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Preface

Information systems have been developed in parallel with computer science,
although information systems have roots in different disciplines including mathe-
matics, engineering, and cybernetics. Research in information systems is by nature
very interdisciplinary. As it is evidenced by the chapters in this book, dynamics of
information systems has several diverse applications.

The book presents the state-of-the-art work on theory and practice relevant to
the dynamics of information systems. First, the book covers algorithmic approaches
to numerical computations with infinite and infinitesimal numbers. Also the book
presents important problems arising in service-oriented systems, such as dynamic
composition, analysis of modern service-oriented information systems, and estima-
tion of customer service times on a rail network from GPS data. After that, the
book addresses the complexity of the problems arising in stochastic and distributed
systems. In addition, the book discusses modulating communication for improving
multi-agent learning convergence. Network issues, in particular minimum risk
maximum clique problems, vulnerability of sensor networks, influence diffusion,
community detection, and link prediction in social network analysis, as well as a
comparative analysis of algorithms for transmission network expansion planning
are described in subsequent chapters.

We thank all the authors and anonymous referees for their advice and expertise
in providing valuable contributions, which improved the quality of this book.
Furthermore, we want to thank Springer for helping us to produce this book.

Gainesville, FL, USA Alexey Sorokin
Gainesville, FL, USA Panos M. Pardalos
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Numerical Computations with Infinite
and Infinitesimal Numbers:
Theory and Applications

Yaroslav D. Sergeyev

Abstract A new computational methodology for executing calculations with
infinite and infinitesimal quantities is described in this chapter. It is based on
the principle “The part is less than the whole” introduced by Ancient Greeks
and applied to all numbers (finite, infinite, and infinitesimal) and to all sets and
processes (finite and infinite). It is shown that it becomes possible to write down
finite, infinite, and infinitesimal numbers by a finite number of symbols as particular
cases of a unique framework that is not related to non-standard analysis theories.
The Infinity Computer working with numbers of a new kind is described (its
simulator has already been realized). The concept of accuracy of mathematical
languages and its importance for a number of theoretical and practical issues
regarding computations is discussed. Numerous examples dealing with divergent
series, infinite sets, probability, limits, fractals, etc. are given.

Keywords Numerical infinities and infinitesimals • Numbers and numerals • Infi-
nity computer • Numerical analysis • Infinite sets • Divergent series • Fractals

1 Introduction

In different periods of human history, mathematicians and physicists in order to
solve theoretical and applied problems existing in their times developed mathemati-
cal languages that use different approaches to the ideas of infinity and infinitesimals
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2 Y.D. Sergeyev

(see [1,2,5,12,14,16,19,20,25,28,51] and references given therein). To emphasize
the importance of the subject it is sufficient to mention that the Continuum
Hypothesis related to infinity has been included by David Hilbert as the Problem
Number One in his famous list of 23 unsolved mathematical problems (see [16])
that have influenced strongly development of Mathematics in the twentieth century.
However, arithmetics developed for working with infinities are quite different with
respect to the finite arithmetic we are used to deal with. Moreover, very often they
leave undetermined many operations where infinite numbers take part (for example,
∞−∞, ∞

∞ , sum of infinitely many items, etc.) or use representation of infinite
numbers based on infinite sequences of finite numbers.

Many approaches describing manipulations with infinities and infinitesimals are
rather old: ancient Greeks following Aristotle distinguished the potential infinity
from the actual infinity; John Wallis (see [51]) credited as the person who has
introduced the infinity symbol, ∞, has published his work Arithmetica infinitorum
in 1655; the foundations of analysis we use nowadays have been developed more
than 200 years ago with the goal to develop mathematical tools allowing one to
solve problems that were emerging in the world at that remote time; Georg Cantor
(see [2]) has introduced his cardinals and ordinals more than 100 years ago, as well.
As a result, mathematical languages that we use now while work with infinities
and infinitesimals do not reflect numerous achievements made by Physics of the
twentieth century.1 Let us illustrate this observation by a couple of examples.

We know from the modern Physics that the same object can be viewed as either
discrete or continuous in dependence on the instrument used for the observation [we
see a table continuous when we look at it by eye and we see it discrete (consisting
of molecules, atoms, etc.) when we observe it under a microscope. In addition,
physicists do not give some absolute results of their observations in sense that
together with the result of the observation they always supply the accuracy of the
instrument used for this observation.

In Mathematics, both facts are absent: each mathematical object (e.g., function)
is either discrete or continuous and nothing is said about the accuracy of the
observation of the mathematical objects and about tools used for these observations.
The mathematical notion of continuity itself is from nineteenth century. Many of
the mathematical notions have an absolute character and the ideas of relativity are
almost not present in them. The ideas of the influence of the instrument of an obser-
vation on the object of the observation are almost absent in Mathematics, as well.

1Even the brilliant efforts of the creator of the nonstandard analysis Robinson that were made in the
middle of the twentieth century have been also directed to a reformulation of the classical analysis
(i.e., analysis created 200 years before Robinson) in terms of infinitesimals and not to the creation
of a new kind of analysis that would incorporate new achievements of Physics. In fact, he wrote
in Sect. 1.1 of his famous book [28]: “It is shown in this book that Leibniz’s ideas can be fully
vindicated and that they lead to a novel and fruitful approach to classical analysis and to many
other branches of mathematics” (the words classical analysis have been emphasized by the author
of this chapter).
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In some sense, there exists a gap between the physical achievements made in
the last 200 years (especially during the twentieth century) and their mathematical
models that continue to be written using the mathematical language developed two
centuries ago on the basis of (among other things) physical ideas of that remote time
that now are absolutely outdated.

As was already mentioned, in relation to the concepts of infinite and infinitesimal
we have an analogous situation. In fact, the point of view on infinity accepted
nowadays takes its origins from the famous ideas of Cantor (see [2]) who has
shown that there exist infinite sets having different number of elements. This has
been done during the second half of the nineteenth century. Infinitesimals have
been developed even earlier when, in the early history of calculus, arguments
involving infinitesimals played a pivotal role in the differential calculus developed
by Leibniz and Newton (see [19, 25]). At that time the notion of an infinitesimal,
however, lacked a precise mathematical definition and in order to provide a more
rigorous foundation for the calculus infinitesimals were gradually replaced by the
d’Alembert–Cauchy concept of a limit (see [4, 6]).

The creation of a rigorous mathematical theory of infinitesimals on which it
would be possible to construct Calculus remained an open problem until the end
of the 1950s when Robinson (see [28]) has introduced his famous nonstandard
analysis approach. He has shown that non-archimedean ordered field extensions of
the reals contained numbers that could serve the role of infinitesimals and their
reciprocals could serve as infinitely large numbers. Robinson then has derived
the theory of limits, and more generally of calculus, and has found a number of
important applications of his ideas in many other fields of Mathematics (see [28]).

It is important to emphasize that in his approach Robinson used Cantor’s
mathematical tools and terminology (cardinal numbers, countable sets, continuum,
one-to-one correspondence, etc.) incorporating so advantages and disadvantages of
Cantor’s approach into nonstandard analysis. In particular, we are reminded that it is
well known that Cantor’s approach leads to some situations that often are called by
non mathematicians “paradoxes”. The most famous and simple of them is, probably,
Hilbert’s paradox of the Grand Hotel. In a normal hotel having a finite number
of rooms no more new guests can be accommodated if it is full. Hilbert’s Grand
Hotel has an infinite number of rooms (of course, the number of rooms is countable,
because the rooms in the Hotel are numbered). Due to Cantor, if a new guest arrives
at the Hotel where every room is occupied, it is, nevertheless, possible to find a room
for him. To do so, it is necessary to move the guest occupying room 1 to room 2, the
guest occupying room 2 to room 3, etc. In such a way room 1 will be ready for the
newcomer and, in spite of our assumption that there are no available rooms in the
Hotel, we have found one.

This result is very difficult to be fully realized by anyone who is not a
mathematician since in our every day experience in the world around us the part
is always less than the whole and if a hotel is complete, there are no places in it.
In order to understand how it is possible to tackle the problem of infinity in such a
way that Hilbert’s Grand Hotel would be in accordance with the principle “the part
is less than the whole” let us consider a study published in Science by Peter Gordon
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(see [13]) where he describes a primitive tribe living in Amazonia—Pirahã—that
uses a very simple numeral system2 for counting: one, two, many.

For Pirahã, all quantities larger than two are just “many” and such operations
as 2+ 2 and 2+ 1 give the same result, i.e., “many”. Using their weak numeral
system Pirahã are not able to see, for instance, numbers 3, 4, 5, and 6, to execute
arithmetical operations with them, and, in general, to say anything about these
numbers because in their language there are neither words nor concepts for that.
Moreover, the weakness of their numeral system leads to such results as

“many”+ 1 = “many”, “many”+ 2 = “many”,

which are very familiar to us in the context of views on infinity used in the traditional
calculus

∞+ 1 = ∞, ∞+ 2 = ∞

and in the context of Cantor’s infinite cardinals3 we also have

ℵ0 + 1 =ℵ0, ℵ1 + 1 =ℵ1. (1)

These observations lead us to the following idea: Probably our difficulty in working
with infinity is not connected to the nature of infinity but is a result of inadequate
numeral systems used to express numbers.

In this chapter, we describe a new methodology for treating infinite and infinites-
imal quantities (examples of its usage can be found in [31–37, 39, 41]). It has a
strong numerical character and is closer to the point of view on the world accepted
by modern Physics.4 In particular, it incorporates the following two ideas borrowed
from the modern Physics: relativity and interrelations holding between the object of
an observation and the tool used for this observation. The latter is directly related

2We remind that numeral is a symbol or group of symbols that represents a number. The difference
between numerals and numbers is the same as the difference between words and the things they
refer to. A number is a concept that a numeral expresses. The same number can be represented
by different numerals. For example, the symbols “3,” “three,” and “III” are different numerals, but
they all represent the same number.
3In connection with Cantor’s ℵ0 and ℵ1 it makes sense to remind another Amazonian tribe—
Mundurukú (see [27]) who fail in exact arithmetic with numbers larger than 5 but are able to
compare and add large approximate numbers that are far beyond their naming range. Particularly,
they use the words “some, not many” and “many, really many” to distinguish two types of large
numbers. Their arithmetic with “some, not many” and “many, really many” reminds strongly the
rules Cantor uses to work withℵ0 and ℵ1, respectively. For instance, compare “some, not many” +
“many, really many” = “many, really many” with ℵ0 +ℵ1 =ℵ1.
4As it was already mentioned, in 1900, at the second Mathematical Congress in Paris, David
Hilbert has presented his 23 problems for the twentieth century promoting the abstract philosophy
in Mathematics that was close to Kant. However, before this event, at the first Congress 3 years
earlier Henri Poincaré has given a general talk emphasizing the connection of Mathematics with
Physics sharing this point of view with Fourier, Laplace, and many others. Clearly, in this dispute
between Poincaré and Hilbert the present chapter is closer to the position of Poincaré.
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to connections between numeral systems used to describe mathematical objects and
the objects themselves. Numerals that we use to write down numbers, functions,
etc. are among our tools of investigation and, as a result, they strongly influence our
capabilities to study mathematical objects.

Since new numeral systems appear very rarely, in each concrete historical period
people tend to think that any number can be expressed by the current numeral
system and the importance of numeral systems for Mathematics is very often
underestimated (especially by pure mathematicians). However, if we observe the
situation in the historical prospective we can immediately see limitations that
various numeral systems induce. In order to illustrate this assertion, it is sufficient
to think about Pirahã. We can also remind the Roman numeral system that does
not allow one to express zero and negative numbers. In this system, the expression
III–X is an indeterminate form. As a result, before appearing the positional numeral
system and inventing zero (by the way, the second event was several hundred years
later with respect to the first one) mathematicians were not able to create theorems
involving zero and negative numbers and to execute computations with them. Thus,
developing new (more powerful than existing ones) numeral systems can help a lot
both in theory and practice of computations.

If we compare the usage of numeral systems in Mathematics when one works,
on the one hand, with finite quantities and, on the other hand, with infinities and
infinitesimals, then we can see immediately an important difference. In our everyday
activities with finite numbers the same finite numerals are used for different purposes
(e.g., the same numeral 6 can be used to express the number of elements of a set, to
indicate the position of an element in a finite sequence, and to execute practical
computations). In contrast, when we face the necessity to work with infinities
or infinitesimals, the situation changes drastically. In fact, in this case different
numerals are used to work with infinities and infinitesimals in different situations:

• ∞ in standard analysis
• ω for working with ordinals
• ℵ0,ℵ1, . . . for dealing with cardinalities
• Nonstandard numbers using a generic infinitesimal h in nonstandard analysis, etc.

In particular, since the mainstream of the traditional Mathematics very often
does not pay a great attention to the distinction between numbers and numerals
(in this occasion it is necessary to recall constructivists who studied this issue),
many theories dealing with infinite and infinitesimal quantities have a symbolic
(not numerical) character. For instance, many versions of nonstandard analysis
are symbolic, since they have no numeral systems to express their numbers by a
finite number of symbols (the finiteness of the number of symbols is necessary for
organizing numerical computations). Namely, if we consider a finite n, then it can
be taken n = 7, or n = 108 or any other numeral used to express finite quantities and
consisting of a finite number of symbols. In contrast, if we consider a nonstandard
infinite m, then it is not clear which numerals can be used to assign a concrete
value to m.
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Analogously, in nonstandard analysis, if we consider an infinitesimal h, then it is
not clear which numerals consisting of a finite number of symbols can be used to
assign a value to h and to write h = . . . In fact, very often in nonstandard analysis
texts, a generic infinitesimal h is used and it is considered as a symbol, i.e., only
symbolic computations can be done with it. Approaches of this kind leave unclear
such issues, e.g., whether the infinite 1/h is integer or not or whether 1/h is the
number of elements of an infinite set. Another problem is related to comparison
of values. When we work with finite quantities then we can compare x and y if
they assume numerical values, e.g., x = 4 and y = 6 then, by using rules of the
numeral system the symbols 4 and 6 belong to, we can compute that y > x. If one
wishes to consider two infinitesimals h1 and h2, then it is not clear how to compare
them because numeral systems that can express infinitesimals are not provided by
nonstandard analysis techniques.

The approach developed in [31, 37, 43] proposes a numeral system that uses
the same numerals for several different purposes for dealing with infinities and
infinitesimals: in analysis for working with functions that can assume different
infinite, finite, and infinitesimal values (functions can also have derivatives assuming
different infinite or infinitesimal values); for measuring infinite sets; for indicating
positions of elements in ordered infinite sequences; in probability theory, etc. It is
important to emphasize that the new numeral system avoids situations like that of
Pirahã and (1) providing results ensuring that if a is a numeral written in this system
then for any a (i.e., a can be finite, infinite, or infinitesimal) it follows a+1> a. The
new methodology has allowed the author to introduce the Infinity Computer (see the
patent [41]) working numerically with infinite and infinitesimal numbers.

In order to see the place of the new approach in the historical panorama of ideas
dealing with infinite and infinitesimal, see [21,22,40,42,47]. The new methodology
has been successfully applied for studying percolation (see [17, 50]), Euclidean
and hyperbolic geometry (see [23, 29]), fractals (see [36, 38, 46, 50]), numerical
differentiation and optimization (see [8,39,44,53]), infinite series (see [40,45,52]),
the first Hilbert problem, Riemann zeta function, and Turing machines (see [42,45,
47]), cellular automata (see [7]), etc.

The rest of the chapter is structured as follows. An introduction to the new
methodology is given in Sect. 2. It allows us to introduce in Sect. 3 a new infinite
unit of measure that is then used as the radix of a new positional numeral system.
Section 4 shows that this system gives a possibility to express finite, infinite, and
infinitesimal numbers in a unique framework and to execute arithmetical operations
with all of them. Section 5 discusses first applications of the new methodology.
Section 6 establishes relations of the new methodology to some of the results of
Cantor. New computational possibilities for mathematical modeling supplied by the
new approach are discussed in Sect. 7. A quantitative analysis of fractals executed by
using infinite and infinitesimal numbers is given in Sect. 8. Concepts of continuity
in Physics and Mathematics from the point of view of the new methodology are
discussed in Sect. 9. Finally, Sect. 10 concludes the chapter.

We close this Introduction by emphasizing that the new approach is not a
contraposition to the ideas of Cantor, Levi–Civita, and Robinson. In contrast,
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it is introduced as an applied evolution of their ideas. The problem of infinity
is considered from positions of applied Mathematics and theory and practice of
computations—fields being among the main scientific interests (see, e.g., mono-
graphs [48, 49]) of the author. The new computational methodology introduces the
notion of the accuracy of mathematical languages and shows that different tools
(numeral systems) can express different sets of numbers (and other mathematical
objects) with different accuracies. It can be shown that Cantor’s alephs and new
numerals have different accuracies and cases where the new tools are more accurate
can be provided. Thus, the traditional approaches and the new one do not contradict
one another, they are just different instruments having different accuracies for
observations of mathematical objects.

2 A New Computational Methodology and Accuracy
of Numeral Systems

The aim of this section is to introduce a new methodology that would allow one
to work with infinite and infinitesimal quantities in the same way as one works
with finite numbers. Evidently, it becomes necessary to define what does it mean
in the same way. Usually, in modern Mathematics, when it is necessary to define a
concept or an object, logicians try to introduce a number of axioms describing the
object. However, this way is fraught with danger because of the following reasons.
First of all, when we describe a mathematical object or concept we are limited by
the expressive capacity of the language we use to make this description. A more
rich language allows us to say more about the object and a weaker language—less
(remind Pirahã that are not able to say a word about number 4). Thus, development
of the mathematical (and not only mathematical) languages leads to a continuous
necessity of a transcription and specification of axiomatic systems. Second, there is
no any guarantee that the chosen axiomatic system defines “sufficiently well” the
required concept and a continuous comparison with practice is required in order to
check the goodness of the accepted set of axioms. However, there cannot be again
any guarantee that the new version will be the last and definitive one. Finally, the
third limitation latent in axiomatic systems has been discovered by Gödel in his two
famous incompleteness theorems (see [11]).

In this chapter, we introduce a different, significantly more applied and less
ambitious view on axiomatic systems related only to utilitarian necessities to
make calculations. We start by introducing three postulates that will fix our
methodological positions with respect to infinite and infinitesimal quantities and
Mathematics, in general. In contrast to the modern mathematical fashion that tries
to make all axiomatic systems more and more precise (decreasing so degrees of
freedom of the studied part of Mathematics), we just define a set of general rules
describing how practical computations should be executed leaving so as much
space as possible for further, dictated by practice, changes and developments of
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the introduced mathematical language. Speaking metaphorically, we prefer to make
a hammer and to use it instead of describing what is a hammer and how it works.

Usually, when mathematicians deal with infinite objects (sets or processes) it
is supposed [even by constructivists (see, for example, [24])] that human beings
are able to execute certain operations infinitely many times. For example, in a
fixed numeral system it is possible to write down a numeral with any number
of digits. However, this supposition is an abstraction (courageously declared by
constructivists in [24]) because we live in a finite world and all human beings and/or
computers finish operations they have started. In this chapter, this abstraction is not
used and the following postulate is adopted.

Postulate 1. We postulate existence of infinite and infinitesimal objects but
accept that human beings and machines are able to execute only a finite
number of operations.

Thus, we accept that we shall never be able to give a complete description of
infinite processes and sets due to our finite capabilities. Particularly, this means
that we accept that we are able to write down only a finite number of symbols
to express numbers. However, we do not agree with finitists who deny infinite
mathematical objects. We accept their existence and shall try to study them using
our finite capabilities.

The second postulate is adopted following the way of reasoning used in natural
sciences where researchers use tools to describe the object of their study and the
used instrument influences the results of the observations. When a physicist uses a
weak lens A and sees two black dots in his/her microscope he/she does not say: the
object of the observation is two black dots. The physicist is obliged to say: the lens
used in the microscope allows us to see two black dots and it is not possible to say
anything more about the nature of the object of the observation until we change the
instrument—the lens or the microscope itself—by a more precise one. Suppose that
he/she changes the lens and uses a stronger lens B and is able to observe that the
object of the observation is viewed as ten (smaller) black dots. Thus, we have two
different answers: (a) the object is viewed as two dots if the lens A is used; (b) the
object is viewed as ten dots by applying the lens B. Which of the answers is correct?
Both. Both answers are correct but with the different accuracies that depend on the
lens used for the observation.

The same happens in Mathematics studying natural phenomena, numbers, and
objects that can be constructed by using numbers. Numeral systems used to express
numbers are among the instruments of observations used by mathematicians. The
usage of powerful numeral systems gives the possibility to obtain more precise
results in Mathematics in the same way as usage of a good microscope gives the
possibility of obtaining more precise results in Physics. However, even for the best
existing tool the capabilities of this tool will be always limited due to Postulate 1 (we
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are able to write down only a finite number of symbols when we wish to describe a
mathematical object) and due to Postulate 2 we shall never tell, what is, for example,
a number but shall just observe it through numerals expressible in a chosen numeral
system.

Postulate 2. We shall not tell what are the mathematical objects we deal
with; we just shall construct more powerful tools that will allow us to improve
our capacities to observe and to describe properties of mathematical objects.

This Postulate means that we emphasize that mathematical results are not
absolute, they depend on mathematical languages used to formulate them, i.e.,
there always exists an accuracy of the description of a mathematical result, fact,
object, etc. imposed by the mathematical language used to formulate this result. For
instance, the result of Pirahã 2+ 2 = “many” is not wrong, it is just inaccurate.
The introduction of a stronger tool (in this case, a numeral system that contains a
numeral for a representation of the number four) allows us to have a more precise
answer.

The concept of the accuracy allows us to look at paradoxes in a new way: paradox
is a situation where the accuracy of the used language is not sufficient to describe
the phenomenon we are interested in. For instance, the answers of Pirahã 2+ 1 =
“many” and 2+ 2 = “many” can be viewed as a paradox because from these two
records one could conclude that 2+1 = 2+2. This paradox shows us the borderline
that separates the zone where the language has the high precision from the region
where the language cannot be applied because it does not allow one to distinguish
different objects within “many”. Analogously, the records “many” + 1= “many”,
∞+ 1 = ∞, 1+ω = ω �= ω+ 1, (1), etc. can also be viewed as situations where the
accuracy of the used numeral systems is not sufficient.

It is necessary to comment upon another important aspect of the distinction
between a mathematical object and a mathematical tool used to observe this object.
Postulates 1 and 2 impose us to think always about the possibility to execute a
mathematical operation by applying a numeral system. They tell us that there always
exist situations where we are not able to express the result of an operation. Let
us consider, for example, the operation of construction of the successive element
widely used in number and set theories. In the traditional Mathematics, the aspect
whether this operation can be executed is not taken into consideration, it is supposed
that it is always possible to execute the operation k = n + 1 starting from any
integer n. Thus, there is no any distinction between the existence of the number
k and the possibility to execute the operation n+ 1 and to express its result, i.e. to
have a numeral that can express k.

Postulates 1 and 2 emphasize this distinction and tell us that: (a) in order to
execute the operation it is necessary to have a numeral system allowing one to
express both numbers, n and k; (b) for any numeral system there always exists
a number k that cannot be expressed in it. For instance, for Pirahã k = 3, for
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Mundurukú k = 6. Even for modern powerful numeral systems there exist such a
number k (for instance, nobody is able to write down a numeral in the decimal
positional system having 10100 digits). Hereinafter we shall always emphasize the
triad—researcher, object of the investigation, and tools used to observe the object—
in various mathematical and computational contexts paying a special attention to
the accuracy of the obtained results.

Another important issue related to Postulate 2 consists of the fact that, from
our point of view, axiomatic systems do not define mathematical objects but just
determine formal rules for operating with certain numerals reflecting some (not
all) properties of the studied mathematical objects using a certain mathematical
language L. We are aware that the chosen language L has its accuracy and there
always can exist a richer language L̃ that would allow us to describe the studied
object better. As has already been discussed above, any language has a limited
expressibility, in particular, there always exist situations where the accuracy of the
answers expressible in this language is not sufficient.

Numerals that we use to write down numbers, functions, etc. are among our
tools of the investigation and, as a result, they strongly influence our capabilities
to study mathematical objects. This separation (having an evident physical spirit)
of mathematical objects from the tools used for their description is crucial for
our study, but it is used rarely in contemporary Mathematics. In fact, the idea of
finding an adequate (absolutely the best) set of axioms for one or another field of
Mathematics continues to be among the most attractive goals for contemporary
mathematicians. Usually, when it is necessary to define a concept or an object,
logicians try to introduce a number of axioms defining the object. However, this
way is fraught with danger because of the following reasons.

First, when one describes a mathematical object or concept he or she is limited
by the expressive capacity of the language that is used to make this description.
A richer language allows one to say more about the object and a weaker language—
less. Thus, development of the mathematical (and not only mathematical) languages
leads to a continuous necessity of a transcription and specification of axiomatic
systems. Second, there is no guarantee that the chosen axiomatic system defines
“sufficiently well” the required concept and a continuous comparison with practice
is required in order to check the goodness of the accepted set of axioms. However,
there cannot be again any guarantee that the new version will be the last and
definitive one. Finally, the third limitation has been discovered by Gödel in his two
famous incompleteness theorems (see [11]).

It should be emphasized that in both Philosophy and Linguistics, the relativity
of the language (the instrument) with respect to the world around (the object of
study) is a well-known thing. It is sufficient to mention Wittgenstein: “The limits
of my language are the limits of my mind. All I know is what I have words for.” In
Linguistics, it is sufficient to remind the Sapir–Whorf thesis (see [3,30]), also known
as the “linguistic relativity thesis”. As becomes clear from its name, the thesis does
not accept the idea of the universality of language and postulates that the nature of a
particular language influences the thought of its speakers. The thesis challenges the
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possibility of perfectly representing the world with language, because it implies that
the mechanisms of any language condition the thoughts of its speakers.

Thus, due to Postulate 2, our point of view on axiomatic systems is significantly
more applied with respect to the modern mathematical fashion that tries to make all
axiomatic systems more and more precise (decreasing so degrees of freedom of the
studied part of Mathematics). We just define a set of general rules describing how
practical computations should be executed leaving so as much space as possible
for further, dictated by practice, changes and developments of the introduced
mathematical language. Speaking metaphorically, we prefer to make a hammer and
to use it instead of trying to define what the hammer is and how it works.

For example, from this applied point of view, axioms for real numbers are
considered together with a particular numeral system S used to write down numerals
and are viewed as practical rules (associative and commutative properties of mul-
tiplication and addition, distributive property of multiplication over addition, etc.)
describing operations with the numerals. The completeness property is interpreted
as a possibility to extend S with additional symbols (e.g., e, π ,

√
2, etc.) taking

care of the fact that the results of computations with these symbols agree with the
facts observed in practice. As a rule, the assertions regarding numbers that cannot be
expressed in a numeral system are avoided (e.g., it is not supposed that real numbers
form a field).

Finally, before we switch our attention to Postulate 3, it should be noticed the
key difference distinguishing our approach from the constructivism. Constructivists
assert that it is necessary to construct (in some sense) a mathematical object to
prove that it exists. Following Physics, we do not discuss the questions of existence
of mathematical objects at all. We discuss just what can be observed through our
tools (languages, numeral systems, etc.).

Let us now start to introduce the last Postulate. We want to treat infinite and
infinitesimal numbers in the same manner as we are used to deal with finite ones,
i.e., by applying the philosophical principle of Ancient Greeks “The part is less
than the whole.” This principle, in our opinion, very well reflects organization of the
world around us but is not incorporated in many traditional infinity theories where
it is true only for finite numbers. The reason of this traditional discrepancy (as the
example with Pirahã advices) is related to the accuracy of numeral systems used to
work with infinity.

Postulate 3. We adopt the principle “The part is less than the whole” to all
numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite
and infinite).

Due to this Postulate, the traditional point of view on infinity accepting such
results as ∞ − 1 = ∞ should be substituted in a way that ∞ − 1 < ∞. One
of the motivations pro this substitution has already been discussed in detail in
connection with the numerals of Pirahã. We can introduce another simple argument.
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Suppose that we are at a point A and at another point, B, being infinitely far from A
there is an object. Let us see what will happen if we shall change our position and
will move, let us say, 1 m forward in the direction of the point B. The traditional
numeral system using the symbol ∞ will not be able to register this movement in
a quantitative way because ∞− 1 = ∞. This numeral system allows us to say only
that the object was infinitely far before the movement and remains to be infinitely
far after the movement, i.e., the accuracy of the answer is very low. In practice,
due to this traditional way of doing, we are forced to negate the finite movement
that we have executed. Hereinafter, our goal will be to avoid similar situations by
the introduction of a new numeral system that instead of the traditional numerals
∞,ℵ0,ω ,ℵ1, etc. would use a new kind of numerals satisfying Postulates 1–3
introduced above.

Due to Postulates 1–3, such concepts as bijection, numerable and continuum
sets, cardinal and ordinal numbers cannot be used in this chapter because they
belong to theories working with different assumptions. It can seem at first glance
that Postulate 3 contradicts Cantor’s one-to-one correspondence principle. However,
as it will be shown hereinafter, this is not the case. Instead, the situation is similar
to the example from Physics described above where we have considered two lenses
having different accuracies. We have here just two different instruments (numeral
systems) having different accuracies: Cantor’s approach and the new one based on
Postulates 1–3. Analogously, in the finite case, when we observe a garden with 123
trees, then our answer, i.e., 123 trees, and the answer of Pirahã, i.e., many trees, are
both correct, but the accuracy of our answer is higher.

It is important to notice that the adopted Postulates impose also the style of ex-
position of results in the chapter: we first introduce new mathematical instruments,
then show how to use them in several areas of Mathematics, introducing each item
as soon as it becomes indispensable for the problem under consideration.

Let us introduce now the new way of counting by studying a situation arising in
practice and related to the necessity to operate with extremely large quantities (see
[31] for a detailed discussion). Imagine that we are in a granary and the owner asks
us to count how much grain he has inside it. In this occasion, nobody counts the
grain seed by seed because the number of seeds is enormous.

To overcome this difficulty, people take sacks, fill them in with seeds, and count
the number of sacks. In this situation, we suppose that: (a) the number of seeds in
each sack is the same but it is so huge that we are not able to count seed by seed how
many they are and (b) in any case the resulting number would not be expressible by
available numerals.

Then, if the granary is huge and it becomes difficult to count the sacks, then
trucks or even big train waggons are used. In this model, we suppose that all sacks
contain the same number of seeds, all trucks—the same number of sacks, and all
waggons—the same number of trucks, however, these numbers are so huge that it
becomes impossible to determine them. At the end of the counting of this type we
obtain a result in the following form: the granary contains 14 waggons, 54 trucks,
18 sacks, and 47 seeds of grain. Note, that if we add, for example, one seed to the
granary, we can count it and see that the granary has more grain. If we take out one
waggon, we again are able to say how much grain has been subtracted.
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Thus, in our example it is necessary to count large quantities. They are finite but
it is impossible to count them directly by using an elementary unit of measure, u0,
(seeds in our example) because the quantities expressed in these units would be too
large. Therefore, people are forced to behave as if the quantities were infinite.

To solve the problem of “infinite” quantities, new units of measure, u1,u2, and
u3, are introduced (units u1—sacks, u2—trucks, and u3—waggons). The new units
have the following important peculiarity: all the units ui+1 contain a certain number
Ki of units ui but this number, Ki, is unknown. Naturally, it is supposed that Ki is
the same for all instances of the units ui+1. Thus, numbers that were impossible to
express using only the initial unit of measure are perfectly expressible in the new
units we have introduced in spite of the fact that the numbers Ki are unknown.

This key idea of counting by introduction of new units of measure will be used
in the chapter to deal with infinite quantities together with the idea of separate count
of units with different exponents used in traditional positional numeral systems.

3 A New Way of Counting and the Infinite Unit of Measure

The infinite unit of measure is expressed by the numeral ① called grossone and is
introduced as the number of elements of the set, N, of natural numbers. Remind
that the usage of a numeral indicating totality of the elements we deal with is not
new in mathematics. It is sufficient to mention the theory of probability (axioms of
Kolmogorov) where events can be defined in two ways. First, as union of elementary
events; second, as a sample space, Ω, of all possible elementary events (or its parts
Ω/2,Ω/3, etc.) from which some elementary events have been excluded (or added
in case of parts of Ω). Naturally, the latter way to define events becomes particularly
useful when the sample space consists of infinitely many elementary events.

Grossone is introduced by describing its properties (similarly, in order to pass
from natural to integer numbers a new element—zero—is introduced by describing
its properties) postulated by the Infinite Unit Axiom (IUA) consisting of three parts:
Infinity, Identity, and Divisibility. This axiom is added to axioms for real numbers
(remind that we consider axioms in sense of Postulate 2). Thus, it is postulated that
associative and commutative properties of multiplication and addition, distributive
property of multiplication over addition, existence of inverse elements with respect
to addition, and multiplication hold for grossone as for finite numbers.5 Let us
introduce the axiom and then give comments on it.

Infinity. Any finite natural number n is less than grossone, i.e., n < ①.

5It is important to emphasize that we speak about axioms of real numbers in sense of Postulate 2,
i.e., axioms define formal rules of operations with numerals in a given numeral system. Therefore,
if we want to have a numeral system including grossone, we should fix also a numeral system to
express finite numbers. In order to concentrate our attention on properties of grossone, this point
will be investigated later.
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Identity. The following relations link ① to identity elements 0 and 1

0 ·① = ① ·0 = 0, ①−① = 0,
①

①
= 1, ①0 = 1, 1① = 1, 0① = 0. (2)

Divisibility. For any finite natural number n sets Nk,n,1≤ k≤ n, being the nth parts
of the set, N, of natural numbers have the same number of elements indicated by the

numeral ①
n where

Nk,n = {k,k+ n,k+ 2n,k+ 3n, . . .}, 1≤ k ≤ n,
n⋃

k=1

Nk,n = N. (3)

The first part of the introduced axiom—Infinity—is quite clear. In fact, we want
to describe an infinite number, thus, it should be larger than any finite number. The
second part of the axiom—Identity—tells us that ① behaves itself with identity
elements 0 and 1 as all other numbers. In reality, we could even omit this part of
the axiom because, due to Postulate 3, all numbers should be treated in the same
way and, therefore, at the moment we have told that grossone is a number, we
have fixed usual properties of numbers, i.e., the properties described in Identity,
associative and commutative properties of multiplication and addition, distributive
property of multiplication over addition, existence of inverse elements with respect
to addition and multiplication. The third part of the axiom—Divisibility—is the
most interesting, it is based on Postulate 3. Let us first illustrate it by an example.

Example 1. If we take n = 1, then N1,1 = N and Divisibility tells that the set, N, of
natural numbers has ① elements. If n = 2, we have two sets N1,2 and N2,2

N1,2 = {1, 3, 5, 7, . . . },

N2,2 = { 2, 4, 6, . . . }
(4)

and they have ①
2 elements each. Pay attention that we are not able to count the

number of elements of the sets N, N1,2, and N2,2 one by one because due to
Postulate 1 we are able to execute only a finite number of operations and these sets
are infinite. To define their number of elements we apply Postulate 3 and determine
the number of the elements of the parts using the whole.

Then, if n = 3, we have three sets

N1,3 = {1, 4, 7, . . . },

N2,3 = { 2, 5, . . . },

N3,3 = { 3, 6, . . . }

(5)
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and they have ①
3 elements each. Note that in formulae (4), (5) we have added

extra spaces writing down the elements of the sets N1,1,N1,2,N1,3,N2,3,N3,3 just to
emphasize Postulate 3 and to show visually that N1,1∪N1,2 = N and N1,3∪N2,3∪
N3,3 = N. ��

We emphasize again that to introduce ①
n we do not try to count elements k,k+n,

k+ 2n,k+ 3n, . . . one by one in (3). In fact, we cannot do this due to Postulate 1.
By using Postulate 3, we construct the sets Nk,n,1≤ k≤ n, by separating the whole,
i.e., the set N, in n parts [this separation is highlighted visually in formulae (4) and
(5)]. Again due to Postulate 3, we affirm that the number of elements of the nth part

of the set, i.e., ①
n , is n times less than the number of elements of the whole set, i.e.,

than ①.
In terms of our granary example ① can be interpreted as the number of seeds in

the sack. In that example, the number K0 of seeds in each sack was fixed and finite
but impossible to be expressed in units u0, i.e., seeds, by counting seed by seed
because we have supposed that sacks were very big and the corresponding number
would not be expressible by available numerals. In spite of the fact that K0 and
K1,K2, . . . were inexpressible and unknown, by using new units of measure (sacks,
trucks, etc.) it was possible to count easier and to express the required quantities.
Now our sack has the infinite but again fixed number of seeds. It is fixed because it
has a strong link to a concrete set—it is the number of elements of this set, precisely,
of the set of natural numbers. This number is inexpressible by existing numeral
systems with the same high accuracy as we do it with finite small sets6 and we
introduce a new number—grossone—expressible by a new numeral—①. Then, we
apply Postulate 3 and say that if the sack contains ① seeds, its nth part contains

n times less quantity, i.e., ①
n seeds. Note that, since the numbers ①

n have been
introduced as numbers of elements of sets Nk,n, they are integer.

The new unit of measure allows us to calculate easily the number of elements of
sets being union, intersection, difference, or product of other sets of the type Nk,n.
Due to our accepted methodology, we do it in the same way as these measurements
are executed for finite sets. Let us consider two simple examples (a general rule for
determining the number of elements of infinite sets having a more complex structure
will be given in Sect. 5) showing how grossone can be used for this purpose.

Example 2. Let us determine the number of elements of the set Ak,n = Nk,n\{a},
a ∈ Nk,n,n ≥ 1. Due to the IUA, the set Nk,n has ①

n elements. The set Ak,n has

6First, this quantity is inexpressible by numerals used to count the number of elements of finite
sets because N is infinite. Second, traditional numerals existing to express infinite numbers do not
have the required high accuracy (remind that we would like to be able to register the alteration of
the number of elements of infinite sets even when one element has been excluded). For example,
by using Cantor’s alephs we say that cardinality of the sets N and N \ {1} is the same—ℵ0. This
answer is correct but its accuracy is low—we are not able to register the fact that one element was
excluded from the set N. Analogously, we can say that both of the sets have “many” elements.
Again, this answer is correct but its accuracy is low.
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been constructed by excluding one element from Nk,n. Thus, the set Ak,n has ①
n − 1

elements. The granary interpretation can be also given for the number ①
n − 1: the

number of seeds in the nth part of the sack minus one seed. For n = 1 we have ①−1
interpreted as the number of seeds in the sack minus one seed. ��

Divisibility and Example 2 show us that in addition to the usual way of counting,
i.e., by adding units, that has been well formalized in Mathematics, there exist also
the way to count by taking parts of the whole and by subtracting units or parts of
the whole. The following example shows a little bit more complex situation (other
more sophisticated examples will be given later after the reader will got accustomed
with the concept of grossone).

Example 3. Let us consider the following two sets

B1 = {4,9,14,19,24,29,34,39,44,49,54,59,64,69,74,79, . . .},
B2 = {3,14,25,36,47,58,69,80,91,102,113,124,135, . . .}

and determine the number of elements in the set B = (B1 ∩ B2)∪ {3,4,5,69}. It
follows immediately from the IUA that B1 = N4,5,B2 = N3,11. Their intersection

B1∩B2 = N4,5∩N3,11 = {14,69,124, . . .}= N14,55

and, therefore, due to the IUA, it has ①
55 elements. Finally, since 69 belongs to the

set N14,55 and 3, 4, and 5 do not belong to it, the set B has ①
55 + 3 elements. The

granary interpretation: this is the number of seeds in the 55th part of the sack plus
three seeds. ��

One of the important differences of the new approach with respect to the
nonstandard analysis consists of the fact that ① ∈ N because grossone has been
introduced as the quantity of natural numbers. Similarly, the number 5 being the
number of elements of the set

A = {1,2,3,4,5} (6)

is the largest element in this set. The new numeral ① allows one to write down the
set, N, of natural numbers in the form

N=

{
1,2, . . .

①

2
− 2,

①

2
− 1,

①

2
,
①

2
+ 1,

①

2
+ 2, . . . ①− 2, ①− 1, ①

}
. (7)

Note that traditional numeral systems did not allow us to see infinite natural numbers

. . .
①

2
− 2,

①

2
− 1,

①

2
,
①

2
+ 1,

①

2
+ 2, . . . ①− 2,①− 1,①. (8)
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It is important to emphasize that in the new approach the set (7) is the same set
of natural numbers

N= {1,2,3, . . . } (9)

we are used to deal with and infinite numbers (8) also take part of N. Both records,
(7) and (9), are correct and do not contradict each other. They just use two different
numeral systems to express N. Traditional numeral systems do not allow us to see
infinite natural numbers that we can observe now thanks to ①. Similarly, Pirahã
are not able to see finite natural numbers greater than 2. In spite of this fact, these
numbers (e.g., 3 and 4) belong to N and are visible if one uses a more powerful
numeral system. Thus, we have the same object of observation—the set N—that can
be observed by different instruments—numeral systems—with different accuracies
(see Postulate 2).

This example illustrates also the fact that when we speak about sets (finite or
infinite) it is necessary to take care about tools used to describe a set (remind
Postulate 2). In order to introduce a set, it is necessary to have a language (e.g., a
numeral system) allowing us to describe its elements and the number of the elements
in the set. For instance, the set A from (6) cannot be defined using the mathematical
language of Pirahã.

Analogously, the words “the set of all finite numbers” do not define a set
completely from our point of view, as well. It is always necessary to specify
which instruments are used to describe (and to observe) the required set and, as
a consequence, to speak about “the set of all finite numbers expressible in a fixed
numeral system.” For instance, for Pirahã “the set of all finite numbers” is the set
{1,2} and for Mundurukú “the set of all finite numbers” is the set A from (6). As
it happens in Physics, the instrument used for an observation bounds the possibility
of the observation. It is not possible to say how we shall see the object of our
observation if we have not clarified which instruments will be used to execute the
observation.

Now the following obvious question arises: which natural numbers can we
express by using the new numeral ①? Suppose that we have a numeral system,
S, for expressing finite natural numbers and it allows us to express KS numbers (not
necessary consecutive) belonging to a set NS ⊂ N. Note that due to Postulate 1,
KS is finite. Then, addition of ① to this numeral system will allow us to express
also infinite natural numbers i①

n ± k ≤ ① where 1 ≤ i ≤ n, k ∈ NS , n ∈ NS (note

that since ①
n are integers, i①

n are integers too). Thus, the more powerful system S
is used to express finite numbers, the more infinite numbers can be expressed but
their quantity is always finite, again due to Postulate 1. The new numeral system
using grossone allows us to express more numbers than traditional numeral systems
thanks to the introduced new numerals but, as it happens for all numeral systems,
its abilities to express numbers are limited.

Example 4. Let us consider the numeral system, P , of Pirahã able to express only
numbers 1 and 2 (the only difference will be in the usage of numerals “1” and “2”
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instead of original numerals I and II used by Pirahã). If we add toP the new numeral
①, we obtain a new numeral system (we call it P̂) allowing us to express only ten
numbers represented by the following numerals

1,2︸︷︷︸
finite

, . . .
①

2
− 2,

①

2
− 1,

①

2
,

①

2
+ 1,

①

2
+ 2

︸ ︷︷ ︸
infinite

, . . . ①− 2,①− 1,①︸ ︷︷ ︸
infinite

. (10)

The first two numbers in (10) are finite, the remaining eight are infinite, and dots
show natural numbers that are not expressible in P̂ . As a consequence, P̂ does not
allow us to execute such operation as 2+2 or to add 2 to ①

2 +2 because their results
cannot be expressed in it. Of course, we do not say that results of these operations
are equal (as Pirahã do for operations 2+ 2 and 2+ 1). We just say that the results
are not expressible in P̂ and it is necessary to take another, more powerful numeral
system if we want to execute these operations. ��

Note that crucial limitations discussed in Example 4 hold for sets, too. As a
consequence, the numeral system P allows us to define only the sets N1,2 and N2,2

among all possible sets of the form Nk,n from (3) because we have only two finite
numerals, “1” and “2”, in P . This numeral system is too weak to define other sets
of this type, for instance, N4,5, because numbers greater than 2 required for these
definition are not expressible in P . These limitations have a general character and
are related to all questions requiring a numerical answer (i.e., an answer expressed
only in numerals, without variables). In order to obtain such an answer, it is
necessary to know at least one numeral system able to express numerals required
to write down this answer.

We are ready now to formulate the following important result being a direct
consequence of the accepted methodological postulates.

Theorem 1. The set N is not a monoid under addition.

Proof. Due to Postulate 3, the operation ①+ 1 gives us the result a number greater
than ①. Thus, by definition of grossone, ①+ 1 does not belong to N and, therefore,
N is not closed under addition and is not a monoid. ��

This result also means that adding the IUA to the axioms of natural numbers
defines the set of extended natural numbers indicated as N̂ and including N as a
proper subset

N̂= {1,2, . . . ,①− 1,①,①+ 1, . . . ,①2− 1,①2,①2 + 1, . . .}. (11)

The extended natural numbers greater than grossone are also linked to sets of
numbers and can be interpreted in the terms of grain.

Example 5. Let us determine the number of elements of the set

Cm = {(a1,a2, . . . ,am−1,am) : ai ∈ N,1≤ i≤ m}, 2≤ m≤①.
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The elements of Cm are m-tuples of natural numbers. It is known from combinatorial
calculus that if we have m positions and each of them can be filled in by one of l
symbols, the number of the obtained m-tuples is equal to lm. In our case, since N

has grossone elements, l = ①. Thus, the set Cm has ①m elements. In the particular
case, m = 2, we obtain that the set

C2 = {(a1,a2) : ai ∈ N, i ∈ {1,2}},

being the set of couples of natural numbers, has ①2 elements. These couples are
shown below

(1,1), (1,2), . . . (1,①− 1), (1,①),

(2,1), (2,2), . . . (2,①− 1), (2,①),

. . . . . . . . . . . . . . .

(①− 1,1), (①− 1,2), . . . (①− 1,①− 1), (①− 1,①),

(①,1), (①,2), . . . (①,①− 1), (①,①).

Another interesting particular case is the set

C① = {(a1,a2, . . . ,a①−1,a①) : ai ∈ N,1≤ i≤①}

having ①① elements.
Note that we can also give the granary interpretation for the numbers of the type

①m: if we accept that the numbers Ki from page 13 are such that Ki = ①,1 ≤ i ≤
m−1, then ①2 can be viewed as the number of seeds in the truck, ①3 as the number
of seeds in the train waggon, etc. ��

The set, Ẑ, of extended integer numbers can be constructed from the set, Z, of
integer numbers by a complete analogy and inverse elements with respect to addition
are introduced naturally. For example, 7① has its inverse with respect to addition
equal to −7①.

It is important to notice that, due to Postulates 1 and 2, the new system of
counting cannot give answers to all questions regarding infinite sets. What can we
say, for instance, about the number of elements of the sets N̂ and Ẑ? The introduced
numeral system based on ① is too weak to give answers to these questions. It is
necessary to introduce in a way a more powerful numeral system by defining new
numerals (for instance, ②, ③, etc).

We conclude this section by the following remark. The IUA introduces a new
number—the quantity of elements in the set of natural numbers—expressed by the
new numeral ①. However, other numerals and sets can be used to state the idea of
the axiom. For example, the numeral ❶ can be introduced as the number of elements
of the set, E, of even numbers and can be taken as the base of a numeral system.
In this case, the IUA can be reformulated using the numeral ❶ and numerals using
it will be used to express infinite numbers. For example, the number of elements of
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the set, O, of odd numbers will be expressed as |O|= |E| = ❶ and |N|= 2· ❶. We
emphasize through this note that infinite numbers (similarly to the finite ones) can
be expressed by various numerals and in different numeral systems.

4 Arithmetical Operations in the New Numeral System

We have already started to write down simple infinite numbers and to execute
arithmetical operations with them without concentrating our attention upon this
question. Let us consider it systematically.

4.1 Positional Numeral System with Infinite Radix

Different numeral systems have been developed to describe finite numbers. In
positional numeral systems, fractional numbers are expressed by the record

(anan−1 . . .a1a0 ·a−1a−2 . . .a−(q−1)a−q)b, (12)

where numerals ai,−q≤ i≤ n, are called digits, belong to the alphabet {0,1, . . . ,b−
1}, and the dot is used to separate the fractional part from the integer one. Thus, the
numeral (12) is equal to the sum

anbn + an−1bn−1 + . . .+ a1b1 + a0b0 + a−1b−1 + · · ·+ a−(q−1)b
−(q−1) + a−qb−q.

(13)

Record (12) uses numerals consisting of one symbol each, i.e., digits ai ∈ {0,1,
. . . ,b− 1}, to express how many finite units of the type bi belong to the number
(13). Quantities of finite units bi are counted separately for each exponent i and all
symbols in the alphabet {0,1, . . . ,b− 1} express finite numbers.

To express infinite and infinitesimal numbers we shall use records that are similar
to (12) and (13) but have some peculiarities. In order to construct a number C
in the new numeral positional system with base ①, we subdivide C into groups
corresponding to powers of ①:

C = cpm①pm + · · ·+ cp1①p1 + cp0①p0 + cp−1①
p−1 + · · ·+ cp−k①

p−k . (14)

Then, the record

C = cpm①pm . . .cp1①p1cp0①p0cp−1①p−1 . . .cp−k①
p−k (15)

represents the number C, where all numerals ci �= 0, they belong to a traditional
numeral system and are called grossdigits. They express finite positive or negative
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numbers and show how many corresponding units ①pi should be added or subtracted
in order to form the number C. Grossdigits can be expressed by several symbols
using positional systems, the form Q

q where Q and q are integer numbers, or in any
other finite numeral system.

Numbers pi in (15) called grosspowers can be finite, infinite, and infinitesimal
(the introduction of infinitesimal numbers will be given soon), they are sorted in the
decreasing order

pm > pm−1 > · · ·> p1 > p0 > p−1 > · · · p−(k−1) > p−k

with p0 = 0.
In the traditional record (12), there exists a convention that a digit ai shows

how many powers bi are present in the number and the radix b is not written
explicitly. In the record (15), we write ①pi explicitly because in the new numeral
positional system the number i in general is not equal to the grosspower pi. This
gives possibility to write, for example, such a number as 7.6①244.5 34①32 having
grosspowers p2 = 244.5, p1 = 32 and grossdigits c244.5 = 7.6,c32 = 34 without
indicating grossdigits equal to zero corresponding to grosspowers less than 244.5
and greater than 32. Note also that if a grossdigit cpi = 1, then we often write ①pi

instead of 1①pi .
The term having p0 = 0 represents the finite part of C because, due to (2),

we have c0①0 = c0. The terms having finite positive grosspowers represent the
simplest infinite parts of C. Analogously, terms having negative finite grosspowers
represent the simplest infinitesimal parts of C. For instance, the number ①−1 = 1

①
is infinitesimal. It is the inverse element with respect to multiplication for ①:

①−1 ·① = ① ·①−1 = 1. (16)

Note that all infinitesimals are not equal to zero. Particularly, 1
①

> 0 because it is a
result of division of two positive numbers. It also has a clear granary interpretation.
Namely, if we have a sack containing ① seeds, then one sack divided by the number
of seeds in it is equal to one seed. Vice versa, one seed, i.e., 1

①
, multiplied by the

number of seeds in the sack, ①, gives one sack of seeds.
All of the numbers introduced above can be grosspowers, as well, giving so a

possibility to have various combinations of quantities and to construct terms having
a more complex structure.7

7At the first glance the record (14) [and, therefore, the numerals (15)] can remind numbers
from the Levi–Civita field (see [20]) that is a very interesting and important precedent of
algebraic manipulations with infinities and infinitesimals. However, the two mathematical objects
have several crucial differences. They have been introduced for different purposes by using two
mathematical languages having different accuracies and on the basis of different methodological
foundations. In fact, Levi–Civita does not discuss the distinction between numbers and numerals
and works with generic numbers while each numeral (15) represents a concrete number. His
numbers have neither cardinal nor ordinal properties; they are built using a generic infinitesimal
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Example 6. The left-hand expression below shows how to write down numbers in
the new numeral system and the right-hand shows how the value of the number is
calculated:

15①1.4①(−17.2045)①37①052.1①−6 = 15①1.4①− 17.2045①3 + 7①0 + 52.1①−6.

The number above has one infinite part having the infinite grosspower, one infinite
part having the finite grosspower, a finite part, and an infinitesimal part. ��

Finally, numbers having a finite and infinitesimal parts can be also expressed in
the new numeral system, for instance, the number −3.5①0(−37)①−211①−15①+2.3

has a finite and two infinitesimal parts, the second of them has the infinite negative
grosspower equal to −15①+ 2.3.

4.2 Arithmetical Operations

We start the description of arithmetical operations for the new positional numeral
system by the operation of addition (subtraction is a direct consequence of addition
and is thus omitted) of two given infinite numbers A and B, where

A =
K

∑
i=1

aki①
ki , B =

M

∑
j=1

bmj ①
mj , C =

L

∑
i=1

cli①
li , (17)

and the result C =A+B is constructed by including in it all items aki①
ki from A such

that ki �=m j,1≤ j≤M, and all items bmj ①
mj from B such that m j �= ki,1≤ i≤K. If

in A and B there are items such that ki = m j, for some i and j, then this grosspower
ki is included in C with the grossdigit bki + aki , i.e., as (bki + aki)①

ki .

Example 7. We consider two infinite numbers A and B, where

A = 16.5①44.2(−12)①1217①0, B = 6.23①310.1①015①−4.1.

Their sum C is calculated as follows:

C = A+B = 16.5①44.2 +(−12)①12 + 17①0 + 6.23①3 + 10.1①0 + 15①−4.1

= 16.5①44.2− 12①12 + 6.23①3 + 27.1①0 + 15①−4.1

= 16.5①44.2(−12)①126.23①327.1①015①−4.1. ��

and only its rational powers are allowed; he uses symbol ∞ in his construction; there is no numeral
system that would allow one to assign numerical values to his numbers; it is not explained how it
would be possible to pass from d a generic infinitesimal h to a concrete one (see also the discussion
above on the distinction between numbers and numerals).

In no way the said above should be considered as a criticism with respect to results of Levi–
Civita. The above discussion has been introduced in this text just to underline that we are in front
of two different mathematical tools that should be used in different mathematical contexts.
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The operation of multiplication of two numbers A and B in the form (17) returns,
as the result, the infinite number C constructed as follows:

C =
M

∑
j=1

Cj, Cj = bmj ①
mj ·A =

K

∑
i=1

akibmj ①
ki+mj , 1≤ j ≤M. (18)

Example 8. We consider two infinite numbers

A = 1①18(−5)①2.4(−3)①1, B =−1①10.7①−3

and calculate the product C = B ·A. The first partial product C1 is equal to

C1 = 0.7①−3 ·A = 0.7①−3(①18− 5①2.4− 3①1)

= 0.7①15− 3.5①−0.6− 2.1①−2 = 0.7①15(−3.5)①−0.6(−2.1)①−2.

The second partial product, C2, is computed analogously

C2 =−①1 ·A =−①1(①18− 5①2.4− 3①1) =−①195①3.43①2.

Finally, the product C is equal to

C =C1 +C2 =−1①190.7①155①3.43①2(−3.5)①−0.6(−2.1)①−2. ��

In the operation of division of a number C by a number B from (17), we obtain
a result A and a reminder R (that can be also equal to zero), i.e., C = A ·B+R. The
number A is constructed as follows. The first grossdigit akK and the corresponding
maximal exponent kK are established from the equalities

akK = clL/bmM , kK = lL−mM. (19)

Then the first partial reminder R1 is calculated as

R1 =C− akK ①kK ·B. (20)

If R1 �= 0, then the number C is substituted by R1 and the process is repeated with a
complete analogy. The grossdigit akK−i , the corresponding grosspower kK−i and the
partial reminder Ri+1 are computed by formulae (21) and (22) obtained from (19)
and (20) as follows: lL and clL are substituted by the highest grosspower ni and the
corresponding grossdigit rni of the partial reminder Ri that, in turn, substitutes C:

akK−i = rni/bmM , kK−i = ni−mM, (21)

Ri+1 = Ri− akK−i①
kK−i ·B, i≥ 1. (22)
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The process stops when a partial reminder equal to zero is found (this means that
the final reminder R = 0) or when a required accuracy of the result is reached.

Example 9. Let us divide the number C = −10①316①042①−3 by the number B =
5①37. For these numbers we have

lL = 3, mM = 3, clL =−10, bmM = 5.

It follows immediately from (19) that akK ①kK = −2①0. The first partial reminder
R1 is calculated as

R1 =−10①316①042①−3− (−2①0) ·5①37

=−10①316①042①−3 + 10①314①0 = 30①042①−3.

By a complete analogy we should construct akK−1①kK−1 by rewriting (19) for R1. By
doing so we obtain equalities

30 = akK−1 ·5, 0 = kK−1 + 3

and, as the result, akK−1①kK−1 = 6①−3. The second partial reminder is

R2 = R1− 6①−3 ·5①37 = 30①042①−3− 30①042①−3 = 0.

Thus, we can conclude that the reminder R = R2 = 0 and the final result of division
is A =−2①06①−3.

Let us now substitute the grossdigit 42 by 40 in C and divide this new number
C̃ = −10①316①040①−3 by the same number B = 5①37. This operation gives us
the same result Ã2 = A = −2①06①−3 (where subscript 2 indicates that two partial
reminders have been obtained) but with the reminder R̃ = R̃2 = −2①−3. Thus, we
obtain C̃ = B · Ã2 + R̃2. If we want to continue the procedure of division, we obtain
Ã3 =−2①06①−3(−0.4)①−6 with the reminder R̃3 = 0.28①−6. Naturally, it follows
C̃ = B · Ã3 + R̃3. The process continues until a partial reminder R̃i = 0 is found or
when a required accuracy of the result will be reached. ��

A working software simulator of the Infinity Computer has been implemented
and the first application—the Infinity Calculator—has been realized. Figure 1 shows
operation of multiplication executed at the Infinity Calculator that works using the
Infinity Computer technology. The left operand has two infinitesimal parts and the
right operand has an infinite part and a finite one.

We conclude this section by emphasizing the following important issue: the
Infinity Computer works with infinite, finite, and infinitesimal numbers numerically,
not symbolically (see [41]).
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Fig. 1 Operation of multiplication executed at the Infinity Calculator

5 Examples of Problems Where Computations with New
Numerals Can Be Useful

5.1 The Work with Infinite Sequences

We start by reminding traditional definitions of the infinite sequences and sub-
sequences. An infinite sequence {an},an ∈ A,n ∈ N, is a function having as the
domain the set of natural numbers, N, and as the codomain a set A. A subsequence
is a sequence from which some of its elements have been removed. In a sequence
a1,a2, . . . ,an the number n is the number of elements of the sequence. Then, the IUA
allows us to consider sequences having n that can assume different finite or infinite
values and to prove the following result.

Theorem 2. The number of elements of any infinite sequence is less or equal to ①.

Proof. The IUA states that the set N has ① elements. Thus, due to the sequence
definition given above, any sequence having N as the domain has ① elements.

The notion of subsequence is introduced as a sequence from which some of its
elements have been removed. Thus, this definition gives infinite sequences having
the number of members less than grossone. ��
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One of the immediate consequences of the understanding of this result is that any
sequential process can have at maximum ① elements. Due to Postulate 1, it depends
on the chosen numeral system which numbers among ① members of the process we
can observe.

Example 10. For example, if we consider the set, N̂, of extended natural numbers,
then starting from the number 1, it is possible to arrive at maximum to ①

1,2,3,4, . . . ①− 2, ①− 1,①︸ ︷︷ ︸
①

,①+ 1,①+ 2,①+ 3, . . . (23)

Starting from 2 it is possible to arrive at maximum to ①+ 1

1,2,3,4, . . . ①− 2, ①− 1,①,①+ 1︸ ︷︷ ︸
①

,①+ 2,①+ 3, . . . (24)

Starting from 3 it is possible to arrive at maximum to ①+ 2

1,2,3,4, . . . ①− 2, ①− 1,①,①+ 1,①+ 2︸ ︷︷ ︸
①

,①+ 3, . . . (25)

Of course, since we have postulated that our possibilities to express numerals are
finite, it depends on the chosen numeral system which numbers among ① members
of these processes we can observe. ��

It is also very important to notice a deep relation of this observation to the Axiom
of Choice. The IUA postulates that any process can have at maximum ① elements,
thus the process of choice too and, as a consequence, it is not possible to choose
more than ① elements from a set. This observation also emphasizes the fact that
the parallel computational paradigm is significantly different with respect to the
sequential one because p parallel processes can choose p① elements from a set.
Note also that the new more precise definition of sequences allows us to obtain a
new vision of Turing machines (see [47]).

It becomes appropriate now to define the complete sequence as an infinite
sequence containing ① elements. For example, the sequence of natural numbers
is complete, the sequences of even and odd natural numbers are not complete.
Thus, the IUA imposes a more precise description of infinite sequences. To define a
sequence {an} it is not sufficient just to give a formula for an, we should determine
(as it happens for sequences having a finite number of elements) the first and the last
elements of the sequence. If the number of the first element is equal to one, we can
use the record {an : k} where an is, as usual, the general element of the sequence
and k is the number (that can be finite or infinite) of members of the sequence.

Example 11. Let us consider the following two sequences, {an} and {cn}:
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{an}= {5, 10, . . . 5(①− 1), 5①},

{bn}=
{

5, 10, . . . 5

(
2①

5
− 1

)
, 5 · 2①

5

}
, (26)

{cn}=
{

5, 10, . . . 5

(
4①

5
− 1

)
, 5 · 4①

5

}
. (27)

They have the same general element an = bn = cn = 5n but they are different because
they have different numbers of members. The first sequence has ① elements and is

thus complete, the other two sequences are not complete: {bn} has 2①
5 elements and

{cn} has 4①
5 members. ��

In connection with this definition the following natural question arises inevitably.

Suppose that we have two sequences, for example, {bn : 2①
5 } and {cn : 4①

5 } from
(26) and (27). Can we create a new sequence, {dn : k}, composed from both of them,
for instance, as it is shown below

b1, b2, . . . b 2①
5 −2

, b 2①
5 −1

, b 2①
5
, c1, c2, . . . c 4①

5 −2
, c 4①

5 −1
, c 4①

5

and which will be the value of the number of its elements k?
The answer is “no” because due to the definition of the infinite sequence, a

sequence can be at maximum complete, i.e., it cannot have more than ① elements.
Starting from the element b1 we can arrive at maximum to the element c 3①

5
being

the element number ① in the sequence {dn : k}which we try to construct. Therefore,
k = ① and

b1, . . . b 2①
5
, c1, . . .c 3①

5︸ ︷︷ ︸
① elements

, c 3①
5 +1

, . . . c 4①
5︸ ︷︷ ︸

①
5 elements

.

The remaining members of the sequence {cn : 4①
5 } will form the second sequence,

{gn : l} having l = 4①
5 − 3①

5 = ①
5 elements. Thus, we have formed two sequences,

the first of them is complete and the second is not.
To conclude this subsection, let us return to Hilbert’s paradox of the Grand

Hotel presented in Sect. 1. In the paradox, the number of the rooms in the Hotel
is countable. In our terminology this means that it has ① rooms. When a new
guest arrives, it is proposed to move the guest occupying room 1 to room 2, the
guest occupying room 2 to room 3, etc. Under the IUA this procedure does not
help because the guest from room ① should be moved to room ①+ 1 and the
Hotel has only ① rooms. Thus, when the Hotel is full, no more new guests can be
accommodated—the result corresponding perfectly to Postulate 3 and the situation
taking place in normal hotels with a finite number of rooms.
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5.2 From Divergent Series to Expressions Evaluated
at Different Points in Infinity

Let us show how the new approach can be applied in such an important area as
theory of divergent series. We consider two infinite series S1 = 7+ 7+ 7+ · · · and
S2 = 3+ 3+ 3+ · · · The traditional analysis gives us a very poor answer that both
of them diverge to infinity. Such operations as, S2

S1
and S2− S1 are not defined.

Now, when we are able to express not only different finite numbers but also
different infinite numbers such records as S1 = a1 + a2 + · · · or ∑∞

i=1 ai become
unprecise (by continuation the analogy with Pirahã the record ∑∞

i=1 ai becomes a
kind of ∑many

i=1 ai). It is therefore necessary to indicate explicitly the number of items
in the sums S1 and S2 and it is not important whether k is finite or infinite.

We emphasize again that in order to be able to calculate a sum it is necessary
that the number of items and the result are expressible in the numeral system used
for calculations. It is important to notice that even though a sequence cannot have
more than ① elements, the number of items in a series can be greater than grossone
because the process of summing up is not necessary executed by a sequential adding
items.

Example 12. Let us consider the infinite series S1 and S2 mentioned above. In order
to use our approach, it is necessary to indicate explicitly the number of their items.

Suppose that the sum S1 has k items and S2 has n items:

S1(k) = 7+ 7+ 7+ · · ·+ 7︸ ︷︷ ︸
k

, S2(n) = 3+ 3+ 3+ · · ·+ 3︸ ︷︷ ︸
n

.

Then S1(k) = 7k and S2(n) = 3n and by giving different numerical values (finite or
infinite) to k and n we obtain different numerical values for the sums. For chosen
k and n it becomes possible to calculate S2(n)− S1(k) (analogously, the expression
S1(k)
S2(n)

can be calculated). If, for instance, k = 5① and n = ①, we obtain S1(5①) =

35①, S2(①) = 3① and it follows

S2(①)− S1(5①) = 3①− 35① =−32① < 0.

If k = 3① and n= 7①+2, we obtain S1(3①)= 21①, S2(①)= 21①+6 and it follows

S2(7①+ 2)− S1(3①) = 21①+ 6− 21①= 6.

It is also possible to sum up sums having an infinite number of infinite or
infinitesimal items

S3(l) = 2①+ 2①+ · · ·+ 2①︸ ︷︷ ︸
l

, S4(m) = 4①−1 + 4①−1 + · · ·+ 4①−1
︸ ︷︷ ︸

m

.
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For l = m = 0.5① it follows S3(0.5①) = ①2 and S4(0.5①) = 2 [remind that ① ·
①−1 = ①0 = 1 (see (16))]. It can be seen from this example that it is possible to
obtain finite numbers as the result of summing up infinitesimals. This is a direct
consequence of Postulate 3. ��

The infinite and infinitesimal numbers allow us to calculate also arithmetic and
geometric sums with an infinite number of items. Traditional approaches tell us that
if an = a1 +(n− 1)d then for a finite n it is possible to use the formula

n

∑
i=1

ai =
n
2
(a1 + an).

Due to Postulate 3, we can use it also for infinite n.

Example 13. The sum of all natural numbers from 1 to ① can be calculated as
follows

1+ 2+ 3+ · · ·+(①− 1)+①=
①

∑
i=1

i =
①

2
(1+①) = 0.5①20.5①. (28)

Let us calculate now the following sum of infinitesimals where each item is ① times
less than the corresponding item of (28)

①−1+2①−1+ · · ·+(①−1) ·①−1+① ·①−1 =
①

∑
i=1

i①−1 =
①

2
(①−1+1)= 0.5①10.5.

Obviously, the obtained number, 0.5①10.5 is ① times less than the sum in (28). This
example shows, particularly, that infinite numbers can also be obtained as the result
of summing up infinitesimals. ��
Let us consider now the geometric series ∑∞

i=0 qi. Traditional analysis proves that it
converges to 1

1−q for q such that −1 < q < 1. We are able to give a more precise
answer for all values of q. To do this we should fix the number of items in the sum.
If we suppose that it contains n items, then

Qn =
n

∑
i=0

qi = 1+ q+ q2+ · · ·+ qn. (29)

By multiplying the left-hand and the right-hand parts of this equality by q and by
subtracting the result from (29) we obtain

Qn− qQn = 1− qn+1
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and, as a consequence, for all q �= 1 the formula

Qn = (1− qn+1)(1− q)−1 (30)

holds for finite and infinite n. Thus, the possibility to express infinite and infinites-
imal numbers allows us to take into account infinite n and the value qn+1 being
infinitesimal for a finite q. Moreover, we can calculate Qn for infinite and finite
values of n and q = 1, because in this case we have just

Qn = 1+ 1+ 1+ · · ·+ 1︸ ︷︷ ︸
n+1

= n+ 1.

Example 14. As the first example we consider the divergent series

1+ 3+ 9+ · · ·=
∞

∑
i=0

3i.

To fix it, we should decide the number of items, n, at the sum and, for example, for
n = ①2 we obtain

①2

∑
i=0

3i = 1+ 3+ 9+ · · ·+ 3①
2

=
1− 3①

2
+1

1− 3
= 0.5(3①

2
+1− 1).

Analogously, for n = ①2 + 1 we obtain

1+ 3+ 9+ · · ·+ 3①
2

+ 3①
2
+1 = 0.5(3①

2
+2− 1).

If we now find the difference between the two sums

0.5(3①
2
+2− 1)− (0.5(3①

2
+1− 1)) = 3①

2
+1(0.5 ·3− 0.5)= 3①

2
+1,

we obtain the newly added item 3①
2
+1. ��

Example 15. In this example, we consider the series ∑∞
i=1

1
2i . It is well known that

it converges to one. However, we are able to give a more precise answer. In fact, due
to Postulate 3, the formula

n

∑
i=1

1
2i =

1
2

(
1+

1
2
+

1
22 + · · ·+

1
2n−1

)
=

1
2
· 1−

1
2

n

1− 1
2

= 1− 1
2n

can be used directly for infinite n, too. For example, if n = ①, then

①

∑
i=1

1
2i = 1− 1

2①
,
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where 1
2① is infinitesimal. Thus, the traditional answer ∑∞

i=1
1
2i = 1 was just a finite

approximation to our more precise result using infinitesimals. ��
Example 16. In this example, we consider divergent series with alternate signs. Let
us start from the famous series

S5 = 1− 1+ 1− 1+1−1+ · · ·

In literature there exist many approaches giving different answers regarding the
value of this series (see [18]). All of them use various notions of average. However,
the notions of sum and average are different. In our approach we do not appeal
to average and calculate the required sum directly. To do this we should indicate
explicitly the number of items, k, in the sum. Then

S5(k) = 1− 1+ 1− 1+1−1+1− . . .︸ ︷︷ ︸
k

=

{
0, if k = 2n,
1, if k = 2n+ 1,

and it is not important whether k is finite or infinite. For example, S5(①) = 0 because

the number ①
2 being the result of division of ① by 2 has been introduced as the

number of elements of a set and, therefore, it is integer. As a consequence, ① is
even number. Analogously, S5(①− 1) = 1 because ①− 1 is odd. ��

It is important to emphasize that, as it happens in the case of the finite number
of items in a sum, the obtained answers do not depend on the way the items in the
entire sum are rearranged. In fact, if we know the exact infinite number of items in
the sum and the order of alternating the signs is clearly defined, we know also the
exact number of positive and negative items in the sum.

Let us illustrate this point by supposing, for instance, that we want to re-arrange
the items in the sum S1(2①) in the following way

S1(2①) = 1+ 1− 1+ 1+1−1+1+1−1+ · · ·

However, we know that the sum has 2① items and the number 2① is even. This
means that in the sum there are ① positive and ① negative items. As a result, the re-
arrangement considered above can continue only until the positive items present in
the sum will not finish and then it will be necessary to continue to add only negative
numbers. More precisely, we have

S1(2①) = 1+ 1− 1+ 1+1−1+ · · ·+ 1+ 1− 1︸ ︷︷ ︸
① positive and ①

2 negative items

−1− 1−·· ·− 1− 1− 1︸ ︷︷ ︸
①
2 negative items

= 0,

where the result of the first part in this rearrangement is calculated as (1+ 1− 1) ·
①
2 = ①

2 and the result of the second part is equal to −①
2 .



32 Y.D. Sergeyev

Example 17. Let us consider now the following divergent series

S6 = 1− 2+ 3− 4+ · · ·

It can be easily considered as the difference of two arithmetic progressions after
we have fixed the number of items, k, in the sum S6(k). Suppose that it contains
grossone items. Then it follows

S6(①) = 1− 2+ 3− 4+ · · ·− (①− 2)+ (①− 1)−①

= (1+ 3+ 5+ · · ·+(①− 3)+ (①− 1))− (2+ 4+6+ · · ·+(①− 2)+①)

=
(1+①− 1)①

4
− (2+①)①

4
=

①2− 2①−①2

4
=−①

2
. ��

5.3 Calculating Limits and Expressing Irrational Numbers

Let us now discuss the problem of calculation of limits from the point of view of our
approach. In traditional analysis, if a limit limx→a f (x) exists, then it gives us a very
poor—just one value—information about the behavior of f (x) when x tends to a.
Now we can obtain significantly richer information because we are able to calculate
f (x) directly at any finite, infinite, or infinitesimal point that can be expressed by
the new positional system even if the limit does not exist.

Thus, limits equal to infinity can be substituted by precise infinite numerals and
limits equal to zero can be substituted by precise infinitesimal numerals.8 This
is very important for practical computations because these substitutions eliminate
indeterminate forms.

Example 18. Let us consider the following two limits

lim
x→+∞

(5x3− x2 + 1061) = +∞, lim
x→+∞

(5x3− x2) = +∞.

Both give us the same result, +∞, and it is not possible to execute the operation

lim
x→+∞

(5x3− x2 + 1061)− lim
x→+∞

(5x3− x2).

that is an indeterminate form of the type ∞−∞ in spite of the fact that for any finite
x it follows

5x3− x2 + 1061− (5x3− x2) = 1061. (31)

8Naturally, if we speak about limits of sequences, limn→∞ a(n), then n ∈ N and, as a consequence,
it follows that n should be less than or equal to grossone.
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The new approach allows us to calculate exact values of both expressions, 5x3−
x2 + 1061 and 5x3− x2 + 10, at any infinite (and infinitesimal) x expressible in the
chosen numeral system. For instance, the choice x = 3①2 gives the value

5(3①2)3− (3①2)2 + 1061 = 135①6-9①41061

for the first expression and 135①6-9①4 for the second one. We can easily calculate
the difference of these two infinite numbers, thus obtaining the same result as we
had for finite values of x in (31):

135①6− 9①41061− (135①6− 9①4) = 1061. ��

An additional advantage of the usage of the Infinity Computer for calculating
limits arises in the following situations. Suppose that we have a computer procedure
calculating f (x), we do not know the corresponding analytic formulae for f (x),
for a certain argument a the value f (a) is not defined (or a traditional computer
produces an overflow or underflow message), and it is necessary to calculate
the limx→a f (x). Traditionally, this situation requires a human intervention and
an additional theoretical investigation whereas the Infinity Computer is able to
process it automatically working numerically with the expressions involved in the
procedure. It is sufficient to calculate f (x), for example, at a point x = a+①−1 in
cases of finite a or a= 0 and x=① in the case when we are interested in the behavior
of f (x) at infinity. Obviously, if the limit does not exist but there exist limits from
the right and from the left, it is sufficient to calculate x = a+①−1 and x = a−①−1,
respectively.

Example 19. Suppose that we have two procedures evaluating f (x) = x2+2x
x and

g(x)= 34
x . Obviously, f (0) and g(0) are not defined and it is not possible to calculate

limx→0 f (x), limx→∞ f (x) and limx→0 g(x), limx→∞ g(x) using traditional computers.
Then, suppose that we are interested in evaluating the expression

h(x) = ( f (x)− 2) ·g(x).

It is easy to see that h(x) = 34 for any finite value of x. On the other hand, the
following limits

lim
x→0

h(x) = (lim
x→0

f (x)− 2) · lim
x→0

g(x),

lim
x→∞

h(x) = ( lim
x→∞

f (x)− 2) · lim
x→∞

g(x)

cannot be evaluated. The Infinity Computer can calculate h(x) numerically for
different infinitesimal and infinite values of x obtaining the same result that takes
place for finite x. For example, it follows
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h(①−1) =

(
(①−1)2 + 2①−1

①−1 − 2

)
· 34

①−1 = (①−1 + 2− 2) ·34①= 34,

h(①) =

(
①2 + 2①

①
− 2

)
· 34

①
= (①+ 2− 2) ·34①−1 = 34. ��

It is necessary to emphasize the fact that expressions can be calculated even when
their limits do not exist. Thus, we obtain a very powerful tool for studying divergent
processes.

Example 20. The limit limn→+∞ f (n), f (n) = (−1)nn3, does not exist. However, we
can easily calculate expression (−1)nn3 at different infinite points n. For instance,
for n = ① it follows f (①) = ①3 because grossone is even and for the odd n =
0.5①− 1 it follows

f (0.5①− 1) =−(0.5①− 1)3 =−0.125①30.75①2− 1.5①11. ��

Limits with the argument tending to zero can be considered analogously. In this
case, we can calculate the corresponding expression at any infinitesimal point using
the new positional system and obtain a significantly more reach information.

Example 21. If x is a fixed finite number, then

lim
h→0

(x+ h)2− x2

h
= 2x. (32)

In the new positional system we obtain

(x+ h)2− x2

h
= 2x+ h. (33)

If, for instance, h=①−1, the answer is 2x①0①−1, if h= 4.2①−2 we obtain the value
2x①04.2①−2, etc. Thus, the value of the limit (32), for a finite x, is just the finite
approximation of the number (33) having finite and infinitesimal parts. ��

Let us make a remark regarding irrational numbers. Among their properties,
they are characterized by the fact that we do not know any numeral system that
would allow us to express them by a finite number of symbols used to express other
numbers. Thus, special numerals (e,π ,

√
2,
√

3, etc.) are introduced by describing
their properties in a way (similarly, all other numerals, e.g., symbols “0” or “1,” are
introduced also by describing their properties). These special symbols are then used
in analytical transformations together with ordinary numerals.

For example, it is possible to work directly with the symbol e in analytical
transformations by applying suitable rules defining this number together with
numerals taking part in a chosen numeral system S. At the end of transformations,
the obtained result will be expressed in numerals from S and, probably, in terms
of e. If it is then required to execute some numerical computations, this means that
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it is necessary to substitute e by a numeral (or numerals) from S that will allow us
to approximate e in some way.

The same situation takes place when one uses the new numeral system, i.e., while
we work analytically we use just the symbol e in our expressions and then, if we
wish to work numerically we should pass to approximations. The new numeral
system opens a new perspective on the problem of the expression of irrational
numbers. Let us consider one of the possible ways to obtain an approximation of
e, i.e., by using the limit

e = lim
n→+∞

(
1+

1
n

)n

= 2.71828182845904 . . . (34)

In our numeral system the expression (1+ 1
n)

n can be written directly for finite
and/or infinite values of n. For n = ① we obtain the number e0 designated so in
order to distinguish it from the record (34)

e0 =

(
1+

1
①

)①

= (①0①−1)①. (35)

It becomes clear from this record why the number e cannot be expressed in a
positional numeral system with a finite base. Due to the definition of a sequence
under the IUA, such a system can have at maximum ① numerals—digits—to express
fractional part of a number (see Sect. 5.5 for details) and, as it can be seen from (35),
this quantity is not sufficient for e because the item 1

①① is present in it.

Naturally, it is also possible to construct more exotic e-type numbers by
substituting ① in (35) by any infinite number written in the new positional system
with infinite base. For example, if we substitute ① in (35) by ①2, we obtain the
number

e1 =

(
1+

1

①2

)①2

= (①0①−2)①2
.

The numbers considered above take their origins in the limit (34). Similarly, other
formulae leading to approximations of e expressed in traditional numeral systems
give us other new numbers that can be expressed in the new numeral system. The
same way of reasoning can be used with respect to other irrational numbers, too.

5.4 Measuring Infinite Sets with Elements Defined
by Formulae

We have already discussed in Sect. 3 how we calculate the number of elements for
sets being results of the usual operations (intersection, union, etc.) with finite sets
and infinite sets of the type Nk,n. In order to have a possibility to work with infinite
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sets having a more general structure than the sets Nk,n, we need to develop more
powerful instruments. Suppose that we have an integer function g(i) > 0 strictly
increasing on indexes i = 1,2,3, . . . and we wish to know how many elements are
there in the set

G = {g(1),g(2),g(3), . . .}.

In our terminology this question has no any sense because of the following reason.
In the finite case, to define a set it is not sufficient to say that it is finite. It is

necessary to indicate its number of elements explicitly as, e.g., in this example

G1 = {g(i) : 1≤ i≤ 5},

or implicitly, as it is made here:

G2 = {g(i) : i≥ 1, 0 < f (i)≤ b}, (36)

where b is finite.
Now we have mathematical tools to indicate the number of elements for infinite

sets, too. Thus, analogously to the finite case and due to Postulate 3, it is not
sufficient to say that a set has infinitely many elements. It is necessary to indicate its
number of elements explicitly or implicitly. For instance, the number of elements of
the set

G3 = {g(i) : 1≤ i≤①10}

is indicated explicitly: the set G3 has ①10 elements.
If a set is given in the form (36) where b is infinite, then its number of elements,

J, can be determined as

J = max{i : g(i)≤ b} (37)

if we are able to determine the inverse function g−1(x) for g(x). Then, J = [g−1(b)],
where [u] is integer part of u. Note that if b = ①, then the set G2 ⊆ N since all its
elements are integer, positive, and g(i)≤① due to (37).

Example 22. Let us consider the following set, A1(k,n), having g(i) = k+n(i−1),

A1(k,n) = {g(i) : i≥ 1, g(i)≤①}, 1≤ k ≤ n, n ∈ N.

It follows from the IUA that A1(k,n) = Nk,n from (3). By applying (37) we find for
A1(k,n) its number of elements

J1(k,n) = [①−k
n + 1] = [①−k

n ]+ 1 = ①
n − 1+ 1= ①

n . ��
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Example 23. Analogously, the set

A2(k,n, j) = {k+ ni j : i≥ 0, 0 < k+ ni j ≤①}, 0≤ k < n, n ∈ N, j ∈ N,

has J2(k,n, j) =

[
j
√

①−k
n

]
elements. ��

5.5 Measuring Infinite Sets of Numerals
and Their Comparison

Let us calculate the number of elements in some well-known infinite sets of
numerals using the designation |A| to indicate the number of elements of a set A.

Theorem 3. The number of elements of the set, Z, of integers is |Z|= 2①1.

Proof. The set Z contains ① positive numbers, ① negative numbers, and zero. Thus,

|Z|= ①+①+ 1 = 2①1. ��

Traditionally, rational numbers are defined as ratio of two integer numbers. The
new approach allows us to calculate the number of numerals in a fixed numeral
system. Let us consider a numeral system Q1 containing numerals of the form

p
q
, p ∈ Z, q ∈ Z, q �= 0. (38)

Theorem 4. The number of elements of the set, Q1, of rational numerals of the type
(38) is |Q1|= 4①22①1.

Proof. It follows from Theorem 3 that the numerator of (38) can be filled in
by 2①1 and the denominator by 2① numbers. Thus, the number of all possible
combinations is

|Q1|= 2①1 ·2① = 4①22①1. ��

It is necessary to notice that in Theorem 4 we have calculated different numerals
and not different numbers. For example, in the numeral system Q1 the number 0 can
be expressed by 2① different numerals

0
−①

,
0

−①+1
,

0
−①+2

, . . .
0
−2

,
0
−1

,
0
1
,

0
2
, . . .

0
①-2

,
0

①-1
,

0
①

and numerals such as −1
−2 and 1

2 have been calculated as two different numerals.
The following theorem determines the number of elements of the set Q2 containing
numerals of the form
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− p
q
,

p
q
, p ∈ N, q ∈ N, (39)

and zero is represented by one symbol 0.

Theorem 5. The number of elements of the set, Q2, of rational numerals of the type
(39) is |Q2|= 2①21.

Proof. Let us consider positive rational numerals. The form of the rational numeral
p
q , the fact that p, q ∈ N, and the IUA impose that both p and q can assume values

from 1 to ①. Thus, the number of all possible combinations is ①2. The same number
of combinations we obtain for negative rational numbers and one is added because
we count zero as well. ��

Let us now calculate the number of elements of the set, Rb, of real numbers
expressed by numerals in the positional system by the record

(an−1an−2 . . .a1a0 ·a−1a−2 . . .a−(q−1)a−q)b (40)

where the symbol b indicates the radix of the record and n, q ∈ N.

Theorem 6. The number of elements of the set, Rb, of numerals (40) is |Rb|= b2①.

Proof. In formula (40) defining the type of numerals we deal with there are two
sequences of digits: the first one, an−1an−2 . . .a1a0, is used to express the integer part
of the number and the second, a−1a−2 . . .a−(q−1)a−q, for its fractional part. Due to
definition of sequence and the IUA, each of them can have at maximum ① elements.
Thus, it can be at maximum ① positions on the left of the dot and, analogously, ①

positions on the right of the dot. Every position can be filled in by one of the b digits
from the alphabet {0,1, . . . ,b− 1}. Thus, we have b① combinations to express the
integer part of the number and the same quantity to express its fractional part. As
a result, the positional numeral system using the numerals of the form (40) can
express b2① numbers. ��

Note that the result of Theorem 6 does not consider the practical situation of
writing down concrete numerals. Obviously, the number of numerals of the type
(40) that can be written in practice is finite and depends on the chosen numeral
system for writing digits.

It is worthwhile to notice also that all the numerals of the type (40) represent
different numbers. In addition, minimal and maximal numbers expressible in Rb

can be explicitly indicated.

