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Preface

Distributed systems consisting of a number of autonomous computing elements con-
nected over a communication network that cooperate to achieve common goals have
shown an unprecedented growth in the last few decades, especially in the form of
the Grid, the Cloud, mobile ad hoc networks, and wireless sensor networks. Design
of algorithms for these systems, namely the distributed algorithms, has become an
important research area of computer science, engineering, applied mathematics, and
other disciplines as they pose different and usually more difficult problems than the
sequential algorithms. A graph can be used to conveniently model a distributed sys-
tem, and distributed graph algorithms or graph-theoretical distributed algorithms, in
the context of this book, are considered as distributed algorithms that make use of
some property of the graph that models the distributed system to solve a problem in
such systems.

This book is about distributed graph algorithms as applied to computer networks
with focus on implementation and hopefully without much sacrifice on the theory. It
grew out of the need I have witnessed while teaching distributed systems and algo-
rithms courses in the last two decades or so. The main observation was that although
there were many books on distributed algorithms, graph theory, and ad hoc networks
separately, there did not seem to be any book with detailed focus on the intersection
of these three major areas of research. The second observation was the difficulty
the students faced when implementing distributed algorithm code although the con-
cepts and the idea of an algorithm in an abstract manner were perceived relatively
more comfortably. For example, when and how to synchronize algorithms running
on different computing nodes was one of the main difficulties. In this sense, we have
attempted to provide algorithms in ready-to-be-coded format in most cases, showing
minor details explicitly to aid the distributed algorithm designer and implementor.

The book is divided into three parts. After reviewing the background, Part I pro-
vides a review of the fundamental and better known distributed graph algorithms.
Part II describes the core concepts of distributed graph algorithms that have wide
range of applications in computer networks in an abstract manner, without consider-
ing the application environment. However, in Part III, we focus ourselves on ad hoc
wireless networks and show how some of the algorithms we have investigated can
be modified for this environment.

vii
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viii Preface

The layout of each chapter is kept quite uniform for ease of reading. Each chapter
starts with an introduction describing the problem shortly by showing its possible
applications in computer networks. The problem is then stated formally, and exam-
ples are provided in most of the cases. We then provide a list of algorithms usually
starting by a sequential one to aid understanding the problem better. The distributed
algorithms shown may be well established if they exist and sometimes algorithms
that have been recently published as articles are described with examples if they
have profound effect on the solution of the problem.

An algorithm is first introduced conceptually, and then, its pseudocode is given
and described in detail. We provide similar simple graph templates to show the
steps of the implementation of the algorithm and then provide analysis of its time
and message complexity. Proof of correctness is given only when this does not seem
obvious or, on the contrary, a reference is given for the proof if this requires lengthy
analysis. The chapter concludes by the Chapter Notes section, which usually empha-
sizes main points, compares the described algorithms, and also provides a contem-
porary bibliographic review of the topic with open research areas where applicable.
This style is repeated throughout the book for all chapters. Exercises at the end of
chapters are usually in the form of small programming projects in line with the main
goal of the book, which is to describe how to implement distributed algorithms.

There are few aspects of the book worth mentioning. Firstly, many self-
stabilizing algorithms are included, some being very recent, for most of the top-
ics covered in Part II. There are few algorithms, again in Part II, that are new and
have not been published elsewhere. Also, an updated survey of the topic covered
is provided for all chapters. Finally, a simple simulator we have designed, imple-
mented, and used while teaching distributed algorithm courses is included as the
final chapter, and its source code is given in Appendix B.

The intended audience for this book are the graduate students and researchers
of computer science and mathematics and engineering or any person with basic
background in discrete mathematics, algorithms, and computer networks.

I would like to thank graduate students at Ege University, University of California
Davis, California State University San Marcos and senior students at Izmir Univer-
sity who have taken the distributed algorithms courses, sometimes under slightly
different names, for their valuable feedback when parts of the material covered in
the book was presented during lectures. I would like to thank Aysegul Alaybeyoglu,
Deniz Cokuslu, Orhan Dagdeviren, and Jukka Suomela for their review of some
chapters and valuable comments. I would also like to thank Springer editors Wayne
Wheeler and Simon Rees for their continuous support during the course of this
project and Donatas Akmanavičius for the final editing process.

K. ErciyesIzmir, Turkey
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Chapter 1
Introduction

Abstract A distributed system consists of a set of computational nodes connected
by a communication network that cooperate to accomplish common tasks. In this
chapter, we will review the benefits of using a distributed system, the architecture
of a distributed system, and the challenges facing the designers.

1.1 Distributed Systems

The basic requirements from a distributed system are that the nodes should be au-
tonomous so that they can work independently; the network should be connected,
that is, any node should have a communication link directly or indirectly to any other
node; and there should be a coordination mechanism for the nodes to cooperate to
achieve common goals.

There are a number of benefits to be gained by utilizing distributed systems. One
of the obvious advantages of using a distributed system is resource sharing. Access
to a central resource has two disadvantages as this central site becomes a bottleneck
for communications and also is a single point of failure. Distributing the resources
such as the database and peripherals over a network overcomes these problems.

Resources and computation can be replicated at various sites providing fault tol-
erance as a replica may be substituted in the case of the dysfunctioning of a node.
This type of fault tolerance is an important reason to employ distributed systems. It
is also possible for the application to be inherently distributed such as bank trans-
action systems and airline reservation systems where employment of distributed
systems is inevitable.

A distributed system can be modeled as a graph G(V,E) conveniently where
V is the set of vertices and E is the set of edges of G. The computing nodes of
the distributed system are represented by the vertices of the graph, and an edge ex-
ists between the nodes if there is a communication link between them. Figure 1.1
displays a graph that represents a distributed system consisting of nodes numbered
1, . . . ,10. The first thing that may be noticed is that the graph is connected, provid-
ing a communication path between any pair of nodes. Many nodes are not directly
connected to each other; therefore, they have to rely on their neighbor nodes to
communicate with the other nodes of the network.

K. Erciyes, Distributed Graph Algorithms for Computer Networks,
Computer Communications and Networks, DOI 10.1007/978-1-4471-5173-9_1,
© Springer-Verlag London 2013
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2 1 Introduction

Fig. 1.1 A graph
representing a distributed
system

We will use graphs to represent distributed systems and show the execution of
a distributed algorithm in these graphs frequently. In this chapter, we will first de-
scribe platforms and models for distributed computing in Sects. 1.2 and 1.3 and
then describe the software architecture of a distributed system in Sect. 1.4. The
challenges in the design of distributed algorithms are reviewed in Sect. 1.5, and dis-
tributed graph algorithms are described in Sect. 1.6. Finally, we conclude by the
organization of the book.

1.2 Distributed Computing Platforms

Due to the recent technological advancements, in the last few decades, we have
witnessed diverse distributed system platforms such as the Grid, The Cloud, mobile
ad hoc networks, and wireless sensor networks that are described below.

1.2.1 The Grid

The Grid consists of loosely coupled, heterogeneous, and geographically dispersed
computing elements that are connected by a network acting together to perform
large tasks [3]. These computationally intensive scientific tasks may include various
applications such as seismic analysis, drug discovery, and bioinformatics problems.
Grid computing provides effective usage of the unused processing power and results
in decreased completion time for a task due to parallelization.

The size of a grid varies from a small network of workstations in a corpora-
tion to thousands of nodes across many networks and nations. Grids require general
software libraries called the middleware to accomplish coordination among a large
number of nodes that comprise them. Resource discovery is the process of finding
the location of the required resources such as the database tables in the Grid [2].
Resource allocation process, on the other hand, tries to map these resources to the
application requirements for the best performance. Both resource discovery and re-
source allocation are active research areas for the grids. An important problem with
the grids is that nodes may abort due to faults that may be difficult to find and take
necessary action due to the lack of central control. For this reason, fault tolerance
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and also load balancing is another important research area in the grids [8]. Lack of
central control and the need to provide access to a large number of users requires
protection due to possible risks. The European Grid Infrastructure (EGI) is a grid
for high-energy physics, earth observation, and biology applications [6], and in the
United States, the National Grid (USNG) [9] is prototyping a computational grid for
infrastructure and an access grid for people.

1.2.2 Cloud Computing

The cloud computing evolved from grid computing with the aim to deliver the
computing as a service to the users by extending the object-oriented programming
paradigm. Cloud computing provides computation, software applications, data ac-
cess, data management, and storage for resources without requiring cloud users to
know the location and other details of the computing infrastructure [7]. Grid com-
puting may be included in the cloud or not depending on the type of application and
users. Cloud computing and grid computing aim at scalability, and both use load
balancing to accomplish scalability. In grid computing, a single task is divided into
smaller tasks that are run on a number of processors to effectively use the avail-
able computing power, whereas in cloud computing, service offered to users is not
restricted to processing power and includes website hosting, database support, etc.
Cloud computing, in general, offers more services than the Grid.

1.2.3 Mobile Ad hoc Networks

A wireless ad hoc network is a decentralized network consisting of wireless nodes
that do not rely on a predefined infrastructure such as routers or access points. In-
stead, each node participates in routing by forwarding data to other nodes regarding
dynamically changing network topology. A mobile ad hoc network (MANET) is a
network without any fixed structure formed for a purpose by mobile devices con-
nected by wireless communication links. Each node of a MANET moves indepen-
dently, forming a dynamic network that changes its topology continuously. Nodes of
a MANET must be able to route any messages not destined to them; therefore, each
node functions as a router. Examples of MANETs are the disaster relief operations,
military networks, and vehicular ad hoc networks.

1.2.4 Wireless Sensor Networks

A wireless sensor network (WSN) consists of many small nodes of computing ele-
ments, each equipped with sensing and wireless communication capabilities. These
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networks can obtain data about their environment and transfer this data to a central
node using multi-hop communication to be analyzed further. The WSNs have large
application spectrum such as habitat monitoring, military surveillance, and target
tracking [1]. WSNs form a large-scale distributed system and require scalable dis-
tributed algorithms to solve problems such as data aggregation, topology control,
and routing.

1.3 Models

The basic models of a distributed system are the message passing and shared-
memory models. In the message passing model, nodes of the distributed system
communicate by messages only. Messages are communicated in rounds in syn-
chronous message passing, where messages sent in round k are delivered to all
recipients before messages in round k + 1 can be transferred. In asynchronous mes-
sage passing, however, messages are assumed to eventually reach the destinations
after unknown delays. Analyzing asynchronous message passing algorithms is more
difficult than synchronous ones due to the uncertainties involved.

In shared-memory models, processes communicate by reading and writing to
shared memory. Synchronization is an important issue also in shared-memory sys-
tems. Distributed shared-memory systems implement shared memory model over
the message passing model to use the available shared memory software modules
conveniently. Our analysis in this book is confined to message-passing distributed
systems without any shared memory in general, except for some self-stabilizing al-
gorithms, where it will be assumed that a process can read the values of the registers
of its neighbors.

1.4 Software Architecture

The software modules at a node of a distributed computing system consist of the
distributed algorithm that is the application software: the local operating system,
the middleware, and the protocol stack as shown in Fig. 1.2. The operating system
at each node is mainly responsible for resource management tasks such as file and
memory management and local synchronization among local tasks. A distributed
operating system, on the other hand, aims to provide global resource management,
synchronization, and services to the users so that the users are not aware of the
location of the service.

Instead of designing and implementing a distributed operating system from
scratch, its tasks are usually handled by special software modules called the
middleware targeting at the specific task at hand. The middleware layer is between
the local operating system and the application software, and a software module in
this layer performs a specific function that may be required by a number of applica-
tions. For example, a synchronizer is a middleware module that provides synchro-
nization among application level processes, and any application that needs synchro-
nization may use this module by invoking its interface routines.
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Fig. 1.2 Software modules
of a network node

The protocol stack is responsible for the correct and timely delivery of mes-
sages between the nodes of the distributed system. Distributed systems do not have
a common clock and therefore require synchronization at the hardware, operating
system, middleware, or the application (algorithm) level. Synchronization is key to
the correct coordination of the distributed algorithms. In general, there is no shared
memory in a distributed system; therefore, all data transfers must be performed by
message passing between the nodes.

1.5 Design Issues

Design issues and challenges in a distributed system may be broadly classified as
in the area of system software and the distributed algorithms. Communication, syn-
chronization, and the security problems are the key issues in the system software
development side. Problems to be solved in distributed algorithms are numerous
ranging from fault tolerance algorithms to load balancing to leader election in dis-
tributed systems. A distributed algorithm is designed to run at a node of a distributed
system cooperating and synchronizing by other distributed algorithms running at
other nodes of the distributed system to achieve a common goal. A symmetric dis-
tributed algorithm is executed on all nodes of the distributed system, whereas nodes
may be running different components of an asymmetric distributed algorithm.

1.5.1 Synchronization

A fundamental problem in a distributed system is time synchronization, which aims
at keeping the clocks of the nodes of the system in synchrony. As in a single pro-
cessor system, access to shared resources must be monitored. In this so-called mu-
tual exclusion problem, a number of algorithms were developed to provide mutual
exclusion in distributed systems. Deadlocks in distributed systems may occur as
in a single-processor system, where nodes of the distributed system wait for each
other indefinitely, and no progress can be achieved. Precautions should be taken to
prevent deadlocks. The analysis of distributed algorithms should provide proofs of
deadlock-free executions. Leader election is another common problem where it is
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required to elect one of the all nodes or a group of nodes in the system to perform
special tasks.

1.5.2 Load Balancing

It is a general requirement to distribute load that consists of code and data evenly to
the nodes of the distributed system. The code and data of a process may need to be
migrated from a heavily loaded node to a node with less load. The response time,
which is the time taken from registering the input to providing a response to it, and
throughput, which is the number of tasks finished in a given time, are two important
metrics of performance in a distributed system. Load balancing aims to reduce the
average response time and increase throughput in a distributed system.

While balancing the load, real-time requirements of the task should also be con-
sidered. A hard real-time task, such as a military application or a process control
task, requires to be executed before a given deadline, and failure to do so may result
in irreversible losses, whereas missing deadlines in a soft real-time system such as
a banking system results in degraded performance.

1.5.3 Fault Tolerance

The aim of fault tolerance in distributed systems is to handle faults such as the crash
of a computing node or a link connecting two nodes or a software module running at
a node. Tolerance of faults is imperative in applications such as plant control or mil-
itary applications. One way of achieving fault tolerance is by replicating code and
data so that the replica may continue to work in the case of faults. The correct nodes
reach agreement using consensus algorithms, which is another area of research in
fault tolerant computing. Check-pointing and recovery procedures record the state
of the software periodically on a secondary storage, and in case of faults, the sys-
tem may be started from the last recorded state. These algorithms require significant
synchronization in distributed systems.

Self-stabilizing algorithms aim at reaching a stable state in the presence of faults
starting from any arbitrary initial condition. These algorithms should achieve a sta-
ble state in a bounded number of steps.

1.6 Distributed Graph Algorithms

The scope of the distributed algorithms in this book is confined to distributed graph
algorithms, sometimes called graph-theoretical distributed algorithms, which ex-
ploit some property of the graph that represents the underlying communication net-
work. For example, constructing a spanning tree of a graph is a well-studied prob-
lem, and there are few algorithms that find the spanning trees sequentially. Here, we
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will investigate how nodes of a distributed system cooperate to construct a spanning
tree using their local knowledge of their neighbors.

The sequential graph algorithms are NP-Complete most of the time defying any
solutions in polynomial time [4]. Using heuristics or approximation algorithms that
find suboptimal solutions to the problems are the only choices in these situations.
Heuristic approaches provide suboptimal solutions most of the time, but they do not
guarantee these solutions. On the other hand, approximation algorithms guarantee to
find a solution that approximates the optimal solution within a given factor. The task
of the distributed graph algorithm designer then is twofold: to design an algorithm
that is distributed and provide an approximation to the optimum solution at the same
time.

The aim of this book is the design of such distributed approximation graph al-
gorithms that may be of use in distributed applications. As a concrete example,
finding a minimum connected dominating set that is the subset V ′ of vertices of a
graph G with minimum size such that every vertex of the graph is either in V ′ or
a neighbor of V ′ and all of the vertices in V ′ are connected is NP-hard for general
graphs [5]. Therefore finding an approximation algorithm that has a better approxi-
mation than the best known algorithm is clearly a contribution on its own. Providing
a distributed algorithm that approximates a connected dominating set either by mod-
ifying or improving the sequential solution or designing from scratch is also another
contribution. A connected dominating set can be used as a backbone in an ad hoc
wireless network. Modifying the distributed approximation algorithm now for an
ad hoc wireless network by optimizing for energy levels and mobility of nodes is
yet another challenge and may be a contribution on its own right. In summary, the
contribution of the researcher in this field may be in few aspects; first, by design-
ing an efficient approximation algorithm with a better approximation factor than the
existing algorithms for the problem at hand; second, by providing a distributed ver-
sion of the algorithm if this is possible and finally adapting this algorithm for ad hoc
wireless networks by further introducing new parameters such as the mobility and
energy levels of the nodes. Clearly, there are research challenges even in applying
the well-established distributed approximation graph algorithms to ad hoc wireless
networks.

1.7 Organization of the Book

Chapters in the book are organized in three parts. The first part describes fundamen-
tal graph algorithms starting by the construction of spanning trees in Chap. 4; graph
traversal algorithms in Chap. 5; minimum spanning tree construction in Chap. 6;
routing algorithms in Chap. 7; and self-stabilization in Chap. 8. Most of the algo-
rithms in this part are well established, and our emphasis is on the implementation
of these algorithms with detailed examples.

Part II is about graph-theoretical distributed approximation algorithms that
mostly have applications in ad hoc wireless networks. These algorithms, as most
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8 1 Introduction

of the algorithms provided in this book, use only local neighbor information most
of the time and are called local algorithms. This part provides several recent algo-
rithms with implementation details and examples. The algorithms are presented in
an abstract manner without aiming at any specific application.

The algorithms developed in Parts I and II are reviewed and put into perspective
for concrete network applications in Part III. This part starts by reviewing the model
presented in Chap. 2, and we see that there have to be substantial changes. We also
review some of the graph-theoretical algorithm concepts such as the dominating
sets and provide new algorithms considering the additional parameters such as the
mobility and energy level of the nodes in wireless ad hoc networks. Finally, a simple
simulator that was developed to run distributed algorithms is presented with the
implementation example to construct a spanning tree.
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Chapter 2
Graphs

Abstract Graphs are discrete structures that consist of vertices and edges connect-
ing some of these vertices. Graphs have many applications in Mathematics, Com-
puter Science, Engineering, Bioinformatics, and many other disciplines. Graphs are
frequently used to model a communication network where computational nodes of a
network are represented by vertices and the communication links between the nodes
are represented by edges of the graph. In this chapter, we will review basic concepts
in graph theory in relation to the modeling of a distributed system.

2.1 Definition of Graphs

Definition 2.1 (Graph) A graph is a tuple G(V,E) where V is a nonempty set of
vertices (or nodes) and E is a set of edges. Each edge has either one or two vertices
as endpoints, that is, each edge is either a one- or two-element subset of V .

The vertex set V of a graph G may be infinite, in which case the graph is called
an infinite graph, and a graph with a finite vertex set is called a finite graph. In this
book, we will only consider finite graphs. For the graph G = (V ,E) and v ∈ V , the
edge e = {v} is called a self-loop. An edge is identified by the two vertices, and the
edge is said to be incident to the vertices. For example, edge e = {v1, v2}, sometimes
shown as e = v1v2 or ev1v2 , is incident to the vertices v1 and v2. The number of
vertices of a graph (|V |) is called its order, and the number of its edges (|E|) is
called its size. We will use literals n for the order and m for the size of a graph.

A graph that contains multiple edges connecting the same vertices is called a
multigraph. A graph that does not contain edges that are self-loops and is not a
multigraph is called a simple graph. We will only consider simple graphs in this
book.

Definition 2.2 (Vertex Adjacency) Let G(V,E) be a graph. Two vertices v1 and
v2 are said to be adjacent if there exists an edge e ∈ E that connects them so that
e = {v1, v2}.

Definition 2.3 (Edge Adjacency) For a graph G(V,E), two edges e1 and e2 are
said to be adjacent if there exists a vertex v that is incident to (connects) both edges.

K. Erciyes, Distributed Graph Algorithms for Computer Networks,
Computer Communications and Networks, DOI 10.1007/978-1-4471-5173-9_2,
© Springer-Verlag London 2013

11

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4471-5173-9_2
http://www.it-ebooks.info/


12 2 Graphs

Fig. 2.1 (a) An undirected
simple graph; (b) a directed
multigraph

Based on these definitions, we can now define the neighborhood of a vertex as
follows.

Definition 2.4 (Neighborhood) Given G(V,E), the neighborhood of a vertex
v ∈ V is the set of vertices that are adjacent to v. Formally,

N(v) = {
u ∈ V : e(u, v) ∈ E

}
.

N(v) is usually called the open neighborhood of v, whereas N [v] = N(v) ∪ {v}
is called the closed neighborhood of v, that is, the union of all neighbors of v and
itself. The vertices of a graph are drawn as circles, and edges are the lines joining
these vertices as shown in the example graph of Fig. 2.1(a), where V = {1,2,3,4}
and E = {{1,2}, {2,3}, {2,4}, {3,4}, {4,1}}. The neighborhood sets for vertex 2 are
N(2) = {1,3,4} and N [2] = {1,2,3,4}. We will mostly use numbers to represent
the vertices, unless this complicates description of an algorithm, in which case we
will use letters.

Definition 2.5 (Degree) The degree of v ∈ V , deg(v), is the number of edges plus
twice the number of self-loop edges incident to v.

The maximum degree of a graph is denoted by �(G), and the minimum degree
by δ(G). �(G) of the graph in Fig. 2.1(a) is 3, and δ(G) is 2.

Up to now, we have considered undirected graphs that have undirected edges.
However, in certain applications, such as the representation of data flow in computer
networks, it may be required to assign directions to edges, in which case directed
graphs are obtained.

Definition 2.6 (Directed Graph) A directed graph (digraph) G(V,E) consists of
a nonempty set of vertices V and a set of directed edges E where each e ∈ E is
associated with an ordered set of vertices.

An edge e that is associated with the ordered pair (u,v) is described as starting
from u and ending at v. Figure 2.1(b) shows a digraph with V = {1,2,3,4} and
E = {{1,1}, {1,2}, {2,4}, {3,2}, {3,4}, {4,3}, {4,1}}.
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Fig. 2.2 (a) A bipartite
graph; (b) K3; (c) K4

Definition 2.7 (In-Degree, Out-Degree) The in-degree of a vertex v in a digraph
G is the total number of edges in E that end at v. The out-degree of v is the total
number of edges in E that start from v. We will denote the in-degree of v by degin(v)

and the out-degree by degout(v).

2.1.1 Special Graphs

We will describe some special graphs such as a complete graph, bipartite graph,
and the complement of a graph in this part.

Definition 2.8 (Complete Graph) For the graph G(V,E), if ∀v ∈ V , N(v) =
V \ {v}, that is, if every vertex is connected to all other vertices of G, then G is
called a complete graph. For a graph G with n vertices, the complete graph is de-
noted by Kn. For Kn(V,E), |E| = n(n − 1)/2.

Definition 2.9 (Bipartite Graphs) A graph G(V,E) is called bipartite if V can be
partitioned into two disjoint sets V1 and V2 such that every edge of G joins a vertex
in V1 to a vertex in V2.

A bipartite graph with V1 = {1,2,3,4} and V2 = {5,6,7} is shown in Fig. 2.2(a),
and K4 and K5 are shown in Fig. 2.2(b) and (c).

Definition 2.10 (Complement of a Graph) The complement of a graph G(V,E) is
the graph H(V,E′) such that e = {v1, v2} ∈ E′ if and only if e = {v1, v2} /∈ E. The
complement of G is denoted G′ or Ḡ.

A graph G and its complement are shown in Fig. 2.3. A weighted graph
G(V,E,w) is a graph that has weights associated with edges, that is, w : E → R.
Weighted graphs are frequently used to model communication networks as asso-
ciated weights for edges may represent communication costs of sending messages
over the links represented by the edges.
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Fig. 2.3 (a) A graph
G(V,E). (b) Its complement
G′(V ,E′)

2.1.2 Graph Representations

In order to be able to perform some computation on graphs, they have to be repre-
sented in a format suitable for processing in a computer. Two important methods of
representation are the adjacency matrices and adjacency lists.

Definition 2.11 (Adjacency Matrix) The adjacency matrix of a graph G(V,E) with
n vertices is an n × n matrix which has entry 1 at element (i, j) if there is an edge
connecting vertex i to vertex j and 0 otherwise.

Definition 2.12 (Incidence Matrix) The incidence matrix of a graph G(V,E) with
n vertices and m edges is an n × m matrix which has entry 1 at element (i, j ) if
vertex i is incident to edge j and 0 otherwise.

Definition 2.13 (Adjacency List) The adjacency list of a graph G(V,E) with n

vertices is a list of n elements where each element consists of a vertex v ∈ V and its
neighbors connected using linked lists.

Figure 2.4 displays the adjacency matrix and the adjacency list of a graph.

2.2 Walks, Paths and Cycles

Definition 2.14 (Walk) A walk w = (v1, e1, v2, e2, . . . , vn, en, vn + 1) in G is an
alternating sequence of vertices and edges in V and E, respectively, such that for
all i = 1, . . . , n, {vi, vi+1} = ei . A walk is called closed if v1 = vn+1 and open
otherwise.

Definition 2.15 (Trail, Tour) A trail in G is a walk in G where no edge is repeated
and, a tour is a closed trail. An Eulerian trail is a trail that contains exactly one copy
of each edge in E, and an Eulerian tour is a closed trail (tour) that contains exactly
one copy of each edge

Definition 2.16 (Path) A path p from a vertex u to vertex v in graph G is a sequence
of edges e1, . . . , en such that each consecutive edge is incident to consecutive ver-
tices along the path. The length of p is the number of edges it contains. When G
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Fig. 2.4 (a) A graph G(V,E). (b) Its adjacency matrix representation. (c) Its adjacency list rep-
resentation

is simple, a path can be represented by the set of vertices v1, . . . , vn that it passes
through (traverses). The path is called a circuit if it starts and ends at the same ver-
tex. A Hamiltonian Path is a path that contains each vertex in V once. Alternatively,
we can say that a path is a nontrivial walk with no edges and vertices repeated.

Definition 2.17 (Cycle) A cycle is a circuit of length of at least 3 and with no
repeated edges except the first and last vertices. A Hamiltonian cycle is a cycle in
a graph containing every vertex.

Definition 2.18 (Hamiltonian/Eulerian Graph) A graph G = (V ,E) is said to be
Hamiltonian if it contains a Hamiltonian cycle and Eulerian if it contains an Eule-
rian tour.

A connected graph G is Eulerian if and only if every vertex of G has even degree.
A connected graph G has Euler Trail if and only if the number of vertices with odd
degree is less than or equal to 2. Figure 2.5 shows Hamiltonian Path, Hamiltonian
Cycle, Eulerian Trail, and Eulerian Cycle. In (c), there are two odd-degree vertices
as 2 and 8, and therefore an Eulerian Trail exists as shown. In (d), all vertices have
even degrees, so an Eulerian Cycle exists as illustrated.

2.2.1 Diameter, Radius, Circumference, and Girth

Definition 2.19 (Distance) For a graph G(V,E), the distance between the two ver-
tices v1 and v2 in V is the length of the shortest walk beginning at v1 and ending
at v2, provided that such a walk exists. We will write dG(v1, v2) to denote the dis-
tance between v1 and v2 in G.

Definition 2.20 (Diameter, Eccentricity, Radius) The diameter of G (diam(G)) is
the length of the greatest distance in G. The eccentricity of v1 is the maximum
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Fig. 2.5 (a) A Hamiltonian trail through vertices 1, 8, 2, 7, 6, 3, 4, 5. (b) A Hamiltonian path
through vertices 1, 2, 3, 4, 5, 6, 7, 8, 1. (c) An Eulerian trail through vertices 8, 2, 1, 8, 7, 2, 3, 4, 5,
6, 3. (d) An Eulerian tour through vertices 8, 7, 9, 2, 7, 6, 5, 4, 3, 6, 9, 3, 2, 1, 8, all shown by bold
lines and each edge labeled in sequence

distance from v1 to any other vertex v2 in V . The radius of G is the minimum
eccentricity of vertices of G.

Definition 2.21 (Girth) For a graph G(V,E), the girth of G is the length of the
shortest cycle, provided that there is a cycle. When G does not have any cycle, the
girth is defined as 0.

Definition 2.22 (Circumference) For a graph G(V,E), the circumference of G is
the length of the longest cycle, provided that there is a cycle in G. When G does not
have any cycle, the circumference is defined as ∞.

The diameter of the graph in Fig. 2.5(a) is 4, for example, as the distance between
vertices 1 and 5 through vertices 2–7–6. We will see that diam(G) is an important
parameter in the determination of time complexities of distributed algorithms as it
provides an upper bound on the time that a message is communicated between the
two farthest points of a network graph.

2.3 Subgraphs

Certain applications may require finding solutions to a problem by computing the
solution for small parts of the graph iteratively and then combining these partial
solutions to obtain the final solutions. Informally, a smaller part of the graph is
called a subgraph.
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Fig. 2.6 (a) A graph G.
(b)–(d) Spanning subgraphs
of G. (e), (f) Subgraphs of G

Fig. 2.7 (a) A graph G.
(b) Edge-induced graph of G

of edges {1,4}, {4,3}.
(c) Vertex-induced graph of
G of vertices 2, 3, 4

Definition 2.23 (Subgraph, Spanning Subgraph) A graph H = (V ′,E′) is called a
subgraph of G if V ′ ⊆ V and E′ ⊆ E, with u and v ∈ V ′; ∀{u,v} ∈ E′, that is,
all vertices of H are also vertices of G and all edges of H are also edges of G. If
V ′ = V , which means that H includes (covers) all vertices of G, then H is called a
spanning subgraph of G.

Figure 2.6 shows the subgraphs of a graph.

Definition 2.24 (Edge-Induced Subgraph, Vertex-Induced Subgraph) Given an
edge set E′ ⊆ E, the edge induced subgraph by E′ is H = (V ′,E′) where v ∈ V ′ if
and only if it is incident to an edge in E′. Similarly, given a vertex set V ′ ⊆ V , the
vertex induced subgraph by V ′ is H = (V ′,E′) where {v1, v2} ∈ E′ if and only if
both v1 and v2 are in V ′.

Figure 2.7 shows the edge-induced and vertex-induced subgraphs of a graph.

2.4 Connectivity

An important property of a communication network is its capacity to withstand node
and link failures. For example, it may be required to know the largest number of
link failures that result in a disconnected network where there is no walk between
every pair of computing nodes. Similarly, in graphs, we may need to determine the
number of edge removals that will result in a disconnected network. Connectivity of
a network is the determination of such parameters. Also, vertex and edge deletion
methods are important in some of the algorithms that require removing a vertex
from the graph at each iteration; we will see some of them in Part II.

Definition 2.25 (Connectedness) A graph G(V,E) is connected if there is a walk
between any pair of vertices v1 and v2. A digraph G is strongly connected if for
every walk from every vertex v1 ∈ V to any vertex v2 ∈ V , there is also a walk from
v2 to v1 [3].
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Fig. 2.8 (a) A bridge. (b) A cutpoint. Both are shown by dashed lines

Definition 2.26 (Component) A component of a graph G(V,E) is a subgraph G′
of G where any pair of vertices in G′ is connected. A connected graph G has only
one component which is itself.

Definition 2.27 (Edge Deletion Graph) For a graph G(V,E) and E′ ⊂ E, the graph
G′ formed after deleting the edges in E′ from G is the subgraph induced by the edge
set E \ E′, which is denoted G′ = G − E′.

Definition 2.28 (Vertex Deletion Graph) For the graph G(V,E) and V ′ ⊂ V , the
graph G′ formed after deleting the vertices in V ′ from G is the subgraph induced
by the vertex set V \ V ′, which is denoted G′ = G − V ′.

2.4.1 Cutpoints and Bridges

Definition 2.29 (Cutpoint) For a graph G(V,E), a vertex v ∈ V is a cutpoint of G

if G−v has more components than G has. If G is connected, G−v is disconnected.

Definition 2.30 (Bridge, Cutset) For a graph G(V,E), a bridge is an edge e ∈ E

deletion of which increases the number of components of G. A minimal set of edges
whose deletion disconnects G is called a cutset in G.

The deletion of a bridge from a connected graph G provides two disconnected
components of G.

Definition 2.31 (Block) A block of a graph G is its maximal subgraph that is con-
nected and contains no cutpoints.

Figure 2.8 displays a bridge and a cutpoint of a graph. The subgraphs defined by
vertices 1, 2, 7, 8 and 3, 4, 5, 6 are also blocks.

Definition 2.32 (Connectivity) The vertex connectivity (or just the connectivity) K
of a graph G is the minimum number of vertices whose removal from G results in
either a disconnected graph or a single vertex. The edge connectivity E(G) is defined
as the minimum number of edges whose removal disconnects G.
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2.5 Trees

Trees are important data structures in Computer Science as they have many applica-
tions such as database implementation, hereditary trees in bioinformatics, etc. A tree
of a graph G also provides a graph with less edges and therefore with less commu-
nication links of the network. We will see many example algorithms to construct
trees and implement distributed algorithms over the trees.

Definition 2.33 (Forest, Tree) A graph that contains no cycles is called acyclic.
If G = (V ,E) is an acyclic graph and has more than one component, G is called
a forest. If G has one component, then G is called a tree. Directed trees and forests
are acyclic directed graphs.

The following are equivalent to describe a tree T :

• T is a tree;
• T contains no cycles and has n − 1 edges;
• T is connected and has n − 1 edges;
• T is connected, and each edge is a bridge;
• Any two vertices of T are connected by exactly one path;
• T contains no cycles, but the addition of any new edge creates exactly one cycle.

Definition 2.34 (Rooted Tree, parent, child, leaf) A tree is rooted if it has a des-
ignated vertex, called the root, in which case the edges have a natural orientation,
toward or away from the root. In a rooted tree, the parent of a vertex is the vertex
connected to it on the path to the root; every vertex except the root has a unique
parent. A child of a vertex v is a vertex of which v is the parent. A leaf is a vertex
without children.

Definition 2.35 (Spanning Forest, Spanning Tree) For graph G(V,E), if
H(V ′,E′) is an acyclic subgraph of G where V ′ = V , then H is called a span-
ning forest of G. If H has one component, it is called a spanning tree of G.

2.5.1 Minimum Spanning Trees

Definition 2.36 (Minimum Spanning Tree) For a weighted graph G(V,E) where
weights are associated with edges, a spanning tree H of G is called a minimum
spanning tree of G if the total sum of the weights of its edges is minimal among all
possible spanning trees of G.

If all weights of the edges of a graph G are distinct, then there is exactly one
spanning tree of G. Figure 2.9 displays a possible spanning tree of a graph and its
rooted minimum spanning tree.
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Fig. 2.9 (a) A spanning tree.
(b) The minimum spanning
tree rooted at vertex 2

Fig. 2.10 (a) Complete
bipartite graph K4,3.
(b) Petersen graph

2.6 Chapter Notes

The classical book on graph theory is by Harary [4] dating back to 1979. The text-
book by West [5] is a more updated presentation of the topic. A thorough treatment
of the topic is provided in the recent book by Bondy and Murty [1], and an informal
presentation is provided in [2].

We have reviewed some of the basic concepts in graph theory. We will use undi-
rected graphs to model the computer networks and develop distributed algorithms
using this model. In Part III, we will need to modify this model to include ad hoc
wireless networks.

2.6.1 Exercises

1. Show that the sum of the degrees of the vertices of an undirected graph is even.
Show also that the number of odd degree vertices of an undirected graph is
even.

2. For a bipartite graph G(P,Q) where P and Q are disjoint vertex sets, show
that

∑
u∈P deg(u) = ∑

v∈Q deg(v).
3. A degree sequence of a graph G is the sequence of the degrees of the vertices

of G in decreasing order. Find the degree sequences of the graphs in Fig. 2.8.
4. Show that for any graph G, rad(G) ≤ diam(G) ≤ 2 rad(G).
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Fig. 2.11 An example graph
for Exercises 9 and 12

5. A simple graph G is called regular if all vertices of G have the same degree. In
an n-regular graph G, all vertices have a degree of n. Determine the values of
n for Kn and Km,n for these graphs to be n-regular.

6. Let G be a graph that has n vertices and m edges. Find the number of induced
subgraphs and edge-induced subgraphs of G.

7. For which values of m and n does the complete bipartite graph Km,n have an
Eulerian circuit and an Eulerian path?

8. Find the radius, girth, and diameter of the complete bipartite graph Km,n in
terms of m and n and the Petersen graph shown in Fig. 2.10.

9. Draw all the subgraphs of the graph in Fig. 2.11.
10. Show that every tree with maximum degree k has at least k leaves.
11. A tree T with n vertices has a vertex of degree k. Prove that the longest path in

T has at most n − k + 1 edges.
12. Find the spanning trees of the graph of Fig. 2.11.
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Chapter 3
The Computational Model

Abstract In this chapter, we investigate how to model the application software,
namely the distributed algorithm, the middleware, and the network that delivers the
messages between the nodes of the distributed system.

3.1 Introduction

The computational model depends on the network model and the software environ-
ment that the distributed algorithm executes. As noted before, graphs are frequently
used to model distributed systems. The vertex set V of a graph G represents the
nodes of the network, and the edges show the communication links as shown in
Fig. 3.1. A distributed algorithm runs at each node of the network graph and coop-
erates with other nodes to accomplish a common task. As an introductory example,
let us attempt to design a simple routing algorithm for this network. In this network,
node s wants to send a message m(d) to node d . Nodes only know their neighbors,
therefore, node i receiving m(d) simply forwards this message to all of its neigh-
bors, except the one it has received from, if the intended receiver d included in the
header is not one of its neighbors.

Algorithm 3.1 displays the pseudocode for this algorithm for node i. It is as-
sumed the a message is received from node j . If the network is connected, the
message m(d) will eventually reach the destination node d in at most diam time
steps, where diam is the diameter of the network. As an example, the message sent
by node 4 is flooded by receiving nodes until it reaches node 8, which knows that
the destination 5 is its neighbor and sends the message to 5 only.

This algorithm has a major problem where a node may receive and then send
the same message more than once, and the network may be flooded with duplicate
messages. In order to remedy this situation, we could incorporate sequence numbers
with the messages; therefore, each message carries the sender identifier i, destina-
tion identifier j , and a sequence number seq as m(i, j, seq). Each node now can
check whether it has seen the seq value from node i before. If it has, the message
m(i, j, seq) is a duplicate and can be discarded. But now, we need to store a ta-
ble at each node to show the last received sequence number of message from each
node. For a large network with n nodes, this table will be large. We have provided a
method to overcome a problem but now faced a different problem. This situation is
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Fig. 3.1 Simple routing
algorithm example

Algorithm 3.1 Simple Routing Algorithm
1: int i, j � i is this node, j is the sender of the message
2: message types m(sender,dest)
3: while true do
4: receive m(j,d) � receive message with destination d from neighbor j

5: if d ∈ �(i) then � if destination is a neighbor
6: send m(i, d) to d � send message to the neighbor
7: else send m(i, d) to �(i) \ {j} � else send it to all neighbors except the sender
8: end if
9: end while

not an exception; we may run into even more serious problems while trying to find
a solution to an existing problem while designing distributed algorithms. A simple
example has shown us that the contents of a message and where they are sent are
crucial in the design of distributed algorithms.

In this chapter, we will first analyze the steps in message delivery and how the
network behaves during this transfer in Sect. 3.2. We will then describe synchro-
nization and the middleware primitives that provide the required coordination by
the application in Sects. 3.3 and 3.4, and then we will look into methods of spec-
ifying the coordination of the nodes from the view of the overall application in
Sect. 3.5. Finally, performance metrics of the distributed processing are described
in Sect. 3.6.

3.2 Message Passing

Messages are crucial for the correct operation of a distributed algorithm. We can
define the widely accepted message passing model of a distributed system formally
as follows [1, 3, 4]:

• A process pi at node i communicates with other processes by exchanging mes-
sages only.

• Each process pi has a state si ∈ S, where S is the set of all its possible states.
• A configuration of a system consists of a vector of states as C = [s1, . . . , sn].
• The configuration of a system may be changed by either a message delivery event

or a computation event.
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Algorithm 3.2 Distributed Algorithm Structure
1: while condition do
2: receive msg(j)

3: case msg(j).type of
4: type_A : Action_A

5: type_B : Action_B

6: type_C : Action_C

7: end while

Fig. 3.2 Steps of message delivery

• A distributed system continuously goes through executions as C0, φ1,C1, φ2, . . . ,
where φi is either a computation or a message delivery event.

A typical distributed algorithm code segment involves receiving a message and,
based on the type of this message, performs a specific action as shown in Algo-
rithm 3.2. Typically, the distributed algorithm runs until some condition is met, for
example, a specific message is received, or a boolean variable becomes true.

The following steps are typically performed when the message msg(j, type) is
delivered from a distributed application process (algorithm) P(i) at source node i

to a distributed application process P(j) at destination node j as shown in Fig. 3.2.

1. Receiving process P(j) executes receive(msg) and is blocked by its local oper-
ating system at node j since there are no any messages.

2. Sending process P(i) prepares the message by filling data, destination pro-
cess, node identifiers, and type fields and invokes operating system primitive
send(msg, j), which copies msg to the operating system buffer osbuf .

3. The operating system copies osbuf to the network buffer netbuf and invokes the
communication network protocol.
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4. The protocol appends error checking and other control fields to the message and
provides the delivery of the message to the destination node network protocol by
writing contents of netbuf to the network link.

5. The network delivers the data packet, possibly by exchanging few messages and
receiving acknowledgements.

6. The receiving network protocol at node j writes the network data to its buffer
netbuf and signals this event to the operating system.

7. The receiving node’s operating system copies data from netbuf to osbuf and un-
blocks the receiving process P(j), which was blocked waiting for the message.

8. P(j) is awaken and proceeds its processing with the received data.

If we consider messages m1, m2, m3 that are sent in sequence from i to j , there
are two possibilities of delivery by the network, either delivering the messages in se-
quence to the node j , in which case the network delivery is called First-In-First-Out
(FIFO), or the network delivers messages in random order and is called Non-First-
In-First-Out (Non-FIFO). We will assume a FIFO network structure in general. The
above data transfer involved buffered communication by using buffers between the
application, operating system, and the network protocol. It is also possible to have
unbuffered communication, where the message is written directly to the network and
received directly from network to be written to the receiving application workspace;
however, buffered communication in the receiving side is the only choice mostly as
the receiving process may not have executed receive when the message arrives.

3.3 Finite-State Machines

A finite-state machine (FSM) or finite-state automaton is a mathematical model to
design systems whose output depends on the history of their inputs and their cur-
rent states, in contrast to functional systems where the output is determined by the
current input only. An FSM has a number of states, and it can only be at one state
at any time called its current state. Upon a triggering by an event or a condition, an
FSM may change its current state. States of an FSM are shown by circles, and the
transitions from one state to another by directed edges. In this sense, an FSM is a
directed graph. The edges of this graph are labeled as i/o, where i is the input in the
form of an event or a condition, and o is the action performed by the FSM.

A deterministic FSM is a quintuple (I, S,S0, δ,O) where

• I is a set of input signals
• S is a finite nonempty set of states
• S0 ∈ S is the initial start state
• δ is the state transition function such that δ : S × I → O

• O ∈ S is the set of output states

The state transition function decides on the next state using the current state
and the input received. A state table shows the states as its rows and inputs as its
columns, and the entries in the table are the actions or the next states. In a Moore
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Fig. 3.3 FSM diagram of the
Parity Checker

Table 3.1 State table for the
Parity Checker 0 1

ODD ODD EVEN

EVEN EVEN ODD

Machine type of FSM, the output is the new decided state. The Mealy Machine type
of FSM provides an output and a new state as a result of being triggered.

3.3.1 Moore Machine Example: Parity Checker

As an example of Moore Machine, let us design an FSM that inputs a binary string
of the form 001101010. . . and at any point, determines its state based on the number
of 1s received up to that point as ODD if this number is an odd number and EVEN
otherwise. This FSM called the Parity Checker has two states with the initial EVEN
state in double circles as shown in Fig. 3.3 and based on the binary input, it may
change its state. Since the output is equal to the next state this FSM decides, it is
a Moore Machine.

The FSM table for the Parity Checker has states ODD and EVEN shown as rows
and inputs 0 and 1, shown as columns in Table 3.1.

3.3.2 Mealy Machine Example: Data Link Protocol Design

As a more detailed example of a Mealy Machine FSM, we will consider the design
of a data link protocol called Stop and Wait Automatic Repeat Request (ARQ). The
main responsibilities of data link in general are the flow and error control of com-
munication between the sender and the receiver network nodes. In the Stop and Wait
ARQ protocol, the sender has to wait for an acknowledgment from the receiver be-
fore sending the next frame. There will be a single frame in transmission at a time,
and to prevent the case where an acknowledgement from the receiver gets lost and
the sender sends a duplicate packet that is received as a new frame by the receiver,
odd and even sequence numbers are used.
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Fig. 3.4 FSM diagrams of
the data link protocol;
(a) sender, (b) receiver

Table 3.2 State table for data
link protocol sender L3_REQ ACK NACK TIMEOUT

IDLE Act_00 NA NA NA

WTACK NA Act_11 Act_12 Act_13

Figure 3.4 shows the FSM of the sender and the receiver processes of the proto-
col. The sender process initially is at IDLE state, and when there is a request from
Layer 3 (Network Layer) to send a frame to the receiver, it prepares the frame header
by inserting frame type INFO, sequence number, and error checking code there and
transmits the frame after which it changes its state to WTACK to wait for a response
from the receiver. In this state, it can receive either an ack frame from the receiver,
which shows that the receiver has received the frame correctly, or a nack frame if the
error checking at the receiver results in a negative result. If there are no replies from
the receiver within a specified duration, the sender timeout expires, and it is notified
by an interrupt, in which case it resends the frame. Transmission of the frame is also
repeated when a nack is received.

The FSM table, Table 3.2, displays the states of the sender as rows and the possi-
ble inputs to the sender as columns. Any necessary action to be taken when input j

is received at state i is placed as a procedure Act_ij in this table. This method of
representing the FSM provides a convenient way of coding the FSM in a C-like lan-
guage. Algorithm 3.3 shows a possible implementation where the addresses for all
actions are placed in the table initially. The sender process keeps track of its current
state, and when there is an input of any kind, it simply activates the action defined
by its state and the input identifier. Using FSMs with this style of coding simplifies
designing and implementation of complicated network protocols and distributed al-
gorithms significantly.

We will be using FSMs to model some sample distributed algorithms to aid un-
derstanding them better, especially in cases where the algorithm is more compli-
cated than usual.
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Algorithm 3.3 Data Link Sender
1: set of states IDLE, WTACK
2: int currstate ← IDLE, curr_seqno ← 0
3: fsm_table[2][3] ← action addresses

4: procedure Act_00(frame) � send frame first time
5: frame.type ← DATA � set type
6: frame.seqno ← curr_seqno � insert sequence number
7: frame.error ← calc_error(frame) � calculate and insert error code
8: send(frame) to receiver
9: currstate ← WTACK

10: end procedure
11:
12: procedure Act_11(frame) � frame received correctly
13: currseq ← (currseq + 1) mod 2 � increment sequence number
14: respond to L3 � notify Layer 3
15: currstate ← IDLE
16: end procedure
17:
18: procedure Act_12(frame) � re-transmission
19: if error_count ≤ MAX_ERR_COUNT then � if maximum error count is not reached
20: frame.type ← DATA � set type
21: currseq ← (currseq − 1) mod 2 � set seqno to the old one
22: frame.seqno ← curr_seqno � insert sequence number
23: frame.error ← calc_error(frame) � calculate and insert error code
24: send(frame) to receiver
25: else send error_report to Layer 3 � report delivery error to upper layer
26: end if
27: end procedure
28:
29: while true do � Sender main code
30: receive msg
31: call fsm_table[currstate][msg.type] � go to action specified by currstate and msg type
32: end while

3.4 Synchronization

Synchronization can be performed at various levels of a distributed system. At hard-
ware level, processors may execute in lock step, and the next step of execution is
not enabled until all nodes finish their current execution. This type of synchroniza-
tion requires hardware support and is possible in Single-Instruction-Multiple-Data
SIMD systems, where multiple processors perform the same computation on dif-
ferent data under a single control unit. Multiple-Instruction-Multiple-Data (MIMD)
systems, however, do not rely on hardware synchronization, and nodes in such sys-
tems work autonomously. The MIMD systems represent distributed systems more
realistically. Synchronization at network protocol level is accomplished by the send-
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Fig. 3.5 Network layers

ing and receiving of messages to ensure correct delivery of a message to the des-
tination. A typical network protocol at layer l communicates with layer l of the
destination node by appending error checking codes to the message, receiving ac-
knowledgements, and if there is an error, retransmission of the message is provided.
Flow control and error-free delivery are the basic operations performed at various
levels. Layer 2 (Data Link Layer) provides such functions, Layer 3 (Network Layer)
of the protocol stack is responsible for the routing of the messages to the destina-
tion via optimal routes, and Layer 4 (Transport Layer) is responsible for delivery to
the related application. The Physical Layer as the lowest layer provides all signal
related functions and interface to the network. These protocol layers are displayed
in Fig. 3.5.

There are also possibilities of synchronization at operating system level, mid-
dleware level, or the distributed application level. We will investigate these in the
following sections.

3.5 Communication Primitives

Synchrony at operating system level is accomplished by carefully designing the
communication primitives so that the sender and the receiver may be blocked or
not by the operating system to yield the required behavior. The following are the
possible send and receive primitives as supplied by the operating system:

• blocking send: The sending process is blocked by the operating system until an
acknowledgement from the destination is received to confirm that the receiver has
received the message, in which case the sender is unblocked.

• nonblocking send: The sending process continues processing after sending the
message.

• blocking receive: The receiving process is blocked by the operating system if
there are no messages available to it.
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Fig. 3.6 (a) Blocking send and blocking receive. (b) Nonblocking send and blocking receive

• nonblocking receive: The receiving process checks if it has any pending mes-
sages, and if there is a message, receives it. In any case, it continues processing.

In Fig. 3.6(a), a fully synchronous communication is shown, where at time t1,
process P(j) executes a blocking receive, and if there are no messages available at
that time, it is blocked. At time t2, process P(i) invokes a blocking send that blocks
itself and initiates the transfer of the message to node j , and the message is delivered
to P(j), which is awaken to continue. The first thing P(j) does when awaken is
sending the acknowledgement ack(j) to the sending node i, which in turn unblocks
the sender P(i). In Fig. 3.6(b), however, the sender is not blocked assuming that
the message is delivered to P(j), which is unblocked when it receives the message.
The nonblocking receive may be rarely used in situations where the receiver checks
if there is a message but wants to continue even if there is not any message.

Blocking send is rarely used as correct delivery of the message is normally left to
the network. Nonblocking receive requires specific storage in the operating system
called mailboxes, which are used for indirect interprocess communications. A pro-
cess may execute a nonblocking receive, which checks the mailbox and removes a
deposited message. A mailbox is a depository place for a message, and writing a
message to and receiving a message from a mailbox are provided by a data structure
called semaphore, which consists of an integer and a process queue. There are two
main operations on a semaphore, wait and signal. In a possible way of implement-
ing a wait operation, the value of the semaphore is decremented, and if this is a
negative number, the calling process is enqueued in the semaphore queue. The sig-
nal operation on a semaphore increments its value, and if this value is greater than or
equal to zero, it dequeues and activates a waiting process from the semaphore queue.
A mailbox data structure consists of a sender semaphore, a receiver semaphore, and
a message queue as shown in Fig. 3.7.

A sending process to a mailbox has to check if there is space available in the mail-
box; therefore, it performs a wait on the sender semaphore of the mailbox. It then
deposits the message in the mailbox queue and signals the receiver semaphore of
the mailbox to free any waiting process, if there is one, as shown in Algorithm 3.4.
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Fig. 3.7 The mailbox data
structure

Algorithm 3.4 Interprocess Communication by Mailboxes

1: procedure send_mbox(mbox_id)
2: wait on mailbox send semaphore
3: append message to mailbox message queue
4: signal mailbox receive semaphore
5: end procedure
6:
7: procedure receive_mbox(mbox_id)
8: wait on mailbox receive semaphore
9: receive message from mailbox message queue

10: signal mailbox send semaphore
11: end procedure

In the case of a blocking receive, the receiving process simply performs a wait on
the receiving semaphore, and when this is successful, it proceeds by retrieving the
message from the mailbox queue. It also frees any waiting sender process by issuing
a signal on the sender semaphore of the mailbox. Using mailboxes for distributed
processing is possible by providing a naming facility to the operating system by
modifying the primitives as follows. The send_mbox routine checks the mailbox of
the receiver, and if this is not local, invokes the protocol stack routines. The receiv-
ing node protocol simply performs a local send_mbox to the mailbox of the receiver
on behalf of the remote sender as in [2].

3.6 Application Level Synchronization

We have investigated synchronization between pairs of application processes at op-
erating system level. In this section, we will look into the synchronization among all
processes at the application layer, and we will call this synchronization the global
synchronization, which does not have any support from the operating system or the
hardware. In some applications, support from hardware or a special middleware
module called synchronizer, which provides synchrony among the processes, may
be a better choice than a synchronizing protocol as in the case of concurrently ini-
tiated synchronous algorithms. However, in many applications, synchronization at
network wide level may be achieved by the use of special protocol messages. In the
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Table 3.3 Classification of
distributed algorithms Single Initiator Concurrent Initiator

Synchronous SSI SCI

Asynchronous ASI ACI

synchronous model, nodes of the network, and therefore the distributed applications
on them, execute in a lock-step fashion in rounds as follows:

1. Start round
2. send message(s)
3. receive message(s)
4. perform computation

Typically, a distributed algorithm sends a message, receives a message, and per-
forms some computation in each round. The next round can only be started after all
messages from the previous round are delivered and all computations have been con-
cluded. This seemingly strict control on the execution of processes usually requires
the control of a central process, which starts a round, and after ensuring that the
round is over, it starts the next round. We will see that this control can be achieved
by a special message called round by a special node called the root that initiates
a round, and after gathering special messages in an accumulated manner from all
nodes, the root starts the next round.

In the asynchronous model, there is no restriction on the order of executions by
the processes. However, we will assume that each message sent is correctly deliv-
ered to the application. Another distinction is whether the distributed application
is started by a single designated process, in which case we will call the algorithm
a Single-Initiator Algorithm, and when there are concurrent initiators, the algorithm
is called a Concurrent-Initiator Algorithm.

A Synchronous Single-Initiator (SSI) algorithm is a synchronous distributed al-
gorithm started by a single initiator. These algorithms are easier to analyze at the
cost of requiring synchronous operation either at hardware level; at middleware
level by a synchronizer; or by the addition of special protocol control messages.
Asynchronous Single-Initiator (ASI) algorithms do not need any synchronization
but should be designed carefully to provide termination condition so that the al-
gorithm does not run forever. Synchronous Concurrent-Initiator (SCI) algorithms
execute synchronously under the control of concurrent initiators and may require
support from hardware such that stages of a round are performed after some n clock
ticks by all processes in lock step manner. Asynchronous Concurrent-Initiator (ACI)
algorithms are the most versatile of all but are more difficult to implement and an-
alyze since synchronization of asynchronous algorithms at certain points during
execution may be complicated. Table 3.3 shows the possible execution modes of
distributed algorithms.
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3.7 Performance Metrics

Performance of a distributed algorithm can be determined by its time, bit, space,
and message complexities described below.

3.7.1 Time Complexity

For a sequential algorithm Seq_Alg, time complexity is the number of steps required
for the algorithm to finish. We will show this parameter by Time(Seq_Alg). For a
synchronous distributed algorithm Synch_Dist, Time(Synch_Dist) is the number of
rounds required for the algorithm to finish in the worst case. For an asynchronous
distributed algorithm Asynch_Dist, Time(Asynch_Dist) is the number of steps for
the algorithm to finish in the worst case. For example, sending a message in a net-
work modeled by a graph G(V,E) may require (n − 1) steps for it to reach the
farthest node.

3.7.2 Bit Complexity

For a distributed algorithm, we will mostly be interested in the maximum length of
a message communicated. In general, this will not be a problem unless the message
is large or is enlarged as it traverses the network. For example, an application may
require that a special message should include the nodes identifiers in it, as it visits the
nodes of the network in some order. In this case, message will include a maximum
of n node identifiers. We will assume that logn bits are necessary to hold a node
identifier, and the bit complexity for this example algorithm will then be O(n logn).

3.7.3 Space Complexity

Space complexity of an algorithm specifies the maximum storage in bits required
by the algorithm for local storage at a node. This may be important if a node holds
large tables as in the case of routing algorithms.

3.7.4 Message Complexity

Number of messages exchanged is a good indicator of the cost of communication
for the distributed application. The cost incurred during the message communication
of a distributed algorithm is often considered as the dominant cost of the algorithm

www.it-ebooks.info

http://www.it-ebooks.info/


3.7 Performance Metrics 35

Algorithm 3.5 Sample_SSI
1: boolean finished, round_over ← false
2: message type round, info,upcast
3: while ¬round_over do
4: receive msg(j)

5: case msg(j).type of
6: round: send info(i) to all neighbors
7: receive info from all neighbors
8: do some computation, finished ← true
9: upcast: if upcast received from all children and finished then

10: send upcast to parent
11: round_over ← true, finished ← false
12: end while

since time spent in message transmissions is orders of magnitude higher than the
time spent for local computations. A convenient method of evaluating communi-
cation costs is to calculate the number of messages that traverse the edges of the
network graph. Let us demonstrate this concept by an SSI algorithm, a single round
of which is shown in Algorithm 3.5, where a spanning tree T is formed prior to the
algorithm execution such that every node except the root has a parent and any node
other than the leaves have children. T will be used to transfer the synchronization
messages round and upcast. The root initiates each round by the round message,
and the upcast messages are gathered by the nodes from their children to send to
their parents to end a round. A node sends an upcast message to its parent only
when it has finished computation and all of its children have also finished computa-
tion and have sent upcast messages to it. The flag finished is needed as a node may
receive upcast messages from its children before it can finish its computation.

Each node in each round sends info messages to all its neighbors, receives info
messages from all of its neighbors, and does some computation. In order to calcu-
late the number of messages exchanged in Sample_SSI, we start by counting the
messages exchanged at each round. The total number of messages for exchanging
information in each round is 2|E| as each edge of the network graph is traversed ex-
actly twice, once in each direction by info messages. There will also be n− 1 round
messages and n − 1 upcast messages as T has n − 1 edges, for a total of 2n − 2
messages for synchronization. Total number of messages in each round therefore
is 2(m + n − 1). The number of rounds would depend on the application, and if
we assume that the requirement for Sample_SSI is the transfer of the local node
knowledge to all nodes in the network, then the number of rounds will be the diam-
eter d , which is the number of hops between the two farthest nodes of the network,
and d could be as high as n − 1. The total number of messages for Sample_SSI
then is 2d(m + n − 1). We will see more examples of calculating the total number
of messages for different applications. As for the time complexity of Sample_SSI,
assuming that T may have n − 1 as its maximum depth, there will be n − 1 time
steps in each round to deliver round messages to all nodes; each node will require
two time units to send info message to neighbors and receive info message from
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the neighbors; and there will be further n − 1 steps for the accumulation of upcast
messages for a total of 2n steps in each round resulting in a total number of at most
2n(n − 1) time steps for n − 1 rounds. However, the total number of rounds is a
good indicator and sufficient for the time complexity of an SSI algorithm in general,
in which case Time(Sample_SSI) = O(d) for the sample algorithm.

3.8 Chapter Notes

The computational model for the distributed application has few aspects to be con-
sidered, with the synchronization being the key issue to be addressed. Synchroniza-
tion can be handled at one or more of hardware, operating system, middleware,
and application levels. Synchronization at hardware level may provide system-wide
synchronization but is difficult due to the distributed nature of the application. Op-
erating system may provide synchronization between pairs of processes but will not
provide system-wide synchronization unless augmented by special software called
synchronizers. Global synchronization may be achieved by the use of special graph
structures such as a spanning tree of the graph to convey special messages to start
and finish each round. However, even this seemingly versatile method may have
significant overhead if the application requires synchronization in a concurrently
initiated algorithm.

Another aspect of the model is concerned with how the algorithm is initiated.
We have seen the four possible cases of SSI, ASI, CSI, and CAI. SSI may be a
method preferred in many cases as it simplifies the design significantly; ASI and
CAI are also used in various applications, but CSI is probably the last choice due
to its special requirements outlined above. We have also described how modeling
by FSMs simplifies the design and implementation of the distributed algorithms and
network protocols. We will use the SSI model frequently, with the control messages
transferred over a spanning tree to implement various distributed algorithms.

3.8.1 Exercises

1. Provide a pseudocode for the nonblocking receive primitive with brief com-
ments.

2. The Front End Process (FEP) of a file manager in a distributed system inputs
messages and, based on the requests that can either be read from, write to, or
copy a file, invokes the necessary process by sending a mail in its mailbox. The
FEP returns to wait for any more incoming messages while the related process
performs the required action. Describe a possible message frame format for the
protocol manager and write pseudocodes for these four processes with brief com-
ments.
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3. It is required to have a general send procedure that checks whether the receiver
is local and, if not, invokes the protocol manager by depositing the message in
its mailbox. Provide the pseudocode for this procedure with brief comments

4. An SSI distributed algorithm is executed by a root node over an already formed
spanning tree to find the largest degree of the network graph. The root sends a
probe message to its children, which is transferred to the leaves. Provide pseu-
docodes for the root and ordinary nodes.

5. An SSI distributed algorithm executed at a node of a computer network aims at
finding the largest identifier node within two-hop distances from each node.
a. Provide a pseudocode for a single round of this algorithm.
b. Work out its time and message complexities.
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Chapter 4
Spanning Tree Construction

Abstract Spanning trees have many applications in computer networks as they pro-
vide a subgraph of less number of links than the original network resulting in low-
ered communications. This chapter introduces the basic distributed algorithms to
construct spanning trees of graphs without any particular optimization objective.

4.1 Introduction

A spanning tree of a connected, undirected graph G(V,E) is its subgraph T (V,E′)
that covers (spans) all vertices of G. A spanning tree of a connected graph G can also
be defined as a maximal set of edges of G that contains no cycle, or as a minimal
set of edges that connect all vertices. A spanning forest of G is a subgraph of G that
consists of a spanning tree in each connected component of G.

