21

and 22. Finally, subsection 5.2.3 discusses the difficulty of approximately evaluating the

cycle index polynomial. It contains the proofs of theorems 23 and 24.

140 5. Related Results

Before considering the relationship between the counting problems and the cycle index
evaluation problems, we state two definitions which will be used throughout the section.

1. The cycle bound of a permutation group is the length of the longest cycle of a

permutation in the group. That is, the cycle bound of G is the maximum over all

permutations g G G of the maximum i such that C{(g) > 0.

2. Let IDj denote the trivial group of permutations of { 1 , . . . , j}. (That is, let IDj

consist of the identity permutation on {l , . . . , j} .) Let G be any group of permuta-
tions of { l , . . . , n } . The Kranz Group G[IDj] [DeB 64] is the group of permutations
of {(a, b) 11 < a < n, 1 < b < j} with the following description. Each permutation g G G

corresponds to exactly one permutation g[IDj] G G[IDj]. If g maps the object o\

to o2 then g[IDj] maps (oi,/) to (o2,/) for 1 < / < j . We will use the fact that

Having stated these definitions, we proceed to consider the relationship between the
counting problems and the cycle index evaluation problems.

5.2.1. Evaluating and Counting Equivalence Classes

The relationships between the counting problems that are associated with Tm

and Th a n d the problems Cycle Index Evaluation(yi, y<i,...) and Cycle Index Approxim-
o>tion(q,yiyy2i...) are captured in the following theorems. The proofs of the theorems
can be found in [DeB 63] and [DeB 64].

Theorem 25. (Polya) Suppose that mis a positive integer and that G is a group of

permutations. The number of equivalence classes in Tm(G) is PG{™>, • • •, m)-

Theorem 26. (De Bruijn) Suppose that n and m are positive integers, that h is a

permutation of { 1 , . . . , m}, and that G is a group of permutations of { 1 , . . . , n). The

number of equivalence classes in Fh{G) is PG(I/I> • • • -> 2/n) where yj denotes the number

of objects k G { 1 , . . . , m) such that hJ(k) = k.

Using theorem 25 we can immediately derive the following corollary of theorem 22.

Corollary 10. Let m > 1 be a fixed integer. The counting problem that is associated

with ^n is #P-hard.

We can also derive the following corollary, which is a generalization of corollary 10.

Corollary 11. Let m > 1 be a fixed integer and let h be any fixed permutation

of { 1 , . . . , m}. The counting problem associated with Th is #P-hard.

Proof: Let yj denote the number of objects k G { 1 , . . . , m} such that hJ(k) = k. By De

Bruijn's theorem, the number of equivalence classes in Fh{G) is PG(^I ? • • • > 2/n)- Suppose

5. Related Results 141

that yi is zero or one. Let i be the order of h (note that i > 1). Then y, = m so yi ^ y\

and y, ^ 0. The corollary follows from theorem 22. So, suppose that yi > 1. Let p be

a prime number that is larger than m. It is easy to see that yp = y\. We conclude

that yp ^ y\ and that yp ^ 0. The corollary follows from theorem 22. •

In addition, we can derive a corollary of theorem 23.

Corollary 12. Let m > 1 be a fixed integer and let h be any fixed permutation
of { 1 , . . . , m}. Let yj denote the number of elements in { 1 , . . . , m) that are fixed by h?.

If there exists some i such that y,- > y[then the following problem is NP-hard for any
polynomial q:

Input: A set of generators for a degree n permutation group G

Output: A quantity z that is within a factor of q(n) of the number of equivalence

classes in Th(G).

The condition that there exists an i such that y, > y\ restricts the values of m and h to

which the NP-hardness result applies. This restriction makes corollary 12 more difficult

to appreciate than corollaries 10 and 11, so it is worth considering a special case. Suppose

that G is a group of permutations of { 1 , . . . , n} and that / is a function from { 1 , . . . , n}

to {1,2}. We will say that / is self-complementary if and only if / is equivalent to (1 2) /

under the equivalence relation ~G,2- We will say that an equivalence class in ^(G)

is self-complementary whenever its members are. We can apply theorem 23 directly to

the problem of counting self-complementary equivalence classes, obtaining the following

corollary:

Corollary 13. The following problem is NP-hard for any polynomial q:

Input: A set of generators for a degree n permutation group G

Output: A quantity z that is within a factor of q(n) of the number of self-

complementary equivalence classes in ^{G).

Proof: By De Bruijn's theorem, the number of self-complementary equivalence classes

in p2{G) is equal to PG(yi, y2> • • •) where yj is the number of objects k G {1,2} that are

fixed by (1 2)J. It is easy to see that yj — 0 if j is an odd number and that yj = 2 otherwise.

Therefore, the number of self-complementary equivalence classes is PG(0, 2,0,2,...). •

Corollaries 10— 13 relate the problem of evaluating the cycle index polynomial to the
counting problems that are associated with Tm and Th • In the remainder of this section
we will leave aside the counting problems and we will focus on the problem of evaluating
the cycle index polynomial.

142 5. Related Results

5.2.2. The Difficulty of Evaluating the Cycle Index Polynomial

In this subsection we focus on the computational difficulty of the problem Cycle Index

Evaluation(yi,y2,.. .)• We start with some observations that place upper bounds on the
difficulty of the problem.

Observation 27. Let $/i,y2>• • • be a fixed sequence of non-negative rational numbers

such that for every positive integer j we have yj = y{. Then PG(VI? • • •, Vn) = y\- There-

fore, Cycle Index Evaluation(yi,y2,...) can be solved in polynomial time.

Observation 28. Let yi,y25 • • • be a fixed sequence of non-negative rational numbers

such that for every integer j > 1 we have yj = 0. Then PG(VII • • • ? Vn) = Vi/\G\. There-

fore, Cycle Index Evaluation(y\,y2,...) can be solved in polynomial time.

Observation 29. Let yi,j/2»«-« be a fixed sequence of non-negative integers. The

following problem is in #P .

Input: A set of generators for a degree n permutation group G.

uuxpux. Z^geG Vi Vn

The main results of this subsection are theorems 21 and 22. We begin our presentation
of these results by setting up the framework for the proof of theorem 21. Then we prove a
slightly stronger version of theorem 21 than the version stated in the introduction to this
section. Finally, we use the strengthened version of the theorem to prove theorem 22.