Example 24. For instance, in the decimal positional system R10 the numerals

1.999 . . .99︸ ︷︷ ︸
① digits

, 2.000 . . .00︸ ︷︷ ︸
① digits
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represent different numbers and their difference is equal to

2.000 . . .00︸ ︷︷ ︸
① digits

−1.999 . . .9︸ ︷︷ ︸
① digits

= 0.000 . . .01︸ ︷︷ ︸
① digits

.

Analogously the smallest and the largest numbers expressible in R10 can be easily
indicated. They are, respectively,

−999 . . .9︸ ︷︷ ︸
① digits

.999 . . .9︸ ︷︷ ︸
① digits

, 999 . . .9︸ ︷︷ ︸
① digits

.999 . . .9︸ ︷︷ ︸
① digits

. ��

On the other hand, the traditional point of view on real numbers tells that there
exist real numbers that can be represented in positional systems by two different
infinite sequences of digits, for instance, in the decimal positional system the
records 2.000000 . . . and 1.99999 . . . represent the same number. Note that there
is no contradiction between the traditional and the new points of view. They just
use different lens in their mathematical microscopes to observe numbers. The
instruments used in the traditional point of view for this purpose was just too weak
to distinguish two different numbers in the records 2.000000 . . . and 1.99999 . . ..

Note that traditionally it was accepted that any positional numeral system is able
to represent all real numbers (“the whole real line”). In this section, we have shown
that any numeral system is just an instrument that can be used to observe certain real
numbers. This instrument can be more or less powerful, e.g., the positional system
(40) with the radix 10 is more powerful than the positional system (40) with the radix
2 but neither of the two is able to represent irrational numbers. Two numeral systems
can allow us to observe either the same sets of numbers, or sets of numbers having
an intersection, or two disjoint sets of numbers. Due to Postulate 2, we are not able
to answer the question “What is the whole real line?” because this is the question
asking “What is the object of the observation?”, we are able just to invent more and
more powerful numeral systems that will allow us to improve our observations of
numbers by using newly introduced numerals.

Theorem 7. The sets Z,Q1,Q2, and Rb are not monoids under addition.

Proof. The proof is obvious and is so omitted. ��

6 Relations to Results of Georg Cantor

We start this subsection by calculating the number of points at the interval [0,1). To
do this we need a definition of the term “point” and mathematical tools to indicate a
point. Since this concept is one of the most fundamental, it is very difficult to find an
adequate definition for it. If we accept (as is usually done in modern mathematics)
that a point in [0,1) is determined by a numeral x called the coordinate of the
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point where x ∈ S and S is a set of numerals, then we can indicate the point by
its coordinate x and are able to execute required calculations.

It is important to emphasize that we have not postulated that x belongs to the set,
R, of real numbers as it is usually done. Since we can express coordinates only by
numerals, then different choices of numeral systems lead to various sets of numerals
and, as a consequence, to different sets of points we can refer to. The choice of a
numeral system will define what is the point for us and we shall not be able to
work with those points which coordinates are not expressible in the chosen numeral
system (remind Postulate 2). Thus, we are able to calculate the number of points if
we have already decided which numerals will be used to express the coordinates of
points.

Different numeral systems can be chosen to express coordinates of the points
in dependence on the precision level we want to obtain. For example, Pirahã are
not able to express any point. If the numbers 0 ≤ x < 1 are expressed in the form
p−1
①

, p ∈ N, then the smallest positive number we can distinguish is 1
①

and the
interval [0,1) contains the following points

0,
1
①
,

2
①
, . . .

①− 2
①

,
①− 1

①
. (41)

It is easy to see that they are ①. If we want to count the number of intervals
of the form [a− 1,a),a ∈ N, on the ray x ≥ 0, then, due to Postulate 3, the
definition of sequence, and Theorem 2, not more than ① intervals of this type can
be distinguished on the ray x≥ 0. They are

[0,1), [1,2), [2,3), . . . [①− 3,①− 2), [①− 2,①− 1), [①− 1,①).

Within each of them we are able to distinguish ① points and, therefore, at the entire
ray ①2 points can be observed. Analogously, the ray x < 0 is represented by the
intervals

[−①,−①+ 1), [−①+ 1,−①+ 2), . . . [−2,−1), [−1,0).

Hence, this ray also contains ①2 such points and on the whole line 2①2 points of
this type can be represented and observed.

Note that the point −① is included in this representation and the point ① is
excluded from it. Let us slightly modify our numeral system in order to have ①

representable. For this purpose, intervals of the type (a− 1,a],a ∈ N, should be
considered to represent the ray x > 0 and the separate symbol, 0, should be used
to represent zero. Then, on the ray x > 0 we are able to observe ①2 points and,
analogously, on the ray x < 0 we also are able to observe ①2 points. Finally, by
adding the symbol used to represent zero we obtain that on the entire line 2①2 + 1
points can be observed.

It is important to stress that the situation with counting points is a direct
consequence of Postulate 2 and is typical for natural sciences where it is well
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known that instruments influence results of observations. It is similar to the work
with microscope or fractals (see [26]): we decide the level of the precision we need
and obtain a result dependent on the chosen level of accuracy. If we need a more
precise or a more rough answer, we change the lens of our microscope.

In our terms this means to change one numeral system with another. For instance,
instead of the numerals considered above, let us choose a positional numeral system
with the radix b

(a1a2 . . .aq−1aq)b, q ∈ N, (42)

to calculate the number of points within the interval [0,1).

Theorem 8. The number of elements of the set of numerals of the type (42) is equal
to b①.

Proof. Formula (42) defining the type of numerals we deal with contains a sequence
of digits a1a2 . . .aq−1aq. Due to the definition of the sequence and Theorem 2, this
sequence can have at maximum ① elements, i.e., q≤①. Thus, it can be at maximum
① positions on the the right of the dot. Every position can be filled in by one of the
b digits from the alphabet {0,1, . . . ,b− 1}. Thus, we have b① combinations. As a
result, the positional numeral system using the numerals of the form (42) can express

b① numbers. ��
Corollary 1. The entire line contains 2①b① points of the type (42).

Proof. We have already seen above that it is possible to distinguish 2① unit intervals
within the line. Thus, the whole number of points of the type (42) on the line is equal
to 2①b①. ��

In this example of counting, we have changed the tool to calculate the number
of points within each unit interval from (41) to (42), but used the old way to
calculate the number of intervals, i.e., by natural numbers. If we are not interested in
subdividing the line at intervals and want to obtain the number of the points on the
line directly by using positional numerals of the type (40), then, as it has already has
been established in Theorem 6, the number of points expressible by the numerals
(40) is |Rb|= b2①.

It is obligatory to say in this occasion that the results presented above should be
considered as a more precise analysis of the situation discovered by the genius of
Cantor. He has proved, by using his famous diagonal argument, that the number of
elements of the set N is less than the number of real numbers at the interval [0,1)
without calculating the latter. To do this he expressed real numbers in a positional
numeral system. We have shown that this number will be different depending on the
radix b used in the positional system (42) to express real numbers. However, all of
the obtained numbers, b①, are more than the number of elements of the set of natural
numbers, ①, and, therefore, the diagonal argument maintains its force.
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Fig. 2 Due to Cantor, the
interval (0,1) and the entire
real number line have the
same number of points

Let us now return to the problem of comparison of infinite sets and consider
Cantor’s famous result showing that the number of points over the interval (0,1) is
equal to the number of points over the whole real line, i.e.,

|R|= |(0,1)|. (43)

The proof of this counterintuitive fact is given by establishing a one-to-one
correspondence between the elements of the two sets. Such a mapping can be done
by using, for example, the function

y = tan(0.5π(2x− 1)), x ∈ (0,1), (44)

illustrated in Fig. 2. Cantor shows by using Fig. 2 that to any point x ∈ (0,1) a point
y ∈ (−∞,∞) can be associated and vice versa. Thus, he concludes that the requested
one-to-one correspondence between the sets R and (0,1) has been established and,
therefore, this proves (43).

Our point of view is different: the number of elements is an intrinsic characteristic
of each set (for both finite and infinite cases) that does not depend on any object
outside the set. Thus, in Cantor’s example from Fig. 2 we have (see Fig. 3) three
mathematical objects: (a) a set, XS1 , of points over the interval (0,1) which we are
able to distinguish using a numeral system S1; (b) a set, YS2 , of points over the
vertical real line which we are able to distinguish using a numeral system S2; (c) the
function (44) described using a numeral system S3. All these three mathematical
objects are independent each other. The sets XS1 and YS2 can have the same or
different number of elements.

Thus, we are not able to evaluate f (x) at any point x. We are able to do this
only at points from XS1 . Of course, in order to be able to execute these evaluations
it is necessary to conciliate the numeral systems S1,S2, and S3. The fact that we
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Fig. 3 Three independent
mathematical objects: the set
XS1 represented by dots, the
set YS2 represented by stars,
and function (44)

have made evaluations of f (x) and have obtained the corresponding values does not
influence minimally the numbers of elements of the sets XS1 and YS2 . Moreover, it
can happen that the number y = f (x) cannot be expressed in the numeral system S2

and it is necessary to approximate it by a number ỹ ∈ S2. This situation, very well
known to computer scientists, is represented in Fig. 3.

Let us remind one more famous example related to the one-to-one correspon-
dence and taking its origins in studies of Galileo Galilei: even numbers can be put
in a one-to-one correspondence with all natural numbers in spite of the fact that they
are a part of them:

even numbers: 2, 4, 6, 8, 10, 12, . . .

� � � � � �
natural numbers: 1, 2, 3, 4 5, 6, . . .

(45)

Again, our view on this situation is different since we cannot establish a one-
to-one correspondence between the sets because they are infinite and we, due to
Postulate 1, are able to execute only a finite number of operations. We cannot use
the one-to-one correspondence as an executable operation when it is necessary to
work with infinite sets.

However, we already know that the number of elements of the set of natural
numbers is equal to ① and ① is even. Since the number of elements of the set of

even numbers is equal to ①
2 , we can write down not only initial (as it is usually

done traditionally) but also the final part of (45)

2, 4, 6, 8, 10, 12, . . . ①− 4, ①− 2, ①

� � � � � � � � �
1, 2, 3, 4 5, 6, . . . ①

2 − 2, ①
2 − 1, ①

2

(46)
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concluding so (45) in a complete accordance with Postulate 3. Note that record (46)
does not affirm that we have established the one-to-one correspondence among all
even numbers and a half of natural ones. We cannot do this due to Postulate 1. The
symbols “. . .” indicate an infinite number of numbers and we can execute only a
finite number of operations. However, record (46) affirms that for any even number
expressible in the chosen numeral system it is possible to indicate the corresponding
natural number in the lower row of (46).

We conclude this section by the following remark. With respect to our method-
ology, the mathematical results obtained by Pirahã, Cantor, and those presented in
this chapter do not contradict to each other. They all are correct with respect to
mathematical languages used to express them. This relativity is very important and it
has been emphasized in Postulate 2. For instance, the result of Pirahã 1+ 2 = “many”
is correct in their language in the same way as the result 1+ 2 = 3 is correct in the
modern mathematical languages. Analogously, the result (45) is correct in Cantor’s
language and the more powerful language developed in this chapter allows us to
obtain a more precise result (46) that is correct in the new language.

The choice of the mathematical language depends on the practical problem that
are to be solved and on the accuracy required for such a solution. Again, the result of
Pirahã “many”+1=“many” is correct. If one is satisfied with its accuracy, the answer
“many” can be used (and is used by Pirahã) in practice. However, if one needs
a more precise result, it is necessary to introduce a more powerful mathematical
language (a numeral system in this case) allowing one to express the required answer
in a more accurate way.

7 New Computational Possibilities for Mathematical
Modelling

The computational capabilities of the Infinity Computer allow one to construct new
and more powerful mathematical models able to take into account infinite and
infinitesimal changes of parameters. In this section, the main attention is given
to infinitesimals that can increase the accuracy of models and computations, in
general. It is shown that the introduced infinitesimal numerals and the formalization
of the concept “point” given in the previous sections can be successfully used in
practical calculations. Examples related to computations of probabilities and areas
(and volumes) of objects having several parts of different dimensions are given.

It becomes also possible in several occasions to automatize the process of the
solving of computational problems avoiding an interruption of the work of computer
procedures and the necessity of a human intervention required when one works
with traditional computers. It is necessary to emphasize that the examples described
in this section are related to numerical computations at the Infinity Computer. No
symbolic computations are required to work with infinite and infinitesimal numbers
when one uses the Infinity Computer.
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7.1 Usage of Infinitesimals for Solving Systems
of Linear Equations

Very often in computations, an algorithm performing calculations encounters a
situation where the problem to divide by zero occurs. Then, obviously, this operation
cannot be executed. If it is known that the problem under consideration has a
solution, then a number of additional computational steps trying to avoid this
division is performed. A typical example of this kind is the operation of pivoting
used when one solves systems of linear equations by an algorithm such as Gauss–
Jordan elimination. Pivoting is the interchanging of rows (or both rows and columns)
in order to avoid division by zero and to place a particularly “good” element in the
diagonal position prior to a particular operation.

The following two simple examples give just an idea of a numerical usage of
infinitesimals and show that the usage of infinitesimals can help to avoid pivoting in
cases when the pivotal element is equal to zero. We emphasize again that the Infinity
Computer (see [41]) works with infinite and infinitesimal numbers expressed in the
positional numeral system (14), (15) numerically, not symbolically.

Example 25. Solution to the system

[
0 1
2 2

] [
x1

x2

]
=

[
2
2

]

is obviously given by x∗1 = −1, x∗2 = 2. It cannot be found by the method of Gauss
without pivoting since the first pivotal element a11 = 0.

Since all the elements of the matrix are finite numbers, let us substitute the
element a11 = 0 by ①−1 and perform exact Gauss transformations without pivoting:

[
①−1 1 2

2 2 2

]
→

[
1 ① 2①

0 −2①+ 2 −4①+ 2

]
→

[
1 ① 2①

0 1 −4①+2
−2①+2

]

⎡

⎣
1 0 2①−① · −4①+2

−2①+2

0 1 −4①+2
−2①+2

⎤

⎦→
⎡

⎣
1 0 2①

−2①+2

0 1 −4①+2
−2①+2

⎤

⎦→
[

1 0 −1+ 1
1−①

0 1 2− 1
1−①

]
.

It follows immediately that the solution to the initial system is given by the finite
parts of numbers−1+ 1

1−①
and 2− 1

1−①
.

We have introduced the number ①−1 once and, as a result, we have obtained
expressions where the maximal power of grossone is one and there are rational
expressions depending on grossone, as well. It is possible to manage these rational
expressions in two ways: (i) to execute division in order to obtain its result in the
form (14), (15); (ii) without executing division. In the latter case, we just continue
to work with rational expressions. In the case (i), since we need finite numbers as
final results, in the result of division it is not necessary to store the parts cp①p
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with p < −1. These parts can be forgotten because in any way the result of their
successive multiplication with the numbers of the type c1①1 (remind that 1 is the
maximal exponent present in the matrix under consideration) will give exponents
less than zero, i.e., numbers with these exponents will be infinitesimals that are not
interesting for us in this computational context.

Thus, by using the positional numeral system (14), (15) with the radix grossone
we obtain

[
1 ① 2①

0 1 −4①+2
−2①+2

]
→

[
1 ① 2①

0 1 2①0+1①−1

]

[
1 0 2①−① · (2①01①−1)

0 1 2①01①−1

]
→

[
1 0 −1①0

0 1 2①01①−1

]
.

The finite parts of numbers −1①0 and 2①01①−1, i.e., −1 and 2, respectively, then
provide the required solution. �

Example 26. Solution to the system

⎡

⎣
0 0 1
2 0 −1
1 2 3

⎤

⎦

⎡

⎣
x1

x2

x3

⎤

⎦=

⎡

⎣
1
3
1

⎤

⎦

is the following: x∗1 = 2, x∗2 = −2, and x∗3 = 1. The coefficient matrix of this system
has the first two leading principal minors equal to zero. Consequently, the first two
pivots, in the Gauss transformations, are zero. We solve the system without pivoting
by substituting the zero pivot by ①−1, when necessary.

Let us show how the exact computations are executed:

⎡

⎣
0 0 1 1
2 0 −1 3
1 2 3 1

⎤

⎦→
⎡

⎣
1 0 ① ①

0 0 −2①− 1 −2①+ 3
0 2 −①+ 3 −①+ 1

⎤

⎦

⎡

⎣
1 0 ① ①

0 1 −2①2−① −2①2 + 3①

0 2 −①+ 3 −①+ 1

⎤

⎦→
⎡

⎣
1 0 ① ①

0 1 −2①2−① −2①2 + 3①

0 0 4①2 +①+ 3 4①2− 7①+ 1

⎤

⎦

⎡

⎢⎣
1 0 ① ①

0 1 −2①2−① −2①2 + 3①

0 0 1 4①
2−7①+1

4①2
+①+3

⎤

⎥⎦→

⎡

⎢⎢⎢⎢⎢⎣

1 0 0 8①2
+2①

4①
2
+①+3

0 1 0 −8①2
+10①

4①
2
+①+3

0 0 1 4①2−7①+1

4①
2
+①+3

⎤

⎥⎥⎥⎥⎥⎦
.

It is easy to see that the finite parts of the numbers
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x̃∗1 =
8①2 + 2①

4①2 +①+ 3
= 2− 6

4①2 +①+ 3
,

x̃∗2 =
−8①2 + 10①

4①2 +①+ 3
=−2+

12①+ 6

4①2 +①+ 3
,

x̃∗3 =
4①2− 7①+ 1

4①2 +①+ 3
= 1− 8①+ 2

4①2 +①+ 3
,

coincide with the corresponding solution x∗1 = 2, x∗2 =−2, and x∗3 = 1.
In this procedure we have introduced the number ①−1 two times. As a result,

we have obtained expressions where the maximal power of grossone is equal to 2
and there are rational expressions depending on grossone, as well. By reasoning
analogously to Example 26, when we execute divisions, in the obtained results it
is not necessary to store the parts of the type cp①p, p < −2, because in any way
the result of their successive multiplication with the numbers of the type c2①2 will
give finite exponents less than zero. That is, numbers with these exponents will be
infinitesimals that are not interesting for us in this computational context. Thus, by
using the positional numeral system (14), (15), we obtain

⎡

⎢⎢⎣

1 0 ① ①

0 1 −2①2−① −2①2 + 3①

0 0 1 4①
2−7①+1

4①
2
+①+3

⎤

⎥⎥⎦→
⎡

⎣
1 0 ① ①

0 1 −2①2−① −2①2 + 3①

0 0 1 1①0− 2①−1

⎤

⎦ .

Note that the number 1①0-2①−1 does not contain the part of the type c−2①−2

because the coefficient c−2 obtained after the executed division is such that c−2 = 0.
Then we proceed as follows

⎡

⎣
1 0 ① ①

0 1 0 −2
0 0 1 1①0− 2①−1

⎤

⎦→
⎡

⎣
1 0 0 2
0 1 0 −2
0 0 1 1①0− 2①−1

⎤

⎦ .

The obtained solutions x∗1 = 2 and x∗2 = −2 have been obtained exactly without
infinitesimal parts and x∗3 = 1 is derived from the finite part of 1①0− 2①−1. �

We conclude this section by emphasizing that zero pivots in the matrix are
substituted dynamically by ①−1. Thus, the number of the introduced infinitesimals
①−1 depends on the number of zero pivots.
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Fig. 4 What is the
probability that the rotating
disk stops in such a way that
the point A will be exactly in
front of the arrow?

7.2 Applications in Probability Theory and Calculating
Volumes

A formalization of the concept “point” introduced above allows us to execute more
accurately computations having relations with this concept. Very often in scientific
computing and engineering it is required to construct mathematical models for
multi-dimensional objects. Usually this is done by partitioning the modelled object
in several parts having the same dimension and each of the parts is modelled
separately. Then additional efforts are made in order to provide a correct functioning
of a model unifying the obtained sub-models and describing the entire object.

Another interesting applied area is linked to stochastic models dealing with
events having probability equal to zero. In this subsection, we first show that the
new approach allows us to distinguish the impossible event having the probability
equal to zero (i.e., P(∅) = 0) and events having an infinitesimal probability. Then
we show how infinitesimals can be used in calculating volumes of objects consisting
of parts having different dimensions.

Let us consider the problem presented in Fig. 4 from the traditional point of view
of probability theory. We start to rotate a disk having radius r with the point A
marked at its border and we would like to know the probability P(E) of the following
event E: the disk stops in such a way that the point A will be exactly in front of the
arrow fixed at the wall. Since the point A is an entity that has no extent it is calculated
by considering the following limit

P(E) = lim
h→0

h
2πr

= 0.

where h is an arc of the circumference containing A and 2πr is its length.
However, the point A can stop in front of the arrow, i.e., this event is not

impossible and its probability should be strictly greater than zero, i.e., P(E) > 0.
The new approach allows us to calculate this probability numerically.

First of all, in order to state the experiment more rigorously, it is necessary
to choose a numeral system to express the points on the circumference. This
choice will fix the number of points, K, that we are able to distinguish on the
circumference. Definition of the notion point allows us to define elementary events
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in our experiment as follows: the disk has stopped and the arrow indicates a point.
As a consequence, we obtain that the number, N(Ω), of all possible elementary

events, ei, in our experiment is equal to K where Ω=∪N(Ω)
i=1 ei is the sample space of

our experiment. If our disk is well balanced, all elementary events are equiprobable
and, therefore, have the same probability equal to 1

N(Ω) . Thus, we can calculate

P(E) directly by subdividing the number, N(E), of favorable elementary events by
the number, K = N(Ω), of all possible events.

For example, if we use numerals of the type i
①
, i ∈ N, then K = ①. The number

N(E) depends on our decision about how many numerals we want to use to represent
the point A. If we decide that the point A on the circumference is represented by m
numerals, we obtain

P(E) =
N(E)
N(Ω)

=
m
K

=
m
①

> 0,

where the number m
①

is infinitesimal if m is finite. Note that this representation is
very interesting also from the point of view of distinguishing the notions “point”
and “arc”. When m is finite then we deal with a point, when m is infinite we deal
with an arc.

In the case we need a higher accuracy, we can choose, for instance, numerals of
the type i①−2,1≤ i≤①2, for expressing points at the disk. Then it follows K = ①2

and, as a result, we obtain P(E) = m①−2 > 0.
This example with the rotating disk, of course, is a particular instance of

the general situation taking place in the traditional probability theory where the
probability that a continuous random variable X attains a given value a is zero, i.e.,
P(X = a) = 0. While for a discrete random variable one could say that an event with
probability zero is impossible, this cannot be said in the case of a continuous random
variable. As we have shown by the example above, in our approach this situation
does not take place because this probability can be expressed by infinitesimals. As
a consequence, probabilities of such events can be computed and used in numerical
models describing the real world (see [36] for a detailed discussion on the modelling
continuity by infinitesimals in the framework of the approach using grossone).

Moreover, the obtained probabilities are not absolute, they depend on the
accuracy chosen for the mathematical model describing the experiment. There is
again a straight analogy with physics where it is not possible to obtain results that
have a precision higher than the accuracy of the measurement of the data. We also
cannot obtain a precision that is higher than the precision of numerals used in the
mathematical model.

Let us now consider two examples showing that the new approach allows us to
calculate areas and volumes of a more general class of objects than the traditional
one. In Fig. 5 two figures are shown. The traditional approach tells us that both of
them have area equal to one. In the new approach, if we use numerals of the type
i①−1, i ∈ N, to express points within a unit interval, then the unit interval consists
of ① points and in the plane each point has the infinitesimal area ①−1 ·①−1 = ①−2.
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Fig. 5 It is possible to
calculate and to distinguish
areas of these two objects

Fig. 6 New possibilities for
calculating volumes of
objects

As a consequence, this value will be our accuracy in calculating areas in this
example. Suppose now that the vertical line added to the square at the right figure
in Fig. 5 has the width equal to one point. Then we are able to calculate the area, S2,
of the right figure and it will be possible to distinguish it from the area, S1, of the
square on the left

S1 = 1 ·1 = 1, S2 = 1 ·1+ 1 ·①−1 = 1①01①−1.

If the added vertical line has the width equal to three points, then it follows

S2 = 1 ·1+ 3 ·①−1 = 1①03①−1.

The volume of the figure shown in Fig. 6 is calculated analogously:

V = 1 ·1 ·1+ 1 ·1 ·①−1 + 1 ·①−1 ·①−1 = 1①01①−11①−2.

If the accuracy of the considered numerals of the type i①−1, i ∈ N, is not sufficient,
we can increase it by using, for instance, numerals of the type i①−2,1 ≤ i ≤ ①2.
Then the unit interval consists of ①2 points and at the plane each point has the
infinitesimal area ①−2 ·①−2 = ①−4. As a result, by a complete analogy with the
previous case we obtain for lines having the width, for instance, equal to five points
in all three dimensions that

S2 = 1 ·1+ 5 ·①−2 = 1①05①−2,

V = 1 ·1 ·1+ 1 ·1 ·5 ·①−2 + 1 ·5 ·①−2 ·5 ·①−2 = 1①05①−225①−4.
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8 Traditional and Blinking Fractals and Their Quantitative
Analysis Using Infinite and Infinitesimal Numbers

Fractal objects have been very well studied during the last few decades (see, e.g.,
[10, 26] and references given therein) and have been applied in various fields
(see numerous applications given in [9, 10, 15, 26, 49]). However, mathematical
analysis of fractals (except, of course, a very well-developed theory of fractal
dimensions) very often continues to have mainly a qualitative character and tools
for a quantitative analysis of fractals at infinity are not very rich yet.

In this section, we propose to apply the methodology developed above for a
quantitative analysis of traditional and newly introduced blinking fractals.

8.1 Blinking Fractals

Let us start by introducing the new class of objects—blinking fractals—that are
not covered by traditional theories studying self-similarity processes. Traditional
fractals are constructed using the principle of self-similarity that infinitely many
times repeats a basic object (some times slightly modified in time). However, there
exist processes and objects that evidently are very similar to classical fractals but
cannot be covered by the traditional approaches because several self-similarity
mechanisms participate in the process of their construction. Before going to a
general definition of blinking fractals let us give just three examples of them.

The first example is derived from one of the famous fractal constructions—the
coast of Britain—as follows. Suppose that we have made a picture of the coast two
times using the same scale of the map: at the moment of the early sunrise and at the
moment of late sunset. Then, due to the long shadows present at these moments and
directed to the opposite sides we shall have two different pictures. If we suppose,
for example, that sunset corresponds to shadows on the left and sunrise to shadows
on the right, then we can indicate them as L and R, correspondingly. If now we start
to make pictures (starting from sunrise) alternating moments of the photographing
from sunrise to sunset and decreasing the scale each time, we shall obtain a series of
pictures being very similar to traditional fractals but different because left shadows
will alternate right shadows at this sequence as follows: R,L,R,L,R,L, . . . Thus,
there are two fractal mechanisms working in our process. Each of them can be
represented by one of subsequences R,R,R, . . . and L,L,L, . . . and the traditional
analysis does not allow us to say what will be the limit fractal object and will it have
L or R type of shadow.

The second example is constructed as follows. Let us take a prism (see Fig. 7)
that is rotating around its vertical axis and observe it at two different moments. The
first is the moment when we see its face being the blue rectangular with sides 1 and√

2. Since we look exactly at the front of the prism we see the rectangular as the
square with the length one on side. The second moment is when we look at the face
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Fig. 7 The rotating prism
having the triangular face red
and the rectangular face blue

Fig. 8 We observe that each
blue square is transformed in
four red triangles and each
red triangle is transformed in
two blue squares

being the red right isosceles triangle with the legs equal to one. Then we apply to
this three-dimensional object the two following self-similarity rules: we substitute
each prism by four smaller prisms during the time passing between each even and
odd observation and by two smaller prisms during the time passing between each
odd and even observation. Thus, at the odd iterations we observe application of
the first mechanism shown in the top of Fig. 8. The second mechanism shown in
the bottom of this figure is applied during the even iterations. As a result, starting
from the blue square one on side at iteration 0 we observe the pictures (see Fig. 9)
with alternating blue squares and red triangles. Again, as it was with the above
example related to the coast of Britain, we can extract two fractal subsequences
being traditional fractals. The mechanism of the first one dealing with blue squares
is shown in Fig. 10. The second mechanism dealing with red triangles is presented
in Fig. 11. Traditional approaches are not able to say anything about the behavior
of this process at infinity. Does there exist a limit object of this process? If it exists,
what can we say about its structure? Does it consist of red triangles or blue squares?
What is the area of this (again, if it exists) limit object? All these questions remain
without answers.
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Fig. 9 The first four
iterations of the process that
has started from one blue
square and uses two
self-similarity mechanisms

Fig. 10 The first traditional
fractal mechanism regarding
blue squares that can be
separated from the process
shown in Fig. 9

Fig. 11 The second
traditional fractal mechanism
regarding red triangles that
can be separated from the
process shown in Fig. 9

Fig. 12 Cantor’s set

Before we discuss the last example linked, as it was with our first example,
to another famous fractal construction—Cantor’s set (see Fig. 12)—let us make a
few comments reminding that very often we can give certain numerical answers
to questions regarding fractals only if a finite number of steps in the procedure
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Fig. 13 At each odd iteration we remove the open interval being the middle third part from each
of the intervals present in the construction and at each even iteration from each interval present in
the set we remove open intervals being the second and the last fourth parts

of their construction has been considered. The same questions very often remain
without any answer if we consider an infinite number of steps. If a finite number of
steps, n, has been done in construction of Cantor’s set, then we are able to describe
numerically the set being the result of this operation. It will have 2n intervals having
the length 1

3n each. Obviously, the set obtained after n+1 iterations will be different
and we also are able to measure the lengths of the intervals forming the second
set. It will have 2n+1 intervals having the length 1

3n+1 each. The situation changes
drastically in the limit because we are not able to distinguish results of n and n+ 1
steps of the construction if n is infinite.

We also are not able to distinguish at infinity the results of the following two
processes that both use Cantor’s construction but start from different positions. The
first one is the usual Cantor’s set and it starts from the interval [0,1], the second
starts from the couple of intervals [0, 1

3 ] and [ 2
3 ,1]. In spite of the fact that for any

given finite number of steps, n, the results of the constructions will be different for
these two processes we have no tools to distinguish them at infinity.

Let us now slightly change the process of construction used in Cantor’s set
to create a new example of a blinking fractal. At each odd iteration we shall
maintain Cantor’s rule, i.e., we remove the open interval being the middle third
part from each of 2n intervals present in the construction at the n-th iteration, where
n = 2k−1. In contrast, if n = 2k from each interval present in the set corresponding
to the n-th iteration, we remove open intervals being the second and the last fourth
parts (see Fig. 13). Again, as it was in the two previous examples, we have two
different mechanisms working in this process and we are not able to say anything
with respect to the structure of the resulting object at infinity. All the examples
considered above have two different fractal mechanisms participating in their con-
struction. Naturally, examples with more than two such mechanisms can be easily
given.

To conclude this subsection we give the following general definition of objects
that will be studied in this chapter together with traditional fractals. Objects con-
structed using the principle of self-similarity with an infinite cyclic application of
several fractal rules are called blinking fractals.
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8.2 Quantitative Analysis of Traditional and Blinking Fractals

Starting from Cantor’s set we show how lengths of traditional fractals can be
calculated at infinity.

We remind that if a finite number of steps, n, has been executed in Cantor’s
construction starting from the interval [0,1], then we are able to describe numerically
the set being the result of this operation. It will have 2n intervals having the length
1
3n each. Obviously, the set obtained after n+ 1 iterations will be different and we
also are able to measure the lengths of the intervals forming the second set. It will
have 2n+1 intervals having the length 1

3n+1 each. The situation changes drastically in
the limit because traditional approaches are not able to distinguish results of n and
n+1 steps of the construction if n is infinite. Now, we can do it using the introduced
infinite and infinitesimal numbers.

Since the construction of Cantor’s set is a process, it cannot contain more than
① steps [see discussion related to the example (23)–(25)]. Thus, if we start the
process from the interval [0,1], after ① steps Cantor’s set consists of 2① intervals
and their total length, L(n), is expressed in infinitesimals: L(①) = ( 2

3 )
①, i.e., the set

has a well-defined infinite number of intervals and each of them has the infinitesimal
length equal to 3−①. Analogously, after ①− 1 steps Cantor’s set consists of 2①−1

intervals and their total length is expressed in infinitesimals: L(①) = ( 2
3 )

①−1. Thus,
the length L(n) for any (finite or infinite) number of steps, n, where 1 ≤ n ≤① and
is expressible in the chosen numeral system can be calculated.

It is important to notice here that [again due to the limitation illustrated by the
example (23)–(25)] it is not possible to count one by one all the intervals at Cantor’s
set if their number is superior to ①. For instance, after ① steps it has 2① intervals
and they cannot be counted one by one because 2① > ① and any process (including
that of the sequential counting) cannot have more than ① steps.

It becomes possible to study by a complete analogy other classical fractals. For
instance, we immediately obtain that the length of the Koch Curve starting from the
interval [0,1] after ① steps has the infinite length equal to ( 4

3 )
① because it consists

of 4① segments having the length ( 1
3 )

① each. In the same way we can calculate the
area of the Sierpinski Carpet. If its construction starts from the unit square, then
after ① steps we obtain the set of squares having the total infinitesimal area equal to
( 8

9 )
① because it consists of 8① squares and each of them has area equal to ( 1

9 )
①.

Consider now two processes that both use Cantor’s construction but start from
different initial conditions. Traditional approaches do not allow us to distinguish
them at infinity in spite of the fact that for any given finite number of steps,
n, the results of the constructions are different and can be calculated. Using the
new approach we are able to study the processes numerically also at infinity. For
example, if the first process is the usual Cantor’s set and it starts from the interval
[0,1] and the second one starts from the couple of intervals [0, 1

3 ] and [ 2
3 ,1], then

after ①
2 steps the result of the first process will be the set consisting of 2

①
2 intervals

and its length L(①
2 ) = ( 2

3 )
①
2 . The second set after ①

2 steps will consist of 2
①
2 +1

intervals and its length L(①
2 + 1) = ( 2

3 )
①
2 +1.
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Let us answer now to the following traditional problem: How many points are
there at Cantor’s set? From our new point of view this formulation is not sufficiently
precise. Now, when it becomes possible to distinguish different sets at different
iterations we should say: How many points there are at Cantor’s set being the
result of n steps of Cantor’s procedure started from the initial set consisting of k
intervals? In the following without loss of generality we consider the case k = 1 and
calculate the number of the points in the set Cn being the result of n steps of Cantor’s
procedure starting from the interval [0,1].

Then, as it has been shown in Sect. 6, we are able to calculate the number of
points if we have decided which numerals will be used to express the coordinates
of the points within the interval [0,1]. Moreover, we shall be able to do such
calculations only if the numeral system chosen to express coordinates of the points
will be powerful enough to distinguish the points within the intervals generated
during this process. Obviously, we shall be able to distinguish within Cn no more
points than our chosen numeral system will allow us. For instance, if we give to a
person from our primitive Pirahã tribe the set C2 consisting of four intervals, this
person operating with his poor numeral system consisting of the numerals I, II, and
“many” will not be able to say us how many intervals there are in this set and which
are coordinates of, for example, their end points. This happens because his system
is too poor both for counting the intervals and for expressing coordinates of their
end points. His answer will be just “many” for the number of intervals and he will
be able to indicate the coordinate of only one point—1. However, if we give him
the set C0 his answer will be correct for the intervals—there is one interval—and he
will be able to indicate the coordinate of the same point—1.

Thus, the situation with counting points in Cantor’s set again is similar to the
work with a microscope: we decide the level of the precision we need and obtain a
result dependent on the chosen level. If we need a more precise or a more rough
answer, we change the level of accuracy of our microscope. If we need a high
precision and need to distinguish many points, we should take a powerful numeral
system to express the coordinates. In the case when we need a low precision, a weak
numeral system can be taken.

The introduced mathematical tools allow us to give answers to similar questions
not only for traditional but for blinking fractals, too. We start by considering the
blinking fractal described in Figs. 7–11. Since the answers depend on the initial
conditions, we suppose without loss of generality that the process starts from the
blue square one unit of length on side. This means that during any (finite or infinite)
even iteration we observe blue squares and during any odd iteration we see red
triangles. We shall indicate the set obtained after n iterations by Pn. The area An of
the set Pn is calculated as follows. For any (finite or infinite) n= 2k,k≥ 0, it consists
of 23k squares with the side equal to 2−2k. Thus, the area of Pn is

A2k = (2−2k)2 ·23k = 2−k.

For n = 2k− 1,k ≥ 1, the set Pn consists of 23k−1 right isosceles triangles with the
legs equal to 2−2k+1. In this case the area of Pn is calculated as follows
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A2k−1 = 0.5(2−2k+1)2 ·23k−1 = 2−k. (47)

For example, for the infinite n = 0.5① the set P0.5① consists of 20.75① blue squares
(because the number 0.5① is even), their total area is infinitesimal and is equal to
A0.5① = 2−0.25①. Analogously, if the number of iterations is n = 0.5①+ 1, then the
set P0.5①+1 consists of red triangles and k from (47) is equal to −0.25①+ 1. The
number of triangles is 20.75①+2 and their total area is infinitesimal and is equal to
A0.5①+1 = 2−0.25①+1.

Finally, let us consider the blinking fractal from Fig. 13. We shall indicate the set
obtained after n iterations by Fn. The length Ln of the set Fn is calculated as follows.
For any (finite or infinite) n = 2k,k≥ 0, it consists of 22k intervals and each of them
has the length 3−k ·4−k. Thus,

L2k = 22k ·3−k ·4−k = 3−k.

Analogously, for n = 2k−1,k≥ 1, we obtain that Fn consists of 22k−1 intervals and
each of them has the length 3−k ·4−k+1. Thus,

L2k−1 = 22k−1 ·3−k ·4−k+1 = 2 ·3−k.

For example, for the infinite odd n = 0.5①− 1 the set F0.5①−1 consists of 20.5①−1

intervals and their total length is infinitesimal and is equal to L0.5①−1 = 2 ·3−0.25①.

9 Concepts of Continuity in Physics and Mathematics

The goal of this section is to discuss mathematical and physical definitions of
continuity and to develop a new, more physical point of view on this notion using
the infinite and infinitesimal numbers introduced above. The new point of view is
illustrated by a detailed consideration of one of the most fundamental mathematical
definitions—function.

In physics, the “continuity” of an object is relative. For example, if we observe a
table by eyes, then we see it continuous. If we use a microscope for our observation,
we see that the table is discrete. This means that we decide how to see the object,
as a continuous or as a discrete, by the choice of the instrument for observation.
A weak instrument—our eyes—is not able to distinguish its internal small separate
parts (e.g., molecules) and we see the table as a continuous object. A sufficiently
strong microscope allows us to see the separate parts and the table becomes discrete
but each small part now is viewed as continuous.

In this connection, fractals become a very useful tool for describing physical
objects. Let us return to Figs. 12 and 13 and suppose that we observe two beams
consisting of two different materials at Step 0 by eye and we see both of them
continuous. Then we take a microscope with a weak lens number 1, look at the
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microscope and see the pictures corresponding to Step 1 in Figs. 12 and 13, i.e., that
the beams are not continuous but consist of two smaller parts that, in their turn, now
seem to us to be continuous. Then we proceed by taking a stronger lens number 2,
look again at the microscope and see the pictures corresponding to Step 2 in Figs. 12
and 13. First, we see now that the beams consist of four smaller parts and each
of them seems to be continuous. Second, we see that their locations are different
(remind that we have supposed that the beams have been made using different
materials). By increasing the force of lenses we can observe pictures viewed at
Steps 3, 4, etc. obtaining higher levels of discretization. Thus, continuity in physics
is resolution dependent and fractal ideas can serve as a good tool for modeling the
physical relative continuity.

In contrast, in the traditional mathematics any mathematical object is either
continuous or discrete. For example, the same function cannot be both continuous
and discrete. Thus, this contraposition of discrete and continuous in the traditional
mathematics does not reflect properly the physical situation that we observe in
practice. For fortune, the infinite and infinitesimal numbers introduced in the
previous sections give us a possibility to develop a new theory of continuity that
is closer to the physical world and better reflects the new discoveries made by
physicists (remind that the foundations of the mathematical analysis have been
established centuries ago and, therefore, do not take into account the subsequent
revolutionary results in physics, e.g., appearance of quantum physics). We start by
introducing a definition of the one-dimensional continuous set of points based on the
above consideration and Postulate 2 and establish relations to such a fundamental
notion as function using the infinite and infinitesimal numbers.

We remind that traditionally a function f (x) is defined as a binary relation among
two sets X and Y (called the domain and the codomain of the relation) with the
additional property that to each element x ∈ X corresponds exactly one element
f (x) ∈ Y . We consider now a function f (x) defined over a one-dimensional interval
[a,b]. It follows immediately from the previous sections that to define a function
f (x) over an interval [a,b] it is not sufficient to give a rule for evaluating f (x) and
the values a and b because we are not able to evaluate f (x) at any point x ∈ [a,b]
(for example, traditional numeral systems do not allow us to express any irrational
number ζ and, therefore, we are not able to evaluate f (ζ )). However, the traditional
definition of a function includes in its domain points at which f (x) cannot be
evaluated, thus introducing ambiguity.

In order to be precise in the definition of a function, it is necessary to indicate
explicitly a numeral system, S, we intend to use to express points from the interval
[a,b]. Thus, a function f (x) is defined when we know a rule allowing us to obtain
f (x) given x and its domain, i.e., the set [a,b]S of points x ∈ [a,b] expressible in
the chosen numeral system S. We suppose hereinafter that the system S is used to
write down f (x) (of course, the choice of S determines a class of formulae and/or
procedures we are able to express using S) and it allows us to express any number

y = f (x), x ∈ [a,b]S .
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The number of points of the domain [a,b]S can be finite or infinite but the set
[a,b]S is always discrete. This means that for any point x ∈ [a,b]S it is possible to
determine its closest right and left neighbors, x+ and x−, respectively, as follows

x+ = min{z : z ∈ [a,b]S , z > x}, x− = max{z : z ∈ [a,b]S , z < x}. (48)

Apparently, the obtained discrete construction leads us to the necessity to
abandon the nice idea of continuity, which is a very useful notion used in different
fields of mathematics. But this is not the case. In contrast, the new approach allows
us to introduce a new definition of continuity very well reflecting the physical world.

Let us consider n+ 1 points at a line

a = x0 < x1 < x2 < · · ·< xn−1 < xn = b (49)

and suppose that we have a numeral system S allowing us to calculate their
coordinates using a unit of measure μ (for example, meter, inch, etc.) and to
construct so the set X = [a,b]S expressing these points.

The set X is called continuous in the unit of measure μ if for any x ∈ (a,b)S
it follows that the differences x+− x and x− x− from (48) expressed in units μ
are equal to infinitesimal numbers. In our numeral system with radix grossone this
means that all the differences x+− x and x− x− contain only negative grosspowers.
Note that it becomes possible to differentiate types of continuity by taking into
account values of grosspowers of infinitesimal numbers (continuity of order ①−1,
continuity of order ①−2, etc.).

This definition emphasizes the physical principle that there does not exist an
absolute continuity: it is relative (see discussion in page 57) with respect to the
chosen instrument of observation which in our case is represented by the unit of
measure μ . Thus, the same set can be viewed as a continuous or not in dependence
of the chosen unit of measure.

Example 27. The set of six equidistant points

X1 = {a,x1,x2,x3,x4,x5} (50)

from Fig. 14 can have the distance d between the points equal to ①−1 in a unit of
measure μ and to be, therefore, continuous in μ . Usage of a new unit of measure
ν = ①−3μ implies that d = ①2 in ν and the set X1 is not continuous in ν . ��

Note that the introduced definition does not require that all the points from X are
equidistant. For instance, if in Fig. 14 for a unit measure μ the largest over the set
[a,b]S distance x6− x5 is infinitesimal, then the whole set is continuous in μ .

The set X is called discrete in the unit of measure μ if for all points x ∈ (a,b)S it
follows that the differences x+−x and x−x− from (48) expressed in units μ are not
infinitesimal numbers. In our numeral system with radix grossone this means that
in all the differences x+− x and x− x− negative grosspowers cannot be the largest
ones. For instance, the set X1 from (50) is discrete in the unit of measure ν from
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Fig. 14 It is not possible to say whether this function is continuous or discrete until we have not
introduced a unit of measure and a numeral system to express distances between the points

Example 27. Of course, it is also possible to consider intermediate cases where sets
have continuous and discrete parts (see again discussion in page 57 related to beams
from Figs. 12 and 13).

The introduced notions allow us to give the following very simple definition of a
function continuous at a point. A function f (x) defined over a set [a,b]S continuous
in a unit of measure μ is called continuous in the unit of measure μ at a point x ∈
(a,b)S if both differences f (x)− f (x+) and f (x)− f (x−) are infinitesimal numbers
in μ , where x+ and x− are from (48). For the continuity at points a, b it is sufficient
that one of these differences is infinitesimal. The notions of continuity from the
left and from the right in a unit of measure μ at a point are introduced naturally.
Similarly, the notions of a function discrete, discrete from the right, and discrete
from the left can be defined.

The function f (x) is continuous in the unit of measure μ over the set [a,b]S if it
is continuous in μ at all points of [a,b]S . Again, it becomes possible to differentiate
types of continuity by taking into account values of grosspowers of infinitesimal
numbers (continuity of order ①−1, continuity of order ①−2, etc.) and to consider
functions in such units of measure that they become continuous or discrete over
certain subintervals of [a,b]. In the further consideration we shall often fix the unit of
measure μ and write just “continuous function” instead of “continuous function in
the unit of measure μ .” Let us give three simple examples illustrating the introduced
definitions.

Example 28. We start by showing that the function f (x) = x2 is continuous over
the set X2 defined as the interval [0,1] where numerals i

①
,0 ≤ i ≤ ①, are used to

express its points in units μ . First of all, note that the set X2 is continuous in μ
because its points are equidistant with the distance d = ①−1. Since this function
is strictly increasing, to show its continuity it is sufficient to check the difference
f (x)− f (x−) at the point x = 1. In this case, x− = 1−①−1 and we have

f (1)− f (1−①−1) = 1− (1−①−1)2 = 2①−1(−1)①−2.
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This number is infinitesimal, thus f (x) = x2 is continuous over the set X2. ��
Example 29. Consider the same function f (x) = x2 over the set X3 defined as the
interval [①− 1,①] where numerals ①− 1+ i

①
,0 ≤ i ≤ ①, are used to express its

points in units μ . Analogously, the set X3 is continuous and it is sufficient to check
the difference f (x)− f (x−) at the point x = ① to show continuity of f (x) over this
set. In this case,

x− = ①− 1+
①− 1

①
= ①−①−1,

f (x)− f (x−) = f (①)− f (①−①−1) = ①2− (①−①−1)2 = 2①0(−1)①−2.

This number is not infinitesimal because it contains the finite part 2①0 and, as a
consequence, f (x) = x2 is not continuous over the set X3. ��
Example 30. Consider f (x) = x2 defined over the set X4 being the interval [①−
1,①] where numerals ①− 1+ i

①
2 ,0 ≤ i ≤ ①2, are used to express its points in

units μ . The set X4 is continuous and we check the difference f (x)− f (x−) at the
point x = ①. We have

x− = ①− 1+
①2− 1

①2 = ①−①−2,

f (x)− f (x−) = f (①)− f (①−①−2) = ①2− (①−①−2)2 = 2①−1(−1)①−4.

Since the obtained result is infinitesimal, f (x) = x2 is continuous over X4. ��
Let us consider now a function f (x) defined by formulae over a set X = [a,b]S so

that different expressions can be used over different subintervals of [a,b]. The term
“formula” hereinafter indicates a single expression used to evaluate f (x).

Example 31. The function g(x) = 2x2−1,x∈ [a,b]S , is defined by one formula and
function

f (x) =

{
max{−10x,5x−1}, x ∈ [c,0)S ∪ (0,d]S ,
4x, x = 0,

c < 0, d > 0, (51)

is defined by three formulae, f1(x), f2(x), and f3(x) where

f1(x) =−10x, x ∈ [c,0)S ,

f2(x) = 4x, x = 0,

f3(x) = 5x−1, x ∈ (0,d]S .

(52)

��

Consider now a function f (x) defined in a neighborhood of a point x as follows
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f (ξ ) =

⎧
⎪⎨

⎪⎩

f1(ξ ), x− l ≤ ξ < x,

f2(ξ ), ξ = x,

f3(ξ ), x < ξ ≤ x+ r,

(53)

where the number l is any number such that the same formula f1(ξ ) is used to
define f (ξ ) at all points ξ such that x− l ≤ ξ < x. Analogously, the number r is any
number such that the same formula f3(ξ ) is used to define f (ξ ) at all points ξ such
that x < ξ ≤ x+r. Of course, as a particular case it is possible that the same formula
is used to define f (ξ ) over the interval [x− l,x+ r], i.e.,

f (ξ ) = f1(ξ ) = f2(ξ ) = f3(ξ ), ξ ∈ [x− l,x+ r]. (54)

It is also possible that (54) does not hold but formulae f1(ξ ) and f3(ξ ) are defined
at the point x and are such that at this point they return the same value, i.e.,

f1(x) = f2(x) = f3(x). (55)

If condition (55) holds, we say that function f (x) has continuous formulae at the
point x. Of course, in the general case, formulae f1(ξ ), f2(ξ ), and f3(ξ ) can be or
cannot be defined out of the respective intervals from (53). In cases where condition
(55) is not satisfied we say that function f (x) has discontinuous formulae at the point
x. Definitions of functions having formulae which are continuous or discontinuous
from the left and from the right are introduced naturally.

Example 32. Let us study the following function

f (x) =

⎧
⎨

⎩
①2 +

x2− 1
x− 1

, x �= 1,

a, x = 1,
(56)

at the point x = 1. By using designations (53) and the fact that for x �= 1 it follows
x2−1
x−1 = x+ 1 we have

f (ξ ) =

⎧
⎪⎨

⎪⎩

f1(ξ ) = ①2 + ξ + 1, ξ < 1,

f2(ξ ) = a, ξ = 1,

f3(ξ ) = ①2 + ξ + 1, ξ > 1,

Since

f1(1) = f3(1) = ①2 + 2, f2(1) = a,
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we obtain that if a = ①2 + 2, then the function (56) has continuous formulae9 at
the point x = 1. Analogously, the function (51) has continuous formulae at the point
x = 0 from the left and discontinuous from the right. ��

Thus, functions having continuous formulae at a point can be continuous or
discrete at this point in dependence of the chosen unit of measure. Analogously,
functions having discontinuous formulae at a point can be continuous or discrete
at this point again in dependence of the chosen unit of measure. The notion of
continuity of a function depends on the chosen unit of measure and numeral system
S and it can be used for functions defined by formulae, computer procedures, tables,
etc. In contrast, the notion of a function having continuous formulae works only for
functions defined by formulae and does not depend on units of measure or numeral
systems chosen to express its domain. It is related only to properties of formulae.

We conclude this section by the note that the expressed numerical point of view
on the definition of continuity has been then extended in [40] to the differential
calculus for one-dimensional functions assuming finite, infinite, and infinitesimal
values over finite, infinite, and infinitesimal domains.

10 A Brief Conclusion

In this chapter, a new computational methodology has been introduced. It allows
us to express, by a finite number of symbols, not only finite numbers but infinite
and infinitesimals, as well, and to execute numerical computations with all of them.
A number of theoretical and applied problems where the new way of counting helps
a lot has been discussed.

It has been emphasized that the philosophical triad—researcher, object of
investigation, and tools used to observe the object—existing in such natural sciences
as physics and chemistry, exists in mathematics, too. In natural sciences, the
instrument used to observe the object influences the results of observations. The
same happens in mathematics where numeral systems used to express numbers
are among the instruments of observations used by mathematicians. The usage
of powerful numeral systems gives the possibility to obtain more precise results
in mathematics, in the same way as the usage of a good microscope gives the
possibility to obtain more precise results in physics.

When a mathematician chooses a mathematical language (an instrument), in this
moment he/she chooses both a set of numbers that can be observed through the
numerals available in the chosen numeral system and the accuracy of results that can
be obtained during computations. In the cases where two languages having different
accuracies can be applied, it does not usually make sense to mix the languages,

9Note that even if a =①2+2+ε , where ε is an infinitesimal number (remind that all infinitesimals
are not equal to zero), we are able to establish that the function has discontinuous formulae.
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i.e., to compose mathematical expressions using symbols from both languages,
because the result of such a mixing either has no sense or has the lower of the
two accuracies.

The analysis done in the chapter shows that the traditional mathematical language
using for computations the symbol ∞ very often does not possess a sufficiently
high accuracy when one deals with problems having their interesting properties at
infinity. However, the new numeral system and the new way of counting described
in this chapter do not contradict the traditional approaches. They just describe
objects with different accuracies. It has been discovered that situations that can
be illustrated by the following metaphor can take place. Suppose that we have
measured two distances A and B with the accuracy equal to 1 m and we have found
that both of them are equal to 25 m. Suppose now that we want to measure them
with the accuracy equal to 1 cm. Then, very probably, we shall obtain something
like A = 2,487 cm and B = 2,538 cm, i.e., A �= B. Both answers, A = B and A �= B,
are correct but with different accuracies and both of them can be used successfully
in different situations. For instance, if one just wants to go for a walk, then the
accuracy of the answer A = B expressed in meters is sufficient. However, if one
needs to connect some devices with a cable, then a higher accuracy is required and
the answer expressed in centimeters should be used.
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des métiers, 4, 1754.
7. L. D’Alotto. Cellular automata using infinite computations. Applied Mathematics and Compu-

tation, 218(16):8077–8082, 2012.
8. S. De Cosmis and R. De Leone. The use of grossone in mathematical programming and

operations research. Applied Mathematics and Computation, 218(16):8029–8038, 2012.
9. R.L. Devaney. An Introduction to Chaotic Dynamical Systems. Westview Press Inc., New York,

2003.
10. K. Falconer. Fractal Geometry: Mathematical foundations and applications. John Wiley &

Sons, Chichester, 1995.
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Abstract Despite all the advantages brought by service-oriented architecture
(SOA), experts argue that SOA introduces more complexity into information sys-
tems rather than resolving it. The problem of service integration challenges modern
companies taking the risk of implementing SOA. One of important aspects of this
problem relates to dynamic service composition, which has to take into account
many types of information and restrictions existing in each enterprise. Moreover,
all the changes in business logic should also be promptly reflected. This chapter
proposes the approach to solution of the stated problem based on such concepts
as model-driven architecture (MDA), ontology modelling and logical analysis. The
approach consists of several steps of modelling and finite scope logical analysis for
automated translation of business processes into the sequence of service invocations.
Formal language of relational logic is proposed as a key element of the proposed
approach which is responsible for logical analysis and service workflow generation.
We present a logical theory to automatically specialize generic orchestration
templates which are close to semantic specification of abstract services in OWL-S.
The developed logical theory is described formally in terms of Relational Logic.
Our approach is implemented and tested using MIT Alloy Analyzer software.
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Saint-Étienne-deRouvray, France
e-mail: abdulrab@insa-rouen.fr

E. Babkin (�)
National Research University Higher School of Economics, B. Pechorskaya 25/12, 603155
Nizhny Novgorod, Russia
e-mail: eababkin@hse.ru

J. Doucy
EADS Defence & Security, Information Processing Control and Cognition, Parc d’Affaire
des Portes BP 613, 27106 Val De Reuil, France
e-mail: jdoucy@gmail.com

A. Sorokin and P.M. Pardalos (eds.), Dynamics of Information Systems: Algorithmic
Approaches, Springer Proceedings in Mathematics & Statistics 51,
DOI 10.1007/978-1-4614-7582-8 2, © Springer Science+Business Media New York 2013

67

mailto:abdulrab@insa-rouen.fr
mailto:eababkin@hse.ru
mailto:jdoucy@gmail.com


68 H. Abdulrab et al.

Keywords Information systems • Web-service • Composition • Formal
analysis • Relational logic

1 Introduction

Almost all modern companies use distributed and heterogeneous information
systems (IS). It implies a variety of various applications based on different infor-
mation technologies (IT) which interact with each other using diverse interfaces.
In addition, modern companies are much interested in IS integration with their
business partners in order to speed up and improve operational business processes.
All mentioned above set new requirements to IT integration which is currently one
of the top priorities for modern software engineering.

However in practice traditional approaches to software engineering can hardly
meet the requirements of dynamic business environment, such as flexibility and
simplicity of IT operations. A significant shortcoming of traditional integration
approaches is software redundancy and difficulty of software reuse. A concept of
service-oriented architecture (SOA) offers new solutions to the mentioned problems.

SOA provides the opportunity of abstraction from software and hardware
implementation [8]. This makes IS solutions much more flexible and capable
of quick adaptation to business process changes. According to IBM, SOA can
be defined as an application architecture in which functions are represented by
independent and coarse-grained services with triggered interfaces. SOA enables
business process automation in the form of workflow—a predefined sequence
of business process activities [3]. Several machine languages were proposed for
definition and enactment. Among them BPEL [4] and OWL-S [19] are mostly used
in industry and research.

In SOA terminology a coordinated aggregate of services refers to service
composition [9]. The following types of service composition are distinguished:
choreography and orchestration. Orchestration is the management of services within
a single run of a business process. Choreography is defined as the management
of services during the asynchronous run of the business process working simulta-
neously with several data flows [8]. Our work deals with automation of service
orchestration solely. Of course such a limitation does not allow modeling the
complete life cycle of information systems; however, we believe that the proposed
methodology can be further developed to automate service choreography as well.

However, in spite of SOA advantages and its popularity within business and
IT communities, practical benefits of SOA are still intensively discussed. Many
enterprises argue that SOA introduced more complexity into their information
systems rather than resolving it. Heterogeneity of individual services and the need
for multi-aspect modeling of complete distributed systems contribute to extreme
complexity and high costs of SOA solutions. The solution for that problem has
been looked for by means of enhancing semantic description of web services and
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wide application of formal analysis and reasoning methods for semantic integration
of web services. Among the recent projects and standards we need to mention
SUPER project [17], OWL-S [20], and IRS-III framework [5]. Such works as
[21, 22, 28, 34, 35] mainly focus on using planning algorithms to address the
automatic services composition challenge. The work of Duan et al. [7] was one of
the first to introduce a formal logic-based model for specification and refinement of
abstract business processes using the concepts of BPEL and program logic. Recent
researches use Semantic Web Service Ontology (OWL-S) [19] for description of
static and dynamics properties of abstract and concrete services, as well as different
formal methods [10, 13].

Our analysis shows that most of the existing reasoning algorithms are based on
theorem proving which influences the scope of solvable tasks. They do not enable
analysis based on counterexamples generation, and this significantly restricts the
capabilities of analysis and practical impact. The first significant problem is the
presence of a multi-layered hierarchy of services. Their intrinsic interdependences
and complex connections of pre- and post-conditions require application of more
sophisticated formalisms and logic analysis. The second problem arises from the
practice of software engineering. Software engineers frequently require support
for the iterative process of service development and orchestration of the group
of the services in the customized end-user application. Connection of software
engineering methods of program verification and formal principles of semantic
service composition give us a hint to study opportunities of traditional model
checking tools for application in the context of service-oriented software systems.
Several research works provide us with the background. For example, the works
[23,32] investigate opportunities of Object-Z and Rewrite Logic to specify formally
semantics of OWL-S. Such works as [31,33] show great potential of relational logic
and Alloy Analyzer for formal specification and refinement of business processes.

The objective of this research is to develop a new formal approach which uses
benefits of finite model checking and automates service orchestration based on
business-process logic taking into account existing constraints in the context of
an enterprise. Such an approach makes it possible to skip the manual analytical
step and to automate service orchestration process based on business requirements
and changes of business processes. Our work proposes a solution based on such
concepts as model-driven approach, ontology modeling, business process modeling,
and relational logic. These concepts, belonging to different areas, allow the creation
of an advantageous integrated approach.

The chapter has the following structure. In Sect. 2 we present the main founda-
tions of the proposed approach in the realm of IT architecture and formal logic
analysis. Section 3 offers an overview of used formal tools and the proposed
approach. In Sect. 4 we give detailed explanation of our approach using two specific
case studies. In Sect. 5 we discuss the achieved results, compare them with the
related research works, and determine further research directions.
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2 Foundations

Our research fuses the concepts of IT architecture and of particular methods of
formal analysis. For better comprehension we provide for the key foundational
elements of these two realms.

2.1 IT Architecture

Large-scale enterprises entail a great number of business processes and procedures
linked with each other on different levels and evolving constantly in the turbulent
business environment. The complexity of business processes manifests itself in the
number of participants, documents, interactions, and different scenarios that may
happen. In the result the business process analysis and modeling become very
difficult. Additionally, there are quite a lot of formally fixed policies and rules,
informal restrictions, and constraints that should be taken into account as well
in order to automate the processes so that they comply with the business reality.
Different factors are spread across various conceptual layers of organizational
structure and cannot be analyzed within the single modeling practice. That is
why design of multi-layered models of description and composition of services
is the central task for development of service-oriented information systems. One
widely accepted software engineering approach is model-driven architecture (MDA)
introduced by Object Management Group (OMG) [24]. MDA combines the
advantages of modeling and SOA. According to MDA there are several abstraction
levels of modeling. Three layers of models are distinguished in MDA [25]:

• The computation independent model (CIM) describes a system from the compu-
tation-independent viewpoint, addressing structural aspects of the system. A CIM
is often called a domain model.

• The platform independent model (PIM) can be seen as defining a system in terms
of a technology-neutral virtual machine or a computational abstraction.

• The platform specific model (PSM) usually consists of a platform model that
captures the technical concepts and services that make up the platform and
an implementation-specific model geared towards the concrete implementation
technique.

Large number of various enterprise models are used to capture different facets of
knowledge about processes, their automation, and software implementations. The
variation of notations leads to the great complexity of service composition process.
Unified Modeling Language (UML) was proposed to offer the single common
modeling notation. However, currently UML cannot fully support domain models;
therefore, means for high level modeling are required.

The approach proposed in this work utilizes the ontology modeling concept [12].
It has proved itself as an efficient knowledge management approach intended to
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simplify and structure the composition process. Ontologies were applied for web
services description and integration by introducing the concept of Semantic Web
Service (SWS). It stands for Web Service enhanced with semantic description. Acc-
ording to Bhiri [1] there are four main SWS initiatives, namely WSMO/L/X Frame-
work [26], OWL-S, [20], IRS-III framework [5], and METEOR-S system [30].

Also ontology dialects for widely spread modeling methodologies EPC, BPMN,
BPEL were created. sEPC, sBPMN, and sBPEL ontologies have been developed
and proposed within the framework of SUPER project as part of Semantic Business
Process Modeling methodology [17]. Such achievements provided a practical
opportunity to link business process models to the domain ontology concept, to set
users objectives and services capabilities in terms of the domain, and to automate
service orchestration based on formal reasoning tools.

Ontology and MDA approaches are tightly coupled. As for description of SWSs,
ontologies are mostly used for creation of PSMs (WSMO, OWL-S, etc.). However,
ontologies can be successfully used for model creation on all MDA abstraction
levels.

Application of ontologies and other conceptual models requires a well-developed
language for ontology and models descriptions supported with formal reasoning.
Syntax of such language should be intuitively clear for non-experts and compatible
with existing SOA standards. Semantics of such language should be formally
defined as it should provide consistent interpretability. In other words, no varied
interpretations should exist. Expressive power of the ontology language should
allow for fine-grained detailed description without overcomplications preventing a
formal reasoning process [2].

Formal reasoning tools are required to control and support ontology quality. For
example, such tools can be used during the ontology developing phase for testing
model consistency and adequacy.

Formal semantics and meta-language are the key differences between formal
logic languages and other languages. Main advantages of formal logic application
for knowledge representation are the following:

• Consistency, lack of expression interpretation ambiguity
• Ability of distinguishing of logic expressions from the conclusions of their

validity

Leading notations and methodologies for ontology development (OWL, WSMO)
are based on Descriptive Logics (DLs) which are the formal extensions of first-
order logic [2]. However, despite many important results achieved in using DLs
in knowledge representation, there are still a number of principal scientific and
engineering issues to be solved. For example, in reality many attractable DLs are
ExpTime-complete (e.g., SHIQ) and only a few polynomial-complexity DL dialects
for very strict domains have been developed so far. Additionally, in order to support
effective practical engineering activities during design and evolution of service-
oriented systems reasoning mechanisms should also provide model finding and
counterexample generation capabilities, while DL-based reasoning does not allow
them.
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2.2 Relational Logic and Alloy Analyzer

In our research we use Alloy Analyzer [16] which gives an opportunity to enhance
the logic-based method with the features of constraint-based approach. Theoretical
foundations of Alloy Analyzer include a mathematical theory of relational logic
and finite scope logical analysis. The first Alloy prototype came out in 1997 from
MIT Software Design Group and to the moment it has evolved to the matured
simulation and verification system. The formalism of Relational Logic is based
on the first-order logical theory; it facilitates rigorous definition of the structure
and constraints of data structures in the generic form of relations. Alloy Analyzer
consists of the structural modeling language based on first-order logic and of a
Java-based constraint solver for models analysis and verification. That modeling
language is rooted in well-known formal language Z for program specifications, but
it uses different modeling capabilities like inheritance and reuse of formulas, which
facilitate declarative object-oriented description of the problem. The users of Alloy
Analyzer can select the most appropriate formal approach to define the structure
and behavior of the system among the following alternatives: predicate calculus,
relational calculus, navigation expression style. Simple heuristic of incremental
grow of the instances bound was used to find the minimal number of the instances
which satisfy the specified theory.

In Alloy language all universe of discourse is modeled in terms of atoms and
relations. Atoms model indivisible, constant entities, while relations with multiple
arities represent meaningful relationships and dynamical aspects. Expressive means
of logic include:

• Set constants (empty set, universal set, identity set)
• Commonly accepted set-theoretical operators (union, intersection, subset inclu-

sion, etc.)
• Relational operators (product, join, transpose, transitive closure, etc.)

Non-trivial constraints against the relations can be made from usual logical
operators, quantifiers, specific multiplicity constraints restricting the basic relational
operators, and cardinality constraints.

Practice-oriented modeling language of Alloy facilitates declaration of logic
sentences in the text object-oriented form and provides convenient means to
organize large models into tractable components and to manage simulation or
verification. In the Alloy modeling language the basic building block is referred to as
signature. In principle each signature represents a set of atoms. Specific constraints,
defined in the modeled domain, are expressed in terms of facts, predicates, and
functions. Assertions denote studied properties of the domain, which are verified by
the means of the model simulation. Finally, testing of the model is performed with
the help of a pair of control commands: run and check. Run command starts Alloy
analyzer in order to find a correspondent model for a given number of instances.

In Alloy the flexible separation of concerns principle is used for implementation
of simulation and checking. To verify a model against constraints Alloy analyzer
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translates the definition and constraints of the model into binary constraints and
passes them to an external satisfiability solver in order to solve the classical finite
domain constraint satisfaction problem via the search in the state space. Thus
simulation of the model gives back such instances of states of executions that satisfy
a given constraint (the model of the logical theory), and checking gives instances of
the model, which violate the specified constraints. As an example of Alloy syntax,
we consider the following definitions of signatures which describe basic constituents
of service-oriented information systems:

sig Condition {}

sig WorkflowElem {}

sig ControlElem extends WorkflowElem {}

sig Service extends WorkflowElem {
preconditions: set Condition,
effects: set Condition

}

In terms of relational logic these signatures define such mathematical structures
as four sets (Condition, WorkflowElem, ControlElem and Service) and two binary
relations between the set “Service” and the set “Condition” (the relations has
name preconditions and effects correspondingly). An additional signature and more
relations may be defined to model a generic linked structure of services in terms of
relational logic.

sig WTemplate {
elems : set WorkflowElem,

first : one elems,
last : one elems,
transition: (elems - last) -> (elems - first)}

}

Relation “transition” demonstrates how ternary relations can be defined in Alloy
language. In this case the relation is defined between WTemplate, and two subsets
of WorkflowElem, thus determining the order of control flow transition from one
service to another. The following fact sets a logical constraint on the transition
tuples.

fact f1 {
all p: WTemplate | let t = p.transition |
all s1,s2: Service | s1->s2 in t =>

s2.preconditions in s1.effects
}

According to that fact a pair of services may be linked in a workflow template
only if the preconditions of the former service are in the set of effects of the
former service. Later in the text of the chapter we describe in more detail how these
and other similar definitions allow to facilitate service composition.
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It is important to understand that Alloy logic is unresolvable [23]. Therefore,
Alloy logical means for resolution and reasoning are based on automated gener-
ation of examples (for predicate validation) and counterexamples (for constraints
assertion) within the finite scope. However, finite scope of Alloy logic does not lead
to poor reliability of such analysis because Alloy allows modeling of an infinite
number of objects and relations between them. In addition to the capability of
simultaneous analysis of a great number of objects, Alloy provides opportunity to
model and analyze such complex data structures as trees, which makes it convenient
and applicable for real domain objects modeling. Moreover, the structure of the
Alloy language allows integration of its models with the models described in other
notations and languages such as UML.

3 Proposed Approach to Service Composition

In order to manage and orchestrate program services and ensure sufficient quality
of SOA implementation business analysts should take the role of a handler and an
integrator of all information gathered during the studies of the application domain
and analysis of the business processes. Also for creation and further maintenance of
information systems the majority of industrial developers perform system modeling
in different styles, and finally execute manual or semi-automated composition
of independent program services. Besides the costs associated with this kind of
analytical work, such a huge amount of manual work is accompanied by high risk
of losing or skipping relevant information that needed to be taken into account in
the course of software implementation.

Changes in business processes require deep analytical work including interviews
with involved employees, analysis of different models and restrictions. This does
not allow the information system to be as flexible as business demands. Such a
manual and loosely controlled process of service orchestration leads to inefficiency
of information systems usage and high costs of SOA implementation.

3.1 New Basic Principles of Composition and Modeling

Most of the SOA solution vendors define at least two levels of SOA: level of
business process and level of services [9]. The correspondence between services and
business operations is the core of SOA concept. Despite all the results in researches
of using semantics to service composition, existing approaches are more focused
on technical description of service-related data and neglect a considerable part of
business requirements.

However, SOA does not cover only one business process, but the whole range of
enterprise business processes in a given application domain. All business processes
in one business environment have a common set of notions and features that are
defined by functional and industrial specificity of the application domain. In order
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Fig. 1 Human factor elimination in the proposed approach to service composition

to achieve the common approach to modeling and consequently to automation of
business processes in one domain, it is necessary to introduce concepts of a given
application domain.

On the contrary, our approach to service composition is based not only on
the service description but also on the description of the domain in the form of
ontology, business process, and business requirements (see Fig. 1). Using ontology
it is possible to define a thesaurus, which can function as a “translator” between the
system and its users, between business representatives and software developers, and
between the business process model and the model of technical realization. It makes
possible to combine together different types of models created and analyzed during
the implementation and change processes and to ensure consistency of all models.

The proposed approach unites the restrictions of all levels during the service
orchestration. As a result, our approach features the modeling hierarchy with three
layers: domain ontology, business processes, and program services (see Fig. 2). All
layers and dependencies between them can be described in the logic language using
Alloy Analyzer.

Domain ontology defines the basic notions of business environment and its
restrictions. This layer corresponds to the CIM model in MDA. The analysis
performed on Layer 1 results in the consistency checking of different restrictions.

Layer 2 models describe the dynamics and logic of business process based on the
concepts defined on the Layer 1 model. This layer corresponds to the PIM model
in MDA. The analysis performed on Layer 2 shows different scenarios of business
process execution taking into account all the restrictions from the Layer 1 and Layer
2 models. Again during the analysis the consistence of the restrictions is checked.

Layer 3 model defines the core notions of the service environment and its
restrictions. This layer corresponds to the PSM model in MDA. The analysis



76 H. Abdulrab et al.

Fig. 2 Three layers of modeling hierarchy in the proposed approach

performed on Layer 3 shows multiple scenarios of service invocations taking into
account all the restrictions from the Layer, Layer 2, Layer 3 models. Also the
analysis checks the consistence of the restrictions. Alloy allows for scenarios to
be generated in XML format. This enables different scenarios to be “glued” and
translated into BPEL executed code according to architecture described above.

3.2 Mapping to Existing Approaches in the Realm of Business
Process Modeling

To show how mapping to existing approaches may be implemented, we utilize
widely used event-driven process chain (EPC) notation. The objective of the first
task in our approach is to define the way of translation from a business process
model to a particular logic language of Alloy Analyzer. According to EPC, business
processes consist of a sequence of events and actions. Therefore, we introduce two
concepts of ontology: Event and Action. For modeling the transitions between these
concepts, an additional object has been introduced—Obligation Instance which was
taken from the work [27]. The transition between these three concepts is defined by
the relations between appropriate signatures (see Fig. 3).
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Fig. 3 Business process logic. Relation between objects Event, Action, ObligationInstance

Proposed approach for business process description gives a possibility to describe
real business processes with all branches of the scenarios. First of all, the model
signatures have fields with quantitative keywords ensuring a possibility to define
complex conditions for triggering events. Secondly, using classical logical operators
such as OR and AND it is possible to describe the logic of complex process. For
example, one Action can trigger several Events. That is modeled by Alloy relational
logic language as follows:

abstract sig Action { // definition of signature Action
a_pre, a_post: one Time,
contains: Operation -> DocumentInstance,
// one Action can trigger several Events
calls: set Event,
performed_by: one Role
}

An advantage of the proposed approach is modeling of the business process
dynamics. For that an additional concept Time is introduced, which is linked with
other business process notions according to the scheme in Fig. 4.

Using the following Alloy fact, the synchronization of all business process
notions is achieved:

fact Times
{
all a: Action | all e: Event | e=a.calls =>

a.a_post=e.event_time

all o: ObligationInstance | all e: Event | o in e.e_trigger =>
e.event_tim = o.oblig_time
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Fig. 4 Business process logic. Dynamics modeling

all o: ObligationInstance | all a: Action | o.o_trigger=a =>
a.a_pre=o.oblig_time

all a:Action | all t:Time | t=a.a_pre=>a.a_post=t.TO/next
}

All described methods of business process modeling are defined on Layer 1
of our modeling hierarchy. This ensures that the common rules for business
processes are set on a general level and they are valid for all introduced business
processes within the business environment. Modeling a typical business process
and its analysis are carried out on Layer 2 of the modeling hierarchy. The main
point is that the concepts of Layer 1 are defined as Abstract, which means that
there is no real object related to them. Using the extensions of such an abstract
signatures specific business process elements are defined on Layer 2. For example,
on Layer 1 an action is defined as an abstract concept. Particularly in Alloy
it is expressed as: abstract sig Action. At the same time on Layer 2 a
specific concept is defined as an extension of the signature Action introduced
on Layer 1:sig F1 OrderRegistration extends Action. Usage of ex-
tensions ensures the consistency between concepts and models of the two layers
(see Fig. 5).

3.3 Program Services Modeling

One of the main objectives in our approach is to ensure relations between models
of different abstraction levels and to automate service sequence generation based
on the business process logic. Therefore, Layer 3 of the modeling hierarchy in
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Fig. 5 Correspondence
of Layer 1 and Layer 2
signatures

our approach, which is represented by services, is strictly linked with the business
process layer and depends on the business process flow. As already mentioned
above, a particular service represents the technical implementation of a particular
business function. Service-oriented architecture implies existence of a number of
services and technical methods which can be reused during the business function
run. So, it is logical to introduce concepts Service and Method as an element
of a given Service. In Alloy language, Methods are linked with Services using
the field consists of in Service signature, and Methods are linked with the
corresponding business function from Layer 2 using field corresponds in
Method signature. Based on such a simple approach a link between Layer 2 and
Layer 3 of the modeling hierarchy is implemented (Fig. 6).

In addition to the introduced relation between the business function and the
implementation method, there is also a fact which defines the logic of methods
triggering in real time:

fact Synchronisation
{
all s:Service |all m:Method| m in s.consists_of =>

m.(s.current_method_pre)= (m.corresponds).a_pre

all s:Service |all m: Method | m in s.consists_of =>
m.(s.current_method_post) = (m.corresponds).a_post

}

Such an approach ensures the link between the technical and the business parts
of SOA. This link enables automatic service triggering in the sequence defined by
the business process flow.

3.4 Template-Based Service Orchestration

Proposed approach also allows for developing a specific method to automatically
specialize generic web-service orchestration templates which are close to semantic
specification of abstract services in OWL-S. In our case two main principles
shape the proposed method for template-based service orchestration. First, abstract
composite business processes take the role of a workflow template, thus reducing
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Fig. 6 The link between Layer 2 and Layer 3

Fig. 7 One example of a generic workflow template

complexity and representing a repeating service workflow. Mainly inspired by the
OWL-S definition of a composite process, for definition of workflow templates we
use the limited set of such Control Constructs as: Sequence, Split, Split + Join,
Choice, Any-Order, Condition, If-Then-Else, Iterate, Repeat-While, and Repeat-
Until. Using these constructs business analysts and software architects may design
general workflow templates on the basis of commonly used practices and existing
processes of enterprise information systems. In most practical cases each workflow
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template consists of four to five building elements with a clear control structure.
Figure 7 examplifies such a template. Diamonds define control flow elements and
ovals represent abstract services.

Second, the logical theory and the principles of model finding facilitate special-
ization and validation of previously defined workflow templates which fit within the
existing service infrastructure.

According to the stated principles we create a logical model which is capable
of formal description of all needed abstract or specific service specifications. The
model may conceptually be separated in four parts. The first, generic, part of our
model describes such cornerstone concepts of our approach as composite processes
(workflow templates), services, and control elements. This part of the model remains
the same for all particular patterns and orchestration scenarios. The following
Alloy statements represent key generic concepts: Condition, WorkflowElem, Con-
trolElem, and Service.

abstract sig Condition { }
abstract sig WorkflowElem { }
abstract sig ControlElem extends WorkflowElem { }
abstract sig Service extends WorkflowElem {

preconditions: set Condition,
effects: set Condition

}

Service and ControlElem are defined as extensions of WorkFlowElem. In other
words, services and control elements are defined as workflow elements, so they
could be included into the workflow template as follows:

abstract sig WTemplate {
elems : set WorkflowElem,

first : one elems,
last : one elems,
transition: (elems - last) -> (elems - first) }

This formal description represents the workflow template mainly as a set of links
between workflow elements, in other words, as a Directed Graph. Two other Alloy
statements are needed for the purpose of services chaining in the workflow template.

fact f1 {
all p: WTemplate | let t = p.transition |
all s1,s2: Service | s1->s2 in t =>

s2.preconditions in s1.effects
}

fact f2 {
all p: WTemplate | all s1, s2: (Service-p.last) |
all c: ControlElem | let t = p.transition |
(s1->c in t) and (c->s2 in t) =>

s2.preconditions in s1.effects
}
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Fact f1 states that two services are linked if the preconditions of the former
are included in the effects of the later. Fact f2 is quite similar, but it enables this
chain through one control element. In other words, if we add a control element
between two services, this control element becomes transparent in terms of service
chaining.

The second part of the logical theory is domain-specific. It specifies existing
services in accordance with the current configuration of the service infrastructure.
One practical example of such specification is given in Sect. 4. The third part of
the logical theory consists of formal specification of available abstract composite
services, or workflow templates.

The following Alloy statements describe a frequently used workflow template
with six nodes (including mandatory Start and Finish) and seven transitions. Further
down, Start, Finish, SourceReader, and Analyser are defined as services, whereas
Loop and IfCond are defined as control elements.

one sig P1 extends WTemplate { } {
one Start
one Loop
one Finish
one SourceReader
one Analyzer
one IfCond

transition =
Start->Loop +
Loop->Finish +
Loop->SourceReader +
SourceReader -> IfCond +
IfCond -> Analyser +
IfCond -> Loop +
Analyzer ->Loop }

The final fourth part of the logical theory defines specific requirements for
particular refinement of the workflow template and the implementation details of
the service orchestration. Users will have to specify some parameters to enable
selection of the relevant concrete services. These parameters are translated directly
to the formal language interpretable by Alloy Analyzer. The following constraints
define how to express the condition ContentExtracted.

pred CyclicProcess {
one p: WPattern | p.first = Start
one p: WPattern | p.last = Finish
Start.effects = none
Start.preconditions = none

Finish.effects = none
Finish.preconditions = ContentExtracted
one ContentExtracted
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one p: WPattern | some s:SourceReader |
s->s in ˆ(p.transition) }

4 The Illustrative Examples

The practical application of the proposed approach is demonstrated by the creation
of described models for two particular business cases. The first business case shows
the practical mapping of EPC diagrams to the relational logic and further logical
analyses in order to verify information security constraints. In the second case we
show another application of our template-based method of service orchestration
to a particular service-oriented information system in the domain of multi-media
processing.

4.1 EPC Mapping and Security Constraints Checking

In this case we examine business process of sales order creation in a large sales
company. Employees of sales department register a sales order in the system-
based on an MS Excel request sent by email. Once an order is saved the system
automatically checks if the price was lower than minimal acceptable one, taking into
account information on discounts. Minimal acceptable prices entered in the system
by Finance controller are used for order check. If price of at least one item from the
order violates the norms, the order is blocked. In this case the information is sent to
the employee of the Finance controlling department. The employee can approve the
existing price or change it to the proper one. As the price is approved by the Finance
controlling department, the order is sent to the Credit controlling department. The
described business process can be seen in Fig. 8.

First, the domain ontology was created and described in the Alloy language. The
main entities and relationships between them were defined. Second, the business
process was modeled in terms defined at Layer 1 of the modeling hierarchy, in other
words, the instance of Layer 2 Model was created. Then, the program services model
(Layer 3 Model) was created and mapped with the business process model. The
methods for automated orchestration of services were defined and the workflow
order was automatically generated. Moreover, information security restrictions were
checked both on the level of business process and on the level of program services.

According to the proposed approach, the Layer 1 Model was created. Its concepts
and relations are shown in Fig. 9.

For each general concept from the domain ontology the successor was
defined in Layer 2 Model representing the specific process function, event,
principal, and document. For example, specific functional roles were defined.
Order Desk specialist was represented by the role R1 OrderDeskClerk,
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Fig. 8 The considered business process
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Fig. 9 Domain ontology

Finance controller—R2 FinanceController, Credit controller—R3 Cre-
ditController. Similarly, specific Authorizations, Obligations, and Documents
were defined and relationships between them were set based on the ontology
relations. For example, the role R1 OrderDeskClerk was set as exclusive to
the roles R2 FinanceController and R3 CreditController using the
relationship “exclusive” defined in Role signature:

one sig R1_OrderDeskClerk extends Role{}
{
exclusive = R2_FinanceController+R3_CreditController
has_oblig = O1_ToRegisterOrder
has_auth = A1_ToRegisterOrder
has_member = J.Johnson
}

According to the EPC model, the process starts with the reception of the client’s
order. The signature E1 OrderHasComewhich is a successor of the Event concept
was defined. The time of event was set as the very first moment TO/first represented
by the successor of the Time signature. E1 OrderHasCome calls Obligation
to register the order.
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one sig E1_OrderHasCome extends Event {}
{
o_has_instance.(e_trigger) = O1_ToRegisterOrder
event_time=TO/first
}

O1 ToRegisterOrder is a successor of the Obligation signature; how-
ever, according to the modeling methodology, the event calls not Obligation but
ObligationInstance that refers to a more general Obligation. Therefore,
to link the current Event with Obligation the relationship o has instance
which connects signatures Obligation and ObligationInstance is used.
A special fact is defined to link obligation with the ObligationInstance
events.

fact ObligationInstanceFromO1
{
all oi: ObligationInstance |

o_has_instance.oi = O1_ToRegisterOrder =>
oi.o_trigger = F1_OrderRegistration

}

If the event triggers the obligation to register the order it means the execution of
the function F1 OrderRegistration. Current model defines a strict logic of
the business process, thus a possibility of accidental events and actions is not taken
into account. This significantly restricts expressiveness of modeling; however, this
aspect can be resolved while further model development.

Inside the Action of order registration several parameters are defined including
Event that will follow Action execution,Role, which will execute Action and
Document which will be the object of Action. The result of Action execution
is a change of Document status.

one sig F1_OrderRegistration extends Action {}
{
calls=E2_OrderCreated
performed_by=R1_OrderDeskClerk
contains.DocumentInstance =
Create ((Create.contains).has_status).a_post = New
}

The current description corresponds to the business process part from Fig. 10.
The same business process with all the connections is presented in Fig. 11. Finally,
the result generated by Alloy Analyzer can be seen in Fig. 12.