Spanning trees are important structures for computer networks as they provide a
subgraph of G with possibly less communication links, resulting in lowered com-
munication costs. Providing a parent/child relationship among nodes of the network
eases the task of communication since the source and destination of communication
is known beforehand. In this chapter, various distributed algorithms without any op-
timization objective to construct spanning trees for computer networks are presented
with added complexity at each stage. First, the Flood algorithm, which assumes no
prior structure of the network, is introduced in Sect. 4.2 to provide a broadcast of a
message from a root process to all nodes of the network. Then, using Flood, forming
a spanning tree that can be used for further broadcasts or other communication tasks
is described in Sect. 4.3. The algorithm described in Sect. 4.4 provides detection of
the termination of the algorithm by the nodes in the network utilizing a collection of
acknowledgement messages starting from the leaf nodes. Tarry’s algorithm, which
builds a spanning tree by using two simple rules, is shown in Sect. 4.5. We conclude
this chapter by showing how efficient broadcast and convergecast operations can be
achieved using the constructed spanning trees.

4.2 The Flooding Algorithm

Many applications in computer networks require sending a message to all nodes in
the network that is called the broadcast. A natural way of performing broadcast in a

K. Erciyes, Distributed Graph Algorithms for Computer Networks,
Computer Communications and Networks, DOI 10.1007/978-1-4471-5173-9_4,
© Springer-Verlag London 2013
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Algorithm 4.1 Flood
1: int i, j

2: boolean visited ← false
3: message types msg
4:
5: if i = root then � root initiates flooding
6: send msg to Γ (i)

7: visited ← true
8: end if
9:

10: receive flood(j) � flood may be received many times
11: if visited = false then � msg received first time
12: send msg to Γ (i) \ {j}
13: visited ← true
14: else � msg received before
15: discard msg
16: end if

network without any formed structure is to simply forward any incoming message
to all neighbor nodes except the neighbor that has sent the message. If the same
message arrives again, it should be discarded. The algorithm Flood, which performs
broadcast in this simple form, initiated by a specific node called the root, is shown
in Algorithm 4.1 for node i.

4.2.1 Analysis

Theorem 4.1 The message complexity of Flood is O(m) where m is the number of
edges of G, and the time complexity of Flood is Θ(d) where d is the diameter of G.

Proof Since each edge connects two nodes and is used to deliver a message at least
once and at most twice when two nodes send msg concurrently, there will be a total
of 2m messages at most, and therefore, Msg(Flood) = O(m). The longest time for
the broadcast message to reach any node in the graph G is the distance between
two farthest nodes of the graph, which is the diameter, and hence, Time(Flood) =
Θ(d). �

It can be easily seen that this algorithm is inefficient as each edge of G may
be utilized more than once. An improvement can be achieved if the flooding algo-
rithm can be used to build a spanning tree rooted at the initiator, and this spanning
tree may then be used for any further broadcast messages, as described in the next
section.
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Algorithm 4.2 Flood_ST
1: int parent ←⊥
2: set of int childs ←∅, others ←∅

3: message types probe, ack, reject
4:
5: if i = root then � root initiates tree construction
6: send probe to Γ (i)

7: parent ← i

8: end if
9:

10: while (childs ∪ others) �= (Γ (i)\{parent}) do
11: receive msg(j)

12: case msg(j).type of
13: probe: if parent =⊥ then � probe received first time
14: parent ← j

15: send ack to j
16: send probe to Γ (i)\{j}
17: else � probe received before
18: send reject to j
19: ack: childs ← childs ∪ {j} � include j in children
20: reject: others ← others ∪ {j} � include j in unrelated neighbors
21: end while

4.3 Flooding-Based Asynchronous Spanning Tree Construction

We can use the algorithm Flood by some modifications to build a spanning tree
originating from the initiator root for broadcasting. We assume that it is required
that each node in the tree except the leaf nodes should know the identifiers of its
children and all nodes except the root should know their parents in the end. Any
node that wants to build a broadcast tree initiates the algorithm and becomes the
root of the spanning tree to be formed.

The messages used in this algorithm, called algorithm Flood_ST , are probe, ack,
and reject. Any node that wants to build a spanning tree starts the algorithm by
sending the probe message to its neighbors, which is transferred to other nodes.
Since a node may receive more than one probe message, acknowledgement (ack)
and negative acknowledgement (reject) messages are needed to check whether a
node has received probe before as shown in Algorithm 4.2.

The root starts the algorithm, and whenever node i receives a probe message, it
marks the sender j as its parent and sends an ack message to j . The parent j , in
receipt of an ack, marks the child as one of its children. Then, node i sends probe
message to all of its neighbors except the parent j consequently. If a node already
has a parent when it receives a probe message from a neighbor node, it sends a
reject message to the neighbor. The termination condition is when the union of the
children (childs) and unrelated neighbors (others) of a node i equals its neighbors
except the parent, as checked in line 10 of the algorithm. It should be noted that the
main body of the algorithm between lines 10–21 is also executed by the root.
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Fig. 4.1 An example spanning tree formed by Flood_ST algorithm

Figure 4.1 shows an example spanning tree formed by the Flood_ST algorithm
over a network consisting of six nodes a, b, c, d, e, and f . Node a is the root and
starts construction of the tree by sending probe messages to its neighbors b, e, and f .
Each message is labeled with the time frame number such that messages with the
same label occur concurrently within the same time frame. It can be seen that due to
the delay in the link between a and e, the probe message from b reaches e before,
and b becomes the parent of the node e although it is now two hops away from the
root. The final constructed spanning tree is shown by the bold lines. The total time
taken is thee units as shown by the labels of the last communicated ack and reject
messages. The total number of messages is 20, which is 2m + 2, m being 9 for this
network, as there are two concurrent probe messages sent between the neighbors c

and d , both of which are rejected resulting in two extra traversals of the edge {c, d}.

4.3.1 Analysis

Theorem 4.2 The message complexity of algorithm Flood_ST is O(m) where m is
the number of edges of G, and it builds a tree T of maximum depth n− 1. Assuming
that there is at least one message transfer at each time unit, its time complexity
is O(n).

Proof Each edge of G will be traversed at least twice with probe and ack, or with
probe and reject messages, or at most four times in the case of two nodes attempt-
ing to send each other probe messages concurrently. They will both reply with reject
messages resulting in four messages for this edge for a total of 4m messages. There-
fore, Msg(Flood_ST) = O(m). The messages may be transferred over the fast com-
munication links of the longest path instead of the shorter paths with slow links as
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Fig. 4.2 An example of the
longest path

shown in Fig. 4.2. Node a starts the algorithm in this network, and assuming that the
links between nodes b and g and between c and f are much slower than the other
links, the longest path between the two farthest nodes a and h is taken, which has a
length of 7, which is n−1 as n is 8 in this network. The depth of the tree constructed
is O(n) considering the longest path. Assuming that there is at least one message
transaction at each time step, the time complexity is bounded by the longest path in
the graph, which has a length of n − 1. �

The problem with the Flood_ST algorithm is that although the root and nodes
determine that their part of algorithm is over, they are not aware that the algorithm
has terminated globally. The algorithm described in the next section provides the
necessary modification to Flood_ST so that the nodes know when the algorithm has
finished at least in their subtrees.

4.4 An Asynchronous Algorithm with Termination Detection

As a further attempt to build a spanning tree asynchronously, we will modify the
previous algorithm so that termination of the construction is detected by the nodes.
The modification is achieved by the nodes delaying the sending of the ack message
to their parents until they receive ack or reject messages from their neighbors, rather
than replying to their parents immediately. This way, when a node receives all the
replies from its neighbors, it can determine that all of the nodes in the subtree in
which it is the root has terminated. We will describe this algorithm, called Term_ST ,
by using a finite-state machine (FSM).

The FSM of this algorithm is shown in Fig. 4.3. All nodes start from the IDLE
state, and at the end of the algorithm, every node should finish in terminated (TERM)
state. The initiating root node starts the algorithm by sending a probe message to
its neighbors in Γ (i). Node i receiving the probe message from a neighbor node
j for the first time, enters the explored (XPLORD) state and marks the sender as
its parent. The parent, in return, marks the child as one of its children. If a node
already has a parent when it receives a probe message from a neighbor node, it
sends a reject message to the neighbor. Differently from the Flood_ST algorithm,
node i now defers sending of an ack message to its parent until it receives ack
and reject messages from all of its neighbors except the parent. It does however
send probe messages to its neighbors except the parent immediately. Only a leaf
node that does not have any children and that receives reject messages from all of
its neighbors except the parent would initiate the termination of the algorithm as
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Fig. 4.3 Term_ST FSM

Algorithm 4.3 Term_ST
1: int currstate ← IDLE,parent ←⊥
2: set of int childs ←∅, others ←∅

3: message types probe, ack, reject
4: if i = root then
5: send probe to Γ (i)

6: currstate ← XPLORD
7: end if
8:
9: while (childs ∪ others) �= (Γ (i)\{parent}) do

10: receive(msg(j));
11: case currstate of
12: IDLE:
13: case msg(j).type of
14: probe: parent ← j � probe received first time
15: send probe to Γ (i)\{j}
16: currstate ← XPLORD
17: XPLORD:
18: case msg(j).type of
19: probe: send reject to j � probe received before
20: ack: childs ← childs ∪ {j}
21: reject: others ← others ∪ {j}
22: end while
23: if i �= root then � convergecast ack to root
24: send ack(i) to parent
25: end if
26: currstate ← TERM

shown in Algorithm 4.3. The termination condition is when the total set of nodes
that have responded is equal to the union of the children and unrelated nodes as
shown in line 9 of the algorithm.
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Fig. 4.4 An example operation of Term_ST

4.4.1 Analysis

Theorem 4.3 The message complexity of algorithm Term_ST is O(m), and assum-
ing that there is at least one message transfer at each time unit, its time complexity
is O(n).

Proof The message complexity can be determined as in the Flood_ST algorithm to
result in O(m). Due to the asynchronous operation, messages may take the longest
path of length n− 1 to form the tree, and since there will be n− 1 more steps for the
reply messages to be gathered at the root along this longest path, there will be a total
of 4n − 2 time steps at most, considering there is at least one message transfer at
each time unit. Time(Term_ST) is therefore O(n). Otherwise, the time to construct
a spanning tree is unbounded. �

Figure 4.4 shows an example operation of Term_ST where node f is the root and
starts the algorithm by sending the probe message to its neighbors a and e, which
in turn mark node f as their parent and send probe messages to their neighbors b, e

and a, b, d , respectively. Node b receives probe from e first, marks e as the parent,
and sends reject to node a in time frame 3 when probe from a arrives as it is now in
XPLORD state. At this point, node a has received responses from all of its neighbors
and now sends ack to parent f and terminates. The operation continues similarly
until all ack messages are cast to the root f . Time taken for the construction of the
spanning tree is 6 units, assuming that a node responses to the probe message in
the same time interval. As m is 9 for this network, there are 2m + 4 = 22 messages
in total since each edge is traversed twice except edges {a, e} and {b, d}, which are
traversed additional two times due to the concurrent sending of probe messages.

In order to provide concurrent initiators to form spanning trees rooted at each
initiator, the Term_ST algorithm can be modified so that each node has n states, and
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Algorithm 4.4 Tarry_ST
1: int parent ←⊥
2: boolean used[n] ← {false}
3: message types token
4:
5: if i = root then � root starts the search
6: send token(i) to any j ∈ Γ (i)

7: used[j ] ← true, parent ← i

8: end if
9:

10: while true do
11: receive token(j)

12: if parent =⊥ then � token first time
13: parent ← j

14: end if
15: if ∃j ∈ (Γ (i) \ parent) : ¬used[j ] then � choose an unsearched neighbor �= parent
16: send token to j
17: used[j ] ← true
18: else
19: if i �= root then
20: used[parent] ← true � all neighbors searched
21: send token to parent
22: end if
23: exit � terminate
24: end if
25: end while

the identity of each initiator is tagged in the message so that each node will have a
different position in n spanning trees (see Exercise 5).

4.5 Tarry’s Traversal Algorithm

Tarry’s algorithm Tarry_ST is a very early distributed algorithm that builds a span-
ning tree by the traversal of a token using two simple rules shown below [4]. There
is a designated root node as before, and when node i receives the token for the first
time from node j , it marks it as its parent. Since only a node that has the token is
enabled, there is a single point of activity at any time.

1. A process never forwards the token twice through the same channel.
2. A noninitiator forwards the token to its parent, the node from which it received

the token for the first time, only if there is no other channel left according to
Rule 1.

In order to implement Rule 1, node i uses an array used to monitor status of its
neighbors. Upon reception of the token, node i forwards the token to an unsearched
neighbor j , assigns true value to used[j ], and when all of the neighbors have true

www.it-ebooks.info

http://www.it-ebooks.info/


4.6 Convergecast and Broadcast over a Spanning Tree 47

Fig. 4.5 Tarry’s algorithm
operation

values in the used array meaning that all neighbors have been searched, it forwards
the token back to its parent to implement Rule 2. The pseudocode for the algorithm
is shown in Algorithm 4.4.

Figure 4.5 shows an example execution of Tarry_ST algorithm in a network of
7 nodes. A possible traversal of token in this network is 0 1 4 5 2 1 3 6 4 6 3 1 2 5
4 1 0.

4.5.1 Analysis

Theorem 4.4 The time complexity of Tarry_ST is Θ(m), and its message complex-
ity is also Θ(m).

Proof Each edge is used to deliver a message exactly twice, once in each direction
governed by the rules for a total of 2m times. Since there is a single point of ac-
tivity at any time, there will be 2m steps, and hence Time(Tarry_ST) = Θ(m) and
Msg(Tarry_ST) = Θ(m). �

4.6 Convergecast and Broadcast over a Spanning Tree

In a computer network, it may be required to gather data from all nodes of the
network to the root node of an already formed spanning tree. This operation, called
the convergecast, is one of the key data transfer operations in a wireless sensor
network. Algorithm 4.5 provides asynchronous gathering of data starting from the
leaves of an already formed spanning tree. The key to the operation of this algorithm
is that any nonleaf node should wait data from all of its children before uploading
the combined/processed data to its parent. The convergecast operation also allows
manipulation of data received from all of the children of a node such as calculating
the average value of received data from all of the children and then sending this to
the parent. The algorithm ends when the root receives the convergecast messages
from all of its children.
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Algorithm 4.5 Ccast_ST
1: int parent
2: set of int childs; gathered ←∅

3: message types convcast; msgs ←∅

4:
5: if childs = ∅ then � leaf nodes start convergecast
6: send convcast to parent
7: else � any intermediate node or root
8: while childs �= gathered do � wait for convergecast messages from all children
9: receive convcast(j)

10: gathered ← gathered ∪ {j}
11: msgs ← msgs ∪ convcast(j)

12: end while
13: end if
14: if i �= root then
15: combine msgs into convcast
16: send convcast to parent
17: end if

Fig. 4.6 Convergecast operation

Figure 4.6 shows the operation of the algorithm Ccast_ST on an example span-
ning tree. Assuming that messages are labeled by their duration of transmission
and all leaves start convergecast concurrently, the total time for the convergecast at
node b is 5 units, and convergecast from node f to a is also performed in this pe-
riod. Convergecast from node b to a takes a further 4 units, and the total duration
for the convergecast of all data at node a is 9 units.

Broadcasting a message m over a spanning tree T is initiated by the root node,
which sends m to all its children and is terminated when all nodes receive m. Any
node that receives m simply forwards it to all its children, and a leaf node does not
forward m. Algorithm 4.6 shows the broadcast operation that is augmented by an
inline convergecast operation to enable the root know when the broadcast operation
has terminated. A leaf node starts the convergecast operation when it receives the
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Algorithm 4.6 Bcast_ST
1: set of int childs ←∅, acked ←∅

2: message types bcast, ack
3: if i = root then
4: send bcast to childs
5: end if
6: while acked �= childs do � collect acks from childs
7: receive msg(j)

8: case msg(j).type of
9: bcast : if childs �=∅ then

10: send bcast to childs
11: else send ack to parent � start convergecast
12: ack: acked ← acked ∪ {j}
13: end while
14: if i �= root then
15: send ack to parent
16: end if

broadcast message. When the root receives convergecast messages from all of its
children, it can determine that all nodes have received the broadcast message, and it
terminates. The depth of T may be as large as n − 1, and for this reason, forming a
breadth-first-search tree for ordinary broadcast is more efficient as described in the
next chapter.

Theorem 4.5 The message complexity of both Ccast_ST and ordinary broadcast al-
gorithm Bcast_ST is Θ(n). The time complexity of both algorithms is Θ(depth(T )),
which would be at most n − 1.

Proof In both algorithms, each edge of T is used to deliver a message once, and
since the total number of edges of an n node tree is n − 1, there will be a total
of n − 1 messages. For the Bcast_ST algorithm described, which provides a con-
vergecast operation, there will be a further n − 1 ack messages convergecast to the
root, resulting in a total of 2n − 2 messages. Time for broadcast or convergecast
procedures, assuming that messages are transferred concurrently at each level, are
the depth of the tree T , which would be at most n − 1. �

4.7 Chapter Notes

We have seen various algorithms to build a spanning tree T of a graph G that can
be used for basic communication operations such as broadcast and convergecast.
Table 4.1 summarizes the performances of the algorithms investigated. It would
be fair to say that Flood, which provides flooding only over an unstructured net-
work, should be the last choice because it does not result in any tree structure
that can be used for further communications. The algorithm Term_ST enhances
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Table 4.1 Comparison of spanning tree algorithms

Algorithm Description Time Comp. Msg. Comp.

Flood Broadcasts a message to all nodes over an
unstructured network

Θ(d) O(m)

Flood_ST Broadcasts a message to all nodes and
builds a spanning tree in process

O(n) O(m)

Term_ST Builds a spanning tree and nodes know
when their part is over

O(n) O(m)

Tarry_ST Builds a spanning tree using a token Θ(m) Θ(m)

Bcast_ST Broadcasts over a spanning tree and root
knows all received

Θ(depth(T )) Θ(n)

Ccast_ST Convergecasts over a spanning tree Θ(depth(T )) Θ(n)

Flood_ST by providing a termination condition such that a node is aware that at
least all nodes in its subtree have terminated with an additional d time units cost,
which may be important in a network with a large d . A minor improvement to this
algorithm would be the provision of an additional termination message from the
root to inform all nodes that the algorithm is over. Broadcasting and convergecast-
ing over T results in significant gains in both time and message complexities as
shown.

For the nodes of a MANET , these algorithms could still be used, but they need to
be activated periodically, say every H units. The magnitude of H would depend very
much on the velocity of the mobile objects, and clearly, H would have to be a small
time value when dealing with objects that are moving very fast. For a WSN, mobility
is not a general concern, but fault tolerance and energy considerations are important.
In order to provide fault tolerance so that nodes that have ceased functioning can be
discarded, we would have to execute the spanning tree algorithm periodically again,
this time H having a value many orders of magnitudes greater than the mobile
counterpart. As most of the data processing in a WSN is performed in a special
node called the sink with more sophisticated hardware and software facilities than
the ordinary sensing nodes, broadcast and convergecast operations from and to the
sink have important applications, and we will see alternative ways of performing
these operations in WSNs in Part III.

In this chapter, we have not tried to optimize any property of the spanning tree,
and forming a tree that covers all nodes of a graph was assumed sufficient. We will
see in the next two chapters that some optimization such as a certain graph traversal
method or the minimality of the total edge cost of the tree may be important for some
applications. Spanning tree formation is a general topic treated in various books on
distributed algorithms such as [5] and [2]. Broadcast, convergecast, and distributed
spanning trees are listed as elementary algorithms in [1]. A formal presentation of
the broadcast and convergecast algorithms is given in [3].
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Fig. 4.7 Example Graph for
Exercise 1

4.7.1 Exercises

1. Show possible message transactions and the formation of a spanning tree in
Fig. 4.7 rooted at node b by Algorithm 4.2.

2. If Algorithm 4.2 is executed synchronously in the example graph of Fig. 4.7,
what would be the characteristic of the resulting spanning tree and why?

3. Modify the state diagram of Algorithm 4.3 so that each node terminates in either
ROOT, INTERM (a node having a child and a parent) or LEAF (a node without
any children) states. Write a pseudocode that will provide the required operation.

4. Modify Algorithm 4.3 to provide synchronous operation.
5. Modify Algorithm 4.3 so that there are concurrent initiators, each being the root

of the spanning tree to be formed. There will be n roots in this algorithm, and an
array of states for each node may be used where each entry stores the state of a
node in a tree of a specific root.

6. Write a pseudocode for the synchronous version of broadcast algorithm and work
out its time and message complexities.
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Chapter 5
Graph Traversals

Abstract This chapter introduces the basic distributed algorithms for breadth first
search and depth first search in a graph. A spanning tree of the graph is formed after
the execution of both algorithms.

5.1 Introduction

Traversal of a graph is performed by visiting all of its vertices in some predefined
order. In an arbitrary graph G, it may be required to find the shortest distances of
vertices from a source vertex r in terms of the number of links from r . A convenient
way of achieving this is to proceed by layers, marking all neighbor vertices that
are one hop away from r , then marking vertices that are one hop away from these
neighbors, which are two hops away from r , and so on. The resulting tree rooted
at r is called a Breadth-First-Search (BFS) tree of graph G. BFS may be used to
find the connected components of a network; to find the shortest distances in terms
of the number of hops between the nodes of a network or to test bipartiteness of a
graph. A BFS tree of a graph G can be defined formally as follows.

Definition 5.1 (Breadth-First-Search Tree) A breadth-first-search tree T of a graph
G is a spanning tree of G such that for every node of G, the tree path is a minimum-
hop path to the root.

In order to find all of the vertices reachable from a source vertex r in a graph,
Depth-First-Search (DFS) is used. Starting from a vertex r , DFS visits all possible
vertices as far as it can reach, and when all vertices are visited, it returns to the
parent node. A DFS tree of a graph G can be defined as follows.

Definition 5.2 (Depth-First-Search Tree) A frond edge is an edge that does not
belong to a spanning tree. For a rooted spanning tree T of a graph G, let us denote
by S(u) all the nodes in the subtree of u, and P(u) denote all the vertices that exist
between u and the root. A depth-first-search tree of a graph G is a spanning tree T

of G such that for every frond edge {u,v}, v ∈ S(u) ∨ v ∈ P(u) [5].

The DFS has many applications in distributed systems such as finding the
strongly connected components of a directed network graph, which may be used to
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Fig. 5.1 (a) BFS tree. (b) DFS tree

detect cycles and hence prevent deadlocks in such systems. Also, a DFS algorithm
may be used as the building block of various other distributed algorithms.

The operations of BFS and DFS are shown in Fig. 5.1, where each edge is labeled
by the time step in which it is included in the tree. As shown in (b), P(2) = {5,6}
and S(2) = {3,4} for node 2 on the DFS tree.

In this chapter, we describe two distributed BFS algorithms in Sect. 5.2 and three
distributed DFS construction algorithms in Sect. 5.3.

5.2 Breadth-First-Search Algorithms

In this section, we show the implementation of two BFS algorithms. The first algo-
rithm is synchronous working in rounds, and the second algorithm is asynchronous.

5.2.1 Synchronous BFS Construction

Our first distributed algorithm called Synch_BFS is the synchronous distributed ver-
sion of Dijkstra’s algorithm for the single-source shortest path problem. It has a
single initiator, and in each synchronous round, a partial BFS tree is formed. The
already formed branches of the tree are used to carry the synchronization messages
and the leaves search for the new nodes to be added. The depth of the tree is incre-
mented in each round until all nodes are covered.

As an introductory example, we will explicitly show all messages that are needed
for the synchronous operation of this algorithm. Providing synchronization using
special control messages as such eliminates the need for other synchronization
methods like using a synchronizer. Also, full termination detection is provided so
that all of the nodes know when the BFS tree is constructed and can be used. The
following are the types of messages used in this algorithm:

• round(k): Sent by the root at the beginning of round p and is transferred by all of
the member nodes of the partial BFS tree to their children.
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Algorithm 5.1 Synch_BFS
1: int parent ←⊥, k ← 1, i, j

2: set of int childs, others, phased, finished ←∅

3: message types round, probe, ack, reject, upcast
4: boolean leaf _flag ← false
5:
6: if i = root then
7: send probe(k) to Γ (i)

8: while true do
9: receive msg(j)

10: case msg.type of
11: ack(k) ∨ upcast(k): phased ← phased ∪ {j}
12: finish: finished ← finished ∪ {j}
13: if finished = childs then
14: send terminate to childs
15: exit � root terminates
16: if phased = childs then � start next round
17: k ← k + 1
18: send round(k) to childs, phased ← 0
19: end while
20: else
21: while true do
22: round_over ← false
23: while ¬round_over do
24: receive msg(j)

25: case msg.type of
26: round(k): if state = interm then � intermediate node
27: send round(k) to childs
28: else � leaf node
29: send probe(k) to Γ (i) \ {parent}
30: round_recvd ← true
31: probe(k): if parent =⊥ then � non-member node
32: parent ← j ; state ← new_leaf
33: send ack(k) to j
34: else � a member node
35: send reject(k) to j

36: ack(k): childs ← childs ∪ {j}
37: if state �= interm then interm_flag ← true
38: reject(k): others ← others ∪ {j}
39: if others = Γ (i) \ {parent} then � a leaf node finishes
40: send finish to parent
41: upcast(k): phased ← phased ∪ {j}
42: finish: finished ← finished ∪ {j}
43: if (finished = childs) ∧ (state = interm) then
44: send finish to parent
45: terminate: if childs �= 0 then
46: send terminate to childs
47: exit � all nodes terminate
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48: if round_recvd then
49: if ((state = leaf ) ∧ ((childs ∪ others) = (Γ (i) \ {parent})) ∨ ((state =

interm) ∧ (childs = phased ∪ finished)) then � check end of round
50: send upcast(p) to parent
51: if state = new_leaf then � update states
52: state ← leaf
53: else if interm_flag then
54: state ← interm
55: end if
56: phased, others ←∅; round_recvd ← false; round_over ← true
57: end if
58: end if
59: end while
60: end while
61: end if

• probe(k): Sent by leaves of the partial BFS tree to unsearched neighbors.
• ack(k)/reject(k): Sent by the searched node to accept/reject being a child of the

sending leaf node.
• upcast(k): Sent first by the leaf nodes of the partial BFS tree and then by the

intermediate nodes to their parents, to signal the end of neighbor search and also
the end of the round.

• finish: Sent by the leaf nodes to their parents to signal that their part is over as
either they have no neighbors other than parent or they do not have any children.

• terminate: Broadcast by the root to all nodes to signal that the construction of the
BFS tree is completed.

The root starts the algorithm by sending the first round message to its neighbors,
which in turn respond by ack messages as shown in Algorithm 5.1. This message is
transferred over the partial BFS tree to the leaf nodes, which in turn search nodes
for the next level of the BFS tree by the probe messages. In order to detect the end
of each round, each leaf node that has received ack or reject messages from all of
its neighbors except the parent returns the upcast message to its parent, which in
turn convergecasts upcast message to its parent. When all upcast messages from
the neighbors of the root are received, root starts the next round by issuing the next
round message.

The depth of the BFS tree formed would be O(d), and the root could terminate
all nodes after d rounds. However, this would require that the diameter of the net-
work be known by the root beforehand. Closer inspection shows that when all the
neighbors of a node i except its parent have responded by reject messages or when
a leaf node does not have any neighbors other than its parent, part of i is over. Al-
gorithm 5.1 uses this observation, and when the set of unrelated neighbors of a leaf
node is equal to the set of all of its neighbors or if it does not have any neighbors
other than the parent, it sends the finish message to its parent which is convergecast
to root. When root receives the finish messages from all of its children, it further
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Fig. 5.2 Synch_BFS execution example

broadcasts a terminate message over the formed BFS tree to inform every node that
the process is over.

5.2.1.1 Example

An example network in Fig. 5.2 shows six nodes numbered 1, . . . ,6, where node 6
initiates the algorithm by the probe(1) message. Each message is labeled by the
round number it has transmitted. Each node that receives probe for the first time
responds by the ack message and marks the sender as its parent. After two rounds,
the BFS tree is formed as shown by bold arrows.

5.2.1.2 Analysis

Lemma 5.1 Algorithm Synch_BFS correctly constructs a BFS tree.

Proof We show this by induction. Assuming that, at step k, a BFS tree Tk rooted at
r is formed, at step k + 1, only the leaves of the tree will be active in sending the
probe message to their neighbors that are one hop away. Therefore any added nodes
will be k + 1 hops away from r , forming T ′

k . �

Theorem 5.1 The time complexity of Algorithm 5.1, Time(Synch_BFS), is O(d2).
Its message complexity Msg(Synch_BFS) is O(nd +m) where d is the diameter and
m is the number of edges of graph G.

Proof Broadcasting of the message round(k) to current Tk takes k units and con-
vergecast of message upcast similarly is performed in k units, where k is the depth
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of Tk . There is also additional time for the probe and ack/reject messages at each
step totalling 2k + 2 time for each step. Therefore, assuming that the final BFS tree
will be at most of depth d ,

Time(Synch_BFS) =
∑

k

Time(Phasek)

= 2
d∑

k=1

(k + 1) = (d + 1)(d + 2)/2 = O(d2). (5.1)

For the message complexity, we need to consider the synchronization messages
and tree forming messages separately. In round p, if the tree formed has k nodes,
there will be k − 1 round messages and k − 1 upcast messages for a total of 2k − 1
messages providing a maximum number of synchronization messages in a round as
O(n). Since the formed BFS tree will have diameter d as the depth, the message
complexity for the synchronization process is O(nd). In each round, new edges of
the BFS tree will be determined by the probe and ack/nack messages, and therefore,
the total traversals for discovery of these edges will be at most 2m. Summation of
the synchronization and discovery messages yields:

Msg(Synch_BFS) =
∑

p

msg(Phase p) = O(nd) + O(m) = O(nd + m). (5.2)

�

5.2.2 Asynchronous BFS Construction

The second algorithm to build a BFS tree of a graph G is the distributed version
of the Bellman–Ford algorithm called Update_BFS. We have a single initiator as
before, which starts the algorithm by sending the layer(l) message that contains its
distance to its neighbors as unity. Any node receiving a layer(1) message compares
the layer value l contained in the message with its known distance to the root, and
if the new value is smaller, the sender of the layer message is labeled as the new
parent, and the distance is updated to l. Since the new distance to the root will affect
all neighbors and other nodes, the layer(l + 1) message containing the new distance
is sent to all neighbors except the new parent as shown in Algorithm 5.2. It can
be seen that this process eventually builds a BFS tree starting from the root. The
termination condition would be the traversing of the longest shortest path between
any two nodes, which would be the diameter of the graph G.

5.2.2.1 Example

An example is shown in Fig. 5.3 with six nodes numbered 1, . . . ,6, where the layer
message carries the distance, and the time frame it is delivered as layer(distance,
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Algorithm 5.2 Update_BFS
1: int parent ←∅, my_layer ← ∞, count = 1, d ← diameter of G

2: set of int childs ←∅, others ←∅

3: message types layer, ack, reject
4: if i = root then
5: send layer(1) to Γ (i)

6: end if
7: while count ≤ d do
8: receive msg(j)

9: case msg(j).type of
10: layer(l): if my_layer > l then � update distance
11: parent ← j

12: my_layer ← l

13: send ack(l) to j � inform parent i am child
14: send layer(l + 1) to Γ (i)\{j} � update neighbors
15: else
16: send reject(l) to j � else reject sender
17: ack(l): childs ← childs ∪ {j} � include sender in children
18: reject(l): others ← others ∪ {j} � include sender in unrelated
19: count ← count + 1
20: end while

Fig. 5.3 Update_BFS execution example

time). Node 6 initiates the algorithm by sending the layer(1,1) message to its one-
hop neighbors. Each neighbor node, when it receives this message, compares the
distance value in the message to its known distance and assigns its parent to the
sender if the new distance is smaller. It can be seen in Fig. 5.3(a) that layer message
reaches node 2 via node 5 before the direct connection between nodes 6 and 2, re-
sulting in node 2 identifying node 5 as its parent. However, this situation is corrected
in (b) when the layer message from node 6 reaches node 2 in the third time frame
resulting in node 2 replacing its parent node 5 with node 6 correctly. Similarly, in
time frame 4, node 3 replaces its parent node 4 with node 2 to correctly construct
the BFS tree rooted at node 6.
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5.2.3 Analysis

Lemma 5.2 Algorithm Update_BFS correctly constructs a BFS tree.

Proof After p steps, every vertex i that has a distance p to the root will have re-
ceived the layer(p − 1) message from a neighbor, and it will set its variable my_dist
to p. It will also choose parent j that has the distance p−1 to the root, and therefore
a BFS tree will be formed after d steps. �

Theorem 5.2 The time complexity of Algorithm 5.2 is O(d), and its message com-
plexity is O(nm).

Proof Since the diameter d of G is the longest distance between any two nodes
in G, all the layer messages will have reached all nodes in O(d) time units. Hence,
Time(Update_BFS) = O(d). Node v may have n−1 as the first value it ever assigns
to its distance to the root. After that, it will change its distance value at most n − 2
times as the longest path, and assuming each time it updates its distance to the
root and sends layer messages to its neighbors in the worst case, it will have sent
n.deg(v) messages in total. Total number of messages therefore will be [3]

Msg(Asynch_BFS) =
m∑

v=1

n.deg(v) = O(nm). (5.3)

�

A problem with this algorithm is that the magnitude of the diameter should be
known by all nodes prior to the execution to detect termination. This algorithm may
be improved so that each message carries a counter and every node that updates its
distance increments the counter such that when the counter reaches the value of the
diameter, the layer message is not transmitted to neighbors any more.

5.3 Depth-First-Search Algorithms

All the distributed algorithms considered in this section use a special message called
token, which traverses the graph in DFS fashion always searching the graph as deep
as possible by visiting unsearched neighbors of the current node, and if all these
are searched, token is returned to the parent which is the first node that has sent
the token. As the token provides a single point of activity at any time, the operation
of the three algorithms is in fact sequential. We first show an algorithm that is an
extension to Tarry’s algorithm, the second one provides an improvement in time
complexity to the first one, and the third algorithm includes identifiers of the nodes
visited in the token.
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Algorithm 5.3 Classic_DFS
1: int parent ←⊥
2: boolean visited[di ] ← {false}
3: message types token
4:
5: if i = root then � root starts the algorithm
6: parent ← i, choose j ∈ Γ (i)

7: visited[j ] ← true, send token(i) to j

8: end if
9:

10: while true do
11: receive token(j)

12: if parent =⊥ then � token first time
13: parent ← j

14: end if
15: if ∀q ∈ {Γ (i) \ {parent}}: visited[q] then
16: if i = root then � if root and all searched, terminate
17: exit
18: elsesend token to parent
19: visited[parent] ← true
20: exit � all nodes except root terminate
21: end if
22: else
23: if j �= parent∧ ¬visited [j ] then � check to send token back from same channel
24: q ← j

25: else
26: choose q ∈ {Γ (i) \ {parent}} : ¬visited[q] � send token to unsearched

neighbor
27: end if
28: visited[q] ← true
29: send token to q

30: end if
31: end while

5.3.1 The Classical DFS Algorithm

Our first distributed DFS algorithm called Classic_DFS is obtained by modifying
Tarry’s algorithm that we have seen in Chap. 4 [4]. Tarry’s algorithm had two rules: a
process never forwards the token twice through the same channel, and a noninitiator
forwards the token to its parent if it cannot forward it to any other neighbor with the
first rule. This algorithm is formed by the addition of the following rule:

• R3: When a process receives the token, it sends it back through the same channel
if this is allowed by Rules 1 and 2.

Algorithm 5.3 displays the operation of the Classical DFS Algorithm. Lines 23–
24 implement R3 so that the token received via the frond edge is sent back to the
sender.
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Fig. 5.4 The classical DFS
algorithm execution example

5.3.1.1 Example

Figure 5.4 shows the operation of Classic_DFS in a sample network with six nodes,
where the traversal of the token is displayed by the time frame it occurs along the
edges. Node 6 starts the algorithm, and after reaching node 2 in time 2, the token is
forwarded to node 3 in time 3, which forwards the token to its neighbor 5. Node 5,
however, applies Rule 3, finds edge {5,3} that is a frond edge, and returns token
immediately back to 3. Similarly, token is returned to senders along the frond edges
{1,5} and {6,7}. It can also be seen that the construction of the whole DFS tree is
completed in 16 steps, which is twice the number of edges for this graph, as there
are two traversals for each edge.

5.3.1.2 Analysis

Theorem 5.3 Algorithm 5.3 correctly constructs a DFS tree of an arbitrary
graph G in 2m times using 2m messages.

Proof Using R3 ensures that the traversal of a frond edge is followed by the second
traversal in the opposite direction so that this edge is not included in the DFS tree.
Each edge is used to deliver a message twice, once in each direction for a total of
2m times, resulting in 2m messages in total. Since there is a single activity at any
time, each message delivery action corresponds to a time unit resulting in 2m time
units. �

A problem with this algorithm is that the frond edges that do not belong to
the DFS tree are also traversed by the token, resulting in a time complexity de-
pendent on the number of edges m of the network graph. In general, m could be
as high as O(n2), and therefore, algorithms that have complexities dependent on
the number of nodes would be more desirable. Awerbuch’s algorithm described
next achieves a linear time complexity dependent on the number of nodes of the
graph.
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Algorithm 5.4 Awerbuch_DFS
1: int parent ←⊥, i, j

2: boolean visited[di ] ← {false}
3: message types token, vis, ack
4: if i = root then � root starts the algorithm
5: parent ← i, send vis to Γ (i)

6: ∀j ∈ Γ (i), receive ack from j � receive acks from all neighbors
7: choose q ∈ Γ (i)

8: send token to q

9: visited[q] ← true
10: end if
11: while true do
12: receive msg(j)

13: case msg(j).type of
14: vis: visited[j ] ← true � neighbor has token
15: send ack to j

16: token: if parent =⊥ then � token first time
17: parent ← j

18: send vis to Γ (i) � inform neighbors
19: ∀j ∈ Γ (i) \ {parent}, receive ack from j � receive acks
20: if ∀q ∈ {Γ (i) \ {parent}}: visited[q]
21: if i = root then exit
22: else send token to parent
23: visited[parent] ← true
24: exit � root terminates
25: else choose q ∈ {Γ (i) \ {parent}}: ¬visited[q]
26: send token to q

27: visited[q] ← true
28: end while

5.3.2 Awerbuch’s DFS Algorithm

Tarry’s extended algorithm unnecessarily searches the nodes in frond edges. An
algorithm that provides a token traversal in the DFS tree edges only will have
time and message complexities in the order of n as the DFS tree will have n − 1
edges. Awerbuch provided an algorithm (Awerbuch_DFS) for this purpose, where
a node receiving a token knows which of its neighbors has been visited previ-
ously by the token [1]. In this algorithm, there are also the notifying message
that a node is visited (vis) and its response (ack) messages. When node i is vis-
ited for the first time, it sends a vis message to all of its neighbors except the
parent. All neighbors of i send ack messages in return, and node i does not for-
ward the token to any neighbor before receiving all of the ack messages as shown
in Algorithm 5.4, where any neighbor of i that receives vis message marks its
local data visited[i] as true to prevent sending of the token to that node in fu-
ture.
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5.3.2.1 Analysis

Theorem 5.4 Awerbuch_DFS finds a DFS tree of an arbitrary graph G in 4n − 2
time using 4m messages.

Proof A tree edge is traversed four times, twice for token in each direction plus one
for vis and one for ack messages. A nontree (frond) edge that is not included in the
DFS will also be traversed four times as two vis messages and two ack messages in
both directions. Therefore, the total number of messages traversed for all edges will
be 4m. The total time taken by the algorithm is twice the traversal of the tree formed
as 2n − 2, and also, for every node, there will be two units, one for sending vis and
one for receiving ack messages. Therefore, the total time is 4n − 2 time units. �

As an improvement, sending of a vis message to the neighbor which node will
send the token can be omitted saving two messages (vis and ack) for each tree edge,
resulting in the 2n − 2 total message reduction.

5.3.3 Distributed DFS with Neighbor Knowledge

The DFS algorithm Neigh_DFS uses a token to traverse the nodes of the network
in a sequential manner as in the previous algorithms. Since we need a way to know
which nodes have been visited so that they are not visited again, a token may be used
for this purpose. The token includes the visited node list which is appended by the
node identifier of a node that is visited for the first time. The algorithm Neigh_DFS
is depicted in Algorithm 5.5, where node i chooses a neighbor j to send the token
only if it is not included in the list (vislist) of already visited nodes of the token.

5.3.3.1 Analysis

Theorem 5.5 Neigh_DFS algorithm constructs a DFS tree in 2n − 2 times using
2n − 2 messages.

Proof The final spanning tree will have n − 1 edges, and only the edges of this tree
will have been traversed twice in each direction resulting in a total of 2n − 2 token
transfers among the nodes resulting in 2n − 2 messages. Since there is a single ac-
tivity at any time, each message delivery action corresponds to a time unit resulting
in 2n − 2 times. �

Figure 5.5 shows the operation of Neigh_DFS in a sample network, where n

equals 8, and edges of the tree are labeled by the time frame token traverses them.
The contents of the token when it is first received by a node and the final token as
received by the root node 4 are also shown. The formed DFS tree takes 14 messages
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Algorithm 5.5 Neigh_DFS
1: int parent ←⊥
2: set of int vislist ←∅

3: message types token
4:
5: if i = root then � root starts the algorithm
6: parent ← i, choose j ∈ Γ (i)

7: send token({i}) to j

8: end if
9:

10: while true do
11: receive token(j, vislist)
12: if parent =⊥ then � token received first time
13: parent ← j

14: end if
15: if ∃j ∈ Γ (i) \ {vislist} then � choose an unsearched node if any
16: choose j ∈ Γ (i) \ {vislist}
17: send token(vislist ∪ {i}) to j
18: else if i = root then
19: exit � if all searched and root, terminate
20: else � if all searched and not root, return token to parent
21: send token(vislist ∪ {i}) to parent
22: exit � all nodes except root terminate
23: end if
24: end while

Fig. 5.5 Neigh_DFS execution example

(2 · 8 − 2) and also 14 time units as shown. The bit complexity of this algorithm is
O(n logn), assuming that logn bits are used to represent a single node identity. For
a large network where n � 1, this high bit complexity is disadvantageous as token
has to be transferred 2n − 2 times. For this example network, the bit complexity is
O(8 · 3) = O(24).
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Table 5.1 BFS and DFS
algorithm complexities Algorithm Time Comp. Msg. Comp.

BFS Synch_BFS O(d2) O(nd + m)

Asynch_BFS O(d) O(nm)

DFS Classical_DFS 2m 2m

Awerbuch_DFS 4n − 2 4m

Neigh_DFS 2n − 2 2n − 2

Fig. 5.6 Example graph for
Exercise 4

5.4 Chapter Notes

We have reviewed fundamental BFS and DFS algorithms. Comparison of BFS and
DFS Algorithms is shown in Table 5.1. For BFS, Synch_BFS has a better message
complexity, and Asynch_BFS has a better time complexity. A challenge, therefore,
is to design distributed BFS algorithms that optimize both time and message com-
plexities. For DFS, the Neigh_DFS performs better than the other two algorithms
as in general, m � n; however, the token has to hold the identifiers of nodes, which
requires a space complexity of O(n logn) bits, which may not be trivial for large n

values. Cidon [2] provided a further decrease in time by abolishing the ack messages
in Awerbuch’s Algorithm resulting in 2n − 2 times using O(4m) messages.

5.4.1 Exercises

1. Provide an FSM-based solution for Algorithm 5.2 by drawing the FSM and writ-
ing the pseudocode.

2. Modify Algorithm 5.2 so that a counter, sometimes called Time To Live (TTL)
field, in each message is used, which is initialized to the diameter of the network
by the root. Each node receiving the layer message now decrements TTL value,
and if this reaches zero, the layer message is not forwarded to any neighbors.
Show the operation on the sample graph of Fig. 5.2.

3. Provide the pseudocode for the synchronous version of Update_BFS algorithm
and work out its time and message complexities.

4. Show the execution of the sequential BFS and DFS algorithms in the sample
graph of Fig. 5.6 starting from node 1. The DFS algorithm always selects the
highest identifier node from the unsearched nodes.
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Fig. 5.7 Example graph for
Exercise 4

Fig. 5.8 Example graph for
Exercise 5

5. Show the execution of Asynch_BFS Algorithm in the example graph of Fig. 5.7
starting from node 3.

6. Describe and show the messages in a possible execution of Neigh_DFS Algo-
rithm in the example graph of Fig. 5.8 starting from node 6 and assuming highest
identifier is always selected to transfer the token. Show also the contents of the
token in each iteration.

7. Describe how ack messages in Awerbuch_DFS Algorithm may be prevented
(Cidon’s Algorithm). Also, show that this algorithm achieves 2n − 2 times using
at most 4m messages.
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Chapter 6
Minimum Spanning Trees

Abstract A minimum spanning tree of a weighted graph is its spanning tree T with
a minimum total cost of edges in T of all possible spanning trees. Minimum span-
ning trees have many applications in computer networks. In this chapter, we inves-
tigate synchronous and asynchronous distributed algorithms to construct minimum
spanning trees.

6.1 Introduction

A minimum spanning tree (MST) of a weighted graph G(V,E,w), where w : E →
R, is a spanning tree such that the sum of the weights of edges of this tree is min-
imum among all possible spanning trees of the graph G. If G is unconnected, a
minimum spanning forest of G is the union of all its such trees. Formally:

Definition 6.1 Given a weighted graph G(V,E,w), MST(G) = (V ,E′,w′) with
E′ ⊂ E that minimizes

∑
e w′

e ∈ E′.

MSTs can be used in constructing networks between nodes using the least
amount of communication wire, in smaller electronic circuits, and for clustering.
MST of a graph may be also used for more complicated algorithms and protocols.
The MST algorithm also solves the leader election problem in general graphs, where
the leader is simply the last root. In this chapter, we first describe two sequential al-
gorithms and then analyze distributed implementations based on these algorithms.

6.2 Sequential MST Algorithms

Various sequential algorithms exist to build an MST of G. Kruskal’s Algorithm
(Kruskal_MST) starts with an empty MST and selects edges to include in MST
from E such that the lowest weight edge that does not produce a cycle with the al-
ready selected edges is chosen. For the example network of Fig. 6.1, the selected
edge sequence would be with weights 1, 2, 3, 4, and 7 in ascending order to give the
MST excluding edges 5 and 6 as they produce cycles with the existing tree struc-
ture. Kruskal_MST has a time complexity of O(m logm) as it has to sort the edges
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Fig. 6.1 Kruskal Algorithm
example. MST is shown by
bold lines

first. A quick observation is that Kruskal_MST is more convenient for distributed
processing as it chooses edges independently.

The second sequential algorithm is due to Prim (Prim_MST) and executes in a
greedy manner by always choosing the lightest weight edge that is outgoing from
the current tree. We need to define few concepts to illustrate Prim_MST in detail.

Definition 6.2 A fragment F of an MST is a subtree of the MST. An outgoing edge
{u,v} of F is an edge such that u ∈ F and v /∈ F . The minimum-weight outgoing
edge of a fragment of the MST is such an outgoing edge.

There are two important properties of MSTs as follows:

Lemma 6.1 (Property 1: blue rule) Given a fragment of an MST, let e be a
minimum-weight outgoing edge of the fragment. Then joining e and its adjacent
nonfragment node to the fragment yields another fragment of an MST.

Proof Assume that e is MWOE from the MST fragment Fp(Vp,Ep) and Tm is the
MST. If e /∈ Tm, then there exists e′ ∈ Tm that is included in the cut (V ,V − Vp).
Substituting e for e′ in Tm results in a lighter spanning tree T ′ as w(e) < w(e′),
which means that Tm was not minimum and thus that the original assumption e /∈ Tm

was wrong, resulting in a contradiction. �

Lemma 6.2 (Property 2) If all edges of a connected graph have unique weights,
then the MST is unique.

Algorithm by Prim (Prim_MST) iteratively chooses the MWOE from the cur-
rent MST fragment. Lemma 6.1 assures correct construction of the MST. Applying
Prim_MST to the graph of Fig. 6.1 would give the same MST as before as there is
one MST for a graph with unique weights. However, the order of edges included
in the MST would be different as 1, 3, 4, 7, and 2, starting from node 6, since this
algorithm chooses the MWOE from the existing vertices of the fragment of MST.
Prim_MST using adjacency matrix requires O(n2) time which can be reduced to
O(m logn) steps using binary heaps.

In this chapter, we will describe a synchronous MST algorithm based on
Prim_MST , another synchronous algorithm based on Kruskal_MST , and then show
a detailed implementation of an asynchronous algorithm.
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6.3 Synchronous Distributed Prim Algorithm

The first synchronous algorithm is the distributed version of Prim_MST executed
synchronously, called DistPrim_MST . There is a single initiator that completes the
structuring of the tree in a number of rounds. In each round, the root gathers all
MWOEs from the leaves of the partial tree T ′, finds the minimum {u,v} of these
MWOEs, and broadcasts {u,v} to T ′ in the next round so that it can be added to T ′.
In this implementation, we will not use an FSM explicitly but will assign states
to every node in the graph. Each node other than the root can be in intermediate
(interm) node, leaf p of the partial tree T ′, a node in {V \ T ′} (other), or a final leaf
(leaf f ) state. At the reception of a round message, each node acts differently based
on its state as follows:

1. An interm node simply forwards the round(k, x, y) message with the assigned
MWOE information to its children during a downcast operation and converge-
casts the lightest MWOE among the MWOEs it receives from its children to its
parent during an upcast operation.

2. A leaf p node that is connected to the assigned MWOE from a previous round
sends the round(k, x, y) message to the node y connected to the other end of the
MWOE and updates its data structures.

3. A leaf p node that is not connected to the assigned MWOE from a previous
round sends the probe messages to its unexplored neighbors, chooses the lightest
edge from the neighbors that have responded with an ack message, and sends its
MWOE to its parent. If all of its unexplored neighbors have responded with the
reject message, it enters the leaf f state and sends an upcast message with a null
value indicating that it has terminated.

4. An other node may receive a round(k, x, y) message destined to it as it is at
the other end of MWOE, in which case it enters the leaf p state and updates its
data structures. An other node may receive a probe message from a leaf p node,
in which case it sends an ack to the sender if it is the first probe message it
receives; otherwise, it replies with a reject. Some other nodes may not receive
any messages in some rounds if they are far from the root.

The messages used in the algorithm are the above-mentioned round, assign, probe,
ack, reject, and upcast messages. The important data structures in this algorithm are
as follows:

• neigh_edges: Set of tuples as 〈u,v,wuv〉 to hold the neighbor unexplored edges.
• down_mwoes: Set of tuples as 〈u,v,wuv〉 for the MWOEs received from the chil-

dren.
• unexplored: Set of the identities of neighbor nodes that are connected to incident

unexplored edges.

The termination condition for the algorithm is that when all nodes including the
root cannot find any MWOEs that is disclosed to the root by sending a null value for
the MWOE nodes as shown in Algorithm 6.1.

Figure 6.2 shows an example network where rounds are shown in parentheses
and node 4 is the root node, which initiates the algorithm by sending the first round
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Algorithm 6.1 DistPrim_MST
1: int parent; state ← other
2: set of int childs, responded, converged ← ∅; unexplored ← Γ (i)

3: message types round, probe, ack, reject, upcast
4: boolean terminated, round_recvd, round_over ← false
5: if i = root then
6: find MWOE incident to j ∈ Γ (i)

7: send round(1, root, j) to j

8: end if
9: while ¬terminated do

10: round_over ← false
11: while ¬round_over do
12: receive msg(j)

13: case msg.type of
14: round(k, x, y): if state = leaf p then
15: if (i = x) then � MWOE parent
16: childs ← childs ∪ {y}
17: lost_neighs ← lost_neighs ∪ {j}
18: send round(k, x, y) to y
19: if unexplored �= 0 then
20: send probe to unexplored
21: else if state = interm then
22: send round(k, x, y) to childs
23: else if i = y then � MWOE child
24: parent ← x, state ← leaf p

25: lost_neighs ← lost_neighs ∪ {j}
26: round_recvd ← true
27: probe(k): if state = other ∧ ¬searched then
28: send ack(k) to j

29: parent ← j ; searched ← true
30: else send reject(k) to j

31: ack(k): responded ← responded ∪ {j}
32: neigh_edges ← neigh_edges ∪ {i, j,wij }
33: reject(k): lost_neighs ← lost_neighs ∪ {j}
34: responded ← responded ∪ {j}
35: if lost_neighs = Γ (i) \ {j} then
36: state ← leafp; send upcast(k,0,0) to parent
37: upcast(k,u, v): converged ← converged ∪ {j}
38: down_mwoes ← down_mwoes ∪ {u,v,wuv}
39:
40: if round_recvd ∧ ((state = root/interm ∧ (converged = childs)) ∨ ((state =

leaf _p) ∧ (responded = unexplored))) then
41: if ∃(u, v,wuv) ∈ {(neigh_edges ∪ down_mwoes)|u �= null} then
42: (p, q,wpq ← min{w|(u, v,wuv) ∈ neigh_edges ∪ down_mwoes}
43: if i �= root then
44: send upcast (p, q,wpq) to parent
45: else k ← k + 1
46: send round(k,p, q) to childs
47: end if
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48: else terminated ← true
49: if i �= root then
50: send upcast(k,null,null) to parent
51: end if
52: end if
53: unexplored ← unexplored \ lost_neighs
54: responded, converged, lost_neighs, neigh_edges, down_mwoes ←∅

55: round_recvd ← false; round_over ← true
56: end if
57: end while
58: end while

Fig. 6.2 DistPrim_MST execution example

message to its MWOE neighbor 6, to be included in the tree. Node 6 in return
upcasts its MWOE of weight 2, node 4 has MWOE node of weight 8, and edge
{6,1} is chosen as the next edge to be included in the MST. The process goes on,
and after seven rounds, there is no MWOE left, and the algorithm terminates.

6.3.1 Analysis

Theorem 6.1 DistPrim_MST correctly constructs an MST of the graph G in O(n2)

time, and its message complexity is also O(n2).

Proof The correctness is ensured by Lemma 6.1. The MST formed will have O(n)

as its depth since there will be n − 1 nodes in the longest path. The time required
for a round and also the number of rounds are therefore both O(n). The total time in
this case is O(n2). Each round requires O(n) messages as the MST will have O(n)

edges. Summing over all rounds gives O(n2) for the total number of messages. �
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6.4 Synchronous GHS Algorithm

Gallager, Humbelt, and Spira proposed a synchronous algorithm (SGHS_MST) with
concurrent initiators to find the MST of a graph. The general idea of this algorithm is
to have the initiators expand their own fragments synchronously in phases by finding
their MWOEs of the fragments and joining fragments in parallel. This algorithm
requires synchronization of each phase, which may be provided by a synchronizer,
or a spanning tree of the whole network may be constructed beforehand as in the
previous algorithm of Prim_Synch at the cost of additional messages. Additionally,
differently from the synchronous algorithms we have seen before, this algorithm
also requires synchronization of all fragments within a round so that nodes in each
fragment should be executing the same round concurrently.

Initially, each fragment consists of one node that is the leader of its fragment.
In the first phase of the algorithm, each node sends a connect message across its
MWOE. The leader of the new component is the higher-identity endpoint of this
unique edge. The following are then performed in a round k:

1. Finding MWOE:
a. The leader of each fragment broadcasts the search message over its tree T .
b. Each leaf node finds its MWOE by sending probe messages to its unexplored

edges and convergecasts MWOE to its parent.
c. The leader decides on the smallest MWOE.

2. Combining Fragments: Assuming that fragments have T1 and T2:
a. The leader sends a connect message to the leaf node with MWOE
b. One of the endpoints of MWOE with the higher identity is chosen as the new

leader.
c. The Tc is formed by modifying the T1 and T2 links so that they point to the

new leader.
d. The new leader broadcasts the new_leader message to all nodes in the com-

bined fragment so that they can use this identifier subsequently.

The implementation of this algorithm will be similar to DistPrim_MST . Fig-
ure 6.3 shows an example network where the initial fragments F8, F7, F5, and F2
have nodes 8, 7, 5, and 2 as the roots of their trees as shown in (a). F8 and F7 merge
through edge {4,6}, electing a new leader as node 6; F5 and F2 merge through edge
{1,3}, electing a new leader as node 3 as these nodes have the higher identifiers
of the merged edges as shown in (b) to form fragments F6 and F3. The final MST
is formed by merging these two fragments under the final leader node 7 as shown
in (c). In this example, the weights are chosen such that there is at least one neighbor
v of node u such that MWOE(u) = MWOE(v) initially. It may be possible that the
MWOE of a node may not be the MWOE of none of its neighbors, in which case it
may have to wait for another round before joining a fragment.

Figure 6.4 displays such an example where nodes 4 and 5 have MWOEs ({4,6}
and {5,3}) that are not MWOEs of any of their neighbors. When a node has edges
that are MWOEs of more than one neighbor, the highest identifier node is accepted
in this implementation.
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Fig. 6.3 Synch_GHS
example execution 1

6.4.1 Analysis

Theorem 6.2 The time complexity of SGHS_MST is O(n logn), and its message
complexity is O(m logn).

Proof In each round of the algorithm, there is a broadcast and convergecast for
MWOE. As the size of a fragment is at most n, the time for broadcast and converge-
cast is O(n), and message complexities for these two operations are also O(n) since
an n-node tree would have at most n−1 edges and the fragment merging has similar
complexities. However, in the final phase of the fragment merging step (Step 2.d),
the new fragment identifier is updated by each node resulting in Θ(m) messages.
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Fig. 6.4 Synch_GHS
example execution 2

As there will be O(logn) rounds, the total time complexity is O(n logn), and the
message complexity is O(m logn) considering the last step of merging, which is the
dominant message transfer cost as m � n in general [7]. �

www.it-ebooks.info

http://www.it-ebooks.info/


6.5 Asynchronous GHS Algorithm 77

6.5 Asynchronous GHS Algorithm

Using the same idea of independently growing fragments and joining them, Gal-
lager, Humbelt, and Spira proposed an asynchronous version of the SGHS_MST al-
gorithm, which we call AGHS_MST . There are several issues to be addressed in the
asynchronous version of the algorithm as follows. First, nodes do not have complete
information about their MWOEs. In SGHS_MST , nodes are at the same level when
they are testing their edges, but in this algorithm neighbors may be out of phase.
Also, in SGHS_MST , level k fragments have 2k nodes, and level k + 1 fragments
are constructed from at least two level k fragments, whereas in AGHS_MST , com-
ponents at different levels can be combined. There is a need for a more sophisticated
protocol.

The general idea of the algorithm is that each node i is a fragment initially con-
taining itself and the fragments are enlarged using the blue rule as before. Each
fragment Fi finds its MWOE asynchronously, and when MWOE is determined, Fi

is combined with Fj at the other end of MWOE using a protocol, and the algorithm
terminates when there is only one fragment. The following are the messages used in
AGHS_MST :

• initiate: Broadcast from the leader to find MWOE.
• report: Convergecasts MWOE responses back to the leader.
• test: Asks whether an edge is outgoing from the component.
• connect: Sent across the MWOE to connect components.
• changeroot: Sent from the leader to the endpoint of MWOE.

A merge occurs when the connect message has been sent both ways on the edge,
where two nodes must have the same level, and an absorb occurs when the connect
message has been sent on the edge from a lower-level to a higher-level node.

6.5.1 States of Nodes and Links

Each node can be in three states as Sleeping, Find, and Found, where Sleeping is
the initial state of all nodes. A node will be in state Find when searching MWOE
and in state Found at all other times. A state of an each edge e = {u,v} can be one
of the following:

• Basic: It has not yet been decided whether the edge is part of the MST or not.
• Rejected: The edge is not part of the MST.
• Branch: The edge is part of the MST.

6.5.2 Searching MWOE

In this section, we analyze the searching of MWOE by fragments. The first step
is realized by the Test-Accept-Reject Protocol, which determines MWOE, and then
combining of the fragments can be achieved as described below.
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6.5.2.1 Test-Accept-Reject Protocol

Every node that receives the initiate message starts searching its MWOE by sending
out the test(Fi,Li) message on its minimum-weight basic edge, where Fi and Li

are the fragment identifier and the level of the sending node i. A node with fragment
identifier Fj and level Lj that receives the test message does the following:

• if Fi = Fj , the reject message is sent to i.
• if (Fi �= Fj ) ∧ (Li ≤ Lj ), the accept message is sent to i.
• if (Fi �= Fj ) ∧ (Li > Lj ), no reply is sent until this condition changes.

Whenever a node receives the reject message from a neighbor node as a result
of the test message, it marks the edge as rejected and sends the test message to the
next minimum-weight basic edge. After receiving responses from all the neighbors
that initiate was sent, the node sends the report message to the node it received the
initiate message. All of the report messages are convergecast to the core node that
is the leader of the fragment. After core nodes find MWOEs, the core node that is
closer to the MWOE sends the changeroot message over the path from the core to
the MWOE connected node, which in turn sends the connect(Li) message to the
node in Fj incident to MWOE.

6.5.2.2 Connecting Fragments

Each fragment Fi has a level Li , which is initially set to 0. When a smaller level
fragment combines into a larger one, it changes its label and level to those of the
larger fragment. If two fragments at level L have the same MWOE, each sends
the connect message over this MWOE, and the edge becomes the core of the new
fragment of level L+1 and the initiate messages are sent to find the new MWOE. If
the connect message is exchanged between nodes of different levels, say L1 < L2,
of fragments F1 and F2, the node incident to MWOE at L2 immediately sends the
initiate message that is broadcast to all nodes in L1, in which case L2 becomes the
level of all nodes in F2. In this case, F1 is said to be absorbed by F2. Formally,
combining method for fragments is as follows:

1. Rule A: If MWOEi of Fi is connected to Fj , where Li < Lj , Fi ← Fj , and
Li ← Lj ; the new values of Fi and Li are broadcast to all nodes of Fi .

2. Rule B: If MWOEi of Fi is connected to Fj , where Li = Lj , Fi and Fj ← Fw

and Li and Lj ← Li + 1; Li ← Lj ; the new values of Fi and Li are broadcast
to all nodes of Fi and Fj .

3. Rule C: For all other cases, Fi must wait until Rule A or Rule B is applicable.

6.5.3 The Algorithm

Algorithm 6.2 shows the operation of AGHS_MST as in [8] as regards to the above
description of its operation. The procedure do_test is invoked when a node receives
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an initiate message, do_report is invoked when a node receives a report message,
and do_changeroot is used by a node to change its root.

6.5.3.1 Analysis

Theorem 6.3 AGHS_MST computes an MST using O(m logn) messages in
O(n logn) time.

Proof Each step of AGHS_MST requires a broadcast and convergecast of messages,
and then a step of combining fragments is performed. These steps require O(n)

time, as the depth of a fragment is at most n, and O(n) messages, as the number
of edges in a fragment is also at most n. The combining of the fragments requires
similar time and message complexities as the messages traverse in the fragment.
However, in the last step, there are at most Θ(m) messages for updating the new core
identifier. Since the number of phases is O(logn), the total number of time steps
considering O(n) steps per phase is O(n logn). The message complexity therefore,
counting both the initial and combining steps, is O(m + n logn).