Suppose that p is a prime number, that A: is a positive integer, and that i is an integer

such that i ^ 0 (mod p). We use the notation T(i,p, k) to stand for the size of the set

{ m | (0<m<pfc) and (m = i (mod p)) and (gcd(m,pfc) = 1) }.

We will use the following fact in the proof of theorem 21.

Fact 1. Let p be a prime number. Let k be a positive integer and let i and j be
integers such that i ^ 0 (mod p) and j ' ^ 0 (mod p). Then T(z,p, k) = T(j,p, k) ^ Of.

Proof:

Let kf be the positive integer such that k—pak! for some a > 0 and gcd(p, k') = 1. Since
the integers mod p form a field, there is a non-negative integer A such that 0 < A < p and
i + Xk1 = j (mod p).

f The author is grateful to Paul Goldberg for helping to prove this fact.

5. Related Results 143

We use the notation Si,P}k to represent the set {[lp + i] mod pk \ I G N}. Using this
notation, we see that T(i,p, k) — \{m G Si)P}k \ gcd(m,pfc) = 1}|. Furthermore, SjiPik —

{[lp + i + \k']modpk\leN}.

The equality of T(i,p, k) and T(j,p, k) follows from the fact that

gcd([lp + i] mod pk , pk) = gcd(lp + i, pk) = gcd(/p + i, k') =

gcd(/p + i + AJfc', fc') = gcd([/p + i + Afc'] modpk,pk).

The fact that T(i,p, Jfc) ^ 0 follows from the fact that T(l,p, fc) ̂ 0. •

We have now established the fact that the value of T(z,p, k) does not depend upon i

(so long as i ̂ 0 (mod p)). Therefore, we will drop the parameter "i", and we will refer

to T(p, fc). Using fact 1, we can now prove theorem 21:

Theorem 21. Let i > 1 be a fixed positive integer. The following problem is #P-hard:

Cycle-Bounded Cycle Index Coefficient^)

Input: A set of generators for a permutation group G whose cycle bound is z, and

whose degree, n, is a multiple of i.

Output: The coefficient of x" in the cycle index polynomial of G.

As we pointed out in the introduction, the coefficient of x™'1 in PG is 1/|G| times the
number of permutations in G that have n/i cycles of length i. Therefore, Cycle-Bounded

Cycle Index Coefficient^) is polynomially equivalent to the following problem:

Input: A set of generators for a permutation group G whose cycle bound is z, and
whose degree, n, is a multiple of i.

Output: The number of permutations in G that have n/i cycles of length i.

The #P-hardness of this problem is established by considering three cases. Let p be

a prime number and k be a positive integer such that i = pk. Lemma 22 establishes

the #P-hardness of Cycle-Bounded Cycle Index Coefficient^) for p > 3. Lemma 23

establishes the result for p = 3 and lemma 24 establishes the result for p = 2.

Lemma 22. Let p > 3 be a fixed prime and let k be any fixed positive integer. The

following problem is #P-hard:

Input: A set of generators for a permutation group G whose cycle bound is pk, and

whose degree, n, is a multiple of pk.

Output: The number of permutations in G that have n/pk cycles of length pk.

Proof: For any integer / > 3 the following problem is #P-hard [Edw 86]:

144 5. Related Results

Graph l-Colorability

Input: An undirected graph F

Output: The number of /-coloringsf of F.

We will proceed by reduction from #Graph (p—\)-Colorability. Suppose that we
have a graph F with vertex set {v\,... , v,,} and edge set {ei , . . . , e^}. We construct a
permutation group G by using the following method.

1. For each vertex u,-, we introduce a set Vi of pk objects and a permutation gVi that

cycles them.

2. For each edge ej, we introduce a set Ej of pk objects and a permutation gej that
cycles them.

3. Let G be the group generated by the following three sets:

iii- {9i 19i = 9vigea9ep ' • • 97*97*}

where vt- is a vertex of F and it is the vertex of smaller index in edges ea, e^,...

and the vertex of larger index in edges ea, e&,...

We claim that each (p— l)-coloring of F corresponds to a set of T(p, k) permuta-
tions in G, each of which has n/pk cycles of length pk. Furthermore, we claim that G
has no other permutations that have n/pk cycles of length pk. We prove the claim in
two steps.

1. Suppose that we have a (p— l)-coloring of F and let c, denote the color of vertex V{.

Since c, ^ 0 (mod p), we can use fact 1 to show that there are T(p, k) members of

the set {[c{ + pi] modpk\l G N} that are relatively prime to pk. Therefore, the set

{gl\gl\ \I £ N} contains T(p, k) permutations that are cycles of length pk.

Suppose that ej is an edge in F whose smaller endpoint is colored with color c and
whose larger endpoint is colored with a different color, d. The restriction of the permuta-
tion g\x "-glv to the objects in Ej is gc

e~
d. Since c — d^O (mod p) we can use fact 1

to show that the set {gc
e~

dgll \l G N} contains T(p, k) permutations that are cycles of
length pk.

Finally, we conclude that the set { g\l • • • gc
v
v gp

v[
l • • • gv

v[
v gv

e[
x • • • gfj1 \ U / G N } con-

tains T(p, k)v ** permutations which have n/pk cycles of length pk.

f An /-coloring of a graph is an assignment of a color from the set {1,.. . , /} to each
vertex in the graph in such a way that no two adjacent vertices receive the same color.

5. Related Results 145

2. Suppose that g is a permutation in G which has n/pk cycles of length pk. It is easy
to see that we can rewrite g as g^1 • • • gl"g%[1 • • • gl[v gl[x * • * <7e/ where 0 < c\,..., cu < p

and /,, /,-' G N. Since the restriction of g to the objects in Vi is a cycle of length pk, it
must be the case that c, ^ 0 for all i. Consider the function that assigns color c; to
vertex v,- for each i. We must show that this function is a coloring of F.

Suppose that there is an edge ej whose vertices are both assigned the same color. Then

the restriction of g to the objects in Ej is gl/. Now gcd(p/^,pfc) ^ 1. Therefore, the

restriction of g to the objects in Ej is not a cycle of length pfc, which is a contradiction. •

Lemma 23. Let k be any fixed positive integer. The following problem is #P-hard:
Input: A set of generators for a permutation group G whose cycle bound is 3fc, and

whose degree, n, is a multiple of 3k.

Output: The number of permutations in G that have n/3k cycles of length 3k.

Proof:

This proof is very similar to the proof of lemma 22. We start by observing that the
following problem is #P-hard: #Not-All-Equal 3Sat

Input: A Set U of Boolean variables and a collection C of clauses over U, each of
which contains three literals.