In addition to the static modeling, the modeling of dynamics using Alloy may
be demonstrated. A particular model is developed to show changes of the business
process flow in the different moments of time. The concept of modeling dynamics
using Alloy was initially described by Daniel Jackson in [16]. His concept with
some modifications was used for the developed dynamics modeling algorithm.
This algorithm is defined on the ontology level; however, as all the entities of the
second level are successors of the first level signatures, all rules and restrictions are
applied to them and dynamics on the business process level is also demonstrated.
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Fig. 10 The original EPC Diagram

Fig. 11 Detailed information in EPC notation

MIT Alloy Analyzer generates the set of all possible scenarios of the business
process flow that meet defined restrictions. The results of the particular scenario
generation can be represented in several ways, including a graphical preview. This
kind of representation shows graphical figures for all the instances entities described
in the model. When the object (such as Event, ObligationInstance, and
Action) occurs/starts or finishes executing, the corresponding time indicators
appear in the figures. For example, at the moment Time0 the model shows
which instances of Event, ObligationInstance, and Function occur/start
executing at the first moment of time. In Fig. 10 E1 OrderHasCome has an
indicator “event time”, ObligationInstance2 has an indicator “oblig time”,
and F1 OrderRegistration has an indicator “a pre”. The indicators show
instantiation of these objects at the current moment of time (Time0) (Fig. 13).

At the next moment Time1 function F1 OrderRegistration fin-
ishes its work (it has an indicator “a pre”). The function calls the next
Event: E2 OrderCreated. The Event triggers ObligationInstance
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Fig. 12 The generated Alloy diagram

of O2 ToCheckPrices, which in turn initiates the start of function
F2 OrderPriceCheck. (see Fig. 14).

The next step of the work is to model an algorithm which will automatically
define the service orchestration scenarios using the approach to service modeling
described above. Each function of the business process is associated with some
program methods. Also the mechanism of synchronization of a service and a
business function is defined enabling the automated service orchestration.

Figure 15 shows how at Time0 moment the function F1 Order
Registration and the corresponding method M1 OrderRegistration
(Service1) start execution.

At Time1momentM1 OrderRegistrationfinishes its work and according
to the business process the function F2 OrderPriceCheck should start execu-
tion. That, in turn, causes the method M2 OrderPriceCheck (Service2) to
start execution (see Fig. 16).
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Fig. 13 The business process state at Time0

As a result of modeling at Layer 3, the sequence of services is defined for each
scenario of the business process. In order to get the complete BPEL code those
scenarios should be compiled together in one common XML code. The compilation
of XML code and translation into BPEL is beyond the scope of the current case
study.

Nevertheless, applicability of the developed method for automated orchestration
of services was proved. Alloy assertions enable check of information security
controls. These controls are thoroughly described in [27]. For example, the created
model enables verification of the following assumptions:

• One principal does not have two exclusive roles;
• One principal does not have a set of critical authorizations;
• One role does not have a set of critical authorizations;
• No role can execute all the actions in the same document;
• Exclusive roles have different authorization sets;
• One service cannot execute all the actions in the document.
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Fig. 14 The business process state at Time1

4.2 Service Template Specialization for WebLab Platform

In this sub-section we will focus on exploring our method of template-based
orchestration (see Sect. 3.4) in the particular context of the WebLab platform
providing a real-life set of abstract and concrete services. The WebLab platform
[11] facilitates the development of multimedia projects leveraging a rich set of tools
to create complex processing chains and dynamic graphical front-ends for domain
users. The platform has different groups of users interested in design and using
complex service chains of multimedia processing services. Each group of the users
has own preferences and domains of discourse.

The WebLab platform has a service-oriented architecture and uses a common
data model and generic interfaces. However the design of customized applications
and sustainable management of individual services or composite processes in the
WebLab platform still require considerable intellectual efforts and time. Firstly, the
WebLab platform contains a large and frequently changing set of heterogeneous
multimedia components which are represented as services and may be integrated in
processing chains in different ways. Secondly, different groups of the WebLab users
prefer different approaches to description of service functionality.
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Fig. 15 Service launch at Time0

The semantically enriched service registry of the WebLab Platform [6] facilitates
integration of the different viewpoints and maintains links between OWL-S and
the domain-oriented WebLab vocabulary. An upper level ontology and specific
inference rules help to seek a particular service and automatically infer the set of
implementation-specific characteristics of that service (in particular, Input, Output,
Preconditions, and Effects of the service—IOPE) on the basis of domain-oriented
initial information. In turn, WebLab experts (like automated agents) are now able to
search this registry for the services which fit with the needed IOPE (even indirectly).

However, currently the semantically enriched service registry of WebLab plat-
form still does not have an opportunity to populate abstract OWL-S processes
with particular instances of appropriate simple processes, thus the registry cannot
implement service orchestration tasks. To do this we propose using formal methods
of Relational Logic and specific tools of formal analysis such as Alloy Analyzer.

At first, we need to express the second part of the logical model in the particular
terms of the existing WebLab services. For this purpose we use information from
the semantically enriched WebLab service registry which stores information about
service taxonomy and IOPE for each available service. An example given below
shows the Alloy declaration of some known IOPEs of WebLab services.

sig AsNativeContent, ContentExtracted extends Condition{}
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Fig. 16 Service launch at Time1

We also have to define service specification for each item in the registry. Such
specifications are done in accordance with the following contents of the registry.

Service name Preconditions Effects

WebCrawler asNativeContent
RSSCrawler asNativeContent
Normaliser asNativeContent contentExtracted
EventExtractor geoExtracted neExtracted eventsExtracted
NEExtractor contentExtracted neExtracted
GeoExrtactor contentExtracted geoExtracted
FullTextIndexer uniqueURI searchable
FileRepository uniqueURI
TextCleaner contentExtracted textCleaned

WebCrawler and RSSCrawler are two robots which are able to download content,
respectively, from web sites and RSS feeds. Normaliser is able to extract content
from an original file. In other words, it extracts a normalized text from web pages,
pdf files, doc files, etc. EventExtractor, NEExtractor, and GeoExrtactor are text
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parsers which are able to extract information from this text. NEExtractor service
focuses on the named entities part. The GeoExtractor service is able to extract a
location (city, country, etc.) and to add its geographical position. EventExtractor
processes geographical information and named entities in order to notify events
in the text. FullTextIndexer is a classical text indexer which enables document
retrieving from a text request. FileRepository manages the resources persistence,
guarantees an unique URI on each resource it saves, and delivers the previously
saved resource using its URI. TextCleaner is used to remove unused empty text
(multiple new lines, etc.).

Each registry definition of the service including effects and preconditions is
translated into corresponding logical statements. A simple extract from the complete
formal specification of the services is given below.

sig Normalizer extends Service {} {
preconditions = AsNativeContent
effects = ContentExtracted
one AsNativeContent
one ContentExtracted

}

The specification of all services defines the second part of the logical theory in
our approach. Specification of available workflow templates is the next step in our
method. In the explored use case we limited available templates to only one, already
presented in Sect. 3.4. That template represents a classic processing workflow which
satisfies multiple user needs. It is composed of a loop which could be interpreted as
“while there is some resource to compute, compute it.” So the first treatment gets a
resource from a reader, the second checks if this resource is already present in our
platform. The third one analyzes this resource in order to extract certain information
and the fourth one stores this analyzed resource.

Finally we need to specify and formalize requirements which will define the
fourth part of the logical model. In our use case a user has needs in a service-
oriented application which is able to make a continuous event extraction from
different web sources about disasters on the world. The user also needs to search
this collected data. Using this description, we can find high level preconditions and
effects: “continuous” means cycle, “event extraction” means eventExtracted, and
“need to search” means searchable. The specification of that requirement may be
translated in terms of Relational Logic as it was shown in Sect. 3.4.

Having the defined logical theory we may execute logical analysis using Alloy
Analyzer modeling tool: run cyclicProcess for 10. In the result we get
several variants of instantiation of the signatures and relations defined in our
logical theory. The collection of instantiated signatures and relations describes
each possible transition between workflow elements (control elements and concrete
services).

For visual overview the same result of logical analysis can be represented in
the form of the graph. For example, in Fig. 17 one possible variant of instantiation
is represented. Projection over instances of P1 signatures allows for intuitively
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Fig. 17 The required specification of the condition for service orchestration

clear representing the results. There are two types of nodes in the graph: workflow
elements and Condition elements. The start of workflow is indicated by including
the signature instance to the relation “first” (in our case it is the instance of the Start
signature). The end of workflow is indicated accordingly, by including the instance
to the relation “last” (it is the instance of the Finish signature). Tracing over the
relation “transition” determines the control flow of the obtained solution. In our
case it corresponds to the control structure of the orchestration pattern. Relations
“preconditions” and “effects” show which particular preconditions are required for
service execution, and which effects are present after service execution.

5 Conclusion

Our work introduces new approach for service orchestration. The developed
approach covers main conceptual organizational levels required for business process
automation: the level of enterprise application domain, the business process level,
and the program service level. A formal logic language is used for modeling
structural properties and dynamics of business processes.
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An algorithm based on finite scope logical analysis and relational logic is
developed to ensure consistency and relations between different level models. To
implement the algorithm MIT Alloy Analyzer is chosen.

Finally, the application of proposed approach for two concrete cases was
demonstrated. Usage of proposed hierarchical modeling, domain ontologies, and
Alloy relational logics as its key element were justified.

One of the most important tasks of IT and business societies is to establish
reliable knowledge management processes including usage of gathered knowledge.
The described approach proposes the practical and structural way of knowledge
gathering, analysis, and further using business automation based on SOA. Proposed
approach provides for an opportunity to integrate different level models (enterprise,
BP, service levels) and to take into account all constraints that can affect the IT solu-
tion in an automated and semi-automated way. Moreover, counterexamples showing
violation of constraints can be found and demonstrated. The main advantage of
the proposed approach is increased reusability of expert knowledge of domain
experts and IT experts expressed through the workflow templates and an ability
to use information about complex interdependences within the existing hierarchy of
services. Because the requirements to the service orchestration may be redefined in
an iterative manner the proposed approach satisfies the needs of software engineers
who design customized service-oriented applications.

The risk of human mistakes and poor analysis inefficiency can be significantly
mitigated due to decreasing the number of operations performed by people at
the modeling and analysis stage during IT solutions implementation or change.
In addition, time for development and implementation of new processes can be
reduced. All listed benefits give an opportunity to make IT solutions based on SOA
much more flexible, easier, and cheaper to implement and maintain.

Our work is significantly influenced by such SWS initiatives as OWL-S and
WSMO. MDA approach [24] served as a basis for multi-layer methodology
development. SUPER project [17], which had similar objectives and tasks, also
significantly contributed to our work. However, our approach combines the means of
MIT Alloy Analyzer with the advantages brought by joining different layer models
into single conceptual model.

A correspondence to some other researches may be found, mainly to [7, 13,
29] which describe how to generate executable processes from automatic semantic
services composition. However our approach has several differences. At first, our
method of template-based orchestration is based on combination of a taxonomy of
concrete and abstract services, and reusable domain expert knowledge in the form of
workflow templates. Other approaches use only a flat set of services which is named
library. Second, we propose to express requirements for service orchestration and
the structure of reusable workflow templates directly using an end-user vocabulary
for translation to the statements of the Alloy Analyzer language, whereas previously
cited research works choose more complex dialects of logic.

As for the modeling methodology, concepts of policy objects, such as authoriza-
tion, obligation, and obligation instance are taken from [27]. Also the organizational
controls to be checked were worked out by Kuhn [18]. However, while the emphasis
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in [27] was made on organizational control principles, our work is mainly aimed
at developing architecture and a methodology for service composition. As for the
modeling methods, including dynamics modeling, our work is contributed by the
works of Daniel Jackson, creator of MIT Alloy Analyzer [14–16].

The SUPER project mentioned above also aims at developing a semantic-
based and context-aware framework based on SWSs technology. It is intended to
make companies more adaptive by management of business processes knowledge
embedded in within IT systems and employees’ heads [17]. However, our approach
has several distinctive features. Means of MIT Alloy Analyzer are applied and
different layer models are united in the single conceptual model. This enables:

• Ability of automated expansion of restrictions between all modeling levels
• Reduction of ontology transformation procedures
• Generation of examples and counterexamples for processes execution and for

sequence of service invocation
• Simplification of reasoning

This work determines the key aspects of practical implementation of the pro-
posed approach, which is the main task for further work in the current direction. In
our further research we will work on developing original software architecture for a
special middleware component which uses main principles of our approach for real-
time composition of web services in complex distributed environments. We plan
to evaluate the created component in several practical cases that will give us extra
information about practical applicability of our approach to service composition.
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Estimating Customer Service Times on a Rail
Network from GPS Data

Shantih M. Spanton and Joseph Geunes

Abstract A key input to managing and scheduling customer service on a rail
network is an accurate characterization of the time a particular train takes to serve
a customer, based on the quantity of work the customer requires. The algorithm
presented here estimates the customer service times of a train on a given day
utilizing global positioning system (GPS) data from train locomotives, the known
customers to be served on the day and some geographic knowledge of the customer’s
tracks. The algorithm was built and evaluated on real data sets provided by CSX.
This research was conducted as a joint effort between the University of Florida in
Gainesville, FL and CSX Transportation, Inc. in Jacksonville, Florida.

Keywords Railroad • Vehicle tracking • GPS • Geofence • Experimentation
• Algorithm • Polyline

1 Introduction

The majority of customer contact on the CSX Transportation, Inc. rail network
occurs on what are known as local trains. These trains transport blocks of cars
directly from yards to customer facilities, and vice versa. Unfortunately, local yard
congestion and variability in work volume and crew availability create complexity
in planning and allocating local work activities. A key input to efficiently managing
local trains is an accurate characterization of the time it takes a train to serve a
customer, based on the quantity of work the customer requires as well as the travel
time between subsequent customers. For each train on a given day, the arrival and
departure times at a served customer provide one point estimate of the service time
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for that customer. After applying this analysis to a sufficiently large number of days
of historical data, a customer will have multiple point estimates of the time required
for service. A statistical estimation technique may then be used to characterize the
relationships between the dependent variable of service time and the many possible
influencing parameters (type of work, number of cars handled, crew, day of week
and train). Once the customer service time has been functionally estimated there are
numerous potential industry uses such as optimizing customer to train scheduling,
dynamic work load balancing, investigating service days that have deviated from
expected service times, and real time announcements of expected delivery times to
customers.

In the current system the train crew enters a single time stamp value to indicate
when work was performed at a customer. This information is recorded on what is
called a work order and contains information such as number of cars, movement
type (place or pickup), customer identification number, train, and work assignment
date. For example, the crew would report that today at 14:20 they placed 15 cars at
the first customer to be served. This does not provide the time the work began or
ended and thus does not provide the total time spent serving this customer. While
it is possible to modify the data entry procedure to require the crew to enter both a
start and stop time several factors make this undesirable. Most importantly, were
the crew to enter both starting and stop times of work, the required time spent
reporting information would double. The job of the train crew in a yard location is an
extremely challenging one. Each day presents a new set of challenges which require
spontaneous modifications and constant alertness. It may be burdensome to perform
such secondary administrative duties at certain times resulting in post reporting of
work which implies the times entered are determined at the discretion of the crew.
Relying on an individual performing detailed complex job maneuvers to remember
starting and ending service times may result in unintended inaccuracies. In addition
to the service times, the work order must also record the serviced customer and
work information. CSX serves thousands of customers on its network, several of
whom have multiple facilities at proximate locations denoted by their own unique
codes. Ensuring that the work order is completed for the correct customer ID, with
the correct times, the correct number of cars as well as the quality of work (pick
up or deliver or relocate) creates an added burden on a train crew. Other incentive-
based reasons may cause under/over or missed reporting of customer service, such
as break times, daily performance goals, or difficulties in overriding entered data.
An ideal determination of customer service times will minimize crew data entry.

The widespread use of global positioning system (GPS) devices for vehicle
tracking and routing implies several potential solution methods for estimating
customer service time. GPS technology is widely available today and allows
tracking of the position of any equipped vehicle. A known sequence of customers
served in combination with GPS data captured from the train’s locomotives can
provide a measure of how long the train was physically near a customer’s location.
GPS devices are installed on 85–90 % of all CSX locomotives (operational or
otherwise). CSX utilizes several devices including Trimble Crosschecks, the new
Trimble TVG660, GE ATS, and Pinpoint I and II. When a locomotive is turned on,
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the GPS initiates and begins recording its location. Normal frequency of recording
is one measurement per minute. Numerous factors, such as purpose and proximity to
industry defined areas of interest, determine how often the device transmits location
information. In an area that requires real-time reporting, the position measurements
may be transmitted at one measurement per minute. While for other transmissions,
the device may record its position several times before transmitting the data.
Depending on the type and age of the GPS unit and the function of the locomotive,
10 data recordings may be sent per 10 min, 20 per 20 min, or 60 per 60 min.

All locomotives have Wi-Fi, cellular and satellite communication devices on
board. Depending on the availability of a signal, the GPS measurements will be
transferred via one of these methods. While Wi-Fi transmission is preferred, it
may not be available outside of yards or urban areas. The data is communicated
directly to CSX with the exception of the Trimble devices which pass through a
third party preprocessing at Trimble. The quantity of data received and stored on
a single day is roughly three million records per day. The quantity of useful data
in the analysis is very large and a substantial amount of time must be devoted to
cleaning, interpreting, and learning how to correctly utilize the numerous required
data sources. The physical nature of each customer and the way in which each
is served varies widely making it difficult to apply traditional travel time/stop
concepts. The creation of a data mining algorithm that can repeatedly extract service
time information must be carefully constructed.

While the path the train follows can be known from the GPS measurements,
several factors complicate the analysis and make determining customer service
times from this information alone difficult. GPS spatial and temporal measurements
are accurate only to within the error tolerance of the GPS device. Consider a single
latitude and longitude position measurement in the set of all readings for a train on
a given day. The error in the GPS measurements implies that if several tracks are
present at the location of this reading, it may not be possible to determine on which
track the train was truly located, even if the underlying track structure is known.
Thus a train on a customer track is often indistinguishable from one on a nearby
mainline track. For a discussion on the inherent performance issues of GPS which
occur on the rail network, see [10].

This paper presents an algorithm that estimates customer service using only GPS
data from the locomotives, the sequence of customers who were served on a given
day, and geographic information about each customer. The algorithm requires no
user input (other than GPS data, a sequential list of customers served and customer
site information which is known a priori) and scales well for trains traveling routes
of varied length. The algorithm is by no means unique to locomotives and can be
modified to determine the customer service events of any GPS enabled vehicle.
The paper then presents the method used to determine potential service time events
followed by the methods used to classify these events as customer related or
otherwise. A discussion on accuracy and testing of the method follows.



102 S.M. Spanton and J. Geunes

2 Solution Motivation

To an individual familiar with the problems of GPS travel time performance
measures and classification, the determination of railroad customer service times
may, at first glance, appear to be identical to the estimation of any other vehicle’s
activities/stops. However, important differences in the way in which trains service
customers as opposed to cars or trucks render the same solution methods ineffective.

Presumably, when a train performs service for a customer two things will occur:
the train will be near the customer and the train will also slow down or stop to
complete the work. Much time has been spent investigating how to extract these
two attributes from GPS data.

2.1 Fixed Geofence from Customer Geography

Commonly, to determine the time a vehicle spends near or in a particular location,
a fixed spatial boundary or polygon (often called a “geofence”) is drawn around the
location of interest. When the vehicle enters the boundary (as observed from the
GPS data), the vehicle is said to have arrived and its last GPS reading within the
boundary denotes its departure. This approach has been used to track vehicles in
various industries [11, 13, 17, 21, 23].

An obvious way to define a geofence to track customer service stops is to use
the customer’s facilities as a geofence. CSX maintains detailed GPS profiles of
each customer facility on its network. Included in this information are outlines of
each track in a customer facility. Since a train is constrained to customer track or
mainline track outside the customer, approximating the customer by its tracks only
(as opposed to considering the entire customer facility) is appropriate. However,
the customer track information is insufficient to define a conventional geofence.
Customers may not be serviced within their physical facility or along their tracks.
Cars may be picked up or placed along the main line track near the customer to be
moved later, and also multiple customers may have facilities in such close proximity
that their tracks are shared or parallel.

2.2 Fixed Geofence from Historical Train Stop Locations

To define a more reliable geofence, a service design team at CSX considered loca-
tions near customers where GPS information showed that trains spent considerable
time. In a pilot study, the team considered only a few customer locations. For a
customer, 2 years of GPS data for a train whose route served that customer was
examined. Dense geographic areas of GPS readings indicated locations where the
train spent significantly more time. Those near to the customer facility could be
interpreted as the service area for the customer. A fixed polygon was drawn around
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Fig. 1 A fixed geofence estimates service time by considering GPS readings which fall inside

Fig. 2 A train passes through a customer’s fixed geofence without servicing the customer

this estimated service area to represent the geofence for this customer’s service
events. On any given day, the time a train spent within the geofence would be
considered its service time; see Fig. 1. The hope was that this method could be
generalized to create an algorithmic way that would automatically determine the
customer services times for each customer on the entire service network.

Several factors complicate this approach and make determining customer service
times difficult. Firstly, this method relies on several years worth of data to define
“dense” areas of GPS readings near customers. Since the data includes all days
of service, GPS readings near a customer may not truly be from a service event
at that customer. While the data can be filtered to remove days on which that
customer was not served, this method is still unable to distinguish whether a cluster
of readings represents a service event for the customer or one of several nearby
customers. Also identifying “dense” areas of GPS readings attributed to customer
service in frequently traveled areas such as yards or urban areas (where numerous
measurements exist) is nearly impossible.

Secondly, the location where the train must perform work for a particular
customer may vary from day to day, depending on the work the customer has
requested. Certain customers have cars picked up in one location and placed at
another location. Even if it were possible to correctly identify locations where
service occurred, this could result in a very large area defined for the customer’s
geofence. For any day, if the service time is estimated by selecting the first and last
GPS readings in the geofence, the value could be over estimated.

Thirdly, false positives and overestimation can occur. When attempting to
determine the service time for a customer, the first and last GPS readings observed
inside the geofence define the length of the service event. Due to the restrictive
nature of rail tracks, a train may have to pass through a customer’s geofence several
times daily. This can result in a large overestimation of service time, or even a falsely
reported service event if one did not occur; see Fig. 2. The issue of falsely recording
a service time if a train did not even stop in a geofence can be resolved by only
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Fig. 3 A stop is measured such that subsequent GPS measurements are within a tolerance ε

considering those GPS readings which occur when the train is stopped. So to truly
identify customer service events all times when the train slows or stops near the
customer’s facility must be identified.

2.3 Determining Locomotive Stops and Slows

Research that determines when a vehicle is stopped from GPS data is especially
important in public bus transit [2, 5] and household travel activity research
[1, 14, 19, 20, 24, 25]. On a day of service, a GPS device in a vehicle periodically
records data containing the location and a time stamp for the time of day when the
corresponding position data was recorded. By examining the change in position
between each successive GPS measurement, the train’s path can be traced as a
function of time over a given day. If successive GPS recordings appear close
to one another, the vehicle has moved very little. In the literature above if it
must be determined if a vehicle is stopped, a tolerance level is used such that if
subsequent GPS position measurements are less than this distance apart, the vehicle
is considered to be stopped; see Fig. 3. If the GPS device of the vehicle being tracked
records the velocity as well, this information can be used to determine stops by
setting a minimum velocity value below which the vehicle is considered stopped.
While the GPS devices used on CSX locomotives do record velocity, locomotives
on the local trains considered here often travel at extremely low speeds for safety and
logistical reasons. The velocity and directional measurements recorded by the GPS
devices in the locomotives are inaccurate and thus unusable at these low speeds. We
must rely on the positions of the train traced out by the locomotive GPS devices.

The discussion above leads us towards an obvious initial algorithmic attempt to
determine customer service times for a particular day. For a given train on a given
day and for each customer served by the train that day, find all the stops in the
customer’s geofence. If all these stops can be considered part of the service event,
then the total service time should be the difference between the latest and earliest
times in GPS measurements associated with the stops.
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Fig. 4 A long train may indicate a stop further away from a customer than would a shorter train

The difficulties in determining stops on a locomotive arise from the inherent
ways in which a train moves to serve its customers. Unlike a delivery truck, much
of the time a train spends serving a customer the train is not stopped. When arriving
at a customer, the train may have to wait near and then travel between a series
of switches to arrive at the customer. Once at the customer, the train (which may
already be several car lengths long) must pull clear of the track at which it needs
to place or pick up cars and wait for additional switches to be aligned to its path.
The train then backs onto the track with the waiting cars, attaches them, and pulls
forward. This processes of pulling forward, aligning track segments with switches,
and backing onto the track is repeated for one or more of several often parallel
tracks containing cars for the train. The train often spends very little of its visit to a
customer stationary.

This description of the train’s movement brings to light another difficulty in
locating service stops near customers: the length of the train is constantly changing.
The GPS devices on the train are housed in the locomotives of each. Trains may
reach over half a mile in length, and thus the head of the train (and GPS measured
location of the train) may be very far away from the individual cars at the end of the
train that are being picked up or placed at the customer. Once a stop or slow is found
by inspecting the GPS measurements, the determination of its “close” proximity to
the customer changes with the length of the train. And if the train is long enough
on a day no stops will appear in the customer’s geofence as the head of the train
may lay outside this geofence for the entire service event; see Fig. 4. In this case,
one obvious solution is to extend the geofence of the customer along the track.
Extending the track far enough should ensure all service events will always occur
within the enlarged geofence. However, this idea fails if several customers with
overlapping service locations are visited on the same day. It may be impossible to
distinguish between each customer’s individual service using GPS data alone; see
Fig. 5. Likewise, even if a customer service stop was found inside a geofence, the
use of a fixed size geofence does not allow assignments of stops occurring just
outside (or overlapping) the fixed boundary; see Fig. 6. While an observed stop
inside the customer’s geofence could perhaps be correctly understood to be part of
the customer’s service event, observed stops outside or on the edge of the geofence
could be classified as either the service events of nearby customers, or stops near
road crossings, as well as possibly being attributed to the customer. The initial pilot
inspection of customers found that trains often enter and exit geofence boundaries
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Fig. 5 Customer geofences may overlap causing ambiguity when assigning service stops

Fig. 6 Service event stops may appear on or immediately outside of a fixed geofence making
classification difficult

several times during a visit as the train is repositioned during service. It is possible
in singular cases to add logic to this preliminary algorithm to account for some
of the numerous issues mentioned above. Unfortunately no uniform set of rules
could be found which would accommodate all customers. Certain customer facilities
are very large (possibly containing miles of track) while other customers are very
small. Urban customers may be very densely populated while rural customers may
be several miles apart. All this makes a consistent uniform interpretation of the GPS
data impossible; the number of rules required to account for the varied customer
geographies and sizes would be akin to processing each of thousands of customers
on the network individually.

The desire for an automated means of determining customer service times from
the locomotive’s GPS data led us to the algorithm which will be described in
the next section. It relies on a construction of a distance-versus-time graph from
the GPS position and time measurements. Speed-versus-time and speed-versus-
distance graphs have been constructed and analyzed for investigating travel time on
automotive road networks [6,7,16]. However, as mentioned in [16], the speed varies
drastically even across segments of the same road rendering such speed-versus-time
and speed-versus-distance graphs difficult to interpret. Also, as mentioned above,
the velocity information recorded in the GPS data of locomotives is inaccurate at
low speeds. As the train nears a customer we expect the speed of the train to be
slow, and it is these areas of low velocity that particularly interest us. The distance-
versus-time graph we construct will help us identify times of low velocity where
the train remains in the same location over time. These are potential service time
intervals. Once these intervals have been identified an attempt at assigning them
to customers listed on the day’s work order is made. It should be noted that the
distance-versus-time graph constructed in [16] is quite different and is applied to
solve a different problem.
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3 Stop Extraction

Here we summarize the creation of the distance-versus-time graph, which will allow
us to identify areas where the train may have stopped or slowed. For any train on a
given day the GPS measurements provide a time ordered sequence of latitude and
longitude coordinates, see Fig. 7. We will refer to this sequence as S. The process
starts by selecting a reference point somewhere outside the range of the latitude
and longitude values of all the GPS measurements in S. For example in Fig. 7, we
have arbitrarily selected a point P with latitude equal to the minimum latitude and
longitude equal to the maximum longitude observed in all the GPS points. This will
be a point to the lower right of all the points in S. The distance-versus-time graph
is found by taking the Haversine distance between all points x ∈ S and this point P
and plotting these distances versus the time values of each point. Figure 8 shows
the distance-versus-time graph for the GPS measurements of the imaginary train
route shown in Fig. 7. Observe the two dense areas of points in Fig. 7 in the middle
and end of the train’s route. As the train slows down or stops near these geographic
locations the distance relative to the reference point P changes very little. This is
seen as a visually flat spot on the corresponding distance versus time graph Fig. 8.

To identify these flat regions of the graph, the graph was fit with a linear curve
approximation (as shown in Fig. 9) known as split-and-merge or polyline fitting
in computer visualization. In such an approximation, a curve can be approximated
initially by a single line connecting the two endpoints. The approximation is refined
by “splitting”: identifying which of the other intermediate data points lies furthest
from the current linear approximation. The initial line is replaced by two lines: each
connecting the initial end points to the point identified as lying furthest from the
approximation. Clearly, if this procedure were repeated infinitely, the approximation
would be identical to a line traced between all of the data points. After splitting a
number of times, areas of the graph which may have been overly fitted are corrected
by applying various “merging” algorithms. We have used the Douglas–Peucker
algorithm [4, 9] and a vertex reduction algorithm. Such techniques are easy to
implement and can be found in any introductory text on computer visualization;
for a survey of polygonal simplification algorithms see [8].

Fig. 7 GPS latitude and
longitude measurements of a
train and their distance from a
reference point P
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Fig. 8 Distance-versus-time graph (arbitrary units) relative to the reference point P

Fig. 9 The linear approximation of the distance-versus-time graph

The linear approximation of the distance-versus-time graph is a list of ordered
line segments L = {l1, l2, . . . , l|L|,} whose contiguous end points are data points
in the distance-versus-time graph. Once the linear approximation of the distance-
versus-time graph has been created, the line segments of the approximation can be
examined. We wish to identify those segments where the train has moved slowly or
stopped, which visually appear flat on this graph.
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Fig. 10 GPS latitude and
longitude measurements of a
train lie at a constant distance
from a reference point P

The local trains we are considering operate on very different geographies. Some
trains traverse distances of nearly one hundred miles while others do not venture
more than one mile from their originating yard. Because of this the distance-versus-
time graphs can have largely different scales. To create a consistent definition of
flatness on these graphs, all were scaled so that both the values of time and distance
were between 0 and 10. This allowed a consistent interpretation of flatness across all
trains. It was experimentally determined that a line segment should be considered
flat if its slope was less than 0.8. However, if the line had a distance of longer than
0.5 it was considered flat if the slope was less than 0.2. These values are larger than
required for most practical cases. The line segments on the distance-versus-time
graph which correspond to the train moving have quite steep slopes in practice and
it is unusual that the linear approximation of the curve would have fit in such a way
that a flat line segment would be misidentified.

As the reader may have noted there is an exceptional case wherein a flat line
segment on the distance-versus-time graph would correspond to a train which is
not stopped or slowed. If the train is moving at any velocity yet always maintains
a constant distance from the reference point P the distance-versus-time graph will
appear flat, see Figs. 10 and 11. Thus, once line segments have been identified as flat
they must be verified as corresponding to a truly stopped or slowed train to rule out
such cases. In order to verify that the line segment is in fact flat we will calculate
the distances of all points in the GPS data S relative to a second opposite reference
point, essentially a triangulation. Define DP as the set of distance values calculated
from all the GPS measurements to the original reference point P (see Fig. 12). And
define DP′ as the set of distance values calculated from all the GPS measurements
to a second reference point P′ which lies opposite P. After the polyline fit has been
completed on the graph of the distance values in DP versus time, the graph will
be approximated by the line segments L. Consider a line segment l ∈ L whose end
points correspond to data points is and it, respectively. Line segment l has a very
low slope and has thus been identified as flat. If line segment l corresponds to a time
when the train stopped or slowed, the line segment between is and it on the second
distance-versus-time graph formed using the values DP′ should also be flat. If this
line is not also flat, then this line segment should not be considered to correspond to
a time when the train slowed or stopped. If the line segments between is and it are
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Fig. 11 Distance-versus-time graph (arbitrary units) relative to the reference point P appears
very flat

Fig. 12 The distances from all points in the data to the new reference point P′ are not constant

flat on both graphs we would expect the covariance between both sets of distance
values to be equal. The Pitman–Morgan [12,15] test for equality of variance between
two data sets X and Y works by testing the correlation between X −Y and X +Y .
To determine if both line segments are flat we have used a robust variant of this
modified from the Box–Scheffe [3,18] technique which is presented by Wilcox [22]
on comparisons of methods for testing equivalence of variances for dependent data
sets (for our purposes DP and D′P). If any line segment l ∈ L which was identified as
flat fails to pass this statistical test it will no longer be considered flat.
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After this check, all the line segments that are considered flat are intervals which
potentially correspond to a customer service event. To determine which (if any)
interval corresponds to which customer, an assignment problem will be solved.

4 Assignment of Stop Intervals to Customers

Once the stop/slow intervals for a train route have been identified it must be
determined if the interval corresponds to a scheduled customer service event. The
customers served on a given day by a train are listed sequentially on the work order.
Several issues complicate the assignment, the most important being that, due to
data entry errors, a customer present on the work order may have been skipped or
customers may have been serviced in an order which does not match the work order.
Thus the assignment of customers to stop intervals must account for the fact that a
customer may not be assigned. We address this by including a null assignment to
represent when no time interval was found which would be a valid assignment for a
customer. It is preferential to assign a customer a service time if at all possible, and
thus a “penalty” term will be added to our assignment model to discourage such a
null assignment. Also, since a train does not always remain stationary when serving
a customer, numerous stop intervals may be assigned to a particular customer.
Initially, our assignment associates only one stop interval with each customer and
such additional stopped intervals are added in post processing.

Two assumptions have been made to address complications in the assignment
procedure. Firstly, the procedure makes the assumption that the sequence ordering
of the customers on the work order is correct. While a seemingly minor assumption,
when a data entry error proves this false the customer service times may not be
calculated correctly for a customer worked out of sequence with respect to the work
order. There are certainly cases when customers are serviced out of order that are
easy to identify and the correct assignment of stops made to the customers. One
such case is a train which makes only one lengthy stop directly in front of each
customer, no other stops are made by the train, and the train does not recross any
section of track multiple times. In this case the number of stop intervals matches the
number of customers and a clear assignment of the nearest stop to each customer
can be made. However, this ideal scenario is unlikely in practice. The quantity of
stop intervals which may appear to be associated with customers is large. Numerous
sequential stop intervals may be assigned to a customer as the train adjusts position
during service. Trains make frequent stops which are unaccounted for on the work
order which may be near a customer location. This is especially true of trains in
dense urban or suburban areas in which the train must observe proper right-of-
way restrictions with regard to other rail and automobile traffic. Also, local trains
frequently begin and end service at the same yard, often doubling back across
track they had previously covered, passing (often stopping or slowing down) near
customers already served. Thus, a reliable assignment of stop intervals to customers
is considerably unlikely if the ordering of customers on the work order is not
observed.
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The second assumption made for the assignment procedure is that any customers
served by the train were present on the work order. While unlikely, it is possible
that a data entry error may result in a customer failing to be recorded on the
work order or if a customer has numerous facilities, that the work order recorded
another location. Due to the large number of customers on the CSX customer service
network, it is impossible to ensure a valid assignment could be made to a customer
not listed on the work order. However, since all stop intervals for each train have
been identified for a given day, unaccounted for stop time is recorded allowing for
further investigation.

Also, customers whose geofences overlap at any point and are served sequen-
tially are grouped into a single customer. A total time will be assigned to both which
can be apportioned separately as per business rules in post processing.

With these assumptions, the assignment of stop intervals to customers (allowing
some customers to be unassigned) can be solved by finding the solution to a shortest
path problem on a positively weighted acyclic directed network.

For a given train on a given day, consider the set of stop/slow intervals found as
above I = {i1, i2, . . . , i|I|} ∈ L and also the set of customers recorded on the work
order for the day C = {c1,c2, . . . ,c|C|}. To quantify how close a customer c ∈ C is
to the series of GPS measurements corresponding to an interval i = [s, t] ∈ I we
define a score wci for each i ∈ I and each c ∈C which is the exponent of the average
minimum Haversine distance of all pings on the interval i to the customer c’s trace.
Or,

wci = exp

{
1

t− s+ 1

t

∑
j=s

min{dist( j,c)}
}
, (1)

where dist( j,c) is the Haversine distance between the jth GPS measurement and the
customer service area for customer c. Intervals of GPS measurements that lie nearer
to customers will have smaller scores than those further from the customer. The
exponential nature of this weight causes intervals nearest to customers to be highly
favored. As intervals increase in distance from the customer, the weight becomes
exponentially worse. Note that the correct assignment of customers to intervals
is not necessarily to assign customer c the interval with the smallest wci. When
customers are near to each other, it is possible that a single interval may be the
minimal assignment for two customers, yet there is another nearby interval which
is relatively proximate to one or both of these. With this in mind we formulate the
assignment of customers to intervals. The weights wci will be used as the arc weights
of our shortest path problem.

The graph on which we will solve the shortest path problem can be considered
to be constructed in layers. The first layer of nodes consists of |I|+ 1 nodes
corresponding to the possible assignment of the first customer c1 to intervals
{i1, i2, . . . , i|I|} and the possibility of c1 not being assigned to any interval. Label
the first |I| nodes for the potential assignment of the first customer to the intervals as
(1, j) for j = 1, . . . , |I| and the last node for the null assignment (1,X). Each of these
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Fig. 13 Solving the
assignment as a shortest path
problem for a single customer

nodes is connected to a dummy start node S by directed arcs. The arc from node S to
node (1, j) will have weight w1 j for j = 1, . . . , |I|. The weight of the arc from (1,X)
will be a penalty P1 which is the penalty that will be incurred for failing to assign
the first customer to a customer service event. If there is only a single customer on
the work order, add a dummy end node T and connect nodes (1,X) and (1, j) for
j = 1, . . . , |I| by directed arcs of weight zero; see Fig. 13. The shortest path problem
is trivial in this case, and can be solved to finding the shortest path from node S to
node T on the graph.

The penalty term Pc is a quantitative measure of the failure to assign customer c to
any interval. Intuitively, this term must be large enough to ensure that if a potentially
valid interval exists the customer will be assigned to this interval, yet small enough
to ensure intervals far from the customer’s service area are never chosen as valid
service times. This measure is dependent on the length of the train. When a train is
short we expect to see the cluster of GPS measurements which represent the service
stop to be close to the customer service area. While a long train may result in the
GPS readings of the service event occurring far from customer as the GPS device is
housed in the locomotive of a train which may back into the customer. Intuitively,
regardless of the train length, the penalty function should not exclude intervals very
near to any customers. Thus for a train length less than 20 cars, the penalty term
is fixed to always consider intervals within 420 m (the length of 20 rail cars and 3
locomotives) of the customer service area. Also, the penalty function is intuitively
constant for very long train lengths. While a local train may be up to two miles
in length, it would be very rare that a customer would be serviced by a train this
length. A portion of the cars would likely be left elsewhere on the main line track
and movements made with a train consisting of fewer cars. The penalty function was
found experimentally and conforms to these intuitions. The penalty function used
here is:
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Fig. 14 An incorrectly formulated graph for solving the assignment as a shortest path problem for
three customers to four potential service intervals

Pc =

{
e0.74194 if the train travels a short distance,

0.0024δ−0.475(DCSA(c)+L) f (δ ), otherwise
(2)

where f (δ ) = 0.104log10 δ1.35− (δ − 0.25)2− 85δ and δ is the scaling term that
was used to scale the distance values of the distance-versus-time graph between 0
and 10. If the work order shows that multiple customers were served at the same
location, DCSA(c) is the maximum distance between any points of these overlapping
service areas. DCSA(c) is zero if the customer c does not overlap with any other
customers. The term L is the 420 m if the length of the train when visiting customer
c is less than 20 and is equal to the total length of the train otherwise.

For a number of customers greater than one, consider repeating the same
construction of |I|+ 1 nodes for the second customer. Label the nodes (2,X) and
(2, j) for j = 1, . . . , |I|. Based on our requirement that the sequence of customers
on the work order is correct if the first customer will be assigned to interval i j, the
second customer must be assigned to some interval in i j + 1, . . . , |I| if it is assigned
at all. Thus the arc weight a(1, j),(2,k) from node (1, j) to node (2,k) is

a(1, j),(2,k) =

{
w2,k if j < k

∞, otherwise
(3)

for j,k = 1, . . . , |I|. Also, each node (1, j) for j = 1, . . . , |I| should also connect to
(2,X) with an arc of weight P2 (the penalty for failing to assign customer 2); see
Fig. 14. This logic can be repeated for all additional customers.
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Unfortunately, the current construction of this graph is insufficient to solve the
problem we require. Consider the case of attempting to assign three customers to
four intervals (as shown in Fig. 14). Consider an optimal solution to the shortest
path problem where customer 1 is assigned to interval 2 and no GPS pings are near
customer 2 so it is unassigned. We wish to require that the customers are chosen
in the order specified on the work order; however, customer 3 could be assigned to
interval 1 instead of interval 3 if w31 < w33. Such a scenario does in fact occur often
in practice if a train stops near customer 3 on its way out to visit customer 1 and
then returns to customer 3 along the same route.

To rectify the graph, for all customers other than the first, |I| additional nodes
are added to represent the null assignment for the subsequent customer. Label these
(c,X) j for j = 1, . . . , |I| and c = 2, . . . , |C| which correspond to the case in which
customer c is not assigned and the last customer assigned was assigned to interval
i j. In the graph only one arc enters node (c, j)X and its arc weight a(c−1, j),(c,X) j

from
node (c− 1, j) to node (c,2) j is

a(c−1, j),(c,X) j
= Pc (4)

for all j = 1, . . . , |I| and c = 2, . . . , |C|. The outgoing arcs from node (c,X) j have arc
weights a(c,X) j ,(c+1,k) and connect node (c,X) j to node (c+ 1,k) where

a(c,X) j ,(c+1,k) =

{
wc+1,k if j < k

∞, otherwise
(5)

for all j,k = 1, . . . , |I| and c = 2, . . . , |C|. The nodes (c,X) are used to represent
the case where no customers have been assigned at all for customers 1, . . . ,c; see
Fig. 15. Solving a shortest path problem on this graph will provide us with the best
assignment of customers to intervals.

After the best assignment of one (or fewer) stop interval to each customer has
been found, additional stop intervals may still need to be assigned to a customer to
account for the entire service time at that customer. For example, when a train arrives
at a customer and stops to place cars on one track. After placing these cars the train
moves over to a nearby track to pick up other cars for the same customer. The train
then exits the customer’s facility. The path of the train is characterized by the train
moving to arrive, stopping or making small movements to drop off cars, moving
again, stopping or making small movements to pick up cars, and finally, moving to
depart. On the distance-versus-time graph the customer service time associated with
dropping off and then picking up cars would most likely appear as two flat separate
intervals. When solving the assignment problem, the stop interval with the lowest
score will be assigned to the customer, leaving the other interval, with a presumably
very similar score, unassigned. After the initial assignment, such unassigned, similar
intervals will be assigned to customers in postprocessing.
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Fig. 15 The graph for solving the assignment as a shortest path problem for three customers to
four potential service intervals

5 Results

While running the algorithm for numerous trains over a lengthy time span requires
a very large amount of data, to run a single train for a single day requires
relatively little. The number of GPS measurements per day for a single train
will usually be less than one thousand records, and the work order and customer
location information is minimal. Computationally, the polyline fitting procedure
above consists of two parts: the splitting of the polyline and merging or smoothing
to correct any potential over-fitting of the data. Each time the fit line is split
requires O(n) and the polyline fit contained a maximum of 250 segments. The
merging procedures used are O(n2) in the worst case. The assignment of intervals
to customers only requires solving a shortest path problem on a directed acyclic
graph containing a number of nodes equal to the number of customers times the



Estimating Customer Service Times on a Rail Network from GPS Data 117

number of flat intervals. The total number of line segments possible in the fit graph
is 250. However, in practice the merging procedures smooth the graph such that
it would rarely contain such a large number of line segments. As the assignment
problem only considers the flat intervals there will be a small number of nodes
in the assignment problem. Because of this, for a single train on a single day
the algorithm outlined above runs in less than one second on a desktop computer
[64 bit, 2 Intel Xeon processors (2.27 GHz/2.26 GHz), 4 GB RAM]. The algorithm
was implemented in C# as were the statistical tests (to avoid integrating a more
robust statistical package). While in development, the algorithm did not access
CSX’s massive GPS databases; any required data was downloaded to a smaller
development database which was accessed via Microsoft SQL Server.

To ensure a fully automated method that accurately approximated the service
time at numerous unique customers, the model was designed and tested using the
data of numerous trains and customers. Initially, 6 months of data from seven trains
which serviced roughly 40 distinct customers was used. The output of the algorithm
on each of these days which contained valid input data was examined visually. The
GPS measurements for the day considered were overlaid on the CSX network map
with customer information in the GPS software ArcGIS. This map was inspected
and compared with expected plan information, the work order information and
the assistance of those within the company who provided their extensive industry
specific knowledge. The model was tested to provide the expected results based
on all this information. The model was considered to deviate from these expected
results if either the start or stop times deviated by more than 5 min. For most
practical applications, such small deviations are certainly acceptable.

Figure 16 shows how the model compared with the expected behavior on five
representative trains over a time frame of 6 months. The Over/Under Estimate count
represents the number of times that the model’s start or stop times appear to be
off by greater or less than 5 min. The Expected Estimate values are the number of
those experiments in which the algorithm provided the expected estimation, which
was determined (as discussed above) by manually examining the GPS, work order,
and algorithmic data for each date. The figure shows the algorithm’s ability to
automatically and accurately determine the service times for various trains. The
occurrences of deviation are few, and among these the deviation is only marginal.
All over or under estimates are less than 10 min. The relatively few representative
points for the third train (Train 21) occur because this train is not often assigned to
deliver to customers, but performs other work. This illustrates the large quantity of
data which may be required to produce enough customer service time estimates for
certain customers. If a customer is serviced very rarely, several months of data may
be required in order to obtain a large enough sample of service events to determine
the service time conditional on the numerous factors which could impact the work.
Not all local trains run each day of the week, and certain customers may be served
much less frequently.

As an additional method of comparison, as part of a customer service pilot, CSX
had staff ride along the trains of this division for 3 days. These staff members
recorded detailed notes of what the trains did at all times including when the train
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Fig. 16 Comparison of number of times the algorithm returned the expected result and the number
of times the algorithm’s start and stop times deviated by greater than 5 min from the expected result
for five trains for 6 months of data

arrived at and departed from the customer, switches that were changed, number
of cars handled, and any delays or train stops. This on-the-ground data provided a
manually determined estimate of the customer service time. We compared the output
of the model with these estimates. All customer service start and stop times were
within 5 min each of the manually recorded times except for a single customer. After
reviewing this customer it was determined that the customer’s defined service area
did not include certain tracks used to enter the customer’s facility. After adjusting
the customer’s service area data to include these incoming tracks, and re-running
the model for this customer, the model provided start/stop times within 5 min.

The current model works very well for numerous train and customer types and
is very robust to changes up to a certain point. The model struggles in two areas:
trains which travel over any area with a diameter less than four miles, and also for
customers whose service areas/tracks overlap. For these two special cases alternative
logic was developed which we will discuss in future work.

6 Conclusion

We presented an automated method for estimating customer service times on the
rail network from GPS data given a work order sequence and minimal knowledge
of the customer’s tracks. The model performed well when compared with manually
recorded customer service times and also when compared to the times expected
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by industry experts when observing the GPS measurements which described the
motions of a train. The model discussed here provides useful information on the
prior service behavior of trains at customers. In addition the service time estimates
can be used to make characteristic predictions about future service events. The
model can be applied to estimate the service times at customers for the large quantity
of data which has been collected by CSX over several years. This provides multiple
point estimates of the time required to serve a customer along with the type of
work, number of cars handled, day of week, and train. Using statistical estimation
techniques, a relationship between the service time estimates and the many possible
influencing parameters can be found. The final goal of this statistical estimation
techniques is an equation for each customer that can be used to predict future
service times. Such techniques could provide service time estimates for several
potential applications such as dynamic schedule creation and dynamic work-to-train
assignments, real time service estimation, detailed profiles of service behavior for
management, or real-time arrival time updates for customers slated to be served.
Such automated methodology has high value for a large company wishing to
monitor the customer service interactions of numerous trains resulting in millions
of GPS records; clearly, manual monitoring is prohibitive on a network of this size.

Acknowledgments We wish to thank the CSX service design team (especially Shannon Slattery
and Erik Henderson) and Jagadish Jampani and Dharma Acharya of the operations research
department for their assistance.

References

1. ASAKURA, Y., AND HATO, E. Tracking survey for individual travel behaviour using mobile
communication instruments. Transportation Research Part C: Emerging Technologies 12
(2004), 273–291.

2. BIAGIONI, J., GERLICH, T., MERRIFIELD, T., AND ERIKSSON, J. Easytracker: automatic
transit tracking, mapping, and arrival time prediction using smartphones. In Proceedings of the
9th ACM Conference on Embedded Networked Sensor Systems (2011), ACM, pp. 68–81.

3. BOX, G. E. P. Non-normality and tests on variances. Biometrika 40 (1953), 318–335.
4. DOUGLAS, D., AND PEUCKER, T. Algorithms for the reduction of the number of points

required to represent a digitized line or its caricature. Cartographica: The International
Journal for Geographic Information and Geovisualization 10, 2 (1973), 112–122.

5. GERSTLE, D. Understanding bus travel time variation using AVL data. Master’s thesis,
Massachusetts Institute of Technology, 2012.

6. GUO, P., AND POLING, A. D. Geographic information systems/global positioning systems
design for network travel time study. Journal of the Transportation Research Board 1497
(1995), 135–139.

7. HARDING, J., SALWIN, A., D. S., AND GHAMAN, R. GPS applications for traffic engineering
studies. In Transportation Research Board Annual Meeting 1996 (preprint).

8. HECKBERT, P., AND GARLAND, M. Survey of polygonal surface simplification algorithms.
Tech. rep., DTIC Document, 1997.

9. HERSHBERGER, J., AND SNOEYINK, J. Speeding up the Douglas-Peucker line-simplification
algorithm. University of British Columbia, Department of Computer Science, 1992.

10. MARAIS, J., MEUNIER, B., AND BERBINEAU, M. Evaluation of GPS availability for train
positioning along a railway line. In IEEE Vehicular Technology Conference (2000).



120 S.M. Spanton and J. Geunes

11. MCCORD, M., GOEL, P., BROOKS, C., WALLACE, R., DONG, H., AND KEEFAUVER, D. E.
Documenting truck activity times at international border crossings using redesigned geofences
and existing onboard systems. J Transportation Res. Board 2162 (2010), 81–89.

12. MORGAN, W. A. A test for the significance of the difference between the two variances in a
sample from a normal bivariate population. Biometrika 31 (1939), 13–19.

13. MUNSON, J., AND GUPTA, V. Location-based notification as a general-purpose service.
In Proceedings of the 2nd international workshop on Mobile commerce (2002), ACM,
pp. 40–44.

14. MURAKAMI, E., AND WAGNER, D. P. Can using global positioning system (GPS) improve
trip reporting? Transportation Research C 7 (1999), 149–165.

15. PITMAN, E. J. A note on normal correlation. Biometrika 31 (1939), 9–12.
16. QUIROGA, C. A., AND D. B. Travel time studies with global positioning and geographic

information systems: an integrated methodology. Transportation Research C 6 (1998),
101–127.

17. RECLUS, F., AND DROUARD, K. Geofencing for fleet & freight management. In Intelligent
Transport Systems Telecommunications, (ITST), 2009 9th International Conference on (2009),
IEEE, pp. 353–356.

18. SCHEFFE, H. The analysis of variance. 1959.
19. STOPHER, P., BULLOCK, P., AND JIANG, Q. GPS, GIS and personal travel surveys: an exercise

in visualisation. In 25th Australasian Transport Research Forum Incorporating the BTRE
Transport Policy Colloquium (2002).

20. TSUI, S., AND SHALABY, A. Enhanced system for link and mode identification for personal
travel surveys based on global positioning systems. Transportation Research Record: Journal
of the Transportation Research Board 1972 (2006), 38–45.

21. WANG, Y., AND POTTER, A. The application of real time tracking technologies in freight
transport. In Signal-Image Technologies and Internet-Based System, 2007. SITIS’07. Third
International IEEE Conference on (2007), IEEE, pp. 298–304.

22. WILCOX, R. R. Comparing the variances of two dependent groups. Journal of Educational
Statistics 15 (1990), 237–247.

23. WILSON, B., AND VINCENT, J. Estimating waste transfer station delays using GPS. Waste
Management 28 (2008), 1742–1750.

24. WOLF, J., GUENSLER, R., AND BACHMAN, W. Elimination of the travel diary: Experiment to
derive trip purpose from global positioning system travel data. Journal of the Transportation
Research Board 1768 (2001), 125–134.

25. WOLF, J., LOECHL, M., THOMPSON, M., AND ARCE, C. Trip rate analysis in GPS-enhanced
personal travel surveys. Transport survey quality and innovation (2003), 483–498.



A Risk-Averse Game-Theoretic Approach
to Distributed Control

Khanh D. Pham and Meir Pachter

Abstract The research article gives a comprehensive presentation of the broad
and still developing area of risk-averse decision-making approach to control of
distributed stochastic systems. A distributed stochastic system considered here
consists of the interconnection of two or more stochastic systems with the structural
constraints of linear system dynamics, quadratic cost functionals, and additive
stationary Wiener noises corrupting the system dynamics and measurements. Each
system has an input from its incumbent agent or controller and an output to
its local environment, in addition to links with the other neighboring systems.
The problem of distributed control without communications between incumbent
agents or controllers is formulated as a nonzero-sum stochastic differential game.
Local best responses by each incumbent agents with risk-averse attitudes toward
performance uncertainty are determined by a person-by-person equilibrium and
subject to decentralized output-feedback information structures.
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1 Introduction

The purpose of this research investigation is to introduce to the readers the problem
of control of distributed stochastic systems, to propose risk-averse decision making
towards performance uncertainty, and to indicate emergent approaches for future
research and development. The importance of broad flexibility and adaptability of
the decision and control architectures of distributed control has spurred many large-
scale applications such as military command and control hierarchies, spacecraft
constellations, remotely piloted platform formations, and teams of humans and
autonomous robots. where each member can be in best response to its neighbor
actions and yet has no influence on other members to which it has no communication
supports.

Despite the broad interest in distributed systems, there remain significant hurdles
in applying them to practical problems of interest. Interplay between coalition
objectives and individual member objectives can yield surprises and complex
behaviors. Thus motivated, the main problem of the research herein is control
of distributed systems via the game-theoretic framework with performance risk
aversion. To the best knowledge of the authors, most studies, for instance, [1, 2]
have mainly concentrated on the selection of open and/or closed-loop Nash strategy
equilibria in accordance of expected utilities under the structural constraints of
linear system dynamics, quadratic cost functionals, and additive independent white
Gaussian noises corrupting the system dynamics and measurements. Very little
work, if any, has been published on the subject of higher-order assessment of
performance uncertainty and risks beyond expected performance.

For this reason attention in this research investigation is directed primarily
towards a linear-quadratic class of nonzero-sum differential games which has
linear system dynamics, quadratic cost functionals, and independent white zero-
mean Gaussian noises additively corrupting the system dynamics and output
measurements. Notice that, under these conditions, the quadratic cost functionals or
outcomes associated with the game are random variables with the generalized chi-
squared probability distributions. If a measure of uncertainty such as the variance of
the possible outcome was used in addition to the expected outcome, the incumbent
agents or controllers should be able to correctly order preferences for alternatives.
This claim seems plausible, but it is not always correct. Various investigations
have indicated that any evaluation scheme based on just the expected outcome
and outcome variance would necessarily imply indifference between some courses
of action; therefore, no criterion based solely on the two attributes of means and
variances can correctly represent their preferences. See the works [3, 4] for more
details.

Recent accounts by the first author [5, 6] have addressed risk aversion for
performance uncertainty of cooperative and noncooperative large-scale stochastic
systems, wherein the shape and functional form of an utility function tell a great
deal about the basic attitudes of the agents or controllers toward the uncertain
outcomes or performance risks. In particular, the new utility function or the
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so-called the generalized performance index, which is proposed therein as a linear
manifold defined by a finite number of semi-invariants associated with a random
quadratic cost functional, will provide a convenient allocation representation of
apportioning performance robustness and reliability requirements into the multi-
attribute requirement of qualitative characteristics of expected performance and
performance risks.

The present research contributions are to extend the existing results in [7]
toward some completely unexplored areas as such: (1) the design of decentralized
filtering via constrained filters for self-directed agent subject to the linear-quadratic
class of nonzero-sum stochastic differential games; (2) an efficient and tractable
procedure that calculates exactly all the mathematical statistics associated with
the generalized chi-squared performance measure for each self-directed agent; and
(3) the risk-averse control and decision synthesis that is mostly via a person-by-
person equilibrium for reliable performance.

Given the aforementioned background, the article is organized as follows.
Section 2 contains the problem description in which basic assumptions related to the
state-space model associated with each incumbent decision makers or controllers
residing at distributed systems are discussed. In addition, the development of
mathematical statistics for performance robustness whose the backward-in-time
differential equations are characterized by making use of both compactness from
the logics of the state-space representation and the quantitativity from a-priori
knowledge of the underpinning probabilistic processes is further presented in
detail. Subsequently, Sect. 3 provides the complete problem statements of statis-
tical optimal decision making via the person-by-person equilibrium framework,
unique notations, terminologies, definitions as well as the necessary and sufficient
conditions for the existence of person-by-person equilibrium strategies. With
regards to the theoretical constructs and design principles for distributed stochastic
systems to include the requirements of performance reliability, decision making
with risk consequences and emerging effects within the stochastic environment,
the understanding of performance variations, risk-averse attitudes and the course
correction required for realistic situations is determined and obtained in Sect. 4.
Finally, conclusions pertaining to decisions with risk consequences and output
feedback design for the linear-quadratic class of distributed stochastic linear systems
with quadratic performance appraisals are presented in Sect. 5.

2 Mathematical Statistics for Performance Robustness

Before going into a formal presentation, it is necessary to consider some conceptual
notations in this article. For instance, time t is modeled as continuous and the
notation of the time interval is [t0, t f ]. All random variables are defined on a
probability space (Ω ,F ,P) which is a triple consisting of a set Ω , a σ -algebra
F , and a probability measure P : F �→ [0,1] and is equipped with a filtration
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{Ft : t ∈ [t0, t f ]}. In addition, for a given Hilbert space X with norm || · ||X ,
1≤ p≤ ∞, a Banach space is defined as follows

L p
F (t0, t f ;X)�

{
φ : [t0, t f ]×Ω �→ X is an X-valued Ft -measurable process

with E

{∫ t f

t0
||φ(t,ω)||pX dt

}
< ∞

}
(1)

with norm

||φ(·)||F ,p �
(

E

{∫ t f

t0
||φ(t,ω)||pX dt

})1/p

. (2)

Furthermore, the Banach space of X-valued continuous functionals on [t0, t f ] with
the max-norm induced by || · ||X is denoted by C (t0, t f ;X). The deterministic version
of (1) and its associated norm (2) is written as L p(t0, t f ;X) and || · ||p.

A distributed stochastic system that evolves over [t0, t f ] captures interactions
among a finite number of incumbent systems. Each incumbent system that enters
the distributed system is assigned a unique positive integer-valued index. The set
of indices of incumbent systems is denoted by I � {1,2, . . . ,N} and a typical
element by i. The set of immediate neighbors that have communication paths with
an incumbent system i is denoted by Ni, whereby the cardinality of Ni is notated
as Ni. For concreteness, the heterogeneity of incumbent system i and i ∈ I is
distinguished by an individual state that is governed by the stochastic differential
equation with the known initial condition xi(t0) = x0

i and t ∈ [t0, t f ]

dxi(t) =

(
Aii(t)xi(t)+Bii(t)ui(t)+

Ni

∑
j=1

Bi j(t)ui j(t)

)
dt +Gii(t)dwi(t) , (3)

where the continuous-time coefficients Aii ∈C (t0, t f ;Rni×ni), Bii ∈C (t0, t f ;Rni×mi),
Bi j ∈ C (t0, t f ;Rni×ri) and Gii ∈ C (t0, t f ;Rni×pi) are deterministic matrix-valued
functions. At time t, the recursive state of incumbent system i is denoted by
xi ∈L 2

Fi
(t0, t f ;Rni) with the initial state x0

i ∈ R
ni known. The control policy from

agent i to that system i is presented by ui ∈L 2
Fi
(t0, t f ;Rmi).

In addition, the interconnection inputs of that incumbent system i supported by
the communication paths from immediate neighbors j and j ∈Ni are viewed as the
real-valued functions ui j(t)dt of the following random processes

ui j(t)dt = (Ci j(t)x j(t)+Di j(t)u j(t))dt +Gi j(t)dwj(t) , j ∈Ni (4)

where continuous-time coefficients Ci j ∈ C (t0, t f ;Rri×n j), Di j ∈ C (t0, t f ;Rri×mj )
and Gi j ∈ C (t0, t f ;Rri×p j) are deterministic matrix-valued functions.
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In the state-space representation (3) and (4) one postulates independent Wiener
processes wi(t)�wi(t,ωi) : [t0, t f ]×Ωi �→R

pi and wj(t)�wj(t,ω j) : [t0, t f ]×Ω j �→
R

p j defined by the underlying filtered probability spaces (Ωi,Fi,{Fi}t ,Pi) and
(Ω j,F j,{F j}t ,P j) with the correlations of independent increments

E
{
[wi(τ1)−wi(τ2)][wi(τ1)−wi(τ2)]

T}=Wi|τ1− τ2|, Wi > 0 , τ1,τ2 ∈ [t0, t f ]

E
{
[wj(τ1)−wj(τ2)][wj(τ1)−wj(τ2)]

T}=Wj|τ1− τ2|, Wj > 0 , τ1,τ2 ∈ [t0, t f ]

approximate the inherent design system uncertainty due to variability and lack of
knowledge.

With the local agent dynamics (3) and the intertemporal interactions (4), the
recursive dynamics of each interconnected systems that evolve over [t0, t f ] and
capture direct interactions among incumbent agent i and its immediate neighbors
j and j ∈Ni are now given by

dsi(t) =

(
Ai(t)si(t)+Bi(t)ui(t)+

Ni

∑
j=1, j �=i

B j(t)u j(t)

)
dt +Gi(t)dξi(t), (5)

where for each incumbent agent i, the aggregate Wiener process ξi �
[

wT
1 . . . wT

Ni

]T

has the correlations of independent increments

E
{
[ξi(τ1)− ξi(τ2)][ξi(τ1)− ξi(τ2)]

T}= Ξi|τ1− τ2| , ∀τ1,τ2 ∈ [t0, t f ] , Ξi > 0

whereas for each incumbent agent i, the augmented state variable si, its initial-valued
condition si(t0) = s0

i , the local game coefficients and parameters are defined by

si(t)�

⎡

⎢⎢⎣

x1(t)
...

xNi(t)

⎤

⎥⎥⎦ ; s0
i �

⎡

⎢⎢⎣

x0
1
...

x0
Ni

⎤

⎥⎥⎦ ; Ai �

⎡

⎢⎢⎢⎢⎣

A11 B12C12 . . . B1NiC1Ni

B21C21 A22 . . . B2NiC2Ni

...
...

. . .
...

BNi1CNi1 . . . BNi(Ni−1)CNi(Ni−1) ANiNi

⎤

⎥⎥⎥⎥⎦

B1 �

⎡

⎢⎢⎢⎢⎣

B11

B21D21
...

BNi1DNi1

⎤

⎥⎥⎥⎥⎦
; B2 �

⎡

⎢⎢⎢⎢⎣

B12D12

B22
...

BNi2DNi2

⎤

⎥⎥⎥⎥⎦
; BNi �

⎡

⎢⎢⎢⎢⎣

B1Ni D1Ni

...
B(Ni−1)Ni

D(Ni−1)Ni

BNiNi

⎤

⎥⎥⎥⎥⎦

Gi �

⎡

⎢⎢⎢⎢⎣

G11 B12G12 . . . B1Ni G1Ni

B21G21 G22 . . . B2Ni G2Ni

...
...

. . .
...

BNi1GNi1 . . . BNi(Ni−1)GNi(Ni−1) GNiNi

⎤

⎥⎥⎥⎥⎦
; Ξi �

⎡

⎢⎢⎢⎢⎣

W1 0 . . . 0
0 W2 . . . 0
... 0

. . .
...

0 . . . 0 WNi

⎤

⎥⎥⎥⎥⎦
.
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Practical situations where self-autonomy is possible require that each agent be
able to possess the common knowledge of the parameters associated with potential
noncooperative interactions (5). Viewed from the mutual influence of one agent to
those of others, self-autonomy preferred by incumbent agent i is therefore described
by a surrogate model with the initial value zi(t0) = z0

i = s0
i

dzi(t) =

(
Ai(t)zi(t)+Bi(t)ui(t)+

Ni

∑
j=1, j �=i

B j(t)u j(t)

)
dt +Gi(t)dξi(t) , (6)

whereby each incumbent agent i and i ∈I can presumably observe all interactions

Ni

∑
j=1, j �=i

B j(t)u j(t)dt

from its immediate neighbors that are in turn corrupted by an uncorrelated stationary
Wiener measurement noise process. Specifically, the following observations are
locally available at incumbent agent i and t ∈ [t0, t f ]

u−i(t)dt =
Ni

∑
j=1, j �=i

B j(t)u j(t)dt + dηi(t) . (7)

For the completely decentralizing information pattern, it is also assumed that the
incomplete information structure available at each incumbent agent i consists of a

linear transformation Ci ∈ C (t0, t f ;Rqi×∑Ni
j=1 n j ) of the states zi(t) through the local

online data {yi(τ) : τ ∈ [t0, t]}

dyi(t) =Ci(t)zi(t)dt + dvi(t) . (8)

Notice that all incumbent agents operate within the common and local environments
modeled by the filtered probability spaces. Subsequently, they are then defined by
the following uncorrelated stationary Wiener processes adapted for [t0, t f ] together
with the correlations of independent increments for all τ1,τ2 ∈ [t0, t f ]

E
{
[ηi(τ1)−ηi(τ2)][ηi(τ1)−ηi(τ2)]

T}= Ii|τ1− τ2|
E
{
[vi(τ1)− vi(τ2)][vi(τ1)− vi(τ2)]

T}=Vi|τ1− τ2|

whose a-priori second-order statistics Ii and Vi > 0 for i = 1, . . . ,N are assumed
known.

At this point, each decentralized filter associated with incumbent agent i and
i ∈ I , whose the output is the conditional mean estimate ẑi(t) of the current state
zi(t) and t ∈ [t0, t f ] has the form with the initial-value condition ẑi(t0) = z0

i

dẑi(t) = (Ai(t)ẑi(t)+Bi(t)ui(t)+ u−i(t))dt +Li(t)[dyi(t)−Ci(t)ẑi(t)dt] , (9)
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whereby the decentralized filter gain Li(t) and i ∈I is given by

Li(t) = Σi(t)C
T
i (t)V

−1
i (10)

and is supported by the estimate-error covariance differential equation with the
initial-value condition Σi(t0) = 0

Σ̇i(t) = Ai(t)Σi(t)+Σi(t)A
T
i (t)+Gi(t)ΞiG

T
i (t)+ Ii−Σi(t)C

T
i (t)V

−1
i Ci(t)Σi(t).

(11)

Using the definition for the estimate errors z̃i(t)� zi(t)− ẑi(t), it can be shown that

dz̃i(t) = (Ai(t)−Li(t)Ci(t))z̃i(t)dt +Gi(t)dξi(t)−Li(t)dvi(t)− dηi(t) (12)

z̃i(t0) = 0

incumbent agent i, however, attempts to make risk-bearing decisions ui from an
admissible feedback policy set Ui ⊂ L2

F i
t
(t0, t f ;Rmi), which is the subset of Hilbert

space of Rmi-valued square integrable processes on [t0, t f ] that are adapted to the
σ -algebra F i

t generated by {yi(τ) : τ ∈ [t0, t]} for reliable attainments of payoffs or
utilities. Associated with each admissible 2-tuple (ui(·),u−i(·)) is the generalized
chi-squared random measure of performance

Ji(ui,u−i) = zT
i (t f )Q

i
f zi(t f )

+

∫ t f

t0
[zT

i (τ)Qi(τ)zi(τ)+ uT
i (τ)Ri(τ)ui(τ)− uT

−i(τ)Mi(τ)u−i(τ)]dτ ,

(13)

whereby the coefficients Qi
f ∈R∑

Ni
j=1 n j×∑Ni

j=1 n j , Qi ∈ C (t0, t f ;R∑
Ni
j=1 n j×∑Ni

j=1 n j), Mi ∈
C (t0, t f ;R∑

Ni
j=1 n j×∑Ni

j=1 n j ) and Ri ∈C (t0, t f ;Rmi×mi) representing relative weightings
for terminal and transient trade-offs between the regulatory of responses zi, the
effectiveness of the control and/or decision policy ui and observable variations in
the control and/or decision policies of all other neighbors u−i are deterministic and
positive semidefinite with Ri(t) invertible.

Amongst some research issues for distributed control which are currently under
investigation is how incumbent agent i for i ∈I and its immediate neighbors j for
j ∈Ni carry out optimal control and decision synthesis for controlling of distributed
stochastic systems. The approach to handle the problem with a tuple of two or
more control laws or decision policies is to use the noncooperative game-theoretic
paradigm. Particularly, an Ni-tuple policy {u∗1,u∗2, . . . ,u∗Ni

} is said to constitute a
person-by-person equilibrium solution for the distributed control problem (6) and
performance measure (13) if

J∗i � Ji(u
∗
i ,u
∗
−i)≤ Ji(ui,u

∗
−i) , ∀i ∈I . (14)
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That is, none of the Ni agents can deviate unilaterally from the equilibrium policies
and gain from doing so. The justification for the restriction to such an equilibrium
is that the coalition effects u∗−i being observed by incumbent agent i does not
necessarily support its preference optimization. Therefore, they cannot do better
than behave as if they strive for this equilibrium. It is reasonable to conclude that
a person-by-person equilibrium of distributed control for incumbent agent i and its
immediate neighbors j ∈Ni is identical to the concept of a Nash equilibrium within
a noncooperative game-theoretic setting.

Moreover, the Ni-tuple (u∗1, . . . ,u
∗
Ni
) of decision laws for incumbent agent i

and its immediate neighbors j and j ∈ Ni that is satisfying the person-by-person
equilibrium is also a minimal tuple of decision laws. The reasons being are that the
input spaces ui are continuous and criterion Ji are continuous, differentiable, and
convex in the inputs ui. Henceforth, a minimal tuple is obtained if incumbent agents
individually optimize their criteria in a parallel fashion. See [8] for more details.

Next, the notion of admissible feedback policy sets is discussed. In the case of
incomplete information, an admissible feedback policy ui for local best response to
all other immediate neighbors u∗−i must be of the form, for some ði(·, ·)

ui(t) = ði(t,yi(τ)) , τ ∈ [t0, t] . (15)

In general, the conditional density pi(zi(t)|F i
t ), which is the density of zi(t) con-

ditioned on F i
t (i.e., induced by the observation {yi(τ) : τ ∈ [t0, t]}) represents the

sufficient statistics for describing the conditional stochastic effects of future feed-
back policy ui. Under the Gaussian assumption the conditional density pi(zi(t)|F i

t )
is parameterized by the locally available conditional mean ẑi(t)� E{zi(t)|F i

t } and
covariance Σi(t) � E{[zi(t)− ẑi(t)][zi(t)− ẑi(t)]T |F i

t } by incumbent agent i. With
respect to the linear-Gaussian conditions, the covariance Σi(t) is independent of
feedback policy ui(t) and observations {yi(τ) : τ ∈ [t0, t]}. Therefore, to look for an
optimal control and/or decision policy ui(t) of the form (15), it is only required that

ui(t) = γi(t, ẑi(t)) , t ∈ [t0, t f ] .

Given the linear-quadratic properties of the surrogate system description (6)–(13),
the search for an optimal feedback solution may be productively restricted to a linear
time-varying feedback policy generated from the locally accessible state ẑi(t) by

ui(t) = Ki(t)ẑi(t) , t ∈ [t0, t f ] (16)

with Ki ∈ C (t0, t f ;Rmi×∑Ni
j=1 n j) an admissible feedback form whose further defining

properties will be stated shortly.
Hence, for the admissible pair (t0,z0

i ), the observed knowledge about neighboring
disturbances u∗−i(·) and the admissible feedback policy (16), the aggregation of
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the dynamics (9) and (12) associated with incumbent agent i is described by the
controlled stochastic differential equation

dzi(t) = (Fi(t)zi(t)+Ei(t)u∗−i(t))dt +Gi(t)dwi(t) , zi(t0) = zi
0 (17)

with the performance measure (13) rewritten as follows

Ji(ui,u
∗
−i) = (zi)T (t f )N

i
f zi(t f )

+

∫ t f

t0
[(zi)T (τ)Ni(τ)zi(τ)− (u∗−i)

T (τ)Mi(τ)u∗−i(τ)]dτ , (18)

whereby for each incumbent agent i and i ∈ I , the aggregate system states zi �[
(ẑi)

T (z̃i)
T
]T

, the stationary Wiener process noise wi �
[
ξ T

i ηT
i vT

i

]T
with the

correlation of independent increments defined as

E
{
[wi(τ1)−wi(τ2)][w

i(τ1)−wi(τ2)]
T}=W i|τ1− τ2| , ∀τ1,τ2 ∈ [t0, t f ] ,W i > 0

and the aggregate system coefficients are given by, for each t ∈ [t0, t f ]

Fi(t)�
[

Ai(t)+Bi(t)Ki(t) Li(t)Ci(t)
0 Ai(t)−Li(t)Ci(t)

]
; Ei(t)�

[
I
∑

Ni
j=1 n j×∑Ni

j=1 n j

0

]

Gi(t)�
[

0 0 Li(t)
Gi(t) −I

∑
Ni
j=1 n j×∑Ni

j=1 n j
−Li(t)

]
; Ni

f �
[

Qi
f Qi

f

Qi
f Qi

f

]
; zi

0 �
[

z0
i
0

]

Ni(t)�
[

Qi(t)+KT
i (t)Ri(t)Ki(t) Qi(t)
Qi(t) Qi(t)

]
; W i �

⎡

⎣
Ξi 0 0
0 Ii 0
0 0 Vi

⎤

⎦ .

Regarding the linear-quadratic structural constraints (17) and (18), the path-wise
performance-measure (18), with which incumbent agent i is risk averse, is clearly
a random variable of the generalized chi-squared type. Henceforth, the degree of
uncertainty of the path-wise performance-measure (18) must be assessed via a
complete set of higher-order statistics beyond the statistical mean or average. In an
attempt to describe or model performance uncertainty, the essence of information
about these higher-order performance-measure statistics is now considered as a
source of information flow, which will affect perception of the problem and the
environment at the risk-averse incumbent agent i.

Next, the question of how to characterize and influence performance information
is answered by modeling and management of cumulants (also known as semi-
invariants) associated with (18) as shown in the following result.

Theorem 1 (Cumulant-Generating Function). Let each incumbent agent i and
i ∈I be associated with the state variable zi(·) of the stochastic dynamics (17) and
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subject to the performance measure (18). Further, let initial states zi(τ) ≡ zi
τ and

τ ∈ [t0, t f ] and the moment-generating function be denoted by

ϕ i (τ,zi
τ ,θ

)
= ρ i (τ,θ )exp

{
(zi
τ)

Tϒ i(τ,θ )zi
τ + 2(zi

τ)
T �i(τ,θ )

}
(19)

υ i (τ,θ ) = ln{ρ i (τ,θ )} , θ ∈ R
+ . (20)

Then, the cumulant-generating function has the form of quadratic affine

ψ i (τ,zi
τ ,θ

)
= (zi

τ )
Tϒ i(τ,θ )zi

τ + 2(zi
τ)

T �i(τ,θ )+υ i (τ,θ ) , (21)

where the scalar solution υ i (τ,θ ) solves the scalar-valued backward-in-time
differential equation with the terminal-value condition υ i

(
t f ,θ

)
= 0

d
dτ

υ i (τ,θ ) =−Tr
{
ϒ i(τ,θ )Gi (τ)W i(Gi)T (τ)

}
+θ (u∗−i)

T (τ)Mi(τ)u∗−i(τ) (22)

whereas the matrix ϒ i(τ,θ ) and vector �i(τ,θ ) solutions satisfy the matrix and
vector-valued backward-in-time differential equations

d
dτ

ϒ i(τ,θ ) =−(Fi)T (τ)ϒ i(τ,θ )−ϒ i(τ,θ )Fi(τ)

− 2ϒ i(τ,θ )Gi(τ)W i(Gi)T (τ)ϒ i(τ,θ )−θNi(τ) , ϒ i(t f ,θ ) = θNi
f

(23)

d
dτ

�i(τ,θ ) =−ϒ i(τ,θ )Ei(τ)u∗−i(τ) , �i(t f ,θ ) = 0 . (24)

Meanwhile, the scalar solution ρ i(τ,θ ) satisfies the scalar-valued backward-in-time
differential equation

d
dτ

ρ i (τ,θ ) =−ρ i (τ,θ ) [Tr
{
ϒ i(τ,θ )Gi (τ)W i(Gi)T (τ)

}

−θ (u∗−i)
T (τ)Mi(τ)u∗−i(τ)] , ρ i (t f ,θ

)
= 1 . (25)

Proof. For notional simplicity, it is convenient to have, for each i ∈I

ϖ i (τ,zi
τ ,θ

)
� exp

{
θJi

(
τ,zi

τ
)}

,

in which the performance measure (18) is rewritten as the cost-to-go function from
an arbitrary state zi

τ at a running time τ ∈ [t0, t f ], that is,

Ji(τ,zi
τ ) = (zi)T (t f )N

i
f zi(t f )

+

∫ t f

τ
[(zi)T (t)Ni(t)zi(t)− (u∗−i)

T (t)Mi(t)u
∗
−i(t)]dt (26)
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subject to

dzi(t) = (Fi(t)zi(t)+Ei(t)u∗−i(t))dt +Gi(t)dwi(t) , zi(τ) = zi
τ . (27)

By definition, the moment-generating function is

ϕ i(τ,zi
τ ,θ )� E

{
ϖ i (τ,zi

τ ,θ
)}

.

Thus, the total time derivative of ϕ i(τ,zi
τ ,θ ) is obtained as

d
dτ

ϕ i (τ,zi
τ ,θ

)
=−θ [(zi

τ)
T Ni(τ)zi

τ − (u∗−i)
T (τ)Mi(τ)u∗−i(τ)]ϕ

i (τ,zi
τ ,θ

)
.

Using the standard Ito’s formula, it follows

dϕ i (τ,zi
τ ,θ

)
= E

{
dϖ i (τ,zi

τ ,θ
)}

= E
{
ϖ i
τ (τ,z

i
τ ,θ )dτ+ϖ i

zi
τ
(τ,zi

τ ,θ )dzi
τ

+
1
2

Tr
{
ϖ i

zi
τ zi

τ
(τ,zi

τ ,θ )G
i(τ)W i(Gi)T (τ)

}
dτ
}

= ϕ i
τ (τ,z

i
τ ,θ )dτ+ϕ i

zi
τ
(τ,zi

τ ,θ )(F
i(τ)zi

τ +Ei(τ)u∗−i(τ))dτ

+
1
2

Tr
{
ϕ i

zi
τ zi
τ
(τ,zi

τ ,θ )G
i(τ)W i(Gi)T (τ)

}
dτ ,

which under the definition of the moment-generating function; e.g.,

ϕ i (τ,zi
τ ,θ

)
= ρ i (τ,θ )exp

{
(zi
τ)

Tϒ i(τ,θ )zi
τ + 2(zi

τ)
T �i(τ,θ )

}

and its partial derivatives lead to the result

−θ [(zi
τ)

T Ni(τ)zi
τ − (u∗−i)

T (τ)Mi(τ)u∗−i(τ)]ϕ
i (τ,zτ ,θ )

=
{ d

dτ ρ
i (τ,θ )

ρ i (τ,θ )
+ (zi

τ)
T d

dτ
ϒ i(τ,θ )zi

τ + 2(zi
τ)

T d
dτ

�i(τ,θ )

+ (zi
τ)

T [(Fi)T (τ)ϒ i(τ,θ )+ϒ i(τ,θ )Fi (τ)
]

zi
τ + 2(zi

τ)
Tϒ i(τ,θ )Ei(τ)u∗−i(τ)

+ 2(zi
τ)

Tϒ i(τ,θ )Gi (τ)W i(Gi)T (τ)ϒ i(τ,θ )zi
τ

+Tr
{
ϒ i(τ,θ )Gi(τ)W i(Gi)T (τ)

}}
ϕ i (τ,zi

τ ,θ
)
.
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To have constant and quadratic terms be independent of arbitrary zi
τ , it requires

d
dτ

ϒ i(τ,θ ) =−(Fi)T (τ)ϒ i(τ,θ )−ϒ i(τ,θ )Fi(τ)−θNi(τ)

− 2ϒ i(τ,θ )Gi(τ)W i(Gi)T (τ)ϒ i(τ,θ )

d
dτ

�i(τ,θ ) =−ϒ i(τ,θ )Ei(τ)u∗−i(τ)

d
dτ

ρ i(τ,θ ) =−ρ i (τ,θ ) [Tr
{
ϒ i(τ,θ )Gi(τ)W i(Gi)T(τ)

}−θ (u∗−i)
T(τ)Mi(τ)u∗−i(τ)]

with the terminal-value conditionsϒ i(t f ,θ ) = θNi
f and ρ i(t f ,θ ) = 1. ��

Finally, the backward-in-time differential equation satisfied by the scalar-valued
solution υ i(τ,θ ) is obtained with the terminal-value condition υ i(t f ,θ ) = 0

d
dτ

υ i(τ,θ ) =−Tr
{
ϒ i(τ,θ )Gi(τ)W i(Gi)T (τ)

}
+θ (u∗−i)

T (τ)Mi(τ)u∗−i(τ) ,

which completes the proof.
As it turns out, all the higher-order characteristic distributions associated with

performance uncertainty and risk are captured in the higher-order performance-
measure statistics associated with (18). Subsequently, higher-order statistics that
encapsulate the uncertain nature of (18) can now be generated via a MacLaurin
series of the cumulant-generating function or the second characteristic function (21)

ψ i (τ,zi
τ ,θ

)
=

∞

∑
r=1

∂ (r)

∂θ (r)
ψ i(τ,zi

τ ,θ )

∣∣∣∣∣
θ=0

θ r

r!
, (28)

from which all κ i
r � ∂ (r)

∂θ (r)ψ
i(τ,zi

τ ,θ )
∣∣∣
θ=0

are defined as performance-measure

statistics associated with incumbent agent i and i ∈I . In fact, the rth performance-
measure statistic is determined by the series expansion coefficients; that is, it is
obtained from the cumulant-generating function (21)

κ i
r =

∂ (r)

∂θ (r)
ψ i(τ,zi

τ ,θ )

∣∣∣∣∣
θ=0

= (zi)T
τ

∂ (r)

∂θ (r)
ϒ i(τ,θ )

∣∣∣∣∣
θ=0

zi
τ

+ 2(zi
τ)

T ∂ (r)

∂θ (r)
�i(τ,θ )

∣∣∣∣∣
θ=0

+
∂ (r)

∂θ (r)
υ i(τ,θ )

∣∣∣∣∣
θ=0

. (29)

For notational convenience, the change of variables corresponding to each incum-
bent agent i and i ∈I

Hi
r(τ)�

∂ (r)ϒ i(τ,θ )
∂θ (r)

∣∣∣∣∣
θ=0

, τ ∈ [t0, t f ] (30)
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D̆i
r(τ)�

∂ (r)�i(τ,θ )
∂θ (r)

∣∣∣∣∣
θ=0

; Di
r(τ)�

∂ (r)υ i(τ,θ )
∂θ (r)

∣∣∣∣∣
θ=0

(31)

is introduced so that the next theorem provides an effective and accurate capability
for forecasting all the higher-order characteristics associated with performance
uncertainty.

Theorem 2 (Performance-Measure Statistics). Associate with each incumbent
agent i and i ∈ I the decentralized stochastic system governed by (17) and (18),
wherein the pairs (Ai,Bi) and (Ai,Ci) are uniformly stabilizable and detectable. For
ki ∈N fixed, the kith cumulant of performance measure (18) concerned by incumbent
agent i is given by

κ i
k = (zi

0)
T Hi

ki(t0)z
i
0 + 2(zi

0)
T D̆i

ki(t0)+Di
ki(t0) , (32)

where the supporting variables {Hi
r(τ)}ki

r=1, {D̆i
r(τ)}ki

r=1 and {Di
r(τ)}ki

r=1 evaluated
at τ = t0 satisfy the differential equations (with the dependence of Hi

r(τ), D̆i
r(τ) and

Dr(τ) upon the admissible feedback policy gain Ki(τ) and u∗−i(τ) suppressed)

d
dτ

Hi
1(τ) =−(Fi)T (τ)Hi

1(τ)−Hi
1(τ)F

i(τ)−Ni(τ) (33)

d
dτ

Hi
r(τ) =−(Fi)T (τ)Hi

r(τ)−Hi
r(τ)F

i(τ)

−
r−1

∑
s=1

2r!
s!(r− s)!