In detail, there will be 4|E| test-reject messages (one pair for each side of every
edge), n initiate messages per level, n report messages per level, 2n (test-accept)
messages per level (one pair for each node), n (change-root/connect) messages per
level (core to MWOE path), addition of which yields 4m + 5n logn messages, and
therefore, Msg(AGHS_MST) = O(m + n logn). �

6.6 Chapter Notes

The distributed MST problem is a fundamental problem in distributed computing.
AGHS_MST algorithm, which has O(n logn) time complexity and O(m + n logn)

message complexity, was a fundamental asynchronous distributed MST algorithm,
which has inspired further research. Chin and Ting [2] improved the time complexity
of GHS algorithm to O(n log logn), Gafni [3] provided a further improvement to
O(n log∗ n), and then Awerbuch [1] provided a running time of O(n), which is
optimal.

Considering the diameter d of the graph, Garay, Kutten, and Peleg [4] provided
a distributed MST algorithm with running time O(d + n0.61). Kutten and Peleg
[6] further improved the bound to O(d + √

n log∗ n). Maleq and Pandurangan [5]
viewed the problem from the point of providing an approximate MST algorithm
rather than an exact one, and they proposed an O(logn)-approximate distributed
MST algorithm with running time O(d + l), where d is the diameter, and l is the
local shortest path diameter of the graph, which depends on the topology and the
edge weights of the graph.
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Algorithm 6.2 AGHS_MST
1: state: (sleep, find, found)
2: int statech[|Γ (i)|]: basic, branch, reject
3: int level, rec
4: neighbors testch, bestch, parent
5: real name, bestwt
6: message types initiate, connect, test, ack, reject, report

{Initialize}
7: find MWOE({i, k})
8: state ← found, level ← 0; statech[k] ← branch, rec ← 0
9: send connect to k

10: while true do
11: receive msg(j)

12: case msg.type of
13: connect(L): if L < level then
14: statech[j ] ← branch
15: send initiate(level,name, state) to j

16: else if statech[j ] = basic then process message later
17: else send initiate(level + 1,ω(ij),find) to j

18: initiate(L,F,S): level ← L; name ← F ; state ← S; parent ← j ;
19: bestch ←⊥; bestwt ← ∞;
20: for all x ∈ Γ (i): statech[x] = branch ∧ x �= j do
21: send initiate(L,F,S) to x

22: if state = find then rec ← 0; do_test
23: test(L,F ): if (L > level) then process message later
24: else if F = name then
25: if statech[j ] = basic then statech[j ] ← reject
26: if j �= testch then send reject to j

27: else do_test
28: send accept to j

29: accept(): testch ←⊥
30: if ω(ij) = bestwt then
31: bestwt ← ω(ij); bestch ← j

32: do_report
33: reject(): if (statech[j ] = basic) then statech[j ] = reject
34: do_test
35: report(ω): if (j �= parent) then
36: if ω < bestwt then
37: bestwt ← ω; bestch ← j

38: rec ← rec + 1; do_report
39: else
40: if state = find then process message later
41: else if ω > bestwt then do_changeroot
42: else if ω = bestwt = ∞ then terminate
43: changeroot(): do_changeroot
44: end while
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45: procedure do_test
46: if ∃j ∈ Γ (i) : statech[j ] = basic then
47: testch ← j ∧ statech[j ] = basic ∧ ω(ij) minimal
48: send test(level,name) to testch
49: else testch ←⊥; do_report
50: end if
51: end procedure
52:
53: procedure do_report
54: if rec = #{j : statech[j ] = branch ∧ j �= parent} ∧ testch =⊥ then
55: state ← found; send report(bestwt) to parent
56: end if
57: end procedure
58:
59: procedure do_changeroot
60: if statech[bestch] = branch then
61: send changeroot to bestch
62: elsesend connect(level) to bestch; statech[bestch] ← branch
63: end if
64: end procedure

Fig. 6.5 Example graph for
Exercise 1

Fig. 6.6 Example graph for
Exercise 2

6.6.1 Exercises

1. Find MST in the graph of Fig. 6.5 using Kruskal_MST and Dijkstra_MST algo-
rithms.

2. Show the execution of DistPrim_MST algorithm in the graph of Fig. 6.6 assum-
ing that node a is the root.

3. Show a possible execution of SGHS_MST in the graph of Fig. 6.7.
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Fig. 6.7 Example graph for
Exercise 3

4. Under which circumstances would an approximate distributed MST algorithm
be preferred over an exact distributed algorithm?
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Chapter 7
Routing

Abstract Routing in a computer network is the process of communicating mes-
sages from source nodes to destination nodes along selected paths with the lowest
possible costs. This chapter introduces few sample distributed routing algorithms
based on sequential routing algorithms.

7.1 Introduction

For the routing process, we will assume that the edges of G have nonnegative
weights and that these represent costs of sending the messages and delays incurred.
The network graph in this case is represented by weighted communication links
as G(V,E,w), where w : E → R. Since nodes are not connected to every other
node of the weighted graph, messages must be forwarded between the intermediate
nodes from source to the destination. The cost of sending a message from a source
to a destination is the sum of the weights of the edges of the path between them.
There is at least one shortest path between every pair of nodes, and the purpose of a
routing algorithm is to determine this shortest path. Desirable properties of a routing
algorithm are as follows:

• Correctness: Every message should be delivered correctly to its destination.
• Complexity: The algorithm must have low time, message, and space complexities.
• Robustness: The algorithm should update routing tables when topology changes.
• Shortest Paths: Messages should be transferred along the minimum-cost paths

from the source to the destination.

In this chapter, we will first review three classical sequential routing algorithms
due to Dijkstra, Bellman and Ford, and Floyd and Warshall in Sect. 7.2 as these
form the basis of the distributed routing algorithms. Then we describe distributed
implementations of Bellman–Ford and Floyd–Warshall algorithms in Sects. 7.3, 7.4,
7.5, and 7.6. We conclude by the descriptions of two fundamental routing protocols.

7.2 Sequential Routing Algorithms

In this section, two Single-Source Shortest-Path (SSSP) algorithms, which execute
sequentially to find the shortest path from a single source to all nodes of the network,
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Algorithm 7.1 Dijkstra_SSSP
1: ds ← 0 � initialize distances
2: for all i �= s do
3: di ← ∞
4: end for
5: S ← V

6: while S �=∅ do
7: find vm ∈ S with minimum d � find node vm with minimum distance
8: for all {vm,u} do � update each neighbor distance of vm

9: if du > dvm + length({u,vm}) then
10: du ← dvm + length({u,vm})
11: end if
12: end for
13: T ← T ∪ {vm} � include new node in the shortest path
14: S ← S \ {vm} � remove new node from searched
15: end while

are described. The first algorithm due to Dijkstra is inherently sequential; however,
the second algorithm by Bellman and Ford is suitable for distributed processing.

7.2.1 Dijkstra’s Algorithm

The SSSP algorithm proposed by Dijkstra [3] (Dijkstra_SSSP) computes all shortest
paths from a single node. It can be applied by each node of the network graph to find
All-Pairs Shortest-Paths (APSP) of the network. The idea of this algorithm is to start
from a source node s and include iteratively in the route the nodes with the lowest
costs from s. As shown in Algorithm 7.1, S is the set of nodes for which shortest
paths have not been found, and du for node u is the shortest known distance from
the source node s to node u. The algorithm starts by setting S = V and du = ∞
for each node u except the source node s, which has ds = 0. At each iteration, the
vertex v that has the minimum distance value to the source is deleted from S, and
each neighbor u of v is investigated to find if a path through v provides a shorter
path to s than the current distance du.

An example execution of Dijkstra_SSSP is shown in a directed graph G in
Fig. 7.1, where node a is the source node from which the shortest paths are to
be computed. The node with the lowest distance is node a itself as all others have
infinite distances initially. Nodes b and e that are neighbors of a are marked with
distances 8 and 2, respectively, and a is added to T , removed from S in the first
iteration of the loop. In the second iteration of the for loop, node b has the lowest
distance in S, its neighbors e and c are marked with distances 3 and 8, and the pre-
vious distance 8 of node e is changed to 3 in this iteration. The algorithm proceeds
similarly, adding a vertex to the already decided list of vertices T in each iteration,
and finally, T = {a, b, e, d, c} in sequence is obtained.
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Fig. 7.1 Dijkstra_SSSP execution example. (a) The graph G. (b) First iteration. (c) Second itera-
tion. (c) Final iteration

The time complexity of Dijkstra_SSSP is O(n2), considering the two nested
loops. Using suitable data structures, the time can be reduced to O(n logn) steps,
and for the APSP problem, O(n3) (or O(n2 logn)) operations are needed as the al-
gorithm will be executed for each node. It should be noted that to calculate the APSP
routes in a distributed system, all the nodes should have the network connectivity in-
formation such as the adjacency matrix of the graph. For this reason, Dijkstra_SSSP
is not convenient for distributed processing.

7.2.2 Bellman–Ford Algorithm

Dijkstra_SSSP provides wrong answers for graphs with negative weight cycles. The
Bellman–Ford SSSP algorithm (BellFord_SSSP) [1] solves this problem using dy-
namic programming and works for negative weight edges and cycles by iteratively
updating distances from the source node using the results obtained from the pre-
vious iteration. Given a weighted graph G(V,E,w) with source s, BellFord_SSSP
outputs the shortest paths from s and their weights if there is no negative weight
cycle, and it produces no answer if there is a negative weight cycle as shown in
Algorithm 7.2. BellFord_SSSP works with directed and undirected graphs.
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Algorithm 7.2 BellFord_SSSP
1: ds ← 0
2: for all i �= s do � initialize distances and predecessors
3: di ← ∞
4: predecessor(u) ←∅

5: end for
6: for k = 1 to n − 1 do
7: for all {u,v} ∈ E do � update distances
8: if du > dv + length(u, v) then
9: du ← dv + length(u, v)

10: predecessor(u) ← v

11: end if
12: end for
13: end for
14: for all (u, v) ∈ E do � report negative cycle
15: if du + length(u, v) > dv then
16: report “Graph contains a negative cycle”
17: end if
18: end for

7.2.2.1 Example

An example execution of BelFord_SSSP is depicted in the same directed graph G

in Fig. 7.2, where node a is the source node from which the shortest paths are to
be computed. Each edge is checked in each iteration, and if the new distance cal-
culated with the relaxation is smaller, the node is labeled with the new distance,
and its predecessor is marked. In the first iteration in (b), nodes b and e are marked
with 2 and 8 distances, respectively, and all other nodes remain with infinite dis-
tances to the source node a. In the second iteration, one-hop distances from a

are propagated to two-hop neighbors of a, and if these new paths yield lower cost
paths, routes are modified. The final routes shown in (d) are the same as found by
Dijkstra_SSSP.

As there will be |E| edges checking at each iteration and to consider the longest
path of n− 1 hops, the outer for loop needs to be executed n− 1 time, the total time
complexity of BelFord_SSSP is |E|(n − 1), that is, O(nm). Since each edge check-
ing can be performed independently, BelFord_SSSP is more suitable for distributed
processing as we will see in the following sections.

7.2.3 All-Pairs Shortest-Paths Routing Algorithm

The Floyd–Warshall Algorithm (FW_APSP) finds APSP routes in a graph G and
works with positive or negative weights on edges. It uses dynamic programming
by comparing all possible paths between each pair of nodes in G by incrementally
improving the shortest path between them until the estimate is optimal. It starts with
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Fig. 7.2 BellFord_SSSP execution example

a path that consists of a single edge and iteratively computes paths by increasing
the set of intermediate nodes by adding a pivot node to the intermediate nodes. It
assumes that all cycles in the graph have positive total weights. For S ⊆ V , a path
〈u0, . . . , uk〉 is an S-path if all internal nodes belong to S, that is, ui ∈ S for all
0 < i < k. For {u,v} ∈ V , the S-distance ds(u, v) is the lowest weight of an S-path
[6]. If S′ = S ∪{w}, then a simple path from u to v is either a shortest S-path from u

to v or a shortest path from u to w added to the shortest path from w to u, whichever
is shorter. Therefore,

dS′
(u, v) = min

(
dS(u, v), dS(u,w) + dS(w,v)

)
. (7.1)

The algorithm maintains a matrix D[n,n] that shows the current distance between
two nodes u and v. There is also the matrix P [n,n] that contains the first node on
the current shortest path from u to v. For every w ∈ V , a check is done whether for
every node u and v ∈ V , the distance through the intermediate node w will yield
a shorter distance than the current one. If this is valid, a new distance is calculated
through w and inserted in D. The path through w is also shown by assigning w in
the matrix P as shown in Algorithm 7.3. As the inner loop is executed n2 times and
the outer loop n times, the time complexity of FW_APSP is O(n3). Initialization
also takes n2 steps.
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Algorithm 7.3 FW_APSP
1: S ←∅

2: for all {u,v} ∈ V do � initialize
3: if u = v then
4: D[u,v] ←∅, P [u,v] ←⊥
5: else if {u,v} ∈ E then
6: D[u,v] ← wuv , P [u,v] ← v

7: else D[u,v] ← ∞, P [u,v] ←⊥
8: end if
9: end for

10:
11: while S �= V do
12: pick w from V \ S

13: for all u ∈ V do � Execute a global w-pivot
14: for all v ∈ V do � Execute a local w-pivot at u

15: if D[u,w] + D[w,v] < D[u,v] then
16: D[u,v] ← D[u,w] + D[w,v]
17: P [u,v] ← P [u,w]
18: end if
19: end for
20: end for
21: S ← S ∪ {w}
22: end while

7.2.3.1 Example

Figure 7.3 shows the iterative operation of FW_APSP on the sample network where
after five iterations with pivots in sequence as a, b, c, d , and e, all the shortest dis-
tances between every pair of nodes are determined, and the changed distances are
shown in bold. The P matrix shown in the final form in (d) displays the first node
on the shortest path from node u to node v.

7.3 The Distributed Floyd–Warshall Algorithm

DistFW_APSP chooses a pivot node w as an intermediate node to calculate dis-
tances, and the rest of the computation is local. In order to provide a distributed
algorithm based on FW_APSP, the choice of w should be done globally. In our first
and incomplete attempt to design such an algorithm, each node holds a local vec-
tor Du[n], where Du[v] is the current shortest distance from node u to node v. We
also have a local vector Pu[n], where Pu[v] shows the first node along the shortest
path from u to v. Operation of this algorithm called DistFW_APSP is similar to
FW_APSP with the difference of broadcasting of the vector Dw by a single node
to all nodes. All nodes should decide on the same node w, and this can be done by
providing unique labels to all nodes of the graph and proceeding in lexicographical
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Fig. 7.3 FW_APSP execution example

order. Any node that receives the broadcast Dw updates its Du as in FW_APSP. It
should be noted that all node identifiers should be known to all nodes of the graph
initially and the graph should not contain any negative cycles as shown in Algo-
rithm 7.4, similar to [6].

The algorithm terminates after n iterations at each node. We will defer comput-
ing the message complexity of this algorithm as we have not decided on how to
broadcast Dw to all nodes.

7.4 Toueg’s Algorithm

Toueg provided a distributed algorithm based on FW_APSP to find shortest paths in
a network without broadcasting the vector Dw to all nodes [7]. Let Tw = (Vw,Ew)

be a rooted tree toward w stored in Nbu at the beginning of iteration that adds
pivot w. Toueg observed that node u which has Du[w] = ∞ at the start of the w-
pivot round does not change its vectors in this round. Therefore, the only nodes that
may receive Dw to update their tables are the members of the current Tw , which
means that we only need to broadcast Dw over the edges of Tw . All the nodes
in Tw should know their children in Tw to provide the broadcast; however, only
the children know their parents by Pw vector from the previous pivot operation. In
Toueg_APSP algorithm, each node u sends a child message to its parent neighbor
and nonchild to all other neighbors, so that parents are notified about their children.
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Algorithm 7.4 DistFW_APSP
1: set of int Su,Du,Nbu

2: Su ←∅ � initialize
3: for all v ∈ V do � initialize data structures
4: if u = v then
5: Du[v] ← 0
6: Pu[v] ←⊥
7: else if uv ∈ E then
8: Du[v] ← wuv , Pu[v] ← v

9: else Du[v] ← ∞, Pu[v] ←⊥
10: end if
11: end for
12:
13: while S �= V do
14: pick w ∈ {V \ S} � All nodes must pick the same node w

15: if u = w then broadcast Dw � if i am picked, broadcast Dw

16: else receive Dw

17: end if
18: for all v ∈ V do � update distances
19: if Du[w] + Dw[v] < Du[v] then
20: Du[v] ← Du[w] + Dw[v]
21: Pu[v] ← Pu[w]
22: end if
23: end for
24: S ← S ∪ {w}
25: end while

The node u then waits for its own child and nonchild messages to complete the
building of Tw tree. Once this is accomplished, the next phase of the algorithm
involves nodes that have Dw �= 0, as these may change their Dw values similar to
FW_APSP as shown in Algorithm 7.5.

7.4.1 Analysis

Theorem 7.1 The time complexity of Toueg_APSP is O(n2), and its message com-
plexity is O(nm). Its bit complexity is O(n3 logn), and it requires O(n logn) bits of
storage per node.

Proof The main loop is executed n times, and it contains a loop with n iterations
resulting in O(n2) time. Each edge is traversed three times by child, nonchild, and at
most once by Dw messages in the w-pivot round for a total of at most 3n messages
per edge. The total number of messages traversed is therefore O(nm). Each Dw

message has O(n logn) bits, and each child and nonchild message has O(logn)

bits. As there will be O(n2) Dw messages and 2mn child and notchild messages, the
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Algorithm 7.5 Toueg_APSP
1: set of int Su,Du,Nbu

2: Su ←∅ � Initialize
3: for all v ∈ V do
4: if u = v then
5: Du[v] ← 0, Nbu[v] ←⊥
6: else if {u,v} ∈ E then
7: Du[v] ← wuv , Nbu[v] ← v � initialize neighbor costs
8: else Du[v] ← ∞, Nbu[v] ←⊥ � all other nodes are undefined
9: end if

10: end for
11: while Su �= V do � Build Tw

12: pick w from V \ Su � choose a global pivot
13: for all x ∈ Γ (u) do
14: if Nbu[w] = x then send child(w) to x � send child to parent
15: else send nonchild(w) to x � send nonchild to other neighbors
16: end if
17: end for
18: n_recvd ← 0
19: while n_recvd < |Γ (u)| do � receive status messages from all neighbors
20: receive a child(w) or nonchild(w)

21: n_recvd ← n_recvd + 1
22: end while
23: if Du[w] < ∞ then � Only nodes on Tw execute this part
24: if u �= w then
25: receive Dw from Nbu[w] � receive distance values from pivot w
26: end if
27: for all x ∈ Γ (u) that sent child(w) do send Dw to x � send pivot distances to

children
28: end for
29: for all v ∈ V do � update distance values
30: if Du[w] + D[v] < Du[v] then
31: Du[v] ← Du[w] + D[v]
32: Nbu[v] ← Nbu[w]
33: end if
34: end for
35: end if
36: Su ← Su ∪ {w}
37: end while

total number of bits communicated will be O(n2n logn + 2n logn) = O(n3 logn).
The Du and NBu tables at each node require O(n logn) bits. �

A problem with Toueg_APSP is that it requires the global knowledge about node
identifiers to be able to decide on the same pivot w at each round. This would require
a prior execution of another algorithm to broadcast identifiers.
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Algorithm 7.6 DBF_APSP
1: message types round, update
2: int i, j, my_dist, dist
3: set of int received ←∅

4: boolean round_over ← false, round_recvd ← false
5: while ¬round_over do � A single round executed by each node except the source
6: receive msg(j)

7: case msg(j).type of
8: round(k): send update(k,my_dist) to Γi

9: round_recvd ← true
10: update(k,dist): received ← received ∪ {j}
11: if received = Γi ∧ round_recvd then
12: for all j ∈ Γ (i) do
13: if my_dist > (dist + wij )

14: my_dist ← dist + wij

15: parent ← j

16: round_over ← true
17: end while

7.5 Synchronous Distributed Bellman–Ford Algorithm

The synchronous distributed routing algorithm based on BelFord_SSSP, which we
will call DBF_APSP, is initiated by a single node and works in rounds. In each
round, each node sends its current distance from the source to all of its neighbors.
It then collects all the distance values from all its neighbors, decides on the short-
est distance via its neighbor to the source, and marks this neighbor as its parent,
shown as a single round in Algorithm 7.6. The root node initiates each round, and
there should be n − 1 rounds for the distance values to reach the longest path in
the graph. For this reason, the root node should be aware of the number of nodes
in the network to decide on the number of rounds to be executed. The synchro-
nization messages are not shown, and it may be assumed that a spanning tree has
already been formed to allow sending synchronization messages round and upcast.
The boolean round_recvd variable ensures that round message is received before
updating distances as it is possible to receive the update messages from all neigh-
bors before receiving the round message in a round. The operation of this algorithm
on the sample network would provide the same tree as the BellFord_SSSP example.

7.5.1 Analysis

Theorem 7.2 The time complexity of DBF_APSP is O(n), and its message com-
plexity is O(nm).

Proof As the root executes a total of n − 1 rounds, which is the longest path in the
graph, Time(BelFord_Synch) = O(n). Each edge will be traversed exactly twice,
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Algorithm 7.7 CM_APSP
1: int parent ←⊥, my_dist ← ∞, n_acks ← 0, n_weighting ← 0
2: boolean finished ← false
3: message types update, ack
4: if i = root then � root sends its distances to all its neighbors
5: send dist(wi,j ) to Γ (i)

6: n_weighting ← |Γ (i)|
7: end if
8: while ¬finished do
9: receive msg(j)

10: case msg(j).type of
11: update(dist): if my_dist > dist then � update distances
12: my_dist ← dist
13: if parent �= j then parent ← j

14: send update(my_dist + wi,j ) to Γ (i) \ {parent}
15: n_weighting ← n_weighting + |Γ (i)| − 1
16: ack: n_acks ← n_acks + 1
17: if n_acks = n_weighting then � all acks received
18: send ack to j
19: finished ← true
20: end while

once in each direction by the update messages in each round for a total of 2m mes-
sages per round, resulting in Msg(BelFord_Synch) = O(nm). If synchronization is
performed by a protocol that uses the synchronization messages round and upcast
over a spanning tree T , there will be additional O(2(n − 1)) synchronization mes-
sages per round, resulting in a total of O(mn + n2) messages. �

7.6 Chandy–Misra Algorithm

The Chandy–Misra algorithm (CM_APSP) [2] is based on the asynchronous exe-
cution of BelFord_SSSP with augmented termination. The working principle is the
same relaxation method we have seen before. However, there is no central synchro-
nization as in the synchronous version of the algorithm. The essential component of
the algorithm is that when the distance of a node to the source is changed, it sends
the update message to its neighbors and adds the count of neighbors to the neighbors
it was already waiting as shown in lines 14–15 of Algorithm 7.7, deferring sending
of the ack message to the parent until it has received acknowledgements from all of
the nodes that it is waiting.

As a node will receive its optimum distance at most at O(n) hops away from the
root, the time complexity of CM_APSP is O(n). However, the number of messages
is exponentially bounded. If all link costs are assumed to be equal, the shortest path
from a single source can be calculated using O(n2) messages per edge and O(mn2)

messages in total each with O(logn) bits [6].
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7.7 Routing Protocols

In this section, we will review two important routing protocols that have been used
in the Internet, the Link State Protocol and the Distance Vector Protocol.

7.7.1 Link State Protocol

Link State Protocol relies on flooding the local connectivity of each node to the
network so that every node has a complete view of the network after which it can run
Dijkstra_SSSP algorithm to compute the shortest paths [5]. Periodically, each node
sends its Link State Packet (LSP), which includes its identifier, list of neighbors and
costs (delays to each neighbor), sequence number, and a special field called Time
to Live (TTL) to all of its neighbors. Upon receiving an LSP, it checks whether this
is the most recent one it has seen, and if so, sends it to all of its neighbors. This
operation can be specified as follows:

1. Periodically send LSP to all neighbors.
2. When an LSP is received that is recent:

a. Use Dijkstra_SSSP to compute the distances to all other nodes
b. Store 〈destination,next hop〉 pair in the forwarding table.

3. If LSP is not recent, discard.

The link state protocol is used in OSPF protocol of Internet Protocol. Its main
drawback is the size of the local storage required at each routing node as the whole
network table is to be stored.

7.7.2 Distance Vector Protocol

The Distance Vector Routing protocol (DVR) is based on BelFord_SSSP algorithm
and was used in the ARPANET up to 1980 [4]. The following are the main differ-
ences between the BelFord_SSSP and the DVR protocol:

• DVR protocol is run in a continuous loop to compute new routes for dynamic
networks.

• Each node i holds an array length[1..n], where entry length[j ] shows the distance
from node j to i.

• length is included in update messages and shows the distances of the sender.
• Node i that receives an update message from j compares each length entry in the

message by its own length values and updates its array to give the shortest paths.
• Each node i also has an array parent[1..n] as the routing table, where parent[j ]

has an entry for the next node to route the packet destined to j .
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Table 7.1 Comparison of distributed routing algorithms

Algorithm Description Time Comp. Msg Comp.

Toueg_APSP Broadcasts table over tree O(n2) O(nm)

DBF_APSP Needs synchronization O(n) O(nm)

CM_APSP Asynchronous with termination detection O(n2) O(n2m)

Fig. 7.4 Example graph for
Exercise 1

The processes exchange their distance vectors periodically, and if a message does
not arrive within the period, a default value is assumed, and the next round is started.
A known problem with the DVR protocol is the count-to-infinity problem, which is
encountered when a link to an isolated node breaks and the nodes start to increase
their distances to the failed node.

7.8 Chapter Notes

We have analyzed few distributed routing algorithms and two protocols based on
fundamental sequential algorithms of Dijkstra and Bellman–Ford. Table 7.1 sum-
marizes the distributed algorithms. DBF_APSP algorithm has low time complexity,
however, requires synchronization at middleware level by a synchronizer or by a
network wide protocol, both of which result in more message overhead.

Chandy–Misra Algorithm, although simple, has exponential message complex-
ity for a general weighted graph. Toueg’s Algorithm requires identifiers to be avail-
able globally prior to execution, which necessitates running of another algorithm
to provide these identifiers. Link State Protocol does not have the count-to-infinity
problem that the Distance Vector Protocol has, but it has significant memory re-
quirements.

Routing remains a well studied but still a fundamental problem in computer net-
works. We will see routing in ad hoc wireless networks in Chap. 8, where there will
be the mobility and energy levels of the nodes to be considered additionally.

7.8.1 Exercises

1. Show the execution of Dijkstra_SSSP and BelFord_SSSP algorithms in the sam-
ple graph of Fig. 7.4 to find shortest routes to vertex a.
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Fig. 7.5 Example graph for
Exercise 2

2. Show a possible execution of DBF_APSP in the sample graph of Fig. 7.5 to find
routes to vertex a.

3. Modify CM_APSP algorithm so that storage at a node of the identifiers of nodes
in its subtree is provided. Write the pseudocode of a distributed algorithm where
a search by the message query(node_id) is initiated by any node and a node in
the subtree returns its path to the searching node. Work out the time and message
complexities of this algorithm.
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Chapter 8
Self-Stabilization

Abstract A distributed algorithm is self-stabilizing if starting from any state, it
eventually reaches an allowed (legal) state. A self-stabilizing system running self-
stabilizing algorithms recovers from faults and, once recovered, stays recovered.
Self-stabilizing algorithms typically run in background and never stop. In this chap-
ter, we review basic self-stabilization concepts and analyze BFS and DFS self-
stabilizing algorithms.

8.1 Introduction

As proposed by Dijkstra, a system is self-stabilizing when, regardless of its initial
state, it is guaranteed to arrive at a legal state in a finite number of steps [7]. When in
the legal state, it only moves to another legal state in the absence of faults. A legal
state is defined as the state in which the system has the desired property required
by the application and is error-free. A distributed system running a self-stabilizing
algorithm is called a self-stabilizing system. Self-stabilizing systems aim to provide
fault tolerance by recovering from faults in a bounded time without any external
intervention.

Every computing element of a self-stabilizing system works as a state machine
and has a local state determined by the values of its local variables. Each node reads
its input variables and based on its current state and its inputs, it may perform a state
transition and produce some output. The global state of the system is the union of
all local states as in a general distributed system. The global state can be either legal
(legitimate) or illegal (illegitimate). Every node of the system executes repeatedly
rules as

(label)[guard] : 〈action〉
A guard is a boolean expression of the variables of a node and its neighbors, and

if the guard of a rule is evaluated as true, that rule is enabled, and a node with at least
one rule enabled becomes privileged so that the related action may be executed.

A move of a node is nondeterministic execution of an enabled rule in that node.
A privileged node may be chosen to execute as decided by a scheduler. An enabled
rule as a result of the move of a node computes new values for the local variables.
A new move may not be started until the previous move is completed, and hence
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the moves are atomic. In other words, a move consisting of reading the state of
neighbors and modifying the local state cannot be interrupted.

Two important requirements from a self-stabilizing system are closure and
convergence properties, and the general requirement to prove the correctness of a
self-stabilizing algorithm is to show that it has these properties. The closure property
means that the system only makes legal moves between two states. The convergence
property ensures that starting from any state, the system reaches a legal state after a
finite number of state transitions. This property eliminates the need for termination
detection in a self-stabilizing system.

8.2 Models

Dijkstra [7] proposed the concept of a central daemon in which a special process
selects one of the privileged nodes to make the next move, which is called the se-
rial execution. Proving the correctness of serial execution is simpler; however, this
model is not convenient for distributed processing as it does not allow concurrent
processing. In the distributed daemon model, each node decides independently for
its next move.

In the restricted parallelism model, there may be specific restrictions on the set of
nodes that may execute at each step, whereas all the enabled processes may execute
in the maximum parallelism model.

An iterative method to prove self-stabilizing algorithms, which is difficult in
many cases, involves assuming a central daemon first. When the correctness is ver-
ified in this case, the assumption is removed, and it is checked whether the system
still works correctly. If not, the algorithm may need to be extended. For example,
it was shown that self-stabilizing algorithms due to Dijkstra, which work with a
central daemon, can work correctly with a distributed daemon [5].

8.2.1 Anonymous or Identifier-Based Networks

Nodes of a self-stabilizing system can have identifiers that are unique, in which case
the network is called id-based, or no identifiers, where it is called anonymous. In
general, designing algorithms for id-based networks is much simpler than anony-
mous networks as symmetry breaking can be accomplished by the use of identifiers.
In some cases, there are no deterministic algorithms for anonymous networks. Real
networks are id-based as each node has an IP number and an Ethernet address.

8.2.2 Deterministic, Randomized, or Probabilistic Algorithms

A randomized algorithm employs some randomness during its execution and gen-
erally uses random inputs to achieve the required result. The performance of the
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algorithm depends on the value of the random input so that the output and/or the ex-
pected running time are random variables. It is generally required that a randomized
algorithm should have favorable performance in the average case of the randomly
selected inputs. In general, these algorithms are used to break symmetries in anony-
mous self-stabilizing networks. A probabilistic algorithm also depends on a random
input, but it is not guaranteed to provide a correct result by these algorithms. How-
ever, probabilistic algorithms may be the only choice in some situations. A random-
ized self-stabilizing system reaches a stable state in a bounded, expected number of
moves. A self-stabilizing algorithm that is neither randomized nor probabilistic is
called deterministic.

8.3 Dijkstra’s Self-Stabilizing Mutual Exclusion Algorithm

Dijkstra [7] proposed three self-stabilizing mutual exclusion algorithms for a token
ring. The aim of these algorithms is to reach a stable configuration of the system so
that there is a single process that is privileged executing a critical section at any time.
In the first algorithm, there are N processes p0, . . . , pN−1 that form a unidirectional
ring. Each process has a variable xi ∈ {0, . . . ,K − 1}, where K ≥ N . Any process
other than the root p0 becomes privileged if xi �= xi−1, and p0 becomes privileged
if x0 = xN−1. The algorithm applies two rules:

• if xi �= xi−1 then xi = xi−1 for 0 < i < N {any process other than the root}
• if x0 = xi−1 then x0 = (x0 + 1) mod K {the root process}

When the algorithm stabilizes, there will be only one node changing state; there-
fore, mutual exclusion principle will be provided. Figure 8.1 displays the execution
of this algorithm for five processes p0, . . . , p4, where p0 is the root. The privileged
nodes at each iteration are shown by double circles, and the enabled node is shown
by a triple circle. As can be seen, stability is reached in (f), where there is only one
node enabled after which there will only be one privileged node in sequence starting
by the node p1 and the mutual exclusion is provided.

8.4 BFS Tree Construction

In this section, we describe two self-stabilizing algorithms that construct BFS trees
of the network. The first algorithm uses a central scheduler, and the second one
works with a distributed scheduler.

8.4.1 Dolev, Israeli, and Moran Algorithm

Dolev, Israeli, and Moran [8] proposed a self-stabilizing BFS spanning-tree con-
struction algorithm (DIM_BFS) for semi-uniform systems (systems with a distin-
guished node) with a central daemon under read/write atomicity. Each node has a
pointer to one if its incoming edges and an integer showing the distance in hops to
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Fig. 8.1 Dijkstra’s mutual exclusion algorithm example

Algorithm 8.1 DIM_BFS
1: int dist, parent
2: if i = root then
3: while true do
4: dist ← 0, parent ← −1
5: end while
6: else
7: while true do
8: ∀u ∈ Γ (i) receive dist(u)

9: j ← min{⋃i dist(i)} � find node j that is minimum distance to the root
10: parent ← j � mark j as the parent
11: dist ← distj + 1 � update dist
12: end while
13: end if

the root of the tree, which is a distinct node that always sends a value of 0 periodi-
cally. The nodes periodically exchange their distance values (dist) with each other,
and after a node reads the distance values of all neighbors, it decides the neighbor
with minimum distance as its new parent. It then writes its own distance into its
output registers as dist + 1 as shown in Algorithm 8.1.

The algorithm is started by the root that writes 0 to all its output registers. Imme-
diate neighbors of the root will select it as their parent consequently, and this will
not change. After O(d) moves, where d is the diameter of the network, the BFS tree
will be formed and stabilized.
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8.4.2 Afek, Kutten, and Yung Algorithm

Afek, Kutten, and Yung algorithm [2] (AKY_BFS) builds a BFS tree in the
read/write atomicity model in a uniform system without a distinguished root pro-
cess. This algorithm assumes that all nodes have globally unique identifiers that can
be totally ordered, and the node with the largest identifier eventually becomes the
root of the tree.

Each node has a pointer showing its current parent, a distance variable, and the
identifier of the root of the tree. Initially, each node tries to construct a spanning
tree rooted at itself. During periodical exchange of information with the neighbors,
if a node finds that it has the largest identifier, it becomes the root of its local tree.
If a node detects that there is a tree that a neighbor belongs with a root that has a
larger identifier, it joins the neighbor tree with a join message and by receiving a
grant message in acknowledgement. When the BFS tree is finally constructed, there
is one root that has the largest identifier; each node points to this root by its parent
and the dist value at the node is 1 more than the distance of its parent to the root.

The local variables at node i are its neighborhood (Ni ), its parent node (Pi ), its
root node (Ri ), and its distance to the root node (Di ). The algorithm checks two
conditions to determine whether a node is in a legal state or not:

1. A : [(Ri = i) ∧ (Pi = i)] ∨ [(Ri > i) ∧ (Pi ∈ Ni) ∧ (Ri = Rparent) ∧ (Distance =
Dparent + 1 > 0)]

2. B : [A ∧ (Ri ≥ max(RN(i)))]
Informally, if i is the root node, Condition A is satisfied. Otherwise, if its root

Ri is larger than its identity and the same as its parent root and its parent is one
of its neighbors and its distance to the root is 1 bigger than its parent’s distance,
Condition A is again satisfied. For Condition B to be true, Condition A should be
true, and the root of node i should be greatest among all its neighbors. When both
conditions are true, node i is in legal state. The following shows the actions as
related to these guards:

• A ∧ B: Node i is in legal state.
• A ∧ B′: Node i decides to join the tree with largest root identity and sends a

request message to the related neighbor.
• A′ ∧ B′: Node i is in illegal state.

The algorithm also provides other actions for fault tolerance. AKY_BFS requires
O(n2) rounds to stabilize [9].

8.5 Self-Stabilizing DFS

Collin and Dolev [6] proposed a semi-uniform spanning-tree algorithm (CD_DFS)
under a central daemon and read/write atomicity to construct a DFS tree. Key to the
operation of the algorithm is the ordering of the outgoing links of each node. The
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Algorithm 8.2 CD_DFS
1: if i = root then
2: while true do
3: pathi ←⊥
4: end while
5: else
6: while true do
7: for j = 1 to |Γ (i)| do
8: read_pathj ← read(pathj )

9: end for
10: write pathi ← min{|read_pathj ◦ αj (i)|N , such that 1 ≤ j ≤ |Γ (i)|}
11: end while
12: end if

DFS tree is formed by traversing the network graph by continuously selecting the
smallest outgoing edge. The root repeatedly writes the empty path (⊥) to its output
registers. All other nodes read the paths of their neighbors to the root and choose
the lexicographically minimal of these paths. The choice of smallest link identifiers
eventually results in a DFS tree, and each node has a path directed toward the root.

A node of the network is denoted by P(i), and each node P(i) orders its edges
by some arbitrary ordering α(i). For any edge e = (Pi,Pj ), αi(j) is defined as the
edge index of e according to α(i) and αj (i) similarly according to α(j). Each node
has a variable called pathi and reads the path pathj from node j and concatenates
pathj with αi(j). Having formed the concatenated paths from all neighbors, the
node P(i) chooses the minimal path as the new value for pathi and writes this path
to its output registers as shown in Algorithm 8.2, where N is an upper bound of the
number of nodes in the graph.

The memory requirements for the DFS algorithm is O(n logK) bits, where K is
an upper bound of the maximum degree of a node. The time complexity is O(ndK)

rounds, where d is the diameter of the network graph [6].

8.6 Chapter Notes

We have reviewed briefly the basic concepts of self-stabilizing systems and showed
some fundamental algorithms for BFS and DFS tree construction. These algorithms
have many application areas such as mutual exclusion and network protocol de-
sign. Arora and Gouda [4] provided a self-stabilizing BFS spanning tree algorithm
for the composite atomicity model under a central daemon with unique identifiers
and the node with maximum identifier eventually acting as the root of the system;
however, their algorithm needs a bound N on the number n of nodes in the net-
work to work correctly. The number of rounds is O(N2), which can be much larger
than O(n2) [9]. Herman [10] also presented an algorithm that constructs a DFS tree
but uses composite atomicity. More recently, Afek and Bremler [1] proposed an al-

www.it-ebooks.info

http://www.it-ebooks.info/


8.6 Chapter Notes 103

Fig. 8.2 Example graph for
Exercise 3

Fig. 8.3 Example graph for
Exercise 4

gorithm for systems with unidirectional, bounded capacity message passing links. In
this algorithm, unique identifiers are assumed, and the node with the minimum iden-
tifier eventually becomes the root and the number of rounds is O(n). Antonoiu and
Srimani [3] provided a self-stabilizing algorithm to construct an arbitrary spanning
tree of a connected graph.

Self-stabilizing algorithms have significant potential to be used in fault tolerant
distributed systems. However, they have certain limitations. First, many algorithms
using a central daemon are difficult to implement in practice. Second, the system
cannot provide service in an illegitimate state. Some systems may tolerate this in-
terruption, but for some mission critical systems, uninterrupted operation is a ne-
cessity. Another difficulty involves proving the correctness and analyzing the com-
plexities of these algorithms, which are usually more complicated than the classical
distributed algorithms.

8.6.1 Exercises

1. Discuss briefly why self-stabilizing algorithms are considered as fault tolerant al-
gorithms. Can they be used in distributed real-time systems where fault-tolerance
is imperative?

2. Discuss briefly the central and distributed daemon concepts in self-stabilizing
algorithms.

3. Show a possible execution of Dijkstra’s first mutual exclusion algorithm in the
graph of Fig. 8.2, which shows three processes in a ring with their initial values.

4. Show a possible execution of the Dolev–Israeli–Moran algorithm that builds
a BFS tree in the sample graph of Fig. 8.3 with the root node a.
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Chapter 9
Vertex Coloring

Abstract Vertex coloring is an assignment of colors to the vertices of a graph such
that there are no two neighbor nodes having the same color. Vertex coloring has
many applications such as task scheduling, register allocation, and channel fre-
quency assignment. In this chapter, we investigate distributed vertex coloring al-
gorithms for arbitrary graphs and trees.

9.1 Introduction

In task scheduling problems, only one task may be assigned to a time slot for exe-
cution. The graph consists of vertices representing tasks and edges between vertices
for any conflicting tasks that may not execute in the same slot due to sharing of com-
mon resources. The minimum number of colors to color this graph is the minimum
makespan, which is the optimal time for all tasks to finish. Another application is
the register allocation where the mostly used data are stored in processor registers
during compilation of the program. In this case, the vertices of the graph are the
symbolic registers, and there is an edge between two register vertices if they are
needed at the same time. Vertex coloring can also be applied to channel frequency
assignment in wireless networks such that any adjacent nodes do not use the same
frequency to avoid interference. Vertex coloring can be formally defined as follows.

Definition 9.1 (Vertex Coloring) A vertex coloring of a graph G(V,E) is the pro-
cedure of assigning a color cv to every vertex v ∈ V so that cv is different from any
color assigned to the neighbors of v.

In a network with n nodes having unique identifiers, a coloring using n colors is
a legal coloring; however, the general requirement for any vertex coloring algorithm
is to use as few colors as possible.

Definition 9.2 (Chromatic Number) The chromatic number of a graph G, χ(G), is
the smallest number of colors to color G.

Calculation of χ(G) is NP-complete [9]. The clique number of a graph G, ω(G),
is the number of vertices of the maximum clique that G has. The chromatic number
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of a graph is greater than or equal to its clique number, that is, χ(G) ≥ ω(G).
Brooke’ s theorem states that the chromatic number of a graph G is O(Δ) excluding
the complete graph and the odd cycle graph, in which case it is O(Δ + 1) [3].
A graph G with chromatic number k is called a k-chromatic graph, and a graph
with χ(G) ≤ k is said to be k-colorable. Bipartite graphs are 2-colorable, and the
Four-Color theorem states that all planar graphs are 4-colorable [1].

An edge coloring of a graph G is a coloring of edges such that there are no
adjacent edges of the same color. The edge chromatic number χe of a graph G is the
minimum number of colors that edges of G can be colored and χe ≥ Δ. It can be
shown that any graph can be edge colored with at most Δ + 1 colors. Therefore, the
two classes of graphs are Δ-edge colored graphs and Δ + 1 edge colored graphs.
Determining the edge chromatic number of a graph is NP-complete [16].

A total coloring of a graph G is a coloring of G in which all adjacent vertices of
G have different colors as in vertex coloring and all incident edges on vertices have
different colors as in edge coloring. In this chapter, we first describe two greedy
sequential algorithms to color vertices of arbitrary graphs. We then provide algo-
rithms for distributed coloring of arbitrary graphs and algorithms to color trees in
the following sections. Finally, two self-stabilizing vertex coloring algorithms are
described.

9.2 Sequential Algorithms

Greedy vertex coloring algorithms label the vertices of a graph according to some
specific order as v1, . . . , vn and assign the smallest possible color to a vertex vi that
has not been assigned to its neighbors. Such ordering is called a coloring heuristic,
and one such heuristic is the ordering of the vertices with respect to their degrees. We
start by a simple greedy sequential algorithm, called Seq_Vcol, to color a graph G

by picking uncolored vertices randomly. The palette contains a list of colors up
to O(Δ + 1). The neigh_cols[n] is an array of set of colors, where neigh_cols[u]
entry shows the current assigned colors of the neighbors of node u. The algorithm
proceeds by assigning the smallest available color to an uncolored vertex u from the
palette that its neighbors have not been assigned. Once the color ci is assigned to u,
ci is added to the neigh_cols[u] for each neighbor v that is a neighbor of u so that
this color is not used in future as shown in Algorithm 9.1.

Figure 9.1(a) displays a graph G with vertex set V = {a, b, c, d, e, f } colored by
Seq_Vcol, where the labels of the vertices denote the colors. The palette consists
of colors c1, c2, c3, c4, c5 as Δ is 4. The random choice of uncolored vertices is
{a, c, d, b, e, f } in sequence, and each vertex is colored with the smallest color that
its neighbors are not assigned. In (b), the heuristic now is the degrees of vertices
in decreasing order, which we call the highest-degree-first heuristic, that results in
the coloring sequence of {b, e, a, d, c, f }, where ties are broken by choosing the
lexicographically lower vertex. The number of colors used is 4 in (a) and 3 in (b),
and color c5 in Palette is not used.

www.it-ebooks.info

http://www.it-ebooks.info/


9.2 Sequential Algorithms 109

Algorithm 9.1 Vcol_Seq
1: set of int Palette ← {c1, c2, . . . , cΔ+1}; S, free_cols, neighs_cols[Δ] ← ∅

2: int colors[n] ← 0
3: Input G(V,E)

4: S ← V

5: while S �=∅ do
6: select any u ∈ S

7: free_cols ← Palette \ neighs_cols[u]
8: pick first element c ∈ free_cols
9: colors[u] ← c

10: for all v ∈ Γ (u) do
11: neighs_cols[v] ← neighs_cols[v] ∪ {c}
12: end for
13: S ← S \ {u}
14: end while

Fig. 9.1 A coloring with Seq_Vcol. (a) Random heuristic; (b) Highest-degree-first heuristic

9.2.1 Analysis

Theorem 9.1 The time complexity of Seq_Vcol is Θ(n), and it uses O(Δ + 1) col-
ors.

Proof There will be one color assignment per node resulting in the Θ(n) time com-
plexity. Since each node has a maximum of Δ neighbors, there will always be an
available color in the range {1,2, . . . ,Δ+1}, and hence O(Δ+1) colors are used. �
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9.3 Distributed Coloring Algorithms

In this section, we propose algorithms for arbitrary graphs using the identifiers of
nodes, a random algorithm for coloring and two reduction algorithms to reduce the
coloring of a colored graph. All of these algorithms work in synchronous rounds.
We assume that a spanning tree T is constructed prior to algorithm executions to
provide synchronization. Each round is started by a round message that arrives at
each node at approximately the same time by the broadcasting of the root of T , and
any intermediate node that receives this round message transfers it to its children. It
is possible that a node may receive messages from their neighbors before the round
message to itself, and control by the boolean variable round_recvd, which shows
that the round message is previously received, provides reception of the messages
in any order. The termination of a round is performed by the convergecast upcast
messages to the root, which can then initiate the next round. The upcast messages
toward the root and downcast of round messages to children are not shown for sim-
plicity. Another issue is that the number of rounds, which is usually expressed in
terms of Δ or n, should be known by the root of T beforehand. This restriction may
be relaxed if a node that has finished execution upcasts a finish message over T ,
which is convergecast to the root node so that it knows which nodes have finished
execution.

9.3.1 The Greedy Distributed Algorithm

In our first attempt to find a distributed algorithm for vertex coloring, we will use
a strategy where the highest identifier node in a closed neighborhood decides to
color itself with the minimum unused color by their neighbors and informs them
by sending a message. Any neighbor node that receives this message deletes the
colored higher identifier node from the graph by removing it from the active neigh-
bor list and also removes the color that this neighbor has used from the list of the
free colors it may use. Algorithm 9.2 shows the operation of this algorithm, which
is called Rank_Vcol. Any node that is started by the round message in a round
checks whether its has the highest identifier among the remaining active neighbors
(curr_neighs) it has. If this is true, it selects the minimum unused color c from the
free colors (free_cols) and sends the color(c) message to its active neighbors. The
active neighbors simply delete the sending neighbor and the color from their lists.
For synchronization purposes, the neighbors that do not have the highest identifier
among their neighbors simply send the discard message so that node u knows that
it has received all messages from its neighbors, and the round is over.

In Fig. 9.2, a sample network of eight nodes with identifiers 1, . . . ,8 is colored
with the Rank_Vcol algorithm. In the first round shown in (a), nodes 8 and 7 are
the highest identifier nodes in their neighborhoods as shown by double circles and
select the minimum unused color in their free colors, which is c1, and send the
color(c1) message to their lower identifier neighbors, which exclude c1 from their
free colors list and delete these nodes from their active neighbors list. In the second
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Algorithm 9.2 Rank_Vcol
1: set of int free_cols ← {1, . . . , di + 1}; received, lost_neighs ←∅; curr_neighs ← Γ (i)

2: message types round, color, discard
3: boolean colored, round_recvd, round_over ← false,
4: {round k for all nodes}
5: while ¬round_over do
6: receive msg(j)

7: case msg(j).type of
8: round(k): if ¬colored then
9: if i > max{curr_neighs} then

10: ci ← min{free_cols}
11: send color(ci) to curr_neighs
12: colored ← true
13: else send discard to curr_neighs
14: round_rcvd ← true
15: color(c): received ← received ∪ {j}
16: free_cols ← free_cols \ {c}
17: lost_neighs ← lost_neighs ∪ {j}
18: discard: received ← received ∪ {j}
19:
20: if (round_recvd) ∧ (received = curr_neighs) then
21: round_over ← true; curr_neighs ← curr_neighs \ lost_neighs
22: round_recvd ← false; received, lost_neighs ←∅

23: end if
24: end while

round shown in (b), nodes 6, 5, and 2 are now the highest identifier nodes, and
they select the minimum unused color c2 as c1 is used by their neighbors from the
previous round. This procedure is repeated for rounds 3 and 4 as shown in (c) and
(d), and the final coloring consists of four colors.

9.3.1.1 Analysis

Theorem 9.2 The Rank_Vcol algorithm provides a legal coloring of an arbitrary
graph with O(Δ + 1) colors in O(n) rounds using O(nm) messages.

Proof We need to show that in each round of the algorithm, any highest identifier
node can find a free color that is unused by its neighbors. The proof is trivial as
in the extreme case where all neighbors of the lowest identifier node that has a
degree of Δ, the color Δ + 1 is available to color itself. In the worst case, we would
have a linear network with decreasing identifiers, and there would be a sequential
execution starting from the highest identifier node, continuing with the next highest
one. The total number of rounds would then be n, resulting in a time complexity
of O(n) rounds. As there will be a constant time of traversals by the color and
discard messages in each round, the total number of messages will be O(nm) in
O(n) rounds. �
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Fig. 9.2 A coloring example with Rank_Vcol

9.3.2 Random Vertex Coloring

The second synchronous algorithm, called Rand_Vcol, works in rounds, and we
have an overlay spanning tree T as before. The general idea of this algorithm is
that an uncolored node picks an unused color by their neighbors from their palette
randomly and sends their choice to their neighbors. If there are no conflicts, the color
for a node is decided, otherwise nodes stay in undecided state and repeat choosing
a random color in the next round.

9.3.2.1 The First Version

In the first version of this algorithm, there are two phases within a synchronous
round. In the first phase, all nodes exchange the tentative(color) messages to inform
neighbors of the color they randomly select from available colors. When all these
messages are received, a node can make a decision and decide on the color it has
sent if there are no other neighbors that have selected the same color. Any node that
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has decided sends a decide message, and all others that have selected coinciding
colors with neighbors send the undecide messages in the second phase of the round.

A detailed description of the algorithm is as follows. Initially, free_cols list at
node i is initialized to a set of colors of size di + 1 in order where di is the degree
of i and di ≤ Δ. In each round, if a node is not colored before, it picks an unused
color ci from the free_cols randomly and informs its neighbors of this choice by the
tentative message. Each node waits tentative messages from all of its uncolored cur-
rent neighbors (curr_neighs) and then checks if any other neighbor has picked the
same color ci . If not, it sends the decide(cr ) message to its uncolored neighbors to
inform its choice. Otherwise, it sends the undecide message so that neighbors know
when this communication phase is over. Different than most of the synchronous
algorithms we have seen, there are two synchronization points in this round. The
first is when node i receives a round message and all tentative messages from active
neighbors in Line 13. At this point it can make a decision and send the decide or
undecide message. When all these messages are collected at a node, round_over
flag becomes true in Line 24, and the next round can be started. This process in each
round continues for a number of rounds until each node is colored. A round of this
algorithm, called Rand_Vcol, is shown in Algorithm 9.3.

9.3.2.2 The Second Version

In the first version of the algorithm, each active node sends two messages as
tentative and decide or undecide. In an attempt to reduce the number of messages
used by discarding the undecide message, the sending of the decide message can
be delayed to the next round. In this second version, called Rand2_Vcol, each node
that has not decided in a previous round sends the tentative(ct ) messages, and a node
that has decided in a previous round shown by the color_flag sends the decide(cd)

messages to its active neighbors. However, there is the possibility that a decided
color cd of a node i may be the same as the tentative color ct of a node j , and cd

is therefore included in the received colors list (recvd_cols) in this version. A round
of this algorithm is shown in Algorithm 9.4.

This algorithm always computes a legal coloring in O(logn) rounds with proba-
bility approaching 1 as the number of vertices increases as shown in [9]. Luby [12]
modified this algorithm so that at the start of each round every uncolored node is
asleep and wakes up with probability 1/2 and at the end of the round the uncolored
nodes go back to sleep again. It was later shown that in each round of the algorithm,
any uncolored vertex will be colored with the probability of at least 1/4 [8].

9.3.3 A Simple Reduction Algorithm

In a network graph G where nodes have n unique identifiers, each identifier could
represent the color of a node in the range {1, . . . , n}, and hence a legal coloring of G
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Algorithm 9.3 Rand1_Vcol
1: set of int recvd_cols, lost_neighs, received ← ∅; curr_neighs ← Γ (i)

2: message types round, tentative, decide, undecide
3: boolean colored, round_recvd, round_over, phase1_end ← false
4: {round k for all nodes}
5: while ¬round_over do
6: receive msg(j)

7: case msg(j).type of
8: round(k): if ¬colored then
9: pick ci ∈ free_cols randomly

10: send tentative(ci ) to curr_neighs
11: round_recvd ← true
12: tentative(c): recvd_cols ← recvd_cols ∪ {c}
13: if round_recvd ∧ (recvd_cols = curr_neighs) then
14: if �c ∈ recvd_cols where c = ci then
15: send decide(ci) to curr_neighs
16: colored ← true
17: else send undecide to curr_neighs
18: phase1_end ← true
19: decide(c): received ← received ∪ {j}
20: free_cols ← free_cols \ {c}
21: lost_neighs ← lost_neighs ∪ {j}
22: undecide(c): received ← received ∪ {j}
23:
24: if (phase1_end) ∧ (received = curr_neighs) then
25: round_over ← true; curr_neighs ← curr_neighs \ lost_neighs
26: round_recvd ← false; received, recvd_cols, lost_neighs ←∅

27: end if
28: end while

is already achieved. However, by Brooke’s theorem, we know that the coloring of G

can be achieved using O(Δ+1) colors. In this section, we provide an algorithm that
reduces the coloring of a colored graph with colors same as identifiers of nodes to
O(Δ + 1) colors. This algorithm, called Redun_Vcol, works in synchronous rounds
numbered from n down to Δ + 1. Initially, the color of a neighbor node that has
an identifier in the range {1, . . . ,Δ + 1} is excluded from the free colors as these
nodes will not change their colors, therefore, their colors may not be used. In each
round, a node that has an identifier that equals the round number selects an unused
minimum color c from free colors 1, . . . ,Δ + 1 and informs its neighbors by the
message color(c) that it has done so to prevent the selection of the same color by
their neighbors in the next rounds as shown in Algorithm 9.5.

A node may have the following modes of execution in each round:

1. Its identifier is the same as the round number, in which case it reduces its color
and informs all neighbors.

2. One of its neighbors’ identifier is the same as the round number, in which case it
waits for the color message from this neighbor node.
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Algorithm 9.4 Rand2_Vcol
1: set of int recvd_cols, received, lost_neighs ← ∅; curr_neighs ← Γ (i)

2: message types round, tentative, decide
3: boolean colored, color_flag, round_recvd, round_over ← false
4: {round k for all nodes}
5: while ¬round_over do
6: receive msg(j)

7: case msg(j).type of
8: round(k): if ¬colored then
9: if color_flag then

10: send decide(ci ) to curr_neighs
11: colored ← true
12: else pick ci ∈ free_cols randomly
13: send tentative(ci) to curr_neighs
14: round_recvd ← true
15: tentative(c): recvd_cols ← recvd_cols ∪ {c}
16: received ← received ∪ {j}
17: decide(c): received ← received ∪ {j}
18: recvd_cols ← recvd_cols ∪ {c}
19: free_cols ← free_cols \ {c}
20: lost_neighs ← lost_neighs ∪ {j}
21:
22: if round_recvd ∧ (received = curr_neighs) then
23: if �c ∈ recvd_cols where c = ci then
24: color_flag ← true
25: end if
26: round_over ← true; curr_neighs ← curr_neighs \ lost_neighs
27: round_recvd ← false; received, recvd_cols, lost_neighs ←∅

28: end if
29: end while

3. Neither its or one of its neighbor’s identifiers is the same as the round number, in
which case it does not do anything.

Also, it is possible that the color message may be received before the round
message. Algorithm 9.5 provides necessary controls so that all the above-described
execution modes are considered with uncertain message arrivals. Node i can predict
that it will receive the color message in a round as it knows the identifiers of all its
neighbors as we always assume. In order to make use of this condition, if a node
identifier i is not equal to the round number col but node i has a neighbor that has
an identifier col, color_recvd flag is made false to indicate that node i should wait
for the color message from its neighbor so that the sent color may be excluded from
the free_cols list.

Figure 9.3 displays the execution of Algorithm 9.5 in a network of eight nodes.
Initially, each node is colored by its unique identifier. In the first round of the algo-
rithm, the round number is 8, node 8 recolors itself with the minimum unused color
from {1, . . . ,Δ+1}, which is 2 and informs its neighbors of this choice to exclude 2
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Algorithm 9.5 Redun_Vcol
1: set of int free_cols ← {1, . . . ,Δ + 1}; curr_neighs ← Γ (i); lost_neighs ← ∅

2: message types round, color
3: int c, col
4: boolean color_recvd ← true, round_recvd, round_over, colored ← false
5: for c = 1 to Δ + 1 do � exclude the neighbor colors of 1, . . . ,Δ + 1
6: if ∃j ∈ Γ (i) where j = c then
7: free_cols ← free_cols \ {c}
8: end if
9: end for

10: for col = n down to Δ + 1 do
11: {a single round for all nodes}
12: while ¬round_over do
13: receive msg(j)

14: case msg(j).type of
15: round(col): if i = col then
16: ci ← min{free_cols}
17: send color(ci) to curr_neighs
18: else if ∃j ∈ curr_neighs where j = col then
19: color_recvd ← false � wait for color message
20: round_recvd ← true
21: color(c): free_cols ← free_cols \ {c}
22: lost_neighs ← lost_neighs ∪ {j}
23: color_recvd ← true
24: if round_recvd ∧ color_recvd then
25: round_over ← true; curr_neighs ← curr_neighs \ lost_neighs
26: round_recvd ← false; color_recvd ← true; lost_neighs ←∅

27: end if
28: end while
29: end for

from their free color list. Similarly, nodes 7, 6, and 5 recolor themselves with colors
1, 3, and 4 as shown, and finally a legal coloring in the required range is obtained
in (d).

9.3.3.1 Analysis

Theorem 9.3 Redun_Vcol algorithm provides a legal coloring of an arbitrary
graph with O(Δ + 1) colors in (n − Δ − 1) rounds using O(m) messages.

Proof Even if the neighbors of a node are colored from the set 1, . . . ,Δ, there will
still be a color available from this set. The number of rounds is equal to (n−Δ− 1)

as the count of the for loop, and as each edge e will be traversed at most once by the
color message, the message complexity is O(m). �

The algorithm Redun_Vcol is slow as it has a single point of activity at a time
since the identifiers of the nodes are unique. However, it has a favorable message
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Fig. 9.3 A coloring example with Redun_Vcol

complexity as each edge is traversed at most once by the color message if it is
incident to node i such that Δ + 1 ≤ i ≤ n.

The same idea can be used to reduce coloring of a k-colored graph to Δ + 1
colors. The structure of this algorithm (Reduk_Vcol) is similar to Redun_Vcol, and
we will only show its operation in a sample graph. As can be seen in Fig. 9.4, the
parallel execution of the nodes with the same color is possible in this case since non-
adjacent nodes may have same colors. In this figure, nodes in a network of 8 nodes
have labels showing their colors and each node is colored by k = 7 colors initially.
The nodes with colors 7, 6, and 5 are recolored in the corresponding rounds, result-
ing in the graph of Fig. 9.4(d) with colors from {1, . . . ,Δ+1}. The time complexity
of this algorithm is k − Δ − 1 and requires O(m) messages as before.

9.4 Edge Coloring

Edge coloring of a graph G requires each edge incident to the same vertex to be
colored with different colors. We will attempt to have an identifier-based algorithm,
called Rank_Ecol, to color edges of G. The key idea in this algorithm is to have the
larger identifier at the end of an edge decide its color, and in each round, the highest
identifier node in a neighborhood decides to color edges incident to it. The first
thing to notice is that this highest identifier node may color more than one edge at
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Fig. 9.4 A coloring example with Reduk_Vcol

once. Secondly, two nodes u and v may request the same color for edges {u,w} and
{v,w} incident to the node w that would violate edge-coloring. In the algorithm we
propose, if two or more higher identifier nodes request the same color for different
edges incident, the lower identifier node accepts the highest identifier node offer and
rejects the others.

The types of messages are propose, unpropose, ack, reject, neigh_ack. All other
nodes that do not have all edges colored send the unpropose messages for syn-
chronization. At this point, node u should wait for ack messages if the color was
accepted by the node at the other end of the edge or reject otherwise. Instead of
breaking a round into two phases, we will use a different strategy by odd and even
numbered rounds where the propose and unpropose messages are sent and received
in odd-numbered rounds; and the ack and reject messages are replied to the pro-
posers in even-numbered rounds as shown in Algorithm 9.6 and Algorithm 9.7. Key
to the operation of this algorithm is that each node should be aware of the colors of
edges incident to all of its neighbors it has so that it will not propose the same colors
in future rounds. In order to accomplish this, node i that accepts a proposal made
by node j together with node i informs all of its active neighbors. The following
describes the actions in an odd-numbered round of the algorithm.