Output: The number of assignments of truth values to the variables that have the
property that the number of "true" literals in any given clause is either one
or two.

To see that # Not-All-Equal SSat is #P-hard, recall that the following problem is

#P-hard [Val 79].
^Monotone 2Sat

Input: A Set U of Boolean variables and a collection C of clauses over J7, each of
which contains two variables.

Output: The number of assignments of truth values to the variables that have the

property that the number of "true" literals in any given clause is either one
or two.

Let {U, C) be an input to ^Monotone 2Sat. Let U1 = U U {x} for some variable x
that is not in U and let C' = {c U {x} \c G C}. The assignments of truth values to
the variables in U that are counted in the output ^Monotone 2Sat(U, C) are in one-
to-one correspondence with the assignments of truth values to the variables in Uf that
are counted in #Not-All-Equal 3Sat(U',C) and have x = "false". The result follows
from the fact that x = "false" in exactly half of the assignments that are counted in

146 5. Related Results

Not-All-Equal SSat(U', C) , which follows from the fact that the definition of the prob-
lem #Not-All-Equal SSat does not change if we substitute "false" for "true".

Now that we have established the #P-hardness of #Not-All-Equal SSat, we proceed by
reduction from this problem. Suppose that we have a set U = {«i , . . . , uv} of variables
and a collection {ci , . . . , c^} of clauses over U. We construct a permutation group G by
using the following method.

1. For each variable u,-, we introduce a set U% of 3A; objects and a permutation gUi that

cycles them.

2. For each clause Cj, we introduce a set Cj of 3A; objects and a permutation gCj that
cycles them.

3. Let G be the group generated by the following three sets:

iii- {9i 19i = 9ui9ca9c0 • • • 97*97*}

where U{ is a variable in U that occurs positively in clauses ca, c^,... and negatively

in clauses ca,c&,...

We claim that each assignment of truth values to the variables in U that has the
property that the number of "true" literals in any given clause in C is either one or two
corresponds to a set of T(3, fc)1"1"'* permutations in G, each of which has n/3k cycles of
length 3fc. Furthermore, we claim that G has no other permutations that have n/3k
cycles of length 3fc. We prove the claim in two steps.

1. Suppose that we have an assignment of truth values to the variables in U. Let ti be 1

if the variable Ui is assigned the value "true" and —1 otherwise. Since t{ ^ 0 (mod 3) we

can use fact 1 to show that the set {</£'. <7̂ ! |/ G N} contains T(3,fc) permutations that

are cycles of length 3k.

Consider any clause Cj. If U{ or «7 is a "true" literal in Cj then the restriction of g\{

to the objects in Cj is gCj. If U{ or tZ7 is a "false" literal in Cj then the restriction of g\{

to the objects in Cj is g~l.

Now, suppose that exactly one of the literals in Cj is "true". In this case the restriction
°f 9*1 ''' 9lJ to the objects in Cj is g~l. Since —1^0 (mod 3) we can use fact 1 to show
that the set {g719l- I f £ N} contains T(3, k) permutations that are cycles of length 3fc.
Alternatively, suppose that exactly two of the literals in Cj are "true". In this case the
restriction of gl1 • • • gfj to the objects in Cj is gCj. Since 1 ^ 0 (mod 3) we can use

5. Related Results 147

fact 1 to show that the set {gCigV | / £ N} contains T(3, k) permutations that are cycles

of length 3k.

Finally, we conclude that the set { g\l • • • g'j g^ • • • g^g^ • • • gVf \ U, / / G N } con-

tains T(3, k)"**1 permutations which have n/3k cycles of length 3k.

2. Suppose that g is a permutation in G which has n/3k cycles of length 3k. It is easy to
see that we can rewrite g as g\x --g^gl** "-gl^g^1 " * 0c/ where tu ... ,tv G {-1,0,1}
and / i , / / E N. Since the restriction of g to the objects in £7, is a cycle of length 3k, it
must be the case that ti ^ 0 for all i. Consider the truth assignment that gives U{ the
value "true" if ti is 1 and "false" otherwise. We must show that one or two literals are
"true" in any given clause.

Suppose that Cj is a clause with three "true" literals. Then the restriction of g to the
Q I O ft

objects in Cj is gCj
 3. Since gcd(3 + 3/j, 3k) ^ 1, the restriction of g to the objects in Cj is

not a cycle of length 3fc, which is a contradiction. Similarly, if Cj has three "false" literals
—3+3/'

then the restriction of g to the objects in Cj is gCj
 3. Since gcd(—3 + 3/^, 3k) ^ 1, the

restriction of g to the objects in Cj is not a cycle of length 3k. Once again, we get a
contradiction. •
Lemma 24. Let k be any fixed positive integer. The following problem is #P-hard:

Input: A set of generators for a permutation group G whose cycle bound is 2fc, and
whose degree, n, is a multiple of 2k.

Output: The number of permutations in G that have n/2k cycles of length 2k.

Proof: Lubiw's proof that #Fixed-Point-Free Automorphism is #P-hardf [Lub 81] es-

tablishes the lemma for the case k = 1. Following Lubiw, we proceed by reduction from
the following #P-hard problem [Val 79]:
Satisfiability

Input: A Set U of Boolean variables and a collection C of clauses over [/, each of
which contains three literals.

Output: The number of assignments of truth values to the variables that have the

property that each clause has at least one "true" literal.

Our clause checker will be a generalization of Lubiw's, so we use the following gadget
(which was used in her paper).

f Since every permutation in Lubiw's group has cycle bound 2, her proof actually shows
that Cycle Index Evaluation(yi,y2,...) is #P-hard whenever yi = 0 and y2 ^ 0.

148 5. Related Results

Gadget 1. Let H be the group of permutations of { 1 , . . . , 8} that is generated by

m

= (13)(2 4)(5 7)(6 8)

= (15)(2 6)(3 7)(4 8)

This group is commutative. Therefore, H = {h[l]% h[2]j h[3]k | i,j, k G {0,1}}.

Every member of H except the identity is the product of four transpositions

(h h)(h H)(H *6)(«7 ̂ s) where t 'i,...,is is a permutation of 1, . . . , 8.

In order to generalize to the case k > 1, we need an additional gadget.

Gadget 2.

Let 5/ be a set of k objects £/[l], . . . , Si[k].

Let Sm be a set of k objects £ m [l] , . . . , 5m[fc].