Hi
s(τ)G

i(τ)W i(Gi)T (τ)Hi
r−s(τ) , 2≤ r ≤ ki (34)

and

d
dτ

D̆i
r(τ) =−Hi

r(τ)E
i(τ)u∗−i(τ) , 1≤ r ≤ ki (35)

and, finally,

d
dτ

Di
1(τ) =−Tr

{
Hi

1(τ)G
i(τ)W i(Gi)T (τ)

}
+(u∗−i)

T (τ)Mi(τ)u∗−i(τ) (36)

d
dτ

Di
r(τ) =−Tr

{
Hi

r(τ)Gi(τ)W i(Gi)T (τ)
}
, 2≤ r ≤ ki (37)

whereby the terminal-value conditions Hi
1(t f ) = Ni

f , Hi
r(t f ) = 0 for 2 ≤ r ≤ ki,

D̆i
r(t f ) = 0 for 1≤ r ≤ ki and Di

r(t f ) = 0 for 1≤ r ≤ ki.

Proof. The expression of performance-measure statistics described in (32) is readily
justified by using result (29) and definition (30)–(31). What remains is to show
that the solutions Hi

r(τ), D̆i
r(τ) and Di

r(τ) for 1 ≤ r ≤ ki indeed satisfy the
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dynamical equations (33)–(37). Notice that these backward-in-time equations (33)–
(37) satisfied by the matrix-valued Hi

r(τ), vector-valued D̆i
r(τ), and scalar-valued

Di
r(τ) solutions are then obtained by successively taking derivatives with respect to

θ of the supporting equations (22)–(24) and subject to the assumptions of (Ai,Bi)
and (Ai,Ci) being uniformly stabilizable and detectable on [t0, t f ]. ��

3 Problem Statements

The purpose of this section is to make use of increased insight into the roles played
by performance-measure statistics on the generalized chi-squared performance
measure (18) for risk-averse Nash feedback strategies. The distributed optimization
with Nash feedback policy here is distinguished by the fact that the evolution in
time of all mathematical statistics (32) associated with the random performance
measure (18) of the generalized chi-squared type is described by means of the
matrix/vector/scalar-valued backward-in-time differential equations (33)–(37).

For such problems it is important to have a compact statement of the risk-
averse decision and control optimization so as to aid mathematical manipulation.
To make this more precise, one may think of the ki-tuple state variables H i(·) �
(H i

1 (·), . . . ,H i
ki(·)), D̆ i(·) � (D̆ i

1(·), . . . ,D̆ i
ki(·)) and D i(·) � (D i

1(·), . . . ,D i
ki(·))

whose continuously differentiable states H i
r ∈ C 1(t0, t f ;R2∑

Ni
j=1 n j×2∑

Ni
j=1 n j ), D̆ i

r ∈
C 1(t0, t f ;R2∑

Ni
j=1 n j ) and D i

r ∈ C 1(t0, t f ;R) having the representations H i
r (·) �

Hi
r(·), D̆ i

r(·) � D̆i
r(·) and D i

r(·) � Di
r(·) with the right members satisfying the

dynamics (33)–(37) are defined on [t0, t f ]. In the remainder of the development, the
convenient mappings associated with incumbent agent i and i ∈ I are introduced
as follows

F i
r : [t0, t f ]× (R2∑

Ni
j=1 n j×2∑

Ni
j=1 n j )ki ×R

mi×∑Ni
j=1 n j �→ R

2∑
Ni
j=1 n j×2∑

Ni
j=1 n j

Ğ i
r : [t0, t f ]× (R

2∑
Ni
j=1 n j )ki �→ R

2∑
Ni
j=1 n j

G i
r : [t0, t f ]× (R2∑

Ni
j=1 n j×2∑

Ni
j=1 n j )ki �→ R ,

where the rules of action are given by

F i
1(τ,H

i,Ki)�−(Fi)T (τ)H i
1 (τ)−H i

1 (τ)F
i(τ)−Ni(τ)

F i
r(τ,H i,Ki)�−(Fi)T (τ)H i

r (τ)−H i
r (τ)Fi(τ)

−
r−1

∑
s=1

2r!
s!(r− s)!

H i
s (τ)G

i(τ)W i(Gi)T (τ)H i
r−s(τ) , 2≤ r ≤ ki

Ğ i
r (τ,H i)�−H i

r (τ)Ei(τ)u∗−i(τ) , 1≤ r ≤ ki
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G i
1(τ,H

i)�−Tr
{
H 1

r (τ)Gi(τ)W i(Gi)T (τ)
}
+(u∗−i)

T (τ)Mi(τ)u∗−i(τ)

G i
r (τ,H

i)�−Tr
{
H i

r (τ)G
i(τ)W i(Gi)T (τ)

}
, 2≤ r ≤ ki.

The product mappings that follow are necessary for a compact formulation; e.g.,

F i
1×·· ·×F i

ki : [t0, t f ]× (R2∑
Ni
j=1 n j×2∑

Ni
j=1 n j )ki×Rmi×∑Ni

j=1 n j �→ (R2∑
Ni
j=1 n j×2∑

Ni
j=1 n j )ki

Ğ i
1×·· ·× Ğ i

ki : [t0, t f ]× (R2∑
Ni
j=1 n j )ki �→ (R2∑

Ni
j=1 n j )ki

G i
1×·· ·×G i

ki : [t0, t f ]× (R2∑
Ni
j=1 n j×2∑

Ni
j=1 n j )ki �→ R

ki

whereby the corresponding notations

F i � F i
1×·· ·×F i

ki

Ğ i � Ğ i
1×·· ·× Ğ i

ki

G i � G i
1×·· ·×G i

ki

are used. Thus, the dynamical equations (33)–(37) can be rewritten as follows

d
dτ

H i(τ) = F i(τ,H i(τ),Ki(τ)), H i(t f )≡H i
f (38)

d
dτ

D̆ i(τ) = Ğ i (τ,H i(τ)
)
, D̆ i(t f )≡ D̆ i

f (39)

d
dτ

D i(τ) = G i (τ,H i(τ)
)
, D i(t f )≡D i

f (40)

whereby the ki-tuple terminal-value conditions H i
f � (Ni

f ,0, . . . ,0), D̆
i
f � (0, . . . ,0)

and D i
f � (0, . . . ,0).

Once immediate neighbors j ∈Ni of incumbent agent i fix the control and deci-
sion parameters K∗j of the person-by-person equilibrium strategies u∗j and thus the
interconnection effects u∗−i underpinned by K∗−i, incumbent agent i therefore obtains
an optimal stochastic control problem with risk-averse performance considerations.
The construction of agent i’s person-by-person policy also involves the control and
decision parameter Ki. In the sequel and elsewhere, when the dependence on Ki and
K∗−i is needed to be clear, then the notations

H i ≡H i(·,Ki,K
∗
−i)

D̆ i ≡ D̆ i(·,Ki,K
∗
−i)

D i ≡D i(·,Ki,K
∗
−i)
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should be used to denote the solution trajectories of the dynamics (38)–(40) with
the admissible 2-tuple (Ki,K∗−i).

For the given terminal data (t f ,H
i

f ,D̆
i
f ,D

i
f ), the class of admissible feedback

gains employed by incumbent agent i and i ∈I is next defined.

Definition 1 (Admissible Feedback Policy Gains). Let compact subset K
i ⊂

R
mi×n be the set of allowable feedback form values. For the given ki ∈ N and

sequence μ i = {μ i
r ≥ 0}ki

r=1 with μ i
1 > 0, the set of feedback gains K i

t f ,H
i
f ,D̆

i
f ,D

i
f ;μ i is

assumed to be the class of C (t0, t f ;Rmi×∑Ni
j=1 n j) with values Ki(·)∈K

i
, for which the

solutions to the dynamical equations (38)–(40) with the terminal-value conditions
H i(t f ) = H i

f , D̆ i(t f ) = D̆ i
f and D i(t f ) = D i

f exist on the interval of optimization
[t0, t f ].

One way to make sense of risk bearing existing at incumbent agent i is to identify
performance vulnerability of (18) against all the sample-path realizations from
the local environment and potential noncooperative influences u∗−i from immediate
neighbors j and j ∈ Ni. The mechanism identified here that is under a finite set
of selective weights associated with the mathematical statistics of (18) helps to
unfold the complexity behind observed performance values and risks of person-
by-person strategy dependence in the following formulation of a risk-value aware
performance index. Notice that this custom set of design freedoms representing
particular uncertainty aversions is hence different from the ones with aversion to
risk captured in risk-sensitive optimal control [9, 10].

On K i
t f ,H

i
f ,D̆

i
f ,D

i
f ;μ i the performance index with risk-value considerations in risk-

averse decision making is subsequently defined as follows.

Definition 2 (Risk-Value Aware Performance Index). Let incumbent agent i and
i ∈ I select ki ∈ N and the sequence of scalar coefficients μ i = {μ i

r ≥ 0}ki

r=1 with
μ i

1 > 0. Then, the risk-value aware performance index

φ i
0 : {t0}× (R2∑

Ni
j=1 n j×2∑

Ni
j=1 n j)ki × (R2∑

Ni
j=1 n j )ki ×R

ki �→ R
+

pertaining to risk-averse decision making of the stochastic Nash game over [t0, t f ] is
defined by

φ i
0(t0,H

i(t0),D̆
i(t0),D

i(t0))� μ i
1κ

i
1︸︷︷︸

Value Measure

+μ i
2κ

i
2 + · · ·+ μ i

kiκ i
ki︸ ︷︷ ︸

Risk Measures

=
ki

∑
r=1

μ i
r[(z

i
0)

T H i
r (t0)z

i
0 + 2(zi

0)
T D̆ i

r(t0)+D i
r(t0)] ,

(41)
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where additional design freedom by means of μ i
r’s utilized by incumbent agent

i with risk-averse attitudes are sufficient to meet and exceed different levels of
performance-based reliability requirements, for instance, mean (i.e., the average
of performance measure), variance (i.e., the dispersion of values of performance
measure around its mean), skewness (i.e., the anti-symmetry of the density of per-
formance measure), kurtosis (i.e., the heaviness in the density tails of performance
measure), etc., pertaining to closed-loop performance variations and uncertainties
while the supporting solutions {H i

r (τ)}ki

r=1, {D̆ i
r(τ)}ki

r=1 and {D i
r(τ)}ki

r=1 evaluated
at τ = t0 satisfy the dynamical equations (38)–(40).

To specifically indicate the dependence of the risk-value aware performance
index (41) expressed in Mayer form on Ki and the signaling effects u∗−i or K∗−i
issued by all immediate neighbors j from Ni, the multi-attribute utility function
or performance index (41) for incumbent agent i is now rewritten explicitly as
φ i

0(Ki,K∗−i).

Definition 3 (Nash Equilibrium Solution). An admissible set of feedback strate-
gies (K∗i , . . . ,K

∗
Ni
) is a Nash equilibrium for the local Ni-person game, where each

incumbent agent i and i ∈I has the performance index φ i
0(Ki,K∗−i) of Mayer type,

if for all admissible feedback strategies (K1, . . . ,KNi) the inequalities hold

φ i
0(K

∗
i ,K

∗
−i)≤ φ i

0(Ki,K
∗
−i) .

For the sake of time consistency and subgame perfection, a Nash equilibrium
solution is required to have an additional property that its restriction on the interval
[t0,τ] is also a Nash solution to the truncated version of the original problem,
defined on [t0,τ]. With such a restriction so defined, the Nash equilibrium solution
is now termed as a feedback Nash equilibrium solution, which is now free of
any informational nonuniqueness, and thus whose derivation allows a dynamic
programming type argument.

Definition 4 (Feedback Nash Equilibrium). Let K∗i constitute a feedback Nash
strategy which will be implemented by incumbent agent i such that

φ i
0(K

∗
i ,K

∗
−i)≤ φ i

0(Ki,K
∗
−i) , i ∈I (42)

for all admissible Ki ∈K i
t f ,H

i
f ,D̆

i
f ,D

i
f ;μ i , upon which the solutions to the dynamical

systems (38)–(40) exist on [t0, t f ].

Then,
(

K∗1 , . . . ,K
∗
Ni

)
when restricted to the interval [t0,τ] is still an Ni-tuple

feedback Nash equilibrium solution for the multiperson Nash decision problem with
the appropriate terminal-value condition (τ,H i∗ (τ),D̆ i∗(τ),D i∗(τ)) for all τ ∈ [t0, t f ].

In conformity with the rigorous formulation of dynamic programming, the
following development is important. Let the terminal time t f and 3-tuple states
(H i

f ,D̆
i
f ,D

i
f ), the other end condition involved the initial time t0 and 3-tuple states

(H i
0 ,D̆

i
0,D

i
0) be specified by a target set requirement.
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Definition 5 (Target Sets). (t0,H i
0 ,D̆

i
0,D

i
0) ∈ M̂ i, where the target set M̂ i

residing at incumbent agent i and i ∈ I is a closed subset of [t0, t f ] ×
(R2∑

Ni
j=1 n j×2∑

Ni
j=1 n j )ki × (R2∑

Ni
j=1 n j)ki ×R

ki
.

Now, the decision optimization residing at incumbent agent i and i ∈ I is to
minimize the risk-value aware performance index (41) over all admissible feedback
strategies Ki = Ki(·) in K i

t f ,H
i
f ,D̆

i
f ,D

i
f ;μ i while subject to potential interferences from

all immediate neighbors with the feedback Nash policies K∗−i.

Definition 6 (Optimization of Mayer Problem). Given the sequence of scalars
μ i = {μ i

r ≥ 0}ki

r=1 with μ i
1 > 0, the decision optimization on [t0, t f ] associated with

incumbent agent i and i ∈I is given by

min
Ki(·)∈K i

t f ,H
i
f ,D̆

i
f ,D

i
f ;μ i

φ i
0(Ki,K

∗
−i) , (43)

subject to the dynamical equations (38)–(40) on [t0, t f ].

Notice that the optimization considered here is in Mayer form and can be solved
by applying an adaptation of the Mayer form verification results as given in [11].
To embed this optimization facing incumbent agent i into a larger problem, the
terminal time and states (t f ,H

i
f ,D̆

i
f ,D

i
f ) are parameterized as (ε,Y i,Z̆ i,Z i),

whereby Y i � H i(ε), Z̆ i � D̆ i(ε) and Z i � D i(ε). Thus, the value function for
this optimization problem is now depending on the parameterization of terminal-
value conditions.

Definition 7 (Value Function). Suppose (ε,Y i,Z̆ i,Z i) ∈ [t0, t f ]× (R2∑ j=1 Nin j

×2∑Ni
j=1 n j)

ki × (R2∑
Ni
j=1 n j )ki × R

ki
is given and fixed. Then, the value function

V i(ε,Y i,Z̆ i,Z i) and i ∈I is defined by

V i(ε,Y i,Z̆ i,Z i)� inf
Ki(·) ∈K i

ε,Y i,Z̆ i,Z i;μ i
φ i

0(Ki,K
∗
−i) .

For convention, V i(ε,Y i,Z̆ i,Z i)� ∞ when K i
ε,Y i,Z̆ i,Z i;μ i is empty. Next, some

candidates for the value function are constructed with the help of the concept of
reachable set.

Definition 8 (Reachable Sets). Let reachable set associated with incumbent agent

i be Qi � {(ε,Y i,Z̆ i,Z i) ∈ [t0, t f ]× (R2∑
Ni
j=1 n j×2∑

Ni
j=1 n j )ki × (R2∑

Ni
j=1 n j )ki ×R

ki

such that K i
ε,Y i,Z̆ i,Z i;μ i �= /0}.

Moreover, it can be shown that the value function associated with incumbent
agent i is satisfying a partial differential equation at interior points of Qi, at which
it is differentiable.
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Theorem 3 (Hamilton–Jacobi–Bellman (HJB) Equation-Mayer Problem). Let
(ε,Y i,Z̆ i,Z i) be any interior point of the reachable set Qi and i∈I , at which the
value function V i(ε,Y i,Z̆ i,Z i) is differentiable. If there exists a feedback Nash
strategy K∗i ∈K i

t f ,H
i
f ,D̆

i
f ,D

i
f ;μ i , then the differential equation

0 = min
Ki∈Ki

{
∂
∂ε

V i(ε,Y i,Z̆ i,Z i)

+
∂

∂ vec(Y i)
V i(ε,Y i,Z̆ i,Z i)vec(F i(ε,Y i,Ki))

+
∂

∂ vec(Z̆ i)
V i(ε,Y i,Z̆ i,Z i)vec(Ğ i(ε,Y i)

+
∂

∂ vec(Z i)
V i(ε,Y i,Z̆ i,Z i)vec(G i(ε,Y i)

}
(44)

is satisfied whereby V i(t0,Y i(t0),Z̆ i(t0),Z i(t0)) = φ i
0(H

i(t0),D̆ i(t0),D i(t0)).

Proof. By what have been shown in the recent results by the first author [12], the
proof for the result herein is readily proven.

Finally, the following result gives the sufficient condition used to verify a
feedback Nash strategy for incumbent agent i and i ∈I . ��
Theorem 4 (Verification Theorem). Let W i(ε,Y i,Z̆ i,Z i) associated with in-
cumbent agent i and i ∈ I be continuously differentiable solution of the HJB
equation (44), which satisfies the following boundary condition

W i(t0,H
i(t0),D̆

i(t0),D
i(t0)) = φ i

0(t0,H
i(t0),D̆

i(t0),D
i(t0)) .

Let (t f ,H
i

f ,D̆
i
f ,D

i
f ) ∈Qi; let Ki ∈K i

t f ,H
i
f ,D̆

i
f ,D

i
f ;μ i ; and let (H i(·),D̆ i(·),D i(·))

be the trajectory solutions of the dynamical equations (38)–(40). Then, the scalar-
valued function W i(τ,H i(τ),D̆ i(τ),D i(τ)) is time-backward increasing function
of τ and τ ∈ [t0, t f ].

If K∗i is in K i
t f ,H

i
f ,D̆

i
f ,D

i
f ;μ i with the corresponding solutions (H i∗ (·),D̆ i∗(·),D i∗(·))

of the dynamical equations (38)–(40) such that, for τ ∈ [t0, t f ]

0 =
∂
∂ε

W i(τ,H i
∗ (τ),D̆

i
∗(τ),D

i
∗(τ))

+
∂

∂ vec(Y i)
W i(τ,H i

∗ (τ),D̆
i
∗(τ),D

i
∗(τ))vec(F i(τ,H i

∗ (τ),K
∗
i (τ)))

+
∂

∂ vec(Z̆ i)
W i(τ,H i

∗ (τ),D̆ i
∗(τ),D i

∗(τ))vec(Ğ i(τ,H i
∗ (τ)))

+
∂

∂ vec(Z i)
W i(τ,H i

∗ (τ),D̆
i
∗(τ),D

i
∗(τ))vec(G i(τ,H i

∗ (τ))) (45)
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then, K∗i is a feedback Nash strategy in K i
t f ,H

i
f ,D̆

i
f ,D

i
f ;μ i ,

W i(ε,Y i,Z̆ i,Z i) = V i(ε,Y i,Z̆ i,Z i) , (46)

where V i(ε,Y i,Z̆ i,Z i) is the value function associated with incumbent agent i.

Proof. With the aid of the recent development in [12], the proof then follows for
the verification theorem herein. ��

4 Person-by-Person Equilibrium Strategies

The aim of the present section is to recognize the optimization problem of Mayer
form existing at incumbent agent i and i ∈I , which can therefore be solved by an
adaptation of the Mayer-form verification theorem. To this end the terminal time
and states (ε,H i

f ,D̆
i
f ,D

i
f ) of the dynamics (38)–(40) are now parameterized as

(ε,Y i,Z̆ i,Z i) for a broader family of optimization problems.
To apply properly the dynamic programming approach based on the HJB

mechanism, together with the verification result, the solution procedure should be
formulated as follows. For any given interior point (ε,Y i,Z̆ i,Z i) of the reachable
set Qi and i ∈ I , at which the following real-valued function is considered as a
candidate solution W i(ε,Y i,Z̆ i,Z i) to the HJB equation (44). Because the initial
state zi

0, which is arbitrarily fixed represents both quadratic and linear contributions
to the performance index (41) of Mayer type, it is therefore concluded that the value
function is linear and quadratic in zi

0. Thus, a candidate function W i ∈ C 1(t0, t f ;R)
for the value function is of the form

W i(ε,Y i,Z̆ i,Z i) = (zi
0)

T
ki

∑
r=1

μ i
r(Y

i
r +E i

r (ε))zi
0

+ 2(zi
0)

T
ki

∑
r=1

μ i
r(Z̆

i
r + T̆ i

r (ε))+
ki

∑
r=1

μ i
r(Z

i
r +T i

r (ε)) (47)

whereby the parametric functions of time E i
r ∈ C 1(t0, t f ;R2∑

Ni
j=1 n j×2∑

Ni
j=1 n j ), T̆ i

r ∈
C 1(t0, t f ;R2∑

Ni
j=1 n j ), and T i

r ∈ C 1([t0, t f ];R) are yet to be determined.
Moreover, it can be shown that the derivative of W i(ε,Y i,Z̆ i,Z i) with respect

to time ε is
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d
dε

W i(ε,Y i,Z̆ i,Z i) = (zi
0)

T
ki

∑
r=1

μ i
r[F

i
r(ε,Y

i,Ki)+
d

dε
E i

r (ε)]z
i
0

+ 2(zi
0)

T
ki

∑
r=1

μ i
r[Ğ

i
r (ε,Y

i)+ d
dε

T̆ i
r (ε)]

+
ki

∑
r=1

μ i
r[G

i
r (ε,Y

i)+
d

dε
T i

r (ε)] . (48)

The substitution of this candidate (47) for the value function into the HJB equa-
tion (44) and making use of (48) yield

0 = min
Ki∈Ki

{
(zi

0)
T

ki

∑
r=1

μ i
r[F

i
r(ε,Y

i,Ki)+
d

dε
E i

r (ε)]z
i
0

+ 2(zi
0)

T
ki

∑
r=1

μ i
r[Ğ

i
r (ε,Y i)+ d

dε
T̆ i

r (ε)]+
ki

∑
r=1

μ i
r[G

i
r (ε,Y i)+

d
dε

T i
r (ε)]

}
.

(49)

Now the aggregate matrix coefficients Fi(·) and Ni(·) of the aggregate dynamics
(17) are partitioned to conform with the n-dimensional structure of (6) by means of

IT
0 �

[
I 0

]
, IT

1 �
[

0 I
]
,

where I is an ∑Ni
j=1 n j×∑Ni

j=1 n j identity matrix and

Fi(·) = I0(Ai(·)+Bi(·)Ki(·))IT
0 + I0Li(·)Ci(·)IT

1 + I1(Ai(·)−Li(·)Ci(·))IT
1 (50)

Ni(·) = I0(Qi(·)+KT
i (·)Ri(·)Ki(·))IT

0 + I0Qi(·)IT
1 + I1Qi(·)IT

0 + I1Qi(·)IT
1 . (51)

Taking the gradient with respect to Ki of the expression within the bracket of (49)
yield the necessary conditions for an extremum of risk-value performance index
(41) on the time interval [t0,ε]

Ki =−R−1
i (ε)BT

i (ε)I
T
0

ki

∑
r=1

μ̂ i
rY

i
r I0((I

T
0 I0)

−1)T , i ∈I (52)

where μ̂ i
r � μ i

r/μ i
1 for μ i

1 > 0. With the feedback Nash strategy (52) replaced in

the expression of the bracket (49) and having
{
Y i

r

}ki

r=1 evaluated on the optimal

solution trajectories (38)–(40), the time-dependent functions E i
r (ε), T̆ i

r (ε) and
T i

r (ε) are therefore chosen such that the sufficient condition (45) in the verification
theorem is satisfied in the presence of the arbitrary value of zi

0; for example,
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d
dε

E i
1(ε) = (Fi

∗)
T (ε)H i

1∗(ε)+H i
1∗(ε)F

i
∗(ε)+Ni

∗(ε)

d
dε

E i
r (ε) = (Fi

∗)
T (ε)H i

r∗(ε)+H i
r∗(ε)F

i
∗(ε)

+
r−1

∑
s=1

2r!
s!(r− s)!

H i
s∗(ε)G

i(ε)W i(Gi)T (ε)H i
r−s∗(ε), 2≤ r ≤ ki

and

d
dε

T̆ i
r (ε) = H i

r∗(ε)E
i(ε)u∗−i(ε) , 1≤ r ≤ ki

and, finally

d
dε

T i
1 (ε) = Tr

{
H i

1∗(ε)G
i(ε)W i(Gi)T (ε)

}− (u∗−i)
T (ε)Mi(ε)u∗−i(ε)

d
dε

T i
r (ε) = Tr

{
H i

r∗(ε)G
i(ε)W i(Gi)T (ε)

}
, 2≤ r ≤ ki

with the initial-value conditions E i
r (t0) = 0, T̆ i

r (t0) = 0 and T i
r (t0) = 0 for

1≤ r ≤ ki. Therefore, the sufficient condition (45) of the verification theorem is
satisfied so that the extremizing feedback strategy (52) becomes optimal.

Therefore, the subsequent result for risk-bearing decisions is already proved
and thus summarized for each incumbent agent i and i ∈ I ; who autonomously
selects K∗i for its person-by-person equilibrium (or equivalently, feedback Nash
decision policy) strategy in presence of its immediate neighbors’ feedback Nash
policy parameters K∗−i, as in Fig. 1.

Theorem 5 (Person-by-Person Equilibrium Policies for Distributed Control).
Consider the linear-quadratic class of distributed stochastic systems whose descrip-
tions are governed by (6)–(13) and subject to the assumption of (Ai,Bi) and (Ai,Ci)
for i ∈ I uniformly stablizable and detectable. Assume that incumbent systems
or agents are constrained to admissible decision laws ui(·) = Ki(·)ẑi(·), where the
conditional mean estimates ẑi(·) are governed by the decentralized state-estimation
dynamics (9). Further let incumbent agents i select ki ∈ N and the sequence
of nonnegative coefficients μ i = {μ i

r ≥ 0}ki

r=1 with μ i
1 > 0. Then, there exists a

person-by-person equilibrium which strives to optimize the risk-value awareness
performance indices (41); e.g.,

ui
∗(t) = K∗i (t)ẑ

∗
i (t), t � t0 + t f − τ (53)

K∗i (τ) =−R−1
i (τ)BT

i (τ)I
T
0

ki

∑
r=1

μ̂ i
rH

i
r∗(τ) I0((I

T
0 I0)

−1)T , i ∈I (54)
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Fig. 1 Unified framework of measuring risk judgments and modeling choices and decisions

wherein the parametric design freedom through μ̂ i
r represent the preferences toward

specific summary statistical measures; e.g., mean, variance, skewness, etc. are
chosen by incumbent agent i for performance reliability; whereas the optimal
solutions H i

r∗(·) satisfy the backward-in-time matrix-valued differential equations

d
dτ

H i
1∗(τ) =−(Fi

∗)
T (τ)H i

1∗(τ)−H i
1∗(τ)F

i
∗(τ)−Ni

∗(τ) , H i
1∗(t f ) = Ni

f (55)

d
dτ

H i
r∗(τ) =−(Fi

∗)
T (τ)H i

r∗(τ)−H i
r∗(τ)F

i
∗(τ)

−
r−1

∑
s=1

2r!
s!(r− s)!

H i
s∗(τ)G

i(τ)W i(Gi)T (τ)H i
r−s∗(τ), H

i
r∗(t f )

= 0, 2≤ r ≤ ki . (56)
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In addition, the decentralized state estimates ẑ∗i (t) associated with incumbent agent
i and i ∈ I when the person-by-person equilibrium policy (53) are applied, are
satisfying the forward-in-time vector-valued differential equation with ẑ∗i (t0) = z0

i

dẑ∗i (t) = (Ai(t)ẑ
∗
i (t)+Bi(t)u

∗
i (t)+ u∗−i(t))dt +Li(t)[dy∗i (t)−Ci(t)ẑ

∗
i (t)dt] (57)

and

dz∗i (t) = (Ai(t)z
∗
i (t)+Bi(t)u

∗
i (t)+ u∗−i(t)dt)dt +Gi(t)dξi(t), z∗i (t0) = z0

i (58)

u∗−i(t)dt =
Ni

∑
j=1, j �=i

B j(t)u
∗
j(t)dt + dηi(t) (59)

dy∗i (t) =Ci(t)z
∗
i (t)dt + dvi(t) (60)

whereby the decentralized filter gain Li(t) = Σi(t)CT
i (t)V

−1
i and the state-estimate

error covariance Σi(t) is determined by the forward-in-time matrix-valued differen-
tial equation with initial-value condition Σi(t0) = 0

d
dt
Σi(t) = Ai(t)Σi(t)+Σi(t)A

T
i (t)+Gi(t)ΞiG

T
i (t)+ Ii−Σi(t)C

T
i (t)V

−1
i Ci(t)Σi(t) .

Notice that to have the person-by-person equilibrium policy (53) of incumbent
agent i be defined and continuous for all τ ∈ [t0, t f ], the solutions H i

r∗(τ) to the
equations (55)–(56) when evaluated at τ = t0 must also exist. Thus, it is necessary
that H i

r∗(τ) are finite for all τ ∈ [t0, t f ). Moreover, the solutions of (55)–(56)
exist and are continuously differentiable in a neighborhood of t f . Applying the
result from [13], these solutions can further be extended to the left of t f as
long as H i

r∗(τ) remain finite. Hence, the existence of unique and continuously
differentiable solutions to (55)–(56) is certain if H i

r∗(τ) are bounded for all
τ ∈ [t0, t f ). Subsequently, the candidate value functions W i(τ,H i,D̆ i,D i) are
continuously differentiable.

5 Conclusions

The present research offers a theoretic lens and a novel approach that direct attention
towards mathematical statistics of the chi-squared random performance measures
concerned by incumbent agents of the class of distributed stochastic systems herein
and thus provide new insights into complex dynamics of performance robustness
and reliability. To account for mutual influence from immediate neighbors that give
rise to interaction complexity such as potential noncooperation, each incumbent
system or self-directed agent autonomously focuses on the search for a person-by-
person equilibrium which is in turn locally supported by noisy state observations.
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In views of performance risks, a new paradigm shift for understanding and
building decentralized person-by-person equilibrium policies for the emergence of
flexibly autonomous systems is obtained, with which the self-directed agents of
incumbent systems, who are constrained to decentralized information processing
and distributed decision making, are fully capable of implementing risk-bearing
actions and local best responses in the furtherance of their own goals.
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Static Teams and Stochastic Games

Meir Pachter and Khanh Pham

Abstract Radner’s solution of the static team decision problem is revisited.
A careful and complete statement of the static decentralized optimization problem,
also referred to as the team decision problem, is given. Decentralized optimization
is considered in the framework of nonzero-sum game theory, and the impact of the
partial information pattern on the structure of the optimal strategies is analyzed. The
complete solution of the static decentralized multivariate Quadratic Gaussian (QG)
optimization problem is obtained.

Keywords Static quadratic Gaussian team • Decentralized optimization

1 Introduction

A static stochastic decentralized optimization problem where a team consisting of
two decision makers/players is at work is considered. The cost function is

J = J(u,v,ζ ) (1)

where u ∈ Rmu and v ∈ Rmv are the two players’ respective decision vari-
ables/controls and the state of nature, ζ ∈ Rn, n ≥ 2, is a random variable whose
p.d.f. f (ζ ) is known to both players. This is the players’ prior information—it is
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public information. The random variable ζ is partitioned

ζ = (ζ1,ζ2)
T

and the information pattern is as follows. At decision time the component ζ1 is
known to the player whose control is u, the u-player, and the component ζ2 is known
to the player whose control is v, the v-player. Thus, both players have imperfect
information. The u-player is oblivious of the ζ2 component of the random variable,
which is the v-player’s private information, and consequently the strategy of the u-
player is u = u(ζ1). The v-player is oblivious of the ζ1 component of the random
variable, which is the u-player’s private information, and consequently his or her
strategy is v = v(ζ2). The players have partial, or incomplete, information.

To obtain the optimal solution/strategies of the team/decentralized optimization
problem, the following optimization problem in Hilbert space must be solved.

J∗ = min
u(ζ1),v(ζ2)

Eζ ( J(u(ζ1),v(ζ2),ζ ))

= min
u(ζ1),v(ζ2)

∫

ζ1

∫

ζ2

J(u(ζ1),v(ζ2),(ζ1,ζ2)) f (ζ1,ζ2)dζ1dζ2 (2)

The instance where the u-player is interested in minimizing the cost function (1)
whereas the v-player strives to maximize the cost (1) calls for the formulation of
a stochastic zero-sum game with incomplete information, where a saddle point in
pure strategies, in Hilbert space, is sought: the value of the game, if it exists, is

J∗ = min
u(ζ1)

max
v(ζ2)

Eζ ( J(u(ζ1),v(ζ2),ζ ) )

= min
u(ζ1)

max
v(ζ2)

∫

ζ1

∫

ζ2

J(u(ζ1),v(ζ2),(ζ1,ζ2)) f (ζ1,ζ2)dζ1dζ2 (3)

This static zero-sum game in Hilbert space is in normal form.
In both the decentralized optimization problem posed in (2) and in the zero-sum

static game formulation (3), the u- and v-players have partial information. And in
both the decentralized optimization problem and in the zero-sum game, the players
decide on their respective strategies u(·) and v(·), knowing the type of information
that will become available to them, but before the information is actually received. In
(2) and (3), the players’ strategies are of prior commitment type. This is the reason
why, although the players have partial information and consequently it stands to
reason that their respective costs are conditional on their private information and
therefore they have different costs, the game (3) is nevertheless zero-sum. And for
the same reason, the solution of the decentralized optimization problem (2) entails
the minimization of just one cost functional.

The decentralized stochastic static optimization problem in Hilbert space (2),
referred to as a team decision problem, was addressed by Radner in his pioneering
paper [1]. The present work could aptly be named “variations on a team by Radner.”
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Since a strong interest in Witsenhausen’s counterexample from 1968 [2] persists to
this day, it is important to revisit Radner’s 1962 paper. Indeed, after the appearance
of Radner’s paper and until the publication of Witsenhausen’s counterexample, it
was widely believed in the controls community that the linear quadratic Gaussian
(LQG) paradigm is a guarantor of the applicability of the separation, or, certainty
equivalence, principle, and, as in LQG optimal control, the state is Gaussian
distributed so that the sufficient statistics are linear in the measurements/information
and are provided by linear Kalman filters. Consequently, the players’ optimal
strategies will be linear in the sufficient statistic, and in particular, the linear state
estimate. However, Radner showed in [1] that in the static Quadratic Gaussian (QG)
optimization problem with incomplete information, although the players’ optimal
strategies are affine in the information, the separation, or, certainty equivalence,
principle does not apply. And in [2] Witsenhausen showed that in the simplest
decentralized dynamic LQG optimal control problem neither does the separation
principle apply, nor are the optimal strategies linear in the measurements. The
bottom line: Radner’s paper [1] relates to Witsenhausen’s paper [2] like the Statics
and Dynamics fields in Mechanical Engineering. Thus, with a view to also obtaining
a better understanding of Witsenhausen’s counterexample, it is instructive to revisit
Radner’s work and closely examine the informational and game theoretic aspects of
the decentralized static QG optimization problem/team decision problem.

The article is organized as follows. In Sect. 2 the decentralized optimization
problem is analyzed using the concept of delayed commitment strategies and
necessary conditions for the existence of a solution are obtained. The necessary
conditions derived in Sect. 2 are used in Sect. 3 to directly obtain the solution of
the decentralized static multivariate QG optimization problem. The applicability of
the separation principle/certainty equivalence is discussed in Sect. 4. The necessary
and sufficient conditions for the existence of a solution of the decentralized static
multivariate QG optimization problem are discussed in Sect. 5. The solution of the
decentralized static multivariate QG optimization problem using the concept of
prior commitment strategies is presented in Sect. 6. It is shown that although in the
static case the delayed commitment and prior commitment strategies are equivalent,
when the concept of prior commitment strategies is used, the strategies are harder
to derive. Finally, in Sect. 7 the decentralized static multivariate QG optimization
problem where the players’ information is asymmetric is solved. The structure of the
optimal solutions for cases of extreme informational asymmetry yields interesting
insights into decentralized optimal control. Conclusions are presented in Sect. 8.

2 Analysis

The solution of the static team/decentralized optimization problem pursued in this
paper is based on the following approach. Rather than tackling the Hilbert space
optimization problem (2) head on, we instead opt for a game theoretic analysis of
the decision problem on hand.



150 M. Pachter and K. Pham

Consider first the decision problem faced by the u-player after he has received the
information ζ1, but before anyone has acted. His or Her cost is evaluated as follows.

J(u)(u,v(·);ζ1) = Eζ ( J(u,v(ζ2),ζ ) | ζ1 )

= Eζ2
( J(u,v(ζ2),(ζ1,ζ2)) | ζ1 )

=
∫

ζ2

J(u,v(ζ2),(ζ1,ζ2)) f (ζ2 | ζ1)dζ2 → min
u

Similar considerations apply to the v-player: having received the ζ2 information, the
cost which the v-player strives to minimize is

J(v)(u(·),v;ζ2) = Eζ ( J(u(ζ1),v,ζ ) | ζ2 )

= Eζ1
( J(u(ζ1),v,(ζ1,ζ2)) | ζ2 )

=

∫

ζ1

J(u(ζ1),v,(ζ1,ζ2)) f (ζ1 | ζ2)dζ1 → min
v

Now, the u and v-players’ strategies are of delayed commitment type. Consequently,
although both players strive to minimize the cost function (1), since they have partial
information, their expected costs will be conditional on their private information and
will not be the same—each player minimizes his or her own cost functional. The
static team problem/decentralized optimal control problem (2) has been reformu-
lated as a stochastic nonzero-sum game with incomplete information. Hence, a Nash
equilibrium is sought. Using delayed commitment type strategies has highlighted
informational issues which are apparent in extensive-form games but are suppressed
in normal form games.

If a solution to the team/decentralized control problem in the form of a Nash
equilibrium exists, it can be obtained as follows.

The u-player’s value f unction is

(J(u)(ζ1;v∗(·)))∗ = min
u

∫

ζ2

J(u,v∗(ζ2),(ζ1,ζ2)) f (ζ2 | ζ1)dζ2 (4)

and his or her optimal strategy is obtained as follows: the u-player calculates the
vector in Rmu

u∗(ζ1) = arg min
u

∫

ζ2

J(u,v∗(ζ2),(ζ1,ζ2)) f (ζ2 | ζ1)dζ2 ∀ ζ1

The v-player’s value f unction is

(J(v)(ζ2;u∗(·)))∗ = min
v

∫

ζ1

J(u∗(ζ1),v,(ζ1,ζ2)) f (ζ1 | ζ2)dζ1 (5)
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and his or her optimal strategy is obtained as follows: the v-player calculates the
vector in Rmv

v∗(ζ2) = arg min
v

∫

ζ1

J(u∗(ζ1),v,(ζ1,ζ2)) f (ζ1 | ζ2)dζ1 ∀ ζ2

Hence, in order to determine the players’ optimal strategies, that is, the functions
u∗(·) and v∗(·), the equation in u ∈ Rmu ,

∫ ∂
∂u

J(u,v∗(ζ2),(ζ1,ζ2)) f (ζ2 | ζ1)dζ2 = 0 ∀ζ1 (6)

must be solved ∀ζ1, and in this way the u-player’s strategy u∗(ζ1) is obtained. At
the same time the equation in v ∈ Rmv

∫ ∂
∂v

J(u∗(ζ1),v,(ζ1,ζ2)) f (ζ1 | ζ2)dζ1 = 0 ∀ζ2 (7)

must be solved ∀ζ2, and in this way the v-player’s strategy v∗(ζ2) is obtained. In
addition, the following second-order conditions/inequalities must hold

∫ ∂ 2

∂u2 J(u,v∗(ζ2),(ζ1,ζ2)) |u∗(ζ1)
f (ζ2 | ζ1)dζ2 > 0 ∀ζ1 (8)

and

∫ ∂ 2

∂v2 J(u∗(ζ1),v,(ζ1,ζ2)) |v∗(ζ2) f (ζ1 | ζ2)dζ1 > 0 ∀ζ2 (9)

A set of two coupled functional equations (6) and (7) has been derived whose
solution, if it exists, yields the u- and v-players’ respective Nash strategies u∗(ζ1)
and v∗(ζ2). Evidently, the solution of static team/decentralized optimization prob-
lems and/or nonzero-sum stochastic games calls for the solution of a somewhat
nonconventional mathematical problem, (6) and (7). The culprit is the partial
information pattern.

At this juncture it is apparent that the solution concept advanced for the original
team/decentralized control problem is a Nash equilibrium in the nonzero-sum
stochastic game (4) and (5). Using delayed commitment strategies, a Person-By-
Person Satisfactory (PBPS) minimization is pursued: the strategy u∗(·) of the
u-player is best, given that the v-player uses the strategy v∗(·), and the strategy
v∗(·) of the v-player must be best, given that the u-player uses the strategy u∗(·).
Thus, the derived strategies (u∗(·),v∗(·)) are person-by-person minimal. This is so
because the players’ outcomes provided by (u∗(·),v∗(·)) cannot be improved by
unilaterally changing, say, u∗(·) alone; and, vice versa, the strategy (u∗(·),v∗(·))
cannot be improved by changing v∗(·) alone—this being the essence of a Nash
equilibrium. Now, in nonzero-sum games, the calculated Nash equilibrium better



152 M. Pachter and K. Pham

be unique, for the solution to be applicable. However, in the absence of conflict of
interest, as is the case in our original team/decentralized optimization problem (2),
uniqueness of the Nash equilibrium solution is not an issue and the players will
naturally settle on that particular Nash equilibrium (u∗(·),v∗(·)) which yields the
minimal expected cost—we here refer to the calculated expected cost (2), namely

J∗ = J(u∗(·),v∗(·)) = Eζ ( J(u∗(ζ1),v
∗(ζ2),ζ ) )

=

∫

ζ1

∫

ζ2

J(u∗(ζ1),v
∗(ζ2),(ζ1,ζ2))dζ1dζ2 (10)

Uniqueness of the obtained Nash equilibrium follows if the cost function (1) is
convex in u and in v. This is so because the weighted sum of convex functions is
convex—see (4) and (5).

Clearly, the optimal solution of the original team/decentralized optimization
problem (2), if it exists, is PBPS, that is, it is a Nash equilibrium. However, having
found an even unique Nash equilibrium of the nonzero-sum stochastic game (4)
and (5) does not guarantee optimality in the original team/decentralized control
problem, where one is interested in the expected cost (2). To answer the question
of the existence of an optimal solution of the original team/decentralized control
problem, the optimization problem (2) must be considered in a Hilbert space setting,
as in [1], and convexity in (u,v) of the cost function (1) is required.

In summary, if a solution of the team/decentralized optimization problem exists,
the above outlined solution of the attendant nonzero-sum stochastic game (4) and
(5) will yield its optimal solution. However, should the cost function (1) be convex
in u and v, but not in (u,v), then, while a Nash equilibrium in the nonzero-sum
game (4) and (5) might exist, a solution of the decentralized optimization problem
(2) might not exist.

3 Static Quadratic Gaussian Team

Using the theory developed in Sect. 2, the complete solution of the multivariate QG
team decision/decentralized optimization problem is now derived.

The payoff function (1) is quadratic:

J(u,v,ζ ) =−uT R(u)u− vT R(v)v+ 2vTR(u,v)u+ 2(uT ,vT )

(
ζ1

ζ2

)

and the components of the random variable ζ are ζ1 ∈ Rm, ζ2 ∈ Rn−m. The u- and
v-players’ control variables are u ∈ Rm and v ∈ Rn−m and the respective controls’
effort weighing matrices

R(u) > 0, R(v) > 0;

R(u,v) is an (n−m)×m coupling matrix.
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We calculate the v-player’s payoff

J(v)(v,ζ2;u(·)) = 2vTζ2− vT R(v)v+ 2vT R(u,v)Eζ1
( u(ζ1) | ζ2 )

+Eζ1
( 2uT (ζ1)ζ1− uT (ζ1)R

(u)u(ζ1) | ζ2 ) (11)

Differentiation in v yields the unique optimal control response to the u-player’s
strategy u(ζ1),

v∗(ζ2) = (R(v))−1ζ2 +(R(v))−1R(u,v)Eζ1
( u(ζ1) | ζ2 ) ∀ζ2 (12)

The u-player’s payoff is

J(u)(u,ζ1;v(·)) = 2uTζ1− uT R(u)u+ 2uT(R(u,v))T Eζ2
( v(ζ2) | ζ1 )

+Eζ2
( 2vT (ζ2)ζ2− vT (ζ2)R

(v)v(ζ2) | ζ1 ) (13)

and differentiation in u yields the unique optimal control response to the v-player’s
strategy v(ζ2),

u∗(ζ1) = (R(u))−1ζ1 +(R(u))−1(R(u,v))T Eζ2
( v(ζ2) | ζ1 ) ∀ζ1 (14)

Furthermore, the positive definiteness of the controls’ effort weighing matrices
guarantees that the conditions (8) and (9) hold.

At this point we assume that the p.d.f. f of the random variable ζ is a multivariate
normal distribution, that is,

f (ζ ) =
1√

(2π)n | det(P) | exp−
1
2 (ζ−ζ )T P−1(ζ−ζ )

and the covariance matrix P is real, symmetric, and positive definite. In other words,
the random variable

ζ =

(
ζ1

ζ2

)
∼N

((
ζ 1

ζ 2

)
,

[
P1,1 P1,2

PT
1,2 P2,2

])
(15)

In the special case of a bivariate normal distribution with ζ1,ζ2 ∈ R1,

ζ ∼N

((
ζ 1

ζ 2

)
,

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

])
(16)

and −1 < ρ < 1.
The following is well known.
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Lemma 1. Consider the multivariate normal distribution (15). The distribution of
ζ1 conditional on ζ2 is

ζ1 ∼N (ζ 1 +P1,2P−1
2,2 (ζ2− ζ 2),P1,1−P1,2P−1

2,2 PT
1,2) (17)

and the distribution of ζ2 conditional on ζ1 is

ζ2 ∼N (ζ 2 +PT
1,2P−1

1,1 (ζ1− ζ 1),P2,2−PT
1,2P−1

1,1 P1,2) (18)

The marginal p.d.f.s f1(ζ1) and f2(ζ2) are also Gaussian, that is,

ζ1 ∼N (ζ 1,P1,1) (19)

and

ζ2 ∼N (ζ 2,P2,2) (20)

In the special case of a bivariate normal distribution (16), the distribution of ζ1

conditional on ζ2 is

ζ1 ∼N
(
ζ 1 +ρ

σ1

σ2
(ζ2− ζ 2),(1−ρ2)σ2

1

)
(21)

and the distribution of ζ2 conditional on ζ1 is

ζ2 ∼N
(
ζ 2 +ρ

σ2

σ1
(ζ1− ζ 1),(1−ρ2)σ2

2

)
(22)

The marginal p.d.f.s f1(ζ1) and f2(ζ2) are

ζ1 ∼N (ζ 1,σ
2
1 ) (23)

and

ζ2 ∼N (ζ 2,σ
2
2 ) (24)

Inserting (18) into (14) yields

u∗(ζ1) = (R(u))−1ζ1

+(R(u))−1(R(u,v))T Ew1( v(ζ 2 +PT
1,2P−1

1,1 (ζ1− ζ 1)+w1) )

where

w1 ∼N (0,P2,2−PT
1,2P−1

1,1 P1,2)
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and inserting (17) into (12) yields

v∗(ζ2) = (R(v))−1ζ2

+(R(v))−1R(u,v)Ew2( u(ζ 1 +P1,2P−1
2,2 (ζ2− ζ 2)+w2) )

where

w2 ∼N (0,P1,1−P1,2P−1
2,2 PT

1,2)

Using the convolution notation we obtain

u∗(ζ1) = (R(u))−1ζ1

+(R(u))−1(R(u,v))T GP2,2−PT
1,2P−1

1,1 P1,2
∗ v(PT

1,2P−1
1,1 ζ1 + ζ2−PT

1,2P−1
1,1 ζ 1)

where the function GP2,2−PT
1,2P−1

1,1 P1,2
is the p.d.f. of the Gaussian random variable w1.

Similarly

v∗(ζ2) = (R(v))−1ζ2

+(R(v))−1R(u,v)GP1,1−P1,2P−1
2,2 PT

1,2
∗ u(P1,2P−1

2,2 ζ2 + ζ1−P1,2P−1
2,2 ζ 2)

where the function GP1,1−P1,2P−1
2,2 PT

1,2
is the p.d.f. of the Gaussian random variable w2.

Hence, the optimal strategies satisfy the equations

u∗(ζ1) = (R(u))−1ζ1

+(R(u))−1(R(u,v))T GP2,2−PT
1,2P−1

1,1 P1,2
∗ v∗(PT

1,2P−1
1,1 ζ1 + ζ 2−PT

1,2P−1
1,1 ζ 1)

(25)

and

v∗(ζ2) = (R(v))−1ζ2

+(R(v))−1R(u,v)GP1,1−P1,2P−1
2,2 PT

1,2
∗ u∗(P1,2P−1

2,2 ζ2+ζ 1−P1,2P−1
2,2 ζ 2) (26)

Equations (25) and (26) constitute a linear system of two convolution-type Fredholm
integral equations of the second kind with Gaussian kernels, in the unknown
functions/optimal strategies u∗(·) and v∗(·). Moreover, the forcing functions are
linear in their arguments. In view of these observations, we apply

Ansatz 2. The u- and v-players’ optimal strategies are affine, that is,

u∗(ζ1) = K(u)ζ1 + c(u) (27)
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and

v∗(ζ2) = K(v)ζ2 + c(v) (28)

��
Inserting the strategies (27) and (28) into the respective (25) and (26), we

calculate

K(v)ζ2 + c(v) = (R(v))−1ζ2 +(R(v))−1R(u,v)K(u)(P1,2P−1
2,2 ζ2 + ζ 1−P1,2P−1

2,2 ζ 2)

+(R(v))−1R(u,v)c(u) ∀ ζ2

and

K(u)ζ1 + c(u) = (R(u))−1ζ1 +(R(u))−1(R(u,v))T K(v)(PT
1,2P−1

1,1 ζ1 + ζ2−PT
1,2P−1

1,1 ζ 1)

+(R(u))−1(R(u,v))T c(v) ∀ ζ1

We conclude that the following four linear equations in the four unknowns K(u)
m×m,

K(v)
(n−m)×(n−m)

, c(u) ∈ Rm and c(v) ∈ Rn−m hold:

K(v) = (R(v))−1(I +R(u,v)K(u)P1,2P−1
2,2 ) , (29)

K(u) = (R(u))−1(I +(R(u,v))T K(v)PT
1,2P−1

1,1 ) , (30)

c(v) = (R(v))−1R(u,v)K(u)(ζ 1−P1,2P−1
2,2 ζ 2)+ (R(v))−1R(u,v)c(u) , (31)

and

c(u) = (R(u))−1(R(u,v))T K(v)(ζ 2−PT
1,2P−1

1,1 ζ 1)+ (R(u))−1(R(u,v))T c(v) (32)

Combining (29) and (30) yields the respective linear, Lyapunov type, matrix
equations for K(u) and K(v),

R(u)K(u)P1,1− (R(u,v))T (R(v))−1R(u,v)K(u)P1,2P−1
2,2 PT

1,2

= P1,1 +(R(u,v))T (R(v))−1PT
1,2 (33)

and

R(v)K(v)P2,2−R(u,v)(R(u))−1(R(u,v))T K(v)PT
1,2P−1

1,1 P1,2 = P2,2 +R(u,v)(R(u))−1P1,2

(34)
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Solving the linear Lyapunov-type matrix equations (33) and (34) yields the optimal
gains K(u) and K(v), whereupon the constant vectors c(u) ∈ Rmu and c(v) ∈ Rmv are

(
c(u)

c(v)

)
=

[
R(u) −(R(u,v))T

−R(u,v) R(v)

]−1
(
(R(u,v))T K(v)(ζ 2−PT

1,2P−1
1,1 ζ 1)

R(u,v)K(u)(ζ 1−P1,2P−1
2,2 ζ 2)

)

Concerning the calculation of the intercepts c(u) and c(v), the following holds.
A necessary condition for the existence of a solution to the multivariate

decentralized QG optimization problem is that the Schur complements R(u) −
(R(u,v))T (R(v))−1R(u,v) and R(v)−R(u,v)(R(u))−1(R(u,v))T are nonsingular.

In the special case where the controls are scalars and the p.d.f. of the random
variable ζ is the bivariate normal distribution (16), the optimal gains are

K(u) =
R(v) +ρ σ2

σ1
R(u,v)

R(u)R(v)−ρ2(R(u,v))2
(35)

and

K(v) =
R(u) +ρ σ1

σ2
R(u,v)

R(u)R(v)−ρ2(R(u,v))2
(36)

The intercepts are the solution of the linear system

[
R(u) −R(u,v)

R(u,v) −R(v)

](
c(u)

c(v)

)
= R(u,v)

(
(ζ 2−ρ σ2

σ1
ζ 1)K

(v)

−(ζ 1−ρ σ1
σ2
ζ 2)K

(u)

)

=
R(u,v)

R(u)R(v)−ρ2(R(u,v))2

(
(ζ 2−ρ σ2

σ1
ζ 1)(R

(u) +ρ σ1
σ2

R(u,v))

−(ζ 1−ρ σ1
σ2
ζ 2)(R

(v) +ρ σ2
σ1

R(u,v))

)

so that

c(u) =
R(u,v)

(R(u)R(v)−ρ2(R(u,v))2)((R(u,v))2−R(u)R(v))
{[

(ρ2− 1)R(u,v)R(v)−ρ σ2

σ1
((R(u,v))2

−R(u)R(v))
]
ζ 1 +[ρ2(R(u,v))2−R(u)R(v)]ζ 2

}
(37)
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and

c(v) =
R(u,v)

(R(u)R(v)−ρ2(R(u,v))2)((R(u,v))2−R(u)R(v))
{[

(ρ2− 1)R(u,v)R(u)−ρ σ1

σ2
((R(u,v))2

−R(u)R(v))
]
ζ 2 +[ρ2(R(u,v))2−R(u)R(v)]ζ 1

}
(38)

The following holds.

Proposition 3. The necessary and sufficient conditions for the existence of a solu-
tion of the scalar decentralized QG optimization problem using delayed commitment
strategies are

R(u) > 0,

R(v) > 0,

R(u)R(v) �= (R(u,v))2,

and

R(u)R(v) �= ρ2(R(u,v))2

The u- and v-players’ optimal strategies are specified in (35)–(38) and are deter-
mined by the scalar problem parameters R(u), R(v), R(u,v), ζ 1, ζ 2, σ1, σ2, and ρ .
The optimal solution (35)–(38) is symmetric. �

Corollary 4. In the special scalar case where the random variable’s components
ζ1 and ζ2 are uncorrelated and ρ = 0, the optimal strategies are

u∗(ζ1) =
1

R(u)
ζ1 +

R(u,v)

R(u)R(v)− (R(u,v))2

(
R(u,v)

R(u)
ζ 1 + ζ 2

)

and

v∗(ζ2) =
1

R(v)
ζ2 +

R(u,v)

R(u)R(v)− (R(u,v))2

(
R(u,v)

R(v)
ζ 2 + ζ1

)

Also, in the special case where in the quadratic cost function there is no coupling
and R(u,v) = 0, the optimal strategies are linear:

u∗(ζ1) =
1

R(u)
ζ1 (39)
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and

v∗(ζ2) =
1

R(v)
ζ2 (40)

�

4 Certainty Equivalence

We briefly digress and first examine the centralized static QG optimization problem.

4.1 Centralized QG Optimization Problem

In the centralized static QG optimization problem where both players have complete
knowledge of the state of nature (ζ1,ζ2)

T , a necessary and sufficient condition for
the existence of an optimal solution is

M ≡
[

R(u) −(R(u,v))T

−R(u,v) R(v)

]
> 0

and the optimal controls (u∗,v∗)T are

(
u∗

v∗

)
=

[
R(u) −(R(u,v))T

−R(u,v) R(v)

]−1(ζ1

ζ2

)

We shall require the following.

Lemma 5. Consider the blocked symmetric matrix

M =

[
M1,1 M1,2

MT
1,2 M2,2

]

and let

N ≡M−1

Assuming the required matrix inverses exit, the inverse matrix

N =

[
N1,1 N1,2

NT
1,2 N2,2

]
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where the blocks

N1,1 = M−1
1,1 [I+M1,2(M2,2−MT

1,2M−1
1,1 M1,2)

−1MT
1,2M−1

1,1 ]

N1,2 = M−1
1,1 M1,2(M

T
1,2M−1

1,1 M1,2−M2,2)
−1

N2,2 = −(MT
1,2M−1

1,1 M1,2−M2,2)
−1

An alternative representation in blocked form of the inverse matrix N is

N1,1 = (M1,1−M1,2M−1
2,2 MT

1,2)
−1

N1,2 = (M1,2M−1
2,2 MT

1,2−M1,1)
−1M1,2M−1

2,2

N2,2 = M−1
2,2 +M−1

2,2MT
1,2(M1,1−M1,2M−1

2,2 MT
1,2)
−1M1,2M−1

2,2

Proof. By inspection, and the application of the Matrix Inversion Lemma. ��
We shall also require

Lemma 6. The real symmetric matrix

M =

[
R(u) −(R(u,v))T

−R(u,v) R(v)

]

is positive definite i f f the matrices R(v) > 0, R(u) > 0 and their respective Schur
complements are positive definite, that is,

R(u)− (R(u,v))T (R(v))−1R(u,v) > 0

R(v)−R(u,v)(R(u))−1(R(u,v))T > 0 ��
In view of Lemmas 5 and 6, the following holds.

[
R(u) −(R(u,v))T

−R(u,v) R(v)

]−1

=

[
N1,1 N1,2

NT
1,2 N2,2

]

where

N1,1 = (R(u))−1[I+(R(u,v))T (R(v)−R(u,v)(R(u))−1(R(u,v))T )−1R(u,v)(R(u))−1]

N1,2 = (R(u))−1(R(u,v))T (R(v)−R(u,v)(R(u))−1(R(u,v))T )−1

N2,2 = (R(v)−R(u,v)(R(u))−1(R(u,v))T )−1
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or, alternatively,

N1,1 = (R(u)− (R(u,v))T (R(v))−1R(u,v))−1

N1,2 = (R(u)− (R(u,v))T (R(v))−1R(u,v))−1(R(u,v))T (R(v))−1

N2,2 = (R(v))−1 +(R(v))−1R(u,v)(R(u)− (R(u,v))T (R(v))−1R(u,v))−1(R(u,v))T (R(v))−1

Hence, in the centralized scenario the explicit formulae for the optimal controls
are

u∗(ζ1,ζ2) = (R(u)− (R(u,v))T (R(v))−1R(u,v))−1(ζ1 +(R(u,v))T (R(v))−1ζ2) (41)

and

v∗(ζ1,ζ2) = (R(v)−R(u,v)(R(u))−1(R(u,v))T )−1(R(u,v)(R(u))−1ζ1 + ζ2) (42)

Corollary 7. In the special case where the controls are scalars, the necessary and
sufficient conditions for the existence of an optimal solution are

R(u) > 0,

R(v) > 0,

and

R(u)R(v) > (R(u,v))2

The optimal controls are linear and the solution is symmetric:

u∗(ζ1,ζ2) =
1

R(u)R(v)− (R(u,v))2
(R(v)ζ1 +R(u,v)ζ2) (43)

v∗(ζ1,ζ2) =
1

R(u)R(v)− (R(u,v))2
(R(u,v)ζ1 +R(u)ζ2) (44)

��

4.2 Separation Principle

We now return to the decentralized QG optimization problem and ascertain the
applicability of certainty equivalence, a.k.a., the separation principle. We confine
our attention to the scalar case and a bivariate Gaussian random variable (16).

When the information available to the u-player is restricted to the ζ1 component
of the state of nature, then, according to Lemma 1, his or her Maximum Likelihood
(ML) estimate of the ζ2 component of the state of nature will be
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ζ̂2 = ζ 2 +ρ
σ2

σ1
(ζ1− ζ1)

Similarly, when the information available to the v-player is restricted to the ζ2

component of the state of nature, then, according to Lemma 1, his or her ML
estimate of the ζ1 component of the state of nature will be

ζ̂1 = ζ 1 +ρ
σ1

σ2
(ζ2− ζ2)

Replacing ζ2 in the centralized solution given by Corollary 7, (43), by the u-player’s
ML estimate ζ̂2 of ζ2 yields the u-player’s certainty equivalence-based affine
strategy

u∗(ζ1) =
1

R(u)R(v)− (R(u,v))2

{
R(v)ζ1 +R(u,v)

[
ζ 2 +ρ

σ2

σ1
(ζ1− ζ 1)

]}

=
1

R(u)R(v)− (R(u,v))2

[(
R(v) +ρ

σ2

σ1
R(u,v)

)
ζ1 +R(u,v)

(
ζ 2−ρ

σ2

σ1
ζ 1

)]

(45)

and replacing ζ1 in the centralized solution given by Corollary 7, (44), by the
v-player’s ML estimate ζ̂1 of ζ1 yields the v-player’s affine strategy

v∗(ζ2) =
1

R(u)R(v)− (R(u,v))2

{
R(u,v)

[
ζ 1 +ρ

σ1

σ2
(ζ2− ζ2)

]
+R(u)ζ2

}

=
1

R(u)R(v)− (R(u,v))2

[(
R(u) +ρ

σ1

σ2
R(u,v)

)
ζ2 +R(u,v)

(
ζ 1−ρ

σ1

σ2
ζ 2

)]

(46)

In the special case where the random variable’s components ζ1 and ζ2 are not
correlated, that is, ρ = 0, the players’ certainty equivalence-based affine strategies
are

u(ζ1) =
1

R(u)R(v)− (R(u,v))2
(R(v)ζ1 +R(u,v)ζ 2)

and

v(ζ2) =
1

R(u)R(v)− (R(u,v))2
(R(u)ζ2 +R(u,v)ζ 1)

In the special case where there is no coupling in the quadratic payoff function and
R(u,v) = 0, the players’ certainty equivalence-based strategies are (39) and (40).
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5 Discussion

Similar to the optimal strategies in the decentralized control problem, also the
certainty equivalence-based strategies (45) and (46) are affine and symmetric.
However, a comparison of the u-player’s optimal strategy which is specified in (35)
and (37), and his or her certainty equivalence-based strategy (45), and similarly, a
comparison of the v-player’s optimal strategy which is specified in (36) and (38),
and his or her certainty equivalence-based strategy (46), leads one to conclude that
certainty equivalence does not hold. This is so even when there is no correlation
and the parameter ρ = 0. Certainty equivalence holds only in the special case where
there is no coupling in the quadratic payoff function and R(u,v) = 0. This state of
affairs is attributable to the partial information pattern.

It is also interesting to contrast the conditions for the existence of a solution of
the centralized QG optimization problem and the conditions for the existence of a
solution of the decentralized QG optimization problem. We note that the solution
(41) and (42) of the centralized optimization problem can be formally derived using
the PBPS solution concept. For this we need

R(u) > 0

R(v) > 0

and the Schur complements must be nonsingular, that is,

det(R(u)− (R(u,v))T (R(v))−1R(u,v)) �= 0

and

det(R(v)−R(u,v)(R(u))−1(R(u,v))T ) �= 0

At the same time, we know that an optimal solution of the centralized optimization
problem exists iff the matrix M is positive definite. Hence, in view of Lemma 6, we
conclude that the positive definiteness of the Schur complements of the positive
definite matrices R(u) and R(v) is a necessary condition for the existence of
an optimal solution of the centralized optimization problem. At the same time,
the invertibility of the Schur complements, while not sufficient to guarantee the
existence of a solution of the centralized optimal control problem, is sufficient to
allow a solution which conforms to the PBPS solution concept-based decentralized
optimization problem—we have obtained a unique Nash solution and in the scalar
case the respective u and v-players’ Nash strategies are determined by (35), (37),
and (36), (38), respectively.

Now, in view of [1], the positive definiteness of M is sufficient for the
existence of an optimal solution of the decentralized optimization problem (2): the
necessary and sufficient condition for the existence of a solution of the centralized
optimization problem is a sufficient condition for the existence of an optimal
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solution of the decentralized problem, and moreover, the u- and v-players’ Nash
strategies determined by (35), (37), and (36), (38), respectively, are then optimal.
However, if the matrix M is not positive definite but the matrices R(u) and R(v) are
positive definite and their Schur complements are nonsingular, then while an optimal
solution to the centralized optimization problem does not exist, in the decentralized
control problem a PBPS solution concept-based unique Nash equilibrium exists.

6 Decentralized Static Quadratic Gaussian Optimization
Problem

The original formulation of the decentralized optimization problem with a quadratic
payoff functional, as formulated by Radner, (2), is considered in the special context
of the multivariate QG optimization problem:

J(u(ζ1),v(ζ2),ζ ) =
∫

ζ1

∫

ζ2

[
− uT (ζ1)R

(u)u(ζ1)− vT (ζ2)R
(v)v(ζ2)

+2vT (ζ2)R
(u,v)u(ζ1)

+2(uT (ζ1),v
T (ζ2))

(
ζ1

ζ2

)]
f (ζ1,ζ2)dζ1dζ2

=

∫

ζ1

[−uT (ζ1)R
(u)u(ζ1)+ 2uT (ζ1)ζ1] f1(ζ1)dζ1

+

∫

ζ2

[−vT (ζ2)R
(v)v(ζ2)+ 2vT (ζ2)ζ2] f2(ζ2)dζ2

+2
∫

ζ1

∫

ζ2

vT (ζ2)R
(u,v)u(ζ1) f (ζ1,ζ2)dζ1dζ2 (47)

From [1] we know that optimal prior commitment strategies u∗(·) and v∗(·) exist
and they are affine, provided the quadratic cost function is convex, that is, the matrix
M is positive definite. Thus, the u- and v-players’ strategies are parameterized as
follows:

u(ζ1) = K(u)
p ζ1 + c(u)p (48)

and

v(ζ2) = K(v)
p ζ2 + c(v)p (49)

The subscript p indicates that now the strategies are of the prior commitment type.
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Inserting the expressions (48) and (49) into (47) yields

J(K(u)
p ,K(v)

p ,c(u)p ,c(v)p ) = −Eζ1
( (K(u)

p ζ1 + c(u)p )T R(u)(K(u)
p ζ1 + c(u)p )

+2(K(u)
p ζ1 + c(u)p )Tζ1 )

−Eζ2
( (K(v)

p ζ2 + c(v)p )T R(v)(K(v)
p ζ2 + c(v)p )

+2(K(v)
p ζ2 + c(v)p )Tζ2 )

+2Eζ ( (K
(v)
p ζ2 + c(v)p )T R(u,v)(K(u)

p ζ1 + c(u)p )) (50)

The payoff (50) is a function of the parameters K(u)
p , K(v)

p , c(u)p , and c(v)p .
The payoff function is differentiated in the parameters and the derivatives are set

equal to zero. We can interchange the order of integration and differentiation. We
shall use the notation.

ei is the unit vector in the Euclidian spaces Rm or Rn−m, all of whose entries are
zeroes except entry number i.

The following calculations are needed.

Lemma 8.

∂
∂ (K(u)

p )i, j

((K(u)
p ζ1 + c(u)p )T R(u)(K(u)

p ζ1 + c(u)p ))

= 2ζT
1 e je

T
i R(u)K(u)

p ζ1 + 2ζT
1 e je

T
i R(u)c(u)p

and consequently, using the properties of the Trace operator and the fact that the
marginal p.d.f. of ζ1 is Gaussian with expectation ζ 1 and covariance P1,1, we
calculate

Eζ1

(
∂

∂ (K(u)
p )i, j

((K(u)
p ζ1 + c(u)p )T R(u)(K(u)

p ζ1 + c(u)p ))

)
= 2eT

i R(u)K(u)
p P1,1e j

+2ζ
T
1 e je

T
i R(u)K(u)

p ζ 1

+2ζ
T
1 e je

T
i R(u)c(u)p

= 2eT
i R(u)K(u)

p P1,1e j

+2eT
j ζ 1 · eT

i R(u)K(u)
p ζ 1

+2eT
j ζ 1 · eT

i R(u)c(u)p ,

i = 1, . . . ,m, j = 1, . . . ,m
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Similarly,

∂
∂ (K(v)

p )i, j

((K(v)
p ζ2 + c(v)p )T R(v)(K(v)

p ζ2 + c(v)p ))

= 2ζT
2 e je

T
i R(v)K(v)

p ζ2 + 2ζT
2 e je

T
i R(v)c(v)p

and consequently

Eζ2

(
∂

∂ (K(v)
p )i, j

(K(v)
p ζ2 +c(v)p )T R(v)(K(v)

p ζ2 +c(v)p )

)
= 2eT

i R(v)K(v)
p P2,2e j

+2ζ T
2 e je

T
i R(v)K(v)

p ζ 2

+2ζ T
2 e je

T
i R(v)c(v)p

= 2eT
i R(v)K(v)

p P2,2e j

+2eT
j ζ 2 · eT

i R(v)K(v)
p ζ 2

+2eT
j ζ 2 · eT

i R(v)c(v)p ,

i = 1, . . . ,n−m, j = 1, . . . ,n−m

In addition

∂
∂ (K(u)

p )i, j

(ζT
1 (K(u)

p ζ1 + c(u)p )) = ζT
1 eie

T
j ζ1

and consequently

Eζ1

(
∂

∂ (K(u)
p )i, j

(ζT
1 (K(u)

p ζ1 + c(u)p ))

)
= eT

j P1,1ei + eT
i ζ 1 · eT

j ζ 1 ,

i = 1, . . . ,m, j = 1, . . . ,m

Similarly,

∂
∂ (K(v)

p )i, j

(ζT
2 (K(v)

p ζ2 + c(v)p )) = eT
i ζ2 · eT

j ζ2

and consequently

Eζ2

(
∂

∂ (K(v)
p )i, j

(ζT
2 (K(v)

p ζ2 + c(v)p ))

)
= eT

j P2,2ei + eT
i ζ 2 · eT

j ζ 2 ,

i = 1, . . . ,n−m, j = 1, . . . ,n−m
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Also,

∂

∂ (K(u)
p )i, j

((K(v)
p ζ2 + c(v)p )T R(u,v)(K(u)

p ζ1 + c(u)p )) = (K(v)
p ζ2 + c(v)p )T R(u,v)ei · eT

j ζ1

and consequently

Eζ

(
∂

∂ (K(u)
p )i, j

((K(v)
p ζ2 +c(v)p )T R(u,v)(K(u)

p ζ1 +c(u)p ))

)
= eT

j ζ 1 · eT
i (R

(u,v))T c(v)p

+eT
j ζ 1 · eT

i (R
(u,v))T K(v)

p ζ 2

+eT
i (R

(u,v))T K(v)
p P2,1e j ,

i = 1, . . . ,m, j = 1, . . . ,m

Similarly,

∂
∂ (K(v)

p )i, j

((K(v)
p ζ2 + c(v)p )T R(u,v)(K(u)

p ζ1 + c(u)p )) = (K(u)
p ζ1 + c(u)p )T R(u,v)eie

T
j ζ2

and consequently

Eζ

(
∂

∂ (K(v)
p )i, j

((K(v)
p ζ2 +c(v)p )T R(u,v)(K(u)

p ζ1 +c(u)p ))

)
= ζT

2 e je
T
i (R

(u,v))T c(u)p

+ζT
2 e je

T
i (R

(u,v))T K(u)
p ζ 1

+eT
i (R

(u,v))T K(u)
p P1,2e j

= eT
j ζ 2 · eT

i (R
(u,v))T c(u)p

+eT
j ζ 2 · eT

i (R
(u,v))T K(u)

p ζ 1

+eT
i (R

(u,v))T K(u)
p P1,2e j ,

i = 1, . . . ,n−m, j = 1, . . . ,n−m

Furthermore,

∂
∂ (c(u)p )

((K(u)
p ζ1 + c(u)p )T R(u)(K(u)

p ζ1 + c(u)p )) = 2R(u)c(u)p + 2R(u)K(u)
p ζ1

and consequently

Eζ1

(
∂

∂c(u)p

((K(u)
p ζ1 + c(u)p )T R(u)(K(u)

p ζ1 + c(u)p ))

)
= 2R(u)c(u)p + 2R(u)K(u)

p ζ 1



168 M. Pachter and K. Pham

Similarly,

∂
∂ (c(v)p

((K(v)
p ζ2 + c(v)p )T R(v)(K(v)

p ζ2 + c(v)p )) = 2R(v)c(v)p + 2R(v)K(v)
p ζ2

and consequently

Eζ2

(
∂

∂c(v)p

((K(v)
p ζ2 + c(v)p )T R(v)(K(v)

p ζ2 + c(v)p ))

)
= 2R(v)c(v)p + 2R(v)K(v)

p ζ 2

In addition,

∂
∂c(u)p

((K(u)
p ζ1 + c(u)p )Tζ1) = ζ1

and consequently

Eζ1

(
∂c(u)p

∂
((K(u)

p ζ1 + c(u)p )Tζ1)

)
= ζ 1

Similarly,

∂
∂c(v)p

((K(v)
p ζ2 + c(v)p )Tζ2) = ζ2

and consequently

Eζ2

(
∂

∂c(v)p

((K(v)
p ζ2 + c(v)p )Tζ2)

)
= ζ 2

Finally,

∂
∂c(u)p

((K(v)
p ζ2 + c(v)p )T R(u,v)(K(u)

p ζ1 + c(u)p )) = (R(u,v))T (K(v)
p ζ2 + c(v)p )

and consequently

Eζ

(
∂

∂c(u)p

((K(v)
p ζ2 + c(v)p )T R(u,v)(K(u)

p ζ1 + c(u)p ))

)
= (R(u,v))T K(v)

p ζ 2 +(R(u,v))T c(v)p
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Similarly,

∂
∂c(v)p

((K(v)
p ζ2 + c(v)p )T R(u,v)(K(u)

p ζ1 + c(u)p )) = R(u,v)(K(u)
p ζ1 + c(u)p )

and consequently

Eζ

(
∂

∂c(v)p

((K(v)
p ζ2 + c(v)p )T R(u,v)(K(u)

p ζ1 + c(u)p ))

)
= R(u,v)K(u)

p ζ 1 +R(u,v)c(u)p

�

The optimality conditions and Lemma 8 yield the system of n(n+1)−2m(n−m)
linear equations

eT
i R(u)K(u)

p P1,1e j +(eT
j ζ 1) · eT

i R(u)K(u)
p ζ 1

+(eT
j ζ 1) · eT

i R(u)c(u)p − (eT
j ζ 1) · eT

i (R
(u,v))T c(v)p

−(eT
j ζ 1) · eT

i (R
(u,v))T K(v)

p ζ 2− eT
i (R

(u,v))T K(v)
p P2,1e j

= eT
j P1,1ei +(eT

i ζ 1) · (eT
j ζ 1) (51)

where ei,e j ∈ Rm and i = 1, . . . ,m, j = 1, . . . ,m,

eT
i R(v)K(v)

p P2,2e j +(eT
j ζ 2) · eT

i R(v)K(v)
p ζ 2

+(eT
j ζ 2) · eT

i R(v)c(v)p − (eT
j ζ 2) · eT

i R(u,v)c(u)p

−(eT
j ζ 2) · eT

i R(u,v)K(u)
p ζ 1− eT

i R(u,v)K(u)
p P1,2e j

= eT
j P2,2ei +(eT

i ζ 2) · (eT
j ζ 2) (52)

where ei,e j ∈ Rn−m and i = 1, . . . ,n−m, j = 1, . . . ,n−m,

(R(u,v))T K(v)
p ζ 2 +(R(u,v))T c(v)p + ζ1 = R(u)c(u)p +R(u)K(u)

p ζ 1, (53)

and

R(u,v)K(u)
p ζ 1 +R(u,v)c(u)p + ζ2 = R(v)c(v)p +R(v)K(v)

p ζ 2 (54)

The unknowns are K(u)
p , an m×m matrix, K(v)

p , an (n−m)× (n−m) matrix,

c(u)p ∈ Rm and c(v)p ∈ Rn−m, a total of n(n+ 1)− 2m(n−m) unknowns.
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Using (53) and (54) we express the intercepts c(u)p and c(v)p as linear functions of

K(u)
p and K(v)

p :

(
c(u)p

c(v)p

)
=

[
R(u) −(R(u,v))T

−R(u,v) R(v)

]−1
(
ζ 1 +(R(u,v))T K(v)

p ζ 2−R(u)K(u)
p ζ 1

ζ 2 +R(u,v)K(u)
p ζ 1−R(v)K(v)

p ζ 2

)

Hence,

c(u)p = (R(u)− (R(u,v))T (R(v))−1R(u,v))−1[ζ 1 +(R(u,v))T K(v)
p ζ 2−R(u)K(u)

p ζ 1]

+(R(u)− (R(u,v))T (R(v))−1R(u,v))−1(R(u,v))T (R(v))−1

[ζ 2 +R(u,v)K(u)
p ζ 1−R(v)K(v)

p ζ 2] ,

c(v)p = (R(v))−1R(u,v)(R(u)− (R(u,v))T (R(v))−1R(u,v))−1

[ζ 1 +(R(u,v))T K(v)
p ζ 2−R(u)K(u)

p ζ 1]

+(R(v)−R(u,v)(R(u))−1(R(u,v))T )−1[ζ 2 +R(u,v)K(u)
p ζ 1−R(v)K(v)

p ζ 2]

Substituting these expressions into (51) and (52) yields a reduced linear system
of n2− 2m(n−m) equations in the n2− 2m(n−m) unknowns which populate the

matrices K(u)
p and K(v)

p . Note that if ζ 1 = 0 and ζ 2 = 0, c(u)p = 0, c(v)p = 0 and the

equations for K(u)
p and K(v)

p are

eT
i R(u)K(u)

p P1,1e j +(eT
j ζ 1) · eT

i R(u)K(u)
p ζ 1− (eT

j ζ 1) · eT
i (R

(u,v))T K(v)
p ζ 2

−eT
i (R

(u,v))T K(v)
p P2,1e j = eT

j P1,1ei +(eT
i ζ 1) · (eT

j ζ 1)

eT
i R(v)K(v)

p P2,2e j +(eT
j ζ 2) · eT

i R(v)K(v)
p ζ 2− (eT

j ζ 2) · eT
i R(u,v)K(u)

p ζ 1

−eT
i R(u,v)K(u)

p P1,2e j = eT
j P2,2ei +(eT

i ζ 2) · (eT
j ζ 2)

Example. In the special case of scalar controls and a bivariate normal distribution

we obtain a system of four linear equations for the four scalar unknowns K(u)
p , K(v)

p ,

c(u)p , and c(v)p :

(σ2
1 + ζ

2
1)R

(u)K(u)
p − (ρσ1σ2 + ζ 1ζ 2)R

(u,v)K(v)
p

+ ζ 1R(u)c(u)p − ζ1R(u,v)c(v)p = σ2
1 + ζ

2
1 (55)

(σ2
2 + ζ

2
2)R

(v)K(v)
p − (ρσ1σ2 + ζ1ζ 2)R

(u,v)K(u)
p

+ ζ 2R(v)c(v)p − ζ 2R(u,v)c(u)p = σ2
2 + ζ

2
2 (56)
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c(u)p =
1

R(u)R(v)− (R(u,v))2
(R(v)ζ 1 +R(u,v)ζ 2)− ζ1K(u)

p (57)

c(v)p =
1

R(u)R(v)− (R(u,v))2
(R(u,v)ζ 1 +R(u)ζ 2)− ζ2K(v)

p (58)

Compare the optimal prior commitment strategies specified in (55)–(58) and the
delayed commitment strategies explicitly specified in (35)–(38). The optimization
problem is static and therefore the prior commitment and delayed commitment
strategies are all the same:

K(u)
p = K(u), K(v)

p = K(v), c(u)p = c(u), c(v)p = c(v)

So the two sets of formulae (35)–(38) and (55)–(58) give rise to interesting
identities. In particular, in the multivariate case new matrix identities will be
obtained.

Taking a game theoretic approach naturally leads to the concept of delayed
commitment strategies. Although the prior commitment strategies and delayed
commitment strategies are equivalent, the above example illustrates that it is much
easier to calculate the latter.

7 Asymmetric Players

Scenarios where one team member is strongly informationally disadvantaged
relative to the second team member are investigated.

7.1 Asymmetric Players: Case 1

Assume the u-player has perfect information, that is, he is privy to the state of nature
ζ = (ζ1,ζ2), whereas the v-player has access to ζ2 only. At the same time, the
u-player knows that the v-player has the prior information ζ 1, ζ 2, ρ , σ1, and σ2;
in fact, and in the best tradition of Bayesian games, it is tacitly assumed that both
players are simultaneously presented the prior information before the game starts—
the prior information is public information.

In this case the u-player’s payoff is

J(u)(u,v(·);ζ ) = Eζ (J(u,v(ζ2);ζ ) | ζ )
= J(u,v(ζ2);ζ ),
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that is, in the case of perfect information the u-player need not calculate an
expectation; v(ζ2) is the unknown input of the v-player.

If the payoff function J is quadratic,

J(u)(u,v(·);ζ ) =−uT R(u)u− vT (ζ2)R
(v)v(ζ2)+2vT (ζ2)R

(u,v)u+2uT ζ1 +2vT (ζ2)ζ2

and differentiation in u yields the relationship

u∗(ζ1,ζ2) = (R(u))−1[(R(u,v))T v∗(ζ2)+ ζ1]

The v-player’s payoff function is

J(v)(u(·),v;ζ ) = −vT R(v)v+ 2vTζ2 +Eζ (−uT (ζ )R(u)u(ζ )

+2vT R(u,v)u(ζ2)+ 2uTζ1 | ζ2)

and differentiating it in v yields the relationship

R(v)v∗(ζ2) = ζ2 +R(u,v)Eζ (u
∗(ζ ) | ζ2)

= ζ2 +R(u,v)Eζ ((R
(u))−1[(R(u,v))T v∗(ζ2)+ ζ1] | ζ2)

= ζ2 +R(u,v)(R(u))−1(R(u,v))T v∗(ζ2)+R(u,v)(R(u))−1Eζ (ζ1 | ζ2)

= ζ2 +R(u,v)(R(u))−1(R(u,v))T v∗(ζ2)+R(u,v)(R(u))−1Eζ1
(ζ1 | ζ2)

= ζ2 +R(u,v)(R(u))−1(R(u,v))T v∗(ζ2)+R(u,v)(R(u))−1

(ζ 1 +P1,2P−1
2,2 (ζ2− ζ 2))

Hence,

v∗(ζ2) = [R(v)−R(u,v)(R(u))−1(R(u,v))T ]−1[I +P1,2P−1
2,2 R(u,v)(R(u))−1]ζ2

+[R(v)−R(u,v)(R(u))−1(R(u,v))T ]−1R(u,v)(R(u))−1
(
ζ 1−P1,2P−1

2,2 ζ 2

)

In the special case of scalar inputs and a bivariate normal distribution (16), the
optimal strategy of the v-player is

v∗(ζ2) =
R(u) +ρ σ1

σ2
R(u,v)

R(u)R(v)− (R(u,v))2
ζ2 +

R(u,v)

R(u)R(v)− (R(u,v))2

(
ζ 1−ρ

σ1

σ2
ζ 2

)
,

provided that R(u,v) is not the geometric mean of R(u) and R(v)—which is the case
if the quadratic payoff function is concave in the control variable (u,v), whereupon
R(u)R(v)− (R(u,v))2 > 0. The optimal strategy of the u-player is
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u∗(ζ1,ζ2) =
1

R(u)
ζ1 +R(u,v)

1+ρ σ1
σ2

R(u,v)

R(u)

R(u)R(v)− (R(u,v))2
ζ2

+

(R(u,v))2

R(u)

R(u)R(v)− (R(u,v))2

(
ζ 1−ρ

σ1

σ2
ζ 2

)

Interestingly, although the u-player has complete state of nature information,
his or her optimal strategy is affine and he also uses the public prior information.
Concerning the strategy of the informationally disadvantaged v-player: certainty
equivalence holds.

7.2 Asymmetric Players: Case 2

As in Sects. 1–6, the private information of the u-player is the ζ1 component of
the state of nature vector ζ . However, we now assume the v-player has no private
information and he is totally dependent on the public prior information. As in
Sect. 7.1, the u-player is aware that the public information is available to the v-player
and he also knows that the v-player is “blind.”

The v-player’s payoff is

J(v)(u(·),v) = 2vT Eζ (ζ2)− vT R(v)v+ 2vT R(u,v)Eζ (u(ζ1))

+Eζ1
(2uT (ζ1)ζ1− uT (ζ1)R

(u)u(ζ1))

and differentiation in v yields the unique optimal control response to the u-player’s
strategy u(ζ1),

v∗ = (R(v))−1Eζ (ζ2)+ (R(v))−1R(u,v)Eζ (u(ζ1)) (59)

The expectation Eζ (ζ2) in (59) is calculated as follows.