1. At the reception of the round message, each node checks whether all edges inci-
dent to it are colored. If there are still uncolored edges, node i that finds it has the
highest identifier among active neighbors selects tentative available colors from
its free colors list (free_cols) and sends a different color to each active neighbor
by the propose(c) message, where c is the tentative color.
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Algorithm 9.6 Rank_Ecol: an odd numbered round
1: int i, j, c � i is this node, j is the sender of a message
2: set of int free_cols[Δ] ← {1,2, . . . , di} for each neighbor; received, recvd_cols,

wait_acks, tent_cols[Δ] ←∅; uncovd_edges ← all incident edges; lost_neighs ←∅

3: message types round, propose, unpropose, ack, reject, neigh_ack
4: boolean round_over, round_recvd, prop_flag, reply_flag ← false
5: for k = 1 to Δ do
6: {rounds k, k + 1 for all nodes}
7: if (k mod 2) = 1 then
8: while ¬round_over do
9: receive msg(j)

10: case msg(j).type of
11: round(k): if uncovd_edges �= ∅ then
12: if i > max{curr_neighs} then � if i am largest
13: prop_flag ← true
14: ∀j ∈ curr_neighs � send proposal to all
15: tent_cols[j ] ← free_cols[j ]
16: select c ∈ tent_cols[j ]; send propose(c) to j

17: wait_acks ← wait_acks ∪ {j}
18: tent_cols[j ] ← tent_cols[j ] \ {c}
19: else send unpropose to curr_neighs
20: round_recvd ← true
21: propose(c): received ← received ∪ {j}
22: recvd_cols ← recvd_cols ∪ {〈j, c〉}
23: reply_flag ← true
24: unpropose: received ← received ∪ {j}
25: if round_recvd ∧ (received = curr_neighs) then
26: round_recvd ← false; round_over ← true; received ←∅

27: end if
28: end while

2. All nodes other than the highest identifier node send the unpropose messages
to their active neighbors. The sum of all messages received as propose and
unpropose should be equal to the number of active neighbors for this round to
finish.

At the end of this round, each node may be classified as a proposer, proposed, or
other node. In an even round, each type of node behaves differently.

1. The proposed node: Node i first checks the list recvd_prop. If any colors pro-
posed already exist on its already colored edges, it sends a reject message to the
proposer. It then checks if two or more proposers required the same color. In this
case, it accepts the highest identifier node and sends the reject message to all oth-
ers. For all remaining proposers in the recvd_prop list, it sends the ack message
to confirm coloring.

2. The proposing node: Node i that receives an acknowledgement from node j to
its proposal made in the previous round assigns the color c proposed to its edge
{i, j}. It may also receive the reject messages from the proposed nodes. After col-
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Algorithm 9.7 Rank_Ecol: an even-numbered round
1: else
2: while ¬round_over do
3: receive msg(j)

4: case msg(j).type of
5: round(k): if reply_flag then � a proposed node
6: while ∃{〈s, c〉} ∈ recvd_cols|c /∈ free_cols
7: send reject to s; recvd_cols ← recvd_cols \ {s, c}
8: while ∃{〈s, c〉, 〈t, c〉} ∈ recvd_cols
9: u ← max{s, t}; v ← min{s, t}

10: free_cols[u] ← free_cols[u] \ {c}
11: uncovd_edges ← uncovd_edges \ {i, u}
12: curr_neighs ← curr_neighs \ {u}
13: send ack(c) to u; send reject(c) to v

14: replied ← replied ∪ {u,v}
15: recvd_cols ← recvd_cols \ {{u, c} ∪ {v, c}}
16: ∀(〈u, c〉) ∈ recvd_cols
17: send ack(c) to u

18: free_cols ← free_cols \ {c}
19: replied ← replied ∪ {u}
20: send inactive to curr_neighs \ replied
21: else if ¬prop_flag
22: send inactive to curr_neighs
23: round_recvd ← true
24: ack(c): free_cols[j ] ← free_cols[j ] \ {c} � a proposer node
25: acked_cols ← acked_cols ∪ {j}
26: uncovd_edges ← uncovd_edges \ {i, j}
27: curr_neighs ← curr_neighs \ {j}
28: wait_acks ← wait_acks \ {j}
29: if wait_acks =∅ then
30: send neigh_ack(acked_cols) to curr_neighs
31: reject(c): wait_acks ← wait_acks \ {j}
32: if wait_acks =∅ then
33: send neigh_ack(acked_cols) to curr_neighs
34: neigh_ack(acols): free_cols[j ] ← free_cols[j ] \ acked_cols � a neighbor node
35: lost_neighs ← lost_neighs ∪ acols
36: inactive:
37: if msg(j).type �= round then
38: received ← received ∪ {j}
39: end if
40: if round_recvd ∧ received = curr_neighs then
41: acked, rejected, wait_acks, recvd_cols ←∅

curr_neighs ← curr_neighs \ lost_neighs
42: prop_flag, reply_flag, round_recvd ← false; round_over ← true
43: end if
44: end while
45: end if
46: end for
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Fig. 9.5 Rank_Ecol execution example

lecting all replies, it informs its active neighbors by the neigh_ack(acked_cols),
where acked_cols is the list of accepted colors. It also informs the waiting neigh-
bors by the neigh_rej(n_rej) message, where n_rej is the total number of reject
messages received.

3. Other nodes: The other nodes that were waiting neighbors that had proposed
in the previous round update their available colors lists when they receive the
neigh_ack(acked_cols) messages for each proposer and synchronize by the re-
ception of the neigh_rej(n_rej) messages. They send inactive messages to all
neighbors for synchronization.

At the end of the algorithm, nodes i and j incident to an edge {i, j} that is
matched have their variable matched assigned true value as shown in Algorithm 9.6.

Algorithms 9.6 and 9.7 show the executions of an odd-numbered round and an
even-numbered round consecutively, to edge-color a graph. Figure 9.5 displays the
execution of Rank_Ecol over a sample graph with nodes 1, . . . ,8. In the first round,
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Fig. 9.6 Edge coloring with Rank_Ecol

nodes 8, 7, and 6 have the largest identifiers among their neighbors as shown by
double circles and they are activated. Node 8 selects 1 and 2, node 7 selects 1, 2, 3,
4, and node 6 selects 1, 2, 3 as colors and send proposed messages to their neighbors
in this round as shown in (a). In the second round, node 5 rejects the equal proposal
by node 7 as node 8 has a greater identifier and sends reject(1) to node 7. Similarly,
node 3 rejects the proposal by node 6 as node 7 has made a proposal for the same
color. The new edges shown bold are added to the coloring, and finally the 5-edge-
colored graph in (f) is obtained.

9.4.1 Analysis

Theorem 9.4 The algorithm Rank_Ecol provides a legal edge coloring of a graph
G using O(Δ) colors.

Proof We need to show that in each round, any higher identifier node that proposes
an uncolored edge to a lower identifier node has an available free color from a
palette of (Δ) colors for a legal edge coloring. An edge e can be adjacent to 2Δ − 2
edges at most; however, Δ − 1 of these edges are not adjacent and can use the
same set of colors, which means that another color is needed to color the edge.
Therefore, Δ colors are required to provide a legal coloring of an arbitrary graph
with Rank_Ecol. �

Figure 9.6(a) displays the situation where two nodes u and v of Δ degrees are ad-
jacent and all their 2Δ−2 neighbors are colored with two sets of colors as c1, c2, c3,
and c4 is chosen to color the edge {u,v}. The total number of colors used is 4 as Δ.

Theorem 9.5 The algorithm Rank_Ecol edge colors a graph G in O(Δ) rounds.

Proof In the worst case, all of the proposals made by a higher identifier node u to a
lower identifier node v may be rejected Δ− 1 times as v may have Δ− 1 neighbors
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that have higher identifiers than u, which may propose the same colors as u does.
In this case, the proposal made at round Δ will have to be accepted as it will not
violate any coloring that the neighbors of v have. Therefore, each edge euv may be
colored in O(Δ) rounds. �

Figure 9.6(b) shows the situation where nodes 5 and 2 are neighbors, and al-
though node 2 is smaller than node 5, all its neighbors, which are nodes 6, 9, and
8, have larger identifiers than 5, and as shown in this example, if their proposals of
color and the round number as propose(color, round) coincide with the proposals
of node 5, the coloring of edge {5,2} is delayed to the fourth round as Δ is 4.

Theorem 9.6 The algorithm Rank_Ecol requires O(Δm) messages to edge color a
graph G.

Proof In an odd-numbered round, there will be at most two messages over an edge
as propose and unpropose. In an even-numbered round, there will again be at most
two messages as ack/reject and neigh_ack, resulting in a total of 2Δm messages at
most. �

9.4.2 The Second Version

Grable et al. provided a synchronous, randomized distributed edge coloring algo-
rithm [6]. In each round of this algorithm the following are performed:

• Each uncolored edge {u,v} randomly picks an unused colored c (a color that is
not already incident to nodes u and v).

• If there are no collisions with other randomly selected colors for nodes u and v

in this round, color c is assigned to edge {u,v}.
• Available colors for any uncolored edges incident to nodes {u,v} are updated by

eliminating c from this list.

The algorithm continues until all edges are colored. In the implementation we
propose, only the higher identifier node incident to an edge {u,v} picks a color c

randomly. It then proposes c to the lower identifier node at the other end of edge
{u,v}. A highest identifier node in a neighborhood can therefore send the propose
messages to all its neighbors as in the algorithm Rank_Ecol; however, this algo-
rithm allows the neighbors of the highest identifier nodes to propose to their lower
neighbors; hence parallelism is enhanced, and there is parallelism even in the case
of linear network with descending identifiers. A node that receives proposals of the
same colors accepts the offer with the highest identifier node as before. The structure
of this algorithm would be similar to the structure of Rank_Ecol, so we will only
show its operation in a sample graph in Fig. 9.7. There are eight nodes, and each
proposing node is shown by double circles. In round 1 as shown in (a), all nodes
except nodes 4 and 1 are proposers. Out of these, all of them except nodes 7 and 8
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Fig. 9.7 Edge coloring algorithm second version example

also receive proposals from neighbors. Clearly, this implementation provides more
parallelism. In four rounds, the final edge colored graph shown in (d) is obtained.

It was shown in [6] that this algorithm, called S, guarantees that the colors used
for edge coloring is close to optimal value if the maximum degree of the graph is not
too small. They also showed that with a minor modification of S, called M, where
whenever a node runs out of colors, it can add a fresh new color to the available col-
ors list. The algorithm S uses (1 + ε)Δ colors, where ε is a given positive constant,
and finishes coloring of all edges in O(logn) rounds. Algorithm M can color edges
of a graph in O(log logn) rounds. Marathe et al. [13] conducted an experimental
analysis of both S and M algorithms and concluded that they are both very fast.

9.5 Coloring Trees

We will now describe algorithms to color trees. The first algorithm colors a tree
with two colors asynchronously. We then show two algorithms that are faster than
this algorithm but color the trees with more colors.

9.5.1 A Simple Tree Algorithm

Clearly, two colors suffice to color a tree as shown in Fig 9.8. Algorithm 9.8 shows
how a tree can be colored starting by the root coloring itself color c0 and its chil-
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Algorithm 9.8 VcolTree_ASI
1: int i, j , parent, my_color
2: set of int childs
3: message types color
4:
5: if i = root then
6: send color(0) to childs
7: ci ← 0
8: else
9: receive color(c) from parent

10: ci ← 1 − c

11: if childs �=∅ then
12: send color(ci ) to childs
13: end if
14: end if

Fig. 9.8 Tree coloring with
two colors

dren c1 and grandchildren c0, and so on. The time complexity of this algorithm is
the depth of the tree, and in the worst case this would be O(n) as the longest path
between the root and a leaf would have n − 1 links in the case of a linear network.
The message complexity is also similar as n − 1 edges of the tree will all be tra-
versed once by the color messages. The problem with this algorithm is that the only
concurrency is within the children of the same parent.

9.5.2 Six Coloring Algorithm

The Six Coloring Algorithm (Six_Vcol) is concurrently executed by all nodes of a
tree T in synchronous rounds. Initially, all nodes have a color represented by their
identifiers for a total of n colors. The algorithm starts by the root coloring itself with
0 and sending this color to its children. In every round thereafter, each node receives
a color cp from its parent and finds the smallest index k that its current color ci

differs from cp . It then assigns a new color to itself by a bit string representing k

concatenated with the value of ci in the kth position. This new value of ci is sent
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Algorithm 9.9 Six_Vcol
1: int i, j , parent, my_color
2: set of int childs
3: message types color

4: if i = root then � root assigns color 0
5: ci ← 1
6: end if
7: while ci /∈ {1, . . . ,6} do � do concurrently
8: receive cparent
9: find the smallest index k that ci and cparent differ

10: ci ← k in bits concatenated by the bit ci(k)

11: send ci to children
12: end while

to children to be received in the next round and used for the same computation
in the next round. This process continues until each node has a color in the range
{0, . . . ,5}, hence this algorithm is called the Six Coloring Algorithm. Algorithm 9.9
displays the operation of the algorithm in a tree T .

A possible reduction for the nodes with identifiers is shown below:

0001 0101 1001 → 100001

1101 0101 1001 → 110011 → 0111 → 01 {k = 12,4, and 3}
1010 1001 1001 → 010011 → 1000 → 00 {k = 12,4, and 3}

9.5.2.1 Analysis

We analyze this algorithm as in [15].

Lemma 9.1 The algorithm Six_Vcol provides a legal coloring in each round.

Proof For a parent u and child v on the tree, let k1 and k2 be the two bit positions
they differ from their parents. If k1 �= k2, then u and v select colors that are differ-
ent in their first components. Otherwise, if k1 = k2, then they differ in the second
component. �

The algorithm Six_Vcol provides a final coloring ci ∈ {1, . . . ,6} for each node
i ∈ T with the final coloring consisting of six colors as shown in [15].

9.5.3 Six-to-Two Coloring Algorithm

In order to decrease the number of colors used in Six_Vcol, the algorithm
SixTwo_Vcol may be used, which also works in concurrent synchronous rounds.
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Fig. 9.9 An example of Shift_Down procedure

We first show the procedure Shift_Down, which for every nonroot node, colors the
node with the color of its parent, the root then chooses a new color as shown in
Fig. 9.10, which displays the operation of Shift_Down in a tree T , where the orig-
inal colored tree with six colors by the Six_Vcol is shown in (a), and T after the
shift down is shown in (b). As can be seen, the color values of the leaf nodes are
discarded after the shift down.

The pseudocode for the procedure Shift_Down is shown in Algorithm 9.10.
Initially, the Six_Vcol algorithm is executed on the tree T to provide a color
ci ∈ {1, . . . ,6} for each node i. Then, for each of the color values 4, 5, and 6, first,
a shift down operation is performed, and then for each color value k, each node i

checks whether its ci value is equal to k. If this is true, the node i picks the first free
color ci ∈ {1,2,3}.

Figure 9.10 displays the execution of the SixTwo_Vcol algorithm in a sample
tree, which is colored by six colors as shown in (a). After shift down operation,
nodes with color 6 are colored with reduced colors as shown in (b) with double
circles. Nodes that have color 5 are recolored in (c), and finally a single node with
color 4 is recolored to result in the colored tree of (d).

9.5.3.1 Analysis

We analyze this algorithm as in [15].

Theorem 9.7 The procedure Shift_Down does not disturb any legal coloring ϕm

that exists of graph G.

Proof An already legal coloring ϕm of G prior to Shift_Down means that any sibling
of a parent has a different color than its parent. Assigning the color cp of a parent to
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Algorithm 9.10 SixTwo_Vcol
1: int i, j , parent, my_color
2: set of int childs
3: message types color
4:
5: run Six_Vcol
6: for k = 4,5,6 do
7: run Shift_Down
8: if ci = 4 or 5 or 6 then
9: ci ← a free color c from {1,2,3}

10: end if
11: end for
12:
13: procedure Shift_Down
14: if i �= root then
15: ci ← cp � Every non-root node gets color of its parent
16: else
17: ci ← a free color c from {1,2,3}
18: end if
19: end procedure

children would result in all children having a monochromatic color of cp; therefore,
as the children are not connected, legal coloring is obeyed for them. As between the
parent and the children, the previous coloring ϕp was legal, the parent and children
will also have a legal coloring with the new coloring ϕq . The only remaining issue is
the case of the root, which now has the same color as its children as it does not have a
parent and does not receive any colors. For this reason, after the nodes concurrently
change their colors, the root chooses a new free color. �

Theorem 9.8 Each round of SixTwo_Vcol results in a legal coloring of the tree T .

Proof The Shift_Down procedure does not disturb any legal coloring of T as shown
by Theorem 9.7. In the color reduction phase, each node i that has a color from the
set {4,5,6} will find an available color ci from {1,2,3} as even if its parent and
children are colored with two different colors, there will be a third available color.
Also parallel recoloring of these nodes is legal as they are not adjacent. �

The SixTwo_CSI algorithm provides a three-coloring of a tree T in O(log∗ n)

rounds as shown in [15].

9.6 Self-Stabilizing Vertex Coloring

In this section, we first describe a self-stabilizing algorithm to color a planar graph
with six colors and then a second self-stabilizing algorithm to color arbitrary graphs
with O(Δ + 1) colors.
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Fig. 9.10 Operation of SixTwo_Vcol algorithm

9.6.1 Coloring Planar Graphs

Karaata et al. [4] proposed a two-stage self-stabilizing algorithm that works under
a central daemon to color undirected planar graphs. In the first stage, a directed
acyclic graph is obtained from an undirected planar graph, and this graph is colored
with six colors in the second stage. Each node i is assigned an arbitrary integer
value xi to determine the direction of its incident edges in the first stage. An edge
eij between nodes i and j is assumed to be directed from the lower x-valued node
to the higher-valued node, and ties are broken by the unique node identifier values.
Starting from an arbitrary state, node i may have more than five outgoing edges, in
which case it changes the direction of all its outgoing edges to inward directions by
assigning a value greater than any of the values assigned to its outgoing edges as
shown in Algorithm 9.11. The outi variable shows the number of outgoing edges
that node i has, and xvals is the set of x values that the outgoing edges from node i

has.
In the second stage of the algorithm (SS1_Vcol) shown in Algorithm 9.12, each

node i checks whether it has the same color with any of its successor edges. If this is
valid, it obtains the first color that is available from the set colors that is not used by
any of its successor nodes (succrs). The colors set has values {1, . . . ,6} assuming
that any graph can be colored by Δ + 1 colors.
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Algorithm 9.11 DAG_SS
1: xvals ← ⋃

x ∀x ∈ outgoing_edges
2: outi ← the number of outgoing edges
3: if outi ≥ 5 then
4: xi ← (max{xvals} + 1)

5: end if

Algorithm 9.12 SS1_Vcol
1: colors ← {1, . . . ,6}
2: if ∃j ∈ succrsi | (ci = cj ) ∧ (k ∈ (colors \ succolsi )) then
3: ci ← k

4: end if

Algorithm 9.13 Grundy_Vcol
1: if ci �= min{col ≥ 1 | (∀j ∈ Γ (i))(cj �= col)} then
2: ci ← min{col ≥ 1 | (∀j ∈ Γ (i))(cj �= col)}
3: end if

Assuming that graph G is not legally colored, there will be at least one node i

that has ci = cj , and also there will be at least one color available in the set colors \
succolsi since succols = 5 and colors have six distinct colors. This implies that
whenever a node has the same color as one of its successors, it will have an available
legal color to color itself. Furthermore, if the colors of the successors of a node i do
not change, i will reach a stable state by one move [4].

9.6.2 Coloring Arbitrary Graphs

In this section, we describe the first linear-time self-stabilizing vertex coloring al-
gorithm proposed by Hedetniemi [7], which uses Δ + 1 colors and stabilizes in a
maximum of n moves. This algorithm is based on Grundy Coloring, which is de-
fined as follows.

Definition 9.3 (Grundy Coloring) In Grundy Coloring, node i is colored with the
minimum color that is not used by any of its neighbors. Formally, the color of node
ci = min{col ≥ 1 | (∀j ∈ Γ (i))(cj �= col)}.

In Algorithm 9.13 (Grundy_Vcol), each node applies the Grundy Coloring Rule
until a stable condition is reached where a node that has a color different from the
smallest integer not taken by any of its neighbors sets its color to that integer as
described in [7].
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Algorithm 9.14 Hedet_Vcol
1: if ci ∈ {cj |j ∈ Γ (i)} ∨ ci > di + 1 then
2: if {cj |j ∈ Γ (i)} = {1, . . . , di} then
3: ci ← di + 1
4: else set ci ∈ {1, . . . , di} − {cj |j ∈ Γ (i)}
5: end if
6: end if

9.6.2.1 Analysis

A node would increase its color value only if all of its neighbors are colored with
colors {1, . . . , ci}. A node can make a maximum of di + 1 decreasing moves. It can
be shown that a node can in fact make a maximum of di + 1 moves.

Theorem 9.9 Grundy_SS finds a legal coloring of a graph in O(2m + n) moves.

Proof Any move by node i results in a coloring ci ≤ di + 1, and node i can make
O(di + 1) consecutive moves, which all decrease the value of ci . Since each node
will make a maximum of di +1 moves, the total number of moves will be

∑n
i=1(di +

1) = 2m + n. A detailed proof as a consequence of lemmas can be found in [7]. �

Based on the Grundy Coloring, Hedetniemi et al. proposed an anonymous algo-
rithm (Hedet_SS) that works under a central daemon. Each node i in this algorithm
checks whether it has a color equal to any of its neighbor colors. If this condition is
met or a node has a color greater than Δ + 1, it further checks whether the colors
of neighbors have filled the colors {1, . . . , di}. If this is true, it can select the color
di + 1 as this is the only choice. Otherwise, if one or more neighbors do not have
a color assigned in the range {1, . . . , di}, node i picks the first available color not
assigned to any of the neighbors as shown in Algorithm 9.14.

Figure 9.11 displays the operation of Hedet_SS in a network with six nodes,
where labels represent colors, and double circles show the privileged nodes at each
step. One of the nodes has a degree di of 2 and a color of 2, which its neighbor
has, and it is enabled by the central daemon as shown by the double circle in (a). It
changes its color to the color di + 1, which is 3 since all its neighbors have used the
colors {1, . . . , di}, which are 1 and 2, as displayed in (b). The other privileged node
has a color of 5, which is greater than its di +1, which is 4. It is enabled and chooses
a color of di + 1, which is 4 as shown in (c). The lastly enabled node 6 can color
itself with 1 as its neighbors have not used it, and the final Δ + 1 colored stabilized
graph, where there are no privileged nodes, is displayed in (d).

Theorem 9.10 Hedet_SS finds a legal Δ + 1 coloring of a graph in O(n) moves.

Proof When a node is privileged so that it can make a move, it will choose a color
from {1, . . . , di + 1}. Once it makes a move, it will be colored and stay in that state
because coloring of a neighbor node does not affect its state. Therefore, as each
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Fig. 9.11 Execution of Hedet_SS

node will make a maximum of one move, the total number of moves is O(n). In
stabilization, there would be at most Δ + 1 colors since if the coloring uses more
than Δ+ 1 colors, a node becomes privileged. A detailed proof as a consequence of
lemmas can be found in [7]. �

9.7 Chapter Notes

We have seen rank-based, random, reduction-based, and self-stabilizing vertex col-
oring algorithms and an edge coloring algorithm in this chapter. The edge color-
ing algorithm is more complicated than others as coloring an edge is related to the
neighbors of the neighbors of a node and any decision should be propagated.

Although it has been studied extensively using sequential algorithms, vertex col-
oring in distributed setting remains an active area of research due to a wide range of
applications it has in computer networks. For deterministic vertex coloring, it was
shown in [10] that O(Δ2) coloring can be achieved in O(logn) rounds for bounded-
degree graphs. In [14], a graph G is first partitioned into disjoint forests that are
colored using three colors concurrently in the first phase. Using these colors, G is
recolored with O(Δ + 1) colors in O(Δ2 + log∗ n) rounds. Recently, algorithms to
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Fig. 9.12 Example graph for
Exercise 1

Fig. 9.13 Example graph for
Exercise 2

color graphs in using O(Δ+ 1) colors in O(Δ+ log∗ n) time were provided in [10]
and [2] independently.

A distributed edge coloring algorithm that achieves 2Δ − 1 coloring in O(Δ +
log∗ n) rounds is proposed as well as vertex coloring algorithm with O(Δ + 1)

colors in O(Δ2 + log∗ n) rounds in [14].

9.7.1 Exercises

1. Show the step-by-step execution of Seq_Vcol algorithm in the sample graph of
Fig. 9.12.

2. Provide a pseudocode for a synchronous distributed algorithm that greedily se-
lects nodes with the highest degrees first to color. Show the synchronization mes-
sages for this algorithm and work out the time and message complexities. Show
also step-by-step execution of this algorithm in the example graph of Fig. 9.13.

3. Provide an FSM-based implementation of Rand_Vcol by drawing the FSM dia-
gram and writing the pseudocode for this algorithm. Compare this pseudocode
with the code of Rand_Vcol.

4. Provide a pseudocode for an algorithm that reduces colors of a k-colored graph
to a maximum of Δ + 1 colors such that all nodes send their colors and receive
colors of neighbors in every round and then decide their color for the next round.
Work out the time and message complexities of this algorithm and compare its
efficiency with the Rand_Vcol algorithm. Show also the operation of this algo-
rithm in the example graph of Fig. 9.14, which is colored by six colors as shown
by the labels of the vertices.

5. Show the execution of SixTwo_Vcol algorithm step by step in the example tree
of Fig. 9.15, which is colored by six colors as shown by the labels of the vertices.
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Fig. 9.14 Example graph for
Exercise 4

Fig. 9.15 Example graph for
Exercise 5
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Chapter 10
Maximal Independent Sets

Abstract An independent set of a graph is a subset of its vertices such that there are
not any two adjacent vertices in this set. Finding the maximal independent set of a
graph has many important applications such as clustering in wireless networks, and
independent sets can also be used to build other graph structures. In this chapter,
we describe rank-based, randomized, and self-stabilizing distributed algorithms to
form maximal independent sets of graphs.

10.1 Introduction

An independent set can be formally defined as follows.

Definition 10.1 (Independent set) An independent set (IS) or a stable set of a graph
G(V,E) is a subset IS of the vertices of V such that there is no edge of G that joins
any two vertices of S.

Definition 10.2 (Maximal and maximum independent sets) A maximal (MIS) of
a graph G cannot be enlarged any further. The size of an independent set is the
number of vertices it contains. A maximum independent set (MaxIS) is the largest
independent set for a given graph G, and its size is denoted by α(G).

Finding the maximum independent set of a graph is an NP-hard optimization
problem, and deciding whether a graph has a MIS of size k is an NP-complete
problem. A set is independent if and only if it is a clique in the complement of the
graph, and also a set is independent if and only if its complement is a vertex cover.
The sum of α(G) and the size of minimum vertex cover (β(G)) is the number of
vertices in the graph. Figure 10.1 displays IS examples where (a) is a MIS of size 1,
(b) is a MIS of size 2, and (c) is a MaxIS of size 3.

In this chapter, we start by inspecting a simple sequential algorithm to find MIS
which runs in polynomial time. We then describe a distributed MIS algorithm that
uses identifiers of the nodes to find MIS. Randomization provides algorithms with
better time complexities as shown by two synchronous randomized algorithms. The
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Fig. 10.1 Independent set examples

Algorithm 10.1 Seq_MIS
1: Input G(V,E)

2: S ← V , MIS ←∅

3: while S �=∅ do
4: select an arbitrary vertex u ∈ S

5: S ← S \ {u ∪ Γ (u)}
6: MIS ← MIS ∪ {u}
7: end while

first algorithm is based on random decisions by the nodes with the probability re-
lated to their degrees, and in the second randomized algorithm, nodes draw random
values to be included in the MIS. All synchronous operations are carried over a
spanning tree that is constructed prior to these algorithms, by any of the algorithms
described in Chap. 4. We then provide three self-stabilizing algorithms in chrono-
logical order to build a MIS of a graph.

10.2 The Sequential Algorithm

The sequential algorithm is based on the observation that whenever a vertex u is
included in the MIS, its neighbors should be excluded. The algorithm Seq_MIS
shown in Algorithm 10.1 selects a vertex u arbitrarily and includes it in the MIS.
Since this node is now in the MIS, any vertex in its neighborhood with its adjacent
edges should be removed from graph G.

Figure 10.2 displays an example execution of Seq_MIS in an example graph of
eight nodes. Node 4 is selected to be in MIS in the first iteration and is removed
from the vertex set S with its neighbors 1 and 2. In the second iteration, node 6 is
selected and is removed from S with neighbor 8. The third iteration picks node 3,
which is removed from S with 5. The remaining node 7 is included in MIS finally,
and the algorithm stops as S = ∅.

Theorem 10.1 The time complexity of Seq_MIS is O(n).

Proof In the case of a linear network, there will be at most �n/2� selected nodes,
and therefore, the time taken will be O(n). Figure 10.3 displays such a situation
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Fig. 10.2 Seq_MIS
execution example

Fig. 10.3 Linear network independent set example

where dark nodes are the MIS nodes, and each iteration with the removed vertices
and edges from the graph are shown by dashed ellipses. �

10.3 Rank-Based Distributed MIS Algorithm

In this section, we will describe a rank-based distributed algorithm to find MIS of a
network graph. The identifiers of the nodes are used to determine which node will
enter the MIS. Whenever a node enters the MIS, its neighbors should be excluded
from MIS and should not participate in the selection process in future rounds. These
two different phases within a round can be achieved by either deferral of the re-
signing of neighbors to the next round, having two distinct phases within a round
using flag variables or having odd- and even-numbered rounds where nodes may
enter MIS in odd rounds and neighbors resign in even rounds. Out of these three
methods, we will describe the first one as follows.

Our first distributed algorithm, implemented using an FSM and called Rank_MIS,
executes in synchronous rounds, selecting the highest identifier node among neigh-
bors to be included in the MIS in each round. The algorithm runs until all nodes
determine whether they are in MIS or not. In each round, every active node u that
has not decided yet checks the states of its current active neighbors with higher
identifiers. If all of them have decided not to be in MIS, it decides to be in MIS and
notifies all its current neighbors of this decision. Each node can be in one of the
three states as undecided (UNDEC) initially, in INMIS State if it decides to be in
MIS, and in NONMIS state if it decides not to be in MIS as shown in Fig. 10.4.

Algorithm 10.2 shows a possible implementation of a single round of Rank_MIS
algorithm in an asynchronous setting. Four types of messages are round, decide, un-
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Fig. 10.4 Rank_MIS
finite-state machine

decide, and resign. Each synchronous round consists of send, receive, and compute
actions and is started by the round message.

Each active node sends exactly one message AND receives exactly one message
in each round. At the end of each round, any decided node should be removed from
the graph, resulting in a smaller graph for the next round, and this is accomplished
by deleting the nodes in MIS from the current neighbor list (currneighs). In each
round, node i in UNDEC state that receives the round message checks whether its
neighbors in NONMIS state are the same as its neighbors that have higher identifiers
than itself. If this is true, meaning that all its higher neighbors have given up being in
MIS due to a neighbor in MIS, node i decides to go into INMIS state and sends the
decide message to all its active neighbors, otherwise, it sends the undecide message
to its current neighbors. A node that has entered NONMIS state for the first time
sends the resign message to all its currneighs in the next round to enable them to
delete it from their currneighs and add to neighbors with higher identifiers that have
entered NONMIS state. In order to synchronize the end of a round, all senders of the
received messages are kept in the set received.

Figure 10.5 displays an example operation of Algorithm 10.2 in a sample net-
work of eight nodes with identifiers 1, . . . ,8. It is assumed that a spanning tree T

is initially constructed at root node 1 to send the synchronization messages such as
round and upcast as shown in (a). Each node knows the identifiers of its neighbors
and stores its higher identifier neighbors in higher_ids. Each node starts from the
initial UNDEC state, and each message is tagged with the time frame (round) it oc-
curs. The root node 1 starts the algorithm by sending the round(1) message to its
only child, node 2. The following shows the actions in each round:

1. Round 1: Nodes 8 and 7 find that their higher identifier neighbors set is empty,
send decide to their neighbors 2 and 6, which enter NONMIS state but defer
sending the resign message till the next round. All other nodes send the undecide
messages to their neighbors as their higher identifier neighbors are in UNDEC
state.

2. Round 2: Nodes 2 and 6 send the resign messages to their active neighbors, which
are nodes 3, 4, and 5. The first two rounds are shown in (b).

3. Round 3: Node 1 finds that its higher_ids list equals its out_neighs list (node 2)
and enters MIS, but it does not send any decide message because its curr_neighs
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Algorithm 10.2 Rank_MIS
1: states UNDEC, INMIS, NONMIS
2: int i, j, k, currstate ← UNDEC
3: set of int out_neighs, lost_neighs, received, lost_neighs ← ∅; curr_neighs ← Γ (i);

higher_ids ← all higher id neighbors
4: message types round, decide, resign, undecide
5: boolean outflag, round_recvd, round_over ← false
6: {round k for all nodes}
7: while ¬round_over do
8: receive msg(j)

9: case currState of
10: UNDEC:
11: case msg(j).type of
12: round(k): if higher_ids = out_neighs then
13: currstate ← INMIS
14: send decide(k) to curr_neighs
15: else send undecide(k) to curr_neighs
16: round_recvd ← true
17: decide(k): currstate ← NONMIS, outflag ← true
18: lost_neighs ← lost_neighs ∪ {j}
19: received ← received ∪ {j}
20: resign(k): lost_neighs ← lost_neighs ∪ {j}
21: received ← received ∪ {j}
22: if j > i then out_neighs ← out_neighs ∪ {j}
23: undecide(k): received ← received ∪ {j}
24:
25: NONMIS:
26: round(k): if outflag then send resign(k) to currneighs
27: outflag ← false
28: if currstate = UNDEC ∧ round_recvd ∧ (received = currneighs) then
29: round_over ← true; curr_neighs ← curr_neighs \ lost_neighs
30: round_recvd ← false; received, lost_neighs ←∅

31: end if
32: end while

list is empty. Similarly, node 5 enters MIS and notifies its only current neighbor,
node 4, with the decide message.

4. Round 4: Node 4 sends the resign message to its only active neighbor, node 3.
The rounds 3 and 4 are shown in (c). In round 5, node 3 finds that it can enter
MIS as its all higher identifier neighbors (nodes 4 and 6) have resigned, which
completes the building of the MIS for this graph as shown in (d).

It should be noted that in order to provide synchronization in each round, sending
of the resign message is deferred to the next round. The execution of Rank_MIS has
taken four rounds for this example. The time complexity can be as high as n rounds.
The usage of the synchronization messages upcast and finish would be favorable, in
which case the root node does not need to know the number of nodes in the network.
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Fig. 10.5 Rank_MIS execution example

In this case, any node that enters the state INMIS or NONMIS would send the finish
message to its parent, and when all the finish messages are convergecast to the root,
it would terminate the algorithm.

10.3.1 Analysis

Theorem 10.2 Algorithm Rank_MIS correctly constructs a MIS in O(n) rounds,
and its message complexity is O(nm).

Proof In the closed neighborhood of a node, there will be only one node joining
MIS that will be the highest identifier node or the node with all of its higher identifier
neighbors having given up entering the MIS. This ensures the correct operation of
the algorithm as there will be no more than one node entering the MIS among the
neighbors in any round.

We would have a sequential operation of the algorithm in the worst case where all
nodes are ordered in a line in decreasing order of identifiers. The highest identifier
node will first enter MIS, followed by the neighbor node resigning in the second
round, followed by the third node entering the MIS in the third round, resulting in
a total of O(n) rounds as time complexity. Each edge of the network graph will
be traversed at most once by a decide message and a constant number of undecide
messages resulting in a message complexity of O(nm) in total. �
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There is a minor issue with this algorithm, which is the deferral of the resign
message to the next round. Any node i that finds that its neighbor j has decided
in round k sends the resign message in the (k + 1)th round since each node waits
exactly one message from its current neighbors in each round for proper synchro-
nization. However, there may be a neighbor node t of node i that has the second
highest identifier in its neighborhood after i, in which case it has to wait until next
round. This case does not disrupt the operation of this algorithm but results in an
extra round; however, the time complexity is still O(n). In order to remedy this
situation, we could have two phases in each round so that any node that resigns
sends the resign message in the second phase, and nodes that do not resign send a
new message unresign (see Exercise 1), or a new version of the algorithm may be
designed as described next.

10.4 The First Random MIS Algorithm

The first randomized distributed algorithm we show is a simplified version of Luby’s
algorithm [7] called Rand1_MIS. The algorithm operates in synchronous rounds as
described below:

1. Each node u marks itself with probability 1/(2 dval(u)), where dval(u) is the
current degree of u.

2. If there is not a higher-degree neighbor of u that is marked, node u joins the MIS.
If a higher-degree neighbor of u is marked, node u unmarks itself, where ties are
broken by identifiers if they have the same degree.

3. Any node that has joined the MIS and its neighbors are deleted from the active
neighbor node lists since they cannot join the MIS anymore.

This choice favors nodes with lower degrees as choosing nodes with higher de-
grees would reduce the size of the MIS. However, once a higher-degree node is
marked, it has a better chance to join MIS. The FSM of the algorithm is shown in
Fig. 10.6, where each node starts from the unmarked (UNMAK) state and goes into
MARKED state if it randomly has decided based on its current active degree. If all
higher-degree neighbors are in UNMAK state, a marked node can enter INMIS state,
and the state for a node that has decided not to join as a result of a neighbor that has
joined is NONMIS.

A detailed operation of this algorithm for a single round is shown in Algo-
rithm 10.3. The message info is used for a node to send its current degree and its
current state to its current neighbors in each round. It is assumed that the start of
each round is controlled by a single initiator by broadcasting the message round
over the spanning tree T , and the end of a round is determined by the arrival of a
converged upcast message to the initiator over T .

An example operation of Rand1_MIS is shown in Fig. 10.7 with eight nodes
numbered 1, . . . ,8. Nodes 8, 3, 4, 2 mark themselves (shown by double circles) in

www.it-ebooks.info

http://www.it-ebooks.info/


142 10 Maximal Independent Sets

Algorithm 10.3 Rand1_MIS
1: states MARKED, UNMAK, INMIS, NONMIS; currstate ← UNMAK
2: message types round, info, resign, decide, undecide
3: int i, j ; currdeg ← |Γ (i)|
4: set of int recvd1, recvd2, degs, states ←∅; currneighs ← Γi

5: boolean round_recvd, phase1over, round_over ← false
6:
7: while ¬round_over do
8: receive msg(j)

9: case currstate of
10:
11: UNMAK:
12:
13: round(k): currstate ← MARKED w.p. 1/(2currdeg(i))

14: send info(k, currdeg, currstate) to currneighs
15: round_recvd ← true
16:
17: UNMAK/MARKED:
18: info(k, d, sta): recvd1 ← recvd1 ∪ {j}
19: states ← states ∪ {sta}, degs ← degs ∪ {d}
20: resign(k): lost_neighs ← lost_neighs ∪ {j}
21: currdeg ← currdeg − 1
22: recvd1 ← recvd1 ∪ {j}
23: decide(k): currstate ← NONMIS, outflag ← true
24: recvd2 ← recvd2 ∪ {j}
25: undecide(k): recvd2 ← recvd2 ∪ {j}
26:
27: NONMIS:
28: round(k): if outflag then send resign(k) to currneighs
29: outflag ← false
30:
31: if round_recvd ∧ (recvd1 = currneighs) then
32: if currstate = MARKED then
33: if ∀x ∈ currneighs where states(x) = MARKED ∧ degs(x) > degs(i) then
34: currstate ← INMIS
35: send decide(k) to currneighs
36: else
37: send undecide(k) to currneighs; currstate ← UNMAK
38: end if
39: else if currstate = UNMAK then
40: send undecide(k) to currneighs;
41: end if
42: phase1over ← true
43: end if
44: if phase1over ∧ (recvd2 = currneighs) then
45: round_over ← true; curr_neighs ← curr_neighs \ lost_neighs
46: round_recvd, phase1over ← false; recvd1, recvd2, lost_neighs ←∅

47: end if
48: end while
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Fig. 10.6 Rand1_MIS finite-state machine

Fig. 10.7 Rand1_MIS execution example

MARKED states with higher probabilities as they have lower degree than the others.
After exchanging info messages, however, 8 unmarks itself as it has a higher degree
neighbor (3); 2 unmarks itself after tie is broken with 4 (4 > 2). In the second round,
the decisions made in the previous round are communicated to neighbors with the
info(2, INMIS) messages. At the end of the second round, nodes 8,7,6,5,2 resign
from being in MIS, and they inform their decisions at the beginning of round 3 with
the info(3,NONMIS) message. In round 4, node 1 is the only neighbor left, and it
enters MIS.

www.it-ebooks.info

http://www.it-ebooks.info/


144 10 Maximal Independent Sets

10.4.1 Analysis

Theorem 10.3 Algorithm Rand1_MIS correctly constructs a MIS of graph G(V,E)

in O(logn) time using O(m logn) messages.

Proof Algorithm Rand1_MIS correctly constructs a MIS of graph G(V,E) since if
a node u joins MIS, its neighbors do not join at the same time, and they all resign
from being in MIS in the consecutive step. The message complexity of Rand1_MIS
algorithm is O(m logn) as the total number of messages exchanged at each step will
be proportional to the number of edges m as shown in Rank_MIS, and since its time
complexity is O(logn) with high probability as shown in [13]. �

10.5 The Second Random MIS Algorithm

The second randomized algorithm, called Rand2_MIS, also operates in synchronous
rounds as follows:

1. Each node u chooses a random value rval(v) ∈ [0,1] and sends it to its current
active neighbors.

2. Each node u collects random values from its current neighbors, and if for all
v ∈ Γ (u), rval(u) > rval(v), node u joins the MIS.

3. If u has joined the MIS, u and its neighbors are deleted from the graph. Only
active nodes continue with the next round.

The operation of Rand2_MIS is shown in detail in Algorithm 10.4, where we
have not used an FSM, but the messages are similar to Algorithm 10.2. The ter-
mination condition for a node is its decision to be in INMIS or NONMIS state;
however, it continues to transfer synchronization messages as long as it has active
neighbors that have not decided yet.

An example operation of Rand2_MIS is shown in Fig. 10.8 with eight nodes
numbered 1, . . . ,8. In round 1, nodes 8 and 2 enter MIS as their random values are
higher than their neighbors. Their neighbors 3, 7, 1, and 4 resign, and in round 4,
node 5 draws a value higher than the only other remaining node 6 and enters MIS.

10.5.1 Analysis

Theorem 10.4 Algorithm Rand2_MIS correctly constructs a MIS of graph G(V,E)

in O(logn) time using O(m logn) messages.

Proof The MIS of G produced by algorithm Rand2_MIS is correct using the same
argument as in the Rand2_MIS algorithm. The message complexity of Rand1_MIS
algorithm is O(m logn) as the total number of messages exchanged at each step is
proportional to the number of edges m as shown in Rank_MIS, and since its time
complexity is O(logn) with high probability as shown in [13]. �
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Algorithm 10.4 Rand2_MIS
1: set of int curr_neighs ← Γ (i); received, values, lost_neighs ←∅

2: message types round, info
3: states inMIS,nonMIS, state ← unDEC
4: int c, r , sta
5: boolean inflag, outflag, round_recvd, round_over ← false
6: while ¬round_over do
7: receive msg(j)

8: case msg(j).type of
9: round(k): if inflag then state ← inMIS

10: inflag ← false
11: else if outflag then state ← nonMIS
12: outflag ← false
13: if state = unDEC draw rval ∈ [0,1]
14: send info(k, rval, state) to curr_neighs
15: round_recvd ← true
16: info(k, r, sta): received ← received ∪ {j}
17: values ← values ∪ {r}
18: if sta = inMIS then outflag ← true
19: if sta = inMIS/nonMIS
20: lost_neighs ← lost_neighs ∪ {j}
21: if round_recvd ∧ (received = curr_neighs) then
22: if ¬outflag ∧ (∀x ∈ curr_neighs: rval > rx ∈ values) then
23: inflag ← true
24: end if
25: round_over ← true; curr_neighs ← curr_neighs \ lost_neighs
26: round_recvd ← false; received, values, lost_neighs ←∅

27: end if
28: end while

10.6 MIS Construction from Vertex Coloring

We have seen algorithms to color vertices of a graph G in Chap. 9. Each color class
of the colored graph G consists of vertices colored by the same color. Since each
color class is in fact an independent set as no two vertices of the same color can
be adjacent, a simple way to build a MIS of G then is to start with a color class
of G, include all nodes in this class in MIS, and continue to include other nodes
in other classes that do not disturb the independent set property, that is, they are
not neighbors with the already included nodes. Algorithm 10.5 shows a possible
way to implement Vcol_MIS, which works for a k-colored graph G, and in each
synchronous round, the member nodes of the class specified by the round number in
the round message are included in the MIS if they are not neighbors with the nodes
that are already included in the MIS.

The array neigh_cols[Δ] holds the number of neighbors of a node so that the xth
entry has the count of neighbors with color x. Each node with color col at round
col either sends a decide message if it can enter MIS or an undecide message if this
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Fig. 10.8 Rand2_MIS execution example

is not possible due to a neighbor already in MIS. All other nodes do not send any
messages until the round is their turn.

Figure 10.9(a) shows a graph with eight nodes that has a Δ of 4 and colored
with four colors. In the first round of the algorithm, nodes with color 1, which are
shown by double circles, include themselves in the MIS as they have no neighbors
in MIS and inform their neighbors by the decide messages. All of their neighbors
mark them as in MIS and change their state to non_MIS, so that they will not be
involved in further message transfers. In the second round, the nodes with color 2
are adjacent to the nodes that are already in the MIS, so they do not join MIS. In the
third round, however, there is a node that has color 3 and does not have a neighbor in
MIS; therefore, it can enter MIS. Although the algorithm should work k rounds for a
k-colored graph, MIS can be found before. In this case, additional control messages
that convergecast the status of nodes to the root can be used, and when all nodes
have determined their status as being in MIS or not, the algorithm terminates.

10.6.1 Analysis

Theorem 10.5 Algorithm Vcol_MIS correctly constructs a MIS of a k-colored
graph G(V,E) in O(k) time using O(m) messages.

Proof For a k-colored graph G, algorithm Vcol_MIS constructs a MIS due to the
property of vertex coloring. It should be noted that all nodes of color 1 will be
included in the MIS as they do not have any neighbors that are in MIS, but nodes
of other color may not join MIS if they have neighbors that are already in MIS.
There is a total of k rounds, and each edge of G will be traversed at most by two
messages; either by a decide message and an undecide message, or two undecide
messages, and hence the message complexity is O(m). �
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Algorithm 10.5 VCol_MIS
1: set of int received ←∅

2: states inMIS, nonMIS
3: message types round, color
4: int neigh_cols[Δ + 1], my_color
5: boolean round_over, round_recvd, colored ← false
6: for col = 1 to k do
7: { a single round for all nodes}
8: while ¬round_over do
9: receive msg(j)

10: case msg(j).type of
11: round(col): if (my_color = col) ∧ (state �= nonMIS) � if allowed
12: send decide(col) to curr_neighs � enter MIS
13: state ← inMIS
14: else send undecide(col) to j

15: round_recvd ← true
16: decide(c): received ← received ∪ {j}
17: state ← nonMIS
18: undecide(c): received ← received ∪ {j}
19:
20: if round_rcvd ∧ (received = neigh_cols[col]) then
21: round_over ← true
22: round_recvd ← false, received ←∅

23: end if
24: end while
25: end for

10.7 Self-Stabilizing MIS Algorithms

In this section, we describe three self-stabilizing algorithms to find MIS. The first al-
gorithm is uniform and requires a central daemon to find MIS of anonymous nodes.
The second algorithm works with a distributed scheduler and finds MIS of nodes
with unique identifiers. The last algorithm presented is distributed, needs node iden-
tifiers, and has the best performance.

10.7.1 Shukla’s Algorithm

The first algorithm, called Shukla_MIS, is due to Shukla et al. [11] and considers
an arbitrary graph under a central daemon with anonymous nodes. Each node has
a local variable s(i) that indicates after stabilization whether it is in MIS or not by
applying two rules. A node joins MIS if it has no neighbors in MIS and leaves MIS
if it has at least one neighbor in MIS as shown in Algorithm 10.6.

Figure 10.10 depicts an example execution of Shukla_MIS, where three nodes
initially have marked themselves but leave MIS by Rule 2 (b), and two nodes enter
MIS by Rule 1 (c) at different steps as there is a central daemon enabling execution
of a single node at any step.
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Fig. 10.9 Vcol_MIS execution example

Algorithm 10.6 Shukla_MIS
1: Rule 1:
2: if s(i) = 0 ∧ (∀j ∈ N(i))(s(j) = 0) then
3: s(i) ← 1
4: end if
5:
6: Rule 2:
7: if s(i) = 1 ∧ (∃j ∈ N(i))(s(j) = 1) then
8: s(i) ← 0
9: end if

10.7.1.1 Analysis

We need to show that Shukla_MIS stabilizes and converges in a certain number of
steps and also that the output is indeed a MIS.

Lemma 10.1 If node i executes R1 of Shukla_MIS, i and all its neighbors will be
permanently disabled.
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Fig. 10.10 Shukla_MIS execution example

Proof A node i can only execute R1 if s(j) = 0 for all j ∈ N(i), and when i sets
s(i) = 1, the neighbors cannot execute R2 as all of them have s(j) = 0, and they are
permanently disabled. Node i cannot change its value either as all its neighbors are
disabled. �

Lemma 10.2 Shukla_MIS stabilizes in O(n) steps under a central daemon.

Proof By Lemma 10.1, node i that has executed R1 is permanently disabled and
for node i that has executed R2, we will have s(i) = 0, and the only rule that it can
now execute is R1, and if it does so, it will be permanently disabled. Hence, any
node can only have a maximum of two moves. The total number of steps required
for stabilization therefore is 2n as there will be only one node enabled for a move at
each step. �

Theorem 10.6 When Shukla_MIS stabilizes, the nodes will form a MIS.

Proof We need to show that when the two rules do not apply to any node i, any
node i that has s(i) = 1 has formed a MIS. Disabling of the two rules means that
the following statement is true:

¬((
s(i) = 0

) ∧ (∀j ∈ N(i)
)(

s(j) = 0
)) ∧ ¬(

s(i) = 1 ∧ (∃j ∈ N(i)
)(

s(j) = 1
))

≡ (
s(i) = 1 ∨ ∃j ∈ N(i)

)(
s(j) = 0

)
) ∧ (∀j ∈ N(i), s(i) = 0 ∨ s(i) = 1

)

≡ ¬((∀j ∈ N(i), s(i) = 0
) ⊕ (

s(i) = 1
))

.

When all neighbors of node i are not in MIS, node i will be in MIS by R1. To check
whether the IS is a MIS, we add a node i that has s(i) = 0 to IS, which would mean
that there is j ∈ N(i) such that s(j) = 1, which violates independence. �

Shukla et al. also showed that it is impossible to obtain a deterministic and uni-
form algorithm for the MIS problem in an anonymous system under a distributed
daemon.
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Algorithm 10.7 Ikeda_MIS
1: misi ∈ {0,1} {1 if Pi is in MIS, 0 otherwise}
2: Rule 1: Join MIS
3: if misi = 0 ∧ (∀Pk ∈ N(i))(misk = 0) then
4: misi ← 1
5: end if
6:
7: Rule 2: Leave MIS
8: if misi = 1 ∧ (∃Pk ∈ N(i))(misk = 1 ∧ Pk < Pi) then
9: misi ← 0

10: end if

Fig. 10.11 Ikeda_MIS execution example

10.7.2 Ikeda’s Algorithm

Ikeda et al. [4] proposed a deterministic self-stabilizing algorithm, which we will
call Ikeda_MIS, to compute MIS under a distributed scheduler that works for arbi-
trary graphs and assumes that nodes have unique identifiers. Identifiers are used to
break ties under a distributed daemon. Each node joins MIS if it has no neighbors
in MIS and each node leaves MIS if one of its neighbors with a lower identifier is in
MIS.

Formally, each process Pi has a local variable misi ∈ {0,1} such that misi = 1 if
Pi is a member of MIS and misi = 0 if Pi is not a member of MIS. The algorithm
has two rules as shown in Algorithm 10.7. R2 ensures that a node with a smaller
identifier has priority to stay in MIS.

An example operation of Ikeda_MIS is shown in Fig. 10.11 with six nodes num-
bered 1, . . . ,6. The initial state is shown in (a) with nodes 1, 2, 3, 4, and 6 in MIS
and 5 and 6 outside. Applying R2 in the first step yields nodes 2 and 3 resigning
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from MIS as they have a lower identifier neighbor 1 in MIS, and nodes 6 and 4
resigns similarly for neighbor 2. In the second step, nodes 4, 5, and 6 are enabled
for R1, and they enter MIS. In the third step, nodes 6 and 5 resign by R2 in (c),
and, finally, node 6 enters MIS by R1, and stabilization is achieved as no rules are
enabled.

10.7.2.1 Analysis

Theorem 10.7 Ikeda_MIS stabilizes in (n + 2)(n + 1)/4 steps.

Proof At least one process decides its MIS value to one in each connected compo-
nent, and since each node has at least one neighbor, that neighbor also decides its
MIS value to 0. If graph G has c components, at least two nodes decide at each iter-
ation, and there will be c − 2 nodes in the next iteration. Based on this observation,
the maximum convergence time can be calculated as follows:

The number of steps

= (n) + (n − 2) + (n − 4) + · · ·
= 1/2

{
2(n) + 2(n − 2) + 2(n − 4) + · · ·}

< 1/2
{
(n + 1) + (n) + (n − 1) + (n − 2) + (n − 3) + (n − 4) + · · · + 1

}

= 1/2
n+1∑

i=1

i = (n + 2)(n + 1)/4.
�

10.7.3 Turau’s Algorithm

The third algorithm Turau_MIS, described in [12], uses three states as IN, OUT, and
WAIT. The state IN means that the node is in MIS, and OUT indicates that the node
is not in MIS. The state WAIT shows that a node wants to change into state IN; it
may do so if it has no neighbor with the same state with lower identifier. In order to
formally define the rules, the following predicates for a node v are needed:

• inNeighbor(v) ≡ ∃w ∈ N(v) : w.state = IN.
• waitNeighborWithLowerId(v) ≡ ∃w ∈ N(v) : w.state = WAIT ∧ w.id < v.id.
• inNeighborWithLowerId(v) ≡ ∃w ∈ N(v) : w.state = IN ∧ w.id < v.id.

These predicates are used to determine the states of nodes as shown in Algo-
rithm 10.8. It can be seen that when node v is not part of a MIS, even when all of
its neighbors are not in IN state, it attempts to enter MIS by changing its state to
WAIT (Rule 1). In WAIT state, if one of the neighbors of v have decided to be in
IN state, v changes its state to OUT (Rule 2). The only way for v to change its state
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Algorithm 10.8 Turau_MIS
1: Rule 1:
2: if state = OUT ∧ ¬inNeighbor(v) then
3: state ← WAIT
4: end if
5: Rule 2:
6: if state = WAIT ∧ inNeighbor(v) then
7: state ← OUT
8: end if
9: Rule 3:

10: if state = WAIT ∧ ¬inNeighbor(v) ∧ ¬waitNeighborWithLowerId(v) then
11: state ← IN
12: end if
13: Rule 4:
14: if state = WAIT ∧ inNeighbor(v) then
15: state ← OUT
16: end if

Fig. 10.12 Turau_MIS execution example

from WAIT to IN is that it has no neighbor w that is in IN state and no neighbor w

that is in WAIT state with lower identifier (Rule 3). Finally, even if v has decided to
be in IN state, it resigns by changing its state to OUT if there is a neighbor that has
entered IN state (Rule 4).

An example operation of Turau_MIS is shown in Fig. 10.12 with six nodes num-
bered 1, . . . ,6. The initial state is shown in (a) with nodes 1, 4, and 3 in MIS and
5 and 2 in WAIT state shown by gray color. Applying R4 in the first step results in
nodes 1, 4, 3 changing to OUT state, and node 2 to IN state by R3 as shown in (b).
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Nodes 1, 4, 3 enter WAIT state by R1 in (c), and node 1 enters IN state by R3 in (d).
Node 4 goes into OUT state as it has neighbor 1, which is IN state by R2 in (e),
and finally node 3 enters IN state in (f) as it has all OUT neighbors by R3. This
configuration reached after 5 steps for a total of 10 moves will not change as all of
the rules are disabled for all nodes.

10.7.3.1 Analysis

Lemma 10.3 In any configuration in which all the four rules are disabled for each
node, the set I = {v|v.State = IN} is a MIS of G.

Proof We show this by contradiction. Node v cannot have a neighbor w with state
IN as w would not have entered MIS since v.is < w.id. Furthermore, since all the
preconditions for R3 are enabled, v goes int IN state, meaning that it could not be in
WAIT state. The set I is an independent set as R4 is not enabled (v has no neighbors
in IN state); also it cannot be extended as R1 is not enabled. It can also be seen that
once I is formed, it is attained since none of the four rules is enabled again. �

When algorithm stabilizes, an IS is obtained where each node v is either in IN or
OUT state as there will be no WAIT state nodes. Since no rules will be enabled, IS
is not changed again.

Theorem 10.8 Algorithm Turau_MIS is self-stabilizing under an unfair distributed
scheduler and stabilizes after at most 3n moves, and this bound is attained.

Proof Assuming the case of n nodes with ascending identifiers along a line and
each being in state IN, they will first change to state OUT by R4, then to state WAIT
by R1, and finally to their stable state as IN if they have lower identifiers than their
neighbors or OUT otherwise. Thus, each node makes three moves, and the algorithm
stabilizes in 3n moves. �

10.8 Chapter Notes

Early work by Alon et al. [1] studied finding MIS in parallel. Kuhn et al. [5] showed
that the lower bounds on time complexity for constructing a MIS are ω

√
logn or

ωΔ. MIS for special graphs has been studied by some researchers. The growth
bounded graphs are investigated in [10] and trees in [6]. The best deterministic MIS
algorithm has the 2O(

√
logn) time complexity [8].

Goddard et al. [3] modified the rules of Ikeda_MIS such that a node joins MIS
if it does not have a neighbor in MIS with higher identifier and leaves MIS if it
has a neighbor with higher identifier. They also showed that the algorithm stabilizes
in n rounds using the fully distributed scheduler, however, makes O(n2) moves in
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Fig. 10.13 Example graph
for Exercise 2

Fig. 10.14 Example graph
for Exercise 6

the worst case. Algorithm Turau_MIS is the first linear time uniform self-stabilizing
algorithm to find MIS using a distributed unfair scheduler.

Given a graph G with vertices having weights, maximum weight independent set
(MWIS) problem is finding the independent set with the largest total weight among
all independent sets of G, which is NP-hard. Sanghavi et al. [9] provided an algo-
rithm to find MWIS in an arbitrary graph using LP relaxation. Basagni [2] provided
a linear time distributed MWIS algorithm for wireless networks by partitioning the
network into clusters.

10.8.1 Exercises

1. Provide necessary modifications to the algorithm Rank_MIS so that there are
two phases of a round where any node that receives a decide message in the
first phase sends a resign message in the second phase. All other nodes send
unresign message in the second phase to provide synchronization. Provide also
the necessary modifications to the FSM for this algorithm.

2. Using the approach of Rank_MIS, design a synchronous distributed algorithm
that chooses the lowest degree node among neighbors to be included in MIS in
each round. Show the step-by-step execution of this algorithm in the example
graph of Fig. 10.13.

3. Provide the necessary synchronization messages to Rand1_MIS algorithm so that
it does not always have to run n rounds.

4. A Depth First Search (DFS) algorithm may be used such that every time a vertex
is visited and decided to be in MIS, the next vertex is decided not to be in MIS.
Provide the code for a sequential DFS-based algorithm (SeqDFS_MIS) to find
MIS of a graph G.
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5. Provide a pseudocode of a distributed DFS-based MIS algorithm based on
SeqDFS_MIS and work out its time and message complexities.

6. Provide a pseudocode distributed algorithm to find MIS of a tree T and work
out its time and message complexities. Show the step-by-step execution of this
algorithm in the example graph of Fig. 10.14 by first forming a BFS tree of the
graph rooted at node 7.
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Chapter 11
Dominating Sets

Abstract A subset of the vertices of a graph is a dominating set if every vertex not
in the subset is adjacent to at least one vertex in this subset. Dominating sets are
widely used for clustering and routing in ad hoc wireless networks. In this chap-
ter, we describe sample sequential, distributed, and self-stabilizing dominating set
algorithms.

11.1 Introduction

A dominating set can be defined formally as follows.

Definition 11.1 Given a graph G(V,E), a Dominating Set (DS) is the set of vertices
V ′ ∈ V such that any vertex v ∈ V is either in V ′ or a neighbor of a vertex in V ′.

Alternatively, for all v ∈ (V − V ′), v is a neighbor to at least one node in V ′.
Therefore, every MIS is a DS. However, every DS is not a MIS since some vertices
of a DS may be neighbors.

Definition 11.2 (Minimum and minimal dominating sets) A dominating set is min-
imum (MinDS) if it has the smallest cardinality among all possible dominating sets
of the graph G. A dominating set is minimal (MDS) if it is not contained in any
other dominating sets of G.

Finding a minimum sized dominating set is NP-hard [2]. If all nodes in a domi-
nating set are connected, that is, there is a path between any pair of vertices in the
set, it is called a connected dominating set. A formal definition is given below.

Definition 11.3 (Connected Dominating Set) A Connected Dominating Set (CDS)
of a graph G is a dominating set that induces a connected subgraph in G.

A simple method to construct a CDS would involve finding the MIS of the graph
and then include additional vertices to connect the vertices in the MIS.

The Minimum Connected Dominating Set (MinCDS) is a connected dominating
set with the minimum size, and finding MinCDS is NP-hard. The Minimal Con-
nected Dominating Set (MCDS) is a CDS that is not contained in any other CDS

K. Erciyes, Distributed Graph Algorithms for Computer Networks,
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Fig. 11.1 Dominating set
examples

of G. The Weakly Connected Dominating Set (WCDS) is a dominating set where
DS and the neighbors of nodes in the DS induce a connected subgraph of G. Com-
puting WCDS is NP-hard, and in a connected graph, all dominating sets are WCDS.
Figure 11.1 displays dominating set examples where (a) is a DS of size 3, (b) is a
MinDS of size 2, and (c) is a MinCDS of size 2.

As finding MinCDS is NP-hard, approximation algorithms that achieve conver-
gence to optimum (OPT) value for MinCDS are used. In this chapter, we first de-
scribe sequential algorithms to find MCDS and then show distributed algorithms
based on these sequential algorithms to form MCDS. We conclude by sample self-
stabilizing algorithms that produce DS and CDS.

11.2 Sequential Algorithms

We will describe four sequential algorithms to find minimal dominating sets in this
section. All these algorithms use simple heuristics to find MDS or MCDS.

11.2.1 Greedy Sequential MDS Algorithm

Since our aim is to have a dominating set as small as possible, we should greedily
search for nodes that dominate as many neighbors as possible. The first greedy se-
quential algorithm finds an MDS by always selecting nodes that have the greatest
number of neighbors that do not dominate or are not dominated. We will assume
that the nodes in the MCDS are colored black, their neighbors are colored gray, and
any node that has not been a dominator or dominated is colored white.

The span of a node is defined as the number of white nodes it has, including
itself. The Seq_MDS algorithm initially colors all vertices of the graph white. At
each iteration it then picks the vertex u with the highest span and colors it black to
include it in the DS. It also colors all the neighbors of u gray in this iteration, and
vertex u is then excluded from the search list. From the remaining vertices the one
with the highest span is selected in the next iteration. This process is continued until
there are no white colored vertices left. Algorithm 11.1 shows a possible detailed
implementation of this algorithm, where the array spans holds the current spans of
all nodes, set S holds the white nodes, and the array colors has the current colors of
all nodes, and the MDS set is the output of the algorithm.