Let Swap(lm) represent the permutation (Si[l] Sm[l]) • • • (Si[k] Sm[k]).

Let Cycle(l) represent the permutation (5/[l] •

It is easy to prove the following identity!.

Cycle(m)Swap(lm) = Swap(lm)Cycle(l) = (5m[l] 5,[1] • • • S

Let J1 be the group (Cycle(l), Cycle{m))\ and let J = (Swap(lm), Cycle{l), Cycle(m)).

Using the identity, it is easy to see that J = Jf U {Swap(lm) A | A E J '} . Clearly, J1 has

no cycle of length 2k. We know from the identity that at least one member of J is a cycle

of length 2k, however. Let T(fc) denote the number of members of J that are cycles of

length 2k.

We are now ready to proceed. Suppose that we have a set U = {T/ I , . . . ,M V } of
variables and a collection {c j , . . . , ^} of clauses over U. We construct a permutation
group G by using the following method.

1. For each variable u,-, we introduce a set Ui of 2k objects and a permutation gUi that
cycles them.

2. For each clause cJ? we introduce eight sets of objects, Cji,...,Cj8- Each
set Cji contains k objects, Cj/[1],... ,Cj/[fc]. Using the notation that we defined
in our description of gadget 2, we let Swapj(lm) represent the permutation
(Cj/[1] Cjm[l])- • • (Cj/[&] Cjm[fc]) and we let Cyclej(l) represent the permutation

)« We introduce three permutations:

f Note that permutations are being composed from right to left.
Ij. Recall that the notation (<7i, <72> • • •) represents the group generated by #i, #2?

5. Related Results 149

hj[l] = Swapj(12)Swapj(U)Swapj(56)Swapj(78)

hj[2] = Swapj^Swapj^Swapj^Swap^)

hj[3] = Swapj(15)Swapj(26)Swapj(37)Swapj(48)

3. Let G1 be the group generated by [j j{ Cycle j(l),..., Cyclefo)}.

4. Let G be the group generated by the following four sets:

i. \jiUH,}

ii. {A|AeG'}

iii. {»,-1 m = ^fci[l]fck[l] • • • h,[2]hm[2] • • • hs[Z]hz[3] • • •}

where u,- occurs in position 1 in clauses cy,cjt,... and in position 2 in clauses
c/, c m , . . . and in position 3 in clauses cy, c z , . . .

iv. {Pi | Pi = ^ - [l J M l] • • • fc/[2]fcm[2] • • • hy[3]h2[3] • • •}

where TTi occurs in position 1 in clauses cy,c*,... and in position 2 in clauses
c/, c m , . . . and in position 3 in clauses cy, cz , . . .

We claim that each assignment of truth values to the variables in U which has the prop-

erty that each clause has at least one "true" literal corresponds to a set ofT(2,k)uY(k) **

permutations in G, each of which has n/2k cycles of length 2k. Furthermore, we claim

that G has no other permutations that have n/2k cycles of length 2k. We prove the

claim in two steps.

1. Suppose that we have an assignment of truth values to the variables in U. Let gi
denote TT,- if the variable Ui is assigned the value "true" and let gi denote pi otherwise.
The restriction of gi to the objects in Ui is gUi. Since 1^0 (mod 2) we can use fact 1
to show that the set {gUi9Vi I ^ € N} contains T(2, A?) permutations that are cycles of
length 2k.

Let g be g\ • • • gu. Consider any clause Cj and let g'j denote the restriction of g

to the objects associated with Cj. By construction, hj[t] is a factor of g'j if and
only if the t literal in Cj has been assigned the value "true". Suppose that at
least one of the literals in Cj is "true". Our consideration of gadget 1 shows that
g'j = Swapj(ii,i2)Swapj(i$,i4)Swapj(i5yi6)Swapj(i7,i&) where i ' i , . . . , i 8 is a pe rmuta -

tion of 1,. . . ,8. If we consider one of the four factors Swapj(ii, im) and the permuta-
tions Cyclej(ii) and Cyclej(im) then we can use our analysis of gadget 2 to show that
the set {Swapj(ii,im)\\\ £ (Cyclej(i{), Cyclej(im))} has T(fc) permutations which are
cycles of length 2k. Therefore, the set {^A | A G (Cycle^(1),..., Cycle^S))} has 4

permutations which are cycles of length 2k.

150 5. Related Results

Finally, we conclude that the set { g\ • • • gvg^ • • • gl[p A | /,,6 N, A G G' } contains
T(2, k)uT(k) ** permutations which have n/2k cycles of length 2k.

2. Suppose that g is a permutation in G with cycles of length 2k. It is easy to see

that we can re-write g as Tr^f1 • • • *l" pl¥ gl[l • • - gl[¥ \ where Uji G {0,1}, /,- G N, and

A G G'. Since the restriction of g to the objects in Ui is a cycle of length 2k, it must be

the case that one of tf,-, /,• is 1 and the other is 0 for each i. Consider the truth assignment

that gives U{ the value "true" if t{ is 1 and "false" otherwise. We must show that each

clause contains at least one "true" literal.

Suppose that Cj is a clause with no "true" literals. Then none of hj[l],..., hj[3] is a
factor of g. Therefore, the restriction of g to the objects associated with Cj is not a cycle
of length 2fc, which is a contradiction. •

Having completed the proof of theorem 21, we use it to prove the following theorem.

Theorem 22. If yi,j/2»-»« 1S a sequence of non-negative rational numbers and there
exists an i such that y, ^ y\ and yi ^ 0 then Cycle Index Evaluation(yi,y2,...) is #P-
hardf.

Proof: First, suppose that yi = 0. Choose the index i such that for all j < i we have
yj = 0 and yi ^ 0. If G is a permutation group whose cycle bound is i and whose degree,
n, is a multiple of i then the coefficient of xn

{'
% in PQ is |G| yi~n^PG(yi,- • • ,Vn) so the

result follows from theorem 21.

Otherwise, choose the index i such that for every j < i either yj = 0 or yj = y[but

yi ^ 0 and yi ^ y\. Let G stand for the set

G = {g G G | g has no cycle whose length is a member of {j \yj = 0}}.

Let PQ J be the single-variable polynomial defined by PQ^Z) = 4 r ^ g / 1 ' ^ . If G is a

permutation group whose degree, n, is a multiple of i then the coefficient of zn'% in PQ^

is the same as the coefficient of x"'1 in PQ- Furthermore, we claim that if G has cycle

bound i then PG(y\,• • • ,2/n) = y\nP'G^(yilyi%).