Eζ (ζ2) =

∫ ∞

−∞

∫ ∞

−∞
ζ2 f (ζ1,ζ2)dζ1dζ2

=

∫ ∞

−∞
ζ2

(∫ ∞

−∞
f (ζ1,ζ2)dζ1

)
dζ2

=

∫ ∞

−∞
ζ2 fm(ζ2)dζ2

= ζ 2,

where f (ζ1,ζ2) is the p.d.f. of the state of nature Gaussian random variable ζ and
fm(ζ2) is a marginal Gaussian p.d.f. of f (ζ1,ζ2). Recall that to obtain the marginal
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distribution over a subset of the components of a multivariate normal random
variable, one only needs to drop the irrelevant variables (the variables that one wants
to marginalize out) from the mean vector and the covariance matrix. For example,
in the bivariate normal case the (Gaussian) marginal p.d.f. fm(ζ1) is characterized
by the parameters (ζ 1,σ1) and the marginal p.d.f. fm(ζ2) is characterized by the
parameters (ζ 2,σ2). Similarly,

Eζ (u(ζ1)) =
∫ ∞

−∞
u(ζ1) fm(ζ1)dζ1

Thus,

v∗ = (R(v))−1ζ 2 +(R(v))−1R(u,v)
∫ ∞

−∞
u(ζ1) fm(ζ1)dζ1 (60)

The u-player’s payoff is

J(u)(u,v;ζ1) = 2uTζ1− uT R(u)u+ 2uT(R(u,v))T v− vT R(v)v+ 2vT Eζ2
(ζ2 | ζ1)

Note: Now, as far as the u-player is concerned, the v-player does not employ a
strategy, therefore the v-player’s input v is no longer a random variable and one
need not compute an expectation: the u-player knows that the v-player is “blind.”

Differentiation in u yields the unique optimal control response to the v-player’s
input v

u∗(ζ1) = (R(u))−1ζ1 +(R(u))−1(R(u,v))T v (61)

Combining (60) and (61) yields the relationship

v∗ = (R(v))−1ζ 2 +(R(v))−1R(u,v)[(R(u))−1ζ 1 +(R(u))−1(R(u,v))T v∗],

that is, the v-player’s optimal control is

v∗ = [R(v)−R(u,v)(R(u))−1(R(u,v))T ]−1[R(u,v)(R(u))−1ζ 1 + ζ 2]

and the u-player’s optimal strategy is

u∗(ζ1) = (R(u))−1ζ1 +(R(u))−1(R(u,v))T [R(v)−R(u,v)(R(u))−1(R(u,v))T ]−1

[R(u,v)(R(u))−1ζ 1 + ζ2]

If the controls are scalars,

u∗(ζ1) =
1

R(u)
ζ1 +

R(u,v)

R(u)R(v)− (R(u,v))2

(
R(u,v)

R(u)
ζ 1 + ζ 2

)
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and

v∗ =
1

R(u)R(v)− (R(u,v))2
(R(u,v)ζ 1 +R(u)ζ 2)

In conclusion, in the case where the v-player is “blind,” the strategy of the
u-player is as if there would be no correlation, that is, the parameter ρ = 0—as
in Corollary 4. As far as the v-player is concerned, certainty equivalence holds. A
little bit of thought will convince the reader that these results are expected.

8 Conclusion

The static decentralized decision problem has been analyzed. Special attention is
given to the multivariate Quadratic Gaussian (QG) payoff function. The optimiza-
tion problem is static, yet the players have partial information and as such, this
is a small step away from the celebrated LQG paradigm. Informational issues,
prior commitment strategies vs. delayed commitment strategies, as well as Nash
equilibria solution concepts, are discussed. Necessary and sufficient conditions for
the existence of a solution are provided and the optimal strategies are calculated.
Extreme cases of informational asymmetry are also explored. This work lays the
groundwork for gaining a better understanding of optimization problems with partial
information where also dynamics are at play.
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A Framework for Coordination in Distributed
Stochastic Systems: Output Feedback
and Performance Risk Aversion

Khanh D. Pham

Abstract This research article considers a class of distributed stochastic systems
where interconnected systems closely keep track of reference signals issued by a
coordinator. Much of the existing literature concentrates on conducting decisions
and control synthesis based solely on expected utilities and averaged performance.
However, research in psychology and behavioral decision theory suggests that
performance risk plays an important role in shaping preferences in decisions under
uncertainty. Thus motivated, a new equilibrium concept, called “person-by-person
equilibrium” for local best responses is proposed for analyzing signaling effects and
mutual influences between an incumbent system, its coordinator, and immediate
neighbors. Individual member objectives are defined by the multi-attribute utility
functions that capture both performance expectation and risk measures to model
the satisfaction associated with local best responses with risk-averse attitudes.
The problem class and approach of coordination control of distributed stochastic
systems proposed here are applicable to and exemplified in military organizations
and flexibly autonomous systems.
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1 Introduction

Control and coordination of distributed stochastic systems offers a framework
to analyzing intertemporal strategic interactions between individual agents or
controllers, one for each interconnected systems and based on local observations.
The importance of evaluating approaches in a dynamic setting and the broad
flexibility and adaptability of the decision and control architectures of distributed
control with communications has spurred many large-scale applications such as
military command and control hierarchies, spacecraft constellations, remotely
piloted platform formations, teams of humans and autonomous robots, etc. where
each member can be in best response to its neighbor actions and yet has no influence
on other members to which it has no communication supports.

Despite the broad interest in distributed systems, there remain significant hurdles
in applying them to practical problems of interest. Interplay between common
team objectives and individual member objectives can yield surprises and complex
behaviors. Hence, a form of coordination control that helps balance between
cooperative goals and adversarial behavior in addition to fundamentals for team
and individual decisions, is necessarily required.

Thus motivated, this research article proposes a new framework and analysis
to study risk-averse control of a distributed stochastic system, in particular co-
ordination control with risk-averse attitudes toward performance uncertainty and
robustness. The approach of noncooperative game-theoretic decision making and
optimization is suited to coordination control, where a distributed stochastic system
is distinguished into a coordinator (also known as dominant player) with significant
reference signals and incumbent systems (also known as nondominant players)
with fringe couplings. To account for uncertainty in inherent design problem and
in preference assessment, a multi-attribute utility function that enables incumbent
systems’ decision makers or controllers to select the best risk-averse strategy for
the attribute trade-offs between performance expectation and risks is therefore
considered. Notice that this dominant/nondominant game structure is also prevalent
in both economics [1] and social sciences [2].

The game-theoretic model of mixed player behaviors considered herein is
particularly related to the research [3] that has extended the large population linear-
quadratic-Gaussian games to include a major player and a large number of minor
players. As such, minor players are more sensitive to variations in the behavior
of major player than those of individual minor players. To overcome the curse of
dimensionality, computational concerns have typically resorted the analysis to the
so-called Nash certainty equivalence method, where the key idea is to break the
large population game into a family of limiting two-player games. The synthesis of
decentralized strategies is obtained via a set of aggregate quantities giving the mean
field approximation. In contrast with such existing literature, this appealing research
representing the interplay between stochastics, statistics, and dynamics as well as
the extension of the recent accounts [4, 5] investigates: (1) a stochastic dynamic
game model of behavior where nondominant players not only keep track closely
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of the large impact by the dominant player but also monitor rivals from the peers
in a less detailed way and (2) a tractable paradigm of performance assessment un-
certainty forecast for which sufficient statistics summarize all performance relevant
information and thus are used in the person-by-person equilibrium strategies by
nondominant players.

In summary, the proposed game-theoretic framework is prevalent in distributed
stochastic systems with a dominant/fringe coordination structure, capturing the
attributes that are important to inherent design problem and preference assessment
uncertainties, their trade-off behavior over these attributes and their risk attitude.
The rest of this article is organized as follows. Section 2 introduces a new
computationally tractable model for distributed stochastic systems with state-space
representations of a dominant coordinator and many nondominant systems. In
addition, the preliminary results on sufficient mathematical statistics that summarize
all performance measure or utility relevant history and for which the person-by-
person equilibrium strategies are optimal for nondominant systems are discussed
in great detail. Section 3 contains precise problem statements for coordination
control analysis and decision optimization for the person-by-person equilibrium or
feedback Nash strategy concerned by autonomous agents and incumbent systems.
The construction of person-by-person strategies is established in Sect. 4, while some
conclusions and future research directions are drawn in Sect. 5.

2 Problem Formulation

Before going into a formal presentation, it is necessary to consider some conceptual
notations in this article. For instance, time t is modeled as continuous and the
notation of the time interval is [t0, t f ]. All random variables are defined on a
probability space (Ω ,F ,P) which is a triple consisting of a set Ω , a σ -algebra
F , and a probability measure P : F �→ [0,1] and is equipped with a filtration
{Ft : t ∈ [t0, t f ]}. In addition, for a given Hilbert space X with norm || · ||X ,
1≤ p≤ ∞, a Banach space is defined as follows

L p
F (t0, t f ;X)�

{
φ : [t0, t f ]×Ω �→ X is an X-valued Ft -measurable process

with E

{∫ t f

t0
||φ(t,ω)||pX dt

}
< ∞

}
(1)

with norm

||φ(·)||F ,p �
(

E

{∫ t f

t0
||φ(t,ω)||pX dt

})1/p

. (2)
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Furthermore, the Banach space of X-valued continuous functionals on [t0, t f ] with
the max-norm induced by || · ||X is denoted by C (t0, t f ;X). The deterministic version
of (1) and its associated norm (2) is written as L p(t0, t f ;X) and || · ||p.

A distributed stochastic system that evolves over [t0, t f ] captures interactions
among a coordinator and finite number of incumbent systems. Each incumbent
system that enters the distributed system is assigned a unique positive integer-valued
index. The set of indices of incumbent systems is denoted by I � {1,2, . . . ,N} and a
typical element by i. The set of immediate neighbors associated with an incumbent
system i is denoted by Ni. For concreteness, the heterogeneity of incumbent system
i and i ∈ I is distinguished by an individual state; that is governed by the stochastic
differential equation with the initial-value condition xi(t0) = x0

i

dxi(t)=(Aii(t)xi(t)+Bii(t)ui(t)+Cii(t)zi(t)+
Ni

∑
j=1

Bi j(t)ui j(t))dt +Gi(t)dwi(t) (3)

dyi(t)=Ci(t)xi(t)dt + dvi(t), (4)

where the continuous-time coefficients Aii ∈C (t0, t f ;Rni×ni), Bii ∈C (t0, t f ;Rni×mi),
Cii ∈ C (t0, t f ;Rni×qi), Bi j ∈ C (t0, t f ;Rni×ri), Gi ∈ C (t0, t f ;Rni×pi) as well as Ci ∈
C (t0, t f ;Rri×ni) are deterministic matrix-valued functions. At time t, the recursive
state and output of incumbent system i are denoted by xi ∈L 2

Fi
(t0, t f ;Rni) and yi ∈

L 2
Fi
(t0, t f ;Rri) with the initial state x0

i ∈Rni known. The control policies from agent

i to that system i are presented by ui ∈L 2
Fi
(t0, t f ;Rmi) and zi ∈L 2

Fi
(t0, t f ;Rqi). In

addition, the interconnection inputs and linkage effects of that incumbent system i
supported by the communication paths from immediate neighbors j and j ∈ Ni are
viewed as the real-valued functions ui j(t)dt of the following random processes

dui j(t)� ui j(t)dt = (Ci j(t)x j(t)+Di j(t)u j(t))dt + dv j(t) , j ∈ Ni (5)

where continuous-time coefficients Ci j ∈C (t0, t f ;Rri×n j) and Di j ∈C (t0, t f ;Rri×mj )
are deterministic matrix-valued functions. As the number of incumbent systems
grows large, it is unrealistic to believe that binding agents i associated with incum-
bent systems i and i ∈ I are capable of monitoring the evolution of their immediate
neighbors. Instead, it is reasonable to assume that incumbent systems only keep
track of actual interactions or signaling references provided by coordinator c and
c∈ Ic, where the set of partaking coordinators is predetermined and does not change
over time.

A challenging task for all multiscale modeling and coordination control is
to transfer the knowledge gained from one resolution to another. As such, in
coordination control there is an ongoing need for a coordinator c issuing reference
signals to two or more incumbent systems i and i ∈ I such that

zic(t)dt = (Aic(t)xc(t)+Bic(t)uc(t))dt +Gic(t)dvc(t) (6)
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but the incumbent systems i do not directly send signals to the coordinator c.
In practice, it is further desirable to have decentralized decision making without
intensive communication overheads. A potential alternative therefore involves the
selection of a crude model of reduced order for the interactions among coordinator
c and binding agents i associated with incumbent systems i. The actual reference
signals imposed by coordinator c are now approximated by an explicit model-
following of the type

dzic(t) = (Aic(t)zic(t)+Bic(t)uc(t))dt +Gic(t)dwic(t) , zic(t0) = 0 (7)

dyic(t) =Cic(t)zic(t)dt + dvic(t) (8)

whereby continuous-time coefficients Aic ∈ C (t0, t f ;Rqi×qi), Bic ∈C (t0, t f ;Rqi×mc),
Gic ∈ C (t0, t f ;Rqi×pic) and Cic ∈ C (t0, t f ;Rric×qi) are deterministic matrix-
valued function and potentially come from a structural decomposition of a
monolithic distributed system with centralized dynamics. In this exposition,
zic ∈ L 2

Fi
(t0, t f ;Rqi×qi) is the coordinator state, uc ∈ L 2

Fi
(t0, t f ;Rmc) is the

coordinator control input and yic ∈L 2
Fi
(t0, t f ;Rric) is the coordinator output.

In the state-space representations (3)–(4) and (7)–(8) one postulates uncorrelated
Wiener processes wi(t) � wi(t,ωi) : [t0, t f ]×Ωi �→ R

pi , vi(t) � vi(t,ωi) : [t0, t f ]×
Ωi �→R

ri , wic(t)� wic(t,ωic) : [t0, t f ]×Ωic �→R
pic and vic(t)� vic(t,ωic) : [t0, t f ]×

Ωic �→R
ric defined by the underlying filtered probability spaces (Ωi,Fi,{Fi}t ,Pi)

and (Ωic,Fic,{Fic}t ,Pic) with the correlations of independent increments

E
{
[wi(τ1)−wi(τ2)][wi(τ1)−wi(τ2)]

T}=Wi|τ1− τ2|, Wi > 0; τ1,τ2 ∈ [t0, t f ]

E
{
[vi(τ1)− vi(τ2)][vi(τ1)− vi(τ2)]

T}=Vi|τ1− τ2|, Vi > 0

E
{
[wic(τ1)−wic(τ2)][wic(τ1)−wic(τ2)]

T}=Wic|τ1− τ2|, Wic > 0

E
{
[vic(τ1)− vic(τ2)][vic(τ1)− vic(τ2)]

T}=Vic|τ1− τ2|, Vic > 0

which now approximate the inherent design system uncertainty due to variability
and lack of knowledge.

Furthermore, the model primitives of the state recursion (3) in the absence
of links from the immediate neighbors and environmental disturbances are also
assumed to be uniformly exponentially stable. For instance, there exist positive
constants η1 and η2 such that the pointwise matrix norm of the closed-loop state
transition matrix associated with incumbent system (3) satisfies the inequality

||Φi(t,τ)|| ≤ η1e−η2(t−τ) ∀ t ≥ τ ≥ t0 .

The pair (Aii(t), [Bii(t),Cii(t)]) is pointwise stabilizable if there exist bounded
matrix-valued functions Kxi(t) and Kzi(t) so that the closed-loop system dxi(t) =
(Aii(t)+Bii(t)Kxi(t)+Cii(t)Kzi(t))xi(t)dt is uniformly exponentially stable.



182 K.D. Pham

With the local agent dynamics (3) considered herein, each agent i associated with
incumbent system i only plays a local dynamical game with its immediate neighbors
j ∈ Ni. Mutual influence controlled by the control policies from the immediate
neighbors of agent i is defined by u−i � {ui j : j ∈ Ni}. Assuming its coalition Ni

conveys mutual influence information u−i, agent i selects, at each time instant, a
tuple of control policies to optimize its multi-attribute utility function. The tuple of
control laws is defined by the control processes ui and zi, of which zi is supposed to
follow the prediction process zic for the reference signals from coordinator c. Thus,
the subsequent states of agent i is determined by its current individual states xi and
zic, its chosen action (ui,zi) and the coalition effects u−i. In fact, the selected action
(ui,zi) will depend on agent i’s individual states xi and zic as well as the coalition
effects u−i.

To further illustrate the applicability of the coordination control framework as
proposed here, the classes of admissible control policies associated with (3) are
defined by Ui × Zi ⊂ L 2

Fi
(t0, t f ;Rmi)×L 2

Fmi
(t0, t f ;Rqi). For any given coalition

effects u−i, the 3-tuple (xi(·),ui(·),zi(·)) shall be therefore referred to as an admis-
sible 3-tuple if xi(·) ∈ L 2

Fi
(t0, t f ;Rni) is the solution trajectory of the stochastic

differential equation (3) when ui(·) ∈Ui and zi(·) ∈ Zi.
In the subsequent analysis, the problem of observation and/or estimation in the

distributed stochastic system is investigated with a major emphasis on the design
of a set of locally optimal decision and control policies for incumbent agent i and
i∈ I in a completely decentralized environment with interconnection patterns. More
precisely, since (Aii,Ci) are detectable, it is possible to construct the local observers

dx̂i(t) = (Aii(t)x̂i(t)+Bii(t)ui(t)+Cii(t)zi(t)+
Ni

∑
j=1, j �=i

Bi j(t)ui j(t))dt

+Li(t)(dyi(t)−Ci(t)x̂i(t)dt) , x̂i(t0) = x0
i (9)

whereby x̂i(t) ∈R
ni is the state estimate of xi(t) for incumbent agent i and i ∈ I and

Li(t) ∈Rni×ri are the decentralized filtering gains determined by suitably modifying
the dynamics of the local observers; for example

Li(t) = Σi(t)C
T
i (t)V

−1
i (10)

d
dt
Σi(t) = Aii(t)Σi(t)+Σi(t)A

T
ii (t)−Σi(t)C

T
i (t)V

−1
i Ci(t)Σi(t)+Gii(t)WiG

T
ii (t)

+
Ni

∑
j=1, j �=i

Bi j(t)Wj

Ni

∑
j=1, j �=i

BT
i j(t) , Σi(t0) = 0 . (11)

It is readily evident that the decentralized observation scheme developed in (9)–(11)
incorporates the knowledge of the interconnection functions or the outputs of the
other immediate neighbors of agent i and i ∈ I.
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In similar to the state-regulation case, independent decentralized optimal estima-
tors may be designed hereafter for certain compensating signals from coordinators
c to agent i; e.g.,

dẑic(t) = (Aic(t)ẑic(t)+Bic(t)uc(t))dt +Lic(t)(dyic(t)−Cic(t)ẑic(t)dt) (12)

ẑic(t0) = 0

whereby Lic(t) ∈ R
qi×ric is given by Lic(t) = Σic(t)CT

ic(t)V
−1
ic and Σic(t) ∈ R

qi×qi is
the covariance of the error process z̃ic(t) = zic(t)− ẑic(t), satisfying the forward-in-
time differential equation

d
dt
Σic(t) = Aic(t)Σic(t)+Σic(t)A

T
ic(t)

−Σic(t)C
T
ic(t)V

−1
ic Cic(t)Σic(t)+Gic(t)WicGT

ic(t) , Σic(t0) = 0. (13)

In terms of the observation errors x̃i(t) = xi(t)− x̂i(t) and z̃ic(t) = zic(t)− ẑic(t), it
follows from (3), (4), (7), and (8) that, for x̃i(t0) = 0 and z̃ic(t0) = 0

dx̃i(t) = (Aii(t)−Li(t)Ci(t))x̃i(t)dt +Gii(t)dwi(t)−Li(t)dvi(t) (14)

dz̃ic(t) = (Aic(t)−Lic(t)Cic(t))z̃ic(t)dt +Gic(t)dwic(t)−Lic(t)dvic(t) . (15)

Indeed, the system (14)–(15) will function as observers for the system (3) and (7) if
the design parameters Li(t) and Lic(t) can be selected such that the local observers
(9) and (12) are asymptotically stable.

Next, agent i evaluates its performance and makes control policies that are con-
sistent with its preferences. There are performance trade-offs among the closeness
of locally accessible states x̂i from desired states ζi, the size of local actions ui and
the closeness of interaction enforcements between local efforts zi and local estimates
ẑic of reference signals imposed by coordinator c. Henceforth, agent i must carefully
balance the three in order to achieve its local performance measure. Mathematically,
there assumes existence of an integral-quadratic form (IQF) performance-measure
Ji : Ui×Zi �→ R+

Ji(ui,zi;u−i) = [x̂i(t f )− ζi(t f )]
T Q f

i [x̂i(t f )− ζi(t f )]

+
∫ t f

t0
{x̂T

i (τ)Qii(τ)x̂i(τ)+ [x̂i(τ)− ζi(τ)]T Qi[x̂i(τ)− ζi(τ)]}dτ

+

∫ t f

t0
{uT

i (τ)Rii(τ)ui(τ)+ [zi(τ)− ẑic(τ)]T Rzi(τ)[zi(τ)− ẑic(τ)]}dτ,
(16)

where the deterministic matrix-valued functions Q f
i ∈Rni×ni , Qii ∈C (t0, t f ;Rni×ni),

Qi ∈ C (t0, t f ;Rni×ni) Rii ∈ C (t0, t f ;Rmi×mi) and Rzi ∈ C (t0, t f ;Rqi×qi) representing
design parameters for terminal states, transient state estimates for regulation
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and tracking, regulating efforts and coordination effort mismatches are positive
semidefinite with Rii(t) and Rzi(t) invertible.

Control of (collective and aggregated) distributed stochastic systems on coordi-
nation levels is a major challenge and research theme. The approach to handling the
problem with a tuple of two or more control laws is to use the noncooperative game-
theoretic paradigm. Particularly, an N-tuple policy {(u∗1,z∗1),(u∗2,z∗2), . . . ,(u∗N ,z∗N)}
is said to constitute a person-by-person equilibrium solution for the coordination
control problem (3) and performance measure (16) if

J∗i � Ji(u
∗
i ,z
∗
i ;u∗−i)≤ Ji(ui,zi;u∗−i) , ∀i ∈ I . (17)

That is, none of the N agents can deviate unilaterally from the equilibrium policies
and gain from doing so. The justification for the restriction to such an equilibrium
is that the coalition effects u∗−i sent to agent i does not necessarily support its
preference optimization. Therefore, they cannot do better than behave as if they
strive for this equilibrium. It is reasonable to conclude that a person-by-person
equilibrium of distributed control is identical to the concept of a Nash equilibrium
within a noncooperative game-theoretic setting.

Because admissible feedback policy sets for agent i are not discussed, the
determination of a person-by-person equilibrium for the distributed stochastic
system is still not straightforward. Therefore, a further restriction is imposed next.
For the moment, it will suffice to say that in the case of incomplete information,
an admissible 2-tuple feedback policy (ui,zi) for local best responses to all other
immediate neighbors u∗−i must be of the form, for some ði(·, ·) and h̄i(·, ·)

ui(t) = ði(t,yi(τ)) , τ ∈ [t0, t] (18)

zi(t) = h̄i(t,yi(τ)) . (19)

In general, the conditional density pi(xi(t)|F i
t ), which is the density of xi(t)

conditioned on F i
t (i.e., induced by the observation {yi(τ) : τ ∈ [t0, t]}) represents

the sufficient statistics for describing the conditional stochastic effects of future 2-
tuple feedback policies (ui,zi). It is natural that under the Gaussian assumption,
the conditional density pi(xi(t)|F i

t ) is parameterized by the locally available con-
ditional mean x̂i(t)� E{xi(t)|F i

t } and error-estimate covariance Σi(t)� E{[xi(t)−
x̂i(t)][xi(t)− x̂i(t)]T |F i

t } by incumbent agent i. With respect to the linear-Gaussian
conditions, the error-estimate covariancesΣi(t) are independent of feedback policies
ui(t) and zi(t) and observations {yi(τ) : τ ∈ [t0, t]}. Hereafter, to look for observer-
based optimal control and/or decision policies ui(t) and zi(t) of the form (18) and
(19), it is only required that

ui(t) = γi(t, x̂i(t)) , t ∈ [t0, t f ]

zi(t) =℘i(t, x̂i(t)) .
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In view of the linear-quadratic properties of the state-space description (3) and
(16), the search for linear time-varying feedback policies generated from the locally
accessible state x̂i(t) is now proceeded to consider

ui(t) = Kxi(t)x̂i(t)+ pxi(t) (20)

zi(t) = Kzi(t)x̂i(t)+ pzi(t) , t ∈ [t0, t f ] (21)

with the feedback policy parameters Kxi ∈ C (t0, t f ;Rmi×ni), Kzi ∈ C (t0, t f ;Rqi×ni),
pxi ∈ C (t0, t f ;Rmi) and pzi ∈ C (t0, t f ;Rqi) admissible feedback policy parameters
whose further defining properties will be stated shortly.

For the given (t0,x0
ai) and subject to the feedback control policies (20)–(21), agent

i forms a local awareness of its state recursion (3) and (7) as follows

dxai(t) = (Aai(t)xai(t)+ lai(t))dt +Gai(t)dwai(t) , xai(t0) = x0
ai (22)

in which the aggregate Wiener process wai has the correlations of independent
increments, for all τ1,τ2 ∈ [t0, t f ] and Wai > 0

E
{
[wai(τ1)−wai(τ2)][wai(τ1)−wai(τ2)]

T}=Wai|τ1− τ2| ,

whereas the augmented state variable xai, its initial-valued condition x0
ai, the system

coefficients and parameters are defined by

xai �

⎡

⎢⎢⎣

x̂i

x̃i

ẑic

z̃ic

⎤

⎥⎥⎦ ; x0
ai �

⎡

⎢⎢⎣

x0
i

0
0
0

⎤

⎥⎥⎦ ; wai �

⎡

⎢⎢⎣

wi

vi

wic

vic

⎤

⎥⎥⎦ ; Gai �

⎡

⎢⎢⎣

0 Li 0 0
Gi −Li 0 0
0 0 0 Lic

0 0 Gic −Lic

⎤

⎥⎥⎦

Aai �

⎡

⎢⎢⎣

Aii +BiiKxi +CiiKzi LiCi 0 0
0 Aii−LiCi 0 0
0 0 Aic LicCic

0 0 0 Aic−LicCic

⎤

⎥⎥⎦ ; Wai �

⎡

⎢⎢⎣

Wi 0 0 0
0 Vi 0 0
0 0 Wic 0
0 0 0 Vic

⎤

⎥⎥⎦

lai �

⎡

⎢⎢⎢⎣

Bii pxi +Ciipzi +∑Ni
j=1 Bi ju∗i j

0
Bicuc

0

⎤

⎥⎥⎥⎦ .

Moreover, the sample-path function of the random performance measure (16) is now
rewritten as below

Ji(Kxi , pxi ;Kzi , pzi) = xT
ai(t f )Q

f
aixai(t f )+ 2xT

ai(t f )S
f
ai + ζT

i (t f )Q
f
i ζi(t f )

+

∫ t f

t0
[xT

ai(τ)Qai(τ)xai(τ)+ 2xT
ai(τ)Sai(τ)+ ζT

i (τ)Qi(τ)ζi(τ)

+ pT
xi
(τ)Rii(τ)pxi(τ)+ pT

zi
(τ)Rzi(τ)pzi(τ)]dτ (23)
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whereby the corresponding weightings are given by

Q f
ai �

⎡

⎢⎢⎢⎣

Q f
i 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎥⎦; S f
ai �

⎡

⎢⎢⎢⎣

−Q f
i ζi(t f )

0
0
0

⎤

⎥⎥⎥⎦; Sai �

⎡

⎢⎢⎢⎣

KT
xi

Rii pxi +KT
zi

Rzi pzi −Qiζi

0
−Rzi pzi

0

⎤

⎥⎥⎥⎦

Qai �

⎡

⎢⎢⎢⎣

Qii +Qi +KT
xi

RiiKxi +KT
zi

RziKzi 0 −2KT
zi

Rzi 0
0 0 0 0
0 0 Rzi 0
0 0 0 0

⎤

⎥⎥⎥⎦ .

In views of the linear-quadratic structure of the problem (22) and (23), the
performance measure (23) is clearly a random variable with chi-squared type.
To account for performance uncertainty, a methodology that enables agent i to
select robust decisions under uncertainty from a Pareto front which is acquired
using envelopes of a finite set of higher-order statistics associated with (23). This
methodology assists the preferences by agent i to be captured perfectly; i.e., what
performance attributes that are important to agent i, their trade-off behavior over
these attributes and their risk attitude. Recently, the research [6, 7] show how
performance uncertainty affects different aspects of risk-averse decision making
which can now serve as a starting point for such a knowledge extraction in terms of
performance-measure statistics hereafter.

Theorem 1 (Performance-Measure Statistics). Let the pairs (Aii,Bii) and
(Aii,Cii) be uniformly stabilizable on [t0, t f ] in the incumbent system i and i ∈ I
governed by (22) and (23). Then for the given initial condition (t0,x0

i ), incumbent
agent i obtains the ki-th cumulant associated with (23)

κ i
ki
= (x0

ai)
T Hi(t0,ki)x

0
ai + 2(x0

ai)
T D̆i(t0,ki)+Di(t0,ki), ki ∈ N (24)

whereby the supporting variables {Hi(s,r)}ki
r=1, {D̆i(s,r)}ki

r=1 and {Di(s,r)}ki
r=1

satisfy the time-backward differential equations (with the dependence of Hi(s,r),
D̆i(s,r) and Di(s,r) upon the admissible Kxi , Kzi , pxi and pzi suppressed)

d
ds

Hi(s,1) =−AT
ai(s)Hi(s,1)−Hi(s,1)Aai(s)−Qai(s) (25)

d
ds

Hi(s,r) =−AT
ai(s)Hi(s,r)−Hi(s,r)Aai(s) (26)

−
r−1

∑
v=1

2r!
v!(r− v)!

Hi(s,v)Gai(s)WaiG
T
ai(s)Hi(s,r− v) , 2≤ r ≤ ki

d
ds

D̆i(s,1) =−AT
ai(s)D̆i(s,1)−Hi(s,1)lai(s)− Sai(s) (27)

d
ds

D̆i(s,r) =−AT
ai(s)D̆i(s,r)−Hi(s,r)lai(s) , 2≤ r ≤ ki (28)
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d
ds

Di(s,1) =−Tr{Hi(s,1)Gai(s)WaiG
T
ai(s)}− 2D̆T

i (s,1)lai(s)

− pT
xi
(s)Rii(s)pxi(s)− pT

zi
(s)Rzi(s)pzi(s)− ζT

i (s)Qi(s)ζi(s) (29)

d
ds

Di(s,r) =−Tr{Hi(s,r)Gai(s)WaiG
T
ai(s)}− 2D̆T

i (s,r)lai(s), 2≤ r ≤ ki (30)

whereby the terminal-value conditions Hi(t f ,1) = Q f
ai, Hi(t f ,r) = 0 for 2 ≤ r ≤

ki; D̆i(t f ,1) = S f
ai, D̆i(t f ,r) = 0 for 2 ≤ r ≤ ki; and Di(t f ,1) = ζT

i (t f )Q
f
i ζi(t f ),

Di(t f ,r) = 0 for 2≤ r ≤ ki.

Proof. A key challenge of the problem at hand is to come up with a tractable way
to handle performance uncertainty such that its probabilistic nature is manageable.
Therefore, only its statistics can be optimized. Most researchers find it easier to
understand or describe a random variable through both moment and cumulant
generating functions.

Precisely stated, it is necessary to parameterize the initial condition (t0,x0
ai) as

any arbitrary pair (s,xs
ai). Then, for the given admissible affine inputs pxi and pzi

in addition with admissible feedback gains Kxi and Kzi , the “running” version of
performance measure (23) is introduced as follows

Ji(s,x
s
ai) = xT

ai(t f )Q
f
aixai(t f )+ 2xT

ai(t f )S
f
ai + ζT

i (t f )Q
f
i ζi(t f )

+
∫ t f

s
[xT

ai(τ)Qai(τ)xai(τ)+ 2xT
ai(τ)Sai(τ)+ ζT

i (τ)Qi(τ)ζi(τ)

+ pT
xi
(τ)Rii(τ)pxi(τ)+ pT

zi
(τ)Rzi(τ)pzi(τ)]dτ , i ∈ I . (31)

The moment-generating function associated with agent i of (31) is defined by

ϕi(s,x
s
ai;θi)� E {exp(θiJi (s,x

s
ai))} , (32)

for some small parameters θi in an open interval about 0. Thus, the cumulant-
generating function immediately follows

ψi (s,x
s
ai;θi)� ln{ϕi (s,x

s
ai;θi)} , (33)

for some θi in some (possibly smaller) open interval about 0 while ln{·} denotes the
natural logarithmic transformation.

For notational simplicity, it is convenient to define ϖi (s,xs
ai;θi) �

exp{θiJi (s,xs
ai)} and ϕi (s,xs

ai;θi) � E {ϖi (s,xs
ai;θi)} together with the time

derivative of

d
ds
ϕi (s,x

s
ai;θi) =−θi

{
(xs

ai)
T Qai(s)x

s
ai + 2(xs

ai)
T Sai(s)

+ ζT
i (s)Qi(s)ζi(s)+ pT

xi
(s)Rii(s)pxi(s)+ pT

zi
(s)Rzi(s)pzi(s)

}

ϕi (s,x
s
ai;θi) . (34)
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Using the standard Ito’s formula, it yields

dϕi (s,x
s
ai;θi) = E {dϖi (s,x

s
ai;θi)} ,

= ϕi,s (s,x
s
ai;θi)ds+ϕi,xs

ai
(s,xs

ai;θi) [Aai(s)x
s
ai + lai(s)]ds

+
1
2

Tr{ϕi,xs
aix

s
ai
(s,xs

ai;θi)Gai (s)WaiG
T
ai (s)}ds .

Furthermore, the moment-generating function of (31) can also be expressed by

ϕi (s,x
s
ai;θi)� ρi (s;θi)exp

{
(xs

ai)
Tϒi(s;θi)x

s
ai + 2(xs

ai)
Tηi(s;θi)

}
(35)

whereby all the supporting entities are going to be determined in the sequel. In
particular, the partial derivatives of (35) results in

d
ds
ϕi (s,x

s
ai;θi) =

{
d
dsρi(s;θi)

ρi(s,θi)
+ (xs

ai)
T d

ds
ϒi(s;θi)x

s
ai

+ 2(xs
ai)

T d
ds
ηi(s;θi)

+ (xs
ai)

T AT
ai(s)ϒi(s;θi)x

s
ai +(xs

ai)
Tϒi(s;θi)Aai(s)x

s
ai

+ 2(xs
ai)

T AT
ai(s)ηi(s;θi)

+ 2(xs
ai)

Tϒi(s;θi)lai(s)+ 2ηT
i (s;θi)lai(s)

+Tr{ϒi(s;θi)Gai(s)WaiG
T
ai(s)}

+ 2(xs
ai)

Tϒi(s;θi)Gai(s)WaiG
T
ai(s)ϒi(s;θi)x

s
ai

}
ϕi (s,x

s
ai;θi) . (36)

Equating the expression (34) with that of (36) and having both linear and quadratic
terms independent of xs

ai yield the following results

d
ds
ϒi(s;θi) =−AT

ai(s)ϒi(s;θi)−ϒi(s;θi)Aai(s)

− 2ϒi(s;θi)Gai(s)WaiG
T
ai(s)ϒi(s;θi)−θiQai(s) (37)

d
ds
ηi (s;θi) =−AT

ai(s)ηi(s;θi)−ϒi(s;θi)lai(s)−θiSai(s) (38)

d
ds
υi (s;θi) =−Tr

{
ϒi(s;θi)Gai (s)WaiG

T
ai (s)

}−2ηT
i (s;θi)lai(s)−θiζT

i (s)Qi(s)ζi(s)

−θi p
T
xi
(s)Rii(s)pxi(s)−θi p

T
zi
(s)Rzi(s)pzi(s) (39)

wherein υi(s;θi)� ln{ρi(s;θi)}. At the final time s = t f , it follows that
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ϕi(t f ,xai(t f );θi) = ρi(t f ;θi)exp
{

xT
ai(t f )ϒi(t f ;θi)xai(t f )+ 2xT

ai(t f )ηi(t f ;θi)
}

= E
{

exp
{
θi[x

T
ai(t f )Q

f
aixai(t f )+ 2xT

ai(t f )S
f
ai + ζT

i (t f )Q
f
i ζi(t f )]

}}

which in turn yields the terminal-value conditions as ϒi(t f ;θi) = θiQ
f
ai; ηi(t f ;θi) =

θiS
f
ai; and υi(t f ;θi) = θiζT

i (t f )Q
f
i ζi(t f ).

Hereafter, all the higher-order performance-measure statistics associated with the
chi-squared random performance measure (31) will be utilized to generate a Pareto
front with which incumbent agent i and i ∈ I is enabled to choose one or more
trade-offs between multiple performance attributes and risk attitude. In views of
the expression (35) and the definition of (33), the cumulant-generating function or
second-order characteristic function of (31) is rewritten as follows

ψi (s,x
s
ai;θi) = (xs

ai)
Tϒi(s;θi)x

s
ai + 2(xs

ai)
Tηi(s;θi)+υi(s;θi) . (40)

Subsequently, higher-order statistics of the random performance measure (31) that
depict the performance uncertainty can now be determined by a Maclaurin series
expansion of the cumulant-generating function (40); e.g.,

ψi (s,x
s
ai;θi) =

∞

∑
r=1

∂ (r)

∂θ (r)
i

ψi(s,x
s
ai;θi)

∣∣∣∣∣
θi=0

θ r
i

r!
, (41)

from which all κr � ∂ (r)

∂θ (r)i

ψi(s,xs
ai;θi)

∣∣∣∣
θi=0

are known as the mathematical statistics

or cumulants of the performance measure (31).
Moreover, the series expansion coefficients are computed by using the cumulant-

generating function (40)

∂ (r)

∂θ (r)
i

ψi(s,x
s
ai;θi)

∣∣∣∣∣
θi=0

= (xs
ai)

T ∂ (r)

∂θ (r)
i

ϒi(s;θi)

∣∣∣∣∣
θi=0

xs
ai

+ 2(xs
ai)

T ∂ (r)

∂θ (r)
i

ηi(s;θi)

∣∣∣∣∣
θi=0

+
∂ (r)

∂θ (r)
i

υi(s;θi)

∣∣∣∣∣
θi=0

.

(42)

In view of the definition (41), the rth performance-measure statistic is given by

κr = (xs
ai)

T ∂ (r)

∂θ (r)
i

ϒi(s;θi)

∣∣∣∣∣
θi=0

xs
ai

+ 2(xs
ai)

T ∂ (r)

∂θ (r)
i

ηi(s;θi)

∣∣∣∣∣
θi=0

+
∂ (r)

∂θ (r)
i

υi(s;θi)

∣∣∣∣∣
θi=0

(43)
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for any finite 1≤ r < ∞. For notational convenience, the change of notations

Hi(s,r)�
∂ (r)ϒi(s;θi)

∂θ (r)
i

∣∣∣∣∣
θi=0

;D̆i(s,r)�
∂ (r)ηi(s;θi)

∂θ (r)
i

∣∣∣∣∣
θi=0

;Di(s,r)�
∂ (r)υi(s;θi)

∂θ (r)
i

∣∣∣∣∣
θi=0

is introduced. What remains is to show that the solutions Hi(s,r), D̆i(s,r), and
Di(s,r) for 1 ≤ r ≤ ki and ki ∈ N indeed satisfy the time-backward matrix, vector,
and scalar-valued differential equations (25)–(30). Notice that these differential
equations (25)–(30) are readily obtained by successively taking derivatives with
respect to θi of the cumulant-supporting equations (37)–(39) under the assumption
of (Aii,Bii) and (Aii,Cii) uniformly stabilizable on the interval [t0, t f ]. ��
Furthermore, some attractive properties of the solutions to the cumulant-generating
equations (25)–(30), for which the problem of coordination control with risk-
averse performance of the class of distributed stochastic systems considered here
is therefore well posed, are presented as follows.

Theorem 2 (Existence of Solutions for Performance-Measure Statistics). Let
the pairs (Aii(·),Bii(·)) and (Aii(·),Cii(·)) be uniformly stabilizable. Then, for
any given ki ∈ N, the cumulant-generating equations (25)–(30) admit unique and

bounded solutions {Hi(·,r)}ki
r=1,

{
D̆i(·,r)

}ki

r=1 and {Di(·,r)}ki
r=1 on [t0, t f ].

Proof. Under the assumption of stabilizability, there always exist some feedback
parameters Kxi(·) and Kzi(·) such that the continuous-time aggregate state matrix
Aai(·) is exponentially stable on [t0, t f ]. According to the results in [8], the state
transition matrix Φai(t, t0), associated with the continuous-time composite state
matrix Aai(·), has the following properties

d
dt
Φai(t, t0) = Aai(t)Φai(t, t0) , Φai(t0, t0) = I ,

lim
t f→∞
||Φai(t f ,τ)||= 0 , lim

t f→∞

∫ t f

t0
||Φai(t f ,τ)||2dτ < ∞ .

By the matrix variation of constant formula, the unique solutions to the time-
backward matrix differential equations (25)–(30) together with the terminal-value
conditions are then written as follows

Hi(s,1) =ΦT
ai(t f ,s)Q

f
aiΦai(t f ,s)+

∫ t f

s
ΦT

ai(τ,s)Qai(τ)Φai(τ,s)dτ

Hi(s,r) =
∫ t f

s
ΦT

ai(τ,s)
r−1

∑
v=1

2r!
v!(r− v)!

Hi(τ,v)Gai(τ)WaiG
T
ai(τ)Hi(τ,r−v)Φai(τ,s)dτ

D̆i(s,1) =−ΦT
ai(t f ,s)Q

f
i ζi(t f )+

∫ t f

s
ΦT

ai(τ,s){Hi(τ,1)lai(τ)+ Sai(τ)}dτ
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D̆i(s,r) =
∫ t f

s
ΦT

ai(τ,s)Hi(τ,r)lai(τ)dτ , 2≤ r ≤ ki

Di(s,1) = ζT
i (t f )Q

f
i ζi(t f )+

∫ t f

s
{Tr{Hi(τ,1)Gai(τ)WaiG

T
ai(τ)}+ 2D̆T

i (τ,1)lai(τ)

+ pT
xi
(τ)Rii(τ)pxi(τ)+ pT

zi
(τ)Rzi(τ)pzi(τ)+ ζT

i (τ)Qi(τ)ζi(τ)}dτ

Di(s,r) =
∫ t f

s
{Tr{Hi(τ,r)Gai(τ)WaiG

T
ai(τ)}+ 2D̆T

i (τ,r)lai(τ)}dτ, 2≤ r ≤ ki .

As long as the growth rates of the integrals are not faster than those of exponentially
decreasing Φai(·, ·) and ΦT

ai(·, ·) factors, it is therefore concluded that there exist
upper bounds on the nonnegative and monotically increasing solutions Hi(·,r),
D̆i(·,r) and Di(·,r) for any time interval [t0, t f ]. ��

3 Problem Statements

The problem of adapting to performance uncertainty is now addressed by leveraging
increased insight into the roles played by performance-measure statistics (24). It
is interesting to note that all the performance-measure statistics (24) are functions
of time-backward evolutions and do not depend on intermediate recursive state
values xai(t) governed by the state-space representation (22)–(23) for incumbent
agent i at each point of time t ∈ [t0, t f ]. Henceforth, these time-backward evolutions
(25)–(30) of which the admissible decision variables Kxi , Kzi , pxi , and pzi from the 2-
tuple person-by-person equilibrium strategy (20)–(21) are embedded, are therefore
considered as the new dynamical equations with the associated state variables
Hi(·,r), D̆i(·,r) and Di(·,r), not the traditional system states xai(·).

To properly develop the problem statements within the concept of the person-by-
person equilibrium strategy for agent i and i ∈ I, the new dynamics (25)–(30) based
upon the performance-measure statistics of (24) is rewritten in accordance with the
following matrix partitions, for 1≤ r ≤ ki and ki ∈ N

Hi(·,r) �

⎡

⎢⎢⎣

(Hr
i )11(·) (Hr

i )12(·) (Hr
i )13(·) (Hr

i )14(·)
(Hr

i )21(·) (Hr
i )22(·) (Hr

i )23(·) (Hr
i )24(·)

(Hr
i )31(·) (Hr

i )32(·) (Hr
i )33(·) (Hr

i )34(·)
(Hr

i )41(·) (Hr
i )42(·) (Hr

i )43(·) (Hr
i )44(·)

⎤

⎥⎥⎦ , D̆i(·,r)�

⎡

⎢⎢⎣

(D̆r
i )11(·)

(D̆r
i )21(·)

(D̆r
i )31(·)

(D̆r
i )41(·)

⎤

⎥⎥⎦ .

For notational simplicity, it is now useful to denote the right members of the
dynamics (25)–(30) as the mappings

(F r
i )11 :

[
t0, t f

]× (R4ni×4ni)ki ×R
mi×ni×R

qi×ni �→ R
ni×ni

(F r
i )12 :

[
t0, t f

]× (R4ni×4ni)ki ×R
mi×ni×R

qi×ni �→ R
ni×ni

(F r
i )13 :

[
t0, t f

]× (R4ni×4ni)ki ×R
mi×ni×R

qi×ni �→ R
ni×ni



192 K.D. Pham

(F r
i )14 :

[
t0, t f

]× (R4ni×4ni)ki ×R
mi×ni×R

qi×ni �→ R
ni×ni

(F r
i )21 :

[
t0, t f

]× (R4ni×4ni)ki ×R
mi×ni×R

qi×ni �→ R
ni×ni

(F r
i )22 :

[
t0, t f

]× (R4ni×4ni)ki �→R
ni×ni

(F r
i )23 :

[
t0, t f

]× (R4ni×4ni)ki �→R
ni×ni

(F r
i )24 :

[
t0, t f

]× (R4ni×4ni)ki �→R
ni×ni

(F r
i )31 :

[
t0, t f

]× (R4ni×4ni)ki ×R
mi×ni×R

qi×ni �→ R
ni×ni

(F r
i )32 :

[
t0, t f

]× (R4ni×4ni)ki �→R
ni×ni

(F r
i )33 :

[
t0, t f

]× (R4ni×4ni)ki �→R
ni×ni

(F r
i )34 :

[
t0, t f

]× (R4ni×4ni)ki �→R
ni×ni

(F r
i )41 :

[
t0, t f

]× (R4ni×4ni)ki ×R
mi×ni×R

qi×ni �→ R
ni×ni

(F r
i )42 :

[
t0, t f

]× (R4ni×4ni)ki �→R
ni×ni

(F r
i )43 :

[
t0, t f

]× (R4ni×4ni)ki �→R
ni×ni

(F r
i )44 :

[
t0, t f

]× (R4ni×4ni)ki �→R
ni×ni

(Ğ r
i )11 :

[
t0, t f

]× (R4ni×4ni)ki × (R4ni)ki ×R
mi×ni×R

qi×ni×R
mi×R

qi �→R
ni

(Ğ r
i )21 :

[
t0, t f

]× (R4ni×4ni)ki × (R4ni)ki ×R
mi×R

qi �→ R
ni

(Ğ r
i )31 :

[
t0, t f

]× (R4ni×4ni)ki × (R4ni)ki ×R
mi×R

qi �→ R
ni

(Ğ r
i )41 :

[
t0, t f

]× (R4ni×4ni)ki × (R4ni)ki ×R
mi×R

qi �→ R
ni

G r
i :

[
t0, t f

]× (R4ni×4ni)ki × (R4ni)ki ×R
mi×R

qi �→ R

with the rules of action

(F 1
i )11(s,Hi,Kxi ,Kzi)�−[Aii(s)+Bii(s)Kxi (s)+Cii(s)Kzi(s)]

T (H 1
i )11(s)

− (H 1
i )11(s)[Aii(s)+Bii(s)Kxi (s)+Cii(s)Kzi (s)]

−Qii(s)−Qi(s)−KT
xi
(s)Rii(s)Kxi (s)−KT

zi
(s)Rzi(s)Kzi (s)

(F r
i )11(s,Hi,Kxi ,Kzi)� −[Aii(s)+Bii(s)Kxi (s)+Cii(s)Kzi(s)]

T (H r
i )11(s)

− (H r
i )11(s)[Aii(s)+Bii(s)Kxi (s)+Cii(s)Kzi (s)]

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )11(s)Li(s)ViL
T
i (s)(H

r−v
i )11(s)

− (H v
i )12(s)Li(s)ViL

T
i (s)(H

r−v
i )11(s)− (H v

i )11(s)Li(s)ViL
T
i (s)(H

r−v
i )21(s)
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+(H v
i )12(s)Gi(s)WiG

T
i (s)H

r−v
i )21(s)+ (H v

i )12(s)Li(s)ViL
T
i (s)(H

r−v
i )21(s)

+ (H v
i )13(s)Lic(s)VicLT

ic(s)(H
r−v

i )31(s)− (H v
i )14(s)Lic(s)VicLT

ic(s)(H
r−v

i )31(s)

− (H v
i )13(s)Lic(s)VicLT

ic(s)(H
r−v

i )41(s)+(H v
i )14(s)Gic(s)WicGT

ic(s)(H
r−v

i )41(s)

+ (H v
i )14(s)Lic(s)LicLT

ic(s)(H
r−v

i )41(s)
}
, 2≤ r ≤ ki

(F 1
i )12(s,Hi,Kxi ,Kzi)�−[Aii(s)+Bii(s)Kxi(s)+Cii(s)Kzi(s)]

T (H 1
i )12(s)

− (H 1
i )11(s)Li(s)Ci(s)− (H 1

i )12(s)(Aii(s)−Li(s)Ci(s))

(F r
i )12(s,Hi,Kxi ,Kzi)� −[Aii(s)+Bii(s)Kxi (s)+Cii(s)Kzi(s)]

T (H r
i )12(s)

− (H r
i )11(s)Li(s)Ci(s)− (H r

i )12(Aii(s)−Li(s)Ci(s))

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )11(s)Li(s)ViL
T
i (s)(H

r−v
i )12(s)

− (H v
i )12(s)Li(s)ViL

T
i (s)(H

r−v
i )12(s)− (H v

i )11(s)Li(s)ViL
T
i (s)(H

r−v
i )22(s)

+ (H v
i )12(s)Gi(s)WiG

T
i (s)(H

r−s
i )22(s)+ (H v

i )12(s)Li(s)WiL
T
i (s)(H

r−s
i )22(s)

+ (H v
i )13(s)Lic(s)VicLT

ic(s)(H
r−v

i )32(s)− (H v
i )14(s)Lic(s)VicLT

ic(s)(H
r−v

i )32(s)

− (H v
i )13(s)Lic(s)VicLT

ic(s)(H
r−v

i )42(s)+(H v
i )14(s)Gic(s)WicGT

ic(s)(H
r−v

i )42(s)

+ (H v
i )14(s)Lic(s)VicLT

ic(s)(H
r−v

i )42(s)
}
, 2≤ r ≤ ki

(F 1
i )13(s,Hi,Kxi ,Kzi)�−[Aii(s)+Bii(s)Kxi(s)+Cii(s)Kzi(s)]

T (H 1
i )13(s)

− (H 1
i )13(s)Aic(s)+ 2KT

zi
(s)Rzi(s)

(F r
i )13(s,Hi,Kxi ,Kzi)� −[Aii(s)+Bii(s)Kxi (s)+Cii(s)Kzi(s)]

T (H r
i )13(s)

− (H r
i )13(s)Aic(s)−

r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )11(s)Li(s)ViL
T
i (s)(H

r−v
i )13(s)

− (H v
i )12(s)Li(s)ViL

T
i (s)(H

r−v
i )13(s)− (H v

i )11(s)Li(s)ViL
T
i (s)(H

r−v
i )23(s)

+ (H v
i )12(s)Gi(s)WiG

T
i (s)(H

r−v
i )23(s)+ (H v

i )12(s)Li(s)ViL
T
i (s)(H

r−v
i )23(s)
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+(H v
i )13(s)Lic(s)VicLT

ic(s)(H
r−v

i )33(s)− (H v
i )14(s)Lic(s)VicLT

ic(s)(H
r−v

i )33(s)

− (H v
i )13(s)Lic(s)VicLT

ic(s)(H
r−v

i )43(s)+(H v
i )14(s)Gic(s)WicGT

ic(s)(H
r−v

i )43(s)

+ (H v
i )14(s)Lic(s)VicLT

ic(s)(H
r−v

i )43(s)
}
, 2≤ r ≤ ki

(F 1
i )14(s,Hi,Kxi ,Kzi)�−[Aii(s)+Bii(s)Kxi(s)+Cii(s)Kzi(s)]

T (H 1
i )14(s)

− (H 1
i )13(s)Li(s)Ci(s)− (H 1

i )14(s)(Aic(s)−Lic(s)Cic(s))

(F r
i )14(s,Hi,Kxi ,Kzi)� −[Aii(s)+Bii(s)Kxi (s)+Cii(s)Kzi(s)]

T (H r
i )14(s)

− (H r
i )13(s)Li(s)Ci(s)− (H r

i )14(s)(Aic(s)−Lic(s)Cic(s))

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )11(s)Li(s)ViL
T
i (s)(H

r−v
i )14(s)

− (H v
i )12(s)Li(s)ViL

T
i (s)(H

r−v
i )14(s)− (H v

i )11(s)Li(s)ViL
T
i (s)(H

r−v
i )24(s)

+ (H v
i )12(s)Gi(s)WiG

T
i (s)(H

r−v
i )24(s)+ (H v

i )12(s)Li(s)ViL
T
i (s)(H

r−v
i )24(s)

+ (H v
i )13(s)Lic(s)VicLT

ic(s)(H
r−v

i )34(s)− (H v
i )14(s)Lic(s)VicLT

ic(s)(H
r−v

i )34(s)

− (H v
i )13(s)Lic(s)VicLT

ic(s)(H
r−v

i )44(s)+(H v
i )14(s)Gic(s)WicGT

ic(s)(H
r−v

i )44(s)

+ (H v
i )14(s)Lic(s)VicLT

ic(s)(H
r−v

i )44(s)
}
, 2≤ r ≤ ki

(F 1
i )21(s,Hi,Kxi ,Kzi)�−(H 1

i )21(s)[Aii(s)+Bii(s)Kxi (s)+Cii(s)Kzi(s)]

− (Li(s)Ci(s))
T (H 1

i )11(s)− (Aii(s)−Li(s)Ci(s))
T (H 1

i )21(s)

(F r
i )21(s,Hi,Kxi ,Kzi)� −(H r

i )21(s)[Aii(s)+Bii(s)Kxi(s)+Cii(s)Kzi(s)]

− (Li(s)Ci(s))
T (H r

i )11(s)− (Aii(s)−Li(s)Ci(s))
T (H r

i )21(s)

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )21(s)Li(s)ViL
T
i (s)(H

r−v
i )11(s)

− (H v
i )22(s)Li(s)ViL

T
i (s)(H

r−v
i )11(s)− (H v

i )21(s)Li(s)ViL
T
i (s)(H

r−v
i )21(s)

+ (H v
i )22(s)Gi(s)WiG

T
i (s)(H

r−v
i )21(s)+ (H v

i )22(s)Li(s)ViL
T
i (s)(H

r−v
i )21(s)
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+(H v
i )23(s)Li(s)ViL

T
i (s)(H

r−v
i )31(s)− (H v

i )24(s)Lic(s)VicLT
ic(s)(H

r−v
i )31(s)

− (H v
i )23(s)Lic(s)VicLT

ic(s)(H
r−v

i )41(s)+(H v
i )24(s)Gic(s)WicGT

ic(s)(H
r−v

i )41(s)

+ (H v
i )24(s)Lic(s)VicLT

ic(s)(H
r−v

i )41(s)
}
, 2≤ r ≤ ki

(F 1
i )22(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H 1
i )22(s)− (Li(s)Ci(s))

T (H 1
i )12(s)

− (H 1
i )22(s)(Aii(s)−Li(s)Ci(s))− (H 1

i )21(s)Li(s)Ci(s)

(F r
i )22(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H r
i )22(s)− (Li(s)Ci(s))

T (H r
i )12(s)

− (H r
i )22(s)(Aii(s)−Li(s)Ci(s))− (H r

i )21(s)Li(s)Ci(s)

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )21(s)Li(s)ViL
T
i (s)(H

r−v
i )12(s)

− (H v
i )22(s)Li(s)ViL

T
i (s)(H

r−v
i )12(s)− (H v

i )21(s)Li(s)ViL
T
i (s)(H

r−v
i )22(s)

+ (H v
i )22(s)Gi(s)WiG

T
i (s)(H

r−v
i )22(s)+ (H v

i )22(s)Li(s)ViL
T
i (s)(H

r−v
i )22(s)

+ (H v
i )23(s)Lic(s)VicLT

ic(s)(H
r−v

i )32(s)− (H v
i )24(s)Lic(s)VicLT

ic(s)(H
r−v

i )32(s)

− (H v
i )23(s)Lic(s)VicLT

ic(s)(H
r−v

i )42(s)+(H v
i )24(s)Gic(s)WicGT

ic(s)(H
r−v

i )42(s)

+ (H v
i )24(s)Lic(s)VicLT

ic(s)(H
r−v

i )42(s)
}
, 2≤ r ≤ ki

(F 1
i )23(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H 1
i )23(s)− (H 1

i )23(s)Aic(s)

− (Li(s)Ci(s))
T (H 1

i )13(s)

(F r
i )23(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H r
i )23(s)− (H r

i )23(s)Aic(s)

− (Li(s)Ci(s))
T (H r

i )13(s)−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )21(s)Li(s)ViL
T
i (s)(H

r−v
i )13(s)

− (H v
i )22(s)Li(s)ViL

T
i (s)(H

r−v
i )13(s)− (H v

i )21(s)Li(s)ViL
T
i (s)(H

r−v
i )23(s)

+ (H v
i )22(s)Gi(s)WiG

T
i (s)(H

r−v
i )23(s)+ (H v

i )22(s)Li(s)ViL
T
i (s)(H

r−v
i )23(s)

+ (H v
i )23(s)Lic(s)VicLT

ic(s)(H
r−v

i )33(s)− (H v
i )24(s)Lic(s)VicLT

ic(s)(H
r−v

i )33(s)
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− (H v
i )23(s)Lic(s)VicLT

ic(s)(H
r−v

i )43(s)+(H v
i )24(s)Gic(s)WicGT

ic(s)(H
r−v

i )43(s)

+ (H v
i )24(s)Lic(s)VicLT

ic(s)(H
r−v

i )43(s)
}
, 2≤ r ≤ ki

(F 1
i )24(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H 1
i )24(s)− (H 1

i )23(s)Lic(s)Cic(s)

− (Lic(s)Cic(s))
T (H 1

i )14(s)− (H 1
i )24(s)(Aii(s)−Li(s)Ci(s))

(F r
i )24(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H r
i )24(s)− (H r

i )23(s)Lic(s)Cic(s)

− (Lic(s)Cic(s))
T (H r

i )14(s)− (H r
i )24(s)(Aii(s)−Li(s)Ci(s))

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )21(s)Li(s)ViL
T
i (s)(H

r−v
i )14(s)

− (H v
i )22(s)Li(s)ViL

T
i (s)(H

r−v
i )14(s)− (H v

i )21(s)Li(s)ViL
T
i (s)(H

r−v
i )24(s)

+ (H v
i )22(s)Gi(s)WiG

T
i (s)(H

r−v
i )24(s)+ (H v

i )22(s)Li(s)ViL
T
i (s)(H

r−v
i )24(s)

+ (H v
i )23(s)Lic(s)VicLT

ic(s)(H
r−v

i )34(s)− (H v
i )24(s)Lic(s)VicLT

ic(s)(H
r−v

i )34(s)

− (H v
i )23(s)Lic(s)VicLT

ic(s)(H
r−v

i )44(s)+(H v
i )24(s)Gic(s)WicGT

ic(s)(H
r−v

i )44(s)

+ (H v
i )24(s)Lic(s)VicLT

ic(s)(H
r−v

i )44(s)
}
, 2≤ r ≤ ki

(F 1
i )31(s,Hi,Kxi ,Kzi)�−AT

ic(s)(H
1

i )31(s)

− (H 1
i )31(s)[Aii(s)+Bii(s)Kxi(s)+Cii(s)Kzi(s)]

(F r
i )31(s,Hi,Kxi ,Kzi)� −(H r

i )31(s)[Aii(s)+Bii(s)Kxi(s)+Cii(s)Kzi(s)]

−AT
ic(s)(H

r
i )31(s)−

r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )31(s)Li(s)ViL
T
i (s)(H

r−v
i )11(s)

− (H v
i )32(s)Li(s)ViL

T
i (s)(H

r−v
i )11(s)− (H v

i )31(s)Li(s)ViL
T
i (s)(H

r−v
i )21(s)

+ (H v
i )32(s)Gi(s)WiG

T
i (s)(H

r−v
i )21(s)+ (H v

i )32(s)Li(s)ViL
T
i (s)(H

r−v
i )21(s)

+ (H v
i )33(s)Lic(s)VicLT

ic(s)(H
r−v

i )31(s)− (H v
i )34(s)Lic(s)VicLT

ic(s)(H
r−v

i )31(s)

− (H v
i )33(s)Lic(s)VicLT

ic(s)(H
r−v

i )41(s)+(H v
i )34(s)Gic(s)WicGT

ic(s)(H
r−v

i )41(s)

+ (H v
i )34(s)Lic(s)VicLT

ic(s)(H
r−v

i )41(s)
}
, 2≤ r ≤ ki
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(F 1
i )32(s,Hi)�−AT

ic(s)(H
1

i )32(s)

− (H 1
i )31(s)Li(s)Ci(s)− (H 1

i )32(s)(Aii(s)−Li(s)Ci(s))

(F r
i )32(s,Hi)�−AT

ic(s)(H
r

i )32(s)− (H r
i )32(s)(Aii(s)−Li(s)Ci(s))

− (H r
i )31(s)Li(s)Ci(s)−

r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )31(s)Li(s)ViL
T
i (s)(H

r−v
i )12(s)

− (H v
i )32(s)Li(s)ViL

T
i (s)(H

r−v
i )12(s)− (H v

i )31(s)Li(s)ViL
T
i (s)(H

r−v
i )22(s)

+ (H v
i )32(s)Gi(s)WiG

T
i (s)(H

r−v
i )22(s)+ (H v

i )32(s)Li(s)ViL
T
i (s)(H

r−v
i )22(s)

+ (H v
i )33(s)Lic(s)VicLT

ic(s)(H
r−v

i )32(s)− (H v
i )34(s)Lic(s)VicLT

ic(s)(H
r−v

i )32(s)

− (H v
i )33(s)Lic(s)VicLT

ic(s)(H
r−v

i )42(s)+(H v
i )34(s)Gic(s)WicGT

ic(s)(H
r−v

i )42(s)

+ (H v
i )34(s)Lic(s)VicLT

ic(s)(H
r−v

i )42(s)
}
, 2≤ r ≤ ki

(F 1
i )33(s,Hi)�−AT

ic(s)(H
1

i )33(s)− (H 1
i )33(s)Aic(s)−Rzi(s)

(F r
i )33(s,Hi)�−AT

ic(s)(H
r

i )33(s)− (H r
i )33(s)Aic(s)

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )31(s)Li(s)ViL
T
i (s)(H

r−v
i )13(s)

− (H v
i )32(s)Li(s)ViL

T
i (s)(H

r−v
i )13(s)− (H v

i )31(s)Li(s)ViL
T
i (s)(H

r−v
i )23(s)

+ (H v
i )32(s)Gi(s)WiG

T
i (s)(H

r−v
i )23(s)+ (H v

i )32(s)Li(s)ViL
T
i (s)(H

r−v
i )23(s)

+ (H v
i )33(s)Lic(s)VicLT

ic(s)(H
r−v

i )33(s)− (H v
i )34(s)Lic(s)VicLT

ic(s)(H
r−v

i )33(s)

− (H v
i )33(s)Lic(s)VicLT

ic(s)(H
r−v

i )43(s)+(H v
i )34(s)Gic(s)WicGT

ic(s)(H
r−v

i )43(s)

+ (H v
i )34(s)Lic(s)VicLT

ic(s)(H
r−v

i )43(s)
}
, 2≤ r ≤ ki

(F 1
i )34(s,Hi)�−AT

ic(s)(H
1

i )34(s)− (H 1
i )34(s)(Aic(s)−Lic(s)Cic(s))

− (H 1
i )33(s)Lic(s)Cic(s)
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(F r
i )34(s,Hi)�−AT

ic(s)(H
r

i )34(s)− (H r
i )34(s)(Aic(s)−Lic(s)Cic(s))

− (H r
i )33(s)Lic(s)Cic(s)−

r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )31(s)Li(s)ViL
T
i (s)(H

r−v
i )14(s)

− (H v
i )32(s)Li(s)ViL

T
i (s)(H

r−v
i )14(s)− (H v

i )31(s)Li(s)ViL
T
i (s)(H

r−v
i )24(s)

+ (H v
i )32(s)Gi(s)WiG

T
i (s)(H

r−v
i )24(s)+ (H v

i )32(s)Li(s)ViL
T
i (s)(H

r−v
i )24(s)

+ (H v
i )33(s)Lic(s)VicLT

ic(s)(H
r−v

i )34(s)− (H v
i )34(s)Lic(s)VicLT

ic(s)(H
r−v

i )34(s)

− (H v
i )33(s)Lic(s)VicLT

ic(s)(H
r−v

i )44(s)+(H v
i )34(s)Gic(s)WicGT

ic(s)(H
r−v

i )44(s)

+ (H v
i )34(s)Lic(s)VicLT

ic(s)(H
r−v

i )44(s)
}
, 2≤ r ≤ ki

(F 1
i )41(s,Hi,Kxi ,Kzi)�−(Aii(s)−Li(s)Ci(s))

T (H 1
i )41(s)

− (Li(s)Ci(s))
T (H 1

i )31(s)− (H 1
i )41(s)[Aii(s)+Bii(s)Kxi(s)+Cii(s)Kzi(s)]

(F r
i )41(s,Hi,Kxi ,Kzi)� −(Aic(s)−Lic(s)Cic(s))

T (H r
i )41(s)

− (Lic(s)Cic(s))
T (H r

i )31(s)− (H r
i )41(s)[Aii(s)+Bii(s)Kxi(s)+Cii(s)Kzi(s)]

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )41(s)Li(s)ViL
T
i (s)(H

r−v
i )11(s)

− (H v
i )42(s)Li(s)ViL

T
i (s)(H

r−v
i )11(s)− (H v

i )41(s)Li(s)ViL
T
i (s)(H

r−v
i )21(s)

+ (H v
i )42(s)Gi(s)WiG

T
i (s)(H

r−v
i )21(s)+ (H v

i )42(s)Li(s)ViL
T
i (s)(H

r−v
i )21(s)

+ (H v
i )43(s)Lic(s)VicLT

ic(s)(H
r−v

i )31(s)− (H v
i )44(s)Lic(s)VicLT

ic(s)(H
r−v

i )31(s)

− (H v
i )43(s)Lic(s)VicLT

ic(s)(H
r−v

i )41(s)+(H v
i )44(s)Gic(s)WicGT

ic(s)(H
r−v

i )41(s)

+ (H v
i )44(s)Lic(s)VicLT

ic(s)(H
r−v

i )41(s)
}
, 2≤ r ≤ ki

(F 1
i )42(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H 1
i )42(s)− (Li(s)Ci(s))

T (H 1
i )32(s)

− (H 1
i )41(s)Li(s)Ci(s)− (H 1

i )42(s)(Aii(s)−Li(s)Ci(s))
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(F r
i )42(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H r
i )42(s)− (Li(s)Ci(s))

T (H r
i )32(s)

− (H r
i )41(s)Li(s)Ci(s)− (H r

i )42(s)(Aii(s)−Li(s)Ci(s))

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )41(s)Li(s)ViL
T
i (s)(H

r−v
i )12(s)

− (H v
i )42(s)Li(s)ViL

T
i (s)(H

r−v
i )12(s)− (H v

i )41(s)Li(s)ViL
T
i (s)(H

r−v
i )22(s)

+ (H v
i )42(s)Gi(s)WiG

T
i (s)(H

r−v
i )22(s)+ (H v

i )42(s)Li(s)ViL
T
i (s)(H

r−v
i )22(s)

+ (H v
i )43(s)Lic(s)VicLT

ic(s)(H
r−v

i )32(s)− (H v
i )44(s)Lic(s)VicLT

ic(s)(H
r−v

i )32(s)

− (H v
i )43(s)Lic(s)VicLT

ic(s)(H
r−v

i )42(s)+(H v
i )44(s)Gic(s)WicGT

ic(s)(H
r−v

i )42(s)

+ (H v
i )44(s)Lic(s)VicLT

ic(s)(H
r−v

i )42(s)
}
, 2≤ r ≤ ki

(F 1
i )43(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H 1
i )43(s)− (Li(s)Ci(s))

T (H 1
i )33(s)

− (H 1
i )43(s)Aic(s)

(F r
i )43(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H r
i )43(s)− (Li(s)Ci(s))

T (H r
i )33(s)

− (H r
i )43(s)Aic(s)−

r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )41(s)Li(s)ViL
T
i (s)(H

r−v
i )13(s)

− (H v
i )42(s)Li(s)ViL

T
i (s)(H

r−v
i )13(s)− (H v

i )41(s)Li(s)ViL
T
i (s)(H

r−v
i )23(s)

+ (H v
i )42(s)Gi(s)WiG

T
i (s)(H

r−v
i )23(s)+ (H v

i )42(s)Li(s)ViL
T
i (s)(H

r−v
i )23(s)

+ (H v
i )43(s)Lic(s)VicLT

ic(s)(H
r−v

i )33(s)− (H v
i )44(s)Lic(s)VicLT

ic(s)(H
r−v

i )33(s)

− (H v
i )43(s)Lic(s)VicLT

ic(s)(H
r−v

i )43(s)+(H v
i )44(s)Gic(s)WicGT

ic(s)(H
r−v

i )43(s)

+ (H v
i )44(s)Lic(s)VicLT

ic(s)(H
r−v

i )43(s)
}
, 2≤ r ≤ ki

(F 1
i )44(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H 1
i )44(s)− (Li(s)Ci(s))

T (H 1
i )34(s)

− (H 1
i )43(s)Lic(s)Cic(s)− (H 1

i )44(s)(Aic(s)−Lic(s)Cic(s))
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(F r
i )44(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H r
i )44(s)− (Li(s)Ci(s))

T (H r
i )34(s)

− (H r
i )43(s)Lic(s)Cic(s)− (H r

i )44(s)(Aic(s)−Lic(s)Cic(s))

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )41(s)Li(s)ViL
T
i (s)(H

r−v
i )14(s)

− (H v
i )44(s)Lic(s)VicLT

ic(s)(H
r−v

i )14(s)− (H v
i )41(s)Li(s)ViL

T
i (s)(H

r−v
i )24(s)

+ (H v
i )42(s)Gi(s)WiG

T
i (s)(H

r−v
i )24(s)+ (H v

i )42(s)Li(s)ViL
T
i (s)(H

r−v
i )24(s)

+ (H v
i )43(s)Lic(s)VicLT

ic(s)(H
r−v

i )34(s)− (H v
i )44(s)Lic(s)VicLT

ic(s)(H
r−v

i )34(s)

− (H v
i )43(s)Lic(s)VicLT

ic(s)(H
r−v

i )44(s)+(H v
i )44(s)Gic(s)WicGT

ic(s)(H
r−v

i )44(s)

+ (H v
i )44(s)Lic(s)VicLT

ic(s)(H
r−v

i )44(s)
}
, 2≤ r ≤ ki

(Ğ 1
i )11(s,Hi,D̆i,Kxi ,Kzi , pxi , pzi)�−(H 1

i )13(s)Bic(s)uc(s)−KT
xi
(s)Rii(s)pxi(s)

−KT
zi

Rzi(s)pzi(s)− [Aii(s)+Bii(s)Kxi (s)+Cii(s)Kzi(s)]
T (D̆1

i )11(s)

− (H 1
i )11(s)

[
Bii(s)pxi(s)+Cii(s)pzi(s)+

Ni

∑
j=1

Bi j(s)u
∗
i j(s)

]
+Qi(s)ζi(s)

(Ğ r
i )11(s,Hi,D̆i,Kxi ,Kzi , pxi , pzi)�−(H r

i )13(s)Bic(s)uc(s)

− [Aii(s)+Bii(s)Kxi(s)+Cii(s)Kzi(s)]
T (D̆ r

i )11(s)

− (H r
i )11(s)

[
Bii(s)pxi(s)+Cii(s)pzi(s)+

Ni

∑
j=1

Bi j(s)u
∗
i j(s)

]

(Ğ r
i )21(s,Hi,D̆i, pxi , pzi)�−(Aii(s)−Li(s)Ci(s))

T (D̆ r
i )21(s)

− (Li(s)Ci(s))
T (s)(D̆ r

i )11(s)− (H r
i )23(s)Bic(s)uc(s)

− (H r
i )21(s)

[
Bii(s)pxi(s)+Cii(s)pzi(s)+

Ni

∑
j=1

Bi j(s)u
∗
i j(s)

]
, 1≤ r ≤ ki
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(Ğ 1
i )31(s,Hi,D̆i, pxi , pzi)�−AT

ic(s)(D̆
1
i )31(s)+Rzi(s)pzi(s)

−(H 1
i )33(s)Bic(s)uc(s)−(H 1

i )31(s)
[
Bii(s)pxi(s)+Cii(s)pzi(s)+

Ni

∑
j=1

Bi j(s)u
∗
i j(s)

]

(Ğ r
i )31(s,Hi,D̆i, pxi , pzi)�−AT

ic(s)(D̆
r
i )31(s)− (H r

i )33(s)Bic(s)uc(s)

− (H r
i )31(s)

[
Bii(s)pxi(s)+Cii(s)pzi(s)+

Ni

∑
j=1

Bi j(s)u
∗
i j(s)

]
, 2≤ r ≤ ki

(Ğ r
i )41(s,Hi,D̆i, pxi , pzi)�−(Lic(s)Cic(s))

T (D̆ r
i )31(s)

− (Aic(s)−Lic(s)Cic(s))
T (D̆ r

i )41(s)− (H r
i )43(s)Bic(s)uc(s)

− (H r
i )41(s)

[
Bii(s)pxi(s)+Cii(s)pzi(s)+

Ni

∑
j=1

Bi j(s)u
∗
i j(s)

]
, 1≤ r ≤ ki

G 1
i (s,Hi,D̆i, pxi , pzi)�−Tr{(H 1

i )11(s)Li(s)ViL
T
i (s)− (H 1

i )12(s)Li(s)ViL
T
i (s)}

−Tr{−(H 1
i )21(s)Li(s)ViL

T
i (s)+ (H 1

i )22(s)(Gi(s)WiG
T
i (s)+Li(s)ViL

T
i (s))}

−Tr{(H 1
i )33(s)Lic(s)VicLT

ic(s)− (H 1
i )34(s)Lic(s)VicLT

ic(s)}
−Tr{−(H 1

i )43(s)Lic(s)VicLT
ic(s)+ (H 1

i )44(s)(GicWicGT
ic(s)+Lic(s)VicLT

ic(s))}

−2(D̆1
i )

T
11(s)

[
Bii(s)pxi(s)+Cii(s)pzi(s)+

Ni

∑
j=1

Bi j(s)u
∗
i j(s)

]
−2(D̆1

i )
T
31(s)Bic(s)uc(s)

− ζT
i (s)Qi(s)ζi(s)− pT

xi
(s)Rii(s)pxi(s)− pT

zi
(s)Rzi(s)pzi(s)

G r
i (s,Hi,D̆i, pxi , pzi)�−Tr{(H r

i )11(s)Li(s)ViL
T
i (s)− (H r

i )12(s)Li(s)ViL
T
i (s)}

−Tr{−(H r
i )21(s)Li(s)ViL

T
i (s)+ (H r

i )22(s)(Gi(s)WiG
T
i (s)+Li(s)ViL

T
i (s))}

−Tr{(H r
i )33(s)Lic(s)VicLT

ic(s)− (H r
i )34(s)Lic(s)VicLT

ic(s)}
−Tr{−(H r

i )43(s)Lic(s)VicLT
ic(s)+ (H r

i )44(s)(GicWicGT
ic(s)+Lic(s)VicLT

ic(s))}

−2(D̆ r
i )

T
11(s)

[
Bii(s)pxi(s)+Cii(s)pzi(s)+

Ni

∑
j=1

Bi j(s)u
∗
i j(s)

]
−2(D̆ r

i )
T
31(s)Bic(s)uc(s)
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whereby the ki-tuple Hi, ki-tuple D̆i, and ki-tuple Di variables are defined by

Hi � ((H 1
i )11, . . . ,(H

ki
i )11,(H

1
i )12, . . . ,(H

ki
i )12,(H

1
i )13, . . . ,(H

ki
i )13,

(H 1
i )14, . . . ,(H

ki
i )14,(H

1
i )21, . . . ,(H

ki
i )21,(H

1
i )22, . . . ,(H

ki
i )22,

(H 1
i )23, . . . ,(H

ki
i )23,(H

1
i )24, . . . ,(H

ki
i )24,(H

1
i )31, . . . ,(H

ki
i )31,

(H 1
i )32, . . . ,(H

ki
i )32,(H

1
i )33, . . . ,(H

ki
i )33,(H

1
i )34, . . . ,(H

ki
i )34,

(H 1
i )41, . . . ,(H

ki
i )41,(H

1
i )42, . . . ,(H

ki
i )42,(H

1
i )43, . . . ,(H

ki
i )43,

(H 1
i )44, . . . ,(H

ki
i )44)

≡ ((H1
i )11, . . . ,(H

ki
i )11,(H

1
i )12, . . . ,(H

ki
i )12,(H

1
i )13, . . . ,(H

ki
i )13,

(H1
i )14, . . . ,(H

ki
i )14,(H

1
i )21, . . . ,(H

ki
i )21,(H

1
i )22, . . . ,(H

ki
i )22,

(H1
i )23, . . . ,(H

ki
i )23,(H

1
i )24, . . . ,(H

ki
i )24,(H

1
i )31, . . . ,(H

ki
i )31,

(H1
i )32, . . . ,(H

ki
i )32,(H

1
i )33, . . . ,(H

ki
i )33,(H

1
i )34, . . . ,(H

ki
i )34,

(H1
i )41, . . . ,(H

ki
i )41,(H

1
i )42, . . . ,(H

ki
i )42,(H

1
i )43, . . . ,(H

ki
i )43,

(H1
i )44, . . . ,(H

ki
i )44)

D̆i � ((D̆1
i )11, . . . ,(D̆

ki
i )11,(D̆

1
i )21, . . . ,(D̆

ki
i )21,(D̆

1
i )31, . . . ,(D̆

ki
i )31,

(D̆1
i )41, . . . ,(D̆

ki
i )41)

≡ ((D̆1
i )11, . . . , D̆

ki
i )11,(D̆

1
i )21, . . . , D̆

ki
i )21,(D̆

1
i )31, . . . , D̆

ki
i )31,

(D̆1
i )41, . . . , D̆

ki
i )41)

Di � (D1
i , . . . ,D

ki
i )≡ (D1

i , . . . ,D
ki
i ) .

Hence, the product system of dynamical equations in coordination control of the
problem class with performance risk aversion becomes

d
ds

Hi(s) = Fi(s,Hi(s),Kxi (s),Kzi(s)) , Hi(t f ) = H f
i , (44)

d
ds

D̆i(s) = Ği(s,Hi(s),D̆i(s),Kxi (s),Kzi(s), pxi(s), pzi(s)) , D̆i(t f ) = D̆ f
i , (45)

d
ds

D̆i(s) = Ği(s,Hi(s),D̆i(s), pxi(s), pzi(s)) , D̆i(t f ) = D̆ f
i , (46)
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whereby

Fi � (F 1
i )11×·· ·× (F ki

i )11×·· ·× (F 1
i )44×·· ·× (F ki

i )44

Ği � (Ğ 1
i )11×·· ·× (Ğ ki

i )11×·· ·× (Ğ 1
i )41×·· ·× (Ğ ki

i )41

Gi � G 1
i ×·· ·×G ki

i

in addition to the product system of the terminal-value conditions

H f
i � Q f

i × 0×·· ·× 0︸ ︷︷ ︸
(16ki− 1)-times

; D̆ f
i �−Q f

i ζi(t f )× 0×·· ·× 0︸ ︷︷ ︸
(4ki− 1)-times

D f
i � ζT

i (t f )Q
f
i ζi(t f )× 0×·· ·× 0︸ ︷︷ ︸

(ki− 1)-times

; i ∈ I .

Once immediate neighbors j ∈ Ni of agent i fix the corresponding person-by-person
equilibrium strategies u∗j and thus the signaling or coordination effects u∗−i, agent
i then obtains an optimal stochastic control problem with risk-averse performance
considerations. The construction of agent i’s person-by-person policy now involves
the 4-tuple (Kxi , Kzi , pxi , pzi). Furthermore, the solutions of the equations (44)–(46)
also depend on the admissible feedback gains Kxi and Kzi , in addition to the affine
inputs pxi and pzi . In the sequel and elsewhere, when this dependence is needed
to be clear, then the notations Hi(s,Kxi ,Kzi ;u∗−i), D̆i(s,Kxi ,Kzi , pxi , pzi ;u∗−i) and
Di(s,Kxi ,Kzi , pxi , pzi ;u∗−i) should be used to denote the solution trajectories of the
dynamics (44)–(46) with the admissible 5-tuple (Kxi , Kzi , pxi , pzi ;u∗−i).

For the given terminal data (t f ,H
f

i ,D̆ f
i ,D

f
i ), the theoretical framework for risk-

averse control of the distributed stochastic system with possibly noncooperative u∗−i,
is then analyzed by a class of admissible feedback policies employed by agent i.

Definition 1 (Admissible Feedback Policies). Let compact subsets K
xi ⊂ R

mi×ni ,
K

zi ⊂ R
qi×ni , P

xi ⊂ R
mi , and P

zi ⊂ R
qi be the sets of allowable feedback

form values available at agent i and i ∈ I. For the given ki ∈ N and sequence
μi = {μ i

r ≥ 0}ki
r=1 with μ i

1 > 0, the set of feedback gains K xi

t f ,H
f

i ,D̆ f
i ,D

f
i ;μi

,

K zi

t f ,H
f

i ,D̆ f
i ,D

f
i ;μi

, Pxi

t f ,H
f

i ,D̆ f
i ,D

f
i ;μi

and Pzi

t f ,H
f

i ,D̆ f
i ,D

f
i ;μi

are assumed to be the classes

of C (t0, t f ;Rmi×ni), C (t0, t f ;Rqi×ni), C (t0, t f ;Rmi) and C (t0, t f ;Rqi) with values
Kxi(·) ∈ K

xi , Kzi(·) ∈ K
zi , pxi(·) ∈ P

xi and pzi(·) ∈ P
zi , for which the solutions to

the dynamic equations (44)–(46) with the terminal-value conditions Hi(t f ) = H f
i ,

D̆i(t f ) = D̆ f
i and Di(t f ) = D f

i exist on the interval of optimization [t0, t f ].

To determine agent i’s the person-by-person equilibrium strategy with risk bearing
so as to minimize its performance vulnerability of (23) against all the sample-path
realizations from uncertain environments wai and noncooperative coordination u∗−i
from immediate neighbors j and j∈Ni, performance risks are henceforth interpreted
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as worries and fears about certain undesirable characteristics of performance
distributions of (23) and thus are proposed to manage through a finite set of selective
weights. This custom set of design freedoms representing particular uncertainty
aversions is hence different from the ones with aversion to risk captured in risk-
sensitive optimal control [9, 10].

On K xi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, K zi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, Pxi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
and Pzi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, the

performance index with risk-value considerations in risk-averse decision making is
subsequently defined as follows.

Definition 2 (Risk-Value Aware Performance Index). Let incumbent agent i and
i ∈ I select ki ∈ N and the sequence of scalar coefficients μi = {μ i

r ≥ 0}ki
r=1 with

μ i
1 > 0. Then for the given initial condition (t0,x0

i ), the risk-value aware performance
index, φ0

i : {t0}× (Rni×ni)ki× (Rni)ki×R
ki �→R

+ pertaining to risk-averse decision
making of agent i over [t0, t f ] is defined by

φ0
i (t0,Hi(t0),D̆i(t0),Di(t0))� μ i

1κ
i
1︸︷︷︸

Value Measure

+μ i
2κ

i
2 + · · ·+ μ i

ki
κ i

ki︸ ︷︷ ︸
Risk Measures

=
ki

∑
r=1

μ i
r[(x

0
i )

T H r
i (t0)x

0
i + 2(x0

i )
T D̆ r

i (t0)+D r
i (t0)] ,

(47)

wherein the additional design freedom by means of μ i
r’s utilized by agent i

with risk-averse attitudes are sufficient to meet and exceed different levels of
performance-based reliability requirements, for instance, mean (i.e., the average
of performance measure), variance (i.e., the dispersion of values of performance
measure around its mean), skewness (i.e., the anti-symmetry of the density of per-
formance measure), kurtosis (i.e., the heaviness in the density tails of performance
measure), etc., pertaining to closed-loop performance variations and uncertainties
while the supporting solutions {H r

i (s)}ki
r=1, {D̆ r

i (s)}ki
r=1 and {D r

i (s)}ki
r=1 evaluated

at s = t0 satisfy the dynamical equations (44)–(46).