Figure 11.2 shows the execution of Seq_MDS algorithm in example graph with
10 nodes. Node 4 has the highest span and is included in MDS, and all its neighbors

www.it-ebooks.info

http://www.it-ebooks.info/


11.2 Sequential Algorithms 159

Algorithm 11.1 Seq_MDS
1: Input: G(V,E)

2: S: set of white nodes at any time
3: spans[n]: array holding spans for every node
4: colors[n]: array holding colors of nodes
5: MDS: returned dominating set
6: MDS ←∅

7: for all v ∈ V do � initialize all vertices to white
8: colors[v] ← white
9: spans[v] ← |Γ (v)| + 1 � initialize spans

10: end for
11: S ← V

12: while S �=∅ do � Loop until no more white vertices left
13: u ← max{w|spans[w]} � find vertex u with max span
14: for all v ∈ Γ (u) do
15: if colors[v] = white then
16: for all w ∈ Γ (v) do � decrement spans of white neighbors
17: spans[w] ← spans[w] − 1
18: end for
19: colors[v] = gray
20: end if
21: if colors[u] = white then
22: spans[v] ← spans[v] − 1
23: end if
24: end for
25: colors[u] ← black
26: spans[u] ← 0
27: MDS ← MDS ∪ {u} � insert the highest span vertex in MDS
28: S ← S \ {Γ (u) ∪ {u}} � remove vertex and neighbors from S

29: end while

are colored gray as shown in (a). The node with the highest span in the next iteration
is 3, which is colored black, and its neighbors are colored gray as shown in (b). The
third iteration is displayed in (c), where node 8, which has the same span as node 5,
is selected based on the magnitude of identifiers. The final MDS is shown in (d),
where node 5 is colored black, and finally all nodes are either colored black or
gray.

The algorithm correctly finds an MDS as all the nodes will end up as black or
gray in the end. The approximation ratio of this algorithm is lnΔ as shown in [10],
and the total number of iterations will be O(n).

11.2.2 Greedy Sequential MCDS Algorithm

The second version of the greedy algorithm finds an MCDS by a simple modifica-
tion. Instead of choosing any vertex with the highest span, whether it is a white or
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Fig. 11.2 The sequential greedy MDS algorithm example

gray node, we choose a gray vertex with the highest span. As a gray node will be
adjacent to a black node, this algorithm will add a black node next to at least one
other black node in each iteration; therefore, the output will be an MCDS. We will
only show the execution of this algorithm in Fig. 11.3, where a network of 10 nodes
is numbered 1, . . . ,10. Nodes 4 and 1 have the highest spans, and the tie is broken
by the identifiers so that node 4 is elected as the first node to be colored black and
all of its neighbors are colored gray. The algorithm than selects node 3 to color as it
is gray and has the highest number of white neighbors. This node is colored black,
and all its neighbors gray as shown in (b). In the third iteration, node 1 is selected as
it is the only gray node with white neighbors to give the MCDS consisting of nodes
4, 3, and 1 as shown in (c). This algorithm also has the time complexity O(n).

11.2.3 Guha–Khuller Algorithms

Guha and Khuller [4] provided two greedy sequential algorithms to construct CDS
in arbitrary graphs. In their first algorithm, a CDS is grown iteratively from a single
node. In the second algorithm, a WCDS is first formed, and then the intermediate
nodes are connected. These algorithms have formed the basis for other distributed
MCDS algorithms, and we will describe them next.

11.2.3.1 The First Algorithm

This algorithm called GK1_CDS provides an improvement over the Seq_CDS by
the addition of a simple heuristic. It starts by coloring all the vertices of the graph

www.it-ebooks.info

http://www.it-ebooks.info/


11.2 Sequential Algorithms 161

Fig. 11.3 The sequential greedy MCDS algorithm example

Fig. 11.4 Guha–Khuller first algorithm example

G(V,E) white, and it first selects the vertex with the highest degree, colors it black,
and all its neighbors are colored gray. The algorithm then scans all the gray nodes
and their white neighbors by finding the number of white neighbors of gray nodes
and the white neighbors of their neighbors. It then selects a gray node or a pair
consisting of a gray node and a white node, whichever gives the highest number of
white neighbors. It colors the selected gray node or the selected pair of gray and
white node black and starts with the next iteration. This process continues until all
the nodes are colored black or gray. As before, the black nodes will form the CDS.

Figure 11.4 displays the operation of this algorithm in the same sample graph of
Fig. 11.3. Node 4 is first selected; it is colored black, and all of its neighbors are
colored gray as shown in (a). Then, all gray neighbors and their white neighbors are
searched, and the node pair 〈9,1〉 (or the pair 〈3,1〉) has the highest number of white
neighbors, both are colored black, and their neighbors are colored gray as shown in
(b), which completes the construction of the CDS consisting of nodes 4, 9, and 1.
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Fig. 11.5 Guha–Khuller second algorithm example

The simple modification provided by this algorithm provides a better approxima-
tion to the optimum CDS. It was shown in [4] that this algorithm has an approxima-
tion ratio of 2(1 + H(Δ)), where H is the Harmonic Function.

11.2.3.2 The Second Algorithm

The second algorithm (GK2_CDS) starts by coloring all nodes white as before.
A piece in this algorithm is defined as either a connected black component or a
white node. The algorithms consists of two phases. In the first phase, a node that
causes the greatest reduction in the number of pieces in the graph is selected and
colored black, and all of its neighbors are colored gray. At the end of the first phase,
each node in the graph is either colored gray or black. The second phase uses a
Steiner Tree algorithm to connect the black nodes so that an MCDS is formed [4].

This algorithm yields a CDS with an approximation ratio of 3 + lnΔ [4]. Fig-
ure 11.5 displays the operation of this algorithm in a graph with 10 nodes. Node 4 is
colored black as it has the highest degree, and all of its neighbors are colored gray
initially. Node 6 is colored black, and its neighbors gray next, as it provides the max-
imum reduction in the number of pieces as shown in (b), where all the nodes of the
graph are colored either gray or black, and a dominating set is obtained. However,
this set is not connected. In (c), nodes 10 and 1 are used to connect the dominating
set nodes of 4 and 6, resulting in the MCDS consisting of nodes 4, 10, 1, and 6.

11.3 Distributed Algorithms

In this section, a greedy algorithm to construct an MDS and another similar algo-
rithm to construct an MCDS are described.
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Fig. 11.6 Greedy MDS algorithm example

11.3.1 Greedy MDS Algorithm

We will first explore the possibility of obtaining a distributed algorithm from the se-
quential algorithm Seq_MDS, where a node with the highest span is colored black in
each iteration. In the synchronous implementation, a node that finds it has the high-
est span among neighbors, colors itself black, and the neighbors color themselves
gray in each round. This process continues until there are no white nodes left.

The messages used are described below:

• ch_black: A node that has the highest span locally, sends this message to current
active (white or gray) neighbors.

• undecide: A node that does not have the highest span locally, sends this message
to current neighbors.

• ch_gray: A node that changes its color from white to gray sends this message to
current active neighbors so that they decrement their spans.

• no_change: If a white node does not change its color in a round, it sends this
message to current active neighbors.

The undecide and no_change messages are needed for synchronization. In the
design we propose, each round consists of two phases. In the first phase, all active
nodes exchange the ch_black and undecide messages. Any node i that changes its
color to gray due to the reception of ch_black should inform its current neighbors,
and it does so in the second phase of the round. A node that has white neighbors
waits to receive either ch_gray or no_change messages from them so that the second
phase can be completed. Algorithm 11.2 (Span_MDS) shows a way to implement
the algorithm described.

Figure 11.6 shows an example network that executes the Span_MDS. There are
10 nodes, the nodes 9 and 8 have the highest spans locally, and they color themselves
black. Nodes 9, 6, and 4 have the same spans, but node 9 has the highest identifier,
so it can decide to be in MDS. Node 4 cannot color itself black because node 6 has
a higher identity, which is also excluded by node 9. All the neighbors of these nodes
are colored gray in the first round as shown in (a), and the spans of their neighbors
4 and 7 are decremented to be unity. In the second round, nodes 4 and 7 have the
highest spans locally, and they are colored black to result in the MDS shown in (b).
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Algorithm 11.2 Span_MDS
1: set of int recvd_cols, received, lost_neighs ← ∅; curr_neighs ← Γ (i)

2: message types round, ch_black, ch_gray, undecide, no_change
3: boolean colored, round_recvd, round_over, finished ← false
4: int spans[di ] ← degrees of neighbors + 1, neigh_cols[di ] ← whites, color ← white,

n_recvd
5: {round k for all nodes}
6: while ¬round_over do
7: receive msg(j)

8: case msg(j).type of
9: round(k): if spans[i] �= 0 then

10: if spans[i] > max{j |spans[j ]} then
11: color ← black, spans[i] ← 0
12: send ch_black to curr_neighs
13: else send undecide to curr_neighs
14: round_recvd ← true
15: ch_black(k): received ← received ∪ {j}
16: recvd_cols ← recvd_cols ∪ {black}
17: if neigh_cols[j ] = white
18: spans[i] ← spans[i] − 1
19: lost_neighs ← lost_neighs ∪ {j}
20: neigh_cols[j ] ← black
21: undecide(k): received ← received ∪ {j}
22: ch_gray: n_recvd ← n_recvd + 1
23: spans[i] ← spans[i] − 1
24: neigh_cols[j ] ← gray
25: no_change: n_recvd ← n_recvd + 1
26:
27: if (¬finished ∧ round_recvd) ∧ (received = curr_neighs) then
28: if ∃col ∈ recvd_cols : col = black then
29: if color = white then
30: send ch_gray to curr_neighs
31: color ← gray
32: else send no_change to curr_neighs
33: end if
34: else send no_change to curr_neighs
35: end if
36: finished ← true
37: end if
38: if (finished) then
39: if n_recvd = |curr_neighs| then
40: round_over ← true; curr_neighs ← curr_neighs \ lost_neighs; n_recvd ← 0
41: round_recvd, finished ← false; received, recvd_cols, lost_neighs ←∅

42: end if
43: end if
44: end while
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Fig. 11.7 Greedy MCDS algorithm example

11.3.1.1 Analysis

Theorem 11.1 The Span_MCDS algorithm correctly constructs an MCDS in O(n)

rounds using O(nm) messages.

Proof The algorithm continues until all nodes are colored either black or gray, also
removal of a black node would result in at least one neighbor to be colored white.
Therefore, the output is an MDS. In the case of a linear network, there would be
�n/2� rounds, therefore, the total number of rounds would be O(n). There will be a
constant time of edge traversals by the messages in each round resulting in O(nm)

messages altogether. �

11.3.2 Greedy MCDS Algorithm

We will now implement a greedy distributed algorithm based on Seq_MCDS that
finds MCDS of a network. The pseudocode of this algorithm will be similar to
Span_MDS algorithm with the difference that only a gray node with the highest span
locally may be selected to be colored black. Since we always choose a gray node
that is adjacent to a black node to color black, the MDS is connected. Figure 11.7
shows an example network that executes the Span_MCDS. There are 10 nodes, and
node 8 has the highest span based on identifiers which colors itself black and is in-
cluded in the MCDS. All of its neighbors are colored gray in the first round. Nodes
10 and 6 are the gray nodes having the highest spans among their active neighbors
and are included in the MCDS in the second round. Finally, node 4 is included to
give the MCDS as shown in (c). This algorithm should start by the node that has
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Algorithm 11.3 Twospan_CDS
1: my_span ← |Γ (i)| + 1
2: while ¬roundover do
3: if my_span �= 0 then
4: send my_span to current neighbors at most two hops away
5: receive spans of current neighbors which are at most two hops away
6: if my_span is greater than all spans received then
7: color ← black
8: send decide to two-hop neighbors
9: end if

10: if decide received from a direct neighbor then
11: decrement my_span
12: if color = white then
13: color ← gray
14: send ch_gray to curr_neighs
15: end if
16: end if
17: if ch_gray received from a direct neighbor then
18: decrement my_span
19: end if
20: end if
21: end while

the highest span that colors itself black; therefore, the node with the highest span
should be known globally. The time and message complexities of this algorithm are
O(n) and O(nm) as in the Span_MDS algorithm.

11.3.3 The Two-Span MDS Algorithm

Based on GK1_CDS, a distributed algorithm can be designed. Each node in this
algorithm compares its span with the spans of the two-hop neighbors, that is, neigh-
bors that are at most two hops away [10]. If a node finds that it has the highest span
among its two-hop neighbors, it decides to enter the MDS. It has a similar struc-
ture to Span_MDS algorithm, so we will just briefly show the pseudocode as Algo-
rithm 11.3 (Twospan_CDS). The statements between lines 10 and 19 require a sec-
ond phase within a round as in Span_MDS algorithm, or odd- and even-numbered
rounds can be used.

Theorem 11.2 Algorithm 11.3 provides a CDS with the approximation ratio lnΔ

to MCDS in O(n) rounds.

Proof The approximation ratio is similar to the Seq_MCDS. Since at least one node
is added to the CDS in each round, the algorithm executes O(n) rounds. �
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Fig. 11.8 Sequential execution of two-span MDS algorithm

Figure 11.8 displays the operation of this algorithm in a sample graph with nodes
of decreasing degrees. Each node has to wait for its left neighbor node to be included
in the CDS. Node 1 cannot join CDS as its left neighbor 3 has a larger span. Simi-
larly, nodes 3 and 2 delay joining the CDS, and only node 4 can join CDS in the first
round after span messages are exchanged. This is followed by nodes 3, 2, and 1 in
the consecutive three rounds, resulting in the optimal CDS shown by black nodes.
The execution in this case is sequential.

11.4 Self-Stabilizing Domination

In this section, we will describe self-stabilizing algorithms to find a dominating set
and a minimal dominating set.

11.4.1 Dominating Set Algorithm

The first algorithm called SS1_DS is due to Hedetiemi et al. [6] and works under
a central scheduler to find two dominating partitions of a graph. In this algorithm,
each node i has a binary variable x(i). When the network stabilizes, each node i

having the value x(i) = 0 or x(i) = 1 belongs to dominating sets. The algorithm
works with two simple rules. In Rule 1, if each neighbor j of a node i has x(j) = 0,
then node i assigns its variable x(i) to 1. Rule 2 works similarly, and this time if
each neighbor j of a node i has x(j) = 1, then this node assigns its variable x(i) to
0 as shown in Algorithm 11.4.

Figure 11.9 shows the operation of this algorithm in a simple graph of six nodes,
where two nodes make moves with R1 and R2 consecutively to obtain two separate
dominating sets shown by black and white colors.

Theorem 11.3 The algorithm stabilizes in O(n−1) moves in a connected network.
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Algorithm 11.4 SS1_DS
1: Rule 1:
2: if x(i) = 0 ∧ (∀j ∈ N(i))(x(j) = 0) then
3: x(i) ← 1
4: end if
5: Rule 2:
6: if x(i) = 1 ∧ (∀j ∈ N(i))(x(j) = 1) then
7: x(i) ← 0
8: end if

Fig. 11.9 Hedet_DS
algorithm example

Proof In both rules, node i can only move when all its neighbors have the same
value as itself. Therefore, whenever i moves, its value will be different from the
values of its neighbors after which neither i nor its neighbors can make a move.
When a node moves, the remaining nodes can move at most once, so that the total
number of moves cannot exceed n − 1 [6]. �

11.4.2 Minimal Dominating Set Algorithm

The self-stabilizing algorithm which works under a central scheduler to find the
MDS of a graph is also due to Hedetiemi et al. [6]. Every node i in this algorithm
called SS2_MDS has a binary variable x(i), which is equal to 1 if the node is in
the minimal dominating set S. Each node also has a pointer (→), which points to
its dominator. If this pointer has null value, either i ∈ S or i is not dominated. This
algorithm is based on the fact that a dominating set DS is a minimal dominating set if
and only if it is dominating and every u ∈ DS has a private neighbor [6]. Therefore,
this algorithm attempts to form a DS with each element of DS dominating only one
element.

The membership rules M1 and M2 of this algorithm are described as follows:

• M1: If node i and all its neighbors are not in MDS, i enters MDS.
• M2: If node i is in MDS but has at least one neighbor that is also in CDS; and

also it is not a dominator of any of its neighbors, it leaves MDS.

The pointer moves P1, P2, and P3 do not change the membership of a node in
the MDS, but they modify the value of the pointers as follows:

• P1: If a node is in MDS and its pointer is not null, its pointer is set to null.
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Algorithm 11.5 SS2_DS
1: M1:
2: if x(i) = 0 ∧ (∀j ∈ N(i))(x(j) = 0) then
3: x(i) ← 1
4: end if
5: M2:
6: if x(i) = 1 ∧ (�j ∈ N(i)) ∧ (j → i) ∧ (∃k ∈ N(i))(x(k) = 1) then
7: x(i) ← 0
8: end if
9: P1:

10: if x(i) = 1 ∧ (i � null) then
11: i ← null
12: end if
13: P2:
14: if x(i) = 0 ∧ (∃ unique j ∈ N(i))(x(j) = 1) ∧ (i � j)) then
15: i → j

16: end if
17: P3:
18: if x(i) = 0 ∧ (∃ more than one j ∈ N(i))(x(j) = 1) ∧ (i �∅)) then
19: i →∅

20: end if

• P2: If node i is not in MDS and has exactly one neighbor j in MDS, which i is
not pointing, it sets its pointer to j .

• P3: If node i that is not in MDS has more than one neighbor in MDS and its
pointer is not null, it sets its pointer to null.

Algorithm 11.5 shows a pseudocode of this algorithm.

Theorem 11.4 The algorithm finds an MDS in O(n2) moves.

Proof If a node moves by M1, it will not make any other membership move. If it
moves by M2, the next membership move will have to be M1, and there will not
be any membership moves after this move. Therefore, a node can make at most
two membership moves. Also, there can be at most n consecutive pointer moves
as any pointer move by a node i results in i being unprivileged, and i cannot be
privileged by any pointer moves of the neighbors. Hence, each node can make one
pointer move resulting in n consecutive pointer moves at most. There can be at
most 2n membership moves. As there can be at most n pointer moves before or
after each membership move, total number of moves before stabilization is O(n2)

moves. A more detailed description of the proof can be found in [6]. �

11.5 Chapter Notes

Finding minimal (connected) dominating sets is a well-studied topic in both graph
theory and ad hoc wireless networks. There is in fact a book devoted to this prob-
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Fig. 11.10 Example graphs
for Exercise 1

Fig. 11.11 Example graph
for Exercise 2

lem [5]. Dominating set problem is equivalent to set-covering problem. Given a set
of elements called the universe and sets whose union comprises the universe, the set
cover problem is to find the smallest number of sets whose union contains all ele-
ments in the universe. The decision version of this problem is: given (U,S), where
U is the universe, and S is a set of subsets, for an integer k, find if a set covering of
size k or less exists. This problem is shown to be NP-complete in [9].

Weighted dominating set problem is to find a minimal weight dominating set in a
graph where nodes have weights, which is also NP-complete. Chvatal [1] proposed a
central weighted-set cover-based dominating-set algorithm (CENTSET) with lnW

approximation ratio, where W is the minimum weight of the dominating set. The
dominator with the minimum weight ratio is chosen, it is covered with its neighbors
in each round, and the algorithm continues until all nodes are either dominators or
are dominated. In the self-stabilizing approach, algorithms to find CDS were given
in [7, 8]. Goddard et al. [3] recently provided a self-stabilizing algorithm to find a
connected dominating set in an anonymous network.

An MCDS can be conveniently used for routing in ad hoc networks, and we will
be investigating the construction of a backbone for routing using MCDS in ad hoc
wireless networks in Chap. 15.

11.5.1 Exercises

1. Find examples of DS in (a), MDS in (b), and MCDS in (c) of the graph of
Fig. 11.10.

2. Provide a pseudocode for the Seq_MCDS algorithm and show its execution in
the graph of Fig. 11.11.

3. Sketch a pseudocode of a greedy distributed algorithm that finds a maximal
weighted dominating set. Work out its time and message complexities. Also,
show the operation of this algorithm step-by-step in the example graph of
Fig. 11.12 where each vertex is labeled by its weight.
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Fig. 11.12 Example graph
for Exercise 3

Fig. 11.13 Example graph
for Exercise 4

4. Provide the FSM-based version of Span_MCDS algorithm described in
Sect. 11.3.1 that finds the MCDS by greedily selecting the node with the highest
span. Provide its FSM diagram and a pseudocode and work out the time and
message complexities. Show also step-by-step execution of this algorithm in the
example graph of Fig. 11.13.

5. Provide a pseudocode for the SYNSET algorithm described in Sect. 11.5.

References

1. Chvatal V (1979) A greedy heuristic for the set-covering problem. Math Oper Res 4(3):233–
235

2. Garey MR, Johnson DS (1978) Computers and intractability: a guide to the theory of NP-
completeness. Freeman, San Francisco

3. Goddard W, Srimani P (2010) Anonymous self-stabilizing distributed algorithms for con-
nected dominating set in a network graph. In: Proc the international multi-conference on com-
plexity, informatics and cybernetics (IMCIC)

4. Guha S, Khuller S (1998) Approximation algorithms for connected dominating sets. Algorith-
mica 20(4):374–387

5. Haynes TW, Hedetniemi ST, Slater PJ (1998) Fundamentals of domination in graphs. Dekker,
New York

6. Hedetniemi SM, Hedetniemi ST, Jacobs DP, Srimani PK (2003) Self-stabilizing algorithms
for minimal dominating sets and maximal independent sets. Comput Math Appl 46(5–6):805–
811

7. Jain A, Gupta A (2005) A distributed self-stabilizing algorithm for finding a connected domi-
nating set in a graph. In: Proc PDCAT. IEEE Computer Society, Los Alamitos, pp 615–619

8. Kamei S, Kakugawa H (2007) A self-stabilizing distributed approximation algorithm for the
minimum connected dominating set. In: IPDPS. IEEE Press, New York, pp 1–8

9. Karp RM (1991) Probabilistic recurrence relations. In: Proc 23rd annual ACM symposium on
theory of computing (STOC 91), pp 190–197

10. Wattenhofer R Principles of distributed computing, Chapter 12. Class notes, ETH Zurich

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 12
Matching

Abstract A matching M of a graph G(V,E) is a subset of its edges such that
no two edges in M have common endpoints. Matching is a fundamental problem
in graph theory, and although there are many sequential algorithms for matching,
the distributed algorithms have begun to receive attention recently due to many ap-
plications of matchings in distributed systems such as mobile and sensor networks.
Matching algorithms in distributed systems may also be the building blocks for other
algorithms or protocols. In this chapter, we describe sample distributed algorithms
for matching in graphs.

12.1 Introduction

The formal definitions for matching-related concepts are as follows.

Definition 12.1 (Matching) Given an undirected graph G(V,E), a matching (M)
of G is a subset of the edges E such that no vertex in V is incident to more than one
edge in M .

Definition 12.2 (Maximal matching) A maximal matching (MM) of a graph
G(V,E) is a matching of G that is not properly contained in any other matching. In
other words, a matching is maximal if we cannot add any edge to the existing set.

Definition 12.3 (Maximum matching) A maximum matching (MaxM) for a graph
G(V,E) is a matching of G that has the largest number of edges among all possible
matchings of G.

The maximum matching problem is to find a matching in G with maximum car-
dinality.

Definition 12.4 (Maximum weighted matching) A maximum weighted matching
(MaxWM) for a graph G(V,E,w), where E : w → R, is a weighted matching of G

such that there does not exist any other weighted matching of G with total weight
larger than MaxWM.
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Fig. 12.1 Matching examples

Figure 12.1 displays matching examples where (a) and (b) are maximal match-
ings of size 2 and (c) is a MaxM of size 3.

There may be diverse applications of matching in computer networks. For ex-
ample, there could be k available resources, and m events may be triggered at any
time in a sensor network, and the requirement would be the handling of an event
by just one node, which requires matching of m events to k sensors. A network
switch that connects its input ports to output ports so that no port is connected to
more than one port is an example of bipartite matching, where the vertex set V of
graph G(V,E) is partitioned into two disjoint sets V1 and V2, any e ∈ E has two
endpoints, one in V1 and the other in V2, and no v ∈ V is incident to more than one
edge. Maximal bipartite matching seeks to find a maximal matching in a bipartite
graph. Maximal bipartite weighted matching for the network switch example may
be required if weights are associated with packets for their sizes or priorities, and
the aim would be to match the input ports of the switch to the output ports to give
the maximal matching for best performance.

A perfect matching (1-factor matching) matches all vertices of the graph, in
which case every vertex of the graph is incident to exactly one edge of the matching.
For a matching M, an alternating path is a path in which the edges alternatively be-
long and do not belong to the matching. An augmenting path is an alternating path
that starts from and ends on unmatched vertices. It can be proven that a matching is
maximum if and only if it does not have any augmenting paths [3].

Unlike other graph problems, we have seen such as vertex coloring, maximal in-
dependent set, and minimal dominating set; maximal matching and weighted match-
ing of a graph can be found in polynomial time using an algorithm of Edmonds [3].
In this chapter, we classify and analyze distributed matching algorithms in three
sections as unweighted, weighted, and self-stabilizing algorithms.

12.2 Unweighted Matching

Unweighted matching algorithms assume that the edge weights are identical and
therefore are not considered as an input parameter to the algorithm. In this section,
we first describe a sequential algorithm to find a matching and then show two dis-
tributed algorithms that work in synchronous rounds to find maximal matching.
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Algorithm 12.1 Seq_MM
1: Input G(V,E)

2: S ← E, MM ← ∅

3: while S �=∅ do
4: select any {u,v} ∈ S

5: MM ← MM ∪ {u,v}
6: delete all edges incident to either u or v from S

7: end while

Fig. 12.2 The sequential matching algorithm example

12.2.1 A Sequential Algorithm

A sequential algorithm to find the MM arbitrarily chooses an edge e from the un-
marked edge set S, includes e in the matching, and removes all edges incident to
the vertices on the end points of e from the unmarked set. The algorithm Seq_MM
continues until there are no edges left in the set S as shown in Algorithm 12.1.

In Fig. 12.2, the operation of Seq_MM is shown in a sample graph with the
removed edges shown as marked at each iteration. As there will be at least a single
edge removal at each step, the time complexity of Seq_MM is O(m) steps.

12.2.2 The Greedy Distributed Algorithm

In our first attempt to have a distributed matching algorithm, we will again use the
identifiers of nodes to make matching decisions. The nature of matching requires
three distinct steps before a matching decision can be made. First, a node may re-
ceive more than one offer to be matched. It should accept one of these offers and
reject the others in the second step. In the third step, a node that learns the result
of its proposal should inform its neighbors so that it may or may not be included in
future matching decisions. This three-step decision making requires careful consid-
eration of the structure of the algorithm. In the solution we propose, we have odd-
and even-numbered rounds, where proposals are made in odd rounds, while accep-
tance or rejection messages are sent and the informing of the neighbors is done in
even rounds. Since there are two steps in an even round, synchronization is provided
by using flag variables. The messages used in this algorithm are propose, unpropose,
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ack, reject, neigh_ack, and neigh_rej. The following describes the actions in an odd-
numbered round of the algorithm.

1. If node i finds that it has the highest identifier among its active neighbors, it ran-
domly selects an active neighbor j and proposes to this neighbor by the propose
message.

2. All nodes other than the highest identifier node send the unpropose messages
to their active neighbors. The sum of all messages received as propose and
unpropose should be equal to the number of active neighbors for this round to
finish.

At the end of an odd-numbered round, each node is either a proposing node, a
proposed node or an other node. In an even-numbered round, these three types of
active node have different actions as follows:

1. If node i has two or more proposals, it sends the ack message to the highest
identifier node and the reject message to all others. It also sends inactive message
to the rest of current neighbors.

2. Node i that receives an acknowledgement to its proposal made in the previous
round is matched. It should also inform its neighbors that it is matched so that
they do not send any proposals to it in future rounds. It achieves this by sending
the neigh_ack message to all its active neighbors. A node that receives reject
informs the waiting neighbors by the neigh_rej message.

3. Node i that was waiting neighbors that had proposed in the previous round up-
dates its active neighbors if the reply was ack. It waits until it receives the result
from all of the proposing neighbors.

At the end of the algorithm, nodes i and j incident to an edge {i, j} that
is matched have their variable matched assigned true value as shown in Algo-
rithm 12.2. Figure 12.3 shows a network of eight nodes with identifiers 1, . . . ,8.
In the first round, highest identifier nodes 8, 6, 4, and 7 propose randomly to their
neighbors. Nodes 3 and 2 select the highest identifier proposals of nodes 8 and 7,
these edges are matched, and the nodes incident to these nodes are removed from
the graph. In the third round, node 1 gets proposals from neighbor nodes 6 and 4 and
accepts the proposal of node 6 as shown in (c). The final matching is shown in (d).

12.2.2.1 Analysis

Theorem 12.1 Rank_MM algorithm correctly finds a maximal matching of an ar-
bitrary graph in O(n) rounds using O(nm) messages.

Proof The algorithm continues until a node has a matched edge incident to it
(matched becomes true) or all of its neighbors have matched edges incident to them
(neighs_matched = ∅). Therefore, the output is a maximal matching. In the case of
a linear network, there will be at least two edge removals in each round, the matched
edge and its adjacent edge resulting in O(n) rounds. As there would be a constant
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Algorithm 12.2 Rank_MM
1: int i, j � i is this node, j is the sender of a message
2: set of int received, lost_neighs, recvd_prop ← ∅; curr_neighs ← Γ (i)

3: message types round, propose, unpropose, neigh_ack, ack, reject, inactive, neigh_rej
4: boolean round_over, round_recvd, prop_flag, reply_flag ← false
5:
6: for k = 1 to n do
7: {rounds k, k + 1 for all nodes}
8: if (k mod 2) = 1 then � odd numbered round
9: while ¬round_over do

10: receive msg(j)

11: case msg(j).type of
12: round(k): if ¬matched ∧ (curr_neighs �=∅) then
13: if i > max{curr_neighs} then � if i am largest
14: select j ∈ curr_neighs
15: send propose to j

16: send unpropose to {curr_neighs \ {j}}
17: prop_flag ← true
18: else send unpropose to curr_neighs
19: round_recvd ← true
20: propose(k): recvd_prop ← recvd_prop ∪ {j}
21: reply_flag ← true
22: unpropose(k): received ← received ∪ {j}
23: if round_recvd ∧ (received ∪ recvd_prop = curr_neighs) then
24: round_recvd ← false; round_over ← true; received ←∅

25: end if
26: end while
27:
28: else � even numbered round
29: while ¬round_over do
30: receive msg(j)

31: case msg(j).type of
32: round(k): if reply_flag then
33: j ← max{recvd_props}
34: send ack to j ; send reject to recvd_props \ {j}
35: send inactive to curr_neighs \ {j ∪ recvd_props}
36: matched ← true
37: else if ¬prop_flag then send inactive to curr_neighs
38: round_recvd ← true
39: ack(k): matched ← true
40: send neigh_ack to curr_neighs
41: reject(k): send neigh_rej to curr_neighs
42: neigh_ack(k): lost_neighs ← lost_neighs ∪ {j}
43: neigh_rej(k), inactive(k): � just receive
44:
45: if msg(j).type �= round then
46: received ← received ∪ {j}
47: end if

www.it-ebooks.info

http://www.it-ebooks.info/


178 12 Matching

48: if round_recvd ∧ (received = curr_neighs) then
49: prop_flag, reply_flag ← false; curr_neighs ← curr_neighs \ lost_neighs
50: round_recvd ← false; round_over ← true; received, recvd_prop ← ∅

51: end if
52: end while
53: end if
54: end for

Fig. 12.3 Rank_MM algorithm example

times of edge traversals by messages in each round, the total number of messages is
O(nm). �

12.2.3 A Three-Phase Synchronous Distributed Algorithm

As a sample synchronous distributed maximal matching algorithm, we will describe
the algorithm due to Panconesi and Rizzi [14] (PR_MM), which finds a maximal
matching in arbitrary graphs in O(Δ + log∗ n) rounds. This algorithm has three
phases as forest decomposition, three-coloring of forests, and matching described
below.

12.2.3.1 Forest Decomposition

In this phase of the algorithm, each node u arbitrarily selects a unique value c1 from
S = {1,2, . . . , du}, where du is the degree of the node, for edge e1 incident on it and
labels e1 with this value, which is called the proposal of u for edge e1. The value
c2 for the next edge e2 is selected from the remaining values S \ {c1}. The value of
c1 is sent to the neighbor at the other end of e1 by the propose(c1) message. The
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Algorithm 12.3 Forest_MM
1: set of int free_ranks ← {1, . . . ,Δ}, lower_neighs ← all lower id neighbors,

higher_neighs ← all higher id neighbors, edge_ranks ← ∅, n_lows ← |lower_neighs|,
childs ←∅

2: int parent
3: for k = 1 to n_lows do
4: select r ∈ free_ranks, j ∈ lower_neighs
5: send rank(r) to j

6: free_ranks ← free_ranks \ {r}
7: lower_neighs ← lower_neighs \ {j}
8: childs ← childs ∪ {j}
9: end for

10: while received �= |higher_neighs| do
11: receive rank(r)
12: edge_ranks ← edge_ranks ∪ {〈j, r〉}
13: parent ← j

14: received ← received ∪ {j}
15: end while

value sent by the node with a higher identifier at the ends of edge e1 is decided
as the rank of the edge e1, and e1 is marked as directed from the lower identifier
node to the higher identifier node. This process classifies edges into Δ classes of
ranks, after which a forest Fi(V,Ei) = G = F1 ∪ F2 ∪ · · · ∪ FΔ of outward rooted
arborescences can be constructed, where Ei is the set of edges with ranks i. Based
on the foregoing, it can be seen that two edges of the same rank cannot be oriented
toward the same node.

We show an adaptation of this phase of PanRizzi_CSI in Algorithm 12.3, where
node i selects a rank value arbitrarily from free ranks, and node j from the unas-
signed lower identifier neighbors and sends rank(j) message to j .

When the algorithm terminates, all edges are ranked with integers in the range
{1, . . . ,Δ}, and an edge has a direction from the lower identifier node to the higher
identifier node, which it stores as its parent. The set of edges with rank k is the
forest Fi . It should be noted that labeling the edges of a forest Fi in this manner is
not edge coloring and there may be adjacent edges of the same color. Also, there will
not be two nodes that have the same parent in an Fi because a node sends distinct
rank values to its lower identifier neighbors.

12.2.3.2 Three-Coloring of Forests

In the second phase, the nodes of each rooted arborescence T are colored with three
colors in parallel using a suitable algorithm like the one in [5] in O(log∗ n) rounds
assuming that each node is aware of its parent and also that the root knows it is the
root.
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Algorithm 12.4 PR_MM
1: Input G(V,E)

2: Compute a forest decomposition F1, . . . ,FΔ of G

3: Direct all edges of forests from lower identifier node to higher identifier node
4: Compute a 3-vertex coloring of each Fi in parallel
5: M ←∅

6: for k = 1 to Δ do
7: for c = 1 to 3 do
8: if colori = c then
9: select ei incident to i that is outgoing

10: end if
11: Mc ← the set of edges selected;
12: M ← M ∪ Mc

13: remove vertices and edges incident to Mc from G

14: end for
15: end for

12.2.3.3 Matching

In the last phase of the algorithm, each arborescence that is colored by three col-
ors from the second phase is processed in turn for the three colors c1, c2, and c3.
The matching M1 is formed by choosing an outgoing edge for every node that has
color c1. All the edges incident to the nodes of M1 are deleted from G as they can
not be included in MM. Similarly, M2 and then M3 are formed for nodes with colors
c2 and c3. The maximal matching is finally formed as M = M1 ∪M2 ∪M3 as shown
in Algorithm 12.4 executed at node i.

A possible execution of PR_MM is shown in Fig. 12.4 for the generic network of
eight nodes numbered 1, . . . ,8. The proposals made by the nodes are shown in (a);
(b), (c), (d), and (e) show the forests F1, F2, F3, F4 that are constructed in the first
phase and three colored in the second phase. The final maximal matching obtained
in the third phase is shown in (e) with the edges labeled from the forests they are
taken from.

Theorem 12.2 Algorithm 12.4 computes a maximal matching in O(log∗ n + Δ)

rounds.

Proof Computing a 3-coloring of the forest concurrently takes O(log∗ n) rounds
in the first phase as shown in [14]. Providing the MM takes further O(Δ) steps
resulting in a total of O(log∗ n + Δ) rounds. �

12.2.4 Matching from Edge Coloring

A recent algorithm proposed by Hirvonen et al. [7] finds maximal matching of a k-
edge colored graph G in O(Δ) rounds, where edges are colored with at most k
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Fig. 12.4 PR_MM algorithm example

colors, and a vertex cannot have two edges of the same color incident to it. The idea
of the algorithm is to include in matching the edges that are colored with the smallest
color c1 and delete all the edges incident to the end points of edges that are matched
from G as the first step. It then proceeds similarly for other colors c2, c3, . . . , ck in
sequence up to k colors.

Algorithm 12.5 (Ecol_MM) shows a possible way to obtain a maximal matching
from the k-edge colored graph. In each synchronous round starting from round 1,
any edge that has a color equal to the number of the round is included in the match-
ing, and any edges that are incident to the vertices of the matched edge are removed
from the graph. A node that has been matched sends the match message to the neigh-
bor node incident to the other end of the edge colored same as the round number
and neigh_match to all other neighbors. Any active node that does not have an inci-
dent edge with the same color of the round number sends the unmatch message to
its active neighbors. The colors of incident edges to node i with the neighbor nodes
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Algorithm 12.5 Ecol_MM
1: int i, j � i is this node, j is the sender of a message
2: set of int edge_cols ← colors of incident edges and neighbor nodes; curr_neighs ←

Γ (i); received, lost_neighs ←∅

3: message types round, match, unmatch, neigh_match
4: boolean matched, round_over, round_recvd ← false
5: for col = 1 to k do
6: {round col for all nodes}
7: while ¬round_over do
8: receive msg(j)

9: case msg(j).type of
10: round(col): if ¬matched then
11: if (∃〈j, c〉 ∈ edge_cols|c = col) then
12: matched ← true
13: send match to j

14: send neigh_match to curr_neighs \ {j}
15: else send unmatch to curr_neighs
16: round_recvd ← true
17: match(col): received ← received ∪ {j}
18: neigh_match(col): received ← received ∪ {j}
19: lost_neighs ← lost_neighs ∪ {j}
20: unmatch(col): received ← received ∪ {j}
21:
22: if round_recvd ∧ (received = curr_neighs) then
23: curr_neighs ← curr_neighs \ lost_neighs; received ←∅

24: round_recvd ← false; round_over ← true;
25: end if
26: end while
27: end for

incident to the other end of the edges are stored as tuples 〈j, c〉 in the set edge_cols
initially such that edge {i, j} incident to nodes i and j has color c.

Figure 12.5 displays the execution of Ecol_MM over a sample graph which is 6-
colored. Starting from the smallest color 1, edge {1,6} is included in the matching
as it was colored with 1, and all the adjacent edges are deleted from the graph.
The procedure is repeated for increasing number of colors, where an edge in the
subgraph is included, and all its neighbor edges are deleted from graph as these
may not be included in the matching. The execution is terminated when a maximal
matching with color 4 is reached with edge {8,4}. The final matching has edges
{8,4}, {7,5}, {2,3}, and {6,1} as shown in (d).

12.2.4.1 Analysis

Theorem 12.3 Algorithm Ecol_MM finds a maximal matching of a graph in O(k)

time using O(km) messages.
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Fig. 12.5 ECol_MM execution example

Proof Matching is maximal since the algorithm continues until every node is
matched or until all its neighbors are matched. The time complexity of Ecol_MM
is O(k) as there will be at most k rounds executed. Each edge will be traversed at
most once by the match, neigh_match, or unmatch messages in each round. The
total number of messages will then be O(km). �

12.3 Weighted Matching

Weighted matching should consider the weights attached to the edges of the graph.
In this section, we describe a sequential greedy weighted matching algorithm and a
distributed weighted matching protocol.

12.3.1 The Greedy Sequential Algorithm

The greedy algorithm Seq_MWM works similar to the sequential matching algo-
rithm, but it selects the heaviest edge e from the graph instead of a random choice
and deletes e and all edges incident on the end vertices of e from the graph.
This algorithm has the time complexity O(m logn) [1] with approximation ratio 2.
Preis [15] later provided a version of this algorithm that searches for the heaviest
edge locally rather than globally and showed that this version has the O(m) time
complexity with approximation ratio 2.

Figure 12.6(a) shows an example operation of Seq_MWM algorithm in a sample
network of six nodes where edges {e, d} and {a, b} are selected in sequence, in the
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Fig. 12.6 Seq_MWM execution example

order of decreasing weights, and the total weight of MWM is 22. In (b), MaxWM is
shown where the total weight is 26. As can be seen, Greedy_MWM achieves 21/26
approximation for this example.

12.3.2 Hoepman’s Algorithm

Hoepman [8] provided a distributed version of the Preis Algorithm with 1/2 ap-
proximation to MaxWM. In this algorithm, edge e is included in the MWM if nodes
at the ends of e decide that e is the heaviest edge among all their active neighbors.
Each node initially has a set S equal to all its neighbors. Node u determines the
heaviest edge euv connected to it and sends a request (req) message to the neighbor
v at the other end of euv . If v has e as the locally heaviest edge connected to it, it
replies with a request message, and e is added to the MWM. If v has added a differ-
ent edge to the matching, it drops all its remaining edges from the graph by sending
the drop message to neighbors, as they will not be included in the MWM.

In Algorithm 12.6 (Hoepman_MWM), S is the set of neighbors that are incident
to the nondropped edges, and the identifiers of the nodes that requests have been
received are kept in the set R. When a drop message is received from a neighbor,
node u sends a new request to another neighbor in S.

Figure 12.7 shows an example operation of Algorithm 12.6 in a sample network
of six nodes where messages are tagged with the time frame they occur. With initial
nodes b and c, nodes e and d send the req messages to each other as edges {b, c}
and {e, d} are the heaviest edges for them respectively, and these edges are included
in the MWM as shown in (a). The requests of nodes a and f are not granted for
edges {a, b} and {f, e} as these edges are not the heaviest edges for the nodes on the
other end of them. Since edges {b, c} and {e, d} are in MWM, nodes b, c, d , and e

send the drop messages over the remaining edges as shown in (b). Having received
the drop messages, nodes a and b now send the req messages to each other over
edge {a,f }, which is the heaviest edge in their current active neighbor set S, which
is granted and included in the MWM.

Theorem 12.4 Hoepman_MWM computes 1/2 approximation to MaxWM using
O(m) messages.
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Algorithm 12.6 Hoepman_MWM
1: set of int R,S

2: message types req, drop
3: R ←∅

4: S ← Γ (i)

5: c ← candidate(i, S)

6: If c =⊥ then send req to c

7: while S �=∅ do
8: receive msg(j)

9: case msg(j).type of
10: req: R ← R ∪ {j}
11: drop: S ← S \ {j}
12: if j = c then c ← candidate(i, S)

13: if c �=⊥ then send req to c

14: if c �=⊥ ∧c ∈ R then
15: for all ∈ N \ {c} do
16: send drop to w

17: end for
18: S ←∅

19: end if
20: end while

Fig. 12.7 Hoepman_MWM execution example

Proof The operation of the Hoepman_MWM is similar to Preis_MWM, and there-
fore the approximation ratio is the same. The message complexity is O(m) as each
node sends at most one message over its incident edges. A detailed proof of correct-
ness is given in [8]. �

12.4 Self-Stabilizing Matching

We describe three self-stabilizing algorithms for maximal matching in arbitrary
graphs in this section. The first algorithm is anonymous and has a central daemon
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Algorithm 12.7 Hsu_MM
1: R1:
2: if (i →∅) ∧ (∃j ∈ N(i))(j → i) then
3: set (i → j)

4: end if
5: R2:
6: if (i → null) ∧ (∃k ∈ N(i)(¬k → i)) ∧ (∃j ∈ N(i))(j → null) then
7: set (i → j)

8: end if
9: R3:

10: if (i → j) ∧ (j → (k) ∧ k �= i) then
11: set (i → null)
12: end if

where the second algorithm uses identifiers of the nodes and has a distributed dae-
mon. The last algorithm is the first linear time self-stabilizing algorithm to find
MWM in arbitrary networks.

12.4.1 Hsu and Huang Algorithm

Hsu and Huang provided the first self-stabilizing algorithm (Hsu_MM) to find MM
for an anonymous network under a central daemon [9]. In Hsu_MM, each node has
a pointer that either points to nothing (null) or points to one of its neighbors shown
as i → j . There are three rules of the algorithm as shown in Algorithm 12.7. The
first rule R1 states that if node i is idle and has neighbor j that is pointing to it, it
sets its pointer to point to j . The second rule R2 is enabled if node i is idle and none
of its neighbors are pointing to it and there exists a neighbor node j that is idle, in
which case node i sets its pointer to point to j . The last rule states that if a neighbor
node j pointed by the node i is pointing to another node k, i sets its pointer to null.

It was shown in [9] that Hsu_MM stabilizes in O(n3) time, however, Tel [16]
showed that this algorithm stabilizes in O(n2) time, and lastly Goddard et al. [6]
showed that it actually stabilizes in at most 2m + n moves.

12.4.2 Synchronous Matching

Goddard et al. [6] provided a synchronous version of the Hsu_MM using a dis-
tributed daemon for ad hoc networks and also used identifiers of the nodes. In
Goddard_MM, each node i has a pointer that either is not pointing to any node,
shown by i ↓, or i → j if it is pointing to node j . An edge between nodes i and j is
in matching ({i, j} ∈ MM) if (i → j ∧ j → i), in which case i ↔ j . The algorithm
evaluates three rules, and if one of them is valid, the node becomes enabled as shown
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Algorithm 12.8 Goddard_MM
1: R1:
2: if (i ↓) ∧ (∃j ∈ N(i) : j → i) then
3: set (i → j) � accept proposal
4: end if
5: R2:
6: if (i ↓) ∧ (∀k ∈ N(i) : k � i) ∧ (∃j ∈ N(i) : j ↓) then
7: set (i → min{j ∈ N(i) : j ↓}) � make proposal
8: end if
9: R3:

10: if (i → j) ∧ (j → k where k �= i) then
11: set i ↓ � back off
12: end if

in Algorithm 12.8. In Rule R1, node i that is not pointing to a neighbor may choose
one of the nodes pointing to it by accepting the proposal made by it. In Rule R2, an
idle node i that is not pointing to any neighbor and has at least one neighbor that
has a null pointer makes a proposal by pointing to it if no other neighbor is pointing
to it. In case of more than one idle neighbor, it chooses the neighbor with the lowest
identifier. In Rule R3, when node i that is pointing to a neighbor j finds that j is
pointing to another node k �= i, it changes its pointer to null and becomes idle. This
situation is called as backing off.

12.4.2.1 Analysis

Theorem 12.5 When Goddard_MM stabilizes, the output matching is maximal.

Proof Let us assume that the matching produced is not maximal. Every node is
either matched or idle as R3 is not enabled since there are no privileged nodes. There
will be two idle nodes that are neighbors as the matching is not maximal. However,
these two nodes will be privileged to execute as R2 will be enabled for both, a
contradiction. It is shown in [4] that this algorithm stabilizes in n + 1 rounds. �

12.4.3 Weighted Matching

Manne et al. [13] proposed the first self-stabilizing algorithm (Manne_MWM) that
finds the MWM in arbitrary networks. Every node has a pointer mi to point to the
node it will be matched and hi that shows the weight of the matched edge. Initially,
mi is set to null, and hi is set to 0. Two neighbors i and j are matched when
mi = j and mj = i. The set S ⊂ Γ (i) : k ∈ S if and only if k ∈ Γ (i) ∧ w(k, i) ≥
hk . As such, S includes all neighbors that can be matched with i with a higher
or equal weight edge than its currently matched edge. The algorithm consists of a
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Algorithm 12.9 Manne_MWM
1:
2: procedure BestMatch(j)

3: return max{j ∈ S|w(i, j)}
4:
5: SetMatch
6: if mi �= BestMatch(i) ∨ hi �= w(i,mi) then
7: mi ← BestMatch(i)

8: hi ← w(i,mi)

9: end if

Fig. 12.8 Manne_MWM execution example

function BestMatch that returns the neighbor j ∈ S such that w(i, k) is maximal
in S and a rule SetMatch that updates mi and hi according to the value returned by
BestMatch(i) as shown in Algorithm 12.9.

A possible execution sequence of Manne_MWM is shown in Fig. 12.8, where an
enabled node is shown by a double circle at each step. Nodes c and d are initially
matched. However, c has neighbor b connected with a higher weight edge {c, b}
than the current one, and d has b as the best match similarly, and therefore both are
privileged. The adversarial daemon enables node d , which then points to node b as
its best match as shown in (b), and the daemon enables node c, which finds the best
match as node b and points to node b in (c), and finally node b executes pointing
to d as the best match in (d). It should be noted that node b was enabled initially
and could have executed before. The configuration at (d) is stable since none of the
nodes will be enabled.

It was shown in [13] that Manne_MWM converges in at most 2m+1 rounds with
1/2 approximation under the distributed fair model and O(3n) time steps under the
distributed adversarial model.

12.5 Chapter Notes

Although maximal matching can be achieved in polynomial time, approximation al-
gorithms may be preferred due to their low time and message complexities. We have
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Table 12.1 Matching algorithm comparison

Algorithm Time Comp. Msg. Comp.

Unweighted Matching Rank_MM O(n) O(nm)

Ecol_MM O(k) O(km)

PancRizzi_MM O(log∗ n + Δ)

Weighted Matching Hoepman_MWM O(m) O(nm)

Self-Stab. Matching Hsu_MM O(2m + n) moves

Goddard_MM O(n) rounds

Manne_MWM O(2m + 1) rounds

Fig. 12.9 Example graphs for Exercise 1

seen several distributed algorithms to find maximal matching in graphs. Table 12.1
summarizes the algorithms analyzed in this chapter.

Edmonds [3] provided the first polynomial-time sequential algorithm for the
maximum weight matching problem. In distributed settings, distributed match-
ing algorithms still remain an active research area. Israeli and Itai [10] presented
the first randomized distributed algorithm to compute maximal matching with ex-
pected running time O(logn). Czygrinow et al. [2] presented a deterministic al-
gorithm that computes a 2/3 approximation to MaxM in O(log4 n) time. Kuhn et
al. [11] showed that any randomized or deterministic distributed algorithm requires
(Ω

√
(p logn)/(log logn) expected time to compute a 1-approximate maximum car-

dinality matching. Recently, Lotker et al. [12] gave an algorithm with (1 − ε)-
approximation in O(logn) time for any constant ε ≥ 0 for unweighted graphs.

For weighted graphs, Uehera et al. [17] provided a constant time distributed al-
gorithm that finds an MWM of an arbitrary graph with O(Δ) approximation. Wat-
tenhofer et al. [18] also presented a randomized distributed algorithm with a ratio
of 5 to compute an MWM.

12.5.1 Exercises

1. Find examples of MM in (a), MaxM in (b), and MaxWM in (c) of Fig. 12.9.
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Fig. 12.10 Example graph
for Exercise 2

Fig. 12.11 Example graph
for Exercise 3

Fig. 12.12 Example graph
for Exercise 4

2. Modify Rank_MM algorithm so that the lowest degree node in a neighborhood
decides on the neighbor node to match in each round. Show also the operation of
this algorithm in the sample graph of Fig. 12.10.

3. Show the step-by-step execution of the Ecol_MM algorithm in the 7-colored
sample graph of Fig. 12.11, where each edge is labeled by its color.

4. Provide a pseudocode for the greedy distributed weighted matching where a node
with the highest identifier in a neighborhood selects the heaviest edge incident to
it and proposes to the neighbor incident to the other end of this edge. Work out
the time and message complexities of this algorithm. Show also the execution of
this algorithm in the sample graph of Fig. 12.12.
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Chapter 13
Vertex Cover

Abstract A vertex cover of a graph is a subset of its vertices such that at least one
endpoint of every edge is incident to a vertex in this set. Vertex cover has many
important applications such as facility location and monitoring link failures and
placement of routers or agents in a computer network so that every node can be
attached to a router or an agent. In this chapter, we will describe sequential and
basic distributed algorithms for vertex covering.

13.1 Introduction

The size or cardinality of a vertex cover is the number of vertices included in the
cover. A vertex cover of a graph can be defined formally as follows.

Definition 13.1 (Vertex cover) Given a graph G(V,E), a vertex cover VC ∈ V is
the set of vertices such that for any edge {u,v} ∈ E, either u ∈ VC or v ∈ VC. In
other words, each edge of G has at least one end point in VC.

A vertex cover is equivalent to an independent set such that given a graph
G(V,E), I ∈ V is an independent set if and only if V − I is a vertex cover. For
any {u,v} /∈ E, either u /∈ I or v /∈ I , therefore, u ∈ I or v ∈ I , which means that
V − I covers {u,v}. To prove the other case, for any two vertices u ∈ I and v ∈ I ,
{u,v} /∈ E as V − I is a vertex cover. Therefore, any two nodes of I are not con-
nected by an edge, meaning that I is an independent set.

For any matching M and any vertex cover VC of G, |M| ≤ |VC| as each edge
can only cover one edge of M. In a bipartite graph G, the requirement for a vertex
cover is the same: it should cover all edges of G. In such a graph, the maximum
cardinality of a matching is equal to the minimum cardinality of a vertex cover [1].

Definition 13.2 (Minimum vertex cover) A minimum vertex cover (MinVC) of a
graph G is the set of vertices of G that is a vertex cover that has the minimum
cardinality among all possible vertex covers.

Definition 13.3 (Minimal vertex cover) The minimal vertex cover (MVC) is a ver-
tex cover such that removal of a vertex from MVC results in a vertex cover that is
not minimal.

K. Erciyes, Distributed Graph Algorithms for Computer Networks,
Computer Communications and Networks, DOI 10.1007/978-1-4471-5173-9_13,
© Springer-Verlag London 2013
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Fig. 13.1 Minimal vertex cover examples

Fig. 13.2 Minimal weighted vertex cover

Definition 13.4 (Minimum weighted vertex cover, minimum connected ver-
tex cover) A minimum weighted vertex cover (MinWVC) of a weighted graph
G(V,E,w), where E : w → R, is a set of vertices that is a vertex cover giving
a minimum weight among all possible vertex covers. The minimum connected ver-
tex cover (MinCVC) is a minimum vertex cover where the graph induced by this
cover in G is connected.

Definition 13.5 (Minimal weighted vertex cover, minimal connected weighted ver-
tex cover) A minimal weighted vertex cover (MWVC) of a graph G is a set V ′ of its
vertices that is a weighted vertex cover where removal of a vertex from V ′ results in
a weighted vertex cover that is not minimal. The minimal connected weighted ver-
tex cover (MCWVC) is a minimal weighted vertex cover where the graph induced
by this cover in G is connected.

Figure 13.1 displays vertex cover examples where (a) is an MCVC of size 5, (b)
is an MCVC of size 4, and (c) is a MinCVC of size 3. A MinVC and a MinWVC
are depicted in Fig. 13.2, where weights of vertices are shown next to them. In (a),
nodes d and a suffice to cover all edges, and the cover is minimum. The MWVC in
(b) includes vertices e, a, b, c and has a total weight of 15, which is lower than the
vertex cover of (a). The MCWVC for this graph is a and b.

Finding MinVC is an NP-hard problem, and there are many sequential approx-
imation algorithms that find MVC, MWVC, and MCVC. Examples include using
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Algorithm 13.1 Seq1_MVC
1: Input G(V,E)

2: S ← E, MVC ←∅

3: while S �=∅ do
4: pick any {u,v} ∈ S

5: MVC ← MVC ∪ {u,v}
6: delete all edges incident to either u or v from S

7: end while

depth-first search [9] and semi-definite relaxation [3]. In a distributed setting, how-
ever, algorithms that find vertex covers are scarce. Finding a maximal matching and
then including the matched vertices in the cover are, as we will see, a common
method pursued by some researchers. In this chapter, we first show two simple se-
quential algorithms to find MVC with polynomial execution time. We then describe
distributed algorithms to find unweighted, weighted, and connected vertex covers.
We conclude by two recent self-stabilizing algorithms to find vertex covers.

13.2 Unweighted Vertex Cover

Unweighted vertex cover algorithms assume that the weights of the vertices are the
same, so that they are not considered in the design of these algorithms.

13.2.1 Sequential Algorithms

In this section, we will describe matching-based and degree-based sequential algo-
rithms, which will form the basis of further distributed algorithms for vertex cover.

13.2.1.1 A 2-Approximation Sequential Algorithm

The matching-based sequential algorithm (Seq1_MVC) to find the MVC randomly
selects an unassigned edge from the graph and includes the end points of this edge in
MVC and deletes all edges incident to these end points from the edge set as shown
in Algorithm 13.1. Removing an edge from the graph is continued until there are
no edges left, which means that all edges are covered by the included end point
vertices, and therefore the included vertices constitute a vertex cover.

The execution of this algorithm in a graph of six vertices is shown in Fig. 13.3.
The first edge randomly selected is {3,4}, and edges {2,4}, {2,3}, and {1,4} incident
to vertices 3 and 4 are deleted from the graph resulting in the graph of (b). The next
edge selected is {1,5}, which results in the inclusion of vertices 1 and 5 in the cover
and covering of all edges. The final vertices of the minimal cover are 1, 5, 4, and 3
as shown in (d), and the size of this vertex cover is 4.
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Fig. 13.3 Random vertex cover example

13.2.1.2 Analysis

Theorem 13.1 Algorithm 13.1 provides a vertex cover in O(m) time, and the size
of MVC is 2 |MinVC|.

Proof Since the algorithm continues until there are no more edges left, every edge
is covered, and therefore the output from Seq1_MVC is an MVC, taking O(m) time.
The set of edges picked by this algorithm is a matching as edges chosen are disjoint,
and it is maximal as addition of another edge is not possible. Since two vertices are
covered for each matched edge, the approximation ratio for this algorithm is 2. �

A simple procedure to find an MVC would then consist of finding a maximal
matching of the graph G in the first step and including in the maximal vertex cover
all the end vertices of the edges found in the first step. The size of a maximal match-
ing of G determines the lower bound of the MVC as the vertex cover cannot have a
smaller magnitude than this size; therefore, any minimal vertex cover of G must be
at least as large as the size of a maximal matching of G. The following observation
can then be made; finding a maximal matching of small size will result in a small
size vertex cover when maximal matching is used to find a minimal vertex cover.

Figure 13.4 shows an example network where an MM shown by bold lines
in (a) is converted to an MVC in (b) by including the end points of MM in the
MVC. It can be seen that the matched vertices 7, 2, and 3 are not needed in the
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Fig. 13.4 Vertex cover from matching examples

cover. The size of the maximum matching, |MaxM|, for this graph is 4 with edges
{7,1}, {2,6}, {4,3}, {5,8}, and the minimum vertex cover has a cardinality of 4 with
vertices 1,4,6,5 or 1,6,5,3. If an MM of size 2, which in fact is the lowest size
MM, is selected as in (c), then the MinCVC of (d) is obtained. Selecting {1,6}, {5,3}
for MM would also give a MinCVC of size 4 including nodes 1, 6, 5, 3.

13.2.1.3 Highest-Degree-First Algorithm

The aim of this algorithm is to cover as many edges as possible by greedily choosing
the highest degree vertex. Instead of choosing a random edge, a vertex that has
the highest degree among all the remaining vertices is included in the MVC where
symmetries are broken by the magnitude of the identifiers. Also, the degree of a
vertex is updated after edges incident to it are deleted from previous iteration as
shown in Algorithm 13.2, where the removal of edges continue until there are no
edges left.

The execution of this algorithm is shown in Fig. 13.5. The first selected highest
degree node is 2, followed by 1 in the second step; and then vertices 6 and 4 in the
third and fourth steps, resulting in the vertex cover consisting of vertices 6, 1, 2, and
4 with size 4, which is minimum for this example graph. For different identifiers,
ties would have been broken differently, and MVC obtained would be different.
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Algorithm 13.2 Seq2_MVC
1: Input G(V,E)

2: S ← E, MVC ←∅

3: degs[n] ← degrees of nodes
4: while S �=∅ do
5: u ← max{degs[n]}
6: MVC ← MVC ∪ {u}
7: delete all edges incident to u from S

8: ∀v ∈ Γ (u)

9: degs[v] ← degs[v] − 1
10: end while

Fig. 13.5 Highest degree vertex cover example

13.2.2 Greedy Distributed MVC Algorithm

The greedy distributed algorithm Rank_MVC is similar in operation to the greedy
distributed algorithms we have investigated before. This time, however, we choose
the node with the current highest degree among its neighbors to be included in the
vertex cover as our aim is to cover as many edges as possible. A node that is covered
causes the degrees of its uncovered neighbors to be decremented. Initially, all nodes
inform their degrees to their neighbors by the degree(〈node_id,deg〉) messages, and
the tuples 〈node_id,deg〉 are stored in the set neigh_degs. In each round, every node
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Algorithm 13.3 Rank_MVC
1: set of int uncovd_edges ← Γ (i); neighs_degs, recvd_degs, received, lost_neighs ←∅

2: message types round, degree, decide, undecide
3: int i, j ; currdeg ← |Γ (i)|
4: boolean covered, round_recvd, round_over
5: send degree(di) to Γ (i)

6: while recvd_degs �= Γ (i) do
7: receive degree(d)

8: neigh_degs ← neigh_degs ∪ {〈j, d〉}
9: recvd_degs ← recvd_degs ∪ {j}

10: end while
11: for round = 1 to n do
12: {round k for all nodes}
13: while ¬round_over do
14: receive msg(j)

15: case msg(j).type of
16: round(k): if ¬covered ∧ (uncovd_edges �=∅) then
17: if currdeg > max{d|{〈j, d〉} ∈ neigh_degs} then
18: send decide(k) to curr_neighs
19: covered ← true
20: else send undecide(k, currdeg) to curr_neighs
21: round_rcvd ← true
22: decide(k): received ← received ∪ {j}
23: neigh_degs ← neigh_degs \ {〈j, d〉}
24: currdeg ← currdeg − 1
25: uncovd_edges ← uncovd_edges \ {j}
26: lost_neighs ← lost_neighs ∪ {j}
27: undecide(k,deg): received ← received ∪ {j}
28: neigh_degs(〈j, d〉) ← neigh_degs(〈j,deg〉)
29: if (round_recvd) ∧ (received = curr_neighs) then
30: round_over ← true; curr_neighs ← curr_neighs \ lost_neighs
31: round_recvd ← false; lost_neighs ←∅

32: end if
33: end while
34: end for

that is not covered and has edges incident to it that are not yet covered checks its
neigh_degs set. If it finds that it has the highest degree in this set, it decides to be
in the vertex cover and informs its neighbors by the decide message. Any other
neighbor sends the undecide(deg) message showing its current degree. Any node
that receives a decide message deletes the edge that has received this message from
the uncovd_edges list. It also decrements its current degree as this edge is now
covered. This process continues until each node either is covered or has all their
edges incident to it deleted from their uncovd_edges set as shown in Algorithm 13.3.