Suppose that the claim is true. Suppose further that we could compute the values
PG[lDt](yi,--<>yn) = PG(y[,'",yl

n) for l < / < n + l. Then we would be able to eval-
uate PQ J at the n-f-1 points z = (yi/yi*) for 1 < / < n + 1. (Note that yijy\ ^ 1 and
that 2/,/t/i* ^ 0.) We could interpolate to get the coefficient of zn'% in P'G • which is the

f The author is grateful to an anonymous referee for finding an error in the original
proof of this theorem.

5. Related Results 151

coefficient of x™'1 in PQ. The theorem follows from the proof of the claim (which will
be given below) and from the #P-hardness of Cycle-Bounded Cycle Index Coefficient^),
which was established in theorem 21.

To prove the claim we must show that PG(J/I , . .. ,t/n) = yinPG,i(yi/yi1)- Since the
cycle bound of G is i the value of PG(VI , • • •, yn) can be written as

1 'g£G

Note that we can restrict the summation to permutations g EG since all of the
terms which are eliminated by this restriction are equal to zero. Using the fact that
QCj(g) _ yJ0'™' when Cj(g) = 0 we can replace the right hand side with

i n " ' " ' .
9ed !<><•

Since X^?=i icj(s0 = n w e Se^

Simplifying the right hand side we get

PG(yi,... ,yn) = —

5.2.3. The DifBculty of Approximately Evaluating the Cycle Index Polyno-
mial

In this subsection we focus on the computational difficulty of Cycle Index Approxima-

tion(q, yi, y2, • • •)• We start with the following lemma.

Lemma 25. Let i > 1 be a fixed positive integer. The following problem is NP-hard:

Cycles-of-Length (i)

Input: A set of generators for a permutation group G whose cycle bound is z, and
whose degree, n, is a multiple of i.

Output: "Yes", if G has a permutation that has n/i cycles of length i. "No", otherwise.

152 5. Related Results

Proof: It is known [GJ 79] that it is NP-hard to decide, given an input for # Graph l-
Colorability, # Not-All-Equal SSat, or # Satisfiability, whether the corresponding output
is zero. Therefore, the lemma follows from the proof of theorem 21. n

Using this lemma, it is easy to prove theorem 23.

Theorem 23. Let yi,y2,... be a fixed sequence of non-negative rational numbers.
If there exists an i such that yf- > y[then Cycle Index Approximation^, y\ , y2, • • •) is
NP-hard for every polynomial q.

Proof: Choose the index i such that Vj < i.yj < y[and y%>y\. Let G be any input to
Cycles-of-Length(i) and let n be the degree of G. We make the following observations:

1. If G has a permutation that decomposes { l , . . . ,n} into n/i cycles of length i then

2. Otherwise, PG(J/I , . . . , yn) < V^'^Vi •

Let r be a polynomial and recall that PG(yi^n\ • •, yn
r(<n^) = ^G[JDr(n)](yi? • • • -> Vn)>

Using observations 1 and 2, we conclude:

1. If Cycles-of-Length(i)(G) is "Yes", then PG[/Dr(tv)](yi,... ,yB) > | G T Y r (n) x n / \

2. Otherwise, PG [/ D r (n)](yi, . . . ,y») < |GrY r (n) X n / < x [yj/yi]
r(B) |G|.

To establish the theorem, we need only choose the polynomial r in such a way

that [y[/yi] \G\ is exponentially small, n

We mentioned in the introduction to this section that it is difficult to determine the
computational complexity of Cycle Index Approximation(q,y\,y2,...) when yi, y2,... is
a fixed sequence such that yj <y\3 for all j and for some i it is the case that yi < y\ \ We
consider the special case in which y\ = y2 = • • • = y for some positive rational number y
and we obtain the following theorem.

Theorem 24. [Goldberg, Jerrum] If y is a positive rational number that is not an integer

then Cycle Index Approximation^, y,y,...) is NP-hard for every polynomial q.

Before proving theorem 24, we set up the framework for the proof. Let 5/ stand

for the symmetric group of degree / and let Ai stand for the alternating group of de-

gree /. Define the polynomials /c,/ and /A,I as follows: fc,i(z) = J29eSi-Ai x°^

fA,i(x) = ^29eAi x<:^' We will use the following fact:

Fact 2. Suppose that y is a positive rational number that is not an integer and that

l=\y\+ 1. Then fcM > IAM-

Proof: Let fi{x) = /A,/(X) — /c,/(^)- It is easy to see that the coefficient of x in JA,I

is 1 and that the degree of /A,I is /. The degree of fc,i is less than /. Therefore, // is a

5. Related Results 153

degree / polynomial and for big enough values of i, //(i) is positive. Suppose that i is an
integer such that 0 < i < I. We claim that f\{i) = 0. (To see that the claim is correct,
use Polya's theorem to show that Psti}) = PAi(i) for every integer i such that 0 < i < I.

Then use the definition of the cycle index polynomial, observing that |5/| = 2 x |-A/|.)
Since a degree / polynomial has at most / zeros, we conclude that fi(i) is negative in the
range /—2 < i < I — 1, which establishes the fact, n

Using fact 2, it is not hard to prove theorem 24.

Proof of Theorem 24: Suppose that y is a positive rational number that is not an
integer and let / = |"y]+l. Fact 2 shows that fc,l(y) > fA,l(y)- Let r be a polynomial
such that [/A,/(y)//c,/(y)] 2" 1S exponentially small (as a function of u). We proceed
by reduction from the following NP-hard problem [GJ 79]:

Simple Max Cut

Input: A connected graph F and a positive integer k.

Output: "Yes", if F has a cut-setf whose size is at least k. "No", otherwise.

Suppose that we have a graph F with vertex set {vi, . . . , vv} and edge set {ei , . . . , eM}.
We construct a permutation group G using the following method:

1. For each edge e,, we introduce r(u) sets of objects, Ej[l],..., Ej[r(u)]. Each set EJ[K]

contains I objects. We use the notation AJ[K] to stand for the alternating group of
degree / acting on the objects in EJ[K].

2. For each vertex Vj, we let gVi be the permutation which transposes the first two objects
in each set EJ[K] such that ej is incident on v, and 1 < K < r(u).