To specifically indicate the dependence of the risk-value aware performance
index (47) expressed in Mayer form on (Kxi ,Kzi , pxi , pzi) and the signaling ef-
fects u∗−i issued by all immediate neighbors j from Ni, the multi-attribute utility
function or performance index (47) for agent i is now rewritten explicitly as
φ0

i (Kxi ,Kzi , pxi , pzi ;u∗−i).

Definition 3 (Nash Equilibrium Solution). An N-tuple of policies {(K∗x1
,K∗z1

, p∗x1
,

p∗z1
), . . . ,(K∗xN

,K∗zN
, p∗xN

, p∗zN
)} is said to constitute a Nash equilibrium solution for

the distributed N-agent stochastic game if, for all i ∈ N, the Nash inequality
condition holds

φ0
i (K

∗
x1
,K∗z1

, p∗x1
, p∗z1

;u∗−i)≤ φ0
i (Kx1 ,Kz1 , px1 , pz1 ;u∗−i) . (48)
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For the sake of time consistency and subgame perfection, a Nash equilibrium
solution is required to have an additional property that its restriction on the interval
[t0,τ] is also a Nash solution to the truncated version of the original problem,
defined on [t0,τ]. With such a restriction so defined, the Nash equilibrium solution
is now termed as a feedback Nash equilibrium solution, which is now free of
any informational nonuniqueness, and thus whose derivation allows a dynamic
programming type argument.

Definition 4 (Feedback Nash Equilibrium). Let (K∗xi
,K∗zi

, p∗xi
, p∗zi

) constitute a
feedback Nash strategy for agent i such that

φ0
i (K

∗
xi
,K∗zi

, p∗xi
, p∗zi

;u∗−i)≤ φ0
i (Kxi ,Kzi , pxi , pzi ;u∗−i) , i ∈ I (49)

for admissible Kxi ∈K xi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, Kzi ∈K zi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, pxi ∈Pxi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi

and pzi ∈Pzi

t f ,H
f

i ,D̆ f
i ,D

f
i ;μi

, upon which the solutions to the dynamical systems (44)–

(46) exist on [t0, t f ].
Then, {(K∗x1

,K∗z1
, p∗x1

, p∗z1
), . . . ,(K∗xN

,K∗zN
, p∗xN

, p∗zN
)} when restricted to the in-

terval [t0,τ] is still an N-tuple feedback Nash equilibrium solution for the mul-
tiperson Nash decision problem with the appropriate terminal-value condition
(τ,H ∗

i (τ),D̆∗i (τ),D∗i (τ)) for all τ ∈ [t0, t f ].

In conformity with the rigorous formulation of dynamic programming, the following
development is important. Let the terminal time t f and 3-tuple states (H f

i ,D̆ f
i ,D

f
i ),

the other end condition involved the initial time t0 and 3-tuple states (H 0
i ,D̆0

i ,D
0
i )

be specified by a target set requirement.

Definition 5 (Target Sets). (t0,H 0
i ,D̆0

i ,D
0
i ) ∈Mi, where the target set Mi is a

closed subset of [t0, t f ]× (Rni×ni)ki × (Rni)ki ×R
ki .

Now, the decision optimization residing at incumbent agent i is to minimize the risk-
value aware performance index (47) over admissible feedback strategies composed
by Kxi ≡ Kxi(·) ∈ K xi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, Kzi ≡ Kzi(·) ∈ K zi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, pxi ≡ pxi(·) ∈

Pxi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
and pzi ≡ pzi(·)∈Pzi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
while subject to interconnection

links from all immediate neighbors with corresponding feedback Nash policies u∗−i.

Definition 6 (Optimization of Mayer Problem). Given the sequence of scalars
μi = {μ i

r ≥ 0}ki

r=1 with μ i
1 > 0, the decision optimization over [t0, t f ] is given by

min
Kxi ,Kzi ,pxi ,pzi

φ0
i (Kxi ,Kzi , pxi , pzi ;u∗−i) (50)

subject to the dynamical equations (44)–(46) on [t0, t f ].

Notice that the optimization considered here is in Mayer form and can be solved
by applying an adaptation of the Mayer form verification results as given in [11].
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To embed this optimization facing agent i into a larger problem, the terminal time
and states (t f ,H

f
i ,D̆ f

i ,D
f

i ) are parameterized as (ε,Yi,Z̆i,Zi), whereby Yi �
Hi(ε), Z̆i � D̆i(ε) and Zi � Di(ε). Thus, the value function for this optimization
problem is now depending on the parameterization of terminal-value conditions.

Definition 7 (Value Function). Suppose (ε,Yi,Z̆i,Zi) ∈ [t0, t f ] × (Rni×ni)ki ×
(Rni)ki × R

ki is given and fixed. Then, the value function Vi(ε,Yi,Z̆i,Zi) is
defined by

Vi(ε,Yi,Z̆i,Zi)� inf
Kxi ,Kzi ,pxi ,pzi

φ0
i (Kxi ,Kzi , pxi , pzi ;u∗−i) .

For convention, Vi(ε,Yi,Z̆i,Zi) � ∞ when K xi

t f ,H
f

i ,D̆ f
i ,D

f
i ;μi
×K zi

t f ,H
f

i ,D̆ f
i ,D

f
i ;μi
×

Pxi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
×Pzi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
is empty. Next, some candidates for the value

function are constructed with the help of the concept of reachable set.

Definition 8 (Reachable Sets). Let a reachable set be defined by Qi �{
(ε,Yi,Z̆i,Zi) ∈ [t0, t f ]× (Rni×ni)ki × (Rni)ki×R

ki such that the Cartesian product

K xi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
×K zi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
×Pxi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
×Pzi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
�= /0

}
.

Moreover, it can be shown that the value function associated with agent i is
satisfying a partial differential equation at interior points of Qi, at which it is
differentiable.

Theorem 3 (Hamilton–Jacobi–Bellman Equation–Mayer Problem). Let
(ε,Yi,Z̆i,Zi) be any interior point of the reachable set Qi, at which the
value function Vi(ε,Yi,Z̆i,Zi) is differentiable. If there exists a feedback Nash
strategy which is supported by K∗xi

(·) ∈K xi

t f ,H
f

i ,D̆ f
i ,D

f
i ;μi

, K∗zi
(·) ∈K zi

t f ,H
f

i ,D̆ f
i ,D

f
i ;μi

,

p∗xi
(·)∈Pxi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
and p∗zi

(·)∈Pzi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, then the differential equation

0 = min
Kxi∈Kxi ,Kzi∈Kzi ,pxi∈Pxi ,pzi∈Pzi

{
∂
∂ε

Vi(ε,Yi,Z̆i,Zi)

+
∂

∂ vec(Yi)
Vi(ε,Yi,Z̆i,Zi)vec(Fi(ε,Yi,Kxi ,Kzi))

+
∂

∂ vec(Z̆i)
Vi(ε,Yi,Z̆i,Zi)vec(Ği(ε,Yi,Z̆i,Kxi ,Kzi , pxi , pzi)

+
∂

∂ vec(Zi)
Vi(ε,Yi,Z̆i,Zi)vec(Gi(ε,Yi,Z̆i, pxi , pzi)

}
(51)

is satisfied whereby Vi(t0,Yi(t0),Z̆i(t0),Zi(t0)) = φ0
i (Hi(t0),D̆i(t0),Di(t0)).
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Proof. By what have been shown in the recent results by the author [7], the proof
for the result herein is readily proven. ��
Finally, the following result gives the sufficient condition used to verify a feedback
Nash strategy for incumbent agent i and i ∈ I.

Theorem 4 (Verification Theorem). Let Wi(ε,Yi,Z̆i,Zi) be continuously differ-
entiable solution of the Hamilton–Jacobi–Bellman (HJB) equation (51), which
satisfies the boundary condition

Wi(t0,Hi(t0),D̆i(t0),Di(t0)) = φ0
i (t0,Hi(t0),D̆i(t0),Di(t0)) . (52)

Let (t f ,H
f

i ,D̆ f
i ,D

f
i ) be a 4-tuple point in Qi; let Kxi ∈ K xi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, Kzi ∈

K zi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, pxi ∈Pxi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, pzi ∈Pzi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
; and let Hi(·), D̆i(·)

and Di(·) be the corresponding solutions of the equations of motion (44)–(46). Then,
Wi(s,Hi(s),D̆i(s),Di(s)) is time-backward increasing function of s.

If K∗xi
∈K xi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, K∗zi
∈K zi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, p∗xi
∈Pxi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
and p∗zi

∈
Pzi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
defining a person-by-person equilibrium or feedback Nash strategy

for agent i with the corresponding solutions H ∗
i (·), D̆∗i (·) and D∗i (·) of the

dynamical equations (44)–(46) such that, for s ∈ [t0, t f ]

0 =
∂
∂ε

Wi(s,H
∗

i (s),D̆∗i (s),D
∗
i (s))+

∂
∂ vec(Yi)

Wi(s,H
∗

i (s),D̆∗i (s),D
∗
i (s))

·vec(Fi(s,Y
∗

i (s),K∗xi
(s),K∗zi

(s)))+
∂

∂ vec(Z̆i)
Wi(s,H

∗
i (s),D̆∗i (s),D

∗
i (s))

·vec(Ği(s,H
∗

i (s),D̆∗i (s),K
∗
xi
(s),K∗zi

(s), p∗xi
(s), p∗zi

(s))

+
∂

∂ vec(Zi)
Wi(s,H

∗
i (s),D̆∗i (s),D

∗
i (s))vec(Gi(s,H

∗
i (s),D̆∗i (s), p∗xi

(s), p∗zi
(s))

(53)

then (K∗xi
,K∗zi

, p∗xi
, p∗zi

) results in a feedback Nash strategy or person-by-person
equilibrium for agent i in K xi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
×K zi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
×Pxi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
×

Pzi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
. Furthermore, it follows that

Wi(ε,Yi,Z̆i,Zi) = Vi(ε,Yi,Z̆i,Zi) , (54)

whereby Vi(ε,Yi,Z̆i,Zi) is the value function associated with incumbent agent i.
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Proof. With the aid of the recent development [7], the proof then follows for the
verification theorem herein. ��

4 Distributed Person-by-Person Equilibrium Strategies

Reflecting on the Mayer-form optimization problem of the person-by-person equi-
librium strategy concerned by incumbent agent i and i ∈ I, the technical approach
is to apply an adaptation of the Mayer-form verification theorem of dynamic
programming as given in [11]. In the framework of dynamic programming, it is
often required to denote the terminal time and states of a family of optimization
problems as (ε,Yi,Z̆i,Zi) rather than (t f ,H

f
i ,D̆ f

i ,D
f

i ). Stating precisely, for
ε ∈ [t0, t f ] and 1≤ r≤ ki, the states of the performance robustness (44)–(46) defined
on the interval [t0,ε] have the terminal values denoted by Hi(ε) ≡ Yi, D̆i(ε) ≡ Z̆i

and Di(ε)≡Zi.
Since the performance index (47) is quadratic affine in terms of arbitrarily

fixed x0
i , the resulting insight suggests a solution to the adapted Hamilton–Jacobi–

Bellman equation (51) is of the form as follows. It is assumed that (ε,Yi,Z̆i,Zi) is
any interior point of the reachable set Qi at which the real-valued function

Wi(ε,Yi,Z̆i,Zi) = (x0
i )

T
ki

∑
r=1

μ i
r(Y

r
i +E r

i (ε))x0
i

+ 2(x0
i )

T
ki

∑
r=1

μ i
r(Z̆

r
i + T̆ r

i (ε))+
ki

∑
r=1

μ i
r(Z

r
i +T r

i (ε)) (55)

is differentiable. The parametric functions of time E r
i ∈ C 1(t0, t f ;Rni×ni), T̆ r

i ∈
C 1(t0, t f ;Rn

i ) and T r
i ∈ C 1(t0, t f ;R) are yet to be determined. Furthermore, the

time derivative of Wi(ε,Yi,Z̆i,Zi) can be shown to be

d
dε

Wi(ε,Yi,Z̆i,Zi) = (x0
i )

T
ki

∑
r=1

μ i
r(F

r
i (ε,Yi,Kxi ,Kzi)+

d
dε

E r
i (ε))x

0
i

+ 2(x0
i )

T
ki

∑
r=1

μ i
r(Ğ

r
i (ε,Yi,Z̆i,Kxi ,Kzi , pxi , pzi)+

d
dε

T̆ r
i (ε))

+
ki

∑
r=1

μ i
r(G

r
i (ε,Yi,Z̆i, pxi , pzi)+

d
dε

T r
i (ε)) . (56)

The substitution of this hypothesized solution (55) into the HJB equation (51) and
making use of (56) results in



A Framework for Coordination in Distributed Systems 209

0≡ min
Kxi∈Kxi ,Kzi∈Kzi ,pxi∈Pxi ,pzi∈Pzi

{
(x0

i )
T

ki

∑
r=1

μ i
r

d
dε

E r
i (ε)x

0
i +2(x0

i )
T

ki

∑
r=1

μ i
r

d
dε

T̆ r
i (ε)

+
ki

∑
r=1

μ i
r

d
dε

T r
i (ε)+ 2(x0

i )
T

ki

∑
r=1

μ i
rĞ

r
i (ε,Yi,Z̆i,Kxi ,Kzi , pxi , pzi)

+ (x0
i )

T
ki

∑
r=1

μ i
rF

r
i (ε,Yi,Kxi ,Kzi)x

0
i +

ki

∑
r=1

μ i
rG

r
i (ε,Yi,Z̆i, pxi , pzi)

}
. (57)

Differentiating the expression within the bracket of (57) with respect to Kxi , Kzi , pxi

and pzi yields the necessary conditions for an extremum of (51) on [t0,ε],

0≡
[
BT

ii (ε)
ki

∑
r=1

μ i
rY

r
i +μ1

i Rii(ε)Kxi

]
x0

i (x
0
i )

T +
[
BT

ii (ε)
ki

∑
r=1

μr
i Z̆

r
i +μ1

i Rii(ε)pxi

]
(x0

i )
T

0≡
[
CT

ii (ε)
ki

∑
r=1

μr
i Y

r
i +μ1

i Rzi(ε)Kzi

]
x0

i (x
0
i )

T +
[
CT

ii (ε)
ki

∑
r=1

μr
i Z̆

r
i +μ1

i Rzi(ε)pzi

]
(x0

i )
T

0≡
[
BT

ii (ε)
ki

∑
r=1

μr
i Y

r
i +μ1

i Rii(ε)Kxi

]
x0

i +
[
BT

ii (ε)
ki

∑
r=1

μr
i Z̆

r
i +μ1

i Rii(ε)pxi

]

0≡
[
CT

ii (ε)
ki

∑
r=1

μr
i Y

r
i +μ1

i Rzi(ε)Kzi

]
x0

i +
[
CT

ii (ε)
ki

∑
r=1

μr
i Z̆

r
i +μ1

i Rzi(ε)pzi

]
.

Because all x0
i (x

0
i )

T , (x0
i )

T and x0
i have arbitrary ranks of one, it must be true that

Kxi =−(μ1
i Rii(ε))−1BT

ii (ε)
ki

∑
r=1

μ r
i Y

r
i , (58)

Kzi =−(μ1
i Rzi(ε))−1CT

ii (ε)
ki

∑
r=1

μ r
i Y

r
i , (59)

pxi =−(μ1
i Rii(ε))−1BT

ii (ε)
ki

∑
r=1

μ r
i Z̆

r
i , (60)

pzi =−(μ1
i Rzi(ε))−1CT

ii (ε)
ki

∑
r=1

μ r
i Z̆

r
i . (61)

Replacing these results (58)–(61) into the right member of the HJB equation (51)
yields the value of the minimum whose mathematical details are omitted herein for
the purpose of brevity.

For each agent i and i ∈ I, it is necessary to exhibit {E r
i (·)}ki

r=1, {T̆ r
i (·)}ki

r=1 and

{T r
i (·)}ki

r=1 which render the left side of the HJB equation (51) equal to zero for
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ε ∈ [t0, t f ], when {Y r
i }ki

r=1, {Z̆ r
i }ki

r=1 and {Z r
i }ki

r=1 are evaluated along the solution
trajectories of the dynamical equations (44)–(46). With a careful examination of the
expression (57), it reveals that

d
dε

E 1
i (ε) =

[
Aii(ε)−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

]T
(H 1

i )11(ε)

+ (H 1
i )11(ε)

[
Aii(ε)−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

H s
i (ε)

]
+Qii(ε)+Qi(ε)

+
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
r=1

μ r
i

μ1
i

(H r
i )11(ε)

+
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)Cii(ε)R−1

zi (ε)CT
ii (ε)

ki

∑
r=1

μ r
i

μ1
i

(H r
i )11(ε) (62)

d
dε

E r
i (ε) =

[
Aii(ε)−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μs
i

μ1
i

(H s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μs
i

μ1
i

(H s
i )11(ε)

]T
(H r

i )11(ε)+(H r
i )11(ε)

[
Aii(ε)

−Bii(ε)R−1
ii (ε)BT

ii (ε)
ki

∑
s=1

μs
i

μ1
i
(H s

i )11(ε)−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μs
i

μ1
i
(H s

i )11(ε)
]

+
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )11(ε)Li(ε)ViL
T
i (ε)(H r−v

i )11(ε)

− (H v
i )12(ε)Li(ε)ViL

T
i (ε)(H r−v

i )11(ε)− (H v
i )11(ε)Li(ε)ViL

T
i (ε)(H r−v

i )21(ε)

+(H v
i )12(ε)Gi(ε)WiG

T
i (ε)H r−v

i )21(ε)+(H v
i )12(ε)Li(ε)ViL

T
i (ε)(H r−v

i )21(ε)

+(H v
i )13(ε)Lic(ε)VicLT

ic(ε)(H r−v
i )31(ε)− (H v

i )14(ε)Lic(ε)VicLT
ic(ε)(H r−v

i )31(ε)

− (H v
i )13(ε)Lic(ε)VicLT

ic(ε)(H r−v
i )41(ε)+(H v

i )14(ε)Gic(ε)WicGT
ic(ε)(H r−v

i )41(ε)

+(H v
i )14(ε)Lic(ε)LicLT

ic(ε)(H r−v
i )41(ε)

}
, 2≤ r ≤ ki (63)



A Framework for Coordination in Distributed Systems 211

d
dε

T̆ 1
i (ε) =

[
Aii(ε)−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

]T
(D1

i )11(ε)

+ (H 1
i )11(ε)

[
−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)
]
+(H 1

i )13(ε)Bic(ε)uc(ε)

+
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
r=1

μ r
i

μ1
i

(D̆ r
i )11(ε)

+
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)Cii(ε)R−1

zi (ε)CT
ii (ε)

ki

∑
r=1

μ r
i

μ1
i

(D̆ r
i )11(ε)−Qi(ε)ζi(ε) (64)

d
dε

T̆ r
i (ε) =

[
Aii(ε)−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

]T
(D r

i )11(ε)+ (H r
i )13(ε)Bic(ε)uc(ε)

+ (H r
i )11(ε)

[
−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)
]
, 2≤ r ≤ ki (65)

d
dε

T 1
i (ε) = Tr{(H 1

i )11(ε)Li(ε)ViL
T
i (ε)− (H 1

i )12(ε)Li(ε)ViL
T
i (ε)}

+Tr{−(H 1
i )21(ε)Li(ε)ViL

T
i (ε)+ (H 1

i )22(ε)(Gi(ε)WiG
T
i (ε)+Li(ε)ViL

T
i (ε))}

+Tr{(H 1
i )33(ε)Lic(ε)VicLT

ic(ε)− (H 1
i )34(ε)Lic(ε)VicLT

ic(ε)}
+Tr{(H 1

i )44(ε)(Gic(ε)WicGT
ic(ε)+Lic(ε)VicLT

ic(ε))− (H 1
i )43(ε)Lic(ε)VicLT

ic(ε)}

+ 2(D̆1
i )

T
11(ε)

[
−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)
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−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)
]
+2(D̆1

i )
T
13(ε)Bic(ε)uc(ε)

+ ζT
i (ε)Qi(ε)ζi(ε)+

ki

∑
r=1

μ r
i

μ1
i

(D̆ r
i )

T
11(ε)Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)

+
ki

∑
r=1

μ r
i

μ1
i

(D̆ r
i )

T
11(ε)Cii(ε)R−1

zi (ε)CT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε) (66)

d
dε

T r
i (ε) = Tr{(H r

i )11(ε)Li(ε)ViL
T
i (ε)− (H r

i )12(ε)Li(ε)ViL
T
i (ε)}

+Tr{−(H r
i )21(ε)Li(ε)ViL

T
i (ε)+ (H r

i )22(ε)(Gi(ε)WiG
T
i (ε)+Li(ε)ViL

T
i (ε))}

+Tr{(H r
i )33(ε)Lic(ε)VicLT

ic(ε)− (H r
i )34(ε)Lic(ε)VicLT

ic(ε)}
+Tr{(H r

i )44(ε)(Gic(ε)WicGT
ic(ε)+Lic(ε)VicLT

ic(ε))− (H r
i )43(ε)Lic(ε)VicLT

ic(ε)}

+ 2(D̆ r
i )

T
13(ε)Bic(ε)uc(ε)+ 2(D̆ r

i )
T
11(ε)

[
−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)
]
, 2≤ r ≤ ki (67)

will work. Furthermore, the boundary condition associated with the verification
theorem requires that

(x0
i )

T
ki

∑
r=1

μ r
i ((H

r
i )11(t0)+E r

i (t0))x
0
i + 2(x0

i )
T

ki

∑
r=1

μ r
i ((D̆

r
i )11(t0)+ T̆ r

i (t0))

+
ki

∑
r=1

μ r
i (D

r
i (t0)+T r

i (t0))

= (x0
i )

T
ki

∑
r=1

μ r
i (H

r
i )11(t0)x0

i + 2(x0
i )

T
ki

∑
r=1

μ r
i (D̆

r
i )11(t0)+

ki

∑
r=1

μ r
i D

r
i (t0) .

Thus, matching the boundary condition yields the initial value conditions
E r

i (t0) = 0, T̆ r
i (t0) = 0 and T r

i (t0) = 0 for the forward-in-time differential
equations (62)–(67).

Applying the 4-tuple (Kxi ,Kzi , pxi , pzi) in (58)–(61) that is defining the person-
by-person equilibrium for each agent i and i ∈ I along the solution trajectories of
the backward-in-time differential equations (44)–(46), these equations become the
backward-in-time Riccati-type differential equations
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d
dε

(H 1
i )11(ε) =−

[
Aii(ε)−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

]T
(H 1

i )11(ε)

− (H 1
i )11(ε)

[
Aii(ε)−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

H s
i (ε)

]
−Qii(ε)−Qi(ε)

−
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
r=1

μ r
i

μ1
i

(H r
i )11(ε)

−
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)Cii(ε)R−1

zi (ε)CT
ii (ε)

ki

∑
r=1

μ r
i

μ1
i

(H r
i )11(ε) (68)

d
dε

(H r
i )11(ε) =−

[
Aii(ε)−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μs
i

μ1
i

(H s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μs
i

μ1
i

(H s
i )11(ε)

]T
(H r

i )11(ε)− (H r
i )11(ε)

[
Aii(ε)

−Bii(ε)R−1
ii (ε)BT

ii (ε)
ki

∑
s=1

μs
i

μ1
i

(H s
i )11(ε)−Cii(ε)R−1

zi (ε)CT
ii (ε)

ki

∑
s=1

μs
i

μ1
i

(H s
i )11(ε)

]

−
r−1

∑
v=1

2r!
v!(r−v)!

{
(H v

i )11(ε)Li(ε)ViL
T
i (ε)(H

r−v
i )11(ε)

− (H v
i )12(ε)Li(ε)ViL

T
i (ε)(H

r−v
i )11(ε)− (H v

i )11(ε)Li(ε)ViL
T
i (ε)(H

r−v
i )21(ε)

+(H v
i )12(ε)Gi(ε)WiG

T
i (ε)H

r−v
i )21(ε)+(H v

i )12(ε)Li(ε)ViL
T
i (ε)(H

r−v
i )21(ε)

+(H v
i )13(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i )31(ε)− (H v
i )14(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i )31(ε)

− (H v
i )13(ε)Lic(ε)VicLT

ic(ε)(H r−v
i )41(ε)+(H v

i )14(ε)GicWicGT
ic(ε)(H r−v

i )41(ε)

+(H v
i )14(ε)Lic(ε)LicLT

ic(ε)(H
r−v

i )41(ε)
}
, 2≤ r ≤ ki (69)
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d
dε

(D̆1
i )11(ε) =−

[
Aii(ε)−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

]T
(D1

i )11(ε)

− (H 1
i )11(ε)

[
−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)
]
−(H 1

i )13(ε)Bic(ε)uc(ε)

−
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
r=1

μ r
i

μ1
i

(D̆ r
i )11(ε)

−
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)Cii(ε)R−1

zi (ε)CT
ii (ε)

ki

∑
r=1

μ r
i

μ1
i

(D̆ r
i )11(ε)+Qi(ε)ζi(ε) (70)

d
dε

(D̆ r
i )11(ε) =−

[
Aii(ε)−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

]T
(D r

i )11(ε)− (H r
i )13(ε)Bic(ε)uc(ε)

− (H r
i )11(ε)

[
−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)
]
, 2≤ r ≤ ki (71)

d
dε

D1
i (ε) =−Tr{(H 1

i )11(ε)Li(ε)ViL
T
i (ε)− (H 1

i )12(ε)Li(ε)ViL
T
i (ε)}

−Tr{−(H 1
i )21(ε)Li(ε)ViL

T
i (ε)+ (H 1

i )22(ε)(Gi(ε)WiG
T
i (ε)+Li(ε)ViL

T
i (ε))}

−Tr{(H 1
i )33(ε)Lic(ε)VicLT

ic(ε)− (H 1
i )34(ε)Lic(ε)VicLT

ic(ε)}
−Tr{(H 1

i )44(ε)(Gic(ε)WicGT
ic(ε)+Lic(ε)VicLT

ic(ε))− (H 1
i )43(ε)Lic(ε)VicLT

ic(ε)}

− 2(D̆1
i )

T
11(ε)

[
−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)
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−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)
]
−2(D̆1

i )
T
13(ε)Bic(ε)uc(ε)

− ζT
i (ε)Qi(ε)ζi(ε)−

ki

∑
r=1

μ r
i

μ1
i

(D̆ r
i )

T
11(ε)Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)

−
ki

∑
r=1

μ r
i

μ1
i

(D̆ r
i )

T
11(ε)Cii(ε)R−1

zi (ε)CT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε) (72)

d
dε

D r
i (ε) =−Tr{(H r

i )11(ε)Li(ε)ViL
T
i (ε)− (H r

i )12(ε)Li(ε)ViL
T
i (ε)}

−Tr{−(H r
i )21(ε)Li(ε)ViL

T
i (ε)+ (H r

i )22(ε)(Gi(ε)WiG
T
i (ε)+Li(ε)ViL

T
i (ε))}

−Tr{(H r
i )33(ε)Lic(ε)VicLT

ic(ε)− (H r
i )34(ε)Lic(ε)VicLT

ic(ε)}
−Tr{(H r

i )44(ε)(Gic(ε)WicGT
ic(ε)+Lic(ε)VicLT

ic(ε))− (H r
i )43(ε)Lic(ε)VicLT

ic(ε)}

− 2(D̆ r
i )

T
13(ε)Bic(ε)uc(ε)− 2(D̆ r

i )
T
11(ε)

[
−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)
]
, 2≤ r ≤ ki (73)

where the terminal-value conditions (H 1
i )11(t f ) = Q f

i , (H r
i )11(t f ) = 0 for 2 ≤

r ≤ ki; (D̆ r
i )11(t f ) = −Q f

i ζi(t f ), (D̆ r
i )11(t f ) = 0 for 2 ≤ r ≤ ki; and D r

i (t f ) =

ζi(t f )Q
f
i ζi(t f ), D r

i (t f ) for 2≤ r≤ ki. Thus, whenever the coupled backward-in-time

differential equations (68)–(73) admit the matrix-valued solutions {(H r
i )11(·)}ki

r=1,

vector-valued solutions
{
(D̆ r

i )11(·)
}ki

r=1, and scalar-valued solutions {D r
i (·)}ki

r=1,

then the existence of the matrix-valued solutions {E r
i (·)}ki

r=1, vector-valued solu-

tions
{
T̆ r

i (·)
}ki

r=1, and scalar-valued solutions {T r
i (·)}ki

r=1 satisfying the coupled
forward-in-time differential equations (62)–(67) are assured.

By comparing the time-forward differential equations (62)–(67) to those of time-
backward differential equations (68)–(73), one may recognize that these sets of
differential equations are related to one another by

d
dε

E r
i (ε) =−

d
dε

(H r
i )11(ε);

d
dε

T̆ r
i (ε) =−

d
dε

(D̆ r
i )11(ε)

d
dε

T r
i (ε) =−

d
dε

D r
i (ε) , ε ∈ [t0, t f ] .
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Enforcing the initial-value conditions of E r
i (t0) = 0, T̆ r

i (t0) = 0 and T r
i (t0) = 0

uniquely implies the following results

E r
i (ε) = (H r

i )11(t0)− (H r
i )11(ε); T̆ r

i (ε) = (D̆ r
i )11(t0)− (D̆ r

i )11(ε)

T r
i (ε) = D r

i (t0)−D r
i (ε)

for all ε ∈ [t0, t f ] and yields a value function

Wi(ε,Yi,Z̆i,Zi) =
ki

∑
r=1

μ r
i

[
(x0

i )
T (H r

i )11(t0)x0
i + 2(x0

i )
T (D̆ r

i )11(t0)+D r
i (t0)

]

for which the sufficient condition (53) of the verification theorem is satisfied.
Therefore, the extremal person-by-person equilibrium policy (58)–(61) minimizing
(47) become optimal

K∗xi
(ε) =−R−1

ii (ε)BT
ii (ε)

ki

∑
r=1

μ̂i
rH r

i∗(ε) , (74)

K∗zi
(ε) =−R−1

zi (ε)CT
ii (ε)

ki

∑
r=1

μ̂i
rH r

i∗(ε) , (75)

p∗xi
(ε) =−R−1

ii (ε)BT
ii (ε)

ki

∑
r=1

μ̂i
rD̆ r

i∗(ε) , (76)

p∗zi
(ε) =−R−1

zi (ε)CT
ii (ε)

ki

∑
r=1

μ̂i
rD̆ r

i∗(ε) , μ̂ r
i =

μ r
i

μ1
i

(77)

The goals in this research investigation have been methodological. A noncooperative
game-theoretic methodology for coordination control of distributed stochastic sys-
tems is successfully sought for theory building in contexts in which signaling effects
are issued by a coordinator and distributed person-by-person equilibrium strategies
by autonomous agents i and i ∈ I are placed toward performance robustness. At this
point, it makes sense to integrate all of the contending results into the following
unified theorem.

Theorem 5 (Person-by-Person Equilibrium Strategies). Consider a distributed
stochastic system governed by (3)–(16) whose pairs (Aii,Bii) and (Aii,Cii) are
uniformly stabilizable on [t0, t f ]. An N-tuple {(u∗1,z∗1), . . . ,(u∗N ,z∗N)} of control poli-
cies constitutes a feedback Nash equilibrium for the class of distributed stochastic
system considered here. Furthermore, 2-tuple (u∗i ,z∗i ) imposing a person-by-person
equilibrium strategy for the corresponding agent i and i ∈ I is implemented
forwardly in time by
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u∗i (t) = K∗xi
(t)xi(t)+ p∗xi

(t) (78)

z∗i (t) = K∗zi
(t)xi(t)+ p∗zi

(t) , t = t f + t0− ε, ε ∈ [t0, t f ] , (79)

which strives to optimize the risk-value aware performance index (47) composed
by a preferential set of mathematical statistics of the chi-squared cost random
variable (16). The construction of the person-by-person equilibrium for each agent
i is determined backwardly in time; e.g.,

K∗xi
(ε) =−R−1

ii (ε)BT
ii (ε)

ki

∑
r=1

μ̂i
rH r

i∗(ε) , (80)

K∗zi
(ε) =−R−1

zi (ε)CT
ii (ε)

ki

∑
r=1

μ̂i
rH r

i∗(ε) , (81)

p∗xi
(ε) =−R−1

ii (ε)BT
ii (ε)

ki

∑
r=1

μ̂i
rD̆ r

i∗(ε) , (82)

p∗zi
(ε) =−R−1

zi (ε)CT
ii (ε)

ki

∑
r=1

μ̂i
rD̆ r

i∗(ε) , (83)

wherein the normalized preferences μ̂ r
i � μ r

i /μ1
i ’s are mutually chosen by each

incumbent agent i for risk-averse coordinations toward co-design of individual
performance robustness. The optimal set of supporting solutions satisfies the time-
backward, matrix, vector, and scalar-valued differential equations

d
dε

(H 1
i∗ )11(ε) =−[Aii(ε)+Bii(ε)K∗xi

(ε)+Cii(ε)K∗zi
(ε)]T (H 1

i∗ )11(ε)

− (H 1
i∗ )11(ε)[Aii(ε)+Bii(ε)K∗xi

(ε)+Cii(ε)K∗zi
(ε)]−Qii(ε)−Qi(ε)

−K∗Txi
(ε)Rii(ε)K∗xi

(ε)−K∗Tzi
(ε)Rzi(ε)K∗zi

(ε) , (H 1
i∗ )11(t f ) = Q f

i (84)

d
dε

(H r
i∗)11(ε) =−[Aii(ε)+Bii(ε)K∗xi

(ε)+Cii(ε)K∗zi
(ε)]T (H r

i∗)11(ε)

− (H r
i∗)11(ε)[Aii(ε)+Bii(ε)K∗xi

(ε)+Cii(ε)K∗zi
(ε)]

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)11(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )11(ε)

− (H v
i∗)12(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )11(ε)− (H v

i∗)11(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )21(ε)

+ (H v
i∗)12(ε)Gi(ε)WiG

T
i (ε)H r−v

i∗ )21(ε)+ (H v
i∗)12(ε)Li(ε)ViL

T
i (ε)(H r−v

i∗ )21(ε)
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+(H v
i∗)13(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )31(ε)−(H v
i∗)14(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )31(ε)

− (H v
i∗)13(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )41(ε)+ (H v
i∗)14(ε)GicWicGT

ic(ε)(H
r−v

i )41(ε)

+ (H v
i∗)14(ε)Lic(ε)LicLT

ic(ε)(H r−v
i∗ )41(ε)

}
, (H r

i∗)11(t f ) = 0; 2≤ r ≤ ki (85)

d
dε

(H 1
i∗ )12(ε) =−[Aii(ε)+Bii(ε)K∗xi

(ε)+Cii(ε)K∗zi
(ε)]T (H 1

i∗ )12(ε)

− (H 1
i∗ )11(ε)Li(ε)Ci(ε)− (H 1

i∗ )12(Aii(ε)−Li(ε)Ci(ε)) , (H 1
i∗ )12(t f ) = 0 (86)

d
dε

(H r
i∗)12(ε) =−[Aii(ε)+Bii(ε)K∗xi

(ε)+Cii(ε)K∗zi
(ε)]T (H r

i∗)12(ε)

− (H r
i∗)11(ε)Li(ε)Ci(ε)− (H r

i∗)12(Aii(ε)−Li(ε)Ci(ε))

−
r−1

∑
v=1

2r!
v!(r−v)!

{
(H v

i∗)11(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )12(ε)

− (H v
i∗)12(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )12(ε)− (H v

i∗)11(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )22(ε)

+(H v
i∗)12(ε)Gi(ε)WiG

T
i (ε)(H

r−s
i∗ )22(ε)+(H v

i∗)12(ε)Li(ε)WiL
T
i (ε)(H

r−s
i∗ )22(ε)

+(H v
i∗)13(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )32(ε)−(H v

i∗)14(ε)Lic(ε)VicLT
ic(ε)(H r−v

i∗ )32(ε)

− (H v
i∗)13(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )42(ε)+(H v

i∗)14(ε)GicWicGT
ic(ε)(H r−v

i∗ )42(ε)

+(H v
i∗)14(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )42(ε)
}
, (H r

i∗)12(t f ) = 0; 2≤ r ≤ ki (87)

d
dε

(H 1
i∗ )13(ε) =−[Aii(ε)+Bii(ε)K∗xi

(ε)+Cii(ε)K∗zi
(ε)]T (H 1

i∗ )13(ε)

− (H 1
i∗ )13(ε)Aic(ε)+ 2K∗Tzi

(ε)Rzi(ε) , (H 1
i∗ )13(t f ) = 0 (88)

d
dε

(H r
i∗)13(ε) =−[Aii(ε)+Bii(ε)K∗xi

(ε)+Cii(ε)K∗zi
(ε)]T (H r

i∗)13(ε)

− (H r
i∗)13(ε)Aic(ε)−

r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)11(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )13(ε)

− (H v
i∗)12(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )13(ε)− (H v

i∗)11(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )23(ε)

+ (H v
i∗)12(ε)Gi(ε)WiG

T
i (ε)(H

r−v
i∗ )23(ε)+ (H v

i∗)12(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )23(ε)
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+(H v
i∗)13(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )33(ε)−(H v
i∗)14(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )33(ε)

− (H v
i∗)13(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )43(ε)+ (H v
i∗)14(ε)GicWicGT

ic(ε)(H
r−v

i∗ )43(ε)

+ (H v
i∗)14(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )43(ε)

}
, (H r

i∗)13(t f ) = 0; 2≤ r ≤ ki (89)

d
dε

(H 1
i∗ )14(ε) =−[Aii(ε)+Bii(ε)K∗xi

(ε)+Cii(ε)K∗zi
(ε)]T (H 1

i∗ )14(ε)

− (H 1
i∗ )14(ε)(Aic(ε)−Lic(ε)Cic(ε))

− (H 1
i∗ )13(ε)Li(ε)Ci(ε) , (H 1

i∗ )14(t f ) = 0 (90)

d
dε

(H r
i∗)14(ε) =−[Aii(ε)+Bii(ε)K∗xi

(ε)+Cii(ε)K∗zi
(ε)]T (H r

i∗)14(ε)

− (H r
i∗)13(ε)Li(ε)Ci(ε)− (H r

i∗)14(ε)(Aic(ε)−Lic(ε)Cic(ε))

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)11(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )14(ε)

− (H v
i∗)12(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )14(ε)− (H v

i∗)11(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )24(ε)

+ (H v
i∗)12(ε)Gi(ε)WiG

T
i (ε)(H r−v

i∗ )24(ε)+ (H v
i∗)12(ε)Li(ε)ViL

T
i (ε)(H r−v

i∗ )24(ε)

+(H v
i∗)13(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )34(ε)−(H v
i∗)14(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )34(ε)

− (H v
i∗)13(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )44(ε)+ (H v
i∗)14(ε)GicWicGT

ic(ε)(H
r−v

i∗ )44(ε)

+ (H v
i∗)14(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )44(ε)
}
, (H r

i∗)14(t f ) = 0; 2≤ r ≤ ki (91)

d
dε

(H 1
i∗ )21(ε) =−(H 1

i∗ )21(ε)[Aii(ε)+Bii(ε)K∗xi
(ε)+Cii(ε)K∗zi

(ε)]

− (Aii(ε)−Li(ε)Ci(ε))T (H 1
i∗ )21(ε)

− (Li(ε)Ci(ε))T (H 1
i∗ )11(ε) , (H 1

i∗ )21(t f ) = 0 (92)
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d
dε

(H r
i∗)21(ε) =−(H r

i∗)21(ε)[Aii(ε)+Bii(ε)K∗xi
(ε)+Cii(ε)K∗zi

(ε)]

− (Li(ε)Ci(ε))T (H r
i∗)11(ε)− (Aii(ε)−Li(ε)Ci(ε))T (H r

i∗)21(ε)

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)21(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )11(ε)

− (H v
i∗)22(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )11(ε)− (H v

i∗)21(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )21(ε)

+ (H v
i∗)22(ε)Gi(ε)WiG

T
i (ε)(H

r−v
i∗ )21(ε)+ (H v

i∗)22(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )21(ε)

+ (H v
i∗)23(ε)Li(ε)ViL

T
i (ε)(H r−v

i∗ )31(ε)− (H v
i∗)24(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )31(ε)

− (H v
i∗)23(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )41(ε)+ (H v
i∗)24(ε)GicWicGT

ic(ε)(H
r−v

i∗ )41(ε)

+ (H v
i∗)24(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )41(ε)
}
, (H r

i∗)21(t f ) = 0; 2≤ r ≤ ki (93)

d
dε

(H 1
i∗ )22(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H 1

i∗ )22(ε)−(Li(ε)Ci(ε))T (H 1
i∗ )12(ε)

− (H 1
i∗ )22(ε)(Aii(ε)−Li(ε)Ci(ε))

− (H 1
i∗ )21(ε)Li(ε)Ci(ε) , (H 1

i∗ )22(t f ) = 0 (94)

d
dε

(H r
i∗)22(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H r

i∗)22(ε)− (Li(ε)Ci(ε))T (H r
i∗)12(ε)

− (H r
i∗)22(ε)(Aii(ε)−Li(ε)Ci(ε))− (H r

i∗)21(ε)Li(ε)Ci(ε)

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)21(ε)Li(ε)ViL
T
i (ε)(H r−v

i∗ )12(ε)

− (H v
i∗)22(ε)Li(ε)ViL

T
i (ε)(H r−v

i∗ )12(ε)− (H v
i∗)21(ε)Li(ε)ViL

T
i (ε)(H r−v

i∗ )22(ε)

+ (H v
i∗)22(ε)Gi(ε)WiG

T
i (ε)(H

r−v
i∗ )22(ε)+ (H v

i∗)22(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )22(ε)

+(H v
i∗)23(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )32(ε)−(H v
i∗)24(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )32(ε)

− (H v
i∗)23(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )42(ε)+ (H v

i∗)24(ε)GicWicGT
ic(ε)(H r−v

i∗ )42(ε)

+ (H v
i∗)24(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )42(ε)
}
, (H r

i∗)22(t f ) = 0; 2≤ r ≤ ki (95)

d
dε

(H 1
i∗ )23(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H 1

i∗ )23(ε)− (H 1
i∗ )23(ε)Aic(ε)

− (Li(ε)Ci(ε))T (H 1
i∗ )13(ε) , (H 1

i∗ )23(t f ) = 0 (96)
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d
dε

(H r
i∗)23(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H r

i∗)23(ε)− (H r
i∗)23(ε)Aic(ε)

− (Li(ε)Ci(ε))T (H r
i∗)13(ε)−

r−1

∑
v=1

2r!
v!(r−v)!

{
(H v

i∗)21(ε)Li(ε)ViL
T
i (ε)(H r−v

i∗ )13(ε)

− (H v
i∗)22(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )13(ε)− (H v

i∗)21(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )23(ε)

+ (H v
i∗)22(ε)Gi(ε)WiG

T
i (ε)(H

r−v
i∗ )23(ε)+ (H v

i∗)22(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )23(ε)

+(H v
i∗)23(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )33(ε)−(H v
i∗)24(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )33(ε)

− (H v
i∗)23(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )43(ε)+ (H v

i∗)24(ε)GicWicGT
ic(ε)(H r−v

i∗ )43(ε)

+ (H v
i∗)24(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )43(ε)
}
, (H r

i∗)23(t f ) = 0; 2≤ r ≤ ki (97)

d
dε

(H 1
i∗ )24(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H 1

i∗ )24(ε)− (H 1
i∗ )23(ε)Lic(ε)Cic(ε)

− (H 1
i∗ )24(ε)(Aii(ε)−Li(ε)Ci(ε))

− (Lic(ε)Cic(ε))T (H 1
i∗ )14(ε) , (H 1

i∗ )24(t f ) = 0 (98)

d
dε

(H r
i∗)24(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H r

i∗)24(ε)− (H r
i∗)23(ε)Lic(ε)Cic(ε)

− (Lic(ε)Cic(ε))T (H r
i∗)14(ε)− (H r

i∗)24(ε)(Aii(ε)−Li(ε)Ci(ε))

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)21(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )14(ε)

− (H v
i∗)22(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )14(ε)− (H v

i∗)21(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )24(ε)

+ (H v
i∗)22(ε)Gi(ε)WiG

T
i (ε)(H

r−v
i∗ )24(ε)+ (H v

i∗)22(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )24(ε)

+(H v
i∗)23(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )34(ε)−(H v

i∗)24(ε)Lic(ε)VicLT
ic(ε)(H r−v

i∗ )34(ε)

− (H v
i∗)23(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )44(ε)+ (H v
i∗)24(ε)GicWicGT

ic(ε)(H
r−v

i∗ )44(ε)

+ (H v
i∗)24(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )44(ε)
}
, (H r

i∗)24(t f ) = 0; 2≤ r ≤ ki (99)

d
dε

(H 1
i∗ )31(ε) =−AT

ic(ε)(H
1

i∗ )31(ε)

− (H 1
i∗ )31(ε)[Aii(ε)+Bii(ε)K∗xi

(ε)+Cii(ε)K∗zi
(ε)] , (H 1

i∗ )31(t f ) = 0 (100)
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d
dε

(H r
i∗)31(ε) =−(H r

i∗)31(ε)[Aii(ε)+Bii(ε)K∗xi
(ε)+Cii(ε)K∗zi

(ε)]

−AT
ic(ε)(H r

i∗)31(ε)−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)31(ε)Li(ε)ViL
T
i (ε)(H r−v

i∗ )11(ε)

− (H v
i∗)32(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )11(ε)− (H v

i∗)31(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )21(ε)

+ (H v
i∗)32(ε)Gi(ε)WiG

T
i (ε)(H

r−v
i∗ )21(ε)+ (H v

i∗)32(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )21(ε)

+(H v
i∗)33(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )31(ε)−(H v
i∗)34(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )31(ε)

− (H v
i∗)33(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )41(ε)+ (H v

i∗)34(ε)GicWicGT
ic(ε)(H r−v

i∗ )41(ε)

+ (H v
i∗)34(ε)LicVicLT

ic(ε)(H
r−v

i∗ )41(ε)
}
, (H r

i∗)31(t f ) = 0; 2≤ r ≤ ki (101)

d
dε

(H 1
i∗ )32(ε) =−AT

ic(ε)(H
1

i∗ )32(ε)− (H 1
i∗ )31(ε)Li(ε)Ci(ε)

− (H 1
i∗ )32(ε)(Aii(ε)−Li(ε)Ci(ε)) , (H 1

i∗ )32(t f ) = 0 (102)

d
dε

(H r
i∗)32(ε) =−AT

ic(ε)(H
r

i∗)32(ε)− (H r
i∗)32(ε)(Aii(ε)−Li(ε)Ci(ε))

− (H r
i∗)31(ε)Li(ε)Ci(ε)−

r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)31(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )12(ε)

− (H v
i∗)32(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )12(ε)− (H v

i∗)31(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )22(ε)

+ (H v
i∗)32(ε)Gi(ε)WiG

T
i (ε)(H

r−v
i∗ )22(ε)+ (H v

i∗)32(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )22(ε)

+(H v
i∗)33(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )32(ε)−(H v
i∗)34(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )32(ε)

− (H v
i∗)33(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )42(ε)+ (H v
i∗)34(ε)GicWicGT

ic(ε)(H
r−v

i∗ )42(ε)

+ (H v
i∗)34(ε)LicVicLT

ic(ε)(H r−v
i∗ )42(ε)

}
, (H r

i∗)32(t f ) = 0; 2≤ r ≤ ki (103)

d
dε

(H 1
i∗ )33(ε) =−AT

ic(ε)(H
1

i∗ )33(ε)− (H 1
i∗ )33(ε)Aic(ε)

−Rzi(ε) , (H 1
i∗ )33(t f ) = 0 (104)
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d
dε

(H r
i∗)33(ε) =−AT

ic(ε)(H
r

i∗)33(ε)− (H r
i∗)33(ε)Aic(ε)

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)31(ε)Li(ε)ViL
T
i (ε)(H r−v

i∗ )13(ε)

− (H v
i∗)32(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )13(ε)− (H v

i∗)31(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )23(ε)

+ (H v
i∗)32(ε)Gi(ε)WiG

T
i (ε)(H

r−v
i∗ )23(ε)+ (H v

i∗)32(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )23(ε)

+(H v
i∗)33(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )33(ε)−(H v
i∗)34(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )33(ε)

− (H v
i∗)33(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )43(ε)+ (H v

i∗)34(ε)GicWicGT
ic(ε)(H r−v

i∗ )43(ε)

+ (H v
i∗)34(ε)LicVicLT

ic(ε)(H
r−v

i∗ )43(ε)
}
, (H r

i∗)33(t f ) = 0; 2≤ r ≤ ki (105)

d
dε

(H 1
i∗ )34(ε) =−AT

ic(ε)(H
1

i∗ )34(ε)− (H 1
i∗ )34(ε)(Aic(ε)−Lic(ε)Cic(ε))

− (H 1
i∗ )33(ε)Lic(ε)Cic(ε) , (H 1

i∗ )34(t f ) = 0 (106)

d
dε

(H r
i∗)34(ε) =−AT

ic(ε)(H
r

i∗)34(ε)− (H r
i∗)34(ε)(Aic(ε)−Lic(ε)Cic(ε))

− (H r
i∗)33(ε)Lic(ε)Cic(ε)−

r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)31(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )14(ε)

− (H v
i∗)32(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )14(ε)− (H v

i∗)31(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )24(ε)

+ (H v
i∗)32(ε)Gi(ε)WiG

T
i (ε)(H

r−v
i∗ )24(ε)+ (H v

i∗)32(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )24(ε)

+(H v
i∗)33(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )34(ε)−(H v
i∗)34(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )34(ε)

− (H v
i∗)33(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )44(ε)+ (H v
i∗)34(ε)GicWicGT

ic(ε)(H
r−v

i∗ )44(ε)

+ (H v
i∗)34(ε)LicVicLT

ic(ε)(H r−v
i∗ )44(ε)

}
, (H r

i∗)34(t f ) = 0; 2≤ r ≤ ki (107)

d
dε

(H 1
i∗ )41(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H 1

i∗ )41(ε)−(Li(ε)Ci(ε))T (H 1
i∗ )31(ε)

− (H 1
i∗ )41(ε)[Aii(ε)+Bii(ε)K∗xi

(ε)+Cii(ε)K∗zi
(ε)] , (H 1

i∗ )41(t f ) = 0 (108)
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d
dε

(H r
i∗)41(ε) =−(Aic(ε)−Lic(ε)Cic(ε))T (H r

i∗)41(ε)

− (Lic(ε)Cic(ε))T (H r
i∗)31(ε)− (H r

i∗)41(ε)[Aii(ε)+Bii(ε)K∗xi
(ε)+Cii(ε)K∗zi

(ε)]

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)41(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )11(ε)

− (H v
i∗)42(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )11(ε)− (H v

i∗)41(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )21(ε)

+ (H v
i∗)42(ε)Gi(ε)WiG

T
i (ε)(H r−v

i∗ )21(ε)+ (H v
i∗)42(ε)Li(ε)ViL

T
i (ε)(H r−v

i∗ )21(ε)

+(H v
i∗)43(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )31(ε)−(H v
i∗)44(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )31(ε)

− (H v
i∗)43(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )41(ε)+ (H v
i∗)44(ε)GicWicGT

ic(ε)(H
r−v

i∗ )41(ε)

+ (H v
i∗)44(ε)LicVicLT

ic(ε)(H r−v
i∗ )41(ε)

}
, (H r

i∗)41(t f ) = 0; 2≤ r ≤ ki (109)

d
dε

(H 1
i∗ )42(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H 1

i∗ )42(ε)−(Li(ε)Ci(ε))T (H 1
i∗ )32(ε)

− (H 1
i∗ )42(ε)(Aii(ε)−Li(ε)Ci(ε))

− (H 1
i∗ )41(ε)Li(ε)Ci(ε) , (H 1

i∗ )42(t f ) = 0 (110)

d
dε

(H r
i∗)42(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H r

i∗)42(ε)− (Li(ε)Ci(ε))T (H r
i∗)32(ε)

− (H r
i∗)41(ε)Li(ε)Ci(ε)− (H r

i∗)42(ε)(Aii(ε)−Li(ε)Ci(ε))

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)41(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )12(ε)

− (H v
i∗)42(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )12(ε)− (H v

i∗)41(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )22(ε)

+ (H v
i∗)42(ε)Gi(ε)WiG

T
i (ε)(H r−v

i∗ )22(ε)+ (H v
i∗)42(ε)Li(ε)ViL

T
i (ε)(H r−v

i∗ )22(ε)

+(H v
i∗)43(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )32(ε)−(H v
i∗)44(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )32(ε)

− (H v
i∗)43(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )42(ε)+ (H v
i∗)44(ε)GicWicGT

ic(ε)(H
r−v

i∗ )42(ε)

+ (H v
i∗)44(ε)LicVicLT

ic(ε)(H
r−v

i∗ )42(ε)
}
, (H r

i∗)42(t f ) = 0; 2≤ r ≤ ki (111)
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d
dε

(H 1
i∗ )43(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H 1

i∗ )43(ε)−(Li(ε)Ci(ε))T (H 1
i∗ )33(ε)

− (H 1
i∗ )43(ε)Aic(ε) , (H 1

i∗ )43(t f ) = 0 (112)

d
dε

(H r
i∗)43(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H r

i∗)43(ε)− (Li(ε)Ci(ε))T (H r
i∗)33(ε)

− (H r
i∗)43(ε)Aic(ε)−

r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)41(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )13(ε)

− (H v
i∗)42(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )13(ε)− (H v

i∗)41(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )23(ε)

+ (H v
i∗)42(ε)Gi(ε)WiG

T
i (ε)(H r−v

i∗ )23(ε)+ (H v
i∗)42(ε)Li(ε)ViL

T
i (ε)(H r−v

i∗ )23(ε)

+(H v
i∗)43(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )33(ε)−(H v
i∗)44(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )33(ε)

− (H v
i∗)43(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )43(ε)+ (H v
i∗)44(ε)GicWicGT

ic(ε)(H
r−v

i∗ )43(ε)

+ (H v
i∗)44(ε)LicVicLT

ic(ε)(H
r−v

i∗ )43(ε)
}
, (H r

i∗)43(t f ) = 0; 2≤ r ≤ ki (113)

d
dε

(H 1
i∗ )44(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H 1

i∗ )44(ε)−(Li(ε)Ci(ε))T (H 1
i∗ )34(ε)

− (H 1
i∗ )44(ε)(Aic(ε)−Lic(ε)Cic(ε))

− (H 1
i∗ )43(ε)Lic(ε)Cic(ε) , (H 1

i∗ )44(t f ) = 0 (114)

d
dε

(H r
i∗)44(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H r

i∗)44(ε)− (Li(ε)Ci(ε))T (H r
i∗)34(ε)

− (H r
i∗)43(ε)Lic(ε)Cic(ε)− (H r

i∗)44(ε)(Aic(ε)−Lic(ε)Cic(ε))

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)41(ε)Li(ε)ViL
T
i (ε)(H r−v

i∗ )14(ε)

− (H v
i∗)44(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )14(ε)− (H v

i∗)41(ε)Li(ε)ViL
T
i (ε)(H r−v

i∗ )24(ε)

+(H v
i∗)42(ε)Gi(ε)WiG

T
i (ε)(H r−v

i∗ )24(ε)+(H v
i∗)42(ε)Li(ε)ViL

T
i (ε)(H r−v

i∗ )24(ε)

+(H v
i∗)43(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )34(ε)− (H v

i∗)44(ε)Lic(ε)VicLT
ic(ε)(H r−v

i∗ )34(ε)

− (H v
i∗)43(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )44(ε)+(H v

i∗)44(ε)GicWicGT
ic(ε)(H r−v

i∗ )44(ε)

+(H v
i∗)44(ε)LicVicLT

ic(ε)(H r−v
i∗ )44(ε)

}
, (H r

i∗)44(t f ) = 0; 2≤ r ≤ ki (115)
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d
dε

(D̆1
i∗)11(ε) =−(H 1

i∗ )13(ε)Bic(ε)uc(ε)−K∗Txi
(ε)Rii(ε)p∗xi

(ε)

− [Aii(ε)+Bii(ε)K∗xi
(ε)+Cii(ε)K∗zi

(ε)]T (D̆1
i∗)11(ε)

− (H 1
i∗ )11(ε)[Bii(ε)p∗xi

(ε)+Cii(ε)p∗zi
(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)]

−K∗Tzi
Rzi(ε)p∗zi

(ε)+Qi(ε)ζi(ε) , (D̆1
i∗)11(t f ) =−Q f

i ζi(t f ) (116)

d
dε

(D̆ r
i∗)11(ε) =−[Aii(ε)+Bii(ε)K∗xi

(ε)+Cii(ε)K∗zi
(ε)]T (D̆ r

i∗)11(ε)

− (H r
i∗)11(ε)[Bii(ε)p∗xi

(ε)+Cii(ε)p∗zi
(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)]

− (H r
i∗)13(ε)Bic(ε)uc(ε) , (D̆ r

i∗)11(t f ) = 0 , 2≤ r ≤ ki (117)

d
dε

(D̆ r
i∗)21(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (D̆ r

i∗)21(ε)− (Li(ε)Ci(ε))T (D̆ r
i∗)11(ε)

− (H r
i∗)21(ε)[Bii(ε)p∗xi

(ε)+Cii(ε)p∗zi
(ε)+

Ni

∑
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Bi j(ε)u∗i j(ε)]

− (H r
i∗)23(ε)Bic(ε)uc(ε) , (D̆ r

i∗)21(t f ) = 0 , 1≤ r ≤ ki (118)

d
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1
i∗)31(ε)+Rzi(ε)pzi(ε)

− (H 1
i∗ )31(ε)[Bii(ε)p∗xi

(ε)+Cii(ε)p∗zi
(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)]

− (H 1
i∗ )33(ε)Bic(ε)uc(ε) , (D̆1

i∗)31(t f ) = 0 (119)

d
dε

(D̆ r
i∗)31(ε) =−AT

ic(ε)(D̆ r
i∗)31(ε)

− (H r
i∗)31(ε)[Bii(ε)p∗xi

(ε)+Cii(ε)p∗zi
(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)]

− (H r
i∗)33(ε)Bic(ε)uc(ε) , (D̆ r

i∗)31(t f ) = 0 , 2≤ r ≤ ki (120)
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d
dε

(D̆ r
i∗)41(ε) =−(Lic(ε)Cic(ε))T (ε)(D̆ r

i∗)31(ε)− (H r
i∗)43(ε)Bic(ε)uc(ε)

− (H r
i∗)41(ε)[Bii(ε)p∗xi

(ε)+Cii(ε)p∗zi
(ε)+

Ni

∑
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Bi j(ε)u∗i j(ε)]

− (Aic(ε)−Lic(ε)Cic(ε))T (D̆ r
i∗)41(ε) , (D̆ r

i∗)41(t f ) = 0 , 1≤ r ≤ ki (121)

d
dε

D1
i∗(ε) =−Tr{(H 1
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i (ε)− (H 1

i∗ )12(ε)Li(ε)ViL
T
i (ε)}

−Tr{−(H 1
i∗ )21(ε)Li(ε)ViL

T
i (ε)+ (H 1

i∗ )22(ε)(Gi(ε)WiG
T
i (ε)+Li(ε)ViL

T
i (ε))}

−Tr{(H 1
i∗ )33(ε)Lic(ε)VicLT

ic(ε)− (H 1
i∗ )34(ε)Lic(ε)VicLT

ic(ε)}− ζT
i (ε)Qi(ε)ζi(ε)

−Tr{−(H 1
i∗ )43(ε)Lic(ε)VicLT

ic(ε)+ (H 1
i∗ )44(ε)(GicWicGT

ic(ε)+Lic(ε)VicLT
ic(ε))}

− 2(D̆1
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T
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∑
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T
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(ε)Rzi(ε)p∗zi
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d
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T
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T
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T
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ic(ε)+ (H r

i∗)44(ε)(GicWicGT
ic(ε)+Lic(ε)VicLT

ic(ε))}

− 2(D̆ r
i∗)

T
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Ni

∑
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Bi j(ε)u∗i j(ε)]

− 2(D̆ r
i∗)

T
31(ε)Bic(ε)uc(ε) , D r

i∗(t f ) = 0 , 2≤ r ≤ ki . (123)

Notice that as for comparison with other state-of-the-art research, the principal
distinguishing feature of the research investigation herein is the pervasive use
of noncooperative game theory and person-by-person equilibrium strategies (78)
and (79) across the hierarchy for coordinated control of distributed systems. The
emphasis is the recognition of the presence of a coordinator and incumbent systems
and thus, addressing an important challenge in performance analysis supported by
(84)–(123) for intra- and inter-interactions considered at the outset to achieve the
attributes of “desired effects” and “tailored performance.”
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5 Conclusions

The present research investigation results in significant contributions to coordination
control science’s existing portfolio of methodologies. This portfolio contains a
coordinator which directs two or more interconnected stochastic systems. Thinking
about risk-averse attitudes toward performance uncertainty suggests new ideas for
extending existing theories of distributed control and multiperson decision analysis.
In this sense, the present research article suggested that making decisions using the
proposed method protects decision makers and/or controller designers from overly
optimistic design decisions that may not be the best under uncertainty. To account
for mutual influence from immediate neighbors that give rise to interaction com-
plexity such as potential noncooperation, each incumbent system or self-directed
agent autonomously focuses on the search for a person-by-person equilibrium
which is in turn remotely supported by local observers. Further discussions showed
that the person-by-person equilibrium is equivalent to the concept of feedback
Nash strategy. Another research issue discussed includes adjusting risk-averse
attitudes via risk-value aware performance indices. The process of adjustment for
performance risk aversion imposes some computational requirements as needed by
the construction of the states of the person-by-person equilibrium.

Future work will focus on distributed multiscale modeling and control with
explicit communications and partial information patterns, wherein research issues
are: (a) how the feedback of incumbent systems would affect macroscales and
macrostates of dominant coordinators? (b) how fast, small-scale behavior of
incumbent systems could potentially trigger conformation changes of dominant
coordinators? and (c) reliable and effective pathways for transferring information
and knowledge from dominant players to fringe players and vice versa?
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One of the key challenges is to manage the system-wide effects that occur due
to learning in a non-stationary environment. In this paper, we look at the impact
on the system-wide dynamics and the learning convergence due to communication
between the agents. Specifically, we look at the problem of learning routes between
locations in a graph in the case where agents using the same edge at the same time
slow each other down. We implemented and empirically examined a model where
the agents simply try to model each edge in the graph as being either slow, medium,
or fast due to the other agents using that edge. Communication on a fixed social
network occurs only when an agent changes the speed category it has for a particular
link, e.g., when it changes from believing a link is slow to believing it is medium. We
find that the system dynamics are very sensitive to the ratio between the influence
of direct observations on local beliefs to the influence of communicated beliefs. For
some values of this ratio, convergence to good behavior can occur very quickly, but
for others a brief period of good performance is followed by wild oscillations.

Keywords Multi-agent learning • Information sharing • Congestion games •
Social networks

P. Scerri (�)
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail: pscerri@cs.cmu.edu

A. Sorokin and P.M. Pardalos (eds.), Dynamics of Information Systems: Algorithmic
Approaches, Springer Proceedings in Mathematics & Statistics 51,
DOI 10.1007/978-1-4614-7582-8 7, © Springer Science+Business Media New York 2013

231

mailto:pscerri@cs.cmu.edu


232 P. Scerri

1 Introduction

Many interesting domains require that robots or agents simultaneously learn and
interact with one another for their mutual benefit over time. When the actions of
one agent impact the outcomes of another agent, individual learning often leads
to complex system dynamics. A canonical example of this problem is cooperative
path planning [1, 7], where agents using the same routes negatively interfere with
one other, but many other domains have been studied including soccer [17] and
markets [25].

One of the core problems in multi-agent learning is that when one agent
changes its behavior, it impacts the outcome for another agent. When all the agents
simultaneously learn, the collective behavior and individual rewards can vary wildly
and unpredictably. Controlling these system dynamics in a way that efficiently
or even eventually has good behavior has received much attention. Typically, the
approach is to somehow change local learning so that undesirable system effects are
damped [6,22]. For example, some agents can hold their behavior fixed while others
learn or agents can be made to learn slowly to provide a more stable environment
for the other agents to learn.

In this chapter, we look at how modulating communication between agents
can be used to control the system dynamics. Specifically, we hypothesize that if
the agents share less information and have more localized models of the overall
performance, they might naturally slow their learning rate and naturally allow the
weakest individuals to replan against a more stable environment. However, it will
clearly also be the case that less shared information means less ability to work out
the right thing to do. We empirically investigate this hypothesis with a simple model
of a graph and agents needing to repeatedly get between two locations on the graph,
and agents using the same edges negatively interfere with one another. We find that
communication does change the overall learning dynamics and that those dynamics
are very sensitive to how the agents use communicated information to update their
local models.

The simplest model for the agents is a history of times taken on particular
edges, decayed over time to account for change. Whenever they traverse an edge,
they communicate the time taken with some other members of the system. The
agents used this model to plan the fastest route to their goal. An alternative
model, which turns out to require much less communication to keep up to date,
is for agents to simply model edges as fast, medium, or slow. The agents only
communicate when they change from believing an edge is in one category to
believing it is in another. An agent can change belief, either due to a local
observation or a communicated message. Due to the fact that beliefs can change
based on communicated information, a single observation may lead to a cascade of
belief changes through the network. Intuitively, the ternary model focuses the agents
on only communicating coarse information and slows some of the system dynamics
because one slow or fast traversal of a link, by an agent will not necessarily be
enough to cause it to change belief categories; however, if an edge is consistently
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slow or fast, that information will get propagated widely. We show empirically that
the ternary model can get agents to good collective behavior more quickly than
the averaging model, although over many iterations the solutions are not as good,
because the agents have less fine-grained information to work with.

While the ternary model can get to good solutions faster, it can also lead to wild
system dynamics. It turns out that the behavior of the ternary model is very sensitive
to the weighting agents give to messages communicated from others, relative to
the weighting they give to their own observations. If they weight information
from communication low, the dynamics are stable but it takes longer to find good
solutions, while higher weightings lead to quicker reactions but bad oscillations.
The best system behavior is observed when this weighting is decayed over time,
allowing the agents to initially share a lot of information but then stabilize the system
dynamics once a reasonable solution is found.

2 Model

Our model consists of agents A, places P and edges G over some number of
iterations. Each agent a ∈ A has some place, phome ∈ P where it starts each iteration
and some place pwork ∈ P where it must get to each iteration. To get to pwork it must
use edges connecting places. Individual edges g ∈ G connect exactly two places.
The agents task is to get from phome to pwork most quickly each iteration.

The time that it will take an agent to traverse an edge depends purely on
the number of agents already on the edge when it gets to the edge. Specifically, the
time taken by an agent is 10+ n3

already, where nalready is the number of agents on the
edge when the agent reaches it. The simulation randomizes the order the agents
execute so that in one iteration an agent might be the first on the edge and have a
very short travel time and another iteration it might be tenth onto the edge and have
a very long travel time, even if none of the agents change their routes.

This model has two important features. First, the agents will get very different
perspectives on speed of a edge, based on exactly when they get onto the edge.
Hence, either many iterations or cooperation is needed to create an accurate model.
Second, busy edges heavily penalize the agents, just a few extra agents on a edge
will dramatically slow the last few agents down.

For experimental purposes, in all but one of the experimental cases below, all
agents have the same phome and pwork. This makes for more interesting traffic
congestion problems and requires more coordination among the agents, but as Fig. 7
shows, changing this does not change the overall dynamics.

In every iteration, each agent uses a model of the graph to plan a path from phome

to pwork. The agents use a simple A* algorithm [24] to do the planning based on their
current model of edge traversal times Agents are risk neutral, trying to minimize
expected travel time. They then execute their plan without adapting to observed
conditions. At the end of an iteration, the agents can communicate about what they
observed. The model the agent plans with and the information it communicates are
described below.
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It is assumed that each agent plans selfishly but communicates truthfully and
cooperatively. We are interested in two primary metrics. First, the average time it
takes for an agent to get from phome to pwork. Second, the volume of communication.
As the agents build their models and adapt their plans to the changing models, the
average transit time will change. As a secondary measure, we are interested in the
change in average transit time over time.

Communication Network

The agents are organized into a social network where they can only communicate
directly with a small subset of the rest of the agents. Information is propagated
through the network in a peer-to-peer manner. Empirically we evaluate different
network structures to understand the impact of how the information moves. Unless
otherwise noted below, we use a random network with degree 5 to connect the
agents.

2.1 Agent Reasoning

The agents have to choose a route that will most quickly get them to their
destination, based on experiences so far and from experiences communicated from
other agents. The optimal thing to do would be game theoretic reasoning that
considers likely plans by others and the changes they will make, given their
previous experiences. However, this is typically infeasible. Cooperative agents with
low cost communication might coordinate in advance to balance the routes, but
for the purposes of this work we assume that to be infeasible also. Moreover,
if communication has any non-negligible cost, any agent will only have partial
information about traffic on edges over time.

Below we describe two models for reasoning about the road network, the first
uses a simple moving average of expected times for each edge, the second having
the agents only characterize a road as slow, medium, or fast. Using either of these
models the agents estimate the time taken to use a particular road and use A*
to compute their expected fastest route, excluding any reasoning about how other
agents might change their behavior. Notice that the agents are generally moving to
a Nash Equilibrium, where, at least according to their local models, they have no
incentive to change behavior. However, as has been noted before, even if the agents
do reach a Nash Equilibrium, it may be the case that the outcome is far from the
social optimal outcome [13, 18].

2.1.1 Averaging Model

The simplest model an agent can have of the graph is to store the average time
taken by agents traversing that edge. Since the utilization of an edge will change
over time, a moving average is used to keep the model updated with respect to the
current situation.
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Communication using the averaging model is constrained by the problems of
double counting. If agents simply share their current estimates with each other,
where those estimates use both their own observations and communication from
other agents there is a possibility that individual observations can end up being taken
into account multiple times and skewing the averages. Various consensus algorithms
that essentially ignore this effect have been developed and shown to work reasonably
well [21,28]. In this work, we take the conservative approach and require that agents
share actual observations, which is expensive in terms of communication, but leads
to principled, accurate averages. Hence, every time an agent traverses an edge, it
communicates the time it took to traverse that edge to its direct neighbors in the
social network.

The agents estimate for an edge is simply e′i = αei +(1−α)obs, where ei is the
current estimate for the edge and obs is the new observation for the edge, whether
communicated or observed locally. In this paper, we use α = 0.95.

2.1.2 Ternary Model

In the ternary model, agents only track whether they believe a edge is slow, medium,
or fast. The agents keep a normalized frequency distribution of the observations for
each of the edges, decayed over time. Specifically, for each edge e, the agent has
model Me = {pslow, pmedium, pfast}, pslow + pmedium + pfast = 1. When an agent gets
an observation of a particular category it adds βlocal for a local observation and β
for a communicated observation to the relevant p and then normalizes. For example,
initially Me = pslow = 0.33, pmedium = 0.33, pfast = 0.33}, βlocal = 0.1 and the agent
observes an edge to be fast, M′ = {pslow = 0.302, pmedium = 0.302, pfast = 0.395}.

The agents take the most probable category, maxM, and plan as if that was the
case. In the experiments below, an edge in a particular category is assumed to take
time 300, 156, and 12 for pslow, pmedium, and pfast, respectively, corresponding to
the average time when approximately 3, 7, and 11 agents also use the edge. These
were chosen to have a useful distribution for the default parameters. It might be
more accurate to compute a value weighted by the different probabilities, but this
is left for future work to allow for cleaner isolation of major effects. When maxM
changes for an edge, i.e., when the agent’s belief about an edge changes categories,
it communicates the new category to its direct neighbors in the social network.

This model was designed simply to make communication easier. The agents
communicate whenever their model changes from believing the edge falls into one
category to believing the edge falls into another speed category. Agents receiving
communications about category changes need to decide how to integrate the
measurement into their model. A communication will occur based on a number
of observations building up belief in some category, so it could be weighted more
heavily than a local observation, which is a single data point. However, as the
experiments show, this leads to some undesirable system wide effects. The critical
parameter is the ratio of the weighting of local observations to communication
observations when integrating with the filter, β . Notice that the double counting
effect can occur with this communication model, since an agent might receive
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messages from different network neighbors about the same category change, but
those changes may have been caused by the same single observation (potentially
taken by a completely other agent). As the experiments show, this effect is both
real and important in impacting the system dynamics. Notice that when an agent
receives a communication that another agent now believes an edge is in a certain
category, it does not know anything about the observations that led the agent to
reach that conclusion and therefore it is difficult to use it in a completely principled
way. It may be that it receives multiple messages about the same edge from two
different neighbors that reached their conclusion based on the observations of a
third neighbor. Thus, the weighting the agent uses is a heuristic that balances the
value in using communication to build their own model and the risk of being very
sensitive to few observations.

3 Empirical Investigation

In this section, we present a detailed experimental investigation of the model and
communication protocol presented above. The investigation shows that the ternary
model can lead the agents to much more quickly find good solutions, but the higher
the β the wilder and worse the oscillations that occur over time. Unless otherwise
stated, the following parameters were used across all the experiments (Table 1).

The graph network was a small world network created by randomly placing
locations on a unit square, connecting all locations within 0.2 of each other and
then creating ten random edges. The time taken to traverse an edge is independent
of the length of the edge. For each of the graphs, the x-axis shows the iteration
number and the y-axis shows the average travel time for all agents averaged over all
runs, therefore lower is better performance.

In the following, we present a series of experiments designed to understand
the model. First, Fig. 1 compares the averaging model with two ternary models,
using β = 0.05 and β = 0.15. Notice that when β = 0.15, i.e., when agents place
more weight on communicated information the early performance is better than
the averaging algorithm, but after about 100 iterations wild dynamics begin to
occur and average performance falls off very badly. This phenomena is qualita-
tively the same as a phenomena known as bursting in adaptive control [2, 15] and
is likely caused by similar dynamics, though the distributed system state and high
uncertainty makes this difficult to confirm.

When communication from neighbors is weighted less heavily, i.e., β = 0.05,
the system gets to good solutions much more slowly, but remains stable over time.
Even at this lower β the averaging model does better, because it eventually has
more detailed information, i.e., it has average times for each edge, not just one
of three categories. The averaging model has far more consistent behavior, at first
improving greatly and then slipping back before finally getting good performance.
We can conclude from this that the ternary model can work very quickly, though the
β value needs to be chosen carefully.
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Table 1 Default parameter
values Parameter Value

No. of iterations 300
No. of agents 100
Graph network Small world
No. of places 100
No. of random links 10
β 0.15
βlocal 0.2
Social network Random
Runs 200

Fig. 1 Comparison of consensus model with ternary model with two different neighbor weight-
ings. Notice that the ternary model with the higher β finds good solutions quickly but then becomes
unstable. With the lower β , the ternary model does not outperform the averaging model

Next we compared ten different values for β , ranging from very low, i.e., 0.01,
representing almost no influence by neighbors to high enough so that most of the
agent’s information comes from shared information. Figure 2 shows the results with
Fig. 3 showing the first few iterations of the same data. There is a clear pattern as
β goes from low to high. The higher β , the earlier the system finds good solutions,
but also the earlier it becomes unstable. The very lowest β values, 0.01 and 0.06,
do not become unstable for thousands of iterations (we cannot say for certain that it
remains stable forever). There appears to be a clear trade-off between the speed at
which good solutions are found and how stable the system is over time.

The social network connecting the agents restricts how information moves across
the system. Therefore it is reasonable to expect that changing the structure of the
network impacts the system dynamics. Figure 4 shows the dynamics with three
different network structures. The Ring network singly connects the agents into a
ring, resulting in the least connectivity. The Small Worlds network doubly connects
the agents into a ring and includes a small number of random links. The Random
network is as described above. Notice that the Small Worlds and Ring networks
perform stably and identically, while the Random network exhibits the oscillations.
We can conclude that the network structure can also damp the flow of information,
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Fig. 2 Comparison of different neighbor weighting rates, β . Notice the higher rates have the
agents finding good solutions more quickly but later the system oscillates chaotically, while lower
rates get to good solutions more slowly, but are more stable over time

Fig. 3 Comparison of different neighbor rates over the first few iterations, highlighting the
convergence

in the same way as changing β and therefore stabilizes the system. In Figs. 5 and 6
we compare the details of the social network experiments versus the averaging
case. In Fig. 5 the number of agents that change routes from the iteration before is
shown. These are agents that have received enough new information to have found
a different best path. The averaging case exhibits qualitatively different behavior
to the ternary cases, with the number of agents changing routes slowly decreasing
over time. In the ternary cases, no agents change behavior until enough evidence
has built up to cause a small number of agents to change. Curiously, the wild
oscillations observed in the Random network case are caused by relatively few
agents changing routes. Figure 6 shows the amount of communication used by each
of the algorithms, with a log-scale on the y-axis. The averaging case sends a message
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Fig. 4 Comparison of three different social networks

Fig. 5 The number of agents changing their routes from the iteration before, for averaging case
and ternary case with three different social networks

for every edge traversed, which may not be necessary if a smarter consensus
algorithm was used. However, the ternary models use an order of magnitude fewer
messages. The different social networks also have qualitatively different behavior:
in the Random network case, the communication drifts up over time, as the system
oscillates causing changes in belief, while for the Ring and Small Worlds case, the
communication level drifts down as the system stabilizes.

The previous experiments have all the agents using the same start and end
locations. This means the agents all want to use the same edges. In the next
experiment, we relaxed this, allowing more than one start and end location. Figure 7
shows the dynamics with between one and ten start and end locations. It appears that
this makes no difference to the behavior, even though the congestion varies. It may
be that the random links in the small worlds network are the key links regardless of
the start and end locations, this is a question for future work.

Given the apparent trade-off and stability in the choice of β , we hypothesized that
decreasing it over time might give the best of both worlds, good early performance
followed by stability later. Figure 8 shows the result, starting with β = 0.3 and
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Fig. 6 The volume of communication per iteration, for averaging case and ternary case with three
different social networks

Fig. 7 Comparison of performance as the number of different start and end locations is changed,
changing the rate of overlap between agents

decreasing by a fixed decay rate each iteration. A high enough decay rate can in
fact lead to stable performance over time. However, even picking the empirically
identified ideal decay rate, 0.007, does not allow the ternary model to outperform
the averaging model in the long term, because the model is coarser providing less
information for the agents to plan with. With the decay, however, over approximately
30 iterations, the ternary model is far superior (Fig. 9).

In the experiments above, the system dynamics were looked at over 300
iterations. In the next set of experiments, we looked in detail at what happens
over a much longer period of time, when the system is given a chance to settle
out of its oscillating behavior. Figures 10–12 show various metrics for the case of
β ∈ 0.1,0.2,0.3, i.e., weightings of communicated information that cause stable
through unstable behavior. In each case, each point along the x-axis is the average
over 10 iterations, so the 200 points represent 2,000 iterations.
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Fig. 8 Decaying the neighbor weighting rate over time. An appropriate rate of decay can balance
between quick convergence and stability

Fig. 9 Comparison of ternary model with a decay factor 0.007 on neighbor weights, β , with the
averaging model

The figures show the qualitative differences in behavior, despite the long-run
behavior being approximately the same. Figure 10 shows the average transit times.
For β = 0.3, the oscillations occur but soon settle down so that average times
are approximately the same as for the more stable cases. However, the next four
figures show that the dynamics of getting to this relatively stable behavior and the
behavior itself are qualitatively different for the three cases. Figure 11 shows the
number of agents that choose a different path from the iteration before. This is a
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Fig. 10 Average transit times over 2,000 iterations with β = D ∈ 0.1,0.2,0.3

Fig. 11 The number of agents changing routes from the previous iteration over 2,000 iterations
with β = D ∈ 0.1,0.2,0.3

measure of how much the information sharing is impacting the agents, since they
will change routes whenever they believe a different route will be faster. Notice
that the more communication is valued, higher β , the more agents that typically
change. This is to be expected, since more information should lead to more changes.
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Fig. 12 The average number of messages at an iteration over 2,000 iterations with β = D ∈
0.1,0.2,0.3

However, curiously, even after more than 1,000 iterations, when the average transit
time is approximately equal for each of the cases, the number of agents changing
at each step is still significantly different and apparently stably so. The different
message weightings lead to different amounts of churn. This is supported in Fig. 12
which shows the number of messages at each iteration. Although they use the same
communication algorithm, the different weightings lead to different volumes of
communication, which stabilize over time, as a function of the noise in the system
due to the randomization of which agent gets to the edge first. The next two graphs
hint that while the average times are stable and approximately the same, there are
still qualitatively different dynamics going on. Figure 13 shows the time of the last
agent to complete its route, the outlier of the system and Fig. 14 shows the time
of the median agent. The time of the last agent actually goes up over time when
the communication weight is low, while it eventually consistently comes down
when communicated information is weighted more highly. This suggests that the
communication is good at getting rid of some of the outliers, although it caused
more early on, during the unstable phase. The median times show a significant and
qualitative change over time. In the cases where communication is weighted higher,
the median fall consistently, while when there is less weight on communication,
median behavior is at first better but then drifts higher. When communication is
weighted higher, there is more coherence across the system, bringing the median
down.

In the final experiment, we looked at whether it was the use of three categories
that made the difference or simply the use of categories versus averaging. The
results are shown in Figs. 15–20. Figures 15–17 show the average transit times for
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Fig. 13 The time of the last agent completing its traversal over 2,000 iterations with β = D ∈
0.1,0.2,0.3

Fig. 14 The time of the median traversal over 2,000 iterations with β = D ∈ 0.1,0.2,0.3
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Fig. 15 Average transit times using different numbers of categories, I for edge traversal times,
with β = 0.1

between three and eleven categories for β = 0.1, β = 0.2, and β = 0.3, respectively.
For the lowest communication weighting, the extra categories do not make any
difference; however, when communication is weighted more highly, there is an
interesting bifurcation. With up to six categories, the unstable behavior discussed
above is observed, but with more than six categories the system is more stable,
acting more like the averaging model. While in the limit, with an infinite number of
categories, it is clear that the behavior should approach that of the averaging model,
it is less clear why the bifurcation should occur. Figures 18–20 shed some light
on this. They show the average number of messages exchanged in each iteration.
The bifurcation is quite dramatic at six categories. What appears to happen is that
with enough categories, each agent gets enough messages and is sensitive enough
to them to communicate further. This leads to a lot of information being exchanged
and the overall system acting in a fundamentally different way. Thus, the effect is
emergently the same as more communication or a denser social network in having
the overall system be more coherent, though it is achieved here through a different
mechanism.

4 Related Work

Using agents to manage congestion in road networks has been addressed from a
variety of perspectives [4]. Learning of traffic light patterns has been of particular
interest [10, 19]. Bazzan has previously found that sharing information between
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Fig. 16 Average transit times using different numbers of categories, I for edge traversal times,
with β = 0.2

Fig. 17 Average transit times using different numbers of categories, I for edge traversal times,
with β = 0.3

traffic lights does not necessarily help performance [9]. More general management
of congestion has also been looked at extensively [3, 5]. Multi-agent learning is an
extensively studied problem [8, 30]. Most work focuses on how individual agents
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Fig. 18 Number of messages per iteration using different numbers of categories, I for edge
traversal times, with β = 0.1

Fig. 19 Number of messages per iteration using different numbers of categories, I for edge
traversal times, with β = 0.2

should learn in the context of the team, e.g., [16, 29]. Multi-agent versions of
reinforcement learning has been a particularly popular approach [8, 22, 26].

Watts [27] empirically studies the global cascades under random networks with
different interpersonal influences. Hirshleifer [14] studies the information sharing
and propagation in social networks. Nekovee et al. [20] builds a stochastic model
for spreading of rumors. They use mean-field analysis equation to describe the
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Fig. 20 Number of messages per iteration using different numbers of categories, I for edge
traversal times, with β = 0.3

dynamics of the model for complex social network and show that large complex
networks has critical threshold in the rumor spreading rate. Glinton et al. [11, 12]
have studied the emergent behavior of the dynamics of large-scale networks. Their
model is based on a network of small number of sensors and a team of agents
who share information about a single fact. They have shown that system behaves
optimally in a very small range of system parameters. When the parameters deviate
from that range, the system performance degrades dramatically. They have shown
that this behavior is caused by cascades of belief changes due to a single sensor
reading. All these works show the emergent behavior of information cascading,
but they have not studied the multidimensional facts or the relation of the dynamic
behavior and the correlation of different facts. Reece et al. [23] have provided a
multi-dimensional trust model to allow agents to share correlated multi-dimensional
contracts. They have developed an approach based on Kalman filter to fuse relevant
information from other agents. They have shown that their approach improves
significantly over the simple approach based on single dimension of trust.