Figure 13.6 displays the operation of Algorithm 13.3 in a network of eight nodes.
Initially, all nodes exchange their degree information so that they are aware of the
degrees of their neighbors. Nodes 3 and 7 have the highest degrees, and they include
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Fig. 13.6 Greedy distributed vertex cover example

themselves in the vertex cover and send the decide message to all their neighbors in
the first round as shown in (a). The rest of the nodes send the undecide messages.
The edges incident to these nodes are deleted from the graph, and nodes 5 and 1 are
included in the cover in the second round; node 8 is included in the final round as
shown (c), and the final vertex cover consisting of nodes 5, 3, 1, 7, and 8 is shown
in (d).

13.2.2.1 Analysis

Theorem 13.2 Algorithm 13.3 provides a minimal vertex cover of a graph G in
O(n) rounds using O(nm) messages.

Proof Similar to the sequential highest degree algorithm, this algorithm continues
to remove edges incident to the selected high-degree vertices until there are no more
edges left. Therefore, all edges will be covered by the algorithm, and the selected
vertices will form a minimal vertex cover. As in the case of a linear network with
ordered identifiers, there may only be a single highest degree vertex selected in each
round resulting in O(n) rounds in the worst case. Each edge will be traversed by at
most one decide message in one direction or at most two undecide messages in both
directions, resulting in O(m) messages per round. The total number of messages
used will then be O(nm). �
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Fig. 13.7 Distributed connected vertex cover example

The greedy algorithm has the same approximation ratio as in the serial case of
O(logn). It is slow as its execution time depends on the number of nodes, and for a
large network, this would not be favorable. As was proposed with other distributed
greedy algorithms before, the algorithm may finish execution when there are no
more edges left by the convergecasting of control messages.

13.2.3 Connected Vertex Cover

We will now attempt to have a distributed algorithm to find a minimal connected
vertex cover of a graph where the subgraph induced by the vertex cover is con-
nected. The idea of the algorithm is to first start from the highest degree vertex and
iteratively connect highest degree neighbor vertices around it to have a connected
vertex cover. In each round of the algorithm, every node checks whether it is the
highest degree node in its neighborhood and also whether it has a neighbor node
that is already in the vertex cover. If these two conditions are met, the node includes
itself in the cover.

The algorithm is similar to the Rank_MVC, so we will just show the operation of
this algorithm in an example network of Fig. 13.7, where a graph of eight nodes is
covered starting from the highest degree node 1. The highest degree nodes in their
neighborhood that are connected to 1 are nodes 2 and 8, and they are covered in the
second round as shown in (b). The procedure continues with the covering of node 7
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in the third round and node 5 in the last round, and the final cover consists of nodes
1, 2, 8, 7, and 5 as shown in (d).

This algorithm starts rather sequentially, but as there will be more nodes covered
and so there will be an increase in the number of neighbors adjacent to the con-
nected covered nodes, the probability of parallelism in further rounds will increase.
A problem with this algorithm is that as we should start from a unique node that has
the highest degree, the degree information should be globally available.

As there will be at least one node added to the cover in each round, the number
of rounds is at most n. Similar to the Rank_MVC, the total number of messages in
transit will be O(nm).

13.2.4 Vertex Cover by Bipartite Matching

Hanckowiak et al. [4] proposed a distributed algorithm that works in synchronous
rounds to find a maximal matching of a bipartite graph G. Each node in this al-
gorithm is aware of its partition. Assuming that the partitions consist of black and
white nodes, every black node u that is not matched sends a propose message to
a white node that is free. A white node v receiving multiple propose messages de-
cides on one of these and sends the accept message to the sender u and the reject
messages to all other requests. The edge {u,v} is included in the matching, and the
algorithm continues until black nodes cannot make any more offers, that is, all white
nodes are matched to some black nodes.

Polishchuk and Suomela [8] extended the idea of Hanckowiak et al. to anony-
mous arbitrary graphs where nodes do not have any identifiers by converting such a
graph G to a bipartite graph H and then finding a maximal matching in H . Finally,
all vertices that are matched are included in the cover. The algorithm proposed is
deterministic, constant time and has constant factor approximation ratio achieving
3-approximation in 2Δ + 1 rounds.

In this algorithm, called Bipart_MVC, each node is replaced with two copies, a
black node and a white node. For any existing edge between nodes u and v, the black
copy of u is connected to the white copy of v, and a white copy of u is connected
to the black copy of v as shown in Fig. 13.8. A maximal matching in this bipartite
graph is then computed, and the minimal vertex cover consists of nodes that have
their black or white or both copies included in the maximal matching.

The algorithm uses port numbering where all nodes u ∈ V of G(V,E) assign
labels, called ports, to their adjacent edges from 1, . . . , du arbitrarily. The types of
messages used are the propose message, which is sent by a node that wants to be
matched with a node of opposite color, and the accept message, which is sent by a
node that receives the propose message and decides to be matched with u. Whenever
a node sends a message to a port, the neighbor attached to it can receive it in the next
round. Nodes propose in odd-numbered rounds and check the accept messages in
even-numbered rounds.

Each node has two variables blackpt and whitept to represent its black and white
copies and a variable portnum that stores the last port that was visited. Every node
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Fig. 13.8 Vertex cover using bipartite matching

that has its black copy unmatched sends the propose message to the white copy of
a neighbor in an odd-numbered round in increasing port numbers and waits for the
accept messages in even numbered rounds. Algorithm 13.4 displays a single round
for node i.

As shown in Fig. 13.8, the example network consists of five nodes with identifiers
a, b, c, d , e, f , and g. In Round 1, which is the first odd-numbered round, nodes
send the propose messages from their black copies to white copies of the neighbors.
In Round 2, the accept messages are received resulting in nodes a, b, d , and e being
matched, which is a vertex cover with the same set of vertices. It should be noted
that, based on the arbitrary port numbering, node b could have proposed to node c

first, and we would have a minimum vertex cover of nodes b, c, d , and e in this case.

13.2.4.1 Analysis

Theorem 13.3 Algorithm 13.4 finds a minimal vertex cover of an anonymous arbi-
trary graph in 2Δ + 1 rounds.

Proof In the worst case, assuming that the highest degree vertex receives a reject
message over all of its ports {1, . . . ,Δ} adjacent to it, it will have sent Δ propose
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Algorithm 13.4 Bipart_MVC
1: Input G(V,E)

2: round(k):
3: if k mod 2 = 1 then � odd numbered round
4: if (blackpt =⊥) ∧ (1 ≤ count ≤ deg) then
5: receive message from port count
6: if message.type = accept then
7: blackpt ← count, in_MVC ← true
8: end if
9: end if

10: if (blackpt =⊥) ∧ (count ≤ deg) then
11: count ← count + 1
12: send propose to port count
13: end if
14: else � even numbered round
15: while received �= Γ (i) do
16: receive message from port j

17: received ← received ∪ {j}
18: end while
19: for all j ∈ Γ (i) in increasing order do
20: if message(j).type = propose then
21: if whitept =⊥ then
22: send accept to j

23: whitept ← j , in_MVC ← true
24: else send reject to j

25: end if
26: end if
27: end for
28: end if

messages, and therefore, we would need Δ odd rounds and Δ + 1 even rounds for
a total of 2Δ + 1 rounds. �

Theorem 13.4 Algorithm 13.4 correctly computes a minimal vertex cover.

Proof We will adapt the proof procedure in [8]. Considering an arbitrary edge
{u,v} ∈ E, if blackptu �=⊥, then inMVCu = true. If this is not the case, then u

has sent a propose message, and v has responded by a reject message meaning that
v has already sent an accept message to another neighbor and its whiteptv �=⊥ and
inMVCu = true. In both cases, either u or v is in MVC, and edge {u,v} is covered.
The approximation ratio for this algorithm is 3 as shown in [8]. �

13.3 Minimal Weighted Vertex Cover

In a minimal weighted vertex cover, the vertices of graph G have weights, and the
aim is to find a vertex cover that has a total minimal weight. We will first show a
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Algorithm 13.5 Pricing_MWVC
1: Input G(V,E)

2: S ← E, VC ←∅

3: while S �=∅ do
4: pick any euv ∈ S

5: if cu �= 0 ∨ cv �= 0 then
6: q ← node with min{cu, cv}
7: pe ← cq , q ← tight
8: VC ← VC ∪ {q}
9: S ← S \ {e}

10: end if
11: end while

sequential and then describe a greedy distributed algorithm for a minimal weighted
vertex cover.

13.3.1 Pricing Algorithm

The pricing algorithm (Pricing_MWVC) is a sequential algorithm that finds the
MWVC of a graph. In this algorithm, each edge should pay a price pe ≥ 0 to be
covered by vertex u it is incident, and the prices assigned to edges incident to a
vertex u cannot exceed the weight of a vertex. Formally,

• an edge e ∈ E pays a price pe ≥ 0 to be covered by a vertex that it is incident.
• for all u ∈ V ,

∑
u,v pe ≤ wu.

When the sum of the prices of edges incident to a vertex equals its weight, the
vertex is said to be tight. A possible implementation of this algorithm is shown in
Algorithm 13.5, where each vertex v ∈ V has a capacity ci , which is initialized to
its weight, and the active edge set S is initialized to E. The algorithm inspects each
edge euv ∈ S, and if u or v has a left capacity, it charges e with the lower of the
capacities. When the capacity of u or v becomes 0, it is labeled as a tight node and
included in the MWVC.

Figure 13.9 shows the execution steps of Pricing_MWVC in an example graph.
First, edge {d, e} is picked, which can have pde as 2 since vertex d has weight 2; d

becomes tight and is included in the cover. In (b), the next randomly selected edge is
{a, e}, and the maximum price that can be attributed to this edge is 4, which makes
vertex a tight to be included in the cover. Finally in (c), the only edge that can be
given a price is {b, c}, which gets 3 and makes c tight to be included in the MWVC.
Nodes a, c, and d , which are in MWVC, are shown with double circles.

At least one new node becomes tight after each iteration of the while loop; there-
fore, the running time is O(n). When the algorithm terminates, for each edge {u,v},
either u or v is tight, meaning that the set of tight vertices provides a vertex cover.
Pricing algorithm is a 2-approximation algorithm for MWVC [6].
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Fig. 13.9 Pricing algorithm example

13.3.2 The Greedy Distributed MWVC Algorithm

The greedy distributed weighted vertex cover algorithm works similarly to the un-
weighted greedy algorithm with the exception that the weights of the nodes are
considered instead of their degrees. In each round, the lowest weighted node among
active nodes decides to be in the vertex cover and sends a decide message to all
active neighbors that still have uncovered edges. We will only show the execution
of this algorithm in Fig. 13.10 in a sample network of eight nodes. All nodes are
labeled by their weights, and ties are broken by the identifiers in the case of equal
weights. Initially, all nodes exchange their weight information so that they can store
the weights of their neighbors. Nodes 1 and 4 are the lowest weighted nodes in their
neighborhoods, and they decide to be in the MWVC. When the edges they cover are
deleted from the graph, the subgraph in (b) is obtained. In the second round, nodes 2
and 3 and finally node 5 are included in the cover, and the MWVC consists of nodes
2, 1, 3, 4, and 5 with a total weight of 12, which is the minimum weighted vertex
cover for this graph, which is also connected. The time and message complexities
for this algorithm are the same as those of Rank_MVC algorithm.

13.4 Self-Stabilizing Vertex Cover

As with the general distributed vertex covering of arbitrary graphs, there are not
many self-stabilizing vertex cover algorithms. We will be reviewing an algorithm
that has a less than 2 approximation and an algorithm that forms a bipartite graph of
an anonymous network and then finds a vertex cover by matching.

13.4.1 A 2 − 1/Δ Approximation Algorithm

We have seen that a vertex cover as a result of maximal matching has an approxima-
tion of 2. Kiniwa [5] proposed a self-stabilizing algorithm (Kiniwa_MVC) with an
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Fig. 13.10 The greedy minimal weight vertex cover algorithm example

approximation ratio of 2 − 1/Δ, which is based on a sequential algorithm that con-
siders the degrees of vertices while matching. If the maximal matching is close to
the maximum matching, then the vertex cover tends to be large. On the other hand,
the greedy approach that selects vertices with high degrees for vertex cover has a
ratio of O(logn) and is a favorable heuristic. Kiniwa integrated these two, namely,
maximal matching and highest-degree-first concepts and provided a sequential al-
gorithm to find high-degree-first matching where the vertex with the highest degree
is matched first with a neighbor that has the lowest degree. Unlike in the matching-
based covering, only the higher-degree vertex is included in the vertex cover.

Initially, all vertices are stored in a sorted list nodes from the highest degree
vertex to the lowest one. Then, the top vertex u is selected to match with the lowest
degree neighbor from nodes, u is included in the vertex cover, and both vertices are
deleted from nodes. This process continues until there are no pairs of vertices left in
the list that are neighbors as shown in Algorithm 13.6. A final check is performed
to detect any vertices that have been discarded from the list as lower-degree nodes
and have lower-degree neighbors that are not in MVC, and such vertices are also
included in the MVC.

Figure 13.11 shows the execution of Algorithm 13.7 in a network of eight nodes
numbered 1, . . . ,8. The highest degree vertex 1 is matched with its lowest degree
neighbor vertex 5, and 1 is included in the MVC, but both are deleted from the nodes
list. Vertex 3 has the next highest degree in the list and is matched with vertex 2 in the
second step. In step 3, vertex 7 is matched with 6, and the while loop terminates as
the only vertices that remain in the nodes list are 4 and 8, which are not neighbors.
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Algorithm 13.6 Kiniwa_Seq_MVC
1: Input G(V,E)

2: nodes ← all nodes with sorted degrees, T ← V , MVC ←∅

3: while ∃u,v ∈ nodes: u and v are neighbors do
4: u ← top of nodes
5: v ← {x ∈ V | (x ∈ nodes) ∧ (x ∈ Γ (u)) ∧ (deg(x) is minimum among Γ (u))

6: MVC ← MVC ∪ {u}
7: nodes ← nodes \ {u,v}
8: end while
9: if (∃u /∈ nodes : u /∈ MVC) ∧ (∃v ∈ Γ (u) : v /∈ MVC) ∧ (degv < degu) then

10: MVC ← MVC ∪ {u}
11: end if

Fig. 13.11 The sequential
Kiniwa algorithm example

However, vertex 2 is selected next to be included in MVC according to lines 9–10
of the algorithm to give the final MVC shown by black vertices. Kiniwa [5] showed
that the approximation ratio for this algorithm is 2 − 1/Δ.

The self-stabilizing algorithm is the distributed version of Algorithm 13.6. Each
node has a variable, called color, which is equal to its degree if unmatched and
to the color of the proposer if matched. An unmatched node that has neighbors of
lower color makes a proposal to the one with the least color. Any node that receives
multiple proposals selects the one from the highest color. After node u is matched
with another node v, the unmatched nodes that have proposed to u must give up
which is provided by total order of degrees. The higher-degree node of a matching
is included in the cover as in the sequential algorithm and for any node w that has
not proposed; if all neighbors of w have higher degrees than w and are matched, w

is not included in the cover, otherwise it is included. The following rules are applied
in Algorithm 13.7.

• R1: If node i is not matched with any of its neighbors and if its color is not equal
to its degree, its color is set to its degree. This rule corrects colors of unmatched
nodes.

• R2: If node i is matched with neighbor j and its color is not equal to the higher-
degree value of itself and neighbor j , its color is set to max(di, dj ). This rule
corrects colors of matched nodes.

• R3: If node i receives proposals, it accepts the one with the highest degree and
sets its color to the degree of the proposer.
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Algorithm 13.7 Kiniwa_MVC
1: R1:
2: if (∀j ∈ Γ (i) : i � j) ∧ (coli �= di) then
3: coli ← di

4: end if
5: R2:
6: if (∃j ∈ Γ (i) : i ↔ j) ∧ (coli �= max(di , dj ) then
7: coli ← max(di , dj )

8: end if
9: R3:

10: if ∃jmaxd : (jmaxd → i) ∧ (i � jmaxd) then
11: i → jmaxd
12: coli ← jmaxd
13: in_MVC ← true
14: end if
15: R4:
16: if ∃j ∈ higher : (i → j) ∧ (j � i) then
17: coli ← di

18: i → null; in_MVC ← false
19: end if
20: R5:
21: if ∃jmaxd : (jmaxd � i) ∧ (∃kmind : i � kmind) then
22: i → k

23: in_MVC ← true
24: end if
25: R6:
26: if (∀j ∈ others : (di < dj ) ∧ (in_MVC)) ∨ (∃k ∈ others : (dk < di) ∧ (¬in_MVC)) then
27: in_MVC ← ¬in_MVC
28: end if

• R4: A proposal to a higher colored node is discarded.
• R5: If node i is not pointed by any higher-degree neighbors and has lower colored

neighbors, it proposes to the minimum degree of such neighbors.
• R6: If node i has all of its neighbors pointing to other nodes and i has the min-

imum degree, it is not covered. Otherwise, if it is not of minimum degree, it is
covered.

Algorithm 13.7 shows a possible way of implementing these rules. The sets
lower, higher, and others show neighbors of lower, higher degrees, and neighbors
that point (propose) to other nodes other than node i. The variables jmaxd and kmind

denote the highest degree neighbor j and the lowest degree neighbor k, respectively.
The variable matched shows whether a node is matched with another node to cover
an edge between them, and node i proposing to node j is shown by i → j .

It was shown in [5] that this algorithm approximates MinVC by a factor of (2 −
1/Δ) and stabilizes in |Ms | + 2 rounds, where Ms is the matching obtained.
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13.4.2 Bipartite Matching-Based Algorithm

A 3-approximation self-stabilizing algorithm that works under a distributed sched-
uler to find a vertex cover of an anonymous network was proposed in [10]. This
algorithm (Turau_MVC) is matching based on and follows the idea of [8], where a
bipartite graph H is obtained from the original network graph G by replacing each
node with a black copy and a white copy. The maximal matching of H is found in
the second step, and the nodes that are matched are included in the cover. This time,
however, nodes can start from any arbitrary state. The black copy and a white copy
of a node are shown by black and white pointers assigned to the port number that
their neighbors are attached if there is a match. If these pointers are pointing to the
node itself, they are called free pointers. If a node has both pointers as free, it is
called a free node. A node is enabled by the two rules shown below:

• R1: This rule is used to set a white pointer of a node. If a node’s white pointer is
pointing to a node that is not pointing to it by its black pointer, it frees its white
pointer. On the contrary, if a node has a black pointer of a neighbor pointing to it
and its white pointer is free, it makes its white pointer to point to this neighbor,
which means that there is a match.

• R2: This rule is used to control black pointer of a node. If a node’s black pointer is
free pointing to itself or to a neighbor that has a white pointer pointing to another
node, this black pointer is set to another neighbor that has a free white pointer. If
there is no such neighbor, the black pointer is freed.

The meanings of black_matched and white_matched for node u are as follows:

• black_matchedu ≡ (blackptu � u) ∧ (blackptu → whiteptv = u)

• white_matchedu ≡ (whiteptu � u) ∧ (whiteptu → blackptv = u)

In other words, node u is black_matched if its black pointer is pointing to node v

that has a white pointer pointing to u. Conversely, node u is white_matched if its
white pointer is pointing to node v that has a black pointer pointing to u. R1 has
priority over R2, so that if both are enabled, a node will execute R1. Algorithm 13.8
shows the implementation of these rules, where whitept and blackpt are the white
and black pointers, respectively. The function selwhite attempts to find the neighbor
of node u that has a free white pointer, and selblack searches a neighbor that has a
black pointer pointing to node u.

13.4.2.1 Analysis

Theorem 13.5 Algorithm 13.8 requires O(m + n) moves to stabilize under a dis-
tributed scheduler, and the obtained vertex cover has 3-approximation.

Proof Rule 1 can be enabled at most twice per node: first, if it is not pointing
to itself, it may be freed, and second, if it accepts an offer from a black pointer.
Therefore, there will be a maximum total of 2n white moves. Also a node can
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Algorithm 13.8 Turau_MVC
1: procedure selwhite(u)

2: find x ∈ Γ (u) : whiteptx = x

3: return x

4: end procedure
5: procedure selblack(u)

6: find x ∈ Γ (u) : blackptx = u

7: return x

8: end procedure
9:

10: R1:
11: if (¬white_matched(i) ∧ (whitepti �= i ∨ whitepti �= selblack(i) then
12: if whitepti �= i) then
13: whitepti ← i

14: else
15: whitepti ← selblack(i)
16: end if
17: end if
18: R2:
19: if ¬black_matched(i) ∧ (blackpti = i ∨ blackpti → whiteptj �= blackpti ) ∧ (blackpti �=

selwhite(i)) then
20: blackpti ← selwhite(i)
21: end if

make at most once black move using its black pointer. Therefore, there can be
at most 2d(i) black moves for a node. The total number of moves will then be
2n + 2

∑
i∈V d(i) = 2n + 4m, hence O(m + n) moves. �

This algorithm, which is similar to the Polishchuck algorithm, has the advantage
of reading the pointer variables of neighbor nodes as it is self-stabilizing and hence
can decide whether a neighbor node is pointing to another node.

13.5 Chapter Notes

Finding a minimal vertex cover of a graph remains a fundamental problem in a
distributed setting due to the many applications it has. Algorithms with constant
approximation ratio that are not dependent on the number of nodes are favorable.
We have seen in this chapter that computing a matching first and then convert-
ing this matching to a vertex cover method are pursued by many researchers. In
this respect, distributed maximal matching algorithms such as Hanckowiak et al.
[4], which works for O(log4 n) rounds, or by Panconesi and Rizzi, which requires
O(Δ + log∗ n) rounds [7], or self-stabilizing matching algorithms due to Hsu et al.
and Goddard et al., which we have seen in Chap. 11, can be used as the first step.

The algorithms that find MVC directly are scarce, and this area may be a poten-
tial research topic for researchers. The Connected Vertex Cover Problem was first
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Fig. 13.12 Example graph
for Exercise 2

Fig. 13.13 Example graph
for Exercise 3

Fig. 13.14 Example graph
for Exercise 4

defined in 1977 by Garey and Johnson [2], who showed it to be NP-hard even when
restricted to planar graphs with maximum degree 4. The first constant ratio algo-
rithm for MVC was given by Carla Savage [9], showing that the internal nodes of
any depth-first search tree provide a 2-approximation for vertex cover. These nodes
induce a connected subgraph, and since the size of MCVC is greater than or equal
to MVC, the approximation ratio is 2.

13.5.1 Exercises

1. Find MVC by showing the step-by-step execution of Seq2_MVC in the graph of
Fig. 13.4.

2. Provide the FSM-based version of Rank_MCVC algorithm described in
Sect. 13.2.3, which finds the MCVC by greedily selecting the remaining highest
degree nodes. Provide its FSM diagram, a pseudocode and work out the time and
message complexities. Show also step-by-step execution of this algorithm in the
example graph of Fig. 13.12.

3. Show the execution of MWVC algorithm in the sample graph of Fig. 13.13,
where weights are shown as labels of vertices.
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4. Provide the pseudocode of a greedy distributed minimal weighted connected ver-
tex cover based algorithm using the algorithm described in Sect. 13.3.2. Work out
its time and message complexities. Also, show the operation of this algorithm
step-by-step in the example graph of Fig. 13.14 where each vertex is labeled by
its weight.

5. Provide the DFS tree of the graph of Fig. 13.14 starting from the vertex with the
heaviest weight. Show that all nonleaf nodes of this tree constitute a vertex cover.
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Chapter 14
Introduction

Abstract Ad hoc wireless networks communicate over wireless links without a
fixed communication structure. As they can be deployed easily and quickly, these
networks have many applications such as tactical operations, monitoring, military
networks, and rescue operations. In this chapter, we investigate the basic principles,
design issues, and modeling and simulation of important types of ad hoc wireless
networks.

14.1 Ad Hoc Wireless Networks

The computing nodes of a wireless network are equipped with wireless commu-
nication and networking facilities. Wireless networks can either be constructed as
infrastructured or ad hoc. In infrastructured networks, a stationary wired backbone,
which consist of routers, access points, and servers, is used to provide communi-
cation between the nodes of the network as shown in Fig. 14.1, where five mobile
hosts (MHs) access the backbone that consists of three routers and a server. In such
a network, mobile or stationary nodes do not communicate directly. In case of a
disaster, the backbone may not function causing total loss of communication among
the hosts, as experienced in some disasters. Cellular networks are one type of infras-
tructured wireless networks.

On the contrary, an ad hoc wireless network does not have any fixed structure,
and each node participates in communication by forwarding messages as shown in
Fig. 14.2. An ad hoc wireless network may consist of heterogeneous nodes with dif-
ferent capabilities or homogeneous nodes that have same wireless communication
facilities. Two types of wireless ad hoc networks that are in common use are the
mobile ad hoc networks and the wireless sensor networks, which we will investigate
in the following sections.

14.2 Mobile Ad Hoc Networks

A mobile ad hoc network (MANET) consists of autonomous mobile nodes that can
move freely and randomly and communicate without any communication infras-
tructure. Examples of MANETs include emergency (search and rescue) operations,
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Fig. 14.1 An infrastructured
network

Fig. 14.2 An ad hoc wireless
network

disaster relief operations, inter-vehicle networks, and military networks. Each node
of a MANET is autonomous and acts both as a host and a router to transfer mes-
sages. If two nodes of a MANET are within radio transmission ranges of each other,
they can communicate directly. Otherwise, they can use multi-hop communication,
where intermediate nodes are used to transfer a message between the two nodes.
As there is no infrastructure and central control, the management of the network is
achieved by the individual nodes. The following are considered as the main chal-
lenges in a MANET:

• Routing: Multi-hop routing is usually the only choice in a MANET. Also, as the
topology is dynamic, routing tables need to be updated frequently. Figure 14.3(a)
displays an example where nodes u and v moving close to each other form a
communication link when they detect each other by beacon messages. In (b), a
third node w comes to the vicinity of node u. At this point, node u broadcasts its
new neighbor w that is received by node v. As node v has not detected node w,
it determines that it cannot reach node w directly but can do this via node u, so
it updates its routing table. In (c), however, the situation changes as the nodes
are moving, and now node u can reach node v via node w, and the route tables
are again updated. Routes in a mobile network may be updated periodically, so
that there is always a route between any sender–receiver pair, in which case the
routing algorithms are called proactive. In reactive routing protocols, routes are
only formed when needed. Both methods have advantages and disadvantages as
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Fig. 14.3 A MANET example

described in Chap. 16. Routing via a dynamic backbone using a connected dom-
inating set is a widely used method and will be discussed in Chap. 15.

• Topology Control: Topology control is difficult in a MANET where connections
change rapidly in an unpredictable manner. Constructing a graph with sparser
communication links is a common method for topology control that we will in-
vestigate in Chap. 15. Clustering of nodes provides an efficient method to manage
resources and also routing in a MANET and is also described in Chap. 15.

• Channel Access: The wireless channels that the nodes communicate are subject
to noise, fading, and interference conditions due to multiple access. When two
or more nodes are within the transmission ranges of each other, their simultane-
ous transmissions may interfere, causing collisions of packets. A hidden terminal
cannot sense a transmitting neighbor or correctly receive a reservation packet
from its receiver and therefore may start transmission that may collide with an
ongoing one. In fact, the hidden terminal problem is the main source of colli-
sions in MANETs. Medium access control protocols should provide mechanisms
to reduce collisions. Using separate channels for control and data packets and
sometimes separate channels for different nodes is a common method to reduce
collisions. Synchronization-based methods provide dedicated time slots for nodes
to prevent collisions.

• Quality of Service (QoS): Provision of QoS in terms of bounded delay and mini-
mum bandwidth especially for multimedia applications is difficult in a MANET
due to the mobility of the nodes and channel access problems outlined.

• Security: The shared wireless medium is open to legitimate users and malicious
attackers. Lack of secure routers under a central controller means that attackers
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Fig. 14.4 Architecture of a
sensor node

can disable a MANET if there are no security mechanisms available. An effective
way of achieving security is using the public key encryption.

14.3 Wireless Sensor Networks

A wireless sensor network (WSN) consists of a number of sensor nodes spread over
a geographic area. Each sensor has wireless communication and signal processing
capabilities. Multi-hop communication is usually the only choice in a WSN, and
a central node with more advanced communication capabilities called the sink or
fusion center gathers all the data from the sensors, possibly performs further pro-
cessing of this data, and transfers it to another computer for advanced data process-
ing. Figure 14.4 shows the architecture of a sensor node that has a controlling unit,
which is usually a microcontroller, a sensing unit which senses a physical event and
provides the data representing the signal to the controller, and the communication
interface which transmits and receives data in the form of radio signals.

In a sensor network, many-to-one communication is performed, where data from
simple sensors with short-range communication capabilities are transferred to the
sink or fusion center for further processing as shown in Fig. 14.5, where nodes
send their sensed data to the nearest sensor neighbor toward the sink over a span-
ning tree rooted at the sink. A sensor node that receives data from neighbors needs
to eliminate redundant data before sending it to another neighbor, which is called
data aggregation. For example, only the average temperature value received from a
number of sensors in a particular region may be transmitted toward the root by an
intermediate node to reduce the number of messages and therefore save energy.

WSN designers and implementors are faced with the following challenges.

• Scalability: A sensor network may consist of hundreds or thousands of nodes.
Protocols such as for routing and algorithms for these networks should be scal-
able.

• Fault Tolerance: Failure of a single node should not affect the overall operation
of a sensor network, and connectivity of the network should be maintained using
new links if required.

• Node Deployment: Nodes can be deployed randomly or regularly with the aim of
providing maximum coverage of the area to be monitored by the sensors. Also,
the deployment should provide a connected graph of the network.
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Fig. 14.5 A wireless sensor
network

• Power Management: Nodes of a sensor network rely on batteries with limited life-
time, and replacing these batteries may be difficult or impossible in many appli-
cations where sensors are deployed in harsh conditions. Transmission and recep-
tion of messages consume much more energy than local computations, therefore,
protocols and algorithms should be designed to work with minimum number of
messages. An efficient method to conserve energy is to put some of the sensors
into sleep mode when there are not many activities to be sensed. An important
requirement in these methods would then be to provide full coverage of the area
by the awake sensors.

14.4 Ad Hoc Wireless Network Models

Modeling and simulation are frequently used to evaluate the performance of wireless
systems. A model is a simplified representation of a system that aids the understand-
ing and investigation of the real system. In this section, we review basic communi-
cation models that consider the inherently broadcast communication property of the
wireless networks as in [4].

14.4.1 Unit Disk Graph Model

A common model for ad hoc wireless networks that considers the broadcast trans-
mission of the nodes is the Unit Disk Graph Model defined as follows.

Definition 14.1 (Unit disk graph) A Unit Disk Graph (UDG) is a graph where each
node u ∈ V of the graph is identified by a radius of magnitude 1 and edge e ∈ E

exists between the two vertices u and v if and only if the Euclidian distance between
them is ≤1.
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Fig. 14.6 A network constructed using Unit Disk Graph Model

In other words, two nodes u and v in the network are neighbors if the Euclidean
distance between them is at most unity, which is the normalized transmission radius
that is the same for every node [3]. Figure 14.6 displays a network constructed using
the UDG model, where transmission range of nodes are shown by circles with the
nodes at the centers.

The UDG model has two major drawbacks. First, it assumes nodes with identical
transmission capabilities, which may not be valid either due to heterogenous nodes
or because transmission of the nodes may be disturbed by obstacles. Second, it does
not consider node weights, which are very useful to specify other parameters such as
the mobility and residual energy of nodes. However, the UDG model is still widely
used for modeling ad hoc wireless networks due to its simplicity. There are few
variations of UDG for topology control, which we will investigate in Chap. 15.

14.4.2 Quasi Unit Disk Graph Model

A Quasi Unit Disk Graph (QUDG) is an extended UDG model for ad hoc networks
where each node is identified by two disks. The inner disk has a radius r , and the
outer disk has a radius 1 as in the UDG. The edges between a node u and its neighbor
v at a distance d is determined as follows:

• An edge between node u and v exists if duv ≤ r .
• There may be an edge between nodes u and v if r < duv ≤ 1.
• There are no edges between node u and v if duv > 1.

Figure 14.7 shows the edges of node u with neighbors v,w, s. The edge {u,v}
is a solid edge, edge {u,w} is a possible edge, and there is no direct communica-
tion possibility between nodes u and s. The effect of obstacles and heterogenous
transmission capabilities in a network can be handled by adjusting the parameter r ,
however, the node weight problem remains.
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Fig. 14.7 A network
constructed using Quasi Unit
Disk Graph Model

14.4.3 Interference Models

Interference in an ad hoc wireless network is caused by the simultaneous transmis-
sion of nodes that are within transmission ranges of each other. Once interference
occurs, the interfered message has to be retransmitted. Topology control algorithms
usually provide a sparser graph with an average low degree, reducing the number
of neighbors that a node has, hence reducing interference. Rather than this indirect
approach, recent approaches attempt to solve the interference problem explicitly [6].

Topology control algorithms to prevent interference explicitly may be broadly
classified as sender centric and receiver centric. In sender centric algorithms, the
number of nodes affected by the communication link is explored. These algorithms
generate a subgraph by eliminating the edges that have high coverage. The resulting
subgraph must be connected and have spanner properties. The coverage of an undi-
rected edge (u, v) is the number of nodes covered by disks of both u and v in the
UDG that are the nodes affected when u and v are communicating. One approach
is to label the edges of the graph with the total number of nodes covered by both of
its end points and to include in the final subgraph the edges in increasing order until
all nodes are covered as in LIFE [9].

In receiver centric algorithms, however, the aim is to find the number of nodes
that are affected other than the receiving node. The interference of node v is the
number of nodes other than v that are affected by message reception at v. In this
sense, the interference of node v is the number of disks that include v in the UDG.
Receiver centric algorithms attempt to find the interferences for each node in con-
trast to the computation of the coverage of links in sender centric algorithms and use
this parameter to obtain a connected sparser subgraph as in the Nearest Component
Connector (NCC) method described in [9].

A message transmitted to node v will be received if the signal strength is suf-
ficiently high. However, the message can be corrupted because of the interference
even if the signal strength is high enough. For the message to be received correctly,
the signal strength should be stronger than the ambient noise and other interfer-
ing signals. The Signal-to-Interference-and-Noise Ratio (SINR) inequality is given
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by [10]:

s(u, v)

N + ∑
w∈H s(w,v)

≥ γ, (14.1)

where s(u, v) is the strength of the signal for the message sent between nodes u

and v; N ≥ 0 is the noise induced by the environment and the circuits of node v; H

is the set of nodes that transmit in parallel to u, and γ is a constant related to hard-
ware and software characteristics of the receiving node v. SINR-based approaches
to prevent interference try to find low-interference topologies based on SINR.

14.5 Energy Considerations

Energy consumption of a node is important especially for sensor networks where
changing of batteries may not be possible. In a sensor network, energy is spent by
sending messages and listening to the medium, the latter being dominant in general.
Therefore, we need power saving techniques that will disable nodes for a while in
order to conserve energy.

Energy management can be achieved by assigning states to the nodes of a sensor
network as transmit, receive, idle, and sleep modes. A node is at transmit state
while transmitting a packet and receive state while receiving a packet. When a node
is neither transmitting or receiving data, it is at idle state. A node consumes power
at idle state as it has to listen to the medium so that it can enter receive state if it
detects a transmission. In sleep state, a node cannot transmit or receive any data,
therefore, it has to be awaken by an internal event such as an interrupt to be able to
switch to idle state to detect any transmissions. The sleep state requires the lowest
energy. The choice of nodes that will sleep may be performed according to some
schedule with the aim of maintaining connectivity of the network graph at all times.
Such schedules may be activated by topology control algorithms at network layer or
by performing time division multiplexing at MAC layer where each node is given a
time slice to be active.

Node u that communicates with a neighbor transmits a signal with power Pt , and
this signal is received at the receiving node v with power Pr , which is smaller than
Pt since the signal gets weaker as the Euclidean distance duv between the two nodes
gets larger. Pr is given by

Pr(d) = a · Pt

dx
, (14.2)

where a is a constant related to physical transmission characteristics such as an-
tenna and wavelength, x depends on the medium and is usually between 2 and 4.
The transmitting node u can adjust its transmitting power for the message to be re-
ceived with adequate power at the receiving node v. The energy consumption of a
distributed algorithm can then be computed by assigning energy levels to the edges
in the network graph and summing all these communication costs over all the trans-
ferred messages.
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14.6 Mobility Models

Mobility models simulate the movements of nodes in mobile and sensor networks
and are mainly used to evaluate the performance of the protocols designed in the
simulators. In the entity models, each node is assumed to move independently, and
in the group mobility models, nodes are clustered around groups, and the motion
of the groups is modeled. The most common entity models are Random Waypoint,
Random Direction, and Gauss–Markov mobility models [1, 4].

• Random Waypoint Model: The two important parameters of this model are the
velocity and pause time of each node. Every node moves independently at con-
stant velocity toward a randomly designated destination. When a node arrives at
the destination, it waits for a designated time, and if the pause time is zero, the
node has a continuous mobility. A small velocity and a long pause time provide
a stable and slowly changing topology, whereas the contrary means a dynamic
topology.

• Random Direction Model: In Random Direction Model, the direction rather than
the destination is randomly chosen. A node travels in the selected direction until
it reaches a boundary, waits there for a designated time, and then chooses another
direction.

• Gauss–Markov Model: In this model, the velocity of a mobile node is determined
using Gauss–Markov stochastic processes where the velocity at time slot t de-
pends on the velocity in the previous slot, at time t −1. Different mobility models
are provided by tuning the parameters and changing the randomness of Gauss–
Markov processes.

14.7 Simulation

Simulation is the manipulation of the model of a system enabling to observe the
behavior of the system in a setting similar to real life. As the number of nodes of
a MANET and a WSN is increased, experimentation and evaluation of a distributed
algorithm or a protocol for these networks become extremely difficult. For this rea-
son, simulators that provide the virtual platform for the distributed application are
widely used. In this section, we will briefly review some simulators that are widely
used for ad hoc wireless networks.

14.7.1 ns2

ns2 (Network Simulator 2, version 2.34) [2] is a discrete event simulator that pro-
vides simulation of TCP, routing, and multicast protocols over wired and wireless
networks. It is one of the most widely used simulators for MANETs and WSNs. In
order to simulate a program using ns2, the user first writes the code in C++, and the
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type of simulation is specified in OTcL script. As the final step, the protocol is exe-
cuted, and outputs in the form of trace files or direct protocol outputs are collected
to be analyzed.

Routing of messages is handled by five alternative ad hoc routing protocols: Des-
tination Sequence Distance Vector (DSDV), Dynamic Source Routing (DSR), Tem-
porally Ordered Routing Algorithm (TORA), Ad hoc On-demand Distance Vector
(AODV), and Protocol for Unified Multicasting Through Announcements (PUMA).
We will be investigating some of these protocols in Chap. 16.

14.7.2 TOSSIM

TinyOS is a sensor network operating system that runs on sensor nodes, called
motes, and TOSSIM is a discrete event simulator for TinyOS [5]. The TinyOS
has a component-based programming model and uses a language called nesC
with a C-like syntax. A TinyOS program consists of computational entities, called
components, that communicate with other components using commands and events.
A task is the basic execution unit in TinyOS.

The TOSSIM architecture consists of compilation support for simulation, a dis-
crete event queue, a small number of hardware abstraction components, mechanisms
for extensible radio and Analog-to-Digital Converter (ADC) models, and communi-
cation services [5]. TOSSIM models hardware interrupts by an event queue and em-
ulates hardware components such as ADC, clock, and EEPROM. TOSSIM provides
two built-in radio models: simple radio model, which simulates error-free transmis-
sion, and lossy radio model, which simulates packet loss in a probabilistic manner.

14.7.3 Other Simulators

OMNeT++ is a modular object-oriented discrete event network simulator that can
perform simulations of traffic modeling of telecommunication networks, protocol
modeling, and modeling of MANETs [7]. An OMNeT++ model consists of hier-
archically nested modules written in C++ and communicating by messages. The
modules are managed with a high-level script language called NED.

GloMoSim is a scalable parallel discrete-event simulator for wired and wireless
networks. GloMoSim has a layered architecture, and the protocols are performed by
Parsec, which is a C-based simulation language [11].

Sinalgo is a network simulator for testing and validating network protocols and
algorithms. It can provide quick prototyping of the network algorithms for over 10 K
nodes, and it also has 2D and 3D support, asynchronous and synchronous simula-
tion, and UDG and QUDG models. Sinalgo provides visualization of the network
graph [8].
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14.8 Chapter Notes

We have described mobile ad hoc and sensor networks and listed important prob-
lems encountered in the design and realization of these networks. In terms of in-
teracting with the external world, MANETs provide services to the users, whereas
WSNs, in general, interact with the environment and send their sensed data to the
sink/fusion center for further processing. Mobility management is of primary con-
cern in a MANET, whereas designing power efficient communication strategies is
imperative in WSNs. Designing efficient routing algorithms is important in both
networks with somehow different goals. In a MANET, primary goal is to manage
mobility either by frequent route table updates or discovery of the routes only when
needed. In a sensor network, however, a query from the sink may initiate data trans-
fer, and the location of the nodes may be considered to deliver messages to the sink
efficiently.

Simulators provide realistic evaluation and verification of algorithms and proto-
cols designed for ad hoc wireless networks. Other than the described simulators, we
will provide a detailed discussion of a POSIX thread-based simulator called ASSIST
that we have designed and implemented in Chap. 18.

In the remaining chapters of this part, we restrict our investigation in these net-
works to efficient distributed graph algorithms to solve problems related to topology
control, namely, constructing local graphs, backbone construction and clustering,
and also routing in MANETs and WSNs.

14.8.1 Exercises

1. Discuss briefly the main differences between a MANET and a WSN in terms of
structure and energy constraints.

2. Compare sender centric and receiver centric interference models by stating their
advantages and disadvantages.

3. Give an example of data aggregation in a WSN and provide a pseudocode of an
algorithm that will perform this operation.

4. Compare the UDG and QUDG models. Comment on the choice of the inner
radius value for the QUDG.
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Chapter 15
Topology Control

Abstract Topology control in ad hoc wireless networks aims to provide a sparser
graph by preventing the use some of the existing communication links so that some
of the neighbors of a node are excluded from its neighbor list deliberately, which
would result in a simpler network graph. A hierarchical network structure is an ef-
fective way to organize a network comprising a large number of nodes. An efficient
method of providing hierarchy and therefore scalability in ad hoc wireless networks
is to group nodes of the network into clusters. Building such a hierarchy has many
advantages including routing and load balancing. An efficient way of constructing
a backbone and clusters is graph domination. In this chapter, we examine methods
to construct sparse graphs, called local graphs, clustering, and the use of connected
dominating sets for topology control.

15.1 Introduction

A sensor network may be densely deployed to provide redundancy for fault toler-
ance. Similarly, a mobile network may dynamically have a group of nodes located
densely in a region. In such ad hoc networks, a node has many neighbors resulting in
unwanted interference with them. Also, multi-hop and less energy consuming paths
may be preferred instead of a direct and a more power consuming route to a des-
tination. Under such conditions, a sparser and connected subgraph of the network
graph may be used for communication. Topology control in wireless ad hoc net-
works restricts the allowed communication paths by obtaining a sparser subgraph of
the network with less communication links and sometimes with less communicat-
ing nodes. Formally, given the network graph G(V,E), a topology control method
obtains G′(V ′,E′) such that V ′ ⊂ V and E′ ⊂ E.

Topology control may be achieved in various ways. One possible approach is to
have only a subset of nodes active at any given time to conserve energy. In this case,
a chosen subset of the neighbors of a node are considered as connected neighbors,
and the rest are discarded. In another class of methods, only a subset of links are used
for communication. The communicating neighbors may be chosen by adjusting the
transmission power of a node.

Backbone construction is an effective method for topology control that provides
a significant reduction in the number of messages communicated in an ad hoc wire-
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Fig. 15.1 Backbone example

less network. When a backbone is constructed, a message from a source is first
routed to the nearest neighbor backbone node, then along the backbone to the back-
bone node closest to the destination, and finally to the destination as shown in
Fig. 15.1. The sender of the message is node u that simply sends the message to
node x, which is its backbone neighbor. Any node on the backbone examines the
destination in the message, and if this destination is not one of its neighbors, it floods
the message to other backbone nodes other than the sender. Finally, node z finds that
the destination node v in the message header is its neighbor, so it passes the message
to v. In this so-called backbone-based routing, the number of update messages for
routing is also significantly reduced. A clear requirement is that the backbone nodes
should be connected and that every node should be in the backbone or a neighbor to
a backbone node.

Backbones in ad hoc wireless networks can be constructed by clustering algo-
rithms that partition the network into a number of clusters, each with a clusterhead
(CH), and the backbone then consists of these CHs and nodes that connect them.
Alternatively, a connected dominating set (CDS) of the network can be constructed,
where every node is at most one hop away from a node in the CDS. This way, each
node in the CDS is a member of the backbone. Constructing a CDS also allows an
indirect method for clustering such that each node in CDS is a CH of the nodes it
dominates. We will first review locally defined graphs and then investigate direct
clustering algorithms and construction of backbones using connected dominating
sets for WSNs and MANETs in this chapter.

15.2 Desirable Properties

Assuming that the topology control algorithm provides a graph G′(V ,E′) ∈
G(V,E), the following are desirable in G′.

15.2.1 Connectivity

A basic and important requirement from any topology control algorithm is that G′
should be connected, that is, there should be a path between any vertex pair u,v

in G′. Some algorithms provide k-vertex-connectivity or k-edge-connectivity, which
means that at least k vertices or edges must be removed from G′ to disconnect it.
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15.2.2 Low Stretch Factors

For a weighted graph G(V,E,w), the distance between two vertices u and v is
defined as the sum of the weights of the shortest path between them. The graph
G′(V ,E′) is called a k-spanner of G if every vertex pair u and v of G′ is at most k

times more distant than their distances in G. Formally, G′ is a k-spanner of G if for
all u,v ∈ V , d ′

G(u, v) ≤ kdG(u, v). A stretch factor is the largest ratio of a quantity
measured in a subgraph to the same quantity measured in the original graph. If
weights are assigned to reflect the distances of links, the stretch factor is called the
distance stretch factor. Formally,

distance stretch factor = max
u,v∈V

d ′
G(u, v)

dG(u, v)
, (15.1)

where d ′
G(u, v) and dG(u, v) are the distances between the nodes u and v in G′

and G, respectively. If the weight assigned to a link {u,v} represents the minimum
power required to communicate over this link, then the stretch factor is called the
power stretch factor, which is specified as follows:

power stretch factor = max
u,v∈V

E′
G(u, v)

EG(u, v)
, (15.2)

where E′
G(u, v) and EG(u, v) are the minimum powers required for communication

between the nodes u and v in G′ and G, respectively. The hop stretch factor is the
largest ratio of the minimum numbers of hops in G′ and G between any two vertices
in V as follows:

hop stretch factor = max
u,v∈V

H ′
G(u, v)

HG(u, v)
, (15.3)

where H ′
G(u, v) and HG(u, v) are the hop distances between the nodes u and v

in G′ and G, respectively. Having large stretch factors means that communication
between nodes in G′ has become more difficult than in G. For this reason, a general
desirable property from any topology control algorithm is that the stretch factors
should be as low as possible.

15.2.3 Bounded Node Degree

Most of the topology control algorithms attempt to provide a sparser graph. How-
ever, the sparser graph G′ may still have high-degree vertices. A high-degree vertex
in G′ means that it has many neighbors resulting in dense communication around
it and also interference problems with its neighbors. Another requirement from a
topology control algorithm therefore is that the degree of the vertices should be
bounded by a constant k such that there are no vertices of degrees higher than k.
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Low interference between neighbors is also required to prevent collisions be-
tween the communicating neighbors. A planar graph has its edges intersecting only
in the vertices, and planarity is therefore another requirement from a topology al-
gorithm as it results in lower interference than an arbitrary graph with intersecting
edges. We will look into ways of achieving sparser networks by eliminating some
of the links from the network by disabling communication to some of the neighbors
of the nodes in the next sections.

15.3 Locally Defined Graphs

In most of the distributed algorithms for topology control, nodes use their one- or
two-hop neighbors connectivity to construct sparser graphs. In the following sec-
tions, we describe the main geometric structures for topology control and algorithms
to obtain these structures based on the local neighbor information. Three proce-
dures that are common to most of the algorithms that will be investigated are shown
in Algorithm 15.1. The first procedure find_neighs1 sends a probe message to all
neighbors of node u to find their distances assuming that the MAC layer does not
provide this information. The probe message is time stamped with t1, and when all
the replies are received, the time stamps t2 from the receivers can be used to find the
physical distances assuming that each node responds to a probe message by a time-
stamped reply message and nodes are time synchronized. This procedure may be
activated periodically or when needed to estimate the distances of the nodes. A set
of tuples in the form 〈node_id,node_distance〉 is kept in dist data structure, and any
responding neighbor to the probe message is included in this structure. The second
procedure find_neighs2 finds neighbors of neighbors by forming lists of neighbors
(all_dists), which are sets of tuples 〈j,dists〉, where dists is the list of all neighbors
of node j . It is assumed that each node j receiving a request message responds by
the info(j,dists) message that includes its list of neighbors.

15.3.1 Nearest-Neighbor Graphs

In the Nearest-Neighbor Graph (NNG), each vertex is connected to its nearest ver-
tex. Assuming that ties are broken by unique identifiers, vertex u has a single closest
vertex to it, however, u can be the closest vertex to another vertex. Since being near-
est is not symmetric, the NNG produces a directed graph as shown in Fig. 15.2.
NNG in general is not connected due to its sparsity, and for this reason, it is not
used for topology control. It produces planar graphs that are not spanners.

Each vertex u is connected to its k nearest neighbors in the k-Nearest-Neighbor
Graph (k-NNG). A topology that is better connected than NNG can be obtained if
only bidirectional edges that have end vertices as the k-closest neighbors of each
other are included in k-NNG. For randomly nodes in a square and a constant λ, the
resulting graph is connected with high probability if k ≤ λ(logn).
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Algorithm 15.1 Procedures for finding and allocating neighbors
1: set of tuples dists, all_dists ← ∅

2: int dist
3: message types probe, reply, info, request
4:
5: procedure find_neighs1(dists)
6: broadcast probe(i, t1) � probe neighbors
7: while ¬timeout do
8: receive reply(j, t2)

9: distj ← vel/(t2 − t1) � calculate distance of j

10: dists ← dists ∪ (j,distj ) � include j and its distance in dists
11: end while
12: end procedure
13:
14: procedure find_neighs2(all_dists)
15: broadcast request � probe neighbors
16: while ¬timeout do
17: receive info(j,distsj )

18: all_dists ← all_dists ∪ (j,distsj )

19: end while
20: end procedure
21:

Fig. 15.2 Nearest neighbor
graph example

A possible and unsymmetric implementation of the k_NNG algorithm that
finds k_NNG neighbors is shown in Algorithm 15.2, which first calls procedure
find_neighs1 to find the neighbors of node u from which the closest k nodes are de-
termined. The algorithm then proceeds by broadcasting the notify message, which
informs the chosen k nodes that they are neighbors. This second step is necessary as
node v ∈ Γ (u) may not have u as the closest neighbor as closeness is not symmetric,
and hence will not be aware that it is a neighbor to u unless notified.
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Algorithm 15.2 k_NNG_Const
1: set of int all_neighs, k_neighs
2: find_neighs1(all_neighs)
3: sort all_neighs in ascending order
4: k_neighs ← the first k neighbor nodes of all_neighs
5: broadcast notify(k_neighs)

Fig. 15.3 Gabriel graphs: (a) the empty circle between two nodes; (b) an example network

The total number of messages in k_NNG_Const algorithm is 2n as each node
broadcasts exactly two messages: first, to find neighbors by the probe message and,
second, to notify them by the myneighs message.

15.3.2 Gabriel Graphs

In the Gabriel Graph (GG), there exists an edge between vertices u and v if there are
no vertices in the disk that has its diameter as the edge between u and v. Formally,
there is an edge between u and v if there is no w ∈ V such that

d(u,w)2 + d(v,w)2 ≤ d(u, v)2. (15.4)

Since this relation is symmetric, GG provides a bidirectional and a connected graph
as shown in Fig. 15.3.

The algorithm GG_Const checks this condition to include a node in the GG as
shown in Algorithm 15.3. It first finds the neighbors of vertex u by calling procedure
find_neighs1 to find its immediate neighbors and then calls find_neighs2 to find the
two-hop neighbors. Using this information, the intersection set between vertices u

and v can be found. The algorithm then tests the distance equation for each element

www.it-ebooks.info

http://www.it-ebooks.info/


15.3 Locally Defined Graphs 235

Algorithm 15.3 GG_Const
1: set of int neighs ←∅

2: set of tuples dists, all_dists ← ∅

3: find_neighs1(dists) � determine one-hop neighbors
4: find_neighs2(all_dists) � determine two-hop neighbors
5: find distances between each pair of nodes
6: for all v ∈ Γ (u) do � Check GG condition
7: for all w ∈ (Γ (u) ∩ Γ (v)) do
8: if d(u,w)2 + d(v,w)2 ≤ d(u, v)2 then
9: neighs ← neighs ∪ {v} � if satisfied, include node in neighbors

10: end if
11: end for
12: end for

in each intersection set. If this equation is satisfied, the neighbor v is included in the
neighbor set, and any neighbor that satisfies this test is included in the neighbor list.

Total number of messages in GG_Const algorithm is 2n as each node broadcasts
exactly two messages: first, to find one-hop neighbors by the probe message and,
second, to find two-hop neighbors by the request message.

15.3.3 Relative Neighborhood Graphs

In the Relative Neighborhood Graph (RNG), two vertices u and v are connected if
there are no other vertices that are closer to both u and v than the distance between
u and v. In other words, there is no node w that exists in the intersection of the two
disks centered at u and v as shown in Fig. 15.4. Formally, en edge {u,v} in RNG
implies

d(u, v) ≤ max
(
d(u,w), d(v,w)

) ∀w ∈ (
Γ (u) ∩ Γ (v)

)
. (15.5)

RNG condition is symmetric, therefore the resulting graph is bidirectional and
connected as shown in Fig. 15.4. A possible algorithm to form an RNG would work
similar to Algorithm 15.3 with the only difference being the test condition to be
included as a neighbor.

15.3.4 Delaunay Triangulation

A Voronoi Diagram for a set of points in the plane provides a number of cells where
the borders of the cells are equidistant between the points in the adjacent cells. Each
Voronoi Cell containing the hosting point pi contains all the points in the plane that
are closer to pi than any other point in the plane. An example of Voronoi diagram
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Fig. 15.4 Relative neighborhood graph example

Fig. 15.5 A Voronoi diagram
for nine points

is shown in Fig. 15.5. Formally, given a set P = {p1,p2, . . . , pn} of n points in a
plane, a point q is included in the cell corresponding to pi ∈ P if and only if

d(q,pi) < d(q,pj ) ∀pi ∈ P, j �= i. (15.6)

The Voronoi diagrams have many applications in astronomy, computer science,
and bioinformatics. In Delaunay Triangulation (DT), two vertices are connected
if there is a circle passing through these vertices. DT provides a dual graph of a
Voronoi diagram such that a DT graph has a vertex for every Voronoi cell and has
an edge between the two vertices if the corresponding cells share an edge. A Gabriel
Graph has an edge {u,v} between two vertices u and v if there is an any empty disk
between these two vertices. Based on this condition, GG ⊆ DT as GG is a special
case of DT. Assuming that there may be maximum three points on a circle, all faces
of a DT graph are triangles as shown in Fig. 15.6, which is the DT of Fig. 15.6.
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Fig. 15.6 A Delaunay
Triangulation of the graph in
Fig. 15.5

Fig. 15.7 A Yao Graph
example with k = 8

15.3.5 Yao Graphs

The Yao Graph (YGk) divides the plane into k cone-shaped regions with k ≥ 6 orig-
inating from the source node u. The closest node v, if any, to node u is chosen from
each region and a directed link from u to v is formed as shown in Fig. 15.7. In case
of a tie, the node with the lowest identifier is chosen. As with the NNG, the Yao
Graph YGk is directed as being closest in a cone of a node is not symmetric. A simi-
lar structure, called the O Graph, uses the shortest projection to the x-axis instead of
the Euclidian distance [24]. The YGk has a distance stretch factor 1/(1−2 sin(π/k))

and a power stretch factor 1/(1 − 2 sin(π/k)β) [19]. The maximum vertex degree
Δ of YGk is n − 1.

15.3.5.1 Symmetric Yao Graph

Li et al. [20] proposed Symmetric Yao Graphs YGSk where an edge is included in
YGSk if and only if both edges {u,v} and {v,u} exist in the Yao Graph YGk . In this
case, the maximum node degree is k [6]. They also showed that the graph YGSk(V )

is strongly connected if UDG(V ) is connected and k ≥ 6. The experiment by Li et
al. also showed that YGSk(V ) has a small power stretch factor in practice.
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Algorithm 15.4 CBTC
1: set of int neighs, dirsu ←∅

2: set of tuples dists ←∅

3: int powu ← powmin
4: while powu ≤ powmax ∧ ∃α-cone in dirsu do
5: powu ← powu + step
6: find1_neighs(dists)
7: v ← min{dists}
8: neighs ← neighs ∪ {v}
9: dirs ← dirs ∪ {dirv}

10: dists ←∅

11: end while
12: broadcast notify(neighs)

15.3.6 Cone-Based Topology Control

In cone-based topology control, each node searches its neighbors in the region de-
fined by a cone with a base angle α, and it forms a link with the first neighbor it finds
in this region. This process continues until the area around a node is fully covered.
Node i that starts the search by sending broadcast probe messages in a cone area
defined by angle α. The transmission power is increased until the first neighbor j

acknowledges the probe message and v is marked as a neighbor.
After a neighbor is marked in each cone, some of these neighbors are eliminated

as follows. If some neighbor v discovered initially can be reached less costly via an-
other neighbor p, v is discarded from the neighbor list. It was shown in [29] that for
α = 2π/3, the graph obtained is connected. The α value of 5π/6 was later shown
to be sufficient for connectivity [19]. Algorithm 15.4 describes the operation of the
basic step of the CBTC where node i incrementally increases its power and waits
for acknowledgements from neighbors for a period of time. Whenever an acknowl-
edgement is received from node j , its distance distj based on signal strength or
timestamp value is calculated and stored in the dists structure as a tuple 〈j,distj 〉.
When node i reaches the timeout, it finds the minimum distance node v in the dists
structure and assigns this node as its neighbor. This process is repeated until all
directions around node i are covered [21].

15.4 Clustering

Given a graph G(V,E), clustering divides the vertex set V into a collection of sub-
sets {V1,V2, . . . , Vk}, where V = ⋃k

i=1 Vi , and each Vi ∈ V induces a connected
subgraph Gi ∈ G that may overlap. An elected node in each cluster as the CH or the
leader of the cluster is responsible for cluster management functions and provid-
ing hierarchical routing. CHs may be rotated among the members of the cluster to
provide load balancing and fault tolerance. A gateway node is a node that connects
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two clusters. The three types of nodes in a clustered network therefore are the CHs,
gateway nodes, and the ordinary nodes.

Clustering is NP-hard in general, and for this reason, various heuristics may be
used to form clusters. Clustering algorithms determine the CH using some static
property of the graph such as the identities or degrees of the nodes or a combination
of these parameters to assign these special nodes and build a cluster around them.
The main advantages to be gained by clustering an ad hoc wireless network are as
follows:

1. A virtual backbone consisting of CHs and the gateway nodes provides an efficient
method of routing in ad hoc networks as it forms a simple topology to maintain.
This method of hierarchical routing results in smaller routing tables, which are
stored by the CHs and the gateway nodes only, and hence efficiency of routing is
improved.

2. Messages needed to update routing tables are reduced.
3. Usage of clustering also provides efficient MAC protocols by improving the

throughput, scalability, and power consumption.

The two phases of clustering are the cluster formation and the cluster mainte-
nance. Once clusters are formed, the cluster structure should be preserved as long
as possible. In a MANET, reelection of a CH may often be necessary as the nodes
frequently change their positions.

15.4.1 Clustering in Sensor Networks

Sensor networks consist of a large number of stationary nodes, usually deployed in
hostile environments. Since changing batteries is in general very difficult in these
environments, clustering algorithms in sensor networks should consider energy ef-
ficiency as one of the most important criteria.

A method to provide energy efficiency is to minimize total distances to the CH.
The energy e to transfer a message between two nodes that are d distance apart is
given by [15]

kdc (2 < c < 4), (15.7)

where k and c are constants dependent on the wireless system. Ghiasi et al. [15]
proposed an algorithm to minimize the sum of the squares of distances from all
nodes in the cluster to CH. Another method is first clustering the nodes based on
their distances, and then the assignment of the lowest power levels needed for intra-
cluster communication to ordinary nodes and CHs and lowest power for inter-cluster
communication to gateway nodes as in [25]. Kawadia et al. proposed to have clusters
with different level of transmission powers [17], where each node may belong to
more than one cluster of different power levels, and routing may be determined
using the least power paths.
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CHs consume more energy than ordinary nodes due to their relay position in
the network. The power consumption of a CH may be improved by rotating the
clusterhead function among the nodes of the cluster and providing balanced clusters
such that the number of nodes in each cluster is similar. Liu and Lin [23] provided
a scheme to elect the node with the highest residual energy in the cluster as CH
periodically.

15.4.2 Clustering in MANETs

The cluster maintenance process is more important in a MANET as topology is
dynamic. Selection of optimum number of CHs is NP-hard, and for this reason,
node identifier, node degree, node mobility, and its battery power are frequently
used for the selection of CHs heuristically, as noted before. In a MANET, a CH or
an ordinary node of its cluster may move to a position so that they are out of range
from each other. In such a case, a new CH should be searched by the ordinary nodes.
Low-maintenance algorithms are usually preferred in MANETs as maintenance is
frequently needed due to the random and frequent movement of the nodes.

A clique in graph G(V,E) consists of a subset V ′ of V , where for all v ∈ V ′,
there exists an edge between v and all other vertices in V ′. Krishna et al. [18] pro-
posed a clustering method for a MANET where maximal cliques are used as clus-
ters. There are no CHs in this algorithm, and gateway nodes are used to transfer
messages similarly to Internet Border Gateway Protocol (BGP) routing [28].

15.4.3 Performance Metrics

We need to define few parameters to understand the goodness of the clustering.

Definition 15.1 (Cover) A cover of a graph G(V,E) is a collection of clusters
C1,C2, . . . ,Ck such that

⋃k
i=1 Ci = V .

Definition 15.2 (Partition) A partition of a graph G(V,E) is a collection of disjoint
clusters C1,C2, . . . ,Ck that form a cover of G.