3. Let G' be the group generated by {A G AJ[K] | l < i < / i , l < « < r(i/)}.

4. Let G be the group generated by {gVi 11 < i < v) U {A | A € G'}.

Each permutation g £ G corresponds to exactly one (unordered) partition (S,T) of
the vertices in F and to one permutation A £ G1. g can be written as Ylv es$vi^ anc^
a s YlvitTdvi^- We associate g with the cut-set (5,T). Consider an edge ej with end-
points va and vp and let gjjK be the restriction of g to the objects in ^J[K]. It is easy
to see that gjfK £ 5/ — Ai if exactly one of va, vp is in 5 and that g^K £ A\ otherwise.
That is, gjyK £ Si — Ai if ej spans the two subsets of the cut-set that is associated with g

jjK £ A\ otherwise.

f A size k cut-set of F is a partition of the vertices of F into two disjoint (and indistin-
guishable) subsets such that the number of edges which span the two subsets is k.

154 5. Related Results

Let (S,T) be a cut-set of F and let G(S,T) stand for the set of permutations in G

that are associated with the cut-set (5,T). Suppose that the size of the cut-set (S,T)

is jfc. It is not difficult to see that E9eG(s,T) x<:(g) = fcA*)*"* fAA*)*"*11'^ •

We make the following observations:

1. If F has a cut-set (S,T) whose size, k\ is at least A:, then

pa(y,...,v) > |Gr1/c,/(y)r(")fc//AXy)r(l')(''"fc')-
Fact 2 shows that /c,/(y) > fA,i(v)' Therefore,

Po(y,...,y) > |Gr1/c)/(y)r(l/)V^(y)r(")(M"fe)-
2. If F does not have a cut-set whose size is at least fc, then

PG(y,...,y)< 2"\G\-1fcMr('')(k-1)fAMrM{'1-k+1)

= IGrifcM^fAAv)™*-" x [fA,l(y)/fcM)r(l')^-
The proof is concluded by observing that we have chosen the polynomial r in such

a way that [/A,/(J/)//C,/(2/)] 2" ls exponentially small. (We chose r so that the rel-
evant quantity was exponentially small as a function of v. By construction, it is also
exponentially small as a function of the degree of G.) •

As we pointed out in the introduction to this section, our proof of theorem 24 says
nothing about the difficulty of Cycle Index Approximation(q,y,y,...) when y is an in-

teger. Furthermore, it is the integer values of y for which PG(V, •••,!/) has a combinatorial
meaning. It is an interesting open problem to determine the computational difficulty of
Cycle Index Approximation(q,yi,y2,...) when yj <y\3 for all j and there exists an i

such that t/i < 2/1*- It would also be interesting to determine the difficulty of Cycle Index

Approximation^ y, y,. . .) for integer values of y.

Bibliography 155

6. Bibliography

[AHU 74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of

Computer Algorithms (Addison-Wesley, 1974).

[BK 79] L. Babai and L. Kucera, Canonical Labelling of Graphs in Linear Average

Time, Proc. IEEE Symp. on Foundations of Computer Science 20 (1979)

39-46.

[BH 80] T. Beyer and S. M. Hedetniemi, Constant Time Generation of Rooted

Trees, SIAM Journal of Computing 9(4) (1980) 706-712.

[BvL 87] G. J. Bezem and J. van Leeuwen, Enumeration in Graphs, Technical Report

RU-CS-87-7 Rijksuniversiteit Utrecht, The Netherlands, 1987.

[BW 79] N. L. Biggs and A. T. White Permutation Groups and Combinatorial Struc-

tures (Cambridge University Press, 1979).

[BH 79] A. Blass and F. Harary, Properties of Almost all Graphs and Complexes,

Journal of Graph Theory 3 (1979) 225-240.

[Bol 85] B. Bollobas, Random Graphs (Academic Press, 1985).

[Bol 88] B. Bollobas, The Chromatic Number of Random Graphs, Combinatorica

8(1) (1988) 49-55.

[BFF 85] B. Bollobas, T. I. Fenner, and A. M. Frieze, An Algorithm for Finding

Hamilton Cycles in a Random Graph, Proc. ACM Symp. On Theory of

Computing 17 (1985) 430-439.

[BFP 89] C. A. Brown, L. Finkelstein, and P. W. Purdom Jr., Backtrack Searching

in the Presence of Symmetry, Pre-print (1989) Submitted to Journal of the

ACM.

[Bre 72] M. A. Breuer, Design Automation of Digital Systems — Theory and Tech-

niques, Volume 1, Chapter 2 (Prentice-Hall, 1972).

[Chr 75] N. Christofides, Graph Theory: An Algorithmic Approach (Academic Press,

1975).

[CDN 89] C. J. Colbourn, R. P. J. Day, and L. D. Nel, Unranking and Ranking

Spanning Trees of a Graph, Journal of Algorithms 10 (1989) 271-286.

[CR1 79] C. J. Colbourn and R. C. Read, Orderly Algorithms for Generating Re-

stricted Classes of Graphs, Journal of Graph Theory 3 (1979) 187-195.

156 Bibliography

[CR2 79] C. J. Colbourn and R. C. Read, Orderly Algorithms for Graph Genera-

tion, International Journal of Computer Mathematics, Section A 7 (1979)

167-172.

[CLR 90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms

(MIT Press, 1990).

[DeB 63] N. G. De Bruijn, Enumerative Combinatorial Problems Concerning Struc-

tures, Nieuw Archiefvoor Wiskunde 3, XI (1963) 142-161.

[DeB 64] N. G. De Bruijn, Polya's Theory of Counting, Applied Combinatorial Math-

ematics (Beckenbach, E. F., Ed.), (John Wiley and Sons, Inc. 1964).

[DW 83] J. D. Dixon and H. S. Wilf, The Random Selection of Unlabeled Graphs,

Journal of Algorithms 4 (1983) 205-213.

[DF 89] M. E. Dyer and A. M. Frieze, The Solution of Some Random NP-Hard

Problems in Polynomial Expected Time, Journal of Algorithms 10 (1989)

451-489.

[Edw 86] K. Edwards, The Complexity of Colouring Problems on Dense Graphs,

Theoretical Computer Science 43 (1986) 337-343.

[Fag 76] R. Fagin, Probabilities on Finite Models, Journal of Symbolic Logic 41(1)

(1976) 50-58.

[FGJS 89] R. J. Faudree, R. J. Gould, M. S. Jacobson, and R. H. Schelp, Neighborhood

Unions and Hamiltonian Properties in Graphs, Journal of Combinatorial

Theory, Series B 47 (1989) 1-9.