5 Conclusions and Future Work

In this paper, we showed the potential for a simple ternary model and communi-
cation scheme to help a simultaneously learning agents find good joint solutions
faster. However, we also showed that a model where agents keep and share more
detailed information eventually leads to better solutions. A planned direction for
future work is look at combining the models, using the ternary model for quick early
solutions and then using the detailed averaging model to find the best solutions.
The ternary model uses dramatically less communication and propagates coarse
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information relatively slowly. Theoretically, we would like to understand better
exactly how much communication is required to get the best multi-agent learning
performance and why less information is apparently helpful. Finally, we intend to
combine this technique for managing learning dynamics with more traditional multi-
agent learning approaches to see if even better performance can be achieved.

Acknowledgment This research has been funded in part by the AFOSR MURI grant FA9550-08-
1-0356.
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Minimum-Risk Maximum Clique Problem

Maciej Rysz, Pavlo A. Krokhmal, and Eduardo L. Pasiliao

Abstract In this work, we consider the minimum-risk maximum clique problem
on stochastic graphs. Namely, assuming that each vertex of the graph is associated
with a random variable describing a cost or a loss, such that the joint distribution
of all variables on the graph is known, the goal is to determine a clique in
the graph that has the lowest risk, given a specific risk measure. It is shown
that in the developed problem formulation, minimization of risk is facilitated
through inclusion of additional vertices in the partial solution, whereby an optimal
solution represents a maximal clique in the graph. In particular, two instances of
risk-averse maximum clique problems are considered, where risk exposures of
a graph’s vertices are “isolated” (i.e., not dependent on risk profiles of other
vertices) and “neighbor-dependent,” or dependent on the risk profiles of adjacent
vertices. Numerical experiments on randomly generated Erdos–Renyi demonstrat-
ing properties of optimal risk-averse maximum cliques are conducted.
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1 Introduction and Motivation

Network problems in the presence of uncertainties have been studied extensively
in various areas of operations research, industrial engineering, computer science,
and other fields. Stochastic factors arising in network optimization problems can
manifest in various forms and may drastically impact the overall network topology,
flow distribution, as well as incur unforeseeable costs/losses. In this work, we
consider a setting in which uncertainties are induced by stochastic factors associated
with network nodes, which differs from many traditional stochastic network models
existing in the literature that attribute uncertainties to networks’ arcs.

We first present a descriptive formulation of the class of risk-averse graph
theoretic problems that we are interested in, which includes the minimum-risk
maximum clique problem that is the subject of this study. Let G = (V,E) be a graph
where each node i ∈ V has an associated random value Xi representing cost or loss
(in other words, smaller realizations of Xi’s are preferable), and assume that the
joint distribution of Xi’s is known. Then, given a risk measure ρ (see Sect. 2 for a
formal definition of risk measures), consider the problem of finding the minimum-
risk subgraph of G that has a prescribed property Q:

min
S⊆V (G), w

ρ
(
∑
i∈S

wiXi

)

s. t. ∑
i∈S

wi = 1

wi ≥ 0, i ∈V

S[G] ∈QG,

(1)

where S[G] is the subgraph induced by a subset S of nodes V (G), and QG is the
set of all subgraphs of G with the desired property Q. In the present work, QG

represents the set of all complete subgraphs, or cliques, in G

QG = {S⊆V (G) | ∀i, j ∈ S : (i, j) ∈ E(G)}. (2)

The variables wi in (1) represent the weights with which vertices of the minimum-
risk induced subgraph of G are selected. From a mathematical perspective, non-
unity weights in (1) ensure that the problem is well posed, or nontrivial, in the sense
that an optimal subgraph would not reduce to a single node. A formal justification of
the well-posedness of the minimum-risk formulation (1) is furnished in Sect. 3, but
an intuitive illustration can be given as follows. For instance, in the case when QG

is defined as in (2), Xi for i ∈V are iid with a finite second moment, risk measure ρ
is chosen as variance, ρ(X) = σ2(X), and the weights are restricted to be uniform,
i.e., wi = 1/|S| for i ∈ S and wi = 0 otherwise, then formulation (1) reduces to the
(deterministic) maximum clique problem owing to the well-known fact that
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σ2
(

1
n

n

∑
i=1

Xi

)
=

σ2(Xi)

n
→ 0, n→ ∞.

It is worth noting that in the graph-theoretical literature the vertices’ weights are
traditionally considered as input parameters of the problem and are fixed.

From a modeling perspective, the presence of weights in (1) can be motivated as
follows. Consider a network of sensors that can generate information of uncertain
quality, and assume that quality of a sensor’s output depends on the length of time
that the sensor is “live.” The links between sensors allow them to share information
and potentially improve the quality of their output. Then, given a certain budget, it is
of interest to distribute a resource among the sensors (e.g., energy supplies) in such
a way that the risk of receiving poor quality information from the sensor network is
minimized. This setting reduces to the above risk-averse maximum clique problem,
where one has to select a set of sensors that form a complete subgraph, and to assign
weights to the selected sensors that correspond to the proportions of the total energy
budget, so as to minimize the risk of information loss.

While network uncertainties are more often associated with network arcs in the
literature, a number of studies considered uncertainties relative to nodes demands,
etc. Here we briefly discuss several cases focusing on various stochastic effects on
networks that are more closely related to the present work. Ukkusuri and Mathew
[13] confirmed that long-term demand uncertainties in a network design problems
significantly affect network properties compared to their equivalent deterministic
counterparts. In another study, Atamturk and Zhang [3] discussed management of
uncertain node demands by solving a two-stage stochastic optimization problem,
thereby deferring network flow decisions until after realizations of demand materi-
alized. Similarly, Glockner and Nemhauser [7] represented a dynamic network flow
problem with arc capacity randomness as a multistage stochastic linear program.
They propose other applications focusing on cases where flow through the network
is affected by uncertainties attributed to arcs. Several studies examined the effects
of stochastic arc failures on networks. Aneja et al. [1] analyzed flow patterns
that maximize residual flow under probabilistic arc failure. Verweij et al. [14]
used a sample average approximation method to solve several two-stage stochastic
routing problems subject to arc failures and unexpected delays. Boginski et al.
[4] and Sorokin et al. [12] proposed a mathematical programming approach
minimizing flow losses through a network by capturing the impact of probabilistic
arc failures relative to conditional expectation of worst-case outcomes. To the
authors’ knowledge they were the first to introduce Conditional Value-at-Risk
(CVaR) [10, 11] into a classical network flow optimization problem as a means
of managing risk and collateral losses under arc failures.

In this study we introduce the risk averse, or minimum-risk maximum clique
problem, i.e., the problem of finding a clique with the lowest risk in a given
graph, whose vertices represent random variables with a known joint distribution,
and discuss some properties of minimum-risk cliques. To this end, Sect. 2 reviews
the relevant definitions of risk measures. Section 3 presents a general formulation
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of the risk averse maximum clique problem and introduces mathematical pro-
gramming formulations of two special cases, when the risk exposure of a node
in the network does or does not depend on the risk exposures of its neighbors
(minimum-risk maximum clique problems with “neighborhood-dependent” and
“isolated” risk exposures, respectively). Finally, Sect. 4 presents results of numer-
ical experiments conducted on randomly generated graphs.

2 Coherent Risk Measures in Stochastic Programming

Formally, risk measure ρ(X) associated with some random outcome X from
probability space (Ω ,F ,P) can be defined as a mapping ρ : X → R, where
X is a space of bounded F -measurable functions X : Ω �→ R. In what follows,
it is assumed that X represents a cost or a loss, whereby its larger realizations
are considered “riskier.” To be of practical use, however, the above definition of
risk measure must be complemented with additional properties that would make
utilization of such a risk measure meaningful in a specific application.

Historically, developments of methods for measuring “risk” in decision-making
problems under uncertainty was mostly application-driven, or ad hoc. While such
an approach allows for tailoring of the risk preferences as induced by a particular
choice of risk measure to the application-specific requirements, it may lead to situa-
tions when the constructed risk measure lacks certain properties that are commonly
considered as mandatory in the risk management community. A notorious example
of this kind is served by a risk measure that is well known in financial literature
under the name of Value-at-Risk (VaR), which is widely considered as a de facto
standard for measuring risk in the banking industry. Mathematically, VaR with
confidence level α ∈ (0,1) is defined as the α-quantile of the loss distribution:

VaRα(X) = inf{η | P[X ≤ η ]≥ α}, (3)

and is therefore generally non-convex in X , thereby not allowing for proper risk
reduction via diversification, which constitutes a fundamental principle in risk
management practice.

Owing to a large degree to the failings of VaR, recent advances in risk theory
pioneered by Artzner et al. [2] spawned an axiomatic approach to the construction
of risk measures by postulating desirable properties that a “good” risk measures
should possess. Namely, in [2, 5] the authors have identified four properties, or
axioms, and termed the functionals conforming to all four properties as coherent
risk measures:

(A1) Monotonicity: X ≤ 0⇒ ρ(X)≤ 0 for all X ∈X
(A2) Sub-additivity: ρ(X +Y )≤ ρ(X)+ρ(Y) for all X ,Y ∈X
(A3) Positive homogeneity: ρ(λX) = λρ(X) for all X ∈X and λ > 0
(A4) Transitional invariance: ρ(X + a) = ρ(X)+ a for all X ∈X and a ∈R
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Note that assuming (A3) holds, (A2) may be replaced by the convexity axiom

(A2′) Convexity: ρ(λX +(1− λ )Y ) ≤ λρ(X)+ (1− λ )ρ(Y ) for all X ,Y ∈
X , λ ∈ [0,1]

Axiom (A1) ensures that lower losses bear lower risk. The subadditivity property
(A2) and its derivative property of convexity (A2′) are of fundamental importance
from both methodological and mathematical viewpoints: in the risk management
context, they express the “risk reduction through diversification” principle, while
from mathematical perspective, convexity opens the door for use of efficient
optimization methods for control and optimization of risk using coherent risk
measures. Axiom (A3) implies that scaling of X by a positive factor scales the risk
ρ(X) correspondingly. Finally, axiom (A4) guarantees that constant changes to X
impact its risk by the same amount. The solid methodological foundation has made
the concept of coherent risk measures very popular in both theory and practice of
modern risk management; in general, the axiomatic approach to construction of risk
measures became the dominant framework in the field during the last decade [9].

Observe, however, that the above axiomatic definition of the class of coherent
risk measures is non-constructive, in the sense it does not provide a functional form
of coherent risk measures. Moreover, the ability to employ coherent measures of risk
in optimization problems depends on the availability of a functional representation,
typically in the formalism of convex analysis, that is conducive to implementation
in mathematical programming formulations.

To this end, Krokhmal [8] has proposed a representation for coherent measures
of risk in the form of convolution of some function φ : X �→R that satisfies axioms
(A1)–(A3), and is a lower semicontinuous function with an additional property of
φ(η) > η for all real η �= 0. Then, the optimal value of the following (convex)
stochastic programming problem exists and is a proper coherent measure of risk:

ρ(X) = min
η∈ℜ

η+φ(X−η). (4)

In [8] it was shown that coherent risk measures which admit representation
(4) can be efficiently incorporated in objectives and constraints of mathematical
programming models. A well-known instance of (4) that has been used widely in
stochastic optimization in recent years is the CVaR [10, 11]

CVaRα(X) = min
η∈ℜ

η+(1−α)−1
E(X −η)+, α ∈ [0,1], (5)

where X+ = max{0,X}. Intuitively, CVaR with confidence level α , CVaRα(X),
corresponds to the expected loss that exceeds the VaRα(X) level:

CVaRα(X) = E[X | X ≥ VaRα(X)]. (6)
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It is important to emphasize that relation (6) is not exact and holds only in certain
special cases, for instance, when the loss function X is continuously distributed.
For the definition of CVaR in the case of general loss distributions, see [11];
alternatively, expression (5) can be considered as the definition of CVaR. In the
context of stochastic programming, when the distribution of loss function X is
given by scenario set N , such that scenario probabilities P{X = Xs} = ps, s ∈
N , the optimization problem in (5) reduces to stochastic programming problems
of the form

min η+(1−α)−1 ∑
s∈N

psts

s. t. ts ≥ Xs−η , s ∈N

ts ≥ 0, s ∈N ,

(7)

where ts are auxiliary variables associated with scenarios s ∈N . In this study, we
will use CVaR as a risk measure ρ in risk-averse maximum clique problem, but the
general approach is applicable to a broad class of coherent risk measures that admit
representation (4).

3 Risk-Averse Maximum Clique Problems

In this section we first formalize the descriptive definition of minimum-risk
maximum clique problem (1) and then present two special cases of the general
formulation.

Consistent with the above discussion of risk measures, let us define the risk R(S)
of selecting subgraph S[G] of the given graph G as

R(S) = min

{
ρ
(
XG(S;w)

) ∣∣∣∣ ∑
i∈S

wi = 1; wi ≥ 0 ∀ i ∈ S

}
, (8)

where ρ(X) is a (coherent) measure of risk, and X = XG(S;w) is the cost/loss
function associated with the subset S of nodes in G that also depends on the weights
w of nodes in S. For instance, in (1) the implicitly defined loss function has the form
XG(S;w) = ∑i∈S Xiwi. Then, the problem of determining a minimum-risk subgraph
of G with the prescribed property Q can be presented in the form

min
{
R(S)

∣∣ S[G] ∈QG
}
. (9)

In general, QG may denote the set of subgraphs of G with any desired property, e.g.,
the set of all complete subgraphs (2), or the set of all independent sets in G:

QG = {S⊆V (G) | ∀i, j ∈ S : (i, j) /∈ E(G)},
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or the set of subgraphs spanning a path from s to t in G:

QG = {S⊆V (G) | S = {s≡ i0, i1, . . . , in−1, in ≡ t}; (ik−1, ik) ∈ E(G), 1≤ k≤ n},

and so on.
Obviously, (9) can be equivalently written as

min
S⊆V (G), w

ρ
(
XG(S;w)

)

s. t. ∑
i∈S

wi = 1

wi ≥ 0, i ∈V

S[G] ∈QG.

(10)

In the case when the property Q in denotes completeness of subgraph S[G], (10)
represents the general formulation of the risk-averse maximum clique problem.

In this work, we consider two cases of loss function XG(S;w) in (10) that describe
“propagation” of uncertainties and risks within the network. In the first case, risk
exposures of the network nodes are “isolated” in the sense that the loss (risk) profile
at node i is determined only by the random factor Xi at that node. In other words,
risk profiles of individual nodes are independent of stochastic factors at other nodes.

In the second case, it is assumed that the risk exposure of node i depends on its
own loss profile Xi as well as losses of the adjacent nodes, thus the overall risk of
selected subset S depends not only on the stochastic factors Xi at individual nodes
but also on their exposure to neighboring nodes within S. This assumption reflects
risk interdependencies observed in many applications, for example, in the financial
context, where inter-bank lending heavily exposes counterparties.

The next two sections present mixed integer programming formulations of
risk averse maximum clique problem with “isolated” and “neighbor-dependent”
stochastic effects. For concreteness, we consider risk measure ρ in (10) to be chosen
as the CVaR, ρ(X) = CVaRα(X). We assume that losses Xi associated with vertices
i ∈ V have a discrete joint distribution that can be represented by scenario set N ,
such that Xis is the realization of a stochastic factor Xi under scenario s ∈N .

3.1 Risk-Averse Maximum Clique Problem with Isolated
Risk Exposures

According to the discussion above, the loss function XG(S;w) corresponding to
isolated risk exposures is defined simply as a weighted sum of losses Xi among
selected nodes i ∈ S:

XG(S;w) =∑
i∈S

wiXi. (11)
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By introducing binary decision variables xi, i ∈V , such that

xi =

{
1, i ∈ S,

0, i /∈ S,

the risk-averse maximum clique problem with isolated risk exposures can be
formulated as a mixed integer programming problem of form

min ρ
(
∑
i∈V

wi xi Xi

)
(12a)

s. t. ∑
i∈V

wi = 1 (12b)

wi ≤ xi, ∀i ∈V (12c)

xi + x j ≤ 1, ∀(i, j) ∈ E (12d)

xi ∈ {0,1}, wi ≥ 0, ∀i ∈V. (12e)

Constraint (12c) ensures that weights wi can be nonzero only for the vertices i
that are included in the solution S, while constraint (12d) maintains that the set
of selected nodes forms a complete subgraph, or a clique. Observe that due to
the presence of constraint (12c) the nonlinearity in the objective function (12a)
attributed to the products wixi can be eliminated by replacing wixi with just wi,
so that the objective of (12) takes the form

ρ
(
∑
i∈V

wiXi

)
.

When the joint distribution of stochastic factors Xi, i ∈ V , is given by scenario set
{Xis}s∈N , and risk measure ρ is chosen as CVaRα , the risk-averse maximum clique
problem (12) reduces to the following 0–1 mixed integer stochastic programming
problem

min η+
1

1−α ∑
s∈N

psts (13a)

s. t. ∑
i∈V

wi = 1 (13b)

wi ≤ xi, ∀ i ∈V (13c)

xi + x j ≤ 1, ∀ (i, j) ∈ E (13d)

ts ≥∑
i∈V

wiXis−η , ∀ s ∈N (13e)

xi ∈ {0,1}, wi ≥ 0, ∀ i ∈V ; ts ≥ 0 ∀s ∈N , (13f)
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where ps is the probability of scenario s ∈N , i.e.

P
{⋂

i∈V

Xi = Xis

}
= ps, s ∈N ,

and, naturally, one has ∑s∈N ps = 1.

3.2 Risk-Averse Maximum Clique Problem
with Neighbor-Dependent Risk Exposures

Loss function (11) only considers isolated stochastic effects, meaning that changes
affecting one vertex do not impact its neighbors and vice versa. However, as
discussed above, many physical network structures frequently do exhibit shared risk
exposure. We next consider a form of loss function XG that reflects this observation,
allowing the risk exposure of a selected node i to depend on its own loss profile Xi in
addition to the loss profiles of the adjacent nodes included in the selected subset S:

XG(S;w) =∑
i∈S

(
wiXi + ∑

j∈S\i
θi jw jXj

)
, (14)

where the parameters θi j denote the degree of exposure of vertex i to vertex j. It is
natural to assume that exposure θi j is nonzero only if an edge exists between i
and j: (i, j) ∈ E . Although the meaning of θi j ultimately depends on the model
application, for simplicity we assume that each vertex in V has uniform exposure to
its neighbors:

θi j =

{
1/|V(G)|, if (i, j) ∈ E(G)

0, otherwise.

Observe that (14) can equivalently be expressed in the form

XG(S;w) =∑
i∈S

wiXi

(
1+ ∑

j∈S\i
θ ji

)
, (15)

which is similar to the form of loss function (11) with isolated exposures if one
considers the stochastic factor at node i to be defined as X̃i = Xi

(
1+∑ j∈S\i θ ji

)
.

Note, however, that defined in such a way risk profile X̃i is dependent on the selected
subset of nodes S, and, consequently, on the risk profiles of all neighbors of i, since
S is a clique.

Introducing binary variables xi as before, the risk-averse maximum clique
problem with neighbor-dependent risk exposures can be formulated as
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min ρ

(

∑
i∈V

(
wi xi Xi + ∑

j:(i, j)∈E

θi j xi x j w j Xj

))
(16a)

s. t. ∑
i∈V

wi = 1 (16b)

wi ≤ xi, ∀ i ∈V (16c)

xi + x j ≤ 1, ∀ (i, j) ∈ E (16d)

xi ∈ {0,1}, wi ≥ 0, ∀ i ∈V. (16e)

Once again, constraint (16c) allows for replacing products wixi in the objective
with just wi. Also selecting risk measure ρ in the objective as CVaRα , problem
(16) reduces to a nonlinear 0–1 mixed integer stochastic optimization problem of
the form

min η+(1−α)−1 ∑
s∈N

ps ts (17a)

s. t. ts ≥∑
i∈V

(
Xis wi + ∑

j:(i, j)∈E

θi jXjs w j xi

)
−η , ∀ s ∈N (17b)

∑
i∈V

wi = 1 (17c)

wi ≤ xi, ∀ i ∈V (17d)

xi + x j ≤ 1, ∀ (i, j) ∈ E (17e)

xi ∈ {0,1}, wi ≥ 0, ∀ i ∈V ; ts ≥ 0, ∀ s ∈N . (17f)

The remaining nonlinear terms wj xi in the constraint (17b) can be linearized by
introduction of auxiliary variables γi j as follows:

γi j ≤ wj, ∀ i, j ∈V

γi j ≤ xi, ∀ i, j ∈V

γi j ≥ wj + xi− 1, ∀ i, j ∈V

γi j ≥ 0, ∀ i, j ∈V.

The following mixed-integer linear formulation for problem (16) is then obtained:

min η+(1−α)−1 ∑
s∈N

ps ts (18a)

s. t. ts ≥ ∑
i∈V

(
Xis wi + ∑

j:(i, j)∈E

θi jXjs γi j

)
−η , ∀ s ∈N (18b)
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∑
i∈V

wi = 1 (18c)

wi ≤ xi, ∀ i ∈V (18d)

xi + x j ≤ 1, ∀ (i, j) ∈ E (18e)

γi j ≤ wj , ∀ i, j ∈V (18f)

γi j ≤ xi, ∀ i, j ∈V (18g)

γi j ≥ wj + xi− 1, ∀ i, j ∈V (18h)

xi ∈ {0,1}, wi ≥ 0, γi j ≥ 0, ∀ i, j ∈V ; ts ≥ 0, ∀ s ∈N . (18i)

Observe that the additional complexity of formulation (18) in comparison with (13)
attributes to the fact that the risk exposure of a node in solution set S depends not
only on its own risk profile but also on risk profiles of adjacent nodes included in
the solution set.

Finally, we show that the adopted definition (8) of risk R(S) for subgraph
S and the chosen loss functions XG(S;w) of form (11), (14) are consistent with
the sub-additivity property of coherent risk measures. Namely, we demonstrate
that the following is true.

Proposition 1. Consider definition (8) of risk for subset S of vertices in graph G =
(V,E), where each vertex i ∈ V is associated with a random element Xi. If risk
measure ρ in (8) is coherent, and the loss function associated with selecting S ⊆V
is given by (11) or (14), then risk R satisfies

R(S′)≤R(S) for all S′ ⊇ S. (19)

Proof. Consider, without loss of generality, S = {1, . . . ,n}⊂V and S′= S∪{n+1}.
Then, for loss function XG(S;w) in the form (11), XG(S;w) = ∑

i∈S
wi Xi, denote

(w∗1, . . . ,w
∗
n) ∈ argmin

{
ρ
(
XG(S;w)

) ∣∣∣∣ ∑
i∈S

wi = 1; wi ≥ 0 ∀ i ∈ S

}

= argmin

{
ρ
( n

∑
i=1

wiXi

) ∣∣∣∣
n

∑
i=1

wi = 1; wi ≥ 0, i = 1, . . . ,n

}
,

and

(w∗∗1 , . . . ,w∗∗n+1) ∈ argmin

{
ρ
(n+1

∑
i=1

wiXi

) ∣∣∣∣
n+1

∑
i=1

wi = 1; wi ≥ 0, i = 1, . . . ,n+ 1

}
.
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Then, one immediately has

R(S′) = ρ
(n+1

∑
i=1

w∗∗i Xi

)
≤ ρ

( n

∑
i=1

w∗i Xi + 0 ·Xn+1

)
= R(S).

The same arguments can be applied to loss function XG(S;w) given by (14). ��
Corollary 1. Proposition (1) implies that an optimal solution of risk-averse maxi-
mum clique problems (12), (16) represents a maximal clique of the underlying graph
G (however, not necessarily its maximum clique).

4 Numerical Experiments

In this section we conduct numerical experiments demonstrating solution properties
of problems (13) and (18). Due to the fact that the deterministic maximum clique
problem is NP-hard itself, its risk-averse versions (13) and (18) are NP-hard as well,
thus requiring significant computational efforts to solve even for moderate-sized
graph instances.

In particular, of specific interest in the presented case study were the sizes of the
optimal risk-averse cliques produced by formulations (13) and (18) in comparison
with the maximum clique size in the respective graphs obtained without considering
stochastic effects, i.e., as a solution of problem

max ∑
i∈V

xi

s. t. xi + x j ≤ 1, ∀ (i, j) ∈ E

xi ∈ {0,1}, ∀ i ∈V,

(20)

with variables xi defined as before.

4.1 Implementation, Scenario Data, Graphs,
and Numerical Results

The stochastic mixed integer programming problems (13) and (18) were coded
in Python 2.6.6 and solved using CPLEX 12.2 on a quad-core 2.20 GHz PC with
16 GB RAM.

We use randomly generated Erdos–Renyi graphs [6] G(V, p) where every
edge is independently formed with prescribed a probability p. Random scenario
data corresponding to each vertex i ∈ V were generated according to a uniform
distribution over an interval [−0.5,0.5].
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Table 1 Average optimal clique sizes and computation times in seconds obtained by problems
(13) and (20)

Maximum Maximum risk-averse
p |V | |N | clique size Time (s) clique size Time (s)

0.25 25 50 3.6 0.004 3.5 0.06
50 50 4.9 0.06 3.9 0.38
75 50 5.2 0.75 4.2 1.41

100 50 5.4 2.74 4.5 7.69
150 50 6.1 21.75 4.6 34.97
200 50 6.6 196.95 4.7 114.25

0.5 25 50 5.7 0.003 5.1 0.05
50 50 7.8 0.16 6.3 0.52
75 50 8.4 0.90 6.4 3.80

100 50 9.2 2.68 6.6 10.16
150 50 10.1 32.36 7.2 60.59
200 50 11 207.07 7.8 251.38

0.75 25 50 9.6 0.003 8 0.05
50 50 12.7 0.18 9.7 0.77
75 50 15.6 0.61 11.1 3.356

100 50 16.7 3.52 12.5 10.36
150 50 19.1 87.81 12.8 58.67
200 50 20.9 1,524.75 14.4 263.01

A total of 20 instances of (13) or (18) have been solved for each combination
of graph vertex/scenario set size. To demonstrate the effect of the degree of risk
aversity, as given by the confidence level α of CVaR measure, on the size of risk-
averse maximum clique in (13), we also solve 20 instances of (13) and report
the average clique size for each value of α . We also compared the average sizes
of risk-averse maximum cliques as given by (13) or (18) with the average size of
deterministic maximum clique as given by (20) over the same randomly generated
graph instances. Finally, we compare optimal clique sizes in problems (13) and (18)
at a single graph size/scenario set size instance with varying levels of parameter α .

4.2 Risk-Averse Maximum Clique Problem with Isolated
Risk Exposures

Table 1 demonstrates averaged optimal clique sizes with respective computa-
tion times for the discussed implementations of problems (13) and (20) for
randomly generated graphs of sizes |V |= 50,75,100,150,200 and average densities
p = 0.25,0.5,0.75. In all instances, the number of scenarios (i.e., realizations of the
vector (X1, . . . ,X|V |)) was fixed at 50, and the confidence level of the CVaR was
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Fig. 1 Average optimal clique sizes at varying risk tolerances α using graphs with 150 vertices
and 50 scenarios (p = 0.50)

chosen as α = 0.9. One of the observations that can be drawn from Table 1 is that
the average sizes of risk-averse maximum cliques are smaller than the corresponding
sizes of risk-neutral (deterministic) maximum cliques.

We next examine optimal subgraph sizes in relation to varying risk tolerance
levels (note that larger values of α correspond to more risk-averse preferences),
with α taking values within the range [0.05,0.95] at increments of 0.05 in randomly
generated graphs with 150 vertices and average density of p = 0.50 and 50
scenarios. Figure 1 establishes a strong relation between α and average optimal
subgraphs. Noteworthy are low α levels (e.g., α = 0.05) which occasionally reduce
the optimal subgraph to a single vertex, confirming that lax risk requirements
prevent appropriate, if any, diversification among multiple vertices. Furthermore,
a transition from low risk tolerance inducing no diversification (α ≈ 0.05) towards
effectual levels (α ≥ 0.1) expands optimal clique sizes at high rates over interval
α ∈ [0.05,0.25], while consecutive restrictions have a more moderate impact. This
outcome is consistent with properties of coherent risk measures, such as CVaR,
which allow for efficient diversification due to sub-additivity/convexity property.

The results shown in Fig. 1 can be illustrated through financial setting, where
lax risk constraints are commonly associated with little or no asset diversification,
whereas the tighter risk constraints, and, correspondingly, increased risk aversity
lead to improved diversification. In a network setting, specifically (13), we can
analogously express lacking diversification over vertices for insufficiently large α-
levels corresponding to low degree of risk aversity. Initial incremental increases in
α are reflected in steep clique size growth rates, with a dissipating effect as α → 1.
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Table 2 Average optimal clique sizes and computation times in seconds obtained from (18) and
(20)

Maximum Maximum risk-averse
p |V | |N | clique size Time (s) clique size Time (s)

0.25 25 50 3.6 0.004 3.1 1.69
50 50 4.9 0.06 3.3 36.83
75 50 5.2 0.75 3.9 289.21

0.5 25 50 5.7 0.003 4.2 6.22
50 50 7.8 0.16 4.8 195.95
75 50 8.4 0.90 6.1 2,395.69

Fig. 2 Comparative optimal clique sizes at ranging risk tolerances α for problems (13) and (18)
using a single graph with 50 vertices and 50 scenarios

4.3 Risk-Averse Maximum Clique Problem
with Neighbor-Dependent Exposure

For construction of problem (17) we impose θi j = 1/|V | over all vertices i ∈ V ,
and conduct computational simulations for graphs of sizes |V | = 25, 50, 75 and
average densities of p = 0.25, 0.50. In each problem instance, distribution of
uncertainties was modeled using 50 scenarios, and the confidence level α of the
CVaR measure was set at α = 0.9. Table 2 reports the resulting average clique sizes
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and corresponding computation times when risk exposure of a node depends on
the risk profiles of its neighbors. Observe that optimal risk-averse clique sizes are
significantly smaller on average in comparison with the same instances in Table 1.
Furthermore, in Fig. 2 we demonstrate that problem (18) consistently requires higher
levels of α to attain similar optimal subgraph sizes.

5 Conclusions

In this work, we have introduced minimum-risk maximum clique problem, i.e. a
risk-averse maximum clique problem on stochastic graphs. A distinguishing feature
of the problem setting considered in this study is the assumption that stochastic
factors in the underlying networks are associated with vertices, as opposed to
the prevalent literature settings where uncertainties are attributed to network
arcs. Two formulations of risk-averse maximum clique problems corresponding to
“isolated” and “neighbor-dependent” risk exposures at the nodes are presented. It
is shown that optimal solutions of risk-averse maximum clique problems are repre-
sented by maximal cliques. Numerical experiments on randomly generated Erdos–
Renyi demonstrating properties of optimal risk-averse maximum cliques have been
conducted.
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Models for Assessing Vulnerability in Imperfect
Sensor Networks

Sibel B. Sonuç and J. Cole Smith

Abstract We examine a directed network on which sensors exist at a subset of the
nodes. At each node, a target (e.g., an intruder in a physical network, a fire in a
building, or a virus in a computer network) may or may not exist. Sensors detect
the presence of these targets by monitoring the nodes at which they are located
and all nodes adjacent from their positions. However, in practical settings a limited-
cardinality subset of sensors might fail. A failed sensor may report false positives or
negatives and, as a result, the network owner may not be able to ascertain whether
or not targets exist at some nodes. If it is not possible to deduce whether or not a
target exists at a node with a given set of sensor readings, then the node is said to
be ambiguous. We show that a network owner must solve a series of combinatorial
optimization problems to determine which nodes are ambiguous. Furthermore, we
determine the worst-case number of ambiguous nodes by optimizing over the set
of all sensor readings that could possibly arise. We also present mathematical
programming formulations for these problems under varying assumptions on how
sensors fail, and on what assumptions a network owner makes on how sensors
fail. Our computational results illustrate how these varying assumptions impact the
number of ambiguous nodes.
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1 Introduction

We consider sensor networks that attempt to monitor a collection of several critical
locations in some environment in which various types of threats may exist. These
threats may represent the physical presence of an entity in the environment (e.g.,
a fire or intruder), or some virtual entity such as a computer virus. These types
of problems are often modeled by a network whose nodes represent locations that
must be monitored by the network owner, where an arc exists between two nodes if
a sensor colocated at one node is able to determine whether there is an intruder at the
other node. In this paper, the status of a node indicates whether or not a target exists
at that node. The information sent from the sensors is collected as a set of readings
at an administrative center, and made available to the network owner to assess the
statuses of the nodes. However, due to the technical limits of the equipment used
in the sensor systems (e.g., equipment failure, power shortage, equipment-specific
capabilities) and also to the environmental factors that may degrade sensor function
(e.g., hills, clouds, thunderstorms) the information received from the sensors may
not always be accurate. The study of fault-tolerant sensor systems focuses on sensor
networks in which a subset of deployed sensors might fail, and a faulty sensor might
give a false positive or negative reading. In this paper, we study seven different
cases on how the sensors might fail, and how the network owner utilizes knowledge
of sensor functionality to assess where targets must or must not exist in the
network.

We say that a node is ambiguous if and only if it is not possible to verify the status
of that node with the current sensor readings. It is useful to envision an attacker that
has somehow gained the ability to control the readings of any sensor that has failed,
in order to maximize the number of ambiguous nodes. Hence, in this paper, we say
that the attacker “hijacks” a set of sensors. Our class of problems can be represented
as a Stackelberg game [23] in which the attacker acts first by hijacking a limited
number of the sensors on the network and manipulating their readings. The defender
then ascertains, via the solution of a series of optimization problems, whether or not
each node in the network is ambiguous. A critical consideration in determining node
statuses is the maximum number of sensors that can simultaneously fail, which is a
parameter, κ , that the defender utilizes to infer subsets of sensors that have failed.
The role of interdiction here may actually represent an adversarial entity that seeks
damage to the sensor network, but could alternatively be viewed as a (worst-case)
set of simultaneous sensor failures that could occur.

We model the relationship between the sensors and the nodes being monitored
by a directed network G = (N,A) with node set N and arc set A. An arc (u,v)
belongs to A if and only if a sensor at node u is capable of monitoring node v.
We denote the index set of sensor locations by S ⊆ N, and of faulty sensors by
H ⊆ S. In this paper, we assume that a sensor can monitor itself, i.e., (u,u) ∈ A
if u ∈ S. For the sake of simplicity, we will use “sensor u” and “sensor at node u”
interchangeably. For u∈N, the forward star FS(u)= {v∈N : (u,v)∈A} and reverse
star RS(u) = {v∈ N : (v,u) ∈ A} give the set of nodes that would be monitored by a
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Fig. 1 A sensor network
with five nodes and
S = {1,2,3} and κ = 1

sensor located at node u, and the set of potential sensor locations that could monitor
node u, respectively.

Figure 1 shows a five-node network with S = {1,2,3}, where κ = 1. In our
figures, we designate nodes having sensors with double lines and nodes without
sensors with a single line. The direction of the arcs depicts the direction of
monitoring. The numbers next to each arc show the values of the corresponding
sensor readings, where a 1 indicates that the sensor detects a target and a 0 indicates
that the sensor does not detect a target. (Some readings are omitted in the figures
for clarity.) We define notation ri j , which equals 1 if sensor i ∈ S reports a target at
node j ∈ N, and equals 0 otherwise. We say that sensor u and sensor v conflict if
ru j �= rv j for some j ∈ N. Observe in Fig. 1 that sensors 1 and 3 conflict, because
they disagree on the presence of a target at node 4. Even without looking at the other
readings, the network owner can conclude that either sensor 1 or sensor 3 is faulty.
Since κ = 1, we have that sensor 2 is accurate (i.e., non-faulty), and all nodes in
FS(2) (= {1,2,3}) are unambiguous. It may also be possible to determine the status
of nodes 4 and 5 as well, depending on readings of sensors 1 and 3.

In addition to accurately obtaining sensor readings, another issue in sensor
systems seeks to determine the exact location of a target on the network in the
case that a sensor system can detect, but not locate, a target (e.g., a smoke detector
signaling a fire nearby, but without knowledge of precisely where the fire is located).
Slater [19] and Harary and Melter [7] discuss single-fault-tolerant locating-
dominating sets (called metric bases in [7]) in which only one of the sensors fails
and there is a single target in the network. In their work, they assume that a working
sensor at node u can detect a target in its neighborhood FS(u) and gives the exact
location of the target only if the target is at node u itself. In an extension of this
work, Slater [20] examines single-fault-tolerant sensor networks in which a working
sensor u can determine the exact location of a target at any node in its neighborhood
FS(u). By contrast, our study assumes that there are no restrictions on the number
of targets in the network. This setting yields a problem that is more complex than
the special case in which the number of targets is known. Moreover, we consider
multiple failures in the set of deployed sensors. Our paper is also based on the
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Fig. 2 Multiple domination on a five-node graph. (a) Two-domination with dominating set Da =
{2,4,5}. Only nodes 1 and 3 are dominated twice or more. (b) Two-tuple (double) domination
with dominating set Db = {1,3,5}. All nodes on the graph are dominated twice or more

assumption that a working sensor assesses whether or not a target exists specifically
at each of its neighbors, as opposed to the case in which sensors report whether a
target exists at some unspecified neighbor.

In sensor network problems, the network owner’s general aim is to place sensors
on a subset of the nodes such that every node is monitored by at least one
sensor. Hence, the sensor allocation problem (with perfect sensor operations) can
be modeled exactly as the dominating set problem. The dominating set problem is
well studied in the literature [8, 9, 17]. The earliest graph domination problems
look at finding a minimum cardinality dominating set [3, 14], which is known
to be NP-complete [6]. For graphs with no isolated nodes, Ore [14] shows that
there exists a partition of vertices into two disjoint dominating sets. Cockayne
and Hedetniemi [4] define a graph’s domatic number as the maximum number
of disjoint dominating sets on the graph, and extend Ore’s result by showing that
the domatic number of any graph with no isolated nodes is at least two. One
subject in domination research that is of particular relevance to our study is multiple
domination, where each node is required to be dominated by more than one node
in the dominating set. In n-domination problems [5], multiple domination (by at
least n nodes) is required only for those nodes not in the dominating set, whereas
in n-tuple domination it is required for all nodes in the network. Figure 2 illustrates
these multiple domination concepts on a five-node graph, in which the double-lined
nodes are in the dominating set.

In fault-tolerant sensor networks, the overall aim is to design the network
so that the failures’ effect on the performance of the sensor system is limited.
In this case, a simple dominating set approach may not be appropriate because
single-domination solutions are vulnerable to sensor failures. Slater [20] introduces
the liar’s domination problem, in which a dominating set is able to locate an
intruder when one of the sensors fails. Although no multiple-domination condition
is explicitly enforced in the problem, it is a natural result at optimality: every
liar’s dominating set is double dominating, and every triple-dominating set gives
a liar’s domination. Survivable networks and failures in telecommunication net-
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work systems are applications that have inspired network interdiction research.
Soni et al. [22] provide a detailed survey of survivable network design and its
applications. Rajan and Atamturk [15] introduce a mathematical formulation for
designing flow networks, based on multiple domination and rerouting options for
flows on disrupted paths, allowing the transfer of data flow to a different group of
routers. Smith et al. [21] look at optimization of flow networks as a Stackelberg
game where the arc failures happen as a result of an attacker’s action. They study
mathematical formulations based on different scenarios regarding an attacker’s
abilities and strategy.

Sensor networks and wireless communication networks are two additional areas
that benefit from dominating set optimization research [1, 10, 12, 16]. A typical
communication network consists of several source nodes, some of which also serve
as router points to transfer information through the network. Lim and Kim [11]
study optimal flooding on wireless communication networks where information
from a source node is sent to all other nodes in the network. A typical application
of flooding lies in broadcasting networks, where a node passes information to its
neighbors in a single broadcast until the information is delivered to all nodes in the
network. This problem searches for a flooding tree that minimizes the number of
broadcasts, which is equivalent to solving the minimum connected dominating set
problem. Shen and Smith [18] consider a broadcast domination problem in which
each link has a construction cost and each router has a power indicating how far it
can deliver the information. Their formulation for broadcast domination minimizes
the total construction cost of the router system, which is given by the total link cost
and power assignments to the selected routers. Cockayne and Hedetniemi [4] model
communication networks as a multiple domination problem with domatic number
d. Their work provides a model to determine minimum-cost links to connect a given
set of nodes by d disjoint sets of routers, so that the failure of a set of routers does
not disconnect the network. For a detailed survey of graph-theory applications in
wireless telecommunication networks, we refer the reader to [2].

The remainder of the paper is organized as follows. Section 2 provides a detailed
description of our problem, including the various assumptions that govern sensor
failures. Section 3 gives the mathematical formulations for each of the cases
introduced in Sect. 2, depending on how the sensors may actually fail, and on
whether or not the defender is aware of how the sensors fail (or whether the defender
assumes a worst-case failure behavior). Computational results are presented in
Sect. 4 that study how efficiently a mixed-integer programming solver can optimize
our prescribed formulations, and compare the number of ambiguous nodes on
instances having varying assumptions on sensor failure behaviors. We conclude the
paper in Sect. 5 by examining opportunities for future research.
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Fig. 3 S = {1,2,3}, H = {3}, and κ = 1. (a) If r33 = 0, then node 5 is ambiguous. (b) If r33 = 1,
then nodes 4 and 5 are ambiguous

2 Problem Definition

We assume that the maximum number of sensors that can simultaneously fail (κ)
is known, which allows the defender to make inferences regarding which sensors
have failed, and where targets must, or must not, necessarily exist in the network.
Furthermore, the cases we study in this paper encompass four different options for
the ability of the attacker to control the readings of hijacked sensors.

Figure 3 illustrates how the node statuses are assessed when the defender assumes
that the attacker can change all readings of each hijacked sensor (sensor 3 in this
case) to any value. In Fig. 3a, sensor 3 reports no target at node 3, and sensors 1 and
2 report a target at node 3. Since κ = 1, sensors 1 and 2 cannot be faulty at the same
time, and so the defender knows that sensor 3 must be faulty. In this example, there
is no accurate sensor monitoring node 5, which is therefore an ambiguous node. All
other nodes are monitored by at least one accurate sensor (sensors 1 and 2). Given
that the attacker aims to maximize the number of ambiguous nodes, it may report
several correct readings in order to conceal the identity of faulty sensors. Figure 3b
represents this action for sensor 3, where r33 is set to 1 in order to agree with sensors
1 and 2 on the status of node 3. In this case, both nodes 4 and 5 are ambiguous. (Note
that r35 is irrelevant in both cases, and hence its value is omitted in Fig. 3a, b.)

The foregoing examples show that the attacker does not wish to have hijacked
sensors always report false readings (as it is optimal to have r33 = 1), or always
report true readings (as r34 = 0 is optimal). Furthermore, we observe that even when
the defender ascertains which nodes belong to H, it is still possible for ambiguous
nodes to exist (as is the case in Fig. 3a). On the other hand, it is also possible to
have no ambiguous nodes even if we cannot identify all faulty sensors (e.g., if G is
a clique with κ+1 nodes, sensors on all nodes, and ri j = 0, ∀i, j ∈ N; however, this
scenario corresponds to a suboptimal attacker action).

We consider seven model variations based on different capabilities that the
attacker may have, and based on the assumptions that the network owner makes
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regarding the attacker’s abilities. There are four different options regarding the
attacker’s capabilities, each of which assumes that the attacker can hijack at most
κ sensors, and cannot affect readings from sensors that are not hijacked. The four
options that govern the attacker’s capabilities are summarized as follows:

Option A The attacker possesses the ability to change the readings of all hijacked
sensors to any value on any monitored node.

Option B A hijacked sensor always reports false readings on all nodes that it
monitors.

Option C Each hijacked sensor reports at most one false reading.
Option D There exists an upper bound τ ≥ 0 on the total number of false readings

on the network.

The example given in Fig. 3 assumes that the attacker has option A capabilities.
Option A has the least amount of restrictions for the attacker among the options we
consider in this paper. Option B omits the flexibility for a hijacked sensor to report
a true reading. (Recall that the capability to control the readings is a key feature of
option A because a hijacked sensor might wish to report a true reading on some of
their neighbors in order to conceal the identity of faulty sensors.) Option C imposes
an additional constraint that limits the number of false readings on each hijacked
sensor to be no more than one. Option D puts a limit on the total number of false
readings over all of the hijacked sensors. Note that option A is a special case of
option D, in which τ equals the number of nodes in the network. Option C is more
restrictive than option D if the number of sensors deployed in the network is not
more than τ . No such comparison between option C and D can be made when τ
is less than the number of sensors, because option D allows an uneven distribution
of false readings among the sensors while option C allows a larger number of false
readings in the network in this case.

The models we study in this paper also examine assumptions that the network
owner might make regarding the attacker’s capabilities. The first group of models
assumes that the network owner is aware of the limitations of the attacker, and thus
knows which option governs the attacker’s actions. (Hence, we study four such
models.) On the other hand, in practice, the network owner may not have access
to full information regarding the limitations of the attacker and hence, a worst-
case scenario (i.e., option A) has to be taken as the default option for a risk-averse
defender. This results in three more models where the attacker follows option B
(or C, or D) but the defender assumes that the attacker has option-A capabilities.
Observe that any attacker’s action made under options B, C, or D is also feasible
under option A. Suppose that the defender assumes an option-A attack, although
the attacker is limited by option B, C, or D. In this case, the defender may conclude
that a node is ambiguous, given a set of sensor readings, whereas with correct
information as to the actual attacker option (B, C, or D), the defender could have
ascertained whether or not a target exists at the node. In this paper, we analyze how
much the defender’s knowledge about the attacker’s capabilities affects ambiguity
in the sensor network.
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In the remainder of this paper, each case will be denoted as [Xa,Xd] where Xa

corresponds to the actual option of the attacker and Xd gives the option assumed by
the defender (e.g., [B, A] gives the case where the attacker follows option B but the
defender assumes that the attacker has option A). Note that an opposite approach
to these options (i.e., assuming that the attacker’s option is more restrictive than
it actually is) may underestimate the number of ambiguous nodes. Therefore, we
restrict our attention to the seven following cases: [A, A], [B, A], [C, A], [D, A], [B,
B], [C, C], and [D, D].

3 Mathematical Formulations

We now develop mathematical formulations for the seven variations of the
attacker/defender problems presented in Sect. 2. We begin in Sect. 3.1 by exploring
the ambiguity assessment problem, which determines whether or not each node
is ambiguous, given a set of sensor readings (i.e., ri j-values) and assumptions on
the attacker’s capabilities (corresponding to options A, B, C, and D). The ambiguity
assessment model forms the basis for the attacker’s model, which we explore in
Sect. 3.2 for each of the seven cases in the previous section.

3.1 Ambiguity Assessment for Option A

To begin, recall that the defender is unaware of which sensors have been hijacked,
and seeks to determine plausible candidates for H (i.e., those for which |H| ≤ κ ,
and no pair of sensors in S \H conflict). A node k ∈ N is ambiguous, given a set
of r-values, if there exist two plausible sets H1 and H2: One in which rik = 1, ∀i ∈
(S \H1)∩RS(k), and one in which rik = 0, ∀i ∈ (S \H2)∩RS(k). To represent
each choice of assignment for all nodes on the network, we model the ambiguity
assessment model on a scenario-based approach. The scenario denoted by {k1}
assumes that a target exists at node k; similarly, scenario {k0} assumes that no target
exists at node k.

To determine if a scenario can exist, given a set of readings, the defender must
hypothesize a set of failed sensors along with a set of target locations that could
(simultaneously) exist in the network. Accordingly, for scenario {ka}, ∀k ∈ N, a ∈
{0,1}, define variables xka

i that equal 1 if sensor i is assumed to be faulty in scenario
{ka}, and 0 otherwise. The binary variable tka

j indicates a feasible status reading of
node j in scenario {ka}with respect to given sensor readings {ri j}i∈S, j∈N and sensor
attacks {xka

i }i∈S. That is, ri j = tka
j , ∀i ∈ S : xka

i = 0, ∀ j ∈ FS(i). The following set
of linear inequalities imposes these conditions in scenario {ka}:

ri j− xka
i ≤ tka

j ≤ ri j + xka
i ∀i ∈ S, j ∈ FS(i). (1)
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Inequalities (1) force ri j = tka
j when xka

i = 0, and places no restrictions on tka
j

(beyond 0 ≤ tka
j ≤ 1) when xi = 1. For example, given the readings in Fig. 3b,

the defender must consider scenarios {40} and {41} to assess the status of node
4. This analysis could give the following values on (some) scenario-variables:
x40

1 = 1, x40
3 = 0, t40

4 = 0 for scenario {40} and x41
1 = 0, x41

3 = 1, t41
4 = 1 for

scenario {41}, implying that both scenarios {40} and {41} are feasible and node
4 is ambiguous. On the other hand, in Fig. 3a, sensor 3 is proven to be faulty and
xka

3 = 1 for all scenarios {ka}. This results in t40
4 = 1, indicating the infeasibility of

scenario {40} (while scenario {41} remains feasible).
Let binary variable zk equal 1 if and only if node k ∈ N is ambiguous, and 0

otherwise. Because zk should equal one only when it is possible for a target to exist
at k in scenario {k0}, while no target exists at node k in scenario {k1}, we wish to
set zk =min{1−zk0

k ,zk1
k }. This condition can be stated within a linear mixed-integer

program by constraining zk as:

tk1
k ≥ zk, (2a)

tk0
k ≤ 1− zk, (2b)

and then maximizing zk in the objective to force zk to take its largest value allowed
by (2a) and (2b).

Formulation (3) determines the number of ambiguous nodes by utilizing this
scenario-based approach, where a(r) is said to be the ambiguity order of the graph
with respect to r, assuming that the attacker is constrained by option A.

a(r) = max ∑
k∈N

zk (3a)

s.t. ∑
i∈S

xka
i ≤ κ ∀k ∈ N, a ∈ {0,1} (3b)

ri j− xka
i ≤ tka

j ≤ ri j + xka
i

∀i ∈ S, j ∈ FS(i), k ∈ N, a ∈ {0,1} (3c)

tk1
k ≥ zk, ∀k ∈ N (3d)

tk0
k ≤ 1− zk, ∀k ∈ N (3e)

xka
i ∈ {0,1} ∀i ∈ S, k ∈ N, a ∈ {0,1} (3f)

0≤ tka
j ≤ 1 ∀ j ∈ N, k ∈ N, a ∈ {0,1}. (3g)

The objective function (3a), along with (3d) and (3e), determines the number of
ambiguous nodes, as justified above. Constraints (3b) ensure that the defender never
assesses more than κ sensors to be hijacked under any scenario. Constraints (3c)
relate the x-variables to the t-variables as described above, and Constraints (3f) and
(3g) give logical constraints and bounds on the x- and t-variables, respectively.
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Note that there exists an optimal solution in which tka
j ∈ {0,1} for all j ∈ N, k ∈

N, a ∈ {0,1} and z j ∈ {0,1}. Given binary x-values, (3c) places simple integer
bounds on the t-values. Any binary solution for which the t-variables belong to
the range stipulated by these constraints is optimal, so long as tk1

k takes its largest
possible value, and tk0

k takes its smallest possible value, for all k ∈ N. Optimality
forces z j to take the minimum of 1, tk1

k , and 1− tk0
k ; the minimum of these values is

binary.
Next, observe that the model given in (3) can be equivalently solved by

considering each scenario {ka} separately, where we would fix tk0
k = 0 (tk1

k = 1)
in scenario {k0} ({k1}). If a feasible solution exists to both problems, then node
k is ambiguous (and otherwise it is not). However, as we will show in the next
subsection, this model is no longer separable when ri j-values not are given, and
instead become variables in the attacker’s problem.

Observe that (3) is a linear mixed-integer program, and so our suggested
algorithm to assess whether or not any node is ambiguous has a worst-case
exponential time complexity. Thus, a reasonable question would ask whether or
not a polynomial-time algorithm exists for this problem. The following theorem
shows that even the simpler problem of determining a single plausible set of sensor
locations, given r, is difficult. First define the following decision problem.

PLAUSIBLE SET: Given a directed network G(N,A), sensor set S, and readings r, does there
exist a plausible set of sensor locations H ⊆ S such that |H| ≤ κ , for some specified positive
integer κ?

Theorem 1. PLAUSIBLE SET is NP-complete.

Proof. We prove this by reduction from the vertex cover problem, defined as
follows [6].

VERTEX COVER: Given an undirected graph G(N,E), and a positive integer η , does there
exist a subset V ⊆ N, |V | ≤ η , such that for every (i, j) ∈ E, either i ∈ N or j ∈ N?

To show that PLAUSIBLE SET belongs to NP, consider a candidate solution H, with
|H| ≤ κ . One can verify that H is plausible by showing that no pair of accurate
sensors conflicts at any node in N by examining RS( j) for all j ∈ N, and checking
whether all ri j-values match, for all i ∈ RS( j)∩ (S \H). This verification can be
done in O(|N|2) time, noting that |RS( j)∩ (S \H)| is bounded by |N| for all j ∈ N.

Given a VERTEX COVER instance with undirected graph G′ = (N′,E ′), and
integer η , we construct a PLAUSIBLE SET instance having a directed sensor
network G′′ = (N′′,A′′) with sensor set S, readings r, and integer κ , such that
G′′ has a feasible selection of κ faulty sensors if and only if G′ has a vertex cover
of size η . First, let κ = η , and let N′′ consist of |N′|+ |E ′| nodes, one node j for
every j ∈ N′, and one node wi j for every edge (i, j) ∈ E ′, i < j. Sensor set S consists
of all nodes in N′′ that correspond to nodes in N′. Also, for each edge (u,v) ∈ E ′,
create arcs (u,wuv) and (v,wuv) ∈ A′′, and set ruwuv = 0 and rvwuv = 1. That is,
each edge on graph G′ corresponds to a conflicting pair of sensors on G′′. Figure 4
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Fig. 4 Reduction of a VERTEX COVER instance to PLAUSIBLE SET instance. An edge (u,v) on
G′ transfers to u,v ∈ S, wuv ∈ N′′ \ S, (u,wuv), (v,wuv) ∈ A′′ on G′′. (a) Graph G′ with four nodes.
(b) Sensor network G′′ with S = {1,2,3,4}

illustrates the transformation on a four-node graph. This transformation can be done
in polynomial time, because |N′′|= |N′|+ |E ′| and |A′′|= 2|E ′|.

Suppose that G′ has a vertex cover V ⊆ N′ of size κ . This selection of nodes on
G′ corresponds to a selection of sensors on G′′ where at least one of each conflicting
pair of sensors belongs to V . To show that setting H = {nodes in N′′ corresponding
to V} is a feasible PLAUSIBLE SET solution, first note that |H|= η = κ . Next, note
that a node u hosting a sensor is only monitored by its own sensor on G′′, and hence
no pair of sensor nodes in S \H could give conflicting reports at u. Now consider
wi j ∈ N′′ for which riwi j �= r jwi j . Because V is a feasible vertex cover, either i or j
belongs to H. Therefore, at most one sensor in S \H monitors wi j , and no conflict
among sensors could exist at wi j. Thus, V must correspond to a PLAUSIBLE SET

solution.
Now, suppose that PLAUSIBLE SET has a solution, H. We show that setting V =

H is a feasible VERTEX COVER solution as well. First, |V |= κ = η , satisfying the
cardinality limit. Second, note that each sensor u ∈ S is in conflict with sensor v ∈ S
regarding the status of node wuv if there exists an edge (u,v)∈ E ′. Therefore, at least
one of u and v is faulty (i.e., belongs to H), and H gives a vertex cover for G′. Hence,
the VERTEX COVER instance is equivalent to the transformed PLAUSIBLE SET

instance. Moreover, since all numerical data used in this transformation is bounded
by |N′|, we have that PLAUSIBLE SET is NP-complete in the strong sense. ��

3.2 Formulation of the Attacker Problems

We first analyze in Sect. 3.2.1 the attack formulation in the worst-case scenario for
the defender, corresponding to case [A, A]. We then examine the cases in which the
attacker’s actions are limited, although the defender is unaware of these restrictions
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and assumes that the attacker is restricted as in option A. The three cases [Xa,
A], for Xa = B, C, D, in which the defender does not have the knowledge on the
attacker’s limitations, are discussed in Sects. 3.2.2, 3.2.3, and 3.2.4, respectively.
Finally for the three cases [Xa, Xd = Xa], Xa = B, C, D, in which the defender
has full information on which option constrains the attacker’s actions, we develop
formulations in Sects. 3.2.5, 3.2.6, and 3.2.7, respectively.

3.2.1 Case [A, A]

Formulation (3) gives the ambiguity assessment model in which r-values are input
parameters of the problem. In order to prescribe a set of r-values that maximize
ambiguity, the attacker must simultaneously determine a potential set of target
locations on the nodes, along with the readings that emanate from κ sensors that
the attacker chooses to hijack. Let binary variables xi equal 1 if sensor i ∈ S is
hijacked by the attacker, and 0 otherwise. Binary variable ti, ∀i ∈ N, equals 1 if the
worst-case scenario considered by the attacker involves a target that actually exists
at node i, and equals 0 otherwise. Also, the r-values, which were treated as fixed
values in the ambiguity assessment problem, are now released to be binary attacker
variables. We then obtain the following mathematical programming formulation.

max a(r) (4a)

s.t. ∑
i∈S

xi ≤ κ (4b)

ri j− xi ≤ t j ≤ ri j + xi ∀i ∈ S, j ∈ FS(i) (4c)

xi ∈ {0,1} ∀i ∈ S (4d)

ri j ∈ {0,1} ∀i ∈ S, j ∈ FS(i) (4e)

ti ∈ {0,1} ∀i ∈ N. (4f)

The objective function (4a) maximizes the network owner’s ambiguity given
in (3). Constraints (4b) limit the number of sensors that the attacker can hijack.
Constraints (4c) force the reading variables ri j to be accurate when xi = 0 (sensor
i is accurate), and allow them to be 0 or 1 when xi = 1. Constraints (4d)–(4f) give
the binary restrictions on the variables. Observe that because (3) is a maximization
problem, (4) can be stated as a mixed-integer program by optimizing (3a), subject
to all constraints in (3) and (4), where ri j is treated as a binary variable, ∀i ∈ S,
j ∈ FS(i).

Note that intuitively, the attacker’s choice of target deployments on the graph
should have no effect on the defender’s ambiguity assessment. The defender
essentially seeks to determine which sensor readings could contradict the actual
presence or absence of a target; the case in which a target is present is symmetrical
to the case in which a target is not present. This feature of the problem implies that
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Fig. 5 Two equivalent r-solutions with respect to the status of node 4. Sensor 3 is faulty and
reports an inaccurate reading, and sensor 1 reports an accurate reading, in both instances

we can remove the t-variables from the problem fixing ti = 0, ∀i ∈ N, without loss
of optimality, as proven below.

Theorem 2. There exists an optimal solution to (4) in which ti = 0, ∀i ∈ N.

Proof. Consider any optimal solution (x∗,r∗, t∗) to (4) in which t∗i = 1, for some
i ∈ N, and examine an alternative solution (x̂, r̂, t̂) in which x̂ = x∗; t̂i = 0, ∀i ∈ N;
and r̂i j = r∗i j +(1− 2r∗i j)t

∗
j , ∀i ∈ S, j ∈ FS(i). (That is, all readings at node j are

reversed in the new solution if t∗j = 1.)

Let x̄ka denote sensor failures assessed by the defender in scenario {ka} in
response to solution x∗. We show that if some node k ∈ N was ambiguous given
readings r∗, then it must still be ambiguous given readings r̂. Because k was
ambiguous, the defender found variable values x̄k1

i , ∀i ∈ S, such that ∑i∈S x̄k1
i ≤ κ

and x̄k1
i = 1 whenever r∗ik = 0, ∀i ∈ RS(k), due to (3b), (3c), and (3d). Similarly,

the defender found x̄k0-values such that ∑i∈S x̄k0
i ≤ κ and x̄k0

i = 1 whenever r∗ik =
1, ∀i ∈ RS(k), due to (3b), (3c), and (3e). Given r̂, the defender would still assess k
as ambiguous, by choosing x̂k1

i = x̄k0
i , and x̂k0

i = x̄k1
i , ∀i ∈ S.

Because (x∗,r∗, t∗) is optimal, and (x̂, r̂, t̂) is a feasible solution that yields
the same objective as (x∗,r∗, t∗), we have that (x̂, r̂, t̂) must also be optimal.
Furthermore, noting that t̂ j = 0, ∀ j ∈ N, this completes the proof. ��

Figure 5 illustrates the transformation employed by Theorem 2 on node 4. A
similar transformation can be done to place a target on an idle node, hence, there
exist at least 2|N| alternative optimal solutions to (4) due to the symmetric solutions
corresponding to various t-values. Therefore, we fix all t j-values to zero. In doing
so, formulation (4) simplifies to:

max a(r) (5a)

s.t. Constraints (4b),(4d), and (4e) (5b)

ri j ≤ xi ∀i ∈ S, j ∈ FS(i). (5c)
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Note that the second inequality of (4c) becomes redundant with all t-values fixed
to 0, and the first inequality of (4c) reduces to (5c). Because Theorem 2 can be
equivalently applied to all attacker options, we hence fix the attacker’s t-variables to
zero in all subsequent models.

3.2.2 Case [B, A]

We now examine case [B, A], which restricts the attacker to report a false reading
in all hijacked sensors. All other assumptions regarding the attacker’s capabilities
remain the same as case [A, A]. Case [B, A] affects constraints (5c) because the
readings ri j are forced to obey the condition ri j = |xi− t j| = xi. Hence, constraints
(5c) are replaced with the following:

ri j = xi ∀i ∈ S, j ∈ FS(i). (6)

3.2.3 Case [C, A]

Unlike option B, options C and D allow faulty sensors to report any reading value,
although they impose bounds on the number of false readings. Option C limits a
faulty sensor i ∈ H to give a false reading for at most one of the nodes it monitors.
Recall that a reading of ri j = 1, for some i ∈ S, j ∈ FS(i), implies that sensor i
gives a false reading for node j (by Theorem 2). Hence, we can state the following
inequality for option C:

∑
j∈FS(i)

ri j ≤ xi ∀i ∈ S, (7)

where the left-hand side of (7) gives the number of positive (false) readings by
sensor i, and the right-hand side limits this number to 1 if sensor i is faulty and 0
otherwise.

3.2.4 Case [D, A]

Option D restricts the attacker to issue at most τ false readings in the network,
instead of setting a limit per sensor. Hence, we aggregate the left-hand side of (7)
over all i ∈ S to constrain the total number of positive readings, and ensure that false
readings emanate only from faulty sensors. Thus, we add the following constraints
to (5):

∑
i∈S

∑
j∈FS(i)

ri j ≤ τ, (8a)

∑
j∈FS(i)

ri j ≤min{τ, |FS(i)|}xi ∀i ∈ S. (8b)
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Note that constraints (8b) are the aggregation of the inequalities ri j ≤ xi, which
ensure that false (i.e., positive) readings emanate only from faulty sensors. The
disaggregated inequalities require a larger constraint set, but generally induce tighter
linear programming relaxations [13]. We will test the efficacy of solving [D, A]
models using (8b) versus disaggregated inequalities ri j ≤ xi in our computational
experiments.

3.2.5 Case [B, B]

In the last three cases, we re-analyze the cases given in Sects. 3.2.2–3.2.4 by
allowing the network owner to have full knowledge of the attacker’s capabilities.
The defender’s knowledge of the attacker’s option changes the way the nodes’
statuses are evaluated, and hence the way ambiguity is assessed. The first case we
consider is [B, B], where a faulty sensor always gives false readings and the network
owner is aware of this faulty behavior. Hence, whenever the defender decides that
a sensor may be faulty, all readings from this sensor are assumed to be incorrect in
the ambiguity assessment model.

In this case, note that tka
j = |xka

i −ri j| in the ambiguity assessment problem, under
the assumption that a failed sensor always provides inaccurate readings. Therefore,
all t-variables in (3) are bounded as follows, in addition to the constraints (3c):

tka
j ≥ xka

i − ri j ∀i ∈ S, j ∈ FS(i), k ∈ N, a ∈ {0,1} (9a)

tka
j ≤ 2− xka

i − ri j ∀i ∈ S, j ∈ FS(i), k ∈ N, a ∈ {0,1}. (9b)

Observe that if xka
i = 0, then (9a) and (9b) are redundant, while (3c) forces tka

j = ri j .

Likewise, if xka
i = 1, then (3c) is redundant, and (9a) and (9b) force tka

j = (1− ri j).

3.2.6 Case [C, C]

In this case, the network owner is aware that the attacker can issue only one false
report from each faulty sensor. In this case, the defender must determine which
sensors could be faulty, and from those sensors assumed to be faulty, which reading
is inaccurate. Accordingly, we define binary decision variables wka

i j , which equal 1
if sensor i ∈ S is assumed to give a false reading at node j ∈ N under scenario {ka},
for all k ∈ N and a ∈ {0,1}. For each scenario {ka}, the defender assumes at most
one false report per failed sensor, and hence we add the following constraints to the
assessment problem:

∑
j∈FS(i)

wka
i j ≤ xka

i ∀i ∈ S, k ∈ N, a ∈ {0,1}. (10)
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The target assessment conditions enforced by (3c) need to be revised, because now
the defender knows that a faulty sensor cannot report a false reading on all monitored
nodes. Therefore, we replace constraints (3c) with

ri j−wka
i j ≤ tka

j ≤ ri j +wka
i j

∀i ∈ S, j ∈ FS(i), k ∈ N, a ∈ {0,1}. (11)

3.2.7 Case [D, D]

This case allows the defender to be aware that the attacker is able to report at most τ
false readings over all failed sensors. We define variables wka

i j as in [C, C]. We once
again replace (3c) with (11), and add the following inequalities to the ambiguity
assessment model (3):

∑
i∈S

∑
j∈FS(i)

wka
i j ≤ τ ∀k ∈ N, a ∈ {0,1}, (12a)

∑
j∈FS(i)

wka
i j ≤min{τ, |FS(i)|}xka

i

∀i ∈ S, k ∈ N, a ∈ {0,1}. (12b)

Similar to (8b), an inequality in (12b) is aggregation of inequalities wka
i j ≤ xka

i
over j ∈ FS(i), which ensure that sensor i reports a false reading only if it has been
hijacked.

4 Computational Experiments

We tested our seven models on a set of randomly generated instances having
various sizes and graph densities. The models are implemented using CPLEX 12.4,
using a C++ implementation via CPLEX Concert Technology. The computations
are performed on an HP Pavilion with an AMD Athlon II Neo K325 Dual Core
1.30 GHz processor and 4.0 GB memory on a 64-bit Windows platform.

The results of our computational experiments are given in Table 1. The first
column gives the instance parameters, where n, d, and i refer to number of nodes,
edge density, and index label of the corresponding graph (referred as Gn-d-i),
respectively. For each instance, the number of sensors equal one half of the number
of nodes. In Table 1 the number of faulty sensors is bounded by 20% of number
sensors (i.e., κ = �n/10�). For option D, the limit on the number of false readings is
set to equal 2κ . Table 1 provides the optimal ambiguity order (z) and the CPU time
(in seconds) required to solve each instance to optimality. We determined that for
case [D, A], the aggregated constraints (8b) tend to yield a model that is easiest to
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Table 1 Test instances and results of seven case models

Instance [A, A] [B, A] [B, B] [C, A] [C, C] [D, A] [D, D]
n d i z CPU z CPU z CPU z CPU z CPU z CPU z CPU

16 30 1 9 5 9 4 0 2 9 1 9 1 9 2 9 2
2 6 8 6 3 0 4 6 3 6 1 6 4 6 2
3 11 3 11 2 0 3 11 3 11 1 11 1 11 2
4 7 10 7 11 0 3 7 3 7 1 7 3 7 3
5 2 308 2 44 0 3 2 17 2 3 2 6 2 7

50 1 2 20 0 48 0 4 1 2 1 1 2 3 2 10
2 0 3,050 0 195 0 7 0 102 0 124 0 190 0 395
3 1 271 0 60 0 5 1 3 1 3 1 21 1 18
4 3 499 3 34 1 4 3 5 3 20 3 60 3 11
5 2 78 1 56 0 3 2 1 1 7 2 5 2 8

18 30 1 10 18 10 8 0 3 10 6 10 2 10 5 10 3 %
2 7 151 7 11 0 3 7 4 7 3 7 9 7 9
3 2 258 0 519 0 7 1 1 1 2 2 5 2 12
4 4 28 2 127 0 4 3 1 2 4 4 2 3 7
5 6 174 6 31 0 4 6 7 6 1 6 11 6 5

50 1 1 635 0 480 0 5 1 2 1 3 1 8 1 15
2 1 1,149 0 1,189 0 5 1 56 1 2 1 45 1 4
3 1 752 0 643 0 6 1 134 1 29 1 18 1 5
4 1 1,230 0 1,631 0 8 1 20 1 2 1 1,002 1 16
5 0 15,248 0 1,693 0 5 OOM 0 15 0 490 0 34

20 30 1 N/A 10 216 2 11 10 2,585 10 9,810 10 11,541 10 6,190
2 11 174 0 14 11 1,856 11 1,394 11 2,940 11 2,509

N/A not available, OOM out of memory

solve by CPLEX, whereas for case [D, D], the disaggregated version of constraints
(12b) is preferable on a majority of instances. Hence, the results we obtain in Table 1
correspond to the aggregated constraint model for [D, A] and to the disaggregated
form for [D, D].

However, we note that the aggregated formulation was not uniformly more
effective than the disaggregated formulation on all [D, A] instances. For instance,
on G20-30-1, the disaggregated formulation solved in 8,017 CPU seconds, as
opposed to 11,541 s for the aggregated formulation. On the other hand, in solving
the ambiguity assessment model, the disaggregated constraints exhibited slightly
better performance than the aggregated constraints in almost all instances. Hence,
the results given in column [D, D] correspond to formulation with the aggregated
constraints for the attacker, and disaggregated constraints for the ambiguity assess-
ment problem.

Our results indicate that case [A, A] requires the most computational time among
all cases. The large feasible region is one of the major factors causing the high
computational time for this model as compared to the other cases. For all cases,
the optimal ambiguity order is inversely correlated with the elapsed CPU time.
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Intuitively, this behavior seems to stem from the fact that when the ambiguity order
is high, it is not difficult to force many nodes to become ambiguous, and hence
the identification of an optimal attacker solution is not difficult. An intriguing result
presented in this table is the effect of the knowledge of the defender on the attacker’s
option. This effect is the most significant on option B, because the identification
of a faulty sensor in case [B, B] allows the defender to ascertain whether or not
targets exist at each node monitored by the faulty sensor. Note that the ambiguity
order drops to zero in case [B, B] for all instances but two: G16-50-4 and G20-30-
1. By contrast, the extent of the defender’s knowledge of the attacker’s option has
no effect on the attacker’s objective for options C and D, with the only exception
being, for instance, G18-30-4. On the other hand, the cases where the defender
has full knowledge on the attacker’s capabilities tend to require significantly less
computational time to solve on denser networks (i.e., d = 50) compared to their
counterparts. This reduction in computational time may be due to the reduction of
the search space in these cases, even though such models require an increase in the
number of variables (with variables wka

i j ) for cases [C, C] and [D, D].
Table 1 also shows that the restrictions imposed by options C and D on the

attacker, while the defender assumes that the attacker has option A, do not have
a significant impact on the attacker’s objective in most instances. On the other hand,
cases [C, A] and [D, A] reduce the computation time compared to case [A, A].
This observation implies that as long as the defender is not aware of the attacker’s
restrictions and the attacker is able to at least partially manipulate the readings of
the hijacked sensors (as opposed to option B), investing additional effort to evaluate
all possible options does not return much additional value to the attacker.

For all cases, the CPU time required increases rapidly with the network size
(both in number of nodes and edges). On the other hand, network size is not
the sole indicator of the difficulty of an instance: the high difference between the
minimum and maximum CPU times required among equally sized instances (e.g.,
635 s for G18-50-1 and 15,248 s for G18-50-5 for case [A, A]) suggest that the
graph topology is also an important factor on the difficulty of the corresponding
instance. Different structural characteristics such as existence of large cliques or
leaf nodes (and their relative distribution on the network) might cause additional
challenges due to the nature of the problem. In addition, the ratio of κ to the total
number of sensors is another indicator for the difficulty of an instance. Note that our
18-node instances hosts 9 sensors, of which only one is faulty, and we are able to
solve majority of 18-node instances (except G18-50-5 in case [C, A]). We present
two instances with 20-nodes having reasonable solving times (note that a 20-node
graph has 2 faulty sensors out of 10 sensors due to our 20 %-rule), while several
other instances of the same size could not be solved within several hours. This rapid
increment in CPU times between 18-node instances and 20-node instances suggest
that the ratio of faulty sensors on the network is an important factor determining the
difficulty of an instance. For this reason, and due to computational restrictions, the
results for case [A, A] for the two 20-node instances here are omitted.

Table 2 gives computational results for the first two instances of G18-30 in which
κ is now set to 2, as opposed to κ = 1 as in Table 1. The number next to the case
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Table 2 Evaluation of τ-values for κ = 2 on G18-30 instances

Instance z CPU z CPU z CPU z CPU

[D, A]-2 [D, A]-1.5 [D, A]-1 [D, A]-0.5
1 14 38 14 24 14 57 14 10
2 13 20 13 17 13 11 13 5

[D, D]-2 [D, D]-1.5 [D, D]-1 [D, D]-0.5
1 14 45 14 42 14 24 10 1
2 13 54 13 24 13 19 7 3

label (“[D, A]” or “[D, D]”) indicates the ratio of τ to κ (e.g., [D, A]-1.5 corresponds
to case [D, A] where τ = 1.5κ). This table presents some analysis on the sensitivity
of our models with respect to different values of τ for option D. The results show
that option D becomes restrictive to the attacker only when both τ is less than κ , and
when the defender has full information on the attacker’s option. Note, for instance,
that even for the [D, A]-0.5 case, the defender is not able to reduce the number of
ambiguous nodes beyond its ambiguity assessment when τ = 2κ . On the other hand,
[D, D]-0.5 shows that a relatively low τ-value does allow the defender to assess
many fewer nodes as ambiguous, because the defender knows the attacker’s option.
In addition, the CPU times provided in Table 2 also show that a more restrictive τ-
value reduces computational time while keeping the same objective function value.
This lends further evidence to our observation in Table 2 that the attacker does
not need to manipulate a large percentage of sensor readings in order to achieve
maximum damage.

5 Conclusion

In this paper, we study sensor networks, in which each node might host a target. We
propose four different failure options for deployed sensors, and assess the impact
of sensor failures via the number of ambiguous nodes. We present mathematical
formulations for determining a worst-case failure scenario for each option, where
each failure option corresponds to two cases: either the defender has full knowledge
on the failure option, or is unaware of the failure option and assumes a worst-case
scenario. Our study also examines the impact of the defender’s knowledge of these
failure options. We show that for the defender, even identifying a plausible set of
faulty sensors is NP-complete, using a reduction from vertex cover problem.

Our computational results indicate that the ambiguity order is often unaffected
by the defender’s ability to anticipate the restrictions of the attacker. An exception to
this observation arises in case [B, B], where the attacker is forced to set the readings
emanating from the faulty sensors to be false, and where the defender is able to
anticipate these restrictions on the attacker. Moreover, for option D, in which τ total
sensor readings can be false, the attacker’s ability to create ambiguous nodes is
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usually unaffected by the limit τ , unless τ is small enough and the defender is aware
of the attacker’s restrictions. From a practical perspective, one important implication
is that the use of the restricted-attack models [C, A], [C, C], [D, A], and [D, D] tend
to report the same ambiguity number as [A, A], but in significantly less computation
time. The implications of this objective are that the defender needs only to modify a
small number of sensor readings to induce the maximum ambiguity order, and that
the restricted-attack models may effectively be used in lieu of [A, A] in a heuristic
scheme.

In addition, we see that an instance with relatively low optimal ambiguity order
indicates a more challenging problem for the attacker and thus requires more
computational time. Our computational results also show high variance among the
computation times required to solve instances having the same number of nodes
and edges. This indicates that the maximum ambiguity order problem (for the
options discussed in this paper) seems to be highly sensitive to the structure of
the sensor-network. Future research on how graph structures affect the difficulty
of solving these problems is intriguing and represents a promising area of future
investigation.
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1 Introduction

The energy efficiency is an important issue in the study of wireless sensor networks
because sensors have their power supplied with batteries, which have limited energy,
and they are usually deployed into hostile environments, such as battlefield, under-
water, and inside glaciers, so that recharging batteries is impossible. There exist
two well-known optimization problems in the literature about the energy efficiency,
the minimum connected sensor cover problem and the maximum lifetime coverage
problem, arisen from different service requests in wireless sensor networks.

Consider a large number of sensors distributed in a region with duty for collecting
information. When a request is to monitor the region for a long time, the maximum
lifetime coverage problem occurs as follows.

MAX-LC: Given a set S of sensors and a set T of target, find a proper schedule for
active/sleep modes of sensors to maximize the lifetime of coverage, that is, the length of
time period during which every target is monitored by at least one active sensor.

However, when a requested duty can be finished within a shorter time, especially
within the lifetime of every sensor, the minimization on total energy consumption
may be required. If all active sensors have the same energy consumption rate, that is,
every sensor consumes the same amount of energy during the same time period, then
the minimization of total energy is equivalent to the minimization of the number of
active sensors. In such a situation, the minimum connected sensor cover problem
occurs.

MIN-CSC: Given a set S of sensors and a set T of target points (or a target area Ω ), find
the minimum subset of sensors to cover all targets.

MAX-LC and MIN-CSC have gained a lot of attention in the literature. In recent
years, they received important progress, especially in computational complexity
of approximation algorithms. Those results are obtained through the relationship
between MIN-CSC and the group Steiner tree [33] and the relationship between
MAX-LC and the weighted dominating set in unit disk graphs [16,22]. In this article,
we introduce those relationships and related developments.

2 Connected Sensor Cover and Group Steiner Tree

The minimum connected sensor cover problem was first proposed by Gupta
et al. [26] with requested target area. They presented a greedy algorithm with
performance ratio O(r ln n) where n is the number of sensors and r is the link radius
of the sensor network, i.e., for any two sensors with a sensing point in common, their
hop distance is at most r. Zhang and Hou [36] found that when the communication
radius Rc is at least twice of the sensing radius Rs, the coverage of a connected
region implied the connectivity of subgraph induced by those sensors. Actually,
area coverage can be transformed to target (point) coverage. For example, consider
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an area Ω which is divided by sensing areas of sensors in a sensor set S into small
areas. Choose an interior point from each small area to form a target set T (Ω).
Then we have the following.

Lemma 1. An area Ω is covered by S if and only if every target in T (Ω) is
covered by a sensor in S .

For target coverage, it is easy to show the following.

Lemma 2. Let S be a set of sensors and T a set of targets. Let G be the bipartite
graph with vertex sets S and T such that there exists an edge between s ∈S and
a ∈ T if and only if a can be covered by s, i.e., a can be covered by the sensing
area of s. Suppose Rc ≥ 2Rs and G is connected. Then for any subset S ′ of S , if
all targets can be covered by S ′, then communication links between sensors in S ′
induce a connected graph with vertex set S ′.

For a connected area Ω , if Ω is covered by the sensor set S , then the bipartite
graph with vertex sets S and T (Ω) is clearly connected. Therefore, we have

Theorem 1 (Zhang and Hou [36]). Suppose Ω is a connected area covered by
a sensor set S . Assume Rc ≥ 2Rs. If Ω is covered by a sensor subset S ′, then
communication links between sensors in S ′ induce a connected graph with vertex
set S ′.

This property is generalized by Zhou et al. [37] to the m-connectivity as follows.

Theorem 2 (Zou et al. [37]). Suppose Ω is a connected area covered by a sensor
set S . Assume Rc ≥ 2Rs. If every point of Ω is covered by at least m sensors
(called degree) in a sensor subset S ′, then those sensors in S ′ would induce an
m-connected communication network.

Xing et al. [34] presented a coverage configuration protocol which can give
different degree of coverage requested by applications. Bai et al. [3] studied a sensor
deployment problem regarding the coverage and connectivity. Alam and Haas [1]
studied this problem in three-dimensional sensor networks.

Funke et al. [21] improved approximation algorithms for the minimum connected
sensor cover problem by allowing sensors to vary their sensing radius. With
variable sensing radius and communication radius, Zhou et al. [38] designed a
polynomial-time approximation with performance ratio O(logn). Chosh and Das
[24] designed a greedy approximation using maximal independent set and Voronoi
diagram. They determined the size of connected sensor cover produced by their
algorithm. However, no comparison with optimal solution, that is, no analysis on
approximation performance ratio is given.

In fact, for homogenous sensor networks with fixed sensing radius and commu-
nication radius, no theoretical approximation performance ratio has been improved
before this paper. The reader may find more related information from a nice survey
[25] on the connected sensor cover.

MIN-CSC is a special case of the minimum connected set cover problem as
follows.
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MIN-CSETC: Given a collection C of subsets of a finite set X and a graph G with vertex set
C and edge set E, find a subcollection C ′ ⊆ C such that C ′ covers every element in X and
the subgraph of G induced by C ′ is connected.

MIN-CSETC is closely related to the group Steiner minimum tree problem as
follows.

GSMT: Given an edge-weighted graph G = (V,E), a root vertex r ∈ V and k nonempty
subsets of vertices, g1,g2, . . . ,gk, find the minimum total weight tree containing r and at
least one vertex from each subset gi.

GSMT has been well studied [15, 20]. The following facts have been proven in
the literature.

Theorem 3 (Halperin and Krauthgamer [27]). GSMT has no polynomial-time
O(log2−ε n)-approximation for any ε > 0 unless NP has quasi polynomial Las-Vega
algorithm.

Theorem 4 (Garg et al. [23]). GSMT has a polynomial-time random algorithm
which, with probability 1− ε (for any ε > 0), produces a O(log3 n)-approximation
where n is the number of nodes in input graph.

Above theorems are obtained with an important technique on metric space
approximation [4, 5].

Next, we establish the relationship between CONNECTED SENSOR-COVER

and GROUP STEINER TREE so that the above two results can be extended to
CONNECTED SENSOR-COVER.

Theorem 5 (Wu et al. [33]). CONNECTED SENSOR-COVER has no polynomial-
time O(log2−ε n)-approximation for any ε > 0 unless NP has quasi polynomial Las-
Vega algorithm

Proof. We construct a reduction from GROUP STEINER TREE to CONNECTED

SENSOR-COVER as follows.
Consider an input of GROUP STEINER TREE, a graph G = (V,E) with edge

weight w : E → Z+, a root vertex r ∈ V and k nonempty subsets of vertices,
g1,g2, . . . ,gk. Define X = {g0,g1, . . . ,gk} where g0 = {r}. For each node u ∈ V ,
define Su = {gi | u ∈ gi}. For each edge (u,v) ∈ E , construct a path connecting
Su and Sv with k · w(u,v) intermediate nodes. Denote by H the obtained graph
on V = {Sv | v ∈ V} and intermediate nodes. Suppose there is a polynomial-time
O(log2−ε n)-approximation for CONNECTED SENSOR-COVER. Let D be such an
approximation solution D on instance (X ,V ,H) and optCSC the number of nodes in
an optimal solution, i.e., the objective function value of CONNECTED SET-COVER.
Then we have

|D| ≤ O(log2−ε n)optCSC.

Clearly, D is the node set of a tree T in H, which induces a tree T ′ in G. Denote by
w(T ′) the total edge weight of T ′. Then



Min-Connected Sensor Cover and Max-Lifetime Coverage 295

w(T ′)≤ |D|
k
.

Now, let T ∗ be a minimum group Steiner tree, which induces a tree T ∗∗. Then the
number of nodes in T ∗∗ is at most w(T ∗)(k+ 2) and is at least optCSC. Therefore,

w(T ′)≤ O(log2−ε n) · k+ 2
k
·w(T ∗) = O(log2−ε n) ·w(T ∗),

that is, T ′ is a polynomial-time O(log2−ε n)-approximation for GROUP STEINER

TREE. By Theorem 3, NP has quasi polynomial Las-Vega algorithm.
In the above, we treat (X ,V ,H) as an instance of CONNECTED SENSOR-COVER.

The reader may suspect this treatment because

(a) It is unclear how to represent each intermediate node as a subset of X and
(b) It is possible that Su = Sv, but in the definition of CONNECTED SET-COVER, U

is not a multiple subset collection.

We remark that (a) and (b) can be fixed easily. In fact, for each intermediate node
x, we can introduce a new element ex and let Sx = {ex} represent node x. For each
Sv,v ∈ V , we can also introduce a new element ev and add ev into Sv. Finally, put
all new elements into Sr and X . Note that g0 is contained only in Sr. Therefore,
any feasible solution of CONNECTED SET-COVER must contain Sr. This means
that those subsets representing intermediate nodes are useless for covering elements
and they are useful only in establishment of connectivity. Moreover, we can easily
see that this modification does not affect the size of any solution of CONNECTED

SENSOR-COVER. ��
Theorem 6 (Wu et al. [33]). There exists a polynomial-time O(log3 n)-
approximation for CONNECTED SENSOR-COVER where n is the number of subsets
in U .

Proof. Consider an instance of CONNECTED SENSOR-COVER, a finite set X , a
collection U of subsets of X , and a graph G = (U ,E ). For each x ∈ X , define
gx = {S ∈ U | x ∈ S}. Fixed a z ∈ X . We compute an approximation solution of
CONNECTED SENSOR-COVER as follows:

Step 1. For each R ∈ gz, we compute a O(log3 n)-approximation TR for GROUP

STEINER TREE on input consisting of graph G with edge weight one for every
edge, the root R and groups gx for x ∈ X−{z}.