Definition 15.3 (Size of a cluster) The size S(C) of a cluster C is the number of
nodes in C.

Definition 15.4 (k-Cluster) A k-cluster is defined by a subset of nodes that are
mutually reachable by a path of length at most k for some fixed k. A k-cluster with
k = 1 is a clique.

Definition 15.5 (k-Hop cluster) A k-hop cluster is a set of nodes within at most
k-hop distance from their CH.
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Fig. 15.8 (a) A 3-cluster
without a CH; (b) A 2-hop
cluster with a CH

The difference between the last two definitions is whether the distance is con-
sidered between any pair of members in a cluster, or the CH and each member.
By adjusting the parameter k, the number of clusters and CHs could be controlled.
Figure 15.8 displays these concepts.

The quality of any clustering can be described by the clustering coefficients de-
fined as follows:

Definition 15.6 (Node clustering coefficient) Given a simple, connected, and undi-
rected graph G(V,E) and a node v ∈ V that has a neighbor set N(v), assume that
nv = |N(v)| and mv is the number of edges in the subgraph induced by N(v) in G.
The clustering coefficient cc(v) for a node is the ratio of mv to the maximum edges
that v can have, that is,

cc(v) = 2mv

nv(nv − 1)
. (15.8)

Definition 15.7 (Graph clustering coefficient) The graph clustering coefficient
CC(G) of the graph G(V,E) is the average value of the node clustering coefficients
as follows:

CC(G) = 1

|V |
∑

v∈V

cc(v). (15.9)

Two important aspects of a cluster are its locality and sparsity levels [27]. Local-
ity level of a cluster can be determined by its radius and diameter, whereas average
degree provides information about its sparsity.

15.4.4 Lowest-ID Algorithm

In the lowest identifier algorithm (Low1_Clust) due to Gerla and Tsai [14] to cluster
nodes of a wireless ad hoc network, each node periodically broadcasts the nodes
it can hear (detect) including itself in its UDG, after which the following rules are
applied:
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Algorithm 15.5 Low1_Clust
1: set of int neighs, my_cheads ←∅

2: states chead, gateway, ordinary
3: message types update, i_am_chead, ordinary
4: boolean has_chead ← false
5: state ← ordinary
6: loop � Do periodically
7: broadcast update(my_id) � check active neighbors
8: while ¬timeout do
9: receive update(j)

10: neighs ← neighs ∪ {j}
11: end while
12: if my_id = min{neighs} then
13: broadcast i_am_chead
14: state ← chead
15: else broadcast ordinary � needed to check all neighbors
16: end if
17: while received �= neighs do � receive neighbor info
18: receive msg(j)

19: if msg(j).type = i_am_chead then
20: my_cheads ← my_cheads ∪ {j}
21: if has_chead = false then has_chead ← true � CH marked first time
22: else state ← gateway � node is a gateway
23: end if
24: end if
25: received ← received ∪ {j}
26: end while
27: end loop

1. A node decides to be a CH if it does not hear a node with a higher identifier than
itself.

2. The lowest identifier neighbor that a node hears is marked by the node as its CH,
unless that node voluntarily gives up its position as a CH.

3. A node that hears two or more CHs becomes a gateway that joins two clusters.

Algorithm 15.5 shows a possible implementation of Low1_Clust. Each node first
discovers its neighbors by broadcasting an update message. A protocol at MAC
layer could already provide active neighbor identifiers, in which case lines 7–11 of
the algorithm should be omitted; here we assumed a periodically invoked algorithm
that checks active neighbors. When a node finds that it has the lowest identity among
all neighbors, it broadcasts that it is the CH. Any node that finds that it has two
broadcasting neighbors becomes a gateway. Every node is classified as an ordinary,
CH, or a gateway node at the end of the algorithm.

Figure 15.9(a) shows an example network that is divided into three clusters with
nodes as C1 = {1,5,8}, C2 = {2,3,7,9}, and C3 = {4,6,8,9} with CH nodes 1, 2,
and 4, respectively. Nodes 8 and 9 are the gateway nodes between clusters C1 and C3
and between C2 and C3, respectively. The total number of messages communicated
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Fig. 15.9 (a) Lowest1, (b) highest degree algorithms clusterheads are shown in bold; gateway
nodes are shown in stripes

in Algorithm 15.5 is 2n as each node will broadcast one message (update) to its
neighbors and another message (i_am_chead or ordinary) to inform whether it is
a CH or an ordinary node. The Low1_Clust algorithm may result in unstable CH
selection. A low-identifier node entering an already formed cluster may have all of
the structure of the cluster to be reorganized, whereas it could simply have joined
the cluster.

15.4.5 Highest Connectivity Algorithm

Gerla and Tsai [14] further provided an algorithm we will call High_Clust, where
the highest degree node among all neighbors becomes a CH, the neighbors of a
such node are then covered, and the algorithm continues until all nodes are covered.
Node u periodically broadcasts its identifier and the size of its open neighbor set
N(u) and becomes a CH if it is the most highly connected node among its neighbors.
The degrees of nodes change rapidly in a MANET, causing frequent changes of CH
in this algorithm. The following rules govern the operation of High_Clust algorithm:

• A node that has not elected its CH is an uncovered node, otherwise a node with a
CH is a covered node.

• A node is elected as a CH if it has the highest degree and, therefore, the highest
connectivity, among all of its uncovered neighbors. In the case of a tie, the lowest
identity node becomes the CH.

• A node gives up its role as a CH if it elects another node as its CH.

Figure 15.9(b) shows an example network that is divided into three clusters as
C1 = {1,3,6,9}, C2 = {2,4,6,8,11}, and C3 = {1,5,6,7,10} with CH nodes 9, 4,
and 7, respectively.

In both the lowest identity and the highest connectivity algorithms, CHs may not
be directly connected to each other, and each CH is directly connected to every other
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Algorithm 15.6 Low2_Clust
1: set of int neighs ←∅

2: int i, j , state, my_clusid, clust_ids[di ]
3: states chead, gateway, ordinary
4: message types update, found_clust, ordinary
5: state ← ordinary
6: if i = min{neighs} then � if i have min id, declare CH
7: state ← chead
8: my_clusid ← i

9: broadcast found_clust(i,my_clusid)

10: neighs ← neighs \ {i}
11: end if
12: repeat
13: receive found_clust(j, cid)

14: clust_ids[j ] ← cid
15: if (j = cid) ∧ ((my_clusid =⊥) ∨ (my_clusid > cid)) then � if new id is smaller
16: my_clusid ← cid � then set new CH
17: end if
18: neighs ← neighs \ {j}
19: if i = min{neighs} then
20: if my_id =⊥ then
21: my_clusid ← i

22: end if
23: broadcast found_clust(i,my_clusid) � broadcast my CH
24: neighs ← neighs \ {i}
25: end if
26: until neighs =∅

node in its cluster, forming 1-clusters. The intended role of CH is to perform MAC
layer functions such as channel access, power measurements, and maintain time
division frame synchronization. Any existing routing algorithm that is independent
from the clustering can be used with these algorithms. Major drawbacks with this
algorithm is that there may be numerous ties and it may not provide CHs in special
graphs such as triangular graphs.

15.4.6 Lowest-Id Algorithm: Second Version

Lin and Gerla described a modified version of the lowest-ID algorithm (Low2_Clust)
to solve the problems of the above algorithms [22] and partition a network into
nonoverlapping clusters. They assumed that every node knows identifiers of their
neighbor nodes, which may be provided by the physical layer. They further as-
sumed that the network topology does not change during algorithm execution and a
message is correctly received by all of the neighbors of a node in a finite time.

The algorithm starts by a node sending the cluster(id, cid) message to its neigh-
bors that it has decided to create a cluster if it finds that it has the lowest identity
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Fig. 15.10 Lowest_ID2 algorithm example

among its neighbors, as shown in Algorithm 15.6. After this step, each node listens
to their neighbors, and if a node hears a cluster(id, cid) message when its cluster
identifier is not determined, it sets its cluster identifier to the incoming cid param-
eter, which is the identifier of the node that sent the cluster message. It also does
so if cid is smaller than its current cluster identifier. If none of the lowest identifier
neighbor nodes that have sent the broadcast message have not declared themselves
as CHs, a node decides to create a cluster itself by broadcasting a cluster message.
If one or more neighbors of a node have declared to be CHs, it chooses the lowest
identifier of these nodes as its CH and broadcasts this decision.

In summary, after the initial lowest identifier messages, each node chooses a CH
or decides to become a CH and broadcasts this decision. Each node sends exactly
one message during the algorithm resulting in n messages in total.

For dynamic networks where nodes may arbitrarily join or leave the network,
the following are also provided in Low2_Clust. Any incoming node to the network
that can communicate with all nodes in a cluster in two hops is allowed to join that
cluster. In the case of a lost link, the highest degree node becomes the new CH, and
its neighbors are included as the cluster members. The former cluster members are
allowed to join the new cluster or form a cluster of their own, which may result
in single-node clusters necessitating additional procedures for merging or rearrang-
ing clusters [26]. Figure 15.10 shows an example network that is divided into five
disjoint clusters by this algorithm, where the lowest identifier in each cluster is the
CH.

15.4.6.1 Analysis

Since every node can determine its cluster, the neighs set will eventually be empty.
and the algorithm will terminate.

Theorem 15.1 Nodes in a cluster are at most 2-hops away from each other.
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Proof Each node except the CH in a cluster is one hop away from the CH; therefore,
the maximum distance between two nodes in the same cluster is two hops. �

Theorem 15.2 The message complexity of Low2_Clust is O(n), and its time com-
plexity is also O(n).

Proof Each node transmits one message during the algorithm when it decides its
cluster identifier. Therefore, total number of messages are O(n). Each message is
processed by a fixed number of computation steps resulting in O(n) time. �

This algorithm may be used to guarantee the QoS requirements such as the band-
width and delay for multimedia applications in MANETs. The network can be par-
titioned into clusters so that bandwidth sharing by the clusters can be achieved and
virtual circuits with QoS guarantee can be established [22].

Basagni et al. [6] proposed to use weights of nodes instead of the lowest identifier
of Low2_Clust to elect the CHs where the weight of a node depends on its mobility.
Basagni also proposed a generalization of the algorithm in [6] by allowing each CH
to have maximum of k neighboring CHs [7]. Chatterjee et al. [6] also used weights
for nodes that consist of node’s degree, sum of distances to all neighbors, speed of
node, and the cumulative time node serves as a CH.

15.4.7 k-Hop Clustering

The algorithm to find k-hop clusters due to Nocetti et al. [26] (Conid_Clust) gener-
alizes Low2_Clust algorithm to find k-clusters by implementing this algorithm for
k-hops. It is assumed that all nodes are aware of their k-hop neighbors. Substituting
1-hop with k-hops would yield an algorithm as follows. A node that finds that it
has the lowest identity among all its k-hop neighbors broadcasts its intent to cer-
ate a cluster to all of its k-hop neighbors. As in the Low2_Clust algorithm, a node
chooses the lowest identity k-hop neighbor as its CH and broadcasts this decision
to k-hop neighbors. If none of the k-hop neighbors of a node has declared itself as a
CH, it can start to create a cluster of its own.

Each node sends exactly one message about its clustering decision. The
Conid_Clust algorithm considers both the node identity and degree when electing
a CH as the algorithm may produce more clusters than needed. This algorithm may
produce wrong results because of ties. Each node is identified by the pair 〈d, ID〉,
where d is the connectivity of the node. The clusterhead priority of a node is deter-
mined by these parameters, and instead of the lowest identity in the above algorithm,
Conid_Clust uses the highest clusterhead priority to elect clusterheads. The main-
tenance procedures of Conid_Clust are also modified to allow the maintenance of
k-hop clusters.
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Fig. 15.11 Operation of
ST_Clust in a sensor network

15.4.8 Spanning-Tree-Based Clustering

Erciyes et al. [12] provided an asynchronous single initiator spanning-tree-based
clustering algorithm (ST_Clust) for WSNs, which is a modified version of the span-
ning tree construction algorithm (Flood_ST) of Sect. 4.2. They assumed that the
sensor nodes are distributed randomly and the sensor field can be mapped to a two-
dimensional space and all the sensor nodes have identical and fixed transmission
ranges.

The algorithm proposed is described informally as follows. The sink node of the
sensor network periodically starts the algorithm by sending a probe(0) message to
its neighbors. Any node i that receives a parent message for the first time, sets sender
as its parent, sends ack message to its parent and sends a probe(i,n_hops) message
to all of its neighbors. The depth of subtree (ds) is provided as the modification to
the above classical algorithm to form a spanning tree. Every node that is assigned
a parent sets n_hops to (n_hops + 1) MOD ds and appends n_hops to its outgoing
probe message. The recipient of the message with n_hops = 0 are the CHs, and
n_hops ≤ d are intermediate or leaf nodes depending on their level within a subtree.
The algorithm provides CHs as the subroots of the subtrees. Algorithm 15.7 shows
the operation of the algorithm, and Fig. 15.11 displays the clusters constructed in a
sensor network using this algorithm with ds = 2.

Theorem 15.3 The time complexity of ST_Clust is O(d), where d is the diameter
of the network, and its message complexity is O(n).

Proof The time required for the algorithm is the largest distance between any two
nodes which is the diameter d of the network. As the final spanning tree will have n

nodes and n − 1 edges and each edge will have been traversed twice by probe and
ack or reject messages, the total number of messages will be O(n). �
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Algorithm 15.7 ST_Clust
1: int parent ←⊥; my_chead, n_hops
2: set of int childs, others ←∅

3: message types probe, ack, reject
4: states chead, intermed, leaf
5: if i = root then � root initiates tree construction
6: send probe(0) to Γ (i)

7: parent ← i

8: end if
9:

10: while (childs ∪ others) �= (Γ (i)\{parent} do
11: receive msg(j)

12: case msg(j).type of
13: probe(cid,n_hops): if parent =⊥ then � probe received first time
14: parent ← j

15: send ack to j

16: if n_hops = 0 then � i am the clusterhead
17: state ← chead
18: cid ← i

19: else if n_hops = ds then
20: state ← leaf
21: else state ← intermed
22: my_chead ← cid
23: n_hops ← (n_hops + 1) MOD ds
24: send probe(cid,n_hops) to Γ (i) \ {j}
25: else send reject to j � probe received before
26: ack: childs ← childs ∪ {j} � include j in children
27: reject: others ← others ∪ {j} � include j in unrelated
28: end while

Banerjee and Khuller [5] also proposed a protocol based on a spanning tree by
grouping branches of a spanning tree into clusters of an approximate target size.

15.5 Connected Dominating Sets

A convenient way of constructing a backbone is the building of a connected domi-
nating set (CDS) so that for every node u ∈ V of the graph G(V,E), either u ∈ CDS
or is adjacent to a node in the CDS. In general, CDS algorithms for ad hoc networks
can be maximal independent set (MIS) based or non-MIS based. Many algorithms
to construct a CDS are based on MIS, and these algorithms further can be classified
as one- or two-phase algorithms. In one-phase algorithms, the MIS nodes and the
intermediate nodes are determined simultaneously. In two-phase algorithms, an MIS
is first constructed in the first phase, and some optimal nodes are used to connect
the MIS to get a CDS in the second phase. The selection of an intermediate node is
usually based on the identifier of the node, its degree, or its residual energy. In this
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Algorithm 15.8 Seq_CDS
1: Input G(V,E)

2: S ← V , MIS ←∅

3: while S �=∅ do
4: pick an arbitrary vertex u ∈ S

5: S ← S \ {u ∪ Γ (u)}
6: MIS ← MIS ∪ {u}
7: end while
8: CDS ← MIS
9: for all u ∈ CDS do

10: for all v ∈ CDS∧ two hop neighbor of u do
11: find w between u and v with the highest degree
12: CDS ← CDS ∪ {w}
13: end for
14: end for
15: prune any u ∈ CDS that is redundant

section, we will review some representative algorithms for backbone construction,
and we will assume that these algorithms operate in UDG environments.

15.5.1 A Sequential Algorithm using MIS

As the first step, we will describe a sequential algorithm that first finds an MIS and
connects the nodes in this MIS to get a CDS in the second step. The algorithm,
called Seq_CDS, obtains an MIS of G(V,E) by arbitrarily choosing vertex u ∈ V ,
including u in the MIS and deleting u and all of its neighbors from G until there
are no vertices of G left in the first phase as was described in Sect. 10.2; as shown
in Algorithm 15.8. Connecting nodes of the MIS can be performed using various
methods. For example, a node with the highest degree between any two nodes of the
MIS can be used to connect them, and pruning can be performed as the final step to
remove any redundant nodes from the CDS.

Figure 15.12 shows the operation of Seq_CDS in a sample graph of nine nodes
with identifiers 1, . . . ,9. The first phase of the algorithm selects vertices 2, 4, and 9
arbitrarily to form the MIS = {2,4,9} as shown by black nodes, and this phase
concludes by including all the vertices of MIS in the CDS as shown in (a). In the
second phase, intermediate vertices 1 and 6 with highest degrees between neighbor
MIS nodes are used to connect these vertices to obtain the CDS in (b). The example
pruning rule used here is the removal of a node from the CDS if it has a CDS
neighbor with a higher identifier and this neighbor covers all of its neighbors. Node 4
is removed from the CDS in (c) as it satisfies this condition.
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Fig. 15.12 CDS construction from MIS

15.5.2 Greedy Distributed Algorithms

Das et al. [10] provided two algorithms that are the distributed versions of Guha–
Khuller algorithms we have seen in Chap. 11. In the first algorithm, nodes are as-
signed weights as their effective degrees, which are the numbers of their non-CDS
neighbors. Initially, a small dominating set S is formed, which may have several
disconnected components. This forest consisting of the edges {v1, v2}, where v1 ∈ S

and v2 ∈ Γ (v1), is then connected in the second stage using a distributed minimum
spanning tree (MST) algorithm. The CDS obtained consists of the nonleaf nodes of
the MST formed. This algorithm provides an approximation ratio of 2HΔ + 1 in
O(n + |C|Δ) time using O(n|C| + m + n logn) messages where |C| is the size of
the CDS [10].

In the second algorithm, one- or two-step paths emanating from the current CDS
are investigated to find the node with the greatest number of white nodes in each
round. A node or a pair of nodes with the highest number of span is added to the
existing CDS as in [16]. This algorithm achieves an approximation ratio of 2HΔ in
O(|C|(Δ + |C|)) time using O(n|C|) messages [10].

15.5.3 MIS-Based Distributed CDS Construction

Alzoubi et al. proposed a MIS-based CDS construction algorithm (Alzoubi_CDS)
based on UDGs. Due to UDG imposed geographic constraints, a node can be adja-
cent to at most five independent neighbors. This algorithm consists of the following
phases [1]:

1. Leader Election
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2. Level Calculation
3. Color Marking

15.5.3.1 Leader Election

In this phase, a distributed leader election algorithm such as in [8] is used to con-
struct a spanning tree T rooted at the leader. A root node may also be arbitrarily
chosen, and this root node may construct a spanning tree using any of the algo-
rithms we have seen in Part I. Convergecast of control messages can be used to
notify the root that the first phase is over.

15.5.3.2 Level Calculation

When the first phase is over, the root starts the second phase by sending its level (0)
to its children, which increase the level by one and send the new level to their chil-
dren. Each node in T also records the levels of their neighbors. When the leaves
compute their level, a convergecast operation is performed by the complete mes-
sages to the root over T , and the root knows that the second phase is over. Each
node in the tree has a rank identified by the ordered pair of its level and its identity
at the end of this phase, and the number of messages sent is O(n).

15.5.3.3 Color Marking

In this phase of the algorithm, the aim is to have colored black all nodes that are
the nodes in CDS or gray all nodes that are the neighbors of the nodes in CDS.
The messages in the MIS construction phase are dominator sent by a MIS (black)
node to its children and dominatee sent by a non-MIS (gray) node. Initially, all nodes
are white and this phase of the algorithm is initiated by the lowest rank node which
is the root, by broadcasting a dominator message. The ranked nodes now implement
the following rules [1]:

1. A white node receiving a dominator message for the first time marks itself gray
and broadcasts a dominatee to show that it has been dominated.

2. A white node that has received dominatee messages from all of the lower-rank
neighbors enters MIS by marking itself black, sends a dominator message to all
of its neighbors, and assigns its parent in T as its dominator.

The second phase finishes when the leaves of the tree are marked. In the final
phase, the invite and join messages are used to connect the MIS formed in the pre-
vious phase to form a CDS. Initially, the root node sends the invite message to its
MIS neighbors two hops away, and any black node that receives this message then
joins the CDS together with the gray node that has sent it. This node then broad-
casts the invite message to its neighbors. This algorithm has a time complexity of
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O(n), message complexity of O(n logn), and the resulting CDS has a size of at
most 8OPT + 1 [1]. Alzoubi et al. [2] also provided a multi-leader CDS algorithm
to reduce communications and decrease the size of the CDS.

15.5.4 Pruning-Based Algorithm

The Wu and Li distributed algorithm (Wu_MCDS) finds an MCDS of a general
graph in two phases. In the first phase, each node sends the identifiers of all its
neighbor nodes to all its neighbors. At the end of the first phase, a node decides
to be a potential member of the CDS by changing its color to black only if it has
two nonadjacent neighbors. Each node that nominates itself to be black notifies its
neighbors in the second phase. At the end of the second phase when all messages
are received, two pruning rules are applied to reduce the size of the CDS by deleting
redundant nodes from it. A node first checks whether a neighbor CDS node in its
closed neighborhood with a higher identifier covers its entire neighbor set, in which
case it exits the CDS. Secondly, if the open neighbor set of a node is covered by two
CDS neighbors with higher identifiers, it backs off from CDS by changing its color
to white. Formally, the rules for a node v are as follows:

• If ∃u ∈ N [v]|(coloru = black) ∧ (N [v] ⊆ N [u]) ∧ (idv < idu) then coloru ←
white

• If ∃u,w ∈ N(v)|(colorv = coloru = colorw = black) ∧ (N(v) ⊆ (N(u) ∪
N(w))) ∧ (idv = min{idv, idu, idw}) then colorv ← white

Algorithm 15.9 shows a possible implementation of Wu_MCDS, where, unlike
the original algorithm, a node broadcasts its color even if it is not in the CDS for
proper synchronization. As each node sends exactly two messages in this imple-
mentation, the total number of messages transmitted is 2n.

Figure 15.13 shows an example network where a CDS is formed at the end of first
phase in (a), with nodes 3, 5, 6, and 4 as they all have two unconnected neighbors.
Pruning with Rule 1 provides nodes 3 and 4 to change their colors to white as their
closed neighborhoods (2, 3, 5, 6 and 1, 4, 5, 6) are covered by larger identifier CDS
neighbor nodes as shown in (b).

Figure 15.14 displays pruning by Rule 2, where nodes 4, 1, 2, and 5 are marked
in the first phase as they all have two unconnected neighbors. In the second phase,
node 2 finds that its open neighborhood (nodes 3,4,1,5,6) are covered by the union
of the open neighborhood of its neighbor 4 and 5, so it decides to change its color
to white as shown in (b).

Cokuslu and Erciyes [9] extended the Wu_MCDS algorithm by involving degree
of the nodes during pruning process. In their algorithm, only nodes that have isolated
neighbors are marked black permanently in the first phase. Any other node that has
two unconnected neighbors is colored gray, and the rest of the nodes do not change
their colors.
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Algorithm 15.9 Wu_MCDS
1: int i, j, k; mycolor ← white
2: set of int neighs1, neighs2 ←∅

3: message types phase1, phase2
4: boolean terminated, phase1over
5: send phase1(Γ (i)) to Γ (i) {Start Phase 1}
6: while terminated �= true do
7: receive msg(j)

8: case msg(j).type of
9: phase1(Γ (j)): neighs1 ← neighs1 ∪ j

10: 2neighs[j ] ← Γ (j)

11: phase2(color): neighs2 ← neighs2 ∪ j

12: neighcolors[j ] ← color
13:
14: if neighs1 = Γ (i) then � Phase 1 over
15: if {∃j, k ∈ Γ (i)|j /∈ Γ (k)} then
16: mycolor ← black
17: broadcast phase2(mycolor)
18: phase 1 over ← true
19: end if
20: end if
21: if neighs2 = Γ (i) ∧ phase 1 over then � Phase 2 over
22: if mycolor = black then
23: if (∃j ∈ Γ (i)|colorj = black) ∧ (Γ [j ] ⊆ Γ [i]) ∧ (i < j) then � Rule 1
24: mycolor ← white
25: end if
26: if (∃j, k ∈ Γ (i)|colorj = colork = black)∧ (Γ (i) ⊆ (Γ (j)∪Γ (k)))∧ idv =

min{idv, idu, idw} then � Rule 2
27: mycolor ← white
28: end if
29: terminated ← true
30: end if
31: end if
32: end while

In the second phase, they consider the degree of a node when marking it as black
since a node with a higher degree should have a better chance of being in CDS. They
implemented the following pruning rules during the second phase of the algorithm:

1. ∃u ∈ N(v) which is marked black such that N [v] ⊆ N [u];
2. ∃u,w ∈ N(v) which is marked black such that N(v) ⊆ N(u) ∪ N(w);
3. ∃u ∈ N(v) which is marked gray such that N [v] ⊆ N [u] and degree(v) <

degree(u) or (degree(v) = degree(u) and id(v) < id(u));
4. ∃u,w ∈ N(v) which is marked gray or black such that N(v) ⊆ N(u) ∪ N(w)

and degree(v) < min{degree(u),degree(w)} OR degree(v) = min{degree(u),

degree(w)} and id(v) < min{id(u), id(w)};
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Fig. 15.13 Wu_MCDS pruning Rule 1 example

Fig. 15.14 Wu_MCDS pruning Rule 2 example

These rules favor nodes with higher degree to be included in the MCDS,
and identifiers are used to break ties. Cokuslu et al. compared this algorithm to
Wu_MCDS experimentally and showed that it provides MCDSs with significantly
smaller sizes for a wide range of number of nodes.

15.6 Chapter Notes

Topology control using local graphs is a widely used method to provide sparser
graphs with less communication links. This approach also prevents interference of
simultaneous transmissions to some extent; however, we have seen that there are
more efficient methods to reduce interference in Sect. 14.4.3. The main usage of
local graphs in this context is for energy efficient communications rather than for
prevention of interference. Locally defined graph-based topology control remains
an active research topic in MANETs and WSNs.

We have seen few sample algorithms for clustering in ad hoc wireless networks.
A survey of clustering in MANETS is given in [31], and a recent survey in [4]; a
survey of clustering in ad hoc networks is presented in [30]. A clear distinction exists
between a stationary, energy-sensitive sensor network, which consists of a large
number of sensing nodes, and a MANET, where mobility of nodes is of primary
concern. Clustering algorithms for sensor networks should aim at energy efficiency,
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Fig. 15.15 Sample graph for
Exercise 1

and such methods include minimizing the total distance to CH, rotating CHs, and
providing clusters of nodes having same power levels. In a MANET, power is in
general, not of primary, concern as nodes can be recharged and there is not a special
sink node as in a sensor network. Clustering in a MANET should aim at mobility,
and for this reason, low-maintenance algorithms such as the ones we have seen are
suitable for MANETs.

CDS-based backbone construction in ad hoc wireless is a thoroughly researched
area, and related publications are numerous. We have described few fundamental
distributed algorithms to provide a backbone using this method. Recently, there has
been a significant interest in finding d-dominating sets. Given a graph G(V,E), a
d-dominating set S is a subset of vertices of G such that every v ∈ V is at most
d hops away from at least one of the nodes in S. Finding minimum d-dominating
sets is an NP-hard problem [13]. The d-dominating sets have various applications
such as multicast systems, message routing, and placement of routers in computer
networks. Min–Max D-Clustering algorithm presented in [3] provides clusters by
selecting CHs based on both low and high identifiers, and it also results in d-hop
dominating sets.

15.6.1 Exercises

1. Construct the NNG, GG, and RNG networks for the nodes in the sample graph of
Fig. 15.15, where each node has a transmission range shown by a circle around
it.

2. Compare clustering in WSNs and MANETs in terms of objectives and imple-
mentations.

3. Show the clusters, CHs and gateway nodes obtained in the sample graph of
Fig. 15.16 by the Highest Degree clustering algorithm.
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Fig. 15.16 Sample graph for Exercise 3

Fig. 15.17 Sample graph for
Exercise 4

4. Implement Wu_MCDS algorithm in the sample graph of Fig. 15.17 by showing
the nodes marked in the first phase and the nodes that are pruned in the second
phase.
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Chapter 16
Ad Hoc Routing

Abstract Routing is the process of deciding on the optimal route between a source
node and destination node in a network. A routing protocol is a collection of algo-
rithms and procedures to perform routing. We have already investigated distributed
routing algorithms in wired computer networks. Our focus in this chapter is on the
routing protocols rather than algorithms for wireless ad hoc networks, and we will
see that the routing in such networks have different requirements due to the mobility
and energy limitations of the nodes.

16.1 Introduction

Distance Vector Routing based on Bellman–Ford Algorithm and Link State Rout-
ing based on Dijkstra’s Algorithm are two of the most important dynamic routing
algorithms used in wired networks as discussed in Chap. 7. In distance vector pro-
tocols, nodes periodically broadcast their neighbor information and update their ta-
bles based on the information received. A known problem with these protocols is
the slow convergence time as the information broadcast should be propagated to all
nodes in the network, which also causes the count-to-infinity problem. In link state
protocols, nodes broadcast their neighbor information to the network, and each node
builds a complete communication graph of the network and then can compute the
shortest routes using an algorithm like Dijkstra’s algorithm. Both protocols calcu-
late the distance between nodes using metrics such as hop count, capacity of link,
or queue delay. Compared to link-state, the distance vector protocol is easier to im-
plement and requires less storage space.

In a MANET, frequent changes in the topology of the network require the routing
information to be broadcast in short intervals using the scarcely available bandwidth.
Also, routing algorithms in ad hoc networks should consider limited energy, limited
bandwidth, and high error rates. For this reason, the Distance Vector and Link State
protocols require considerable modifications to be used in MANETs and WSNs.

16.2 Characteristics of Ad Hoc Routing Protocols

Although there are numerous routing protocols for ad hoc wireless networks, there
is not a single protocol that meets the demands of all applications. An efficient
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way to evaluate a protocol designed for ad hoc wireless networks is to analyze its
time and message complexities like we have done for most of the distributed al-
gorithms. Implementing a protocol using a simulator such as the ones discussed
in Chap. 14 and evaluating its performance will also give a good idea on its per-
formance for different traffic loads. There are different criteria for designing and
classifying routing protocols for wireless ad hoc networks such as the contents
of the routing information exchanged, when and how this information routing is
transferred, the computation of routes, etc., which are described in the next sec-
tions.

16.2.1 Proactive and Reactive Protocols

In source initiated routing, the source determines all the intermediate nodes that
the message has to pass through, prior to sending the message, and it inserts these
node identifiers whether identities or IP or MAC addresses on the path to des-
tination in the message header. Any intermediate node on the path then simply
forwards the message to the next node in the list of the header. In destination-
based or table-driven routing, only the destination address is stored in the header,
and the nodes along the path determine the best next node to reach the destina-
tion using their current local information of the network stored in their routing ta-
bles.

In proactive routing protocols, routes are stored in local tables at nodes prior
to sending messages to destinations, and therefore these protocols are table-driven.
When the network topology changes due to the movement of some nodes as in a
MANET, update messages should be broadcast to provide a consistent view of the
network by the nodes. A disadvantage of these protocols is that the update messages
have significant overhead. Few sample proactive routing protocols will be described
in Sect. 16.3.1.

In reactive routing protocols, routes to destinations are constructed only when
needed, and therefore these protocols are source initiated. These protocols start
a route discovery process before sending a message to a destination. This pro-
cess basically consists of sending packets with a description of the destination
(address information of the destination) between the nodes to discover the route.
Any node receiving such a request looks into its available routing table to find if
it has a route to the described destination. If a route to the destination is present,
the node returns this route to the source, and the process ends; else the request
packet is forwarded to the neighbors continuing the route search process. Once
a route is found, it is temporarily maintained in the routing table and then sub-
sequently removed either after a timeout or if the destination node leaves the
network. Since there are no periodic or immediate updates due to the mobility
of the nodes, the control message overhead is less than proactive protocols re-
sulting in better scalability. Few example reactive protocols will be reviewed in
Sect. 16.3.2.
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16.2.1.1 Flat or Hierarchical Protocols

Routing in ad hoc wireless networks can be realized as flat or hierarchical. In flat
routing structure, all nodes have the same routing functions. However, this method
is not suitable for large networks consisting of hundreds of nodes. For such large
networks, hierarchical routing where the networks is partitioned into a group of
close nodes called clusters is usually preferred. Each cluster is managed by a special
node, called clusterhead, which is responsible for any external communications of
the cluster. This approach reduces the amount of control information exchange and
has a better performance than the flat structure for large networks.

16.2.1.2 Adaptive or Non-adaptive Protocols

In nonadaptive routing protocols, the routes are calculated in advance and sent to
the routers when the networks is initialized. In adaptive protocols, the routes are
recalculated when the network topology or traffic changes. Adaptive protocols are
dynamic, and MANETs use only this type of protocols as their topology is dynamic.

16.3 Routing in Mobile Ad Hoc Networks

The basic requirements from any routing protocol in a MANET are that it should
consider the mobility and limited energy of the nodes as well as limited bandwidth
and high error rates of the wireless communication medium. The protocols should
be distributed, and the routes found should be loop-free.

In order to provide uninterrupted communication in a MANET, discovering
routes dynamically can be achieved either periodically or event based. In general,
implementation of protocols based on periodic updates is simpler and provides
more stable networks. However, they result in significant control messages using
the scarce bandwidth of the wireless network. Increasing the period duration re-
duces the number of control messages; however, the network topology stored may
not reflect the existing structure.

In event-based protocols, the network information should be sent only when there
is a topology change such as a link failure due to the movement of a node or the
forming of a new link as a new node enters the area. For a highly dynamic network
where nodes move rapidly, event-based protocols require significant number of con-
trol messages. Two classes of protocols for MANETs that reflect these design issues
are proactive and reactive protocols, examples of which are described next.

16.3.1 Proactive Protocols

We will investigate two important protocols, called DSDV and WRP, that may be
used in a MANET in this section.
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16.3.1.1 DSDV Protocol

The Destination-Sequenced Distance-Vector Routing protocol (DSDV) is a proac-
tive protocol based on the Bellman–Ford algorithm with some improvements [12].
It aims to provide routing in ad hoc networks based on distance vector protocols by
preventing the count-to-infinity problem using sequence numbers.

In DSDV, each node in the network has a routing table for all destinations where
each entry shows the destination, number of hops to reach there, and a sequence
number. Each node periodically broadcasts its routing table and also when signif-
icant new routing information becomes available. The broadcast packet contains
destination address, the number of hops required to reach the destination, and the
sequence number received related to the destination for each new table entry. The
sequence number and hardware address of the transmitter node are also included.
Any node that receives the information packet increments the hop count and broad-
casts it to enable the reception of the packet by all nodes.

The communication links may be broken as nodes move, and this may be de-
tected by the Layer 2 (Data Link Layer) protocol, or it may be found if there are
no broadcasts for a duration of time from a neighbor. A broken link detected by a
neighbor is assigned the parameter ∞, and any route through this link is assigned
an odd sequence number and ∞ as shown in Fig. 16.1, where node f that comes
in the vicinity of node c broadcasts 〈f,27,0〉, which means that it has 0 hops to f

(itself) with a sequence number 27. Node c receives this message, increments hop
count, and broadcasts 〈f,27,1〉 to inform neighbors that node f can be reached by
itself by one hop. The other nodes update their tables similarly. In (b), the link be-
tween nodes c and d is broken as node d moves away. Node c discovers the broken
link and informs neighbors by the 〈d,45,∞〉 message, meaning that d cannot be
reached via node c anymore. All other nodes update their tables accordingly.

Routing tables in DSDV are updated periodically using two types of messages.
In full dumps, several network protocol data unit (NPDU) packets are transmitted to
transfer all routing table information. In incremental updates, a single NPDU is used
to send only the information that has changed since the last full dump. When a node
receives information about a new route, this is compared with previous information
packets for the same route and a route with a newer sequence number is used to
update the tables.

Disadvantages of DSDV include frequent updating of the routing tables and for a
highly dynamic network, a high convergence time. For these reasons, DSDV is not
much used, but it provides a basis for other protocols.

16.3.1.2 WRP Protocol

Wireless Routing Protocol (WRP) is a proactive unicast routing protocol based on
distance vector routing for mobile ad hoc networks (MANETs) [9]. It is similar to
DSDV so that each node in the network has tables showing routes to all destinations.
However, the table storage and table updating procedures are different than DSDV.
WRP stores a number of tables at each node as follows:
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Fig. 16.1 DSDV example

• Distance Table (DT): This table has an entry for each neighbor of a node, showing
the distance and the predecessor node for a particular destination as informed by
the neighbor node.

• Routing Table (RT): This table provides the current routes for all destinations
from the node. For each entry, it keeps the shortest distance, the predecessor node,
the successor node, and a flag. The flag shows whether the path is simple, a loop
(error), or not a valid one. Storing predecessor and successor nodes is used to
prevent loops.

• Link Cost Table (LCT): It shows the cost, as the number of hops, of transferring
messages over each link.

• Message Retransmission List: It has an entry for each update message to be re-
transmitted. Whenever an update message is transmitted, each entry in routing
table is marked to wait for an acknowledgement. The number of acknowledge-
ments not received indicates link failures.
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Nodes in the network exchange update messages periodically to update their
routing tables. A node that receives an update message also tests its routes with
neighbors to detect loops and provide a fast convergence of routes.

WRP has faster convergence and less update of tables than DSDV. However, the
computation and storage required from each node is higher due to the maintenance
of four tables. Also, for a highly dynamic large network, frequent update messages
result in high control overhead. In conclusion, as DSDV, WRP protocol is not suit-
able in large and dynamic MANETs as it does not scale well.

16.3.2 Reactive Protocols

In this section, two important reactive protocols for MANETs, called DSR and
AODV, will be described.

16.3.2.1 DSR

The Dynamic Source Routing (DSR) protocol was developed at Carnegie Mellon
university [6] and was designed for MANETs. The motivation behind DSR was to
create a routing protocol that had very low overhead and also could react quickly
to changes in the network due to mobility of nodes. It is based on source routing in
which a list of the nodes that the packet must pass through is provided by the source
node in the packet. This method eases the task of the intermediate nodes as they
do not need to store any routing information; however, they may store the routing
information in tables to improve performance. As the networks and their diameters
get larger, the amount of information included in the packet header increases, and for
this reason, DSR can be used from small- to medium-sized networks with favorable
performance but is not advantageous in large diameter networks. The designers of
DSR assumed that the diameter of the network is not greater than 10 hops and
the mobile nodes may move at any time but with moderate speeds [6]. It has two
main phases, the route discovery and route maintenance. Both route discovery and
route maintenance are activated on demand without the need for periodic update
packets, which would mean that there will be no routing packets when the nodes are
stationary relative to each other.

Route Discovery

Route discovery is the procedure to obtain a route to a destination and is only acti-
vated by the source when this information is not available. When a source node u

wants to send a packet to a destination node v, it checks its cache. If it does not have
any prior knowledge of the route, it sends a route_request(source,destination, id)

(RREQ) message to its current neighbors. An intermediate node receiving this
packet has three options as below:
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Fig. 16.2 DSR example

1. If a packet was received before, it discards it as this is a duplicate packet.
2. Else it checks its route cache to find if a route to destination is already known. In

this case, it replies by the route_reply message to the sending node.
3. Else it adds itself to the route list in the packet, and it broadcasts RREQ.

When the RREQ packet reaches the destination node v, it copies the accumulated
route information in RREQ to RREP and sends it to the source along the path that
the packet has traversed reaching v. The packet now has all the intermediate node
identifiers as shown in Fig. 16.2. When the source u receives RREP, it stores the
routing information in its route cache for further use. For unidirectional routes, also
node v has to initiate a route discovery procedure to u.

Route Maintenance

Route maintenance of DSR provides procedures for link breakdown, route reply
storms, and limiting the number of hops. Any node that notices the breakdown of
a link sends a route error message (RERR) to the source. Any node that detects
RERR message updates its route cache to remove the link. Route reply storms are
possible when several nodes respond by RREP messages to the RREQ message by
the source as they have the route in their cache and these replies may collide. To
prevent such a situation, nodes may send replies to the source by random delays.
Each RREQ message contains a hop count which is an integer decremented by each
node along the path to the destination, and if 0 is reached, the RREQ message is
discarded.

The advantages of DSR are that the routes are maintained only in the source and
destination nodes, and the resource discovery phase may provide multiple paths to
the destination. The disadvantages are that flooding becomes a problem with nodes
moving fast and that the packet size grows significantly larger with growing network
diameter.
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Fig. 16.3 AODV example

AODV

Ad hoc On Demand Distance Vector (AODV) is a reactive MANET protocol, which
is similar to DSDV, aiming to decrease the network control traffic as much as pos-
sible [13]. AODV also provides unicast and multicast communications and has a
routing table for each. When a route in AODV is not used for a period of time, it is
discarded reducing the route maintenance overhead.

In AODV, routes are discovered only when needed, as in other reactive protocols.
Node u wishing to send a message to a destination node v checks its table whether
such a route exists and initiates a route discovery process by the Route Request
(RREQ) message if there is not a route. RREQ message contains IP addresses and
the current sequence numbers of the source and destination nodes and also a broad-
cast identifier number. Any intermediate node that receives RREQ message sets up
a reverse link to point to the sender of this message and floods the neighbors with
RREQ message, which reaches the node v if the network is connected. The destina-
tion v replies with a unicast Route Reply (RREP) packet if the IP in the incoming
RREQ packet message matches its IP and the sequence number in the packet is at
least as large as its sequence number to prevent loops, an which traverses the inter-
mediate nodes through the reverse links to the source node u at which point a route
between u and v is established as shown in Fig. 16.3. Data packets (DATA) that
do not have any routing information can now follow the path taken by the RREQ
packets to reach the destination.

If an intermediate node w has already a route to the destination v, it replies to
the RREQ packet with RREP packet, and when this packet reaches the source node
u, it updates its table so that w is included in the table. An intermediate node may
receive more than one RREP packet and forwards the first one it receives unless
the RREP packets it later receives have a higher sequence number or a smaller hop
count.

Whenever the source node moves, a new route discovery process needs to be
started. If intermediate nodes or the destination node moves, links may be broken.
In this case, routing tables are updated, and the Route Error (RERR) messages are
sent to active neighbors. Neighbor nodes exchange HELLO messages periodically
to check each other, and absence of these messages indicate link failure.
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TORA

The Temporally Ordered Routing Algorithm (TORA) is a flat, reactive routing pro-
tocol based on the link reversal concept, designed for highly dynamic MANETs
[10, 11]. The general idea of this protocol is to build and maintain a directed acyclic
graph (DAG) routed at the destination. There may be more than one DAG, and there-
fore multiple paths to the destination may exist. The height data structure used in
TORA is a quintuple of the form h = (t,oid, r, d, i), where t is the time, oid is the
originating node identity, r is the reflecting bit, d is the ordering integer, and i is
the identity of the node. Each node in TORA has a table showing the heights of the
neighbors as quintuples in terms of two parameters. The first is the reference level
as indicated by the three parameters, and the second is the offset from the refer-
ence level shown by the last two parameters. Node i initially has a NULL height as
(−,−,−,−, i), and a destination node v has (0,0,0,0, v) as its height. Information
flows from higher height nodes to lower height nodes toward the destination. TORA
maintains a totally ordered set of heights that provides a loop-free operation.

There are three operations in TORA: route creation, route maintenance, and route
erasure. Node u wishing to send data to a destination node v, which does not have
any downstream nodes for v, broadcasts a query (QRY) packet to its neighbors
and sets its Route Request (RR) flag. A node that receives QRY packet does the
following:

1. If RR is 1 (already has an outstanding query), it discards QRY packet.
2. If RR is 0, and no downstream links for the destination exists, it broadcasts QRY

packet.

The QRY packet is flooded through the network in this manner until it reaches the
destination node v or an intermediate node w that has a route to the destination. The
reply to the QRY packet is the update (UPD) packet. The destination node v or the
intermediate node w sends a UPD packet to inform neighbors that the destination is
discovered. A node that receives a UPD packet does the following:

1. If RR is 1 and the reflection bit of the neighbor height is zero, it increments the
value of its neighbor’s height in the packet and stores this as its height. It then
sends the UPD message including its height to its neighbors.

2. If RR is 0 and reflection bit of the neighbor is set, meaning that the route of the
neighbors is invalid, it only updates neighbor’s entry in the table.

At the end of this process, there may be a number of routes from the source node
u to the destination node v and u may choose the shortest route. A node may dis-
cover the loss of a downstream link due to the movement of nodes. In this case, the
discovering node creates a new reference level and broadcasts this reference level to
its neighbors, resulting in the reversing of the links of the DAG. This way, control
messages are confined to a small region where the link is lost. When a node detects
a network partition, it generates a clear (CLR) packet, which is flooded through the
network, resulting in erasing of the invalid routes in the network.

Advantages of TORA are the provision of loop-free operation, the existence of
multiple paths to the destination that provides fault tolerant routing, and relatively
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local updates in case of route changes. An important disadvantage is that the routes
may be far from optimal due to local reconfiguration of paths.

16.3.3 Hybrid Routing Protocols

Hybrid routing protocols have the advantages of both proactive and on-demand rout-
ing methods, and they are used in networks of large size. In the following, we will
examine such a protocol, called the Zone Routing Protocol.

16.3.3.1 The Zone Routing Protocol

In this protocol, each node has a zone around itself defined by the number of hops
defined as the zone radius [2]. For nodes within this zone, a node uses proactive
routing to communicate, and for other nodes outside the zone, the on-demand rout-
ing strategy is used. The protocol has three main modules. For nodes within the
zone, the Intra-zone Protocol (IARP) is used, which can be a link state or a distance
vector protocol. On the other hand, the Inter-zone Protocol (IERP) provides routing
for nodes outside the zone using the on-demand routing method. IERP has Route
Request (RREQ) and Route Reply (RREP) packets similar to other on-demand pro-
tocols. IERP uses the Bordercast Resolution Protocol (BRP) for the border nodes
to broadcast queries for destinations not in the zone. Broadcasting of the RREQ
packets is performed from a node border to the borders of other nodes until the des-
tination node is found within a zone. This protocol has the advantage of keeping the
overhead of IARP within the zone; however, flooding of the RREQ packets is still a
problem.

16.4 Routing in Sensor Networks

Routing in a WSN has different challenges than in a MANET for the following rea-
sons. First, any routing scheme based on identifiers of nodes is difficult to apply as
maintaining identifiers in a large sensor network consisting of hundreds of nodes
is difficult. In general, the identifiers of nodes are not needed when collecting data
from sensor nodes. Second, the flow of data has an orientation, mostly from sensor
nodes to the data gathering point called the sink or the base station, rather than arbi-
trary data exchange between individual nodes. Third, the sensor nodes are stationary
in most cases with only few of them being mobile resulting in simpler route mainte-
nance procedures. Fourth, sensor nodes are application specific, and data collection
is usually based on the location. Also, the energy in a sensor network is limited,
and data has some redundancy as it is collected by many nodes that are in the same
location.
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Routing protocols for sensor networks should consider these properties. For ex-
ample, data redundancy should be considered by the routing protocols for more effi-
cient communications. Special techniques such as data aggregation, clustering, and
data centric operations are frequently used. We will classify routing protocols for
sensor networks as data-centric, hierarchical, and location-based routing protocols
and give examples of these methods in the next sections.

16.4.1 Data-Centric Protocols

In order to overcome the data redundancy problem, routing protocols that select a
group of sensors and aggregate this data are designed. This type of protocols are
called data centric, where the sink sends queries to certain regions of the network
and collects data from these regions. The queries sent by the sink use attribute-based
naming to specify data properties. For example, the sink may request data related
to temperature of an environment as 〈T ≥ 30〉, meaning that only data sensed as
greater than 30 ◦C is required. The first data-centric protocol is called SPIN and
later Directed Diffusion is developed, as described next.

16.4.1.1 Flooding and Gossiping

A simple approach for transferring data in a sensor network is to provide the transfer
without routing. Flooding is such a method, and similarly to the flooding, we have
seen in Chap. 4 that any node that receives data simply broadcasts it to all neighbors,
and this process is repeated until all neighbors receive data or some predefined hop
count is reached. Duplicate packets are a problem in flooding, and gossiping proto-
cols provide improvement over flooding by randomly selecting a neighbor node to
send data [3]. However, although gossiping reduces the number of messages, it may
introduce further delays.

16.4.1.2 SPIN

Sensor Protocols for Information via Negotiation (SPIN) is a family of protocols
that names data using high-level descriptors. In SPIN, a node that receives new data
advertises this to its neighbors that are interested, and they can receive this data
by requesting. Three types of messages used in SPIN are advertise (ADV), request
(REQ) to request specific data, and DATA messages to transfer data.

Figure 16.4 displays a sensor network that uses SPIN where node 4 has some
data available and advertises this by ADV message to neighbors 5 and 7, which
request the data by the REQ message as shown in (a). Data is transferred to these
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Fig. 16.4 SPIN example

nodes in (b), which in turn send ADV messages to their neighbors. Node 3 is not
interested, and node 8 responds by an REQ message. In (c), data is transferred to
node 8, which in turn advertises it to neighbors 1 and 3. Node 1 is interested and
replies by an REQ message. Data is transferred to node 1 in (c), which can now send
ADV to neighbors.

SPIN reduces the energy dissipation for a factor of 3.5 with respect to flood-
ing and meta-data negotiation almost halves the redundant data [1]. However, if
there exists a group of uninterested nodes between the nodes that request data and
the nodes that have data, then the delivery of data to the interested nodes is pre-
vented. For this reason, SPIN may not be used in critical sensor network applica-
tions such as military applications or intruder detection where reliability is impor-
tant.

16.4.1.3 Directed Diffusion

Directed diffusion uses a naming procedure for data to transfer it to the request-
ing node [5]. It uses attribute-value pairs of data to query the nodes that have
data. Data is sent in response to a query by the sink, whereas in SPIN, sensor
nodes that have available data advertise to inform any potential receivers. In di-
rected diffusion, nodes can perform data aggregation easing the task of the sink.
However, this type of routing is not suitable for sensor network applications such
as habitat monitoring, where continuous data delivery to the sink may be re-
quired.
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16.4.2 Hierarchical Protocols

For ad hoc wireless networks of large size, the flat routing protocols result in high
communication costs. Hierarchical routing protocols provide efficient scalable rout-
ing with decreased link and processing overheads in MANETs and WSNs. In this
type of routing, nodes are organized into groups, called clusters, each with a cluster-
head (CH). A CH is responsible for intercluster routing, and nodes within a cluster
communicate with the CH only.

There may be two or more layers of clusters where the CHs of a lower layer are
connected to the CHs of higher layer. In a sensor network, data is transferred from
lower-level clusters to higher-level clusters toward the sink where each CH performs
data aggregation and routing. CHs are chosen from the nodes with higher energy,
and lower-energy nodes are involved in sensing only. In this section, we will review
sample hierarchical routing protocols in WSNs.

16.4.2.1 LEACH

Low-Energy Adaptive Clustering Hierarchy (LEACH) is a cluster-based hierarchi-
cal routing algorithm for sensor networks [4]. In LEACH, clusters are formed based
on the received signal strength, and a CH for each cluster is chosen. CHs are re-
sponsible for routing decisions, and all nodes in a cluster communicate directly to
the CH. CHs are rotated to balance energy dissipations. A node becomes a CH with
a probability for a round, and a new CH is elected for the next round.

16.4.2.2 TEEN and APTEEN

Threshold sensitive Energy Efficient sensor Network protocol (TEEN) [7] combines
data-centric routing with the hierarchical structure. It forms two levels of clusters in
a sensor network by forming second-level clusters around the sink and the first-level
clusters around the second-level clusters as shown in Fig. 16.5. TEEN is designed to
provide timely response to sudden changes in sensed data. The CHs in TEEN send
a hard and a soft threshold value to its members after the clusters are formed. These
two values are used to limit the transmissions by comparing the value of sensed data
against them; however, for routine monitoring, TEEN does not provide any periodic
data.

The Adaptive Threshold sensitive Energy Efficient sensor Network protocol
(APTEEN) [8] is an extension to TEEN and overcomes the problem with TEEN
by providing periodic data to the application. The hierarchical cluster formation in
APTEEN is similar to TEEN. There are three types of queries in APTEEN: histori-
cal, one-time, and persistent. The historical query analyzes previous sensed data val-
ues, one-time query results in the current state of data, and persistent query is used to
monitor an event for a duration of time. In terms of energy dissipation and network
lifetime, both TEEN and APTEEN have better performances than LEACH [1].
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Fig. 16.5 TEEN example

Fig. 16.6 GAF virtual grid

16.4.3 Location-Based Routing

Sensor nodes do not have identifiers in many applications. However, their location
information can be used for routing purposes. In order to reduce transmissions, the
query to obtain sensed data can be directed to a region. In this section, we will de-
scribe two location-based routing protocols, which may also be used for MANETs.

16.4.3.1 GAF

Geographic Adaptive Fidelity (GAF) [14, 15] is a location-based routing protocol
that can be used in WSNs and MANETs. GAF forms a virtual grid in the network,
and each node determines its location in this grid using GPS equipment. If two or
more nodes are located in the same cell of the grid, they are considered equal, and all
of these nodes except one can sleep. An example grid is shown in Fig. 16.6, where
nodes 1, 2, 5 share the same grid cell, and any two of these nodes can be passive at
any time saving considerable energy.
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Fig. 16.7 States of a GAF
node

A sensor node in GAF can be in one of the three states as sleeping, discovery,
and active as shown in Fig. 16.7. A node starts in discovery state and exchanges
discovery messages containing grid and node identifiers, node state, and estimated
node active time. The grid identity is computed using location information and the
grid size. A timer Td is set in this state, and when it expires, the node broadcasts its
discovery message and enters the active state. In this state, another timer Ta is set,
and when this fires, the node returns to the discovery state. A node in the discovery
or active states can change to the sleeping state if another node using a ranking
procedure is found, which can provide routing functions. A node in the sleeping
state enters the discovery state after time Ts and starts checking its neighbors. The
value of Ts can be adjusted to low values for MANETs with high mobility. GAF
aims at keeping network connectivity by having an active node in each grid cell at
all times.

16.4.3.2 GEAR

Geographic and Energy Aware Routing (GEAR) [14, 16] is a location-based rout-
ing protocol that uses location information when sending queries to certain regions
of the network. Instead of broadcasting interests to whole network as in Directed
Diffusion, GEAR sends queries to a defined region in the graph using energy-aware
and geographically informed neighbor heuristics. Each node in GEAR stores an
estimated cost and a learning cost of reaching a destination. The estimated cost is
based on the residual energy of a node, its distance to the destination and the learned
cost is a further refinement of the estimated cost. A packet is transferred to a region
in two phases:

• Inter-region packet forwarding: When a node receives a packet, it forwards the
packet to a neighbor that is closer to the region than itself. If there are no closer
neighbors, a neighbor based on the estimated cost is chosen to forward the packet.

• Intra-region packet forwarding: When the packet reaches the region, it can be
broadcast to all nodes in the region using restricted flooding. However, when the
network consists of densely deployed sensors, recursive geographic flooding is
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used. This procedure involves dividing the region into four regions and sending
the packet to all these regions and recursively activating this routine until regions
with one node are left.

Comparison of GEAR to a similar protocol GPSR shows that it performs better
packet delivery and reduces energy consumption for route setup [16].

16.5 Chapter Notes

In this chapter, we have described samples of classes of the existing routing pro-
tocols for mobile and sensor networks. It was indicated that these two types of ad
hoc wireless networks have different requirements; therefore, routing protocols for
them have different goals in many cases. Routing protocols for mobile networks
should consider mobility of nodes and interference problems, whereas mobility in
general is not a primary concern in a sensor network that consists of mainly station-
ary nodes. However, nodes in general do not have identifiers in sensor networks,
and methods using data attributes and location information are widely used in rout-
ing protocols for such networks. Hierarchical routing is used for both networks, and
we have described few protocols for MANETs that use hierarchical routing. Other
methods of clustering such as direct clustering and dominating sets were covered in
Chap. 15.

Routing is a fundamental task in any computer network and will probably remain
an active area of research for both wired and wireless networks, including MANETs
and WSNs.

16.5.1 Exercises

1. Compare proactive and reactive routing methods in terms of when and how
routes are established and the communication costs involved.

2. What are the main differences between the AODV and WRP protocols?
3. Compare DSR and AODV in terms of establishing routes between source and

destination nodes.
4. Discuss how coordinates of sensors can be used effectively for routing in a WSN.
5. Describe an example of WSN routing protocol that uses clusters and CHs for

routing.

References

1. Akkaya K, Younis M (2005) A survey on routing protocols for wireless sensor networks. Ad
Hoc Netw 3:325–349

www.it-ebooks.info

http://www.it-ebooks.info/


References 275

2. Haas ZJ, Pearlman MR (1998) The Zone Routing Protocol (ZRP) for ad hoc networks. IETF
Internet draft

3. Hedetniemi S, Liestman A (1988) A survey of gossiping and broadcasting in communication
networks. Networks 18(4):319–349

4. Heinzelman W, Chandrakasan A, Balakrishnan H (2000) Energy-efficient communication
protocol for wireless sensor networks. In: Proc Hawaii international conference system sci-
ences

5. Intanagonwiwat C, Govindan R, Estrin D (2000) Directed diffusion: a scalable and robust
communication paradigm for sensor networks. In: Proc 6th annual ACM/IEEE international
conference on mobile computing and networking (MobiCom’00)

6. Johnson DB, Maltz DA (1996) Dynamic source routing in ad hoc wireless networks. In:
Imielinski T, Korth H (eds) Mobile computing. Kluwer Academic, Dordrecht, pp 153–181.
Chapter 5

7. Manjeshwar A, Agrawal DP (2001) TEEN: a protocol for enhanced efficiency in wireless
sensor networks. In: Proc 1st international workshop on parallel and distributed computing,
issues in wireless networks and mobile computing

8. Manjeshwar A, Agrawal DP (2002) APTEEN: a hybrid protocol for efficient routing and com-
prehensive information retrieval in wireless sensor networks. In: Proc 2nd international work-
shop on parallel and distributed computing, issues in wireless networks and mobile computing

9. Murthy S, Garcia-Luna-Aceves JJ (1996) An efficient routing protocol for wireless networks.
Mob Netw Appl 1(2):183–197. Special issue on routing in mobile communication networks

10. Park VD, Corson MS (1997) A highly adaptive distributed routing algorithm for mobile wire-
less networks. In: Proc INFOCOM ’97, sixteenth annual joint conference of the IEEE com-
puter and communications societies. Driving the information revolution. Proceedings IEEE,
vol 3, pp 1405–1413

11. Park VD, Corson S (1997) Temporally-ordered routing algorithm (TORA), version 1, func-
tional specification. IETF Internet draft

12. Perkins CE, Bhagwat P (1994) Highly dynamic destination-sequenced distance-vector routing
(DSDV) for mobile computers. Comput Commun Rev 24(4):234–244

13. Perkins CE, Royer EM (1999) Ad hoc on demand distance vector routing, mobile computing
systems and applications. In: Proc WMCSA ’99. Second IEEE workshop, pp 90–100

14. Roychowdhury S, Patra C (2010) Geographic adaptive fidelity and geographic energy aware
routing in ad hoc routing. Int J Comput Commun Technol 1(2, 3, 4):309–313. Special issue

15. Xu Y, Heidemann J, Estrin D (2001) Geography-informed energy conservation for ad hoc
routing. In: Proc 7th annual ACM/IEEE international conference on mobile computing and
networking (MobiCom’01)

16. Yu Y, Estrin D, Govindan R (2001) Geographical and energy-aware routing: a recursive data
dissemination protocol for wireless sensor networks. Technical report, UCLA-CSD TR-01-
0023, UCLA Computer Science Department

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 17
Sensor Network Applications

Abstract Localization is the method of providing the coordinates of sensors in
2-D plane so that these coordinates may be attributed to the sensed data to make
it more meaningful and also network protocols such as routing may use this in-
formation. An important application of sensor networks is the tracking of mobile
objects in the area of deployment to determine their trajectory. In this chapter, we
first investigate methods to solve the localization problem and then describe few
algorithms to track objects efficiently in sensor networks where distributed graph
algorithms such as clustering and tree construction can be used for real-life applica-
tions.

17.1 Localization

The aim of localization is to find the location of a sensor or an object either as
absolute coordinates or as relative coordinates to other sensors. In general, rela-
tive coordinate finding is easier to implement, and we will investigate this possibil-
ity.

A direct way of localizing sensors is to have all of them equipped with Global
Positioning System (GPS) receivers, but this method is hardly used due to the
costs involved. It may however be necessary to have a subset of sensor nodes
with fixed locations to be equipped with GPS receivers, which can find their co-
ordinates directly. These nodes are called anchors or beacons and serve as refer-
ence points for other ordinary nodes to find their coordinates. An ordinary node
that is made aware of its location during initialization by preprogramming can
also serve as an anchor node. The physical location of anchors have an impor-
tant effect on the accuracy of the localization. It has been suggested that if the
anchors are placed in a convex hull around the network, the positioning accuracy
improves [3].

Quality parameters for a localization algorithm are its accuracy and precision.
The positioning accuracy is the maximum deviation from the real position of the
object. The precision is the averaged ratio of reaching the accuracy. Localization can
be performed using either range-based or range-free methods, which are described
next.

K. Erciyes, Distributed Graph Algorithms for Computer Networks,
Computer Communications and Networks, DOI 10.1007/978-1-4471-5173-9_17,
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17.1.1 Range-Based Localization

Range-based localization methods rely on measuring the distance to the object under
consideration. In the case of a sensor node, the strength of the transmission signal
from this node can be used. For other objects in the sensor field, distances can be
estimated based on the sensed data measurements of the object. In this section, we
will review basic methods to estimate the distances of objects or sensors to their
neighbors.

17.1.1.1 Received Signal Strength Indicator

As every sensor node has a radio for communication, the first possible approach is to
use the radio to estimate distances. Every sensor has the facility to detect the power
of a radio signal it receives, and using this information, it can estimate the distance of
the source. This method of finding the distances is called Received Signal Strength
Indicator (RSSI) method. Radio signals diminish with the square of the distance
from the source they are transmitted as follows:

Prec = k
Ptx

d2
, (17.1)

where k is a constant related to the medium, and Prec and Ptx are the power levels
of the received and transmitted signals. Therefore,

d =
√

k · Ptx

Prec
. (17.2)

Assuming that Ptx is same for every sensor and known, a sensor can estimate
its distance to a source using the above equation. However, RSSI introduces large
errors as radio propagation is significantly affected by the environment. Recently,
it was shown that better calibration of radio transmitters may decrease these errors
significantly [13]. A clear advantage of RSSI-based distance computation is that it
does not require any additional hardware.