[Fel 68] W. Feller, An Introduction to Probability Theory and its Applications Third

Edition, Volume 1 (John Wiley and Sons, 1968).

[FHL 80] M. Furst, J. Hopcroft, and E. Luks, Polynomial-Time Algorithms for Per-

mutation Groups, Proc. IEEE Symp. on Foundations of Computer Science

21 (1980) 36-41.

[GJ 79] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to

the Theory of NY -Completeness, (W. H. Freedman and Company, 1979).

[Gib 85] A. Gibbons, Algorithmic Graph Theory (Cambridge University Press,

1985).

[Gil 77] J. Gill, Computational Complexity of Probabilistic Turing Machines, SIAM

Journal of Computing 6 (1977) 675-695.

Bibliography 157

[Goll 90] L. A. Goldberg, Efficient Algorithms for Listing Unlabeled Graphs, In-
ternal Report CSR-7-90 Department of Computer Science, University of
Edinburgh, May 1990, to appear, Journal of Algorithms.

[Gol2 90] L. A. Goldberg, Automating Polya Theory: The Computational Complex-
ity of the Cycle Index Polynomial, Internal Report CSR-8-90 Department
of Computer Science, University of Edinburgh, October 1990, to appear,
Information and Computation,

[GM 75] G. R. Grimmett and C. J. H. McDiarmid, On Colouring Random Graphs,
Math. Proc. Camb. Phil Soc. 77 (1975) 313-324.

[HR 90] T. Hagerup and C. Rub, A Guided Tour of Chernoff Bounds, Information
Processing Letters 33 (February 1990) 305-308.

[HP 73] F. Harary and E. M. Palmer, Graphical Enumeration, (Academic Press,
1973).

[HY 84] J. Hartmanis and Y. Yesha, Computation Times of NP Sets of Different

Densities, Theoretical Computer Science 34 (1984) 17-32.

[HHSY 91] L. A. Hemachandra, A. Hoene, D. Siefkes, and P. Young, On Sets Polyno-

mially Enumerable by Iteration, Theoretical Computer Science 80 (1991)

203-225.

[Hof 82] C. M. Hoffmann, Group-Theoretic Algorithms and Graph Isomorphism Lec-

ture Notes in Computer Science 136 (Springer-Verlag, 1982).

[HU 79] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Lan-

guages, and Computation (Addison-Wesley, 1979).

[Imm 87] N. Immerman, Languages that Capture Complexity Classes, SIAM Journal

of Computing 16(4) (1987) 760-778.

[Jer 86] M. R. Jerrum, A Compact Representation for Permutation Groups, Journal
of Algorithms 7 (1986) 60-78.

[Jer 90] M. R. Jerrum, The Elusiveness of Large Cliques in a Random Graph, In-
ternal Report CSR-9-90 University of Edinburgh Department of Computer
Science 1990.

[JMS 89] M. R. Jerrum, B. D. McKay, and A. J. Sinclair, When is a Graphical
Sequence Stable?, Internal Report CSR-309-89 University of Edinburgh
Department of Computer Science 1989. (To Appear in the Proceedings of
Random Graphs 1989.)

158 Bibliography

[JS 90] M. R. Jerrum and A. J. Sinclair, Fast Uniform Generation of Regular

Graphs, Theoretical Computer Science 73 (1990) 91-100.

[JVV 86] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani, Random Generation of

Combinatorial Structures From a Uniform Distribution, Theoretical Com-

puter Science 43 (1986) 169-188.

[Joh 75] D. B. Johnson, Finding All the Elementary Circuits of a Directed Graph,

SIAM Journal of Computing 4(1) (1975) 77-84.

[JYP 88] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou, On Generating

all Maximal Independent Sets, Information Processing Letters 27 (March

1988) 119-123.

[Knu 73] D. E. Knuth, Fundamental Algorithms The Art of Computer Programming

Volume 1 Second Edition (Addison-Wesley, 1973).

[Kuc 89] L. Kucera, Graphs with Small Chromatic Numbers are Easy to Color, In-

formation Processing Letters 30 (1989) 233-236.

[Law 76] E. L. Lawler, A Note on the Complexity of the Chromatic Number Problem,

Information Processing Letters 5(3) (1976) 66-67.

[LLR 80] E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, Generating all Max-

imal Independent Sets: NP-Hardness and Polynomial-Time Algorithms,

SIAM Journal of Computing 9(3) (1980) 558-565.

[Led 73] W. Ledermann, Introduction to Group Theory, (Oliver & Boyd, 1973).

[Lub 81] A. Lubiw, Some NP-Complete Problems Similar to Graph Isomorphism,

SIAM Journal of Computing 10(1) (1981) 11-21.

[Luk 82] E. M. Luks, Isomorphism of Graphs of Bounded Valence can be Tested

in Polynomial Time, Journal of Computer and System Sciences 25 (1982)

42-65.

[McD 79] C. McDiarmid, Colouring Random Graphs Badly, Graph Theory and Com-

binatorics (Wilson, R. J., Ed.), Pitman Research Notes in Mathematics 34

(1979) 76-86.

[MR 86] B. D. McKay and G. F. Royle, Constructing the Cubic Graphs on Up to

20 Vertices, ARS Combinatoria 21-A (1986) 129-140.

[NW 78] A. Nijenhuis and H. S. Wilf, Combinatorial Algorithms for Computers and

Calculators, Second Ed. (Academic Press, 1978).

Bibliography 159

[Obe 83] W. Oberschelp, Fast Parallel Algorithms for Finding All Prime Implicants
for Discrete Functions, In E. Borger, G. Hasenjaeger, and D. Rodding, edit-
ors, Logic and Machines: Decision Problems and Complexity (Proceedings
of the Symposium "Recursive Kombinatorik") Lecture Notes in Computer
Science 171 (Springer-Verlag, 1983) 408-420.

[Pal 70] E. M. Palmer, Asymptotic Formulas For the Number of Self-Complementary
Graphs and Digraphs, Mathemaiika 17 (1970) 85-90.

[PR 87] G. Polya and R. C. Read, Combinatorial Enumeration of Groups, Graphs,

and Chemical Compounds (Springer-Verlag, 1987).

[Rag 88] P. Raghavan, Probabilistic Construction of Deterministic Algorithms: Ap-

proximate Packing Integer Programs, Journal of Computer and System

Sciences 37 (1988) 130-143.

[Rea 63] R. C. Read, On the Number of Self-Complementary Graphs and Digraphs,

Journal of the London Mathematical Society 38 (1963) 99-104.