Step 2. Among all TR for R ∈ gz, choose one TR∗ with the smallest number of
nodes. Output the node set A of TR∗ .

Next, we show that A is a O(log3 n)-approximation solution of CONNECTED

SENSOR-COVER. Suppose A ∗ is an optimal solution of CONNECTED SET-COVER

and denote by T ∗ the tree interconnecting nodes in A ∗. Then the total edge weight
of tree T ∗ is |A ∗|− 1. Let R ∈ gz∩A . Let AR be the node set of TR. Then

|A |− 1≤ |AR|− 1≤ O(log3 n) · (|A ∗|− 1).
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Thus,

|A | ≤ O(log3 n) · |A ∗|. ��

3 Maximum Lifetime and Minimum Weight

When a monitoring task is requested frequently or for a long period, one may expect
the sensor network to be able to do such a monitoring as long as possible. This
expectation motivates many optimization problems with maximization of lifetime.
The following is a typical one.

MAX-LIFETIME COVERAGE: Given a set of (point) targets and a set of sensors, find a way
to schedule sensors’ working/sleeping time to maximize the lifetime of the sensor network
where the sensor network is said to be alive if every target is covered by at least one working
sensor. Such lifetime is also called the lifetime of coverage.

Initially, the lifetime of coverage is maximized through partitioning sensors
into the maximum number of disjoint sensor covers [8, 10, 11] since in this way,
the sensor can have a simple control device; after waking up, the sensor will
keep working until its energy is exhausted. Cardei et al. [11] found that allowing
exchanges between working/sleeping modes may make the lifetime of coverage
longer.

For example, consider three sensors s1, s2, s3 and three targets e1, e2, e3. s1 can
cover e2 and e3, but not e1. s2 can cover e1 and e3, but not e2. s3 can cover e1 and e2,
but not e3. Clearly, a sensor set is a sensor cover if and only if it contains at least two
sensors. Therefore, if all the three sensors are partitioned into disjoint sensor covers,
then this partition contains only one sensor cover, which yields the lifetime one for
coverage when we assume that every sensor has lifetime one. However, consider
three time periods of length 0.5. In the first period, sensors s1 and s2 work and s3

sleeps; in the second period, sensors s2 and s3 work and s1 sleeps; in the third period,
sensors s1 and s3 work and s2 sleeps. Then, the lifetime of coverage would be 1.5.

Let S be the set of all sensors. Let p1, p2, . . . , pk be all possible sensor covers. Let
ti denote the time of using sensor cover pi. Define

as,p =

{
1 if s ∈ p,
0 otherwise.

Then MAX-LIFETIME COVERAGE can be represented by the following linear
program.

max t1 + · · ·+ tk

s.t. as,p1t1 + · · ·+ as,pktk ≤ 1 for s ∈ S,

ti ≥ 0 for i = 1, . . . ,k.
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It is well known that the linear programming is polynomial-time solvable. Does this
mean that MAX-LIFETIME COVERAGE is polynomial-time solvable? The answer
is NO because the number k of possible sensor covers may be exponentially large
with respect to the number of sensors, |S|. In fact, MAX-LIFETIME COVERAGE is
NP-hard. There are many efforts [7–9, 11–14, 16, 29–32, 35, 36] made for design of
approximations and heuristics for MAX-LIFETIME COVERAGE. Among them, some
[12, 30–32, 36] actually study the area coverage. By area coverage, one means that
the request is to monitor a finite area. However, the area coverage can be reduced
into the target coverage. By target coverage, one usually means that the request is
to monitor a finite set of targets points.

Cardei et al. [10] considered not only the coverage but also the connectivity. Du
et al. [18] study the connected coverage with two active phase sensors. In this model,
each sensor can be in active mode or sleep mode and each sensor in active mode can
be in full active phase or semi-active phase. A full active sensor can monitor target
and make connection between sensors while a semi-active sensor can only make
connection between sensors. Suppose in a unit time, a full active sensor consumes
energy u and a semi-active sensor consume energy v. Usually, u≥ v.

MAX-LIFETIME CC: Given a set of targets and a set of sensors each with two active phases,
full active phase and semi-active phase as described above, find a sleep/work schedule to
maximize the lifetime of coverage and connectivity as follows:

(a) Every target is sensed by at least one full active sensor.
(b) The subgraph induced by active sensors is connected.

For this problem, a connected sensor cover p is a pair of a full-active sensor set
p1 and a semi-active sensor set p2 such that every target is covered by a sensor in
p1 and the subgraph induced by p1∪ p2 is connected. Let S be the set of all sensors
and C the set of all connected sensor covers. Define

as,p =

⎧
⎨

⎩

u if s ∈ p1,

v if s ∈ p2,

0 otherwise.

Let xp be the active time of connected sensor cover p. Then MAX-LIFETIME CC
can be formulated as the following linear programming.

(PLP) max ∑
p∈C

xp

s.t. ∑
p∈C

as,pxp ≤ 1 for all s ∈ S,

xp ≥ 0 for all p ∈C.

It is similar to MAX-LIFETIME COVERAGE that MAX-LIFETIME CC is also
NP-hard. However, LP-representations of MAX-LIFETIME COVERAGE and MAX-
LIFETIME CC give them the best-known approximation algorithms in the literature.
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Those algorithms are of the primal–dual type; the design idea was initiated by Garg
and Könemann [22]. Since MAX-LIFETIME COVERAGE can be considered as a
special case of MAX-LIFETIME CC (when v = 0), MAX-LIFETIME CC will be
used as an example to explain the main idea behind the design of such primal–dual
algorithms.

First, we note that the dual linear programming of (PLP) is as follows:

(DLP) min ∑
s∈S

ys

s.t. ∑
s∈S

as,pys ≥ 1 for p ∈C,

ys ≥ 0 for s ∈ S.

By the duality theory, the maximum objective function value of the primal linear
programming is equal to the minimum objective function value of the dual linear
programming. Therefore, the objective function value of any primal feasible
solution is a lower bound for the common optimal value and the objective function
value of any dual feasible solution is an upper bound for the common optimal value.

The difference of two objective functions can be represented as follows:

∑
s∈S

ys− ∑
p∈C

xp

=∑
s∈S

ys

(
1−∑

p∈C

as,pxp

)
+ ∑

p∈C

xp

(

∑
s∈S

as,pys− 1

)
.

This difference equal to 0, which implies

∑
s∈S

ys

(
1−∑

p∈C

as,pxp

)
= 0

∑
p∈C

xp

(

∑
s∈S

as,pys− 1

)
= 0,

is called the complementary-slackness condition. If (xp, p ∈C) is a primal feasible
solution, (ys,s ∈ S) is a dual feasible solution and the complementary-slackness
condition holds, then (xp, p ∈C) and (ys,s ∈ S) are optimal solutions for the primal
linear programming and the dual linear programming, respectively.

Note that it is easy to obtain an initial primal feasible solution, e.g., xp = 0 for
p ∈C form a trivial primal feasible solution. The classical primal–dual method for
above linear programming may start with a primal feasible solution (xp, p ∈C) and
a dual infeasible solution (ys,s ∈ S); but they satisfy the complementary-slackness
condition, e.g., xp = 0 for p ∈ C and ys = 0 for s ∈ S. In each iteration, the dual
feasibility of (ys,s ∈ S) is improved while keeping the primal feasibility of (xp, p ∈
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C) and the complementary-slackness condition holding until (ys,s ∈ S) becomes
dual feasible.

The primal–dual method given by Garg and Könemann [22] uses a similar idea.
However, since the classical primal–dual method computes the optimal solution
and the method of Garg and Könemann is used for computing an approximation
solution, there is a fundamental difference on the reserved relationship between
(xp, p ∈ C) and (ys,s ∈ S). They are not required to satisfy the complementary-
slackness condition. Instead, they are required to have smaller

∑
s∈S

ys

(
1−∑

p∈C

as,pxp

)
+ ∑

p∈C

xp

(

∑
s∈S

as,pys− 1

)
. (1)

Actually, when (xp, p ∈C) is primal-feasible and (ys,s ∈ S) becomes dual-feasible,
(1) gives an upper bound for the difference of the primal objective function value
from the optimal and hence it gives an evaluation of approximation performance.

To increase the dual-feasibility of (ys,s ∈ S), initially set ys = δ > 0 for s ∈ S
instead of setting ys = 0. In each iteration, in order to increase the dual-feasibility
of (ys,s ∈ S), we need to increase the value of ys for some s ∈ S. To keep ys(1−
∑p∈C as,pxp) smaller, we may choose only those ys to increase its value where (1−
∑p∈C as,pxp) decreases. To decrease (1−∑p∈C as,pxp), we need to increase the value
of xp for some p ∈ C. However, increasing the value of xp would cost increasing
value of xp(∑s∈S as,pys− 1). This consideration results in a principle for choice of
xp, that is, choose xp such that p gives the optimal solution of the following problem:

min
p∈C

∑
s∈S

as,pys.

This is exactly the weighted version of MIN-CSC as follows.

MINW-CSC: Given a set S of sensors with nonnegative weight S → R+ and a set T of
target points, find the minimum-weight subset of sensors to cover all targets.

This problem is NP-hard. Therefore, we may find an approximation solution
instead of an optimal solution.

Let p∗ be a connected sensor cover which is a ρ-approximation of MINW-CSC.
We intend to increase xp∗ . Initially, xp∗ = 0. To keep ∑p∈C as,pxp ≤ 1 for all s ∈ S,
we need to compute s∗ such that

as∗,p∗ = max
s∈S

as,p∗

and set

xp∗ ← xp∗+
1

as∗,p∗
. (2)
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When xp > 0 for some p ∈ C, (2) may cost violation of the primal-feasibility of
(xp, p ∈ C). However, it does not bring any issues. Note that the primal linear
programming is equivalent to

max
xp≥0,∀p∈C

∑p∈C xp

maxs∈S∑p∈C as,pxp
.

Even if (xp, p ∈C) is not primal-feasible,

xp

maxs∈S∑p∈C as,pxp

is primal-feasible.
Now, for s ∈ p∗, 1−∑p∈C as,pxp is getting smaller and hence, we are able to

increase ys while keep ys(1−∑p∈C as,pxp) not increasing. Clearly, the increment of
ys should be proportional to the decrease in (1−∑p∈C as,pxp). Hence,

ys← ys +
as,p∗

as∗,p∗
(3)

for s ∈ p∗. (Actually, (3) can hold for any s ∈ S since as,p∗ = 0 for s �∈ p∗.)
From the above consideration, we may obtain the following primal–dual

algorithm:

Primal–Dual Approximation for MAX-LC
Initially, set xp = 0 for p ∈C and ys = δ > 0 for s ∈ S,
where δ is a positive constant.
repeat

(1) Compute ρ-approximation p∗ of MINW-CSC
minp∈C∑s∈S as,pys;

(2) Compute s∗ ∈ p∗ such that
as∗,p∗ = maxs∈p∗ as,p∗ ;

(3) For p �= p∗, unchange xp, but update
xp∗ ← xp∗+

1
as∗,p∗

;

(4) For every s ∈ S, update
ys← ys +

as,p∗
as∗,p∗

;

until (ys,s ∈ S) is dual-feasible.
output xp

maxs∈S∑p∈C as,pxp
.

Du et al. [18] showed the following.

Theorem 7. For any ε > 0, above primal–dual algorithm produces a polynomial-
time ρ(1+ ε)-approximation for MAX-LC when δ is chosen properly.

By this theorem the approximation design for MAX-LC is reduced to the
approximation design for MINW-CSC.
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In a spatial case that every sensor has sensing radius Rs and communication
radius Rc ≥ 2Rs, Du et al. [18] showed that MINW-SCS has a polynomial-time
(7.475+ ε)-approximation. This result is reached though efforts [2, 19, 28, 40] on
partition techniques and [6, 39] on Steiner trees. The reader may also refer [17]
for a quick understanding of partitions. Therefore, MAX-LC has a polynomial-time
(7.475+ ε)-approximation, either.

4 Conclusion

This article is a survey on recent studies for two important optimization problems in
wireless sensor networks: the minimum connected sensor cover problem and the
maximum lifetime coverage problem. Both of them arise from consideration of
energy efficiency and it was found recently that both of them have a polynomial-
time constant-approximation. Two interesting relationships have been discovered:
one is between connected set cover (a generalization of connected sensor cover) and
a group of Steiner tree problems. Another is between the minimum weight sensor
cover and the maximum lifetime coverage. The first relationship brings some results
on complexity and approximation from group Steiner tree problem to connected set
cover problem. The second relationship brings a constant-approximation from the
minimum weight sensor cover to the maximum lifetime coverage problem. Those
relationships may play important roles in further research on the related problems.
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Influence Diffusion, Community Detection,
and Link Prediction in Social Network Analysis

Lidan Fan, Weili Wu, Zaixin Lu, Wen Xu, and Ding-Zhu Du

Abstract Social networks have received extensive attention among researchers
across a wide range of disciplines such as computer science, physics, and sociology.
This paper mainly overviews a variety of approaches for three problems in real-
world life scenarios. The first problem is about influence diffusion, in which
influence represents news, ideas, information, and so forth; the second one concerns
with partitioning social networks into communities efficiently; and the third one is
to predict the hidden or possible new links between individuals in the future based
on the existing or observed information.

Keywords Influence diffusion • Community detection • Link prediction • Social
network analysis • Social networks

1 Introduction

With the recent surge of online networks, people and organizations nowadays
can interact and collaborate with each other more, providing the platform for the
emergence of social networks in virtual environments. In a social network, nodes
represent individuals or other entities embedded in a social context, and edges
denote relationship between individuals. Since this kind of network is generally
complex and highly dynamic, it is important to understand its behavior over time
and particular interests can been seen in [70, 71]. Social network analysis (SNA)
is a broad field of research that tries to exploit the social network structure and the
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dynamic actions within it. From the practical point of view, there are three lines
of tasks that have received increasing interests from researchers recently, namely
the influence diffusion problem, the community detection problem, and the link
prediction problem.

As for the influence propagation problem, we mainly introduce several existing
techniques from two aspects: influence maximization and multiple competitive
influence dissemination. Examples of their applications include products promotion,
which aims to select the most influential customers to attract more people to buy the
product; political candidates election, in which both sides of the candidates try to
“win” the most influential people to encourage more people to vote for them; rumor
blocking or misinformation limitation, in which protectors are found to reduce or
limit the spread of rumors as much as possible. The seminal work in influence
diffusion is [40], and it is analyzed in detail in our paper.

With regard to the community detection problem, which tries to identify the
community structure in a social network accurately, extensive attempts have been
made. A measurement called modularity [52], which has a far-reaching impact on
subsequential researches, was proposed to test the quality of a community partition.
Later, most of the efforts were devoted to develop efficient and scalable algorithms.
Moreover, several works addressed communities formation from the dynamic point
of view. Since people in the same community have many common characteristics,
knowing the community structure can help us understand the overall structural
and functional properties of a large network. For instance, the communities in the
blogspace often correspond to topics of interests. Thus, monitoring the aggregate
trends and opinions exposed by these communities provides worthy insight to a
number of business applications, such as marketing intelligence and competitive
intelligence.

The link prediction problem aims at constructing a reliable link prediction
model for uncovering missing links or estimating the formation of new links in
the future. Examples of the link prediction problem include Collaborative Filtering
recommender systems, which can be viewed as services predicting links between
users and items within a user-item bipartite graph representing preferences or
purchases; and protein/genetic interaction modeling, which can be viewed as
predicting underlying protein–genetic interactions based on interaction observable
in the network. Liben-Nowell et al. in [56,57] gave a nice survey about the structure-
based measurements for link prediction, which was widely applied by later works.
Besides network structure, node and edge attributes or the combination of both of
them have been considered when design efficient algorithms. Furthermore, time was
integrated to the problem as a parameter such that the problem better approximated
to practical networks, which is essentially dynamic.

The remainder of the paper is organized as follows: in Sect. 2, we mainly
introduce the influence diffusion problem. Section 3 describes the state-of-the-art
research on community detection. Section 4 provides the approaches developed
for link prediction problem. We conclude the paper and propose several possible
directions for future research in Sect. 5 .
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2 Influence Diffusion

The role of social networks as a massive medium becomes increasingly attractive
with the rapid advance of online social networks such as Twitter, Facebook,
and Blog. The influence such as opinions, ideas, and news can propagate in it.
With respect to the influence diffusion, a well-known problem named Influence
Maximization (IM), has been widely studied. IM is formally defined as: Given a
graph G = (V,E) as a social network, an influence spread model and an integer k,
select the top-k nodes as seeds to maximize the expected influence spread (EIS).
IM was first studied by Richardson and Domingos [18, 61] as an algorithmic
problem. Later, it was investigated as a combinatorial optimization problem by
Kempe et al. in [40, 41] under two most basic and widely studied diffusion models,
namely the Independent Cascade (IC) model [25,26] and the Linear Threshold (LT)
model [31, 64]. They achieved a series of theoretical results, especially, the EIS
function was proved to be submodular and a (1− 1/e)-approximation ratio for the
greedy algorithm was obtained. This is a milestone work for IM in social networks;
therefore, we would like to introduce the main contributions in this paper.

Firstly, we introduce the two basic diffusion models. In both IC and LT models,
there are three common assumptions: (1) a node only has two states: active (accept
an innovation) and inactive; (2) at the beginning, the nodes in the seed set are active
and others are inactive; (3) when a node becomes active, it will no longer turn to
inactive. As for the IC model, the cascade starts with an initial set of active nodes
S0, and the process proceeds in discrete steps according to the following randomized
rule. When node v first turns to active in step t, it obtains a single chance to activate
each currently inactive neighbor u and it succeeds with probability pu,v, which is a
parameter independent of history actions. When u has many active neighbors, the
actions on u from them are arranged in an arbitrary order. If v succeeds, then u will
become active in step t+1; if it does not succeed, it will have no chance to activate u
in subsequent rounds. The process goes on until no more activations are possible. In
the LT model, a node u is influenced by each neighbor v according to the probability
wu,v such that ∑v∈N(u) wu,v ≤ 1, where N(u) is the neighbor set of u. Each node u
chooses a threshold θu uniformly at random from the range [0,1]. At any step t, if
the total weight from the active neighbors of an inactive node u is no less than θu,
then u becomes active at step t + 1. Actually, θu reflects the likelihood of node u to
accept an innovation.

Having introduced the two models, then, we will present the important conclu-
sions obtained in [40]. Kempe et al. defined the influence of a set of nodes A to be
the expected number of active nodes in the end of the activation process, denoted as
σ(A), where A is the initially active seed set. They proved that under both IC and
LT models, σ(A) is submodular, satisfying a natural “ diminishing returns” property,
that is, the marginal gain from adding an element to set A is at least as high as the
marginal gain from adding the same element to a superset of A.



308 L. Fan et al.

2.1 Submodularity for Independent Cascade [40]

To deal with the difficulty of computing the quantities of σ(A), Kempe et al.
formulated an equivalent view of the influence diffusion process. Consider the
case that node v has just become active, and it attempts to activate its neighbor u,
succeeding with probability pu,v. The outcome of this random event can be viewed
as being determined by flipping a coin of bias pu,v. Since it does not matter whether
the coin is flipped at the beginning of the whole process or at the moment that v is
activated, thus, the authors assumed that the coin is flipped in advance. The edges
that the coin flip indicates that an activation will be successful are declared to be
live; the remaining edges are declared to be blocked.

Claim 1. A node u ends up active if and only if there is a path from some node in A
to u consisting entirely of live edges.

Theorem 1. For an arbitrary instance of the Independent Cascade model, the
resulting influence function σ(A) is submodular.

Proof. Let X denote one sample point in the probability space which contains all the
possible sets of outcomes for all the coin flips on the edges. Define σX(A) to be the
total number of nodes activated by the process under X provided that A is the seed
set. Once X is fixed, then σX(A) is a deterministic quantity. By Claim 1, σX (A) is
actually the number of nodes that can be reached through live-edge paths from any
node in A. For S ⊆ T ⊆ V , consider σX(S∪{v})−σX(S), which is the number of
nodes that can be reached by v while cannot be reached from the nodes in S, it is at
least as large as the quantity of σX (T ∪{v})−σX (T ) since T is bigger. Thus, σX(A)
is submodular. Since a nonnegative linear combination of submodular functions is
still submodular, therefore, σ(A) = ∑outcomes X Prob[X ] ·σX(A) is submodular. ��

2.2 Submodularity for Linear Threshold [40]

Different from the IC model, Kempe et al. constructed another equivalent diffusion
process for influence diffusion in the LT model.

Claim 2. For a given targeted set A, the following two distributions over sets of
nodes are the same: (1) The distribution over active sets obtained by running the
Linear Threshold process to completion starting from A; (2) The distribution over
sets reachable from A via live-edge paths, under the random selection of live edges
defined above.

Proof. Case1. Graph G is directed and acyclic. Fix a topology order of nodes u1,
. . ., un and set the distribution of active sets according to this order. For each node ui,
the distribution on active subsets of its neighbors has been determined, thus under
LT diffusion model, the probability that a node ui becomes active when its neighbor
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set Si are active, is ∑v∈Si
wui,v. This is exactly the probability that the live incoming

edge selected by ui lies in Si.
Case2. G is not acyclic. On the one hand, consider the Linear Threshold process.

Define St to be the set of active nodes at the end of step t, t = 0,1,2, . . .. If node
u has not become active by the end of step t, then the probability that it becomes

active in step t + 1 is
∑v∈St\St−1

wu,v

1−∑v∈St−1
wu,v

. On the other hand, the live-edge process which

aims at identifying the live edges runs as follows. Start with a seed set S. For each
node u with at least one edge from S, u is said to be reachable if u’s live edge comes
from S. At the end of the first stage, a set of reachable nodes S1 is obtained, then
the procedure is continued to exploit further reachable nodes on edges from S1, and
sets S2, S3, . . . are generated. If node u has not been found to be reachable by the
end of step t, then the probability that it is determined to be reachable in step t + 1

is
∑v∈St\St−1

wu,v

1−∑v∈St−1
wu,v

, which is the same as the distribution obtained by Linear Threshold

process. ��
Theorem 2. For an arbitrary instance of the Linear Threshold model, the resulting
influence function σ(A) is submodular.

Proof. From the conclusion in Fact 2, the submodularity can be proved similarly as
in the proof of Theorem 1. ��

Greedy Algorithm [40]

1. INPUT: A graph G = (V,E), an integer k > 0;
2. OUTPUT: A seed set S.
3. Initialize S = φ ;
4. While |S|< k do
5. Select v = argmaxu∈V\S(σ(S∪{u})−σ(S));
6. S = S∪{v};
7. EndWhile
8. Return S.

EIS in [40] was obtained through Monte-Carlo simulation, and the exact
computation of EIS was left as an open problem and was addressed subsequently by
[10–12, 29, 30, 46].

For the IC model, Leskovec et al. [46] developed a cost effective lazy forward
(CELF) algorithm, which demonstrated to be up to 700 times faster than standard
greedy algorithm. However, CELF cannot be scaled to large social networks. To
further reduce the running time, Chen et al. in [10] proposed two algorithms called
NewGreedy and MixedGreedy, where NewGreedy aims at reducing the running
time by deleting edges that have no contribution to the influence spread (similar
idea was also proposed in [43]), and MixedGreedy combines NewGreedy and
CELF, applying NewGreedy in the first stage and CELF for the remaining steps, and
MixedGreedy was proved to be faster than both NewGreedy and CELF. In addition,
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they proposed a new diffusion structure, namely maximum influence arborescence
(MIA), to reduce the running time on calculating EIS, and the efficiency of MIA was
demonstrated in [11]. Goyal et al. [29] presented CELF++ which is an extension
to the CELF, showing 0.35–0.55 faster than CELF. Besides selecting the influential
nodes greedily, Wang et al. [74] developed a community-based algorithm to mine
the top-k influential nodes, and Jiang et al. in [39] presented a heuristic algorithm
based on Simulated Annealing.

In terms of the LT model, Chen et al. in [12] proved that the EIS under the LT
model can be computed in linear time in a directed acyclic graph, and they proposed
an algorithm based on local directed acyclic graph (LDAG). Given a general graph,
they converted the original graph into small acyclic graphs, and then computed the
marginal gain through only considering the EIS of a node within its local graph.
In [50], Narayanam and Narahari developed an algorithm for the LT model that
selected the nodes based on the Shapley Value. In [30], Goyal et al. proposed
SIMPATH, which estimated the EIS by searching for the simple paths starting
from seeds. Since it is computationally expensive to find all the simple paths, they
adopted a parameter η to prune them. Furthermore, they applied the vertex cover
optimization to cut down the number of iterations.

While IM is maximizing the influence of one cascade source, another problem,
which includes two or more kinds of cascades resources, focuses on maximizing the
influence of each cascade as much as possible, and it has been studied extensively
in [4, 5, 8, 45, 72]. Bharathi et al. [4] studied competitive influence diffusion under
the extension of the IC model. They proposed a (1− 1/e)-factor algorithm for
computing the best response to an opponent’s strategy and gave an FPTAS for the
problem of maximizing the influence of a single player provided the underlying
graph is a tree. Kostka et al. [45] considered the rumors diffusion as a game theoretic
problem under a much more restricted model compared with IC and LT. They
showed that the first player did not always obtain benefit although he/she started
earlier. Trpevski et al. [72] proposed a competitive rumors spreading model based on
susceptible-infected-susceptible (SIS) model in epidemic domain, but they did not
address the issue of influence maximization or rumor blocking. Borodin et al. in [5]
studied competitive influence diffusion in several different models extended from
LT. Chen et al. [13] addressed positive influence maximization under an extension
of the IC model with negative opinions about the product or service quality.

Unlike the multi-cascades mentioned above, a problem concerning two opposite
cascades, namely positive information (protectors) and negative information (ru-
mors), aims at using the positive information to reduce the influence of negative
information. Kimura et al. in [44] dealt with it through blocking a certain number
of links in a network. The most recent works regarded with this problem include
[7, 37, 55]. In [7], Budak et al. studied the eventual influence limitation (EIL)
problem under the extension of IC model. They focused on the greedy algorithm
and several simple heuristics, while did not search efficient and scalable methods
that maintain good precision meanwhile. He et al. in [37] proposed a competitive
linear threshold (CLT) model to address the influence blocking maximization (IBM)
problem. They proved that this problem was submodular and theoretically obtained
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a (1− 1/e)-approximation ratio from greedy algorithm. To reduce the computation
time, He et al. further proposed the CLDAG algorithm that is similar to the LDAG
algorithm in [12]. In [55], Nguyen et al. came up with the β I

T -Node Protector
diffusion problems, which are actually the extensions of the IBM problem, under
LT and IC. The goal is to find the smallest set of highly influential nodes that
can limit the viral spread of misinformation originated from set I to a desired
rate (1− β ) (β ∈ [0,1]) in T time steps. They proposed a greedy viral stopper
(GVS) algorithm that greedily adds nodes with the best influence gain for β -Node
Protectors to the current solution. They also applied GVS to the network restricted
to T -hop neighbors of the initial set I and reached a slightly better bound for β I

T -
Node Protector problems. Moreover, they proposed a community-based algorithm
which outputted a good selection of nodes to control the rumors in a timely
manner.

3 Community Detection

Social networks have shown interesting and attractive properties, such as the small-
world property, power-law degree distributions, and local structures, also known
as communities. In this section, we will focus on this community property, which
is that the internal links within the same community are highly dense while the links
between communities are comparatively sparse as shown in Fig. 1. The attributes
of individuals in the same community are more similar than that of people who
come from different communities, which means that they might share more on
information, interests, experiences, and other useful resources. So discovering
the underlying community structures will have direct impacts on optimizing and
managing activities in a social network.

Many approaches mainly focusing on topological structures based on various
criteria including betweenness [24, 52], modularity [52], normalized cut [65],
structural density [77], and partition density [2] have been studied. In addition,
please refer to [21] for more information.

3.1 Betweenness [24, 52]

Hierarchical clustering is the most widely used method among traditional com-
munity detection methods. The core of the hierarchical clustering method is the
definition of a similarity measure between vertices. Once such a measure is
determined, one can compute the similarity values for all pairs of nodes in the
given network, no matter whether they are connected or not. Hierarchical clustering
approaches aim to identify the groups with high similarity, and it can be classified
into two categories:
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Fig. 1 Community structure

• Agglomerative algorithms: which start from the node set of the original graph.
Edges are iteratively added to the corresponding node pairs according to the
decreasing order of similarity values.

• Divisive algorithms: which start from the original graph. Edges are removed
based on the increasing order of the similarity values.

The two algorithms operate in opposite directions, that is, agglomerative algo-
rithms are bottom-up while divisive algorithms are top-down. Both of them can
be well illustrated by a tree (dendrogram) as indicated in Fig. 2 for the original
graph, in which the leaves represent all the nodes in the original graph and a non-
leaf node denotes the community resulted from merging two smaller communities.
The root would be the original graph. Horizontal cuts through this dendrogram at
different levels provide divisions of the network into larger or smaller numbers
of communities. Since the hierarchical clustering method does not provide the
termination rule as well as the size and number of communities, the stopping
conditions should be imposed under application scenarios.

The approaches proposed by Girvan and Newman [24, 52] are the most
popular and seminal work in the community identification search track and gave
new perspectives for the evolution of divisive algorithms. They constructed the
communities by progressively removing edges from the original graph. Therefore,
edge betweenness is employed for the removal operation, and the betweenness
of an edge e is defined as the number of shortest paths between pairs of other
vertices that run through e. If a network contains communities or groups that are
only loosely connected by a few intergroup edges, then all shortest paths between
different communities must go along one of these few edges. Thus, the edges
connecting communities will have high edge betweenness. By removing these
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Fig. 2 Dendrogram

edges, they separate into groups from one another and so reveal the underlying
community structure of the graph. The concrete algorithm is as follows:

1. For each edge, compute its edge betweenness and sort all these edges according
to decreasing edge betweenness order.

2. Remove the edge with the largest edge betweenness, in case of ties with other
edges, one of them is picked at random.

3. Recalculate the betweenness for all edges (to save computation time, it is
advisable to only consider those edges whose betweenness values change after
the removal.) Perform the sorting operation.

4. Repeat steps 2 and 3 until there is no edge left.

In [24], the authors had to deal with the whole hierarchy of partitions for
no knowledge about how to choose the best partition. In a successive refinement
[52], Newman et al. selected the partition with the largest value of modularity
which has been frequently used ever since. Furthermore, [52] considered three
alternative measures: geodesic edge betweenness, random-walk edge betweenness,
and current-flow edge betweenness, all of which base on the same idea.

3.2 Modularity [52]

Newman in [52] proposed the concept of modularity which is the first measurement
for partitions quality. The formal definition is described as follows.

For a given network G = (V,E), consider a special division of G into nc

communities. Define an nc× nc symmetric matrix A whose element Ai j represents
the fraction of all edges in the network that connect vertices in community i
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to vertices in community j. Here we consider all the edges as in the original
network. The trace Tr(A) = ∑Aii of A provides the fraction of edges in the network
that link vertices in the same community, and the higher value of this trace, the
better the network division is. However, when all the vertices are placed in a
single community, the trace value is maximized, that is Tr(A) = 1, indicating no
community structure at all. Then Newman et al. defined the row (or column) sums
Ri =∑ j Ai j to denote the fraction of edges that are attached to vertices in community
i, they showed that Aij = RiR j if the edges fall between vertices in a network
without considering the communities that they reside. Then the modularity measure
is defined as

Q =∑
i
(Aii−R2

i ) = Tr(A)−‖A2‖ (1)

where ‖A‖ represents the sum of the elements of matrix A. Intuitively, the
modularity is calculating the number of edges within the same community minus
the expected number of such edges if we randomly build the same number of
connections between the vertices. If a particular division gives no more within-
community edges than would be expected by random chance, this modularity is
0. Values other than 0 imply deviations from randomness, and values approaching
the maximum Q = 1 indicate significant community structure. In practice, values
usually fall in the range from 0.3 to 0.7, and higher values are rare to be obtained.

In general, maximizing Q is an NP-hard problem [6]. Hence, many heuristic
approaches, which try to maximize the modularity value, were proposed [28]. Such
approaches include greedy agglomeration [52,73], mathematical programming [1],
spectral methods [66], simulated annealing [34], sampling techniques [63], etc.

The first method called greedy strategy, which falls in the category of agglom-
erative algorithms, was proposed by Newman et al. [51]. Initially, each node
represents a single community with no edges presented, and edges are added
one by one during the procedure to merge pairs of communities such that the
modularity increases. At each step, the edge is chosen based on the principle that
the partition gives the maximum increase (minimum decrease) of modularity with
respect to the previous configuration. If the addition of an edge does not change
the partition, i.e. the edge is internal to one of the communities previously formed,
then modularity stays the same. The procedure continues until all the nodes are
merged in one community and a dendrogram is generated at the same time, showing
the order of the merging processes. In [14], Clauset et al. pointed out that since
the adjacency matrix is sparse, an enormous number of operations implemented
to update eij in Newman’s algorithm are useless, that is, merging the communities
having no between edges makes no contribution to the modularity variation ΔQij,
they focused on communities that are linked by some between edges. Additionally,
they employed the data structures for sparse matrices and made the update much
quicker than in Newman’s technique. The greedy optimization of Clauset et al. was
proved to be one of the few algorithms that can be used to estimate the modularity
maximum on very large graphs. However, this algorithm tends to yield poor values
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of the modularity maxima since large communities are formed by sacrificing small
ones. Danon et al. in [17] provided a modification of Newman’s modularity-based
algorithm to accommodate for communities of varying sizes without slowing down
the computation. This strategy leads to better modularity optima, especially when
communities are very different in size. Furthermore, it is observed that the choice of
reasonable initial communities can significantly improve the accuracy of the greedy
optimization [19, 76, 78].

Simulated Annealing (SA) is a stochastic procedure for global optimization with
avoiding the risk that the system gets trapped in local optima. It searches all the
possible states to find the global optimum for a function f . The transition between
states happens with a probability according to the change of f . If f increases at
the time the transition occurs, then the probability is 1, otherwise, the probability
is exp(βΔ f ), where Δ f is the decrease of f and β is an index of stochastic noise,
a sort of inverse temperature which increases after each stage. Guimerà et al. [35]
were the first to employ SA for submodularity optimization and later in [34] SA was
adopted by coupling two types of “moves”: local moves, in which a single vertex
is randomly shifted from one community to another; global moves, which contain
mergers and splits of communities.

However, modularity is not a scale-invariant measurement, meaning that it cannot
detect small communities [22].

3.3 Works Based on Dynamic Views

Besides analyzing communities in static social networks, recently, finding commu-
nities and their evolutions in dynamic networks has gained an enormous amount of
attention. Chakrabarti et al. [9] proposed a framework called temporal smoothness
to capture the evolution of clusters. This framework assumed that the structure
of clusters significantly changes in a very short time is less desirable, thus, it
tried to smooth out each community at every step during clustering from two
kinds of qualities: the snapshot quality and the history quality. Especially, through
formulating the problem of analyzing community evolutions in terms of nonnegative
matrix factorization, Lin et al. proposed the FacetNet algorithm [48] and developed
an iterative algorithm that is guaranteed to converge to an optimal solution. Actually,
the detection of community structure with temporal smoothness can be formulated
as a multi-objective optimization problem. One is to maximize the cluster accuracy
at the current time. Another is to minimize the clustering drift at the consecutive
time steps. Folino et al. [20] proposed a dynamic multi-objective genetic algorithm
to detect communities in dynamic networks by employing genetic algorithm. The
two objectives to be optimized are formulated as Community Score and normalized
mutual information (NMI), respectively. Another study is by Kim [42], who
proposed adaptive integration of multi-objective evolutionary algorithms based on
NSGA-II for networks, particularly for online social network clustering.
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Palla et al. [59] analyzed a co-authorship network and a mobile phone network
through the clique percolation method (CPM). A model was proposed by Tan-
tipathananandh [68] et al., where the problem for finding the dynamic community
was formulated as a graph coloring problem. And a heuristic technique that
involves greedily matching pairs of nodes between states according to the descend-
ing order of groups similarity was employed. To identify and trace community
structure of dynamic online social networks, Nguyen et al. in [53] proposed
an adaptive modularity-based method called quick community adaptation (QCA).
Taking advantage of the structure identified from previous network snapshots, they
updated the network communities quickly and efficiently. In [54], the authors
presented adaptive finding overlapping community structure (AFOCS), a two-phase
adaptive framework for detecting, updating, and tracing the evolution of overlapping
communities in dynamic mobile networks. It firstly identified all possible basic
network communities with FOCS and then applied AFOCS to adaptively update
these structures along with the evolution of the network. Rosvall et al. [62]
developed a framework for identifying changes in dynamic networks. At each time,
the original network observed is clustered. Subsequently, the network is perturbed
through a bootstrap resampling process and re-clustered, and this is repeated for
a large number of runs to quantify the significance of clusters generated at each
time step. Finally, “alluvial” diagrams, which connect the associated clusters from
different time steps, are employed to illustrate the progression of the clusters
over time. In [32], the authors described a model for tracking communities,
in which each community is characterized by a series of evolutionary events.
Based on this model, they presented a scalable community-tracking strategy to
identify dynamic communities efficiently. Gong et al. in [27] presented a novel
multi-objective immune algorithm to identify communities in dynamic networks.
It optimized the modularity and NMI through nondominated neighbor immune
algorithm. Furthermore, the problem-specific knowledge was used by the genetic
operators and local search to improve the effectiveness and efficiency of this
algorithm.

4 Link Prediction

It is well known that social networks are highly dynamic and their structures
change along with the creation of new links between individuals. Understanding the
mechanics by which they evolve is a fundamental task in SNA. Thus, the problem,
namely link prediction, has obtained intensive attention among researchers these
years. Liben-Nowell et al. in [56, 57] introduced link prediction problem as: given
a snapshot of a social network G = (V,E) at time t and a future time t ′, the problem
aims at predicting the new links that are likely to appear in the network within
the time interval [t, t ′]. They introduced several methods adapted from techniques
used in graph theory and SNA as shown in Table 1. The common feature is that
a connection weight score(u,v) for pairs of nodes (u,v) is computed based on the
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Table 1 Link prediction metrics

Metric Definition of score

Common neighbor |N(u)∩N(v)|a
Jaccard’s coefficient Index |N(u)∩N(v)|

|N(u)∪N(v)|
Preferential attachment Index |N(u)| · |N(v)|
Graph distance (Negated) length of shortest path between u and v
Katzβ Index ∑∞

k=1 β k · |paths<k>
u,v | b

Adamic/Adar Index ∑w∈N(u)∩N(v)
1

log |N(w)|
Hitting time −Tu,v

Stationary-normed −Tu,v ·πc
v

Commute time −(Tu,v +Tv,u)

Stationary-normed −(Tu,v ·πv +Tv,u ·πu)

Rooted PageRankβ Stationary distribution weight of y under the following random
walk: (1) with probability β , jump to x; (2) with probability
1−β , go to random neighbor of current node

SimRankα d (1) 1, if x = y; (2) α · ∑a∈N(u)∑b∈N(v) score(u,v)
|N(u)|·|N(y)| , otherwise

aN(x) :={all the neighbors of node x}
bpaths<k>

x,y :={paths of length exactly k from u to v}. weighted: pathsx,y := number of collaborations
between x and y; unweighted: pathsx,y := 1 iff x and y collaborate
cTx,y := expected time for random walk from x to y; πy := stationary distribution weight of y,
proportion of time the random walk is at node y
dα is between 0 and 1

input graph, and then a ranked list in decreasing order of score(u,v) is produced. In
other words, generating a measure of proximity or “similarity” between nodes u and
v with respect to the network topology is the vital component. They evaluated these
measures over the co-authorship network.

Since [56, 57] mainly focus on explaining the measures in Table 1 through
experiments, here we briefly describe the experiment setup and its relative results.

4.1 Experimental Setup [56, 57]

Given a social network G = (V,E), and edge e = (u,v) means that u and v have
relation at time t(e). Multiple relations between u and v are regarded as parallel
edges and different time-stamps are assigned correspondingly. G[t, t ′] represents
the subgraph of G containing all the edges that appear in [t, t ′], where t < t ′ and
two time intervals with four times t0 < t ′0 < t1 < t ′1 are defined: training interval
[t0, t ′0] and test interval [t1, t ′1]. Then an algorithm is applied to the network G[t0, t ′0]
to predict the edges that may present in the network G[t1, t ′1] and do not appear
in G[t0, t ′0]. To guarantee the efficiency of this experiment, a nodes set Core is
defined based on two parameters κtraining and κtest, all of which are set to 3. All
the nodes in Core satisfy: (1) incident to at least κtraining edges in G[t0, t ′0]; (2)
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incident to at least κtest edges in G[t1, t ′1]. Denote G = (V1,Eold) as the subgraph
of a co-authorship network, and Enew is adopted to denote the edges set with
endpoint in V1 and co-authoring a paper during the test interval but not the training
interval. Then for each predictor p, it must output a ranked node pairs list Rp in
V1×V1−Eold, indicating the new predicted collaborations in decreasing order of
appearance probability. To address the meaningful component, they focused on the
set Core, and defined E∗new := Enew ∩ (Core×Core) with k := |E∗new|. Then, they
determined the performance measure for predictor p via taking the first k pairs in
Core×Core which are obtained from the ranked list Rp,

4.2 Three Meta-Approaches [56, 57]

The following three meta-approaches can combine with any of the above methods
included in Table 1.

• Low-Rank Approximation. All of the above link prediction methods have an
equivalent formulation in terms of the adjacent matrix M of a graph. For instance,
in the common neighbor method, each node u is mapped to the row r(u) of M,
and then score(u,v) is defined as the inner product of the rows r(u) and r(v).
For a large matrix M, a general technique used to analyze its structure is to
choose a relatively small number m and compute the rank-m matrix Mk that best
approximates M with regard to a number of standard matrix norms. Intuitively,
considering Mk rather than M can be viewed as a type of “noise-reduction”
technique that produces most of the structure in the matrix while uses a greatly
simplified representation. In their experiments, they explored three applications
of low-rank approximation: (1) rank by Katz measure, and Mk is used in the
underlying formula; (2) rank by common neighbors, the score is obtained by
inner products of rows in Mk; (3) (u,v) entry in Mk is defined as score(u,v).

• Unseen Bigrams. Observing that link prediction is similar to the problem of
estimating frequencies for unseen bigrams in language modeling-pairs of words
that appear together in a test corpus, but not in the corresponding training corpus,
the authors estimated score(u,v) through the values of score(w,v), in which
nodes w are akin to v. The detail is as follows: Suppose the values of score(u,v)
computed by one of the measures above have been obtained. For k ∈ Z+, Sk

u
denotes the k nodes most related to u under score(u, ·). The improved scores are
as follows:

score∗unweighted(u,v) = |w : w ∈ N(v)∩Sk
u| (2)

score∗weighted(u,v) = ∑
w:w∈N(v)

score(u,w). (3)
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• Clustering. Clustering procedure is firstly adopted to delete the “noisy” edges
to enhance the quality of a predictor and then the predictor is implemented on
these vital edges. Consider a method computing values of score(u,v): compute
score(x,y) for all edges in Eold and delete β fraction of these edges with lowest
scores. In the remaining subgraph, recompute score(u,v) for all pairs (u,v).

The experiments on large co-authorship demonstrated that information about future
connections could be obtained from network topology alone and the measurements
used to detect node proximity outperform more direct measures, specially, they
found that the Adamic–Adar measure of node similarity performs best.

While the work of [56, 57] only focused on the network structure, Taskar et al.
[69] relied on machine learning techniques and used personal information
(attributes) of users (music, books, hobbies, etc.) to increase the accuracy of
predictions. Later, O’Madadhain et al. [49] took the geographic location as an
attribute to predict events (interactions) between entities. Hasan et al. [36] abstracted
several nodal and topological attributes for link prediction problem and applied a
variety of classifiers such as support vector machines and decision tree to predict
interactions in bibliographic databases.

Backstrom et al. [3] proposed a method based on Supervised Random Walks,
which combines the information of the network structure with node and edge
attributes to predict the links efficiently. The node and edge features are used to learn
edge strengths (i.e., random walk transition probabilities) such that the random walk
on a network is more likely to visit “positive” than “negative” nodes. Here positive
nodes are the ones that new edges will be created to in the future, and the negative
are the remaining nodes. They summarized a supervised learning task provided a
source node s and training examples about which nodes s will establish links to in
the future. Then they formulated the problem that studies a function that assigns a
strength (i.e., random walk transition probability) to each edge such that the random
walk scores in the network nodes to which s creates new links have higher scores
than nodes to which s does not create links.

4.3 Supervised Random Walks

• Classification Aspect. Exploit a classifier that predicts pairs of nodes that s
is going to create links and denote them as positive training examples, the
other nodes are denoted as negative training examples. It needs to consider
how to extract the nodes and edges features such as age, gender, and creation
time.

• Nodes Ranking Aspect. Design an approach that will assign higher scores to
nodes which s create links to than to those that s does not link to. This method
mainly takes advantage of the structure of the network.
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4.4 Optimization Problem Formulation

Given a directed graph G = (V,E), a source node s, a destination nodes set P =
{p1, . . . , pl} to which s will create edges in the future and the no-link nodes set
N = {n1, . . . ,nk} to which s does not create edges. Denote the candidate nodes as
C = ci = P∪N. View nodes in P as positive and nodes in N as negative training
examples. Each node and each edge in G is associated with a set of characteristics.
For each edge (u,v), define its corresponding feature vector ϕu,v, which contains the
attributes of nodes u and v (e.g., age, gender, hometown) and the interaction features
(e.g., when the edge is created or how many messages u and v communicated).
Then compute the strength su,v = fm(ϕu,v) which models the random walk transition
probability. fw is employed to compute the first edge strengths of all edges. Then
a random walk with restarts is run from s. Nodes are ordered by a probability pu

obtained from the stationary distribution p of the random walk and top ranked nodes
are then viewed as destinations of future links of s. It is obvious that nodes connected
to s through paths of strong edges (edges with large edge strength) will be visited
by the random walk with high possibility and thus rank higher. The key task now is
to study the parameter m with regard to function fm. Then the optimization problem
to find the optimal set of parameters m of function fm(ϕu,v) is as follows:

min
m

F(m) =‖m ‖2

s.t.∀pi ∈ P,n j ∈ N : qn j < qpi

i = 1, · · · , l and j = 1, · · · ,k, (4)

where qi is the vector of PageRank scores. Since it is hard to find a solution that
satisfies all the constraints above, thus the authors made the constraints “soft” by a
loss function g which penalizes violated constraints, then the optimization problem
becomes:

min
w

F(m) =‖m ‖2 +α ∑
pi∈P,n j∈N

g(qn j − qpi), (5)

where α is a parameter that balances the complexity (norm of m) and the fit of the
model (how much the constraints can be violated). Moreover, if qn j − qpi < 0, then
g(·) = 0; and for qn j − qpi > 0, then g(·)> 0.

In addition to the approaches mentioned above, probabilistic methods were
explored to build a model that can represent a network much accurately. This kind
of approaches examine the elements of the network through relational data models
that are able to include relevant information from nodes, relationships, and the
network as a whole. The main idea is to establish a probabilistic model based on
a set of parameters α that is obtained according to the observed network. Then
the existence of a link between a given pair of nodes u and v is determined by the
conditional probability P(e(u,v)|α) [75]. Corresponding to these methods, examples
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of networks are Relational Markov Networks, Relational Bayesian Networks, and
Relational Dependency Networks.

Besides what have been introduced, various kinds of approaches have been
developed to address the link prediction problem. Clauset et al. [15] proposed
maximum likelihood-based methods that represent the clusters in the network
as a hierarchy, which in turn are represented as a dendrogram. LinkBoost [16]
explored the community structure by a novel degree-dependent cost function and
showed that minimization of the associated risk can lead to more links predicted
within communities than between communities. Huang and Lin [38], Potgieter et
al. [60], and Soares and Prudêncio [67] tried to use time-aware techniques for
link prediction problem, which took the dynamic perspectives of networks into
consideration. Through following the experimental framework articulated by Guha
et al. in their study of trust and distrust on Epinions [33], Leskovec et al. [47]
extended their approach in a number of directions, one of which is to infer an
individual’s attitudes towards the relationship with others. To learn more about the
link prediction problem, please refer to [23, 58].

5 Conclusion and Discussion

Social networks, which contain intricate structures and enormous information about
its members, play a variety of roles for practical applications. For examples, it can be
regarded as a platform for individual communications; it can be used to investigate
structural pattern of certain groups; it can be exploited to predict interactions
between individuals that will appear in the future, and so forth. Studies on these
aspects lead promising steps for researchers across different fields. Therefore, in
this survey, we have summarized several works with regard to three problems:
influence diffusion, community detection, and link prediction. These represent some
of the common threads emerging from a variety of domains like sociology, computer
science, and physics.

Although a large amount of techniques or algorithms have been proposed for
those problems respectively, there is still much room for further efforts. We propose
several research directions related to the three problems as follows:

• Influence Diffusion Problem: Although several works have paid attention to
the diffusion probability computation, most of them only applied the network
structure. To obtain more convincing data, it is desirable to compute the influence
propagation probabilities by considering the attributes of individuals, such as
gender, age, interest, and location. Also, until now, a mass of works explored the
rumor blocking problem over the IC and the LT models, studying it under models
like SIS and susceptible-infected-recovered (SIR) is an interesting direction. In
addition, since the network develops with time, it is more realistic to integrate
the time variable to the influence dissemination process.
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• Community Detection Problem: With the appearance of enormous number of
online social networks and their wide application, it will do benefit for the
individuals to identify communities in those networks like facebook, mobile
social network, and weighted social networks. In previous works, the authors
addressed the community detection problem with assumption that the complete
connection information within the entire network is available. However, in many
practical networks, such as enemy networks, the complete connection are very
difficult or even impossible to obtain, therefore, it is of great challenge to
distinguish communities provided that the network information is incomplete.

• Link Prediction Problem: Soares et al. [67] tested their time-aware information-
based algorithm merely over the co-authorship networks, extending their algo-
rithm to networks in other domains is a future line of research. In addition,
many works on link prediction problem just concerned how to predict the links
accurately that the relations between individuals are different, like positive or
negative as in [47], is ignored, thus, it is promising to explore methods that
efficiently predict those two kinds of links. Since community detection has close
relation with link prediction, then with regard to the community robustness issue,
it is worth trying to strengthen the existing connections between individuals via
creating new relations using the methods for link prediction.
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Comparative Analysis of Local Search Strategies
for Transmission Network Expansion Planning

Alla Kammerdiner, Alex Fout, and Russell Bent

Abstract The demands for electricity and the electrical power generation in
various areas may change significantly with time. These changes require additional
transmission corridors to be installed in the existing electrical power network. The
problem of electrical grid expansion can be formulated as a nonlinear mixed integer
programming problem. The local search algorithms, which employ constructive
heuristics for defining a neighborhood, could be used iteratively to find approximate
solutions for this problem. In this study, we compare a number of local search
strategies using statistical analysis techniques.

Keywords Transmission expansion planning • Nonlinear mixed integer program-
ming • Local search • Heuristics • Explorative statistical analysis

1 Introduction

The demand for energy and the electrical power generation have been growing
globally with increase in the world population, industrial development, access to
transportation, and communication. Environmental and socioeconomic concerns
related to these trends are important factors that must be taken into account. As
a result, development of proper technology and infrastructure to reliably satisfy the
world’s growing demands for clean, sustainable, and economical energy has become
a major global challenge of this century.
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To be able to respond to the changing energy needs, the hierarchical, centrally
controlled structure of the current power grid will undergo a radical transforma-
tion. The improved grid will utilize modern sensors, communication connections,
and computational advances to enhance its own stability, flexibility, and efficiency.
This future grid is often referred to as “smart grid.”

Along with grid control and grid reliability, efficient grid design is vitally
important in developing technology for the future smart grid. Smart grid design
determines how to best upgrade and expand the electric power transmission network
to meet growing energy demand utilizing sources of renewable, sustainable, and
cheap energy. These sources may be located in non-contiguous, transmission-
deficient areas. Solving these problems is encompassed in transmission network
expansion planning (TNEP).

The goal of TNEP is to determine the optimal plan for power grid expansion. The
plan must specify the number of new power lines to be installed in each transmission
corridor and the number of new control components added at each bus. TNEP has
been described with varying degrees of fidelity and has been studied from a wide
scope of perspectives [8]. A recent review of many of the approaches, models, and
algorithms for TNEP can be found in [10]. The problem of long-term transmission
system planning based on the so-called direct current (DC) model is considered.

Due to constraints imposed by physical laws of the electrical power flows, the
resulting optimization problem is a mixed-integer nonlinear programming (MINLP)
problem characterized by high complexity, especially for large-scale and real-
world problems. Whereas linear integer programming has developed into a mature
discipline of mathematical optimization over the last 50 years, nonlinear mixed-
integer programming still is generally considered a very young field [6]. In fact,
majority of the problems and methods for MINLP are not as comprehensive or
well developed as in the case of linear mixed-integer programs. Due to the lack
of its own methodology, traditionally, MINLP problems were solved using global
optimization. Hence, the focus was on numerical methods for finding solutions of
nonlinear continuous optimization problems and the integrality constraints were
only an afterthought and were typically handled using branch-and-bound on the
integer decision variables. Only more recently, the interest of researchers in integer
programming has shifted more to developing its own methodology for MINLP.
Furthermore, even in the pure continuous case, nonlinear optimization is known
to be NP-hard [6]. Therefore, for the sake of simplicity, we consider a relatively
small power network with only six buses (i.e., a six-node network).

TNEP problem belongs to a larger class of MINLP problems related to network
design. Network design problems arise in a wide range of applications, including
telecommunications, logistics and transportation, and supply chain management [4].
For large scale systems, solving such problems is computationally difficult [1, 10].
In particular, finding exact solutions can be very time consuming. As a result, devel-
opment of heuristic algorithms for such problems has attracted considerable amount
of research attention [4]. A review of the literature on the heuristic search algorithms
for network design indicates that “almost every case procedures that achieve a high
level of performance take advantage of problem-specific structures” [4]. Hence,
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understanding the problem structure may aid in development of efficient heuristic
search algorithms for solving these problems.

Application of a local search algorithm imposes a neighborhood structure on
the problem. This structure describes how many search moves it takes to get from
one feasible solution to another [9], and, together with the objective function,
it constitutes a fitness landscape of the problem [11]. The problem structure of
several computationally difficult discrete optimization problems, such as the flow-
shop scheduling problem [3], the traveling salesman problem [5], and the quadratic
assignment problem (QAP) [2] has been investigated empirically. Yet, to the best of
our knowledge, the solution space structure of the network design related problems,
specifically, that of TNEP, has received little attention. This chapter presents an
empirical study of the TNEP solution space structure imposed by a local search.

Constructive heuristics and metaheuristics have been previously applied to
study TNEP [8]. Local search procedures are often utilized to some extent by
many modern metaheuristics either in their pure or hybridized forms. Obviously,
the local search algorithms, which employ constructive heuristics for defining
a neighborhood, may be used iteratively either by itself or in conjunction with
some metaheuristic to find approximate solutions for this problem. Given multiple
constructive heuristics for moving to a new solution from some current solution of
the TNEP problem, the question arises:
Which of these heuristics (if any) would be more advantageous to use in the local
search procedure, if, for instance, we want to reach a better quality solution?

In this chapter, we analyze the performance of multiple alternative versions of
local search algorithm on the TNEP problem, which is based on a benchmark
instance known as a Graver’s six-bus system. Using a constructive heuristic for
TNEP, a set of solutions, known as a neighborhood, can be produced from a
given solution. Alternative heuristics may generate different neighborhoods, hence
resulting in different versions of local search algorithm. Here, these alternative
versions of local search are also called (search) strategies.

The performance of a given search strategy can be described using a number
of characteristics, including the value of a local optimum reached in a specific
iteration or the number of steps it took to reach a local optimum during an iteration.
For any considered search strategy, an iteration is completely determined by its
starting solution. Consequently, to understand differences in the performance of
different search strategies, we collect the values of multiple characteristics for
different starting solutions and compare the data sets obtained using alternative
strategies. As it turns out, even for a small six-node network, the number of starting
solutions for the TNEP problem is very large. Therefore, the statistical comparison
is performed based on a sample of starting solutions and not the entire population.
The sample statistics, diagnostic plots, and correlation analysis are among the tools
that help us gain some insight into observable differences among the considered
search strategies.

The chapter is organized as follows. In the following section, TNEP is given a
nonlinear mixed integer programming formulation, and the solution space for the
TNEP problem is described. In Sect. 3 the application of local search algorithms,
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which utilize constructive heuristics to define a neighborhood of a given solution, is
briefly explained. Furthermore, the statistical techniques, which are used to analyze
the characteristics of solutions produced by the considered local search strategies,
are summarized. The results from the data analysis and discussion of the performed
graphical diagnostics and statistical inferences about various characteristics of
the solutions and neighborhoods produced by different local search strategies are
presented in Sect. 4. Finally, Sect. 5 concludes the chapter.

2 Problem Formulation

Existing electrical power grid can be represented by a network with a set V of nodes
and a set E of arcs or edges. In the context of TNEP, the nodes symbolize buses
on a power grid, whereas the arcs denote transmission corridors connecting two
buses. In the existing electrical power network, each bus has a current number
Bi of components (e.g., Bi shunt capacitors for regulating AC power), whereas
each transmission corridor (i, j) from bus i to bus j has a current number Ai j of
electrical circuits. Suppose that at most Ni j additional circuits can be installed in the
transmission corridor (i, j) in the excess of currently present Ai j lines between i and
j, and the cost of installing each additional circuit in the corridor (i, j) is denoted by
κi j, (i, j) ∈ E . In general, up to a given maximum, say Mi, number of components
can be added at bus i, and the installation cost of each additional control component
on the bus i is κi for any i ∈V .

Our formulation for TNEP uses the DC model and does not incorporate any
possible addition of control components on the network buses. We further modify
the formulation in [1], where the TNEP problem is stated via multi-objective
optimization with lexicographic cost function, by including both the total overload
and the total cost of installing additional lines in the transmission corridors.

After introducing the decision variables:

yi j (Nonnegative real-valued) overload in the corridor (i, j),
xi j (Nonnegative integer) number of installed circuits in the corridor (i, j),
fi j (Nonnegative real-valued) electrical flow in the corridor (i, j),
θi (Real-valued) voltage angle on the bus i,

TNEP is formulated via NLMIP as follows:

min ∑
(i, j)∈E

(yi j +κi jxi j) (1)

subject to

fi j− xi jri j ≤ yi j, ∀(i, j) ∈ E, (2)

fi j =− f ji, ∀(i, j) ∈ E, (3)
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∑
j∈V

fi j ≤ gi− li, ∀i ∈V, (4)

fi j− γi jxi j(θi−θ j) = 0, ∀(i, j) ∈ E, (5)

fi j ∈ R, ∀(i, j) ∈ E, (6)

θi ∈ R, ∀i ∈ E, (7)

xi j ∈
{

Ai j,Ai j + 1, . . . ,Ai j +Ni j
}
, ∀(i, j) ∈ E, (8)

yi j ≥ 0, ∀(i, j) ∈ E. (9)

In addition, to the extra line installation cost κi j, (i, j) ∈ E , and the maximum
number of extra circuits Ni j, (i, j)∈E , the above formulation includes other problem
parameters:

ri j The capacity of a single circuit in the corridor (i, j),
γi j The susceptance of a single circuit in the corridor (i, j),
gi The generation (i.e., produced electricity) on the bus i,
li The load (i.e., demand for power) on the bus i.

The relationship between the flow through a transmission corridor, the total capacity
for all lines in the corridor, and the respective overflow through this corridor is
described by the constraint (2). The requirement

fi j ≤ xi jri j , ∀(i, j) ∈ E

that the total flow of electricity from one node to another does not exceed the
total capacity between those two nodes was relaxed, allowing for overflow, yi j. On
the other hand, inclusion of the total overflows in all corridors into the objective
function (1) ensures that together yi j’s remain as small as possible. The constraint (4)
says that the outflow from every node i cannot exceed the generation minus load at
the node. It is a relaxed version of

gi− li +∑
j∈V

fi j = 0, ∀(i, j) ∈ E,

which ensures the conservation of flow at each bus i according to Kirchoff’s law.
Whereas (3) ensures antisymmetry of flow in each corridor (i, j), and (5) represents
the relationship between the phase angle and DC power according to Ohm’s law.

Obviously, the TNEP formulation (1)–(9) is an NLMIP problem, because the
xi j decision variables are integer and the constraint (5) contains the product of
decision variables xi j and θi. As mentioned earlier, one could apply standard
global optimization approaches, but the integrality of xi j’s adds additional challenge
to solving the TNEP problem. In fact, the constraint (8) implies that there are
∑i, j∈V Ni j + |E| different sets of integer variables (where |E| is the cardinality of
E , i.e., the number of corridors in the power grid). Let us denote |V | = n, then
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there are a total of

(
n
2

)
= n(n−1)

2 possible transmission corridors between a pair of

buses, i.e., n(n−1)
2 integer decision variables in the solution space of the TNEP. When

Ni j =N, then this simplifies to having a total of (N+1)
n(n−1)

2 different ways to set the
values of all integer decision variables. For instance, in the case of Graver’s six-bus
system and assuming the ability to add at most one extra circuit to any transmission
corridor in the grid, we have n = 6 and N = 1. Even these relatively small problem
parameters already result in the TNEP solution space having 215 ≈ 32,000 possible
combinations of 15 integer decision variables.

3 Approach

As shown in Sect. 2, the size of the TNEP solution space part, which corresponds
to integer decision variables in the problem, grows exponentially with increase in
the number of buses in an initial power grid. Consequently, when solving TNEP
problem instances for large realistic power networks, an exploration of all possible
electrical line additions via exhaustive search would not be practical. In fact, current
optimization approaches for TNEP (see, e.g., simulation optimization based method
in [1]) typically do not attempt to find the exact solution of the problem and instead
search for a good quality approximate solution.

The need for solving large realistic instances of hard optimization problems
has led to increased interest in metaheuristics, which often proves to be faster
than some of the more traditional, exact approaches for both global and discrete
optimization. For instance, many metaheuristic and hybrid algorithms were applied
to the QAP, a well-known hard problem in nonlinear optimization with discrete
decision variables [7]. Most metaheuristics either already incorporate some type
of local search procedure or allow themselves to be hybridized with a local search
algorithm to improve their performance. Metaheuristic procedures typically involve
two alternating stages: an exploration phase (which is designed to quickly move
to new unexplored areas in the solution space) and an exploitation phase (which
combs through the local areas in search of improved solution). The exploitation
stage typically ends in a local optimum, then the algorithm switches back into the
(global) exploration mode.

Taking into account the local search usefulness and the challenge of dealing with
integer variables in addition to nonlinearity of the problem, the following method
is proposed in the chapter. As an alternative to first using global optimization to
solve the relaxed version of the TNEP problem, where integer decision variables are
temporarily allowed to take on the real values, and then taking care of integrality
constraint (8), we propose to first explore that portion of solution space, which is
described by the integer decision variables xi j, via a local search-based algorithm
and then (given the xi j values) solve a remaining problem. To improve the solution
quality, local search would be used iteratively either on its own by using some type
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of restart procedure or in conjunction with a metaheuristic algorithm (typically, in
the exploitation phase).

Local search is a general technique in discrete and global optimization for
improving a local solution. Local search starts at some initially constructed solution
as its current solution and works by systematically exploring the solutions that
are similar to the current solution until it either finds a higher quality solution or
determines that the current solution has the best objective value when compared
to all other solutions that are sufficiently close to itself. The similarity or distance
is imposed on the solution space by defining a neighborhood using some rule. For
instance, when the solution space of an optimization problem is represented as a
sequence of zeros and ones, a neighborhood may be defined as all solutions whose
Hamming distance to the current solution is one (i.e., any 0–1 sequence of the
appropriate length that is different from the 0–1 sequence representing the current
solution in exactly one position).

Various versions of local search procedure may be obtained based on what type
of neighborhood rule is chosen. Obviously, we would like to define a neighborhood
in such a way that the resulting local search algorithm is likely to exhibit a good
performance and, hopefully, outperform alternative versions of local search that
are constructed using other neighborhood rules. We propose several local search
versions based on alternative constructive heuristics for TNEP. The remainder of
this chapter focuses on investigation of different properties of the considered search
algorithms using sample statistics, diagnostic plots, and correlation analysis aiming
to gain better insight into the alternative algorithms behavior.

3.1 Constructive Heuristics as Local Search Strategies

The versions of local search algorithm, studied here, are built based on fourteen
alternative constructive heuristics. These heuristics are applied to some given TNEP
solution so that, each time we modify this solution, a new solution is obtained. Each
constructive heuristic specifies a rule that can be used in the local search algorithm
to create a neighborhood of a current solution.

Definition 1. Given a solution S for an instance of optimization problem P and a
distance d(·, ·) on the solution space of P , a neighborhood NS of S is the set of all
such solutions S1 that are exactly distance one away from S , i.e., d(S ,S1) = 1.

If a rule, which specifies a transformation from the solution space into itself,
imposes a distance metric on the solution space, then the rule also defines a
neighborhood relationship on the solution space. Moreover, a neighborhood of the
solution S is simply a set of those solutions that are precisely one move away
from S according to the rule. Based on the specified rule, a local search algorithm
evaluates either all or a subset of solutions in the neighborhood of the current
solution and then moves to a solution with an improved objective function (as
compared to its values in the current solution and any of the current solution’s
immediate neighbors, whose objective were computed). If no such (improved)
solution is found (among all of the solutions) in the neighborhood, then the current
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solution is a local optimal solution, and the algorithm should restart (by generating
a new initial solution) in another area of the solution space.

We construct the following fourteen rules that can be used in the local search to
move from one solution to another:

Strategy 1. The neighborhood consists of all solutions that add an arc that is
adjacent to anyone of the two nodes of the last arc (i.e., the most recently added
link in the network graph).

Strategy 2. Add an arc to the highest degree node of the most recently changed
arc (i.e., the node that is adjacent to the most recently added arc and has more
emanating arcs than the other node of that arc).

Strategy 3. Add an arc to the lowest degree node of the most recently changed arc
(i.e., the node that is adjacent to the most recent arc and has less emanating arcs
than the other node of that arc).

Strategy 4. Add an arc to the highest weighted degree node of the most recently
changed arc, where the weight of a node j is computed as the sum of gi− li for
all nodes i adjacent to j, i.e.,

wj = ∑
(i, j)∈E

(gi− li). (10)

Strategy 5. Add an arc to the lowest weighted degree node of the most recently
changed arc.

Strategy 6. Add an arc that is adjacent to anyone of the two nodes of the most
recent arc as long as it creates a cycle.

Strategy 7. Add an arc that is adjacent to one of the two nodes of the most recent
arc only if it avoids creating a cycle.

Strategy 8. Delete an arc that is adjacent to anyone of the two nodes of the most
recent arc.

Strategy 9. Delete an arc to the highest degree node of the most recently changed
arc.

Strategy 10. Delete an arc to the lowest degree node of the most recently changed
arc.

Strategy 11. Delete an arc to the highest weighted degree node of the most
recently changed arc.

Strategy 12. Delete an arc to the lowest weighted degree node of the most recently
changed arc.

Strategy 13. Delete an arc that is adjacent to anyone of the two nodes of the most
recent arc as long as it breaks a cycle.

Strategy 14. Delete an arc that is adjacent to one of the two nodes of the most
recent arc only if it avoids avoids breaking a cycle.

To illustrate the differences between some of the above strategies, let us consider
an example of the network with a graph G = (V,E) and the current solution S0

shown in Fig. 1. The vertex set of G is V = {1,2,3,4,5}, and the edge set is
E = {(1,2),(1,3),(1,4),(2,3),(2,5),(3,4)}. Suppose that arc (1,2) was added last
to obtain the current solution S0. Also assume that
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Fig. 1 An example of a graph G and the current solution S0 on G. The dotted line depicts the arc
(1,2) that was added last. (a) Graph G. (b) Current solution S0
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Fig. 2 Examples of new solutions, which can be obtained from the current solution (left subplot
in Fig. 1) by applying some of the described strategies. (a) Arc (1,3) added. (b) Arc (1,4) added.
(c) Arc (2,5) added

g1− l1 = 1,g2− l2 = 3,g3− l3 = 1,g4− l4 = 2,g5− l5 = 1.

Then the current solution’s node weights are

w1 = 3,w2 = 2,w3 = 3,w4 = 0,w5 = 0.

Hence, the neighborhoods produced by Strategies 1–7 include some of the solutions
displayed in Fig. 2. In particular, the use of Strategy 1 on the current solution S0

results in the neighborhood, which consists of solutions depicted in Fig. 2a–c. Notice
that node 1 has the degree of 1, while its weighted degree is 3. On the other hand,
node 2 has the degree of 2, but its weighted degree is 2. In other words, node 1
is the lowest degree node but the highest weighted degree for the last added arc
(1,2). At the same time, node 2 is the highest degree node but the lowest weighted
degree node for (1,2). Solution in Fig. 2c is the only one in the neighborhood that
is produced by Strategy 2. Strategy 3 gives the neighborhood that includes only
the solutions in Fig. 2a, b. Strategy 4 produces the solutions in Fig. 2a, b. Strategy 5
gives only the solution in Fig. 2c. Strategy 6 results in the neighborhood that consists
only of the solution in Fig. 2a, and Strategy 7 gives the neighborhood that includes
the solutions in Fig. 2b, c.

It is easy to observe several relationships among the proposed strategies. In
particular, Strategies 1–7 transform the electrical grid by adding a power line into a
transmission corridor. In contrast, Strategies 8–14 work by deleting a single circuit
between a pair of buses from the grid. As a matter of fact, Strategies 8–14 are the
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direct opposites of Strategies 1–7, respectively, since the former remove arcs/lines
where the latter create them. For a given current solution, any of the neighborhoods
obtained using Strategies 2–7 are proper subsets of the neighborhood resulting
from using Strategy 1. Similarly, for a given current solution, its neighborhoods
created using Strategies 9–14 are all proper subsets of the neighborhood obtained
using Strategy 8. Of course, even with slight differences in the rules defining
neighborhoods, each iteration offers the possibility for divergence among differing
versions of the search algorithm. It is interesting to see what effect some differences
in terms of the way these strategies are defined have on the algorithm performance.
Observe that a node has a high weighted degree according to (10) when its adjacent
nodes have a large surplus of electricity. Hence, we would also like to understand the
effect this surplus of generated power at the adjacent buses has on the differences in
the behavior and performance of local search implementations based on Strategies 4,
5, 11, and 12.

3.2 Characteristics of the Algorithms Behavior

We want to further explore how the differences in strategies impact the behavior of
the search algorithms that utilize these strategies. To accomplish this, we consider
several characteristics of the search process, including:

1. The average number ns of solutions contained in the neighborhood, where the
average was taken over all iterations (i.e., until the local optimum was reached)
of a given sample.

2. The average number f of feasible solutions contained in the neighborhood (over
all iterations of a given sample).

3. The average proportion f/ns of feasible solutions to the total number of
solutions in the neighborhood (over all iterations of a given sample).

4. The average number b of improving, feasible solutions contained in the
neighborhood (over all iterations of a given sample).

5. The average proportion b/ns of improving feasible solutions to the total number
of solutions in the neighborhood (over all iterations of a given sample).

6. The local optimum OV .
7. The average best-local-improvement bld in the objective value from one

iteration to the next.
8. The average relative best-local-improvement bld/b. Where each iteration’s

relative best-local-improvement value is computed as a ratio of the best-
local-improvement value to the number of improving feasible solutions in the
neighborhood at each step (iteration), and the average was again taken over all
iterations.

9. The total improvement d in the objective value for a given strategy after all
iterations.

10. The maximum cost Cost of installing additional lines after all iterations.
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11. The number l of iterations, or steps, that the algorithm performed by before
reaching a local optimum.

Observe that the above characteristics, in varying ways, describe the behavior
and performance of a local search algorithm. For instance, the last characteristic l
values represent the speed with which the algorithm is able to find a local optimum,
whereas OV obviously gives us the quality of the solution found by the application
of a local search algorithm.

3.3 Diagnostic and Explorative Statistical Analysis

Let us first explain how the data set for explorative statistical analysis is produced.
A set I of randomly generated initial solutions of a given TNEP problem instance
is used to initialize a local search algorithm. For each strategy σi, i = 1, . . . ,14,
in Sect. 3.1, the respective search algorithm version is run on different initial
solutions S ∈ I and the (eleven) characteristics in Sect. 3.2 are computed from
the data collected during the algorithm’s execution. This produces a vector aS =
(aS 1, . . . ,aS 11) of the characteristics’ values for each initial solution S , i.e., an
algorithm run initialized from a given solution constitute a trial in this experiment.
Hence, combining these vectors (i.e., different trials) into a matrix Aσ = (aS )S∈I

for all initial solutions in the set I gives us a random sample for each considered
strategy σ ∈ {σ1, . . . ,σ14}.

Notice that each characteristic is treated as a random variable whose value
changes depending on a choice of initial solution and search strategy. Furthermore,
for a given strategy and a specified initial solution, together all the considered
characteristics form an (11-dimensional) random vector. As noted in Sect. 3.2, the
characteristics depict the search behavior and performance during the execution of
an algorithm. Therefore, by considering strategy σ an independent variable taking
values σ1, . . . ,σ14, we can apply multivariate statistical techniques to see what effect
a different choice of strategy has on the algorithms’ performance and behavior.

The descriptive statistics (such as a sample mean vector, sample covariance, and
correlation matrices.) help summarize the underlying random distribution of the
search characteristics. In particular, we compute the sample mean vector as follows:

μ =
1
|I| ∑S∈I

aS , (11)

where |I| denotes the cardinality of set I, μ is an 11-dimensional real vector

μ =

⎛

⎜⎝
μ1
...
μ11

⎞

⎟⎠
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and

μ j =
1
|I| ∑S∈I

aS j, j = 1, . . . ,11.

In addition, the sample variance–covariance matrix is calculated according to

Φ =
1
|I|− 1 ∑S∈I

(aS − μ)(aS − μ)T, (12)

where T symbolizes the transposition operation (i.e., (bi j)
T = (b ji)). Then the

sample correlation matrix

Ψ =
(

V 1/2
)−1

Φ
(

V 1/2
)−1

, (13)

where

V = diag(Φ) = (Φ j j) j=1,...,11 =

⎛

⎜⎝
Φ1,1

...
Φ11,11

⎞

⎟⎠

denotes the (11-dimensional) vector composed of the elements on the main diagonal
of matrix Φ .

To visually detect patterns, it is convenient to represent a sample correlation
matrix graphically by means of a temperature map. A temperature map depicts
each element of the correlation matrix by a colored square, so that the higher the
element’s value the warmer is the corresponding square’s color. For instance, the
correlation of 1 is a red square, whereas an element that displays −1 is shown on a
map by a blue square. In application to our analysis, the rows and columns of such
a map symbolize the characteristics and the bottom-left to top-right diagonal would
show the highest possible temperature of 1, since the squares of this diagonal simply
denote the correlation of the respective characteristic with itself.

The univariate distributions of the considered characteristics are visualized via
the correspondent box-and-whisker plots. The box plots display the distribution
quartiles, with median as the center point and the first and third quartiles q1,q3

giving the bottom and top edges of the box, respectively. The data that are not
considered outliers are shown by whiskers on a plot. The outliers are defined as
any value outside of the [q1±ω(q3− q1)] range, with ω = 1.5.
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4 Results and Discussion

This section presents the results of the numerical experiments that were conducted
on a benchmark TNEP instance known as Graver’s six-bus system. The system
represents a smaller size power network and is well studied in the context of
TNEP. This example allows us to gain some initial insight into common and
diverging patterns in the behavior and performance of local search versions using
alternative constructive heuristics. To accomplish this, we first apply the approaches
outlined in Sect. 3 on the 6-bus system and then present the results of statistical
analysis. The statistical methods in Sect. 3.3 are used as the means for explorative
analysis of the impact different choice of strategy (constructive heuristic) has on
the characteristics describing search behavior on the solution space of the TNEP
instance. Summarizing and visualizing these results allows us to observe some
patterns in the data. Possible explanations and interpretations for these observations
are also given in this section.

For each of the fourteen alternative strategies described in Sect. 3.1, a local
search algorithm utilizing the respective constructive heuristic was implemented in
MATLAB 7.11.0 (http://www.mathworks.com/).

Recall that a local search algorithm starts at some initial solution. When an
initial solution is infeasible, it provides no means of comparison for the first
iteration of the algorithm. Hence, infeasible solutions were excluded from any
further consideration. Out of 200 randomly generated initial solutions, six solutions
were infeasible, and so, they were not included into set I. The other 194 randomly
generated solutions formed set I of the initial solutions, which were used by a
local search algorithm to generate the data sets for statistical analysis. Moreover,
when using Strategies 6 and 13, none of the selected 194 initial solutions produced
a feasible neighborhood (i.e., a neighborhood containing at least a single feasible
solution). Consequently, these two strategies (6 and 13) were completely excluded
from further analysis.

To obtain the characteristics described in Sect. 3.2, the search algorithm imple-
mentations based on Strategies 1–5, 7, 8–12, and 14 were run on the benchmark
six-bus system instance of the TNEP problem (1)–(9), and, for each strategy (except
excluded Strategies 6 and 13), the following data set was collected during a search
process:

• The values for each of the decision variables xi j, yi j, fi j , and θi.
• The number nsN of solutions contained in the neighborhood N .
• The number fN of feasible solutions contained in the neighborhood N .
• The number bN of improving, feasible solutions contained in the neighborhood

N .
• The objective value OVN of the best solution in the neighborhood N .
• The best-local-improvement bld in the objective value from the previous step.
• The overall improvement d of the objective value from the initial solution to the

iteration when the local optimum was reached.

http://www.mathworks.com/
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Table 1 Sample means of the eleven characteristics for Strategies 1–5, 7, 8–12, and 14

Str ns Cost l OV d b/ns f /ns bld/b bld f b

1 10 960.93 12.21 1,509.79 2,402.46 0.39 0.87 40.22 185.12 8.69 3.94
2 5.13 731.44 5.93 2,877.39 1,034.85 0.36 0.83 73.91 157.77 4.29 1.87
3 5.89 898.2 10.29 1,717.7 2,194.55 0.48 0.92 63.01 202.34 5.42 2.78
4 5.04 708.01 5.56 2,823.25 1,088.99 0.33 0.86 86.41 170.92 4.36 1.66
5 5.01 853.27 8.46 2,071.26 1,840.99 0.49 0.83 70.78 200.36 4.16 2.45
7 10 960.93 12.21 1,509.79 2,402.46 0.39 0.87 40.22 185.12 8.69 3.94
8 10 453.62 1.79 3,791.14 121.11 0.1 0.42 27.34 39.3 4.16 0.95
9 5.8 453.22 1.46 3,817.8 94.44 0.13 0.48 26.84 32.76 2.73 0.71
10 5.58 466.07 0.64 3,808.21 51.12 0.08 0.43 20.93 25.06 2.4 0.46
11 5.14 454.74 1.02 3,835.59 75.66 0.12 0.46 25.75 31.14 2.38 0.61
12 5.15 455.59 0.8 3,798.3 57.34 0.1 0.46 22.48 25.94 2.38 0.52
14 10 453.62 1.79 3,791.14 121.11 0.1 0.42 27.34 39.3 4.16 0.95

• The cost CostS = ∑(i, j)∈E κi jxi j of a given solution S . Cost represents the part
of objective function (1) that corresponds to the cost of installing additional lines
in the power grid to satisfy changed load and generation parameters.

The characteristics in Sect. 3.2 were computed from the above data. The calculated
values formed respective random samples for every considered strategy (i.e.,
1–5,7,8–12,14) as explained in detail in Sect. 3.3. This allowed us to compute the
corresponding sample mean values and the correlation matrix for the characteristics,
as well as to draw box-and-whisker plot representations of a characteristic’s
univariate distribution for various strategies and all characteristics. We also used
the calculated sample correlation matrix to create a temperature map representing
the linear relationships between the pairs of characteristics.

Table 1 summarizes the sample means of characteristics ns, Cost, l, OV , d, b/ns,
f/ns, bld/b, bld, f , and b for Strategies 1–5, 7, 8–12, and 14.

Examination of the sample mean vectors of different strategies shows a clear
difference between Strategies 1–5,7, which install additional lines into transmission
corridors, and Strategies 8–12,14, which remove power lines. In particular, sample
means for the latter strategies appear to be more similar in values to each other,
whereas the sample means for the former strategies tend to vary more in comparison.
For instance, from Table 1, we can see that the means for Strategies 1–5, and 7 seem
to differ dramatically from Strategies 8–12,14 in terms of the variables OV , d, and
bld.

We use graphical representations of univariate distributions via box-and-whisker
plots to visually detect similarities and differences among the fourteen strategies in
terms of the distribution of values of each considered characteristic. By placing all
the box-and-whiskers plots of a common characteristic for all strategies together on
one figure, we can easily see which strategies produce similarly distributed values
of that characteristic. Figure 3 shows eleven subfigures, each of which combines
box-and-whisker plots of the respective characteristic for Strategies 1–5, 7, 8–12,
and 14.
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Fig. 3 Box-and-whisker plots of characteristics ns, Cost , l, OV , d, b/ns, f /ns, bld/b, bld, f , and
b for Strategies 1–5, 7, 8–12, and 14.

The combined box-and-whisker plots in the eleven subfigures of Fig. 3 once
again indicate a noticeable difference between those strategies (1–5,7) that add
power lines in the corridors and those (8–12,14) that remove circuits across
essentially all variables. This trend may reflect the fact that removing lines from the
transmission corridors in the grid is qualitatively different as compared to adding.
In fact, the TNEP problem involves expanding a network to meet demand, while
removing lines clearly does the opposite. This explains why Strategies 8–14 perform
so poorly in the minimization of the objective function (1).

Observe that Strategies 1 and 7 appear identical in both the box-and-whisker
plots in Fig. 3 and with respect to their mean values in Table 1. As it turned out,
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Fig. 4 Temperature map for correlation matrices for strategies 1, 2, 3 (top) and 8, 9, 10 (bottom),
respectively. The correlation matrices were constructed using the data that describe characteristics
ns, Cost , l, OV , d, b/ns, f /ns, bld/b, bld, f , and b

neither the 194 initial solutions nor the solutions created during an algorithm run
created a cycle in the network. As a result, Strategy 7 was simply reduced to
Strategy 1. The same is true for Strategy 14 with respect to Strategy 8. These
results also explain why Strategies 6 and 13 (which were excluded) produced no
successful trials, since, by definition, these strategies only accept solutions which
create a cycle. Considerable differences appear to exist among Strategies 1–5,7
for most of the eleven characteristics. Although, for all of them, the variability in
the characteristics’ values is reduced in comparison with Strategies 8–12,14. It is
noteworthy that, regardless of strategy, the average relative best-local-improvement
bld/b appears to be roughly the same.

The calculated correlation matrices for pairs of characteristics are visualized in
Figs. 4 and 5. The former figure contains six temperature maps for Strategies 1,
2, and 3 (top) and Strategies 8, 9, and 10 (bottom). The latter figure contains six
temperature maps for Strategies 4, 5, and 7 (top) and Strategies 11, 12, and 14
(bottom). The warmer colors correspond to positive correlations and the cooler
colors denote negative correlations. The twelve plots allow us to visually detect
the patterns in these pairwise relationships.

The correlation matrices provide insight into the strength of the linear relation-
ship between pairs of variables. Consequently, certain high correlation values are
expected in the sample correlation matrix, such as the values on the reverse diagonal
and those representing correlations between bld and bld/b, f and f/ns, b and b/ns.
At the same time, other linear relationships can be seen in Figs. 4 and 5, which
are unanticipated and therefore, far more interesting. For instance, there are strong
negative correlations between f/ns and OV across all strategies, and strong positive
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Fig. 5 Temperature map for correlation matrices for strategies 4, 5, 7 (top) and 11, 12, 14 (bottom),
respectively. The correlation matrices were constructed using the data that describe characteristics
ns, Cost , l, OV , d, b/ns, f /ns, bld/b, bld, f , and b

correlations between bld and d. In other words, a larger proportion of feasible
solutions seems to allow for a lower overall objective value, and a higher local
improvement in the objective value indicates a higher overall improvement through
all iterations. Strategies 1, 7, 8, and 14, all have white rows for the characteristic ns,
the average number of solutions per iteration. This is because for those strategies,
there is no variability in ns. In all four cases ns= 10 for every single trial (i.e., initial
solution from I). Because there is no variation, a correlation with that variable is
undefined.

5 Conclusion

This chapter presented an approach aimed at understanding the behavior of a local
search applied to the TNEP problem. Our approach utilized explorative statistical
analysis and diagnostic plots to visually detect patterns in the data characterizing the
algorithm performance. The interpretation of discovered differences and similarities
helps gain initial insight into the solution space properties of the TNEP problem
instance, which is based on a well-known benchmark power system. The small size
of the considered network is one of the limitations of the study. A similar study on
several instances based on larger, more realistic power networks would be necessary
to confirm or disprove the observed properties.
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6. R. Hemmecke, M. Köppe, J. Lee and R. Weismantel Nonlinear Integer Programming.
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