17.1.1.2 Time Difference of Arrival

Time Difference of Arrival (TDoA) method is frequently used to estimate the dis-
tance of a node due to its high accuracy. In TDoA, each sensor node has a speaker
and a microphone. The transmitting node u first sends a radio signal to the receiving
node v, and after some delay td , it sends an audio signal to the node v. The node
v records the time it receives radio (tr ) and the time it receives sound (ts ) signals.
As radio signal propagates much faster than the sound, the difference of arrival of
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Fig. 17.1 Time Difference of
Arrival example

these two signals can be used so that node v (or any other listening node) can now
calculate its distance d to u as follows:

d = (sr − ss)(ts − tr − td ), (17.3)

where sr and ss are the propagation speeds of radio and sound waves, respectively.
Fig. 17.1 shows an example of TDoA method to estimate the distance between nodes
u and v. TDoA systems require the nodes to be equipped with speakers and micro-
phones, which should be calibrated accurately. Also, the speed of sound varies with
temperature and humidity, which causes decreased accuracy. However, due to the
accuracy obtained, TDoA is a widely used method to estimate the distance of a
node.

17.1.1.3 Angle of Arrival

In the Angle of Arrival (AoA) method, a node that is listening to a radio propagation
tries to estimate the angle of arrival of a signal by computing time or phase analysis
of the incoming signals received by the several antennas or microphones it has.

The AoA method has a high accuracy; however. it requires a more expensive
equipment than TDoA. Also, accommodation of few antennas or microphones on a
sensor board is difficult physically, and for these reasons, this method is hardly used
in general applications.

17.1.2 Range-Free Localization

Range-free localization methods do not require the distance to the object to be es-
timated, and therefore they do not need special hardware but produce less accu-
rate location information in general. One possible approach is to place anchors to
form a regular mesh and to have them send signals of their coordinates periodi-
cally. The receiving sensors may then localize themselves to the connecting region
of the anchors, which is the centroid of the anchors from which signals have been
received [4]. Weights can be assigned to anchors based on their proximity to the
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sensor nodes and sensor nodes can find their positions as a weighted centroid of the
connected anchors [11]. This simple and cost effective centroid method improves
accuracy, but the choice of weights should be done according to some heuristic. In
another approach, called DV-hop, the anchors transmit their coordinates as before,
and the receiving nodes transmit them again until all nodes have these coordinates.
The nodes can then calculate their distances based on the anchor locations, the hop
counts from the anchors, and the average distance per hop [12].

17.1.3 Localization with Range Estimate

This type of localization has a number of anchors that obtain distances to the un-
known node or object u by methods such as RSSI, TDoA, or AoA and cooperate to
determine the coordinates of u. Multilateration uses simple geometry to calculate
distances. In a two-dimensional plane, the distance between two nodes i and j using
the Pythagoras theorem is given as follows:

dij =
√

(xi − xj )2 + (yi − yj )2. (17.4)

For three anchor nodes a, b, and c and an unknown node u, this becomes

d2
au = (xa − xu)

2 + (ya − yu)
2, (17.5)

d2
bu = (xb − xu)

2 + (yb − yu)
2, (17.6)

d2
cu = (xc − xu)

2 + (yc − yu)
2, (17.7)

where dau, dbu, and dcu are the distances of nodes a, b, and c to the object u. If
Eq. (17.7) is subtracted from Eqs. (17.6) and (17.5) to eliminate x2

u and y2
u , the

following system of equations is obtained:

[
xc − xa yc − ya

xc − xb yc − yb

][
xu

yu

]
=

[
(d2

au − d2
cu) − (x2

a − x2
c ) − (y2

a − y2
c )

(d2
bu − d2

cu) − (x2
b − x2

c ) − (y2
b − y2

c )

]

, (17.8)

where substituting anchor coordinates yields the coordinates of the object u. Fig-
ure 17.2 displays an example network that has three anchors with coordinates as
a(2,5), b(9,1), and c(8,6). The object u is detected by all three, and the distances
to u are determined as

√
10, 5, and

√
13, respectively. Substituting these values into

Eq. (17.8) yields

2

[
6 1

−1 5

][
xu

yu

]
=

[
68
30

]
. (17.9)

Solving for xu and yu in Eq. (17.9) yields 6xu + yu = 34 and −xu + 5yu = 15,
resulting in xu = 5 and yu = 4, which are the actual coordinates of u as shown in
Fig. 17.2.
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Fig. 17.2 Three-lateration
example with three anchors

An implementation of the modified triangulation method is shown in Algo-
rithm 17.1 (Detect_Object), where a node detecting an object waits for two neigh-
bors to detect the same object, and based on the distance and coordinate values
received from them, it applies Eq. (17.8) to find the coordinates of the object u.
Any node that detects an object broadcasts its estimate of the distance to that ob-
ject along with its coordinates by the detected(x, y, d) message, where x, y are the
coordinates, and d is the estimated distance. When a node involved in triangulation
computes the coordinates of an object, it broadcasts this information by the coord
message to its neighbors. Nodes wait for detection or a detected message initially.
We have assumed that nodes only know their own coordinates and a node that has
not detected an object is not interested in computing the coordinates of that object.
It however records the coordinates that it has received in anticipation of detecting
the object.

17.2 Target Tracking

Target tracking is a fundamental WSN application where the presence of a mobile
object such as an animal, vehicle, or an intruder is detected and its trajectory in the
region can be estimated and monitored. Target tracking involves detection of the
object by the nearby sensors, collaboration by them to determine the target location
more precisely, and aggregation of the data to the sink for the determination of the
trajectory. The track quality parameter is important to determine the quality of the
tracking method used and is defined as follows.

Definition 17.1 (Track quality) The track quality is the maximum distance between
the real track τ [i] of the target object and the approximate track τ ′[i] obtained by
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Algorithm 17.1 Detect_Object
1: tuples dists[] ←∅

2: int count ← 1
3: message types detected, coords
4: while event_type �= object_found do
5: wait for event � either node or a neighbor detects an object
6: case event_type of
7: object_found: � an object is detected
8: estimate diu

9: dists[count] ← (xi , yi , diu)

10: count ← count + 1
11: detected(xj , yj , dju) received � another detection
12: dists[count] ← (xj , yj , dju)

13: count ← count + 1
14: end while
15: while ¬timeout do
16: while count < 3 do
17: receive detected(xj , yj , dju)

18: dists[count] ← (xj , yj , dju)

19: count ← count + 1
20: end while
21: end while
22: find xu, yu from dists using Eq. (17.8)
23: broadcast coord(xu, yu) � broadcast coordinates of object

the tracking algorithm as follows:

QT track = max
i

{
τ [i] − τ ′[i]}. (17.10)

In some specific target tracking applications such as boarder surveillance sys-
tems and military applications, target classification, where different procedures are
needed to determine whether the target is an animal, vehicle, or an intruder, is also
important. In general, target tracking algorithms can be classified as cluster-based,
tree-based, and prediction-based as follows.

17.2.1 Cluster-Based Approaches

Cluster-based target tracking can be performed either by using static clusters or
dynamic clusters as described below.

17.2.1.1 Static Clustering

In static cluster-based target tracking, clusters are formed statically at the time of
network deployment. The size of a cluster, the area it covers, and the members it
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Fig. 17.3 Static
cluster-based tracking
example

has do not change over the lifetime of the network. When an object moves within
a cluster, some nodes will sense it and be activated. These nodes send their esti-
mated location of the target to the clusterhead (CH) which can then calculate a more
accurate position of the object along with its speed and estimated trajectory using
previous data about the object and send this data to the sink.

Figure 17.3 displays a WSN that has been divided into six clusters C1, . . . ,C6
during initialization. There is also an overlay spanning tree T that connects all the
nodes to the sink. The formation of clusters can be done independently from the
formation of T , or an algorithm such as the one described in Sect. 15.4.8 can be
used to provide clusters and a spanning tree at the same time.

An object O enters the region through C2 and is detected by the nearby nodes
8, 1, and 3, which send their estimated distances to O to node 11, which is the CH
of C2. Node 11 then computes the location of O using the triangulation method
and sends the estimated coordinates and other information such as the speed and the
direction of O to the sink via the spanning tree T in a report message if data from
the previous cluster is available. Similarly, when O enters C3, nodes 6, 5, and 2 are
activated, send their data to node 10, which then sends its computed coordinates of
O to the sink via T . The sink can merge data received from the activated clusters
C2,C3, and C4 and can construct the trajectory of the moving object as shown. Static
cluster-based tracking algorithm can be implemented similar to Algorithm 17.1 with
the difference that multilateration is performed by the CH only.

Some improvements can be done to provide a more power efficient method with
better estimate of the trajectory. The nodes of a cluster may be put to sleep, and
they are only awaken when an obj_near message from a nearby cluster arrives. For
example, the activated CH may send an obj_near message toward the next cluster
along the trajectory of the object so that the nodes of the next possible cluster are
awaken. For the example of Fig. 17.3, CH 11 may send this message to node 3 as
it can estimate that the object will be moving toward C3 and node 3 is the gateway
node to C3.
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A further improvement is to wait for a while for more detection of the object in
the same cluster. This way, the direction and speed of the object may be determined
more accurately, and the task of the sink is simplified.

The static cluster-based tracking is simple to implement; however, a CH is a
single point of failure, and a new CH has to be elected if it fails to function due
to its battery drain or for other reasons that necessitate cluster maintenance proce-
dures.

17.2.1.2 Dynamic Clustering

In dynamic cluster-based tracking, clusters are formed dynamically around the tra-
jectory of the target as it moves through the region under control. When an object
is detected by nearby nodes, the node that is closest to the object is elected as the
CH, and a cluster is formed around this node, which then calculates the location,
speed, and trajectory of the object using the information obtained from the neigh-
bors as before. The newly formed CH may then inform the next node that is not in
its cluster by the obj_near message, which then becomes the CH of the cluster that
will be formed next along the trajectory of the object. However, since there is no
fixed and maintained cluster structure, this approach is more fault tolerant as even
if some nodes run out of battery power, the remaining nodes will continue to form
clusters dynamically.

An example of dynamic cluster based tracking is shown in Fig. 17.4, where an
object O enters the region, and nodes 2, 7, 3, and 11 detect it and form a cluster
around it. After the election phase, node 2 is chosen as the CH as it has the lowest
distance to O . The coordinates and the distance information are sent to this node, to
estimate the coordinates of O , which can then be sent to the sink by a report message
along the initially constructed spanning tree T as in the static cluster algorithm.
As an improvement, nodes in this cluster may wait for a while in anticipation of
further detections, and if this happens, the CH node 2 is informed which can assess
the speed and direction of the object more accurately. Node 2 may then find its
closest neighbor in that direction, which is node 3, and send an obj_near message
that is transferred to node 9 to awaken. Node 9 can now awaken its neighbors in
anticipation of O entering its region. Using this procedure, nodes may sleep most of
the time saving energy, and only the nodes that are predicted to be on the movement
direction of O are awaken.

Alternatively, the first nonmember node in the direction of the movement of
the object that is awaken by the obj_near message may be assigned as the CH
of the next cluster to be formed along the trajectory of the object as shown in
Fig. 17.5.

We propose an algorithm to perform tracking using dynamic clusters, called
Dclus_TT , assuming the following:

• Every node has a unique identifier.
• Each node knows its coordinates determined by any of the described localization

methods, and hence, each node is an anchor.
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Fig. 17.4 Dynamic
cluster-based tracking first
example

Fig. 17.5 Dynamic
cluster-based tracking second
example

• Only nodes that have detected the object are included in the cluster and there-
fore participate in finding the coordinates of the object. In other words, any node
that hears detection of an object by a neighbor node is not included in the clus-
ter.

• CH is elected as the node with the minimum value of 〈id,distance〉, so that ties
are broken by identifiers.

• The cluster that is formed is one-hop.

The algorithm proceeds in two phases. The first phase is the CH Election Phase,
where until the duration timeout1, any node that has detected an object estimates
its distance to the object and broadcasts its coordinates and the distance to the
neighbors by the detected message. The node with the lowest 〈id,distance〉 is
elected as the CH at the end of this phase, which broadcasts its identifier by the
clusterhead message. The CH sends the coordinates of the object to the sink over
the spanning tree T or a backbone structure that may be present, by the report
message. It also sends the speed and direction to the first node in the estimated
direction, which is forwarded to other nodes until it reaches the first node that
is not a member of the cluster. The FSM of the proposed algorithm is shown in
Fig. 17.6.

Each node initially is at IDLE state, and when a node detects an object O , it
enters OBJ_FND state, estimates its distance to O , and broadcasts its identifier, its
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Fig. 17.6 Dynamic cluster-based tracking algorithm FSM

coordinates, and its estimated distance to the object by the detected(i, xi, yi,distiO)

message. When a node that has not detected the object hears a neighbor by the
detected message, it enters the NEIGH_DT state with the expectation it may de-
tect the object. If this does not happen, it goes back to the IDLE state after a
timeout. If a node detects an object at the NEIGH_DT state, it proceeds to the
OBJ_FND state, where nodes now decide on the CH of the cluster formed. If a
node finds after a timeout that it has the smallest 〈id,distance〉 pair among all the
nodes in OBJ_FND state, it declares itself as the CH by the clusterhead message.
Algorithm 17.2 (Dclus_TT) shows a sketch of the implementation of the above
scheme.

Further enhancements are possible such as providing a second phase of de-
tection by the member nodes. In this case, any node that has detected the ob-
ject in the first phase and the CH wait for another duration timeout2 to fur-
ther record any more detection of the object distance, which can then be sent
to CH. This second possible detection allows the speed and direction of the ob-
ject to be computed in better accuracy, and at the end of this phase, the CH
may have the approximate coordinates, speed, and direction, which it sends to
the sink by the report message. The CH may aggregate data and send more re-
fined information such as a subtrajectory if more than two points become avail-
able. The message complexity of this algorithm is O(n) as each detecting node
will send a constant number of detected, clusterhead, report, and obj_near mes-
sages.
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Algorithm 17.2 Dclus_TT
1: states SLEEP, IDLE, NEIG_DT , OBJ_FND, MEMBER, CH, currstate
2: tuples dists[] ←∅

3: message types detected, clusterhead, obj_near, report
4: int count ← 0; my_CH
5:
6: loop
7: set timer to tval
8: currstate ← SLEEP
9: timer interrupt or obj_near message

10: currstate ← IDLE
11: while ¬timeout1 do � clusterhead election phase
12: wait for event � either node or a neighbor detects an object
13: case event_type of
14: object_detected:
15: estimate diu

16: dists[count] ← (xi , yi , diu)

17: count ← count + 1
18: broadcast detected(xi , yi , diu)

19: if currstate �= OBJ_FND then currstate ← OBJ_FND
20: detected(xj , yj , dju) received:

21: if currstate = IDLE then currstate ← NEIGH_DT
22: dists[count] ← (xj , yj , dju)

23: end while
24: if count ≥ 3 then
25: if i = min{j |dists[j, xj, yj ]} then
26: currstate ← CH
27: my_CH ← i

28: broadcast clusterhead
29: else if currstate = OBJ_FND then
30: receive clusterhead(j)

31: currstate ← MEMBER
32: my_CH ← j

33: end if
34: end if
35: if currstate = CH then
36: compute xu, yu from dists using Eq. (17.8)
37: predict speed,dir from dists � estimate speed and direction of object
38: find node v in direction dir
39: broadcast obj_near(speed,dir) � warn neighbors of the coming object
40: send report(xu, yu, speed,dir) to parent � send info to sink via backbone
41: end if
42: end loop
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Fig. 17.7 Dynamic
tree-based tracking first
example

17.2.2 Tree-Based Approaches

Tree-based methods build a small tree in the vicinity of the moving object to esti-
mate its coordinates. The nodes that detect the object elect a leader using an election
algorithms as in dynamic cluster-based schemes, the leader node becomes the root
of the tree, and the root forms a tree with few hops around the target. The estimated
distances of the object are forwarded to the root, which then uses trilateration to
estimate the coordinates of the object. If the root knows the previous direction and
speed of the object, it can estimate its possible next direction and warn the first
node in the estimated direction, which may then become the root of the next tree
to be formed. Figure 17.7 displays this method where an object O is detected by
the nodes 5, 4, 11, and 6. Node 5 has the shortest distance to O and is therefore
elected as the root of the tree T1. The remaining nodes 4, 9, and 11 are the children
of the root, and node 6 is two hops away. Node 5 calculates the coordinates, speed,
and direction of O and sends this to the sink along the overlay tree T and also to
its children. Node 6 finds that it has a neighbor 1 in the direction of the object and
informs the coming object by the obj_near message, and the second tree T2 along
the trajectory is formed.

Alternatively, the nonmember node that is awaken by the obj_near message may
be assigned as the root of the next tree along the trajectory of the object as shown in
Fig. 17.8.

The algorithm we propose to accomplish tree-based tracking is similar to
Dclus_TT and is called Dtree_TT . It also has two phases as before, and the first
phase is concluded by the election of the root. However, we assumed that the tree
formed around the object has a maximum depth of 2 to allow that any nonneighbor
nodes that have detected the object to cooperate to localize its coordinates. For this
reason, the detected message now has the extra hops field, which is set to 2 by any
node sending detected for the first time and is decremented by any node that hears
it and is broadcast until hops becomes 0. At the end of the first phase, root forms
a tree around it by the probe message similar to the Flood_ST algorithm we saw
in Sect. 4.2. The FSM of Dclus_TT is shown in Fig. 17.9, where a node that has
detected an object is assigned to one of the ROOT, INTERM, or LEAF states at the
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Fig. 17.8 Dynamic
tree-based tracking second
example

Fig. 17.9 Dynamic tree-based tracking algorithm FSM

end of first phase. After timeout2 duration, all nodes go back to the SLEEP state as
before.

Tree-based tracking this way provides nonadjacent nodes to cooperate to track
an object in a two-hop structure. Algorithm 17.3 (Dtree_TT) shows one way of
achieving tree-based tracking assuming that all nodes know their coordinates and
their one-hop neighbor coordinates. The message complexity of this algorithm is
O(n) as each node transmits a constant number of messages.
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Algorithm 17.3 Dtree_TT
1: states SLEEP, IDLE, NEIG_DT , OBJ_FND, ROOT , INTERM, LEAF, currstate
2: tuples dists[] ←∅

3: message types detected, clusterhead, obj_near, report
4: int count ← 0
5: loop
6: set timer to tval
7: currstate ← SLEEP
8: timer interrupt
9: currstate ← IDLE

10: while ¬timeout1 do � clusterhead election phase
11: wait for event � either node or a neighbor detects an object
12: case event_type of
13: object_detected:
14: estimate diu

15: dists[count] ← (xi , yi , diu)

16: count ← count + 1
17: broadcast detected(xi , yi , diu)

18: if currstate �= OBJ_FND then currstate ← OBJ_FND
19: detected(hops, xj , yj , dju) received:

20: if currstate = IDLE then currstate ← NEIGH_DT
21: else if currstate = NEIGH_DT currstate ← OBJ_FND
22: dists[count] ← (xj , yj , dju)

23: if hops = 2 then broadcast detected(1, xj , yj , dju)

24: end while
25: if count ≥ 3 then
26: if i = min{j |dists[j, xj, yj ]} then
27: currstate ← ROOT
28: parent ←⊥
29: broadcast root(2, i)

30: else if currstate = OBJ_FND then
31: receive root(hops, i)
32: parent ← j

33: end if
34: if hops = 2 then
35: broadcast probe(1, i)

36: currstate ← INTERM
37: else currstate ← LEAF
38: parent ← j

39: end if
40: end if
41: if currstate = ROOT then
42: compute xu, yu from dists using Eq. (17.8)
43: predict speed,dir from dists � estimate speed and direction of object
44: find node v in direction dir
45: broadcast obj_near(speed,dir) � warn neighbors of the coming object
46: send report(xu, yu, speed,dir) to parent � send info to sink via backbone
47: end if
48: end loop forever
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17.2.3 Prediction-Based Approaches

In order to predict the next location of an object, linear prediction, which assumes
linear motion and estimates the next location from the previous locations may
be used. The three important methods for prediction are Kalman Filter, Extended
Kalman Filter, and Particle Filtering methods.

Kalman Filter (KF) is a method to estimate the state of a linear system at a given
time from the estimated previous state and current measurements [7]. It uses the
dynamic model of the system, the control inputs, and multiple measurements to
provide an estimate of the state of the system. It is mainly a sensor and data fusion
algorithm, which has been extensively used in navigation and guidance of vehicles.

The Extended Kalman Filter (EKF) is the nonlinear version of KF, and it lin-
earizes the original nonlinear filter dynamics around the previous state estimates [8].
In EKF, the state transition and observation models may not be linear functions of
the state. The EKF is considered as the standard method in nonlinear state estima-
tion. For tracking targets with nonlinear motion in a WSN, EKF has limitations, and
information exchange in this environment may be complicated. However, sequential
Monte Carlo methods, called particle filtering (PF), that estimate nonlinear and/or
non-Gaussian dynamic processes may be a favorable choice [6].

In PF, target tracking is considered as a dynamic state estimation problem, and
an approximation to the optimal solution is searched. In this method, the posterior
probability density function (pdf) of Bayesian estimation is represented with dis-
crete samples (or particles) with associated weights. The algorithm performs the
following at each iteration. First, particles from a proposal distribution are drawn
and assigned the corresponding normalized weights; a resample may also be formed,
and finally the estimate is formed as the weighted average of the particles. Particle
filters require significant computation, and hence distributed algorithms to perform
particle filtering may be challenging.

17.2.4 Lookahead Target Tracking

Most of the tracking algorithms predict the location of the target for the next short
duration of time. If object location is determined at time t , the contemporary algo-
rithms estimate its location at t + 1 and send warning messages to the nodes in the
computed direction so that they are awaken and possibly organized in anticipation
of the coming object. However, if the object moves with high speed, the awaken-
ing of the nodes in the next region may not provide the required accuracy for the
trajectory estimation.

Alaybeyoglu et al. [1] proposed a dynamic cluster-based tracking algorithm,
called lookahead target tracking, in which k future locations of the target are pre-
dicted, and k nodes, possible future clusterheads, are awaken. The value of k is
dependent on the speed of the object and increases with high speeds. Figure 17.10
displays the general idea behind lookahead tracking, where a series of trees T _1 at
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Fig. 17.10 Lookahead target tracking example

point A, T _2 at point B , and T _3 at point C are formed with the estimation of the
target’s future location with the k value of 4. Alaybeyoglu et al. achieved to track
objects at speeds of up to 100 m/s with the described lookahead method combined
with the particle filtering prediction method.

17.3 Chapter Notes

Target tracking is a fundamental WSN application, and there are considerable re-
search efforts about various aspects of tracking. In general, three main approaches
for awakening the nodes along the target trajectory are as follows. First, only one
sensor nearest to the predicted destination can be awaken. Second, all nodes on the
route of the target to the destination may be awaken, and third, all nodes around the
route to the destination are awaken [9, 10]. The third method clearly provides better
estimation but has high energy requirements due to the wakening of many redun-
dant nodes. We have seen algorithms in this chapter that estimate routes based on the
modified third method, where only a subset of nodes on the route to the destination
are awaken.

An example of a tree-based scheme is the Dynamic Convoy Tree-based Collab-
oration (DCTC) [16], where sensor nodes form a tree around the object, and the
dynamic tree is modified by adding or deleting nodes based on the trajectory of the
object. The object route is gathered by the tree nodes and sent to the sink. A dy-
namic cluster-based algorithm is proposed in [5], where the network consists of
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high-capability sensors and normal nodes. The high-capability sensors act as the
CHs, and when an object is detected, gather information from the normal sensors
to send to the sink. Prediction-based methods have been used in [14, 15, 17], as-
suming that the speed and direction of the moving object do not change in the next
few seconds. Alaybeyoglu et al. provided a cone-based dynamic clustering method
where nodes that are in a cone-shaped region along the estimated route of a target
are awaken. They showed that this method, combined with particle filter estima-
tion, provides target estimates with high accuracy for highly dynamic targets having
nonlinear motion [2].

Target tracking will probably remain as an active area of research in sensor net-
work applications for many years as it has numerous diverse applications from habi-
tat monitoring to intruder detection to military applications. Our general conclu-
sion is that tracking objects require complicated systems that should have several
components, some of which are described in this chapter as localization, topology
constructs, and prediction techniques. Another important related area of research
is multi-target tracking, where more than one target, their movement pattern, and
rendezvous points are tracked and predicted.

17.3.1 Exercises

1. Compare RSSI, TDoA, and AoA methods in terms of precision and implemen-
tation costs involved.

2. The algorithm Dclus_TT is to be enhanced so that a second phase of detection is
provided as described in Sect. 18.2. Provide a pseudocode for this modification.

3. Provide a pseudocode for the same modification to algorithm Dtree_TT as in
Exercise 2.

4. In dynamic tree or cluster algorithms, the next CH or tree root can be elected as
the next node in the current moving direction of the target or the closest node
to the target that has detected it, in that region. Compare these two methods
discussing their relative advantages and disadvantages.

5. Discuss briefly the effect of the velocity of the target to be tracked on the trajec-
tory estimated using lookahead tracking.
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Chapter 18
ASSIST: A Simulator to Develop Distributed
Algorithms

Abstract We describe a simple simulator, called ASSIST, based on POSIX threads
to develop distributed algorithms in this chapter. ASSIST is easy to learn and im-
plement and can be used to test and verify distributed algorithms.

18.1 Introduction
Simulators are widely used to test, verify, and analyze the performances of dis-
tributed algorithms. We have briefly described simulators that are in use for
MANETs and WSNs such as ns2, OMNET++, and TOSSIM in Chap. 14. In this
chapter, we show the implementation of a simple simulator called ASSIST (A Sim-
ple Simulator based on Threads) that we have designed and used in teaching of
distributed algorithm courses. ASSIST is a simple software package written in C
and based on POSIX threads. Two important functions of ASSIST are the memory
management and interprocess communication. Memory management is handled by
buffer pools, which are statically allocated at system initialization. Memory man-
agement in this way prevents overflows and provides an efficient method to manage
memory space.

ASSIST provides the interprocess communication module for the nodes of the
distributed system to communicate with each other. Each node of the distributed
system is simulated by a POSIX thread, which communicates with its neighbors
using the interprocess communication procedures to simulate communications over
the network. As the distributed algorithms are symmetric in most of the cases, pro-
viding the distributed algorithm code for a single thread is adequate. For example,
for the spanning tree construction using flooding (Flood_ST), we can write a single
thread and invoke this thread as many times as the number of nodes in the network.
However, we need to define the neighborhood of the nodes so that each node is al-
lowed to communicate with its neighbors only. The memory management module
and a simple interprocess communication using semaphores and mutex variables are
described below. The actual C code for ASSIST is given in Appendix B.

18.2 Memory Management by Buffer Pools
Memory management in ASSIST is provided by buffer pools. A buffer pool is a
data structure that contains the physical space for required items of data units called
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Fig. 18.1 Buffer pool data structure

buffers. This data structure has an array of buffers managed by the pool structure.
This structure has a semaphore called poolsem, and a thread that needs a free buffer
has to perform a wait on this semaphore to check the availability of a free buffer. The
head of the queue is stored in bufque_front and the address of the last free buffer
is kept at bufque_rear. Mutual exclusion to shared pool structure is provided by
the lock variable pool mutex. There are a total of size number of buffers allocated,
and each buffer initially is linked to the next one as shown in Fig. 18.1. The pool
semaphore poolsem is initialized to the number of empty buffers. Obtaining a free
buffer from the pool is performed in a first-in-first-out manner.

Two procedures required for buffer management are as follows:

• get_buf (pool type pointer pp): Calling thread waits on the pool semaphore, and
it retrieves the buffer address at the top of the pool when signalled.

• put_buf (pool type pointer pp, buffer pointer bp): Calling thread puts the address
of the buffer to the rear of the queue and signals the pool semaphore to activate a
waiting process.

Typically in a single-processor system, a producer process will invoke get_buf
to obtain a free buffer, fill this buffer with data, and send it to the consumer process.
The consumer process will receive the buffer, use the data in this buffer, and return
the buffer to the pool by the put_buf procedure. The communication between the
producer and the consumer processes can be handled asynchronously in this man-
ner. The buffer management module of ASSIST provides the initialization proce-
dure init_pool, which initializes the pool and its semaphores. Also, the check_pool
procedure is used by a process that wants to check the pool before obtaining a buffer
from the pool to prevent waiting on the semaphore.

18.3 Interprocess Communication

Interprocess communication in ASSIST is provided by the data structure fifo, which
simulates the first-in-first-out structure of the communication channels. Each fifo
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Fig. 18.2 Fifo data structure

has space allocated to hold certain number of buffer pointers up to the size of the
fifo. The empty semaphore, which shows the number of empty buffer pointer lo-
cations, is initialized to the size of fifo, and the full semaphore, which shows the
current unread buffer pointers, is initialized to 0. The two indexes, the read index
and the write index, show the next location in the buffer pointer array to read and
write, respectively, as shown in Fig. 18.2. The mutual exclusion variable fifo mutex
provides a single access to the fifo structure at any time. For this example fifo, 30
buffer address spaces are allocated, the read index is 1, meaning that the next buffer
address that will be read is 4100, and the write index is 3, showing that the next
write will be to the third array location, overwriting data at address 2800. The full
semaphore has the value 2, showing that there are two locations that can be read (1
and 2) before being blocked on this semaphore, and the empty semaphore, which
shows the empty locations, has the value 28, meaning that there may be 28 (loca-
tions 3 to 29 and 0) consecutive write operations to this fifo before being blocked
on this semaphore.

The procedures to send a message to and receive a message from a fifo are as
follows:

• write_fifo(fifo pointer fp, buffer pointer bp): If fifo is full, the calling process is
blocked on the full semaphore of the fifo. Otherwise, the address of the buffer is
written to the next available place in the fifo shown by the write index.

• read_fifo(fifo pointer pp): It returns the next available buffer address from the fifo
shown by the read index. If there are no messages in the fifo as shown by the 0
value of the empty semaphore, the caller is blocked.

The initialization procedure init_fifo initializes the fifo and its semaphores. Al-
gorithm 18.1 shows a simple producer consumer example where a producer pro-
cess obtains a buffer from the pool, fills it with data, and sends it to the input fifo
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Algorithm 18.1 Procedures for finding and allocating neighbors
1: pool type pool
2: fifo type cons_fifo
3: buffer pointer type buf _ptr
4: procedure Producer
5: while true do
6: buf _ptr ← get_buf (&pool) � obtain a free buffer from the pool
7: fill data to buffer � put data in the buffer
8: write_fifo(&cons_fifo,buf _ptr) � place buffer in consumer input fifo
9: end while

10: end procedure
11:
12: procedure Consumer
13: while true do
14: buf _ptr ← read_fifo(&cons_fifo) � get the buffer from input fifo
15: consume data from buf _ptr � use data in buffer
16: put_buf (&pool,buf _ptr) � return buffer to pool
17: end while
18: end procedure

(cons_fifo) of the consumer. The consumer receives the buffer from its fifo by the
read_fifo procedure, uses the data in the buffer, and returns it to the pool.

18.4 Sliding-Window Protocol Implementation

In this section, we will illustrate the use of ASSIST by a simple sliding-window
data link protocol. This protocol called Go-back-N is used for flow control and error
control between a sending node and a receiving node in computer networks. It is
typically used in data link but can also be used in other layers such as the transport
layer. The sending node in this protocol may send a certain number of frames of
data from a window of frames, without getting an acknowledgement from the re-
ceiver. When all the frames in the current window are sent, the sender is blocked,
waiting for an acknowledgement from the receiver. The receiver may acknowledge
a number of frames by a single acknowledgement (ACK). When an acknowledge-
ment is received, the sender shifts its window as many as the number of frames
acknowledged. In Go-back-N protocol, if there is an error in a sent frame, the re-
ceiver sends a negative acknowledgement (NACK) for this frame, and all of the sent
frames starting from the erroneous frame are retransmitted. This type of flow con-
trol is necessary to enable the synchronization between a sender and a receiver to
prevent buffer overflows. Figure 18.3 shows an example operation of the protocol.

ASSIST may be used to realize this protocol, where the sending thread sends the
contents of an input file to the receiving thread. The sending thread fills the array
swindow of size N with buffer addresses obtained from the buffer pool, where the
indexes of buffer pointers in swindow are the sequence numbers of the frames to
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Fig. 18.3 Go-back-N implementation with ASSIST

be transmitted. The sender gets an address of a buffer from the available window,
reads 10 bytes of data from the input file, writes this data to the buffer, and writes
the buffer address to the receiver fifo. Whenever an ACK is received, more buffer
addresses are obtained from the pool to fill the window as shown in Fig. 18.3. The
actual C code for the protocol is given in Sect. B.1.

18.5 Spanning Tree Construction

In this section, we will describe the implementation of the spanning tree construc-
tion algorithm with termination detection, Term_ST , of Sect. 4.3. The FSM of this
algorithm is presented here in Fig. 18.4 with the addition of actions to be invoked.
This algorithm starts by a single initiator, called the root, which sends probe mes-
sages to all of its neighbors. Any node that receives a probe for the first time marks
the sender as its parent, enters XPOLRD state, and sends the probe message to all its
neighbors except the parent. When a node receives ack or reject messages from all
its neighbors except the parent, it sends an ack message to its parent. In this way, all
ack messages are convergecast to the root, which marks the end of the algorithm.

In order to implement Term_ST using ASSIST , we would first need to provide
the state table for the FSM of the algorithm shown in Fig. 18.4. The state table as
shown in Table 18.1 has the states IDLE and XPLORD as rows and the inputs probe,
ack, and reject as the columns. When an input is received, the related action is de-
cided according to the entry of the table specified by the current state and input. For
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Fig. 18.4 Term_ST FSM

Table 18.1 State table for
the parity checker probe ack reject

IDLE act00 – –

EVEN EVEN ODD –

XPLORD act10 act11 act12

example, receiving probe input at XPLORD state would activate action10, which
would send a reject message to the sender as the node has already received a probe
message.

18.5.1 Data Structures and Initialization

The following constants and data structures were defined for FSM states (IDLE,
XPLORD), the message types (probe, ack, reject), and the FSM type, which is a
two-dimensional array holding a function pointer that is initialized with the cor-
responding action entry. Current states, neighbors, and children for each node are
declared as global arrays where the ith entry in these arrays correspond to the values
for the ith process. This way, actions called from any process can modify them using
the identity of the process. Also, each node has an input message queue specified by
its identifier-based entry in the array fifos.

#define PROBE 0 // message types
#define ACK 1
#define REJECT 2
#define IDLE 0 // states
#define XPLORD 1
#define TERM 2
#define N 6 // number of nodes
#define ROOT 3 // root node
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int parents[N]={0}, currstates[N]={0};
int neighs[N][N+3]={...}, others[N][N+3]={0},
childs[N][N+3]={0};

typedef int (*fnptr_t)();
typedef fnptr_t fsm_t[2][2]; // FSM type declaration
fifo_t fifos[N]; // fifos
pool_t mypool; // buffer pool declaration

18.5.2 The Algorithm Thread

The actual thread that is activated as the number of nodes N in the distributed
system is shown below. It starts by receiving its identifier through the thread
creation function executed by the main program. The reception of the identifier
is important as it forms the index to manipulate the related entry in the global
data for a particular thread. For example, neighbors of thread k are stored in the
global data neighs[k][N + 1]. The user should initialize the neighs structure to re-
flect the network topology, or the thread itself can do the initialization when in-
voked.

The designated root thread starts by sending the probe message to all its neigh-
bors. All the remaining threads start by waiting to receive a message from their fifos.
The main body of the FSM is simply to activate action determined by the current
state as the row and the received message type as the column of the state table.
The main loop is executed indefinitely until the current state of the thread is TERM,
which signals the end of the execution as shown below.

void CRobs_node(int *mp)
{ fsm_t my_fsm; // declare my FSM

int currstate = IDLE;
initialize()
int me=*mp;bufptr bp;

if (me==ROOT) // if i am root, start the algorithm
while(neighs[j]!=-1) // for all neighbors

{ bp = get_buf(pool); // get a buffer
bp-> type = PROBE; // set type as PROBE
bp->sender = me; // insert my id
write_fifo(fifos[me], bp);} // send it to neighbor

while (currstates[me]!=TERM) // loop until state = TERM
{

bp=read_fifo(&fifos[me]);
(*myfsm[currstates[me]][bp->type])(me,bp);

}
}
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Fig. 18.5 A spanning tree
formed by Term_ST
algorithm

Figure 18.5 displays a possible spanning tree formed by the algorithm in a net-
work of six nodes with identities 1, . . . ,6, where the root node is 3. As threads are
activated randomly by most operating systems, they may execute in any order, re-
sulting in possibly different spanning trees at each run. For this example, it may be
seen that node 5 is scheduled later than others by the operating system, and hence
sending of the probe message by the node 5 is delayed causing it to reach node 2
later than the probe message sent by node 6 resulting in node 6 becoming parent of
node 2. The full implementation code in C is shown in Sect. C.2

18.6 Chapter Notes

We showed a simple simulator to run distributed algorithms. Most of the contempo-
rary simulators require a learning and experimenting time, which is not trivial. For
courses on distributed algorithms and ad hoc networks, this allocation of learning
time is almost impossible, which makes it difficult for the instructors to teach the
students the implementation of distributed algorithms.

ASSIST grew out of the necessity for such a condition. It is simple so that it can
be learned and experienced within hours in contrast to months of many contem-
porary simulators. It has been successfully used in senior/graduate level courses on
distributed systems and algorithms at various universities in the world, to implement
programming assignments and projects as the one described in Sect. 18.5.

Our general conclusion is that ASSIST can aid designing, development, testing,
and verification of distributed algorithms for ad hoc networks and general computer
networks. One major drawback with ASSIST is that as the number of nodes in the
simulated network increase, configuration of the neighbors of a node will not be
easy. For example, to simulate a WSN with n nodes (n � 1), the establishment of
neighbors for n nodes would require substantial lines of initialization code to be
added to assign neighbors to nodes. A graphical user interface may be provided in
future to ease such a problem. ASSIST was primarily used for designing, testing,
and verification. For performance evaluation such as measuring durations of execu-
tions for a large network, the widely used network simulator ns2 would probably
be a better choice. However, in measuring relative performances of few distributed
algorithms on the same testbed with the same network using ASSIST would provide
clues about the relative favorableness of these algorithms.
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Fig. 18.6 Example graph for
Project 1

Fig. 18.7 Example graph for
Project 2

Fig. 18.8 Example graph for
Project 3

18.6.1 Projects

1. It is required that each node in a network should be informed the identifiers of
all nodes in this network. Assuming there is already a constructed spanning tree
as in Fig. 18.6, provide a distributed algorithm where the identifiers of children
of all nodes in this tree are convergecast to the root node 3, which in turn broad-
casts these identifiers to all nodes. Write this algorithm using ASSIST by first
initializing the neighs data structure for this network.

2. Implement the asynchronous routing algorithm called Chandy_APSP of Sect. 7.6
using ASSIST based on an FSM. Find the resulting routes from node 5 in the
example network of Fig. 18.7.

3. Implement the greedy distributed vertex coloring algorithm called Rank_Vcol of
Sect. 9.3 using ASSIST based on an FSM and find the resulting colors in the
example network of Fig. 18.8.
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Appendix A
Pseudocode Conventions

A.1 Introduction

In this part, the pseudocode conventions for writing an algorithm are presented. The
conventions we use follow the modern programming guidelines and are similar to
the ones used in [1] and [2]. Every algorithm has a name specified in its heading,
and each line of an algorithm is numbered to provide citation. The first part of an
algorithm usually starts by its inputs. Blocks within the algorithm are shown by
indentations. The pseudocode conventions adopted are described as data structures,
control structures, and distributed algorithm structure as follows.

A.2 Data Structures

Expressions are built using constants, variables, and operators as in any functional
programming language and yield a definite value. Statements are composed of ex-
pressions and are the main unit of executions. All statements are in the form of
numbered lines. Declaring a variable is done as in languages like Pascal and C,
where its type precedes its label with possible initialization as follows:

set of int neighbors ← ∅

Here we declare a set called neighbors of a vertex in a graph each element of
which is an integer. This set is initialized to ∅ (empty) value. The other commonly
used variable types in the algorithms are boolean for boolean variables and message
types for the possible types of messages. For assignment, we use ← operator, which
shows that the value on the right is assigned to the variable in the left. For example,
the statement

a ← a + 1

increments the value of the integer variable a. Two or more statements in a line are
separated by semicolons and comments are shown by � symbol at the end of the
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Table A.1 General
algorithm conventions Notation Meaning

x ← y assignment

= comparison of equality

�= comparison of inequality

true, false logical true and false

null nonexistence

� comment

Table A.2 Arithmetic and
logical operators Notation Meaning

¬ logical negation

∧ logical and

∨ logical or

⊕ logical exclusive-or

x/y x divided by y

x · y or xy multiplication

line as follows:

1 : a ← 1; c ← a + 2; � c is now 3

General algorithmic conventions are outlined in Table A.1.
Table A.2 summarizes the arithmetic and logical operators used in the text with

their meanings.
Sets instead of arrays are frequently used to represent a collection of similar

variables. Inclusion of an element u to a set S can be done as follows:

S ← S ∪ {u}

and deletion of an element v from S is performed as follows:

S ← S \ {v}

Table A.3 shows the set operations used in the text with their meanings.

A.3 Control Structures

In the sequential operation, statements are executed consecutively. Branching to
another statement can be done by selection described below.
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Table A.3 Set operations
Notation Meaning

|S| cardinality of S

∅ empty set

u ∈ S u is a member of S

S ∪ R union of S and R

S ∩ R intersection of S and R

S \ R set subtraction

S ⊂ R S is a proper subset of R

max/min S maximum/minimum value of the elements of S

max/min{. . .} S maximum/minimum value of a collection of
values

Algorithm A.1 if–then–else structure
1: if condition then � first check
2: statement1
3: if condition2 then � second (nested) if
4: statement2
5: end if � end of second if
6: else if condition3 then � else if of first if
7: statement3
8: else
9: statement4

10: end if � end of first if

A.3.1 Selection

Selection is performed using conditional statements, which are implemented using
if–then–else in the usual fashion, and indentation is used to specify the blocks as
shown in the example code segment (see Algorithm A.1).

In order to select from a number of branches, case–of construct is used. The ex-
pression within this construct should return a value that is checked against a number
of constant values, and the matching branch is taken as follows:

1. case expression of
2. constant1: statement1

3.
...

4. constantn: statementn
5. end case
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A.3.2 Repetition

The main loops in accordance with the usual high-level language syntax are the for,
while, and loop constructs. The for–do loop is used when the count of iterations can
be evaluated before entering the loop as follows:

1. for i ← 1 to n do

2.
...

3. end for

The second form of this construct is the for all loop, which arbitrarily selects an
element from the set specified and iterates until all members of the set are processed
as shown below, where a set S with three elements and an empty set R are given,
and each element of S is copied to R iteratively.

1. S ← {3,1,5}; R ←∅

2. for all u ∈ S do
3. R ← R ∪ {u}
4. end for

For the indefinite cases where the loop may not be entered at all, the while–do
construct may be used, where the boolean expression is evaluated, and the loop is
entered if this value is true as follows:

1. while boolean expression do
2. statement
3. end while

A.4 Distributed Algorithm Structure

Distributed algorithms have significantly different structures than the sequential al-
gorithms as their execution pattern is determined by the type of messages they re-
ceive from their neighbors. For this reason, the general distributed algorithm pseu-
docode usually includes a similar structure to the algorithm template shown in Al-
gorithm A.2.

In this algorithm structure, there may be n types of messages, and the type of
action depends on the type of message received. For this example, the while–do
loop executes as long as the value of the boolean variable flag evaluates to true.
Typically, a message received by this node (i) at some point triggers an action that
changes the value of the flag variable to true, which then results in this termination
of the loop. In another frequently used distributed algorithm structure, the while–do
loop is executed forever, and one or more of the actions should provide exit from
this endless while loop as shown in Algorithm A.3.

The indefinite structure of this loop type makes it suitable for distributed algo-
rithms where the type of message, in general, cannot be determined beforehand.
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Algorithm A.2 Distributed Algorithm Structure 1
1: int i, j � i is this node; j is the sender of the current message
2: while ¬flag do � all nodes execute the same code
3: receive msg(j)

4: case msg(j).type of
5: type_1: Action_1
6: . . . : . . .
7: type_n: Action_n
8: if condition then
9: flag ← true

10: end if
11: end while

Algorithm A.3 Distributed Algorithm Structure 2
1: while forever do
2: receive msg(j)

3: case msg(j).type of
4: type_1: Action_1: if condition1 then exit
5: . . . : . . .
6: type_x: Action_1: if conditionx then exit
7: type_n: Action_n
8: end while
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Appendix B
ASSIST Code

B.1 Buffer Pool Management

/* assist.c */
#include <stdio.h>
#include <fcntl.h>
#include <pthread.h>
#include <semaphore.h>
#include <stdlib.h>
#include <sys/types.h>

/***************************************************
pool data structure

****************************************************/

#define POOL_SIZE 20
/* size of allocated space */

#define ERR_POOLEMPTY -1
#define ERR_POOLFULL -2

typedef struct buffer *bufptr;
typedef struct buffer {

int data;
bufptr next;
int sender;
int type;
} buf_t;

typedef struct pool *poolptr;
typedef struct pool{ int state;

int pool_size;
sem_t poolsem;
pthread_mutex_t poolmut;
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bufptr front;
bufptr rear;
buf_t bufs[POOL_SIZE];

} pool_t;

/***************************************************
initialize a buffer pool

****************************************************/

int init_pool (poolptr pp, int pool_length)

{ int i ;
pp->pool_size=pool_length;
sema_init(&pp->poolsem,pp->pool_size,USYNC_THREAD,0);
mutex_init(&pp->poolmut,USYNC_THREAD,0);
pp->front=&(pp->bufs[0]);
for (i=0; i<pp->pool_size - 1; i ++)

pp->bufs[i].next = &(pp->bufs[i+1]);
pp->rear=&(pp->bufs[pp->pool_size-1]);

}

/***************************************************
get a buffer from a pool

****************************************************/

bufptr get_buf(poolptr pp)

{ bufptr bp;
sema_wait(&pp->poolsem);
mutex_lock(&pp->poolmut);
bp=pp->front;
pp->front=bp->next;
mutex_unlock(&pp->poolmut);
return(bp); }

/***************************************************
put a buffer to a pool

****************************************************/

int put_buf(poolptr pp, bufptr bp)

{ bp->next=NULL;
mutex_lock(&pp->poolmut);
pp->rear->next=bp;
pp->rear=bp;
if (pp->front==NULL) pp->front=bp;
mutex_unlock(&pp->poolmut);
sema_post(&pp->poolsem); }
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B.2 Interprocess Communication

/***************************************************
fifo data structure

****************************************************/

#define FIFO_SIZE 10
#define N_FIFOS 10
#define ALLOCATED 1
#define ERR_FIFOEMPTY -1
#define ERR_FIFOFULL -2

typedef struct fifo *fifoptr;
typedef struct fifo{ int state ;

int fifo_size;
int read_idx;
int write_idx;
sem_t fullsem;
sem_t emptysem;
pthread_mutex_t fifomut;
bufptr bufs[FIFO_SIZE];
} fifo_t;

/***************************************************
initialize a fifo

****************************************************/

int init_fifo(fifoptr fp)

{ int fifoid;
fp->state=ALLOCATED;
fp->fifo_size=FIFO_SIZE;
sem_init(&fp->fullsem,0,0);
sem_init(&fp->emptysem,fp->fifo_size,0);
pthread_mutex_init(&fp->fifomut,0);
fp->read_idx=0;
fp->write_idx=0;
return(fifoid); }

/***************************************************
read a buffer from a fifo

****************************************************/

bufptr read_fifo(fifoptr fp)

{ bufptr bp;
sem_wait(&fp->fullsem);
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pthread_mutex_lock(&fp->fifomut);
bp=fp->bufs[fp->read_idx++];
fp->read_idx %= fp->fifo_size;
pthread_mutex_unlock(&fp->fifomut);
sem_post(&fp->emptysem);
return(bp); }

/***************************************************
write a buffer to a fifo

****************************************************/

int write_fifo(fifoptr fp, bufptr bp)

{ sem_wait(&fp->emptysem);
pthread_mutex_lock(&fp->fifomut);
fp->bufs[fp->write_idx++]=bp;
fp->write_idx %= fp->fifo_size;
pthread_mutex_unlock(&fp->fifomut);
sem_post(&fp->fullsem); }
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Applications Using ASSIST

C.1 Sliding-Window Protocol Code

C.1.1 Data Structures and Initialization

#define DATA 0 // frame types
#define ACK 1
#define NACK 2
#define N 8 // sequence number range
#define W_SIZE N-1 // window size
#define N_DATA 10 // data block size

fifo_t sender_infifo, rcvr_infifo; // communication channels
pool_t pool; // buffer pool
bufptr swindow[N]; // sliding window

init_sys() { int i; // initialize system
init_fifo(&sender_infifo);
init_fifo(&rcvr_infifo);
init_pool(&pool,20);

}

void dl_sender() // sending thread
{ FILE *fp1;

bufptr bp;
int count,len,wlength=N-1,last_frsent=-1,next_ackseq=-1;

fp1=fopen("infile","r");
while(1) {

for(count=0;count<wlength;count++)
{ bp=get_buf(&pool);

last_frsent=(last_frsent+1)%N;
swindow[last_frsent]=bp;
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len=fread(bp->data,sizeof(int),N_DATA,fp1);
bp->seqnum=last_frsent;
bp->length=len;
calc_crc(bp);
write_fifo(&rcvr_infifo,bp);
if(len<N_DATA) exit;

}
bp=read_fifo(&sender_infifo);
if (bp->seqnum > next_ackseq)

wlength=bp->seqnum-next_ackseq;
else wlength=N+bp->seqnum-next_ackseq;

}
}

void dl_receiver() // receiving thread
{ FILE *fp2;

int i,j,next_seq;
bufptr bp, recvd[3];
int count=0;

fp2=fopen("outfile","w");
while(1)
{ for(i=0;i<3;i++)

{ recvd[i]=read_fifo(&rcvr_infifo);
fwrite(recvd[i]->data,sizeof(int),

recvd[i]->length,fp2);
if(recvd[i]->length<N_DATA) exit;

}
if(recvd[i]->length<N_DATA) exit;
next_seq = (next_seq+1)%N;
recvd[0]->seqnum=(recvd[2]->seqnum+1) % N;
write_fifo(&rcvr_infifo,recvd[0]);

}

}

main(){
pthread_t sender_id, receiver_id;

init_sys();
pthread_create(&sender_id,NULL,(void*)dl_sender,

NULL);
pthread_create(&receiver_id,NULL,(void*)dl_receiver,

NULL);

pthread_join(sender_id,NULL);
pthread_join(receiver_id,NULL);

}
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Finally, we would need to compile the source file gobackn.c, which has the appli-
cation and ASSIST(assist.c) and link them to provide the executable and run it as
follows:

#>gcc -c assist.c
#>gcc -c gobackn.c
#>gcc -o gobackn gobackn.o assist.o -lpthread
#>./gobackn

After the execution the output file outfile is the copy of the input file infile.

C.2 Spanning Tree Code

C.2.1 Data Structures and Initialization

#define PROBE 0 // message types
#define ACK 1
#define REJECT 2
#define IDLE 0 // states
#define XPLORD 1
#define TERM 2
#define N 6 // number of nodes
#define ROOT 5 // root node

int parents[N]={0}, currstates[N]={0};
int neighs[N][N+3]={0}, others[N][N+3]={0},

childs[N][N+3]={0};

typedef int (*fnptr_t)();
typedef fnptr_t fsm_t[2][2];
fifo_t fifos[N];
pool_t mypool;

void init_sys() {int i;
for(i=0;i<N;i++)
{ init_fifo(&(fifos[i]));

childs[i][0]=-1;
others[i][0]=-1;}

init_pool(&mypool,20);
}

C.2.2 Tree Construction Thread

/*********************************************
CRobs Thread

*********************************************/
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void CRobs_node(int *mp)
{ int i,j,me=(int )*mp;

bufptr bp;
fsm_t myfsm;

currstates[me]=IDLE;

myfsm[0][0]=act00;
myfsm[1][0]=act10;
myfsm[1][1]=act11;
myfsm[1][2]=act12;

// Configure my neighbor list according to my id

switch (me){
case 0 : neighs[me][0]=5;neighs[me][1]=1;neighs[me][2]=-1;

neighs[me][N+2]=2; break;
case 1: neighs[me][0]=2;neighs[me][1]=4;neighs[me][2]=0;

neighs[me][3]=5; neighs[me][4]=-1;neighs[me][N+2]=4;
break;

case 2 : neighs[me][0]=1; neighs[me][1]=3;neighs[me][2]=4;
neighs[me][3]=-1; neighs[me][N+2]=3; break;

case 3 : neighs[me][0]=2;neighs[me][1]=4;neighs[me][2]=-1;
neighs[me][N+2]=2; break;

case 4 : neighs[me][0]=1;neighs[me][1]=3;neighs[me][2]=5;
neighs[me][3]=2; neighs[me][4]=-1;neighs[me][N+2]=4;
break;

case 5 : neighs[me][0]=0;neighs[me][1]=4;neighs[me][2]=1;
neighs[me][3]=-1; neighs[me][N+2]=3;
break;

}

if (me == ROOT){ // if I am root do
for(i=0;neighs[me][i]!=-1; i++) // send PROBE to N(i)
{

bp=get_buf(&mypool);
bp->sender=me,
bp->type=PROBE;j=neighs[me][i];
write_fifo(&fifos[j],bp);

}
currstates[me]= XPLORD;

}

while (currstates[me]!=TERM)
// loop until state = TERM

{
bp=read_fifo(&fifos[me]);
(*myfsm[currstates[me]][bp->type])(me,bp);

}
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// output parent and children
printf(" I am %d my parent is %d \n ", me,

parents[me]);

for(i=0;childs[me][i]!=-1; i++) // send PROBE to N(i)
printf("my child is %d ", childs[me][i]);

}

C.2.3 Actions

/******************************************************
act00 : PROBE received first time

******************************************************/

act00(int id, bufptr bp) {
int i,j;
parents[id]=bp->sender; // mark sender as parent
others[id][N+2]=1;
put_buf(&mypool,bp); // return buffer to pool
for(i=0;neighs[id][i]!=-1; i++) // send PROBE to N(i)
{ if (neighs[id][i]==parents[id]) continue;

bp=get_buf(&mypool); // skip sender
bp->sender=id;
bp->type=PROBE; j=neighs[id][i];
write_fifo(&fifos[j],bp);}
currstates[id] = XPLORD;

}

/******************************************************
act11 : reject PROBE as parent exists

******************************************************/

act10(int id, bufptr bp){
bp->type=REJECT;
bp->sender=id;
write_fifo(&fifos[bp->sender],bp);
}

/******************************************************
act11 : ACK received

******************************************************/

act11(int id, bufptr bp ){
int i=childs[id][N+1];
childs[id][i]=bp->sender; // include sender in childs
childs[id][N+1]++; // increment index
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childs[id][N+2]++; // increment count
if(neighs[id][N+2]==childs[id][N+2]+others[id][N+2]) {

bp->type=ACK; // if all neighbors responded
bp->sender=id; // send ACK to parent
write_fifo(&(fifos[parents[id]]),bp);
currstates[id]=TERM;
childs[id][i+1]=-1;

}
else

put_buf(&mypool,bp); // return buffer to pool
}

/******************************************************
act12 : REJECT received

******************************************************/

act12(int id, bufptr bp){
int i=others[id][N+1];
printf("\n --actme : %d act12 i : %d--", id,i);
others[id][i]=bp->sender; // include sender in others
others[id][N+1]++; // increment index
others[id][N+2]++; // increment count
if(neighs[id][N+2]==childs[id][N+2]+others[id][N+2]){

bp->type=ACK; // if all neighbors responded
bp->sender=id; // send ACK to parent
write_fifo(&(fifos[parents[id]]),bp);

currstates[id]=TERM;
}

else
put_buf(&mypool,bp); // return buffer to pool

}

C.2.4 The Main Thread

main(){
pthread_t tids[N]; int i;
init_sys();
for(i=0;i<N;i++)

pthread_create(&tids[i],NULL,(void*)CR_node,&i);
for(i=0;i<N;i++)

pthread_join(tids[0],NULL);
}
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A
Ad hoc routing, 259

hybrid protocols, 268
ZRP, 268

proactive protocols, 261
DSDV, 262
WRP, 262

reactive protocols, 264
AODV, 266
DSR, 264
TORA, 267

sensor networks, 268
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SPIN, 269
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Ad hoc wireless network, 217
energy considerations, 224
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interference models, 223
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unit disk graph model, 221
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Bcast_ST , 49
BellFord_SSSP, 85
Bipart_MVC, 202
Ccast_ST , 48

CD_DFS, 101
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DBF_APSP, 92
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Detect_Object, 281
Dijkstra_SSSP, 84
DIM_DFS, 99
DistFW_APSP, 88
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Flood_ST , 41
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Manne_MWM, 187
Neigh_DFS, 64
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Algorithm (cont.)
Rank_MIS, 137
Rank_MVC, 198
Rank_Vcol, 110
Reduk_Vcol, 117
Redun_Vcol, 114
Seq1_MVC, 195
Seq_MDS, 158
Seq_MIS, 136
Seq_MWM, 183
Seq_Vcol, 108
SGHS_MST , 74
Shukla_MIS, 147
SixTwo_Vcol, 126
Six_Vcol, 125
Span_MDS, 163
SS1_DS, 167
SS1_Vcol, 129
SS2_MDS, 168
Synch_BFS, 54
Tarry_ST , 46
Term_ST , 43
Toueg_APSP, 89
Turau_MIS, 151
Turau_MVC, 210
Twospan_CDS, 166
Update_BFS, 58
Vcol_MIS, 145
Wu_MCDS, 252

ASSIST
buffer pools, 295
interprocess communication, 296
sliding window, 298
spanning tree construction, 299

B
Breadth first search, 53

algorithm, 54
asynchronous, 58
synchronous, 54

Broadcast, 39

C
Chromatic number, 107
Cloud, 3
Clustering

MANET, 240
metrics, 240

Clusters, 229
Complexity, 34

bit, 34
message, 34

space, 34
time, 34

Convergecast, 47

D
Delaunay Triangulation, 235
Depth first search, 53

algorithm, 60
Awerbuch’s algorithm, 63
classical algorithm, 61
neighbor knowledge, 64

Distance vector protocol, 94
Distributed

computing platforms, 2
cloud, 3
grid, 2
MANET, 3
WSN, 3

graph algorithms, 6
systems, 1

Distributed systems, 1
fault tolerance, 6
load balancing, 6
middleware, 4
synchronization, 5

Dominating set, 157
connected, 157
minimal, 157
minimum, 157

connected, 157
self-stabilizing, 167

algorithm, 167

E
Edge coloring, 117

F
Finite state machine, 26

Mealy Machine, 27
Moore Machine, 27

G
Gabriel Graph, 234
Graph, 11, 229

circumference, 15
connectivity, 17
cycle, 14
degree, 12
diameter, 15
girth, 15
path, 14
radius, 15
subgraph, 16
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Graph (cont.)
traversal, 53

breadth first search, 53
depth first search, 53

tree, 19
walk, 14

Grid, 2

I
Independent set, 135

maximal, 135
maximum, 135

Interprocess, 296

L
Link state protocol, 94
Localization, 277

range estimate, 280
range-based, 278
range-free, 279
RSSI, 278

M
MANET, 3, 217
Matching, 173

maximal, 173
maximum, 173
unweighted, 174
weighted, 183

Maximal independent set, 135
from vertex coloring, 145
random algorithm, 141, 144
rank based algorithm, 137
self-stabilizing, 147

Ikeda’s Algorithm, 150
Shukla’s Algorithm, 147
Turau’s Algorithm, 151

sequential algorithm, 136
Maximal matching, 173

self-stabilizing, 185
Hsu and Huang Algorithm, 186
synchronous, 186
weighted, 187

unweighted
from edge coloring, 180
greedy distributed algorithm, 175
sequential, 175
three-phase distributed algorithm, 178

weighted
Hoepman’s Algorithm, 184
sequential, 183

Message, 297
Message passing, 24

Middleware, 2
synchronizer, 32

Minimal dominating set, 157
connected, 157

greedy algorithm, 165
distributed algorithms, 162
greedy algorithm, 163
Guha–Khuller algorithms, 160
self-stabilizing

algorithm, 168
sequential, 158
two-span algorithm, 166

Minimal vertex cover, 193
self-stabilizing, 206

2 − 1/Δ algorithm, 206
bipartite matching algorithm, 210

sequential algorithms, 195
unweighted

by bipartite matching, 202
connected, 201
distributed algorithm, 198

weighted, 204
distributed algorithm, 206
Pricing Algorithm, 205

Minimum spanning tree, 69
algorithm, 69

Mobile ad hoc network, 217

N
Nearest-neighbor graph, 232
ns2, 225

R
Relative neighborhood graph, 235
Routing, 83

ad hoc, 259
all pairs shortest paths, 86
distance vector protocol, 94
link state protocol, 94
sequential, 83

S
Self stabilization, 97

BFS tree, 99
DFS tree, 101
Dijkstra’s Algorithm, 99
models, 98

Spanning tree, 39
broadcast, 47
convergecast, 47
flooding based, 41
minimal, 69
Tarry’s Traversal Algorithm, 46
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Stretch factors, 231
Synchronizer, 32

T
Target tracking, 281

cluster based, 282
dynamic clustering, 284
static clustering, 282

lookahead, 291
prediction based, 291
tree based, 288

TinyOS, 226
Topology control, 229

clustering, 238
highest connectivity algorithm, 243
k-hop clustering, 246
lowest-ID algorithm, 241
MANETs, 240
sensor networks, 239
spanning tree based, 247

cone based, 238
connected dominating set, 248

distributed algorithms, 250
MIS based, 250
pruning based, 252
sequential algorithm, 249

local graphs, 232
Delaunay Triangulation, 235
Gabriel Graph, 234
nearest neighbor graphs, 232
relative neighborhood graphs, 235
Voronoi Diagram, 235
Yao Graph, 237

nearest neighbor graph, 232
relative neighborhood graph, 235
stretch factors, 231

TOSSIM, 226

U
UDG, 221

V
Vertex

coloring, 107
Vertex coloring, 107

distributed algorithms, 110
random, 112
reduction, 113
self-stabilizing, 128

arbitrary graphs, 130
planar graphs, 129

sequential algorithms, 108
tree, 124

six coloring, 125
six-to-two, 126

Vertex cover, 193
minimal, 193

connected, 194
weighted, 194

minimum, 193
connected, 194
weighted, 194

self-stabilizing
Kiniwa, 206

unweighted, 195
Voronoi Diagram, 235

W
Wireless sensor network, 220
WSN, 3, 220

Y
Yao Graph, 237
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