[Rea 78] R. C. Read, Everyone a Winner or How to Avoid Isomorphism When Cata-

loguing Combinatorial Configurations, Annals of Discrete Mathematics 2

(1978) 107-120.

[Rea 81] R. C. Read, A Survey of Graph Generation Techniques, Combinatorial

Mathematics, VIII Lecture Notes in Mathematics 884 (Springer, 1981)
77-89.

[RT 75] R. C. Read and R. E. Tarjan, Bounds on Backtrack Algorithms for Listing
Cycles, Paths, and Spanning Trees, Networks 5 (1975) 237-252.

[Rob 84] J. M. Robson, N By N Checkers is EXPTIME Complete, SIAM Journal

of Computing 13(2) (1984) 252-267.

[Rue 87] A. Rucinski, Induced Subgraphs in a Random Graph, Annals of Discrete

Mathematics 33 (1987) 275-296.

[RH 77] F. Ruskey and T. C. Hu, Generating Binary Trees Lexicographically, SIAM
Journal of Computing 6(4) (1977) 745-758.

[Sch 76] C. P. Schnorr, Optimal Algorithms for Self-Reducible Problems, Proc. In-

ternational Colloquium on Automata Theory, Languages, and Programming

3 (1976) 322-337.

[Sim 77] J. Simon, On the Difference Between One and Many, Proc. International

Colloquium on Automata Theory, Languages, and Programming 4 Lecture
Notes in Computer Science 52 (Springer-Verlag, 1977) 480-491.

160 Bibliography

[Sin 88] A. J. Sinclair, Randomized Algorithms for Counting and Generating Com-

binatorial Structures, PhD Thesis CST-58-88, Department of Computer

Science, University of Edinburgh, November 1988.

[Spe 87] J. Spencer, Ten Lectures on the Probabilistic Method (SIAM, 1987).

[SW 86] D. Stanton and D. White, Constructive Combinatorics Undergraduate

Texts in Mathematics (Springer-Verlag, 1986).

[Tar 73] R. Tarjan, Enumeration of the Elementary Circuits of a Directed Graph,

SIAM Journal of Computing 2(3) (1973) 211-216.

[TIAS 77] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa, A New Algorithm for

Generating all the Maximal Independent Sets, SIAM Journal of Computing

6(3) (1977) 505-517.

[TSOA 80] S. Tsukiyama, I. Shirakawa, H. Ozaki, and H. Ariyoshi, An Algorithm to

Enumerate all Cutsets of a Graph in Linear Time per Cutset, Journal of

the ACM 27(4) (1980) 619-632.

[Tur 88] J. S. Turner, Almost all fc-Colorable Graphs are Easy to Color, Journal of

Algorithms 9 (1988) 63-82.

[Val 79] L. G. Valiant, The Complexity of Enumeration and Reliability Problems,

SIAM Journal of Computing 8(3) (1979) 410-421.

[Wil 89] H. S. Wilf, Combinatorial Algorithms: An Update (SIAM, 1989).

[Wor 87] N. C. Wormald, Generating Random Unlabelled Graphs, SIAM Journal of

Computing 16(4) (1987) 717-727.

[Wri 61] E. M. Wright, Counting Coloured Graphs, Canada Journal of Mathem-

atics 13 (1961) 683-693. (See also R. C. Read and E. M. Wright, Col-

oured Graphs: A Correction and Extension, Canada Journal of Mathemat-

ics 22(3) (1970) 594-596.)

[Wri 64] E. M. Wright, Counting Coloured Graphs II, Canada Journal of Mathem-

atics 16 (1964) 128-135.

[WROM 86] R. A. Wright, B. Richmond, A. Odlyzko, and B. D. McKay, Constant

Time Generation of Free Trees, SIAM Journal of Computing 15(2) (1986)

540-548.

[You 69] P. R. Young, Toward a Theory of Enumerations, Journal of the A CM 16(2)

(1969) 328-348.

	Cover
	Distinguished Dissertations in Computer Science
	Efficient Algorithms for Listing Combinatorial Structures
	Copyright
	9780521450218
	9780521117883

	Table of Contents
	Abstract
	Acknowledgements
	Declaration
	General References
	Index of Notation and Terms
	1. Introduction����������������������
	1.1. Families of Combinatorial Structures��
	1.2. Motivation����������������������
	1.2.1. Designing Useful Algorithms���
	1.2.2. Discovering General Methods for Algorithm Design��
	1.2.3. Learning about Combinatorial Structures���

	1.3. Listing Algorithms������������������������������
	1.4. Efficient Listing Algorithms��
	1.5. Synopsis of the Thesis����������������������������������
	1.6. Bibliographic Notes�������������������������������

	2. Techniques for Listing Combinatorial Structures���
	2.1. Basic Building Blocks���������������������������������
	2.1.1. Recursive Listing�������������������������������
	2.1.2. Random Sampling�����������������������������

	2.2. Using Listing Algorithms for Closely Related Families���
	2.2.1. The Interleaving Method�������������������������������������
	2.2.2. The Filter Method�������������������������������

	2.3. Avoiding Duplicates�������������������������������
	2.3.1. Probabilistic Algorithms��������������������������������������
	Example 1: A family of colorable graphs��
	Example 2: A family of unlabeled graphs��
	2.3.2. Deterministic Algorithms��������������������������������������
	Example 1: A family of colorable graphs��
	Example 2: A family of unlabeled graphs��

	3. Applications to Particular Families of Structures���
	3.1. First Order Graph Properties��
	3.2. Hamiltonian Graphs������������������������������
	3.3. Graphs with Cliques of Specified Sizes��
	3.3.1. Graphs with Small Cliques���������������������������������������
	3.3.2. Graphs with Large Cliques���������������������������������������
	3.3.3. Graphs with Cliques whose Sizes are Between log(n) and 2 log(n)

	3.4. Graphs which can be Colored with a Specified Number of Colors���
	3.4.1. Digression — The Problem of Listing k-Colorings

	4. Directions for Future Work on Listing���
	5. Related Results�������������������������
	5.1. Comparing Listing with other Computational Problems���
	5.2. Evaluating the Cycle Index Polynomial���
	5.2.1. Evaluating and Counting Equivalence Classes���
	5.2.2. The Difficulty of Evaluating the Cycle Index Polynomial���
	5.2.3. The Difficulty of Approximately Evaluating the Cycle Index Polynomial���

	6. Bibliography����������������������

